

THE PSYCHOLOGY OF
HUMAN-COMPUTER INTERACTION

http://taylorandfrancis.com

The Psychology of
Human-Computer Interaction

Stuart K. Card
Thomas P. Moran
Xerox Palo Alto Research Center

Allen Newell
Carnegie-Mellon University

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Copyright © 1983 by Lawrence Erlbaum Associates, Inc.
All rights reserved. No part of this book may be reproduced in
any form, by photostat, microform, retrieval system, or any other
means, without the prior written permission of the publisher.

First published by Lawrence Erlbaum Associates, inc., Publishers
10 Industrial Avenue
Mahwah, New Jersey 07430

Reprinted 2008 by CRC Press

CRC Press

6000 Broken Sound Parkway, NW
Suite 300, Boea Raton, FL 33487

270 Madison Avenue
New York, NY 10016

2 Park Square, Milton Park
Abingdon, Oxon 0X14 4RN, UK

Library of Congress Cataloging in Publication Data

Card, Stuart K.
The psychology of human-computer interaction.

Bibliography: p.
Includes index.
1. Interactive computer systems—Psychological aspects.

I. Moran, Thomas P. II. Newell, Allen. III. Title.
QA76.9I58C37 1983 001.64’0 r9 82-21045
ISBN 0-89859-243-7
ISBN 0-89859-859-1 (pbk.)

Printed in the United States of America
10 9 8

Contents

Preface vii

1. An Applied Information-Processing Psychology 1

SCIENCE BASE

2. The Human Information-Processor 23

TEXT-EDITING

3. System and User Variability 101
4. An Exercise in Task Analysis 121
5. The GOMS Model of Manuscript Editing 139
6. Extensions of the GOMS Analysis 193
7. Models of Devices for Text Selection 229

ENGINEERING MODELS

8. The Keystroke-Level Model
9. The Unit-Task Level of Analysis

EXTENSIONS AND GENERALIZATIONS

259
313

10. An Exploration into Circuit Design 335
11. Cognitive Skill 357
12. Applying Psychology to Design 403

13. Reprise 425

Symbol Glossary 433
Bibliographic Index 435
Subject Index 459

V

http://taylorandfrancis.com

Preface

Designing interactive computer systems to be efficient and easy to use
is important so that people in our society may realize the potential
benefits of computer-based tools. Our purpose in this book is to help lay
a scientific foundation for an applied psychology concerned with the
human users of interactive computer systems. Although modern cogni­
tive psychology contains a wealth of knowledge of human behavior, it is
not a simple matter to bring this knowledge to bear on the practical
problems of design—to build an applied psychology that includes theory,
data, and methodology.

This book is our attempt to span the gap between science and
application. We have tackled a small piece of the general problem. With
respect to computer science, we have focused on the task domain of text­
editing and similar types of highly interactive systems. With respect to
psychology, we have focused on the notion of the expert user’s cognitive
skill in interacting with the system, especially the temporal aspects of the
interaction. We have constructed an empirically-based cognitive theory
of skilled human-computer interaction in this domain. This theory is our
keystone for linking science and application. On one side, we have
shown that the theory is a consistent extension of the science of human
information-processing. On the other side, we have simplified the theory
into practical engineering models, which are the tools for designers to
apply the theory. Thus, in addition to putting forth specific psychological
models in this book, we have tried to make clear the general framework
of an applied psychology, in which these models are but prototypical
examples.

THE AUDIENCE FOR THIS BOOK

Interest in the topic of human-computer interaction is shared by
people from a range of disciplines. We believe this book makes contact
with the specific interests of all of these disciplines. For instance:

V II

vili PREFACE

(1) Cognitive psychologists will find that theory and empirical
methods can be extended to the analysis of a real-world
domain and that a practical problem can be a fruitful vehicle
for developing basic psychology.

(2) Computer scientists will find that the problem of matching
computer power with user abilities may be approached using
the theory and methods of the cognitive sciences.

(3) System designers will find that we have derived a number of
models and principles of user performance that may be used
in design.

(4) Human factors specialists, ergonomists, and human engineers
will find that we have synthesized ideas from modem cogni­
tive psychology and artificial intelligence with the old methods
of task analysis and brought them to bear on the human-
computer interface—which is rapidly becoming the most
important domain in human factors practice.

(5) Engineers in several fields concerned with man-machine sys­
tems will find that we have extended the notion of work
analysis by showing how techniques from cognitive science
can be applied to the analysis of procedures that are pre­
dominantly mental.

We have used the book as the primary reference in a graduate course
on “Applying Cognitive Psychology to Computer Systems,” taught (by
TM and SC) in the Departments of Psychology and Computer Science at
Stanford University (Moran and Card, 1982). Parts of the book, in
manuscript, have proven useful to others in teaching similar courses in
psychology, computer science, and industrial engineering. The book
would be suitable for a variety of courses: (1) a course on human factors
in computer systems within a computer science department; (2) a course
on human-computer interface design within a computer science
department; (3) a course on the psychology of computer users within a
psychology department; (4) a course on human-computer interaction
within an industrial engineering or human factors department; (5) an
advanced research seminar in either computer science, psychology, or
industrial engineering; or (6) in a focused short course for industrial
professionals. For courses with a design focus. Chapters 1 and 2 can be
used to provide psychological background; and Chapters 3, 5, 7, 8, 9, and
12 can be used for analytical and practical content For courses stressing

psychological issues. Chapters 1, 2, 5, 7, 8, 10, and 11 can be used to
develop basic concepts and theory.

PREFACE IX

HISTORY OF THIS RESEARCH

In 1970, Xerox established a new major research center in Palo Alto
with the express purpose of exploring digital electronic technologies in
support of Xerox’s general concern with office information systems.
Since that time, the Palo Alto Research Center (PARC) has become well
known for its developments in interactive computing, based on personal
computers with integral high quality graphic displays (the Alto being the
first such computer), connected by a high capacity local network (the
Ethernet). It has become known, as well, for being the first living
embodiment of this new computational style.

