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Preface

Designing interactive computer systems to be efficient and easy to use 
is important so that people in our society may realize the potential 
benefits of computer-based tools. Our purpose in this book is to help lay 
a scientific foundation for an applied psychology concerned with the 
human users of interactive computer systems. Although modern cogni­
tive psychology contains a wealth of knowledge of human behavior, it is 
not a simple matter to bring this knowledge to bear on the practical 
problems of design—to build an applied psychology that includes theory, 
data, and methodology.

This book is our attempt to span the gap between science and 
application. We have tackled a small piece of the general problem. With 
respect to computer science, we have focused on the task domain of text­
editing and similar types of highly interactive systems. With respect to 
psychology, we have focused on the notion of the expert user’s cognitive 
skill in interacting with the system, especially the temporal aspects of the 
interaction. We have constructed an empirically-based cognitive theory 
of skilled human-computer interaction in this domain. This theory is our 
keystone for linking science and application. On one side, we have 
shown that the theory is a consistent extension of the science of human 
information-processing. On the other side, we have simplified the theory 
into practical engineering models, which are the tools for designers to 
apply the theory. Thus, in addition to putting forth specific psychological 
models in this book, we have tried to make clear the general framework 
of an applied psychology, in which these models are but prototypical 
examples.

THE AUDIENCE FOR THIS BOOK

Interest in the topic of human-computer interaction is shared by 
people from a range of disciplines. We believe this book makes contact 
with the specific interests of all of these disciplines. For instance:
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(1) Cognitive psychologists will find that theory and empirical 
methods can be extended to the analysis of a real-world 
domain and that a practical problem can be a fruitful vehicle 
for developing basic psychology.

(2) Computer scientists will find that the problem of matching 
computer power with user abilities may be approached using 
the theory and methods of the cognitive sciences.

(3) System designers will find that we have derived a number of 
models and principles of user performance that may be used 
in design.

(4) Human factors specialists, ergonomists, and human engineers 
will find that we have synthesized ideas from modem cogni­
tive psychology and artificial intelligence with the old methods 
of task analysis and brought them to bear on the human- 
computer interface—which is rapidly becoming the most 
important domain in human factors practice.

(5) Engineers in several fields concerned with man-machine sys­
tems will find that we have extended the notion of work 
analysis by showing how techniques from cognitive science 
can be applied to the analysis of procedures that are pre­
dominantly mental.

We have used the book as the primary reference in a graduate course 
on “Applying Cognitive Psychology to Computer Systems,” taught (by 
TM and SC) in the Departments of Psychology and Computer Science at 
Stanford University (Moran and Card, 1982). Parts of the book, in 
manuscript, have proven useful to others in teaching similar courses in 
psychology, computer science, and industrial engineering. The book 
would be suitable for a variety of courses: (1) a course on human factors 
in computer systems within a computer science department; (2) a course 
on human-computer interface design within a computer science 
department; (3) a course on the psychology of computer users within a 
psychology department; (4) a course on human-computer interaction 
within an industrial engineering or human factors department; (5) an 
advanced research seminar in either computer science, psychology, or 
industrial engineering; or (6) in a focused short course for industrial 
professionals. For courses with a design focus. Chapters 1 and 2 can be 
used to provide psychological background; and Chapters 3, 5, 7, 8, 9, and 
12 can be used for analytical and practical content For courses stressing



psychological issues. Chapters 1, 2, 5, 7, 8, 10, and 11 can be used to 
develop basic concepts and theory.

PREFACE IX

HISTORY OF THIS RESEARCH

In 1970, Xerox established a new major research center in Palo Alto 
with the express purpose of exploring digital electronic technologies in 
support of Xerox’s general concern with office information systems. 
Since that time, the Palo Alto Research Center (PARC) has become well 
known for its developments in interactive computing, based on personal 
computers with integral high quality graphic displays (the Alto being the 
first such computer), connected by a high capacity local network (the 
Ethernet). It has become known, as well, for being the first living 
embodiment of this new computational style.

From the start (early 1971) there were discussions between George 
Pake (then head of PARC), Robert Taylor (now manager of the 
Computer Sciences Laboratory of PARC), and one of us (AN, as a 
consultant to PARC) about the possibilities of an active role for 
psychological research into human interaction with computers. PARC 
seemed like the perfect place to attempt such an effort. Modem 
cognitive psychology had come a long way in understanding man as a 
processor of information, a view that meshed completely with the 
developments in computer science and artificial intelligence—indeed, 
derived from them in a number of particulars. The impact of the 
psychological advances on the human factors of how computers were 
used was not yet very great, though the potential was clearly there. 
PARC itself, being both an industrial laboratory with the concomitant 
underlying emphasis on application and a group engaged in basic 
research in computer science and artificial intelligence, provided exactly 
the right environment.

In 1974, opportunity became reality through Jerome Elkind (who had 
joined PARC to become manager of the Computer Sciences Laboratory). 
Two of us (TM and SC) joined PARC, and a small unit, called the 
Applied Information-Processing Psychology Project (AIP), was formed. Its 
charter was to create an applied psychology of human-computer 
interaction by conducting requisite basic research within a context of 
application. It was initially located within the Systems Sciences Labora­
tory, a sister laboratory to the Computer Sciences Laboratory, under 
William English, who was in charge of a group constructing an expert-



mental interactive office-information system. One reason for its location 
was the early decision to concentrate on immediate, real-time human- 
computer interaction, especially as embodied in the use of text-editing 
systems, rather than on the activities of programming computers. The 
AIP group has remained intact through many local reorganizations and is 
presently a part of the Cognitive and Instructional Sciences Group.

The present book, then, presents the results of some of the main 
strands of the AIP group’s research. The group has throughout consisted 
of just the three of us, in equal collaboration (SC and TM at PARC, with 
AN as a consultant), supported by research assistants, students, and col­
leagues in PARC and elsewhere.
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We have no doubt missed some people who deserve mention. One 
advantage of writing a book of this kind is that our excuse—that human 
information-processing systems are limited—is contained herein. As we 
explain in Chapter 2, searching Lx>ng-Term Memory requires con­
siderable effort, and we have not managed to move the full way along 
the information retrieval curve pictured in Figure 2.27.
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1. An Applied Information- 
Processing Psychology

1.1. THE HUMAN-COMPUTER INTERFACE
1.2. THE ROLE OF PSYCHOLOGY
1.3. THE FORM OF AN APPLIED PSYCHOLOGY
1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY
1.5. THE YIELD FOR COMPUTER SCIENCE
1.6. PREVIEW

A scientific psychology should not only help us to understand our 
own human nature, it should help us in our practical affairs. In 
educating our children, it should help us to design environments for 
learning. In building airplanes, it should help us to design for safety and 
efficiency. In staffing for complex jobs, it should help us to discover 
both the special skills required and those who might have them. And on 
and on. Given the breadth of environments we design for ourselves, 
there is no limit to the number of domains where we might expect a 
scientific knowledge of human nature to be of use.

The domain of concern to us, and the subject of this book, is how 
humans interact with computers. A scientific psychology should help us 
in arranging this interface so it is easy, efficient, error-free—even 
enjoyable.

Recent advances in cognitive psychology and related sciences lead us 
to the conclusion that knowledge of human cognitive behavior is 
sufficiently advanced to enable its applications in computer science and 
other practical domains. The years since World War II have been the 
occasion for an immense wave of new understandings and new 
techniques in which man has come to be viewed as an active processor of 
information. In the last decade or so, these understandings and 
techniques have engulfed the main areas of human experimental psychol­



ogy^; perception,^ performance,^ memory,"* learning,^ problem solving,^ 
psycholinguistics.^ By now, cognitive psychology has come to be 
dominated by the information-processing viewpoint

A major advance in understanding and technique brings with i t  after 
some delay, an associated wave of applications for the new knowledge. 
Such a wave is about to break in psychology. The information-processing 
view will lead to a surge of new ways for making psychology relevant to 
our human needs. Already the concepts of information-processing 
psychology have been applied to legal eyewitness testimony^ and to the 
design of intelligence tests.^ And in the study of man-machine systems 
and engineering psychology, it has for some time been common to 
include a block diagram of the overall human information-processing 
system in the introductory chapter of textbooks,even though the reach 
of that block diagram into the text proper is still tenuous. There are 
already the beginnings of a subfield, for which various names (associating 
the topic in different ways) have been suggested: user sciences,**
artificial psycholinguistics,*^ cognitive ergonomics,** software psychol­
ogy,*"* user psychology,*^ and cognitive engineering.*^

2 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

* For representative examples see Lindsay and Norman’s (1977) Human Information 
Processing, Anderson’s (1980) Cognitive Psychology and its Implications, the Handbook o f  
Learning and Cognitive Processes (Estes, ed. 1975-1978), the Attention and Performance 
collections o f papers (Komblum, 1973; Rabbitt and Domi5, 1975; DomiC, 1977; Requin, 
1978; Long and Baddeley, 1981), and the journal Cognitive Psychology.

2
Examples: Broadbent (1958), Perception and Communication; Green and Swets

(1966), Signal Detection Theory and Psychophysics; Neisser (1967), Cognitive Psychology; 
Comsweet (1970) Visual Perception.

 ̂ Examples: Fitts and Posner (1967), Human Performance; Welford (1968),
Fundamentals o f Skill; Kintsch (1974), The Representation o f Meaning in Memory; 
Tversky (1977), “Feature of similarity’’; Posner (1978), Chronometric Explorations of the 
Mind.

 ̂ Examples: Anderson and Bower (1973), Human Associative Memory; Baddeley
(1976), The Psychology of Memory; Crowder (1976), Principles o f Learning and Memory; 
Murdock (1974), Human Memory, Theory and Data.

 ̂ Examples: Fitts (1964), “Perceptual-motor skill learning’’; Klahr and Wallace
(1976), Cognitive Development: An Information-Processing View; Anderson (1981a), 
Cognitive Skills and their Acquisition.

 ̂ Example: Newell and Simon (1972), Human Problem Solving.



Our own goal is to help create this wave of application: to help
create an applied information-processing psychology. As with all applied 
science, this can only be done by working within some specific domain of 
application. For us, this domain is the human-computer interface. The 
application is no offhand choice for us, nor is the application dictated 
solely by its extrinsic importance. There is nothing that drives funda­
mental theory better than a good applied problem, and the cognitive 
engineering of the human-computer interface has all the markings of 
such a problem, both substantively and methodologically. Society is in 
the midst of transforming itself to use the power of computers 
throughout its entire fabric—wherever information is used—and that 
transformation depends critically on the quality of human-computer 
interaction. Moreover, the problem appears to have the right mixture of 
industrial application and symbol manipulation to make it a “real-world” 
problem and yet be within reasonable reach of an extended cognitive 
psychology. In addition, we have personal disciplinary commitments to 
computer science as well as to psychology.

This book reports on a program of research directed towards 
understanding human-computer interaction, with special reference to text­
editing systems. The program was undertaken as an initial step towards 
the applied information-processing psychology we seek. Before outlining 
individual studies, it is appropriate to sketch how this effort fits in with 
the larger endeavor.

1.1. THE HUMAN-COMPUTER INTERFACE 3

' Example: Clark and Clark (1976), Psychology and Language: An Introduction to 
Psycholinguistics.
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1.1. THE HUMAN-COMPUTER INTERFACE

4  1. APPLIED INFORMATION-PRCX5ESSING PSYCHOLOGY

The human-computer interface is easy to find in a gross way—just 
follow a data path outward from the computer’s central processor until 
you stumble across a human being (Figure 1.1). Identifying its bound­
aries is a little more subtle. The key notion, perhaps, is that the user and 
the computer engage in a communicative dialogue whose purpose is the 
accomplishment of some task. It can be termed a dialogue because both 
the computer and the user have access to the stream of symbols flowing 
back and forth to accomplish the communication; each can interrupt, 
query, and correct the communication at various points in the process. 
All the mechanisms used in this dialogue constitute the interface: the
physical devices, such as keyboards and displays, as well as computer’s 
programs for controlling the interaction.

At any point in the history of computer technology there seems to be 
a prototypical user interface. A few years ago it was the teletypewriter; 
currently it is the alphanumeric video-terminal. But the actual diversity 
is now much greater. All so-called “remote entry” devices count as 
interfaces: and a large number of such specialized devices exist in the 
commercial and industrial world to record sales, maintain inventory 
records, or control industrial processes. Almost all such devices are 
fashioned from the same basic sorts of components (keyboards, buttons, 
video displays, printers) and connect to the same sorts of information­
processing mechanisms (disks, channels, interrupt service routines).

The very existence of the direct human-computer interface is itself an 
emergent event in the development of computers. If we go back twenty 
years, the dominant scheme for entering information into a computer 
consisted of a trio of people. First there was the user, someone who 
wanted to accomplish some task with the aid of the computer. The user 
encoded what he wanted onto a coding sheet, then sent it to a second 
person, the keypunch operator, who used an off-line device, the 
keypunch, to create a deck of punched cards that encoded the same 
information in a different form. The cards in turn went to a third 
person, the computer-operator, who entered the cards into the computer 
via the card reader. The computer then responded by printing messages 
and data on paper for the operator to gather up and send back to the 
user. The relationship between the user and the computer was suf­
ficiently remote that it should be likened more to a literary 
correspondence than to a conversational dialogue. It is the general
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Figure 1.1. The human-computer interface.

demise of such arrangements involving human intermediaries, and the 
resultant coupling of the user directly to the computer, that has given rise 
to the contemporary human-computer interface. Whatever continued 
evolution the interface takes—and it will be substantial—^human- 
computer interaction is unlikely ever to lose this character of a 
conversational dialogue.

Of course, there is much more to improving computer interfaces than 
simply making them conversational. Informal evidence from the direct 
experience of users provides numerous examples of current interface 
deficiencies:

In one text-editing system, typing the word edit while in 
command mode would cause the system to select every-



thing, delete everything, and then /nsert the letter t (this 
last making it impossible to use the system Undo command 
to recover the deleted text because only the last command 
could be undone).

In another text-editing system, so many short commands 
were defined that almost any typing error would cause 
some disaster to happen. For example, accidentally typing 
CONTROL-E would cause the printer to be captured by the 
user. Since no indication of this event was given, no other 
users would be permitted to print until the other users 
eventually discovered who had the printer. In an even 
more spectacular instance, accidentally typing c o n t r o l -Z 

would delete all the user’s files—permanently.

In one interactive programming system, misspelling a 
variable name containing hyphens (a common way of 
marking off parts of a name) would cause the system to 
rewrite the user’s program, inserting code to subtract the 
parts of the name. In many cases, the user would have to 
mend his program by hand, laboriously searching for and 
editing the damaged code.

In a set of different subsystems meant to be used together, 
the name “List” was given to many different commands, 
each having a different meaning: (1) send a file to the
printer to make a hardcopy, (2) show the directory of files 
on the display, (3) show the content of a file on the display, 
(4) copy the workspace to a file, (5) create a particular kind 
of data structure.

1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

Yet, when one looks at the teletype interfaces of yesterday, it is clear 
that substantial progress has been made. The emergence of the direct 
human interface, circumventing the keypuncher and operator, must itself 
be counted as an improvement of enormous value. We now have 
interfaces that allow the use of computers for such highly interactive tasks 
as making engineering drawings and taking airline reservations. But 
despite considerable advancements, the systems we have are often ragged 
and in places are sufficiently poor to cripple whole ranges of use.



What strikes one most noticeably about existing interfaces, besides all 
the little ways they fail, is that their failures appear to be unnecessary. 
Why, when interaction could be so smooth, even elegant, is it often so 
rough, even hazardous? Two observations may help explain this per­
plexing state of affairs.

First, interaction with computers is just emerging as a human activity. 
Prior styles of interaction between people and machines—such as driver 
and automobile, secretary and typewriter, or operator and control 
room—are all extremely lean: there is a limited range of tasks to be
accomplished and a narrow range of means (wheels, levers, and knobs) 
for accomplishing them. The notion of the operator of a machine arose 
out of this context. But the user is* not an operator. He does not operate 
the computer, he communicates with it to accomplish a task. Thus, we 
are creating a new arena of human action; communication with machines 
rather than operation o f machines. What the nature of this arena is like 
we hardly yet know. We must expect the first systems that explore the 
arena to be fragmentary and uneven.

Second, the radical increase in both the computer’s power and its 
performance/cost ratio has meant that an increasing amount of 
computational resources have become available to be spent on the 
human-computer interface itself, rather than on purely computational 
tasks. This increase of deployable resources exacerbates the novelty of 
the area, since entirely new styles of interaction become available 
coincidentally with an increased amount of computational ability available 
per interaction. These new styles often lead to completely new interfaces, 
which are then even more ragged than before. At the same time, 
opportunities for the invention of good interfaces also increase rapidly, 
accounting for the leaps and bounds we have seen in terms of major 
improvements in functionality and ease of use.

1.2. THE ROLE OF PSYCHOLOGY 7

1.2. THE ROLE OF PSYCHOLOGY

Many in the computer field agree that there is an obvious way to 
design better human-computer interfaces. Unfortunately, they disagree 
on what it is. It is obvious to some that psychological knowledge should 
be applied. Their slogan might be, in the words of Hansen (1971): 
“Know the user!” It is obvious to others that the interface should simply
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be designed with more care—that if designers were given the goal of 
good interfaces, rather than stringent cost limits or tight deadlines, then 
they would produce good designs. Their slogan might be: “Designers are 
users too—just give them the time and freedom to design it right!” And 
it is obvious to others still that one should pour the effort into some new 
components—flat displays, color graphics, or dynamically codeable micro­
processors in the terminal. Their slogan might be: “Make the com­
ponents good enough and the system will take care of itself!”

Who is to gainsay each of these their point? The technology limits, 
often severely, what can be done. All the human engineering in the 
world will not turn a 10-character-per-second teletypewriter into a high- 
resolution graphics terminal. The history of terminal development so far 
is writ largely in terms of advances in basic interface components, most 
notably the resources to allow substantial computational cycles to be 
devoted to the interface. It is easy to point to current limitations whose 
lifting will improve the interface by orders of magnitude. Immense gains 
will occur when the display holds not the common 24 X 80 characters 
(the typical alphanumeric video terminal, widely available today), but a 
full page of 64 X 120 characters (the typical 1000 X 800 pixel video 
terminal, available at a few places today), or even the full drafting board 
of 512 X 512 characters (not really available anywhere, yet, as far as we 
know).

Moreover, any accounting will have to credit the majority of the 
capabilities and advances at the interface to design engineers and only a 
few of them to psychologists. However many imperfections there remain 
in the interface, the basic capabilities and inspired creations that do exist 
came out of an engineering analysis of the functions needed and the fact 
that the designer, being human, could empathize directly with the user.

And yet, there remain the mini-horror stories—of systems where, after 
the fact, it became clear that either the nature or the limitations of the 
user were not appreciated, and some design foolishness was committed. 
Since it is these stories that come to mind in discussing the role of the 
human at the interface, it is often assumed that all that one needs are 
ways of checking to be sure that the obvious is not overlooked; “All we 
need from psychology is a few good checklists!” might be the slogan 
here. But as we shall see, there is more to human-computer interaction 
than can be caught with checklists.

The role psychology might be expected to play in the design of the 
user-computer interface is suggested by the results it was able to achieve



for military equipment during World War II. At that time, it had 
becxjme apparent that a strong limiting factor in realizing the potential of 
man-machine systems, such as radar sets and military aircraft, lay in the 
difficulty of operating the equipment Out of a wartime collaboration 
between natural scientists, engineers, and psychologists came major 
advances, not only with respect to the man-machine systems being 
designed, but also with respect to psychological theory itself. Examples 
of the latter include the theory of signal detection, manual control theory, 
and a methodology for the design of cockpit instrument displays. That 
with psychological attention to human performance airplanes became 
more flyable encourages us to believe that with psychological attention to 
human performance computers can become more usable.
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1.3. THE FORM OF AN APPLIED PSYCHOLOGY

What might an applied information-processing psychology of human- 
computer interfaces be like and how might it be used? Imagine the 
following scenario:

A system designer, the head of a small team writing the 
specifications for a desktop calendar-scheduling system, is 
choosing between having users type a key for each 
command and having them point to a menu with a 
lightpen. On his whiteboard, he lists some representative 
tasks users of his system must perform. In two columns, he 
writes the steps needed by the “key-command” and “menu” 
options. From a handbook, he culls the times for each 
step, adding the step times to get total task times. The key- 
command system takes less time, but only slightly. But, 
applying the analysis fhim another section of the handbook, 
he calculates that the menu system will be faster to learn; 
in fact, it will be leamable in half the time. He has 
estimated previously that an effective menu system will 
require a more expensive processor: 20% more memory,
100% more microcode memory, and a more expensive 
display. Is the extra expenditure worthwhile? A few more 
minutes of calculation and he realizes the startling fact that, 
for the manufacturing quantities anticipated, training costs



for the key-command system will exceed unit manufac­
turing costs! The increase in hardware costs would be 
much more than balanced by the decrease in training costs, 
even before considering the increase in market that can be 
expected for a more easily learned system. Are there 
advantages to the key-command system in other areas, 
which need to be balanced? He proceeds with other 
analyses, considering the load on the user’s memory, the 
potential for user errors, and the likelihood of fatigue. In 
the next room, the Pascal compiler hums idly, unused, 
awaiting his decision.
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The system designer is engaged in a sort of psychological civil 
engineering, trading computed parameters of human performance against 
cost and other engineering variables. The psychological science base 
necessary to make possible his design efforts is the sort of applied 
psychology that is the topic of this book. Such a psychology must 
necessarily be homogeneous in form with the rest of the engineering 
science base to allow tradeoffs between psychological and other design 
considerations. To be useful, we would argue, such a psychology must 
be based on task analysis, calculation, and approximation.

Task Analysis. When psychology is applied in the context of a 
specific task, much of the activity hardly seems like psychology at all, 
but rather like an analysis of the task itself. The reason for this is clear: 
humans behave in a goal-oriented way. Within their limited perceptual 
and information-processing abilities, they attempt to adapt to the task 
environment to attain their goals. Once the goals are known or can be 
assumed, the structure of the task environment provides a large amount 
of the predictive content of psychology.

Calculation. The ability to do calculations is the heart of useful, 
engineering-oriented applied science. Without it, one is crippled. Appli­
cations are, of course, still possible, as witness mental testing, behavior 
modification, assertiveness training, and human-factors investi-gations of 
display readability. But what is needed to support an engineering 
analysis are laws of parametric variation, applicable on the basis of a task 
analysis.

Psychology is not strong on calculation, though a few useful laws, 
such as Power Law of Practice, exist The reason might be thought to 
be an inherent characteristic of psychology, or maybe even more 
generally, of all human sciences. Our view is the opposite. Psychology



is largely non-calculational because it has followed a different drummer. 
It has been excessively concerned with hypothesis testing—with building 
techniques to discriminate which of two ideas is right If one changes 
what one wants from the science, one will find the requisite techniques. 
Interestingly, a branch of the human sciences, work-measurement 
industrial engineering, indeed asked a different question—namely, how 
long would it take people to do preset physical tasks—and it obtained 
useful answers.

Approximation. If calculations are going to be made rapidly, they are 
necessarily going to be over-simplified. Nature—especially human
nature—is too complex to be written out on the back of an envelope. 
But in engineering, approximations are of the essence. It is vital to get 
an answer good enough to dictate the design choice; additional accuracy 
is gilding the computational lily.

Again, psychology has in general not asked after approximations, 
though it has certainly learned to talk in terms of simplified models. The 
neglect of approximation has been especially encouraged by the emphasis 
on statistical significance rather than on the magnitude of an effect. A 
difference of a few percent in performance at two levels of an 
independent variable is usually of little practical importance and can 
often be ignored in an approximation, even if the difference is highly 
significant statistically. But if there is no external criterion—no design 
decision to be made, for instance—then there is no way to tell which 
approximations are sufficient

But whereas an applied psychology of human-computer interaction 
should be characterized by task analysis, calculation, and approximation, 
these are not the only considerations. It is obvious that an applied 
psychology intended to support cognitive engineering should also be 
relevant to design. It is less obvious, but nonetheless true, that to be 
successful, an applied psychology should be theory-based.
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RELEVANT TO DESIGN

Design is where the action is in the human-computer interface. It is 
during design that there are enough degrees of freedom to make a 
difference. An applied psychology brought to bear at some other point is 
destined to be half crippled in its impact.

We suspect that many psychologists would tend to pick evaluation as 
the main focus for application (though some might have picked training). 
Evaluation is what human factors has done best. Given a real system.
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one can produce a judgment by experimentation. Thus, the main tool in 
the human-factors kit has been the methodology of experimental design, 
supported by concomitant skill in experimental control and in statistics 
with which to assess the results. The emphasis on evaluation is wide­
spread: There is a whole subfield of psychology whose concern is to 
evaluate social action programs. The testing movement is fundamentally 
evaluational in character, whether concerned with intelligence testing or 
with clinical assessment

Applying psychology to the evaluation of systems is assuredly easier 
than applying it to the design of systems. In evaluation, the system is 
given; all its parts and properties are specified. In design, the system is 
still largely hypothetical; it is a class of systems. On the other hand, 
there is much less leverage in system evaluation than in system design. 
In design, one wants results expressed explicitly as a function of some 
controllable parameters, in order to explore optimization and sensitivity. 
In evaluation, this urge is much diminished; experimental evaluation is so 
expensive as to be prohibitive, permitting exploration of only two or 
three levels of each independent variable. Most importantly, by the time 
a system is running well enough to evaluate, it is almost inevitably too 
late to change it much. Thus, an applied psychology aimed exclusively at 
evaluation is doomed to have little impact

There are several choices for how to institutionalize an applied 
psychology. First psychologists could be the primary professionals in the 
field. Though possible in some fields, such as mental health, counseling, 
or education, we think this arrangement unlikely for computers. The 
field is already solely in the possession of computer engineers and 
scientists. Second, psychologists could be specialists, either as members 
of separate human-factors units within the organizations or as another 
individual specialty within the primary design team. Our reasons for not 
favoring separate psychology units reflect the additional separation we 
believe they imply between the psychology and the development of 
interfaces. Application of psychology would shift too strongly towards 
evaluation and away from the main design processes.

We favor a third choice; that the primary professionals—the computer 
system designers—be the main agents to apply psychology. Much as a 
civil engineer learns to apply for himself the relevant physics of bridges, 
the system designer should become the possessor of the relevant applied 
psychology of human-computer interfaces. Then and only then will it 
become possible for him to trade human behavioral considerations 
against the many other technical design considerations of system config­



uration and implementation. For this to be possible, it is necessary that a 
psychology of interface design be cast in terms homogeneous with those 
commonly used in other parts of computer science and that it be 
packaged in handbooks that make its application easy. Thus, the system 
designer in our scenario finds the design handbook more efficient to use 
than plunging blindly into code with his Pascal compiler, although he 
may still find it profitable to engage in exploratory implementation.
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THEORY-BASED

An applied psychology that is theory-based, in the sense of 
articulating a mechanism underlying the observed phenomena, has 
advantages of insight and integration over a purely empirical approach. 
The point can be made by reference to two examples of behavioral 
science lacking a strong theory in this sense: work-study industrial engi­
neering, referred to earlier, and intelligence testing. Rather than develop 
the theory of skilled movement, the developers of the several movement 
time systems chose an empirical approach, tabulating the times to make 
various classes of movements and ignoring promising theoretical develop­
ments such as Fitts’s Law (at least until recently). Although their tables 
of motion times ran to four significant figures, they ignored the variance 
of the times and interactions between sequential motions, thus rendering 
the apparent precision illusory. This lack of adequate theoretical 
development made the work, despite its impressive successes, vulnerable 
to attacks from outside the field (see Abruzzi, 1956; Schmidtke and Stier, 
1961). Similarly, in mental testing, the lack of a psychological theory of 
the mental mechanisms underlying intelligence (as opposed to a purely 
statistical theory of test construction) has put the validity of mental tests 
in doubt despite, again, impressive successes.

It is natural for an applied psychology of human-computer interaction 
to be based theoretically on information-processing psychology, with the 
latter’s emphasis on mental mechanism. The use of models in which 
man is viewed as a processor of information also provides a common 
framework in which models of memory, problem solving, perception, and 
behavior all can be integrated with one another. Since the system 
designer also does his work in information-processing terms, the emphasis 
is doubly appropriate. The lack of this common framework is one reason 
why it would be difficult to meld in important techniques such as the use 
of Skinnerian contingent reinforcement It is not that the techniques are 
not useful in general, nor that they cannot be applied to the problems of



the human-computer interface; but within the framework that underlies 
this book, they would show up as isolated techniques.

The psychology of the human-computer interface is generally 
individual psychology: the study of a human behaving within a non­
human environment (though, interestingly, interacting with another active 
agent). But within the study all psychological functioning is in­
cluded—motor, perceptual, and cognitive. Whereas much psychology 
tends to focus on small micro-tasks studied in isolation, an applied 
psychology must dwell on the way in which all the components of the 
human processor are integrated over time to do useful tasks. For 
example, it might take into account interactions among the following: 
the ease with which commands can be remembered, the type font of 
characters as it affects legibility of the commands, the number of com­
mands in a list, and anything else relevant to the particular interface. 
The general desirability of such wide coverage has never been in doubt 
It appears in our vision of an applied psychology because wide coverage, 
especially the incorporation of cognition, now seems much more credible 
than it did twenty years ago. On the other hand, motivational and 
personality issues are not included. Again, there is hardly any doubt of 
the desirability of including them in an applied psychology, but it is 
unclear how to integrate the relevant existing knowledge of these topics.

1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY
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The textbook view is that as a science develops it sprouts applications, 
that knowledge flows from the pure to the applied, that the backflow is 
the satisfaction (and support) that comes to a science from benefiting 
society. We have been reminded often enough that such a view does 
violence to the realities in several ways. Applied domains have a life and 
source of their own, so that many ingenious applications do not spring 
from basic science, but from direct understanding of the task in an 
applied context—from craft and experience. More importantly in the 
present context, applied investigations vitalize the basic science; they 
reveal new phenomena and set forth clearly what it is that needs 
explanation. The mechanical equivalent for heat, for instance, arose from 
Count Rumford’s applied investigations into the boring of brass cannon; 
and the bacteriological origin of common infectious diseases eventually 
arose, in part, out of studies by Pasteur on problems besetting the
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fermentation of wine. The basic argument was made for psychology by 
Bryan and Harter (1898); and numerous applied psychological models 
exist to remind us of what is possible (for example, Bryan and Harter’s 
1898 and 1899 studies of telegraphy. Book’s 1908 studies of typewriting, 
and Dansereau’s 1968 study of mental arithmetic).

These general points certainly hold for an applied cognitive 
psychology, and on the same general ground that they hold for all 
sciences. However, it is worth detailing the three main yields for 
cognitive psychology that can flow from a robust applied cognitive 
psychology.

The first contribution is to the substance of basic cognitive psychol­
ogy. The information-processing revolution in cognitive psychology is 
just beginning. Many domains of cognitive activity have hardly been 
explored. Such explorations are not peripheral to the basic science. It is 
a major challenge to the information-processing view to be able to 
explain how knowledge and skill are organized to cope with all kinds of 
complex human activities. Each application area in fact becomes an 
arena in which new problems for the basic science can arise. Each 
application area successfully mastered offers lessons about the ways in 
which the basic science can be extended to cover new areas. Ultimately, 
as a theory becomes solidified, application areas contribute less and less 
to the basic science. But at the beginning, just the reverse is true.

The domain of human-computer interaction is an example of such an 
unexplored domain. It has strong skill components. People who interact 
with computers extensively build up a repertoire of efficient, smooth, 
learned behaviors for carrying out their routine communicative activities. 
Yet, the interaction is also intensely cognitive. The skills are wielded 
within a problem-solving context, and the skills themselves involve the 
processing of symbolic information. As we shall see in abundance, even 
the most routine of these activities, such as using a computer text-editing 
program, requires the interpretation of instructions, the formulation of 
sequences of commands, and the communication of these commands to 
the computer.

The second contribution is to the style of cognitive psychology rather 
than to its substance. We believe that the form of the psychology of 
human-computer interaction, with its emphasis on task analysis, 
calculation, and approximation, is also appropriate for basic cognitive 
psychology. The existing emphasis in psychology on discriminating be­
tween theories is certainly understandable as a historical development



However, it stifles the growth of adequate theory and of the cumulation 
of knowledge by focusing the attention of the field on the consequences 
of theories, however uninteresting in themselves, that can be used to tell 
whether idea A or idea B is correct. Measurements come to have little 
value in themselves as a continually growing body of useful quantitative 
knowledge of the phenomena. They are seen instead primarily as indi­
cators fashioned to fit the demands of each experimental test. Since 
there is no numerical correspondence across paradigms in what is 
measured, the emphasis on discrimination fosters a tendency towards 
isolation of phenomena in specific experimental paradigms.

The third contribution is simply that of being a successful application, 
though it sounds a bit odd to say it that way. Modem cognitive psy­
chology has been developing now for 25 years. If information-processing 
psychology represents a successful advance of some magnitude, then 
ultimately it must both affect the areas in which psychology is now 
applied and generate new areas of application.
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1.5. THE YIELD FOR COMPUTER SCIENCE

It is our strong belief that the psychological phenomena surrounding 
computer systems should be part of computer science. Thus, we see this 
book not just as a book in applied psychology, but as a book in computer 
science as well. When university curriculum committees draw up a list of 
“what every computer scientist should know to call himself a computer 
scientist,” we think models of the human user have a place alongside 
models of compilers and language interpreters.

The fundamental argument is worth stating: Certain central aspects 
of computers are as much a function of the nature of human beings as of 
the nature of the computers themselves. The relevance of both computer 
science and psychology to the design of programming languages and the 
interface is easy to argue, but psychological considerations enter into 
more topics in computer science than is usually realized. The presump­
tion that has governed two generations of operating systems, for instance, 
that time-sharing systems should degrade response time as the number of 
users increases, is neither dictated by technology nor independent of the 
psychology of the user. A sufficiently crisp model of the effects of such 
a feature on the user could have turned the course of development of 
operating systems into quite different channels of development (into the
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logic of guaranteed service, contracted service, or proportionately graded 
services, for example). The yield for computer science that can flow 
from an applied psychology of human-computer interaction is 
engineering methods for taking the properties of users into account 
during system design.

1.6. PREVIEW

In this book, we report on a series of studies undertaken to 
understand the performance of users on interactive computing systems. 
Since new knowledge and insight are often achieved by first focusing on 
concrete cases and then generalizing, we direct a major portion of our 
effort towards user performance on computer text-editing systems. From 
this beginning, we try to generalize to other systems and to cognitive skill 
generally. We address four basic questions: (1) How can the science 
base be built up for supporting the design of human-computer interfaces? 
(2) What are user performance characteristics in a specific human- 
computer interaction task domain, text-editing? (3) How can our results 
be cast as practical models to aid in design? (4) What generalizations 
arise from the specific studies, models, and applications?

SCIENCE BASE

Chapter 2 begins by discussing the existing scientific base on which to 
erect an applied psychology of the human-computer interface. It does 
not review all the sources in their own terms—what is available from 
cognitive psychology, human factors, industrial engineering, manual 
control, or the classical study of motor skills—rather, it lays out a model 
of the human information-processor that is suited to an applied 
psychology and justified by current research.

TEXT-EDITING

Attention then turns to a detailed examination of text-editing as a 
prototypical example of human-computer interaction. An elementary 
requirement for understanding behavior at the interface is some gross 
quantitative information about user behavior, to provide a background 
picture against which to place more detailed studies in context The 
three studies in Chapters 3 and 4 provide such a picture. Two of these 
(Chapter 3), a benchmark study comparing text-editing systems and a



Study of the individual user differences, allow one to assess the variability 
in performance time arising from editing system design and from 
individual user differences. The third study (Chapter 4) uses the data of 
Chapter 3 to explore how well a simple model, in which all editing 
modifications are assumed to take the same time, does at analyzing 
tradeoffs between using a computer text-editor vs. using a typewriter.

The next three chapters develop an information-processing model for 
the behavior of users with an editing system. Chapter 5 introduces the 
basic theory. The user is taken to employ goals, operators, methods, and 
selection rules for the methods (the GOMS analysis) to accomplish an 
editing task from a marked-up manuscript. Experimental verification of 
the analysis is given, and the effect on accuracy due to the detail with 
which the analysis is applied is also investigated. The routine use of an 
editing system is discussed as an instance of cognitive skill. Chapter 6 
extends the model in three ways. First, the model is reduced to a 
complete, running computer simulation of user performance. Second, the 
analysis is extended to user behavior on a display-oriented system. Third, 
stochastic elements are introduced into the model to predict the 
distributions of performance times. Chapter 7 examines in detail one 
suboperation of editing: selecting a piece of text Four different devices 
for doing this are tested, and a theoretical account is given for their 
performance.

ENGINEERING MODELS

Chapters 8 and 9 focus on the ways in which the GOMS analysis can 
be simplified to provide practical models for predicting the amount of 
time required by a user to do a task. In Chapter 8, a model at the level 
of individual keystrokes is presented that is sufficiently simple and 
accurate to be a design tool. The model is validated over several systems, 
tasks, and users; and examples are given for ways in which the model 
could be used in engineering applications. In Chapter 9, a second 
simplification of the GOMS analysis, this time at a more gross level, is 
presented This model is suited for cases where, as in the early stages of 
design, the system to be analyzed is not fully specified.
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EXTENSIONS AND GENERALIZATIONS

So far, the studies have focused mostly on manuscript editing and on 
similar tasks where the user carries out a set of instructions. Chapter 10 
extends the same kind of analysis to a particular problem-solving activity:
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the use of a computer system to lay out a VLSI electronic circuit The 
analysis shows that the user behavior exhibits many of the characteristics 
of manuscript editing and that the behavior is indeed a routine cognitive 
skill, partially understandable in terms of the concepts already introduced.

Chapter 11 attempts to place results from the above studies in a larger 
theoretical context It continues the discussion of text-editing as an 
instance of cognitive skill and the relationship between cognitive skill 
generally and problem solving. Chapter 12 addresses the role of psychol­
ogical studies in design. It is argued that psychological studies should 
emphasize the creation of performance models. The several methods of 
doing this are discussed and provide a framework for summarizing the 
thrust of the present book. A number of guidelines for systems develop­
ment that arise from our studies are listed.
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2. The Human
Information-Processor

2 .1 . THE MODEL HUMAN PROCESSOR
The Perceptual System 

The Motor System 

The Cognitive System
2 .2 . HUMAN PERFORMANCE

Perception 
Motor Skill 
Simple Decisions 
Learning and Retrieval 
Complex Information-Processing

2 .3 . CAVEATS AND COMPLEXITIES

Our purpose in this chapter is to convey a version of the existing 
psychological science base in a form suitable for analyzing human- 
computer interaction. To be practical to use and easy to grasp, the 
description must necessarily be an oversimplification of the complex and 
untidy state of present knowledge. Many current results are robust, but 
second-order phenomena are almost always known that reveal an 
underlying complexity: and alternative explanations usually exist for 
specific effects. An uncontroversial presentation in these circumstances 
would consist largely of purely experimental results. Such an approach 
would not only abandon the possibility of calculating parameters of 
human performance from the analysis of a task, but would also fail in the 
primary purpose of giving the reader knowledge in a form relatively easy 
to assimilate.

Our tack, therefore, is to organize the discussion around a specific, 
simple model. Though limited, this model allows us to give, insofar as 
possible, an integrated description of psychological knowledge about 
human performance as it is relevant to human-computer interaction.
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2.1. THE MODEL HUMAN PROCESSOR

A computer engineer describing an information-processing system at 
the systems level (as opposed, for instance, to the component level) 
would talk in terms of memories and processors, their parameters and 
interconnections.^ By suppressing detail, such a description would help 
him to envision the system as a whole and to make approximate pre­
dictions of gross system behavior.

The human mind is also an information-processing system, and a 
description in the same spirit can be given for it. The description is 
approximate when applied to the human, intended to help us remember 
facte and predict user-computer interaction rather than intended as a 
statement of what is really in the head. But such a description is useful 
for making approximate predictions of gross human behavior. We 
therefore organize our description of the psychological science base 
around a model of this sort To distinguish the simplified account of the 
present model from the fuller psychological theory we would present in 
other contexts, we call this model the Model Human Processor.

The Model Human Processor (see Figures 2.1 and 2.2) can be 
described by (1) a set of memories and processors together with (2) a set 
of principles, hereafter called the “principles of operation.” Of the two 
parts, it is easiest to describe the memories and processors first, leaving 
the description of the principles of operation to arise in context.

The Model Human Processor can be divided into three interacting 
subsystems: (1) the perceptual system, (2) the motor system, and (3) the 
cognitive system, each with its own memories and processors. The 
perceptual system consists of sensors and associated buffer memories, the 
most important buffer memories being a Visual Image Store and an 
Auditory Image Store to hold the output of the sensory system while it is 
being symbolically coded. The cognitive system receives symbolically 
coded information from the sensory image stores in its Working Memory 
and uses previously stored information in Long-Term Memory to make 
decisions about how to respond. The motor system carries out the 
response. As an approximation, the information processing of the human 
will be described as if there were a separate processor for each 
subsystem: a Perceptual Processor, a Cognitive Processor, and a Motor
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For a survey of computing systems in these terms see Siewiorek, Bell, and Newell
(1981).



Processor. For some tasks (pressing a key in response to a light) the 
human must behave as a serial processor. For other tasks (typing, 
reading, simultaneous translation) integrated, parallel operation of the 
three subsystems is possible, in the manner of three pipelined processors: 
information flows continuously from input to output with a character­
istically short time tag showing that all three processors are working 
simultaneously.

The memories and processors are described by a few parameters. The 
most important parameters of a memory are

¡1, the storage capacity in items,
6, the decay time of an item, and
K, the main code type (physical, acoustic, visual, semantic).

The most important parameter of a processor is

T , the cycle time.

Whereas computer memories are usually also characterized by their 
access time, there is no separate parameter for access time in this model 
since it is included in the processor cycle time.

We now consider each of the subsystems in more detail.

The Perceptual System

The perceptual system carries sensations of the physical world 
detected by the body’s sensory systems into internal representations of 
the mind by means of integrated sensory systems. An excellent example 
of the integration of a sensory system is provided by the visual system: 
The retina is sensitive to light and records its intensity, wave length, and 
spatial distribution. Although the eye takes in the visual scene over a 
wide angle, not quite a full half-hemisphere, detail is obtained only over 
a narrow region (about 2 degrees across), called the fovea. The remain­
der of the retina provides peripheral vision for orientation. The eye is in 
continual movement in a sequence of saccades, each taking about 30 
msec to jump to the new point of regard^ and dwelling there 60~700 
msec for a total duration of
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Russo (1978).
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Figure 2.1. The Model Human Processor—memories and 
processors.
Sensory information flows into Working Memory through the Perceptual Processor. 
Working Memory consists of activated chunks in Long-Term Memory. The basic 
principle of operation of the Model Human Processor Is the Recognize-Act Cycle of 
the Cognitive Processor (PO in Figure 2.2). The Motor Processor is set in motion 
through activation of chunks in Working Memory.
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PO. Recognize-Act Cycle of the Cognitive Processor. On each cycle of the 
Cognitive Processor, the contents of Working Memory initiate actions associatively 
linked to them in Long-Term Memory; these actions in turn modify the contents of 
Working Memory.

P1. Variable Perceptual Processor Rate Principle. The Perceptual Processor cycle 
time Tp varies inversely with stimulus Intensity.

P2. Encoding Specificity Principle. Specific encoding operations performed on what 
Is perceived determine what Is stored, and what is stored determines what retrieval 
cues are effective In providing access to what Is stored.

P3. Discrim ination Principle. The difficulty of memory retrieval Is determined by the 
candidates that exist In the memory, relative to the retrieval clues.

P4. Variable Cognitive Processor Rate Principle. The Cognitive Processor cycle 
time is shorter when greater effort Is induced by increased task demands or 
information loads; It also diminishes with practice.

P5. Fittses Law. The time to move the hand to a target of size S which lies a 
distance D away Is given by:

P6.

P7.

P8.

P9.

T̂pos = ¡ x f \o g ^ {D /S ^  .5), 

where ¡¡^ - fOO [70~120] msec/bit.

Power Law of Practice. The time 
power law:

T„ = T,n-

(2.3)

T to perform a task on the nXh trial follows a

(2.4)

where a = .4 [.2~ .6 ].

Uncertainty Principle. Decision time T  increases with uncertainty about the 
judgement or decision to be made:

T I ^ H ,

where H  is the information-theoretic entropy of the decision and
/^  = 150 [0-157] msec/bit. For n equally probable alternatives (called Hick’s Law),

H  = iOQ^in -1-1). (2.8)

For n alternatives with different probabilities, /?•, of occurence,

/ /  =S.p.log2(1/p, + 1). (2.9)

Rationality Principle. A person acts so as to attain his goals through rational 
action, given the structure of the task and his inputs of Information and bounded by 
limitations on his knowledge and processing ability:

Goals + Task Operators + Inputs 
+ Knowledge -♦- Process-limits Behavior

Problem Space Principle. The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states of knowledge, (2) operators 
for changing one state into another, (3) constraints on applying operators, and (4) 
control knowledge for deciding which operator to apply next.

Figure 2.2. 
operation.

The Model Human Processor—principles of
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Eye-movement = 230 [70~700] msec ?

(In this expression, the number 230 msec represents a typical value and 
the numbers in brackets indicate that values may range from 70 msec to 
700 msec depending on conditions of measurement, task variables, or 
subject variables.) Whenever the target is more than about 30 degrees 
away from the fovea, head movements occur to reduce the angular 
distance. These four parts—central vision, peripheral vision, eye move­
ments, and head movements—operate as an integrated system, largely 
automatically, to provide a continual representation of the visual scene of 
interest to the perceiver.

PERCEPTUAL MEMORIES

Very shortly after the onset of a visual stimulus, a representation of 
the stimulus appears in the Visual Image Store of the Model Human 
Processor. For an auditory stimulus, there is a corresponding Auditory 
Image Store. These sensory memories hold information coded physically, 
that is, as an unidentified, non-symbolic analogue to the external 
stimulus. This code is affected by physical properties of the stimulus, 
such as intensity. For our purposes we need not enter into the details of 
the physical codes for the two stores but can instead just write:

K = physical,
Kais  = physical.

For example, the Visual Image Store representation of the number 2 
contains features of curvature and length (or equivalent spatial frequency 
patterns) as opposed to the recognized digit.

The perceptual memories are intimately related to the cognitive 
Working Memory as Figure 2.1 depicts schematically. Shortly after a 
physical representation of a stimulus appears in one of the perceptual 
memories, a recognized, symbolic, acoustically-coded (or visually-coded)
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Actual saccadic eye-movement times (travel -H fixation time) can vary quite 
considerably depending on the task and the skill of the observer. Russo (1978, Table 2, 
p. 94) lists 70 msec as the minimum time and 230 msec as a typical time. The largest 
time given by Busswell (1922, p. 31) for eye-movements in reading is 660 msec (for first- 
grade children), which we round to 700 msec.



representation of at least part of the perceptual memory contents occurs 
in Working Memory. If the contents of perceptual memory are complex 
or numerous (for example, an array of letters) and if the stimulus is 
presented only fleetingly, the perceptual memory trace fades, and 
Working Memory is filled to capacity before all the items in the 
perceptual memory can be transferred to representations in Working 
Memory (for letters the coding goes at about 10 msec/letter). However, 
the Cognitive Processor can specify which portion of the perceptual 
memory is to be so encoded. This specification can only be by physical 
dimensions, since this is the only information encoded: after being
shown a colored list of numbers and letters, a person can select (without 
first identifying what number or letter it is) the top half of the Visual 
Image Store or the green items, but not the even digits or the digits 
rather than the letters.

Figure 2.3 shows the decay of the Visual Image Store and the 
Auditory Image Store over time. As an index of decay time, we use the 
half-life, defined as the time after which the probability of retrieval is less 
than 50%. While exponential decay is not necessarily implied by the use 
of the half-life. Figure 2.3 shows that it is often a good approximation to 
the observed curves. The Visual Image Store has a half-life of about

8 = 200 [90~ 1000] msec

but the Auditory Image Store decays more slowly.
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 ̂ A least-squares fit to data estimated from figures appearing in Sperling (1960) and 
Averbach and Coriell (1961) yields the following facts. The half-life of the letters in 
excess o f the memory span that subjects could report in the partial report condition of 
Sperling’s (1960) experiment was 621 msec (9-letter stimulus) and 215 msec (12-letter 
stimulus). Averbach and Coriell’s (1961) experiment gives a half-life of 92 msec (16- 
letter stimulus). The typical value for S y j ^  has been set at 200 msec, representing the 

middle o f these. The lower and upper bounds for 8 y j ^  are set at rounded-off values 
reflecting the fastest subject in the condition with the shortest half-life and the slowest 
subject in the condition with the longest half-life. The shortest half-life in these 
experiments was 93 msec for Averbach and Coriell’s Subject GM (16-letter condition); 
the longest half-life was 940 msec for Sperling’s Subject ROR (9-letter condition). It is 
possible to have the average half-life be 92 msec, shorter than the half-life o f any 
subject, because this average is computed by first taking the mean o f each point across 
subjects, then computing the slope o f the best least-square fitting line in semilog 
coordinates.



Figure 2.3. Time decay of Visual and Auditory Image Stores.
(a) Decay of the Visual Image Store. In each experiment, a matrix of letters was 
made observable tachistoscopically for 50 msec. In the case of the Sperling 
experiments, a tone sounded after the offset of the letters to indicate which row 
should be recalled. In the case of the Averbach and Coriell experiment, a bar 
appeared after the offset of the letters next to the letter to be identified. The 
percentage of indicated letters that could be recalled eventually asymptotes to 

/iw iv i*- The graph plots the percentage of letters reported correctly in excess of 
/Xwivi* ^ function of time before the indicator.
(b) Decay of the Auditory Image Store. Nine letters were played to the observers
over stereo earphones arranged so that three sequences of letters appear to come 
from each of three directions. A light lit after the offset of the letters to indicate 
which sequence should be recalled. The graph plots the percentage of the 
relevant 3-letter sequence In excess of reported correctly as a function of
time before the light was lit.

30
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= 1500 [900-3500] msec

consistent with the fact that auditory information must be interpreted 
over time. The capacity of the Visual Image Store is hard to fix precisely 
but for rough working purposes may be taken to be about

¡iyis = 17 [7~17] letters

The capacity of the Auditory Image Store is even more difficult to fix, 
but would seem to be around

M/4/5 “   ̂[4.4~6.2] letters ?

PERCEPTUAL PROCESSOR

The cycle time Tp of the Perceptual Processor is identifiable with the 
so-called unit impulse response (the time response of the visual system to

The half-life o f the letters in excess o f the memory span that subjects could report 
in the partial report condition o f Darwin, Turvey, and Crowder’s (1972) experiment was 
1540 msec, which we have rounded to 5 ^ /^  =  1500 msec. The difference in decay 

half-life as a function o f letter order in their experiment (963 msec for the third letter, 
3466 msec for the first letter) has been rounded to give lower and upper bounds of 900 
and 3500. Other techniques have been used to obtain values for the “decay time” of the 
Auditory Image Store. For example, use of a masking technique gives estimates of 
around 250 msec full decay (Massaro, 1970), but these experiments have been criticized 
by Klatzky (1980, p. 42) because they may only measure the time necessary to transmit 
categorical information to Working Memory. On the other end, experiments that 
measure the delay at which there is still some facilitation of the identification of a noisy 
signal (Crossman, 1958; Guttman and Julesz, 1963) give very wide full-decay estimates: 
from 1000 msec to 15 minutes!

 ̂ Sperling (1963, p. 22) estimates the capacity of the Visual Image store in terms of 
the number o f letters available at least 17 letters and possibly more. The fewest number 
o f letters available for any subject immediately after stimulus presentation in the 9-letter 
condition (Sperling, 1960) was 7.4 letters for Subject NJ.

Range is from the number o f letters or numbers that could be reported by 
Darwin, Turvey, and Crowder’s (1972) subjects in an experiment in which they had to 
give the trio o f letters coming from one o f three directions (indicated by a visual cue 
shortly after the end o f the sounds). Lowest value, 4.4 letters, is for accuracy of recalling 
second letter o f triple when subjects had to name all items coming from a certain 
direction (Figure 1, p. 259). Highest number, 6.2 letters, is for recall by category when 
no location was required (Figure 2(B), p. 262).



a very brief pulse of light)* and its duration is on the order of 

Tp = 100 [50- 200] msec

If a stimulus impinges upon the retina at time r = 0, at the end of time t 
= Tp the image is available in the Visual Image Store and the human 
claims to see it. In truth, this is an approximation, since different infor­
mation in the image becomes available at different times, much as a 
photograph develops.^® For example, movement information and low 
spatial frequency information are available sooner than other information. 
A person can react before the image is fully developed or can wait for a 
better image, according to whether speed or accuracy is the more 
important.

Perceptual events occurring within a single cycle are combined into a 
single percept if they are sufficiently similar. For example, two lights 
occurring at different nearby locations within 60-100 msec combine to 
give the impression of a single light in motion. A brief pulse of light, 
lasting t msec with intensity /, has the same appearance as a longer pulse 
of less-intense light, provided both pulses last less than 100 msec, giving 
rise to Bloch’s Law (1885):
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I»t = k, / < T p .

Two brief pulses of light within a cycle combine their intensities in a 
more complicated way, but still give a single percept.^^ Thus there is a 
basic quantum of experience; and the present is not an instantaneous 
dividing line between past and future, but has itself duration.

Figure 2.4 shows the results of an experiment in which subjects were 
presented with a rapid set of clicks, from 10 to 30 clicks per second, and 
were asked to report how many they heard. The results show that they 
heard the correct number when the clicks were presented at 10 clicks/sec, 
but missed progressively more clicks at 15 and 30 clicks/sec. A simple

8 See Ganz (1975).

The source o f the range is the review by Harter (1967), who also discusses the 
suggestion that the cycle time can be identified with the 77~125 msec alpha period in 
the brain.

10

11
See Ericksen and Shultz (1978), Ganz (1975). 

See Ganz (1975).
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Figure 2.4. Fusion of clicks within 100 msec.
A burst of sound containing an unknown number of auditory clicks at the uniform 
rate of 10/sec, 15/sec, or 30/sec was presented to the subject. The graph plots 
the number of clicks/burst reported as a function of the number presented. After 
Cheatham and White (1954, Figure 1, p. 427).

analysis in terms of the Model Human Processor shows why. When the 
experimenter plays the clicks at 10 clicks/sec, there is one click for each 
Tp ~  100 msec interval and the subject hears each click. But when the 
experimenter plays the clicks at 30 clicks/sec, the three clicks in each 100 
msec cycle time are fused into a single percept (perhaps sounding a little 
louder) and the subject hears only one click instead of three, or 10 
clicks/sec. The data in Figure 2.4 show that the number of clicks/sec 
perceived by the subjects does in fact stay approximately constant in the 
10 clicks/sec range (the measured values of the slopes are 9~11 clicks/ 
sec) for the three rates of presentation.

As a second-order phenomenon, the processor time Tp is not com­
pletely constant, but varies somewhat according to conditions. In 
particular, Tp is shorter for more intense stimuli, a fact derivable from a 
more detailed examination of the human information-processor using 
linear systems theory, but which we simply adopt as one of the principles 
of operation (Figure 2.2);



PI. Variable Perceptual Processor Rate Principle. The Per­
ceptual Processor cycle time Tp varies inversely with stimulus 
intensity.

The effect of this principle is such that Tp can take on values within the 
50~200 msec range we have given. Under very extreme conditions of 
intense, high-contrast stimuli or nearly invisible, low-contrast stimuli, Tp 
can take on values even outside these ranges.

The Motor System

Let us now consider the motor system. Thought is finally translated 
into action by activating patterns of voluntary muscles. These are 
arranged in pairs of opposing “agonists” and “antagonists,” fired one 
shortly after the other. For computer users, the two most important sets 
of effectors are the arm-hand-finger system and the head-eye system.

Movement is not continuous, but consists of a series of discrete 
micromovements, each requiring about
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■’’a/ “  [30~100] msec,12

which we identify as the cycle time of the Motor Processor. The 
feedback loop from action to perception is sufficiently long (200~500 
msec) that rapid behavioral acts such as typing and speaking must be 
executed in bursts of preprogrammed motor instructions.

An instructive experiment is to have someone move a pen back and 
forth between two lines as quickly as possible for 5 sec (see Figure 2.5). 
Two paths through the processors in Figure 2.1 are clearly visible: (1) 
The Motor Processor can issue commands (“open loop”) about once 
every = 70 msec; in Figure 2.5 this path leads to the 68 pen reversals 
made by the subject in the 5 sec interval, or = 74 msec/reversal. (2) 
The subject’s perceptual system can perceive whether the strokes are

12 The limit o f repetitive movement of the hand, foot, or tongue is about 10 
movements/sec (Fitts and Posner, 1967, p. 18). Chapanis, Gamer, and Morgan (1949, p. 
284) cite tapping rates o f 8~13 taps/sec (38~62 movements/sec, assuming 2 
movements/tap). Fox and Stansheld (1964) cite figures of 130 msec/tap =  65 
msec/movement Repetition o f the same key in Kinkead’s data (Figure 2.15Z>) averages 
to 180 msec/keystroke =  90 msec/movement The scribbling rate in Figure 2.5 was 74 
msec/movement We summarize these as 70 [30~100] msec/movement
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5 sec

68 Corrections H

20 Corrections
^Contour of 
Stroke Bottoms

Figure 2.5. Maximum motor output rate.
Marks made by subject moving pen back and forth between two lines as fast as 
possible for 5 sec.

staying within the lines (the perception process requires Tp msec) and 
send this information to the cognitive system, which can then advise (the 
decision process requires msec) the motor system to issue a correction 
(the motor process requires msec). Tire total time, therefore, to make 
a correction using visual feedback (“closed loop”) should be on the order 
of = 240 msec; in Figure 2.5, this path leads to the
roughly 20 corrections about the ruled guidelines as indicated by the 
dotted line tracing the contours of the bottoms of the strokes, or (5 
sec)/(20 movements) = 250 msec/movement.

The Cognitive System

In the simplest tasks, the cognitive system merely serves to connect 
inputs from the perceptual system to the right outputs of the motor 
system. But most tasks performed by a person are complex and involve 
learning, retrieval of facts, or the solution of problems. As would be 
expected, the memories and the processor for the cognitive system are 
more complicated than those for the other systems.

COGNITIVE MEMORIES

There are two important memories in the cognitive system: a Working 
Memory to hold the information under current consideration and a Long- 
Term Memory to store knowledge for future use.



Working Memory. Working Memory holds the intermediate products 
of thinking and the representations produced by the perceptual system. 
Functionally, Working Memory is where all mental operations obtain 
their operands and leave their outputs. It constitutes the general registers 
of the Cognitive Processor. Structurally, Working Memory consists of a 
subset of the elements in Long-Term Memory that have become 
activated; this intimate association between Working Memory and Long- 
Term Memory is represented in Figure 2.1 by the placement of Working 
Memory inside Long-Term Memory. Although Working Memory infor­
mation can be coded in many ways, the use of symbolic acoustic codes is 
especially common, related, no doubL to the great importance of verbal 
materials to the tasks people frequently perform. The user of a 
telephone, for example, is especially liable to dial numbers mistakenly 
that sound like the numbers he has just looked up. Visual codes, if 
required by the the task, are also possible (as are some other types of 
codes). For purposes of the Model Human Processor we consider the 
predominant code types to be

K = acoustic or visual.

It is important to distinguish the symbolic, nonphysical acoustic or visual 
codes of Working Memory, which are unaffected by physical parameters 
of the stimulus (such as intensity), from the nonsymbolic, physical codes 
of the sensory image stores, which are affected by physical parameters of 
the stimulus.

The activated elements of Long-Term Memory, which define Working 
Memory, consist of symbols, called chunks, which may themselves be 
organized into larger units. It is convenient to think of these as nested 
abstract expressions; c h u n k i = (c h u n k 2 c h u n k s  c h u n k 4), with, for 
instance, c h u n k 4 = (c h u n k s  c h u n k s ).^  ̂ What constitutes a chunk is as 
much a function of the user as of the task, for it depends on the contents 
of the user’s Long-Term Memory. The sequence of nine letters below is 
beyond the ability of most people to repeat back;

B C S B M I C R A
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13 It is also possible to think o f these as semantic networks, such as those in 
Anderson (1980) and other recent publications. At the level o f our discussion, any of
these notations will suffice about equally well. See also Simon (1974) for a technical
definition o f chunk.
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However, consider the list below, which is only slightly different:

C B S I B M R C A

Especially if spoken aloud, this sequence will be chunked into CBS IBM 
RCA (by the average American college sophomore) and easily remem­
bered, being only three chunks. If the user can perform the recoding 
rapidly enough, random lists of symbols can be mapped into prepared 
chunks. A demonstration of this is the mapping of binary digits into 
hexadecimal digits:

0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0  
0100 0010 0001 0011 0110 0110 1000 

4 2 1 3 6 6 8

This last can be easily remembered. The coding must be done in both 
directions, binary to hexadecimal and hexadecimal to binary, and takes 
substantial practice before it can be carried out as part of a regular 
memory-span test, but it can be done. Indeed, with extended effort, the 
digit span can be increased enormously. A Camegie-Mellon University 
student holds the current record at 81 decimal digits, presented at a 
uniform rate of 1 digit per second. '̂* This particular event occurred as 
part of a psychological study, where it could be verified that all the gain 
was due to elaborate recoding and immense practice in its use and 
development, rather than any physiological endowment.

Chunks can be related to other chunks. The chunk r o b in , for 
example, sounds like the chunk Ro b e r t . It is a subset of the chunk 
BIRD, it has chunk w in g s , it can chunk f l y . When a chunk in Long- 
Term Memory is activated, the activation spreads to related chunks and 
to chunks related to those. As the activation spreads to new chunks, the 
previously activated chunks become less accessible, because there is a 
limited amount of activation resource. The new chunks are said to 
interfere with the old ones. The effect of this interference is that the 
chunk appears to fade from Working Memory with time (unless 
reactivated), as the decay curves in Figure 2.6 show. The curves are 
significantly affected by other variables, including the number of other 
chunks the user is trying to remember, retrieval interference with similar

14 Ericsson, Chase, and Faloon (1980); Chase and Ericsson (1981).
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10 20
Time (sec)

30

Figure 2.6. Working Memory decay rate.
Subject is given either one or three words or consonants to remember. He counts 
backwards (preventing rehearsal) for a time and then recalls stimulus. Graph plots 
proportion of items correctly recalled as a function of the time elapsed until recall 
began.

chunks in Working Memory, and input and retrieval memory strategies 
of the user. As a working value we take the half-life of 7 sec from the 
curve in Figure 2.6, which together with other data gives

5 =  7 [5-226] sec .15

The decay parameter 6 has a wide range, because most of the 
apparent decay comes about from the details of interference, as we have 
noted above. But these details are difficult to analyze, so it is most 
convenient to accept the range and talk in terms of decay. Since the

For three chunks, Peterson and Peterson’s (1959) data (Figure 2.6) give a half-life 
o f about 5 sec. Murdock’s data (Murdock, 1961) in Figure 2.6 give a half-life o f about 
7 sec for 3 words and also 9 sec for 3 consonants. On the other hand, Melton’s (1963) 
data give a much longer half-life o f 34 sec. For one chunk, Murdock’s data in Figure 
2.6 and Melton’s (1%3) give half-lives o f 73 sec and 226 sec, respectively.



decay rate is particularly sensitive to the number of chunks in the 
recalled item, it is useful to record the decay rate of representative item 
sizes:

8 chunk) = 73 [73-226] sec 
SfynfO chunks) =  7 [5-34] sec

When people are asked to recall information a few seconds after 
hearing it, they use both Working Memory and Long-Term Memory to 
do so. Experimentally, these two systems have been teased apart showing 
that there is a pure capacity o f Working Memory (example: number of 
immediately preceding digits recallable from a long series when the series 
unexpectedly stops),

P w A f - ^  [2.5-4.1] chunks

When this pure capacity is augmented by the use of Long-Term Memory, 
the effective capacity o f Working Memory (example: longest
number that can be repeated back) extends to the familiar 7±2 chunks,

^ chunks P

Long-Term Memory. Long-Term Memory holds the user’s mass of 
available knowledge. It consists of a network of related chunks, accessed 
associatively from the contents of the Working Memory. Its contents 
comprise not only facts, but procedures and history as well.

Apparently, there is no erasure from Long-Term Memory,

^LTM ~

However, successful retrieval of a chunk depends on whether associations 
to it can be found. There are two reasons the attempt to retrieve a 
chunk might fail: (1) effective retrieval associations cannot be found, or
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Crowder (1976) reviews several methods. Estimates are Waugh and Norman 
(1%5) method, 2.5 items; Raymond (1969) method, 2.5 items; Murdock (19606, 1967) 
method, 3.2~4.1 items; Tulving and Colatia (1970) method, 3.3~ 3.6 items. See also 
Glanzer and Razel (1974).

17 MUler (1956).



(2) similar associations to several chunks interfere with the retrieval of the 
target chunk. The great importance of these links between particular 
chunks in Long-Term Memory, that is, the semantic coding of infor­
mation, leads us to list it as the predominant code type,

Kltm = semantic.

To be stored in Long-Term Memory, information from the sensory 
memories must ultimately be encoded into symbolic form: a pattern of 
light and dark might be coded as the letter A, an extended pattern coded 
as a system error message. When the information from Working 
Memory becomes part of Long-Term Memory, the precise way in which 
it and the coincident Working Memory contents were encoded deter­
mines what cues will be effective in retrieving the item later. Suppose a 
user names a computer-imaging file l ig h t  (as opposed to d a r k ). If he 
later scans a directory listing of file names to identify which ones were 
the ones he created and thinks of l ig h t  (as opposed to h e a v y ), he will 
not be able to recognize the file, because he will be using a different set 
of retrieval cues. As a principle of operation,

P2. Encoding Specificity Principle}^ Specific encoding 
operations performed on what is perceived determine what is 
stored, and what is stored determines what retrieval cues are 
effective in providing access to what is stored

Because of interference with other chunks in memory that are more 
strongly activated by the associations used as retrieval cues, information, 
despite being physically present, can become functionally lost. Stated as 
a principle,

P3. Discrimination Principle. The difficulty o f memory 
retrieval is determined by the candidates that exist in the 
memory, relative to the retrieval cues.

Items cannot be added to Long-Term Memory directly (accordingly. 
Figure 2.1 shows no arrow in this direction); rather, items in Working
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18 Tulving and Thompson (1973).



Memory (possibly consisting of several chunks) have a certain probability 
of being retrievable later from Long-Term Memory. The more associ­
ations the item has, the greater its probability of being retrieved. If a 
user wants to remember something later, his best strategy is to attempt to 
associate it with items already in Long-Term Memory, especially in novel 
ways so there is unlikely to be interference with other items. Of course 
this activity, by definition, activates more items in Long-Term Memory, 
causing new items to appear in Working Memory, and use capacity. On 
a paced task, where a user is given items to remember at a constant rate, 
the percentage of the items recalled later increases as the time/item 
increases (the probability the item will be stored in Long-Term Memory 
and linked so it can be retrieved increases with residence time in 
Working Memory), until the time allowed per item is of the same 
magnitude as the decay time of Working Memory (after which, more 
time available for study does not increase the time the item is in Working 
Memory), around 8 sec/chunk = 7 sec/chunk.^^

Storing new chunks in Long-Term Memory thus requires a fair 
amount of time and several Long-Term Memory retrievals. On the other 
hand, Long-Term Memory is accessed on every 70 msec cognitive- 
processing cycle. Thus the system operates as a fast-read, slow-write 
system. This asymmetry puts great importance on the limited capacity of 
Working Memory, since it is not possible in tasks of short duration to 
transfer very much knowledge to Long-Term Memory as a working 
convenience.

COGNITIVE PROCESSOR

The recognize-act cycle, analogous to the fetch-execute cycle of 
standard computers, is the basic quantum of cognitive processing. On 
each cycle, the contents of Working Memory initiate associatively-linked 
actions in Long-Term Memory (“recognize”), which in turn modify the 
contents of Working Memory (“act”), setting the stage for the next cycle. 
Plans, procedures, and other forms of extended organized behavior are 
built up out of an organized set of recognize-act cycles.

Like the other processors, the Cognitive Processor seems to have a 
cycle time of around a tenth of a second:

2.1. THE MODEL HUMAN PROCESSOR 41

Newell and Simon (1972, p. 793) reviews experiments that gives times o f 8~13 
sec/chunk.
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= 70 [25 ~ 170] msec 20

The cycle times for several types of tasks are given in Figure 2.7. The 
times vary in the 25 ~ 170 msec/cycle range, depending on the specific 
experimental phenomenon and experimental circumstances with which 
one wishes to identify the cycle. We have chosen as a nominal value 70 
msec, about at the median of those in Figure 2.7, but have included 
within the upper and lower limits all the estimates from the figure. As 
with the Perceptual Processor, the cycle time is not constant, but can be 
shortened by practice, task pacing, greater effort, or reduced accuracy.

P4. Variable Cognitive Processor Rate Principle. The
Cognitive Processor cycle time is shorter when greater 
effort is induced by increased task demands or information 
loads; it also diminishes with practice.

The cognitive system is fundamentally parallel in its recognizing phase 
and fundamentally serial in its action phase. Thus the cognitive system 
can be aware of many things, but cannot do more than one deliberate 
thing at a time. This seriality occurs on top of the parallel activities of 
the perceptual and motor systems. Driving a car, reading roadside 
advertisements, and talking can all be kept going by skilled intermittent 
allocation of control actions to each task, along the lines of familiar 
interrupt-driven time-sharing systems.

Sununary. This completes our initial description of the Model 
Human Processor. To recapitulate, the Model Human Processor consists 
of (1) a set of interconnected memories and processors and (2) a set of

on
On the fast end, memory scanning rates go down to 25 msec/item (Sternberg, 

1975, p. 225, Figures 8 and 9, lower error bar for LETTERS). Michon (1978, p. 93) 
summarizes the search for the "time quantum” as converging on 20~30 msec. On the 

slow end, silent counting, which takes about 167 msec/item (Landauer, 1962), has 
sometimes been taken as a minimum cognitive task. It has sometimes been argued (Hick 
1952) that the subject in a choice reaction time experiment makes one choice for each bit 
in the set of alternatives, in which case a typical value would be 153 msec/bit (Figure 
2.22). Welford (1973, in Kornblum) has proposed a theory of choice reaction in which 
the subject makes a series of choices, each taking 92 msec. Blumenthal (1977) reviews 
an impressively large number of cognitive phenomena with time constraints in the tenth 
o f a second range.
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Rate at which an item can be matched 
against Working Memory:

Digits
Colors
Letters
Words
Geometrical shapes 
Random forms 
Nonsense syllables

33 [27~39] msec/item  
38 msec/item
40 [24~65] msec/item  
47 [36 -52 ] msec/item  
50 msec/item
68 [42 -93 ] msec/item  
73 msec/item

Range = 2 7 -9 3  msec/item

Rate at which four or fewer objects 
can be counted:

Dot patterns 
3-D shapes

46 msec/item
94 [40 -17 2 ] msec/item

Range = 4 0 -1 7 2  msec/item  

Perceptual judgement:

Choice reaction time:

Silent counting rate:

92 msec/inspection

92 msec/inspection 
153 msec/bit

167 msec/digit

Cavanaugh (1972) 

Cavanaugh (1972) 

Cavanaugh (1972) 

Cavanaugh (1972) 

Cavanaugh (1972) 

Cavanaugh (1972) 

Cavanaugh (1972)

Chi AKIahr (1975)

Akin and Chase (1978)

Welford'(1973)

Welford (1973) 

Hyman (1953)

Landauer (1962)

Figure 2.7. Cognitive processing rates.
Selected cycle times (msec/cycle) that might be identified with the Cognitive 
Processor cycle time.

principles of operation. The memories and processors are grouped into 
three main subsystems: a perceptual system, a cognitive system, and a 
motor system. The most salient characteristics of the memories and 
processors can be summarized by the values of a few parameters: 
processor cycle time t , memory capacity ¡i, memory decay rate 8, and



memory code type k. Each of the processors has a cycle time on the 
order of a tenth of a second.

A model so simple does not, of course, do justice to the richness and 
subtlety of the human mind. But it does help us to understand, predict, 
and even to calculate human performance relevant to human-computer 
interaction. To pursue this point, and to continue our development of 
the Model Human Processor, we now turn to an examination of sample 
phenomena of human performance.

2.2. HUMAN PERFORMANCE
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We have said that in order to support cognitive engineering of the 
human-computer interface, an applied information-processing psychology 
should be based on task analysis, calculation, and approximation. These 
qualities are important for the Model Human Processor to possess if we 
are to address the practical prediction of human performance. Although 
it might be argued that the primitive state of development in psycho­
logical science effectively prevents its employment for practical engi­
neering purposes, such an argument overlooks the often large amounts of 
ur.c: rtainty also encountered in fields of engineering based on the 
physical sciences. The parameters of soil composition under a hill, the 
wind forces during a storm, the effects of sea life and corrosion on 
underwater machinery, the accelerations during an earthquake—ail are 
cases where the engineer must proceed in the face of considerable 
uncertainty in parameters relevant to the success of his design.

A common engineering technique for addressing such uncertainty is 
to settle on nominal values for the uncertain parameters representing low, 
high, and typical values, and to design to these. Thus a heating engineer 
might calculate heating load for a building at design temperatures of 
10“ F. for winter, 105 “F. for summer, and a more common 70“ F. day.

A similar technique helps us to address the uncertainties in the 
parameters of the Model Human Processor. We can define three 
versions of the model: one in which all the parameters listed are set to 
give the worst performance (Slowman), one in which they are set to give 
the best performance (Fastman), and one set for a nominal performance 
{Middleman).

The difference between the results of the Middleman (nominal) and 
the Fastman-Slowman (range) calculations must be kept clearly in mind. 
Secondary effects, outside the scope of the model, may mean that the



appropriate parameter value for a particular calculation lies at a place in 
the range other than that given as the nominal value: the real predic­
tions of the Model Human Processor are that a calculated quantity will 
lie somewhere within the Slowman~Fastman range. On the other hand, 
because these ranges are set by extreme and not particularly typical 
values, the range is pessimistically wide. The nominal value for each 
parameter allows a complement to the range calculations based on a 
typical value for the parameter at some increased risk of inaccuracy due 
to secondary effects. The two types of calculation, range and nominal, 
can be used together in a number of ways depending on whether we are 
more interested, say, in assessing the sensitivity of a nominal calculation 
to secondary effects or in identifying the upper or lower boundary at 
which some user performance will occur.

We turn now to examples of human performance bearing potential 
relevance to human-computer interaction, relating these, where possible, 
to the Model Human Processor. The performances are drawn from the 
areas of perception, motor skill, simple decisions, learning and retrieval, 
and problem solving.

Perception

Many interesting perceptual phenomena derive from the fact that 
similar visual stimuli that occur within one Perceptual Processor cycle 
tend to fuse into a single coherent percept As an example, consider the 
problem of the rate at which frames of a moving picture need to be 
changed to create the illusion of motion.

MOVING PICTURE RATE

Example 1. Compute the frame rate at which an animated 
image on a video display must be refreshed to give the 
illusion of movement

Solution. Closely related images nearer together in time than t^, the 
cycle time of the Perceptual Processor, will be fused into a single image. 
The frame rate must therefore be such that:
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Frame rate > l / t p  = 1/(100 msec/frame) 
=  10 frames/sec. I



This solution can be augmented by realizing that in order to be 
certain that the animation will not break down, the frame rate should, of 
course, be faster than this number. How much faster? A reasonable 
upper bound for how fast the rate needs to be can be found by redoing 
the above calculation for the Fastman version of the model (t^ =  50 
msec):

Max frame rate for fusion = 1/(50 msec/frame)
-  20 frames/sec.

This calculation is in general accord with the frame rates commonly 
employed for motion picture cameras (18 frames/sec for silent and 24 
frames/sec for sound).

The Model Human Processor also warns us of secondary phenomena 
that might affect these calculations. By the Variable Perceptual Processor 
Rate Principle, Tp will be faster for the brighter screen of a cinema 
projector and slower for the fainter screen of a video display terminal.

MORSE CODE LISTENING RATE

Because stimuli within Tp fuse into the same percept, the cycle time 
of the Perceptual Processor sets fundamental limits on the speed with 
which the user can attend to auditory or visual input

Example 2. In the old type of Morse Code device, dots and 
dashes were made by the clicks of the armature of an 
electromagnet dots being distinguished from dashes by a 
shorter interval between armature clicks. Subsequently, 
oscillators came into use which allowed the dots and dashes 
to be done by bleeps of different lengths. Should there be 
any difference between the two devices in the maximum 
rate at which code can be received?
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Solution. With the older device, a dot requires the perception of two 
events (two clicks of the armatures). According to the model, this 
requires 2rp  msec, if each of these events is to be separately perceived. 
Officially a dash is defined as 3 dots in length, leading to an estimate of 
(¡Tp. However, high speed code often differs from the standard; and an 
expert should be able to perceive a dash as different than a dot if it is at 
least Tp longer, giving iTp+Tp  =  3 rp  msec as the minimum time for a



dash. Assuming a minimum 1t^ space between letters and 2rp  space 
between words, we can calculate the reception rate for random text by 
first computing the minimum reception time per letter and then 
weighting that by English letter frequencies, with an appropriate adjust­
ment for word spacing. This calculation should underestimate somewhat 
the reception rates for each system, since it is only based on a first-order 
approximation to English below the word level; but it will allow a 
relative comparison. The probabilities for the letters in English are given 
in Figure 2.8 together with their Morse Code representation and the 
time/letter computed by the rates given above, assuming rp  = 100 
[50~200] msec. Weighting the time/code by the frequency of its occur­
rence gives a mean time of 709 [354~1417] msec/letter (including spacing 
between letters). Assuming 4.8 char/word (the value for Bryan and 
Harter’s 1898 telegraphic speed test) gives;

Max reception rate = (.709 [.354~ 1.417] sec/letter 
X 4.8 letters/word)

+ .200 [.100~.400] sec/word-space 
= 3.6 [1.9~7.0] sec/word 
= 17 [9~32] words/min .

For the oscillator-based telegraph, on the other hand, a dot requires 
the perception of only one event. This should require Tp. Assuming 
that a dash can be distinguished from a dot if the dash is I t p  long, the 
time per letter would be 453 [227~907] msec and the calculation is:

Max reception rate = (.453 [.227~.907] sec/letter 
X 4.8 letters/word)

.200 [.100~.400] sec/word-space 
= 2.4 [1.3 ~ 4.6] sec/word 
= 25 [13-47] words/min. I
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So it would be expected that operators could receive code faster with 
the newer oscillator-based system than with the older system. Informal 
evidence suggests that this is true and that the oscillator-based rates are at 
least in the right vicinity. Current reception rates are faster than the rates 
of tum-of-the-century telegraphers, although this comparison may be 
confounded with the effect of sending equipment. Whereas 20-25 
words/min with the old telegraph was regarded as the range for very



Letter
Morse
Code

Calculated Minimum Reception Time

Armature System Oscillator System
(msec) (msec)

E
T
A
H
0  
S 
N 
R
1
L
D
M
C
U
W
G
Y 
F 
B 
P 
K
V 
J 
X 

0  
z

.1332

.0978

.0810

.0772

.0663

.0607

.0601

.0589

.0515

.0447

.0432

.0248

.0236

.0309

.0287

.0218

.0212

.0179

.0163

.0153

.0107

.0099

.0015

.0014

.0008

.0006

300 [150- 
400 [200- 
600 [300- 
900 [450- 

1000 [500- 
700 [350- 
600 [300- 
800 [400- 
500 [250- 

1000 [500- 
800 [400- 
700 [350- 

1100 [550- 
800 [400- 
900 [450- 
900 [450- 

1200 [600- 
1000 [500- 
1000 [500- 
1100 [550- 
900 [450- 

1000 [500- 
1200 [600- 
1100 [550 
1200 [600- 
1100 [550-

-600]
-800]
- 1200]

-1800]
-2000]
-1400]
- 1200]

-1600]
- 1000]

-2000]
-1600]
-1400]
-2200]

-1600]
-1800]
-1800]
-2400]
-2000]

-2000]
-2200]

-1800]
-2000]
-2400]
-2200]
-2400]
-2200]

200 [100- 
300 [150- 
400 [200- 
500 [250- 
700 [350- 
400 [200- 
400 [200- 
500 [250- 
300 [150- 
600 [300- 
500 [250- 
500 [250- 
700 [350- 
500 [250- 
600 [300- 
600 [300- 
800 [400- 
600 [300- 
600 [300- 
700 [350- 
600 [300- 
600 [300- 
800 [400- 
700 [350 
800 [400 
700 [350

-400]
-600]
-800]
-1000]
-1400]
-800]
-800]
- 1000]
-600]
- 1200]
-1000]
- 1000]
-1400]
-1000]
-1200]
-1200]
-1600]
-1200]
-1200]
-1400]
- 1200]
- 1200]
-1600]
-1400]
-1600]
-1400]

Figure 2.8. Morse codes arranged in order of frequency of 
individuai letters.
Frequencies (as a proportion of total letters) in column p are based on Mayzner 
and Tresselt (1965).
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good, experienced railroad telegraphers by Bryan and Harter (1898), 
reception rates of 45~50 words/minute are seen with the oscillator-based 
code (and the world record is over 75 words/minute!). This comparison 
is in the predicted order and, as expected, somewhat faster than our 
calculation based on a first-order approximation to English. A better 
approximation to the first-order assumptions of our calculation (but, alas, 
for Russian) is the set of rates achieved by a set of non-Russian-speaking 
telegraphers whose job it was to transliterate Russian Morse Code; 30 
words/minute average, 38~40 words/minute maximum, and 45 words/ 
minute top (Robin Kinkead, personal communication)—rates consonant 
with our oscillator-based calculation.

PERCEPTUAL CAUSALITY

One way for two distinct stimuli to fuse is for the first event to appear 
to cause the other.

Example 3. In a graphic computer simulation of a pool 
game, there are many occasions upon which one ball 
appears to bump into another ball, causing the second one 
to move. What is the time available, after the collision, to 
compute the initial move of the second ball, before the 
illusion of causality breaks down?
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Solution. The movements of the first and second balls must appear to 
be part of the same event in order for the collision to appear to cause the 
movement of the second ball, if the movement occurs within one cycle of 
100 msec. Since the illusion will break down in the neighborhood of 100 
msec, the program should try to have the computation done well before 
this time. The designer can be sure the illusion will hold if designed for 
Eastman, with the computation done in 50 msec. I

Figure 2.9 shows the results of an experiment analogous to Example 3 
in which subjects had to classify collisions between objects (immediate 
causality, delayed causality, or independent events) as a function of the 
delay before the movement of the second object The perception of 
immediate causality ends in the neighborhood of 100 msec; some degra­
dation of immediate causality begins for some subjects as early as 50 
msec.
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14 98 182

Time Before Second Object Moves (msec)

Figure 2.9. Perceived causality as a function of inter-event 
time between the motion of two objects.
Three types of perceived causality are shown as a function of the interval 
separating the end of Object A’s motion and the beginning of the second object’s 
motion. Average over three subjects. From Michotte (1963, Figure 5, p. 94).

READING RATE

Many perceptual phenomena concern a visual area large enough that 
the fovea of the eye must be moved to see them. When eye movements 
are involved, they can dominate the time required for the task.

Example 4. How fast can a person read text?

Solution. Assuming 230 msec/saccade (from Figure 2.1), a reading 
rate can be calculated from assumptions about how much the reader sees 
with each fixation. If he were to make one saccade/letter (5 letters/ 
word), the reading rate would be;

(60 sec/min)/(.230 sec/saccade X 5 saccade/word) 
= 52 words/min.



For one saccade/word, the rate would be;

(60 sec/min)/(.230 sec/saccade X 1 saccade/word)
= 261 words/min.

For one saccade/phrase (containing the number of characters/fixation 
found for good readers, 13 chars = 2.5 words), the rate would be:

(60 sec/min)/(.230 sec/saccade X 1/2.5 saccade/word)
= 652 words/min .

How much the reader takes in with each fixation is a function of the 
skill of the reader and the perceptual difficulty of the material. If the 
material is conceptually difficult, then the limiting factor for reading rate 
will not be in the eye-movement rate, but in the cognitive processing. 
The calculation implies that readers who claim to read much more than 
600 words/min do not actually see each phrase of the text. In other 
words, speed readers skim.

Motor Skill

Just as fundamental limits on the rate of user perceptual performance 
were set by the cycle time of the Perceptual Processor, limits on 
movement are set by the rates of the Perceptual and Motor Processors. 
Two basic kinds of movement occur in human-computer interaction: (1) 
movement of the hand towards a target and (2) keystrokes.

FITTS’S LAW

The first kind of movemenL moving the hand towards a target, can be 
understood, and an expression for movement time derived, using the 
Model Human Processor plus some assumptions.^^ Suppose a person 
wishes to move his hand D cm to reach an S  cm wide target (see Figure 
2.10). The movement of the hand, as we have said, is not continuous, 
but consists of a series of microcorrections, each with a certain accuracy.
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21
22

(1968).

This calculation is discussed in Hochberg (1976, p. 409).

This derivation is similar to that of Crossman and Goodeve (1963) and Keele
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START f - TARGET

D

Figure 2.10. Analysis of the movement of a user’s hand to a 
target.
The hand starts from the point labeled START and is to move to anywhere inside 
the TARGET as fast as possible. D is the distance to the target and S is the 
width of the target.

To make a correction takes at minimum one cycle of the Perceptual 
Processor to observe the hand, one cycle of the Cognitive Processor to 
decide on the correction, and one cycle of the Motor Processor to 
perform the correction, or The time to move the hand to
the target is then the time to perform n of these corrections or 
n{rp+T(2+ T¡^. Since ~  240 msec, n is the number of
roughly 240-msec intervals it takes to point to the target.

Let Xg be the distance remaining to the target after the /th corrective 
move and A'q (=  D) be the starting point. Assume that the relative 
accuracy of movement is constant, that is, that = e, where c < 1
is the constant error. On the first cycle the hand moves to

X^ = eXq = eD .

On the second cycle, the hand moves to 

X2 — tX f  = e{eD) = e^D. 

On the nth cycle it moves to

=  e^'D. (2.1)
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The hand stops moving when it is within the target area, that is when 

e"T) <  ^kS.

Solving for n gives

n = — \o g ^ D /S )  /  logj e .

Hence the total movement time is given by

T̂ pos = '»(’■/>+’’C + ’’A/)

Tpos =  log2(2/)/5),
where =  -  (t p+ t^ + t^ ) / logj e .

(2 .2)

Equation 2.2 is called Fitts’s Law. It says that the time to move the hand 
to a target depends only on the relative precision required, that is, the 
ratio between the target’s distance and its size. Figure 2.11a plots 
movement time according to Equation 2.2 for an experiment in which 
subjects had to alternate tapping between two targets S  in. wide, D in. 
apart. The points fall along a straight line as predicted, except for points 
at low values of log2(2Z)/S).

The constant e has been found to be about .07 (see Keele, 1968; 
Vince, 1948), so can be evaluated:

/ ^  =  — 240 msec /  log2(.07) bits 
=  63 m sec/bit.

A Eastman ~Slowman calculation gives a range of =  27 ~ 122 msec/ 
bit. Several methods have been used to measure the correction time. 
One is to turn out the lights shortly after a subject starts moving his hand 
to a target and note the minimum light-on time that affects accuracy.^^ 
Another is to detect the onset of correction from trajectory acceleration 
changes.^“* These methods have given cycle time values in the range

23 For a discussion, see Welford (1968).

Carlton (1980); Langolf (1973); Langolf, Chaffin, and Foulke (1976).



(a)

Figure 2 .11. Movement time as a function of two versions of 
Fitts’s Law.
From Welford (1968, Figures 5.3 and 5.4).
(a) Times for reciprocal tapping with a 1 oz. stylus plotted in terms of Equation 
2.2. Data from an experiment by Fitts (1954). Each point is based on a total of 
613~ 2669 movements obtained from 16 subjects.
(b) The same data as in (a) plotted in terms of Equation 2.3, corrected for errors 
by Crossman’s method (see Welford, 1968).
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Tp-f T ^+ T ^ = 190~260 msec/cycle (we calculated Ty,+ T(j+T^ = 240 
msec). The measured correction times correspond to = 50~68 
msec/bit (we calculated 63 [27 ~ 122] msec/bit).

Measurements of determined directly by plotting observations 
according to Equation 2.2 give somewhat higher values centering around 

=  100 msec/bit. The slope of the line drawn through the points in 
Figure 2.11a is about — 104 msec/bit. Slopes from other 
experiments are in the = 70~120 msec/bit range. Since will be
useful for later calculations, we set here a value based on several 
experiments:

=  100 [50~ 120] msec/bit

This value is a refinement of the value calculated from the Model 
Human Processor.

The problem of the points that wander off the line for low values of 
log2(Z)/5) and the slight curvature evident in Figure 2.11a can be 
straightened by adopting a variant of Fitts’s Law developed by Welford 
(1968):

T  =7^1og2(Z)/5 + .5). (2.3)

In Figure 2.11i» the same data are plotted using Equation 2.3 (and a 
method of correcting for errors). All the points now lie on the line and 
the slight bowing has been straightened. This equation gives a somewhat 
higher estimate for in Figure 2.116, =  118 msec/bit.

25 For single, discrete, subject-paced movements, the constant is a little less than 
=  100 msec/bit and closer to the 50~68 msec/bit value cited above for other 
experimental methods and for our nominal calculation. Fitts and Peterson (1964) get 
70~75 msec/bit. Fitts and Radford (1966) get a value of 78 msec/bit (12.8 bits/sec). 
Pierce and Karlin (1957) get maximum rates of 85 msec/bit (11.7 bits/sec) in a pointing 
experiment For continuous movement repetitive, experimenter-paced tasks, such as 
alternately touching two targets with a stylus or pursuit tracking, the constant is a little 
above 100 m sec/bit Elkind and Sprague (1961) get maximum rates of 135
msec/bit (7.4 bits/sec) for a pursuit tracking task. Fitts’s original dotting experiment 
(Figure 2.11) gives 118 msec/bit using Equation 2.3. Welford’s (1968) study using
Equation 2.3 and the actual distance between the dots gives 120 m sec/bit



Example 5. On a certain pocket calculator, the heavily used 
gold f button employed to shift the meaning of the keys is 
located on the top row (see Figure 2.12). How much time 
would be saved if it were located in a more convenient 
position just above the numbers?

Solution. Assume that the position of the 5 button is a fair repre­
sentation of where the hand is just before pressing the f button. From 
the diagram, the distance from the 5 button to the present f button is 2 
in., to the proposed location, 1 in. The button is 1/4 in. wide. By the 
Equation 2.3 version of Fitts’s Law, movement time is log2 {D/S  -F 
.5), where is expected to be about 100 msec/bit. So the difference in 
times required by the two locations is

5 6  2. THE HUMAN INFORMATION-PROCESSOR

Figure 2.12. Location of keys on the pocket calculator in 
Example 5.



^ T  = 100 [log2 (27.25 + .5) -  log2 (17.25 + .5)]

= 100(3.09 -  2.17)
= 90 msec. I

A test of this calculation by an informal experiment is in agreement 
with the predicted result. The time to press the f button was measured 
by counting the number of times the hand could alternate between the f 
and 5 button in 15 sec at both the old and the proposed location. By 
this method, the mean time7movement is just 15 sec7number of move­
ments. The experiment was repeated three times:

2.2. HUMAN PERFORMANCE 5 7

Trial 1: 
Trial 2: 
Trial 3: 
Mean:

Old Time 
290 msec 
240 msec 
230 msec 
250 msec

New Time
200 msec7button-press 
170 msec7button-press 
180 msec7button-press 
180 msec7button-press

Observed difference: 
Calculated difference:

70 msec7button-press 
90 msec7button-press

Notice that the time to press the f button is greater than what it could be 
in a more favorable location by over 173 (70 msec difference in a 180 
msec operation). Of course, it is important to keep in mind that the 
design of the entire calculator will entail some trade-offs in individual key 
locations.

POWER LAW OF PRACTICE

Before considering the second type of motion, keystrokes, it is useful 
to digress to consider a learning principle applicable to perceptual-motor 
learning generally: The time to do a task decreases with practice. It
was Snoddy (1926) who first noticed that the rate at which time improves 
is approximately proportional to a power of the amount of practice as 
given by the following relationship.

P6. Power Law o f Practice. The time T^ to perform a task 
on the nth trial follows a power law:

T„ = T,n a (2.4)



5 8  2. THE HUMAN INFORMATION-PRCXJESSOR

or
log = C -  a log n , (2.5)

where is the time to do the task on the first trial,
C = log Tp and a is a constant.

It can be seen in Equation 2.5 that performance time declines linearly 
with practice when plotted in log-log coordinates. Typical values for a 
are in the .2~.6 range.

Example 6. A control panel has ten keys located under ten 
lights. The user is to press a subset of the keys in direct 
response to whatever subset of lights is illuminated. If the 
user’s response time was 1.48 sec for the 1000th trial and 
1.15 sec for the 2000th trial, what is the expected response 
time for the 50,000th trial?

Solution. 
eliminate it.

Using Equation 2.5, we can solve for in order to

n  =T„n<^

(T’iooo)lOOO“ = (7’2ooo)2000«
a  = log (7’iooo/7 ’20()o) /  log (2000/1000) = .36

Solving for using Equation 2.6,

= (^looo)1000-36 = 18 sec.

The entire equation is

(2.6)

= 1 8 « - .3 6 (2.7)

Thus, the expected time on the 50,000th trial is

' 50,000 = (18)(50,000--36) = .37 sec ,

Figure 2.13 shows the results of an experimental study of this 
situation carried out to 75,000 trials. The response time on the 50,000th 
trial was .40 sec compared to the .37 sec calculated. Characteristically,
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1,000 10,000
Number of Responses

100,000

Figure 2.13. An example of the Power Law of Practice.
Improvement of reaction time with practice on a 1023-choice task. Subjects 
pressed keys on a ten-finger chordset according to pattern of lights directly above 
the keys. After Klemmer (1962).

the data here are well fit by Equation 2.5, except at the ends. Estimating 
by eye, the best-fitting straight line in the linear portion of the curve 
gives T  = 21«“ -̂ ,̂ comparable to Equation 2.7.

The Power Law of Practice applies to all skilled behavior, both 
cognitive and sensory-motor.^^ However, practice does not cover all 
aspects of learning. It does not describe the acquisition of knowledge 
into Long-Term Memory or apply to changes in the quality of 
performance. Quality does improve with practice, but it is measured on 
a variety of different scales, such as percentage of errors, total number of 
errors, and preference ratings, that admit of no uniform treatment.

KEYING RATES

The Power Law of Practice plays an important role in understanding 
user keystroking performance. Keying data into a system is a highly 
repetitive task: in a day’s time, a keypuncher might strike 100,000 keys. 
The Power Law of Practice has three practical consequences here. FirsL 
there is a wide spread of individual differences based primarily on the

See Newell and Rosenbloom (1981).



amount of previous typing practice. Typing speed ranges from 1000 
msec/keystroke for an absolute novice to 60 msec/keystroke for a 
champion typist, more than a factor of 15 difference. Second, the power 
function form for the practice curve (Equation 2.4) has a very steep 
initial slope (linear in the log means it drops through the first factor of 10 
in one hundredth the time it takes to drop through the second factor of 
ten—consult Figure 2.13). Thus typists pass through an initial unprac­
ticed state to one of moderate skill rather rapidly. Third, the practice 
curve becomes relatively flat after a short time (though it never entirely 
ceases to improve, according to the Power Law). This means that, for 
users of moderate skill, performance is relatively stable and one can 
indeed talk about constant rates for typing and keying.

Example 7. How fast can a user repetitively push with one 
finger a key on the typewriter keyboard? How fast can he 
push two keys using alternate hands?

60  2. THE HUMAN INFORMATION-PROCESSOR

Solution. In the case of a repeated keystroke, the finger must first be 
cocked back, then brought forward. Each half of the stroke, according to 
the Model Human Processor, will take = 70 msec and the whole 
stroke will take t^-F =  140 msec. In the case of keystrokes between 
alternate hands, it should be possible for one hand to stroke while the 
other is cocking if the strokes are coordinated, so in these cases strokes 
could follow each other within 70 msec. I

These two are the fastest and slowest cases, hence the typing rate for 
a skilled typist might be expected to lie somewhere within 70~140 
msec/keystroke for a mixture of same-hand and different-hand stroke 
combinations (if the typist is given sufficient look-ahead so that per­
ceptual and cognitive processing overlaps motor processing).

Figure 2.14 gives data-entry rates for some keystroke-operated devices. 
For typewriter-like devices, expert typing rates hover in the 100~300 
msec range, as expected. Champion keypunch and typing performance is 
in the 60~80 msec range, faster than the Middleman calculation above, 
but slower than the 30 msec lower bound set by a Fastman calculation. 
As Figure 2.14 shows, difficult text or lack of expertise exact perceptual 
and cognitive costs that slow the rate.

More detailed calculations of user performance can be made using 
data for individual interkeystroke times such as those collected by 
Kinkead (1975) and reproduced in Figure 2.15, which breaks down
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T y p e w rite rs (msec/stroke)

Best keying 60 Dresslar (1892)

Typing text 158-231 Hershman and Hillix (1965)

Typing random words 2 0 0 -2 7 3 Hershman and Hillix (1965)

Typing random letters 4 6 2 -5 0 0 Hershman and Hillix (1965)

Typing (1 char look-ahead) 75 0 -1 500 Hershman and Hillix (1965)

Unskilled typing of text 1154 Devoe (1967)

1 0 -K e y  Pads (msec/stroke)

Numeric keypunching 112 -4 00 Neal(1977)

Keypunching 3 0 0 -4 4 4 Klemmer and Lockhead (1962)

10-key telephone 78 9 -9 5 2 Pollock and Gildner (1963), Deininger (1960)

10-key adding machine 1091 Minor and Revesman (1962)

O th e r K eyb o ard s (msec/stroke)

Simple pushbuttons 5 7 0 -6 9 0 Monger, Smith, and Payne (1962)

5 X 5  adding machine 6 0 0 -8 0 0 Pollock and Gildner (1963)

Coded physician’s order 779 -2 222 Minor and Pittman (1965)

10X 10  adding machine 1200 Minor and Revesman (1962)

C hord Sets (msec/chord)

Stenotypists 333 Seibel (1964)

8-key chordset 508 -1 017 Pollock and Gildner (1963)

Mail sorting 5 1 7 -8 8 2 Cornog and Craig (1965)

Hand Entry (msec/char)

Hand printing 5 4 5 -9 5 2 Devoe(1967)

Handwriting 732 Devoe (1967)

Mark sensing 8 0 0 -3 7 5 0 Devoe (1967). Kolesnick and Teel (1965)

Hand punching 3093 Kolesnick and Teel (1965)

Figure 2.14. Keying times for selected input techniques.

interkeystroke times by key and by whether the preceding keystroke was 
on the same hand, finger, or key as the current keystroke. These times 
can be used to make approximate comparisons between keyboard layouts.
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Example 8. A manufacturer is considering whether to use 
an alphabetic keyboard (see Figure 2.16) on his small 
business computer system. Among several factors influ­
encing his decision is the question of whether experienced 
users will find the keyboard slower for touch-typing than 
the standard Sholes ( q w e r t y )  keyboard arrangement.
What is the relative typing speed for expert users on the 
two keyboards?

Solution, Figure 2.15 gives the time/keystroke for all but the most 
infrequent letter keys, broken down by whether the previous key was the 
same key, the same finger, the same hand, or the other hand. Figure 
2.17 gives the frequencies f .  with which two-letter combinations appear in 
English (punctuation and space digraphs are, unfortunately, not available 
in the table). The expected typing rate is just the weighted average.
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r - 7 ‘
Sholes (Standard)
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1
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1

Figure 2.16. Arrangement of letter keys on Sholes and on 
one possible alphabetic typewriter.
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S e c o n d  L e t te r
F i r s t  —  
L e t te r  A H I M

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
z

2
182
562
172
880
174
136
1056
210
32
8

452
547
250
64
343

229
15

577
252
456
98
78

571
23
25
17

354 242
2

—  49 —
—  —  36
13 337 1213
2 —  —

9
66

4
13 
106

68

589
4

310

2
337

254 1476
132 208

9
547
496
660
433
233
380
3139
329
44 
293 
937 
757 
846
45 
435

115 214

8
112
127

2
8

218

4
34

110

53
2

265

4 2
61 4
9 —
36 1190
942 62

13

543
6
19

312

4
2

19
11
61

375
121
248
403
165
290
170
848

4
138
655
325
288
74
142

19 142
13 —
—  168

38

—  59

25

70
87

2

15
6

32 108 167 1730
34
9
55

131
62
161

4
34
15

2
4
55

797
1103
131
929
507

28
140
61

19
11
8
15

76

842
227
125
51
583

66
61
8

543

17
740

6
79
365
295

335

11
310

2
6

339

34
76
28
553

6

15 615 — 112 129 117
2 473 464 — 74 72 102

— 3397 971 2 — 138 42
182 — 91 — 4 352 297
— — 229 — — — —
— 490 231 — 2 23 2
— 6 25 — — 2 —
— 4 38 — — 13 28
— — 8 — — 6 —

Figure 2.17. Frequencies of English digraphs.
Probability of digraph occurrence x 10^. Computed from data of Underwood and 
Schulz (1960, Appendix D).

Typing rate = 2 . f .  /. .

Applying this formula to both the Sholes keyboard (the conventional 
one) and the alphabetic keyboard of Figure 2.16 (and dividing the result 
by Sj.yj to compensate for the fact that only about 90% of the digraph 
times are given in Figure 2.17) gives

Typing rate (Sholes) = 152 msec/keystroke (72 words/min)
Typing rate (alphabetic) = 164 msec/keystroke (66.5 words/min).

The alphabetic arrangement is calculated to be about 8% slower than the 
Sholes arrangement I
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S e c o n d  L e t te r
F irs t  —  
L e t te r  N U W

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
z
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2

34
1355

6
32
13

2394

97
11
2

64
1487

2

202
25

8
460

89

11

2
293
653
257

72
431
184

471
89

378
386
486
390
252

819
331
694

55
274

2
352

6

193

4
149

6
2
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2
28

206
4

225
174

17
157

2
142

2 1128 1028 1362
— 140 15 4

2 333 9 333
— 108 161 2
25 2106 1285 431
— 210 — 127
— 176 81 19
— 98 23 197

2 386 1105 1238

2
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19
6

1239
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59
112
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2
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2
967
466
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— 114 458 299
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— 541 481 524
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87

1306
91

115
134
242
216

— — 25 28 6
61 -  -  -  34
17 — 6 104 30 —

252
4

21
288

2
288

26

34
138

62

70 13 272 
127 

32 
70 

204 
4 

13 
19

— 26 —

8
170

11

— 9 —
2 —  —

185

25

435

8
47
78

2
21

2 9 —

15
481
114
134
42
13

252
61

202
8
6

11

25

62

13

Kinkead (1975) used a similar calculation to show that the Dvorak 
keyboard would be expected to be only 2.6% faster than the Sholes 
keyboard. This calculation makes two strong assumptions. The first is 
that the frequencies of the digraphs will not seriously affect the digraph 
times, a reasonable assumption by the Power Law argument above. A 
more difficult assumption is that there are no substantial leveling effects, 
in which slow digraphs slow down faster ones. This last assumption has 
been disputed by Yamada (1980a, 1980^).

Simple Decisions

We have discussed how simple calculations are possible for perceptual 
and motor performance: now we can consider how the perceptual and



motor systems, together with central cognitive mechanisms, combine in 
simple acts of behavior.

SIMPLE REACTION TIME

The basic reaction time for simple decisions can be derived from 
Figure 2.1.

Example 9. A user sits before a computer display terminal.
Whenever any symbol appears, he is to press the space bar.
What is the time between signal and response?

Solution. Let us follow the course of processing through the Model 
Human Processor in Figure 2.1. The user is in some state of attention to 
the display (Figure 2.18a). When some physical depiction of the letter A 
(we denote it a) appears, it is processed by the Perceptual Processor, 
giving rise to a physically-coded representation of the symbol (we write it 
« ')  in the Visual Image Store and very shortly thereafter to a visually 
coded symbol (we write it a")  in Working Memory (Figure 2.18A). This 
process requires one Perceptual Processor cycle Tp. The occurrence of 
the stimulus is connected with a response (Figure 2.18c), requiring one 
Cognitive Processor cycle, t^. The motor system then carries out the 
actual physical movement to push the key (Figure 2.18d), requiring one 
Motor Processor cycle, t^ .  Total time required is ‘rp+T(^+rJ^^. Using 
Middleman values, the total time required is 100-I-70-f 70 = 240 msec. 
Using Fastman and Slowman values gives a range 105~470 msec. I

In practice, measured times for a simple reaction under laboratory 
conditions range anywhere from 100 to 400 msec.
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PHYSICAL MATCHES

If the user has to compare the stimulus to some code contained in 
memory, the processing will take more steps.

Example 10. The user is presented with two symbols, one 
at a time. If the second symbol is identical to the firsL he 
is to push the key labeled yes, otherwise he is to push NO.
What is the time between signal and response for the yes 
case?
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Figure 2 .18. Simple reaction-time analysis using the Model 
Human Processor.

Solution. The first symbol is presented on the screen where it is 
observed by the user and processed by his Perceptual Processor, giving 
rise to associated representations in his Visual Image Store and Working 
Memory. The second symbol is now flashed on the screen and is 
similarly processed (Figure 2.19a). Since we are interested in how long it 
takes to respond to the second symbol, we now start the clock at 0. The 
Perceptual Processor processes the second symbol to get an iconic 
representation in Visual Image Store and then a visual representation in



e. Motor Processor pushes button.

Figure 2.19. Physical name-match analysis using the Model 
Human Processor.

68



Working Memory (Figure 2.196), requiring one cycle, Tp. If not too 
much time has passed since the first symbol was presented, its visual code 
is still in Working Memory and the Cognitive Processor can match the 
visual codes of the first and second symbols against each other to see if 
they are the same (Figure 2.19c). This match requires one Cognitive 
Processor cycle, t^. If they match, the Cognitive Processor decides to 
push the YES button (Figure 2.\9d), requiring another cycle, t^. Finally, 
the Motor Processor processes the request to push the YES button (Figure 
2.19c), requiring one Motor Processor cycle, r ^ .  The total elapsed 
reaction time, according to the Model Human Processor, is

Reaction time =  + 2t -̂ +

=  100 [50-200] + 2X(70 [25-170])+ 70 [30-100] 
= 310 [130-640] msec.

As our analyses become more complex, it becomes convenient to use 
a more concise notation. Such a notation can be had by writing sym­
bolically what the contents of the memories are after each step. This has 
been done for the last two examples. Examples 9 and 10, in Figure 2.20.

NAME MATCHES

If the user has to access a chunk from Long-Term Memory, the 
response will take longer.

Example 11. Suppose in Example 10 the user was to press 
YES if the symbols had the same name (as do the letters A 
and a), regardless of appearance and NO if they did not.
What is the time between signal and response for the yes 
response?
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The analysis is similar to the previous example except that instead of 
performing the match on the visual codes, the user must now wait (see 
Figure 2.20 Step 2.01) until the visual code has been recognized and an 
abstract code representing the name of the letter is available. The 
consequence of adding the new step is the addition of one more 
Cognitive Processor cycle.

Reaction time = Tp + 3t(- +
= 100 [50-200] + 3X(70 [25-170]) + 70 [30-100] 
= 380 [155-810] msec.
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Step Display VIS W M Hand Elapsed Time

Example 9. Simple reaction
State at start of clock:

1. Symbol appears
2. Transmitted to VIS
3. Initiate response
4. Process motor command

Example 10. Physical match
State at start of clock:

1. Second symbol appears
2. Transmitted to VIS 
2 .7. Match
3. Initiate response
4. Process motor command

Example 11. Name match
State at start of clock:

1. Second symbol appears
2. Transmitted to VIS
2.01. Recognize
2.1. Match
3. Initiate response
4. Process motor command

Example 12. Class match
State at start of clock:

1. Second symbol appears
2. Transmitted to WM
2.01. Recognize
2.02. Classify 
2.1. Match
3. Initiate response
4. Process motor command

a'.p'
a'.p'

, PUSH-YES 
PUSH-YES

, a
. a  . MATCH = TRUE 

. a  ', PUSH-YES 

. a " .  PUSH YES

aj”:A
a ,  ":A

;A
,'':A .u 2 • ̂   ̂1 ^

MATCH = TRUE 

PUSH-YES 

PUSH YES

a ':A :LE TTE R  

a";A ;LETTER  

a  ':A:LETTER
/3 ":B.  a  ":A :l e t t e r  
)S ":B :l e t t e r . a  ":A:l e t t e r

MATCH = TRUE 
PUSH-YES
PUSH-YES I

p + 2 t c  
n+ 2t̂ + T ̂

n+ 3t ^

pT 4t̂ + t i

Figure 2 .20. Trace of the Model Human Processor’s memory 
contents for simple decision tasks.
The symbols a  and P  stand for the unrecognized visual representation of the 

input; the symbols a '  and stand for the physical representation of the input in 

the Visual Image Store (VIS); the symbols a "  and P ” stand for the visual code of 

the input in Working Memory (WM); and the symbols A and LETTER, stand for the 

abstract representation. The notation a ":A means that both visual and abstract 
codes exist in Working Memory and are associated \«ith one another.

CLASS MATCHES

It might happen that the user has to make multiple references to 
Long-Term Memory.

Example 12. Suppose in Example 11 the user was to press 
YES if both symbols were letters, as opposed to numbers. 
What would be the time between signal and response?



The analysis is similar (see Figure 2.20) to the previous example 
except that a new step, Classify, is required to convert both versions of 
the symbol to the same representation.

2.2. HUMAN PERFORMANCE 71

Reaction time ^ T p +  4t^  +
= 100[50~200l + 4X(70 [25-170]) + 70 [30-100] 
= 450 [180-980] msec . I

Experiments have been performed by many researchers to collect 
empirical data on the questions presented in these examples. The results 
are that name matches take about 70 msec longer than physical matches 
and that class matches take about 70 msec longer yet. (70 msec is the 
nominal value we have used for t^̂ .) Figure 2.21 shows one such 
experimental result. Name matches are about 85 msec slower than 
physical matches when there is very little time between the first and 
second symbol. By the time 2 sec have elapsed, the visual code in 
Working Memory has decayed so that the extra step of getting the name 
must occur and, in fact, performance is close to that required for a name 
match. For these predictions, the relative, nominal value calculation 
gives good agreement with the data, but the absolute values of the 
reaction times are low (data: 525 msec, calculation: 380 [155-810] msec), 
reflecting some systematic, second-order effect adding a constant time to 
all the data points. The absolute values remain within the Fastman- 
Slowman range however.

CHOICE REACTION TIME

If the user has to make a choice between two responses, we can 
analyze the task as in Example 10 where the choices were YES and NO. 
If there are a larger number of choices, the situation is more complicated, 
but still the task can be analyzed as a sequential set of decisions made by 
the Cognitive Processor, each adding a nominal =  70 msec to the 
response.^^ Regardless of the detailed analysis of the mental steps 
involved in choosing between alternatives, more alternatives require more 
steps and, hence, more time. The relationship between time required and 
number of alternatives is not linear because people apparently can 
arrange the processing hierarchically (for example, dividing the responses 
into groups, then on the first cycle deciding which group should get

27 See Welford (1973) and Smith (1977).
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Figure 2 .21. Reaction times for matching successively pre­
sented letters as a function of the inter-stimulus interval.
From Posner, Boies, Eichelman, and Taylor (1969, Figure 2, p. 8).

further consideration). The minimum number of steps necessary to 
process the alternatives can be derived from information theory and, to a 
first order o f approximation, the response time of people is proportional 
to the information-theoretic entropy of the decision.

P7. Uncertainty Principle: Decision time T  increases with 
uncertainty about the judgment or decision to be made:
T  = Iq H, where H is the information-theoretic entropy o f 
the decision and is a constant.

For the case where a person observes n alternative stimuli, which are 
associated one-to-one with n responses (example: sorting multiple-part



business forms by color), this principle can be given a simple mathe­
matical formulation;
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H = logj (« - E l ) . (2.8)

The equation, a variant of Hick’s Law, may be taken as an empirical 
relationship that simply fits many measured situations, in that no partic­
ular mechanism is proposed. However, the equation is clearly related to 
rational ways of processing that minimize expected time. / /  is a function 
of n-El rather than just n because there is uncertainty about whether to 
respond or not, as well as about which response to make. As an 
illustration. Figure 2.22 shows the reaction time required between the 
onset of one of n equally probable signals and the pressing of the 
appropriate button. The figure plots the reaction time against the

log  ̂ (n + 1 )

Figure 2.22. Hick’s Law of choice reaction time.
After Welford (1968, p. 62). At the onset of one of n lights, arranged in a row, 
subject is to press the key located below the light.

the



number of alternatives (1 to 10), on a log scale showing that the measure­
ments form the straight line predicted from the equation.

Equation 2.8 can be generalized to the case where the n alternatives 
have different probabilities of occurring,
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/ / = 2 . ^ i ' ’p .lo g 2 (l/p .+  l ) . (2.9)

Although the probability in the formula is the person’s subjective prob­
ability, it often can be estimated from the task. When all of the 
probabilities are equal (=  1/«), Pj log (1/py -F 1) = (1/«) log2 (n-Fl) 
and Equation 2.9 reduces to Equation 2.8.

Example 13, A telephone call director has 10 buttons.
When the light behind one of the buttons comes on, the 
secretary is to push the button and answer the phone.
What is the percentage difference in reaction time required 
between the cases where (1) each one of the telephones 
receives an equal number of calls and (2) two of the 
telephones are used heavily, receiving 50% and 40% of the 
calls, with the remaining 10% uniformly distributed among 
the remaining phones?

Solution. By the Uncertainty Principle and Equation 2.9, the reaction 
time to signals of unequal probability is

T  = I r H ,
where

/ / = 2 .^ i > . l o g 2 ( l / p ,+  l ) .

For case (1), p. = .1 and

/ /  =  10 (.1 log2 ( l / . l  -F 1)) =  3.46 bits.

For case (2), Pi = .S, P2 = . ,̂ and p.=.0125 (where 3 < /< 1 0 ) ,

H = .5 log2 (1/.5 -F 1) -F .4 log2 (1/.4 + 1)
+  (8)(.0125)(log2(l/.0125) + 1)

=  2.14 bits.



The difference is = 3.46-2.14= 1.32 bits. So the response time for 
case (2) is calculated to be 2.14/3.46 = 62% of the reaction time for case 
( 1). ■

Example 13 discussed one form of weighted occurrence probability. 
Another way of creating uncertainty is not to have signals occurring with 
fixed frequencies, but to have sequential dependencies of the signals. 
For instance, suppose at each trial either the signal for response # 1  or 
response # 2  can occur. However, the signal for response # 1  occurs 
with .8 probability after a previous signal for response #  1, but only with 
.2 probability after a signal for response #1.  One can apply the same 
information-theoretic formula to compute the uncertainty. Hyman (1953) 
tried these different ways of inducing uncertainty, with the results shown 
in Figure 2.23. As can be seen, all the different ways of inducing 
uncertainty fit the same curve.
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Bits Per Stimulus Presentation

Figure 2.23. Choice reaction time for three different ways 
of manipulating the stimulus information H .
Data for a single subject. Hyman (1953, Figure 1, p. 192, subject G.C.).



Figure 2.23 shows that it takes about Iq = 150 msec/bit of 
uncertainty, above a base of about C = 200 ms, which we could identify 
as C = Tp+ T^. Using these values we can estimate the actual reaction 
times in Example 13: (1) Where each of the telephones receives an equal 
number of calls, the reaction time would be 200 msec +  (150 
msec/bitX3.46 bits) = 719 msec. (2) Where two of the telephones are 
heavily used, the reaction time would be 521 msec. When the 200 msec 
intercept is taken into account, case (2) is 72% of case (1).

There are also situations in which we do not know how to compute 
H, but in which we do know that relatively more mental steps must be 
involved in one case than in another. For example, if the lights and keys 
in Example 13 were paired randomly with each other, the user would 
require more mental steps, would be increased, and the response 
could be expected to take more time. The relative number of mental 
steps required as a function of the features of a particular set of inputs 
and outputs of an interface is called its stimulus-response compatibility. 
As the result of practice, fewer mental steps are required and becomes 
smaller.

Learning and Retrieval

Most user behavior is, of course, more complex than the simple 
decisions we have just been discussing for the fundamental reason that 
most user behavior is performed in complex system environments and 
depends on the user’s knowledge and understanding of those environ­
ments. How knowledge about systems and procedures is stored and 
retrieved is, therefore, of some importance.
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FORGETTING JUST-ACQUIRED INFORMATION

Recall again the flow of information in Figure 2.1 from perceptual 
memory to Working Memory to Long-Term Memory. The ratio between 
the decay times of these stores is large, on the order of 200 msec : 7000 
msec : oo, which reduces to 1:35: oo. The characteristics of retrieval will 
depend on the elapsed time since the information was stored, because 
that will determine which memories, if any, preserve the item. For 
retrievals done a few seconds after input, items may be stored in either 
Working Memory or Long-Term Memory, or in both. For retrievals 
done a few minutes after input, items are retrievable only from Long-
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Figure 2.24. Probability of recalling a word from a list as a 
function of the position of the word in the list and of the 
delay before starting recall.
From Glanzer and Cunitz (1966, Figure 2, p. 358). Each point represents the mean 
for five iists and 46 subjects.

Term Memory. This fact is illustrated by Figure 2.24, which shows the 
results of an experiment in which people were given a list of words to 
learn and later to recall (in any order). Between presentation of the list 
and recall they were prevented from rehearsal (that is, from physically or 
mentally saying the list over and over) by the introduction of a different 
task.

The curves show the probability of recall at each position of the 
studied items (position 1 is the earliest one presented). The top curve 
shows that both the initial and the final words in the list are remembered 
better than the ones in the middle. The bottom curve shows what 
happens if a delay of 30 seconds occurs before recall is started, allowing 
new items to be activated in Working Memory, interfering with those to 
be remembered. As can be seen, the difference is that the final words 
lose all their extra memorability. The middle curve simply confirms the 
analysis by showing that a delay of 10 sec is intermediate in its effect.

Example 14. A programmer is told verbally the one- 
syllable file names of a dozen files to load into his pro­
gramming system. Assuming the names are all arbitrary, in



which order should the programmer write down the names 
so that he remembers the greatest number of them (has to 
ask for the fewest number to be repeated)?

Solution. Twelve arbitrary file names means the programmer has to 
remember 12 chunks (assuming one chunk/name), which is larger than 

names will be forgotten. The act of trying to recall 
the file names will add new items to Working Memory, interfering with 
the previous names. The items likely to be in Working Memory but not 
yet in Long-Term Memory are those from the end of the list. If the user 
tries to recall the names from the end of the list firsL he can snatch some 
of these from Working Memory before they are displaced. The 
probability of recalling the first names will not be affected since they are 
in Long-Term Memory. Thus, the programmer should recall the last 
names firsL then the oAers. I

Example 15. Suppose that in Example 14, the 12 files did 
not have arbitrary names, but rather names such as i n i t i ,
INIT2, INIT3, INIT4, PERF1, PERF2, PERF3, PERF4, 
SYSTEMS1, SYSTEMS2, SYSTEMS3, SYSTEMS4. In which
order should the programmer write down the file names so 
that he remembers the largest number of them?

Solution. Unlike the case in Example 14 where each file was a 
separate chunk, here there are only 4 chunks; in it # ,  p e r f # ,  
SYSTEMS#, and the rule for # .  Tlie number of chunks is within the 
user’s Working Memory span and hence the order of recalling the files 
should make little difference. I
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Example 16. Show that the amount of time a programmer 
can delay typing the name of the file before forgetting it 
(with probability > .5) is much longer if the file name is 
c a t  than if it is t x d . (Assume the work involved does not 
permit the user to rehearse the file name.)

Solution. The file name t x d  is assumed to be a nonsense word and 
therefore must be coded in three chunks. From Figure 2.1, 
chunks) = 7 [5~34] sec, but the file name c a t  is one chunk, 6 f^ ^ (l 
chunk) = 73 [73~226] sec. Nominally, the user can remember the 
meaningful name on the order of 73 sec /  7 sec =  10 times longer. I



Actually, the advantage of meaningful names is likely to be even 
greater than this calculation shows, since meaningful names are easier to 
transfer to Long-Term Memory and have more associates to get them 
back.

Two more comments are in order. First, we have treated chunks as 
if they were all alike. Experimental confirmation of the approximate 
equivalence of chunks for memory decay appeared in Figure 2.6. The 
figure thus shows that a list of three consonants like t x d  is forgotten at 
the same rate as a list of three words like (c a t  pig  m a n ). Second, we 
have assumed intervening demands on the user that prevented him from 
rehearsing the chunks in Working Memory. If rehearsal is possible, a 
small number of chunks can be kept in Working Memory indefinitely, at 
the cost of not being able to perform many other mental tasks.

INTERFERENCE IN WORKING MEMORY

According to the Discrimination Principle, it is more difficult to recall 
an item if there are other similar items in memory. The similarity 
between two items in memory depends on the mental representation of 
each item, which depends in turn on the memory in which the item 
resides. The two most important dimensions of interference are acoustic 
interference and semantic interference. Items in Working Memory are 
usually more sensitive to acoustic interference (they are confused with 
other items that sound alike) because they usually (but not necessarily) 
use K = acoustic coding (Conrad, 1964). Items in Long-Term Memory 
are more sensitive to semantic interference (they are confused with other 
items with similar meaning) because they use k = semantic coding.

Example 17. A set of error indicators in a system have 
been assigned meaningful three-letter words as mnemonics.
The idea is that, since each word is a single chunk, more 
codes can be remembered and written down at a glance, 
and since each code is only three letters the codes will be 
fast to write. When the system crashes, the operator is to 
write down a set of up to five code words that appear in a 
special alphanumeric display. Which is more important to 
avoid (in order to minimize transcription errors), codes that 
are similar in sound or codes that are similar in meaning?
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Because the codes are to be written down immediately, the codes will 
be held largely in Working Memory during transcription. Because
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Experiment I
(S p o k e n )

Group A
(N=20)

Group S
( N =2 1 )

A c o u s t ic a l ly  S e m a n t i c a l l y
S im i la r  C o n t ro l  S im i la r  C o n tro l

Experiment III
(Visual)

Group AV
(N= 10)

A c o u s t ic a l ly  
S im i la r  C o n t ro l

m a d . m a n , c o w , d a y , b ig , lo n g  o ld , d e e p .  Same as Same as

Word Set m a t. m a p , fa r , fe w . b r o a d , g r e a t .  fo u l,la te . Expt. I Expt. I

c a d , c a n , h o t, p e n , h ig h , ta ll. s a le ,  h o t, plus plus
caf, cap s u p , p it  la r g e .w id e  s tro n g , th in  c a b , m a x  r ig ,d a y

Percentage 
Correctly 10% 
Recalled

82% 65% 71% 2% 58%

Figure 2 .25. Acoustic vs. semantic interference in Working 
Memory.
Subjects studied 25 five-word lists. The words in the lists were either acoustically 
similar, semantically similar, or unrelated (control condition). The numbers in the 
table are the proportion of lists recalled entirely correctly and in the proper order. 
Data of Baddeley (1966) as presented in Calfee (1975, Figure 17.6).

Working Memory uses largely acoustic coding, transcription errors will 
occur mainly from interference between acoustic codes. Similar sounding 
codes should therefore be avoided. I

Figure 2.25 shows the result of a similar experiment in which subjects 
had to remember lists of five words, then recall them twenty seconds 
later. They made many errors with the acoustically similar lists (only 
1~2% of the lists were recalled error-free), but substantially fewer with 
the semantically similar lists (13% of the lists were recalled error-free), 
and this was true regardless of whether they were given the lists aurally 
or visually.

INTERFERENCE IN LONG-TERM MEMORY

The Discrimination Principle P4 says that the difficulty of recall 
depends on what other items can be retrieved by the same cues. Thus, as 
the user accumulates new chunks in Long-Term Memory, old chunks that 
are semantically similar to the new chunks become more difficult to 
remember.
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Figure 2 .26. Interference of previously learned material 
with later learning.
Recall of serial lists 24 hours later as a function of number of previous lists 
learned. Revised version of Underwood (1957, Figure 3, p. 53).

A demonstration of this fact is shown in Figure 2.26. When people 
learn lists of words in the laboratory, they forget a large fraction of them 
within 24 hours. Underwood (1957) managed to find 16 separate pub­
lished studies that both recorded the amount of forgetting after 24 hours 
and gave enough detail to determine the number of previous lists that 
had been learned prior to the one tested. Even though these lists 
differed in length, time per list item, and details of experimental 
procedure, it is clear that learning more prior lists results in more 
forgetting and that this accounts for a very large fraction of the forgetting 
that occurs. The size of the interference effect shows that much of what 
passes for forgetting is failure to retrieve, not actual loss from the 
memory.

Example 18. A user is about to learn how to use a new, 
line-oriented text-editor, identical to one he already knows 
except for the command names (such as e r a se  instead of 
delete). Will his learning of the new editor interfere with 
his ability to remember the command names of the old 
one?



Solution. Yes. When the user learns the new editor, there will be 
new chunks in memory similar to those of the old editor and, by the 
Discrimination Principle, these may interfere with retrievals about the old 
editor. Indeed, it is a common experience for programmers to be unable 
to recall how to use an old system on which they have spent hundreds of 
hours after learning a similar new one. I

Not only does just-acquired knowledge interfere with previous 
knowledge in Lx)ng-Term Memory, it also interferes with subsequent 
knowledge, although usually with smaller effect.^*

SEARCHING LONG-TERM MEMORY

Information is retrieved from Long-Term Memory with each basic 
cycle of the cognitive processor, but retrieval of the desired item is not 
always successful. When sufficiently long times are available for search, 
strategies can be used to probe Long-Term Memory repeatedly. Retriev­
ing the name for a known but rarely used command is a typical example.

It is worth emphasizing the difficulty faced by the user attempting to 
retrieve an item from his Long-Term Memory, as given by the Encoding 
Specificity Principle. When he learned the item, it was encoded in some 
way. This encoding included various possible cues for recalling the item. 
At retrieval time, the user knows neither the desired item nor its recall 
cues. He must therefore guess, placing cues in Working Memory where 
they will serve as calls on Long-Term Memory on the next cycle. The 
guesses may be good and succeed immediately or, even if they fail, may 
retrieve some information that can help on a subsequent try.

A graphic example of Long-Term Memory search, emphasizing its 
capacity, the requirement for interactive strategic search, and the fact that 
Long-Term Memory is in many ways an external body of knowledge, like 
a phone book or an encyclopedia, is shown in Figure 2.27. The subject 
was asked, seven years after being graduated, to remember the names of 
all 600 members of her high school graduating class. (The experimenter 
had the year book.) As the graph shows, even after ten hours of trying, 
the subject was still retrieving new information from Long-Term 
Memory. Her strategy was an elaborate version of the interactive 
retrieval strategy above: In her mind, the subject scanned for faces, 
attended old parties, worked the alphabet wandered down familiar streets 
asking for the house occupants. The process also produced fabrications
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Figure 2 .27. Recall of the names of high-school graduating 
class, seven years after being graduated.
Replotted data from Subject S I in Williams and Hollan (1981).

where non-classmate names were recalled somewhat uncertainly during 
early sessions and were later misrecalled as classmate names.

Complex Information-Processing

The psychological phenomena we have discussed so far comprise the 
building blocks out of which more complex user behavior is composed. 
This more complex behavior spans longer times and is rationally 
organized.

OPERATOR SEQUENCES

More complex activities must ultimately be composed of the sorts of 
elementary actions we have been discussing. These rudimentary actions 
operate to cause physical changes in the state of the world or mental



changes in the state of the user, and to emphasize this property we call 
them operators. It has been realized, in an insight into the structure of 
behavior dating at least from the Gilbreths (Gilbreth, 1911), that the 
operators are sufficiently independent of the behavioral situation in which 
they are observed that different segments of behavior can be seen to be 
composed of the same few operators differently combined. It further 
turns out that it is possible to define operators sufficiently independent of 
each other that the time required by an operator in isolation is a good 
approximation to the time it requires as part of a sequence (although 
there are generally second-order interactions that set limits to this 
additivity).

Figure 2.28 shows a direct attempt to investigate whether the time 
required by an operator was the same when it occurred in isolation as 
when it occurred as part of a sequence. The tasks were simple operations 
of reading analogue and digital dials, looking up values in a table, 
computing a simple arithmetic formula, and entering data by keying it.

As the figure shows, the mean operator time required when the 
operator is combined with other operators is about the same as the time 
required in isolation, but the variability in the operator times is greater 
when the operator is combined, with coefficients of variation roughly 15- 
20% higher.^^ Thus, to a first approximation (and when careful task 
definitions and measurements are made), integrated task behavior could 
be decomposed, in this case, into component operators, which could be 
defined and measured in independent contexts.

Example 19. In the experiment reported in Figure 2.286, 
the total time to do the combined task was 51.56 sec (SD 
= 18.85). How close is this result to the times predicted 
from Figure 2.28a?

The total time to do the combined task should be the sum of the 
mean times for the individual tasks:

T = 6.24 -F 3.45 -F 9.26 -F 34.20 
=  53.15 sec.
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29 It is convenient to express variability in terms of the coefficient o f variation CV  
=  Standard Deviation /  Mean, because it makes variability from distributions with 
different means more easily comparable; we often use this statistic in preference to the 
standard deviation.



(a) INDEPENDENT TASKS
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-► COMPUTE Q -►INPUT O -

METER TABLE LOOK UP COMPUTATION
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READ OUT

N = 986 
Median = 6.04 

Mean = 6.24 
CV = .25

N = 987 
Median = 3.36 

Mean = 3.45 
CV = .26
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Median = 7.99 
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(b) INTEGRATED TASK
---------------------►COMPUTE Q —  INPUT Q-,

D IG ITAL
READ-OUT

TABLE 
LOOK UP COMPUTATION

N = 1226 N = 1 2 3 0
Median = 6.31 Median = 3.33 

Mean = 6.67 Mean = 3.47
CV = .31 CV = .30

N = 1225 
Median = 8.36 

Mean = 10.80; 
CV = .65

N = 1236 
Median = 30.04 

Mean = 31.19 
CV = .48

Figure 2 .28. Time distributions for four operators (a) when 
measured in isolation and (b) when measured as part of an 
integrated task.
Five university students performed each of the following operators: READ-METER- 
AND-TYPE-INPUT, READ-DIGITAL-DISPLAY-AND-TYPE-INPUT, READ-X-Y-AND- 
LOOKUP-Z, READ-X-Y-Z-AND-COMPUTE-Q. They performed the operators both in 
isolation and as part of a iarger integrated task. From Mills and Hatfield (1974, 
Figures 3  and 4).
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The measured task time was (53.15-51.56)/53.15 = 3% higher than 
calculated. I

The variance of the combined task should be the sum of the variance 
for the individual tasks, assuming independence among the tasks:

S D =  V  [1.53  ̂ + .9Q2 + 5.1Q2 -f 
= 15.73 sec

CV  = SD/Mean = 15.73/53.15 = .30 .

The measured coefficient of variation is 18.85/51.56 = .37, which is 
(.37 -  .30)/.30 = 23% higher than calculated.

THE RATIONALITY PRINCIPLE

A person attempts to achieve his goals by doing those things the task 
itself requires to be done. Much of the complexity of human behavior 
derives not from the complexity of the human himself (he is simply 
trying to achieve his goals), but from the complexity of the task environ­
ment in which the goal-seeking is taking place.^® It follows thaL to 
understand and predict the course of human behavior, one should 
analyze a task to discover the paths of rational behavior. We come, 
therefore, to what might be called the fundamental principle of task 
analysis:

P8. Rationality Principle. A person acts so as to attain his 
goals through rational action, given the structure o f the task 
and his inputs o f information, and bounded by limitations on 
his knowledge and processing ability:

Goals -F Task -F Operators -F Inputs 
+ Knowledge -F Process-limits -*■ Behavior.

The principle really offers a nested set of formulations that can be 
used in order to predict a person’s behavior. The first version. Goals + 
Task -F Operators, takes into account only the objective situation; the 
other factors reflect hidden constraints, namely what the person can 
perceive, what he knows, and, finally, how he can compute. The 
additional factors offer successive approximations to how he will behave.
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30 See Simon (1947, 1969), Newell and Simon (1972).



with the shorter equations being easier to use, but giving cruder approx­
imations.

THE PROBLEM SPACE PRINCIPLE

Rational behavior can often be given a more precise description. 
Suppose a person has the goal to prove a theorem using the rules of 
symbolic logic. There is a set of mental states through which he passes 
(describable in terms of symbolic expressions) and a number of operators 
for changing one state into another (operations in symbolic logic). This 
set of states and operators is called a problem space. In general:

P9. Problem Space Principle. The rational activity in which 
people engage to solve a problem can be described in terms o f 
(I) a set o f states o f knowledge, (2) operators for changing 
one state into another, (3) constraints on applying operators, 
and (4) control knowledge for deciding which operator to 
apply next.

There are different problem spaces for different tasks, and there may well 
be changes in problem spaces over time, as the user acquires more 
knowledge about the structure of the task.

An example of a short problem-solving task, and one that has been 
examined in detail, is the cryptarithmetic puzzle. As shown below, each 
letter is to be assigned a different digit so that replacing the letters by 
their digits forms a correct addition. For example:
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D
G

O
E

N
R

R O B

A
A

L
L
R

D
D

D =5

A typical way in which a person goes about solving such a problem is a 
combination of elementary reasoning and trial-and-error. For example:

...1 can. looking at the two D’s (pause) each D is 5; therefore T is 0. 
So I think I'll start by writing that problem here. I'll write 5. 5 is O. 
Now do I have any other T's? No. But I have another D. That 
means I have a 5 over the other side. Now I have 2 A's and 2 L's that 
are each somewhere and this R, 3 R's, 2L's equal and R. Of course I'm 
carrying a 1. Which will mean that R has to be an odd number.
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D O N A L D
4 - G E R A L D  D = 5

R O B E R T

Informal Description: Letters in the above array are to be

rep laced by num erals from  zero  though nine, so that all instances  

of the sam e letter are  rep laced by the sam e num eral. D ifferent 

letters a re  to be rep laced by d ifferent num bers. The  resulting array  

is to be a correctly  w orked problem  in arithm etic. The  assignm ent 

for the letter D Is a lready given to be 5.

States: Assignm ents of num bers to letters.

Operators: (a s sig n  Letter Number)
(PROCESS-COLUMN Column) 
(GENERATE-DIGITS Letter) 
(TEST-DIGIT Number)

Path Constraint: d ^ d = t , etc.

Figure 2 .29 . External problem space for a cryptarithmetic 
task.

Because the 2 L’s. any two numbers added together has to be an even 
number and 1 will be an odd number. So R can be 1... [Excerpt from 
protocol for Subject S3, Newell and Simon, 1972, p. 230],

The problem space for this subject (see Figure 2.29) consists of assign­
ments of numbers to letters (R = 3), and various relations that can be 
known about the letters and digits ( r > 5, R odd, r unassigned). The 
mental operators used by this subject can be identified:

ASSIGN

PROCESS-COLUMN
Assign a number to a letter. 
Infer other assignments and 
constraints from a column.



1 2 3 4 5  6 7 8 9  10 11 12 13 14 15 16 17 18 19 2021  2223  24 2 5 2 6 2 7 2 8 2 9 3 0 3 1  32 33 34 35 36 37 38 39 40 41 42 43

Figure 2 .30. Search of subject through his internal problem 
space for the cryptarithmetic task.
S u bject S3, N ew ell and S im on (1972, F igure 6.4 , P. 181) fo r D O N A LD  + G E R A LD  

= R O B E R T. Each  d ot in the  d iagram  represents a  state of know ledge of the  

subject. Each  link is the  result of applying an operator.
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GENERATE-DIGITS

TEST-DIGIT

Determine what numbers are 
possible for a letter. 
Determine if a digit can be 
assigned to a letter.

There is also a more general operator:

SET-UP-GOAL Set up goal to obtain a certain
result or to check that a knowledge 
expression is true.

These operators embody the limitations of human information-processing 
in various ways. For example, with only ten digits to be assigned and 
with the assignments just having been made, one might think that an 
intelligent problem solver would always know what digits were available. 
Not directly. Unless the t e s t -d ig it  operator is applied, the problem- 
solver will not know whether a digit has been assigned to another letter.

Figure 2.30 gives a graphic presentation of the behavior of the subject 
whose protocol was excerpted above. Each state of knowledge of the 
subject is represented by a point and the operation of an operator by a 
connecting line. The double lines are places where the person repeats a 
path previously trod. This repeating of a path is a reflection of Working 
Memory limitations, it being easier to drop back repeatedly to an anchor 
state than to remember the intermediate states. The graph can be 
summarized by saying that: (1) the subject is involved in heuristic search; 
and (2) upon close examination the apparently complex behavior resolves 
into a small number of elements (the parts of a state and the operators) 
interacting with the complex constraints of the task, an illustration of how 
complexity in behavior arises from the environment.

2.3. CAVEATS AND COMPLEXITIES

We have attempted to convey a version of existing psychological 
knowledge in a form suitable for analyzing human-computer interaction. 
We have summarized this knowledge in a simple model of the human 
processor and have suggested, through examples, how it might be used 
with task analysis, calculation, and approximation to support engineering 
calculations of cognitive behavior. Although it is hoped that the model
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itself will be useful, the real point is in the spirit of the enterprise: that 
knowledge in cognitive psychology and related sciences is sufficiently 
advanced to allow the analysis and improvement of common mental 
tasks, provided there is an understanding of how knowledge must be 
structured to be useful. The present chapter is an illustration of one 
possible way for structuring this knowledge.

In the foregoing description, we have chosen to concentrate on a 
picture of basic human information-processing capabilities relevant for 
human-computer interaction rather than to detail human engineering 
studies of particular systems or techniques. Human-engineering studies 
relevant to our particular concerns are referenced in context in later 
chapters. For general reviews of behavioral studies of human-computer 
interaction, the reader is directed to Moran (19816), Ramsey, Atwood, 
and Kirshbaum (1978), Ramsey and Atwood (1979), Rouse (1977), Miller 
and Thomas (1977), and Bennett (1972). For reviews of the general 
“man-machine” literature, the reader is directed to Rouse (1980), Pew, 
Baron, Feehrer, and Miller (1977), Meister (1976), Sheridan and Ferrell 
(1974), and Parsons (1972).

There are also many papers that either review, or for other reasons 
provide convenient entry into, specialized portions of the human- 
computer interaction literature. Perceptual issues of video displays are 
treated in Cakir, Hart, and Stewart (1980), Shurtleff (1980), and Gould 
(1968). Reviews of the large literature on devices for data entry can be 
found in Sperandio and Bisseret (1974), Seibel (1972), Alden, Daniels, 
and Kanarick (1972), and Devoe (1967). The design of command 
languages is treated in Barnard, Hammond, Morton, Long, and Clark 
(1981); Moran (1981a); Boies (1974); Fitter and Green (1979); Reisner 
(1981); and Martin (1973). Programming has received considerable 
attention; Sheil (1981); Shneiderman (1980); Brooks (1977); Shepard, 
Curtis, Milliman, and Love (1979); and Smith and Green (1980). And 
finally, a number of systems have been proposed as frameworks for the 
human operation of machines; for example. Lane, Streib, Glenn, and 
Wherry (1980); Siegal and Wolf (1969); and Quick (1962).

The model of human information-processing that we have presented 
is our own synthesis of the current state of knowledge. In many respects 
(though not all) it corresponds to the dominant model of the seventies 
(Fitts and Posner, 1967; Neisser, 1967; Atkinson and Shiffrin, 1968; 
Welford, 1968; Newell and Simon, 1972; Lindsay and Norman, 1977; 
Anderson, 1980). But beyond any general model, a large amount of



detailed knowledge is available in the literature on all the phenomena we 
have examined. In order to make the reader aware in some general way 
of the limits of our model, we mention briefly a number of the complex­
ities documented in the literature and some of the alternative theoretical 
views.

9 2  2. THE HUMAN INFORMATION-PROCESSOR

BOXES VS. DEPTH OF PROCESSING

The dominant model of the seventies had as an underlying heuristic 
the assumption that there was an elaborate logic-level structure of many 
separate registers (the “boxes”), each with its own distinct memory 
parameters and connected by a distinct set of transfer paths. There was a 
Short-Term Memory consisting of seven chunks, brought into prominence 
by Miller (Miller, 1956; cf. Blankenship, 1938); forgetting was accom­
plished by displacement from fixed slots in the registers. Short-Term 
Memory was separate from Long-Term Memory, in contradistinction to 
the earlier theory, which simply posited a single structure of stimulus- 
response connections. The discovery by Sperling (1960) of the Visual 
Image Store, which was clearly distinct from the Short-Term Memory, 
provided impressive support for the “box” view.

A number of difficulties have beset this model, mostly in increased 
complexities and muddying-up of initially clean distinctions, as experi­
mental evidence has accumulated. Initially it appeared that all infor­
mation in the Short-Term Memory was coded acoustically (Conrad, 1964) 
and all information in Long-Term Memory coded semantically, but this 
has proved not to be the case. For instance, in some of the examples in 
this chapter, the use of visual codes in Working Memory is evident 
Initially, rehearsal seemed to play the key role in the transfer of infor­
mation from the Short-Term Memory to the Long-Term Memory—the 
more an item was rehearsed, the better chance it had of being stored 
away permanently. It has since seemed necessary to distinguish 
maintenance rehearsal, which has no implications for permanent memory, 
from elaborative rehearsal, which does. This distinction proved to be the 
crack in the edifice. It resulted in a new general view, called depth o f 
processing, which attempts to do away with the structural boxes entirely 
and substitute a continuum of processing depth to determine how well 
material is remembered. “Depth” is defined somewhat intuitively: 
examining the letters of words is shallow, finding rhymes a little deeper.



and creating stories using the words deeper still. This view is now itself 
under serious attack (Wicklegren, 1981) for lack of precision in its theory 
and for its unsuccessful predictions.
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WORKING MEMORY SPAN

The original view of Working Memory, following Miller (1956), was 
that it had a capacity of 7±2 items, coinciding with the immediate 
memory span. Gradually, much of the support for the existence of an 
independent Working Memory came from the recency effect in free 
recall (the fading ability to remember the last few items heard that we 
examined in Figure 2.24). Various ways of calculating Working Memory 
size from the recency effect all give answers in the range 2.5 ~ 4.1 items 
for the capacity. This implies that the immediate memory is a compound 
effect of more than one process, which is the way we have described it.

At the opposite end of the spectrum from sizes of 2.5~4.1 vs. 7±2 is 
the notion of Working Memory as an activation of Long-Term Memory, 
hence, of essentially unlimited instantaneous extent, but of limited access. 
The model presented here couples such a view with that of decay to get 
the limited access. This view, though not widely stated explicitly, is 
represented in a few places in the literature (Shiffrin and Schneider, 
1977).

The Model Human Processor has moved some distance from the 
model of the early seventies in replacing separate memory registers with 
registers that are subregisters of each other; Working Memory is the 
subset of activated nodes in Long-Term Memory, and the Visual and 
Auditory Image Stores are not completely separate from Working 
Memory. Baddeley (1976, 1981) and his co-workers have used the term 
Working Memory functionally to include additional components of the 
human limited-capacity short-term storage system, which combine for 
skilled tasks such as reading to provide a capacity somewhat larger than 
our MirA/' Chase and Ericsson (1982) have used the term Working 
Memory to include rapid accessing mechanisms in Long-Term Memory, 
what we have termed Effective Working Memory. They showed in a 
series of ingenious experiments that, through extensive practice, people 
can enormously increase their Effective Working Memory beyond our 

The upshot of the Baddeley and Chase and Ericsson results is to 
emphasize the intimate connection between Working Memory, Long-



Term Memory, and attention. For the sake of simplicity, we have not 
attempted to incorporate these ideas into the Model Human Processor, 
pending their further development.

MEMORY STRENGTH VS. CHUNKS

The notion that memories have strengths, and can be made stronger 
by repetition, has been a central assumption of much psychological 
theorizing. Wicklegren (1977) gives a good account of this view for the 
whole of memory. The notion that memories come in discrete chunks, 
which either exist or do not exist in Long-Term Memory, provides an 
alternative conception that has risen to prominence with the information­
processing view of man. It is this view we have presented.

It is difficult to determine in a simple, experimental way which of 
these two positions holds in general. Each type of theory can mimic and 
be mimicked by the other. One basic difficulty is that memory 
phenomena, being inherently errorful and varying, always lead to data 
samples that show considerable variation. One can never tell easily 
whether the variation arose from corresponding variation of strength or 
from discrete probabilistic events. The same effects producible by 
gradation in strengths also flow from multiple copies of chunks 
(Bembach, 1970). Such multiplicity, far from being contrived, might be 
expected if a system manufactured chunks continually from whatever was 
being attended to.
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WHAT IS LIMITING?

That humans are limited in their abilities to cope with tasks is clear 
beyond doubt. Where to locate the constraint is less clear. One general 
position has focused on memory as the limiting agent, as in the notion of 
the register containing a fixed set of slots. Another general position has 
focused on processing. A more sophisticated notion is that processing 
and memory may each be limiting but in different regions of perform­
ance (Norman and Bobrow, 1975). The processing position has usually 
taken the form of some sort of homogeneous quantity called processing 
capacity, which is allocated to different tasks or components of a task, 
usually within a parallel system. Another form of processing limit is to 
posit a serial system and permit it only one operation at a time.

Again, it is not possible to formulate experimental ways of distin­
guishing these alternatives in general. Serial processing systems can



mimic parallel ones by rapid switching, and parallel systems of limited 
capacity can show the most obvious sign of serial processing, linear time 
effects.

INTERFERENCE VS. DECAY

The Model Human Processor incorporates spontaneous decay over 
time and interference as mechanisms that produce memory-retrieval 
failure. Typically these are held to be alternative mechanisms and much 
effort has gone into trying to determine to which one forgetting is 
attributable. Actually, with the advent of information-processing models, 
a third alternative occurred: displacement of old items by new ones. This 
is clearly a version of interference, though one that involves total loss at 
storage time (of the interfered-with item), not of interaction at retrieval 
time.

The strong role of interference in long-term forgetting has been well- 
established. However, no one has ever accounted for the losses in very 
long term memory (weeks, months, or years) in a way that excludes 
genuine forgetting, although at least one investigator (Wickelgren, 1977) 
believes he can separate true forgetting from interference in the long 
term.
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EXPANSIONS OF THE MODEL HUMAN PROCESSOR

There are at least three areas where the description of the Model 
Human Processor might be significantly expanded at some cost in 
simplicity. The first area is the semantic description of Long-Term 
Memory. As the study of Long-Term Memory proceeded, it became 
evident to psychologists that, in order to understand human performance, 
the semantic organization of Long-Term Memory would have to be taken 
into account. We have not described semantic memory in any depth 
here, since the details of such an account would carry us beyond the 
bounds set for this chapter. For surveys of the relevant literature, the 
reader is referred to Anderson (1980), Lindsay and Norman (1977), 
Norman and Rumelhart (1975), and Anderson and Bower (1973).

The second area is the description of the Perceptual Processor. In the 
simplified description we have given of perceptual processing, we have 
skipped over considerable detail that is appropriate at a more refined 
level of analysis. A description based on Fourier analysis could be used 
to replace various parts of the model for describing the interactions of



visual Stimuli with intensity and distance (Comsweet, 1970; Ganz, 1975; 
Breitmeyer and Ganz, 1976).

The third area is the description of the Cognitive Processor. We have 
not said much in detail about the control structure of the Cognitive 
Processor; but it is necessary to consider the processors’s control 
discipline if interruptability, errors, multiple-tasking, automaticity, and 
other phenomena are to be thoroughly understood. A more detailed 
description of the recognize-act cycle, and how the characteristics of 
simple decisions arise from it, might be given in terms of a set of 
recognize-act rules, called productions (Newell, 1973). According to this 
description, the productions themselves reside in Long-Term Memory. 
On each cycle, the recognition conditions of the rules are compared with 
the contents of Working Memory (or said another way, some of the 
recognition conditions of the rules are activated through spreading 
activation in Long-Term Memory). The rule with the best match (the 
highest state of activation) fires and causes its associated action to occur, 
altering the contents of Working Memory (activating other chunks in 
Long-Term Memory). Perceptual input whose recognition activates 
previously non-activated chunks in memory may, through this mecha­
nism, interrupt and redirect the previous course of processing. The 
description might be elaborated to give both an account of skilled 
behavior that requires little conscious attention and an account of 
unskilled behavior. A production system description has also been used 
to give a description of complex information-processing where each 
action might involve several dozen recognize-act cycles (for examples, see 
Newell and Simon, 1972; Young, 1976; Anderson 1976).

9 6  2. THE HUMAN INFORMATION-PROCESSOR

THE EXISTENCE OF ALTERNATIVES

Does the existence of alternatives to various features of the Model 
Human Processor, like those we have just mentioned, and the fact that 
agreement on them is very difficult to obtain, rob the model of its 
usefulness or show that it is impossible to settle things in psychology? 
Not at all, and for two reasons.

The first reason is a technical issue about making progress in 
psychology. Many of the difficulties arise because classes of quite 
different mechanisms can mimic each other rather closely, as in the case 
of interference and decay. However, this mimicking works only over 
narrow ranges of behavior. For instance, if only one specific task is 
considered—say, the immediate memory distractor task (Figure 2.6) in
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which a single item is given, then counting backward by sevens, then 
attempting to recall the item—it is easy to generate several explanations 
(decay, interference, displacement) that are indistinguishable, even in 
principle, by unlimited precision in the data. But if these same 
mechanisms are required to provide the explanation in many diverse 
tasks, it becomes much harder for the mimicking to succeed. Thus, the 
comments we have made apply locally—mechanism X  competes with 
mechanism Y  to explain a given phenomenon, but only when that 
phenomenon is considered in relative isolation.

The current style in psychology is to have a highly elaborated base of 
quantitative data over many diverse phenomena, with many local 
theories. The science has not yet succeeded in putting together general 
theories that are tight enough quantitatively so that the same posited 
mechanism (for example. Working Memory decay) is forced to show 
itself in action in a large diversity of tasks. Such comprehensive theories 
may soon emerge—the groundwork seems well-laid for them—but there 
has not yet been enough of this theorizing to settle the issues reflected in 
this section.

The second reason that the existence of alternatives does not rob the 
model of its usefulness concerns the use to which our model is to be put. 
The model’s purpose is to provide a sufficiently good approximation to 
be useful. Its function is synthesis, not discrimination of alternative 
underlying mechanisms. If basic mechanisms are not distinguishable in a 
domain where there has been extensive empirical investigation, there is 
some assurance that working with either will provide a reasonable first 
approximation. Then it is important to obtain a single overall picture 
based on one set of mechanisms that works globally and fits in with an 
appropriate unified theoretical perspective. This we have done.

Our purpose in this chapter has been to prepare the way for the 
specific set of studies of human-computer interaction that is to follow. 
Though these studies do not take the details we have been presenting for 
granted, they do presume the basic orientation laid out here.
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3. System and User Variability
3.1. THE STUDY OF TEXT-EDITING
3.2. TIME DIFFERENCES AMONG EDITORS (EXPERIMENT 3A)
3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS 

(EXPERIMENT 3B)
3.4. CONCLUSIONS

The use of a computer for editing text is a paradigmatic example of 
human-computer interaction, and for several reasons. (1) The interaction 
is commonly rapid; A user completes several transactions a minute for 
sustained periods. (2) The interaction is intimate; A text-editor, like all 
well-designed tools, becomes an unconscious extension of its user, a 
device to operate with rather than operate on. (3) Text-editors are 
probably the single most heavily-used programs; There is currently a 
massive effort to introduce text-editing systems into offices and clerical 
operations. Even in a systems programming environment, one study 
(Boies, 1974) found that 75% of the system commands issued were text- 
editor commands. And (4) computer text-editors are similar to, and can 
therefore be representative of, other systems for human-computer 
interaction; Like most other systems, they have a discrete command 
language and provide ways to input, modify, and search for data. The 
physical details of their interfaces are not particularly unique. Because of 
these similarities, progress in understanding user interaction with text- 
editors should help us to understand interaction with other systems as 
well.

The study of text-editors is a task that is reasonably within the range 
of the analytic tools we have available from cognitive psychology and 
computer science. It is a symbolic task of substantial, but manageable, 
complexity. Because of the intrinsic importance of the task itself, the 
similarities with other tasks, and the task’s tractable complexity, studies of 
computer text-editing are a natural starting point in the study of human- 
computer interaction.

101
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Before proceeding to the description of our studies on text editing, it 
is useful to set the stage by describing what is known from previous 
studies, the details of the physical environment for the systems we shall 
study, and a sample of typical text-editor dialogue.

STUDIES OF TEXT-EDITING

Despite its practical application and its apparent fruitfulness as a 
research problem, there have been few studies of computer text-editing 
(other than reports on specific editors). Previous work on editors falls 
into two groups, analytical studies of editor design and behavioral studies 
of users.

Analytical studies of editors have focused on editing time and 
comparative functionality. By making idealized assumptions, Oren (1972, 
1974, 1975) was able to derive equations for editing time as a function of 
several system properties of “word-processing” systems; but he did not 
report empirical validation of his models. Van Dam and Rice (1971) 
compared several types of editors informally. Riddle (1976) and Roberts 
(1979) both derived taxonomies of editing features and used these to 
compare the functionality of widely used systems.

Behavioral studies have focused on editing time and to a lesser extent, 
on the methods actually used by users, users’ errors, and learning. 
Embley, Lan, Leinbaugh, and Nagy (1978) analyzed editors in terms of 
the number of commands and number of keystrokes users required to 
perform benchmark tasks. They also tried to predict the commands and 
keystrokes required by deriving the editing commands from a comparison 
of the file before and after editing (Anandan, Embley, and Nagy, 1980). 
Hammer (1981) derived the minimum number of keystrokes required to 
make an edit and compared that with human performance. We (Card, 
Moran, and Newell, 1976, 1980a, 19806; Card, 1978) videotaped users of 
text-editors to determine their methods and predict, using cognitively- 
oriented models, their editing time. These studies are elaborated in the 
present book. DeLaurentiis (1981) used keyboard protocols to determine 
how users’ methods change as they move from novice to expert. 
Hammer and Rouse (1979) tried to summarize users methods as a 
Markov transition matrix. Roberts (1979) constructed a method for 
evaluating editors from behavioral tests of editing time, learning time.



and errors, and also investigated mental loading. The behavioral studies 
have recently been reviewed by Embley and Nagy (1981).

PHYSICAL TEXT-EDITING ENVIRONMENT OF THE STUDIES

The physical arrangement of the user, his computer terminal, and a 
text manuscript, though particular to our experiments, is entirely typical 
of the arrangements commonly encountered in offices where computer- 
assisted document preparation systems are in use. This arrangement may 
be assumed in the experiments we describe unless contradicted.

A person (the “user”) sits before a computer terminal with a keyboard 
for input and a video display terminal for output (see Figure 3.1). In the
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Figure 3.1. Physical layout for the manuscript-editing task.



computer is a text file. To the user’s left is a manuscript, consisting of a 
printout of the text file on which modifications have been marked with 
red ink. The user, working via a computer program for text-editing, is to 
effect each of the marked modifications in the text file, producing an 
updated file. Variations on the task occur with variations in the nature of 
the computer, the editor program, the terminal, the size of the manu­
script, the kind and number of corrections, the physical layout, and the 
familiarity of the user with the manuscript and the editor.

The keyboard the user employs is similar to that of a standard 
American electric typewriter save for the addition of a few special keys, 
such as ESC (“escape”), c o o t r o l  (a type of shift key), l i n e f e e d , 

BACKSPACE, and DELETE. The extra keys are used for special system- 
dependent functions.

Many systems we discuss also employ a special “mouse” pointing 
device to select items on the video display. The mouse is a small box set 
atop wheels or ball bearings and attached to the keyboard by a flexible 
wire. The user can roll it about the table causing analogous movements 
of the cursor on the video display. He can push one of the three buttons 
protruding from the top of the mouse to indicate selection of the letter, 
word, or text fragment indicated on the screen by the cursor.

For the most part, users whose behavior we observe are in daily 
interaction with the systems on which they are recorded, as part of their 
job duties. Overall, the experimental arrangement is very similar to the 
user’s natural setting when working with the system. Experiments are 
run in a room much like the user’s own office. The only difference is 
the presence of a television camera in the room, but the user is typically 
not much aware of the camera once he becomes absorbed in his task.
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Figure 3.2. Sample fragment of a marked-up manuscript.
Four modifications are indicated by the markings on this fragment. The marks on 
the manuscripts given to users in the experimental sessions are in red ink.



SAMPLE DIALOGUE WITH A TEXT-EDITOR

To make the details of editing concrete, let us consider the task of 
making the modifications indicated on the manuscript fragment shown in 
Figure 3.2 using a typical teletypewriter-oriented editor, p o e t . The first 
instruction on the manuscript indicates that the word great has been 
mistyped in the manuscript as geart. A typical dialogue between the 
system and the user is as follows (the inputs by the user and the outputs 
by the system are shown on the left, comments are shown on the right):

3.1. THE STUDY OF TEXT-EDITING 1 0 5

SYSTEM:
USER:

SYSTEM:

SYSTEM:

#
/

a p p ro a c h

SYSTEM: #  Prompts the user for a command.
USER: " g e a r t ” The user indicates the line he wants by

typing between quotation marks a string of 
characters, geart, that identify the line. The 
system responds by finding the next line in 
the file that contains the characters and 
locating itself at that line, called the Current 
Line.
Prompts for a command.
This command tells the system to print the 
Current Line on the display. The user’s 
purpose is to ensure that the system is 
located at the intended line.

w ill n eed  a g e a rt  d e a l o f ...
(In the dialogue, an elipsis "..." is used to 
shorten long typeouts by the system.)
The system displays the Current Line on the 
bottom line of the display screen and 
prompts for the next command.
The user decides to make the change by 
using the Substitute command to substitute 
the characters grea for the characters gear.

USER: S Invokes the Substitute command.

SYSTEM: u b s t itu te  Completes the command name and waits for
the first argument to the Substitute 
command.

USER: g re a  r e tu r n  Types the new text to be substituted and
terminates it with RETURN.

SYSTEM: (fo r) Prompts the user for second argument of
Substitute.

USER: g e a r  r e tu r n  Types the old text to be replaced and
terminates it with RETURN.

SYSTEM: [OK] Asks the user to confirm that the command
is stated correctly before executing it
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USER: RETURN Types RETURN to confirm. The system 
then makes the substitution every time it can 
on the Current Line.

SYSTEM: 1 Responds by printing the number o f 
substitutions it made—in this case, only one 
was made.

SYSTEM: # Prompts for a command.

USER: / Again, the user wishes to look at the Current 
Line to verify that the modification was 
made as he intended.

SYSTEM: a p p ro a c h w ill n eed  a g re a t d ea l o f ...
SYSTEM: # The system prompts for a command. The 

modification was correct The user now 
proceeds to the next task, in which the word 
“idiom” is to be capitalized. The user 
decides he will do this by substituting the 
characters Idi for idi. Because the task is 
located on the line immediately following, 
this time the user decides to use the 
LINEFEED command (instead o f the 
“quoted string method”) to locate the line..

USER: LINEFEED Invokes command to increase Current Line 
by 1 (move to the next line on the file) and 
display it

SYSTEM: id iom  a p p ro a c h  by  d e fin it io n  in v o lve s  ...
SYSTEM: # Prompts for a command.
USER: s Invokes Substitute command, etc.
SYSTEM: u b s titu te
USER: Id i RETURN
SYSTEM: (fo r)
USER: id i RETURN
SYSTEM: [OK]
USER: RETURN
SYSTEM: 1
SYSTEM: #

USER: /

SYSTEM:

The user proceeds in this manner through the rest of the manuscript, 
making the indicated modifications as he encounters them on the 
marked-up manuscript



3.1. THE STUDY OF TEXT-EDITING 107

The POET editor, discussed above, is typical of a large class of editors 
designed to be usable on a teletypewriter terminal. An example of a 
rather different sort of editor is the “display-oriented” editor, RCG (see 
Englebart and English, 1968). This editor uses a five-key chordset for 
entering commands and uses the mouse for pointing. With RCG, the user 
could perform the task as follows:

USER:
SYSTEM:

USER:

SYSTEM:
USER:

SYSTEM:

SYSTEM:

rc Typed on chordset

Replace Character
Displayed at top of screen.
Points to first i in idiom with mouse. 

MOUSE 1 Presses button 1 on mouse.
Underlines character.

Moves hands to keyboard.
I Capital “I” typed on keyboard.

The word idiom instantly changes to Idiom. 
User moves left hand to chordset right hand 
to mouse.

MOUSE1 Presses button 1 on mouse to indicate
termination o f command.
Redisplays entire screen of text with change 
made.

The description is shorter because the more complex operations 
required by po et  to indicate the target text are replaced in r cg  by a 
simpler pointing and select operation.

There are many other schemes for designing an editor. Some will 
have effects on user performance. The twin questions naturally arise, just 
how much effect does the design of an editor have on the time to edit a 
manuscript, and how do differences between editors compare with 
differences between people? Before embarking on more detailed investi­
gations, it is important to get an approximate answer to these questions. 
If the design of the editor makes little difference in editing time, then 
there is little point to investigating editing rates for different designs 
unless they are radically different from current ones. If differences in 
editing time between users are much larger than those between editors, 
then more leverage is gained by studying individual differences. 
Consequently, we describe two exploratory experiments that bear on 
these points.



3.2. TIME DIFFERENCES AMONG EDITORS 
(EXPERIMENT 3A)

In order to discover how much difference the design of an editor 
makes to the speed with which text can be edited, the obvious thing to 
do is compare the speed of several editors on benchmark tasks.
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METHOD FOR EXPERIMENT 3A

Editing Systems. Five editing systems of substantially different design 
(see Figure 3.3) were chosen for study: p o e t , s o s , t e c o , b r a v o , and 
RCG. Three of the systems (POET, SOS, and t e c o )  are teletypewriter- 
oriented; they assume a discipline imposed by a typewriter with a long 
scroll of paper (although they were actually tested with a video display 
on which the last 40 lines could be seen). One line at a time is typed on 
the scroll, with both the system’s output and the user’s input intermixed. 
The two remaining editors ( b r a v o  and RCG) are display-oriented. They 
operate by showing the user a picture of a page of text and updating the 
picture after each editing modification.

Benchmark Tasks. The editors were compared by testing user 
performances on four benchmarks (see Figure 3.4): (1) a Letter Typing 
benchmark, in which the user typed a letter from scratch; (2) a 
Manuscript Modification benchmark, in which the user made corrections 
to a text file; (3) a Text Assembly benchmark, in which the user 
assembled a document from stored paragraphs; and (4) a Table Typing 
benchmark, in which the user typed a table of numbers and labels into 
the system.

Users. Each of the 13 users in the experiment was either a secretary 
or a computer scientist All were expert users with the editors on which 
they were tested: Each had used the system for more than a year and 
had used the system within the week in which he was tested. About a 
quarter of the users had programmed or maintained one of the systems.

Design. Each editor was tested on three users. (Three is the smallest 
number that would give some notion of inter-user variability and 
the largest for which experts on the different editors were available.) 
Because few users were expert in more than one or two of these editors 
and to avoid the possibility of practice effects from repeated exposure to 
the tasks, each user was tested on a single editor. Only one user was 
tested on sos because of its similarity to p o e t . Each of the four bench­
marks was done with the p o e t , s o s , t e c o , and RCG editors: only the
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POET (Russell, 1973). A version of QED (Deutsch and Lampson, 
1967). “ Line-oriented” (basic addressing unit is a line of 
text). Users select lines by giving text-strings contained 
on desired line or (more rarely) by giving line numbers, 
vy/hich change with each inserted or deleted line. 
Commands are single letters issued from the keyboard 
(example: D for the Delete command).

SO S (Savitsky, 1969). A line-oriented editor with fixed line- 
numbers actually stored In the file with the text. The 
command language is similar to that of POET.

TECO (BBN, 1973). A “character-oriented” editor (document is 
treated as one long string of characters, including 
RETURN characters). Pieces of text are referenced by 
search strings or character position numbers. TECO is 
distinguished by Its very large repertoire of low-level 
commands, which can be combined Into higher-level 
commands.

BRAVO  A display-oriented editor, designed by Charles Simonyi 
and Butler Lampson at Xerox PARC, which uses the 
mouse for pointing at text on the display. BRAVO  
contains a full repertoire of typefont and formatting 
capabilities. It right-justifies text on the display after each 
keystroke. The command invocation syntax in BRAVO is 
similar to that of POET. BRAVO was called DISPED in 
Card, Moran, and Newell (1976, 1980a, 1980b).

RCG A display-oriented editor written by William Duvall; It Is a 
descendent of the NLS editor (Englebart and English, 
1968). This editor also uses a mouse for pointing, and a 
five-key chord device for input of commands.

Figure 3.3. Text-editors tested in Experiment 3A.



1 1 0  3. SYSTEM AND USER VARIABILITY

Letter Typing The user is provided with a paper copy of a letter 
on which a few small changes are indicated in 
red ink. He is to type the corrected letter Into the 
editing system and save it on a file.

M anuscript The user is provided with a paper copy of a
M odification letter stored on a file. There are 12 small

modifications of one or two words each marked 
on the letter. He Is to modify the file, using the 
editor, according to the markings on the letter.

Text Assem bly The user is to assemble a single file out of three 
files on the system, each of which contains a 
single paragraph of text, then type In a fourth 
paragraph copied from a supplied text.

Tab le Typing The user is to type a table (photocopied from a 
book) into the system and store it on a file. The 
table contains a five-by-five array of three-digit 
numbers, plus labels for the rows and columns.

Figure 3.4. Benchmark tasks used for testing editors in 
Experiment 3A.

Manuscript Modification benchmark was done with BRAVO (which was 
run at a later date than the other editors). As a baseline against which to 
measure performance, one user was measured performing the tasks using 
an IBM Selectric II typewriter.

Procedure. Each user was tested individually. The user was seated in 
front of a 6 line/sec video display terminal as shown in Figure 3.1 and 
given a set of general instructions urging him to work as fast as possible 
without making errors. It was stressed that the editor, and not the user’s 
abilities, was under examination. The user was given a warmup exercise 
on the editor of making some simple modifications, then each of the four 
benchmarks in the order: (1) Letter Typing, (2) Manuscript Modifi­
cation, (3) Text Assembly, (4) Table Typing. The stimulus materials and 
instructions for each task were bound in a notebook, and the user was



allowed to proceed through the benchmarks at his own pace. The 
experimental session was recorded on video tape with the time (to a 
sixtieth of a second) recorded on each video frame by means of a video 
clock.
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RESULTS FOR EXPERIMENT 3A

How much of a time difference was there among editors? The answer 
was a factor of 1.4~2.3 between the fastest and slowest editors, depending 
on the benchmark. Figure 3.5 gives the total time required to perform 
each benchmark. The differences on the Letter Typing benchmark (after

Task Type

Text-editor

Letter
Typing
M ±S D
(sec)

M anuscript
Modification

M ±S D
(sec)

Text
Assembly
M ±S D

(sec)

Table
Typing
M ±S D
(sec)

POET 238±28 220±33 160±65 244±21
SOS 315 215 147 234
TECO 252±25 159±26 131±15 283±41
BRAVO — 122±42 — —

RCG 224±4 94±21 102±32 306±54
Typewriter 229 901 489 483

Ratio of slowest
to fastest editor 1.4 2.3 1.6 1.3

Ratio of typewriter
to fastest editor 1.0 9.6 4.8 2.1

Figure 3.5. Performance times for the benchmark tasks in 
Experiment 3A.
There were three users apiece for POET, TECO, BRAVO, and RCG, and only one 
user each for the typewriter and SOS. The SOS user was also measured on RCG; 
all other users were measured only once. The times for the Letter Typing 
benchmark were normalized to compensate for different users’ typing rates by 
dividing the separate parts of the task (type inside address, etc.) by the ratio 
between a user’s time to type the body of the letter and the all-user mean time to 
type the body.
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normalizing for users’ typing speeds) and of the Text Assembly 
benchmark generally reflected the setup costs of each system to do the 
task. The differences in the Table Typing benchmark mainly reflected 
the ingenuity of the users in capitalizing on features of the systems: 
methods varied from typing in the rows of the table directly (using fixed 
tabs provided by the system) to making many copies of the first line in 
the table and then substituting for each of the entries. The largest 
differences among the systems were in the Manuscript Modification 
benchmark, where the ratio of the slowest to fastest system was 2.3. 
Since there are small ways in which the RCG editor might be sped up and 
since some editors in common use are known to be even slower than 
POET, it is probably justified to say that, as a rough rule of thumb, the 
design of an editor can make a factor of 3 difference in the time to 
perform typical editing modifications.