From the start (early 1971) there were discussions between George
Pake (then head of PARC), Robert Taylor (now manager of the
Computer Sciences Laboratory of PARC), and one of us (AN, as a
consultant to PARC) about the possibilities of an active role for
psychological research into human interaction with computers. PARC
seemed like the perfect place to attempt such an effort. Modem
cognitive psychology had come a long way in understanding man as a
processor of information, a view that meshed completely with the
developments in computer science and artificial intelligence—indeed,
derived from them in a number of particulars. The impact of the
psychological advances on the human factors of how computers were
used was not yet very great, though the potential was clearly there.
PARC itself, being both an industrial laboratory with the concomitant
underlying emphasis on application and a group engaged in basic
research in computer science and artificial intelligence, provided exactly
the right environment.

In 1974, opportunity became reality through Jerome Elkind (who had
joined PARC to become manager of the Computer Sciences Laboratory).
Two of us (TM and SC) joined PARC, and a small unit, called the
Applied Information-Processing Psychology Project (AIP), was formed. Its
charter was to create an applied psychology of human-computer
interaction by conducting requisite basic research within a context of
application. It was initially located within the Systems Sciences Labora­
tory, a sister laboratory to the Computer Sciences Laboratory, under
William English, who was in charge of a group constructing an expert-

mental interactive office-information system. One reason for its location
was the early decision to concentrate on immediate, real-time human-
computer interaction, especially as embodied in the use of text-editing
systems, rather than on the activities of programming computers. The
AIP group has remained intact through many local reorganizations and is
presently a part of the Cognitive and Instructional Sciences Group.

The present book, then, presents the results of some of the main
strands of the AIP group’s research. The group has throughout consisted
of just the three of us, in equal collaboration (SC and TM at PARC, with
AN as a consultant), supported by research assistants, students, and col­
leagues in PARC and elsewhere.

X PREFACE

ACKNOWLEDGEMENTS

As should be evident from the remarks above, we owe an immense
debt to the PARC environment. A few of the people who played a key
role in the creation of PARC were mentioned above. It is not possible to
enumerate all the individuals who have played a definite role in making
our tiny research group viable over the years. We would, however, like
to acknowledge a few, both inside and outside of PARC. Harold Hall,
Manager of the PARC Science Center, provided support for our studies
in his several managerial capacities (the analysis in Chapter 9 is the result
of a question he posed to us). Bert Sutherland, as Manager of the
Systems Sciences Laboratory, played an important role in supporting us
and allowing us the resources to pursue these studies. John Seely Brown,
as Area Manager for the Cognitive and Instructional Sciences, has had a
major impact on us by creating a stimulating intellectual environment of
cognitive scientists around us.

Don Norman and Richard Young provided extensive substantive
comments on the research reported in the book. Many productive
discussions with colleagues have influenced our thinking and helped us
formulate our position. They include: George Baylor, John Black, Danny
Bobrow, Ross BotL Ted Crossman, Jerry Elkind, Austin Henderson, Ron
Kaplan, Tom Malone, Jim Morris, William Newman, Beau Sheil, Larry
Tesler, and Mike Williams. Several students, working with us at PARC,
have kept us on our toes: Terry Roberts, Marilyn Mantei, Jarrett
Rosenberg, Allen Sonafrank, Lucy Suchman, Keith Patterson, Kathy
Hemenway, Brian Ross, Sally Douglas, Frank Halasz, and Carolyn Foss.

Ralph Kimball, Robin Kinkead, Bill Bewley, and Bill Verplank—in
the development divisions of Xerox—gave us valuable advice and helped

PREFACE XI

US test some of the models in this book. Steve Smith and Shmuel Oren
provided mathematical consulting. Warren Teitelman and Larry Masinter
provided programming help in Interlisp (Teitelman, 1978), the system in
which all of our analysis and simulation programs are written. Ron
Kaplan and Beau Shiel provided statistical consultation for the analysis of
our data and help in using the Interactive Data-analysis Language
(Kaplan, Shell, and Smith, 1978), their statistical analysis system written
in Interlisp.

Our experimental work would not have been possible without help
and support in building and maintaining our laboratory systems and
equipment. Bill Duvall and George Robertson implemented our experi­
ment-running systems; and Jim Mayer, Bill Winfield, and others kept our
equipment running. The large amount of experimentation and detailed
analysis would not have been possible without the help of several
research assistants over the years: Betty Burr, Janet Farness, Steve Locke,
Marilyn Mantei, Beverly McHugh, Terry Roberts, Rachel Rutherford,
and Betsey Summers.

Many others at PARC have also been of help. Chris Jeffers and
Jeanie Treichel provided administrative backing. Barbara Baird, Connie
Redell, Malinda Maggiani, and Jackie Guibert provided secretarial sup­
port. Giuliana Lavendel and her library staff tracked down many ob­
scure references for us.

A number of people have helped directly with the production of the
book. Rachel Rutherford helped edit the text and brought to light
numerous errors, inconsistencies, and infelicities of expression. Betsey
Summers, Steve Locke, and Leslie Keenan helped manage and proof the
text and figures. Bill Bowman gave graphics advice on several figures.
Lyle Ramshaw guided us through the intricacies of various document
preparation systems. Terri Doughty helped us format the text and tables
for galley printing. The galleys for the book were printed on an experi­
mental phototypesetting printer developed at PARC.

In the preparation of this book—much of it about text-editing—we
have ourselves been heavy users of the computer text-editors. We have
spent several thousands of hours text-editing on BRAVO (one of the
systems we describe in the book) at tasks similar to those we have studied
on our subjects, performing perhaps a million editing tasks in the process.
From this experience and study, we have a great appreciation for the
display-based text-editing technology that our colleagues at PARC have
been able to fashion.

We have no doubt missed some people who deserve mention. One
advantage of writing a book of this kind is that our excuse—that human
information-processing systems are limited—is contained herein. As we
explain in Chapter 2, searching Lx>ng-Term Memory requires con­
siderable effort, and we have not managed to move the full way along
the information retrieval curve pictured in Figure 2.27.