Any of the editing systems was much faster to use than a typewriter. 
In Figure 3.5, the Manuscript Modification time was almost 10 times 
faster with the fastest editor. Of course, this ratio depends completely on 
the ratio of the length of text to be typed and number of modifications to 
be performed, so the number itself is not meaningful; but it does indicate 
the generally large advantage obtainable by using text-editors over 
typewriters.

How much of a difference was there among users? The answer here 
was a ratio of 1.3 ~ 1.9 between the lowest and fastest time/modification, 
depending on the editor. Figure 3.6 gives the mean time/modification 
for the Manuscript Modification benchmark. Since users made errors on 
14% of the modifications (examples: substituting a misspelled word or 
invoking the wrong command) and the errors can severely distort 
comparisons (a single serious error can require a substantial amount of 
correction time), the mean time/modification for each user is also 
presented based only on the error-free tasks.

It is apparent from Figure 3.6 that no matter whether all 
modifications or only error-free modifications are considered, the times 
for users within an editor are more similar to each other than are the 
times among editors. The lower portion of the figure gives the average 
modification times over all the users on each editing system, along with 
the ratio of the slowest to fastest user on each system. The average 
slowest/fastest user ratio is about 1.5 when all modifications are con­
sidered and about 1.3 when only error-free modifications are considered. 
The editor bra vo  has the largest slowest/fastest user ratio—almost a



All Modifications Error-Free Modifications
User M ± S D ( N ) M ± S D ( N )
(System) (sec) (sec)

S4 (POET) 16.7 ± 5.3(10) 15.9 ± 4.9 (9)
S6 (POET) 21.6 ± 15.0(10) 17.4 ± 7.1 (9)
S13(P0ET) 16.9 ± 9.7(12) 16.9 ± 9.7 (9)

S I 2 (SOS) 17.9 ± 10.8(12) 10.4 ± 8.8 (6)

S18(TEC0) 13.9 ± 7.3(12) 1 1 .2 ± 3.9(10)
S19(TEC0) 15.0 ± 10.1 (12) 1 1 .5 ± 2.7(10)
S20 (TECO) 10.8 ± 4.0(15) 10.8 ± 4.0(12)

S I 6 (BRAVO) 7.2 ± 2.8(12) 7.2 ± 2.8(12)
S30 (BRAVO) 9.2 ± 2.5(11) 9.2 ± 2.5(11)
S31 (BRAVO) 14.0 ± 10.9(11) 13.9 ± 11.5(10)

S I 2 (RCG) 7.4 ± 4.9(12) 7.5 ± 5.4(10)
S14(RCG) 6.3 ± 2.4(11) 6.0 ± 2.5 (9)
S I 5 (RCG) 9.7 ± 6.6(12) 8.0 ± 2.7(11)

Ratio of Ratio of
slowest to slowest to
fastest fastest
user user

POET Users 18.5 ± 2.7 (3) 1.3 16.7 ± 0.8 (3) 1.1
SOS Users 17.9 — 10.4 —
TECO Users 13.1 ± 2.1 (3) 1.4 1 1 .2 ± 0.4 (3) 1.1
BRAVO Users 10.1 ± 3.5 (3) 1.9 10.1 ± 3.4 (3) 1.9
RCG Users 7.8 ± 1.7 (3) 1.5 7.2 ± 1.0 (3) 1.3

Ratio of slowest
to fastest editor 2.4 2.3

Figure 3.6. Time per modification in the Manuscript Modifi­
cation benchmark in Experiment 3A.
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factor of 2—whereas all other editors have a factor of 1.5 or less. As a 
rule of thumb, it is probably fair to say that the difference between 
expert users is about a factor of 1.5—half the size of the difference 
between editors. The time differences among text-editors are thus sub­
stantial and about twice as large as the differences among expert users.

SOURCES OF THE TIME DIFFERENCES

What is the source of the observed differences in the time to use the 
different editors? A reasonable hypothesis is that the time for an expert 
to make modifications with a system is proportional to the amount of 
work required by the system as indexed by the number of keystrokes he 
types. This hypothesis appears to be partially, but only partially, correct 
In Figure 3.7 the time per modification is plotted against the keystrokes 
per modification for the user who had the lowest error rates in each 
editor. Four editors—poet , sos, teco , and RCG—fall exactly on a line 
essentially through the origin:

1 1 4  3. SYSTEM AND USER VARIABILITY

^modification ~  ^ k e y s t r o k e s ' (3.1)

(R^ > .999, SE  =  .12 sec). Bravo , however, takes 4 sec longer per 
modification than predicted—about twice the time predicted by the above 
equation. More detailed comparison of the behavior of users using 
BRAVO suggests that the users spent more time than predicted at the 
beginning of each task and that the time required by the numerous 
pointing operations needs to be considered. A more definitive explana­
tion requires additional experimentation. The real significance of 
Equation 3.1 is that a rational basis for the the time required by different 
editors appears within reach.

3.3 . TIME DIFFERENCES AMONG NON-NOVICE 
USERS (EXPERIMENT 3B)

What about users who are not experts? How much will they vary in 
time to edit a manuscript? To find out, let us consider another experi­
ment, this time using only the editor bravo from our previous set, but 
considering non-novice users with widely different levels of expertise. 
Rather than selecting different people and testing them, it is more
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Figure 3.7. Mean time per modification for editors as a 
function of the number of keystrokes per modification in 
Experiment 3A.

efficient and insightful to hypothesize some of the characteristics thought 
to be relevant and to test people who have different combinations of 
those characteristics. Martin (1973) has suggested several user categories, 
of which the category Casual vs. Dedicated and the category Operator 
with Programming Skills look the most promising. (Several of his other 
categories, such as Active vs. Passive, are characteristics of systems rather 
than people and others, such as Rugged vs. Non-Rugged, are categories



that could only be established with separate experiments.) Equation 3.1 
suggests that typing ability may be an important variable. We were 
therefore led to test users on the following dimensions: Dedicated vs. 
Casual, Technical vs. Non-technical, and Fast-typist vs. Slow-typist.

METHOD FOR EXPERIMENT 3B

Users. Eight users were selected who were familiar with the bravo 
editor. They consisted of secretaries, computer scientists, and research 
managers. Users were classified as:

Dedicated if they used the system at least once a day or 
Casual if they used the system only about every two weeks 
or less;

Technical if they had written at least one major piece of 
code and had experience with several programming lan­
guages or Non-technical if they had had no programming 
experience (although the Non-technical users used computer 
systems for text generation, filing, and message sending); 
and

Fast-typists if they typed at least 49 wpm or Slow-typists if 
they typed less than 40 wpm.
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Each of the eight users tested represented a different one of the 2X2X2 
= 8 combinations of these characteristics.

Task. The manuscript was a 22-page memo containing 66 modi­
fications. The mixture of modifications on the manuscript was carefully 
balanced to include many different modification types (insertions, 
replacements, deletions, transpositions, and movements of text), many 
different sizes of text to be modified, and many different boundary 
conditions. The manuscript contained some very small modifications, 
such as inserting or deleting a word or replacing a few characters, as well 
as some very large tasks, such as switching two sentences on different 
manuscript pages or inserting a new paragraph of text The modifications 
were grouped into four classifications:

Simple. Modifications of 4 characters or less, requiring a 
single editor command.



Complex. Alterations or movement of phrases or sentences, 
usually requiring more than one editor command.

Long. Insertions of about 200 characters.

Other. Tasks that did not fall unambiguously into the 
above categories.

Procedure. The procedure was similar to that of Experiment 3A. 
First, the user was given a one-page memo containing ten modifications, 
as a warmup task, then he was given the main manuscript, containing 66 
modifications (as described above). The user was instructed to make 
modifications as quickly as possible without making mistakes. Each 
session was videotaped, with each frame of the tape time-stamped.
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RESULTS FOR EXPERIMENT 3B

According to Figure 3.8, there was about a factor of 3.5 between the 
slowest and the fastest user in the experiment The column labeled “All” 
in the figure gives the mean time/modification for all modifications on 
which no user made an error (there were 41 of these out of the 66 tasks). 
The slowest user took an average of 67 sec/task, whereas the fastest took 
19 sec/task.

Each dimension in the classification of the user seemed to have 
roughly the same size of effect: the slower category in each dimension 
increased user editing time by a factor of about 1.4 over the time 
required by the faster category. The lower part of Figure 3.8 gives the 
mean time/modification averaged over a single user category. The 
average time required by the Casual Users was 1.5 times greater thafi the 
time required by the Dedicated Users (53 sec/modification vs. 36 
sec/modification). The average time of the Non-technical Users was 1.3 
times greater than for the Technical users, and the Slow-typists were 1.4 
times slower than the Fast-typists.

Surprisingly, the largest differences occur for the Simple modifi­
cations. The slowest user took 47 sec/modification for these, but the 
fastest required only 8 sec/modification, a factor of 5.9 difference. 
Dedicated Users got the largest advantage from the Simple modifications, 
suggesting that the differences on the Simple modifications derived from 
having the editing methods easily available in memory.

In view of the factor of 5.9 difference between the slowest and fastest 
users for Simple modifications, the factor of 2.5 difference on Long



Modification Type

User Classification AM Sim­ Com­ Long
ple plex

/V = 41 12 14 3
(sec) (sec) (sec) (sec)

S34 (73 wpm, Dedicated, Technical, Fast) 19 8 16 57
S32 (36 wpm, Dedicated, Technical, Slow) 30 10 24 104
S I 3 (88 wpm, Dedicated, Non technical, Fast) 31 14 40 62
S37 (39 wpm. Dedicated, Non technical, Slow) 66 34 74 134
S I 4 (49 wpm. Casual, Technical, Fast) 60 36 57 145
S1 (32 wpm. Casual, Technical, Slow) 48 19 61 129
S36 (59 wpm. Casual, Non-technical, Fast) 38 17 37 90
S36 (32 wpm, Casual, Non technical, Slow) 67 47 74 140

Ratio of slowest to fastest (3.5) (5.9) (4.6) (2.5)
Ratio of 2nd slowest to 2nd fastest (2.2) (3.6) (3.1) (2.3)

All Users (51 wpm) 45 23 47 108

Casual Users (43 wpm) 53 30 55 126
Dedicated Users (59 wpm) 36 16 39 89

Ratio (1.5) (1.9) (1.4) (1.4)

Non-Technical Users (55 wpm) 50 28 56 106
Technical Users (48 wpm) 39 18 37 109

Ratio (1.3) (1.6) (1.5) (1.0)

Slow-Typist Users (35 wpm) 53 28 56 127
Fast-Typist Users (66 wpm) 37 19 38 88

Ratio (1.4) (1.5) (1.5) (1.4)

Figure 3.8. Time per modification for each user and for each 
category of user in Experiment 3B.
Performance is for tasks without errors. N  is the number of tasks in each 
category.
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modifications, and the factor of 3.5 difference over all modifications, a 
reasonable rule-of-thumb would seem to be that non-novice users 
(experienced users, but including non-experts) differ by about a factor of 
4. The dimensions we used for users each seemed to make about the 
same order of difference, in round numbers, a factor of 1.5. Thus 
differences among people are about the same size (factor of 4) as 
differences among different systems (factor of 3), contrary to Sackman’s 
(1970) claim that “human differences are typically an order of magnitude 
larger than computer system differences.” The discrepancy between this 
result and Sackman’s is easily explained, however. The studies reviewed 
by Sackman involve problem-solving tasks of long duration (many hours), 
where it is possible for some users to spend considerable time exploring 
fruitless paths, resulting in large individual differences. The text-editing 
we have observed in this chapter, by contrast, is a skilled activity 
involving little problem solving and occurring over a short duration 
(measured in seconds). Also, none of our users were novices, further 
reducing inter-user differences.

3 .4 . CONCLUSIONS 1 1 9

3.4. CONCLUSIONS

The exploratory experiments in this chapter have given us estimates 
for the effect of different text-editor designs and different users on 
performance time.

The design of an editor makes roughly a factor of 3 difference in the 
time to edit a manuscript, with display-oriented systems about twice as 
fast as teletypewriter-oriented systems. These differences among editors 
are at least partially traceable to the relative amounts of work required by 
alternative designs, such as the relative number of keystrokes required to 
accomplish a task.

The factor of 3 difference among editors compares to a factor of 1.5 
among dedicated, expert users, or to a factor of 4 among non-novice 
users in general. The three dimensions of users tested each made a 
difference of about a factor of 1.5; (1) whether a user is a dedicated 
(frequent) user; (2) whether he is technically oriented; and (3) whether 
he is a fast typist

The effects of text-editor design on speed, therefore, are comparable 
to, and not dominated by, the effects of individual differences.
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Furthermore, the effects involved are substantial. There is an order of 
magnitude difference (an estimated factor of 3X4=12) in editing time 
between the fastest user on the best editor and the slowest user on the 
worst editor.



4. An Exercise in Task Analysis
4.1. SIMPLE MODELS OF TYPING AND EDITING
4.2. PREDICTION (EXPERIMENT 4A)
4.3. SENSITIVITY ANALYSIS
4.4. RESULTS
4.5. CONCLUSIONS

In the last chapter we reported exploratory experiments designed to 
give a rough estimate of the speed variability among users and text­
editing systems. In this chapter we engage in exploratory modeling to 
discover how well we can predict editing time with a simple model based 
on the assumption that all editing tasks require a constant amount of 
time. This model should be of service to our later studies in two ways. 
First, it should reveal something of the characteristic difficulty of the 
problem of modeling user behavior in text-editing. Second, it should 
serve as a baseline against which to compare more complex models.

To make our modeling activity concrete, we address the following 
problem:

Problem. The claim is made that it is faster to retype short 
texts on a typewriter than to modify them with a text- 
editor, and that the reverse is true for long texts. In order 
to find the crossover point between these two cases, an 
experiment is to be run measuring the times required to 
make modifications to five text manuscripts of varying 
lengths. The modifications are to be accomplished (1) by 
retyping them on an electric typewriter and (2) by using the 
W YLBUR text-editing system (Stanford, 1975), running on 
a time-shared computer. Given information about the 
marked-up texts to be modified, the problem is to predict 
the outcome of this experiment.

In order to ensure that the model is predicting, rather than ration­
alizing an already known result, the problem was arranged so that it
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corresponded to an actual experiment in progress by other researchers.^ 
By agreement, the model’s prediction and the experimental results were 
exchanged simultaneously after both had been completed.
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4.1 . SIMPLE MODELS OF TYPING AND EDITING

The answer to the problem posed above can be derived from simple 
models of typing and editing. The time T, to produce a new copy of a 
manuscript using a typewriter depends only on the length of the 
manuscript and the setup time of the typewriter:

Tt = Tst + (4.1)

where is the time to set up the typewriter (in seconds), L is the length 
of the manuscript text (in lines), and is the time to type a line (in 
sec/line).

The time to edit a manuscript, on the other hand, is assumed to 
depend on the number of modifications to the manuscript. Suppose that 
every modification with an editing system takes a constant amount of 
time to accomplish. Suppose furthermore that secondary effects, such 
as user fatigue and time spent turning pages, are negligible. Then the 
time to edit the manuscript would be given by

Te = Tse m m (4.2)

(in
where is the time to set up the editor (in sec), the number of 
modifications to be made, and the time per modification 
sec/mod). Expressing Equation 4.2 in terms of the modification density 
per unit tine, p =  N ^ /L ,  makes it more comparable to Equation 4.1:

(4.3)

We refer to this model of text-editing time as the Constant Time per 
Modification model.

1 The problem was posed to us by I. Sutherland, then at the RAND Corporation.
The experiment was run by F. Blackwell, also at RAND.
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LENGTH CROSSOVER POINT

If the typewriter is faster to set up < T^^), but the editor is faster 
in making modifications {pT^ < Tj), then there exists some document 
length L^, called the length crossover point, such that

for L> L^, the editor is faster, and 
for L < , the typewriter is faster.

To find we use Equation 4.2 and Equation 4.3. The time for the 
editor and the typewriter will be the same when

^se P^c^m ~  ^st ’

that is,

î c = ( T ^ e - T j n T , - p T J . (4.4)

DENSITY CROSSOVER POINT

Similarly there exists a certain density , called the density crossover 
point, such that

for p < , the editor is faster, and
for p > p^ , the typewriter is faster.

Solving for p in Equation 4.4 gives

I>C= r / T „ - ( T „ - T „ ) / L T „ .  (4.5)

4.2 . PREDICTION (EXPERIMENT 4A)

In order to calculate the outcome of the experimenL we need to have 
estimates for the parameters of the above equations.

From the videotapes of Experiment 3A, we determine that the 
average time to set up the typewriter in that experiment was

=  24 sec.
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Manuscript
Ml M2 M3 M4 M5 All

L (lines) 4 10 21 26 90 151

m (mods) 2 6 8 14 58 88
P (mods/line) .50 .60 .38 .54 .64 .58

Figure 4 .1 . Modification density parameter values for the 
manuscripts used in the experiment.

The text-editor WYLBUR is similar to the p o e t  and sos editors in 
Experiment 3A. Again, from the videotapes we determine that the setup 
time of these editors averaged 12 sec. Add to that the 25 sec to log into 
the computer (measured time to telephone a local computer and log into 
the TENEX operating system), and we get as an estimate

Tse =  37 sec.

The modification density of the manuscripts can be obtained by counting 
lines and modifications of the text actually used in the experiment. As 
Figure 4.1 shows, the texts vary from p =  .38 to p = .64, with an 
average of

p =  .58 m od/line.

Again assuming that w y l b u r  is similar to the p o e t  and sos editors, its 
modification time can be estimated from Experiment 3A (see Figure 3.6),

=  20 sec ?m

The average typing rate for the POET users in Experiment 3A was .22 
sec/character. Since there were 63 characters per line in the test 
manuscripts.

This number is slightly different from the numbers listed in Figure 3.6 for POET 
and SOS, since those numbers reflect a later re-analysis o f the videotapes. In order to 
preserve the original predictions, the original estimate for is used in this chapter.



4.2. PREDICTION 125

Ti =  14 sec/line ?

Substituting these parameter estimates into Equation 4.4, the length 
crossover point is predicted to be:

=  ( T ^ e - T s t ) n T , - p T J
= (37 -  24)/(14 -  .58 X 20)
=  5.4 lines.

From Equation 4.5 the density crossover point is predicted to be:

Kc = ( T , / T J  -  ( r „  -  T J / L T ,  
= .70 -  .65/L .

m

As L -* 00, .7 modifications/line. Another way of putting this
result is to say: if there is more than one modification to be done every 
1/.7 = 1.4 lines, then it is better to retype the text.

Plotting the time to modify a text (from Equation 4.2 and Equation 
4.3) as a function of the length of the text (Figure 4.2), it is apparent that 
the editor beats the typewriter immediately on any manuscript longer 
than about three lines. More importantly. Figure 4.2 reveals that as the 
length of the manuscript increases the editor does not continue to 
increase its superiority as much as might be expected.^ Why not?

The answer is that the density chosen for the experiment, p = .58, is 
by chance near the critical crossover density p^ = .70—.65/L. Had the 
experiment varied p, one manuscript at the critical value would not have 
been a problem. But, since each of the manuscripts had a density near 
this critical value, local fluctuations in or p led to wavering of the 
length-crossover point Another way to display the model’s prediction is 
to plot the density crossover point p^ as a function of text length L using 
Equation 4.5 (see Figure 4.3). Note how close the manuscripts are to the

 ̂ It is interesting that in the time it takes to make one correction with WYLBUR, 
the user could have typed /T j =  (20 sec)/(14 sec/line) =  1.4 lines. Contrary to the 
usual assumption, it was more effective to type slowly but carefully on the editing system 
examined than it was to type at high speed and correct the errors later.

^ The dip in the WYLBUR curve comes from the low modification density for 
manuscript M3.
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Figure 4.2. Predicted time to ed it/type  the experimental 
manuscripts as a function of the manuscript length.

Figure 4 .3. Density crossover point as a function of manu­
script length.
The typewriter is faster for ail manuscript length and modification density combi­
nations above the solid line, slower for those below.
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Figure 4 .4. Predicted time to ed it/type  a manuscript as a 
function of the length of manuscript and of the modification 
density.

crossover density line. Because all the manuscripts sit relatively near the 
density crossover line, it can be predicted that the results of the exper­
iment will be equivocal, that is, that the length crossover point will not 
be well-defined.

What about predictions at other values of p? The predicted task time 
as a function of the length of manuscript for different values of p is 
plotted in Figure 4.4. The typewriter either wins or loses immediately. 
This is true because the difference in setup times for the typewriter and 
for WYLBUR is (for manuscripts longer than five lines) only a small 
percentage of the time required to do the task.

4.3 . SENSITIVITY ANALYSIS

There are several possible sources of error in our calculation. Only 
the manuscripts for the experiment were available; there was no 
information about the subjects, except that they were secretaries. Most of 
the parameters, including the typing rates of the users, were taken from 
pre-existing experiments by analogy. To what extent is the value of the



predictions dependent on the accuracy of these parameter estimates? 
One way to determine the consequences of uncertainties in the parameter 
values is to see how sensitive the predictions of the equations are to small 
changes in the parameter values.

SENSITIVITY OF THE LENGTH CROSSOVER POINT

Let the values of p, T^,  T ^ ,  and Tf be as estimated previously. 
Let o', T  T j ,  T j ,  and T! have other, but nearby, values. Then we 
can use a Taylor expansion to approximate Equation 4.4 as
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L /  ~  L, +

=  I ,  +  ^ ( P '  -  P) +  -  T„) +  -  T„)

In order to normalize the magnitudes of the coefficients and the results, 
we express this equation in a ratio form:

-Lc L c _p dhc i  p' Tm dLc
Lc ~ L c  5p V P Lc dT„

+

A  Tm )

T,c d L c ( T j - T c e \  Zt  d L c f Z t ' - Z t \  
Lc d z X  Zc J ' ^L c  d z A  Zt  )

Z  d L c ( T / - T A
Lc d z y  Z ) '

Using 8x  for ( x —x)/x.

+
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Evaluating the derivatives and substituting ( r  -  T^,)/{T, -  p T  ) for
iJI / f/I

gives

6Lc =
1

/

V P'̂ m J

i
1

[6p +  6Tm) + 1

1 ^st

+

V ^ st )
^Tst +

V ^se /
\

1

P'^m _ j
\  Ti

6Ti.

(4.6)

Equation 4.6 expresses relative changes in as a linear combination 
of relative changes in the parameters of Equation 4.4. The percentage 
change in is approximated as the sum of the percentage change due to 
each variable. The relative sensitivity of predicted due to the different 
parameters may thus be assessed directly from the relative size of the 
coefficients. At p =  .6, Equation 4.6 becomes

= 6.00 5p + 6.00 8T^  + 2.85 
-  1.85 -  7.00 ST/.

That is, a 1% error in will be amplified into a 7% error in L^. The 
values of the coefficients for other values of p are plotted in Figure 4.5, 
as are those of the three following equations. The value of is more 
sensitive to changes in T^,  p, and than to changes in and the 
ostensible parameters of interest. The sensitivity analysis makes it quite 
clear (1) that the prediction of = 5 lines from the model is not 
robust over changes in the parameters and (2) that it will be difficult to 
maintain adequate control over the variables in the experiment at this 
level of p. Considerable variance in the measured value of is 
predicted. Figure 4.5 shows that the coefficients for 8p, 8T^,  and 8Ti 
are alt very large in the region between p = .06 and p =  .08. 
Conversely, had the experiment been designed with p = .2, then it 
would have been true that

8L^ =  .40 fip + .40 8T^ + 2.85 8T^  

-  1.85 8T^, -  1.40 8Ti ,
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Length (lines)
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Figure 4 .5. Coefficient values for the sensitivity equations.

in which case would have been much less affected by parameters
other than and T̂ .̂

SENSITIVITY OF THE DENSITY CROSSOVER POINT

We examine the density crossover point p^, by proceeding similarly 
for Equation 4.5:
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6pc

\
1 1

1 — 
V

Tse -  LTi T s t - L T i _ 1
Tst ) Tse

X
/

6T..

+

\ \
1

6L -  6Tm +
1

LTi
—  1

/
1 — Tse — Tst

Tse -  Tst LTi y

ST, .

(4.7)

At Z, = 20 lines, Equation 4.7 becomes

= .09 « r ,, -  .13 + .05 8L
-  1.00 « r +  1.05 s r , .m i

Hence, a 1% change in either or will produce about a 1% change 
in p^, but a 1% change in the other parameters produces only a 
negligible change (.05%~.13%) in p^. For manuscripts of reasonable 
length (longer than ten lines), p^ will depend mainly on and

SENSITIVITY OF TOTAL TYPING TIME T,

The total typing time is examined by converting Equation 4.1;

6Tt

\
1 6Tst^- 1

V  Tst ) 1 +  ^V Lti y

{8L +  6Ti).

(4.8)

At L = 20 lines.

S r, = .08 + .92 SL + .92 bTf.

The sensitivity of to fades quickly as L increases. A 1% change in 
the other parameters produces a little less than a 1% change in T^.

SENSITIVITY OF TOTAL EDITING TIME

The total editing time T  is checked by converting Equation 4.2;
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1 +
pLT„

S T , , +

/
1 + pLTmJ

{6p +  STm +  SL).

(4.9)

At L = 20 lines and p = .6 mod/line,

ST^ = .13 + .87 5p + .87 8T^  + .87 8 L .

Again, the sensitivity of to fades quickly as L increases. And 
again, 1% change in the other parameters produces a little less than a 1% 
change in T^.

The results of the confidence interval and sensitivity analyses tell us 
that, whereas it may be possible to predict the value of functionally 
(that is, to produce an equation whose evaluation will give a reasonable 
value for L^), it is not possible to predict the value of numerically 
with any certainty on this group of manuscripts, because they are all set 
so near to p^. Small errors in the parameter values will cause large 
errors in the predictions. The analyses tell us, furthermore, that the 
experiment is not likely to produce a well defined value of p^ against 
which to compare a prediction. On the other hand, the predictions of 
total time to process each text are likely to be reasonable and to depend 
very little on the setup times of the editor or the typewriter.

4.4 . RESULTS

Figure 4.6 shows the time to edit each manuscript, both for the 
typewriter and for w y l b u r , as a function of the length of manuscript 
plotted in the same manner as Figure 4.2. As predicted from the model, 
the crossover point was not well defined. Connecting the mean observed 
times produces three crossover points. The times for manuscripts M2, 
M3, and M5 were not reliably different from one another.

Accuracy o f Parameters. Just how accurate were the simple models 
of typing and editing in Equation 4.2 and Equation 4.3? The comparison 
needs to be made in two ways. First, how accurate were the models at 
predicting the result in advance of any knowledge about the outcome? 
This zero-parameter prediction is usual in practice where reasonable values
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Figure 4 .6. Observed mean times to type/ed it the manu­
scripts in the experiment.
The users tested were eight professional secretaries, each a proficient user of 
WYLBUR and of a typewriter. Each user was to edit all five texts twice, once with 
the typewriter, once with WYLBUR. Half the users used the typewriter first, half 
the editor. The order in which the texts were edited was varied systematically. 
Properties of test manuscripts are listed in Figure 4.1.

for the parameters are known. Second, how good were the models at 
predicting the result, given knowledge of the parameter values? This 
would be a two-parameter prediction, since two values must be estimated 
from the data. It allows an evaluation to be made of the accuracy of the 
functional form of the model, and it allows us to partition the prediction 
error into the error due to misestimating the parameters and error due to 
form of the model. In order to make two-parameter predictions, esti­
mates of the parameters were made from regressions on the experimental 
data. A comparison between the parameters estimated in this way and 
the values assumed for making the predictions is given in Figure 4.7. 
The values we used for making our predictions were poor estimates (off
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Assumed Observed % D ifference

’T s , (sec) 24 5 -85 %

T , (sec/line) 14 18 22%
Tse (sec) 37 179 649%
Tm (sec/mod) 20 16 -20 %

Figure 4.7. Comparison of the estimated parameter values 
with the values observed in the experiment.

by 649% and 86%) for the two setup times and but were within 
about 20% for the two rate parameters (f^ and T ^ .

Accuracy o f Typing Model Figure 4.8 compares the predicted and 
observed times for the typing model (Equation 4.2). The zero-parameter 
prediction is indicated by a dotted line and the two-parameter prediction

Figure 4.8. Comparison of the predicted typing time with 
the typing times observed in the experiment.
The vertical bars on the observed times extend one standard deviation up and 
down from the mean, based on the data from eight users.
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by a solid line. When the actual typing rates of the subjects are used in 
the equation, the fit to the data is excellent. Using the sensitivity equa­
tion for this model (Equation 4.8), we can partition the sources of error 
in the zero-parameter prediction. The errors are tabulated for each 
manuscript in Figure 4.9. On the average, the prediction was about 11% 
too low. Almost all this error (10% of the 11%) resulted from the error 
in estimating the parameters; only 1% resulted from the form of the 
model. Although the estimate for was much worse than the estimate 
for Tj, the latter was the source of twice as much error (19% for T̂ , to 
9% for r^,). Since the errors were in opposite directions, they partially 
offset each other.

M anuscript

Sources of Error

Param eters Model Total

T
St Subtotal

M1 + 27% -18% 9% 0% 9%
M2 + 11% -19% -8 % -2 % -10 %
M3 + 4% -20% -16 % -5 % -20 %
M4 + 4% -20% -16 % + 3% -13 %
M5 0% -20 % -20 % 0% -20 %

Mean 9% -19 % -10 % -1 % -11 %

Figure 4 .9. Partitioning the typing model’s prediction error.

Accuracy o f Editing Model. The editing model (Equation 4.3) is 
compared with the observed times in Figure 4.10. There is a good fit 
between the observed and the predicted editing times, even for the zero- 
parameter predictions. In Figure 4.11, the prediction error is partitioned 
using the sensitivity equation for the editing model (Equation 4.9). The 
model was about 24% too low; but, again, errors in estimating the input 
parameters were responsible for considerably more error (31%) than was 
the form of the model (7%). This time the major source of errors in 
estimating the parameters was underestimating the setup time of the 
editor. (It is instructive to note the frequency with which the various 
sources of errors partially cancel each other.)
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Manuscript Length (lines)

Figure 4 .10 . Comparison of the predicted editing time with 
the editing times observed in the experiment.
The vertical bars on the observed times extend one standard deviation up and 
down from the mean, based on the data from eight users.

4.5 . CONCLUSIONS

The main point of this exercise was to explore how much insight 
could be gained from a simple model of text-editing, the Constant Time 
per Modification model, in which each editing modification is assumed to 
require the same amount of time. We investigated this model in a case 
study comparing the w y l b u r  editor with a typewriter. There were two 
main results.

First, it was possible to produce several predictions leading to 
practical insight A formula for the length crossover point showed its 
functional dependence on other associated variables. A related concept 
of modification density arose from the modeling effort, and the density
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Sources of Error

Manuscript
Parameters Model

Subtotal

Total

M1
M2
M3
M4
MS

- 67% + 4%
-51% +9%
-47% +11%
-35% +14%
-13% +22%

-63%  
-42%  
-36%  
- 21%  

+ 9%

+ 46% 
+ 17% 
-17%  
-13%  

+ 1%

-47%  
-33%  
-46%  
-32%  
+ 10%

Mean -43%  +12% -31% + 7% -24%

Figure 4 .11 . Partitioning the editing model’s prediction error.

crossover point was expressed in functional form. It was then possible to 
predict some unfortunate consequences of an unlucky choice in modifi­
cation density for an experiment Without the insight of this derivation, 
the results of the experiment would have been difficult to interpret at all.

Second, the major errors in the predictions made by the simple 
editing and typewriting models did not result because they were too 
simple, but because of errors in estimating the values of the input 
parameters. For these predictions, a more sophisticated model would 
have been useful only to the extent that it reduced dependence of the 
prediction on the noisy parameters.

A sensitivity analysis identified those parts of the prediction from 
these models in which little confidence could be placed. It also allowed 
the prediction error to be quantitatively partitioned.
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5. The GOMS Model of 
Manuscript Editing

5 .1 . THE GOMS MODEL
Components of the GOMS Model 
Limitations of the GOMS Model 
Design of the Experiments

5 .2 . SELECTION RULES (EXPERIMENT 5A )
5 .3 . TIME PREDICTIONS (EXPERIMENT 5B)
5 .4 . GRAIN OF ANALYSIS (EXPERIMENT 5C)
5 .5 . DISCUSSION

Assessment of the Models 
Status of Goals and Operators 
Operator Variability 
Extending GOMS to Cover Errors 
Manuscript Editing as a Cognitive Skill

5 .6 . CONCLUSIONS
APPENDIX: MATCHING OPERATOR SEQUENCES

In Chapter 4 we investigated a simple model of human text-editing 
performance. We now consider how our understanding might be im­
proved by taking into account the cognitive information-processing 
activities of the user. Our starting point is the fundamental principle of 
task analysis, the Rationality Principle P8 from Chapter 2. According to 
the principle, users act rationally to attain their goals. To predict a user’s 
behavior we must analyze the task to determine the user’s goals and 
operators and the constraints of the task. From Chapter 2, we expect 
that underlying the detailed behavior of a particular user there is a small 
number of information-processing operators, that the user’s behavior is 
describable as a sequence of these, and that the time the user requires to 
act is the sum of the times of the individual operators.

This, in outline, is the information-processing analysis of text-editing 
to be carried through in this chapter. We address several general issues: 
Is it possible to describe the behavior of a user engaged in text-editing as

139



the repeated application of a small set of basic information-processing 
operators? Is it possible to predict the actual sequence of operators a 
person will use and the time required to do any specific task? In 
attempting to describe behavior in this way, the issue of the level of 
analysis is critical. How does the model’s ability to describe and predict 
a person’s behavior change as we vary the grain size of the analysis?

1 40 5. THE GOMS MODEL OF MANUSCRIPT EDITING

5.1. THE GOMS MODEL

In the models we describe, the user’s cognitive structure consists of 
four components: (1) a set of Goals, (2) a set of Operators, (3) a set of 
Methods for achieving the goals, and (4) a set of Selection rules for 
choosing among competing methods for goals. We call a model specified 
by these components a GOMS model.

As an example of the basic concepts of a GOMS model and the 
notation used, let us consider a particular model (called Model F2) of 
manuscript editing with the line-oriented p o e t  editor we studied in 
Chapter 3. According to the model, when the user begins editing he has 
the top level goal:

GOAL: EDIT-MANUSCRIPT.

As we have seen, a user segments the larger task of editing the 
manuscript into a sequence of small, discrete modifications, such as to 
delete a word or to insert a character. Although it is often possible to 
predict the user’s actual segmentation of the task into subtasks from the 
way the instructions are expressed on the manuscript, it is worth 
emphasizing that the definition of the subtasks is a decision of the user. 
We use the term unit task to denote these user-defined subtasks. 
Notationally, we write

GOAL: EDIT-MANUSCRIPT
. GOAL: EDIT-UNIT-TASK repeat until no more unit tasks.

The indentation above indicates that GOAL: e d it -u n it -t a s k  is a subgoal 
of GOAL: EDIT-MANUSCRIPT, and the notation in italics says that the 
subgoal is to be invoked repeatedly until no more unit tasks remain to be 
done.
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In order to edit a unit task, the user must first acquire instructions 
from the manuscript and then do what is necessary to accomplish them;

GOAL: EDIT-UNIT-TASK  
. GOAL: ACQUIRE-UNIT-TASK  
. GOAL: EXECUTE-UNIT-TASK .

Each subgoal above will itself evoke appropriate methods. There is a 
simple method for acquiring a task:

GOAL: ACQUIRE-UNIT-TASK  

. GET-NEXT-PAGE i f  at end o f manuscript page 

. G ET-N EXT-TA SK .

The operator g e t -n e x t - p a g e  is invoked only if there are no more edit 
instructions on the current page of the manuscript The bulk of the work 
towards the goal—looking at the manuscript finding an editing 
instruction, and interpreting the instruction as an edit task—is done by 
the operator g e t -n e x t -t a s k .

In POET, like most line-oriented text-editors, to accomplish a unit task 
there is a two-step method:

GOAL: EXECUTE-UNIT-TASK  
. GOAL: LOCATE-LINE 
. GOAL: M O D IFY -TE X T .

In POET the editor must first be located at the line where the correction 
is to be made. Then the appropriate text on that line must be modified. 

To locate POET at a line, there is a choice between two methods:

GOAL: LOCATE-LINE 
. [select: USE-LF-METHOD

USE-QS-METHOO] .

To use the l f -m e t h o d , the l in e f e e d  key is pressed repeatedly, causing 
the editor to advance one line each time. To use the q s -m e t h o d  

(Quoted String), a string of characters is typed (between quotation marks) 
to identify the line. Usually the l f -m e t h o d  is selected when the text for 
the new unit task is within a few lines of the text for the current unit



task, and the q s -m e t h o d  is selected when the new unit task is farther 
away.

Once the line has been located, there is a choice of how to modify the 
text:

GOAL: M ODIFY-TEXT  
. [se lect: USE-S-COMMAND  

USE-M-COMMAND]
. V ER IFY-ED IT .

Either p o e t ’s Substitute command or its Modify command can be used 
to alter text on a line. A detailed example of the Substitute command 
has already been given (in Chapter 3). The Modify command allows the 
user to invoke a series of subcommands for moving forward and 
backward and for making modifications within a line. In either case, a 
VERIFY-EDIT Operation is evoked to check that what actually happened 
matched the user’s intentions.

Putting all the steps together into one structure, we have:

1 42 5. THE GOMS MODEL OF MANUSCRIPT EDITING

GOAL: EDIT-M ANUSCRIPT
GOAL: EDIT-UNIT-TASK repeat Until no more unit tasks 

GOAL: ACQUIRE-UNIT-TASK

. GET-NEXT- PAGE if  at end of manuscript page

. GET-NEXT-TASK  
GOAL: EXECUTE-UNIT-TASK  
. GOAL: LOCATE-LINE 
. . [se lect: USE-QS-METHOD

USE-LF-METHOD]
. GOAL: M ODIFY-TEXT  
. . [se lect: USE-S-COMMAND

USE-M-COMMAND]
. . VERIFY-EDIT.

The dots at the left of each line show the depth of the goal stack. To 
complete this model of manuscript editing, we must still add method 
selection rules for determining the actual submethods at the two 
occurrences of select.

The step-by-step behavior of the model in performing a unit task is 
traced in Figure 5.1. The user is assumed to have a goal stack with the 
current goal at its top. New subgoals are pushed onto the stack, and 
completed goals (whether satisfied or abandoned) are popped off the 
stack. The goals eventually cause operators to be executed. It is during
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execution of operators that interactions with the physical world take 
place. For example, the user executes the operator g e t -n e x t -t a s k  by 
turning to the manuscript, scanning it until he finds the next task, 
reading the instructions, and turning back to the terminal.

Components of the GOMS Model

The above example provides specific instances to help us understand 
the information-processing components of GOMS models.

Goals. A goal is a symbolic structure that defines a state of affairs to 
be achieved and determines a set of possible methods by which it may be 
accomplished. In the example, the goals are g o a l : e d it -m a n u s c r ip t , 
GOAL: e d it -u n it -t a s k , GOAL: ACQUIRE-UNIT-TASK, GOAL: EXECUTE- 
UNIT-TASK, GOAL: LOCATE-LINE, and GOAL: MODIFY-TEXT. The dynamic 
function of a goal is to provide a memory point to which the system can 
return on failure or error and from which information can be obtained 
about what is desired, what methods are available, and what has been 
already tried.

Operators. Operators are elementary perceptual, motor, or cognitive 
acts, whose execution is necessary to change any aspect of the user’s 
mental state or to affect the task environment. In the example, the 
operators are: g e t -n e x t -p a g e , g e t -n e x t -t a s k , u s e -q s -m e t h o d , u s e -l f -
METHOD, USE-S-COMMAND, USE-M-COMMAND, and VERIFY-EDIT. The
behavior of the user is ultimately recordable as a sequence of these 
operations. In the example traced in Figure 5.1, the sequence of 
operators in the user’s behavior is:

GET-NEXT-TASK 
USE-LF-METHOD 
USE-S-COMMAND 
VERIFY-EDIT .

1 4 4  5. THE GOMS MODEL OF MANUSCRIPT EDITING

A GOMS model does not deal with any fine structure of concurrent 
operations. Behavior is assumed to consist of the serial execution of 
operators.

An operator is defined by a specific effect (output) and by a specific 
duration. The operator may take inputs, and its outputs and duration 
may be a function of its inputs. An obvious example is the typing 
operator, whose input is the text to be typed, whose output is the key-



Stroke sequence to the keyboard, and whose duration is (approximately) a 
linear function o f  the num ber o f characters.

For a specific model, the operators define a grain of analysis. In 
general, they embody a mixture of basic psychological mechanisms and 
learned organized behavior, the mixture depending on the level at which 
the model is cast. The finer the grain of analysis, the more the operators 
reflect basic psychological mechanisms. The coarser the grain of analysis, 
the more the operators reflect the specifics of the task environment, such 
as the terminal, the physical arrangement, and the editor. The example 
model above is quite coarse, and its operators (e.g., u s e -s -c o m m a n d ) 
contain within themselves the specifics of poet’s command language.

Methods. A method describes a procedure for accomplishing a goal. 
It is one of the ways in which a user stores his knowledge of a task. The 
description of a method is cast in a GOMS model as a conditional 
sequence of goals and operators, with conditional tests on the contents 
of the user’s immediate memory and on the state of the task 
environment In the example above, one of the methods was

GOAL: ACQUIRE-UNIT-TASK 
. GET-NEXT- PAGE i f  at end o f manuscript page 
. GET-NEXT-TASK.
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This method is associated with its g o a l : a c q u ir e -u n it -t a s k . It will 
give rise to either the operator sequence g e t -n e x t -pag e  followed by 
g e t -n e x t -t a s k  or the single operator g e t -n e x t -t a s k , depending on 
whether the test “at end o f manuscript page" is true of the task 
environment at the time the test is performed.

In the manuscript-editing task, the methods are sure of success, up to 
the possibility of having been mis-selected, the occurrence of errors of 
implementation, and the reliability of the equipment By contrast in 
problem-solving tasks (such as a first attempt at solving the DONALD+ 
GERALD problem in Chapter 2), methods have a chance of success 
distinctiy less than certain, because of the user’s lack of knowledge or 
appreciation of the task environment This uncertainty is a prime contri­
butor to the problem-solving character of a task; its absence is a 
characteristic of a cognitive skill.

Methods are learned procedures that the user already has at 
performance time; they are not plans that are created during a task 
performance. They constitute one of the major ways in which familiarity 
(skill) expresses itself. The particular methods that the user builds up



from prior experience, analysis, and instruction reflect the detailed 
structure of the task environment. In the manuscript-editing task, they 
reflect knowledge of the exact sequence of steps required by the editor to 
accomplish specific tasks.

Control Structure: Selection Rules. When a goal is attempted, there 
may be more than one method available to the user to accomplish the 
goal. The selection of which method is to be used need not be an 
extended decision process, for it may be that task environment features 
dictate that only one method is appropriate. On the other hand, a 
genuine decision may be required. The essence of skilled behavior is 
that these selections are not problematical, that they proceed smoothly 
and quickly, without the eruption of puzzlement and search that charac­
terizes problem-solving behavior.

In a GOMS model, method selection is handled by a set of selection 
rules. Each selection rule is of the form “if such-and-such is true in the 
current task situation, then use method M.” Selection rules for GOAL: 
LOCATE-LINE of the example model might read; i f  the number o f lines to 
the next modification is less than 3, then use the l f -m e t h o d ; else use the 
QS-METHOD. Such rules allow us to predict from knowledge of the task 
environment (in this case the number of lines to the target) which of 
several possible methods will be selected by the user in a particular 
instance.

Limitations of the GOMS Model
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For error-free behavior, a GOMS model provides a complete dynamic 
description of behavior, measured at the level of goals, methods, and 
operators. Given a specific task (a specific instruction on a specific 
manuscript and a specific editor), this description can be instantiated into 
a sequence of operations (operator occurrences). By associating times 
with each operator, such a model will make total time predictions. If 
these times are given as distributions, it will make statistical predictions. 
But, without augmentation, the model is not appropriate if errors occur. 
Yet errors exist in routine cognitive skilled behavior. Indeed, error rates 
may not even be small, in the sense of having negligible frequency, 
taking negligible time, or having negligible consequences. What is true 
of skilled behavior is that the detection and correction of errors is mostly 
routine (we discuss this more later). It cannot be entirely routine, since 
the occurrence of rare types of errors for which the user is unprepared is
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always possible (the editor performing incorrectly, the terminal catching 
fire). But, in the main, errors are quickly detected and result in 
additional time to correct the error. The final effect of the behavior 
remains relatively error-free, and the behavior can be characterized solely 
by the time to completion. Thus, errors can be converted to variance in 
operator times, so that the GOMS theory can be applied to actual 
behavior at the price of degraded accuracy.

For a general treatment of errors and interruptions of the user, the 
hierarchical control structure of a GOMS model is inadequate; a more 
general control structure is required. The use of the stack-discipline 
GOMS model instead of a more general control structure, such as 
production systems (Newell and Simon, 1972), should be taken as an 
approximation especially appropriate for skilled cognitive behavior and 
preferred here because of its greater simplicity.

Design of the Experiments

The purpose of the experiments that follow is to describe the 
manuscript-editing task in information-processing terms. The general 
technique is to observe a user in a close laboratory analogue of the task 
he commonly performs, to describe his behavior using a GOMS model, 
and to evaluate in various ways the adequacy of the description. The 
experiments are directed specifically at three elements of this analysis:
(1) description of how the user decides which method to use for a task,
(2) description of the time course of events, and (3) an investigation of 
how the adequacy of the description varies as a consequence of the grain 
of analysis.

5.2. SELECTION RULES (EXPERIMENT 5A)

The purpose of this experiment was to discover how users choose 
which of several alternative methods to use and to determine if the 
method choices could accurately be described in terms of the selection 
rules of a GOMS model.

In the GOMS model for poet , we have seen two places where, for a 
given goal, the user has a choice of methods. The first method selection 
came in deciding how to locate the line;



GOAL: LOCATE-LINE 
. [select: USE-LF-METHOO

USE-QS-METHOD] .

The second method selection came in choosing between commands for 
making the text modification:

GOAL: MODIFY-TEXT 
. [select: USE-S-COMMAND 

USE-M-COMMAND]
. VERIFY-EDIT.

What we seek is a set of selection rules describing the conditions under 
which the user will choose one method over another.

1 48 5. THE GOMS MODEL OF MANUSCRIPT EDITING

METHOD FOR EXPERIMENT 5A

Users were given a manuscript, marked with corrections, and asked to 
use the po et  text-editor to make the corrections. Although the experi­
ment was performed in the laboratory, an effort was made to make the 
situation seem natural from the user’s point of view: the physical
surroundings, the task, the terminal, and the editor were all familiar as 
part of the user’s daily activities. The manuscript and the modifications 
to be made on it were selected to be typical.

Users. Users were two professional secretaries and a Ph.D. computer 
scientist All had at least one year of daily experience using POET.

Manuscript. The manuscript was an eleven-page memo. Each page 
was 8-1/2 by 11 inches, with 55 fines of text and 70 characters per fine, 
printed unjustified in a 10-point fixed-pitch font There were 73 different 
modifications marked with a red pen, giving an average density of one 
modification every 8.3 fines, or 6.6 modifications per page (from 3 to 11 
on any one page). An effort was made to vary the number of fines 
between consecutive modifications and to place an equal number of 
modifications in each of the left, right, and middle portions of the page. 
The marked modifications were relatively short: four of them were 
deletions (of an average of 5.5 characters), 26 were insertions (of an 
average of 2.9 characters), and 40 were replacements (of an average of 4.1 
characters to be replaced by an average of 4.4 characters). The 
manuscript fragment in Figure 3.2 was taken from the manuscript given 
to the users and illustrates the style in which modifications were indicated 
to the user.



TemunoL Two terminals were used in the experiment: a Texas 
Instruments “Silent 700” teletypewriter (prints on paper at 30 char- 
acters/sec) and a video display, 8-1/2 inches wide by 10-3/4 inches high 
(42 lines, 72 characters per line, maximum display rate about 6 lines/sec). 
The display was programmed to operate according to a simple scrolling 
discipline (the same discipline used on the teletypewriter): each new line 
was displayed at the bottom of the screen with the other lines scrolling 
up to make room. The last 42 lines of an interaction were visible on the 
screen.

Procedure. The user was seated before the terminal with the 
manuscript to his left He first performed editing tasks on a one-page 
manuscript for warmup and for insurance that he understood what to do. 
Then he edited the manuscript described above. One user was run on 
the teletypewriter alone, one on the video display terminal alone, and one 
was run twice, first on the display and two weeks later on the 
teletypewriter. For two of the experimental sessions, users were in­
structed to proceed through the manuscript, inserting an asterisk at the 
beginning of each marked line (since these sessions were originally run 
only to investigate methods for locating the target line). In the other two 
experimental sessions, the users were instructed to edit the eleven-page 
manuscript Editing the manuscript required approximately 20 minutes.

The users’ keystrokes and the system’s responses were recorded on a 
computer file. These data were used to infer the methods chosen for each 
task and the reasons for choosing them.

RESULTS OF EXPERIMENT 5A

Typescripts of the four experimental sessions were examined to 
identify the methods employed by the users. Figure 5.2 gives the 
methods observed and the frequencies with which the methods were 
selected, q s -m e th o d  and l f -m e th o d  are the methods previously 
described for g o a l : l o c a t e -lin e . s -c o m m a n d  and m -c o m m a n d  are the 
methods previously described for GOAL: m o d if y -t e x t . The other 
methods were used less frequently and are described as follows:
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-f N-METHOO. The user estimates the number of lines n to 
the next unit task then types the command + n / ,  
which causes poet to advance n lines and print the 
line. It is assumed that a correction may be
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User /  Terminal Type

S I
(Comp. Sci.) 

(TTY)

S4
(Secy.)

(TTY) (DISP)

S22
(Secy.)

(DISP)

M ethods fo r g o a l : LOCATE-LINE:

LF-METHOD 11(16% ) 14(21% ) 45 (68% ) 25 (38% )
QS-METHOD 44 (65% ) 1 (2%) 0 40 (62% )
+ N-METHOD 2 (3%) 51 (77%) 20 (30% ) 0
AN-METHOD 11(16% ) 0 1 (2%) 0

M ethods fo r GOAL: M ODIFY-TEXT: 

S-COMMAND 

M'COMMANO

48 (73%) 
18(27% )

57 (86%) 
9(14% )

Figure 5.2. Frequency of method selections for three sub­
jects in Experiment 5A.
In two sessions no modifications were actually done, since only methods for GOAL: 
LOCATE-LINE were being studied at the time.

needed: the user may have to type a few lin efeed  
commands (each o f which moves him down a line), 
t  commands (each o f which moves him up a line), 
or may even have to repeat the -F n /  command with 
a new n.

AN-METHOD. The user first selects an easily specified 
“anchor” line near the target line, such as a blank 
line (specified by the empty string ""), the last line 
of a page (denoted by the special symbol $), or a 
line that has a short unique string, such as a 
paragraph number. Then the target line is reached 
by using lin efeed ’s or t ’s. For example, the com­
mand ""L IN EFEED  locates POET at the first line of 
the next paragraph.

A striking feature of the method frequencies in Figure 5.2 is how 
each user clearly has a dominant method. By knowing only the domi­
nant method of the user, his.method selection can be predicted correctly 
about 66%  of the time for GOAL: l o c a t e -l in e  and 80% of the time for



GOAL: MODiFY-TEXT. Apparently, the user will use this dom inant 
m ethod unless it is obviously inefficient (such as LiNEFEEDing a line at a 
time through ten pages o f text to get to the next task).

That a user’s selection of methods depends systematically on the 
features of the task environment is illustrated by the choice of method 
for GOAL: LOCATE-LINE. The most important characteristic of the task 
environment for this goal is the distance d  (given in number of lines) 
between the Current Line and the line with the text to be next modified. 
As is clear from Figure 5.3, all users used the l f -m e th o d  if the next line 
was close enough. Where users differed was in the threshold for how far 
away the target had to be before they shifted to other methods. The 
time required to use the l f -m e th o d  was sensitive to the speed of the 
terminal, since the system prints out the new Current Line every time
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User Method
1 2 3 4 5 6 7 8 9 10-14 15 +

S1 LF 8 3
OS 2 4 5 2 1 3 4 8 15

(TTY) 1 1
AN 1 2 1 1 3 3

S4 LF 8 4 1 1
QS 1

(TTY) ♦ N 1 6 5 3 1 4 4 11 17
AN

S4 LF 6 7 6 5 3 1 3 2 2 10
QS

(DISP) •f N 1 1 2 9 7
AN 1

S22 LF 6 5 6 5 1 1 1
QS 1 1 2 4 4 10 18

(DISP) •f N
AN

Total
Frequency 8 6 6 5 4 0 1 4 4 11 19

Figure 5.3. Frequency of GOAL: LOCATE-LINE methods in 
Experiment 5A as a function of the distance d  from the 
previous task.
The vertical bars indicate the thresholds where the LF-METHOD ceases being the 

preferred method in each session. The Total Frequency row gives the frequency 
of the different distances over the whole manuscript, taking the tasks in order. 
Since users often did some tasks in a different order, totals for different experi­
ments in the same column are not necessarily equal.



LINEFEED is typed. It was not surprising, therefore, that the l f -m e th o d  
was used less frequently by user S4 on the slower teletypewriter than on 
the faster display terminal (21% of the time on the teletypewriter vs. 68% 
of the time on the video display, according to Figure 5.2), or that the 
threshold for when to abandon the l f -m e th o o  was lower when S4 was 
using a slow terminal than when she was using a fast one (rf=3 lines for 
the teletypewriter vs. d= 10 lines for the display).

Figure 5.2 and Figure 5.3 make it clear that there are important 
individual differences in how users decide which method to use. Using 
the same terminal and doing the same task, S22 uses the q s -m e th o d  62% 
of the time, but S4 never uses i t  Averaging together the data for all 
users and attempting to write rules to describe the choices of the group 
would, therefore, produce inaccurate predictions, as well as be quite 
misleading. Yet, despite the existence of significant individual differences 
in methods for accomplishing this goal, each user’s behavior taken 
individually was highly structured and amenable to a GOMS description.

The complete prediction of which method each user employed for 
GOAL: LOCATE-LiNE is organized as a set of Selection Rules in Figure 5.4. 
Each row gives the results of the accumulation of Rule 1 to Rule n, 
adding rules one at a time. The “Hits” column shows the total number 
of cases correctly predicted, and the “Misses” column shows the number 
of cases in which the prediction was wrong (Hits +  Misses =  the total 
number of method selections). As each rule is added, the set of rules 
taken together predicts more cases correctly, but a few individual cases 
that were predicted correctly may now be missed. For example, adding 
Rule 2 for SI (the second line of the figure) correctly predicts 11 method 
selections of the 24 that had been missed using Rule 1 alone, but at the 
cost of missing 2 of the 44 that were previously hits—a net gain of 9. As 
the figure shows, using from two to four simple rules, it is possible to 
predict a user’s method selections an average of 90% of the time.
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5.3 . TIME PREDICTIONS (EXPERIMENT 5B)

Experiment 5A showed that it is possible, using a GOMS model, to 
describe users’ method selections. Experiment 5B was designed to 
examine chronometrically how users sequence operators to accomplish 
tasks. The technique was to observe users performing editing tasks.
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U s e r R u le
T h i s  R u le C u m u l a t i v e

G a i n  L o s s  H i t s  M i s s e s  % H i t s

S1 Rule 1: Use the q s -m e t h o d  unless another rule 
(TTY) applies.

Rule 2: \\ d< 3, use the l f -m e t h o d .

Rule 3: If the target line is the last line of the 

page, use the a n -m e t h o d  (with $).

Rule 4: If the current method Is to use paragraph  

num bers for search strings and the target 
line is near a paragraph number, use
th e  AN-METHOD.

44 0  44  24 65%

11 2 53 15 78%

5 0  58 10 85%

0 60 8 88%

S4 Rule 1: Use the ♦ n -m e t h o d  unless another rule 51 

(TTY) applies.

Rule 2: If i /<  3, use the l f -m e t h o d . 12 1 62

0 51 15 77%

94%

S4 Rule 1: Use the l f -m e t h o d  unless another rule 
(DiSP) applies

Rule 2: If 9, use the ♦ n -m e t h o d .

Rule 3: If the target line is on the next page of 
the manuscript, use the l f -m e t h o d .

45 45 21 68%

16 12 49  17 74%

56 10 56 10 85%

S22 Rule 1: Use the q s -m e t h o d  unless another rule 40  
(DISP) applies.

Rule 2: If ¿/< 5, use the l f -m e t h o d . 22

40 25 62%

60 92%

A v e r a g e  F in a l  % H i t s  = 90%

Figure 5.4. Selection rules for GOAL: LOCATE-LINE in 
Experiment 5A.
Each row  tallies the effect of adding its m ethod selection rule to the rule set. W ith  

the addition of each  rule, som e m ore m ethods are  predicted (G ain) and som e p re ­
viously predicted  ones are  now m ispredicted (Loss), for a cum ulative e ffect of so 

m any predictions (Hits) and so m any m ispredictions (M isses).

recording (1) the sequence in which operators occurred and (2) the 
duration of each operator occurrence. These data allow testing of task 
time predictions calculated from the model.



METHOD FOR EXPERIMENT 5B

Users. Users were two secretaries and two computer scientists 
familiar with p o e t . The terminal was similar to the video display of the 
previous experiment.

Measurement Apparatus. The terminal was connected to a large 
computer running the p o e t  editor under the t e n e x  time-sharing system. 
For this experiment, the terminal was modified to time-stamp and record 
all input events on a data file. Accuracy of time-stamping was to within 
33 msec of the actual time of the event at the terminal.^ The average 
response time of the editor to commands during the experiment was .8 
sec (SD  = .6 sec).

Two television cameras were directed at the user, one camera giving 
an overall view of the user and terminal, the other a closeup of the user’s 
face, from which it could be determined whether he was looking at the 
manuscript, the keyboard, or the display. The user wore a lapel 
microphone, recording onto the soundtrack of the video tape. A digital 
clock was electronically mixed with the video picture, time-stamping each 
frame. The times measured from video frames were accurate to 33 msec 
(one video frame).

Procedure. The procedure was similar to that for Experiment 5A. 
The user was first given a test to determine his typing rate and then 
several editing tasks as a warmup. Finally, he edited the same manu­
script that was used in Experiment 5A.

Data Sets. The first three unit tasks were discarded before analysis to 
minimize any warmup effect The remaining 70 unit tasks were parti­
tioned into two comparable data sets: a Derivation data set, consisting of 
the 36 unit tasks on the odd-numbered pages, and a Crossvalidation data 
set, consisting of the 34 unit tasks on the even-numbered pages. This 
partition allowed basic operator statistics to be computed on the 
Derivation data, while preserving the Crossvalidation data for an attempt 
at prediction in a matched situation, no statistical advantage having been 
taken of chance.

The data were also partitioned into the set of error-free unit tasks and 
the set of error unit tasks, each of the latter containing at least one 
identifiable error. The criterion for identifying an error was that the user
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The accuracy o f the timing o f events did not depend on the response o f the time­
sharing system.
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User

S34
(Comp. Sci.) 

(sec)

S53
(Comp. Sci.) 

(sec)

S50
(Secy.)
(sec)

(Secy.)
(sec)

S95

(sec)

Mean

Derivation data (36) 9.0 (25) 15.3 (27) 15.1 (28) 13.4 (21) 13.2 (25)

Crossvalidation data (34) 8.5(23) 14.7(25) 17.0(27) 14.0(24) 13.2(25)

Figure 5.5. Mean error-free unit task times for all users in 
Experiment 5B.
T h e  values a re  the  m ean task tim es over all erro r-free  tasks fo r each  user. The  

num bers in parentheses are  the  num ber of erro r-free  tasks. All d ifferences  

betw een m ean num ber of erro r-free  tasks, m ean error-free  task tim e for Derivation  

data  vs. Crossvalidation data, or com puter scientists vs. secretaries, are non ­
significant by M an n-W hitney U-test, p > .05.

took some overt corrective action, defined as some action that undid the 
effect of a preceding action. All the analyses below use the error-free 
data.

Figure 5.5 gives statistics on the Derivation and Crossvalidation data 
sets and shows that both the Derivation and Crossvalidation data were 
comparable with respect to the number of tasks having errors and to the 
mean time per task for error-free tasks.

Protocols. The videotaped record of the user’s behavior and the time- 
stamped file of keystrokes were coded into a protocol of operator 
sequences, using the operators of the GOMS Model F2 that was 
described in Section 5.1. Occurrences of the operators were identified 
according to the following operational definitions:

GET-NEXT-PAGE. Turning the manuscript page. Starts 
when the user’s eyes begin to turn towards the 
manuscript; ends when the turned page falls flat

GET-FROM-MANUSCRIPT. Lxx)king over to the manuscript 
to get the next task. Starts when the user’s eyes 
begin to turn towards the manuscript; ends when the 
user types a keystroke for the next operation or 
begins to look back to the display, whichever comes 
first.

USE-LF-METHOD. Using the l f -m e th o d  to locate the line of 
the task. Starts when the user’s eyes begin to turn



towards the screen or the user types the first 
LINEFEED, whichever comes first; ends when the last 
LINEFEED is typed.

USE-QS-METHOD. Using the qs-method method to locate 
the line of the task. Starts when the user’s eyes 
begin to turn toward the screen or the user types the 
first keystroke, whichever comes first; ends when the 
final character of the search command is typed.

USE-S-COMMAND. Using the Substitute command to 
modify the text Starts when the user types the first 
keystroke of the command; ends when the final 
character of the command is typed.

USE-M-COMMAND. Using the Modify command to modify 
the text Starts when the user types the first 
keystroke of the command; ends when the final 
character of the command is typed.

VERIFY-EDIT. Examining the output on the display to check 
that the modification is correct Starts when the 
final character of the previous command is typed; 
ends when the user’s eyes turn to the manuscript for 
the next task.
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RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Selection rules were derived for each user by 
examining their method selections in the Derivation data. The results of 
using these rules to predict method selections replicated the results in 
Experiment 5A. One or two selection rules (Figure 5.6) were sufficient 
to predict 88% of the method choices in the Derivation data and 80% in 
the Crossvalidation data. Accuracy of the rules was about the same for 
the two different goals. Interestingly, the rules were better at predicting 
the secretaries (90%) than at predicting the computer scientists (77%).

Accuracy o f Sequence Predictions. In addition to wrong method 
choices, there are other possible ways in which the model might make 
errors in the prediction of operator sequences. Ultimately, these will be 
registered as the intrusion into the observed data of unpredicted 
operators or the non-occurrence of predicted operators.

Model F2 was used to calculate the predicted sequence of operators 
for each task, and this sequence was matched against the sequence
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%Hits
User Selection Rules DerivationData CrossvalidationData

Rules For G O A L : L O C A T E -L IN E

S34 R u le l:  Use the QS-METHOD as default. 
Rule 2: If d< 3, then use the l f -m eth o d .

84% 74%

S50 R u le l:  Use the QS-METHOD as default. 
Rule 2: \fd < 3 ,  then use the lf -m e th o d .

96% 93%

S53 R u le l:  Use the QS-METHOD as default. 
Rule 2: If d<  3, then use the lf -m e th o d .

63% 72%

S96 Rule 1: Always use the l f -m eth o d . 95% 71%

Rules For G O A L : M O D IF Y -T E X T

S34 R u le l:  Use the M-COMMAND as default.
Rule 2: If a word is to be replaced neither at the very 

beginning nor very end of the line, then use 
the S-COMMAND.

85% 83%

S50 R u le l:  Use the S-COMMAND as default.
Rule 2: If the correction is at the very beginning or the 

very end of the line, then use the m -c o m m a n d .

84% 83%

S53 R u le l:  Use s-coM MAND as default.
Rule 2: If the correction is at the very beginning or the

very end of the line or is a double task or involves 
only punctuation, then use the m -c o m m a n d .

93% 60%

S95 R u le l:  Always use the S-COMMAND. 100% 100%

Mean 88% 80%

Figure 5.6. Method selection rules for Experiment 5B.
Mean accuracy (%Hits) of the rules is significantly greater for Derivation data than 
for Crossvalidation data, Mann-Whitney U(8,8) = 9, p = .014; greater for 
secretaries (90%) than for computer scientists (77%), 0(8,8) = 12.5, p < .025; but 
no different for GOAL: LOCATE-LINE (81%) than for GOAL: MODIFY-TEXT (86%), 
0(8,8) = 25, p = .253.

actually observed. There is no standard statistical technique for indexing 
how well one sequence matches another, so the following method was 
used. The sites of mismatches because of operator insertions, deletions, 
or replacements were determined using a simple dynamic programming 
algorithm (based on Hirschberg, 1975, and Sakoe and Chiba, 1978) to 
optimize the number of matches. Then the percentage of predicted



1 58 5. THE GOMS MODEL OF MANUSCRIPT EDITING

User

S 3 4  S53
(Comp. Sci.) (Comp. Sci.)

S50
(Secy.)

S95
(Secy.)

Mean

Derivation data 
Crossvalidation data

79%

89%

81%

83%

98%

92%

94%

93%

88%

89%

Figure 5.7. Percentage of operator instances predicted in 
Experiment 5B.
The secretaries’ operators were predicted significantly better (94%) than the 
computer scientists’ (83%), Mann-Whitney U(4,4) = 0, p = .014; but the prediction 
of the model matched the Derivation data as well (88%) as the Crossvalidation data 
(89%), U(4,4) = 8, p = .56.

operator occurrences that matched observed operator occurrences was 
computed (see Appendix to this chapter for details). Sequences gen­
erated by the model were generally in good agreement with those 
observed (Figure 5.7). The percentage of matches varied from 79% to 
98% with an average of 88%. There were no differences between the 
Derivation and the Crossvalidation data, but again, the model did better 
at calculating sequences for secretaries (94% of operators in sequences 
matched) than for computer scientists (83%). Except for the already 
noted method-selection errors (due to operator insertion, deletion, or 
replacement), the only error made by the model was to predict that users 
would always perform a v e r if y -e d it  operation, whereas users sometimes 
omitted it.

RESULTS OF TIME PREDICTIONS

The protocols contain times from which it is possible to compute 
chronométrie statistics for each operator in each model. Estimates of the 
time to perform a specific unit task were computed in two ways: (1) 
Given the observed sequence of operators, sum the mean times for each 
operator in the sequence. This estimate, which we call a Reproduction of 
the data, corresponds with how well the models would do were there no 
sequence prediction errors. (2) Using the sequence of operators predicted 
by the models, sum the mean times for each operator in the sequence. 
This latter estimate, which we call a Prediction, should correspond more 
with what we might expect to find applying the models in practice. 
Error can enter into the estimates either because an operator actually 
takes longer in some contexts than others or, in the prediction case.
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User

O pera to r S34
(Comp. Sci.) 
{TR = .16)

S53
(Comp. Sci.) 

{TR = .30)

S 50
(Secy.) 

{TR = .16)

S95
(Secy.) 

{TR = .12)

All
Users

M
(sec)

CV N M
(sec)

CV N M
(sec)

CV
1

N M
(sec)

CV N M
(sec)

CV

GET-NEXT-PAGE 2.50 .23 5 1.18 .45 4 1.81 .41 5 3.31 — 1 2.20 .42
GET-NEXT-TASK 1.29 .41 25 2.11 .41 27 2.07 .46 28 1.25 .44 21 1.68 .28

USE-QS-METHOD 2.07 .24 18 3.32 .37 12 4.48 .36 22 — — _ 3.29 .37
USE-LF-METHOD 2.10 .76 4 1.85 .53 4 3.47 .49 5 5.40 .53 17 3.21 .51
USE- *N  METHOD 2.10 .40 3 4.07 .48 8 — — _ _ _ — 3.09 .45
USE-AN-METHOD — — — 8.18 .33 2 — — — 10.06 .21 3 9.12 .15

USE-S-METHOD 2.94 .29 5 6.60 .34 12 6.78 .40 21 4.66 .35 21 5.25 .35
USE-M-METHOD 4.38 .29 20 8.12 .44 15 8.52 .45 7 — — — 7.01 .33

VERIFY-EDIT .64 .30 11 .96 .31 21 .76 .37 18 .85 .68 18 .80 .17

Average between-user CV - .36

Mean CV .37 .41 .33 .44

Average within-user CV ~ .40

Figure 5.8. Operator duration statistics for all users in 
Experiment 5B.
TR is the typing rate in sec/keystroke. The Mean and CV for all users (rightmost 
column) is based on user means.

because the model predicts the wrong sequence of operators, and this 
sequence takes a different amount of time than does the correct 
sequence.

Operator Times. The durations of all occurrences of each operator 
type in the Derivation data were used to estimate the operator times, 
shown in Figure 5.8. Since the data come from a quasi-natural situation 
and since a rare method may appear only once in the data, there is a fair 
chance that some extreme times may show up in the distributions of 
operator times. Though these must be accepted in any prediction test, it 
is appropriate to avoid them in estimating the characteristics of the 
operators. Consequently, in Figure 5.8 we have dropped outliers that fall 
beyond two standard deviations from the raw mean and then recomputed 
the mean and coefficient of variation CV  for each operator.^

Here and elsewhere we report the coefficient of variation CV  =  SD/Mean as a 
way of partially normalizing the SD to make it more comparable for operators of 
different durations.
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User

S34  S53  S50
(Comp. Sci.) (Comp. Sci.) (Secy.)

S95
(Secy.)

Mean

Derivation data:
Reproduction
Prediction

Crossvalidation data: 
Reproduction 
Prediction

32% 31% 29% 29% 30%
31% 32% 29% 34% 32%

35% 35% 36% 35% 35%
33% 36% 37% 39% 36%

Figure 5.9. Prediction error for task times in Experiment 5B.
T h e  prediction error m easure is the  RMS (root m ean square) erro r as a  p ercentage  

of the  observed m ean task tim e. T h e  prediction error is less for the Derivation  

d ata  (31%) than  for the  Crossvalidation d ata  (36%), M an n -W h itn ey  U(8,8) = 0, p 
= .01; but there  is no d iffe rence  betw een  R eproduction  (33%) and P rediction  

(34%), C/(8,8) = 24, p > .25; or betw een com puter scientists (33%) and secretaries  

(34%), U(8,8) = 26, p > .40.

Whereas there are moderate differences between users in their 
operator times, the variation in times between users is comparable to the 
variation of times within a user. The average CV  between users is .36, 
whereas the average CV  within a user is .40.

Accuracy o f Time Predictions. Comparing the time per task 
calculated from the model with the observed times gives an RM S (root 
mean square) error of 33% of the mean observed time. As shown in 
Figure 5.9, there were no differences in prediction accuracy between 
computer scientists and secretaries or between Reproduction and 
Prediction, but the Derivation data was slightly more accurately predicted 
(RMS  error of 31%) than the Crossvalidation data (36%).

If the RMS  error measure is interpreted as the average model error, 
33% error may seem high. But predicting editing times unit task by unit 
task for a single user is a very stringent test If the unit of prediction 
were the whole manuscript rather than the unit task, then the prediction 
error would drop considerably, since the high and low predictions of the 
various unit tasks would tend to cancel each other. The RMS  error 
approximately obeys a square root of n law, where n is the number of 
unit tasks.^ So the RMS  error for predicting the time to edit the whole

 ̂ RMS(e) =  V  (Xe^/n],  where is the prediction error on the /th unit task. The 
RMS  error is the standard deviation SD of e about zero, instead of the actual mean of e, 
which is A/(e), and thus RMS(e) >  SD{e). If M(e) =  0, then RMS(e) =  SD(eX and
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manuscript (70 tasks) would be 33% X -/70 =  4% (neglecting, of 
course, the effects of users’ mistakes, which are not addressed by this 
model). The error for these models of variable-sequence cognitive 
activity would thus seem to be in the same range (about 5%) as that 
sometimes cited for predetermined time system predictions of invariable- 
sequence physical activity by industrial engineers (Eady, 1977; Maynard, 
1971).

5.4. GRAIN OF ANALYSIS (EXPERIMENT 5C)

The model discussed above is not the only possible GOMS model for 
the manuscript-editing task. Because models could be constructed with 
either more or less detail, there is an important issue of the appropriate 
grain of the analysis.

A priori, it is not possible to know which grain size is appropriate. 
As the grain of the analysis becomes finer, the model successively 
accumulates opportunities for conditional behavior (either optional 
application of some method or differentiation into cases). Thus, from 
one point of view, models at a finer grain should be more accurate. But 
opposing forces are also at work. At a finer grain, operators will be 
likely to appear in a larger number of contexts. In combining low-level 
operators to form functional units that a coarser grain would reflect 
directly, one may miss setup or other operations that are properties of 
the unit as a whole. The duration of operators may depend on other 
operators in the sequence (Abruzzi, 1956). And finally, there is typically 
greater error in the measurement of finer grain operators than of coarser 
grain operators.

A direct test of how the grain of analysis affects the accuracy of a 
GOMS model is to recast the analysis at several levels of detail. There 
appear to be two essentially independent dimensions along which the 
grain of analysis can be made finer or coarser. The primary dimension 
involves duration of the operators. The second dimension involves 
variations among operators of approximately the same duration.

We explore variations of GOMS models along both of these 
dimensions. Figure 5.10 describes briefly the family of nine manuscript-

the RMS error is equivalent to the standard error. The square root law argument should 
actually be made with respect to SD(e) about M(e), but the use o f the RMS  error is 
approximately correct if  M(e) is close to zero.



M o d e l  UT Constant time per unit task. Only one operator: e d it -u n it -t a s k . (This 
model Is like the Constant Time per Modification model of Chapter 4, 
except for the substitution of unit tasks for modifications.)

FUNCTIONAL LEVEL:

M o d e l  F1 Single operator for each functional step in unit task sequence: g e t -n e x t - 

t a s k , LOCATE-LINE, MODIFY-TEXT, VERIFY-EDIT.

M o d e l  F 2  Like Model F1, but with operators l o c a t e -l in e  and m o d if y -t e x t  broken 

into separate cases based on the methods used to accomplish them.

UNIT-TASK LEVEL:

ARGUMENT LEVEL:

M o d e l  A1 Like Model F2, but with operators at the level of typing a system 
command (s p e c if y -c o m m a n d ) or typing an argument to a command
(SPECIFY-ARG).

M o d e l  A2 Like Model A1, but with s p e c if y -c o m m a n d  and s p e c if y -a r g  broken Into 

separate cases according to whether they involve an Implicit need to get 
information from manuscript (suffix = /G ) or not (suffix = / n g ).

M o d e l  A 3 Like Model A1, but with s p e c if y -c o m m a n d  and s p e c if y -a r g  broken into 
separate cases according to four method contexts: quoted string method 
(suffix = /Q ), first argument to Substitute command (suffix = / s i ) ,  
second argument to Substitute command (suffix = /S 2 ), or Modify 
command (suffix = / m ).

M o d e l  A 4  Like Model A1, but with all the distinctions in both Model A2 and Model 
A3 combined multiplicatively.

KEYSTROKE LEVEL:

M o d e l  K1 Like Model A2, but with operators at the level of basic perceptual, 
cognitive, and motor actions: l o o k -a t , h o m e , t u r n -p a g e , t y p e , and
MOVE-HAND. All mental actions not overlapped with motor operations are 
represented as the m e n t a l  operator.

M o d e l  K 2 Like Model K1, but with m e n t a l  broken down Into s e a r c h -f o r , c o m p a r e , 

CHOOSE-COMMAND, and CHOOSE-ARG.

Figure 5 .10. Description of the family of GOMS models 
investigated for POET.
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Figure 5 .11. Graph of the family tree of GOMS models 
investigated for POET.
The links in the tree  show how the m odels outlined in F igure 5 .10  can be derived  
from  each  o ther by m aking further distinctions. D istinctions are  m ade by either 

case analysis (as in M odel F I into M odel F2) or by splitting operators (as in M odel 
F I into M odel A1).

editing models that we consider in this experiment Figure 5.11 shows 
the family tree, where the links in the tree show which models are 
further elaborations of each other (either by splitting or by differentiating 
operators). Finally, Figure 5.12 lays out the full models themselves.

Each model is given a name of the form “Model level number. ” We 
distinguish models in Figure 5.11 at four levels; the Unit-Task Level, the 
Functional Level, the Argument Level, and the Keystroke Level. We 
begin at the Unit-Task Level with Model UT (see Figure 5.12), which 
consists of a single operator, e d it -u n it -t a s k . The goal of manuscript 
editing is accomplished by repeating this operator for each unit task. 
With only a single operator. Model UT always predicts that it takes the 
same amount of time to do a unit task. Functional Level models come 
from decomposing the unit task into its functional cycle: (1) get the next
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Model UT:
GOAL: EDtT-MANUSCRIPT 

EDIT-UNIT-TASK

UNIT TASK LEVEL

. repeat until no more unit tasks

Model FI:
F U N C T IO N A L  LEVEL

GOAL: EDIT-MANUSCRIPT 
GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE UNIT-TASK 

GET-NEXT-PAGE 
GET-NEXT-TASK 

GOAL: EXECUTE-UNIT-TASK 

LOCATE-LINE 
MODIFY-TEXT 
VERIFY-EDIT

. repeat until no more unit tasks 

. . it task not remembered 

. . . if at end of manuscript page

. . if an edit task was found 

. . . if task not on current line

Model F2:
GOAL: EDIT-MANUSCRIPT 

GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE-UNIT-TASK 

GET-NEXT-PAGE 
GET NEXT-TASK 

GOAL: EXECUTE-UNIT-TASK 

GOAL: LOCATE-LINE
[select USE-QS-METHOD 

USE-LF-METHOD] 
GOAL: MODIFY-TEXT

[select USE-S-COMMAND 
USE-M-COMMAND] 

VERIFY-EDIT

. repeat until no more unit tasks 

. . if task not remembered 

. . . if at end of manuscript page

. . if an edit task was found 

. . . if task not on current line

Figure 5.12. GOMS models for POET.

edit task, (2) locate the editor at the line on which the modification is to 
be made, (3) make the modification, and (4) verily that the edit was done 
correctly. The model used to analyze Experiment 5B, Model F2, is a 
Functional Level model. Argument Level models arise by decomposing 
the methods used at the Functional Level into the individual steps of 
specifying commands and arguments. Both Functional Level models and 
Argument Level models are driven by the structure of the poet com­
mands. These are themselves reflections of the demands of the task as it 
is defined in the manuscript

At the Keystroke Level, an entirely different set of operators comes 
into view, defined not by their functional role in the command language, 
but by reference to the basic physical and mental actions of the user: 
typing, looking, moving a hand, plus various mental operations. These 
operators are more task-independent than the operators at other levels.
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A R G U M E N T  LE V E L
M odel A1:

GOAL: EDIT-MANUSCRIPT 
GOAL:EDIT-UNIT-TASK

GOAL; ACQUIRE-UNIT-TASK 

GET NEXT-PAGE 
GET-NEXT-TASK 

GOAL: EXECUTE-UNIT-TASK 

GOAL; LOCATE-LINE
[select GOAL: USE-QS-METHOD 

SPECIFY-COMMAND 
SPECIFY-ARG 

GOAL; USE-LF-METHOD 
SPECIFY-COMMAND]

VERIFY-LOC 
GOAL; MODIFY-TEXT

[select GOAL: USE-S-COMMAND 
SPECIFY-COMMAND 
SPECIFY-ARG 
SPECIFY-ARG 

GOAL: USE M-COMMAND 
SPECIFY-COMMAND 
SPECIFY-COMMAND 
SPECIFY-ARG 
SPECIFY-COMMAND]

VERIFY-EDIT

repeat until no more unit tasks 
. if task not remembered 
. . if at end of manuscript page

. if an edit task was found 

. . if task not on current line

repeat until at line

repeat until at text

M odel A2: as in Model A 1 but substitute

SPECIFY-COMMAND/G Or SPECIFY-COMMAND/NG lor SPECIFY-COMMAND 

SPECIFY-ARG/G Or SPECIFY-ARG/NG for SPECIFY-ARG

M odel A3; as in Model A1 but substitute

SPECIFY-ARG/Q Or SPECIFY-ARG/M Or 
SPECIFY-ARG/S1 Or SPECIFY-ARG/S2 for SPECIFY-ARG

M odel A 4: as in Model A 1 but substitute

SPECIFY-COMMAND/G Or SPECIFY-COMMAND/NG for SPECIFY-COMMAND

SPECIFY-ARG/Q/G Or S P E C IF Y  A R G / Q / N G  Or 
SPECIFY-ARG/M/G or SPECIFY-ARG/M/NG or 
SPECIFY-ARG/S1/G Or SPECIFY-ARG/S1/NG Or 
SPECIFY-ARG/S2/G Or SPECIFY-ARG/S2/NG for SPECIFY-ARG

The cost of obtaining the estimates of all the different operators and 
selection rules increases as the size of the operators decrease, because 
more data are required for a given level of robustness and because the 
observation and measurement problems increase at the lower levels. A 
possible compensation for the greater cost of using the Keystroke Level 
operators is thaL unlike the larger operators, it may not be necessary to 
determine lower-level operators for each new application.



KEYSTROKE LEVEL
M odel K2:

GOAL: EDIT-MANUSCRIPT 
GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE-UNIT-TASK
GOAL: TURN-PAGE* (see below)
GOAL: GET-FROM-MANUSCRIPT*

GOAL: EXECUTE-UNIT-TASK 
GOAL: LOCATE-LINE

CHOOSE-COMMAND 
[select GOAL: USE QS-METHOD

GOAL: SPECIFY-COMMAND* 
GOAL: SPECIFY-ARG*

GOAL: USE-LF-METHOD
GOAL: SPECIFY-COMMAND*] 

GOAL: VERIFY-LOC*
GOAL: MODIFY-TEXT

CHOOSE-COMMAND 
[select GOAL: USE-S-COMMAND

GOAL: SPECIFY-COMMAND* 
GOAL: SPECIFY-ARG*
GOAL: SPECIFY ARG*

GOAL: USE-M-COMMAND
GOAL. SPECIFY-COMMAND* 
GOAL: SPECIFY-COMMAND* 
GOAL: SPECIFY-ARG*
GOAL: SPECIFY-COMMAND*] 

GOAL: VERIFY-EDIT*

. repeat until no more unit tasks 

. . if task not remembered 

. . . if at end of manuscript page

. . if an edit task was found 

. . . if task not on current line

. repeat until at line

. repeat until at text

’ Expansion of goals appearing several times;

GOAL: TURN-PAGE 
. LOOK-AT-MANUSCRIPT 
. ACTION 
. MOVE-HAND 
. TURN PAGE

GOAL: GET-FROM-MANUSCRIPT 
. LOOK-AT-MANUSCRIPT 
. SEARCH-FOR 
. LOOK-AT-DISPLAY 

GOAL: SPECIFY-COMMAND 
. GOAL: GET-FROM-MANUSCRIPT* 
. CHOOSE-COMMAND 
. GOAL: TYPE-STRING*

GOAL: SPECIFY-ARG 
. GOAL: GET-FROM-MANUSCRIPT* 
. CHOOSE-ARG 
. GOAL: TYPE-STRING*

GOAL: VERIFY 
. LOOK AT-DISPLAY 
. GOAL: GET-FROM-MANUSCRIPT* 

COMPARE
GOAL: TYPE-STRING 
. HOME
. LOOK-AT-KEYBOARD 
. LOOK-AT DISPLAY 
. TYPE-STRING

. repeat twice 

. repeat twice

. optional

. if not already selected 

. if not already selected

. optional 

. optional

. optional 

. optional 

. optional

(Figure 5.12. Conclusion.)
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METHOD FOR EXPERIMENT 5C

User. A single user, S13, was employed for this experiment, because 
of the amount of data analysis required at the fine-grained levels. The 
user was a highly skilled secretary (typing rate, 103 words per minute) 
with two years experience on the p o e t  editor, much of it on the type of 
terminal used in this experiment

Procedure. The procedure was the same as in Experiment 5B.
ProtocoL A protocol of the user’s behavior was coded directly from 

the videotape record and the time-stamped keystroke file, using a set of 
descriptive operators not related a priori to any model. The over­
whelming bulk of behavior was coded by the operators t y p e , l o o k -a t , 

and m e n t a l , which are defined as follows:'*

TYPE (K e y i,  K ey2, ...). A burst of typewriting starting with 
the beginning of the finger trajectory toward the first 
key and ending when the last key makes contact A 
“burst” is defined as a sequence of keystrokes with 
no more than .30 sec between successive key contacts 
and is based on studies (Kinkead, 1975) showing that 
keystrokes for skilled typists doing copy typing 
usually do not take more than this time. 

l o o k -a t  (Place). The act of looking from one place to 
another, where Place is either the video display, the 
keyboard, or the manuscript l o o k -a t  includes the 
physical head movement and the gross eye 
movement but does not include any perceptual 
scanning within a place (such as searching a 
manuscript page for a new task). 

m e n t a l . The generic operator for any mental activity that 
does not overlap with physical operations, m e n t a l  

operations are identified as pauses between physical 
operations.

Figure 5.13 shows a fragment of the protocol, which describes S13’s 
behavior on the last unit task in Figure 3.2 in terms of these descriptive 
operators.

'* Other operators, used infrequently, were HOME (Hand, Place) for moving a 
hand to the keyboard preparatory to typing, MOVE-HAND (Hand, Place) for other 
hand movements, TURN-PAGE, ACTION (Description), and EXPRESSION  
(Description). The last two were miscellaneous categories for recording other behavior.



Start
{m in:sec)

Stop
{m in:sec)

A T

(sec)

Operator

18:56.33 18:56.73 .40 LOOK-AT-MANUSCRIPT

18:56.73 18:58.89 2.16 MENTAL

18:58.89 18:59.41 .52 HOME (LEFT-HAND)

18:59.41 18:59.66 .25 MENTAL

18:59.66 18:59.94 .23* LOOK-AT-KEYBOARD

18:59.89 19:00.14 .25 TY P E (")

19:00.14 19:00.24 .10 MENTAL

19:00.24 19:00.48 .24 LOOK-AT-DISPLAY

19:00.48 19:01.11 .63 MENTAL

19:01.11 19:01.43 .32 LOOK-AT-KEYBOARD

19:01.43 19:01.70 .27 MENTAL

19:01.70 19:01.82 .12 TYPE (e)

19:01.82 19:01.92 .10 MENTAL

19:01.92 19:02.66 .07* TYPE (x j s RETURN / )

19:01.99 19:02.34 .35 LOOK-AT-DISPLAY

19:02.34 19:04.16 1.82 MENTAL

19:04.16 19:04.53 .37 LOOK-AT-MANUSCRIPT

19:04.53 ;9:05.48 .95 MENTAL

19:05.48 19:05.83 .15* LOOK-AT-DISPLAY

19:05.63 19:05.91 .28 TYPE(. s)

19:06.06 19:06.40 .13* LOOK-AT-KEYBOARD

19:06.19 19:06.50 .31 TYPE (c o)

19:06.50 19:06.74 .24 MENTAL

19:06.74 19:06.86 .07* TYPE(-)

19:06.81 19:07.18 .32* LOOK-AT-MANUSCRIPT

19:07.13 19:07.25 .12 TYPE (e)

19:07.25 19:07.51 .26 MENTAL

19:07.51 19:07.63 .12 TYPE (x)

19:07.63 19:09.46 1.83 MENTAL

19:09.46 19:09.65 .19 TYPE (RETURN)

19:09.65 19:09.92 .27 MENTAL

19:09.92 19:10.04 .12 TYPE (e)

19:10.04 19:10.11 .07 MENTAL

19:10.11 19:10.46 .00* LOOK-AT-DISPLAY

19:10.11 19:10.72 .61 TYPE (x RETURN RETURN / )

19:10.72 19:11.76 1.04 MENTAL

Figure 5 .13 . Segment of the protocol record for one unit 
task in Experiment 5C.
This part of the protocol describes S13’s performance of the last unit task shown 
in Figure 3.2. On those cases marked with an asterisk, the time A t  charged to an 
operator is less than the difference between the Start and Stop clock times 
because the operator overlaps with the next operator.
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Data Sets. As in Experiment 5B, the first three tasks were discarded 
and the remaining 70 tasks were partitioned into a Derivation data set 
and a Crossvalidation data set. The two data sets were found to be 
comparable with respect to time per unit task (Mann-Whitney i/(19,26) 
= 180.5, p > .05).

Fitting the Models to the Data. The protocol record for the error-free 
Derivation unit tasks was re-coded into a sequence of operators for each 
model. For example, the protocol fragment in Figure 5.13 is encoded 
into Model F2 as follows:

5.4. GRAIN OF ANALYSIS 1 6 9

18:56.33-18:59.94 3.61 sec
18:59.94-19:04.16 4.22 sec
19:04.16-19:10.72 6.56 sec
19:10.72-19:11.23 .51 sec

GET-UNIT-TASK  

USE-QS-METHOD  

USE-S-COMMAND  

VERIFY-EDIT .

To encode each operator requires a recognizer that determines 
whether the operator occurs in the data and, if so, what its boundary 
times are. Such recognizers are insensitive to many of the details of what 
happens. An odd m e n t a l  operator within a s p e c if y -c o m m a n d  (at the 
Argument Level), a u s e -q s -m e t h o d  (at the Functional Level), or an 
e d it -u n it -t a s k  (at the Unit-Task Level) is quite consistent and is 
accepted by the recognizers for these operators. Thus, the higher-level 
models account for all the descriptive operators in the protocol. But 
these odd descriptive operators (e.g., the odd m e n t a l )  are not without 
consequence; they may show up as sequence errors in the lower-level 
models and, in chronométrie analysis, as variance in the higher-level 
operator times.

The Keystroke Level models, on the other hand, must map one-to- 
one onto the protocol, since the Keystroke Level operators are at the 
same level of aggregation as the protocol operators. Many of the 
protocol operators (such as t y p e )  are identical to the Keystroke Level 
operators and are identified directly, whereas other protocol operators 
(such as m e n t a l )  must be relabeled (e.g., s e a r c h - f o r  or c h o o s e - 

COMMAND in Model K2) to fit the models. The possibility then exists 
that there will be descriptive operators in the protocol that are not 
accounted for by the models. More often, a descriptive operator, though 
a possible operator type in the model, may not correspond to any 
possible operator produced by the model at that point This happens for 
78 of the 581 operator instances in the protocol. The most significant 
kind of unaccounted-for operators are instances of m e n t a l  that cannot



be interpreted as one of the Model K2 operators and are labeled 
UNKNOW N. These mostly arise from our stringent rule of coding the 
occurrence of a m e n t a l  operator whenever there is a pause in the 
protocol. The mean time of the u n k n o w n  operators is only .28 sec. Of 
the unaccounted-for operators, 71 are u n k n o w n s , 6 are m o v e -h a n d s , 
and one is an a c t io n .

It sometimes happens that two mental operators (such as v e r if y -l o c  

and SPECIFY-COM M AND in Model Al) are predicted by the model to 
occur in succession. In these cases there is a problem determining the 
boundary between them, for there is no overt indication in the data. 
Each operator type involved in such cases (e.g., v e r if y -l o c )  was 
compared to instances of the operator where the boundaries were 
observable (instances where it was surrounded by non-mental operators). 
This comparison showed clearly that the operator times of these adjacent 
mental operators are not additive—that the time for v e r if y -l o c  plus the 
time for s p e c if y -c o m m a n d  when each is surrounded by non-mental 
operators is not the same as the combined time for the pair when they 
occur together in sequence. These cases are listed later in Figure 5.15 as 
if they were separate operator types (and are given combined names like 
VL + sc). In all, there are four different combined operator types, two at 
the Argument Level ( g f m  + s c  and VL + sc) and two at the Keystroke 
Level (S F  + CM and c  + cc). For purposes of predicting task times, the 
values of the non-combined versions of these operators were used, thus 
counting their non-additivity against the models.

RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Analysis of the Derivation data yielded selection 
rules for the user very similar in form and in accuracy to those for users 
in the previous experiments. The rules for S13 are:

Selection rules for GOAL: l o c a t e -l in e :

Rule 1. Use the q s -m e t h o d  as default 
Rule 2. Use the l f -m e t h o d  if </< 5 lines.

Selection rules fo r GOAL: m o d if y -t e x t :

Rule 1. Use the s -c o m m a n d  as default
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The selection rules for g o a l : l o c a t e -l in e  were correct 88% of the time. 
The rule for g o a l : m o d if y -t e x t  was correct 92% of the time.
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Accuracy o f Sequence Predictions. For some of the models it was 
necessary to fix the conditions under which the “optional” operators 
would be invoked. These operators mainly center around the question of 
when to invoke extra g e t -f r o m -m a n u s c r ip t  operators, either implicitly 
(the /G  versions of the s p e c if y  operators in Model A2 and Model A4, 
see Figure 5.12) or explicitly (the g o a l : g e t -f r o m -m a n u s c r ip t  goal in 
Model K2). Since the conditions that cause extra g e t - f r o m -m a n u ­

s c r ip t  operators were not clear from the data, each option was decided 
such that exactly one extra g e t -f r o m -m a n u s c r ip t  was predicted for 
each unit task.

The match between predicted and observed sequences was 
comparable to that obtained in Experiment 5B for the comparable Model 
F2 (96% in the present experiment vs. 88% in Experiment 5B). As 
expected, the match declined as the grain of analysis became finer (see 
Figure 5.14). The decline in accuracy for Model A2 and Model A4 
resulted mainly from their inability to predict the exact sites in the 
protocol at which the user would glance back at the manuscript for more 
information and how often the user would consult the manuscript 
Models at the Keystroke Level encountered two other difficulties as well. 
First it happened that this particular user would always move her hand 
to her mouth and lick her fingers before turning the page. In fact she 
would usually also lick her fingers one task too early (a true case of 
“fractional anticipatory goal response” in vivo). Because this action was 
not in the model, it caused mismatched operators. The second difficulty 
at the Keystroke Level was that the u n k n o w n  operators counted as 
mismatches.

RESULTS OF TIME PREDICTIONS

Operator Times. Durations of the operators for all models, as 
empirically determined from the Derivation data, appear in Figure 5.15 
along with the percentage of the time spent in each operator. Since 
manuscript editing has the appearance of a motor-intensive task, it is 
interesting that 60% of the time for the manuscript-editing task was 
mental time; only 22% of the time was actually spent in typing.

Alt operators, except the t y p e  operator, are assumed to take constant 
time. Although it is obvious that t y p e  should be parameterized by the 
number of characters to be typed, we must be able to predict the search 
strings and the substitution strings the user will employ in order to



Figure 5 .14. Percentage of operators correctly predicted by 
each model in Experiment 5C.

172



capitalize on the parameterization. The time for t y p e  was parameterized 
by the number of shift characters carriage returns and other 
characters according to the equation

^ =-05  + .17Â ,„y-,+ .19yV,,+ .llA^,,,,,sec.

The equation is based on the regression fit of 157 short typing bursts 
from the Experiment 5A (1 to 18 characters in a burst, mean 3.8 
characters).^ The equation explains 92% of the variance. The operator 
times of this user for Model F2 were comparable to the times for the 
same operators observed in Experiment 5B.

Accuracy o f Time Predictions. The main result is that time 
calculations based on all the GOMS models were about equally accurate 
(except for Model UT, which was somewhat less accurate). Accuracy of 
the Functional Level Model was comparable to that obtained in 
Experiment 5B. There the RM S error was 33%; here it was 29% for the 
comparable Model F2. Various combinations of models, data sets, and 
calculation methods varied in the range of 20% to 40% RM S error, as can 
be seen in Figure 5.16. Finer grain models did better on Reproduction, 
but not on Prediction, of the Derivation data. The finer grain models 
were no better at either Reproduction or Prediction of the Crossvali­
dation data.^

A study of the prediction errors on unit tasks with different task 
environment features revealed that the only task environment feature that 
allowed gain in prediction was the one in which the unit task shared the 
same line on the manuscript with another unit task (i.e., d  =  0). There 
were two tasks with this feature in the Derivation data, and they were the
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 ̂ Fitting this same data with only one parameter, the number of characters in a 
burst, yields the equation T =  .06 sec, which explains 89% of the variance.
The .12 sec per character rate is equivalent to 91 words per minute, which is quite close 
to S13’s typing test speed of 103 wpm. Thus, the user types at almost her highest typing 
rate even on these short bursts.

 ̂ In fact, prediction o f the Crossvalidation data is worse at the Keystroke Level than 
at the Argument Level. This occurs because in one of the tasks the user compares 
information on the display with information on the manuscript much more often than 
the model predicts, resulting in a large underprediction. Recomputation of the points in 
Figure 5.16 using the mean absolute error (an index not as sensitive to single outliers as 
the RMS  error) gave a graph similar to Figure 5.16, but with the prediction o f the 
Derivation data indistinguishable from the curves for the Crossvalidation data, confirming 
the general stability o f the results.
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Figure 5 .16. Task time predictions by 
Experiment 5C.

all models in

reason why Model UT predicted the Derivation data less well than the 
Crossvalidation data.

ERROR BEHAVIOR

So far we have concentrated on error-free behavior. But errors have a 
significant effect on the efficiency with which text-editing is done. 
Overall, about 26% of the total time spent in all the experimental tasks is 
due to error. As Figure 5.17 shows, errors were frequent, occurring on
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N M
(sec)

CV

A l l  u n i t  t a s k s :

Derivation data 36 13.37 .66
Crossvalidation data 34 19.46 1.18

All d ata 70 16.33 1.06

E r r o r  u n i t  t a s k s :

D erivation data 10 16.96 .89
Crossvalidation data 15 29 .46 1.09
All d ata 25 24 .46 1.10

E r r o r  u n i t  ta s k s  w i th  e r r o r  t im e  r e m o v e d :

Derivation d ata 10 10.69 .25
Crossvalidation data 15 13.72 .47
All d ata 25 12.51 .43

E r r o r - f r e e  u n i t  ta s k s :

D erivation data 26 11.99 .38
Crossvalidation data 19 11.57 .31
All d ata 45 11.81 .35

Figure 5 .17. Unit task time statistics for error and error- 
free unit tasks in Experiment 5C.

36% of the tasks (25 out of 70), and errors doubled the time to perform 
the tasks in which they occurred (from 12.5 sec to 24.4 sec).

The longer time required for tasks in which errors occur is accounted 
for by the extra operations that must be performed by users on these 
occasions. When an error occurs, the user progresses through a sequence 
of distinct stages:

1. Error. The user makes a mistake.
2. Detection. He becomes aware of the error.
3. Reset. He resets the editor to allow correction.
4. Correction. He undoes the effects of the error.
5. Resumption. He resumes error-free activity.
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E rro r  T y p e N M
(sec)

CV %N %T

Typing errors 7 1.53 .51 27% 4%

M eth od-abortion  errors 8 4 .17 .51 31% 11%

M eth od -fa ilu re  errors 7 4.41 .41 27% 10%

"B ig" errors 3 7 1 .89 .60 12% 72%

U nclassifiab le e rror 1 8 .1 8 — 4% 3%

All errors 26 11.49 25 .45 100% 100%

Figure 5 .18. Error times in Experiment 5C partitioned into 
different error types.
C olum n % N gives the  percentage  of occu rrences  of each  error type, and Colum n  

% T gives the  percentage  of the  total erro r tim e in each  error type.

The occurrence of an error requires additional time for Error, Detection, 
Reset, and Correction stages over the time otherwise required for the 
task. The time spent in these four stages is called error time. When the 
error time is subtracted from S13’s protocol, the adjusted times are 
similar to the times for error-free tasks (11.81 sec vs. 12.51 sec).

The errors for S13 can be classified into four categories: typing errors, 
method abortion errors, method failure errors, or “big” errors (Figure 
5.18). Simple typing errors required about 1.5 ~ 3.0 sec for recovery. 
There was minor variation in the choice of method, leading to a small 
variation in the correction time. The user detected mistyped characters 
immediately, canceling the bad character by typing c o n t r o l -a .  ̂ But this 
action printed a b a c k s l a s h  followed by the canceled letter, messing up 
the displayed line of typing. This, in turn, caused S13 to sometimes 
redisplay a clean version of the line with another command.

Method-abortion errors, in which the user abandoned a command 
part-way through by pressing the d e l e t e  key, required about 2~7 sec for 
recovery. There were many reasons for aborting a method: the user 
decided it was the wrong method, that there was a better method, or that

The notation CONTROL-A indicates the typing o f the key A while holding down 
the CONTROL key, as is done with a SHIFT key.



the argument strings (to the Substitute command) would not work. 
Once, the method was aborted as the result of mistyping a command 
character. Method abortion was even used for its effect in cleaning up 
the display after it had been made messy by too many c o n t r o l -a ’s. All 
the abortions except one were done to the Substitute command; the 
exception was a q s -m e th o d  being aborted in favor of an l f -m e t h o d .

Method-failure errors, in which a correctly executed method produced 
an unintended result, required 2~8 sec for recovery. All these method 
failures were with the Substitute command—either no substitutions or too 
many substitutions were made—and in all cases the user was able to 
correct the error by issuing one additional Substitute command.

The above three categories of errors occurred with about equal 
frequency. Together they accounted for 22 of the 25 classifiable errors, 
but only for 25% of the error time. In contrast, the remaining 3 big 
errors accounted for the remaining 72% of the total error time. Although 
these big errors were method failures, they were classed separately 
because their times (43, 52, and 121 sec) were an order of magnitude 
larger than simple (4 sec) method-failure errors. The important charac- 
eristic of these errors is that their correction involved real problem­
solving activity, mostly having to do with the user finding her place in a 
large text file.* These results suggest two radically different sorts of 
errors that system designers should consider: The first are small,
frequent, routine errors that can be corrected quickly in a skilled manner. 
The second are big, infrequent, but enormously time-consuming errors 
that require problem solving to correct

5.5. DISCUSSION 

Assessment of the Models

5.5. DISCUSSION 1 7 9

Description o f Behavior. From the three experiments, it is apparent 
that descriptions of a user’s error-free behavior in the manuscript-editing 
task can be constructed from a reasonably small number of components.

o
It is not hard to describe where the time goes in the big errors. The 43-sec error 

was straightforward: S13 modified the wrong line and had to undo the modification and 
then find and modify the right line. In the 52-sec error, she issued two bad quoted 
string commands and had to wait 41 sec for the system to search the entire file and 
respond that these strings did not exist anywhere in the file. The 121-sec error was the 
only occasion on which S13 was genuinely confused. She modified the wrong line, 
which was on a different page of the manuscript than the target line, and then could not 
find the correct line. She spent most o f the 121 sec moving back and forth in the file.
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Depending on the grain of analysis, the behavior of each of the seven 
users observed in these experiments has been described by 1~20 goals, 
1~13 operators, 4~6 methods, and 1~4 selection rules. Moreover, this 
description is a reasonably accurate account of each user’s error-free 
behavior in the task. The selection rules were able to predict the user’s 
choice of methods about 90% of the time using the data on which they 
were derived and 80% of the time on new data. The various versions of 
the GOMS model were able to predict 80~100% of the operators in 
sequence for the manuscript-editing task at the Functional Level. But 
models at the Argument Level or at the Keystroke Level that attempted 
to predict the exact site and number of looks at the manuscript or that 
attempted to account for pauses on the order of a quarter of a second 
were considerably less accurate. Other work on visual feedback for 
skilled keying (Long, 1976) indicates that users routinely look to the 
manuscript for information concerning errors and to the keyboard to 
locate unfamiliar keys. Undoubtedly, users also look to the manuscript 
because they forget what they are supposed to do. Successful modeling 
of this behavior would either require (1) models contingent on the 
contents of the text, such as the familiarity of the user with certain words 
or the clarity of particular editing instructions, or (2) stochastic models.

Prediction o f Task Times. The GOMS models likewise provide a 
reasonable prediction for the amount of time taken by error-free tasks. 
In Experiment 5B, the model was able to predict, on new data, the time 
for a single task to within 36% (Figure 5.9, Crossvalidation). This 
prediction included the times for all the operators as well as the operator 
sequence. In Experiment 5C, the equivalent prediction on Crossvali­
dation data was within about 30% (Figure 5.16).

Even when the model fails to predict the sequence of operators 
exactly, the resulting time prediction may sometimes not be far off. The 
reason is that there is a certain amount of continuity in the space of 
methods. If the model predicts the user will look to the manuscript and 
he does not actually look until after the next operation, the time 
prediction will not suffer, since the frequencies of the operators remain 
unchanged. If the user inserts one extra operator into a sequence of 15 
operators, the time prediction will be degraded only slightly. Even if the 
user chooses the wrong method, there is a reasonable chance that the 
substituted method will not be wildly different in time, because the 
model is also likely to err in choosing among methods whose times are 
comparable.

Grain o f Analysis. How do the abilities of the GOMS models to 
predict the behavior of the user vary as a function of the grain of



analysis? In the current experiment, the rather surprising answer was that 
accuracy at the Functional Level and finer levels was essentially 
independent of the grain.

Two factors seem to be at work. First, the gain in chronométrie 
predictive power arising from new opportunities for conditional behavior 
in the finer grain models seems to have been canceled by the difficulties 
in predicting the sequence of operations (Figure 5.14). Second, there 
seems to have been insufficient task variability for the finer grain models 
to display their advantage. With respect to the latter, if the models could 
predict operator sequences perfectly, then the prediction curve in Figure 
5.16 for the Derivation data would drop to the reproduction curve. That 
the prediction curve is essentially horizontal implies that refining the 
grain of analysis did not tap the sources of time variability. In the 
models, variability is expressed in the method selection rules and optional 
operator choices, both of which are triggered by features of the task 
environment Thus, either the models did not capitalize on all the 
available features in the task environment or there were no task 
environment features that gave clues to the variability. In the case of the 
Crossvalidation data, the gains made by the finer grain models were not 
sufficient to overcome the error in predicting operator duration arising 
from the determination of operator times from independent data. Both 
the reproduction and prediction curves are essentially flat (and in a few 
instances, the prediction is actually slightly better than the reproduction).

It is important to note that variability in the set of error-free unit 
tasks in Experiment 5C is quite small (Figure 5.17), both with respect to 
the user’s performance times and with respect to the possible range of 
editing tasks—all are small edits of about the same complexity. This low 
variance occurred because the experiment tried not to manipulate the 
task environment, but to assess the natural variability in the data and the 
ability of various models to deal with them. It appears that, whereas the 
models as a whole were not bad at predicting the average time per unit 
task, there was insufficient variation within the editing tasks to trigger 
increased responsiveness from the finer grain models.
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Status of Goals and Operators

What psychological reality is to be ascribed to the various components 
and features of the GOMS model?

The occurrence of goals in a GOMS model is one of its primary 
cognitive features. Goals are required in generating the model and in



supporting its rational character as behavior directed towards the end of 
editing the manuscript As it stands, however, the goals do not make any 
distinguishable contribution to the time calculations of the various 
models. Technically, this arises from a confounding of goals and oper­
ators: any time assigned to creating a goal or to cleaning up and 
disposing of a goal is not distinguishable from additional time in the 
associated operators. Goal-manipulation operations should not take 
longer than about .5 sec, so that goal operators should not show up at 
any level above the Keystroke Level, in any event.

The confounding of goal-manipulation times results in part from 
GOMS being a model of error-free skilled behavior, so that the overt 
record contains evidence only of the sequence of effective actions. For 
our users, there are essentially no verbal expressions that indicate goal 
activity. However, protocols from inexperienced users are sprinkled with 
goal statements that correspond to the goals in a GOMS model. In one 
such experiment, when the model predicted the processing of the g o a l : 
USE-QS-METHOO, the user would almost invariably make comments like: 
“Okay, I want to get down to a line that starts with ‘Food store’.” When 
the model predicted the g o a l : u s e -s -c o m m a n d , the user would say: 
“Now I want to substitute ‘30’ for ‘39’.” But no verbalizations were 
recorded in connection with low-level operators like t y p e .
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Operator Variability

The order of precision of our operators, as measured by the CV, 
ranges from about .9 at the Keystroke Level to .3 at the Unit-Task Level. 
In general, CVs should be expected to decrease with increasing mean 
when operators are composed of suboperators, a relationship that might 
be called “Abruzzi’s Law” (Abruzzi, 1952, 1956). It is easy to see why 
such a relationship is reasonable. Suppose a composite operator of mean 
duration A/ were simply composed of strings of n identical elementary 
operators of mean duration m. Then, M  = nm and

var(A0 =  n var(/n).

Recasting this equation in terms of the CV  gives

C V\f =  pM  where p  = m .
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Figure 5 .19. Coefficient of variation for a 
operators as a function of mean operator time.

variety of

That is, the CK is inversely proportional to the square root of the mean 
operator time. The actual decrease is illustrated in Figure 5.19, which 
plots CV  against operator mean M. Each point on the graph is based on 
multiple observations of a single person. The open symbols are 
manuscript-editing operators from Figure 5.8 and Figure 5.15 that 
occurred more than five times (excluding combination operators, t y p e , 
ACTION, and u n k n o w n ). The solid circles are operators from Abruzzi 
(1956, pp. 216-217), such as cutting and stitching clothing patterns in a 
ladies’ garment factory. In log-log coordinates, the relationship between 
mean and CK is essentially linear. A regression fit of the points in Figure 
5.19 gives

l n C K =  -.735 -  .388In M 

(R^ = .55, SE  =  .38, coefficient ^  0 at p < 10®), or

CV  =  .480M--3®®.



Figure 5.19 suggests that, in absolute terms, the CKs observed in our 
experiment are roughly what would be expected from the size of the 
operations alone.

As C y  increases, the number of observations needed to estimate the 
mean operator duration to a fixed precision also increases (Abruzzi, 
1956). This is reflected in the figure as greater dispersion for operators 
having small durations and in the fact that many of the points on the 
outlying edge are those with the lowest Ns. As the time for the operators 
becomes shorter, approaching the grain of characteristic physiological 
events, the operators tend to become more purely physical or mental. 
Since the physical operators are easier to identify and measure, these 
should have lower CKs. In Figure 5.19, the outlying points below the 
regression line are mostly simple physical acts (indicated by squares), 
such as LOOK-AT and t u r n -p a g e . The outlying points above the line are 
mostly mental actions (indicated by triangles), such as c h o o s e -c o m m a n d  
or VERiFY-EDiT. If the purely physical and purely mental operators are 
ignored, the slope of the line becomes —.433, even closer to the - .5  for 
the ideal case of simple composition.

Extending GOMS to Cover Errors
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It is important to ask how a GOMS model might be extended to 
cover errors and associated behavior. As we have seen, skilled behavior 
does not preclude the existence of a substantial number of errors, with an 
appreciable fraction of the total time spent correcting the errors. In 
Experiment 5C, about half the time was spent in error unit tasks, and 
about half that time (about a quarter of the total time) was error time, 
time the user actually spent committing and corrrecting errors. 
Compared with other experienced secretarial users we have run in our 
laboratory, S13 produces a higher percentage of error unit tasks, but is 
faster in overall performance (and also in performing error-free unit 
tasks). S13 thus gives up accuracy in favor of speed, since she is able to 
recover rapidly from errors.

We can model the states of an error unit task by a slight extension of 
the GOMS theory. First, we must allow operators to fail as well as 
succeed. Then we must specify how the user corrects the failure. The 
extension to the GOMS theory is to add the provision that when an 
operator fails, it produces an error condition, which can be represented as



the correction goal. This goal is accomplished by selecting a correction 
method.

We have said that a skilled user committing an error proceeds 
through the stages: (1) Error, (2) Detection, (3) Reset, (4) Correction, 
and (5) Resumption of error-free activity. The Detection stage occurs 
when the correction goal becomes active immediately after a failed 
operator, thus causing an interruption in the error-free behavior 
sequence.

The action in the Reset stage can be modeled by a new operator, 
ABORT-COMMAND. This operator denotes more than just the physical 
striking of the d e l e t e  key to reset the editor to accept commands again; 
the user’s mental goal stack also is cleared back to the last use  goal—a 
“mental reset” Although such an operator can be provided within the 
general spirit of a GOMS model, it should be noted that this operator is 
the first departure from the simple stack discipline for goal control.

The new unit task(s) in the Correction stage can be modeled simply 
as error-free unit tasks with one exception—a new operator, g en er a te - 
UNiT-TASK, is needed in place of the a c q u ir e -u n it -t a s k  operator.

Let us now consider how an extended GOMS model would handle 
the three types of errors noted in Experiment 5C: typing errors, method- 
abortion errors, and method-failure errors. The method for handling 
typing errors is the simplest. When a typing error occurs, the user 
becomes aware that the last character typed may be wrong. In terms of 
the model, the t y p e  operator produces a goal to correct the bad 
character. The method for accomplishing this goal is as follows:

GOAL: CORRECT (BadCharacter)
. LOOK-AT-DISPLAY 
. COMPARE 
. TYPE (CONTROL-A)

TYPE (CorrectCharacter).
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That is, the user is to look at the display (if not already looking at it), 
compare the last typed character witfi the intended one, delete the bad 
one (if they are different), and type the correct one (if they are different). 
The user may then resume typing the string in which the error occurred. 
The predicted time for this method, using the operator times in Figure 
5.15 and the typing formula in Equation 5.1, is from 1.36 sec to 1.80 sec 
(depending on the specifics of the situation, such as whether the



CorrectCharacter is in the touch-typing zone). The predicted time 
compares favorably with the observed mean typing error time of 1.53 sec 
(Figure 5.18).

The COMPARE operator in the above method may, of course, 
determine that the bad character is correct, in which case it is not 
changed. There is no real error in this case, only a goal to check for one, 
but the goal still causes an error-like interruption. Such behavior may 
account for some of the u n k n o w n  operators in Experiment 5C.

Method-abortion and method-failure errors also evoke routine 
correction methods. A method-abortion error is triggered by the failure 
of some operator subordinate to the goal of using some POET command. 
For example, when specifying the second argument of the Substitute 
command, the user may notice that the first argument will not work and 
must be respecified:

GOAL: RESPECIFY-ARG 
. ABORT-COMMAND 
. GOAL: USE-S-COMMANO .

Method-failure errors are even simpler in structure. This kind of 
error is produced by a failure signal from the v e r if y -e d it  operator. For 
the Substitute command, the failure is caused by either no substitutions 
or too many substitutions. For the former, the corrective method is to 
establish the goal of redoing the original modification using the 
Substitute command.

GOAL: MODIFY-TEXT 
. GOAL: USE-S-COMMAND
. VERIFY-EDIT.

A more general method would not specify which command to use, in 
which case a command other than the Substitute command could be 
selected for the second try. The remedy for extra, uncorrect substitutions 
is to generate a new unit task to remove them:

GOAL: REDEFINE-UNIT-TASK 
. GENERATE-UNIT-TASK 
. GOAL: EXECUTE-UNIT-TASK .
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These two methods cover all observed errors in Experiment 5C that were 
classified as method-failure errors.



As a final note, we observe that the control structure of a GOMS 
model begins to break down during error behavior. Some method 
failures, such as the big errors in Experiment 5C, seem to require 
genuine problem-solving behavior for recovery. For example, the failure 
of a GOAL: LOCATE-LiNE method in POET can leave the user in a state of 
confusion as to just where in the file POET is currently located. And if 
the user does not detect the error until after making the modification (on 
the wrong line), then the user must undo the modification before 
searching for the correct line.^ Such errors are rather rare events, and 
when they occur the user embarks on a correction course without 
employing a routine method and without planning an optimal method, 
leaving the user in a problem-solving mode of behavior. We assume that 
the user would acquire a routine and nearly optimal method for 
correcting this kind of error if it were to happen often enough.
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Manuscript Editing as a Cognitive Skill

Our analysis of user behavior in the manuscript-editing task leaves 
little doubt about its characterization as a cognitive skill, however that 
phrase is ultimately defined. The cognitive apparatus is much in 
evidence, epitomized by the GOMS models, which dictates that there be 
selection of the course of action in accordance with the demands of the 
task, mediated by hierarchical goal structures. The GOMS models give a 
reasonable account of error-free user behavior and may be extended to 
routine error-correction behavior.

It is likewise obvious that the users we observed were skilled. 
Applied to physical motions, skill connotes smoothness, control, and 
economy of effort (Bartlett, 1958; Welford, 1968). Although 60% of the 
time was spent in non-physical activities, these descriptions certainly are 
appropriate for the users we observed. One indicator of skill is the time 
taken to perform the same task by those who are obviously unskilled. In 
Chapter 3, we saw that low typing skills, lack of technical background, 
and limited experience combined to make a factor of three difference in 
text-editing time.

 ̂ In the biggest observed error in Experiment 5C, however, the user went searching 
for the correct line before undoing the bad modification and then had to later return to 
undo it again.



The notion of skill is intimately related to the routine character of a 
task, for people generally become skilled in whatever becomes routine for 
them. Observation of our users demonstrates, if any additional demon­
stration is needed, that, just as in sensory-motor tasks, skill is highly 
evident in cognitively-dominated routine tasks.

Learmng. The absence of significant learning during performance can 
often be taken as a characteristic of skilled routine performance. In 
Experiment 5C, S13 seems to be engaged in a steady-state performance. 
Within the experimental session, there is no evidence of learning; if 
anything, rather than the increasingly faster times characteristic of 
learning, there is a slight slowdown over the course of the 20-minute 
experimental session. Nor is there evidence of S13 learning over 
extended time. Five months earlier, S13 used the same terminal and 
system to edit a different manuscript at the rate of 11.0 sec per unit task 
(compared with 11.8 sec in this experiment). Our assertion that absence 
of learning characterizes routine skilled behavior must be qualified. 
Though there is no appearance of skill learning over a single session, it is 
only through repeated sessions that a user becomes skilled, and much of 
this happens after the user’s time is far enough out on the Power Law of 
Learning curve to give the appearance of being very skilled. Further­
more, substantial learning does take place within a single session about 
the specific manuscript being edited (which is, of course, entirely new to 
the user).

Unit-Task Structure. Perhaps the most important feature to emerge 
from our analysis of manuscript editing is its unit task structure. 
Manuscript editing is broken into a sequence of almost-independent unit 
tasks. Within each unit task the user’s behavior is highly organized and 
under the control of well-learned methods, which are quickly triggered 
into action by the dynamic features of the task situation. Unit tasks take 
only about 12 sec each with the POET editor, and even less with faster 
editors. This provides an extremely short time horizon for the integration 
of behavior.
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5.6. CONCLUSIONS

It is possible to describe the behavior of the user of a computer text­
editing system by a cognitive theory composed of a small number of 
goals, operators, methods, and selection rules. In this chapter we have
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exhibited models composed of these elements that give a reasonable 
quantitative account of the behavior.

A GOMS model for the manuscript-editing task predicted the 
sequences of user actions in the task reasonably well. It predicted a 
user’s choices of methods about 80~90% of the time; and it predicted the 
actual operators in sequence 80~100% of the time in models at the 
Argument Level; but the accuracy for predicting operator occurrences in 
sequence was reduced to 50% at the most detailed level, the Keystroke 
Level.

The model also made reasonably good predictions for the amount of 
time necessary to make individual modifications to the text It was able 
to predict time to within about 35% on new (Crossvalidation) data. This 
is comparable to achieving 4% error on the whole 20-min task of editing 
the manuscript (neglecting user errors).

It is important to consider at what level of behavior a GOMS model 
will operate—the issue of the grain size of the analysis. In this chapter 
we answered this question directly, repeating our analyses with nine 
different GOMS models. In general, there appears to be a gain in 
accuracy when refining the model at the Unit-Task Level (which is 
similar to the model of Chapter 4), but further gains in accuracy with 
finer grains of analysis were hard to achieve. Accuracy in predicting the 
sequences of user actions fell off as the model grain became finer, 
whereas accuracy in predicting time remained constant.

We have argued that manuscript editing can be characterized as a 
cognitive skill, at least for expert users. Even the user’s behavior 
immediately after the occurrence of routine errors has the character of 
cognitive skUl. One of the characteristic features of this skill is its unit 
task structure.



Appendix to Chapter 5:
MATCHING OPERATOR SEQUENCES

The problem is to put two sequences of operators, which may be of 
different lengths, into correspondence and then to assign a value to how 
well they match. For example, if g f m , s c , SA, se , ve , and VL are 
acronyms for operators, the algorithm to be described takes as input both 
a Predicted sequence and an Observed sequence of operators:

Predicted: g fm  s c  s c  v l  s c  s a  s a  ve  
Observed: g fm  s c  s a  s c  s a  s a  ve  .

It inserts dummy x operators to bring them into correspondence:

Predicted: g fm  s c  s c  vl  s c  s a  sa  ve 
Observed: g fm  s c  sa  x s c  s a  s a  ve  .

There are now 6 matches out of a possible 8, or a 75% match. The 
algorithm inserts dummy operators in such a way as to maximize the 
number of matches.

The following procedure is a translation of the Interlisp function that 
was used for computations in Experiments 5B and 5C into an informal 
Algol-like notation. The algorithm is based on Hirschberg (1975) and 
Sakoe and Chiba (1978). It takes as input predicted and observed 
sequences and returns the percentage of matches and new versions of the 
input sequences resulting from the addition of dummy operators.

procedure matchSeqstPredSeq, ObsSeq):

Step I. Initialize.
PredLength length(PredSeq);
ObsLength <- length(ObsSeq);
array PredSeq[1 :PredLength], ...Predicted sequence o f operators

ObsSeq[1 rObsLength], ...Observed sequence of operators
Score[0:PredLength, 0:0bsLength]<-0, ...Workingspace 

PredSeqResutt[1 :PredLength -i- ObsLength], 
ObsSeqResult[1 rPredLength -i- ObsLength];
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Step 2. Compute scores for a matrix with one row for every operator in the 
predicted sequence and one column for every operator in the observed 
sequence.

for i from 1 to PredLength do 
for j from 1 to ObsLength do 

if (PredSeq[i] = ObsSeq[j]) 
then Score[i,j] ♦-Score[i -  1,j ~ 1] + 1; 
else Score[iJ] max(Score[i -  1 ,j], Score[ij -  1]);
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Step 3. Traverse the matrix backward along the path o f highest scores. 
i PredLength; j ♦- ObsLength; k ♦-1; 
until (i = 0 and j = 0) do

if (i^O and (j = 0 or (Score[i -  1 ,j] > Score[i ~ 1 ,j -  1])) 
then PredSeqResult[k] <- PredSeq[i];

ObsSeqResult[k] "X"; 
k<-k + 1; i« - i -1 ;

elseif (j^O  and (i = 0 or (Score[i J -  1] > Score[i -  1J -  1])) 
then PredSeqResult[k] ^ "X";

ObsSeqResult[k] ^  ObsSeq[j]; 
k«-k + 1;

else PredSeqResult[k] ^  PredSeq[i];
ObsSeqResult[k] ObsSeq[j]; 
k«-k-i-1; i ^ i - 1 ;

%Match <- Score[PredLength, ObsLength] /  (k -  1); 
return(%Match, PredSeqResult, ObsSeqResult); end;



http://taylorandfrancis.com


6. Extensions of the 
GOMS Analysis

6.1. TASK ANALYSIS
Editing Tasks 
Physical Environment

6.2. MODEL OF THE USER
General GOMS Analysis 
Observational Studies 
Estimation of Parameters 
Simulation of User Behavior

6.3. CONCLUSIONS

There are several directions in which the GOMS models might be 
extended. In this chapter we consider the issues involved in three of 
these. The first extension is to another editor. In particular, we would 
like assurance that a GOMS description can be given for a display- 
oriented editor (the editor in Chapter 5 was line-oriented). A display- 
oriented editor may cause new issues to arise concerning the interaction 
of the user with the display.

The second extension concerns the accuracy of a GOMS model for 
predicting a user’s action. We saw in Chapter 5 that, as the detail of the 
GOMS models increased, it became more difficult to predict the precise 
operator sequence the user would employ on a specific occasion; it was 
especially difficult to predict when the user would consult the manuscript 
for information. Actually, for our purposes, it would be sufficient to 
predict the distribution of operator sequences over a set of similar 
occasions. But the GOMS notation would have to be extended to 
incorporate stochastic elements of two types: (1) operator times expressed 
as probability distributions rather than as single numbers and (2) 
probabilistic selection rules and conditionalities for predicting which 
method the user will employ and for expressing probabilistic condi­
tionality within those methods.
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Third, we continue our information-processing task analysis of text­
editing by defining a symbolic representation for the instructions on the 
manuscript and by further explicating how these instructions lead to the 
behavior we observe.
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EDITING COMMANDS

To delete text: Select old text with mouse 
Type D

To insert text: Select insertion point with mouse 
Type I
Type new text 
Type ESC

To rep lace text: Select old text with mouse 
Type R
Type new text 
Type ESC

SELECTIONS WITH MOUSE

To select a character: Point to character with mouse 
Push MOUSE-BUTTON-1

To select a word: Point to word with mouse 
Push MOUSE-BUTTON-2

To select a string of characters: Point to first character with mouse
Push MOUSE-BUTTON-1
Point to last character with mouse
Push MOUSE-BUTTON-3

To select a string of words: Point to first word with mouse
Push MOUSE-BUTTON-2 
Point to last word with mouse 
Push MOUSE-BUTTON-3

Figure 6.1. Subset of BRAVO editor commands.



As a vehicle for discussing these extensions, we sketch a GOMS 
model simulation of a user for the display-oriented editor b r a v o , one of 
the editors tested in Chapter 3. This editor is similar to POET in 
command structure (see Figure 6.1), but uses a mouse for selection of 
text on a full-page video display (30~50 lines of text are displayed on the 
page, depending on the typefont used and the spacing between lines). 
Stochastic predictions are derived from the model by assuming proba­
bility distributions for operator times and method choices, then running 
Monte Carlo simulations. The expanded task analysis is accomplished by 
having the model operate on a symbolic representation of the manuscript 
instructions.
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6.1 . TASK ANALYSIS

The purpose of a task analysis is to map out the constraints imposed 
on behavior by the nature and features of the task environment. Here 
we add two pieces of task analysis to that already developed in Chapter 
5: (1) a description of the elements of knowledge a user can have about 
the editing tasks he is to do and (2) a partial description of the physical 
environment.

Editing Tasks

What information does the user know about the editing task he 
performs and when does he know it? Take, for example. Task A2 of 
Figure 6.2. The instructions marked on the manuscript indicate that the 
character “a” is to be inserted as a word in front of the word “necessary.” 
At some point during the execution of this task, the user must know that 
the task is an insertion, where the insertion point is, what new text is to 
be inserted, and, perhaps, information about where the task is, relative to 
other tasks on the page (this knowledge may take the form of: the task 
is the second task on the page; it is on line 12; it is before Task A3; it is 
after Task Al). To keep track of these bits and pieces of information, we 
can represent the user’s knowledge as a network, with chunks as nodes 
and relations between the chunks as links. This is done for Task A2 in 
Figure 6.3. Of course, at any moment the user might actually possess 
only part of the knowledge indicated in the diagram, some of the links or 
nodes being missing. The diagram shows the maximum knowledge we



While the official, chartered purpose of this Subcommittee on Data Base 
Management systems is to investigate the potential for standardization in the 
area of data base management systems, a necessary first step of the work of 
the Subcommittee has been the development of a set of requirements for 
effective data base management systems. These requirements have emerged 
as the work of the Subcommittee^manifested^roceeded and have)themselves 
in the form of a generalized model for the description of data base 
management systems. As no existing or proposed implementation of a data 
base management system completely satisfies these requirements nor 
comprises all of the concepts involved^e (^tanJl^ds is
an explanation of this model. The bulk of this Report provides such an 
explanation. ,

cUscviw biri’eVlu

Among the rcsponsibiUties of the
Specifications Planning and Requirements Task Force of the Ad Hoc 
Marketing Committee for Computers and Information Processing is the 
generation of recommendations for action by the parent Task Force on 
appropriate areas for the initiation of specifications development efforts. For 
some time, starting in about 1%9, the task force has been aware that data 
base management systems are becoming central elements of information 
processing systems, and that there is less than full agreement in the 
community on appropriate design. In addition to the existence of a number 
of implementations of such systems, a list that continues to grow, there are 
several documents generated out of the collective wisdom of some segment 
of the information processing community which are either proposals for 
specific systems (SMITH 1971) or more general statements of requirements 
(JAYME 1970). (HO 1971). As is well known, there is a debate in the 
community on whether existing and proposed implementations meet the
indicated requirements, or whether the requirements as drawn are all really 

Q ^necessary and ewtifely uaefafT Further, there have been serious questions 
about the economics of systems meeting all the stated requirements.

Chapter I: INTRODUCTION

©

©

Figure 6.2. Sample page of a marked-up manuscript.
T h e  labels A1 through A5 Identify the unit tasks for this study. T h e  user did not 
see these task labels.
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presume it is possible for the user to have about the task, regardless of 
whether he actually has it at a given instant

Figure 6.3 is a diagram for a specific task. We can also describe some 
of the general editing concepts possessed by the user by making a 
distinction between (1) general notions, such as the general notion of an 
« IN S E R T IO N , and (2) particular cases that exemplify the general notions, 
such as the Task A 2 , which is a particular instance of an « i n s e r t i o n  

task. The general notions are called concepts (notationally we begin 
concept names with a « to distinguish them), and the particular cases 
that exemplify the concepts are called exemplars. Concepts are defined 
by schemata, which give the attributes and values the exemplars of a 
concept may have and the higher-level superconcepts to which a concept 
is related.

Figure 6.4 shows the schemata for the general concepts used in Figure 
6.3 and their relationships to the parts of Task A 2 ; The exemplar A 2  has 
as its concept « i n s e r t i o n . The concept « i n s e r t i o n  has as its 
superconcept the concept « b a s i c -t a s k . The concept « b a s i c -t a s k  has 
an attribute l i n e - n u m b e r :, whose value is some (unknown) exemplar of 
the concept « i n t e g e r . Therefore A 2  (which is also an exemplar of the 
concept « B A S I C  t a s k )  also has an attribute l i n e -n u m b e r :, with a value 
1 2  (which, in turn, is an exemplar of the concept « i n t e g e r ) .

The diagram in Figure 6.4 also shows the relationship between other 
parts of the exemplar a  2  and the schemata of the concepts it references. 
The relationships quickly become complex. Whereas such diagrams are 
illuminating for small networks of knowledge, they rapidly become 
unreadable (and undrawable) as the number of elements increases. It is 
therefore necessary to use a text-language notation for a description of 
any complexity. The text-language equivalent for A2 in Figure 6.3 is;

A 2  = « IN S E R T IO N

where
X t = « C H A R A C T E R

{ F U N C T IO N : IN S E R T

IN S E R T IO N -P O IN T : ^ 4
N E W -T E X T : X 2
R E L -T A S K -N O : 2
L IN E -N O : 1 2
P R E V IO U S : A1

N EX T: A 3  ) ,

T E X T -T Y P E : C H A R A C T E R

B O U N D A R Y : W O R D

LEN G TH : 1 ) .
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^INSERTION

( in s e r t)  (j I )  ( 2 )  ( ^  ( ^

(word)  ( character)  ( T )

Figure 6.3. Symbolic representation of Task A2.

This can be read as “ a  2  is an exemplar of the concept # i n s e r t i o n , with 
F U N C T IO N : IN S E R T  and IN S E R T IO N -P O IN T : and ...”, or more succinctly,
“ a 2  is an « IN S E R T IO N  with ...”. The text-language definitions for the 
schemata that define the user’s concepts describe the space of editing 
tasks addressed by the model (see Figure 6.5). For purposes of our 
simulation, we are concerned with only the common sort of text 
manipulations, such as those in Figure 6.2, excluding formatting tasks, 
such as specifying typefonts or leading between text lines. The tasks we 
consider are; (1) insertion of new text, (2) deletion of old text, (3) 
replacement of old text by new text, (4) movement of text to a new 
location, and (5) transposition of two adjacent pieces of text.

Given the schemata in Figure 6.5, the tasks on the manuscript page 
in Figure 6.2 can now be described (see Figure 6.6). Figure 6.6 is an 
example of the symbolic description of editing tasks we use as input to 
our simulation.
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Figure 6.4. Symbolic representation of Task A2.
This representation  show s the  relationship  betw een the  exem plars  and the  c o n ­

cepts  of w hich they are  instances.

Physical Environment

We have described the logical elements of the editing task, but there 
are also physical elements of the user interface that affect the user’s 
behavior. The video display might not be legible, for instance, or the



c o n c e p t  #  BA SIC-TA SK
SU PER C O N C EPT: NIL
H A S-PA R T S: (TASK-NO: {a #  ATOM)

REL-TASK-NO: {a « INTEGER)

LINE-NO: {a «IN T E G E R )

f u n c t i o n : {a «ED IT -FU N C TIO N ))

c o n c e p t  # T A S K
IS-O N E-O F: ({a #  DELETION}

{a #  INSERTION}
{a #  REPLACEMENT}
{a #  TRANSPOSITION})

c o n c e p t  #  DELETION
SU PER C O N C EPT: #  BA SIC-TA SK  
H A S-PA R T S: (FUNCTION:

OLD-TEXT:
DELETE
{a # TEXT-IN-MS})

c o n c e p t  #  INSERTION
SU PER C O N C EPT:
H A S-PA R T S:

#  BA SIC-TA SK  
(FUNCTION: 
INSERTION-POINT: 
NEW-TEXT:

INSERT
{a #  PLACE-IN-M S} 
{a #T EX T })

c o n c e p t  #  REPLACEMENT
SU PER C O N C EPT: #  B A SIC-TA SK  
H A S-PA R T S: (FUNCTION:

NEW-TEXT: 
OLD-TEXT:

REPLACE 
{a #T E X T }
{a #  TEXT-IN-MS})

c o n c e p t  #  MOVE
SU PER C O N C EPT: #  BA SIC-TA SK  
H A S-PA R T S: (FUNCTION:

OLD-TEXT:
MOVE
{a # TEXT-IN-MS} 

INSERTION-POINT: {a  #  PLACE-IN-M S})

c o n c e p t  #  TRA N SPO SITIO N
SU PER C O N C EPT: #  B A SIC-TA SK  
H A S-PA R T S: (FUNCTION:

LEFT-TEXT: 
RIGHT-TEXT:

TR A N SPO SE 
{a #  TEXT-IN-MS} 
{a #  TEXT-IN-MS})

c o n c e p t  A B O U N D S
H A S-PA R T S: (ST ART.- 

END:

c o n c e p t  # CHARACTER
SU PER C O N C EPT: # T E X T  
H A S-PA R T S: (TEXT-TYPE:

BOUNDARY: 
LENGTH:

{a
{a

n  PLACE-IN-M S} 
#  PLACE-IN-M S})

CHARACTER
{a «C H A R A C TER -B O U N D A R Y ) 
1)
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c o n c e p t  # CHARACTER-BOUNDARY
IS-O N E-O F: (IN-WORD

WORD)

c o n c e p t  # CHARACTER-IN-M S
SU PER CO N C EPT: # CHARACTER
H A S-PA R T S:

c o n c e p t  #T E X T
IS-O N E-O F:

c o n c e p t  #  TEXT-IN-MS 
IS-ONE-O F:

(LOCATION: {a #  PLACE-IN-M S})

({a #W O R D >
{a #  CHARACTER) 
{a #TEX T-SEG })

({a #W O R D -IN -M S}
{a #C H A R A C TER -IN -M S} 
{a #TEX T-SEG -IN -M S})

c o n c e p t  #T E X T -SE G
SU PER C O N C EPT: # T E X T  
H A S-PA R T S: (TEXT-TYPE:

LENGTH: 
BOUNDARY:

c o n c e p t  #TEX T-SEG -B O U N D A R Y  
IS-O N E-O F: (LINE

SPLIT-LINES
SPLIT-PA G ES)

TEXT-SEG 
{a #  INTEGER)
{a #TEX T-SEG -B O U N D A R Y ))

c o n c e p t  #TEX T -SE G -IN -M S
SU PER C O N C EPT: # TEXT-SEG 
H A S-PA R T S: (START-LOC:

END-LOC:

c o n c e p t  # W O R D
SU PER C O N C EPT: #T E X T  
H A S-PA R T S: (TEXT-TYPE:

BOUNDARY: 
LENGTH:

{a #  PLA CE-IN -M S) 
{a  #  PLACE-IN-M S})

WORD
W ORD
{a #  INTEGER})

c o n c e p t  #  W ORD-IN-M S
SU PER C O N C EPT: #W O R D  
H A S-PA R T S: (LOCATION: {a #  PLA C E-IN -M S))

Figure 6 .5. Concepts that define the space of editing tasks 
addressed by the simulation model.
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PAGE-1 = #PA G E

A1 = #MOVE

A2 = #  INSERTION

A3 =  #  INSERTION

A4 = #  REPLACEMENT (

A5 =  #  DELETION

PAGE-NO:
TASKS:
NEXT:

FUNCTION:
OLD-TEXT:
INSERTION-POINT:
REL-TASK-NO:
LINE-NO:
NEXT:

FUNCTION:
INSERTION-POINT:
NEW-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
INSERTION-POINT:
NEW-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
NEW-TEXT:
OLD-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
OLD-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

(LIST: A 1 A2 A3 A 4A 5) 
PAGE-2 )

MOVE

Xi

1
8
A2 )

INSERT

^4
X2
2
12
A1
A3 )

INSERT

X3
3
12 
A2 
A4 )

REPLACE

X4
XS
4 
16 
A3 
A5 )

DELETE

X6
5
33  
A4 
NIL )
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X2= «CHARACTER

X 3 =  «TEXT-SEG

X 4 =  «TEXT-SEG

START-LOC: X2
ENDLOC: ^3
TEXT-TYPE: TEXT-SEG
LENGTH: 4
BOUNDARY: LINE )

TEXT-TYPE: CHARACTER
BOUNDARY: WORD
LENGTH: 1 )

TEXT-TYPE: TEXT-SEG
LENGTH: 19
BOUNDARY: LINE )

TEXT-TYPE: TEXT-SEG
LENGTH: 79
BOUNDARY: SPLIT-LINES )

START-LOC: K
END-LOC: ^5
TEXT-TYPE: TEXT-SEG
LENGTH: 21
BOUNDARY: SPLIT-PAGES )

START-LOC: ^ 8
END-LOC: A ,
TEXT-TYPE: TEXT-SEG
LENGTH: 71
BOUNDARY: SPLIT-LINES )

Figure 6.6. Symbolic representation of the manuscript page 
shown in Figure 6.2.

user might not be able to see certain information not on the current page 
of the manuscript. Four main entities of the physical environment are of 
interest to us; the user, the editor (including its input devices, the 
keyboard and mouse), the editor’s video display, and the marked-up 
manuscript. We take the point of view that a description of this 
environment should permit any of these elements to be altered (the page 
of the manuscript to be changed, for example) without altering the 
description of the other three. A technique (based on the simulation



language Smalltalk: Kay, 1977, and Ingalls, 1978) that will permit such a 
separation is to describe the physical environment in terms of a set of 
transactions between these entities, each transaction consisting of a 
message and its reply, if it has one (see Figure 6.7). The user’s act of 
consulting the manuscript to get the next task after Task Al, for example, 
is implemented in the simulation by having the model of the user send 
the message * r e a d -n e x t -l o c a t io n : to the manuscript and having the
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READ-LOCATION-OF

* INSERT-TEXT
* REPLACE-TEXT
* DELETE-TEXT
* JUMP-TO 
*TYPE

SCROLL-TO 
SELECT

REPOSmON-TO

* TURN-PAGE
* READ-NEXT-LOCATION-OF
* READ-TARGET-TYPE-OF
* READ-ATTRIBUTE-OF

EDITOR
(including keyboard 
and mouse) MANUSCRIPT

Figure 6.7. Analysis of the physical environment as entities 
and transactions.



manuscript reply with the message where X4 is a symbol denoting the 
physical location of Task A2.

There are four types of transactions:
(1) The user consults the manuscript to find a new task or 

to discover more details about the current task (User 
^  Manuscript transactions, where the symbol => 
shows that the user initiates a transaction to the editor).

(2) The user issues commands to the editor (User =>
Editor transactions).

(3) The editor changes the display (Editor =► Display 
transactions).

(4) The user consults the display to locate a piece of text 
(User => Display transactions).

Two entities, the user and the editor, are active, able to initiate trans­
actions. The two other entities, the manuscript and the display, are 
passive, only replying to messages sent them. In the simulation model, 
each of these four entities is represented as a separate process, interacting 
via the transactions.

We can describe the physical environment (according to this model) 
by listing the model transactions available between the entities in the 
environment Return messages, when they exist are listed following the 
symbol

U s e r  E d i to r  T r a n s a c tio n s :
•INSERT-TEXT 
•REPLACE-TEXT 
•DELETE-TEXT 
•JUMP-TO {{a #TASK})
•TYPE ({a #TEXT))
•SCROLL-TO {{a #TASK})
•SELECT.

These transactions reflect the commands available in the editor b r a v o . 
•INSERT-TEXT is the insertion command and denotes the command 
portion of the interaction (typing the key i to begin the command and 
ESC to terminate it). The actual typing of the text to be inserted is 
denoted by the t y p e  transaction. The full series of keys that the user 
would actually type to insert the letter “a” in Task A2 is
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1 A SPACE ESC .



In the simulation, this action would be modeled as sending two messages 
from User =► Editor:

»INSERT-TEXT 
•TYPE (A SPACE).

•REPLACE-TEXT is the command to replace some text with other text, 
and »DELETE-TEXT is the command to remove text, »s c r o l l -t o  is the 
command to reposition (“scroll”) the text on the display so that the 
cursor, controlled by the mouse, is at the top o f the display, »j u m p -to  
is similar to the scroll command, except that the text to be positioned at 
the top o f the display is specified by a search string, »s ele c t  is the 
command (invoked by pressing a button on the mouse) to make the text 
indicated by the cursor the current selection.

The expression {a # t a s k } should be read: “an exemplar of the 
concept #TASK.”

E d i to r  D is p la y  T r a n s a c tio n :
» REPOSITION-TO ({a #  TASK}).

Only one editor ^  display transaction is modeled: repositioning the 
display in response to a »s c r o l l -to  or »j u m p -t o  transaction from the 
user.
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U s e r  ^  D is p la y  T r a n s a c tio n s :
•READ-LOCATION-OF({a #TASK})

- *  {a #MAIN-PART-OF-SCREEN}or 
{a »  BOTTOM-PART-OF-SCREEN} or 
{a # OFF-SCREEN}.

When the user acts to find the text of a task on the video display, he 
looks at the display and searches for the text We describe this activity in 
terms of the model as the user sending a message »r e a d -l o c a t io n  to 
the display and the display making a reply giving the location of the task. 
The exact location of the text on the screen is of little use in predicting 
the user’s performance and is below the grain of the model. What is 
important is whether the text is in the main (middle to top) part of the 
screen, in the bottom part, or not on the screen at all. The user has his 
own internal representation of where the task is, which may or may not 
correspond with the display’s state.



U s e r  => M a n u s c r ip t  T m n s a c tio n s :
*TURN-PAGE({a «DIRECTION})

-*■ OK or
NO-MORE-PAGES

•READ-NEXT-LOCATION-OF ({a «TASK})
- *  {a «TASK}or

NO-MORE-TASKS-THIS-PAGE 
•READ-TARGET-TYPE-OF({a «TASK})

-*■ INSERTION-POINT or 
{a «CHARACTER}or 
{a «WORD}or 
{a «TEXT-SEG}

•READ-ATTRIBUTE-OF({a «TASK}, {a «TASK-ATTRIBUTE})
-»  {an «ATTRIBUTE}

According to these transactions, the user can turn the pages of a 
manuscript either forward or backward. If he tries to turn past the last 
page, he discovers immediately that there are no more pages. The user 
can look for the next task on the manuscript, he can note what sort of 
target he must select, or he can read the new text that is to be inserted or 
other attributes of a task.

All the interactions between the display, the editor, the manuscript, 
and the user are described in terms of the listed transactions. The strict 
partitioning of the physical environment into independent processes that 
communicate through messages reflects the structure of the physical 
environment itself. If the manuscript is changed, for example, the other 
entities should work as before.
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6.2 . MODEL OF THE USER

We have thus far described the task environment, the editing task and 
its physical surroundings. Using the results of our task analysis, we can 
now set out on a general GOMS analysis of a b r a v o  user. But before 
the GOMS model can be completed, it is necessary to augment our task 
analysis with the details of how a user consults the manuscript for 
information and how he scrolls the display. This latter must be 
determined by observation of users. Consequently, we first sketch an 
outline for the model, delaying the full presentation until observational 
data have been presented.



General GOMS Analysis

To specify a GOMS model for a user we must, as discussed in 
Chapter 5, specify goals, operators, methods, and selection rules. Figure 
6.8 lists these elements of a GOMS model for a BRAVO user. The goals 
are organized into a hierarchy as pictured in Figure 6.9. Eventually each 
goal (a rectangular box in the figure) terminates on a set of operators 
(rounded boxes in the figure). Associated with each goal is a set of 
alternative methods (not shown in the Figure) by which the goal can be 
achieved and a set of selection rules (also not shown) for selecting among 
the methods.

GOALS

As in Chapter 5, the user is assumed to have a top-level goal to edit 
the manuscript one unit task at a time;

GOAL: EDIT-MANUSCRIPT 
. GOAL: EDIT-UNIT-TASK 
. . GOAL: ACQUIRE-UNIT-TASK .

The accomplishment of GOAL: e d it -u n it -t a s k  is again broken into an 
acquisition part and an execution part, just as in the poet model; in the 
simulation, though, e x e c u te  is treated as an operator that causes a 
subgoal to be set up for the task, based on the instructions acquired from 
the manuscript during g o a l : a c q u ir e -u n it -t a s k . The subgoal to be set 
up is one of the following:

GOAL: REPLACE Or 
GOAL: DELETE or
GOAL: insert (InsertionPoint, NewText) or 
GOAL: MOVE (InsertionPoint, OldText).

Unlike the simpler poet model, some of the goals are parameterized. 
For example, the goal
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GOAL: in s e r t  ({a #  APPROXIMATE-TARGET}, X,) (6.1)

represents the user’s goal to insert, in an approximately-known location, 
the text described by X2. where X2 is (as given earlier) a single character 
of text on a word boundary:
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X t = # CHARACTER ( TEXT-TYPE:
BOUNDARY:
LENGTH:

CHARACTER 
WORD 
1 ).

The parameters for goals and operators are listed in Figure 6.8. These 
parameters are the memory chunks that must be maintained in Working 
Memory at the time the goal is executed. Each chunk is given a 
symbolic slot name (for accounting purposes) in the model. In 
Expression 6.1, insertionPoint is the slot name associated in the model 
with an exemplar of # a p p r o x im a t e -l o c a t io n , and NewText is the slot 
name associated with Xj- Expression 6.1 is short for;

GOAL: INSERT (InsertionPoint = {a «APPROXIMATE-TARGET}, 
NewText = X2) •

The precise form in which the user has these pieces of knowledge 
represented in memory, however, is not specified.

Also, unlike the p o e t  model, the b r a v o  model must contain a set of 
goals related to the use of the mouse for selecting text:

GOAL: SELECT-TARGET (MSPosition, PositionType, 
VisualSearchTarget),

. GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget,
Select?)

. . GOAL: POINT-THERE (ScreenPosition, TextType, Select?).

OPERATORS
The operators are cast roughly at the Argument Level. For example, 

the user can gather information from the manuscript and the display:

GET-FROM-MANUSCRIPT (Desiredinformation, Attribute) and 
GET-FROM-DISPLAY (Desiredinformation, Attribute, MSPosition).

He can point at a certain TextType in a certain ScreenPosition, then 
(optionally) select it (notationally, the Select? parameter takes on the 
value s ele c t) by pressing a button on the mouse:

POINT (ScreenPosition, TextType, Select?).



Goals:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GOAL: INSERT ( In s e r t io n P o in tK e y ,  N ew Text)
GOAL: DELETE (OldTextKey)
GOAL: REPLACE (OldTextKey, NewText)
GOAL: MOVE ( In s e r t io n P o in tK e y ,  O ldTextKey)
GOAL: SELECT-TARGET (M SPosi t ion ,  Posi t io n T y p e ,  V isu a lS e a rc h T a rg e t )  
GOAL: POINT-TO-TARGET (M SPosit ion ,  V i s u a lS e a rc h T a rg e t ,  S e lec t? )  
GOAL: POINT-THERE (S c re e n P o s i t i o n ,  T ex tType ,  S e lec t? )

Operators:

GET-FROM-MANUSCRIPT (D e s i re d in fo rm a t io n ,  A t t r ibu te )  
GET-FROM-DISPLAY ( D e s i re d in fo rm a t io n ,  A t t r ib u te ,  M SPosition)  
SCROLL-TO (LineInMS)
JUMP-TO (LineInMS)
POINT ( S c re e n P o s i t i o n ,  Tex tT y p e ,  S e lec t? )
INSERT-TEXT 
DELETE-TEXT 
REPLACE-TEXT 
TYPE (NewText)
EXECUTE (Task)
VERIFY-EDIT

Methods:

ONE-AT-A-TIME-METHOD
ACQUIRE-EXECUTE-VERIFY-METHOD
READ-TASK-IN-MS-METHOD
INSERT-COMMAND-METHOD
DELETE-COMMAND-METHOD
REPLACE-COMMAND-METHOD
DELETE-INSERT-METHOD
ZERO-IN-METHOD
ROUGH-POINT-METHOD
CHAR-POINT-METHOD
WORD-POINT-METHOD
TEXT-SEG-POINT-METHOD
INSERTION-POINT-METHOD
POINT-WITHOUT-SCROLLING-METHOD
SCROLL-AND-POINT-METHOD
JUMP-METHOD

Selection Rules:

ROUGH-LOC-RULE
TEXT-SEG-RULE
CHAR-POINT-RULE
WORD-POINT-RULE
INSERTION-POINT-RULE
T O P -2 /3 -R U L E
BOTTOM-1 /3-R U LE
OFF-SCREEN-RULE

Figure 6.8. Outline of the GOMS model for a BRAVO user.
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Figure 6.9. Hierarchy of goais and operators in the GOMS 
model for BRAVO.
G oals are shown as square  boxes and operators as round boxes.

And he can issue commands to the editor:^

SCROLL-TO (LIneInMs)
JUMP-TO (LineInMs)
INSERT-TEXT
DELETE-TEXT
REPLACE-TEXT
TYPE.

 ̂ These user operators should not be confused with the user = >  editor transactions 
with similar names. For example, INSERT-TEXT is a user operator that eventually 
causes the transaction *INSERT-TEXT to occur.



METHODS
The simulation contains the methods for particular goals, expressed in 

a formal notation. Some of the methods are essentially the same as for 
the editor POET in Chapter 5;

Method for GOAL: EDIT-MANUSCRIPT 
ONE-ATA-TIME-METHOD =

until NoMorePages = TRUE do GOAL: EOIT-UNIT-TASK .

Method for GOAL: EDIT UNIT TASK
ACQUIRE-EXECUTE-VERIFY-METHOD =

GOAL: ACQUIRE-TASK 
EXECUTE (Task)
with-probabihty .4 do VERIFY-EDIT .

Method for GOAL: ACQUIRE UNIT-TASK 
READ-TASK-IN-MS-METHOD =

GET-FROM-MANUSCRIPT ({slot Task}) }

The first method breaks the manuscript into unit tasks, the second breaks 
a unit task into the Acquire-Execute-Verify cycle, and the third acquires 
the instructions for a task by reading them from the manuscript.

Other methods, such as the method for performing an insertion, are 
more detailed than in Chapter 5, taking into account the display-oriented 
pointing operations:

Method for GOAL: INSERT
INSERT-COMMAND-METHOD = 

if no InsertionPoint
then GET-FROM-MANUSCRIPT ({slot InsertionPointKey}) 

GOAL: SELECT-TARGET(MSPosition, {slot InsertionPoint}, 
InsertionPointKey)

INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText}) 
if NewText *  DEFAULT then TYPE (NewText).

According to this method, if the user does not know where to make the 
insertion, he looks over to the manuscript to find out. Then he selects 
the location he found and issues the Insert command to the editor. If he
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If we think o f the upper/lower case symbols, such as Task, as variables 
representing a pointer to particular types of information held in Working Memory, the 
expression {slot Task} means the pointer itself rather than its contents.



cannot remember the text to be inserted, he consults the manuscript. 
Finally, the user types in the new text (except in the special “default" 
case, where the text to be inserted is the argument to a previous 
command, such as a Delete command).

SELECTION RULES

Just as in the simulation model, the selection rules for choosing 
among methods available for a particular goal are expressed in a formal 
notation. A simple example is GOAL; p o in t -t o -t a r g e t . There are at 
least three methods in b r a v o  to accomplish this goal, depending on the 
kind of target: (1) to select a character, the user moves the mouse (to 
position the cursor at the character) and presses the first mouse button; 
(2) to select a word, he moves the mouse (to position the cursor at any 
part of the word) and presses the second button; (3) to select a text 
segment, the user first does either (1) or (2) to point to the beginning of 
a the text segment and then moves the mouse to point to the end of the 
segment and presses the third button to select all text between the two 
points. The corresponding selection rules are written:

Selection rules for GOAL; POINT-TO-TARGET 
CHAR-POINT-RULE =

if VisualSearchTarget isa #  CHARACTER 
then CHOOSE (CHAR-POINT-METHOD)

WORD-POINT-RULE =
if VisualSearchTarget isa #WORD 

then CHOOSE (WORD-POINT-METHOO)
TEXT-SEG-RULE =

if VisualSearchTarget isa #TEXT-SEG 
then CHOOSE (TEXT-SEG-POINT-METHOD).

The expression VisualSearchTarget isa «CHARACTER is true if the 
VisualSearchTarget is an exemplar of the concept «CHARACTER (or the 
exemplar of any concept that has « c h a r a c t e r  as its superconcept).

Observational Studies
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The modeling of two local sequences of user behavior requires 
additional empirical observation. FirsL there is the question of how 
frequently a user will consult the manuscript during a task? This is not a 
new question. Difficulty in predicting the answer lowered the accuracy



of the POET models in Chapter 5. Second, there is the question of when 
will the user scroll the display? This is a new question that derives from 
the user’s interactions with the video display in b r a v o . Fortunately, 
answers to both questions can be derived from a re-examination of the 
videotaped protocols of the dedicated b r a v o  users in Experiment 3B.
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CONSULTING THE MANUSCRIPT

The user usually consults the manuscript several times during the 
course of a task. How frequently does he look? What does he look for? 
How can methods be written to describe this process?

To answer these questions, 40 instances were observed of the g e t - 
FROM-MANUSCRiPT Operator (as performed by one user, S13, during the 
course of 16 insertion tasks). Three different kinds of information that 
the user sought from the manuscript could be identified: Getting the 
instructions for the Next Task (g n t ). Getting the Location of the task on 
the manuscript (g l), and Getting the New text to be inserted (g n ). Of 
course, from a single glance at the manuscript the user often acquires 
more than a single piece of information. Figure 6.10 shows the inferred 
distribution of reasons for S B ’s consultation of the manuscript during 
insertion tasks, grouped by number of characters in the inserted string. 
Each row in the table describes a separate task. The three middle 
columns tally how many times S13 looked at the manuscript for each task 
for each reason.

On Task Al, for example, the user consulted the manuscript once at 
the beginning of the task. Since she proceeded to point at the target and 
then to insert the new text without further consultations, she must also 
have obtained the information for each of these operators on that first 
consultation.

On Task A18, she consulted the manuscript once at the beginning of 
the task, then twice more before finally pointing to the targeL and a 
fourth time before beginning to type the new text While typing the new 
text, she looked at the manuscript, but glanced at the keyboard twice 
more. From the first consultation, she probably learned the approximate 
location of the task and the operation to be performed. On the second 
look, she probably obtained a better, but still approximate, location for 
the target insertion point. On the third look, she must have learned the 
exact target position. And on the fourth look, she probably got the
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Task
ID

Reason for Looking 
at Manuscript

Total
While­
typingN chars. GNT GL GN

A1 1 1 1
A21 1 1 1 2

B8 1 1 3 1 5

B 26 1 1 1

A6 4.7 1 1 2

A32 4.7 1 2 3
B2 4.7 1 1

B 23 4 .7 1 1

A3 18.2 1 1 2
A14 18.2 1 1 1 3 1
B1 18.2 1 1 1 3
B16 18.2 1 1 2 4 1

A 18 75 1 2 1 4 2
B6 75 1 1 1 3 2

A 30 522 1 1 1 3 4
B 10 522 1 1 7

Figure 6.10. Frequency of manuscript consultations.
Each row of the tab le describes a d ifferent unit task. All tasks are  Insertion tasks, 
and they are  g rouped by the num ber of characters  being inserted. The

num ber of consultations of the m anuscript a re  tallied  by reason for consultation: 
G N T  = G et N ext Task, G L = G et Location, GN = G et N ew  text. "T o ta l" is the  

colum n sum of G N T  + GL + G N  colum ns. "W hile -typ ing" is the num ber of tim es the  

user consulted  the m anuscrip t while typing.

beginning of the text to be inserted. At this point she proceeded to type 
while watching the manuscript, taking small glances back to the display 
or keyboard to check for suspected errors or to locate different keys (cf. 
Long, 1976). Consultations of the manuscript while typing text passages 
are tallied in the “While-typing” column in Figure 6.10. These g e t - 
FROM -MANUSCRiPT operations overlap with the t y p e  operation and can 
be ignored for the present analysis.



S13’s procedure for locating a target on the display (reflected in the 
GL column in Figure 6.10) is especially interesting. First, she extracts a 
few words from the manuscript to use as a visual search target. The 
words may be either the exact target or an approximate target in the 
form of some other words or characters. In either case, she points to the 
visual search target she has extracted from the manuscript. If the visual 
search target is only an approximate target, she does not select it, but 
looks over to the manuscript again and repeats the procedure. Otherwise, 
she selects the visual search target and moves on to the next step of the 
task. This method of locating the target is called the z e r o -in -m e th o d  
and is described as follows:

Method for GOAL: SELECT-TARGET 
ZERO-IN-METHOD =

while VisualSearchTarget isa #  APPROXIMATE-TARGET 
do POINT-TO-TARGET (MSPosition, VisualSearchTarget, 

DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget},

PositionType)
finally POINT-TO-TARGET (MSPosition, VisualSearchTarget,

SELECT).

VisualSearchTarget is the identifying visual search target extracted from 
the manuscript by the user. MSPosition represents the user’s memory for 
which task she is doing. PositionType identifles which of several possible 
targets she is considering (for example, a move task has an insertionPoint 
and an oidText).

Although it is not known for any task how many times g e t -f r o m - 
MANUSCRIPT will be invoked in succession (and in an engineering 
analysis, a prediction would usually need to be done in the absence of a 
particular manuscript), the numbers in the GL column of Figure 6.10 are 
well approximated by a Poisson distribution of mean .81 (see Figure 
6.11). This fact tells us that the g e t -f r o m -m a n u s c r ip t  operator in the 
simulation should be constructed so as to pick up approximate targets (as 
opposed to exact targets) in such proportion that the number of iterations 
will be Poisson distributed with the above mean.

2 1 6  6. EXTENSIONS OF THE GOMS ANALYSIS

SCROLLING THE DISPLAY

Before a user can make a modification with b r a v o , he must get the 
task onto the screen using either the s c r o l l -t o  or j u m p -t o  commands. 
Even if the task is already on the screen, the user sometimes prefers to 
move it closer to the top (nearer to eye level), which he does by scrolling.
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Number of 
GL Operations 
in a Unit Task, N

Frequency

Observed Predicted
1 6 ( .8 1 V ® V /V ! )

0
1
2
3
4

7

6
2
1
0

7.1

5 .8

2 .3
.6
.1

Figure 6.11. Comparison of the observed number of GL 
operations in a unit task with the number predicted by the 
Poisson distribution.
D ata  are  from  G L colum n of Figure 6 .10. G L stands for G et Location, or m ore  

strictly, G E T -F R O M -M A N U S C R IP T ({s lo t T ask}), w hich obtains the  location of the  
task.

Thus, on a given task, the user may or may not scroll the text on the 
screen. How can a set of selection rules be written that will predict the 
user’s choice?

For a detailed examination of scrolling, S13’s performance on all the 
tasks in the first half of the manuscript were examined. For each task, 
the following were recorded: the number of lines from the top of the 
screen to the target, whether her move repositioned the text on the 
display, and what method she used.

Selection Based on M anuscrit Positions. Figure 6.12 shows the 
number of times the user adopted each of these methods as a function of 
the distance of the target from the top of the screen. The selection rules 
used by S13 may be simply expressed: If the target is in the top two- 
thirds of the screen, do not reposition the screen; if the target is in the 
bottom third of the screen, scroll; and if the target is not on the screen, 
use the jump command (defining the jitmain-p a r t -o f -screen  as the 
first 19 lines, and the # b o t t o m -p a r t -o f -screen  as lines 20 to 24). In 
our notation, this can be written:

Selection rules for GOAL: POINT-THERE 
TOP-2/3-RULE =

if ScreenPosition isa #MAIN-PART-OF-SCREEN 
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
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Number of Lines 
from Top 
of Screen

Method
PWSM SAPM JM

On Screen

Off Screen

1-4 6
5-8 9
9-12 3

13-16 2 1
17-20 1 2
21-24 2 1
25-28 1 1
29-32 0
33-36 1
37-40 3

Figure 6.12. Frequency of alternative methods for the 
GOAL: POINT-THERE as a function of distance of the target 
from the top of the screen.
The methods are abbreviated as follows: PWSM = POINT-W ITHOUT-SCROLLING- 
METHOD, SAPM = SCROLL-AND-POINT-METHOD, JM = JUMP-METHOD.

BOTTOM-1/3-RULE =
if Screen Position isa # BOTTOM-PART-OF-SCREEN 

then CHOOSE (SCROLL-AND-POINT-METHOD) 
OFF-SCREEN-RULE =

if ScreenPosition isa # OFF-SCREEN 
then CHOOSE (JUMP-METHOD). (6.2)

These rules predict the user’s method choices 85% of the time.
Why did the user go to the expense of scrolling the display, simply 

because the target was in the bottom third? The answer is apparently 
that the bottom third of the screen was outside her comfortable vision 
zone. Normal comfortable vision is about 15° below the horizon, which, 
with the comfortable head inclination of about 20°, gives a total of 35° 
(Van Cott and Kinkade, 1972, p. 393; Cakir, Halt, and Stewart, 1980, p. 
171). The bottom third of the screen was probably (on the basis of later 
measurements) outside this comfort region. The mismatch of screen 
height with user, a common phenomenon, apparently can reduce effective



screen size and, consequently, time-efficiency by causing more scrolling 
operations.

The set of selection rules above (6.2) has the advantage that it makes 
clear the mechanism whereby S13 makes her choices. It has the 
disadvantage that it demands knowledge of the state of the screen at any 
arbitrary point in the editing process. This disadvantage could be 
overcome if the selection rules did not demand such detailed knowledge 
of the dynamics of the situation.

Selection Rules Based on Manuscript Positions. The number of lines 
d between tasks on the manuscript is easily determined by inspection of 
the manuscript alone. Figure 6.13 shows the method selections of four 
users as a function of d, the distance (in lines) from the site of the 
previous unit tasks). A set of selection rules based on d is as follows:

6.2. MODEL OF THE USER 2 1 9

Selection rules for GOAL: POINT-THERE 
LITTLE-d-RULE = 

if d <  16
then CHOOSE (POINT-WITHOUT-SCROLLiNG-METHOD) 

MEDIUM-d-RULE =
if 16<d <  25

then CHOOSE (SCROLL-AND-POiNT-METHOD)
BIG-d-RULE = 

if d > 25
then CHOOSE (JUMP-METHOD). (6.3)

These rules correctly predict 85% of S13’s method selections, the same 
percentage as the rules based on screen positions (Rule Set 6.2).

Selection Rules fo r Other Users. The results for selection rules based 
on manuscript positions (Rule Set 6.3) encourage us to use the 
manuscript distance between tasks as the measure by which to examine 
the behavior of other users, to see how stable these rules are across users. 
Figure 6.13 shows the frequency with which three other users in 
Experiment 3B used the different pointing methods. The main difference 
between these users and S13 is that they do not have the jum p -method 
in their repertoires. All three switch from the point-w ithout- 
scrolling-method to the scroll-and-point-method as the distance 
between tasks increases. The crossover point, at which users switched 
from one to the other of these methods, varied from a distance of 4 lines 
between targets to a distance of 11 lines. The following rules characterize 
their selections:
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Selection rules for GOAL: POINT THERE 
LITTLE-d-RULE2 = 

if d <  8
then CHOOSE (POINT-WiTHOUT-SCROLLING-METHOD) 

BiG-d-RULE2 = 
if d>8

then CHOOSE (SCROLL-AND-POiNT-METHOD) . (6.4)

These two rules explain 85~94% of the selections for the three users.
If scrolling is the only means employed to move the text on the 

display, then the amount of scrolling will be determined by the 
manuscript length almost independent of the distribution of tasks on the 
manuscript From examination of the data from S32, S34, and S47, users 
move the text approximately 16 lines each time they scroll the display. 
Thus, the number of scrolls a user (who does not use the jum p-to or 
FiND command) can be expected to perform is given by:

Total number o f scrolls = {Lines in manuscript) /1 6  .

Figure 6.14 shows the number of lines per scroll computed for individual 
users. Reasonable scrolling behavior may be approximated by having the 
model scroll 16 lines at a time.

Estimation of Parameters

In order to make time predictions with the model, it is necessary to 
make numerical estimates of several of its parameters. Estimates for the 
parameters are summarized in Figure 6.15. The time for the operator

6.2. MODEL OF THE USER 2 2 1

User Num ber of Lines 
per Scroll (All tasks)

S13 20.0
S32 17.7

S34 11.6
S37 16.1

Average 16.4

Figure 6.14. Observed average number of lines per scroll.
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Estimated Time
Param eter

M
(sec)

cv
Source

User parameters
GET-FROM-MANUSCRIPT 2.1 .44

SCROLL 2.6 .54

POINT 1.7 .76

TYPE .127 .50

VERIFY-EDIT 1.1 .91

Figure 5.15

Measurement of 10 instances 

Measurements of S i3 

Average of two typing tests, 

SO = .5 M (Kinkead. 1975) 

Measurement of 12 instances

System parameters
•INSERT-TEXT

•DELETE-TEXT

•REPLACE-TEXT

1.1 .36 Measured response. 25 instances

•JU M P -TO

•SCROLL-TO

1.0 1.0 Measured response, 10 instances

1.7 .71 Measured response. 10 instances

Figure 6.15. Parameter estimates for the simulation model.

GET-FROM-MANUSCRIPT is taken from Chapter 5. The time for point is 
from measurements of S13 in Experiment 3B. The time for verify-edit 
is based on the time previously measured for BRAVO in Experiment 3A. 
TYPE time is based on an average of two typing tests embedded in an 
editing exercise given to the user before the start of Experiment 3B as a 
warmup. The standard deviation for the type time is estimated by 
multiplying the mean time per keystroke by a typical coefficient of 
variation for typing of .5 (Kinkead, 1975).

In order to estimate response times of the system, 25 each of the 
command invocations ‘ insert-text , • replace-text, and • delete-text 
were measured. Since there were no obvious differences between the 
times taken by these commands, their measured times were pooled to 
give a common estimated time. Ten invocations of the *jum p-to 
command and ten of *scroll-to were also measured.

The assumption is made that operator times are gamma-distributed. 
The assumption is reasonable for at least three reasons: (1) The sum of a
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sequence of gamma-distributed operators is also gamma-distributed. 
Thus the distribution for smaller, more elementary operators has the 
same shape as for larger, more composite operators. (2) The gamma 
distribution is commonly found appropriate for operators in the industrial 
engineering literature (Nanda, 1968; Johnson, 1965). (3) The basic shape 
(skewed to the right) of the gamma distribution is correct, so that even if 
there were to be second-order difficulties in the fit of the distribution, the 
gamma distribution would still be a reasonable approximation of the real 
distribution shape.

Simulation of User Behavior

The full model can now be stated. The GOMS elements of the 
simulation model are listed in full in Figure 6.16, where the methods and 
selection rules are grouped together with the goals they address. We can 
illustrate the workings of the model by tracing out its behavior on a task. 
Figure 6.17 shows a trace of the model for Task A2 (see Figure 6.1 and 
Figure 6.3). Writing the sequence of operators from Figure 6.17, we get:

GET-FROM-MANUSCRIPT (Task, NIL)
GET-FROM-DISPLAY (ScreenPosition, {a  «A PPRO XIM ATE-TAR G ET}) 
POINT ({a «M AIN-PART-O F-SCREEN}, WORD, DON’T-SELECT) 
GET-FROM-MANUSCRIPT (V isualSearchTarget, INSERTION-POINT) 
GET-FROM-DISPLAY (ScreenPosition, A^, A2)
POINT ({a  «M AIN -PART-O F-SC REEN), CHARACTER, SELECT)
INSERT-TEXT
TYPE (NewText)
VERIFY-EDIT .