X II PREFACE

SC. TM, AN
Palo Alto

October 1982

Copyright Acknowledgments

Portions o f several chapters in this book have been previously published. The
authors wish to thank the following publishers for permission to use this material:

Academic Press, Inc. for permission to use in Chapters 5 and 11 portions of
Card, S. K., Moran, T. P., and Newell, A.; Computer text-editing: An informa­
tion-processing analysis o f a routine cognitive skill; Cognitive Psychology 12,
32-74, (c) 1980.

Taylor & Francis Ltd. for permission to use in Chapter 7 portions of Card, S.
K., English, W., and Burr, B.; Evaluation of mouse, rate-controlled isometric
joystick, step keys, and text keys for text selection on a CRT; Ergonomics 21,
601-613, (c) 1978.

The Association for Computing Machinery for permission to use in Chapter 8
portions o f Card, S. K., Moran, T. P., and Newell, A.; The keystroke-level model
for user performance time with interactive systems; Communications of the ACM
23, 396-410, (c) 1980.

The authors also thank the following for permission to reproduce copyrighted figures:

Figure 2.4 from Fig. 1 (p. 427) o f Cheatham, P. G., and White, C. T., Journal of
Experimental Psychology 47, 425-428, (c) 1954 by the American Psychological Association.
Reprinted by permission of the publisher and authors. Figure 2.9 from Fig. 5 (p. 94) of
Michotte, A., The Perception o f Causality. English translation, (c) 1963 by Methuen and
Co, Ltd. Reprinted by permission o f Basic Books, Inc. Figure 2.11 from Fig. 5.3 (p.
146) and Fig. 5.4 (p. 148) of Welford, A. T., Fundamentals o f Skill, published by
Methuen & Co., (c) 1968 by A. T. Welford. Reprinted by permission of the author.
Figure 2.13 from Klemmer, E. T., Human Factors 4, 75-79, (c) 1962 by the Human
Factors Society. Reprinted by permission of publisher. Figure 2.21 from Fig. 2 (p. 8) of
Posner, M. I., Boies, S. J., Eichelman, W. H., and Taylor, R. L., Journal o f Experimental
Psychology 79, 1-16, (c) 1969 by the American Psychological Association. Reprinted by
permission of the publisher and authors. Figure 2.22 from Fig. 3.1 (p. 62) of Welford,
A. T., Fundamentals o f Skill, published by Methuen & Co., (c) 1968 by A. T. Welford.
Reprinted by permission o f the author. Figure 2.23 from Fig. 1 (p. 192) of Hyman, R.,
Journal o f Experimental Psychology 45, 188-196, (c) 1953 by the American Psychological
Association. Reprinted by permission of the publisher and author. Figure 2.24 from
Glanzer, M., and Cunitz, A. R., Journal o f Verbal Learning and Verbal Behavior 5,
351-360, (c) 1966 by Academic Press, Inc. Reprinted by permission o f the publisher and
authors. Figure 2.25 from Fig. 2 (p. 358) o f Human Experimental Psychology by Calfee,
R. C., (c) 1975 by Holt, Rinehart and Winston, Inc. Reproduced by permission of Holt,
Rinehard and Winston, Inc. Figure 2.26 from Fig. 3 (p. 53) o f Underwood, B. J.,
Psychological Review 64, 49-60, (c) 1957 by the American Psychological Association.
Reprinted by permission of the publisher and author. Figure 2.28 from Fig. 3 (p. 122)
of Mills, R. G., and Hatfield, S. A., Human Factors 16, 117-128, (c) 1974 by the Human
Factors Society. Reprinted by permission o f the publisher. Figure 2.30 from Fig. 6.4 (p.
181) o f Newell, A., and Simon, H. A., Human Problem Solving, (c) 1972. Reprinted by
permission of Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

X III

http://taylorandfrancis.com

To JJ, Lydia, and Noel

http://taylorandfrancis.com

1. An Applied Information-
Processing Psychology

1.1. THE HUMAN-COMPUTER INTERFACE
1.2. THE ROLE OF PSYCHOLOGY
1.3. THE FORM OF AN APPLIED PSYCHOLOGY
1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY
1.5. THE YIELD FOR COMPUTER SCIENCE
1.6. PREVIEW

A scientific psychology should not only help us to understand our
own human nature, it should help us in our practical affairs. In
educating our children, it should help us to design environments for
learning. In building airplanes, it should help us to design for safety and
efficiency. In staffing for complex jobs, it should help us to discover
both the special skills required and those who might have them. And on
and on. Given the breadth of environments we design for ourselves,
there is no limit to the number of domains where we might expect a
scientific knowledge of human nature to be of use.

The domain of concern to us, and the subject of this book, is how
humans interact with computers. A scientific psychology should help us
in arranging this interface so it is easy, efficient, error-free—even
enjoyable.

Recent advances in cognitive psychology and related sciences lead us
to the conclusion that knowledge of human cognitive behavior is
sufficiently advanced to enable its applications in computer science and
other practical domains. The years since World War II have been the
occasion for an immense wave of new understandings and new
techniques in which man has come to be viewed as an active processor of
information. In the last decade or so, these understandings and
techniques have engulfed the main areas of human experimental psychol­

ogy^; perception,^ performance,^ memory,"* learning,^ problem solving,^
psycholinguistics.^ By now, cognitive psychology has come to be
dominated by the information-processing viewpoint

A major advance in understanding and technique brings with i t after
some delay, an associated wave of applications for the new knowledge.
Such a wave is about to break in psychology. The information-processing
view will lead to a surge of new ways for making psychology relevant to
our human needs. Already the concepts of information-processing
psychology have been applied to legal eyewitness testimony^ and to the
design of intelligence tests.^ And in the study of man-machine systems
and engineering psychology, it has for some time been common to
include a block diagram of the overall human information-processing
system in the introductory chapter of textbooks,even though the reach
of that block diagram into the text proper is still tenuous. There are
already the beginnings of a subfield, for which various names (associating
the topic in different ways) have been suggested: user sciences,**
artificial psycholinguistics,*^ cognitive ergonomics,** software psychol­
ogy,*"* user psychology,*^ and cognitive engineering.*^

2 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

* For representative examples see Lindsay and Norman’s (1977) Human Information
Processing, Anderson’s (1980) Cognitive Psychology and its Implications, the Handbook o f
Learning and Cognitive Processes (Estes, ed. 1975-1978), the Attention and Performance
collections o f papers (Komblum, 1973; Rabbitt and Domi5, 1975; DomiC, 1977; Requin,
1978; Long and Baddeley, 1981), and the journal Cognitive Psychology.