The sequence in Figure 6.17 is only one of the possible sequences the 
model predicts for this task. If the simulation were run again it would 
make different method selections, and it would eliminate conditional 
operators (that appear in w ith -probabiiity  statements). For example, it 
might predict the sequence

GET-FROM-MANUSCRIPT (Task, NIL)
POINT ({a  «M AIN-PART-O F-SCREEN}, CHARACTER, SELECT) 
GET-FROM-MANUSCRIPT (NewText, INSERTION-POINT) 
INSERT-TEXT  
TYPE (N ew T ext).



GOAL: EDIT-MANUSCRIPT 
METHOD:

ONE-AT-A-TIME-METHOD =
until NoMorePages = TRUE do GOAL: EDIT-UNIT-TASK

GOAL: EDIT-UNIT-TASK 
METHOD:

ACQUIRE-EXECUTE-VERIFY-METHOD =
GOAL: ACQUIRE-UNIT-TASK 
EXECUTE (Task)
with-probability .4 do VERIFY-EDIT

GOAL: ACQUIRE-UNIT-TASK 
METHOD:

READ-TASK-IN-MS-METHOD =
GET-FROM-MANUSCRIPT ({slot Task})

GOAL: INSERT (InsertionPointKey, NextText)
METHOD:

INSERT-COMMAND-METHOD =
if no InsertionPointKey then GET-FROM-MANUSCRIPT ({slot InsertionPointKey}) 
SELECT-TARGET (MSPosition, {slot InsertionPoint}, InsertionPointKey)
INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText}) 
if NewText ^  DEFAULT then TYPE (NewText)

GOAL: DELETE (OidTextKey)
METHOD:

DELETE-COMMAND-METHOD =
if no OidTextKey then GET-FROM-MANUSCRIPT (OidTextKey)
SELECT-TARGET (MSPosition, {slot OldText}, OidTextKey)
DELETE-TEXT

GOAL: REPLACE (OidTextKey, NewText)
METHOD:

REPLACE-COMMAND-METHOD =
if no OidTextKey then GET-FROM-MANUSCRIPT ({slot OidTextKey})
SELECT-TARGET (MSPosition, {slot OldText}, OidTextKey)
REPLACE-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText}) 
if NewText ^  DEFAULT then TYPE (NewText)

GOAL: MOVE (InsertionPointKey, OidTextKey)
METHOD:

DELETE-INSERT-METHOD =
DELETE (OidTextKey)
INSERT (InsertionPointKey, DEFAULT)

GOAL: SELECT-TARGET (MSPosition, PositionType, VisualSearchTarget)
METHOD:

ZERO-IN-METHOD =
while VisualSearchTarget isa # APPROXIMATE-TARGET

do GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget}, PositionType) 

finally GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, SELECT))
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GOAL: POINT-TO'TARGET (MSPosition, VisualSearchTarget, SELECT)
SELECTION-RULES:

ROUGH-LOC-RULE =
if VisualSearchTarget isa #  APPROXIMATE-TARGET then CHOOSE (ROUGH-POINT-METHOD) 

TEXT-SEG-RULE =
if VisualSearchTarget isa #TEXT-SEG then CHOOSE (TEXT-SEG-POINT-METHOD) 

CHAR-POINT-RULE =
if VisualSearchTarget isa # CHARACTER then CHOOSE (CHAR-POINT-METHOD) 

WORD-POINT-RULE =
if VisualSearchTarget isa #  WORD then CHOOSE (WORD-POINT-METHOD) 

INSERTION-POINT-RULE =
if VisualSearchTarget isa # PLACE-IN-MS then CHOOSE (INSERTION-POINT-METHOD)

METHODS:
ROUGH-POINT-METHOD =

GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)

CHAR-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition) 
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

WORD-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition) 
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)

TEXT-SEG-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, START-LOC: (VisualSearchTarget), MSPosition) 
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)
GET-FROM-DISPLAY ({slot ScreenPosition}, CHARACTER, SELECT)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

INSERTION-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

GOAL: POINT-THERE (ScreenPosition, TextType, SELECT)
SELECTION-RULES:

TOP-2/3-RULE =
if ScreenPosition isa # MAIN-PART-OF-SCREEN

then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
BOTTOM-1/3-RULE =

If ScreenPosition isa # BOTTOM-PART-OF-SCREEN 
then CHOOSE (SCROLL-AND-POINT-METHOD)

OFF-SCREEN-RULE =
If ScreenPosition isa # OFF-SCREEN 

then CHOOSE (JUMP-METHOD)
METHODS:

POINT-WITHOUT-SCROLLING-METHOD =
POINT (ScreenPosition, TextType, SELECT)

SCROLL-AND-POINT-METHOD =
SCROLL-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)

JUMP-METHOD =
JUMP-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)

Figure 6.16. Methods and selection rules for BRAVO.
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GOAL: EDIT-MANUSCRIPT 
The only method is ONE-AT-A-TIME-METHOD 
Use ONE-AT-A-TIME-METHOD 

GOAL: EDIT-UNIT-TASK
The only method is ACQUIRE-EXECUTE-VERIFY-METHOD 
Use ACQUIRE-EXECUTE-VERIFY-METHOD 
. GOAL: GET-TASK
. The only method is READ-TASK-IN-MS-METHOD 
. Use READ-TASK-IN-MS-METHOD

GET-FROM-MANUSCRIPT (Task NIL)
□  User => Manuscript message *READ-NEXT-LOCATION-OF (Al)
□  Manuscript User; Reply: A2
□  User = >  Manuscript message *READ-ATTRIBUTE-OF (A2, FUNCTION:)
□  Manuscript = >  User; Reply: -*■  INSERT
□  User =>  Manuscript message ’ READ-ATTRIBUTE-OF (A2, NEW-TEXT:)
□  Manuscript User; Reply: X 2

GOAL: INSERT ({a # APPROXIMATE-TARGET},
The only method is INSERT-COMMAND-METHOD 
Use INSERT-COMMAND-METHOD

GOAL: SELECT-TARGET (A2, InsertlonPoint, {a # APPROXIMATE-TARGET})
The only method is ZERO-IN-METHOD 
Use ZERO-IN-METHOD
. GOAL: POINT-TO-TARGET(A2,{a # APPROXIMATE-TARGET}, DONT-SELECT)
. ROUGH-LOC-RULE recommends ROUGH-POINT-METHOD 
. Use ROUGH-POINT-METHOD

GET-FROM-DISPLAY (ScreenPosition, {a # APPROXIMATE-TARGET}, A2)
□  User =>  Display message *READ-LOCATION-OF (A2)
□  Display => User; Reply: “♦{a  #MAIN-PART-OF-SCREEN}

. . GOAL; POINT-THERE ({a # MAIN-PART-OF-SCREEN}, WORD, DONT-SELECT)

. . TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD 

. . Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, WORD, DONT-SELECT)
GET-FROM-MS (VisualSearchTarget, InsertionPoint)
□  User ^  Manuscript message •READ-ATTRIBUTE-OF (A2, INSERTION-POINT:)
□  Manuscript =>  User; Reply: —►

. GOAL: POINT-TO-TARGET (A2, X ,̂ BUG)

. INSERTION-POINT-RULE recommends INSERTION-POINT-METHOD 

. Use INSERTION-POINT-METHOD
GET-FROM-DISPLAY (ScreenPosition, X ,̂ A2)
□  User =» Display message • REA D-LOCATION-OF(A2) - » { a  # MAIN-PART-OF-SCREEN}
□  Display => User; Reply: -►{a # MAIN-PART-OF-SCREEN}

. . GOAL: POINT-THERE ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)

. . TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD 

. . Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
□  User Editor message * SELECT 
INSERT-TEXT
□  User => Editor message * INSERT-TEXT 
TYPE (X2>
□  User = >  Editor message *TYPE (X2)
VERIFY-EDIT

Figure 6.17. Trace of the simulation model for Task A2.
The sequence of user operators produced in this trace correspond to sequence 
number 8 in Figure 6.18, Traces of transactions are marked with a □ .
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Even if the model were to make all the same choices, the times for the 
different operators would be different according to their distributions. By 
running the simulation model several times on the same task, the model 
can be used to make Monte Carlo predictions of (1) the set of possible 
operator sequences the user will employ to do an editing task, (2) the 
relative frequency with which the different operator sequences will be 
employed, (3) the distribution of time for each sequence, and (4) the 
distribution of times for all the sequences.

As an illustration, the simulation model was run 100 times on task A2 
(Figure 6.18). The runs generated 14 different operator sequences, 
containing from 4 to 11 operators, and having tasks times from about 3 
to about 20 sec. The model predicted a mean task time of 9.5 sec. The 
distribution of run times was characterized by a 5th percentile of 4.3 sec, 
a 95th percentile of 17.4 sec, and a C F of .41 sec.

Seq.
No.

User O perator Sequence Freq. M
(sec)

CV
(sec)

5%
(sec)

95%
(sec)

1 GNT PS 1 GN T1 17 8.1 .23 5.5 12.8

2 GNT PS 1 T1 15 5.2 .24 3.1 7.4

3 GNT PD GL PS 1 GN T1 11 11.5 .22 8.2 17.4

4 GNT PS 1 T1 VE 10 7.0 .34 4.5 12.1

5 GNT PD GL PS 1 T1 9 8.1 .17 6.0 9.8

6 GNT PD GL PD GL PS I GN T1 8 15.6 .17 11.7 20.1
7 GNT PS 1 GN T1 VE 7 7.7 .12 7.0 9.6

8 GNT PD GL PS 1 T1 VE 6 9.9 .33 7.4 14.2

9 GNT PD GL PD GL PS 1 T1 5 12.0 .28 9.2 17.1

10 GNT PD GL PS 1 GN T1 VE 5 11.5 .17 9.3 14.2

11 GNT PD GL PD GL PD GL PS 1 T1 VE 2 17.2 .10 15.9 18.5

12 GNT PD GL PD GL PS 1 T1 VE 2 12.5 .42 8.8 16.1

13 GNT PD GL PD GL PD GL PS 1 T1 2 17.6 .05 17.0 18.1

14 GNT PD GL PD GL PS 1 GN T1 VE 1 13.1 - 13.1 13.1

Overall 100 9.5 .41 4.3 17.4

Figure 6.18. Predicted operator sequences and execution 
times for Task A2.
The operators have been abbreviateid as follovy/s: GNT = GET-FROM-MANU-
SCRIPT (Task), GL = GET-FROM-MANUSCRIPT (VisualSearchTarget, ...), GN = 
GET-FROM-MANUSCRIPT (NewText. ...), PD = POINT (..., DONT-SELECT), PS = 
POINT (..., SELECT), I = INSERT-TEXT, Tn = TYPE n characters, VE = VERIFY- 
EDIT.
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228 6. EXTENSIONS OF THE GOMS ANALYSIS

We can state several conclusions as the result of this theoretical 
exploration. First, it was possible to construct a GOMS model for 
another and quite different text-editor, the display-oriented editor BRAVO. 

Both pointing at the display with the mouse and scrolling the display 
could be described by goals, operators, methods, and selection rules 
similar to those employed in the p o e t  description.

Second, the GOMS notation was extended to a stochastic description 
of user behavior. Stochastic models of users could be used to get around 
some of the limits on predictability of sequences found in Chapter 5. 
They could also be used to attempt estimates of time and sequence 
variability.

Finally, we saw how our analysis of the task environment for editing 
could be extended so as to allow an explicit accounting of the infor­
mation the user possesses moment-by-moment about the editing tasks on 
which he is working.

It is important to restate that in this chapter we have been concerned 
only with studying how the GOMS model could be extended. Additional 
empirical studies would be necessary to validate the detailed predictions 
of the GOMS extensions.



7. Models of Devices for 
Text Selection

7 .1 . EXPERIMENTAL COMPARISON OF TEXT-SELECTION  
DEVICES (EXPERIMENT 7A)

7 .2 . PERFORMANCE MODELS OF TEXT-SELECTION DEVICES
Mouse 
Joystick 
Step Keys 
Text Keys
Comparison of Devices

7 .3 . APPLICATIONS
Rapid Test for Analogue Pointing Devices (Experiment 7B) 
Maximum Mouse Velocity (Experiment 7C)

7 .4 . CONCLUSIONS

The apparently endless options for the design of human-computer 
interfaces are composed from only a very few sensory-motor and 
cognitive operations performable by the user. These include:

(1) the perceptual operations of
visual search and 
reading and

(2) the motor operations of
typing on the keyboard and 
reaching with a hand to a target, including 

reaching for a button and 
pointing to a target on the display.

Systems can be imagined that require extensions to this list—perceptual 
judgments of alignment or motor drawing operations, for example—but, 
these operations are adequate for the models in Chapters 5 and 6 and for 
a great many other computer interfaces.
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Each of these operations is worth studying in the context of human- 
computer interaction, and the results can have implications for the design 
of a computer interface. In this chapter, we shall focus on one issue 
within this realm—the implications for design of the reaching-to-target 
operations.

The editor b r a v o , in Chapter 6, made heavy use of the mouse 
pointing device for selecting text on the display screen. Other devices 
exist (the joystick, various key-operated devices) that might have been 
chosen. Which pointing device is the best choice and why? The choice 
of pointing device can have a significant impact on the ease with which 
the selections can be made. In fact, since pointing typically occurs with 
high frequency, ease of pointing can have a large effect on the success of 
the entire system.

There have been several studies of pointing devices. English, 
Englebart, and Berman (1967) measured mean pointing times and error 
rates for the mouse, lightpen, Grafacon tablet (an extendable, pivoted 
rod, intended originally for curve-tracing), and position and rate joysticks. 
They found the mouse to be the fastest of the devices. Goodwin (1975) 
measured pointing times for the lightpen, lightgun, and Saunders 720 
step keys ( r e t u r n , t a b , s p a c e , and the reversal of these functions using 
the SHIFT key). She found the lightpen and the lightgun equally fast and 
much superior to the Saunders 720 step keys. Whereas these studies 
produced interesting comparative data on the devices measured, they did 
not simultaneously control the three variables likely to affect perform­
ance: learning, target distance, and target size. They also did not
attempt to account theoretically for the results. The study that follows 
addresses both these issues. We consider the mouse, a rate-controlled 
isometric joystick, step keys, and text keys.
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7.1. EXPERIMENTAL COMPARISON OF TEXT- 
SELECTION DEVICES (EXPERIMENT 7A)

The purpose of the experiment was to compare the relative merits for 
text-selection of a number of devices. To make the comparison meaning­
ful a number of factors had to be controlled, including individual 
differences (controlled by using the same users on alt devices); learning 
and asymmetrical transfer of training between devices (controlled by 
having each subject practice to “assymptote” before collecting comparison



data); movement direction (controlled by randomizing target direction 
and assessing effect in separate analysis): target size, target distance 
(effect measured by factorially combining these variables into conditions 
of the experiment), users’ motivation (kept high with performance 
feedback), and the possibility of important extraneous variables 
(controlled by using a realistic task and by identifying the cause of 
response time effects through modeling).
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METHOD FOR EXPERIMENT 7A

Users. Three men and two women, all undergraduates at Stanford 
University, served as users in the experiment None had ever used any 
of the devices previously, and all had little or no experience with 
computers. Subjects were paid $3 per hour with a $20 bonus for 
completing the experiments. One of the women was very much slower 
than the other users and was eliminated from the experiment leaving four 
users (inclusion of the eliminated user would not have changed the 
qualitative conclusions of the study).

Text-Selection Devices. Four pointing devices were tested (see Figure 
7.1). Two were continuous devices: the mouse and the rate-controlled 
isometric joystick. Two were key operated: the step keys and the text 
keys. The devices had been optimized informally by testing them on 
local users, adjusting the device parameters to maximize performance.

The mouse, already described, was a small device which sat on the 
table to the right of the keyboard, connected by a thin wire. On the 
undercarriage were two small wheels, mounted at right angles to each 
other. As the mouse moved over the table one wheel coded the amount 
of movement in the x-direction, the other the amount of movement in 
the >^direction. A cursor moved simultaneously on the display, two units 
of screen movement for each unit of mouse movement on the table.

The joystick was a small strain gauge on which had been mounted a 
rubber knob 1.25 cm in diameter. Applying force to the joystick in any 
direction did not produce noticeable movement in the joystick itself, but 
caused the cursor to move in the appropriate direction at a rate (in 
cm/sec) =  (.0178Xforce)^, where force is measured in Newtons. For 
forces less than about 4 Newtons, the cursor did not move at all; and the 
equation ceased to hold in the neighborhood of 45 Newtons as the rate 
approached a ceiling of about 40 cm/sec.

The step keys were the familiar five-key cluster found on many 
display terminals. On the four sides of a central HOME key were keys to
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MOUSE

STEP KEYS

RATE-CONTROLLED
ISOMETRIC
JOYSTICK

TEXT KEYS

Figure 7.1. Pointing devices tested in Experiment 7A.

move the cursor in each of four directions. Pressing the h o m e  key 
caused the cursor to return to the upper left comer of the text. Pressing 
one of the horizontal keys moved the cursor one character (.246 cm on 
the average) backward or forward along the line. Pressing a vertical key 
moved the cursor one line (.456 cm) up or down. Holding down one of 
the keys for more than .100 sec caused it to go into a repeating mode, 
producing one step in the vertical direction each .133 sec or one step in 
the horizontal direction each .067 sec (3.43 cm/sec vertical movement, 
3.67 cm/sec horizontal movement).

The text keys were similar to keys appearing on several commercial 
“word processing” terminals. Depressing the p a r a g r a p h  key caused the 
cursor to move to the beginning of the next paragraph. Depressing the 
LINE key caused the cursor to move downward to the same position in 
the next line. The WORD key moved the cursor forward one word; the 
CHARACTER key moved the cursor forward one character. Holding down 
the REVERSE key while pressing another text key caused the cursor to
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move opposite the usual direction. The text keys could also be used in a 
repeating mode. Holding the l in e , w o r d , or c h a r a c t e r  key down for 
longer than .100 sec caused it to repeat at .133 sec per repeat for the LINE 

key, .100 sec per repeat for the WORD key, or .067 sec per repeat for the 
CHARACTER key. Since there were .456 cm/line, 1.320 cm/word, and 
.246 cm/character, movement rates were 3.43 cm/sec for the LINE key, 
13.2 cm/sec for the WORD key, and 3.67 cm/sec for the c h a r a c t e r  key.

Procedure. Subjects were seated in front of a computer terminal with 
a display, a keyboard, and one of the devices for pointing at targets on 
the screen. On each trial, a page of text was displayed on the screen. 
Within the text, a single word or phrase, the target, was highlighted by 
inverting the black/white values of the text and background in a 
rectangle surrounding the target The user struck the space bar of the 
keyboard with his right hand and then, with the same hand, reached for 
the pointing device and directed the cursor to the target. The cursor thus 
positioned, the user pressed a button “selecting” the target as he would 
were he using the device in a text-editor. For the mouse, the selection 
button was located on the device itself. For the other devices, the user 
pressed a special key on the keyboard with his left hand.

Design. There were five different distances from starting position to 
target (1, 2, 4, 8, or 16 cm), and four different target sizes (1, 2, 4, or 10 
characters). All targets were words or groups of words. Ten different 
instances of each distance X target size pair were created, with varying 
locations of the target on the display and angles of hand movement 
giving a total of 200, randomly ordered, unique stimuli.

Each user repeated the experiment with each device. The order in 
which users employed the devices was randomized. At the start of each 
day, the users were given approximately twenty warmup trials to refresh 
their memory of the procedure. All other trials were recorded as data. 
At the end of each block of twenty trials they were given feedback on the 
average positioning time and average number of errors for those trials. 
This feedback was found to be important in maintaining users’ 
motivations. At the end of each 200 trials they were given a rest break 
of about fifteen minutes. Subjects normally accomplished 600 trials/day, 
requiring about two to three hours of work. They each used a particular 
device until the positioning time was no longer significantly decreasing 
with practice (operationally defined as when the first 200 and last 200 
trials of the last 600 trials in the day did not differ significantly in 
positioning time at the p < .05 level using a i-test). An approximation to 
this criterion was reached in 1200 to 1800 trials (four to six hours) on



each device. Of the 20 user X device pairs, 15 reached this criterion, 
three performed worse in their last trials (largely because several days 
elapsed between these sessions); and only two were continuing (slightly) 
to improve.
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RESULTS FOR EXPERIMENT 7A
Improved Perfonmnce with Practice. In order to compare the devices 

it is important that the effects of practice be isolated so as not to 
confound the analysis. According to the Power Law of Practice in 
Chapter 2, practice should improve performance as given by Equation 
2.5:

=  l o g r ^ - a lo g i V ,  (2.5)
where

logr.

a

N

T, =

Tn  =

N  =

estimated positioning time on the first 
block of trials,
estimated positioning time on the yVth 
block of trials, 
trial block number, and 
an empirically determined constant

Thus, the ease of learning for each device can be described by two 
numbers, and a, which may be conveniently determined from a 
regression of (log on (log N). Figure 7.2 shows the results of 
plotting the data from error-free trials according to Equation 2.5. Each 
point on the graph is the average of a block N  of twenty contiguous trials 
from which error trials have been excluded. Only the first 60 trial blocks 
are shown. Since some users reached criterion at this poinL not all 
continued on to further trials. The values predicted by the (fitted) 
equation are given as the straight line drawn through the points. The 
average target size in each block was 4.23 cm (the range of the average 
target sizes for different trial blocks was 3.95 to 4.50 cm), and the average 
distance to the target was 6.13 cm (range 5.90 to 6.42 cm).

The parameters and a, as determined by the regressions, are given 
in Figure 7.3, along with the standard error and percentage of variance 
explained from the regression analysis. Practice caused more improve­
ment in the mouse and text keys than on the other two devices used. 
Use of the step keys, in particular, showed very little improvement with 
practice. Equation 2.5 explains 39% of the variance in the average 
positioning time for a block of trials for the step keys, and 61% to 66% of
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Device 1̂
(sec)

a Learning Curve 
Equation

SL
(sec)

R̂-

Mouse 2 .2 0 .1 3 = 2 .2 0  /V -  ’ 3 .12 6 6

Joystick 2 .1 9 .0 8 = 2 . 1 9 / V ' .08 .62

Step Keys 3 .0 3 .07 = 3 .0 3  ^ ' .11 .39

Text Keys 3 .8 6 .1 5 7 \  = 3 .8 6  - '5 .16 .61

Figure 7.3. Learning curve parameters.
N  is the number of the trial block. There are 20 trials in each block, 
equation is based on 1200 trials divided into 60 trial blocks.

Each

the variance for the other devices. The fiL at least for the mouse and the 
joystick, is actually better than these numbers suggest Since users did 30 
blocks of trials on a day, typically followed by a pause of a day or two 
before they could be rescheduled, a break in the learning curve was 
expected at that point; and indeed such a break is quite evident for the 
mouse and the joystick between the 30th and 31st blocks. Fitting 
Equation 2.5 to only the first day increases the percentage of variance 
explained to 91% for the mouse and 83% for the joystick. In the case of 
the step keys and text keys, there was no such obvious day effect.

Overall Speed. According to the Power Law of Practice, users’ 
response times for text selection will continue to decrease indefinitely. 
But if response time were to be plotted in arithmetic coordinates as a 
function of number of practice trials, the plot would give the illusion of 
an asymptote as exponentially more trials are required for the same 
response-time decrease. In order to compare the devices in this region of 
the learning curve where response time is relatively flat (as would be the 
case for daily use by office workers), a sample was examined of each 
user’s performance on each device, consisting of the last 600 trials that 
were not also the first 200 trials of a day (in order to diminish warmup 
effects). The remaining analyses are based on this subset of the data, 
excluding those trials on which errors occurred. Figure 7.4 gives the 
homing time, positioning time, and total time for each device, averaging 
over all the distances and target sizes. Homing time was measured from 
when the user’s right hand left the space bar until when the cursor had
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begun to move. Positioning time was measured from when the cursor 
began to move until when the selection button had been pressed. From 
the figure, it can be seen that homing time increases slightly with the 
distance of the device from the keyboard. The longest time required is 
to reach the mouse, the shortest to reach the step keys. Although the 
text keys are near the keyboard, they take almost as long to reach as the 
mouse. Either it is more difficult to position the hands on the text keys 
or, as seems likely, users often spent some of the time between hitting 
the space bar and beginning to press the keys in planning the strategy for 
their next move. Further evidence for this hypothesis comes from the 
relatively high standard deviation observed for the homing time of the 
text keys. Whereas the differences in the homing times among all device 
pairs except the mouse vs. the text keys are reliable statistically (at p < .05 
or better using a /-test), the differences are actually quite small. But 
although the step keys can be reached .15 sec sooner than the mouse, 
they take 1.02 sec longer to position. Thus the differences in the homing 
times are insignificant compared to the differences in the positioning 
times.

The mouse is easily the fastest device, the step keys the slowest As a 
group, the continuous devices (the mouse and the joystick) are faster than 
the key-operated devices (the step keys and text keys). Differences 
between the devices are all reliable at p < .001 using /-tests.

Effect o f Distance and Target Size. The effect of distance on 
positioning time is given in Figure 7.5. At all distances greater than 1 
cm, the continuous devices are faster. The positioning time for both 
continuous devices seems to increase approximately with the tog of the 
distance. The time for the step keys increases rapidly as the distance 
increases, whereas the time for the text keys increases somewhat less than 
as the log of the distance, owing to the existence of keys for moving 
relatively large distances with a single stroke. Again, the mouse is the 
fastest device, and its advantage increases with distance.

Figure 7.6 shows the effect of target size on positioning time. The 
positioning times for both the mouse and the joystick decrease with the 
log of the target size. The time for the text keys is independent of target 
size, and the positioning time for the step keys also decreases roughly 
with the log of the target size. Again, the mouse is the fastest device, 
and again, the continuous devices as a group are faster for all target sizes.

Effect o f Approach Angle. The targets in text-editing are rectangles 
often quite a bit wider than they are high, presenting different problems
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when approached from different angles. In addition, the step keys and 
text keys work differently when moving horizontally than when moving 
vertically. To test whether the direction of approach has an effect on 
positioning time, the target movements were classified according to 
whether they were vertical (0 to 22.5 degrees), diagonal (22.5 degrees to 
67.5 degrees), or horizontal (67.5 degrees to 90 degrees). Analysis of 
variance shows that the angle makes a significant difference for every 
device except the mouse. The joystick takes slightly longer to position 
when the target is approached diagonally. The step keys take longer 
when approached horizontally than when approached vertically, a 
consequence probably deriving from the fact that a single keystroke
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moves the cursor almost twice as far vertically as horizontally. By 
contrast, the text keys take longer to position vertically, reflecting the 
presence of the w o r d  key. The differences induced by direction are not 
of great consequence, however. For the joystick, it amounts to 3% of the 
mean positioning time; for the step keys, 9%; for the text keys, 5%.

Errors. Of the four devices tested, the mouse had the lowest overall 
error rate, 5%; the step keys had the highest, 13%. Differences are 
reliable at p < .05 or better, using /-tests. The error rate increases only 
very slightly with distance. However, it decreases with target size for 
every device except the text keys (Figure 7.7). This finding replicates the 
result of Fitts and Radford (1966), where, in an investigation of self- 
initiated, discrete, pointing movements using a stylus, there was a similar 
marked reduction in errors as the target increased in size and a similar 
slight increase in error rate as the distance to the target increased.

7.2. PERFORMANCE MODELS OF 
TEXT-SELECTION DEVICES

Although these empirical results are of direct use in selecting a 
pointing device, a more useful understanding of the properties of these 
devices can be had in terms of the Model Human Processor in Chapter 2.
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Mouse

The time to move the mouse can be analyzed in terms of the time to 
move the hand to a target and should therefore follow from Fitts’s Law, 
Equation 2.3, which we may rewrite as:

where
^pos ~  ^0 ^A/ *^^2 Í.D/S + .5) sec,

 ̂pos
D
S
fM

= Positioning time,
=  Distance to the target,
= Size of the target,
=  .100[.070~.120]sec/bit,and 
=  a constant

(7.1)

The constant A'q has been added to include the time for the hand 
initially to adjust its grasp on the mouse and the time to make the 
selection with the mouse button.

Fitts’s Law predicts that plotting positioning time as a function of 
log2(ZJ/5 + .5) should give a straight line. As the solid line in Figure 
7.8 shows, this prediction is confirmed. Furthermore, the prediction that 
the slope of the line should be in the neighborhood of .100 sec/bit is
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Figure 7.8. Positioning time for the continuous devices as a 
function of Fitts’s index of difficulty.

also confirmed. The equation for the line in Figure 7.8 as determined by 
regression analysis is:

'̂ pos =  ^082 +  -5) sec. (7.2)

This equation has a standard error of .07 sec and explains 83% of the 
variance of the means for each condition, comparable to the percentage 
of variance explained by Fitts and Radford. The slope of .096 sec/bit is 
in the .100 sec/bit range found in other studies. Since the standard error 
of estimate for in fitting Equation 7.2 was .008 sec/bit, the mouse 
would seem to be close to, but slightly slower than, the optimal rate of 
around .08 sec/bit observed for use of the stylus and for finger-pointing.

The values for positioning time obtained in this experiment are 
apparently in good agreement with those obtained by English et al. 
(1967). Assuming that their display characters were about the same width 
as ours and assuming an intermediate target distance of about 8 cm. 
Equation 7.2 (with the addition of the .36 sec homing time from Figure



7.4) predicts 1.87 sec for 1-character targets (English et al. measured 1.93 
sec) and 1.66 sec for “word” targets of 5 characters (English et al. 
measured 1.68 sec).

Joystick

Although it is a rate-controlled device instead of a position device, we 
might wonder if the joystick follows Fitts’s Law. Plotting the average 
time per positioning for each distance X size cell of the experiment 
according to Equation 7.1 shows that there is an approximate fit to the 
following equation:

Tp,,= .99 + 220log^{D/S+ .5).

This equation has a standard error of .13 sec and explains 89% of the 
variance of the means. The size of the slope, = .220 sec/bit, shows 
that information is being processed at only half the speed of the mouse, 
significantly below the maximum rate. Closer examination gives some 
insight into the difficulty. The points for the joystick in Figure 7.8 
actually form a series of parallel lines, one for each distance, each with a 
slope of around .100 sec/bit. Setting to .100 sec/bit, we can therefore 
write an alternative model:
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^ p o .=  ^Z)+-1001og2(77/5-F.5).

Kjy is the intercept for distance D. From the figure, Kj  ̂ varies from 1.05 
sec for Z) =  1 cm to 1.68 sec for 16 cm. For this model, the standard 
error of the fit is reduced to .07 sec, the same as for the mouse. (Since 
the slope was not determined by the regression, a comparable R? cannot 
be computed.) Thus, the tested joystick can be thought of as a Fitts’s 
Law device with a slope twice the .100 sec/bit slope for hand 
movements; or it can be thought of as a Fitts’s Law device with the 
expected slope, but having an intercept which increases with distance. 
The problem with the joystick used in our experiment is probably related 
to the non-linearity in the control (Poulton, 1974; Craik and Vince, 1963). 
It should be noted that for the 1-cm distance (where the effect of non­
linearity is slight) the positioning time is virtually the same as for the 
mouse. Thus, the possibility of designing a joystick with performance 
characteristics comparable to the mouse is by no means excluded.
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Step Keys

The time to use the step keys should be governed by the number of 
keystrokes needed to move the cursor to the target. Since the keys can 
only move the cursor vertically or horizontally, the number of keystrokes 
is Z)jf/.456 +  Dy/.2A6, where and Dy are the horizontal and vertical 
components of distance to the target, .456 cm is the size of a vertical
step, and .246 cm is the size of a horizontal step, 
time should be

Hence, positioning

T =pos ^0 +  C(£>^/.456 +  Z) /.246). (7.3)

If the operation of the key were done with a single finger, then according 
to the Model Human Processor in Chapter 2, C ~  2t^  = .140 sec, one 
Motor Processor cycle would being required to cock the finger and one 
to press with i t  But some finger-cockings could be overlapped with 
some key presses when the user uses two fingers, so C could be reduced 
somewhat The regression to the observed data yields A'q = 1.20 sec and 
C =  .052 sec/keystroke (this equation has a standard error of .54 sec and 
explains 84% of the variance of the means). Since in the extreme case, 
where each cocking of the finger was completely overlapped with the 
keypressing by another finger, C = .070 sec, the value of C
obtained from these data is still a bit fast to be identified with the 
pressing of a key. It is also too fast to be identified with the .067 
sec/keystroke automatic repetition mode. The puzzle is solved by 
reference to a plot of positioning time against the predicted number of 
keystrokes (Figure 7.9). Equation 7.3 with the above parameters (shown 
by the long solid line) actually confuses two phenomena. As the figure 
shows, positioning time is linear with the number of keystrokes until the 
predicted number of keystrokes becomes large (that is, until the distance 
to the target becomes large). In these cases, the user often has the 
opportunity to reduce positioning time by using the HOME key. This 
method change scatters the points on the right of the plot and results in a 
fit for Equation 7.3 with loss of physical interpretation.

Fitting Equation 7.3 to only the first part of the graph (D^/A56 + 
Dy/.246 < 40) gives

Tpô  = .98 +  .074 (D^ /.456 +  Dy /.246).
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Figure 7.9. Positioning time for the key devices as a 
function of the predicted number of keystrokes.

This equation, indicated by a short solid line in Figure 7.9, has a 
standard error of .18 sec and explains 95% of the variance in the means. 
The slope of C = .074 sec/keystroke does have a reasonable 
interpretation; it suggests that the .067 sec/keystroke automatic repetition 
feature was heavily used, and indeed, this was confirmed by observation 
of users.

Text Keys

The text keys present the user on most trials with a choice of methods 
for reaching the target For example, he might press the p a r a g r a p h  key 
repeatedly until the cursor has moved to the paragraph containing the 
target He could then press the l in e  key repeatedly until it is on the 
target line, then use the w o r d  key to bring it over to the target Or he 
might use the p a r a g r a p h  key to move to the paragraph after the target 
then, holding the r e v e r s e  key down, use the LINE key to back up to the



line below the target line, and, still holding r e v e r s e  down, use WORD to 
back up to the target In fact there are 26 different methods for moving 
the cursor to the target although only a subset will be possible in a given 
situation. Which is the fastest method will depend on the target’s 
location relative to the starting position and on the boundaries of 
surrounding lines and paragraphs.

The obvious hypothesis is that positioning time is proportional to the 
number of keystrokes and that, for well-practiced users, the number of 
keystrokes will be the minimum necessary. The constant of 
proportionality might be expected from the Model Human Processor to 
be no faster than than =  .070 [.030~.100] sec for multiple-finger 
operations and might be close to the single-finger rate of 2t^  = .140 
[.060~.200] sec. It is difficult to estimate how much the rate might be 
slowed beyond this by activities of the Perceptual and Cognitive 
Processors, since it is difficult to estimate the load imposed by visual 
search, perceptual analysis, method selection, and degree of possible 
overlap. To test the hypothesis that selection time is proportional to the 
number of keystrokes, each trial was analyzed to determine the minimum 
number of keystrokes necessary to reach the target. The average 
positioning time as a function of is plotted'as the open circles in 
Figure 7.9. A least-squares fit gives
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r^„,= .66-F.209A^,„.

The standard error is .24 sec and the equation explains 89% of the 
variance of the means. The keystroke rate of .209 sec/keystroke (a little 
higher than 2t^ )  is approximately equal to the typing rate for random 
words. Figure 2.14. Evidently, the automatic repetition mode was little 
used. Examination of statistics on the minimum numbers of keystrokes 
for each trial shows there was little need for i t  For one thing, an 
average of only six keystrokes were necessary for the text keys to locate a 
target word, and ten or fewer keystrokes were sufficient to reach over 
90% of the targets. For another, these keystrokes were distributed across 
several keys, further limiting opportunities to use the repetition mode. 
The PARAGRAPH key was needed on 48% of the trials, the LINE key on 
85%, the word key on 83%, and the r e v e r s e  key on 81%.



Comparison of Devices

Figure 7.10 summarizes the models, the standard errors of the fit, and 
the percentage of variance of the means explained by the model. The 
theory of pointing expressed in the models has strong implications for the 
design and selection of pointing devices. The match of the Fitts’s Law 
slope of the mouse to the I ~  .100 sec/bit constant observed in other 
hand movement and manual control studies means that positioning time 
is apparently limited by central information-processing capacities of the 
eye-hand guidance system. Taking -  .08 sec/bit as the most likely 
minimum value for a similar movement task and = 1 sec as a typical
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D e v ic e M o d e l SE N o te s
(sec)

M ouse T = 1.03 + .096 loQj + .5) .07 .83

Joystick T = .99 + .220 Io Qj ( 0 / S  + .5) .13 .89 (a)

V v  =  \ o g ^ { D / S  -f .5) .07 (b)

Step  Keys = 1.20 + .052 {D/S^ + (c)

Text Keys = .66 + .209 .24 .89 —

Figure 7.10. Summary of models for positioning time.
All tim es in the m odels are  in sec. Least-squares fits w ere  perform ed on cell 

m eans rather than individual trials to m ake the  results com parable  to Fitts (1954). 

N O TES: (a) Least-squares fit to all d ata  points; (b) Fitting a separate  line with

slope .1 s e c /b it  for each  distance; (c) Least-squares fit to all d ata  points; (d) Fit 

for num ber of keystrokes ^ H O M E  key is unlikely

to be used.



value observed in this experiment, it seems unlikely that a continuous 
movement device could be developed whose positioning time is less than
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T . = lmm + .08 log,(Z>/5 + .5) sec,

unless it could somehow either reduce the information that must be 
centrally processed or use a different set of muscles (although something 
might be done to reduce the value of Kq). If this is true, then an 
optimal device would be expected to be no more than about 5% faster 
than the mouse in the extreme case of one-character targets 16 cm distant 
(1 -F .095 logjKló/l) + .5] =  1.38 sec vs. 1 + .08 logjKló/l) + .5] 
=  1.32 sec). Typical differences would be much less. By comparison to 
the mouse’s 5% slower-than-optimal rate, the joystick (in this experiment) 
is 83% slower, the text keys 107% slower, and the step keys 239% slower. 
Even if Kq were zero, the mouse would still be only 23% slower than the 
minimum. Whereas devices might be built that improve the mouse’s 
homing time, decrease its error rate, or increase its ability for fine 
movement, it is unlikely their positioning times will be significantly 
faster.

This maximum information-processing capacity probably explains the 
lack of any significant difference in positioning time between the lightpen 
and the lightgun in Goodwin’s (1975) experiment. Both are probably 
Fitts’s Law devices, so both can be expected to have the same maximum 
.100 sec/bit rate as the mouse (if they are optimized with respect to 
control/display ratio and any other relevant variables).

In interpreting these results, highly favorable to the mouse, some 
qualifications are in order. Of the four devices, the mouse is clearly the 
most compatible for this task (cf. Poulton, 1974, Chapter 16), since less 
mental translation is needed to map intended motion of the cursor into 
motor movement of the hands than for the other devices. Thus, it would 
be expected to be easier to use, to put lower cognitive load on the user, 
and to have lower error rates. There are, however, limits to its 
compatibility. Inexperienced users are often bewildered about what to do 
when they run the mouse into the side of the keyboard while trying to 
move the cursor across the screen. They need to be told that picking up 
the mouse and setting it down at a more convenient place on the table 
will not affect the cursor. Even experienced users are surprised at their 
inability to control cursor movement when they hold the mouse 
backwards or sideways.
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The greatest difficulty with using the mouse for text-editing occurs 
with selecting small targets. Punctuation marks, such as periods, are 
considerably smaller than an average character. The error rate for the 
mouse, which was already up to 9% for one-character targets, would be 
even higher for these sorts of targets. Yet this difficulty is even greater 
for many other devices, including the lightpen and the joystick.

7.3. APPLICATIONS

The theory of pointing devices developed above has immediate 
application in practical design and testing of commercial systems. We 
cite two examples from experience within our own company. Xerox; the 
development of a rapid test for analogue pointing devices and a 
computation of system throughput needed to support the mouse at 
maximum velocity.

Rapid Test for Analogue Pointing Devices^

Problem. A product development group wished to pursue 
the development of a novel analogue pointing device.
Since only subjective impressions of the performance of the 
device were available, and there was disagreement over 
these, they needed a simple test procedure which could give 
designers rapid, quantitative feedback about the effect of 
various improvements to the device.

The testing procedure described in Experiment 7A was not a practical 
test in this case, since it involved an expensive and time-consuming 
process of training users until learning was no longer a significant factor. 
It also required several days of trials using a computerized laboratory 
system capable of simulating the appearance of random targets on a 
display editor. Such a testing arrangement was beyond the equipment 
resources and time available and would not be able to give developers 
results quickly enough to be helpful.

1 This test was developed in collaboration with Richard Sperling, Xerox Office
Products Division.
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0000
xxxx

xxxx

Figure 7.11. Four-character targets used for rapid measure­
ment of .
On each trial, the user points back and forth between the group of O ’s and the 
group of X’s.

Fortunately, given the models for analogue pointing devices validated 
with Experiment 7A, the time-consuming procedure of Experiment 7A is 
now unnecessary for routine testing. Establishment of the fact that a 
broad class of analogue devices can be expected to follow Fitts’s Law 
means that a simpler test, based on Fitts’s (1954) dotting task, can be 
devised to measure the Fitts’s Law slope ât­

test  METHOD: MEASUREMENT OF FOR 
ANALOGUE POINTING DEVICES

Stimuli A central target (consisting of letter O’s) and two test targets 
(consisting completely of X’s) are displayed together as shown in Figure 
7.11. The midpoints of the test targets are either 1 cm or 4 cm distant 
from the central target^ There are three such displays, each consisting of 
only 1-, 4-, or 8-character targets, giving a total of 2 distances X 3 sizes 
=  6 conditions. Pure horizontal and vertical directions are avoided to 
minimize possible effects due to the oblong shape of the targets.

Procedure. Each user is given three blocks of trials, a different 
random order of target size and distance combinations occurring each 
block. On each trial, at a verbal signal from the experimenter, the user 
moves the cursor back and forth between the central O target and the 
appropriate X target, selecting each target in turn (the targets indicate

An earlier version o f the test also used a 16-cm distance, but it was found that 
users seemed to shift the set o f muscles they used for movement at this distance and that 
the 16-cm points departed from Fitts’s Law.



they have been selected by the appearance of underlining that lasts until 
the next target is selected). The user does this as many times as possible 
within a 30-sec interval. At the end of the trial, the number of selections 
is recorded. Users are instructed to emphasize accuracy over speed. The 
average time per movement is determined by dividing 30 sec by the 
number of selections made. The value for is determined by plotting 
the time per movement for the third trial block as a function of 
log2(D/S+ .5) according to Equation 7.1, then estimating the slope of the 
straight line.

COMPARISON WITH EXPERIMENT 7A (EXPERIMENT 7B)

As a means of further validating this test, we ran an experiment 
comparing the value of for the mouse obtained from the test 
procedure with that obtained from Experiment 7A.

Procedure. Three users were run according to the above test 
procedure. All users used the mouse in their daily work.

Results. The results for all three trials are given in Figure 7.12. The 
values for are close (in fact, the third trial block value is identical) to 
the value of .096 sec/bit obtained in Experiment 7A. It should be noted 
that learning affects the value of the intercept A'q, but not the value of
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^0
(sec) (sec/bit)

S E
(sec)

E x p e r im e n t  7A ( f r o m  F ig u r e  7 .1 0)

1 .0 3 .0 9 6 .07 .8 3

E x p e r im e n t  7B (R a p id  M e a s u r e m e n t  T e s t  P r o c e d u r e )

T r ia l 1 .7 4 4 .1 0 2 .0 8 .81

T r ia l 2  .6 0 4 .1 1 0 .0 5 .9 4

T r ia l 3  .5 8 7 .0 9 6 .0 3 .95

Figure 7.12. Experiment 7B, rapid measurement of mouse 
parameters for Equation 7.1 as a function of trial compared 
to values obtained in Experiment 7A.
Each trial lasts 30 sec. Each trial is the average of three users. Regression was 
performed on Target Size x Target Distance cell means.



the slope (see Figure 7.12) The use of three trial blocks allows the 
data to stabilize on a better value, as indicated by the increase of the 
percentage of variance explained from 81% to 95% and the reduction in 
the standard error from .08 sec to .03 sec.

The test procedure described here can be run in less than a half hour 
using a wrist watch and requires no special computer programming (other 
than what would be required anyway to connect the pointing device to 
the display editor). It produces values for practically indistinguishable 
from those produced by the original study. Experiment 7A. In the 
application, this procedure was used to quantify performance levels for 
the device under consideration and to identify which improvements were 
effective.

Maximum Mouse Velocity^

Problem. For technical reasons, it would have been 
convenient to design the mouse support hardware for the 
Xerox Star system in such a way that the maximum velocity 
with which the mouse could move the cursor across the 
screen would be 50 cm/sec. Is this velocity high enough 
not to impede user behavior?
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In Chapter 2 we derived the equation for Fitts’s Law from the 
assumption that macroscopic movements towards a target are made up of 
micromovements with constant error c. The distance of the cursor 
from the center of the target on the nth micromovement of the mouse is, 
according to Equation 2.1,

(2.1)

where D is the total distance to the target from the starting point Since 
e < 1, the movement distance on each cycle will be less than on the 
previous cycle. The maximum velocity of the mouse will, therefore, be
reached on the first cycle, 
just:

The average velocity on the first cycle is

This analysis was performed in collaboration with Ralph Kimball, Xerox System 
Development Division.



7.3 . APPLICATIONS 2 5 3

-  i^O  +  T(- +  Tj^f)

= (Z) — eD)/(t p + + Tyĵ )

= [(1 “ e)/(Tp + + T̂ )] D (7.4)

Using Vince’s (1948, Experiment III) estimate of c =  .07 and our estimate 
from the Model Human Processor of '»'p+T^^+T^ = 240[105~470] msec 
to substitute into Equation 7.4 gives;

^max -  ^  cm /sec, (7.5)

with a range of 2.0~8.9 D cm/sec. We could improve the precision of 
our calculation by using the experimentally measured values from 
Chapter 2 of =  190~260 (instead of those synthesized from
Figure 2.1) to reduce the range, giving;

^max ~  [3-6~4.9] D cm/sec. (7.6)

The suggested maximum design velocity for the mouse of 50 cm/sec 
will be exceeded for distances greater than 50/3.9=13 cm. according to 
Equation 7.5. The diagonal of the video display being considered at the 
time was about 35 cm, for which = (3.9X35) = 136 cm/sec, more 
than twice the suggested design velocity. The suggested maximum 
processing rate for mouse movement was, therefore, too low.

A good design should set the system parameters so the maximum 
velocity will not be exceeded by a fast user. Using the Eastman value for 
T^+T(-+T^ (=  190 msec). Equation 7.4 would become

= 4.9 D cm/sec.max

The Eastman calculation for maximum velocity on the longest run (the 
35-cm screen diagonal) is = (4.9X35) =  171 cm/sec, more than 
three times the 50 cm/sec proposed. As a consequence, the Star 
hardware was redesigned to handle faster mouse velocities.

VERIFICATION FROM THE STEP-TRACKING LITERATURE

We have shown that mouse positioning is just an instance of hand 
movement and thaL therefore, results from the motor movement and 
tracking literature should apply. In a set of experiments where subjects
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Figure 7.13. Maximum velocity of cursor as a function of 
distance in the step-tracking task.
Maximum velocity for step tracking derived from Poulton (1974, Figure 5.5, P. 59). 
Data from Craik and Vince (1963, Figure 14). Maximum velocity for mouse from 
Experiment 7C.

tried to keep the point of a pencil on a step track moved behind a small 
slit, Craik and Vince (1944, 1963, graphs reproduced in Poulton, 1974, p. 
59) reported the movement velocities as a function of time for different 
movement distances. We have replotted in Figure 7.13 the peak velocity 
^max curves as a function of distance. The dotted lines
indicate the ranges in which the points are predicted to fall by Equation 
7.4. Since the points fall in this region, the maximum velocities in these 
experiments would seem to be well predicted.



VERIFICATION FROM ACTUAL EDITING PERFORMANCE 
(EXPERIMENT 7C)

In order to verify that Equation 7.4 holds for actual text-editing, an 
experiment was run measuring as a function of mouse movement 
distance during editing. A user was given a manuscript marked with 
modifications and was to make these modifications on the file using the 
BRAVO display-oriented editor and a mouse. The position of the cursor 
(moved by the mouse) was recorded 60 times per sec. A set of 40 
pointing movements were selected for analysis. For each pointing 
operation, the maximum speed of the mouse during a l/60th sec 
interval was computed. Figure 7.13 also gives the median value of 
recorded for all pointings, averaged over 2-cm target distance intervals. 
Again the values are as predicted by Equation 7.4.
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7.4. CONCLUSIONS

Of the four devices tested, the mouse is clearly the superior device for 
text selection on a display:

(1) The positioning time of the mouse is significantly faster than 
that of the other devices. This is true overall and at every 
distance and size combination save for single-character targets, 
for which it is roughly equal to other devices.

(2) The error rate of the mouse is significantly lower than that of 
the other devices.
The rate of movement of the mouse is nearly maximal with 
respect to the information-processing capabilities of the eye- 
hand guidance system.
a group, the continuous movement devices are superior in both 
and error rate.

These results can be understood in terms of the Model Human 
Processor. For the continuous movement devices, positioning time is 
given by Fitts’s Law. For key devices, it is proportional to the number 
of keystrokes.

The practical use of the models derived for pointing device movement 
was illustrated by two applications:

(1) A modification of Fitts’s dotting task can be used as a rapid 
method for indexing the pointing speed of an analogue device.

(3)

As
speed
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(2) For use in planning hardware support, the maximum 
movement velocity of the mouse can be taken as 4.9 D, where 
D is the distance to be moved in cm.
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In this part of the book we are concerned with how our theoretical 
models of user behavior can be used as practical design tools. GOMS 
models, as we saw in Chapter 5, can be formulated at several different 
levels of analysis: the Unit-Task Level, the Functional Level, the 
Argument Level, and the Keystroke Level. We illustrate two engineering 
models, based on different levels of GOMS analysis. The first, called 
simply the Keystroke-Level Model, is similar to Model K1 of Chapter 5, 
but without an explicit analysis of goals and selection rules. This model 
is useful where it is possible to specify the user’s interaction sequence in 
detail. The second engineering model is an application of the GOMS 
Model UT at the Unit-Task Level. This model is useful when it is not 
possible to know the details of the interaction.
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We describe the Keystroke-Level Model in this chapter and take up 
the Unit-Task Level of analysis in Chapter 9.
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8.1 . THE TIME PREDICTION PROBLEM

It would be useful for a system designer to have a model that would 
enable him to predict how much time a user would take to accomplish a 
given task with a given interactive computer system. The Keystroke- 
Level Model addresses a restricted subpart of this general problem:

Given: —A task (possibly involving several subtasks).
—The command language of a system.
—The motor skill parameters of the user.
—The response time parameters of the system.
—The method used for the task.

Predict: —The time an expert user will take to execute 
the task using the system, providing he uses 
the method without error.

This formulation stipulates several important boundary conditions on 
the use of the Keystroke-Level Model. Like the GOMS models, the 
Keystroke-Level Model predicts only error-free expert behavior. But, 
unlike the GOMS models, the Keystroke-Level Model must be given the 
method as input It does not predict the method—given the method, it 
predicts the time.

The final restriction on the Keystroke-Level Model is that it predicts 
only the time to execute a task, not the time to acquire i t  Given a large 
task, such as editing a document, a user will break it into a series of unit 
tasks. The importance of unit tasks for our analysis is that they permit 
the time to do a large task to be decomposed into the sum of the times 
to do its constituent unit tasks.^

The detailed subgoal structure of the unit task was discussed in 
Chapter 5. For the purposes of the Keystroke-Level Model, it is only 
necessary to consider the top-level structure of the unit task, consisting of

Not all tasks have a unit-task substructure. For example, inputting an entire 
manuscript by typing permits a continuous throughput organization. See Chapter 11 for 
further discussion.
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two parts: (1) acquisition of the unit task method and (2) execution of the 
method. To acquire a unit task, the user must not only construct a 
mental representation of the task to be done, but also choose a method 
for doing i t  To execute the method, the user must interact with the 
computer system to accomplish the task (which in text-editing includes 
locating the text, modifying it, and verifying the modification). The total 
time to do a unit task is the sum of the time for these two parts:

T = T + T unit-task acquire execute *

Acquisition time for a unit task depends on the characteristics of the 
larger task situation in which it occurs. In the manuscript-editing task, 
where unit tasks are read from a marked-up page or from written 
instructions, it takes about 2~3 sec to acquire each unit task (Chapter 5). 
In a routine design task, where unit tasks are generated in the user’s 
mind, it takes about 5~30 sec to acquire each unit task (Chapter 10). 
And in creative composition, it can take even longer.

Execution time for a unit task, though it depends on the structure of 
the system’s command language, rarely takes over 20 sec (assuming that 
the system has a reasonably efficient command language). If a unit task 
requires a longer execution time, the user is likely to break it into smaller 
unit tasks.

The Keystroke-Level Model predicts only the execution time of unit 
tasks, and does not predict the acquisition time. Execution is the part of 
the task over which the system designer has most direct control (i.e., by 
manipulating the system’s command language), so prediction of execution 
time suffices for many practical purposes.

Two assumptions underlie this treatment of execution time. First, 
execution time is assumed to be the same no matter how a task is 
acquired. Second, acquisition time and execution time are assumed to be 
independent (reducing execution time by making the command language 
more efficient, therefore, does not affect acquisition time).

8.2 . THE KEYSTROKE-LEVEL MODEL

The Keystroke-Level Model is comprised of several primitive oper­
ators. Methods can be encoded in terms of these operators by applying a 
set of heuristics. In this section, we present the operators, discuss the 
heuristics, and demonstrate a few examples of method encoding.



Operators

The execution part of a unit task can be described in terms of four 
physical-motor operators, K (keystroking), P (pointing), H (homing) and 
D (drawing), one mental operator M, and a system response operator R 
(see Figure 8.1). Execution time is simply the sum of the times spent 
executing the different operator types:
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^execute ~  ' (8.1)

So, for instance, the total time spent in keystroking is the number of 
keystrokes times the time per keystroke or (Operators
D and R are treated somewhat differently.)

The most frequently used operator is K, which represents a keystroke 
or a button press (on a typewriter keyboard or any other button device). 
K refers to keys, not characters (hitting the SHIFT key counts as a 
separate K). The keystroke time is taken to be the standard typing 
rate, as determined by standard one-minute typing tests. This is an 
approximation in two respects. First, keying time is different for dif­
ferent keys and key devices (see Figures 2.14 and 2.15). Second, 
includes the time for immediately-caught typing errors (involving 
BACKSPACE and rekeying). Thus is computed from a typing test by 
dividing total test time by the total number of non-error keystrokes, 
giving the effective keying time. We accept both these approximations in 
the interest of simplicity.

Users can differ in their typing rate by as much as a factor of 15 
(Figure 8.1). Given a population of users, an appropriate can be 
selected. If a user population has members with large differences, 
then the population should be partitioned into classes and the classes 
analyzed separately, since the different classes of users will be likely to 
employ different methods.

The operator P represents pointing to a target on a display with a 
mouse. In Experiment 7A, we measured the time required to point with 
the mouse and select a target by pressing a button, a sequence we now 
write as PK. The time required by P can be estimated by subtracting 
the time for K from Equation 7.2, giving:

/p =  .8 + .1 Xog îD/S-k- .5) sec.



The fastest time, acx:ording to this equation, is .8 sec, and the longest 
likely time (Z)/5=128) is 1.5 sec. In the interest of simplicity, we use an 
average value for pointing time of 1.1 sec (1.3 sec from Figure 7.4 less .2 
sec for K).

When there are different physical devices for the user to operate, he 
will probably have to move his hands between them. This hand 
movement, including the fine positioning adjustment of the hand on the 
device, is represented by the H (“home”) operator. From the studies in 
Chapter 5 and Chapter 7, we assign a constant of .4 sec for movement 
between any two devices.

The D operator represents using the mouse to draw a set of straight- 
line segments. D takes two parameters: the number of segments (w^) 
and the total length of all segments (l^). The time ^^(nQ./p) is a linear 
function of these two parameters. The coefficients of this function are 
different for different users; Figure 8.1 gives average values. D is a very 
specialized operator. Not only is it restricted to the mouse, it also 
assumes that the drawing system constrains the cursor to lie on a .56 cm 
grid. The D operator is included to indicate the wide scope of tasks 
potentially addressable by the model.

The user spends some time “mentally preparing” to execute the 
physical operators just described. Preparation can take the form of 
deciding how to call a command, for instance, or whether to terminate an 
argument string. These mental preparations are assumed to take an 
average of 1.35 sec each, and are represented by the M operator (see 
Section 8.3). Again, the use of a single mental operator is a deliberate 
simplification.

Finally, the R operator represents the system response time. This 
operator has one parameter t, a placeholder for the response time in 
seconds of a particular instance in which the system causes the user to 
wait. When, for example, a 2-sec system response is followed by a user 
K operator (on a system that does not allow type-ahead), the user must 
wait the 2 sec, which is denoted by R(2). When, on the other hand, a 
system response is followed by an M operator by the user, only the 
system response time in excess of the overlapped 1.35 sec M time is 
counted, or 2-1.35 sec =  .65 sec; and we write R(.65).
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Encoding Methods

Methods are represented as sequences of these operators. It is easiest 
to introduce the method notation with examples. Suppose that there is a
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O p e ra to r D escrip tio n  and R em arks T im e (sec)

K PRESS KEY OR BUTTON.
Pressing the SHIFT or CONTROL key counts as a 
separate K operation. Time varies with the typing skill of 
the user; the following shows the range of typical values:

Best typist (136 wpm) .0 8
Good typist (90 wpm) .1 2
Average skilled typist (55 wpm) .2 0
Average non-secretary typist (40 wpm) .2 8
Typing random letters .5 0
Typing complex codes .7 5
Worst typist (unfamiliar with keyboard) 1 .2 0

P POINT WITH MOUSE TO TARGET ON A DISPLAY.
The time to point varies with distance and target size according 
to Fitts’s Law, ranging from .8 to 1.5 sec, with 1.1 being an average. 
This operator does n o t include the (.2 sec) button press that often 
follows. Mouse pointing time is also a good estimate for other efficient 
analogue pointing devices, such as joysticks (see Chapter 7).

1 .1 0

H HOME HAND(S) ON KEYBOARD OR OTHER DEVICE. .4 0

D(«q,/q) DRAW STRAIGHT-LINE SEGMENTS OF TOTAL 
LEN G TH /^  CM.
This is a very restricted operator; it assumes that drawing is 
done with the mouse on a system that constrains all lines to 
fall on a square .56 cm grid. Users vary in their drawing skill; 
the time given is an average value.

.9 n ^ + .1 6 /^

M MENTALLY PREPARE. 1 .3 5

n it) RESPONSE BY SYSTEM.
Different commands require different response times. The response 
time is counted only if it causes the user to wait.

t

Figure 8 .1. The operators of the Keystroke-Level Model.
The K times are from Figure 2.14, except the .28 sec, which is the average typing 
rate of the non-secretarial users in Experiment 8A. The P time is from Chapter 7. 
The H time is from Chapter 6 and Chapter 7. The D time function and the coef­
ficients were derived from least-squares fits on the drawing test data from the four 
MARKUP users. The time for M was estimated from the data in Experiment 8A.

command named p u t  in some system, and that the method for calling it 
is to type its name followed by the r e t u r n  key. This method would be 
coded by simply listing the operations in sequence: MK[P] K[u] K[T] 
K [r e t u r n ], which we abbreviate as M 4K[p u T r e t u r n ]. In this
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Begin with a method encoding that includes all physical 
operations and response operations. Use Rule 0 to place 
candidate M ’s, and then cycle through Rules 1 to 4 for 
each M to see whether It should be deleted.

R ule 0 . Insert M 's in front of all K ’s that are not part of 
argument strings proper (e.g., text or numbers). 
Place M ’s in front of all P ’s that select commands 
(not arguments).

Rule 1. If an operator following an M is f u l l y  a n t i c i p a t e d  

in an operator just previous to M, then delete the 
M (e g ., PMK -> PK).

Rule 2. If a string of MKs b e lo n g s  to  a c o g n i t i v e  u n i t  

(e.g., the name of a command), then delete all 
M ’s but the first.

Rule 3 . If a K is a r e d u n d a n t  t e r m i n a t o r  (e.g., the 

terminator of a command immediately following 
the terminator of its argument), then delete the M 
in front of It.

Rule 4 . If a K t e r m in a t e s  a c o n s t a n t  s t r i n g  (e.g., a 
command name),, then delete the M in front of it; 
but if the K terminates a variable string (e.g., an 
argument string), then keep the M in front of it.

Figure 8 . 2 .  Heuristic rules for placing the M  operations.

notation descriptive notes such as key names may be written in square 
brackets. If, on the other hand, the m ethod to call the put  command 
were to point to its name in a menu, then press the red  mouse button, 
we would write: H[mouse] MP[PUT] K[RED] H[keyboard].

As another example, consider the text-editing task (called T l) of 
replacing a 5-letter word with another 5-letter word, where this 
replacement takes place one line below the previous modification. The 
method for executing task T l in the line-oriented editor poet would be 
described as follows:



Method for Task T1 -POET:
Jump to next line MK[linefeed]
issue Substitute command MK[S]
Type new 5-letter word 5K[word]

Terminate new word MK[return]
Type old 5- letter word 5 K [word]

Terminate old word MK[return]
Terminate command K[return] .

Using the operator times from Figure 8.1, and assuming the user is an 
average skilled typist = .2 sec), we could predict the time it will take 
to execute this method:

7’™ /e  = 4/^ + 15iK = 8.4sec.

This method could be compared to the method for executing task T1 
on the display-based system bravo:

Method for Task T1 -BRAVO:
Reach for mouse H [mouse]

Point to word P[word]
Select word K [yellow]
Home on keyboard H[keyboard]
Issue Replace command M K[R]
T ype new 5 - letter word 5  K [word]
Terminate type-in MK[esc]

^execute =  +  2i^ -f  tp =  6.2 S e c .

Thus, we can predict that the task would take about two seconds longer 
using POET than using bravo.

The methods above are simple unconditional sequences. More 
complex or more general tasks are likely to have multiple methods and 
conditionalities within methods for accomplishing different versions of 
the task. For example, in bravo the user often has to scroll the text on 
the display before pointing to the desired target (see Chapter 6). In the 
present notation, the method would be represented as:
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.4(MP[SCR0LL-SYMB0L] K[RED] R(.5)) P[word] K[YELLOW].



Here we have assumed the average number of scrolls per selection to be 
.4 and the average system response time per scroll to be .5 sec. Using 
these values, we would predict the average selection time:
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execute = Atf^ +  1.4i^ + 1.4ip + .4(.5) = 2.6 sec.

When there are alternative methods for doing a specific task in a 
given system, we found (in Chapter 5) that expert users will, in general, 
use the most efficient method (i.e., the method taking the least time). 
Thus, in making predictions we can use the model to compute times for 
alternative methods and then predict that the fastest method will be used. 
(If the alternatives take about the same time, it does not matter which 
method we predict) This optimality assumption holds, of course, only if 
the users are familiar with the alternatives, which, fortunately, expert 
users usually are. This assumption is helped by the tendency of optimal 
methods to also be the simplest

Heuristics for the M Operator

It is useful to distinguish two versions of method encoding. The 
physical encoding includes only the physical operations (K, P, H, D, and 
R) required by the command language of the system. The cognitive 
encoding includes the physical encoding plus the mental (M) operations. 
The Keystroke-Level Model provides a set of heuristic rules (Figure 8.2) 
for placing M’s in a physical encoding to obtain the cognitive encoding.^

M operations represent acts of mental preparation for applying 
physical operations. Their occurrence does not follow directly from the 
physical encoding, but from the specific knowledge and skill of the user. 
The rules for placing M’s embody psychological assumptions about the 
user and are necessarily heuristic, especially given the simplicity of the 
model.

The rules in Figure 8.2 define a procedure that begins with a physical 
encoding. First, all candidate M’s are inserted into the encoding accord­
ing to Rule 0, which is a heuristic for identifying all possible decision 
points in the method. Rules 1 to 4 are then applied to each candidate M 
to see if it should be deleted.

 ̂ Thus, only a physical definition of the method is required as input to the 
Keystroke-Level Model (see the definition o f the prediction problem in Section 8.1).
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A single psychological principle lies behind all the deletion heuristics. 
The principle is that physical operations in methods are chunked into 
submethods. The user cognitively organizes his methods according to 
these submethod chunks, which usually reflect syntactic constituents of 
the system’s command language. Hence, the user mentally prepares for 
the next physical chunk, not just the next physical operation. It follows 
that in executing methods the user is more likely to pause between 
chunks than within chunks. The rules attempt to identify submethod 
chunks.

Rule 1 asserts that when an operation is fully anticipated in another 
operation, the two belong together in a chunk. A common example is 
pointing with the mouse and then pressing the mouse button to indicate 
a selection. The button press is fully anticipated during the pointing 
operation, and there is no pause between them (and thus PMK becomes 
PK, according to Rule 1). This anticipation holds even if the selection 
indication is done on another device (e.g., the keyboard or a foot pedal). 
Rule 2 asserts that an obvious syntactic unit, such as a command name, 
constitutes a chunk when it must be typed out in full.

The last two heuristics deal with syntactic terminators. Rule 3 asserts 
that the user will bundle redundant terminators into a single chunk. For 
example, in the POET example above, one RETURN is required to 
terminate the second argument and another r e t u r n  to terminate the 
command: a user quickly learns simply to hit a double RETURN after the 
second argument (i.e., MKMK becomes MKK according to Rule 3). 
Rule 4 asserts that a terminator of a constant-string chunk will be 
assimilated into that chunk. An example is that users quickly learn to 
type, without pausing, a r e t u r n  that always follows a command name.

It is clear that these heuristics do not capture the notion of method 
chunks precisely, but are only approximations. Further, whether some­
thing is “fully anticipated” or is a “cognitive unit” is sometimes 
ambiguous. Better general heuristics would help in reducing the ambi­
guity. However, some of the variability in what constitutes a chunk 
stems from a corresponding variability in expertness. Users differ widely 
in their behavior; their categorization into novice, casual, and expert users 
provides only a crude separation and leaves wide variation within each 
category. One way that experts differ from novices is in what chunks 
they have (Chase and Simon, 1973). Thus, some of the difficulties in 
placing M’s are unavoidable because not enough is known (or can be
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known in practical work) about the individual experts involved. Part of 
the variability in expertness can be represented by the Keystroke-Level 
Model as encodings with different placements of M operations.

Comparison with the GOMS Models

We are now in a position to consider the relation of the Keystroke- 
Level Model to the GOMS models in Chapter 5. The Keystroke-Level 
Model most closely corresponds to Model K1 in the GOMS family of 
models. Both models are at the Keystroke Level, and they both have a 
generic mental operator: M for the Keystroke-Level Model and m e n t a l  

for Model Kl.
The mental operators in the two models are not the same, as can be 

seen by comparing their times: M takes 1.35 sec, whereas m e n t a l  takes 
.62 sec (Figure 5.15). The reason for this discrepancy is that M is a much 
more aggregate operator than m e n t a l : given a method, more m e n t a l ’s 

will appear in a Model Kl encoding than M’s will appear in a Keystroke- 
Level Model encoding. The correspondence between M’s and m e n t a l ’s 

can be seen by examining Model K2, which classifies the generic m e n t a l  

into several mental operators with more specific functions (see Figure 
5.15). Roughly speaking, the M operator corresponds to the c h o o s e  

operations of Model K2. Since c h o o s e  operations account for less than 
half of the mental operations in Model K2, this explains why m e n t a l  

takes less than half as long as M.
The most important difference between the Keystroke-Level Model 

and Model K l has to do with method prediction. The Keystroke-Level 
Model does not predict methods^ and, hence, has no goals or method 
selection rules (although it does predict where the mental operations 
occur). This difference and the slight mismatch of operators are delib­
erate; they represent the ways in which the GOMS description has been 
simplified to produce the more usable Keystroke-Level Model.

 ̂ The fact that the Keystroke-Level Model does not predict methods means that its 
results are more appropriately compared to the “reproduction” results than to the 
“prediction” results of the GOMS models, according to the distinction made in the 
experiment in Section 5.3.



8.3 . EMPIRICAL VALIDATION OF THE MODEL 
(EXPERIMENT 8A)

To determine how well the Keystroke-Level Model predicts actual 
performance times, an experiment was run in which calculations from the 
model were compared against measured times for a number of different 
tasks, systems, and users.

Description of the Experiment
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A total of 1280 user-system-task interactions were observed, comprised 
of various combinations of 28 users, 10 systems, and 14 tasks.

Systems. The systems were all typical application programs available 
locally and widely used by both technical and non-technical users. Three 
of the systems were text-editors, three were graphics editors, and five 
were executive subsystems. The systems are briefly described in Figure 
8.3.

Together, these systems display a considerable diversity of user 
interface techniques. For example, poet, one of the text-editors, uses 
first-letter mnemonics to specify commands and uses search strings to 
locate lines. In contrast, DRAW, one of the graphics systems, presents a 
menu of graphic icons on the display. These icons, representing the com­
mands, are selected by the user pointing with the mouse.

Tasks. The 14 tasks performed by the users (see Figure 8.4), though 
diverse, were typical. Users of the editing systems were given tasks 
ranging from a simple word substitution to the more difficult task of 
moving a sentence from the middle to the end of a paragraph. Users of 
the graphics systems were given tasks such as adding a box to a diagram 
or deleting a box (but keeping a line that overlapped the box). Users of 
the executive subsystems were given tasks such as transferring a file 
between computers or examining part of a file directory.

Task-System Methods. In all, there were 32 task-system combi­
nations: 12 for the text editors (4 tasks X 3 systems), 15 for the graphics 
systems (5 tasks X 3 systems), and 5 for the executive subsystems (one 
task for each subsystem). For each task-system combination, the most 
efficient “natural” method was determined (by consulting experts) and 
then coded in Keystroke-Level Model operations. The encodings of the 
methods for all the task-system combinations are listed in the Appendix 
to this chapter.



System Description

Text-Editors

POET Line-oriented, with relative line numbers.

SOS Line-oriented, with absolute line-numbers.

BRAVO Display-oriented; full-page; uses mouse for 
pointing.

Graphics Systems

MARKUP Uses mouse to draw and erase lines and areas 
on a display; commands selected from a hidden 
menu, which must be redisplayed each time.

DRAW Lines defined by pointing with mouse to end 
points; commands selected with mouse from a 
menu.

SIL Lines defined by pointing with mouse to end 
points; boxes defined by pointing to opposite 
vertices; commands selected by combinations of 
mouse buttons.

Executive Subsystems

LOGIN TENEX command for logging In.

FTP Program for transferring files between computers.

CHAT Program for establishing a “teletype” connection 
between two computers.

DIR TENEX command for printing a file directory; has 
a subcommand mode.

DELVER TENEX command for deleting old versions of a 
file.

Figure 8.3. Systems measured in Experiment 8A.
POET, described in Chapters 3 and 5, is a dialect of the QED editor (Deutsch and 
Lampson, 1967). For SOS see Savitsky (1969). For MARKUP see Newman and 
Sproull (1979), Chapter 17. For LOGIN, DIR, and DELVER, see Myer and Barnaby 
(1973). All the rest are experimental systems local to Xerox PARC, designed and 
implemented by many Individuals, including: Roger Bates, Patrick Baudelaire, David 
Boggs, Butler Lampson, Charles SImonyl, Robert Sproull, Edward Taft, and Chuck 
Thacker.
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Editing Tasks (used fo r POET, SOS, BRAVO)

T 1 . Replace one 5-letter word with another (one line from previous task).

T 2 . Add a fifth letter to a 4-letter word (one line from previous task).

T 3 . Delete a line of text (eight lines from previous task).

T 4 . Move a 52-character sentence, spread over two lines, to the end of its 
paragraph (eight lines from previous task).

G raphics Tasks (used fo r MARKUP, DRAW, SIL)

T 5 . Add a rectangular box to a diagram.

T 6 . Add a 5-character label to a box.

T 7 . Disconnect a 2-segment line from one box and reconnect it to another 
box.

T 8 . Delete a box, but keep an overlapped line.

T 9 . Copy a box to another part of the diagram.

Executive Tasks

T 1 0 . Phone computer and log in (4-character name, 6-character password). 

T 1 1. Transfer a file to another computer, renaming it.

T 12 . Connect to another computer.

T 1 3 . Display a subset of the file directory and show file lengths.

T 1 4 . Delete old versions of a file.

Figure 8.4. Tasks used in Experiment 8A.

Experimental Design, The basic design of the experiment was to have 
ten versions of each task on each system done by four different users, 
giving 40 observed instances per task-system. To avoid transfer effects, 
no user was observed on more than one system (except for the executive 
subsystems). Four tasks were observed for each of the text-editing 
systems, five tasks for each of the graphics systems, and one task for each 
of the executive subsystems.

Users, There were, in all, 28 different users (some technical, some 
secretarial): 12 for the editing systems, 12 for the graphics systems, and 4



for the executive subsystems. All were experts in that they had used the 
systems for months in their regular work and had used them recently.

Experimental Procedure. Each user was first given five one-minute 
typing tests to determine his keystroke time t^ . In addition, users of 
MARKUP (the only system to require manual drawing) were given a series 
of drawing tasks to determine the parameters of their drawing rate (as 
discussed in Section 8.2).

After the preliminary tests, each user was given a small number of 
practice problems of the sort to be tested and was told which method to 
use (see above). In most cases, the methods presented were what users 
claimed they would have used anyway; in the other cases, the method 
was easily adopted. Users practiced tasks until they were judged to be at 
ease with using the correct method; this was usually accomplished in 
three or four practice trials on each task type.

After practicing, the user proceeded to the main part of the 
experiment The user was given a notebook containing several manu­
script pages with the tasks to be done marked in red ink. Text-editing 
and graphics tasks appeared in randomized order; executive subsystem 
tasks were always ordered T il, T12, T13, T14; and all ten instances of 
task TIO, logging into a computer, were done in succession.

Each experimental session, lasting approximately 40 minutes, was 
videotaped and the user’s keystrokes were recorded automatically. Time 
stamps on the videotaped record and on each keystroke allowed a 
protocol to be constructed in which the time of each event was known to 
within .033 sec. This protocol is the basic data from which the results 
below were derived.

Results of the Experiment

Each task instance in the protocols was divided into acquisition time 
and execution time according to the following definitions. Acquisition 
time began when the user first looked over to the manuscript to get 
instructions for the next task and ended when the user started to perform 
the first operator of the method.'* Execution time then began at that
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 ̂ Technically, the boundary between acquisition and execution time was determined 
by taking the first recorded operator of the execution method (usually a K) and using it 
to estimate the starting time of the method’s first operator.



point and ended when the user looked over to the notebook for the next 
task.

Those tasks on which there were significant non-typing errors or in 
which the user did not use the prescribed method were excluded from 
further consideration. After this exclusion, 855 (69%) of the task in­
stances remained as observations to be matched against the predictions. 
No analysis was made of the excluded tasks.

The resulting observed times for task acquisition and execution were 
stable over repetition. There was no statistical evidence for times 
decreasing (implying learning) or increasing (implying fatigue) with repe­
tition.

CALCULATION OF EXECUTION TIME

Execution time was calculated using the method analysis for each 
task-system combination together with estimates of the times required for 
each operator (see chapter Appendix). All times, except for mental 
preparation time, were taken from sources outside of the experiment 
Pointing time tp and homing time were taken from Figure 8.1. Typ­
ing time and drawing time were estimated from the typing
and drawing tests by averaging the times of the four users involved in 
each task-system. System response time Tp for each task-system was 
estimated from independent measurements of the response times for the 
various commands required in each method. For task TIO, logging into a 
computer, a telephone button-press was assumed to take time 
Moving the telephone receiver to the computer terminal modem was 
estimated to take .7 sec, using the MTM system of times for industrial 
operations (Maynard, 1971).^

Mental preparation time was estimated from the experimental data 
itself. First, the total mental time for each method was determined by 
removing the predicted time for all physical operations from the observed 
execution time. Then, was estimated by a least-squares fit of the 
estimated mental times as a function of the predicted number of M 
operations. The result was =  1.35 sec = .84, standard error of 
estimate =  .11 sec, standard error about the regression line =  2.48 sec). 
The SD  of was 1.1 sec, indicating that the M operator had the 
characteristic variability of mental operators (Section 5.5).
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 ̂ One point o f task TIO is to illustrate that the Keystroke-Level Model can be 
extended by using existing catalogues of physical operators.



Execution times for each task-system combination were calculated by 
Equation 8.1. The execution-time calculations are summarized in Figure 
8.5, which also gives the observed execution times from the experiment 
for comparison.
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EXECUTION TIME

The accuracy of the predictions can be seen in Figure 8.6, which plots 
the predicted vs. observed data from Figure 8.5. The root-mean-square 
(RMS) error is 21% of the average predicted execution time. This 
accuracy is about the best that can be expected from the Keystroke-Level 
Model, since the choice of methods used by the subjects were controlled 
by the experimental procedure. The 21% RMS  error is about the same 
as the reproduction accuracy of Model K1 in Chapter 5 (Figure 5.16).

The distribution of relative prediction errors is evenly spread, as an 
analysis of Figure 8.6 shows. No particular systems or tasks make 
excessively large contributions. Predictions are not consistently positive 
or negative for systems or tasks, except that the predicted executive 
subsystem task times were uniformly too high. Examination of the 
individual observations does not reveal any small set of outliers or 
particular users that inflates the prediction error.

Prediction accuracy is related to the duration of the attempted 
prediction. Since unit tasks are essentially independent, prediction of the 
time to do a set of tasks will tend to be more accurate than prediction of 
the time to do a single unit task (see Chapter 5 for the argument). For 
example, using the model to predict how long it took to do all four text­
editing tasks, the average RM S  error is only 5% and the corresponding 
RM S  error for the graphics editors over the five tasks is only 6%.

Ideally, all the parameters of the model should be determined 
independently of the experiment The only parameter for which this was 
not possible was the mental operation time because there was no 
appropriate independent source of data available. The substantial 
variability of indicates that the consequent inflation in the model’s 
apparent accuracy is probably not too serious, since small changes in the 
value of tfj! make little difference. For example, if a as small as 1.2 
sec or as large as 2.0 sec were used in the predictions, the RMS  error for 
the Keystroke-Level Model would only increase from 21% to 23%. Of 
course, the estimated from this experiment is now available as an 
independent estimate for use by others.

The variability in the observed task times is of interest, since user 
behavior is inherently variable (see Chapter 2). In our data, the average



T a s k -
S y s t e m ' k

(sec)

C a l c u l a t e d O b s e r v e d
P r e d .
E r r o rrip

(cm)

T r

(sec)

T execute

(sec)

T execute

M ± S E ( N )
(sec)  (sec)

T1-POET .23 4 15 . . . . 8.8 7.8 ±  0.9(27) 11%

T1-SOS .22 4 19 -- -- - 9.6 9.6 ± 0 .8 (3 1 ) 1%

T 1-B r avo .23 2 8 2 1 -- 6.4 5.7 ± 0 .3 (3 1 ) 11%

T2-POET .28 4 14 -- - 9.4 8.9 ± 0 .7 (1 7 ) 5%

T2-SOS .23 4 18 .. 9.5 9.7 ±  0.8(32) -  3%

T2-BRAVO .24 2 4 2 1 -- 5.6 4.1 ± 0 .3 (3 2 ) 26%

T3-POET .19 3 12 -- 6.3 6.3 ±  0.4(24) 0%

T3-SOS .23 2 7 - 4.3 4.0 ±  0.3(37) 8%

T3-BRAVO .23 1 2 1 1 3.3 3.5 ±  0.2(38) -  7%

T4-POET .19 13 92 35.3 37.1 ±  4.3(20) -  6%

T4-SOS .23 12 47 26.8 32.7 ±  1.8(16) -22%

T4-BRAVO .24 2 6 1 3 3.8 11.6 14.3 ±  1.1(33) -23%

T5-MARKUP .25 3.2 -- 2.5 4 24.9 11.1 10.5 ±  1.1(27) 6%

T5-DRAW .25 7.6 12.6 5 18.9 12.5 ± 3 .0 (2 2 ) 34%

T5-SIL .27 1 4 0.4 2 4.8 5.4 ±  0.7(32) -12%

T6-MARKUP .26 1 7 2 1 5.0 6.2 ±  0.4(34) -23%

T6-DRAW .25 1 7 1 1 4.6 5.9 ±  0.4(34) -29%

T6-SIL .27 6 1.4 1 3.3 3.6 ± 0 .3 (1 9 ) -  9%

T7-MARKUP .24 8.6 4.8 6 13.6 15.1 15.0 ±  2.1(29) 2%
T7-DRAW .19 5 13 8 - 18.0 18.2 ±  1.9( 9) -  1%
T7-SIL .28 1 8 -- 5 9.1 12.3 ± 2 .1 (2 3 ) -36%

TS-M ar ku p .26 8 8 1 4.0 12.3 9.3  ±  0.4(22) 24%
T8-DRAW .21 1 5 3 5.7 5.3 ±  0.3(25) 7%
T8-SIL .27 1 5 0.7 2 5.2 4.1 ± 0 .2 (3 3 ) 20%

T9-MARKUP .25 2 8 6.5 -- 3.5 15.4 13.0 ±  2.5(26) 15%
T9-DRAW .22 5.7 - 5.7 7.5 10.5 ±  1.0(25) -40%
T9-SIL .28 5 0.3 3 -- -• 4.8 6.0 ±  1.0(28) -24%

T 10-Lo g in .29 2 28 15.9 27.4 25.1 ±  0.7(29) 9%
T i l - F tp .30 5 31 - - 10.1 26.1 19.7 ± 0 .7 (2 9 ) 24%
T1 2-C hat .31 1 11 8.3 13.1 11.5 ± 0 .6 (3 6 ) 12%
T13-DIR .30 2 20 0.5 9.2 6.6 ±  0.3(32) 28%
T M -D elver .32 2 20 0.4 9.4 7.5 ±  0.4(33) 20%

Figure 8 .5. Calculated and observed execution times in 
Experiment 8A.
The calculations are done according to Formula (8.1) using the operator times in 
Figure 8.1, except for which is the average time from the actual typing tests for 
the users on a given system. Each user’s time Is weighted by the correct number 
of Instances for that user on a given task (column N). SE = S D /V  A/, which is 
the standard error of estimation of the population mean for samples of size N. 
The calculated execution time for task T10 also includes .7 sec for the operation 
of picking up the telephone receiver (see Section 8.3).
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Figure 8 .6. Predicted vs. observed execution times in 
Experiment 8A.
The plotted values are taken from Figure 8.5.

CV  of the individual observations over each task is .31, which is typical 
of variability for behavior of this duration according to Figure 5.19. In 
comparing predictions by the model against any actual behavior, 
prediction error will always be confounded with some error from the 
sampling process. Sampling error for each of our observed task times is 
indicated in the SE column of Figure 8.5. The average standard error is 
9%. The prediction error of the Keystroke-Level Model being more than 
two times larger than this indicates that most of the prediction error is 
due to a real failure in the model and not just to unreliable observations.

ACQUISITION TIME

Turning from the execution part of the task to the acquisition part, 
the data show that it took users 2 sec on the average to acquire the tasks 
from the manuscript. This number may be refined by breaking the tasks 
into three types: (1) those tasks that the user already had in memory (the 
executive subsystem tasks that were done each time in the same order);



(2) those tasks for which the user had to look at the manuscript each 
time (all the graphics tasks, the poet and sos tasks, and task Til); and
(3) those tasks for which the user had to look at the manuscript, then 
scan text on the display to locate the task. The times for these three 
types of acquisition are given in Figure 8.7. Users took .5 sec when the 
task was in memory, 1.8 sec when the task had to be retrieved from the 
manuscript, and 4.0 sec when the users had to get the task from the 
manuscript and search for it on the video display. The time for getting 
the task from the manuscript is similar to the results obtained in Chapter 
5, where the g e t -n e x t -t a s k  operator took 1.92 sec (Figure 5.15). It is 
interesting to note that although display editors are generally faster to 
use, they impose a 2-sec penalty by requiring the user to scan the text on 
the display.
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T a s k  T y p e T a s k  n u m b e r s A c q u i s i t i o n  T i m e
M ±  SE{N)
(sec) (sec)

All tasks T 1 -T 1 4 2 .0  ±  2 .0  (885)

R epeated  task, recalled  

from m em ory

T10, T 1 2 ,T 1 3 .T 1 4 0 .5  ± 0 . 3  (130)

Task acquired  by looking  

at m anuscript

T 1 -T 4  (POET, SOS), 

T 5 -T 9 , T 1 1

1.8 ±  1 .9 ( 6 2 1 )

Task acquired  by looking  

at m anuscript, then scanning  

for task on display

T 1 -T 4  (BRAVO) 4 .0  ±  1 .9 (1 3 4 )

Figure 8 .7. Observed acquisition times in Experiment 8A.
SE is the standard error of estimate of the population mean for samples of size N.