2
Examples: Broadbent (1958), Perception and Communication; Green and Swets

(1966), Signal Detection Theory and Psychophysics; Neisser (1967), Cognitive Psychology;
Comsweet (1970) Visual Perception.

 ̂ Examples: Fitts and Posner (1967), Human Performance; Welford (1968),
Fundamentals o f Skill; Kintsch (1974), The Representation o f Meaning in Memory;
Tversky (1977), “Feature of similarity’’; Posner (1978), Chronometric Explorations of the
Mind.

 ̂ Examples: Anderson and Bower (1973), Human Associative Memory; Baddeley
(1976), The Psychology of Memory; Crowder (1976), Principles o f Learning and Memory;
Murdock (1974), Human Memory, Theory and Data.

 ̂ Examples: Fitts (1964), “Perceptual-motor skill learning’’; Klahr and Wallace
(1976), Cognitive Development: An Information-Processing View; Anderson (1981a),
Cognitive Skills and their Acquisition.

 ̂ Example: Newell and Simon (1972), Human Problem Solving.

Our own goal is to help create this wave of application: to help
create an applied information-processing psychology. As with all applied
science, this can only be done by working within some specific domain of
application. For us, this domain is the human-computer interface. The
application is no offhand choice for us, nor is the application dictated
solely by its extrinsic importance. There is nothing that drives funda­
mental theory better than a good applied problem, and the cognitive
engineering of the human-computer interface has all the markings of
such a problem, both substantively and methodologically. Society is in
the midst of transforming itself to use the power of computers
throughout its entire fabric—wherever information is used—and that
transformation depends critically on the quality of human-computer
interaction. Moreover, the problem appears to have the right mixture of
industrial application and symbol manipulation to make it a “real-world”
problem and yet be within reasonable reach of an extended cognitive
psychology. In addition, we have personal disciplinary commitments to
computer science as well as to psychology.

This book reports on a program of research directed towards
understanding human-computer interaction, with special reference to text­
editing systems. The program was undertaken as an initial step towards
the applied information-processing psychology we seek. Before outlining
individual studies, it is appropriate to sketch how this effort fits in with
the larger endeavor.

1.1. THE HUMAN-COMPUTER INTERFACE 3

' Example: Clark and Clark (1976), Psychology and Language: An Introduction to
Psycholinguistics.

8

9

10

11

12

13

14

15

16

Loftus (1979).

Hunt, Frost, and Lunneborg (1973).

Sheridan and Ferrell (1974); McCormick (1976).

Vallee (1976).

Sime and Green (1974).

Sime, Fitter, and Green (1975).

Shneiderman (1980).

Moran (1981a).

Norman (1980).

1.1. THE HUMAN-COMPUTER INTERFACE

4 1. APPLIED INFORMATION-PRCX5ESSING PSYCHOLOGY

The human-computer interface is easy to find in a gross way—just
follow a data path outward from the computer’s central processor until
you stumble across a human being (Figure 1.1). Identifying its bound­
aries is a little more subtle. The key notion, perhaps, is that the user and
the computer engage in a communicative dialogue whose purpose is the
accomplishment of some task. It can be termed a dialogue because both
the computer and the user have access to the stream of symbols flowing
back and forth to accomplish the communication; each can interrupt,
query, and correct the communication at various points in the process.
All the mechanisms used in this dialogue constitute the interface: the
physical devices, such as keyboards and displays, as well as computer’s
programs for controlling the interaction.

At any point in the history of computer technology there seems to be
a prototypical user interface. A few years ago it was the teletypewriter;
currently it is the alphanumeric video-terminal. But the actual diversity
is now much greater. All so-called “remote entry” devices count as
interfaces: and a large number of such specialized devices exist in the
commercial and industrial world to record sales, maintain inventory
records, or control industrial processes. Almost all such devices are
fashioned from the same basic sorts of components (keyboards, buttons,
video displays, printers) and connect to the same sorts of information­
processing mechanisms (disks, channels, interrupt service routines).

The very existence of the direct human-computer interface is itself an
emergent event in the development of computers. If we go back twenty
years, the dominant scheme for entering information into a computer
consisted of a trio of people. First there was the user, someone who
wanted to accomplish some task with the aid of the computer. The user
encoded what he wanted onto a coding sheet, then sent it to a second
person, the keypunch operator, who used an off-line device, the
keypunch, to create a deck of punched cards that encoded the same
information in a different form. The cards in turn went to a third
person, the computer-operator, who entered the cards into the computer
via the card reader. The computer then responded by printing messages
and data on paper for the operator to gather up and send back to the
user. The relationship between the user and the computer was suf­
ficiently remote that it should be likened more to a literary
correspondence than to a conversational dialogue. It is the general

1.1. THE HUMAN-COMPUTER INTERFACE 5

Figure 1.1. The human-computer interface.

demise of such arrangements involving human intermediaries, and the
resultant coupling of the user directly to the computer, that has given rise
to the contemporary human-computer interface. Whatever continued
evolution the interface takes—and it will be substantial—^human-
computer interaction is unlikely ever to lose this character of a
conversational dialogue.

Of course, there is much more to improving computer interfaces than
simply making them conversational. Informal evidence from the direct
experience of users provides numerous examples of current interface
deficiencies:

In one text-editing system, typing the word edit while in
command mode would cause the system to select every-

thing, delete everything, and then /nsert the letter t (this
last making it impossible to use the system Undo command
to recover the deleted text because only the last command
could be undone).

In another text-editing system, so many short commands
were defined that almost any typing error would cause
some disaster to happen. For example, accidentally typing
CONTROL-E would cause the printer to be captured by the
user. Since no indication of this event was given, no other
users would be permitted to print until the other users
eventually discovered who had the printer. In an even
more spectacular instance, accidentally typing c o n t r o l -Z

would delete all the user’s files—permanently.

In one interactive programming system, misspelling a
variable name containing hyphens (a common way of
marking off parts of a name) would cause the system to
rewrite the user’s program, inserting code to subtract the
parts of the name. In many cases, the user would have to
mend his program by hand, laboriously searching for and
editing the damaged code.

In a set of different subsystems meant to be used together,
the name “List” was given to many different commands,
each having a different meaning: (1) send a file to the
printer to make a hardcopy, (2) show the directory of files
on the display, (3) show the content of a file on the display,
(4) copy the workspace to a file, (5) create a particular kind
of data structure.

1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

Yet, when one looks at the teletype interfaces of yesterday, it is clear
that substantial progress has been made. The emergence of the direct
human interface, circumventing the keypuncher and operator, must itself
be counted as an improvement of enormous value. We now have
interfaces that allow the use of computers for such highly interactive tasks
as making engineering drawings and taking airline reservations. But
despite considerable advancements, the systems we have are often ragged
and in places are sufficiently poor to cripple whole ranges of use.

What strikes one most noticeably about existing interfaces, besides all
the little ways they fail, is that their failures appear to be unnecessary.
Why, when interaction could be so smooth, even elegant, is it often so
rough, even hazardous? Two observations may help explain this per­
plexing state of affairs.

First, interaction with computers is just emerging as a human activity.
Prior styles of interaction between people and machines—such as driver
and automobile, secretary and typewriter, or operator and control
room—are all extremely lean: there is a limited range of tasks to be
accomplished and a narrow range of means (wheels, levers, and knobs)
for accomplishing them. The notion of the operator of a machine arose
out of this context. But the user is* not an operator. He does not operate
the computer, he communicates with it to accomplish a task. Thus, we
are creating a new arena of human action; communication with machines
rather than operation o f machines. What the nature of this arena is like
we hardly yet know. We must expect the first systems that explore the
arena to be fragmentary and uneven.

Second, the radical increase in both the computer’s power and its
performance/cost ratio has meant that an increasing amount of
computational resources have become available to be spent on the
human-computer interface itself, rather than on purely computational
tasks. This increase of deployable resources exacerbates the novelty of
the area, since entirely new styles of interaction become available
coincidentally with an increased amount of computational ability available
per interaction. These new styles often lead to completely new interfaces,
which are then even more ragged than before. At the same time,
opportunities for the invention of good interfaces also increase rapidly,
accounting for the leaps and bounds we have seen in terms of major
improvements in functionality and ease of use.

1.2. THE ROLE OF PSYCHOLOGY 7

1.2. THE ROLE OF PSYCHOLOGY

Many in the computer field agree that there is an obvious way to
design better human-computer interfaces. Unfortunately, they disagree
on what it is. It is obvious to some that psychological knowledge should
be applied. Their slogan might be, in the words of Hansen (1971):
“Know the user!” It is obvious to others that the interface should simply

8 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

be designed with more care—that if designers were given the goal of
good interfaces, rather than stringent cost limits or tight deadlines, then
they would produce good designs. Their slogan might be: “Designers are
users too—just give them the time and freedom to design it right!” And
it is obvious to others still that one should pour the effort into some new
components—flat displays, color graphics, or dynamically codeable micro­
processors in the terminal. Their slogan might be: “Make the com­
ponents good enough and the system will take care of itself!”

Who is to gainsay each of these their point? The technology limits,
often severely, what can be done. All the human engineering in the
world will not turn a 10-character-per-second teletypewriter into a high-
resolution graphics terminal. The history of terminal development so far
is writ largely in terms of advances in basic interface components, most
notably the resources to allow substantial computational cycles to be
devoted to the interface. It is easy to point to current limitations whose
lifting will improve the interface by orders of magnitude. Immense gains
will occur when the display holds not the common 24 X 80 characters
(the typical alphanumeric video terminal, widely available today), but a
full page of 64 X 120 characters (the typical 1000 X 800 pixel video
terminal, available at a few places today), or even the full drafting board
of 512 X 512 characters (not really available anywhere, yet, as far as we
know).

Moreover, any accounting will have to credit the majority of the
capabilities and advances at the interface to design engineers and only a
few of them to psychologists. However many imperfections there remain
in the interface, the basic capabilities and inspired creations that do exist
came out of an engineering analysis of the functions needed and the fact
that the designer, being human, could empathize directly with the user.

And yet, there remain the mini-horror stories—of systems where, after
the fact, it became clear that either the nature or the limitations of the
user were not appreciated, and some design foolishness was committed.
Since it is these stories that come to mind in discussing the role of the
human at the interface, it is often assumed that all that one needs are
ways of checking to be sure that the obvious is not overlooked; “All we
need from psychology is a few good checklists!” might be the slogan
here. But as we shall see, there is more to human-computer interaction
than can be caught with checklists.

The role psychology might be expected to play in the design of the
user-computer interface is suggested by the results it was able to achieve

for military equipment during World War II. At that time, it had
becxjme apparent that a strong limiting factor in realizing the potential of
man-machine systems, such as radar sets and military aircraft, lay in the
difficulty of operating the equipment Out of a wartime collaboration
between natural scientists, engineers, and psychologists came major
advances, not only with respect to the man-machine systems being
designed, but also with respect to psychological theory itself. Examples
of the latter include the theory of signal detection, manual control theory,
and a methodology for the design of cockpit instrument displays. That
with psychological attention to human performance airplanes became
more flyable encourages us to believe that with psychological attention to
human performance computers can become more usable.