We can use the acquisition times in Figure 8.7, along with the 
calculated execution times in Figure 8.5, to predict total task times. The 
resulting RMS  error of these predictions is 21%, which is just as accurate 
as predicting the execution times alone.



8.4 . A FURTHER LOOK AT THE M OPERATOR 
(EXPERIMENT 8B)

We have presented evidence for the validity of the Keystroke-Level 
Model by showing that it predicts overall task execution times, but we 
have not examined unit-task executions to see if the Keystroke-Level 
Model predicts performance in finer detail. There is little doubt that 
performance of physical operations corresponds to the model. How well 
does the generic M operator predict the pause times between the 
observed physical operations? To investigate this issue, we consider an 
exploratory experiment (Moran, 1980), in which the detailed performance 
record of one user was compared to the model’s predictions.

DESCRIPTION OF THE EXPERIMENT

Task and Method. The user was given the task of converting 
Sentence 8.2a to Sentence 8.2b using the b r a v o  editor:

The sun shines when it rains; our weather is funny. (8.2a)
Our weather is funny; when it rains the sun shines. (8.2b)

In addition to switching the two outer clauses of the original, the task 
requires changing punctuation and capitalization. The task is complex, 
requiring several b r a v o  commands, and there are several different ways 
of performing i t  The timewise optimal method requires seven com­
mands,^ as shown in Figure 8.8. As predicted by the Keystroke-Level 
Model, this method requires seven M operations.

User. The user was an experienced b r a v o  user. She had consid­
erable technical training, including some programming; but she was not 
an experienced programmer.

Procedure. The optimal method was discussed verbally with the 
user—but without actually executing it on the system—for about 30 
minutes, after which she began the experimental session. Using b r a v o , 
the user executed the clause-switching task 100 times. The task was 
exactly the same on each trial (the user edited a file with 100 copies of
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” The details o f how the optimal method works are not important for the present 
discussion. However, we take up the clause-switching task as a problem-solving task in 
Chapter 11.
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OPTIM AL METHOD:

(C 1) D elete 3rd clause a n d ...

(C 2) ...insert it in front of 1st clause. 

(C 3) R eplace 0" by “ O ” .

(C 4) R eplace "T "  by t".

(C 5) D elete 3rd clause and...

(C 6) ...insert it in front of 2nd clause. 

(C 7) Find next task.

Himousel PK  PK  M K(Di 

PK M K[l| K(ESC1 

PK M K (r ] K (S h if t i 

H(keyboara] 2K10ESC] 

Hjmousel PK  M KjR)

Hlkeyboard) 4K |: SPACE T ESC) 

H(mouse) PK  PK  M K|D)

P K  M  K ill K{ESC|

M  K |r l

T/ME PREDICTION:

T , = [24/^ + 8/o + 5 /.J  + 7l .c x i r u l c  I K  P  / y ‘ M

= [24 (.15 ) + 8 (1 .03 ) + 5 (.57 )| + 7 (1 .35) 

= 14.7 + 9 .4  

= 24.1 sec

Figure 8 .8 . Optimal method for the clause-switching task 
and its predicted time.
The underlined K’s in the method indicate command-invocation keystrokes (see 
Figure 8.9 and Figure 8.10). Unit operator times for the prediction were obtained 
by measuring the user; see the text for the rationale. Pointing time tp decreases 
with practice; the value of tp used here is the value at Trial 7 (see the caption for 
Figure 8.11 for an explanation).

Sentence 8.2a on it), and the user employed exactly the same method 
every time.^ On subsequent days, the user repeated 100-trial sessions 
until she had completed eleven sessions (1100 trials) in all. Records of 
time-stamped keystrokes were collected for all sessions.

' Note that the prediction o f the M’s in Figure 8.8 is based on the assumption that 
the parts o f the method become fixed. For example, no M is predicted to occur before 
the terminator (ESC) of the Replace command, since the replacement string is the same 
every time (see Rule 4 in Figure 8.2).
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ANALYSIS AND RESULTS

Atudysis. The data were analyzed first to isolate the method 
execution times, as was done in Experiment 8A. Execution times were 
then partitioned into physical and mental components using the 
Keystroke-Level Model. Figure 8.8 shows the model’s predicted time for 
an error-free trial. The time for the physical component (the physical 
operations) was predicted to be 14.7 sec, and the time for the mental 
component (the M operations) was predicted to be 9.4 sec.

The procedure for partitioning the user’s actual execution times was to 
estimate the physical time and then to regard the remaining time as 
mental time. In order to estimate the physical time as accurately as 
possible, the unit physical operator times (/^, tp, and t^) were obtained 
by direct measurement of the user (rather than by taking the values from 
Figure 8.1). The physical component time was estimated by alotting unit 
operation times for the physical operations, which were inferred from the 
data record. For example, in executing the optimal method (Figure 8.8), 
the first recorded keystroke would be a mouse button-press. Because of 
the method analysis in Figure 8.8, this recorded keystroke is assumed to 
represent not just a K operation, but three physical operations, HPK; the 
estimated physical time is therefore + ip -F =  .57 +  1.03 + .15 
=  1.75 sec. If the recorded time for this keystroke were 3.0 sec, then the 
remaining time (3.00—1.75 = 1.25 sec) would be assumed to be mental 
time.

Mental Time Residís. Mental operations, as indicated by logical 
analysis and by pauses in the user’s physical activity, appear to occur 
close to the locations predicted by the model; but they are less regular 
than idealized by the model, and they occur in more places. The user’s 
mental time pattern is best examined by considering only error-free trials. 
Since all error-free trials have the same sequence of physical operations, 
the mental operations can be compared with each other and with the 
model’s prediction. Figure 8.9 illustrates graphically the operation times 
for a subset of the error-free trials that were selected to show the user’s 
gradual reduction in execution time. Also shown is the model’s predicted 
time, which is within 2% of the user’s overall execution time on her first 
error-free trial. Trial 7. Further, the user is seen to require mental 
operations uniformly throughout Trial 7; just as predicted, they occur in 
every command of the method.

The correspondence between the user’s mental operations and the 
model’s predicted M operations is directly exhibited in Figure 8.10. The



Figure 8 .9. Time-line graph of keystrokes for execution of 
the clause-switching task in Experiment 8B.
Each of the eight horizontal bars is a time-line graph of the sequence of 
operations in an execution of the optimal method. The topmost time line (labeled 
"Pred.”) represents the execution time predicted by the Keystroke-Level Model 
(Figure 8.8). Just above this time line are labels for the command-invocation 
keystrokes and the mouse button-presses (indicated by * ’s); see Figure 8.8 for 
where they occur in the method. The remaining time lines represent several of the 
user’s performances, labeled by their trial numbers. The vertical strokes in the 
time lines represent recorded keystrokes. The little black horizontal bars in the 
time lines represent inferred mental operators. The diagonal lines between time 
lines show the corresponding command boundaries (as defined in Figure 8.8) 
between time lines.

figure shows histograms of the user’s mental time for the trials graphed 
in Figure 8.9. A trial consists of seven command executions. Each 
command has a command-invocation keystroke, such as D for the Delete 
command or R for the Replace command, indicated in Figure 8.8 by the 
underlined K’s. The model predicts an M operation immediately pre­
ceding each command-invocation keystroke. The command-invocation 
keystrokes thus provide reference points in the execution by which to 
compare the locations of mental time. The horizontal axis in Figure 8.10 
represents the time preceding the recorded command-invocation key­
strokes, normalized to be at time 0. The model’s predicted M operations 
occur uniformly between the times -1 .50 sec and -.1 5  sec, as is shown 
by the lightly-shaded histogram at the top of Figure 8.10. The histogram
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~6 - 5  - 3  - 2  - 1  0

Time (sec) Preceding Command-Invocation

Figure 8 .10. Histograms of mental times preceding com­
mand-invocation keystrokes in Experiment 8B.
Each histogram corresponds to one of the time-line bars in Figure 8.9. The lightly- 
shaded histograms represent the M operations predicted by the Keystroke-Level 
Model. The darkly-shaded histograms represent the user’s actual mental times in 
each trial. The percentages In the lightly-shaded histograms represent the ratio of 
the user’s mental time to the predicted mental time.
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is rectangular, since it represents seven identical M operations stacked on 
top of each other. The distributions of the user’s actual mental times are 
shown as the darkly-shaded histograms, which are superimposed over 
copies of the predicted mental time histogram for comparison. As 
predicted, most of the user’s actual mental time does occur in the two or 
three seconds preceding the command-invocation keystrokes. The figure 
also gives for each trial the percentage ratio of the user’s actual mental 
time to the predicted mental time.

Figures 8.9 and 8.10 make clear several features of the user’s actual 
mental time. The user’s mental time is more widely distributed than the 
model predicts. This happens mainly because pointing operations usually 
occur before command-invocation keystrokes, and the user requires 
mental time to prepare for them. Most noticeably, the user requires 
unpredicted mental operations at the beginning of each trial; these 
mental operations are the leftmost regions of the histograms in Figure 
8.10. The bimodal shape of the histograms in the early trials indicates 
that the user often requires two mental operations corresponding to a 
single predicted M operation. For example, in Trial 7 the user engages 
in 13 mental operations, as compared to the predicted seven operations. 
(Since the total mental time in Trial 7 was equal to the predicted mental 
time, the average duration of the actual mental operations must have 
been only about half of i^.) With repetitive practice on the clause­
switching task, the user reduces the amount of mental time required by 
reducing both the number and the duration of her mental operations. 
Although the user’s mental time in Trial 7 is 104% of the predicted 
mental time, the user reduced her mental time to 35% of the predicted 
time by Trial 527. Also, the number of mental operations is reduced 
from 13 in Trial 7 to 7 in Trial 527. However, even on Trial 527—her 
best trial—the user still required mental operations, although they were 
reduced to less than a half-second each.

Learning Results. With practice, the amount of mental preparation 
time spent by the user declines. We should expect the user’s
performance in this experiment to improve according to the Power Law 
of Practice (Chapter 2). The user’s execution times over the 1100 trials 
are plotted in Figure 8.11 on log-log coordinates. The times approx­
imately follow the power law, although the data is noisy in the later 
sessions. The predicted execution time is also shown. It can be seen that 
the user’s performance corresponds to the model’s prediction early in the 
first session, as was also evident in Figure 8.9. The user’s execution time
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Figure 8 .11 . Learning curve of execution times for the 
clause-switching task in Experiment 8B.
Each circle represents the mean of 20 trials. The solid line is the least-squares fit 
to the Power Law of Practice. The dashed line shows the time predicted by the 
Keystroke-Level Model. The predicted time changes because the user improved 
her unit pointing time, ip (from 1.31 sec in Session 1 to .86 sec in Session 11). 
According to the Power Law of Practice, the value of tp for each trial was 

estimated by interpolating with a power function.

becomes faster than predicted by the end of the first session and 
continues to get faster thereafter. Most of this improvement over the 
predicted time is due to compression of the mental time required by the 
user, as just discussed.

Conclusion. In Section 8.3, we established that the Keystroke-Level 
Model is an accurate predictor of expert behavior under normal human- 
computer interaction conditions, where there is a variety of tasks. 
However, under the special conditions of this study, where an identical 
task was repeated over and over, the user’s behavior became much better 
than the model’s prediction: much of this improvement was due to 
compressing mental time. In particular, the user’s observed mental 
operations were more dispersed throughout her editing activity than the 
description given by the M operator of the Keystroke-Level Model. For



a more detailed account of the user’s mental operations, we must turn to 
a GOMS model.^
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8 .5 . SAMPLE APPLICATIONS

We have provided evidence for the Keystroke-Level Model in a wide 
range of user-computer interactions. The time required for experts to 
perform a unit task was predicted to within about 20% by a linear 
function of a small set of operators. The power of the Keystroke-Level 
Model lies in permitting prediction without having to do any measure­
ments of the actual situation and in expressing the prediction as a simple 
algebraic expression. Its limitation lies in requiring that the physical 
method be specified at the Keystroke Level and in being limited to error- 
free expert behavior.

In this section, we illustrate how the Keystroke-Level Model can be 
used, both to exploit its possibilities and to work within its restrictions. 
The basic application—point prediction of specific interaction times—has 
been sufficiently illustrated in the course of the experiment, where such 
predictions were made for 32 different tasks involving 10 highly diverse 
systems. We now show three further uses: (1) calculated benchmarks; (2) 
parametric analysis, where predictions are expressed as functions of task 
variables; and (3) sensitivity analysis, where changes in the predictions 
are examined as a function of changes in either task or model parameters.

Calculated Benchmarks

The Keystroke-Level Model makes it possible to calculate the 
equivalent of a benchmark for a system and, hence, to compare systems. 
This has obvious cost advantages over having to obtain actual measure­
ments. More importantly, it permits benchmarking at design time, before 
the system exists in a form that permits actual measurement The 
experimental data from Section 8.3 can be used as a ready illustration.

Suppose we were to use the four tasks T1 to T4 as a benchmark for 
the three text editors, p o e t , s o s , and b r a v o . Without performing

Q
For example, the GOMS Model K2 (see Figure 5.12) has mental operators that are 

not only less aggregate than the M operator (see Section 8.2), but that also provide 
functional labels for each mental operation.



experiments, we could use the Keystroke-Level Model to compute the 
total benchmark time for each system. The computed benchmark times 
come directly from Figure 8.5 by summing the calculated T^^ecute 
to T4 for each editor, giving 59.8 sec for POET, 50.2 sec for SOS, and 26.9 
sec for BRAVO. Taking the p o e t  time (the slowest) as 100, we get ratios 
of 100:84:45. As we might have expected, the two line-oriented editors 
are relatively close to each other and the display editor is substantially 
faster. Since we have also done the experiment, we can compare these 
calculated benchmarks with the observed benchmarks (by summing the 
observed T^^ecute Figure 8.5). This time we get 60.1 sec for p o e t , 
56.0 sec for SOS, and 27.6 sec for b r a v o , or experimentally determined 
ratios of 100:93:46—essentially the same result The agreement between 
the calculated and observed benchmark provides confidence only in using 
the calculated benchmark in place of a measured one. It does not 
provide evidence for the validity of the particular benchmark (tasks Tl- 
T4) or for whether benchmarks are generally a valid way to compare 
editors.

A similar analysis can be performed for the three graphics systems, 
using tasks T5-T9 as the benchmark. The analysis predicts ratios of 
100:93:46 for m a r k u p , d r a w , and s il , respectively; the observed ratios 
were 100:97:58. The ratio between M a r k u p  and d r a w  is close enough 
to raise the question of whether the predicted difference is too small to 
be reliable. The calculated difference between m a r k u p  and d r a w  on the 
benchmark is 59.0—54.7 = 4.3 sec or 7%. The model has an RM S  
prediction error of 21% for a single unit task. Since this benchmark is 
essentially an independent sum of five unit tasks, the RM S  error should 
theoretically be 5 = 9%.  ̂ Thus, predictions for the two systems
are within the RM S  error of the model, so the predicted difference 
between them can hardly be reliable. The fact that the model correctly 
predicted that d r a w  was slightly faster than m a r k u p  was lucky—there is 
no reason to expect the Keystroke-Level Model to always make such fine 
discriminations successfully.

Parametric Analysis

We can illustrate the use of the model for parametric analysis and 
sensitivity analysis with the following example problem:
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 ̂ Recall in Section 8.3 that the actual RMS error for the graphics systems was 6%.



Problem. A user is typing text into the b r a v o  editor and 
detects a misspelled word n words back from the word he is 
currently typing. He wants to correct the misspelled word 
and resume typing. What methods will the user use for this 
task? How long will these methods take? Is it possible to 
design a better method for this task?

Let us compare two methods available in BRAVO for making the 
correction. Since the methods may behave quite differently depending 
on how far back the misspelled word is, we need to determine how long 
each method takes as a function of n.

The first method for correcting the word makes use of the Backword 
command (invoked by hitting the c o n t r o l  key and then w), which 
erases the last typed-in word:

288 8. THE KEYSTROKE-LEVEL MODEL

Method W (Backword):
Set up Backword command 
Execute Backword n times 
Type new word 
Retype destroyed text

M K [CONTROL] 

«((1/c)MK[Wj) 
5.5K[word] 
5.5(/i-1)K

^execute ~  +  +  ( l  +  6 .5n )t^

= 1.6 +  2.16/j sec.
(8.3)

The execution time is a function not only of n, but also of the way 
the user chunks repeated keystrokes. When a user has to repeat a single- 
keystroke command several times, like the Backword command in the 
above method, he will chunk the sequence into small bursts separated by 
pauses (the pauses represented as M operations), according to Rule 2 in 
Figure 8.2. The average number of Backword commands chunked in a 
burst is represented by the parameter c. We use this parameter in the 
second step in the above method, where we count 1/c M operations for 
each use of the Backword command. Since we do not know an exact 
value for c, we assume the value c =  4 in our calculations (we return to 
this decision in the next section). In the calculations we also assume an 
average non-secretarial typist (t^ = .28 sec) and an average word-length 
of 4.5 characters (excluding associated punctuation and spaces).

The second method for correcting the word is to exit type-in mode, 
use the Replace command to correct the word, and then re-enter type-in 
mode, so that type-in can be resumed:
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Method R (Replace):
Terminate type-in mode
Point to target word and select it
Call Replace command
Type new word
Terminate Replace command
Point to last input word and select it
Re-enter type-in mode

M K [ESC ]

H[mouse] P[word] K[YELLOW] 

H (keyboard] M K [R ]  

4.5K[word]
M K[ESC ]

H[mouse] P[word] K[YELLOW] 

H [keyboard] MK[I]

^execute ~

= 12.1 sec.

The predicted times for the two methods as a function of n are 
plotted as the two solid lines in Figure 8.12a. As the figure shows, it is 
faster to use the Backword method up until a certain crossover point 

after which it becomes faster to use the Replace method. Under 
the above assumptions, the crossover from the Backword method to the 
Replace method is found to be at 4.9 words.

Now, let us consider providing a new method to improve performance 
on this correction task. The new method will require implementing two 
new commands in b r a v o . We wish to determine, before implementing 
the commands, whether they are likely to be much of an improvement 

The first new command is a  Backskip command (c o n t r o l  s ), which 
moves the text-insertion point back one word without erasing any text 
The second new command is a Resume command ( c o n t r o l  r ), which 
moves the insertion point back to where it was when the first Backskip 
command was invoked. These commands allow the Backskip method:

Method S (Backskip):
Set up Backskip command 
Execute Backskip n -1  times 
Call Backword command 
Type new word 
Call Resume command

M K  [CONTROL]
(rt-1)((l/c)MK[S])
MK[W]

4.5K[w ord] 

M 2K [C 0N T R 0L  R]

^execute = (3 +  (/I-1 )/c )t^  + («-»-7.5)/^ 
=  5.8 .62n sec.

(8.4)

The predicted time for the Backskip method is plotted as the dashed 
line in Figure 8.12a. With the addition of this method there are two
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Figure 8.12a. Execution time of three methods for the 
misspelled-word task as a function of n .
Method W uses BRAVO’S Backword command, and Method R uses the Replace 
command. Method S uses the proposed new Backskip command.

additional crossover points, and between it and the other two 
methods. As can be seen, the Backskip method is faster than both of the 
other methods between and in the range from 2.7 to 10.2 
words. Thus, a brief analysis provides evidence that the proposed new 
feature probably will be useful in the sense that it will be the fastest 
method over a significant region of the task space.

Sensitivity Analysis

How sensitive are the calculations above to variations in the 
parameters of the methods? The question of interest is whether, over 
such variations, there remains a region in the task space in which the 
Backskip method is the fastest. An important parameter is the user’s 
typing speed How much does the crossover between the Backword 
method and the Backskip method change as a function of typing speed?



n (words)

Figure 8.12b. Boundaries for the fastest method.
The space is divided into three regions; each region is labeled with the name of 
the fastest method over that region.

Figure 8 .12c. Boundaries adjusted for different chunk sizes.
As in Figure 8.12b, each region is labeled by the fastest method over that region. 
The crosshatched areas indicate the variability in the boundary between regions as 
c is varied from c = 2 to c = 6.
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Setting Equation 8.3 equal to Equation 8.4 and solving for n as a
function of gives

'ws =  « = 1.2 -f .43//,

The crossover point n^rs increases with typing speed (decreasing /^), 
rising to = 6.6 words for the fastest typist (/^ =  .08 sec). As n 
increases, slow typists can be expected to switch from the old Backword 
method (which involves more typing) to the new Backskip method 
(which involves less typing, but more mental overhead) sooner than fast 
typists.

We can plot the crossover boundary between the two methods in the 
space of the two parameters: n (characterizing different tasks) and /^ 
(characterizing different users). The two boundaries of the new Backskip 
method are plotted in Figure 8.126. These boundaries define the regions 
in the parameter space where each method is fastest. The circles mark 
the crossover points corresponding to the ones in Figure 8.12a (i.e., at 
=  .28 sec). There is a large region in the space that is dominated by the 
new method. In fact, the new method is dominant for certain values of 
n, no matter what /^ is. Thus our conclusion, that the new Backskip 
method may be a useful method, is not sensitive to assumptions about 
the particular typing speed of the users. (Actually, of course, the analysis 
should take into account the relative frequencies of various points in the 
parameter space; we have omitted this complication to simplify the 
example.)

How sensitive are these conclusions to the value assumed for c, the 
number of keystrokes per chunk? To find out, we re-derive the crossover 
between the Backword and Backskip methods by setting Equation 8.3 
equal to Equation 8.4 and solving for « as a function of both c and /^, 
giving

nyys~  1-2 + .49//^ —.24/c/^ ,

Although we do not know an exact value for c, we can be reasonably 
confident that it will stay between 2 and 6. With /^ =  .28 sec, the 
crossover varies between 2.5 and 2.8 words as c varies between 2 and 6; 
the crossoverpoint is not very sensitive to the value of c at this point.

The sensitivities of the various crossover points for other values of /^ 
can be assessed by replotting Figure 8.126 using the reasonable extreme



values of c. The two crossover boundaries for the Backskip method are 
plotted in Figure 8.12c as crosshatched lines defined by setting c to 2 and 
to 6 in the crossover equations. The diagram shows that the value of c 
affects the boundary between the Backskip and Replace methods more 
than the boundary between the Backskip and Backword methods, since c 
is not involved in the Replace method. Small chunk sizes especially 
penalize the Backskip method. The boundary between the Backskip and 
Backword methods is not affected much by c, since the chunk size is 
involved in both methods in exactly the same way. Overall, varying c 
does not squeeze out the region for the new Backskip method; and our 
basic conclusion—that the new method is a useful addition—still holds.

The sensitivity analyses above illustrate how the Keystroke-Level 
Model can be used to evaluate design choices—even when many aspects 
of the calculation are uncertain—for the principal conclusions are often 
insensitive to many of the uncertainties.
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8.6 . SIMPLIFICATIONS OF THE MODEL

The question naturally arises as to whether further simplifications of 
the Keystroke-Level Model might do reasonably well at predicting 
execution time. One could (1) count only the number of keystrokes, (2) 
count just the physical operators and prorate the time for mental activity, 
or (3) use a single constant time for all operators. We show below that 
such simplifications degrade accuracy. However, they provide useful 
approximations where lower accuracy can be tolerated.

Keystrokes-Only Simplification

The first simplification is to consider only the keystrokes, in which 
execution time is proportional to the number of keystrokes:

execute —

We separate out the system response times so as not to confound the 
comparison of the various simplifications. The constant of propor­
tionality K should be distinguished from the typing speed The latter, 
determined from standard typing tests, is the keystroke time in a copy­



typing task, whereas the former is the average time per keystroke in an 
interaction task. Estimating the value of k from a least-squares fit of the 
values of and the observed Tĝ êcuie Figure 8.5 gives k =  .49 
sec/keystroke. The RM S  error is 49% (compared to 22% for the 
Keystroke-Level Model). The statistics for comparing all the simplifi­
cations are presented in Figure 8.13. As can be seen, using keystrokes 
only is substantially less accurate than using the full Keystroke-Level 
Model. This simplification is inappropriate for tasks that are not 
dominated by keystroking. For example, it only predicts about a third of 
the observed time for the m a r k u p  tasks, which are dominated by 
pointing and drawing operations.

The keystrokes-only simplification is essentially the model previously 
introduced in Figure 3.7 (Chapter 3). The above estimate of k is strongly 
influenced by one outlying point in the data, T4-Poet (/j^ =  92). 
Estimating k with this one point removed gives k = .60 sec, a value 
close to the .57 sec estimate obtained in Chapter 3. T4-Poet is the only 
task that requires any input-typing of text One obvious refinement of 
the keystrokes-only simplification would be to distinguish two kinds 
of keystrokes: mass input-typing (at sec/keystroke) vs. command-
language keying (at k sec/keystroke). For command-language keying, a 
K of .60 sec is the more reasonable value.

The model of Embley, Lan, Leinbaugh, and Nagy (1978; see 
also Embley and Nagy, 1981), though formally similar to our keystrokes-

294 8. THE KEYSTROKE-LEVEL MODEL

Model Variation Param eters RMS Error

Keystrokes Only K = .49 sec/keystroke .76 49%
Prorated Mental Time /i = 1.67 .66 45%
Constant Operator Time T = .43 sec/operator .85 34%

Keystroke-Level Model (See Figure 8.1) .90 22%

Figure 8 .13 . Comparison of the Keystroke-Level Model with 
simplifications of the model.
The correlations are between the execution times predicted by each of the models 
and the observed execution times from Figure 8.5. The RMS error is given as a 
percentage of the observed execution time, which was 11.0 sec. (This is why the 
RMS error for the Keystroke-Level Model is 22% here.) More useful values for the 

K and T parameters are K = .60 sec and r  = .49 sec.



only simplification, is conceptually distinct The Keystroke-Level Model 
is based on the notion of a unit-task structure; the Embley et al. model is 
based on system commands. The Keystroke-Level Model is restricted to 
skilled expert behavior, whereas Embley et al. attempt to model all kinds 
of users (essentially, by varying their versions of the parameters T̂ cquire 
and k). Since they did not compare their model against empirical 
performance data, we cannot directly compare our results to theirs. But 
because of the similarities to the keystrokes-only simplification, Embley et 
al.’s model might be expected to have about the same accuracy.
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Prorated-Mental-Time Simplification

According to the prorated-mental-time simplification, execution time 
is the time required for the physical operations multiplied by a factor to 
account for the mental time:

execute — M -t- Tp -F Tq )  +  T p i .

The idea is that the physical operations will require a certain average 
overhead of mental activity. Thus, instead of trying to predict exactly 
how many mental operations there are, we can do fairly well by just 
using a multiplicative mental overhead constant, ¡i.

Using a least-squares analysis to determine ¡i from the sum of the 
calculated times for the physical operations and from the observed values 
of in Figure 8.5 gives fi = 1.67, signifying a 67% overhead for
mental activity. The RMS error is 45%.

Like the keystrokes-only simplification, this simplification is also less 
accurate than the Keystroke-Level Model, as can be seen in Figure 8.13, 
suggesting that the extra detail in the Keystroke-Level Model, involving 
the explicit placements of the mental preparation operator M, is effective.

There is an interesting relation between these simplifications and the 
rules for placing occurrences of M in the Keystroke-Level Model (Figure 
8.2). The initial placement of M’s (by Rule 0) near certain K’s and P’s is 
essentially an assumption that mental time is proportional to a subset of 
the physical operators. If Rule 0 had specified all physical operators, it 
would, by itself, have been equivalent to prorating mental time. If the 
other physical operators (P, H, and D) had been ignored, this would have 
been equivalent to counting keystrokes only. Thus, the deletion of the 
M’s according to Rules 1 to 4 constitutes the way in which the



Keystroke-Level Model departs from these simplifications. The evidence 
for the superiority of the Keystroke-Level Model presented in Figure 
8.13 is also evidence that rules Rules 1 to 4 had a significant effect. The 
contribution of each of the rules individually is significant, in the sense 
that each one’s removal leads to a decrease in the accuracy of the 
Keystroke-Level Model.

Constant-Operator-Time Simplification

According to this simplification, execution time is proportional to the 
number of Keystroke-Level Model operations:

296 8. THE KEYSTROKE-LEVEL MODEL

execute

Support for this simplification comes from the statistical observation 
(Wainer, 1976; Claude, 1972) that the accuracy of linear models is not 
very sensitive to the differential weighting of the factors—equal weighting 
does nearly as well as any other weighting. Thus, we disregard the 
different operator times and use a single time t for all operators. Note 
that the constant-operator-time simplification is formally similar to the 
keystrokes-only simplification; the latter can be viewed as using as a 
crude estimate of the total number of operators.

Estimating t by a least-squares fit of the data in Figure 8.5 gives t =  
.43 sec/operator. The RM S  error is 34%. (Removing the long typing 
task, T4-POET, gives t = .49 sec/operator.)

The constant-operator-time simplification is more accurate than the 
keystrokes-only simplification, affirming that taking into account oper­
ators other than K is useful. In fact, most of the action in the constant- 
operator-time simplification (over the set of data in Figure 8.5, at least) 
comes from counting only the K, P, and M operators. The constant- 
operator-time simplification is still less accurate than the Keystroke-Level 
Model, showing that the use of estimates of each operator time yields yet 
another increment of accuracy.

In summary, all the simplifications presented in this section are less 
accurate than the full Keystroke-Level Model. However, these simplifi­
cations are probably good enough for many practical applications, 
especially for “back-of-the-envelope” calculations, where it is too much 
trouble to worry about the subtleties of counting the M’s required by the 
full Keystroke-Level Model.
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8.7 . CONCLUSIONS

The GOMS analysis at the Keystroke Level has been refined into a 
model of practical use, the Keystroke-Level Model. Only a few 
operators—keystroke, poinL home, draw, a generic mental operator, and 
a system response operator—are needed to describe methods in a wide 
range of interactive systems. Heuristic rules are provided to predict 
where the mental operations are needed.

The generic mental (M) operator of the model appears to be more 
aggregate than users’ actual mental operations, although there is a close 
correspondence between M’s and the actual mental time. With highly 
repetitive tasks, users can reduce their mental time below the model’s 
predictions.

The Keystroke-Level Model can be used to estimate the execution 
time of a method for doing a task. In laboratory experiments, the model 
was accurate to a standard error of 21% over a variety of different tasks 
and systems. Applications of the model include point prediction, 
calculated benchmarks, parametric analysis, and sensitivity analysis.

Simplifications of the Keystroke-Level Model—such as counting only 
keystrokes, prorating mental time, or using a constant operator time—are 
much less accurate at predicting execution time; but they do provide the 
designer with greater ease of use at the expense of accuracy.



Appendix to Chapter 8:
METHODS FOR THE TASKS IN EXPERIMENT 8A

This Appendix gives the methods and their Keystroke-Level Model 
encodings for all the task-system combinations used in Experiment 8A. 
The notation is explained in Section 8.2. The following notes elaborate 
on specific points:

(1) .3P Fractional coefficients indicate that certain
actions occurred less than 100% of the time.
For example, the order in which tasks are 
actually done influences the necessity of 
certain actions.

(2) OH The coefficient of zero indicates this action
does not occur in this particular task, 
although it could in similar tasks.

(3) R(0) A response time of zero indicates that the
actual response time is absorbed in the 
beginning of the subsequent task and 
therefore is not added to the task time of the 
current task.

(4) 7K A search string is assumed to average 7
characters.

(5) 5K Line numbers in the SOS editor are 5 digits
long.

(6) M18C This is a special operator taken from the
MTM predetermined time standards 
(Maynard, 1971).

(7) 5K A label is assumed to average 4 characters.
When capitalized, its total number of 
keystrokes is five.

Citations to the notes appear in the extreme right-hand column of the 
method encodings.
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Task T1: Replace one 5-letter word with another 
(one line from previous task).

Method for Task T1 -POET:
Jump to next line M K[LINEFEED]
Issue Substitute command M K[S]
Type new word 5 K [word]
Terminate new word M K [RETURN]
Type old word 5 K [word]
Terminate old word M K [RETURN]
Terminate command K [RETURN]

Method for Task T1 -SOS:
Issue Substitute command M K[S]
Type old word 5 K [word]
Terminate old word M K[ESC]
Type new word 5K[word]
Terminate new word M K[ESC]
Type line number 5K [number] (5)
Terminate line number M K[RETURN]

Method for Task T1 -BRAVO:
Reach for mouse H [mouse]
Point to word P[word]
Select word K [YELLOW]
Home on keyboard H [keyboard]
Issue Replace command M K[R]
Type new word 5 K [word]
Terminate type-in M K[ESC]
Wait for completion R(0) (3)

Task T2: Add a fifth letter to 4-letter word 
(one line from previous task).
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Method for Task T2-POET:
Jump to next line 
Issue Substitute command 
Type new word 
Terminate new word 
Type old word 
Terminate old word 
Terminate command

M K[LF]
M K[S]
5 K [word]
M K [RETURN] 
4  K [word]
M K[RETURN] 
K [RETURN]

Method for Task T2-SOS:
Issue Substitute command M K[S]
Type old word 4K[word]
Terminate old word M K[ESC]
Type new word 5 K [word]
Terminate new word M K[ESC]
Type line number 5K [number] (5)
Terminate command M K [RETURN]

Method for Task T2-BRAVO:
Reach for mouse H [mouse]
Point to word P[word]
Select word K [YELLOW]
Issue Append command M K[A]
Home on keyboard H [keyboard]
Type new letter K [letter]
Terminate type-in M K[ESC]
Wait for completion R(0) (3)

Task T3: Delete a single line of text
(eight lines from previous task).

Method for Task T3-POET:
Indicate search string 
Type search string 
Terminate search string 
Print line

M K [QUOTE] 
7 K [string]
M K[QU0TE] 
K [SLASH]

(4)
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Issue Delete command 
Terminate command

M K[D]
K [RETURN]

Method for Task T3-SOS:
Issue Delete command M K[D]
Type line number 5K[number] (5)
Terminate command M K [RETURN]

Method for Task T3-BRAV0:
Reach for mouse H [mouse]
Point to line P[line]
Select line K[RED]
Issue Delete command M K[D]
Wait for completion R(0) (3)

Task T4: Move a 52-character sentence (on two lines) 
to the end of its paragraph 
(eight lines from previous task).

Method for Task T4-P0ET:
Delete sentence at current location 

Delete part of sentence on first line
Indicate search string M K[QUOTE]
Type search string 7 K [string] (4)

Terminate search string M K [QUOTE]
Print line K [SLASH]
Issue Edit command M 2K[E RETURN]
Issue Search subcommand M 2K[CTRLS]
Type first letter of sentence 2K[SHIFT letter]
Delete rest of line M K[RETURN]

Delete part of sentence on second line
Jump to next line M K[LINEFEED]
Issue Edit command M 2K[E RETURN]
Issue Delete subcommand M 2K[CTRLY]
Type first letter of sentence 2K [SHIFT letter]
Save rest of line M 2K[CTRLZ]
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Retype sentence at new location 
Indicate search string 
Type search string 
Terminate search string 
Print line
Issue Append command 
Type sentence 
Terminate type-in

M K [QUOTE]
7 K [string]
M K [QUOTE] 
K[SLASH]
M 2K[A RETURN] 
52K[sentence]
M 2K[CTRLZ]

(4)

Method for Task T4-SOS:
Break out sentence onto its own lines 

Break sentence out of first line
Issue Alter command M K[a]
Type line number 5K  [number] (5)
Terminate line number M K[RETURN]
Issue Search subcommand M K[S]
Type first letter of sentence 2 K [SHIFT character]

Issue Insert subcommand M K[l]
Type line break K [RETURN]
Terminate subcommand M K[ESC]
Terminate command K[RETURN]

'ea/c sentence out of second line
Issue Alter command M K[A]
Type line number 5K[number] (5)
Terminate line number M K [RETURN]
Issue Search subcommand M K[S]
Type first letter of next sentence 2K[SHIFT character]
Issue Insert subcommand M K[l]
Type line break K[RETURN]
Terminate subcommand M K[ESC]
Terminate command K[RETURN]

sentence to new location
Issue Transfer command M K[T]
Specify new location 5K  [number] (5)
Type separator K [COMMA]
Specify first line to be moved 5K[number] (5)
Type separator K[COLON]
Specify last line to be moved 5K  [number] (5)
Terminate command M K [RETURN]
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Method for Task T4-BRAV0;
Delete sentence from current location

Reach for mouse H [mouse]
Point to beginning of sentence P[character]
Select beginning point K[RED]
Point to end of sentence P[character]
Select ending point K[BLUE]
Issue Delete command M K[D]
Wait for completion R(3.8)

Move sentence to new location
Point to new location P[character]
Select new location K[RED]
Issue Append-deleted-text command M 2K[AESC]
Wait for completion R(0) (3)

Task T5: Add a box (rectangle) to a diagram.

Method for Task T5-MARKUP:
Select drawing mode

Reach for mouse OH [mouse] (2)
Point to place for menu .6P[display] (1)
Display menu .6K[YELL0W-D0WN] (1)
Expand menu .3P[menu] (1)
Point to menu icon .6P[icon] (1)
Undisplay menu .6K[yellow-up] (1)

Draw rectangle
Point to corner of rectangle P [corner]
Begin drawing mode K[RED-D0WN]
Draw rectangle 0(4 ,24 .86)
Terminate drawing mode K[RED-UP]

Method for Task T5-DRAW:
Get into line-drawing mode 

Begin Draw mode 
Reach for mouse

.6(M  K[ESC]) 
OH [mouse]

(1)
(2)
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Draw first side of rectangte 
Point to corner and select 
Point to next corner and select 
Draw line

Draw second side of rectangle 
Reselect current corner 
Point to next corner and select 
Draw line

Draw third side of rectangte 
Reselect current corner 
Point to next corner and select 
Draw line

Draw fourth side of rectangte 
Reselect current corner 
Point to first corner and select 
Draw line

P[corner] K[BLUE] 
P[corner] K[BLUE] 
M K[ESC]

M K[BLUE] 
P[corner] K[BLUE] 
M K[ESC]

M K[BLUE] 
P[corner] K[BLUE] 
M K[ESC]

M K[BLUE] 
Pfcorner] K[BLUE] 
M K[ESC]

Method for Task T5-SIL:
Reach for mouse 
Point to corner and select 
Point to opposite corner and select 
Draw rectangle

.4H [mouse] 
P[corner] K[RED] 
Pfcorner] K[BLUE] 
M 2K[CTRL B]

(1)

Task T6: Add a label (5 characters, first one capitalized) 
to a box.

Method for Task T6-MARKUP:
Home on keyboard H[keyboard]

Type shift and label 5K [shift  label] (7)

Terminate type-in and get mouse M H[mouse]
Point to location of label Pfiocation]

Paste label K [r e d ]

Method for Task T6-DRAW: 
Home on keyboard 
Type shift and label

H [keyboard]
5K [SHIFT label] (7)
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Terminate type-in M K  [RETURN]

Point to location of label P[display]

Paste label K[RED]

Method for Task T6-SIL:
Reach for mouse •4H  [mouse] (1)
Point to location of label and select P[display] K[RED]

Home on keyboard H [keyboard]

Type shift and label 5K[SHIFT label] (7)

Task T7: Disconnect a 2-segment line from one box
(rectangle) and connect it to a different box.

Method for Task T7-MARKUP:
S e le c t  d ra w in g  m o d e

Reach for mouse 0H[mouse] (2)
Point to place for menu ■3P[display] (1)
Display menu •3K[YELL0W -D0W N] (1)
Expand menu .15P[m enu] (1)
Point to menu icon ■3P[icon] (1)
Undisplay menu •3K[YELL0W -UP] (1)

E ra s e  tw o  lin e  s e g m e n ts

Point to end of line P[end]

Enter erase mode K  [BLUE-DOWN]

Trace line segments D {2 ,5 .6 5 )
Exit from erase mode K  [BLUE-UP]

R e d ra w  d a m a g e d  s e g m e n ts

Point to end of segment 1 P[end]
Enter drawing mode K  [RED-DOWN]

Redraw segment D (1 ,1 .1 3 )
Exit from drawing mode K  [RED-UP]

Point to end of segment 2 P[end]

Enter drawing mode K  [RED-DOWN]

Redraw segment D (1 ,1 .1 3 )
Exit from drawing mode K  [RED-UP]
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Draw segments in new location 
Point to end of segment 
Enter drawing mode 
Draw segment 
Exit from drawing mode

P[end]
K(R ED-DO W N)

0 (2 ,5 .6 5 )

K  [RED-UP]

Method for Task T7-DRAW:
Select Delete command mode

Reach for mouse OH [mouse] (2)
Point to Delete icon and select P[icon] K[RED]

Delete line segments
Point to line segment 1 P[line]
Delete line K[RED]

Point to line segment 2 P[line]
Delete line K[RED]

Redraw damaged line segments
Enter drawing mode M K[ESC]

Point to end of line and select P[end] K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment 
Draw line segments in new location

M K[ESC]

Point to end of line and select P[end] K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment 1 M K[ESC]

Reselect end of segment 1 M K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment 2 M K[ESC]

Method for Task T7-SIL:
Delete line segments (one by shortening)

Reach for mouse OH [mouse] (2)
Point to segment and select P[segment] K[BLUE]

Point to new endpoint P[location]
Shorten segment 2K[CTRL RED]

Delete other segment 
Draw line segments in new location

M 2K[CTRL D]

Point to end of new segment P[end]
Select K[RED]

Point to other end of new segment P[segment]
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Draw segment
Point to end of second segment 
Draw segment

K [YELLOW] 

P[segment] 
K [YELLOW]

Task T8: Delete a box (rectangle) with an overlapped
line to another part of the diagram,
keeping the overlapped line.

Method for Task T8-MARKUP:
Select area deletion mode

Reach for mouse OH [mouse] (2)

Point to place for menu P [display]
Display menu K [YELLOW -DOWN]

Expand menu .5P[menu] (1)
Point to menu icon P[icon]
Undisplay menu K [YELLOW-UP]

Erase rectangle
Point to corner of area P[corner]
Enter erase mode K  [BLUE-DOWN]

Point to opposite corner of area P[corner]
Erase area K[BLUE-UP]

Select drawing mode
Point to place for menu P [display]
Display menu K [ y e l l o w -d o w n ]

Expand menu .5P[menu] (1)

Point to menu icon P[icon]
Undisplay menu K [YELLOW-UP]

Redraw damaged line segment
Point to end of segment P[end]
Enter drawing mode K [ r e d -d o w n ]

Draw segment D(1,3.96)
Exit from drawing mode K[R ED-UP]

Method for Task T8-DRA W:
Reach for mouse OH [mouse] (2)

Point to area-select icon and select P[icon] K [R ED ]

Point to corner of area P[corner]
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Enter area selection mode K [r e d -d o w n ]

Point to opposite corner of area Pfcorner]
Exit from area selection mode K[RED-UP]
Issue Delete command M 2K[CTRL D]

Method for Task T8-SIL:
Reach for mouse .7H[mouse] (1)
Point to corner of area and select P[corner] K[RED]

Point to opposite corner of area Pfcorner]
Select area 2K[CTRL BLUE]

Issue Delete command M 2K[CTRL D]

Task T9: Copy a box (rectangle) to another part of the
diagram.

Method for Task T9-MARKUP:
Select area deletion mode

Reach for mouse OH [mouse] (2)
Point to place for menu P [display]
Display menu K  [YELLOW-DOWN]

Expand menu .5P[menu] (1)
Point to menu icon P[icon]
Undisplay menu K  [YELLOW-UP]

Delete rectangle and save in buffer
Point to corner of area Pfcorner]
Enter erase mode KfBLUE-DOWN]

Point to opposite corner of area Pfcorner]
Erase area K [BLUE-UP]

Wait for deletion R(1.1)
Restore deleted rectangle from buffer

Enter copy-from-buffer command M K  [RED-DOWN]
Point to location P[display]
Copy buffer to location K [RED-UP]

Wait for completion R(1.2)
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Copy rectangle to new location 
Enter copy-from-buffer command 
Point to new location 
Copy buffer to location 
Wait for figure to be pasted

M  K  [RED-DOWN] 

P[display]

K  [RED-UP] 

R(1.2)

Method for Task T9-DRAW:
Select rectangle 

Reach for mouse
Point to area-select icon and select 
Point to corner of area 
Enter area selection mode 
Point to opposite corner of area 
Exit from area selection mode 

Execute copy command
Point to copy icon and select 
Point to old location and select 
Point to new location and select

OH [mouse] 
■7(P[icon] K[RED]) 

P[corner] 
K[RED-D0WN] 
P[corner]
K  [RED-UP]

P[icon] K[RED] 

P[location] K[BLUE] 

P[location] K[BLUE]

(2)
(1)

Method for Task T9-SIL:
Reach for mouse
Point to corner of area and select
Point to opposite corner of area
Select area
Point to new location
Issue Copy command

.3H[mouse] 
P[corner] K[RED] 
P[corner]
2  K  [CTRL BLUE] 
P[location]
2  K  [CTRL YELLOW]

(1)

Task T 10: Phone the computer and login with a
4-character login name and a 6-character 
password.

Method for Task T10-TENEX:
Dial up computer on phone

Press 8  digits on phone 8K[number]
Wait for computer tone R(1.8)
Put phone on terminal cradle M18C(.7) (6)
Wait for carrier signal light R(.9)
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Login to computer 
Type login prompt 
Wait for system greeting 
Issue Login command 
Type login name 
Terminate name 
Type password 
Terminate password 
Type account number 
Terminate login 
Wait for completion of login

M  2 K [c t r l  c ] 

R(5.9)
4 K [ L 0 G  SPACE] 

4  K  [name]
K [SPACE]

6K  [password]
K [SPACE]
K[1]
M K[RETURN] 

R(7.3)

T a s k  T i l :  Transfer a file to a file server (5-character 
name), renaming the file from a 4-character 
filename to a 10-character filename.

Method for Task T11 -TENEX:
Connect to file server

Start up FTP program 4K[F T P  SPACE]

Specify file server 5 K [name]
Terminate command M K  [RETURN]
Wait for connection R(4.1)

Transfer and rename file
Issue Store command M 3 K [ S T  SPACE]

Type old filename 4K[name]
Terminate filename M K[SPACE]

Type new filename 10K[name]
Terminate command M K  [RETURN]

Wait for completion R(1.4)
Close connection

Issue Quit command M 2 K [Q  RETURN]

Wait for connection to close R(4.6)
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Task T 12: Connect from one computer to another 
computer (5-character name).

Method for Task T12 TENEX: 
Start up Chat program 
Type computer name 
Terminate command 
Wait for connection

5 K [C H A T S P A C E ]

5K[name]
M K[RETURN] 

R(8.3)

Task T13: Display a subset of files (with a 10-character 
specification) along with their file lengths.

Method for Task T13-TENEX:
Issue Directory command 4K[D I R SPACE]

Specify files 10K[name]
Call for subcommand mode M K [COMMA]

Enter subcommand mode K  [RETURN]
Issue Length subcommand 2K[LE]
Terminate subcommand M K [RETURN]
Terminate command K [RETURN]
Wait for completion R(.5)

Task T 14: Delete all the old versions of a subset of files 
(with a 10-character specification).

Method for Task T14-TENEX:
Issue Delver command 6K[d elver]
Terminate command M K [r e t u r n ]

Answer first system question K[y]
Answer second system question K[y]
Specify files 10K[name]
Terminate file specification M K [r e t u r n ]

Wait for completion R(.4)
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9. The Unit-Task Level of Analysis
9 .1 .  CA SE S T U D Y  O F A P A G E -LA Y O U T SYSTEM

Analysis of the Task 

Analysis of the System 

Unit-Task-Level Calculation

9 .2 .  C H E C K S  ON THE U N IT -TA S K -LE V E L  A N A LY S IS

Experimental Check 

Interaction Among Unit Tasks 

Functional-Level Calculation
9 .3 .  C O N C LU S IO N S

The Keystroke-Level Model presented in Chapter 8 requires that it be 
possible to specify methods at the Keystroke Level of analysis. This 
requirement places the conceptual stages of design, where this level of 
detail is inappropriate, outside the range of the model’s applicability. Yet 
it is precisely during conceptual design that important decisions on the 
basic configuration of a system must often be made. These decisions 
could be aided by approximate estimates of the time cost of various 
design alternatives, since the designer’s concern is with a system’s gross 
functional capabilities rather than with the details of which buttons to 
press. In this chapter we develop a technique of GOMS analysis at the 
Lfnit-Task Level, which is appropriate for this stage of system analysis.

The basis of the technique we describe is the unit task. We have seen 
that users tend to break a large task into a series of unit tasks within 
which behavior is highly integrated and between which dependencies are 
minimal. This quasi-independence of unit tasks means that their effects 
are approximately additive. Estimates of task time can therefore be ob­
tained by enumerating unit tasks and estimating both their frequencies 
and duration. The total time for a task can be found by multiplying the 
total number of unit tasks by the time per unit task. This is, essentially, 
the GOMS Model LIT.
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9.1 . CASE STUDY OF A PAGE-LAYOUT SYSTEM

Problem. A company is contemplating the development of 
a computer-based system for page layout of journal articles 
in the style of the Journal Cognitive Psychology. The 
proposed system would assemble the elements of a 
document from different on-line files into a single file 
embodying the laid-out pages. Input files include a file of 
the main text (the body of the document), a file of figures, 
a file of figure captions, and a file of footnotes. The input 
text files are assumed to have been created with simple 
text-entry systems incapable of specifying font and format 
information. Thus, the task includes: (1) positioning and 
formatting the text, (2) setting various pieces of text into the 
correct fonts, and (3) numbering pages, section headings, 
figures, and footnotes. In order to assess the economics of 
the proposed system, the company’s management needs to 
know the average time it will take to lay out a page with 
the proposed system. Since the system’s interface has not 
yet been designed, the estimate cannot depend on details of 
its user interface.

In order to calculate the time to lay out a page by the Unit-Task- 
Level analysis, we need to first identify the unit tasks involved by 
analyzing the requirements of the task and the properties of the proposed 
system.
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Analysis of the Task

What are the possible unit tasks? The simplest way to enumerate 
them is to consider the functions and objects involved in the page-layout 
task. The types of document objects are text (including both large bodies 
and small segments), headings, figures, figure captions, footnotes, and 
finally pages. Document objects must be loaded from the input files into 
the workspace where the pages will be laid out. Once loaded, the objects 
must be positioned on the page, the font must be set for various text 
objects, and some objects must be numbered. The set of all possible unit 
tasks can be generated by applying all the different functions to all the 
different object types, thus forming the array, shown in Figure 9.1.
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P a g e s

H e a d in g s

T e x t

F ig u re s

C a p t io n s

F o o tn o te s

L o a d in g ----------- P o s it io n in g  ------------- S e tt in g  F o n ts N u m b e r in g

LOAD- POS-VERT- POS-HORIZ- NUMBER-
PAGE(R) PAGE PAGE PAGE

LOAD- ^ POS-VERT- POS-HORIZ- SET-FONT­ NUMBER­
HEADING (R) HEADING HEADING HEADING HEADING

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
TEXT (R) TEXT TEXT TEXT TEXT

LOAD- POS-VERT- POS-HORIZ-
FIGURE (R) FIGURE (R) FIGURE(R)

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
CAPTION (R) CAPTION(R) CAPTION(R) CAPTION CAPTION

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
FOOTNOTE (R) FOOTNOTE (R) FOOTNOTE (R) FOOTNOTE FOOTNOTE

Figure 9 .1. Array of all possible unit tasks for the page- 
layout task.
The vertical columns of the array represent the functions involved In the page- 
layout task, and the horizontal rows represent the document objects to which the 
functions are applied. The R ’s indicate the unit tasks that Involve a significant 
system response time.

It is assumed that the system has sufficient functional capability to 
allow each of the tasks in the array to be done by the user as a single 
unit task. It is assumed further that there is a simple method for loading 
each document object from its input file to the page-layout workspace so 
that LOAD-FIGURE, for example, is a single unit task. It is also assumed 
that positioning an object on a page, because it must be done vertically 
and horizontally, requires two unit tasks, p o s -v e r t -f ig u r e  and p o s - 
HORiz-FiGURE. Not all Combinations of functions applied to document 
objects make sensible unit tasks. For example, it makes no sense to set 
the font of a figure, since a figure is not a piece of text; consequently, 
there is no s e t -f o n t -f ig u r e  unit task.

In the overall task of laying out a document, unit tasks are not 
performed in a random sequence. Rather, they are grouped together to 
accomplish higher-level goals, which we informally call task groups. For 
example, in laying out a figure, the figure will be loaded and positioned, 
its caption will be loaded and positioned, the caption font will be set, and 
the caption and the figure callout in the text will be numbered. All these 
tasks are grouped together under the task group p r o c e s s -f ig u r e . 
Laying out a page consists of seven such task groups—setting up the new 
page; processing the headings, the figures, the footnotes, and the refer-
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Task Groups

S a m p le  A r t ic le

N, ^3

1.00 1.00 1.00 1.00 1.00

.68 1.88 1.36 .58 1.12

.29 .34 .22 .41 .24

.13 .18 .18 .25 .18

2.32 2.62 3.82 3 .7 5 3 .13

1.26 5.91 4.27 7 .50 4.42

3 .03 1.34 1.09 .25 1.43

PROCESS-NEW-PAGE

PROCESS-HEADING

PROCESS-FIGURE
PROCESS-FOOTNOTE

PROCESS-INDENTATION

PROCESS-TEXT-FONT

PROCESS-REFERENCE

Figure 9 .2. Frequency of the task groups per page from four 
sample articles.
The sample articles contained from 12 to 32 pages each. The frequencies of the 
task groups in the four articles are given in columns to N̂ . The Njq for each 
task group is the average frequency over all four articles.

ences; formatting indented paragraphs; and setting the font (usually 
italics) for various pieces of text—which are listed in Figure 9.2. It is 
most convenient to carry out the analysis of the page-layout task in terms 
of these task groups.

The average time to lay out a page depends on the frequency with 
which the various task groups need to be performed, that is, on the 
ecology of printed pages. To estimate the frequency of the task groups, a 
small sample of four articles was taken from the journal Cognitive 
Psychology and the number of task groups needed to lay out each article 
was counted. The frequencies of task groups per page are shown in 
Figure 9.2. The average frequencies of the four sample articles provide 
an estimate of the ecological frequency for each task group.

Analysis of the System

In the analysis of the task so far, only general assumptions have been 
made about features of the layout system, assumptions that would hold 
over the whole class of layout systems under consideration. In order to 
proceed further with the analysis, it is necessary to postulate more 
specific system features: Is it necessary for the user to number each page 
manually? Need the user manually indent each paragraph? In the
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present problem, we do not know the answers to these questions and 
therefore must make assumptions. In order to understand the effects of 
these assumptions, we examine two very different layout systems; a 
Manual System, in which the user has to do most of the layout steps 
explicitly, and an Automatic System, which does many of these steps for 
the user. We record explicitly the assumptions in the analysis so that 
they can be later refined or corrected as more information about the 
system becomes available.

The first step in following this strategy is to define the task groups by 
specifying their unit-task constituents. The unit tasks for each task group 
in the Manual System are shown in Figure 9.3. The decisions about 
what unit tasks are required for the task groups make clear many 
assumptions about the system. The assumptions about the Manual 
System are listed in Figure 9.4, and are indexed in Figure 9.3 to the unit 
task decisions they affect For example, assumption A2, that the user 
must explicitly call for page, heading, figure, and footnote numbers to be 
placed, affects the n u m b e r -pa g e , n u m b e r -h e a d in g , n u m b e r -c a p t io n , 
NUMBER-TEXT, and NUMBER-FOOTNOTE unit tasks, as indicated by the 
indexing in Figure 9.3.

Unit tasks required by the Automatic System are specified in exactly 
the same way in Figure 9.5 and Figure 9.6. The Automatic System 
shares the assumptions of the Manual System, with the exception of 
assumptions A2 and A5, and the addition of assumptions A9 to A12 
(compare Figure 9.4 and Figure 9.6). For example, substituting assump­
tion A9 for A2 means that the n u m b e r -pag e  unit task is not required in 
the PROCESS-NEW-PAGE task group for the Automatic System. In all, 
many fewer unit tasks are required in the Automatic System.

We must also make assumptions about the computing technology for 
the layout system. Here we assume that the layout system will reside on 
a small, personal computer with limited main memory and a large disk. 
Experiences with similar systems, such as the BRAVO editor, suggest that 
many of the functions of the layout system will probably require 
significant time for the system to carry ou t For example, locating a file 
on disk, loading the material from the file into main memory, and 
displaying the material might take a few seconds. Since the response 
time of the system could be as long as a unit-task time, we need to keep 
track of the number of significant system responses, as well as of unit 
tasks, in our calculation. In Figure 9.1 we noted (with an r) the unit 
tasks requiring a significant response time; those unit tasks are also 
marked in Figure 9.3 and Figure 9.5.



Task Groups Unit Tasks R’S Assumptions

PROCESS-NEW-PAGE
LOAD-PAGE R A1
NUMBER-PAGE A2

PROCESS-HEADING A3
SET-FONT-HEADING A4
POS-VERT-HEADING A5
PQS-HORIZ-HEADING AS
NUMBER-HEADING A2

PROCESS-FIGURE A6
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R A7
LOAD-CAPTION R
POS-VERT-CAPTION R
POS-HORIZ-CAPTION R A7
SET-FONT-CAPTION A4
NUMBER-CAPTION A2
NUMBER-TEXT (callout in text) A2

PROCESS-FOOTNOTE A6
LOAD-FOOTNOTE R
POS-VERT-FOOTNOTE R
SET- FONT- FOOTNOTE A4
NUMBER-FOOTNOTE A2
NUMBER-TEXT (callout in text) A2

PROCESS-INDENTATION
POS-HORIZ-TEXT A8

PROCESS-TEXT-FONT
SET-FONT-TEXT A4

PROCESS-REFERENCE A3
SET-FONT-TEXT (title italic) A4
SET-FONT-TEXT (volume no. bold) A4

Figure 9 .3. Unit-Task-Level definitions of the task groups 
for the Manual System.
T h e  R ’s colum n ind icates w hich unit tasks involve a  significant system response  

tim e (see F igure 9 .1 ). T he  num bered assum ptions are listed in F igure 9.4.
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A1 A new page fram e is initialized with m argins set and just enough  

text loaded autom atically from the text file to fill the fram e.

A2 The  system keeps track of all num bers (pages, headings, figures, 
footnotes), but the user must explicitly call for them  to be placed.

A3 H eadings and references are Included in the text file and thus need  

not be loaded separately.

A4 No fonts are  set in the text, footnote, caption, or re ference files; 
they must be set explicitly during page layout.

A5 Headings must be positioned manually.

A6 W hen figures and footnotes are placed, the text body Is

autom atically  adjusted and the d isplaced text is autom atically  

returned to the text file.

A7 F igures can go next to each other and thus need to be explicitly  

positioned horizontally.

A8 Indented paragraphs need to be positioned explicitly.

Figure 9.4. Specific assumptions about the Manual System.
S e e  F igure 9 .3  fo r w hich unit tasks a re  a ffected  by each  assum ption.

Having enumerated the unit tasks and system responses, we need a 
reasonable estimate of the amount of time required by each of these. 
The unit task time is best obtained from existing data on systems as 
similar as possible to the proposed layout system. The system closest to 
the envisioned layout system is the display-based b r a v o  editor, which 
was measured in Chapter 3. The measured error-free unit-task time from 
Figure 3.6 is 10.1 sec, which we round to 10 sec per unit task. (The 
numbers are rounded off to emphasize the rough nature of this analysis.)

The times obtained from Chapter 3 are based on tasks not requiring 
any significant amount of system response time. Since we assume that 
system response time will be significant in the page-layout environment, 
it is useful to partition the time for a unit task into two parts; the user’s 
working time and the system’s response time (the latter being 
optional for any particular unit task). (We also partitioned the unit task 
this way in Section 8.6.) Thus, the 10 sec estimate above is for

In order to obtain estimates of system response time, informal empir­
ical measurements were made on several readily available display-based
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T a s k  G ro u p s  U n it  T a s k s R ’S A s s u m p tio n s

PROCESS-NEW-PAGE
LOAD-PAGE R A1, A9

PROCESS-HEADING A3
NUMBER-HEADING AID

PROCESS-FIGURE A6
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R A7
LOAD-CAPTION R A l l
NUMBER-TEXT (callout in text) A2

PROCESS-FOOTNOTE A6
LOAD-FOOTNOTE R A12
NUMBER-TEXT (callout in text) A2

PROCESS-INDENTATION
POS-HORIZ-TEXT A8

PROCESS-TEXT-FONT
SET-FONT-TEXT A4

P ROCESS REFERENCE A3
SET-FONT-TEXT (title italic) A4
SET-FONT-TEXT (volume no. bold) A4

Figure 9 .5. Unit-Task-Level definitions of the task groups 
for the Automatic System.
T h e  R ’s colum n ind icates w hich unit tasks involve a  s ignificant system response  

tim e (see  F igure  9 .1 ). T h e  num bered assum ptions a re  listed in F igure 9.6.

systems. The times to load a file of texL to move text on the screen, and 
to load and move various sorts of pictures were measured. Whereas the 
extremes of these times ranged around 2 sec an the low end and up to 
425 sec on the high end, a large number clustered around 6 sec per 
system response. As a working estimate, we use a constant 6 sec for the 
system response time
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A1 A new page fram e is initialized with m argins set and just enough  

text loaded autom atically from the text file to fill the fram e.

A3 H eadings and references are Included in the text file and thus need  

not be loaded separately.

A4 No fonts are  set in the text, footnote, caption, or re ference files; 
they must be set explicitly during page layout.

A6 W hen figures and footnotes are placed, the text body Is
autom atically  adjusted and the d isplaced text is autom atically  

returned to the text file.

A7 Figures can go next to each other and thus need to be explicitly  

positioned horizontally.

A8 Indented paragraphs need to be positioned explicitly.

A9 Page num bers are autom atically p laced w hen a new page fram e Is 

loaded.

A 10 A heading Is autom atically form atted (position and font) by just 
giving the type of the heading.

A 1 1 W hen a caption is loaded. It Is autom atically positioned under the  

figure, its font set, and a num ber given.

A 12 W hen a footnote is loaded, it is autom atically positioned at the  

bottom  of the page and num bered.

Figure 9.6. Specific assumptions about the Automatic 
System.
S ee  F igure 9 .5  for which unit tasks are  affected  by each  assum ption.

Unit-Task-Level Calculation

The necessary pieces have now been gathered to do the calculation. 
The task group time per page is:

^TG ~  ^TG  •
(9.1)



The number of unit tasks in the task group is n^i- and the number of 
system responses is n^, both taken from Figure 9.3 and Figure 9.5. Thus, 
'^UT̂ w working time in the task group, and is the total
response time. N j-q (taken from Figure 9.2) is the frequency with which 
each task group occurs per page. And T^q is the total task group time 
per page.

Tire total error-free time to lay out a page is the sum of the Tj q S 
plus a correction to account for the likely amount of errors. In 
Experiment 5C (Figure 5.18), we found that the user spent 25% of her 
time handling errors with the poet editor. Thus we charge 25% overhead 
to account for errors in the page-layout task.

The calculation of the page-layout time for both the Manual System 
and the Automatic System is given in Figure 9.7. The resulting 
prediction is that it takes 270 sec (about 4.5 minutes) to lay out a page 
with the Manual System, with time being distributed fairly evenly over 
all the task groups. Surprisingly, the time required by the Manual 
System is about half as long as it would take an average typist (60 
words/minute) to type in a full page of text (550 words). The Automatic 
System is predicted to take 192 sec per page, about 80 sec per page faster 
than the Manual System, with most of this improvement lying in the 
PROCESS-HEADING and PROCESS-FIGURE task groups.

322 9. THE UNIT-TASK LEVEL OF ANALYSIS

9.2 . CHECKS ON THE UNIT-TASK-LEVEL ANALYSIS

Many assumptions about the page-layout task were made to keep the 
Unit-Task-Level analysis simple. Some of the assumptions and conse­
quences of their being wrong are as follows:

(1) Performance of the page-layout task was assumed to consist of 
a string of independent unit tasks as we have defined them. 
It is possible that we have ignored some dominant global 
feature of the layout task. For example, the complexity of 
managing all the files might require significant planning time.

(2) The task analysis for the page-layout task was very approx­
imate; it assumed that the task groups were simple linear 
sequences of unit tasks. Real user behavior in this task would 
be substantially more conditional and variable. This variabil-



MANUAL SYSTEM

Task groups ^U T ^ T G
T̂

T G %T

PROCESS-NEW-PAGE 2 1 1 .0 0 2 6 .0 12%

PROCESS-HEADING 4 0 1 .1 2 4 4 .8 2 1 %

PROCESS-FIGURE 9 6 .24 3 0 .2 14%

PROCESS-FOOTNOTE 5 2 .1 8 1 1 .2 5%

PROCESS-INDENTATION 1 0 3 .1 3 3 1 .3 1 5%

PROCESS-TEXT-FONT 1 0 4 .4 2 4 4 .2 2 1 %

PROCESS-REFERENCE 2 0 1 .4 3 2 8 .6 1 3%

= 1 0 .0  s e c S u m  o f tim es = 2 1 6
tf̂  = 6 .0  se c 2 5 %  e rro r tim e = 5 4

T o ta l tim e = 2 7 0  s ec

AUTOMATIC SYSTEM

Task groups "ur ^ T G ^ T G %T

PROCESS-NEW-PAGE 1 1 1 .0 0 1 6 .0 10%

PROCESS-HEADING 1 0 1 .1 2 1 1 .2 7%

PROCESS-FIGURE 5 4 .24 1 7 .8 12%

PROCESS-FOOTNOTE 2 1 .1 8 4 .7 3 %

PROCESS-INDENTATION 1 0 3 .1 3 3 1 .3 2 0 %

PROCESS-TEXT-FONT 1 0 4 .4 2 4 4 .2 2 9 %

PROCESS-REFERENCE 2 0 1 .4 3 2 8 .6 19%

= 1 0 .0  s e c S u m  of tim es - 1 54

= 6 .0  s e c 2 5 %  e rro r tim e = 3 8

T o ta l tim e = 1 9 2  s e c

Figure 9 .7. Unit-Task-Level calculation of the page-layout 
time for the Manual System and the Automatic System.
T h e  f i j j ’s and n̂ 's a re  counted  from  Figure 9 .3  and F igure 9 .5 , and the  

are  taken from  F igure 9.2 . Tjq is ca lcu lated  from  Form ula 9  

p ercentage  of total tim e taken by each  task group.

%T is the
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ity could require the user to spend substantial time making 
decisions.

(3) The Unit-Task-Level analysis does not deal with errors 
directly; it only uses a multiplicative factor for error. Thus, it 
ignores the possibility that large errors, even though they 
occur with relatively low frequency, could dominate the page- 
layout task.

(4) The analysis assumed a particular skill level for the user. 
From Chapter 3 we know that performance time can vary by 
up to a factor of three in text-editing tasks, even for expert 
users. We might expect even greater user variance in the 
page-layout task, since it is more complex.

(5) The analysis assumed a particular kind of interface design for 
the page-layout system. Performance can be greatly affected 
by the functionality and interface of the system. Although we 
made the specific assumptions about the system explicit, the 
actual layout system could be quite different

(6) Finally, the analysis assumed a particular complexity of pages 
to be laid ou t Again, although our assumptions were made 
explicit the actual layout task could involve substantially 
different kinds of pages.

Many of these assumptions could be checked by sensitivity analyses 
on the parameters of Formula 9.1 (such analyses have been illustrated in 
Chapter 4 and Chapter 8). For example, the assumption about skill level 
of the user would mostly affect the parameter

In the remainder of this section we concentrate on the assumption of 
the independence of unit tasks. First, we check this assumption empir­
ically by observing a user in a simulated layout task. (This also provides 
a crude check for the effect of conditional methods and large errors.) 
Then, we attack the independence assumption analytically by pushing the 
Unit-Task-Level analysis to a finer level of detail.
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Experimental Check

As a check on the assumptions of the foregoing analysis, an analogue 
of the layout system was constructed using the bra vo  editor, in which 
the user performed a task approximately equivalent to the p r o c e s s - 
f ig u r e  task. The procedure involved loading a small text file, simulating



a page, which sometimes contained a “Figure here” mark; the user was 
to:

—search for a “Figure here” mark and (if there was one) 
get the figure identifier,

—use the identifier to load a file containing the “figure” 
(simulated as an array of characters) and to load a 
caption,

—check whether the caption went with the figure,
—move the figure, if it occurred in the middle of a para­

graph, to the front of the paragraph,
—make sure there were two blank lines preceding the 

figure, two blank lines following the caption, and one 
blank line between the figure and the caption, and 

—edit the caption to conform to the numbering style.

Most of the steps of this procedure are conditional, so there is not a fixed 
sequence of unit tasks for each simulated process-figure.

An expert b r a v o  user performed this analogue procedure six times. 
Each trial consisted of “laying out” seven “pages,” of which four pages 
had “figures” to be processed. The user’s performance improved (by a 
factor of three) over the first three trials, but leveled off in the last three 
trials, indicating a certain amount of gained expertise in the analogue 
task.

For the page-layout problem, we are interested in the performance of 
an expert user. Accordingly, we need only consider data from the last 
trial, when the user had had enough practice to become expert in the 
analogue task. The user’s behavior was generally in accord with the anal­
ysis given. His performance consisted entirely of unit tasks of the type 
we have predicted and included no non-routine errors. The user 
averaged 8.6 sec per unit task on the last trial—14% less than the 10 sec 
per unit task estimated by the Unit-Task-Level analysis. Although this 
result is within our expected prediction error, it may suggest that some 
interaction occurs among the unit tasks in this context that allows unit 
tasks to be done faster than in a text-editing context.

Interaction Among Unit Tasks

9.2. CHECKS ON THE UNIT-TASK LEVEL ANALYSIS 3 2 5

The Unit-Task Level of analysis assumes that the time to perform a 
unit task is independent of the surrounding unit tasks. There is surely 
some level of detail at which this is no longer the case, especially for unit



tasks within a well-integrated task group. We can check how much the 
independence assumption affects our result by carrying the analysis down 
one level of detail to the Functional Level, discussed in Chapter 5.

Recall from Chapter 5 that a unit task is composed of four operations 
at the Functional Level, which we may for convenience denote with 
single letter symbols:
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Acquire the unit task.
Locate the objects of the task.
Make the change specified in the task. 
Verify the change.

A
L
C
V

If there were a system response R, it would probably occur after the C. 
But since we have already factored out the response time in the Unit- 
Task-Level analysis in Section 9.1, we may ignore R operators here.

An example is the pos-vert-heading unit task, in which the user 
adjusts the vertical spacing around a heading. The Functional-Level 
operations for this unit task considered in isolation would be:

POS-VERT-HEADING =
Determine the heading needs spacing. A
Point to the heading. L
Insert space in front of the heading. C
Insert space below the heading. C
Verify that the spacing is correct V

However, consider what this unit task would be like were it to occur in 
the middle of the highly integrated task group, process-heading:

SET-FONT-HEADING =
Detect that the heading needs alteration. A 
Point to the heading. L
Change the font of the heading. C

POS-VERT-HEADING =
Insert space in front of the heading. C
Insert space below the heading. C

POS-HORIZ-HEADING =
Center the heading. C
Verify position of heading. V
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NUMBER-HEADING =
Look up the heading number. A
Point to the heading number location. L
Replace the heading number. C
Verify that the heading is correct. V

Not all the Functional-Level operations are required in pos-vert- 
HEADING in this contexL The A (acquiring the positioning task) and the 
L (pointing to the heading) can be done in the previous unit task and the 
V (verifying that the vertical positioning is correct) in the following unit 
task. The vertical positioning itself, then, only requires two steps (two 
C’s). Thus, context can have a considerable effect on a unit task.

To carry out an analysis of the unit tasks in Functional-Level 
operations requires either that we make some more specific assumptions 
about the system (as in Figure 9.4 and Figure 9.6) or that we appeal to 
some principles of organization at the Functional Level. We take the 
latter course by setting out a few heuristic rules for deciding which 
Functional-Level operations are required for a unit task (in the spirit of 
the Keystroke-Level Model’s rules for placing M operators, given in 
Figure 8.2). For each unit task in a task group, we assume that the unit 
task requires the basic set of four operations. A, L, C, and V, and use 
the following rules to modify the set:

(1) An A operation can result in more than one unit task being 
acquired, if they are closely related. Thus, if the current unit 
task is likely to have been acquired together with the previous 
unit task, then delete the A for the current one.

(2) If the current unit task deals with the same task objects as the 
previous unit task, then delete the L, since there is no need to 
locate them again.

(3) On a display-based system, which immediately shows the 
effects of changes to the user, some changes are so 
perceptually easy to check that a separate verification step is 
not required. Thus, for example, in all unit tasks concerned 
with font changes, delete the V.

(4) If two unit tasks require similar changes, then only one 
verification is required. Thus, for example, if the current unit 
task is the first of a two-part positioning task, then delete one 
of the V’s.



Task Groups Unit Tasks R’s Functional-
Level
Operations

PROCESS-NEWPAGE
LOAD-PAGE
NUMBER-PAGE

A
A

C
CC V

PROCESS-HEADING
SET-FONT-HEADING 
POS-VERT-HEADING 
POS-HORIZ-HEADING 
NUMBER-HEADING

C
CC
C V

PROCESS-FIGURE
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R
LOAD-CAPTION R
POS-VERT-CAPTION R
POS-HORIZ-CAPTION R
SET-FONT-CAPTION 
NUMBER-CAPTION 
NUMBER-TEXT

L
LL

C
C
C
C
C
C
C
C
c

PROCESS-FOOTNOTE
LOAD-FOOTNOTE 
POS-VERT-FOOTNOTE 
SET- FONT- FOOTNOTE 
NUMBER-FOOTNOTE 
NUMBER-TEXT

A
A

L
LL

PROCESS-INDENTATION
POS-HORIZ-TEXT

PROCESS-TEXT-FONT
SET-FONT-TEXT A L C

PROCESS-REFERENCE
SET-FONT-TEXT 
SET-FONT-TEXT

A L C
A L C

Figure 9.8. Functional-Level definitions of the task groups 
for the Manual System.
T h e  R ’s colum n indicates w hich unit tasks involve a  s ignificant system response  

tim e (see F igure 9 .1 ). T h e  Functional-Level operators  are: acqu ire  a  task (A),
locate  the  e lem ents  of a  task (L), m ake the  required ch an ge  (C), and verify the  

c h an g e  (V). T h e  double  letters in the O perations colum n Ind icate  that two  
operations are  required.
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(5) Some unit tasks require multiple operations to locate the 
objects or to make the changes required. If such is the case, 
add the requisite number of L’s and/or C’s.

This analysis is carried out for all the task groups in Figure 9.8.
This Functional-Level analysis shows that the unit tasks are, for the 

most part, compressed to fewer than the four functional operations per 
unit task assumed by the complete Unit-Task-Level analysis. To 
understand quantitatively how much compression there is, we define the 
compression ratio of a task group to be the ratio of the number of 
Functional-Level operations over the nominal four operations per unit 
task. For example, p r o c e s s -h e a d in g  has four unit tasks and hence 16 
expected operations, but there are only 11 operations in the analysis 
above, giving a compression ratio of 11/16 =  .69. Carrying this 
calculation out for all the task groups gives the following compression 
ratios:
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PROCESS-NEW-PAGE .88
PROCESS-HEADING .69
PROCESS-FIGURE .81
PROCESS-FOOTNOTE .90
PROCESS-INDENTATION 1.00
PROCESS-TEXT-FONT .75
PROCESS-REFERENCE .75

Average compression ratio = .83

We can now give an estimate of the error induced by ignoring 
interaction between unit tasks in our earlier analysis. An average task 
group compression ratio of .83 means that, due to interactions among the 
unit tasks, the average unit task time may be about 17% faster than a 
series of completely unrelated unit tasks, as assumed by the Unit-Task- 
Level analysis.

Functional-Level Calculation

Having gone to the effort to calculate the number of each of the 
Functional-Level operations in each task group, we are close to being 
able to do a Functional-Level calculation of the page-layout time. This 
will provide a further check on the Unit-Task-Level analysis. The task 
group time is;
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^TG ~  ^TG  ( ”a Â ” l L̂ ” C^C "*■ ”vV ' (9.2)

This formula is the same as Formula 9.1, except that the unit-task 
working time is replaced by the times for the Functional-Level
operations, -f ... -F

We need to estimate the unit times for the functional operators, but 
we do have independent data for estimating each of them. In Chapter 8 
(Figure 8.7), we found that was 4 sec for the b r a v o  editor. (Again, 
we round our estimates to the nearest .5 sec to emphasize their 
approximate nature.) In Chapter 5 (Figure 5.15), we measured the 
V E R iF Y -E D iT  operator to be 1.5 sec for the p o e t  editor. Other experi­
ments with B R A V O  in our laboratory (not reported in this book) provided 
estimates of 2 sec for and 2.5 sec for Note that these estimates 
partition the 10 sec working time that we used in the Unit-Task-Level 
analysis, so that + /̂_ +  V “  V - 9.2 will thus yield
the same time prediction as did Formula 9.1 when all unit tasks consist 
of the four functional operations, ALCV.

The Functional-Level calculation for the Manual System is shown in 
Figure 9.9. The Functional-Level prediction for the page-layout time is

T a s k  g ro u p s "r ”c ^ T G
T
'  TG %T

PROCESS-NEW-PAGE 2 1 3 1 1 1.00 25 .0 14%
PROCESS-HEADING 2 2 5 2 0 1.12 30 .8 17%
PROCESS-FIGURE 6 7 9 7 6 .24 25.7 14%
PROCESS-FOOTNOTE 4 5 5 4 2 .18 10.2 6%
PROCESS-INDENTATION 1 1 1 1 0 3 .13 31 .3 17%
PROCESS-TEXT-FONT 1 1 1 0 0 4 .42 37 .6 21%
PROCESS-REFERENCE 2 2 2 0 0 1.43 24.3 13%

= 4 .0  sec, = 2 .0  sec Sum  of times = 185
= 2 .5  sec, = 1.5 sec 25%  error time = 46

ip = 6 .0  sec Total time = 231 sec

Figure 9.9. Functional-Level calculation of the total time per 
page for the Manual System.
T h e  n ’̂s, n̂ 's, n̂ 's, n̂ 's, and  n ^ 's  a re  counted  from  F igure  9.8; th e  Nj-q's a re  

taken from  F igure  9 .2 . Tjq is ca lcu lated  from  Form ula 9.2 . %T is the  p ercentage  

of tim e spent doing  each  task group.



231 sec, 15% faster than the 270-sec prediction of the Unit-Task-Level 
calculation. This reduced prediction is quite close to the 17% faster 
found in the compression-ratio calculation above. Both analytic calcu­
lations yield results that are quantitatively close to the experimental result 
(14% faster), and thus the notion of interaction among highly integrated 
unit tasks is sufficient explanation for the experimental results. The 
14~17% differences in these predictions from the Unit-Task-Level 
analysis are within expected prediction errors, confirming the basic 
soundness of the analysis.
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9.3. CONCLUSIONS

Systems in the early, conceptual stages of design can be analyzed at 
the Unit-Task Level. In this analysis, the unit tasks to be accomplished 
are enumerated, their frequencies estimated, and the time per unit task 
determined. Then, the total time can be found by multiplying the total 
number of unit tasks by the time per unit task.

To illustrate the Unit-Task-Level analysis, we have computed the 
estimated time per page required by two versions of a hypothetical 
system for laying out a scientific journal. The time per page calculated 
from the Unit-Task-Level analysis was close to predictions derived from a 
more elaborate Functional-Level analysis and close to empirical measure­
ments on a mockup analogue of the task.
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10. An Exploration into 
Circuit Design

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN
10.2. BEHAVIOR WITH ICARUS (EXPERIMENT 10A)

Procedure and Data 
Analysis of Task Structure 
Keystroke-Level Model Analysis 
Error Data

10.3. CONCLUSIONS

Our strategy in studying the psychology of human-computer 
interaction has been to focus on the specific domain of computer text­
editing, then to generalize to other systems and tasks. In this concluding 
part of the book, we wish to place these studies of text-editing in broader 
perspective. First, this chapter considers to what degree our results can 
be further extended to a more “creative” task domain, in which the user 
is not given specific instructions to follow, but must use the system to 
solve a problem. Then, the next two chapters concentrate on under­
standing those general characteristics of human performance implied by 
our studies. Corresponding to the dual orientation put forward in 
Chapter 1 towards basic science on the one hand and application on the 
other. Chapter 11 focuses on the basic nature of cognitive skill, and 
Chapter 12 focuses on how our results fit into the total scheme for 
applying psychology to design.

The development of a theory of human-computer interaction must be 
based on an analysis of diverse interactive task domains. In this book, 
we have mostly concentrated on the task of correcting a text file from a 
marked-up manuscript (Chapters 3-6); but we have also studied graphics 
systems for creating and editing line drawings (Chapter 8), executive 
subsystem commands, (Chapter 8), and a page-layout system (Chapter 9). 
In each of the task domains, a variant of the basic GOMS model has 
been found applicable. Yet, all the tasks studied so far have been
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instruction-foliowing tasks, in which the user follows simple directions on 
a set of small, independent subtasks.

The present chapter explores human-computer interaction on a task 
that is not an instruction-following task: the computer-aided design of a 
VLSI circuit-layout In this task, there is no externally-given set of 
activities to be accomplished. The user is a designer who generates the 
tasks as he proceeds, in response to the evolving state of the design. We 
want to know the extent to which the GOMS account holds in this new 
domain.
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10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN

We report a case study of the design of an actual circuit. The design 
of a VLSI circuit is a complex problem, whose solution depends on 
finding an appropriate decomposition of a large circuit into sub-circuits 
(Mead and Conway, 1980). Our study will make observations of a basic 
element of the design process, the detailed layout of one of the sub­
circuits. In this task, the user begins with a rough sketch of the circuit 
on paper and uses the system to produce a circuit specification that is (a) 
geometrically defined and dimensioned, (b) optimized to minimize the 
area required, and (c) contained in the memory of a computer system. In 
the course of producing the circuit, the user must solve several 
subproblems: (1) transcribe the sketch into the computer system, (2)
dimension the circuit elements according to VLSI standards (called 
“VLSI design rules”), (3) compress the dimensioned circuit to minimize 
the area it occupies on a chip, and (4) define the boundaries of the 
compressed circuit so they will mesh with other sub-circuits. The user in 
our study uses a specialized VLSI circuit-layout system called iCARUS.

Ic a r u s  is an interactive, display-based computer system for drawing 
and editing VLSI circuit-layouts (Fairbaim and Rowson, 1978; Mead and 
Conway, 1980, Ch. 4). Its user interface^ is described in two parts 
(Moran, 1981a): first, in terms of the conceptual model it imposes on the 
circuit-layout task and, second, in terms of its command language. The 
reader need not assimilate all the details of iCARUS’s  interface, but some 
knowledge about how it works is necessary to understand the user 
behavior.

This study was done on a very early version of the ICARUS system. The later 
versions of ICARUS have a somewhat different (and much improved) user interface.



ICARUS CONCEPTUAL MODEL

Icarus processes circuit-layout descriptions stored in files. A circuit 
description is brought into the ICARUS workspace and presented 
graphically to the user (Figure 10.1), who can then can edit the circuit 
and store it on a new file.

In ICARUS, a circuit is constructed in a circuit space, which has 
virtually unlimited extent in two dimensions (i.e., in the plane) and has a 
limited third dimension made up of five discrete layers, indicated by 
different texture patterns on the display. (Each layer is the mask for a 
different step in the VLSI circuit manufacturing process.)