1.3. THE FORM OF AN APPLIED PSYCHOLOGY 9

1.3. THE FORM OF AN APPLIED PSYCHOLOGY

What might an applied information-processing psychology of human-
computer interfaces be like and how might it be used? Imagine the
following scenario:

A system designer, the head of a small team writing the
specifications for a desktop calendar-scheduling system, is
choosing between having users type a key for each
command and having them point to a menu with a
lightpen. On his whiteboard, he lists some representative
tasks users of his system must perform. In two columns, he
writes the steps needed by the “key-command” and “menu”
options. From a handbook, he culls the times for each
step, adding the step times to get total task times. The key-
command system takes less time, but only slightly. But,
applying the analysis fhim another section of the handbook,
he calculates that the menu system will be faster to learn;
in fact, it will be leamable in half the time. He has
estimated previously that an effective menu system will
require a more expensive processor: 20% more memory,
100% more microcode memory, and a more expensive
display. Is the extra expenditure worthwhile? A few more
minutes of calculation and he realizes the startling fact that,
for the manufacturing quantities anticipated, training costs

for the key-command system will exceed unit manufac­
turing costs! The increase in hardware costs would be
much more than balanced by the decrease in training costs,
even before considering the increase in market that can be
expected for a more easily learned system. Are there
advantages to the key-command system in other areas,
which need to be balanced? He proceeds with other
analyses, considering the load on the user’s memory, the
potential for user errors, and the likelihood of fatigue. In
the next room, the Pascal compiler hums idly, unused,
awaiting his decision.

1 0 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

The system designer is engaged in a sort of psychological civil
engineering, trading computed parameters of human performance against
cost and other engineering variables. The psychological science base
necessary to make possible his design efforts is the sort of applied
psychology that is the topic of this book. Such a psychology must
necessarily be homogeneous in form with the rest of the engineering
science base to allow tradeoffs between psychological and other design
considerations. To be useful, we would argue, such a psychology must
be based on task analysis, calculation, and approximation.

Task Analysis. When psychology is applied in the context of a
specific task, much of the activity hardly seems like psychology at all,
but rather like an analysis of the task itself. The reason for this is clear:
humans behave in a goal-oriented way. Within their limited perceptual
and information-processing abilities, they attempt to adapt to the task
environment to attain their goals. Once the goals are known or can be
assumed, the structure of the task environment provides a large amount
of the predictive content of psychology.

Calculation. The ability to do calculations is the heart of useful,
engineering-oriented applied science. Without it, one is crippled. Appli­
cations are, of course, still possible, as witness mental testing, behavior
modification, assertiveness training, and human-factors investi-gations of
display readability. But what is needed to support an engineering
analysis are laws of parametric variation, applicable on the basis of a task
analysis.

Psychology is not strong on calculation, though a few useful laws,
such as Power Law of Practice, exist The reason might be thought to
be an inherent characteristic of psychology, or maybe even more
generally, of all human sciences. Our view is the opposite. Psychology

is largely non-calculational because it has followed a different drummer.
It has been excessively concerned with hypothesis testing—with building
techniques to discriminate which of two ideas is right If one changes
what one wants from the science, one will find the requisite techniques.
Interestingly, a branch of the human sciences, work-measurement
industrial engineering, indeed asked a different question—namely, how
long would it take people to do preset physical tasks—and it obtained
useful answers.

Approximation. If calculations are going to be made rapidly, they are
necessarily going to be over-simplified. Nature—especially human
nature—is too complex to be written out on the back of an envelope.
But in engineering, approximations are of the essence. It is vital to get
an answer good enough to dictate the design choice; additional accuracy
is gilding the computational lily.

Again, psychology has in general not asked after approximations,
though it has certainly learned to talk in terms of simplified models. The
neglect of approximation has been especially encouraged by the emphasis
on statistical significance rather than on the magnitude of an effect. A
difference of a few percent in performance at two levels of an
independent variable is usually of little practical importance and can
often be ignored in an approximation, even if the difference is highly
significant statistically. But if there is no external criterion—no design
decision to be made, for instance—then there is no way to tell which
approximations are sufficient

But whereas an applied psychology of human-computer interaction
should be characterized by task analysis, calculation, and approximation,
these are not the only considerations. It is obvious that an applied
psychology intended to support cognitive engineering should also be
relevant to design. It is less obvious, but nonetheless true, that to be
successful, an applied psychology should be theory-based.

1.3. THE FORM OF AN APPLIED PSYCHOLOGY 1 1

RELEVANT TO DESIGN

Design is where the action is in the human-computer interface. It is
during design that there are enough degrees of freedom to make a
difference. An applied psychology brought to bear at some other point is
destined to be half crippled in its impact.

We suspect that many psychologists would tend to pick evaluation as
the main focus for application (though some might have picked training).
Evaluation is what human factors has done best. Given a real system.

1 2 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

one can produce a judgment by experimentation. Thus, the main tool in
the human-factors kit has been the methodology of experimental design,
supported by concomitant skill in experimental control and in statistics
with which to assess the results. The emphasis on evaluation is wide­
spread: There is a whole subfield of psychology whose concern is to
evaluate social action programs. The testing movement is fundamentally
evaluational in character, whether concerned with intelligence testing or
with clinical assessment

Applying psychology to the evaluation of systems is assuredly easier
than applying it to the design of systems. In evaluation, the system is
given; all its parts and properties are specified. In design, the system is
still largely hypothetical; it is a class of systems. On the other hand,
there is much less leverage in system evaluation than in system design.
In design, one wants results expressed explicitly as a function of some
controllable parameters, in order to explore optimization and sensitivity.
In evaluation, this urge is much diminished; experimental evaluation is so
expensive as to be prohibitive, permitting exploration of only two or
three levels of each independent variable. Most importantly, by the time
a system is running well enough to evaluate, it is almost inevitably too
late to change it much. Thus, an applied psychology aimed exclusively at
evaluation is doomed to have little impact

There are several choices for how to institutionalize an applied
psychology. First psychologists could be the primary professionals in the
field. Though possible in some fields, such as mental health, counseling,
or education, we think this arrangement unlikely for computers. The
field is already solely in the possession of computer engineers and
scientists. Second, psychologists could be specialists, either as members
of separate human-factors units within the organizations or as another
individual specialty within the primary design team. Our reasons for not
favoring separate psychology units reflect the additional separation we
believe they imply between the psychology and the development of
interfaces. Application of psychology would shift too strongly towards
evaluation and away from the main design processes.

We favor a third choice; that the primary professionals—the computer
system designers—be the main agents to apply psychology. Much as a
civil engineer learns to apply for himself the relevant physics of bridges,
the system designer should become the possessor of the relevant applied
psychology of human-computer interfaces. Then and only then will it
become possible for him to trade human behavioral considerations
against the many other technical design considerations of system config­

uration and implementation. For this to be possible, it is necessary that a
psychology of interface design be cast in terms homogeneous with those
commonly used in other parts of computer science and that it be
packaged in handbooks that make its application easy. Thus, the system
designer in our scenario finds the design handbook more efficient to use
than plunging blindly into code with his Pascal compiler, although he
may still find it profitable to engage in exploratory implementation.

1.3. THE FORM OF AN APPLIED PSYCHOLOGY 1 3

THEORY-BASED

An applied psychology that is theory-based, in the sense of
articulating a mechanism underlying the observed phenomena, has
advantages of insight and integration over a purely empirical approach.
The point can be made by reference to two examples of behavioral
science lacking a strong theory in this sense: work-study industrial engi­
neering, referred to earlier, and intelligence testing. Rather than develop
the theory of skilled movement, the developers of the several movement
time systems chose an empirical approach, tabulating the times to make
various classes of movements and ignoring promising theoretical develop­
ments such as Fitts’s Law (at least until recently). Although their tables
of motion times ran to four significant figures, they ignored the variance
of the times and interactions between sequential motions, thus rendering
the apparent precision illusory. This lack of adequate theoretical
development made the work, despite its impressive successes, vulnerable
to attacks from outside the field (see Abruzzi, 1956; Schmidtke and Stier,
1961). Similarly, in mental testing, the lack of a psychological theory of
the mental mechanisms underlying intelligence (as opposed to a purely
statistical theory of test construction) has put the validity of mental tests
in doubt despite, again, impressive successes.

It is natural for an applied psychology of human-computer interaction
to be based theoretically on information-processing psychology, with the
latter’s emphasis on mental mechanism. The use of models in which
man is viewed as a processor of information also provides a common
framework in which models of memory, problem solving, perception, and
behavior all can be integrated with one another. Since the system
designer also does his work in information-processing terms, the emphasis
is doubly appropriate. The lack of this common framework is one reason
why it would be difficult to meld in important techniques such as the use
of Skinnerian contingent reinforcement It is not that the techniques are
not useful in general, nor that they cannot be applied to the problems of

the human-computer interface; but within the framework that underlies
this book, they would show up as isolated techniques.

The psychology of the human-computer interface is generally
individual psychology: the study of a human behaving within a non­
human environment (though, interestingly, interacting with another active
agent). But within the study all psychological functioning is in­
cluded—motor, perceptual, and cognitive. Whereas much psychology
tends to focus on small micro-tasks studied in isolation, an applied
psychology must dwell on the way in which all the components of the
human processor are integrated over time to do useful tasks. For
example, it might take into account interactions among the following:
the ease with which commands can be remembered, the type font of
characters as it affects legibility of the commands, the number of com­
mands in a list, and anything else relevant to the particular interface.
The general desirability of such wide coverage has never been in doubt
It appears in our vision of an applied psychology because wide coverage,
especially the incorporation of cognition, now seems much more credible
than it did twenty years ago. On the other hand, motivational and
personality issues are not included. Again, there is hardly any doubt of
the desirability of including them in an applied psychology, but it is
unclear how to integrate the relevant existing knowledge of these topics.

1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY

1 4 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

The textbook view is that as a science develops it sprouts applications,
that knowledge flows from the pure to the applied, that the backflow is
the satisfaction (and support) that comes to a science from benefiting
society. We have been reminded often enough that such a view does
violence to the realities in several ways. Applied domains have a life and
source of their own, so that many ingenious applications do not spring
from basic science, but from direct understanding of the task in an
applied context—from craft and experience. More importantly in the
present context, applied investigations vitalize the basic science; they
reveal new phenomena and set forth clearly what it is that needs
explanation. The mechanical equivalent for heat, for instance, arose from
Count Rumford’s applied investigations into the boring of brass cannon;
and the bacteriological origin of common infectious diseases eventually
arose, in part, out of studies by Pasteur on problems besetting the

1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY 1 5

fermentation of wine. The basic argument was made for psychology by
Bryan and Harter (1898); and numerous applied psychological models
exist to remind us of what is possible (for example, Bryan and Harter’s
1898 and 1899 studies of telegraphy. Book’s 1908 studies of typewriting,
and Dansereau’s 1968 study of mental arithmetic).

These general points certainly hold for an applied cognitive
psychology, and on the same general ground that they hold for all
sciences. However, it is worth detailing the three main yields for
cognitive psychology that can flow from a robust applied cognitive
psychology.

The first contribution is to the substance of basic cognitive psychol­
ogy. The information-processing revolution in cognitive psychology is
just beginning. Many domains of cognitive activity have hardly been
explored. Such explorations are not peripheral to the basic science. It is
a major challenge to the information-processing view to be able to
explain how knowledge and skill are organized to cope with all kinds of
complex human activities. Each application area in fact becomes an
arena in which new problems for the basic science can arise. Each
application area successfully mastered offers lessons about the ways in
which the basic science can be extended to cover new areas. Ultimately,
as a theory becomes solidified, application areas contribute less and less
to the basic science. But at the beginning, just the reverse is true.