A circuit layout in ICARUS may be totally described as a set of 
rectangles, as an examination of Figure 10.1 confirms. Each rectangle has 
an ju^location in the plane and is located on a particular layer. Thus, a 
circuit description in fcarus is purely geometric; there are no notions of 
electronic components like nodes or transistors. Circuit layouts in iCARUS 
are dominated by two special kind of rectangles: long, thin rectangles, 
called lines (the “wires” of the circuit), and square rectangles, called 
fla sh es  (the connection points between layers). The system provides 
special conunand language facilities for these special rectangles. We use 
the term elem ents in this discussion when referring to the rectangles in a 
layout without regard to their shape. Icarus allows the user to draw, 
delete, move, copy, mirror, and rotate elements in the circuit space.

VLSI circuits are made up o f many repeated sub-circuits. Icarus 
allows a sub-circuit (any contiguous rectilinear region) to be defined as a 
sym bol, which can then be manipulated as a unit We need not be 
concerned here with the details o f  the symbol facility except to note that 
the system provides command language facilities for defining and 
manipulating them.
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ICARUS COMMAND LANGUAGE

The layout of the ICARUS display is shown in Figure 10.1. The 
display contains two windows for viewing the circuit-layout in the work­
space: a gross window  that gives an overall view of the circuit and a f in e  
window  that provides a close-up view of a part of the circuit. The 
position of the fine window’s view is outlined in the gross window. 
Thus, the user can work on a small piece of a circuit in the fine window 
and still have a view of its larger spatial context The windows can be 
moved around over the circuit to give views of any region of the circuit

There is also a param eter area  and a layer m enu  on the display. The 
parameter area shows the current values of various command language



Parameter Area

Layer Menu

□
□
□
□
□

Gross Window

Fine Window

Figure 10.1. Layout of the ICARUS display.
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parameters. For example, there are parameters for the viewing scales of 
the fine and gross windows, and there are parameters for the current 
flash size and the current line width, all of which can be reset by various 
commands. There are five icons in the layer menu, one for each layer of 
the circuit space; only one icon is highlighted at any given time to 
indicate the current layer. Creation of new elements only takes place on 
the current layer.

For input, ICARUS uses a mouse, a five-key keyset, and a keyboard. 
The mouse is used for giving commands (with its three buttons: m a r k , 
DRAW, and d e l e t e ) as well as for pointing to locations on the display. 
The keyset is used for issuing commands and specifying arguments. Only 
three of the five keys on the keyset need to be considered in this 
discussion: c e n t e r , f l a s h , and r e c t a n g l e .  ̂ The keyboard is also
used for commands and arguments. The normal (home) position for the 
user’s hands is with his left hand on the keyset and his right hand on the 
mouse. He only moves his hands to the keyboard when required.

Figure 10.2 lists some of ic a r u s ’s commands and describes the 
methods for executing them, using the notation from the Keystroke-Level 
Model (Chapter 8).

There are several commands for drawing new elements on a layout. 
A line, the most common element, is drawn by simply pointing to where 
its end points are to be located. Pressing the m a r k  button causes a small 
mark to be made on the display, which indicates where one end of the 
line will be. The line is actually drawn (from the mark to the location 
currently being pointed at) when the d r a w  button is pressed. 
Sometimes the mark is already at the position of one of the end points, 
in which case only the other end point need be indicated (these two cases 
are distinguished in Figure 10.2 as two separate commands, Line2 and 
Linel).

A flash is drawn by holding down the f l a s h  key, pointing to where 
its center is to be located, and pressing d r a w . An arbitrary rectangle is 
drawn by pointing to two of its diagonally-opposite vertices while holding 
down the r e c t a n g l e  key. All elements are drawn on the current layer, 
although the layer can be changed by pointing to one of the non- 
highlighted icons in the layer menu. The width of the lines is deter­
mined by the line-width parameter, which can be changed by the Width 
command (see Figure 10.2). Circuit elements are deleted from the layout

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN 3 3 9

The keyset keys and the mouse buttons are not actually marked with these labels, 
but the labels are mnemonics for purposes of this discussion.



C o m m an d E xecutio n  M eth od

D r a w in g  C o m m a n d s :

(draw) L in e2  (2 end points) 
(draw) L in e l (1 end point) 
(draw) F lash  
(draw) R e c ta n g le  
(create) L ab e l

P[locationJ K[MARK] P[locationJ K[DRAW]

P[location] K[DRAW]

M K [FLASH) Pflocation] KfDRAW]

M K[RECTANGLE] P[locationJ KfMARK] P[location] K[DRAW) 

P[location] K[MARK] H[keyboard] M 6K[CONTROL I string] M K[ESC] 

H[mouse/keyset]

P a r a m e t e r  C h a n g in g  C o m m a n d s :  

(change) L a y e r  
(change) W id th  (of line)

Pfmenu] K[MARKJ

H[keyboard] M 3 K [CONTROL W number] M K[ESC] H[mouse/keyset]

D e le t io n  C o m m a n d s :  

D e le te  (element) 
U ndo (last deletion)

P[element] K[DELETE] 

H[keyboard] K[U] H[mouse]

T r a n s f o r m a t io n  C o m m a n d s :  

M ove (elements)

C o py  (elements)

S tre tc h  (element)

H [keyboard] M 2K[M  M] H [mouse] 4(P[location] K[MARK]) K[ESC] 

P[location] K[MARK] P[location] K[MARK] H[keyset]

H[keyboard] M 2K[M C ] H[mouse] 4(P[location] K[MARK]) K[ESC] 

P[location] K[MARK] P[location] K[MARK] H[keyset]
H[keyboard] M 2K[M S] H[mouse/keyset] P[elementJ K[MARK] 

P[edge] K[MARK] P[location] K[MARK]

D is p la y  C o n t r o l  C o m m a n d s :  

C e n te r  (drawing) 
(change) M a g n ific a tio n  
R e d ra w  (window)

M K [CENTER] P[location] K[MARK] 
H[keyboard] M 2K[F|G digit] H[mouse/keyset] 
H[keyboard] M K[R] H[mouse/keyset]

D i m e n s io n in g  C o m m a n d s :  

(measure) D is ta n c e  

(measure) S ize
2(P[location] K[MARK]) 

4(P[location] K[MARK])

Figure 10.2. Methods for executing ICARUS commands.
The notation for the methods is taken from the Keystroke-Level Model (Chapter 8). 
The ESC and CONTROL keys are on the keyboard. FLASH, RECTANGLE, and 
CENTER are buttons on the keyset. MARK, DRAW, and DELETE are buttons on 
the mouse. The "string" in the Label command is assumed to be 4 characters 
long (on the average) and the "number" in the Width command is assumed to be 
one digit.
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by simply pointing to them and pressing the DELETE button, and the 
most recent deletion can be undone by hitting the u key on the 
keyboard. There are also commands for stretching the size of existing 
circuit elements and for sticking labels on the layout

The command for moving elements on the layout is rather complex. 
The set of elements to be moved is specified by an enclosing rectangle 
defined by pointing to its four comers with m a r k  (items that are only 
partially within the rectangle are included in the set). The Move vector 
is specified by pointing to a reference point on one element in the set 
and then pointing to the new position of that point. Since the Move 
command is so complex, ICARUS users often just delete the elements to 
be moved and then redraw them in the new location.

The views of the circuit-layout in the two display windows can be 
easily adjusted. Holding down the c e n t e r  key and pointing with m a r k  
to a location in either window causes the circuit to be redrawn with the 
specified location shifted to the center of the window. There is also a 
simple command for changing the scale (Magnification) of the layout in 
each window.

Every time MARK or DRAW is pressed, the xy coordinates of the 
cursor position on the circuit-layout are displayed in the parameter area, 
as are the differences between the current coordinates and the coor­
dinates at the previous press of m a r k  or d r a w . This information allows 
the two successive m a r k  presses to be used to measure distances between 
points (indicated in Figure 10.2 as the Distance and Size commands).

All in all, the command language of i c a r u s  is not unusual. It con­
tains both simple and complex commands; and it uses standard command 
language devices, such as parameters to specify default values for 
command arguments.

10.2. BEHAVIOR WITH ICARUS (EXPERIMENT 10A)

An experiment was run to collect a sample of actual performance with 
ICARUS. A single user was observed in a single session, and the behavior 
was recorded and analyzed.

Procedure and Data
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User. The user was an experienced designer of VLSI circuits and an 
expert user of ICARUS (with a year’s experience of regular use, roughly 
300 hours of practice). The user was asked to choose a task that was



“typical” of the kinds of things he did in ic a r u s  and that would take 
about a half hour to do. The task he chose was to lay out a circuit for a 
cell in a content-addressable memory. The function of the circuit was to 
store, shift, and match one bit of information. The user had previously 
tried to lay out this same circuit, and the experimental task was to 
attempt a different arrangement Thus, the user was familiar with the 
experimental design task, which was of immediate interest to him.

Experimental Procedure. The user was placed in a room with a 
terminal connected to the ICARUS system, an arrangement similar to that 
in Figure 3.1. He brought a rather detailed sketch of the circuit (shown 
in Figure 10.3), to which he referred during the initial part of the session. 
He was asked to talk aloud about what he was doing as he performed the 
task, then he was left alone to do the task. The session was videotaped 
with two cameras, one viewing the user and the other viewing monitor 
showing the user’s display screen. The user’s keystrokes were recorded
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Figure 10.3. Hand-drawn sketch that the user brought to 
Experiment 10A.
The user’s original sketch was drawn with various colored pencils, each color 
representing a different layer.



on a data file. The user paced himself on his task and decided when to 
end the session, which he did after about 40 minutes. His final circuit- 
layout from the experimental session is shown in Figure 10.4.

Data Calibration and Encoding. A data file recorded the name and 
clock time for each key and button-press plus the screen coordinates at 
the time of each mouse button-press. Recorded times were calibrated 
with the videotape to within an accuracy of about .1 sec. The recorded 
screen coordinates were offset from the coordinates that the ic a r u s  

system used. It was difficult to calibrate these two, since there were no 
precise reference points on the screen. Although an attempt at 
calibration was made using the layer menu as a referent, the calibration 
was probably accurate to only about 1.5 cm.

Keystroke data were encoded into a sequence of ic a r u s  commands 
by a combination of heuristic programs and hand editing. All keystrokes 
within .3 sec of each other were grouped into events. A program scanned 
the events and attempted to recognize each of them as a command 
according to the command syntax in Figure 10.2. Some of the events 
had to be regrouped manually, and some automatic command recog-
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DATA

OATA

Figure 10.4. Final ICARUS circuit layout produced by the 
user in Experiment 10A.
The layers on which the circuit elements lay are indicated by the texture pattern of 
each element.



nitions were corrected manually. The most difficult part was interpreting 
the recorded screen coordinates. For example, the cursor location 
determined whether a press of m a r k  was a drawing command or a 
selection of a layer in the menu. Most of the menu selections were 
identified by the program, but many had to be checked by looking at the 
videotape. It was not possible to recognize automatically the various 
circuit elements being operated upon without simulating part of the 
ICARUS command interpreter (since the layout display could move and 
change scale). The error in the coordinate calibration made this effort 
impractical. The circuit elements could have been recognized by 
scanning the videotape, but this was too expensive. Instead, only a few 
of the key circuit elements (about every fifth element) were extracted 
from the tape to identify the place in the circuit that the user was 
working.

Analysis of Task Structure

The user’s performance during the experimental session was organized 
as a sequence of unit tasks; these, in turn, were grouped into major 
phases of the session.
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MENTAL PAUSES AND UNIT-TASK STRUCTURE

The user frequently paused during the experimental session to check 
the work he had done and to think about what to do next. A complete 
protocol description of the experimental session was made, which 
identified and incorporated these Pauses between events. A threshold of 
5 sec was chosen as a first cut at mechanically identifying Pauses from 
the inter-event intervals (which varied from .3 sec to 80 sec). This 
divided the session into about 100 episodes, each with an average time of 
25 sec and each consisting of a Pause followed by a varying number of 
ICARUS commands. These episodes were then edited manually. The 
videotape was perused to determine which task was accomplished during 
each episode (drawing a transistor, making a connection, moving a 
structure over, etc); the user’s verbalizations were very helpful in 
identifying these. In this process several new gaps between actions (less 
than 5 sec long) were found; they were identified as Pauses if there were 
at least 2 sec between commands. Some Pauses also occurred within 
Move commands. The user viewed the videotape with the experimenter 
and made a few minor corrections to the experimenter’s interpretations.



Finally, the protocol was segmented into unit tasks (as defined in 
Chapters 5 and 8) by identifying many of the Pauses as task Acquisitions 
and the commands between them as Executions. Figure 10.5 shows an 
example fragment of the data record and how it was encoded into the 
protocol.
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Data Record Protocol Encoding

Clock Keys X Y Commands Unit Tasks

1:05.92 DRAW 99 300

Pause Acquire
1:11.70 MARK 42 49 Layer(2) 

Pause
Execute

1:15.77 MARK 39 466 Line2
1:16.75 DRAW 139 468 "

1:17.68 DELETE 121 469 Delete
1:18.68 CONTROL Width (6)
1:19.22 W "

1:19.92 6 "

1:21.93 MARK 36 478 Line2
1:23.00 DRAW 125 475 ”

1:25.28 ESC

Pause Acquire
1:31.55 MARK 31 12 Layer(1) Execute

Figure 10.5. Segment of data record from Experiment 10A 
and its encoding.
This segment shows the third unit task in the Transcription phase (see the third 
task, on line 1:06, in Figure 10.7). Clock times are in minutes and seconds. X 
and Y are the coordinates of the cursor at the time of each mouse button-press. 
The names of the keys and the names of the commands are given in Figure 10.2.

The unit tasks thus identified were generated by the user to 
accomplish many different types of goals. The following is a useful 
classification of the unit tasks into four types:



Draw tasks. These create new circuit elements on the 
layout, using mostly Line and Flash commands.

Alter tasks. These move circuit elements or change their 
configuration, usually by means of Move commands.
Stretch commands, or deletion and drawing com­
mands.

Dimension tasks. These measure the dimensions of 
substructures, the distances between circuit elements, 
or the alignment of elements. This is done using the 
Distance and Size commands.

Check tasks. These check the circuit for connectivity, for 
VLSI design rule violations, or for places that can be 
spatially compressed. There are really many dif­
ferent kinds of Check tasks, all of which are 
characterized by long periods of thinking and little 
action. Since there are so few of them, they are all 
grouped together here as one type.

PHASE STRUCTURE

The experimental session is clearly partitioned into phases lasting 
several minutes each. In each phase, unit tasks are organized around one 
of the major subproblems of the VLSI circuit-layout problem. Phases are 
similar to task groups in the Chapter 9 page-layout task in that they 
provide a higher-level structuring of the unit tasks; they differ from the 
task groups in that they are more extensive and in that their unit tasks 
are deployed in more of a problem-solving mode.

In the experimental session, the user first input the circuit to f c a r u s  

and then compressed it to minimize its area. His strategy for 
compressing the circuit was to concentrate on reducing its vertical 
dimension first and then its horizontal dimension. Thus, the phases in 
the experimental session were:^

Transcription phase (14 minutes). The layout of the circuit 
was transcribed from the hand sketch into the

3 4 6  10. AN EXPLORATION INTO CIRCUIT DESIGN

There was also a fourth phase during the experiment: a Symbol Definition phase 
(5 minutes), during which the circuit was checked and packaged into a unit to be used 
as a cell in a circuit array. In the original ICARUS study, this phase was not analyzed 
and so is not included here.



ICARUS system. The circuit was checked to make 
sure it was functionally accurate.

Vertical Compression phase (7 minutes). The circuit was 
compressed vertically by moving substructures 
around to make them fit together more closely.

Horizontal Compression phase (15 minutes). The circuit was 
compressed horizontally.

Figure 10.6 presents summary statistics for the three phases and for 
each task type within those phases. The phase structure of the layout 
task imposes a characteristic sequencing of task types. For example, as 
might be expected, most Draw tasks occurred in the Transcription phase 
and most Alter tasks in the Compression phases. The mean unit task 
time in the session was about 20 sec per task. The mean task time was 
about the same in each phase, but varied for different task types: 20 sec 
for Draw and Alter tasks, 8 sec for Dimension tasks, and 38 sec for 
Check tasks.
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U n it-T a s k
T yp e

T ra n s c rip tio n  
P h ase

{N)M±CV
(sec)

V e rtic a l
C o m p ress ion

Phase
{N)M±CV

(sec)

H o rizo n ta l
C o m p ress ion

Phase
{N)M±CV

(sec)

All P h ases

{N)M±CV
(sec)

Draw tasks (28) 23.1 ± .3 6 ( 1) 19.0 ( 5) 1 1 .6± .50 (3 4 )2 1 .3 ± .4 2

Alter tasks ( 7) 18 .6± .69 (16) 20.1 ± .31 (31) 1 9 .4± .72 (54) 19.5±.61

Dimension tasks ( 1) 9.0 ( 1) 9.0 ( 8) 8.1 ± .6 6 (10) 8 .0 ± .6 0

Check tasks ( 2 )3 2 .5 ( 2 )3 4 .5 ( 4 )4 2 .8 ± .6 6 ( 8) 38.1 ± .5 9

All T as k s (38) 2 2 .3 ± .4 6 (20) 21.0 ± .45 (48) 1 8 .6± .86 (106) 2 0 .4 ± .6 4

Figure 10.6. Unit-task statistics by phase and task type in 
Experiment 10A.

Keystroke-Level Model Analysis

To determine whether the phases of the experimental session were 
structured into unit tasks, it is necessary to examine the acquire-execute 
structure of the unit tasks and to see whether the execution parts conform 
to the predictions of the Keystroke-Level Model.



Clock 
T ime

10 20 30 40 50 60 sec
• I

Transcription Phase

18
55
06
25
36

2:17
2:50
3:30
3:41

01
22
31
52
23
30
38
00
20
44
57
23
46

8:11
8:33

01
14
45

10:18 
10:38 
10:54 
11: 18 
11:44 
11:46 
12:21  
13:05 
13:09 
13:47 
14:07

------ DDDD=DDD=DDDDDDDDD=DDDD=DDDDDD
------D=D=D
---- D===DDDDDDDDDD
---- DD==DD
-------------------------------------------- AAAAAAAAAAAAAAAA
--------- DDDDDD= = =DDDD = DDDDDDDDD
------- DDD=DDDDDDDDDD==ODD=D==DDDDD
--- DDDD==DDDDD------ □------- □□
---------------------- AAAAAAAA---- =
------ DDDDDD=DDD==DD
----------------------------------------------------- I
---- DD i
---------= I
------ OD====DDDDD=DDD i
-------------- D==DD
---- DDDD=DDODDDDDDD
---D-D----- D==DD
----------- DDDDDDDDD=DDDD
------------D---DD--- D
-----------------AAAAAAAA==AAAAA
------------ A=A=AAA=AAAAAAA
-------- D===DDDD=DDDD==DDDD
-------- D = DD
---------- DDDD==DDD=DDD==DDDDD
------------- D==D=DD=DDDDDDDDDDD
---- DDDD==DDD===DDD
--------DD=DDDDD
---------- D==D=DD===DDD
---- D=DD==DDDD==DDDDD
------ MM
----------D-DDDD--- DDDD==DDDDDDD
Q-------------------------------
A = AA
-----------DDDDD = DDDDD = DDDDDDD= = = = DDDD
-------DDDDD=DDDDDDD

Sym bol C ode :

Task acquisition 
Draw task execution 
Alter task execution 
Dimension task execution 
Check task execution 
Intra-execution pause 
Pause within Move command

Vertical Compression Phase

14:26
14:35
15:32
15:39
15:55
16:10
16:34
17:01
17:26
17:34
17:51
18:20
18:49
19:03
19:23
19:47
20:06
20:28
20:54
21:08

M=M==M==M
-C=C=C=CC

--------AAAAAAA
------------- AAAAAAA
--------AAAA===AAA
------------------------ AAAAAAAAAA
----------------------------------------- A==A
------------- AAAAA+++++++A
------ A=AAA==A----------------C
--------------AAAAAAAAAAAA+++++AA
------------------------ a a =a ====a a ==a a a a a
----------AAAAAAAA
--------------- AAAAAAAA
---AA=AAA=AAA==AA==AAA=A
---D===DDDDD=DDDDDD
---------------------AAAAAAAAAAAAA
AA------------- A------ AAAA= = AAAAA
------------AAAAAAA
------------AAAAAAAAAAA ( c o n t in u e d  o n  n e x t  p a g e )

Figure 10.7. Time iine representing the user’s behavior 
sequence in Experiment 10A.
Each (single-character) symbol represents one second of behavior. The symbol 
sequence begins on a new line at the beginning of each unit task, and the clock 
time is the time at the beginning of the unit task.
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Clock 
T ime

10 20 30 40 50 60 sec

Horizontal Compression Phase
21:28
22:51
22:56
23:07
23:41
24:05
24:39
24:58
25:11
25:37
25:58
26:41
26:50
27:16
27:34
27:44
27:56
28:04
28:32
28:58
28:59
29:43
29:54
30:00
30:05
30:11
30:13
30:28
30:51
31:00
31:22
31:26
31:35
32:34
32:42
33:05
33:22
33:31
34:24
34:38
34:53
35:06
35:09
35:27
35:33
35:46
36:15

CC = C-------
AAAAA
------ M=M==MM

-//-
(85 sec)

- - A - A ------- A=AAA= = = AAAAAAAAA
----------AA=A==AAA=A===AAAAAAAAAAA==A
--------------- AAAAAAAAAA
------ DD=DDD
--------AAAAAAAAAAA--AAAAAAAA
--------------DD==DDD
---------------------------------------------------------AAAAAAAA
---AAAA==AAA
----------A---------------------------- AAA
--------A=AAA==A=AA
- - AAAAA
--------AAAAAAAAA
---A==AAAAA
------------- AA=AAAAA==A=A===AAAA

M
-AA=AAAAAA=AAAA

---A==AA
--MM
---AAA
-M
---A==AA=AAAAAAAAA
------------------------ AAAAAAAAA
------------- M
-----------------AAAAAAAAA
---AAAA  
----------- MM

-A=AAAAA=A=AAA===AA==AAA==AA
-AAAAAAAA
------A==AAAAAAAA==AAA

-DDD
=A==A=A= ==AAAA=A=AAA=AA

----- DDD
--------AAA++++++AAA
--------A ---AAA
------AAA
------------------------ MM
--AAAAAA 
-------------------MM

DDDDDD

ACQUISITIONS AND EXECUTIONS

Let us consider more closely how each unit task was decomposed into 
an acquisition part and an execution part. The acquisition part of a unit 
task was indicated on the protocol by a Pause; the execution part 
consisted of a sequence of ic a r u s  commands, possibly including some 
Pauses. Sometimes the acquisition part of a task was broken by display 
commands, in which case the display commands were counted as part of 
the execution, whereas the Pauses after them were counted as part of the



acquisition. The only difficulty with this decomposition was with the 
Check tasks, since they each consisted mostly of a Pause time followed by 
a few quick display-changing commands.

This decomposition of task times is graphically presented in Figure 
10.7, which is a second-by-second time-line encoding of the protocol into 
acquisition and execution parts. Several features of the overall perfor­
mance can also be seen on this figure: the long Check tasks at the end 
of the Transcription phase and at the beginning of both Compression 
phases, the relatively uniform task times in the Transcription and Vertical 
Compression phases, and the relatively high variance of the task times in 
the Horizontal Compression phase (see Figure 10.6).

Figure 10.8 shows the means and C F’s of the acquisition, execution, 
and unit task times, grouped by different categories of tasks. Overall, 
acquisition and execution took about equal time, but acquisition had 
more variance. The greatest differences were between the different task 
types. Draw and Alter tasks were about the same, but the Dimension 
tasks were faster than either in both acquisition and execution, and the 
Check tasks consisted of long acquisition times with short execution 
times. The greater mixture of task types in the Horizontal Compression 
phase accounted for its greater variance and for the execution time being
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Tasks

Tacquire

M ± C V
(sec)

execute

M ± C V
(sec)

 ̂task

M ± C V
(sec)

All tasks 10.7 ± 1 .0 4 9.7 ± .77 20.4 ±  .64

Transcription phase 10.9 ±  .76 11.4 ±  .69 22.3 ±  .46
Vertical Compression phase 10.5 ±  .91 10.5 ±  .49 21.0 ±  .45
Horizontal Compression phase 10.7 ±  1.28 7.9 ±  .96 18.6 ±  .86

Draw tasks 9.2 ±  .57 12.1 ±  .64 21.3 ±  .42
Alter tasks 8.9 ±  .86 10.6 ± .64 19.5 ±  .61
Dimension tasks 5.1 ± .94 2.9 ± .95 8.0 ± .60
Check tasks 36.6 ± .57 1.5 ± 2.0 38.1 ± .59

Draw + Alter tasks 9.0 ± .75 11.2 ± .64 20.2 ±  .53

Alter tasks (with Move) 9.7 ± .69 11.5 ± .44 21.2 ± .39
Alter tasks (without Move) 8.2 ± 1.03 9.8 ± .82 18.0 ±  .78

-igure 10.8. Decomposition of unit-task times in 
iition and execution parts Experiment 10A.

into acqui-



faster during this phase. The acquisition time remained constant between 
phases.

Draw and Alter tasks comprised over 80% of the tasks. They typically 
took about 9 sec to acquire and 11 sec to execute. The Alter tasks can be 
partitioned into those that used a Move command (the m o v e -c o m m a n d - 

m e t h o d )  and those that did not, with the latter consisting of a series of 
deletion and (re)drawing commands to accomplish the move (the d e l e t e - 
a n d -r e d r a w -m e t h o d ). The Move command itself took 9.4 sec (see 
below), accounting for 82% of the execution time of the Alter tasks that 
had a Move. The Alter tasks without a Move were 15% faster than those 
with a Move in both acquisition and execution time, but their task times 
were much more variable, since the d e l e t e -a n d -r e d r a w -m e t h o d  was 
more sensitive to the number of elements being moved.

COMMAND FREQUENCY

The frequencies of use of the different i c a r u s  commands are listed in 
Figure 10.9 (in the N  column). The four most frequently used com­
mands were the Layer command, the Line commands, the Delete 
command, and the Flash command. Perhaps the biggest surprise was the 
high frequency of Layer commands—there were three Layer commands 
for every four drawing commands. The frequency of Delete commands 
was less surprising, since 90% of them occurred in Alter tasks to move 
items by the d e l e t e -a n d -r e d r a w -m e t h o d , and the rest were used to 
correct errors in Draw tasks (as in Figure 10.5). These four high- 
frequency commands—Layer, Line, Delete, and Flash—accounted for 
70% of the command instances. Because they were all short commands, 
each requiring only one or two pointing actions, altogether they took 
only 48% of the total execution time (based on the calculations described 
below).

The fifth most frequent command type was the Move command. 
There were 25 Move commands in the protocol, accounting for 26% of 
the total execution time. The mean execution time for a Move command 
was 9.4 sec. (If the time for the Pauses that occur within three of the 
Move commands is excluded, the mean Move time becomes 8.6 sec.)
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CALCULATION OF EXECUTION TIME

Using the method analysis for each command in Figure 10.2, a 
Keystroke-Level Model calculation of the execution time is presented in 
Figure 10.9. The total predicted execution time is 1192 sec, 16% longer 
than the total observed execution time of 1028 sec.



Com m and rip "k "h "m Texecute

{sec)
N T' total 

(sec)

2 2 0 0 2.8 68 188
1 1 0 0 1.4 8 11
1 2 0 1 3.0 51 154
2 3 0 1 4.4 1 4
1 8 2 2 6.8 6 41

1 1 0 0 1.4 87 120
0 4 2 2 4.6 5 23

1 1 0 0 1.4 59 81
0 1 2 0 1.1 5 5

6 9 3 1 11.7 25 292
6 9 3 1 11.7 1 12
3 5 2 1 6.9 21 144

1 2 0 1 3.0 15 45
0 2 2 1 2.7 7 19
0 1 2 1 2.4 5 12

2 2 0 0 2.8 11 30
4 4 0 0 5.5 2 11

Drawing Commands:
(draw) Line2^ (2 end points) 
(draw) L in e l (1 end point) 
(draw) Flash  
(draw) Rectangle  
(create) Label

Parameter Changing Commands: 
(change) Layer 
(change) W idth (of line)

Deletion Commands:
D elete  (element)
Undo (last deletion)

Transformation Commands: 
Move (elements)
Copy (elements)
S tre tch  (element)

Display Control Commands: 
C en te r (drawing)
(change) M agnification  
Redraw  (window)

Dim ensioning Commands: 
(measure) D istance  
(measure) S ize

Predicted time to execute all commands = 1192 sec
Total observed execution time = 1028 sec
Prediction error = +16%

Figure 10.9. Execution time calculation for Experiment 10A.
This calculation is based on the Keystroke-Level Model (Chapter 8) and Is similar 
to the calculation in Figure 8.5. The n's are obtained from the execution methods 
in Figure 10.2. The system response time in ICARUS Is very fast and so does not 
need to be included. The unit operator times are taken from Figure 8.1; a typing 
rate of .28 sec/character Is used. N  is the number of Instances of each command
during the experimental session. T.

2 t;
total = NTexecute’ Predicted total time =

total
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The 16% over-prediction is, however, more than just prediction error. 
For 106 unit tasks, we would expect the standard error of our prediction 
to be about 2% of the observed time (21%/-/106). If we regard the 
Keystroke-Level Model calculation as a yardstick for expertness, then the 
user may be so highly practiced on the i c a r u s  commands that he 
requires fewer M operations than would be predicted from the rules in 
Chapter 8. The physical operations (P, K, and H) alone account for 96% 
of the user’s execution time, which leaves little time for mental (M) 
operations. This is consistent with the idea that the user, because he is 
expert, has virtually eliminated his need for mental operations in 
executing ic a r u s  commands (see Section 8.3).

The Move command is the only command for which we have 
individual command execution times. The predicted Move time of 11.7 
sec is 24% longer than the mean observed Move time of 9.4 sec. The 
Move commands account for almost all the long commands, with most of 
the remaining (non-Move) commands being much shorter. The predicted 
time for the non-Move commands is 13% longer than the observed time. 
Thus, the over-prediction is somewhat greater on the longer commands.

It is interesting to compare the tradeoff for the two methods for 
moving circuit elements on the layout: the m o v e -c o m m a n o -m e t h o d

and the d e l e t e -a n o -r e d r a w -m e t h o d . For each circuit element to be 
moved, the d e l e t e -a n d -r e d r a w -m e t h o d  requires a Delete command 
(1.4 sec) plus a drawing command (3.0 sec)'* for each circuit element to 
be moved, which totals 4.4 sec per element Since the Move command 
requires 9.4 sec, the m o v e -c o m m a n d -m e t h o d  should be faster when 
there are 3 or more elements to be moved; and the d e l e t e -a n d - 

r e d r a w -m e t h o d  should be faster when only 1 or 2 elements are to be 
moved. The user in the experiment moved an average of 1.8 elements 
with the DELETE-AND-REDRAW-METHOD, but on one-third of the delete- 
and-redraw tasks he moved 3 or 4 elements. (Data on the exact number 
of elements with the Move command was difficult to obtain.) Thus, the 
user appears to be operating near the timewise-optimal threshold in 
choosing between m o v e -c o m m a n d -m e t h o d  and d e l e t e -a n d - r e d r a w - 

m e t h o d , with some bias towards the d e l e t e -a n d -r e d r a w -m e t h o d . 
This situation is comparable to the method selections observed for p o e t  

(see Section 5.2). P o e t  users choose nearly optimally between the l f -
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 ̂ The 3.0 sec is the average drawing command execution time, where the different 
kinds of drawing commands are weighted by their frequency in Figure 10.9.



METHOD and the q s -method for locating lines, but with a bias towards 
the LF-METHOD.^
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Error Data

There are 15 error tasks out of the 106 unit tasks. The errors can be 
grouped into four classes:

Selection errors. These occurred within the Move 
command. Either too many circuit elements (4 
cases) or too few circuit elements (1 case) were 
selected to be moved. New Move commands had to 
be performed to correct these errors.

Deletion error. In one case, the user anticipated that a 
circuit element would unavoidably be selected in 
subsequent Move commands, even though he did 
not want it to be moved. To prevent this, he deleted 
the element with the intention of later redrawing it 
in its present location. After the Moves, however, he 
forgot, and only discovered the omission days later.

Location errors. Because it is often difficult to specify the 
exact placement of elements, elements were moved 
to the wrong location (3 cases), flashes were drawn 
off center (2 cases), and a line was drawn the wrong 
size (1 case). There was also one case where two 
items at the opposite edges of the circuit were 
misaligned. The correction for Location errors was 
either to delete-and-redraw or to move the misplaced 
elements.

Parameter-setting errors. Once, the user drew a line using 
the wrong line-width parameter; he had to reset the 
parameter, delete the line, and redraw i t  Another

 ̂ It is interesting to speculate on the reasons for the bias. Why are the two 
methods (the DELETE-AND-REDRAW-METHOD in ICARUS and the LINEFEED- 
METHOD in POET) psychologically favored? One feature of both favored methods is 
that they are incremental: they accomplish their tasks with a series o f small commands 
rather than by building up one big command. These methods are thus less risky. The 
user gets feedback at each increment, and the necessary corrections are small in case of 
an error. When using the big-command methods, however, the errors are larger and 
their recovery more difficult



time the user forgot to type esc after setting the 
line-width param eter (and had to retype it later).

The most serious iCARUS error was undoubtedly the forgotten 
deletion, since it remained undetected. Other errors were corrected at a 
modest time cost. The time taken for the user to make all the above 
corrections was a little over two minutes, about 6% of the total time spent 
in the first three phases. This seems low compared to the 26% error time 
observed in the earlier manuscript text-editing experiment with the poet 
editor (Experiment 5C). However, 72% of the error time in the poet 
session was due to three large errors in which the user lost her place in 
the manuscript; the remaining errors in the POET session constituted only 
about 8% of the time. These latter errors were mostly command exe­
cution errors and typing errors, comparable to the iCARUS errors above. 
Perhaps an icarus user would have corresponding place-keeping errors 
with a large circuit, but the two viewing windows provided in icarus 
make losing one’s place less severely penalizing in icarus than in poet .
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10.3. CONCLUSIONS

The case study of computer-aided circuit design suggests that the 
GOMS theory can be extended to semi-creative, human-computer 
interaction tasks that are not explicitly given, but are generated by the 
user. On analysis, computer-aided circuit design was seen to comprise a 
creative part and a routine part not much different from the manuscript­
editing tasks studied earlier.

The routine part of the circuit-layout task had the following 
similarities to the text-editing tasks studied by GOMS analysis earlier:

(1) The user’s behavior was comprised of relatively independent 
unit tasks, each with a distinct acquire-execute cycle, each 
lasting about 10~30 sec.

(2) The time to execute commands was predicted by the 
Keystroke-Level Model with about 16% error.

(3) The frequency and cost of correcting execution errors was low 
(6% of execution time), as expected with skilled behavior. 
This error rate is comparable to that in the manuscript-editing 
task for the same types of errors.
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(4) The user employed stereotypic methods: only six different 
command types were used for 85% of the command 
executions.

(5) Where the user had a choice of methods, he made near- 
optimal choices quickly.

(6) The user processed only a few elements at a time. For 
example, he transcribed only about three circuit elements at a 
time.

One important difference between circuit-layout and manuscript 
editing was the phase structure. The circuit-layout task was partitioned 
into phases of 5~15 minutes. Each phase had a distinct purpose and was 
governed by a loose plan that gave a distinct pattern to the unit tasks 
within the phase, yet that allowed the spontaneous generation of local 
unit tasks.



11. Cognitive Skill
11 .1 . THE SKILL DIMENSION OF COGNITIVE BEHAVIOR
11 .2 . COGNITIVE SKILL FROM PROBLEM SOLVING

Problem Space for the Tower of Hanoi Puzzle 
Accumulation of Search Control Knowledge 

Construction of Problem Space Operators 
Levels of Cognitive Behavior

11 .3 . PROBLEM SOLVING PRECEDING COGNITIVE SKILL
Problem Space for BRAVO Text-Editing
Problem Solving Behavior in Text-Editing (Experiment 11 A)

11 .4 . THE UNIT TASK
The Nature and Function of Unit Tasks 
Determinants of Unit-Task Structure

11 .5 . TEXT-EDITING W ITHIN COGNITIVE SKILL
11 .6 . CONCLUSIONS

Throughout this book we have been treating particular cognitive skills. 
The paradigm skill has been that of manuscript editing with a computer, 
though as Chapters 8, 9, and 10 have shown, the class of tasks to which 
the analysis applies is considerably broader. Our approach throughout 
has been to work close to the detailed structure of the tasks, drawing on 
the general base of modem information-processing psychology, as 
exemplified in Chapter 2, but not attending to how the models and 
results fit into a more general picture. It is this integration we now 
pursue.

What sets apart the human-computer interaction tasks dealt with in 
this book from many of the tasks that psychology has studied in detail is 
the combination of skilled behavior and a domain that is strongly 
cognitive. The primary substantive contribution of the studies of this 
book to basic psychology lies in helping to characterize the general nature 
of cognitive skill by the detailed understanding of one species of such 
skill.

Historically, the psychological study of skill has focused on 
perceptual-motor skills. Consequently, the obvious tack is to take cogni-
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Live skills to be those skills that involve cognition, as opposed to those 
skills that involve the motor and/or perceptual systems. However, it is 
not possible to distinguish the skills we have been studying from others 
simply by the existence of a cognitive component. As Welford says in 
his Fundamentals o f Skill:

Although a distinction is commonly drawn between sensory-motor and 
mental skills, it is very difficult to maintain completely. All skilled 
performance is mental in the sense that perception, decision, knowledge 
and judgment are required. At the same time all skills involve some 
kind of co-ordinated, overt activity by hands, organs of speech or other 
effectors. In sensory-motor skills the overt actions clearly form an 
essential part o f the performance, and without them the purpose of the 
activity as a whole would disappear, in mental skills overt actions play 
a more incidental pait serving rather to give expression to the skill than 
forming an essential part o f it  (Welford, 1968, p. 21)

Thus, all skill involves cognition. Perhaps, then, cognitive skills could be 
distinguished by saying that they are primarily cognitive. More pene­
trating is Welford’s characterization (above) of the role of motor behavior 
in mental (i.e„ cognitive) skill, namely, that it expresses the cognitive 
skill. Manuscript text-editing includes the skills of keystroking and 
viewing the manuscript and display; however, these perceptual-motor 
skills are not the essential activity, but the medium through which the 
cognitive activity gains expression.

The primacy of cognitive activity in cognitive skill does not rob the 
behavior of its skillful character, taking the term skillful to mean 
“competent, expert, rapid and accurate performance” (Welford, 1968, p. 
12). This includes the sense of effortlessness—smoothly coordinated and 
patterned behavior—that is the visible hallmark of skilled performance. 
Our text-editing experts truly fly over the keyboard; and the contrast of 
their behavior with that of beginners leaves no room for doubt that skill, 
both perceptual-motor and cognitive, has been acquired.

We now attempt to characterize the general nature of cognitive skill to 
see how skill in text-editing both confirms and illuminates it. We start 
by presenting a view of all cognitive behavior as having a dimension of 
skill, so that any cognitive behavior is more or less skilled (Section 11.1). 
We illustrate this by showing how a task that initially requires problem 
solving gradually becomes skilled (Section 11.2) and how text-editing, 
which becomes a skill for most users, has its roots in problem solving 
(Section 11.3). We next examine the distinguishing features of the skill



of text-editing, its most dominant feature being the unit-task structure 
(Section 11.4). However, skills are characterized and differentiated along 
many dimensions, of which the unit task is only one (Section 11.5).

Our development of the notion of cognitive skill in this chapter is 
consonant with current work in cognitive psychology on this topic, as 
exemplified by the recent collection. Cognitive Skills and their Acquisition 
(Anderson, 1981a). In particular, our view of cognitive skill is in 
substantial agreement with the picture of cognitive skill acquisition 
emerging from the contemporaneous work of John Anderson (1980, 
Chapter 8; 1981^).

11.1. THE SKILL DIMENSION OF COGNITIVE BEHAVIOR 3 5 9

11.1. THE SKILL DIMENSION OF 
COGNITIVE BEHAVIOR

Human behaviors tend to get labeled—as problem solving, skill, 
learning, imagining, creating, day-dreaming, etc. This leads to viewing 
behavior in typological terms, with many distinct species of behavior, 
each having its own separate characteristics. The actual situation seems 
to be considerably different. As epitomized by the Rationality Principle 
in Chapter 2, behavior is responsive to (1) the nature of the task and the 
human’s goals, (2) the nature of the human's processing capabilities, and
(3) the preparation of the human for dealing with the particular task. 
These factors provide different ways to classify behaviors. On the one 
hand, task demands and human goals are as diverse as the world itself, 
and human behavior reflects this diversity. However, strong commu- 
nalities arise in behavior by the common involvement of the basic 
processing system. All behavior feeds through the perceptual, cognitive, 
and motor processors, whose fixed properties make all behavior similar in 
many respects. But also, as indicated by the third factor, humans are 
able to perform the same task in many ways and with many degrees of 
facility, depending on their state of preparation—their knowledge of facts 
and procedures and their internal organization to use them.

Thus, all cognitive behavior can be located in a three-dimensional 
space, as sketched in Figure 11.1. The task (vertical) dimension indicates 
the vast geography of different tasks. The processing dimension (shown 
as depth) reflects the perceptual, cognitive, and motor structuring of the 
human processor. In fact, any behavior will involve all three compo-
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Cognitive
Cr

Perceptual

Motor

(/)
^  editing

Text-

Problem
solving

Cognitive
skill

SKILL

Figure 11.1. Three dimensions of cognitive behavior.
All cognitive behaviors, including both problem-solving behaviors and cognitive-skill 
behaviors, can be classed along three dimensions; a task dimension, a processing 
dimension, and a skill dimension. Any cognitive behavior on a given task will, with 
practice, shift to the right along the skill dimension.

nents, and so a given behavior on a task would actually be characterized 
by a relative emphasis on each subsystem. The skill (horizontal) dimen­
sion indicates the degree of skill with which the behavior is performed. 
The further to the right, the more skilled is the performance of the task; 
the further to the left, the more the behavior becomes that of solving a 
problem.

The skill dimension is the most important one for us here. All 
behaviors lie at some degree of skill along this dimension (although, of 
course, complex behaviors dealing with different subtasks of a total task 
can vary in their skill). Moreover, problem-solving behavior is simply the



less skilled end of this dimension; it is not a separate species of behavior 
nor a separate class of tasks. The notion of a skill dimension that 
includes both cognitive skill and problem solving is consonant with the 
Model Human Processor of Chapter 2, both the Problem Space Principle 
and the Law of Practice providing grounds for its support. We take up 
each of these principles in turn.

THE PROBLEM SPACE HYPOTHESIS

The Problem Space Principle in Chapter 2 states that problem solving 
takes place by search in a problem space, with the partial knowledge of 
how to proceed—the search control knowledge—being used to guide the 
search through the space. The principle, as stated, applies only to 
problem solving, where it has attained an impressive amount of support. 
However, it can be extended from problem solving to cover all cognitive 
behavior (Newell, 1980);

Problem Space Hypothesis: The fimdamental organizational 
unit o f all human symbolic activity is the problem space.

The status of this extended principle is much more tentative, but it can 
still serve our purposes. It implies a homogeneity of structure for all 
cognitive behavior, from problem solving to cognitive skill. It thus 
supports the notion of a continuous skill dimension.

The difficulty of performance in a problem space can be graded by 
how much the search control knowledge available in the problem space 
constrains behavior. With little knowledge, the operators selected have 
small chance of being the right ones. The paths through the problem 
space are bound to go astray, leading to backtracking, pauses from 
ignorance, trial search—the whole panoply of behaviors characteristic of 
problem solving. With abundant search control knowledge, the operators 
selected are almost always right. Behavior proceeds directly from the 
initial point in the problem space to the final goal state with only 
occasional error, and even then with knowledge usually available to 
recover quickly and get back on the track.^ This grading of problem
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 ̂ Implicit in this account is that search control knowledge is knowledge ready to be 
brought immediately to bear on selection, without hesitation or puzzlement See Newell 
(1980) for elaboration.



spaces according to control knowledge provides the basis for a scale from 
problem solving to skilled behavior.

For behavior at the skilled end of the dimension, the sequence of 
operators performed are highly predictable from the structure of the task. 
When the task itself is only moderately complex (as are the text-editing 
tasks in this book), the behavior will be specifiable simply by listing the 
sequences of operators to be performed, explicitly conditional on the 
appropriate features of the task. This, of course, is just the condition 
under which behavior is easily specified by a standard programming 
language, such as Basic or Pascal. We found it convenient to use our 
own notational variant, the GOMS notation introduced in Chapter 5; but 
it comes to basically the same thing.

The GOMS scheme, however, contains one more control feature 
beyond operator sequence and explicit conditionals, namely goals. These 
help to reveal the relationship between the procedural representation of a 
behavior and its skill. Goals are analogous to procedure calls in standard 
programming languages; but they have an additional degree of condi­
tionality in selecting the method (i.e., the procedure body) to attain the 
goal, depending on the characteristics of the particular environment being 
faced. This conditionality, embodied in the GOMS selection rules, is not 
provided explicitly in standard programming languages,^ where it is 
assumed that sufficient analysis has been done by the programmer to 
directly call each procedure (via a unique name). On the other hand, 
artificial intelligence programming languages (e.g., Bobrow and Raphael, 
1974) have goals, with methods selected by pattern-matching against the 
global database (so-called pattern-evoked procedure^). This is a more 
open technique of method selection than the fixed selection rules of 
GOMS. Thus, behaviors with a greater degree of skill can be adequately 
represented with more rigid and explicit control structures. The rigidity 
of the GOMS scheme is a direct reflection of its being a model of 
cognitive skill.

THE POWER LAW OF PRACTICE

A second line of evidence for the continuous character of the skill 
dimension comes from the Power Law of Practice (Chapter 2), which 
states that the time to perform any task decreases with practice according
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It is not required technically; the same selection can be attained by explicitly 
making the requisite tests at the beginning o f the procedure body. BuL in representing 
control, the issue is always where and in what form to encode conditionality.



to a common quantitative law (a power function). This law is a 
quantitative reflection of the process that produces skilled behavior. The 
important aspect of this law in the present context is that it applies 
uniformly to all types of cognitive behavior, so long as the behavior is 
sufficiently well organized to attain the task. The law applies not only to 
skilled behaviors (cognitive and perceptual-motor), but also to problem­
solving behaviors (Newell and Rosenbloom, 1981). The exact mechanism 
through which the law operates is still unclear (and under active 
research). For example, it cannot yet be tied firmly to the problem space 
organization of behavior, as implied in the Problem Space Hypothesis 
above. Yet, in showing that learning proceeds in a gradual way, the 
Power Law of Practice implies that all cognitive behavior, with practice, 
moves smoothly—within a homogeneous structure—along a continuous 
skill dimension.
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THE SKILLED END OF THE DIMENSION

Ihere is some indication that, as behavior becomes highly skilled, 
some of it may become organized differently, contrary to the notion of a 
homogeneous organization implied by the Problem Space Hypothesis. 
The key phenomenon is that of automaticity. In general, people are 
aware of much that goes on while performing tasks—they can comment 
on what they are doing, what they want, what they plan to do, what task 
features they have noticed, etc. But some behaviors can become highly 
automatic, so that the entire performance proceeds outside awareness. 
There may be no awareness even that the behavior occurred or no ability 
to recollect any intermediate aspects of internal processing. Automatic 
behaviors are highly skilled behaviors, and they develop gradually with 
extreme practice, following typical power-law practice curves, with 
nothing special to indicate the degree of automaticity. Thus, the natural 
interpretation is that automaticity is simply another attribute of skill, 
which increases with degree of skill, becoming highly salient at the 
extreme end of the skill dimension.

However, such a uniform dimension would imply that all behaviors 
could become fully (at least extensively) automatic; but that does not 
seem to be the case. The simpler and less varied a behavior, and the less 
cognitive (hence more perceptual-motor), the easier it appears to be for it 
to become automatic, though some quite complex extended tasks can 
become automatic. On the other hand, some rather simple (though per­
ceptually varying) tasks have been shown to be very resistant to becoming 
automatic (see, e.g., Shiffrin and Dumais, 1981). It seems unlikely that



text-editing could ever become highly automatic, however skilled it 
became (e.g., consider that the user in Section 8.4 still required mental 
preparation time even after executing the same method 1100 times). 
Therefore, automatic behavior could imply use of a structurally different 
process than cognitive skill behavior and thus a non-homogeneity in the 
skill dimension. This is simply another place where our simplified Model 
Human Processor does not yet reflect some important psychological 
issues, and we do not pursue it further here.
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11.2. COGNITIVE SKILL FROM PROBLEM SOLVING

Problem-solving behavior will, with practice, become cognitive skill. 
To illustrate, we start with a classic example of problem solving, the 
Tower of Hanoi puzzle, whose problem space has been given ample 
analysis (Nilsson, 1971; Simon, 1975; Newell 1980). We show what 
happens theoretically to problem solving when (1) the search control 
knowledge increases and (2) the problem space is altered by the 
construction of new operators.

Problem Space for the Tower of Hanoi Puzzle

A problem space, as outlined in Chapter 2, consists of a set of 
knowledge states plus a set of operators for transforming states to other 
states. A problem within a problem space is defined by an initial state 
and a goal (a state or set of states). Solving the problem consists of 
finding a sequence of operators (often called a path) to transform the 
initial state into a goal state. The Tower of Hanoi puzzle consists of a set 
of three pegs with disks of different sizes stacked on the pegs (see Figure 
11.2a). The problem is to move a pyramid of disks from one peg to 
another peg. A state in the problem space is a configuration of the disks 
on the pegs, where no disk rests on top of a smaller disk. There is only 
one operator in this problem space, m o v e -d is k , and it moves a single 
disk from one peg to another. There is a path constraint on this operator 
which only allows the top disk on a peg to be moved and which does not 
allow a disk to be placed on top of a smaller disk. (This problem space 
is more carefully defined in Figure 11.2a.) A problem space can be 
viewed as a graph, where the states are the nodes and the operators are



the links between nodes. The problem space graph for a three-disk 
version of the Tower of Hanoi puzzle is shown in Figure 11.26. The 
graph is a map of all possible paths from the initial state to the goal state.

The important psychological assertion about a problem space is that 
the problem solver will confine his behavior to lie within its boundaries. 
According to the theory of human problem solving, a person solves a 
problem by searching through the problem space state by state. At any 
point in time the problem solver resides in some state, called the current 
state', and there is a small set of previously visited states that he can still 
remember, called the stock. The units of behavior in a problem space 
are the successive applications of operators. For each application of an 
operator, there is a control cycle of functions to be performed (Figure 
11.3). The functions involve selecting a state in the stock to work from, 
selecting an operator, applying the operator, and deciding whether a goal 
has been reached. By cycling through these functions, the problem solver 
will proceed from the initial state through a succession of intermediate 
states, perhaps reaching a goal state.
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Accumulation of Search Control Knowledge

Many of the control cycle functions involve decisions, such as what 
operator to select The knowledge on which to base these decisions is 
called search control knowledge. With little control knowledge, the 
problem solver will wander about the problem space in search of a goal 
state (such as is illustrated in Figure 11.4a). But with training or 
experience in doing the problem, the problem solver will acquire 
knowledge for guiding the search and making it more efficient In the 
Tower of Hanoi, for example, it is quickly evident that moving back to 
the just-previous state is useless; other examples of control knowledge for 
the Tower of Hanoi are given in Figure 11.3. The problem solver 
eventually may build up enough search control knowledge so that he 
goes straight to the goal (Figure 11.46). As his search control knowledge 
increases, he becomes more expert; and his behavior changes from 
problem solving to cognitive skill.

Thus, problem solving and cognitive skill both take place in a 
problem space, the main difference being the amount of search control 
knowledge available. In cognitive-skill behavior, decisions have to be 
made; but they are non-problematic, since the problem solver knows the



Informal Description: Three  pegs— labeled peg-A. peg-b. peg- 
c — are attached  to a board as illustrated above. Disks of d ifferent 

d iam eters— labeled d is k - i (the sm allest), d is k -2. d is k -3, e tc .— are  

stacked on peg-a in a pyram id. The goal of the puzzle is to move  

the pyram id of disks to peg-c by moving the disks from peg to peg. 
one at a time. A disk may be moved from any peg to another 

providing that it is the top disk on its peg and that it is not moved  

on top of a sm aller disk.

States: Any configuration  of the disks on the pegs  

such that a larger disk is not on top of a 

sm aller disk.

Operator: m o v e -d isk  (Disk. FromPeg, ToPeg)
causes Disk to be moved from FromPeg to 

ToPeg.

Path Constraint: On each m o v e -d is k . Disk must be the top disk 

on FromPeg and Disk must be sm aller than the  

top disk on ToPeg.

Problem: All disks on peg-a . All disks on peg-c .

Figure 11.2a. Problem space definition for the Tower of 
Hanoi puzzle.
The description above completely defines the state space, which is laid out 
explicitly in Figure 11.2/).
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Figure 11.2b. Problem space graph for the three-disk Tower 
of Hanoi puzzle.
Each state is described as “Disks-on-PEG-A /  Disks-on-PEG-B /  Disks-on-PEG-C.” 
For example, the state 2 3 / 1 / -  indicates that DISK-1 is on PEG-B and DISK-2 and 
DISK-3 are on PEG-A; this state comes about by applying the operator MOVE-DISK 
(DISK-1, PEG-A, PEG-B) to the initial state, 1 2 3 / - / - .  Each link in the graph 
represents an application of the MOVE-DISK operator.

appropriate actions to take. It is as though the flexible control structure 
of problem solving were frozen into specific procedures that are available 
at performance time. We have called these procedures methods in 
previous chapters. What distinguishes cognitive skill from problem 
solving is the packaging of operator sequences into integrated methods. 
As we have seen in previous chapters, methods are not simply uncon­
ditional sequences. They also have conditional actions, although the 
conditionality is limited to prepared alternatives. Method selection in the 
GOMS model does not lead to search, but to the selection of whole 
methods from a fixed repertoire. Furthermore, the method selection 
process occurs rapidly and without any external signs of decision making. 
These conditionalities and method selections are part of search control 
knowledge.

As an example of the packaging of search control knowledge into 
methods for cognitive skill, consider the method of solving the Tower of
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Control Cycle

Step No. Control Function
Examples of Control Knowledge 
in the Tower of Hanoi Puzzle

(1) (a) Select a state from the stock, 
making it the current state.

(b) Select an operator.

(2) Apply the operator to the current 
state, producing a new state.

(3) (a) Decide whether the new state
is a goal state.

(b) Decide whether to quit.

(c) Decide whether to add the new 
state to the stock.

(4) Go back to step (1), 
unless decision is to quit.

-  Make the new state the curren t state.

-M o v e  a disk to the peg specified by 
a current goal.

-  Move an obstructing disk to the no n ­
target peg.

-  Do not move back to the just- 
previous state.

-  Do not move a disk tw ice in a row.

- A state is a goal state if it exactly  
m atches the goal state pattern.

- Quit if successful.
- Quit when to ld  by the experim enter.

- Add the new state to the stock.

Figure 11.3. Control cycle for searching in a problem space.
This scheme is adapted from Newell (1980). Note that the lettered functions within 
numbered functions of the control cycle can be executed in any order.

Hanoi puzzle by simply memorizing all the moves. This method, the 
MEMORiZED-MOVE-METHOD, is described at the top of Figure 11.5 in the 
GOMS notation. The search control knowledge implicit in this method 
can be categorized by the search control decisions (identified by the 
number-letter labels on the functions in Figure 11.3) necessary for 
problem solving:

(la) Proceed from the current state.
(lb) Select the next operator in the method.
(3a) The goal state is reached after executing the method.
(3b) Quit after applying the last operator in the method.
(3c) Make the new state the current state.



INITIAL
STATE

Figure 11.4a. Solution path in the Tower of Hanoi problem 
space for a hypothetical novice.

INITIAL
STATE

Figure 11.4b. Solution path in the Tower of Hanoi problem 
space for an expert.
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MEMORIZED-MOVE-METHOD:

GOAL: MOVE-PYRAMID (PyramidO), PEG-A, PEG-C) 
MOVE-DISK (DISK-1, PEG-A, PEG-C)
MOVE-DISK (DISK-2, PEG-A, PEG-B)
MOVE-DISK (DISK-1, PEG-C, PEG-B)
MOVE-DISK (DISK-3, PEG-A, PEG-C)
MOVE-DISK (DISK-1, PEG-B, PEG-A)
MOVE-DISK (DISK-2, PEG-B, PEG-C)
MOVE-DISK (DISK-1, PEG-A, PEG-C)

GOAL-RECURSION-METHOD:

GOAL: MOVE-PYRAMID (Pyramid(n), StartPeg, TargetPeg)
. FIND-OTHER-PEG (StartPeg, TargetPeg) OtherPeg 
. GOAL: MOVE-PYRAMID (Pyramid(n -  1), StartPeg, OtherPeg)
. MOVE-DISK (Disk(n), StartPeg, TargetPeg)
. GOAL: MOVE-PYRAMID (Pyramid (n -  1), OtherPeg, TargetPeg)

PERCEPTUAL-MOVE-PATTERN-METHOD:

if  n >  I 
i f n > ¡

i f n > ¡

if n is odd 
if  n is even 
repeat until satisfied

GOAL: MOVE-PYRAMID (Pyi amid(n), StartPeg, TargetPeg)
GOAL: DEFINE-PEG-ORDER

FIND-OTHER-PEG (StartPeg, TargetPeg) OtherPeg 
PegOrder = {StartPeg, TargetPeg, OtherPeg}
P egO rder = {S ta rtP e g , O therP eg, TargetP eg}

GOAL: DO-MOVE-PYRAMID
GOAL: MOVE-SMALLEST-DISK

FIND-SMALLEST-DISK DISK-1, PegOfDiskI
FIND-PEG-AFTER(PegOfDisk1, PegOrder) NextPeg 
MOVE-DISK (DISK-1, PegOfDiskI, NextPeg)

GOAL: MOVE-SECOND-SMALLEST-TOP-DISK
FIND-SMALLEST-DISK DISK-1, PegOfDiskI
FIND-SECOND-SMALLEST-TOP-DISK -► Smallest2, PegOfSmallest2 
FIND-OTHER-PEG (PegOfDiskI, PegOfSmallest2) OtherPeg2 
MOVE-DISK (Smallest2, PegOfSmallest2, OtherPeg2)

Figure 11.5. Three methods for the Tower of Hanoi puzzle.
The methods are described using the GOM S notation (from Chapter 5), which has 
been augmented to include variables (names in combined upper and lower case) 

and variable assignment {—*).

There can be several methods for solving a problem, and different 
methods may place quite different demands on the problem solver. 
Simon (1975) has analyzed several methods (he called them strategies) for 
the Tower of Hanoi. The three methods described in Figure 11.5 (the 
MEMORIZED-MOVES-METHOD, the GOAL-RECURSION-METHOD, and the



p e r c e p t u a l -m o v e -p a t t e r n -m e t h o d )  are taken from from Simon’s 
analysis.

The MEMORiZED-MOVES-METHOD we have just seen. The principal 
difficulty with this method is not only the large number of steps that 
must be memorized, but the fact that the steps are very similar and hence 
susceptible to interference. Also, because the steps are different depend­
ing on the number of disks in the puzzle, this method has no generality.

The g o a l -r e c u r s i o n -m e t h o d  is based on a few observations about 
the structure of the Tower of Hanoi puzzle. Note that a pyramid of 
disks contains subpyramids—a three-disk pyramid consists of d i s k -3  plus 
a two-disk pyramid. Moving a pyramid can be broken into moving its 
largest disk plus moving its subpyramid. Moving a subpyramid is 
structurally similar to moving the pyramid (which can be seen as the 
nested triangular regions in the state space graph in Figure 11.26). 
Hence, the following recursive procedure will move a pyramid to a target 
peg:

—Move the subpyramid to the non-target peg.
—Move the largest disk to the target peg.
—Move the subpyramid to the target peg.
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Moving a subpyramid is a subgoal of the goal of moving the pyramid, 
and moving the largest disk can be done with a m o v e -d is k  operation. 
Each subgoal generates a further subgoal, until one works down to the 
subgoal of moving a one-disk pyramid, which can be done with a single 
m o v e -d is k  operation. This method is very elegant, all of the operations 
falling into place within the subgoal structure—provided that the problem 
solver keeps track of the entire analysis. (In fact, if he could remember 
the dynamic goal structure, he would not even have to look at the 
puzzle’s state.) The main problem with this method, of course, is the 
large amount of Working Memory required. Again, not only are there a 
large number of subgoals, but they are very similar, causing interference.

In contrast, the p e r c e p t u a l -m o v e -p a t t e r n -m e t h o d  uses the visible 
state of the puzzle to determine the next move. The first subgoal in this 
method is to determine which direction the smallest disk will cycle, which 
depends on whether the number of disks in the puzzle is odd or even. 
Then the disks can be moved according to a simple pattern: The
smallest disk is moved to the next peg in the cycle, and the next-smallest 
exposed disk is moved to the one peg it can go to. This pair of moves is 
repeated until the puzzle is solved. Thus, to determine each move, one 
only need examine the visible state of the puzzle, which is accomplished



by the perceptual ( f in d )  operators in Figure 11.5. In this method there 
is no dynamic goal structure to keep track of in Working Memory.

A person using any of these methods to solve the Tower of Hanoi 
puzzle is engaged not in problem solving, but in cognitive skill. 
Although the search control knowledge implicit in each of these methods 
could be represented as individual items of control knowledge (as in 
Figure 11.3), we have cast the methods in GOMS notation (Figure 11.5) 
to emphasize that the problem solver’s search control knowledge is 
compiled into integrated procedures for efficient performance. However, 
a skilled expert is not restricted to executing precompiled methods only. 
Since the methods are embedded in a problem space, the expert can 
often revert to problem solving when necessary.

Consider what happens when an expert inadvertently makes an error 
while executing a method. In Chapter 5 we showed that most (but not 
all) error correction in text-editing just involves the execution of more 
GOMS methods, but we had to strain the GOMS control structure to 
make this scheme work. The problem space provides a better way to 
understand errors. While executing a method, the user is moving along a 
path of states in the problem space. The occurrence of an error throws 
the user off the path into another state, but one that is still a state in the 
problem space. He then has to formulate another goal to get back onto 
the intended path. This goal may be reachable by an available error- 
correction method; but, if there are no methods available, the user can 
search for the solution in the problem space (which is what happened in 
the three large errors observed in Experiment 5C in Chapter 5). This 
ability to revert gracefully to problem solving allows the expert user to 
deal with new, unfamiliar tasks.

Construction of Problem Space Operators

As a problem solver accumulates search control knowledge, he 
becomes more skilled. The process is gradual, so that a problem solver 
has only partially integrated methods, and his behavior is a mixture of 
problem solving and cognitive skill. This process can be illustrated with 
the Tower of Hanoi puzzle. The most frequently moved disks are the 
two smallest disks, d i s k - i  and d i s k -2; a problem solver quickly learns a 
special method^ for moving them:
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 ̂ This method is, o f course, a special case of the GOAL-RECURSION-METHOD 
(Figure 11.5). However, the problem solver in this case does not think of it as such, but 
as a specific method that only applies to the two smallest disks.



—Move DISK-1 to the non-target peg.
—Move DISK-2 to the target peg.
—Move DISK-1 to the target peg.

With this method, the subgoal of moving the two smallest disks is no 
longer a problem. The effect is to give the problem solver the equivalent 
of a new operator, m o v e - d i s k s - 12, which moves these two disks. The 
addition of this new operator reduces the size of the problem 
space—from 27 states (Figure 11.26) to only 9 states (Figure 11.6a)—and 
the number of operations to the goal has been reduced from seven to 
three.

Thus, the acquisition of enough search control knowledge to define a 
partial method results in the construction of a new operator that 
restructures the problem space into two nested problem spaces; a reduced 
problem space (Figure 11.6a) and a skill space (Figure 11.66). The 
reduced problem space will still occasion problem-solving behavior, 
though there will be fewer states through which to search. When the 
problem solver executes the new operator, he descends into the skill 
space, where the execution takes place. There will be little or no search 
in the skill space, for the problem solver has methods for guiding him 
through.
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Levels of Cognitive Behavior

Complex and extended cognitive behavior is organized hierarchically 
into many levels. This is reflected in the hierarchical goal structures and 
the various models at different levels in the GOMS framework in 
Chapter 5. This is also reflected in the problem space framework, where 
complex cognitive behavior is organized into a nested hierarchy of 
problem spaces. The various parts of a behavior (i.e., the various 
problem spaces) are differentially skilled. Although in the Tower of 
Hanoi example it is the lower levels of behavior that are the more skilled 
(implying a strictly bottom-up growth of skill), it is also possible for the 
higher levels of behavior to be more skilled than the lower levels 
(imagine, for example, a computer-game version of the Tower of Hanoi 
being played for the first time by an expert Tower of Hanoi player who 
does not understand how to specify moves to the computer). Thus, a 
complex cognitive behavior is a medley of varying degrees of skill. 
When we speak of a given degree of skill for a behavior, we are really 
referring to some sort of average skill over the various levels.



Figure 11.6a. Reduced problem space for the three-disk 
Tower of Hanoi puzzle.
The single-line links represent MOVE-DISK operations, just as in Figure The
double-line links represent MOVE-DISKS-12 operations.

Figure 11 .6b. Skill space for the two-disk subproblem of the 
Tower of Hanoi puzzle.
The solid links represent MOVE-DISK operations. The dashed links represent 
potential MOVE-DISK operations that the user does not perform, since they are not 
needed in the skill space.
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Another good example of the composite nature of cognitive behavior 
is the mixture of problem solving and cognitive skill observed in the 
circuit-layout task studied in Chapter 10. During the phase of 
compressing the circuit, the user was observed to be problem solving, yet 
he was obviously highly skilled at using the layout system. The user was 
clearly skilled in executing the various kinds of unit-tasks, since he had 
methods for accomplishing them. The unit-task executions were available 
as operators in the problem space where the user was searching for a 
more compressed circuit configuration. Thus, the user’s problem-solving 
behavior was taking place in a reduced problem space for circuit 
compression—reduced by the unit task operators—and his skilled 
behavior was taking place in skill spaces within the unit-task executions.
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11.3. PROBLEM SOLVING PRECEDING 
COGNITIVE SKILL

We have illustrated how a familiar problem-solving behavior will, 
with practice, become skilled. We now wish to look at a familiar 
cognitive skill and show how it arose from problem solving with practice. 
The obvious illustrative example for us is text-editing, the paradigm 
cognitive skill of the book. Hence, let us consider the clause-switching 
task introduced in Chapter 8 (Experiment 8B). The task is to change 
Sentence 11.1a to 11.1b using the editing facilities of b r a v o :

The sun shines when it rains; our weather is funny. (11.1a)
Our weather is funny; when it rains the sun shines. (11.1b)

The task involves switching the two outer clauses and adjusting the 
punctuation and capitalization of the sentence. In this task there is a 
restriction that the user is not to retype any of the text within the clauses. 
With this restriction, it is more convenient to consider the task in the 
more abstract form;

[A— b—; c—.] —̂  [C—; b— a—.] .

Each clause is represented by a letter followed by a dash. The letter 
labels the clause and indicates whether the first letter of the clause is 
upper or lower case; the dash represents the rest of the text in the clause, 
which is treated as an indivisible substring in this task.



Problem Space for BRAVO Text-Editing

Our first job is to lay out the problem space for this task. For the 
most part, the problem space is determined by the structure of the 
BRAVO editor and the further restrictions of the clause-switching task. It 
is simplest to see how b r a v o  shapes the problem space by first 
considering a subtask of the clause-switching task—moving a substring of 
text to a new location.

PROBLEM SPACE FOR THE MOVE-TEXT TASK

The problem space for the move-text task is defined in Figure 11.7. 
Each state in the problem space has three parts: (1) the current 
configuration of text in the workspace, (2) the substring of the text that is 
currently selected, and (3) the contents of the deletion buffer. Bravo’s 
commands provide the operators to change state and allow the user to set 
and alter the selected text by pointing (see Figure 6.1). This is 
represented in the problem space by the s e l e c t -t e x t  operator. This 
operator has one argumenL the text to be selected (which is designated 
by pointing). The Delete command in bravo, represented by the 
DELETE-TEXT operator, deletes the selected text from the workspace (and 
makes the current selection be the character following the deleted text). 
The Insert command in bravo has several variants, which differ so much 
that they are represented by different operators. The simplest variant of 
the Insert command is to type in new text (from the keyboard) in front 
of the current selection; this is represented by the in s e r t -n e w -t e x t  
operator.

These three operators, s e l e c t -t e x t , d e l e t e -t e x t , and in s e r t -n e w - 

t e x t , are sufficient to allow text to be moved. A method for doing this, 
the r e t y p e -a n d - d e l e t e -m e t h o d , is shown in Figure 11.7. Text to be 
moved is (re)typed in its new location and then deleted from its old 
location. Although this method is easily derived from means-ends 
analysis, even moderately competent users of b r a v o  have assimilated it 
as an integrated method. The method is not allowed in the clause­
switching task because of the restriction against retyping the clauses. 
However, there is an allowable method, the c o p y -a n d -d e l e t e -m e t h o d , 
which is very similar, the only difference being that text is copied instead 
of retyped. This method requires the use of another variant of the Insert 
command, which inserts a copy of a piece of text from another location. 
This variant of the Insert command is represented by two operators, one
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In fo rm a l D e s c rip tio n :  M ove a substring of text to another location
using th e  com m ands available In b r a v o .

S ta te s :  [Text with selection underlined] {D eletion  Buffer}

O p e ra to rs :  s e l e c t -t e x t  (TextToSelect)
DELETE-TEXT
INSERT-NEW-TEXT (NewText)
SELECT-COPY-TEXT (TextToBeCopied)
INSERT-COPIED-TEXT 
INSERT-DELETED-TEXT 
etc.

P ro b iem :  [A—  b— ; c— .] => [b— ; c— A—  .]

M eth o d s :  R E T Y P E -A N D -D E L E T E -M E T H O D

SELECT-TEXT
INSERT-NEW-TEXT

SELECT-TEXT

DELETE-TEXT

[A—  b— ; c — .] 

[A —  b-~; c— J  

[A —  b - ;  c— ^  

[A —  b - ;  c -~ A -  

[ ^ ;  c—A— .]

{}
0

,] {}
•] 0  

{A -

C O P Y -A N D -D E L E T E -M E T H O D

SELECT-TEXT
SELECT-COPY-TEXT
INSERT-COPIED-TEXT

SELECT-TEXT

DELETE-TEXT

[A - l>-: C-.] 
(A— b—; c—J 
[A— b—; c—,] 
[A— b—: c—̂  
[A— b^i c—A— 

c - A -  .]

0
{}
{}

•] 0  
.] 0  

{ A -  }

D E L E T E -A N D -IN S E R T -M E T H O D

SELECT-TEXT

DELETE-TEXT

SELECT-TEXT

INSERT-DELETED-TEXT

[A—  b— : C— .] 

[A—  b— : c—.] 
[ ^ ;  c -.]
[b— ; c— .]
[b— ; c— A—  .1

{}
{}
{ A -  }  

{ A -  }  

{ A -  }

Figure 11.7. Problem space and three methods for the 
move-text task.
The methods are shown as paths in the problem space, i.e., as sequences of 
states and the operators that change the states.
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for selecting the text to be copied ( s e l e c t -c o p y -t e x t ) and one for 
making the copy and insertion ( in s e r t -c o p i e d -t e x t ). The c o p y -a n d - 

DELETE-METHOD is known and used by all expert b r a v o  users.
A third method for moving text, the d e l e t e -a n d -in s e r t -m e t h o d , 

requires not only another operator, but also knowledge of b r a v o ’s 

deletion buffer. Whenever a piece of text is deleted ( d e l e t e -t e x t ), it is 
saved in a deletion buffer. The text in the buffer may be accessed by the 
third variant of the Insert command, in s e r t - d e l e t e d -t e x t , which inserts 
a copy of the buffer at the selected location. The d e l e t e -a n d -in s e r t - 

m e t h o d , shown in Figure 11.7, is thus to delete the text to be moved 
and to copy it from the buffer to the new location.^ This method is 
riskier than the first two methods (the wrong text could be deleted, the 
buffer contents could be lost, etc.), but is faster to execute (according to 
the Keystroke-Level Model). Almost all b r a v o  experts know this 
method, and most use it at least occasionally despite the risk.

For an expert BRAVO user, moving text is not a problem; it is a 
routine unit task, for which he knows several methods (of which the 
three methods presented above are only a sample). The problem space 
for moving text (Figure 11.7) is thus a skill space, and the activity of 
moving text is available to the expert as a unitary operator in a larger 
problem space context

PROBLEM SPACE FOR THE CLAUSE-SWITCHING TASK

We now describe a problem space for the clause-switching task in 
which the m o v e  operator is used. We could extend the problem space in 
Figure 11.7 (by adding more operators to represent other commands) to 
encompass the clause-switching task; but that space would be at too fine 
a level of detail to represent expert behavior. That this is so can be seen 
by considering the s e l e c t -t e x t  operator. The expert user never has to 
decide explicitly to use s e l e c t -t e x t , for he has control knowledge telling 
exactly when to use it. He knows that s e l e c t -t e x t  is always used just 
before other operators that effect the selection. For example, it is used 
before d e l e t e -t e x t  to specify the text to be deleted; to the expert, these 
two operators are bound together as a unit

Thus, there should be a reduced problem space for the clause­
switching task in which selections are incorporated within the operators.
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This method is described at the Keystroke Level as task T4-BRAVO in the 
Appendix to Chapter 8.



Informal Description: S ta rtin g  w ith  a  th re e -c la u s e  s e n te n c e , sw itch  th e  

o u te r  c la u s e s  a n d  a d ju s t th e  p u n c tu a tio n  a n d  c a p ita liza tio n , using  th e  

c o m m a n d s  a v a ila b le  in th e  b r a v o ed ito r. T h e re  Is a  res tric tio n  th a t th e  

te x t w ith in  th e  c la u s e s  is not to be  re typ ed , e x c e p t fo r th e  firs t le tte rs  of 

th e  c lau ses .

States: [T ex t]

Operators: m o v e  (ToLocation, TextToBeMoved)
COPY (ToLocation, TextToBeCopied) 
DELETE (TextToBeDeleted)
INSERT (ToLocation, NewText)
REPLACE (TextToBeReplaced, NewText) 
etc.

Path Constraint: N o  tex t w ith in  an y  c la u s e  (th e  “ — ” p art of th e  c la u s e ) Is 

to  b e  re typ ed .

Problem: [A —  b— ; c— .] =>  [C— ; b—  a — .]

Optimal Method:

MOVE
REPLACE
REPLACE
MOVE

[A —  b — ; c — .] 

[ ; C - - A—  b— .] 

[C — A—  b— .] 

[C— i a—  b— .] 

[C— I b—  a — .]

Figure 11.8. Problem space and optimal method for the 
clause-switching task.
T h e  optim al m ethod is the  sam e one described  at the Keystroke Level in F igure
8.8. N ote that the  state description does not Include a selection or a buffer, as 

does the  state  descrip tion  in F igure 11.7. T h e  underlined  portions of text thus do  

not Ind icate the  selections, but simply show  the parts of the text a ffected  by the  

operators.
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For example, s e l e c t -t e x t  followed by d e l e t e -t e x t  is represented by 
the single operator d e l e t e , which takes the text to be deleted as an 
argument Also, moving text is the single operator m o v e , which takes as 
arguments the text to be moved and the new location. The other 
relevant operators in this reduced problem space are listed in Figure 11.8. 
Note that the state descriptions in this reduced problem space are simpler 
than in the problem space of Figure 11.7. There is no longer any need 
to keep* track of the current selection or the deletion buffer, since these 
are managed within each operator.^ In this reduced space, the optimal 
method for doing the clause-switching task (see Figure 8.8) takes only 
four operations (see Figure 11.8): two m o v e  operations to switch the 
clauses and two r e p l a c e  operations to clean up the punctuation and 
capitalization.

Problem Solving Behavior in Text-Editing 
(Experiment 11 A)

We have characterized a problem space for the clause-switching task; 
the problem space is for a user who is expert in b r a v o , but who is not 
(yet) expert in the clause-switching task. We now consider whether such 
a user actually exhibits problem-solving behavior, in addition to the usual 
cognitive-skill behavior of an expert. We expect problem-solving 
behavior to take place within the reduced problem space (Figure 11.8) 
and skilled behavior within the operators of that space (i.e., within the 
skill spaces of the operators, such as in Figure 11.7). We consider two 
types of evidence for problem-solving behavior. First, we expect to see 
an inefficient use of the operators for the task at hand, possibly including 
some backtracking. Second, we expect the time required to do the task 
to be considerably longer than for skilled behavior, including long pauses 
for deciding which operators to apply. We illustrate these phenomena 
with some actual behavior.

Experimental Procedure. A pilot experiment. Experiment 11 A, was 
run with an expert b r a v o  user, a secretary with considerable technical 
ability, performing the clause-switching task repeatedly. The procedure

380 11. COGNITIVE SKILL

The current selection and the buffer contents are, of course, aspects of BRAVO’s 
state that the user may be aware of. But this reduced problem space makes the 
substantive psychological assertion that these aspects o f state are only considered locally 
by the user. A user in this problem space cannot, for example, deliberately make use, in 
a subsequent operator, o f an operator’s side-effect on the buffer.
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was the same as in Experiment 8B, with one important exception. The 
user in Experiment 8B was told a method for the task and then 
proceeded to execute that method as quickly as possible. In the present 
experiment, the user was given no information about how to do the task. 
Since the user did not have a method, it was for her a problem-solving 
task. She eventually acquired a method by repeatedly performing the 
task. (The instructions to the user were to repeat the task over and over. 
She was not to stop and attempt an elaborate analysis, although the latter 
is a reasonable strategy.) There were two experimental sessions. The 
user performed the task 60 times in the first session and 50 more times in 
the second session (two weeks later). As in Experiment 8B, time-stamped 
keystrokes were recorded.

Operator Sequence Results. The user’s behavior for the first three 
trials, as a sequence of states and operators in the problem space, is 
shown in Figure 11.9. The behavior in these trials is representative of 
the behavior up to about Trial 33, when the user began to settle on a 
single method. The figure also shows the best method found by the user, 
which she first executed without error on Trial 35. Although the user’s 
best method was not quite optimal (requiring one more m o v e  operator 
than the optimal method shown in Figure 11.8), it was a considerable 
improvement over the first few trials (which required 3-4 more operators 
than the optimal method).

There are several indications of the problem-solving nature of the 
user’s behavior in the early trials. First is the use of c o p y  operators 
instead of m o v e  operators, which are inefficient because they require the 
use of extra d e l e t e  operators (e.g., operators 1.1, 1.4, and 1.7 of Trial 1 
in Figure 11.9). A second indication of problem solving is the overt 
correction of previous operators, such as doing a d e l e t e  (3.5) to modify 
a previous c o p y  (3.4). A third indication is the user’s failure to structure 
the sequence of operators; even small local consolidations of operators 
are missed. For example, the in s e r t  (1.3) and r e p l a c e  (1.6) in Trial 1 
could have been accomplished by a single r e p l a c e  operator, since the 
text being edited was contiguous at the time of the in s e r t . Any of these 
features of the behavior might occur occasionally in skilled behavior, but 
they occur very frequently in these trials. The asterisks in Figure 11.9 
mark the operators that could have been avoided by one of the above 
considerations, that is, by acquiring specific search control knowledge 
about this task.

The user’s lack of a stable method in the early trials is indicated by 
the radically different operator sequences from trial to trial. On each



Trial 1:
1.1
1.2
1.3
1.4
1.5 
1.6 *  

1.7*

COPY

REPLACE

INSERT

COPY

INSERT

REPLACE

DELETE

[A - t > - ;  C - . ]

[c—A— b—; c—.] 
[C—A— b— ; c—.] 
[ C - 1_ A -  b -; c - .]
IC -
[C -
[C -
[C -

b—A—— b~“i c—.] 
b—_A— b— ; c—.] 
b— a— b— ; c—.] 
b— a—.]

Trial 2:
2.1
2.2
2.3
2.4*
2.5
2.6
2.7*

MOVE

INSERT

REPLACE

REPLACE

COPY

INSERT

DELETE

[A— b—; c—.]
[» c—A— b— .]
[; c—[_A— b— .] 
[G~; b - . ]
[ C - ;  a -  b - . ]

[C— !
[C— b—_a— b “ .] 
[C— ; b—■ a— .]

Trial 3:
3.1
3.2
3.3
3.4 
3.5* 
3.6 
3.7* 
3.8*

MOVE

MOVE

REPLACE

COPY

DELETE

INSERT

REPLACE

DELETE

[A— b— ; c—.] 
r c - A ~  .1 
[c—;_A— b—.]
[C—; A— b—.]
[C—; b—-A— b— .] 
[C— i b —A— b— .] 
[C - ;  b -_ A — b— .] 
[C—I b— a— b~“.] 
[C—I b — a—.]

Trial 35 (User’s Best Method):
35.1 MOVE

35.2  MOVE

35.3  MOVE

35.4  REPLACE

35.5  REPLACE

[A— b ~ ; c— .] 
[A—; b— c—.] 
[; b ~  c—A— .1 
[c—; b— A— .] 
[c—; b ~  a—.] 
[C—; b— a—.]

Figure 11.9. User’s behavior on selected trials in the 
clause-switching task in Experiment 11 A.
T h e  behavior is described  in the  problem  space  of F igure 11.8. T h e  asterisks after 

the  o pera tor num bers m ark the  operators  that could have been elim inated by 
sim ple local planning; see text.
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trial the user was trying a different way to improve by reacting to local 
aspects of the task. It was not until Trial 35 that the user settled on a 
stable method, after which she always used this method (except for the 
first four trials of the second session, during which she was trying to 
recall this method). The user’s performance became more and more 
skilled after Trial 35, just as did the performance of the user in 
Experiment 8B.

Perforrmnce Time Results. The most dramatic indicator of the 
character of the user’s behavior throughout the experiment is the 
performance time curve, plotted in Figure 11.10. The top line in the 
figure, representing the total performance time per trial, gives the overall 
story of the behavior. The user took about 50 sec per trial for the early 
trials, dropping sharply to about 32 sec per trial at about Trial 35. 
Performance fell back in the first few trials of the second session as the 
user was getting reoriented to the task, but quickly improved and leveled 
off at about 22 sec per trial. It is instructive to compare this performance 
against a standard of skilled performance. One obvious standard, the 
calculated time to execute the user’s best method (the sequence in Trial 
35) according to the Keystroke-Level Model, is plotted as the dashed line 
in Figure 11.10. This clearly shows that the user had reached a skilled 
level of performance on the last 40 trials.

More light can be shed on the user’s performance by decomposing 
the performance time into its physical and mental components. (The 
method for making this decomposition was explained in Section 8.4.) 
The mental time component is further decomposed into large and small 
mental time components, with the large mental time consisting of all 
pauses over 3 sec and the small mental time consisting of the pauses 
under 3 sec. A mental pause over 3 sec long must be more than simply 
a preparation for skilled performance, since it is significantly longer than 
skilled mental preparation (the M operator of the Keystroke-Level 
Model).^ Thus, in the present context, we can interpret the large mental 
time as the time needed for planning the operator sequence. This 
decomposition is represented in Figure 11.10 by the variously shaded 
regions under the execution time curve. The execution time is composed 
of the physical time (unshaded region), the small mental time (lightly

11.3. PROBLEM SOLVING PRECEDING COGNITIVE SKILL 383

 ̂ The rationale for choosing 3 sec as the threshold for large mental time is as 
follows. In Chapter 8, the mean M operator time was estimated to be 1.35 sec, and its 
standard deviation was estimated to be 1.1 sec. 3 sec is 1.5 standard deviations from the 
mean M time. Thus, assuming a normal distribution for M times, only about 10% of M 
times will be 3 sec or greater.
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Figure 11.10. User’s execution time in the clause-switching 
task in Experiment 11 A.
T h e  tim es a re  averaged  in 10-trial b locks. T h e  top  solid line show s the  user’s 

actual execution  times; and the  dashed line show s the  predicted  tim e to execu te  

the  u ser’s best m ethod, as ca lcu la ted  w ith the  K eystroke-Level M odel. T h e  user’s 

tim e is decom posed  into th ree  com ponents: the  physical tim e (the unshaded a rea  

on the  bottom ), the  sm all m ental tim e (the  lightly shaded a rea  in the m iddle), and  
the  large m ental tim e (th e  darkly shaded area  on the  top). S ee  the  tex t for how  

these tim e com ponents  are  defined  and interpreted.

shaded), and the large mental time (darkly shaded). The figure clearly 
shows that the dramatic changes in overall performance time are not in 
the physical time, but in the mental time, especially the large mental 
time. It is the large mental time that drops around Trial 35, when the 
user finally settles on a stable method. And further, the large mental 
time is eliminated altogether around Trial 70, just as the user attains a 
completely skilled performance level, i.e., betters the predicted time of 
the Keystroke-Level Model.

Summary. We have observed a user who has attained a skilled level 
of behavior in a specific task, switching two sentence clauses with a text-
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editor; and we have shown that this skill starts out as problem solving 
and becomes skill after practice on the task. We have illustrated a 
problem space for the task and have described the user’s problem-solving 
behavior in terms of this problem space. Finally, we have shown that the 
observed skill could have emerged within the problem space by the 
acquisition of specific search control knowledge about the task.

11.4. THE UNIT TASK

So far in this chapter we have been characterizing the general nature 
of cognitive skill. We now return to the particular skill studied in the 
book, text-editing. As shown by the preceding section, the text-editing 
task fits well enough into the general picture, eliciting behavior that 
moves along the skill dimension with practice from problem solving to 
skilled performance. But text-editing has a striking feature—its unit task 
structure—which sheds some light on the organization of cognitive skills. 
The organization of behavior into a sequence of short quasi-independent 
tasks is pervasive in the studies in this book. It originated in our analysis 
of the manuscript-editing task (Chapter 5) as an obvious way to divide 
the total task into smaller parts, based on the localized nature of the 
corrections on the manuscript In the Keystroke-Level Model (Chapter 
8), it provided a useful way to separate task acquisition from task 
execution. It also proved an easy way to analyze other interactive tasks, 
one involving page layout (Chapter 9) and another involving computer- 
aided design (Chapter 10). The unit task partitions the behavior stream, 
thus providing the basic structural foundation on which the detailed 
models can be erected. We review here the basic nature and function of 
the unit task and the determinants of unit task structure in more 
fundamental psychological factors.

The Nature and Function of Unit Tasks

We consider several aspects of unit tasks: their well-defined internal 
structure, their basic function as a control construct for the user, their 
characteristic durations, and their relationship to problem solving.



STRUCTURE

In each of the cases of unit-task behavior studied, there has been a 
structured cycle of repeated actions. The user first acquires a task and a 
method for doing it (reads or decides what to do and how to do it) and 
then executes the method;

Unit Task = Acquire + Execute.

The important point about acquisition is that more than just a task (goal) 
is acquired—a method for accomplishing the task is also acquired. 
Without a repertoire of readily available methods, behavior cannot be 
structured into unit tasks.

The execution of a method involves locating the necessary data, acting 
on the data, and then (optionally) checking to see if the action was 
correct;
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Execute = Locate + Act + (Verify).

The Act operation is the main purpose of the unit task, locating the data 
being just a preliminary step enabling direct access to materials necessary 
for carrying out the action. In text-editing. Locate and Act were specific 
operations; locating a piece of text in a file and modifying the text. 
However, Locate and Act (and, of course. Verify) are general functions 
that apply to a wide variety of tasks. For example, the task of checking a 
canceled check received from the bank involves locating the check and 
the checkbook entry and then making a detailed comparison. Thus, one 
of the properties of the unit task is its characteristic functional structure.

CONTROL FUNCTION

The most important point to understand about the unit task is that the 
unit task is fundamentally a control construct, not a task construct. This 
distinction can be made clear by considering the manuscript text-editing 
task. The manuscript contains a set of spatially separated marks, each 
denoting a different modification to be made. Thus, the task is 
structured as a set of separate modifications. However, it is up to the 
user to decide how to organize these modifications into a series of unit 
tasks. Usually, as we have seen, the user makes each modification as a 
unit task. But the user may perform two nearby modifications within a 
single unit task, or he may sometimes find a way to make a whole series
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of modifications at once (e.g., using a global substitution command). In 
the other direction, a single complex modification may be broken into 
several unit tasks. Inexperienced users may even as a general rule 
separate the location of the site of the modification from the execution of 
the modification, making separate excursions to the manuscript to seek 
the information for these two aspects. Although the frequency of such 
behavior in text-editing is low enough not to make them a prominent 
part of our analysis, we have seen enough examples of such behavior to 
make clear the basic point: that the unit task is not given by the task 
environment, but results from the interaction of the task structure with 
the control problems faced by the user.

The reason a user imposes unit-task structure on his behavior is 
because each unit task can be kept within his performance limitations. In 
a skilled behavior streams of inputs and outputs must be managed in 
Working Memory if performance is not to be degraded. If the input and 
output streams can be managed in a parallel (pipelined) fashion, then the 
behavior can have a continuous structure rather than a unit-task structure. 
But when conditions on the inputs and outputs do not allow this 
pipelined processing (e.g., when the output process cannot keep up with 
the input stream), then behavior must be structured into a series of unit 
tasks.

Let us examine a particular task in more detail to see how the user 
controls his behavior in response to his resource limitations. Consider 
the skill of touch-typing, which does not have a unit-task structure, but 
rather a continuous structure. The reason why it is continuous can be 
seen by observing how behavior in this task is shifted to a unit-task 
structure when the task is modified slightly so as to exceed the user’s 
processing limits. In normal touch-typing, memory load remains low and 
within Working Memory limits. The behavior is continuous—while the 
user types one word, he reads the next, in accord with the pipelined 
parallel model of Chapter 2. There is no unit-task structure.

Norman and Bobrow (1975) have suggested that a useful way to 
depict the relationship between performance on a task and the processing 
resources available is to plot the task’s performance-resource function as 
in Figure 11.11. The figure shows the idealized relationship between a 
resource (in this case, the amount of Working Memory available) and a 
measure of performance (in this case, accuracy). Consider the resource- 
performance curve labeled “Touch-Typing.” If the user had no Working 
Memory at all, he could not remember what he had read long enough to 
type it; and the accuracy would be zero (the curve would begin at the
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Figure 11.11. Idealized performance-resource functions for 
touch-typing and dictation.
T ouch-typ ing  is a  continuous task (does not have unit-task structure) because  

a c cep tab le  accuracy  can  be obtained with availab le resources. For fast d ictation, 

how ever, e ith er the  user m ust low er his m inim um  accep tab le  accuracy , or the  task  

m ust be  broken into unit tasks, each  of w hich  can  be d on e  at accep tab le  

accuracy , is the  user’s W orking  M em ory capacity , is the user’s m inim um

a c cep tab le  accuracy , / f ^ is  the user’s accuracy  for fast d ictation, is the  user’s 

accu racy  fo r 4  sec bursts of fast d ictation.

origin). By devoting a small amount of Working Memory to the task, 
however, typing accuracy increases to some asymptotic value. 
Performance, as measured by accuracy, is “resource-limited” (more
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available resource leads to better performance) up to about one word’s 
worth of Working Memory and then is “data-limited” (more available 
resource does not lead to improved performance, only better data can 
improve performance).

Touch-typing is user-paced, with the user varying his reading speed to 
maintain input and output in balance. If the task is changed to be 
machine-paced, as in the similar task of transcribing dictation, where the 
user plays out speech at its recorded speed, then segments of speech may 
flow into Working Memory faster than they can be processed; and the 
user needs more Working Memory to buffer the input until he can get 
caught up during the pauses. In Figure 11.11, this need for more 
resource (to obtain the same level of performance) is represented by a 
leaning of the resource-performance function a little to the right, as in 
the curve labeled “Slow Continuous Dictation,” and further to the right, 
as in the curve labeled “Fast Continuous Dictation.”

Now, according to the Model Human Processor, each user has a 
Working Memory capacity so performance requiring greater than

amount of Working Memory is not possible. Let be the 
minimum performance accuracy acceptable to the user. The user’s 
maximum possible accuracy (using amount of Working Memory) 
for Fast Continuous Dictation is Aj-, which is lower than A^ and 
therefore not acceptable. For speech this fast, the user, if he is to avoid 
unacceptable performance, must stop treating the task as a continuous 
task; instead, he must break it into a unit-task pattern by listening to a 
bit of tape at a time and then typing it. As an idealization, let us 
suppose he listens to a 4-sec burst of tape at a time. The resource- 
performance function is then shifted back to the left, and the user’s 
accuracy improves to A^—better, but still below the acceptable level A^. 
But if he listens to small enough bursts of, say, 2 sec, he will finally be 
able to shift the resource-performance curve far enough to the left to 
meet his accuracy requirements. Of course, he could make the bursts 
smaller yeL achieving acceptable accuracy using less than his full 
Working Memory capacity. But the smaller the bursts become, the 
longer the total time required to transcribe the tape, a force that will tend 
to keep him from being any more accurate than necessary.

To summarize, we have seen how a continuous task can be shifted by 
degrees into a task where the user’s performance is no longer acceptable 
and how a unit-task control structure comes about as a method for the 
user to shift performance back into an acceptable level.
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DURATION

The unit task is an internally determined control construct, and its 
duration is limited. In fact, we have seen very few error-free unit tasks 
in this book that lasted longer than 30 sec.^ Most of the text-editing unit 
tasks lasted 10~15 sec (Chapters 5 and 8), and the routine circuit-layout 
unit tasks lasted 10~50 sec (Chapter 10). The duration of the acquisition 
phase of a unit task is determined by how well the task is specified and 
presented to the user, and the duration of the execution phase is 
determined by the length of the method used. These two phases 
independently determine the duration of the whole unit task (e.g., a long 
acquisition time does not necessarily produce a long method). To acquire 
unit tasks from a marked-up manuscript requires 2 sec (Chapters 5 and 
8);^ to generate unit tasks mentally in a routine design task takes about 
10 sec (Chapter 10); and to generate unit tasks in a creative composition 
task would take even longer.

The execution phase of unit tasks averages about 10 sec in all the 
interaction tasks we have studied (Chapters 5, 8, and 10). Execution can 
be as short as a second or two (for a one-key command); we have 
observed only two editing-task executions lasting over 30 sec.^ How long 
an execution can be depends on how complex a method the user is 
willing to spend the time and effort to assimilate. The most complex 
methods we have studied are for the clause-switching task (Sections 8.4 
and 11.3), which require about 25 sec to execute. The user in 
Experiment 8B required a half-hour of discussion plus about 5 trials to 
assimilate the optimal method. In Experiment llA , the user required 35 
trials to formulate a method for the task, but the method was not yet 
well-enough assimilated be treated as a single unit task; about 35 more 
trials were required for that to happen. Given the considerable effort

' Unit tasks containing errors do, o f course, take longer, but errors often introduce 
new unit tasks for error correction. Thus, the time per unit task may not be much 
different for error unit tasks.

o
In Chapter 8, (Figure 8.7) we found that an added 2 sec is needed for acquisition 

in a display-based editor, since the display has to be scanned for the text However, we 
believe that the scanning operation actually belongs to the execution phase, as part of the 
L(x:ate function.

 ̂ Tasks T4-POET and T4-SOS took 37 sec and 33 sec, respectively, to execute 
(Figure 8.5). However, the T4-POET execution included about 10 sec of continuous 
copy-typing behavior.
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needed to assimilate complex methods, it is not surprising that we only 
observe short and simple methods in human-computer interaction tasks.

RELATION TO PROBLEM SOLVING

Since unit tasks are a predominant feature of some cognitive skills 
and since cognitive skill emerges from problem solving, we would expect 
unit tasks to play some role in problem solving. Unit-task-structured 
cognitive skill occurs in problem solving, with the unit tasks functioning 
as operators in problem spaces. We pointed out earlier in this chapter 
that the unit task of locally altering the parts of a circuit configuration 
served as an operator for the problem of compressing a large circuit 
layout (Chapter 10). Actually, only the execution part of a unit task 
serves as the operator, for the execution part is based on a method—a 
well-integrated, purposeful unit of behavior. Thus, problem-solving 
operators derive from the existence of integrated methods. This was 
illustrated in the text-editing example in Section 11.3, where the existence 
of methods for performing the move-text task provided a m o v e  operator 
in the problem space for the clause-switching task.

The structure of unit tasks can be related to the search control cycle 
of problem solving (Figure 11.3). The execution part of a unit task can 
be identified with the control function of applying the operator (step 2); 
and the acquisition part of a unit task can be identified with all the rest 
of the control cycle, that is, with all the decisions about what to do next. 
In manuscript editing, operators (unit tasks) can be acquired by a 
straightforward interpretation of the markings on the manuscript. When 
there is a strict method for acquiring operators—such as taking them in 
the order they occur on the manuscript—then no problem solving is 
required at all, since the choice of operators is not problematic. But 
when there is no well-defined method for acquiring operators—as in a 
complex rearrangement of text where individual modifications interact 
with each other—then problem solving is required to decide the order in 
which to make the modifications; and operator (unit-task) acquisition 
becomes the search control cycle.

Determinants of Unit-Task Structure

There are constraints, both internal and external, on the user in 
structuring his behavior to accomplish a task. The unit task is a control 
construct available to the user in meeting some of these constraints:



Working Memory Capacity. The performance of tasks 
requires the maintenance of temporary data, which 
must be kept within the limits of the user’s Working 
Memory.

Information Horizons. The performance of > tasks must 
remain within certain information limits: the data 
and task limits imposed by the task environment and 
the repertoire of methods known to the user.

Error Control. TTie performance of tasks must control the 
probability of errors and control the damage done by 
the inevitable occurrences of errors.

These constraints tend to shape the user’s behavior into a series of unit 
tasks. Let us consider them each in turn.
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WORKING MEMORY CAPACITY

Probably the most severe constraint on behavior arises from the 
limited capacity of Working Memory and the need to keep working data 
within this limit As we have discussed in Chapter 2, the capacity of 
Working Memory involves both the number of chunks and interference 
between chunks. In this section we limit our consideration of Working 
Memory capacity to the former.

Smaller tasks generally require less Working Memory for their 
performance than do larger tasks. This is one reason why a user, when 
confronted with a large task, will break it into smaller tasks, which we 
have called unit tasks. In text-editing from a marked-up manuscript, we 
have observed that the user decomposes the overall editing task into a 
series of small edits. This is not just a result of the task structure. 
Although the manuscript contains a series of marks denoting 
modifications, these modifications are not necessarily identical to the unit 
tasks that the user generates, as we have already noted. A single 
modification mark can result in multiple unit tasks (e.g., a mark 
indicating the alignment of items in a table can result in several unit 
tasks), and multiple marks can be handled in a single unit-task (e.g., a 
pair of marks to put quotes around a phrase). The user will, of course, 
try to take advantage of the structure of a large task in deciding how to 
decompose it into unit tasks.

There is a characteristic pattern of Working Memory load for 
behavior structured in unit tasks. Consider a text-editing example, based 
on the simulation program described in Chapter 6. Figure 11.12 shows



Working
Memory
Load

Figure 11.12. Data in Working Memory during a unit task.
This figu re  is a  hypothetical trace  of the  p erfo rm ance of one unit, the  sam e unit 

task that is traced  in F igure 6 .17 . T im e runs to the  right on the  horizontal axis. 
T h e  bars Ind icate  the tim e during w hich each  slot (accord ing  to the  schem e In 

C h ap ter 6 ) in W orking  M em ory is filled with data. T h e  arrow s ind icate writing Into 
and read ing  from  W orking  M em ory slots. T h e  histogram  on the  top plots the  total 
W orking  M em ory load over tim e, showing how  the load peaks w ithin a  unit task  

and dips b etw een  unit tasks.
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the data which must be kept in Working Memory while the user executes 
the unit task of inserting a character. The figure also plots the Working 
Memory load during the execution. The memory load can be seen to 
rise from a low of one chunk between unit tasks to a high of five chunks 
within the task. Thus, the number of chunks in Working Memory rises 
and peaks within unit tasks and dips between unit tasks. The frequent 
dips in Working Memory are the important benefit of unit-task structure, 
for these localize the use of the data. This pattern of Working Memory 
usage makes behavior more robust: it helps to reduce the number of 
Working Memory errors; it limits the scope of those errors; and it makes 
the behavior more interruptable.

394 11. COGNITIVE SKILL

INFORMATION HORIZONS

A user often finds himself running out of information, forced to 
generate new unit tasks to continue his performance. There are three 
kinds of information limits: (1) He can run out of data to work with—a 
data horizon. (2) He can run out of tasks to do—a task horizon. (3) He 
can run out of method to execute—a method horizon.

Data Horizons. The execution of a task usually requires information 
from the task environment. In text-editing, for example, the user needs 
to know both the location of the change and the details of the text to be 
changed. Missing pieces of data must be retrieved. If the retrieval is 
simple, accomplished by a glance at the screen or at the manuscript, it is 
a routine part of the execution of the unit task. But if the retrieval is 
difficult, then the retrieval itself will require one or more unit tasks. This 
is a data horizon: the user runs out of immediately accessible data
needed to complete a task. A data horizon is not (necessarily) an issue of 
Working Memory capacity: the user could remember the data—it simply 
is not available. Thus, data horizons force the generation of data- 
gathering unit tasks.

Task Horizons. The user may not only run out of data, but may also 
run out of tasks. For example, a manuscript to be edited may contain a 
single short edit on each page forcing the user to take each one as a 
separate unit-task. Again, the horizon does not involve Working Memory 
capacity—the user could possibly remember two or three of the edits as a 
single unit task if they were close to each other on the same page—but 
the task environment supplies the tasks in small chunks that force a 
particular unit task-structure.

Method Horizons The user may not know the method for doing a 
whole task, but he may know methods for doing some parts of it. This



circumstance will force him to break the task into unit tasks corre­
sponding to the methods he knows. For example, the task of changing 
thirteen instances of “Alan” to “Allen” on a page of text could require 
up to thirteen unit tasks for a user who must make each change 
individually, whereas a user who knows the multiple-substitution 
command could do it in a single unit task.

ERROR CONTROL

A final determinant of unit-task structure is the need for error control. 
By breaking down larger tasks into smaller unit tasks, a user can verify 
the correctness of each unit task, thus localizing the effect of errors. An 
example is the way in which users of the poet editor employ poet’s 
Transfer command to move lines of text Suppose the task is to find the 
paragraph beginning with Alpha and ending with beta and to move it to 
follow the paragraph ending with gamma. The command syntax of poet 
allows this to be accomplished in a single command:

"Alpha","beta" Transfer "gam m a".

This command causes POET to (1) search for the line containing Alpha, 
(2) search for the line containing beta, (3) search for the line containing 
gamma, and finally (4) move the lines. Few experienced users would 
have the temerity to do the task this way, however, for errors are 
probable (the wrong lines might be found in steps 1 to 3) and the 
consequences severe (the text would be scrambled). What users actually 
do in this task is to break it into four unit tasks. Each of the first three 
unit tasks locates a line and produces its unique line number:

"Alpha" /  = .

This command causes poet to search for the line containing Alpha, 
display that line (the / )  so the user can verify that it is the correct one, 
and print the line number (the =). After obtaining the three line 
numbers (which are, say, 11, 22, and 33), the user issues the Transfer 
command with them:

11,22 Transfer 33.
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This method is relatively safe from damaging errors, since the user has 
checked that each line found was correct and since the tine numbers are



unambiguous. Thus, the user breaks the large task into a series of 
individually verifiable unit tasks. Again, the reason has nothing to do 
with Working Memory capacity (although this could also be a factor), but 
only with controlling potential errors.

Summary. There are three classes of constraints on user 
behavior—Working Memory capacity, information horizons, and error 
control—that tend to give the behavior a unit-task structure as it develops 
from problem solving into a cognitive skill.
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11.5. TEXT-EDITING WITHIN COGNITIVE SKILL

Manuscript text-editing is a paradigm for many similar tasks. We saw 
several of these in various chapters of the book: use of drawing
programs (Chapter 8), elementary command language interactions 
(Chapter 8), page formatting (Chapter 9), and integrated circuit layout 
(Chapter 10). The cognitive skill involved in all these tasks has many of 
the same characteristics as does text-editing. On the other hand, text­
editing is quite different from many other cognitive skills. It is important 
to appreciate this diversity of cognitive skills, so as not to over-generalize 
the characteristics of text-editing. Unfortunately, there is no basis for 
constructing a general taxonomy of cognitive skills. Cognitive skills exist 
for all cognitive tasks (i.e., all situations that permit problem solving), 
provided that practice on them is possible. Hence, as indicated in Figure 
11.1, the taxonomy of all cognitive skills is an image of the taxonomy of 
all possible tasks—hardly something to be taxonomized easily. 
Furthermore, there does not at present exist a population of studies of 
other cognitive skills that have been analyzed in ways that would permit 
deep comparison, either with text-editing or with each other (though, as 
we noted, some appropriate analyses are beginning to emerge). Thus, we 
simply present a large handful of cognitive skills that differ on a number 
of dimensions, providing an informal context within which to locate text­
editing.

The dimensions of cognitive skill we consider come from the nature 
of the Model Human Processor and from the demands of the task. They 
fall into four groups that address, respectively, the character of the skill, 
the demands on Working Memory, the demands on Long-Term Memory, 
and the external task demands. Figure 11.13 lists the dimensions and



11.5 TEXT-EDITING WITHIN COGNITIVE SKILL 397

CODE:
•  H IG H

©  IN TE R M E D IA TE  

O LOW

C O G N ITIV E  S K ILL  D IM ENSIONS

SKILL
CHARACTER

WM LTM TASK
DEMANDS

Z
>
o
CO

cc
o
Ho
:e
-j
<
D
h-a.
in
Ü
ÛC
ina.

Ü
Z
zz
<
J
Û.

LU
CC
D
h~
CJ
D
CC
H-co

CO
<
»-
H
Z
D

Q
<
O

>
CC
O
LU

IE
H

O
H
h-
D
Q.z

Hu

o
cc
LL

<
>
m
CC
H
LU
CC

Ü
Z
CJ
<
CL

>
o
<
cc
D
O
Ü
<

TASKS

IE
UJ
u
CÛ
O
cc
Q.

CPA DOING INCOME TA X • O • • Q o m o #

RO U TIN E M EDICA L DIAGNOSIS • O • • • • m Q •

PLA YIN G  BRIDGE • O • • • Q Q • •

W R ITIN G  BUSINESS LETTER # 0 • • Q Q Q O 9

BALANCING  CHECKBOOK • O Q • • Q Q o •

A IR  TR A FF IC  CONTROL Q Q • • • Q O • •

M E N TA L M U LT IP L IC A T IO N e O O • • O Q o •

MANUSCRIPT T E X T-E D IT IN G Q Q Q • Q O O o •

TYPIN G o • O O O o o o Q
SORTING M A IL o • O • O o • o •

FOOTBALL CO M M ENTAR Y o • o Q • • • • O

TENNIS o • e • O o o • •

SHORT-ORDER COOK o • Q Q • o Q # •

D R IV IN G  CAR o • Q O Q o o • •

ASSEMBLY TASK o • o O O o • • •

Figure 11.13. Dimensions of cognitive skill.
Severa l g en eric  tasks a re  rated  approxim ately on d im ensions of cognitive skill. 
This collection  of tasks show s the variety of cognitive skills and how  the m an u ­
script text-ed iting  task com pares with them .

several tasks and locates the cognitive skills associated with the tasks on 
these dimensions. Since this discussion is only illustrative, we consider 
the tasks and their associated cognitive skills at a generic level. Each of 
these generic tasks has many variants with different properties; a serious 
analysis would have to consider task specifics.
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SKILL CHARACTER

Problem-Solvii^ EnUtedding. As we have discussed, cognitive skill is 
often embedded in a context of problem solving. For example, an 
accountant may perform skilled computations in the course of searching 
for ways to solve an income tax problem, but a short-order cook simply 
prepares orders as they arrive. We have already seen that a task will 
demand more problem solving behavior from a novice than from an 
expert. A new short-order cook must figure out the best way to manage 
multiple orders. But even with expertise held constanL problem solving 
varies with task. Manuscript text-editing, as we have discussed, usually 
involves little problem solving.

Perceptual-Motor Involvement. At the high end of this dimension are 
tasks in which perceptual-motor involvement is crucial, such as driving a 
car or playing tennis; at the low end are purely mental tasks, such as the 
mental multiplication of multi-digit numbers. The presence of a strong 
perceptual or motor component presents possibilities for overlapping the 
operation of the perceptual, cognitive, and motor processors (as discussed 
in Chapter 2), allowing for a considerable gain in speed and the external 
appearance of coordinated motion so characteristic of skill. Along this 
dimension, manuscript text-editing occupies an intermediate point

Requirement for Plaiming. Writing a business letter and playing 
bridge are tasks in which people usually plan ahead; assembling 
electronic parts is a task in which they do not Planning, in problem 
space terms, refers to taking steps in a simplified, abstracted problem 
space (the planning space), and using the results to guide steps in a more 
detailed problem space. Planning is unnecessary for simple text-editing 
tasks, which is mostly what we have studied in the book; but more 
complex text-editing tasks, such as the clause-switching task discussed in 
Section 11.3, often require planning.

WORKING MEMORY DEMANDS

Umt-Task Structure. Some tasks, such as text-editing, have a strong 
unit task character, whereas others, such as touch typing, are continuous.

Working Memory Load. Some tasks put higher demands on a user’s 
Working Memory than do others. High on this dimension is mental 
multiplication, where the limits on performance are due to the limits on 
keeping track of intermediate results. A task with low Working Memory 
demands is freeway driving. Text-editing is intermediate.



LONG-TERM MEMORY USAGE

Long-Term Memory contains knowledge of the cognitive skill 
itself—the methods—and knowledge about the objects being processed by 
the skill—the data. The former is, of course, involved in all cognitive 
skill execution. We are here concerned with the latter.

Input to Loi^-Term Memory. There is little long-term, task-specific 
information to remember in manuscript text-editing (once the basic skills 
of the editor have been learned). In the game of bridge, on the other 
hand, there is a large amount of task-specific data that players must 
retain in Long-Term Memory—all the bidding and every card played.

Retrieval from Long-Term Memory. Some tasks, such as sorting the 
mail or routine diagnosis of disease, make impressive demands on 
knowledge stored in Long-Term Memory. This is quite different from 
manuscript text-editing, which only involves a small amount of transient 
data.
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EXTERNAL TASK DEMANDS

Pacing. The extent to which a task is externally paced may make the 
task substantially more difficult than it would otherwise have been, 
because it may demand processing that exceeds the resources of the user. 
Driving a car and certain assembly-line work are both tasks in which 
external pacing is important: the text-editing tasks we have studied are 
unpaced. Closely related to the rate of pacing is the input load. For 
example, although the task of an air traffic controller may be paced, this 
only becomes an issue when the number of planes he must control per 
unit time reaches a certain level.

Accuracy (vs. Speed). A calculation, such as balancing a bank state- 
menL where the task is not finished until a balance is obtained, is 
different from producing a running commentary on a football game, 
where only a few descriptive features of the action need to be reported. 
The tatter example also illustrates that accuracy is traded off against 
speed—the accuracy of the commentary is limited by the demand that it 
be produced quickly. Manuscript text-editing has high accuracy de­
mands; and, since it is user-paced, the necessary time and precautions are 
taken to insure accuracy.

The main purpose of Figure 11.13 is to emphasize the vast variety of 
cognitive skills, of which manuscript text-editing and its variants are only 
one small group. Perhaps the most important additional facts that can be



read from the figure are about the unit-task structure: (1) it is simply one 
among many independent dimensions, and (2) it is not unique to text­
editing.
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11.6. CONCLUSIONS

The human-computer interaction that we have studied is a cognitive 
skill with modest perceptual-motor involvement We have attempted to 
characterize the general nature of cognitive skill in a broader 
psychological framework.

All cognitive behavior can be characterized along a continuous skill 
dimension that includes both problem-solving behavior (at the low-skill 
end of the dimension) and cognitive-skill behavior (at the high-skill end). 
This view is consistent with two principles of the Model Human 
Processor in Chapter 2. The Problem Space Hypothesis states that all 
cognitive behavior has a homogeneous structure— t̂hat of problem solving 
in problem spaces. The Power Law of Practice shows the continuous 
character of changes in cognitive behavior with practice.

Problem-solving behavior, such as is exhibited by a novice attempting 
the Tower of Hanoi puzzle, will, with practice, become a cognitive skill 
that can be characterized by a GOMS-like model. Examples of the 
mechanisms by which problem solving evolves into cognitive skill are the 
accumulation of search control knowledge (which eventually becomes 
skilled methods) and the construction of new operators (which effectively 
reduce the problem space to be searched).

Cognitive-skill behavior, such as the text-editing behavior we have 
analyzed in this book, has its roots in problem solving. Text-editing by a 
novice can be characterized as search in a problem space. To become 
skilled in text-editing requires the acquisition of editing-specific search 
control knowledge and more powerful editing operators. We observed a 
specific learning sequence in which a user clearly began with problem 
solving on a complex editing task and proceeded to become a skilled 
expert at the task (i.e., performed the task at the level predicted by the 
Keystroke-Level Model).

The most striking feature of text-editing skill is its unit-task structure. 
We have shown that unit tasks are primarily control (not task) constructs, 
that they seem to have characteristic durations, and that they emerge 
from the structure of problem solving in problem spaces. Further,
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several constraints on skilled behavior—Working Memory limits, infor­
mation limits, and the need for error control—tend to shape skill as a 
sequence of unit tasks.

Text-editing is but one skill in a vast population of cognitive skills, 
varying among themselves in many ways (other than unit task structure): 
in their basic skill/problem-solving character, in their demands on 
Working Memory and Long-Term Memory, and in their external task 
demands (such as pacing and accuracy). Although unit-task structure is 
characteristic of text-editing, it is not unique to it.
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12. Applying Psychology 
to Design

12.1. A FRAMEWORK FOR APPLYING PSYCHOLOGY
12.2. CONTRIBUTIONS TO APPLICATION
12.3. EXTENSION: AN EVALUATION METHODOLOGY
12.4. ADVICE TO THE DESIGNER
12.5. CONCLUSIONS

In this chapter, we return to the theme of an applied psychology 
introduced in Chapter 1 and attempt to tie our studies together from the 
vantage point of how such knowledge might be used in design. We do 
this first by presenting a framework showing the way in which 
psychological results can be applied to design and then by mapping our 
studies into this framework. We also summarize an application-oriented 
extension of our work by Roberts. Finally, we list some general system 
design principles suggested by the studies.

12.1. A FRAMEWORK FOR
APPLYING PSYCHOLOGY

In Chapter 1 we proposed that an applied psychology of human- 
computer interaction should be relevant to the system design process 
itself (not just to after-the-fact evaluation) and that the designer himself 
should do the actual application. Such an applied science must be based 
on information-processing models, whose applicability to design depends 
on three critical features; task analysis, calculation, and approximation. 
This proposal rests on a view (until now implicit) of how psychology can 
be applied to system design. We now present our view by briefly 
sketching a framework for application. This framework includes (1) the 
structure and performance of the human-computer system, (2) perfor­
mance models for predicting the performance of the human-computer
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system, and (3) design functions for using the performance models in the 
design process.

THE HUMAN-COMPUTER SYSTEM

Our present object of study is the human-computer system, which 
consists of a human user interacting with a computer to accomplish a 
task. The user, the computer, and the task are the structural components 
of the system. Human-computer systems vary in many different respects, 
called structural variables, in each of the components. Systems address 
different task domains, and they have different models of the tasks in any 
given domain. Users vary widely in general intellectual ability, experi­
ence with computers, specific knowledge of the task, specific knowledge 
of the computer, cognitive style, and perceptual-motor skills. User- 
interface aspects of computers vary in system architecture, dialogue style, 
command syntax, input devices, and so on.^ The combination of all 
these variables produces a vast space of possible human-computer 
systems.

The ultimate concern of an applied psychology is not so much with 
the structure of the human-computer system per se, as with its perfor­
mance. There are many different aspects to performance, which we call 
performance variables. The basic performance variables of a human- 
computer system are concerned with what tasks the system can do 
(functionality), how long it takes to acquire the functionality (learning), 
how long it takes to accomplish tasks (time), how frequently errors occur 
and how consequential they are, how well tasks are done (quality), and 
how robust the system is in the face of unexpected conditions. Other 
performance measures are possible, such as performance under extreme 
conditions (fatigue and stress) and the performance demands on the 
user’s memories (Working Memory and Long-Term Memory). Finally, 
there are variables concerning the user’s subjective feeling about the 
system. All these performance variables are potential areas of concern to 
the system designer.

The performance variables of a human-computer system are deter­
mined by its structural variables. This can be summarized in a formula 
analogous to the Rationality Principle (Chapter 2):
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Task -y User -t- Computer System Performance. (12.1)

A systematic analysis o f the structure of the user-interface aspects of interactive 
computer systems is a difficult undertaking. For some attempts, see Moran (1981a); 
Young (1981); Newman and Sproull (1979, Ch. 28); and Ramsey and Atwcx)d (1979).



It is the task of an applied psychology to discover the specific relation­
ships between the structural and performance variables of human- 
computer systems.

PERFORMANCE MODELS

The design of a human-computer system begins with a set of 
requirements, which includes both structural constraints and performance 
goals. The designer’s job is to specify a human-computer system 
satisfying the requirements. But while specifications of a system are 
readily checked against the structural constraints, the performance aspects 
of a system are not derivable from a descriptive specification. A special 
kind of representation of the human-computer system is needed for this, 
which we call a performance model. To predict the performance of a 
system, the designer must construct a specific performance model from 
the system’s structural specifications and then use the model to generate a 
prediction:

Model {Task, User, Computer)
-* Performance Prediction. (12.2)

The concept of a performance model is the key notion in this 
framework. It is useful to construe this notion functionally, i.e., as any 
model or description that can be used to predict system performance. 
Performance models can be roughly categorized as experimental models, 
symbolic models, and database models. Experimental models consist of 
actual human users with actual running programs or physical mock-ups. 
Such models are run, and performance variables are measured. Symbolic 
models are calculational, algebraic, or simulation models. They are 
represented on paper or in a computer and have no actual human 
component (although, of course, they model the user). Performance 
values are obtained by computation (by hand or computer). Database 
models are stores of pre-measured or pre-calculated data. Performance 
values are obtained simply by look-up. Each of these different kinds of 
performance models has its place in the system design process.
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DESIGN FUNCTIONS

The predictive function of performance models is primarily evaluative: 
given a structure, predict performance. The designer’s problem, however, 
is generative: given performance requirements, design the structure.



Although it is possible to invert, partially at least, some performance 
models to generate design ideas, it is not possible to invert Formula 12.2 
in a general way. For any interesting real-world domain of design, there 
cannot be any global synthesis function that maps requirements into a 
structure. How, then, can performance models be useful in design? To 
answer this question we must consider the nature of the design process.

Design, as all designers know, is not a simple top-down or bottom-up 
process of synthesizing a design solution from requirements. Design is an 
open process, in the sense that the design problem is constantly being 
redefined. Many requirements can emerge only in the course of the 
design process, when partial design solutions provide enough context to 
realize which issues are really important Thus, design proceeds in a 
complex, iterative fashion in which various parts of the design are 
incrementally generated, evaluated, and integrated. At the risk of being 
over-simplistic, we characterize the complex process of design as con­
sisting of a set of different kinds of design functions, each attending to a 
specific design subproblem:
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Design Process = a set o f Design Functions. (12.3)

Although we do not pretend to have even a crude taxonomy of design 
functions, we can list some examples to make the notion more concrete. 
We can group design functions into three broad categories: evaluation, 
parametric design, and structural design. Evaluation, as we just noted, 
refers to the situation in which the structure of the system (or of part of 
the system) has been specified and its performance needs to be 
understood. Parametric design refers to the situation in which the
structure of the system is relatively fixed and there are a set of 
quantitative parameters of the structure to be determined. (What makes 
parametric design tractable for analysis is the assumption that the 
remaining structure of the system will not change in the range of para­
meter values under consideration.) Structural design is where a part of 
the system is configured or restructured to satisfy specific requirements. 
There are several functions in structural design, such as to identify an 
opportunity for a change, to diagnose a problem, to generate an improve­
ment, and to synthesize a new structure.

Design functions require the use of performance models to solve 
particular design subproblems:

Design Function {Design Subproblem, Model) -* Solution.
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The dependence on performance models is clear in evaluation and 
parametric design. Formal performance models are seldom used in 
structural design, although there are usually implicit, informal perfor­
mance assumptions underlying the design functions, which can be viewed 
as vague, informal performance models. But partial inversions of more 
formal performance models can also be used (e.g., to diagnose the causes 
of performance deficits).^

This framework for applying psychology to design emphasizes the 
pivotal role of performance models. Without models, the designer cannot 
predict the performance of the system he is designing. If he cannot 
predict performance, he will not be able to come to grips with 
performance requirements. And if he does not deal with performance 
requirements, then other requirements will dominate the design of the 
system—and the user will be neglected. Thus, in our view it is clear that 
the role o f an applied psychology is to supply performance models for the 
designer.

12.2. CONTRIBUTIONS TO APPLICATION

We now have a framework for considering how the studies in this 
book address the issues of applying psychology to system design. We 
proceed by enumerating the principal aspects of the application 
framework—the human-computer system, performance models, and 
design functions—and by showing how far we have progressed and where 
needs exist for future research.

THE HUMAN-COMPUTER SYSTEM

According to Formula 12.1, the structural variables of the human- 
computer system—the task, the user, and the computer—determine its 
performance variables. Figure 12.1 lists a set of structural variables for 
characterizing the variety of possible human-computer systems, and

 ̂ Some o f the design principles to be presented in Section 12.4 can be viewed as 
inversions o f our models o f cognitive skill in human-computer interaction. For example. 
Principle 8 takes the GOMS model o f method-selection in Chapter 5 and, instead of 
using the model to predict performance, observes that performance will be better if  
method alternatives are designed so they can be selected with a simple set of method- 
selection rules.



structural Variables Studies (Chapters/Sections)

TASK VARIABLES
Task domain

Task model

USER VARIABLES
INTELLECTUAL ABILITIES 

General intelligence 
Technical ability 

COGNITIVE STYLE 

Risk preference

Curiosity
Persistence

EXPERIENCE

Experience on system 
Frequency of system use 

KNOWLEDGE

Method knowledge 
Conceptual knowledge 
Task expertise 

PERCEPTUAL-MOTOR SKILL 

Typing rate

Manual skill

COMPUTER VARIABLES
Dialogue style

Command syntax 
Naming conventions 
Display layout 
Input devices 
Response time

Text-editing (3-6 ,8) 
Graphics (8)
Page layout (9)
Circuit design (10)

Poet editing analysis (5.1) 
Bravo editing analysis (6.1)

Individual differences (3.3)

Selection rules (5.2)
Error rates (12.3)

Individual differences (3.3) 
Individual differences (3.3)

Selection rules (6.2)

Individual differences (3.3) 
Model validation (8.4)

Compare editors (3.2,12.3) 
Editor vs typewriter (4) 
Interactive systems (8.3)

Interactive systems (8.3)

Pointing devices (7)

Figure 12.1. Studies classified by structural variables.

408



Performance Variables Studies (Chapters/Sections)

BASIC PERFORMANCE MEASURES

Functionality What tasks can the user
accomplish with the system?

Learning How does his performance
improve over time?

Time How long does it take the 
user to do a  task with the 
system?

Error

Quality 
Robustness

SUBJECTIVE MEASURES 

Acceptability

Enjoyableness
EXTREME CONDITIONS 

Fatigue

Stress

MEMORY VARIABLES 

WMLoad

LTM Recall

What errors are made, 
how frequently, and 
how consequential are they?

How good is the output?

How does performance adapt 
to unexpected conditions or 
to new tasks?

How does the user subjectively 
rate the system?

How much fun is it to use?

How does performance degrade 
over time?

How does performance degrade 
under adverse conditions?

How much immediate infor­
mation does the user have to 
keep in Working Memory?

How easy is it for the user to 
recall information needed to 
accomplish a  task?

Editing task population (12.3)

Pointing devices (7.3)
Text editing (12.3)

Editing benchmarks (3.2) 
Individual differences (3.3) 
Editor vs. typewriter (4)
Poet editing (5)
Bravo editing (6)
Pointing devices (7) 
Interactive systems (8)
Page layout (9)
Circuit design (10)
Text editing (12.3)

Poet editing (5.4)
Pointing devices (7.3)
Circuit design (10.3)
Text editing (12.3)

Figure 12.2. Studies classified by performance variables.
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Figure 12.2 lists a set of performance variables for characterizing the 
behavior of these systems.

Task Variables. Our strategy has been to focus on a single task 
domain and then to try to generalize to other domains. We have 
therefore been largely concerned with text-editing. We have generalized 
the results to other human-computer interaction task domains in the 
Keystroke-Level Model (Chapter 8), in the page-layout analysis (Chapter 
9), and in the study of a circuit-layout system (Chapter 10). Within the 
domain of text-editing, we have analyzed two types of task models for 
text-editing—the line-structure model of text in POET and the two- 
dimensionally displayed character-stream model of text in BRAVO.

User Variables. We have not attempted to explore user variables 
systematically, except for the preliminary individual-differences study in 
Chapter 3. Instead, we have focused on expert users (who are best 
characterized by the knowledge and experience variables in Figure 12.1). 
Our strategy was to build a solid theoretical and empirical character­
ization of the expert user before attending to novice and casual users. 
However, we have seen some variations within experts, such as their 
knowledge of methods in the method selection study in Section 5.2.

Computer Variables. We have not attempted to explore computer 
variables systematically. Rather, our focus has been on how the user 
adapts to a given computer system structure. However, we have studied 
a variety of computer systems interfaces, from 1960’s-style teletypewriter- 
oriented systems to state-of-the-art display-based systems. In some cases, 
we have directly compared behavior on alternative styles of system, such 
as in the studies of Chapters 3 and 8.

Performance Variables. Figure 12.2 clearly reveals our deliberate 
emphasis on performance time, which goes hand-in-hand with our 
emphasis on expert users. We have also presented a few modest accounts 
of the errors made by expert users. Our focus on performance time does 
not imply that we think the other performance variables are less 
important; indeed, they may be more important in many human- 
computer interaction contexts.
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PERFORMANCE MODELS

Performance models, according to Formula 12.2, predict the 
performance of the human-computer system from a specification of its 
structure. Figure 12.3 lists several kinds of performance models. As can 
be seen in the figure, almost every kind of performance model has been
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Perform ance Models Studies (Chapters/Sections)

EXPERIMENTAL MODELS

Running system Use actual system. Benchmark comparison (3.2) 
Editor evaluation (12.3)

Analogue system Use another similar 
running system.

Layout test (9.2)

Mock-up system Use a physical mock-up. ------------

SYMBOLIC MODELS

Calculational model Code performance as a 
set of operations.

Manuscript editing (5) 
Keystroke-Level Model (8) 
Unit task analysis (9)

Simulation model Code performance in a 

runable program.
Bravo simulation (6)

Algebraic model Represent relationships 
between variables and 
parameters as equations.

Editor vs. typewriter (4) 
Fitts’s Law (7)
New method analysis (8.4)

DATABASE MODELS

Data table Look up a pre-measured 
or pre calculated value.

Model Human Processor (2) 
Benchmark data (3.2) 
Individual differences (3.3) 
Manuscript editing (5) 
Pointing devices (7) 
Keystroke-level operators (8) 
Editing data (12.3)

Checklist Check design against 
principles or guidelines.

Design principles (12.4)

Figure 12.3. Studies ciassified by performance models.

presented. Our main emphasis, of course, has been on the development 
of symbolic models, especially calculational models: the GOMS family of 
models (Chapter 5), the Keystroke-Level Model (Chapter 8), and the 
Unit-Task-Level Model (Chapter 9). We have also presented a simula­
tion model (Chapter 6) and several algebraic models, such as Fitts’s Law 
(Chapter 7). We used running systems for the benchmark studies in 
Chapter 3. Finally, we have tabulated data that are useful databases (e.g.. 
Figures 2.1, 2.2, 5.15, 7.4, 8.1, and 8.2).

DESIGN FUNCTIONS

The process of system design, according to Formula 12.3, consists of a 
set of design functions, which address design subproblems and which use 
performance models in finding solutions. We classified the design
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Design Function Studies (Chapters/Sections)

EVALUATION

Compare systems Compare on given 

performance variables.
Benchmark comparison (3.2) 
Device evaluations (7) 
Computed benchmark (8.4) 
Editor comparison (12.3)

Evaluate system Compare against 
some standard.

Layout system (9) 
Editor evaluation (12.3)

PARAMETRIC DESIGN

Optimize parameter Find best value on given 

performance variables.
Editor vs. typewriter (4.2)

Analyze sensitivity Relate parameter value 
to performance.

Editor vs. typewriter (4.4) 
New method analysis (8.4) 
Layout calculation (9.3)

STRUCTURAL DESIGN

Identify opportunity Find place where system 
can be improved.

Crossover point (4.2) 
Information rate limit (7.3) 
New method (8.4)
Icarus Move command (10)

Diagnose problem Pinpoint structural com­
ponent causing problem.

Crossover point (4) 
New method (8.4)

Generate improvement Find structural change. New method (8.4)
Synthesize structure Create new structure.

Figure 12.4. Studies classified by design functions.

functions as evaluation, parametric design, and structural design. Figure 
12.4 lists several design functions, along with the studies illustrating them. 
The coverage is heaviest in evaluation and parametric design, where 
performance models are most clearly useful. System comparison usually 
involves experimentation (such as the benchmark study in Chapter 3 and 
the comparison of pointing devices in Chapter 7), but we have proposed 
the notion of a calculated benchmark (Section 8.4) for making 
comparisons analytically. The typewriter-versus-editor analysis in Chapter 
4 illustrates both parameter optimization and sensitivity analysis. We 
have had less to say about structural design, especially the synthesis of a 
new design, for which we have no examples. Perhaps the best illustration 
of structural design functions is the analysis of alternative methods in 
Section 8.4, where an opportunity was identified (the task), the problem 
diagnosed (the awkwardness of the existing methods), and an improve­
ment generated (the new method).
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APPLICATION SUMMARY

The principal contribution of our studies to application is a set of 
specific performance models. This is consonant with the view, sketched 
in Section 12.1, that performance models are the keystones in the 
application of psychology to system design. The main limitations are that 
the models are restricted to predicting the error-free performance time of 
expert users. The models have been validated in a variety of human- 
computer systems, which has also produced a useful database of empirical 
performance data. We believe that these models may be useful in design, 
in the style exhibited in Chapters 4 and 9 and in the example of Section 
8.4.

However, as of yet we have only small bits of evidence for the 
usefulness of the models in actual design situations. Let us cite one 
interesting application by a product testing group within our own 
company. Xerox. The group was testing alternative command schemes 
for a particular set o f routine tasks. They taught the schemes to novice 
users in order to evaluate how easy they were to learn. However, they 
did not have enough time to train the users to become experts and so 
could not measure expert performance. Instead, they used the 
Keystroke-Level Model to calculate the expert performance time. That 
is, the initial part of the learning curve was measured experimentally, 
while an asymptote was calculated from the model. Thus, they were able 
to put together, within their constrained time limits, a fairly complete 
picture of behavior with the alternative command schemes using both 
experimental and calculational performance models.

12.3. EXTENSION:
AN EVALUATION METHODOLOGY

A study that builds on and extends the work in the present book 
towards practical application was conducted in our laboratory by Teresa 
Roberts (for her Ph.D diesis in computer science at Stanford University). 
The goal of her study was to develop a practical methodology for 
evaluating computer text-editors. In this section, we briefly describe 
Roberts’s methodology for evaluating text editors, her empirical results, 
and how these extend the results so far reported (see Roberts, 1979, for 
the original technical report and Roberts and Moran, 1982, for additional 
data and analysis).
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METHODOLOGY

Roberts began by enumerating a population of 212 text-editing tasks. 
Each task was expressed in a way neutral with respect to any particular 
type of text-editor. From this population she selected a set of 32 core 
tasks, which included the basic editing tasks that any text-editor can be 
expected to perform. This set of core tasks provides a common basis for 
comparing the performance of different editing systems.

Roberts’s evaluation methodology covers four performance variables: 
functionality, time, learning, and errors. The latter three are measured 
over the core tasks, whereas functionality measures how well an editor 
extends beyond the core tasks.

Functionality. In Roberts’s methodology, the functionality of an 
editor is measured by having expert users rate whether each task in her 
task population can be accomplished with the editor. (The rating levels 
are: “can’t be done,’’ “can be done at manual speed,” “can be done 
clumsily,” “can be done efficiently.”) Scores are summed up to give each 
editor an overall functionality rating. The scores can be partitioned into 
different task categories to show the strengths and weaknesses of the 
editor.

Learning. Learning is measured experimentally in Roberts’s metho­
dology by teaching a novice with no computer experience how to do the 
core tasks with the editor. The experimental learning session is made up 
of five cycles, each consisting of a teaching part, followed by a quiz to 
measure what the novice knows how to do (a learning session usually 
takes from two to five hours). Learning is scored by taking the total time 
in the session and dividing by the total number of tasks that the quizzes 
reveal the novice has learned, i.e., the learning time per task. The overall 
learning score for an editor is the average learning time for the four 
novices.

Time. The time it takes experts to perform core tasks is also 
measured experimentally. An expert user of the editor is clocked while 
performing a benchmark set of about 60 editing tasks (usually taking 
about 30 minutes). Note that this experiment is similar to our experi­
ment in Chapter 3, except that the times are measured with a stopwatch, 
rather than with an on-line data collection facility. In addition to the 
overall time, the time the expert spends correcting large errors (i.e., large 
enough to be timed with a stopwatch) is also noted. The time score is 
the error-free time (total time minus the error-correcting time) to edit the 
benchmark tasks. The overall time score for the editor is the average 
error-free time for the four expert users.



Errors. Errors are difficult to measure in a simple experiment. Large 
damaging errors are rare enough so that it takes a long time to collect a 
reasonable sample. Further, there are large individual differences in 
error rates, even for routine errors. Roberts explored several methods of 
assessing errors, none of which seemed satisfactory enough to be used in 
practice. A modest indication of error effects, however, is the the 
percentage of time spent correcting errors in the core benchmark 
experiment above. Thus, the error score for an editor is the average 
error time, as a percentage of error-free time, for the four expert users.

Cost o f Evaluation. An important constraint on this methodology is 
that it must be relatively easy to use. This is why only manual 
(stopwatch) measurements are required and why the minimal number of 
users are measured in the time and learning experiments. The time 
required to do a complete evaluation of a single editor depends on many 
factors—the evaluator’s familiarity with the methodology, the effort 
required to prepare the materials for the specific editor, and the difficulty 
of recruiting users for the experiments. We have found that an editor 
evaluation takes roughly a week to do for an experienced evaluator.
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VALIDATION AND EMPIRICAL RESULTS

Roberts tested her methodology by evaluating four widely-used 
editors: t e c o  (BBN, 1973), WYLBUR (Stanford, 1975), NLS (Englebart and 
English, 1968), and a display-based WANG word processor. We also 
include here an evaluation of b r a v o , b r a  v o x  (an extended version of 
b r a v o ), g y p s y  (another experimental editor developed at Xerox), and 
EM ACS (Stallman, 1981).

The methodology provides a multidimensional evaluation of the 
editors. Each editor can be characterized by a 4-tuple of numbers. This 
summary evaluation is presented in Figure 12.5 for the eight editors, 
which shows the performance tradeoffs between these editors. The major 
differences are between the non-display editors (t e c o , w y l b u r )  and the 
display editors (all the others). With the exception of NLS on error time 
and g y p s y  on functionality, the display editors are better on all 
performance dimensions. The display editors are up to twice as fast to 
use and have about 50% more functionality. On learning, t e c o  stands 
out as taking nearly three times as long to learn as the others. One 
surprising result is the high correlation (R = .80) between the time and 
learning scores. It is usually thought that systems that are highly efficient
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Evaluation Scores
Editor

Functionality

(% tasks)

Learning
M ± C V
(min/task)

Time
M ± C V
(sec/task)

Errors
M ± C V
(% time)

Teco

Wylbur

Emacs

NLS
BravoX

Wang

Bravo

Gypsy

39%

42%

49%
77%

70%

50%

59%
37%

19.5 ±  .29
8.2 ±  .24 

6.6 ±  .22 

7.7 ±  .26 

5.4 ±  .08

6.2 ±  .45

7.3 ±  .14

4.3 ±  .26

49 ±  .17 

42 ±  .15 

37 ±  .15 

29 ±  .15 

29 ±  .29 

26 ±  .21 

26 ±  .32 

1 9 ±  .11

15% ± .70 

18% ±  .85 

6% ± 1.2 

22% ±  .71 

8% ± 1.0 

11% ±  1.1 

8% ±  .75 

4% ±2 .1

Figure 12.5. Evaluation summary of eight text-editors.
The Functionality score is the percent of the 212 tasks in Roberts’s task population 
that can be accomplished with each editor. The Learning score is the average 
learning time per task for four novices. The Time score is the average error-free 
time per task for four expert users on the benchmark set of tasks. (The time 
scores are large, because many of the tasks on the benchmark required many unit 
tasks to perform.) The Error score is the average percentage of time the four 
expert users spent correcting errors; the score is given as a percentage of the 
error-free time. The CV’s show the amount of between-user variance. The 
evaluation results for TECO, WYLBUR, NLS, and WANG are from Roberts (1979).

to use by experts take longer for novices to learn. This is not the case in 
this set of editors; the faster editors to use are also faster to team.

The experimental results of the time dimension were compared 
against the predictions of the Keystroke-Level Model. The model 
predicted over 75% of the error-free benchmark time for most of the 
editors. For TECO, however, the model only predicted 50% of the time. 
The problem here was that the methods actually used by the expert users 
were not predicted correctly; the users were much more cautious than 
predicted in using t e c o . When the model’s prediction for TECO was 
adjusted for the actual methods used by the test users, then it accounted 
for 87% of their error-free time. These predictions are quite reasonable, 
given the differences between the assumptions of the model and the 
conditions of Roberts’s experiment.
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Finally, since these evaluation experiments were run on 32 expert 
users and on 32 novice learners, they provide us with some useful 
empirical results on individual differences. On expert performance, there 
was a factor of 1.5 to 2 between the fastest and slowest users within each 
editor, which is consistent with the results of Chapter 3. It is interesting 
and somewhat surprising that there was not a great deal more variation 
among the novice learners than among the experts, i.e., there was about 
the same range of ratio between the fastest and slowest learners as 
between the fastest and slowest experts. By far the greatest individual 
differences occurred with the error times. Expert users spent from as 
little as 0% to as much as 28% of their time in errors, averaging 10% error 
time. Roberts measured error time in real time with a stopwatch, and 
she had to ignore the small errors. A more careful measurement of 
errors (on videotape, say, as was done with all the error measurements we 
have reported) would yield somewhat higher percentages.

APPLICATION

The places where Roberts’s study contributes to application have been 
shown in Figures 12.1 to 12.4. Her study is mainly oriented to the design 
function of system comparison. Now that her data can be used as a 
standard of comparison, her methodology also enables the system 
evaluation of individual editors. The most important aspect of Roberts’s 
work, in the context of this chapter, is that it extends the scope of our 
studies on two performance variables—functionality and learning.

12.4. ADVICE TO THE DESIGNER

We have presented an approach to applying psychology to design that 
centers around the notion of performance models. Our implicit advice to 
the system designer has been to use these models in design. We now 
present this advice more explicitly in the form of a set of system design 
principles (listed briefly in Figure 12.6) derived directly from the main 
results of our studies. Since, as we have seen in Section 12.2, the studies 
are highly skewed towards certain issues, the principles do not cover the 
whole spectrum of design concerns. Nor do we attempt to exhaust all 
the principles implicit in the models; we only present some of the more 
important and fundamental principles.
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1. Early in the system design process, consider the psychology of the 
user and the design of the user interface.

2. Specify the performance requirements.

3. Specify the user population.

4. Specify the tasks.

5. Specify the methods to do the tasks.

6. Match the method analysis to the level of commitment in the design 
process.

7. To reduce the performance time of a task by an expert, eliminate 
operators from the method for doing the task. This can be done at 
any level of analysis.

8. Design the set of alternative methods for a task so that the rule for 
selecting each alternative is clear to the user and easy to apply.

9. Design a set of error-recovery methods.

10. Analyze the sensitivity of performance predictions to assumptions.

Figure 12.6. Some principles for user-interface design.

The first few principles summarize some high-level concerns and 
attitudes about design.

Principle I: Early in the system design process, consider the 
psychology o f the user and the design o f the user interface.

This may seem too obvious to mention, but it is fundamental and often 
stated (e.g., Hansen, 1971). If consideration of the human-computer 
interaction is put off until the computer system is designed, then the 
psychology of the user will not have any weight among the variety of



concerns that face the designer. This principle does not itself tell the 
designer what to do; the next few principles spell out some concrete 
actions.

According to Formula 12.1, the human-computer system consists of 
the task, the user, and the computer, which together determine the 
system’s performance. The designer’s job is to specify the total human- 
computer system. The designer does not have to be told to specify the 
computer; but he may need to be reminded of the performance 
requirements, the user, and the task.

P r in c ip le  2: Specify the performance requirements.

There are many performance variables—functionality, time, errors, 
learning, etc. Designing to improve performance on one dimension does 
not necessarily help performance on other dimensions. For example, 
optimizing the performance time of a system does not improve its 
leamability (in fact, high concentration on time optimization may make a 
system harder to learn). There are tradeoffs to be made in performance. 
For example, using the models we have presented to calculate 
performance time and using Roberts’s methodology for measuring 
learning, one can quantitatively compare the tradeoffs between ease of 
learning and speed of execution in a system. Thus, it is important that 
the designer be clear about his priorities on the performance variables.

P r in c ip le  3: Specify the user population.

In Chapter 3 we have seen that there is about a factor of three in 
performance time among expert users—about the same range as the 
performance among different editing systems. Considering non-expert 
users, the range of user performance is much greater. Thus, in order to 
predict the performance of the human-computer system, the designer 
must know the important characteristics of the user population. If the 
target population of users is highly varied, it is important to characterize 
the different kinds of users, for their performances will be quite different. 
Much of this characterization can be done quantitatively. For example, 
the Keystroke-Level Model (Chapter 8) shows how the user’s typing 
speed affects his performance time.
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P r in c ip le  4 : Specify the tasks.



Performance can only be assessed relative to the set of tasks that must 
be done. It is not possible to specify all the tasks that the user will want 
to do. However, specifying a reasonable benchmark sample of tasks is 
infinitely better than just listing gross task characteristics. The bench­
mark sample should include representatives of the qualitatively different 
kinds of tasks the user will face. An example of task generation is given 
in Chapter 9. The different types of tasks occur with unequal 
frequency—most of the user’s time will be spent doing a very few task 
types. It is important to specify these high-frequency tasks. The user 
will become highly skilled on these tasks, and they should be made easy 
and efficient to do.

Task analysis can be done at different levels of detail, for any task can 
be decomposed into a task-subtask hierarchy (as was done in Chapter 5). 
What is the appropriate level of task analysis? In order to keep the range 
of design possibilities open, tasks should be specified in a way that makes 
minimal assumptions about the structure of the computer system, except 
for the structure that is fixed a priori as part of the design requirements. 
The Unit-Task Level of task analysis, as illustrated in Chapter 9, is the 
most detailed level of task specification that is practical early in design.

As analysis becomes more and more dependent on system structure, 
task analysis turns into method analysis. Task analysis reflects more the 
demands of the external environment, whereas method analysis reflects 
more the demands of the computer system and the ways in which the 
user adapts to them. There is, of course, no sharp line between task 
analysis and method analysis.

Principle 5: Specify the methods to do the tasks.
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It is important to grasp the central role that the methods play in 
determining the level of performance. Skilled human-computer inter­
action consists of execution of assimilated methods. What makes a user 
skilled is his highly integrated knowledge of tasks, methods, and the 
connections between them. System designers tend to concentrate on the 
commands of the computer system (just look at the documentation for 
almost any system, which is usually a catalogue of commands). Yet it is 
how the commands are userf—the methods—that is most important to the 
user. Once methods are laid out explicitly, many of the gross aspects of 
performance can be seen by inspection, even without formal models. For



example, particularly long or awkward methods will stand ou t Also, it is 
possible to assess informally the consistency between different methods.^

P r in c ip le  6 :  Match the method analysis to the level o f
commitment in the design process.

As with tasks, methods can be specified at different levels of detail. 
In order to predict performance from a method specification, a 
performance model is required, which in turn determines the method 
description. There is no single best model; different models are
appropriate at different stages of design—depending on the amount of 
detail known about the system under design.

Several levels of method analysis were introduced in Chapter 5. The 
Unit-Task Level requires only a modest commitment to the structure of 
the computer system. This level of analysis is appropriate early in design 
to assess the task domain by getting a rough picture of the total system 
performance. It is also useful when trying to decide on major 
components of the computer system, as was illustrated in Chapter 9. At 
the Functional Level of analysis, the unit tasks are decomposed into their 
four functional components—Acquire, Locate, Change, and Verify. This 
level begins to show how the unit tasks interact, as illustrated in Chapter 
9.

The next lower level of analysis is the Argument Level, in which there 
is commitment to the set of commands and the arguments they take. 
This level is appropriate while the command set is being designed, but 
where the small details of the command syntax are ignored. Although 
we have not given any illustrations, the Argument Level is actually a 
quite useful level of analysis. For example, this is the level at which the 
scheme for defaulting arguments can be considered. And finally, at the 
Keystroke Level there is commitment to the actual keystrokes and other 
physical operations for executing commands. This level of detail is not 
appropriate until fairly late in design. But once this level of detail is 
reached, it is possible to do considerable quantitative analysis of 
performance time, as we have shown with the Keystroke-Level Model in 
Chapter 8.
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 ̂ Various kinds of rule-based descriptions of the methods can be used to assess 
consistency more precisely (e.g., Moran, 1981a; Reisner, 1981), although existing rule- 
system proposals are not yet developed enough to be performance models.



Principle 7: To reduce the performance time o f a task by an 
expert, eliminate operators from the method for doing the 
task. This can be done at any level o f analysis.^

Once methods are laid out, at whatever level, and the performance 
time calculated, the designer may then want to make the performance 
more efficient for expert users. All the performance models we have 
presented suggest that expert performance is composed of a sequence of 
operators and that the performance time is the sum of time for each of 
the operators.

Which operators can be eliminated depends on the stage of design 
and the level of analysis. For example, the performance time for a job 
can be reduced either by reducing the number of unit tasks or by 
reducing the time per unit task; however, only the former is possible 
early in design at the Unit-Task Level of analysis. At the Unit-Task 
Level, the most likely way to reduce unit tasks is to extend the 
functionality of the computer system to, in effect, combine unit tasks 
(e.g., a text-editing function for inserting a pair of parentheses around a 
piece of text can combine what would otherwise be two unit tasks into 
one). At the Argument Level, the most obvious way to reduce time is to 
devise appropriate default values for arguments and even for commands 
(e.g., with a Redo command). At the Keystroke Level, the way to 
efficiency is to devise short codes to specify commands and arguments 
and to eliminate redundant terminators.

Principle 8: Design the set o f alternative methods for a task 
so that the rule for selecting each alternative is clear to the 
user and easy to apply.
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Alternative methods can be provided to do a task. This allows the 
different methods to better take advantage of the specific structural 
features of the different task instances. From our study of method 
selection in Chapter 5, we characterized the expert user as having simple 
decision rules for selecting an appropriate method in each task instance.

This principle might well be called the “Gilbreth Principle,” for Gilbreth (1911) 
was one o f the first to systematically code behavior into a sequence o f physical 
movements (which he called “therbligs,” but which we would call "operators”) and to 
optimize performance by eliminating unnecessary movements. Gilbreth, however, did not 
have any notion o f levels o f analysis; all his analyses were at the same level o f physical 
movement.



Another useful notion from the method selection study is the notion 
of the “default method,” the method that the user selects by default in 
preference to other alternatives. The default method is not the most 
efficient method, but it is a general method; other alternative methods 
are more specialized, but more efficient. Categorizing methods this way 
provides a good strategy for designing method alternatives: provide a
general-purpose method plus a set of efficient special-purpose methods. 
A similar strategy is to design alternative methods for specifying 
commands, easy-to-remember but slow methods (such as typing out the 
command names) and fast but harder-to-remember methods (such as 
special single-key codes). These strategies allow incremental learning. 
The novice user need only learn the general-purpose, easy-to-remember 
methods at first; he can acquire the more efficient methods one by one 
as he becomes more expert.

Principle 9: Design a set o f error-recovery methods.

Another aspect of expert performance is errors. We have seen that 
expert users adopt strategies that permit up to about 30% of their time to 
be spent correcting errors. Error-correction is also highly skilled 
behavior. Thus, error-recovery methods should also be designed for 
leamability and efficiency. This suggests, for example, that an Undo 
command would be worthwhile. In designing the Undo command, 
consider carefully how it will be used to help the user recover from 
specific kinds of errors, for all errors are not the same in the scope or 
severity of their effects.

In the analysis of errors, it is useful to separate the occurrence of 
errors from the treatment of errors once they occur. We do not yet have 
any models to help predict errors, although common sense can suggest a 
few sources of errors, such as the user accidentally hitting an adjacent key 
on the keyboard.^ But given that an error has occurred, the expert user’s 
handling of the error is a skilled activity and is thus amenable to 
quantitative analysis by the performance models of the sort we have 
described.
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 ̂ Such an accident would be a motor “slip.” See Norman (1981) for a 
categorization of action slips, including cognitive slips. For some evidence that error 
occurrences can be modeled, at least in closed task domains, see Brown and VanLehn’s 
(1980) Repair Theory model of the sources of “bugs” in arithmetic procedures.



Principle 10: Analyze the sensitivity o f performance predic­
tions to assumptions.

In carrying out any kind of performance analysis, the designer must 
make assumptions about the user (psychology does not have all the 
answers), about the computer system (the design is not fully specified 
until the end), and about the task environment (which cannot be fully 
anticipated). Thus, any predictions of human-computer performance 
should be checked for their sensitivity to these assumptions.

One of the main advantages of symbolic models, as we have 
emphasized, is that they allow unknowns to be parameterized and hence 
to be analyzed for their effects on performance. This use of parametric 
and sensitivity analysis was illustrated in the examples in Chapter 4 and 
in Section 8.4. Although performance usually does change, it often does 
not change in ways that affect the design decisions that motivated the 
performance analysis. Even if sensitivities are found, it is much better to 
make design decisions knowing what factors critically effect the decision 
and what factors do not matter. With such knowledge, it is possible to 
know which previous design decisions must be re-evaluated as new 
knowledge develops during the design process.
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12.5. CONCLUSIONS

We have proposed that an applied psychology should take a particular 
form in order to be of use in the design of interactive human-computer 
systems. The central feature of this applied psychology is the packaging 
of psychological knowledge into performance models that can predict the 
performance of the human-computer system from specifications of its 
structure. The design process can be decomposed into several different 
kinds of design functions, most of which require the use of performance 
models.

In this book we have concentrated most heavily on performance 
models for calculating expert performance time.

Roberts (1979) has extended the use of our models by developing a 
practical methodology for evaluating text-editing systems along four 
performance dimensions—functionality, learning, time, and errors.

We have expressed some of the results in this book as a set of design 
principles to aid in the design of systems for human-computer inter­
action.



13. Reprise

In this book, we have reported on a program of research directed 
towards understanding human-computer interaction. Let us briefly sum­
marize the extent of our progress.

The flow chart in Figure 13.1 gives the argument of the book in terms 
of research questions addressed and the results obtained. Starting at the 
very top of the figure, from the proposition argued in Chapter 1 that 
current techniques of human-computer interaction can be improved 
upon, we addressed four basic questions (numbered Q1-Q4 in the 
figure):

Ql. How can the science base be built up for supporting 
the design of human-computer interfaces?

Q2. What is the nature of user behavior and what are the 
consequent user performance characteristics for a 
specific human-computer interaction task (we chose to 
study text-editing)?

Q3. How can our results be cast as practical engineering 
models to aid in design?

Q4. What principal generalizations arise from the specific 
studies, models, and applications of Q2 and Q3?

Let us trace through the figure, considering each of these in turn.

SCIENCE BASE

If human-computer interaction is to be improved, there needs to be a 
science base of knowledge about human performance on which designers 
can draw for actual design. Recent advances in cognitive psychology and 
allied sciences can aid us in building this science base.
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Figure 13.1. Reprise.
Principal research questions addressed are numbered Q1, Q2, etc. Answers to the 
research questions in the form of empirical facts established, propositions argued,
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ENGINEERING
MODELS

Q3. How can the results be ap­
plied to system design?

8A. Use Key­
stroke Level 
Model when 
know command 
syntax.

9A. Use Unit- 
Task-Level 
Model at early 
stages of design.

Q14. How can 
model be used?

8B. Can compute 
point estimates, 
benchmarks, 
parametric an­
alysis, sensitivity 
analysis.

Q15. How ac­
curate is 
model?

8C. RMSE = 21% 
in laboratory. 
Model is better 
than simplified 
models: Key­
stroke-only, Pro­
rated Mental, 
Constant 
Time/Operator.

EXTENSIONS
GENERALIZATIONS

Q4. What extensions and gen­
eralizations derive from the 
specific studies?

016. Can GOMS 
describe non­
instruction- 
following tasks?

10A. Partly, it de­
scribed skill part 
of "creative” cir­
cuit-layout task 
(but not problem 
solving part).*

018. What is 
the role of an 
applied psy­
chology in 
design?

12A. The devel­
opment of per­
formance models.

017. How do tasks like text-editing fit into the 
general science base?

5D. Text editing 
is a cognitive 
skill.

11B. Problem 
solving becomes 
cognitive skill 
with practice by 
increasing 
search-control 
knowledge and 
by creating new, 
larger-scale 
operators.

11C. Unit tasks 
arise from 
constraints on 
working memory 
capacity and 
available task 
information.

11 A. Cognitive 
skill is a limiting 
case of problem 
solving. 11D.Text-editing 

is only one sort 
of cognitive skill.

Q12. How can GOMS model be extended?

6A. Can make 
GOMS model 
of display 
editor 
(BRAVO).

6B. Can 
extend GOMS 
to stochastic 
operations.

6C. Can 
extend GOMS 
to do account 
ing of input 
and memory 
information.

013. Which text selection device is best and 
how can this be accounted for?

7A. Mouse fast­
est with least 
error.

7B. Time for ana­
logue devices 
follows Fitts's 
Law, for key de­
vices proportion­
al to keystrokes.

7C. Mouse nearly 
optimal.

or models developed are attached to the question and numbered by chapter (3B 
means the second result listed in the figure from Chapter 3). Many of the results 
lead In turn to more detailed research questions as Indicated by the arrows.
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We have argued that a successful applied cognitive psychology of 
human-computer interaction requires an approach based on three tenets: 
(1) Primary emphasis should be placed on task analysis, calculation, and 
approximation. (2) The approach should be based on a theory of the 
user as an information-processor. (3) It should be relevant to design, that 
is, to the analysis of systems before they have been built These tenets 
lead to the question of how the current science base of psychological 
knowledge can be summarized in this form (Q5)? One answer is to 
organize the science base into the architecture, parameters, and principles 
of operation of a compact engineering-oriented model such as the Model 
Human Processor. This, in turn, leads us to consider human-computer 
interaction in terms of human information-processing operations (5A).
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TEXT-EDITING

Since new knowledge and insight are often achieved by first focusing 
on concrete cases and then generalizing, it is necessary to select a task for 
detailed study (Q6), and the task we have selected is computer text­
editing. Computer text-editing is a prototypical human-computer inter­
action task, and as such its study is likely to shed light on other human- 
computer interaction tasks. Furthermore, there is substantial variation in 
user performance, a result of both different editor designs and because of 
individual differences among users (Q7). The slowest editor designs 
require users to spend three times as long to make the same edits as do 
the fastest designs; the slowest users (long-time users, but not necessarily 
“experts”) spend four times longer to make the same edits as the fastest 
users; the slowest experts spend 50% longer than the fastest experts. The 
faster-to-use editors are faster because they require users to type fewer 
keystrokes or perform fewer other actions than the slower-to-use editors. 
The faster users get their speed by possessing the following characteristics 
(each about equally effective in our studies); using the system regularly, 
technical background, and typing speed.

How can an information-processing analysis be constructed for text- 
editing (Q8)? The simplest model of user editing performance is the 
Constant Time per Modification Model. We investigated this model for 
the WYLBUR editor and showed, in a case study comparing text-editing 
and typewriting, that it could be used to predict tradeoffs between the 
two and could also be used in sensitivity analysis (Q9).

More detailed are models based on an information-processing analysis 
of the user’s goals, operators, methods, and selection rules. We



investigated a GOMS model for the p o e t  editor and found that it was 
capable of predicting users’ method selection about 90% of the time 
(using 2~4 rules) and of predicting editing time to a RM S  error of about 
35% (QIO). To discover how much the accuracy of the GOMS model 
depended on its level of detail (Q ll), we constructed nine models of 
POET editing, with detail ranging from gross (12 sec/operator) to very fine 
(.5 sec/operator). These models fell at four levels: the Unit-Task Level 
(closely related to the Constant Time per Modification Model above, but 
with a stricter definition of what constitutes a task), the Functional Level 
(an operator for each major phase of an editing task), the Argument 
Level (an operator for each command and argument), and the Keystroke 
Level (an operator for each keystroke or other action). We found that 
accuracy improved in going from the Unit-Task Level to the Functional 
Level (RMS  error 40%~30%, for one of the measures) and did not 
decline thereafter. It was shown that a GOMS analysis could be 
extended to the display-oriented b r a v o  editor, to include stochastic 
elements, and to give a detailed account of the flow of task information 
(Q12).

We also considered a set of models for a component of the GOMS 
models, the operation of selecting a piece of text on a display (Q13). 
Here, experiments showed that the mouse is a faster, less error-prone 
device than step keys, text keys, or the rate-controlled isometric joystick 
measured. Models of each of these devices showed that pointing time for 
the analogue devices (mouse and joystick) is proportional to the log of 
the ratio of target distance and target size, as given by Fitts’s Law, and 
that pointing time for the key devices is proportional to the number of 
keystrokes. Further analysis showed that the time to point using the 
mouse is not limited by the device itself, but by the information­
processing rate of the human eye-hand coordination system.
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ENGINEERING MODELS

How can the models above be adapted for use in system design? If 
the user’s method is known, a simplification of the GOMS model at the 
Keystroke Level can be used to predict editing time, to calculate bench­
marks, and to conduct parametric and sensitivity analyses (Q14). The 
Keystroke-Level Model is a compromise between simplicity (only five 
operators) and accuracy (much less error than for simpler models such as 
counting only keystrokes, adding a prorated mental overhead, or counting 
each operator at a constant cost) (Q15). The Keystroke-Level Model was



shown to predict execution time, with an RMS  error of 21% for text- 
editors, graphics programs, and various system utilities. This compares 
well with the accuracy of the GOMS models and is sufficient for practical 
work.

At the early stages of design, or when the user’s method is not 
known, the Unit-Task-Level Model can be used to predict times by 
breaking the user’s task into unit tasks and assigning each a constant 
time.
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EXTENSIONS AND GENERALIZATIONS

Can the GOMS analysis be extended to more “creative,” less routine 
tasks (Q16)? A case study on VLSI circuit design suggests that part of 
the behavior in such tasks is problem solving, to which the GOMS 
analysis is not applicable, and part of the behavior is skill, to which the 
GOMS/Keystroke-Level-Model analysis is appropriate.

It is important to ask how text-editing fits with other cognitive tasks 
(Q17). Computer text-editing is an example of a cognitive skill. 
Cognitive skill is a limiting case of problem solving in which the search 
for a solution has been greatly reduced through practice and experience. 
The transition from problem solving to cognitive skill can be seen by 
starting with a problem-solving task, such as the classic Tower of Hanoi 
puzzle, and observing how search through the problem space of the 
puzzle is reduced and finally eliminated as a consequence of practice, 
until solving the puzzle has become a skill. The same transition can be 
seen from the other end, from a task in which we know users exhibit 
cognitive skill, such as text-editing, and observing how the skill arose, 
with practice, out of earlier problem solving. Closer examination of the 
transition from problem solving to cognitive skill shows that the 
mechanisms whereby search is reduced are (1) accumulation of control 
knowledge and (2) the formation of new, larger-scale operators, which 
effectively partition the problem space into a reduced problem space and 
a skill space. Unit tasks are a consequence of constraints on the task 
resulting from the memory limitations of the user or lack of information. 
Other cognitive skills, whereas they share much of the above 
characterization with computer text-editing, also differ from text-editing 
along a number of dimensions: in the basic skill/problem-solving
character, in their demands on Working Memory and Long-Term 
Memory, and in their external demands (such as pacing and accuracy).
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Finally, there is the question of what role psychological research on 
human-computer interaction can play in design (Q18). We have argued 
that research should emphasize the development of performance models, 
enabling designers to predict the performance consequences of design 
alternatives. In addition to their use in considering design alternatives, 
performance models can also be used as an evaluation methodology, such 
as the one designed by Roberts (1979), and in the formulation of design 
principles, such as those listed in Chapter 12. These examples suggest 
how performance models may be made the link for transferring 
understanding to practice in a psychology of human-computer interaction.
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Symbol Glossary

This glossary lists the principal symbols used in the book and the pages on which 
they are defined. It includes algebraic symbols and operator symbols from the 
Keystroke-Level Model; additional goal and operator symbols are listed in the 
Subject Index. The nominal value and range (in square brackets) is also given for 
each constant. An F after a page number indicates that the reference is to a 
figure on the page.

AIS

^LTM
^VIS
^WM
E
K

'^AIS
'^LTM

*^V!S

^A IS

t^LTM

P

Pc

’’c

Learning rate (=  .2~.6).................................................... 57-58
Memory decay half life ...................................................................25
Half life of Auditory Image Store
(=  1500 [900-3500] msec).............................................................31
Half life of Long-Term Memory (=  o o ) .................................... 39
Half life of Visual Image Store (=  200 [70-1000] msec) . . . .  29
Half life of Working Memory ( = 3  [2.5-4.1] chunks). . . 38-39
Accuracy of micromovement................................................... 52-53
Code type of memory.....................................................................25
Code type of Auditory Image Store (=  Physical)....................28
Code type of Long-Term Memory (=  Semantic).................... 40
Code type of Working Memory (=  Acoustic of Visual) . . 36, 79
Code type of Visual Image Store (=  Physical).........................28
Memory capacity............................................................................. 25
Capacity of Auditory Image Store ( = 5  [4.4-6.2] letters) . . .  31
Capacity of Long-Term Memory (=  o o ) .....................................40
Capacity of Working Memory ( = 3  [2.5-4.1] chunks).............. 39
Effective capacity of Working Memory (=  7 [5-9] chunks) . 39
Capacity of Visual Image Store ( = 1 7  [7-17] letters).............31
Modification density per lin e ....................................................... 122
Density crossover p o in t.................................................................123
Cycle time of Cognitive Processor ( = 7 0  [25-170] msec) . . .42 
Cycle time of Motor Processor ( = 7 0  [30-100] m sec)...........34
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Tp Cycle time of Perceptual Processor (=  100 [50~200] msec) . . 32
D Distance to target.............................................................................. 52
H  Entropy of a decision...............................................................72-76
H Home hands (Keystroke-Level Model operator)..............  262-264
Ip. Uncertainty Principle constant (=  150 msec/bit) . . . .  72, 74-76
I Fitts’s Law constant (=  100 [50~120] m sec/bit)................. 53-57
K Keystroke (Keystroke-Level Model operator)................  262, 264F

Length crossover p o in t.................................................................. 123
M Mental preparation (Keystroke-Level Model operator) 262, 264F 
P Point with mouse (Keystroke-Level Model operator). . . 262-264
R Response by system (Keystroke-Level Model operator). 262-264
S  Size of ta rge t............................................................................... 52-55

Time to home hands (=  .40 sec)..................................... 263, 264F
Time to type a keystroke (=  [.08 ~ 1.20] sec).................  262, 264F
Time to make mental preparation (=  1.35 sec)...........  263, 264F

tp Time to point with mouse (=  1.10 sec)..........................  262, 264F
'^acquire acquire a ta sk ....................................................... 261
'^execute Total time to execute a ta sk .......... ........................................... 261

Total homing time during ta sk .................................................... 262
Total keystroke time during ta sk .................................................262
Total mental preparation time during task .............................. 262

Tp Total pointing time during ta sk ................................................... 262
Tp Total system response time during ta sk ........................................262
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Teletypewriter................................................4
T E N E X ............................................. 309-311
Text k ey s .......................................... 232-233

error ra te ................................  240, 241F
learning cu rve................................. 236F
picture o f .........................................231F
pointing time

effect o f approach angle . 238-240
effect o f distance and s iz e ...............

...........................  238, 239F, 240F
m o d el........................  245-246, 247F
overall values...........................  237 F

Text-editor, See a/so BRAVO; BRAVOX; 
EMACS; GYPSY; NLS; POET; 
QED; RCG; SOS; STAR; TECO; 
WANG; WYLBUR; Tasks; 
manuscript editing

Roberts's evaluation methodology . . .
................................................... 413^17

sample dialogues............. 105-106, 107
stud ies....................................................102
tool-like character...............................101

Time quantum ................................. 42n
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Tongue, repetitive movement rate . . 34n 
Tower o f Hanoi. See Tasks:

Tower of Hanoi 
Transactions (GOMS model

o f B RA VO )...............  204, 205-207
TYPE (GOMS operator)..............................

..............................  167, 171-173, 211
Typewriting

resource-performance function for . . .
..................................... 388F, 387-389

speed o f ................................ 34n, 59-61

u
Uncertainty Principle.............27F, 72, 74
Unit impulse response............................31
Unit ta sk ................................. 140, 385-396

See also A cquire Task;
E xecu te  Task; Verify Edit; 
Unit-Task Level

cognitive skill a n d ...............  397F, 400
determinants o f ........................  391-392
duration......................................  390-391
editing modification and . . . 140, 188
IC A R U S....................................  344-346
information limitations and . . 394-395
interactions am ong..................  325-329
problem solving a n d ..........................391
sample protocol....................  143, 168F
Working Memory a n d .................. 393F

Unit-Task L ev e l.................... 162F, 259, 422
See also Model, GOMS; Unit task 

models a t .........................162F, 313-333

USE-LF-METHOD (GOMS operator) . .
......................................... 141, 144, 155

USE-M-COMMAND (GOMS operator) . 
....................................... 142, 144, 156

User
design a n d ............................................419
M operator a n d ...................................285
performance variation . . 114-119, 417
secretary vs. computer scientist............

.............................................  108, 158F
typ es.......................................................115

User psychology............................................2
User sciences..................................................2
USE-QS-METHOD (GOMS operator) . .

.............................. 141, 144, 156, 169
USE-S-COMMAND (GOMS operator) . 

.............................. 142, 144, 156, 169

Variability
effect o f operator duration . . 182-184 
effect o f operator sequence . . 85F, 86
system vs. u ser ........................101-120

Variable Cognitive Processor
Rate Principle..................... 27F, 42

Variable Perceptual Processor
Rate Principle............... 27F, 33, 46

VERIFY-EDIT (GOMS operator).
See also Verify Edit

encoding....................................156. 169
source o f inaccuracy.......................... 158

Verify Edit (part of unit task . . . .  386
BRA VO ............... 210F, 212, 222, 223
PO E T ......................................... 142, 144
Unit-Task L evel.................................. 326

Video display terminal (VDT) . 4, 45. 91
VIS. See Visual Image Store
Visual Image S tore .......................... 28, 92

See also Auditory Image Store: 
Perceptual Processor 

applications
m atch .................................66-71
reaction t im e ....................................66

parameters...........................26F, 29, 31
Working Memory a n d ........ 28-29

Visual system ...............................................25

V

w
WANG (display-oriented text-editor) . . .

...................................................415-416
WM. See Working Memory 
Word-processing. See Tasks: 

manuscript-editing
Words

decay rate in Working Memory . 38F
memory scanning r a te ................... 43F

Working M em ory................ 24, 36-41, 93
applications

file name remembering . . . 77-79
matching t im e ...........................66-71
reaction t im e ................................... 66
unit task m em ory...................  393F

Baddeley’s conception...................93-94
Chase and Ericcson’s conception 93-94 
Long-Term Memory and . . . .  76, 93 
parameters 26F, 29, 31, 37, 38-39, 93
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perceptual memories and . . . .  28-29
problem space path a n d .................. 90
recency and primacy effects............77
skill a n d ........................... 93, 397F, 398
unit task and . . .  . 387-389, 392-396 

World War II, psychology and . . . .  1, 9 
WYLBUR (line-oriented text-editor) . . . .

......................  121-137, 124, 415-416

Xerox
pointing calculation applications . . . .

................................................. 241-255
systems. See BRAVO; BRAVOX; 

DRAW; CHAT; FTP; GYPSY; 
MARKUP; RCG; SIL; STAR
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