The domain of human-computer interaction is an example of such an
unexplored domain. It has strong skill components. People who interact
with computers extensively build up a repertoire of efficient, smooth,
learned behaviors for carrying out their routine communicative activities.
Yet, the interaction is also intensely cognitive. The skills are wielded
within a problem-solving context, and the skills themselves involve the
processing of symbolic information. As we shall see in abundance, even
the most routine of these activities, such as using a computer text-editing
program, requires the interpretation of instructions, the formulation of
sequences of commands, and the communication of these commands to
the computer.

The second contribution is to the style of cognitive psychology rather
than to its substance. We believe that the form of the psychology of
human-computer interaction, with its emphasis on task analysis,
calculation, and approximation, is also appropriate for basic cognitive
psychology. The existing emphasis in psychology on discriminating be­
tween theories is certainly understandable as a historical development

However, it stifles the growth of adequate theory and of the cumulation
of knowledge by focusing the attention of the field on the consequences
of theories, however uninteresting in themselves, that can be used to tell
whether idea A or idea B is correct. Measurements come to have little
value in themselves as a continually growing body of useful quantitative
knowledge of the phenomena. They are seen instead primarily as indi­
cators fashioned to fit the demands of each experimental test. Since
there is no numerical correspondence across paradigms in what is
measured, the emphasis on discrimination fosters a tendency towards
isolation of phenomena in specific experimental paradigms.

The third contribution is simply that of being a successful application,
though it sounds a bit odd to say it that way. Modem cognitive psy­
chology has been developing now for 25 years. If information-processing
psychology represents a successful advance of some magnitude, then
ultimately it must both affect the areas in which psychology is now
applied and generate new areas of application.

1 6 1. APPLIED INFORMATION-PRCXiESSING PSYCHOLOGY

1.5. THE YIELD FOR COMPUTER SCIENCE

It is our strong belief that the psychological phenomena surrounding
computer systems should be part of computer science. Thus, we see this
book not just as a book in applied psychology, but as a book in computer
science as well. When university curriculum committees draw up a list of
“what every computer scientist should know to call himself a computer
scientist,” we think models of the human user have a place alongside
models of compilers and language interpreters.

The fundamental argument is worth stating: Certain central aspects
of computers are as much a function of the nature of human beings as of
the nature of the computers themselves. The relevance of both computer
science and psychology to the design of programming languages and the
interface is easy to argue, but psychological considerations enter into
more topics in computer science than is usually realized. The presump­
tion that has governed two generations of operating systems, for instance,
that time-sharing systems should degrade response time as the number of
users increases, is neither dictated by technology nor independent of the
psychology of the user. A sufficiently crisp model of the effects of such
a feature on the user could have turned the course of development of
operating systems into quite different channels of development (into the

1.6. PREVIEW 17

logic of guaranteed service, contracted service, or proportionately graded
services, for example). The yield for computer science that can flow
from an applied psychology of human-computer interaction is
engineering methods for taking the properties of users into account
during system design.

1.6. PREVIEW

In this book, we report on a series of studies undertaken to
understand the performance of users on interactive computing systems.
Since new knowledge and insight are often achieved by first focusing on
concrete cases and then generalizing, we direct a major portion of our
effort towards user performance on computer text-editing systems. From
this beginning, we try to generalize to other systems and to cognitive skill
generally. We address four basic questions: (1) How can the science
base be built up for supporting the design of human-computer interfaces?
(2) What are user performance characteristics in a specific human-
computer interaction task domain, text-editing? (3) How can our results
be cast as practical models to aid in design? (4) What generalizations
arise from the specific studies, models, and applications?

SCIENCE BASE

Chapter 2 begins by discussing the existing scientific base on which to
erect an applied psychology of the human-computer interface. It does
not review all the sources in their own terms—what is available from
cognitive psychology, human factors, industrial engineering, manual
control, or the classical study of motor skills—rather, it lays out a model
of the human information-processor that is suited to an applied
psychology and justified by current research.

TEXT-EDITING

Attention then turns to a detailed examination of text-editing as a
prototypical example of human-computer interaction. An elementary
requirement for understanding behavior at the interface is some gross
quantitative information about user behavior, to provide a background
picture against which to place more detailed studies in context The
three studies in Chapters 3 and 4 provide such a picture. Two of these
(Chapter 3), a benchmark study comparing text-editing systems and a

Study of the individual user differences, allow one to assess the variability
in performance time arising from editing system design and from
individual user differences. The third study (Chapter 4) uses the data of
Chapter 3 to explore how well a simple model, in which all editing
modifications are assumed to take the same time, does at analyzing
tradeoffs between using a computer text-editor vs. using a typewriter.

The next three chapters develop an information-processing model for
the behavior of users with an editing system. Chapter 5 introduces the
basic theory. The user is taken to employ goals, operators, methods, and
selection rules for the methods (the GOMS analysis) to accomplish an
editing task from a marked-up manuscript. Experimental verification of
the analysis is given, and the effect on accuracy due to the detail with
which the analysis is applied is also investigated. The routine use of an
editing system is discussed as an instance of cognitive skill. Chapter 6
extends the model in three ways. First, the model is reduced to a
complete, running computer simulation of user performance. Second, the
analysis is extended to user behavior on a display-oriented system. Third,
stochastic elements are introduced into the model to predict the
distributions of performance times. Chapter 7 examines in detail one
suboperation of editing: selecting a piece of text Four different devices
for doing this are tested, and a theoretical account is given for their
performance.

ENGINEERING MODELS

Chapters 8 and 9 focus on the ways in which the GOMS analysis can
be simplified to provide practical models for predicting the amount of
time required by a user to do a task. In Chapter 8, a model at the level
of individual keystrokes is presented that is sufficiently simple and
accurate to be a design tool. The model is validated over several systems,
tasks, and users; and examples are given for ways in which the model
could be used in engineering applications. In Chapter 9, a second
simplification of the GOMS analysis, this time at a more gross level, is
presented This model is suited for cases where, as in the early stages of
design, the system to be analyzed is not fully specified.

18 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

EXTENSIONS AND GENERALIZATIONS

So far, the studies have focused mostly on manuscript editing and on
similar tasks where the user carries out a set of instructions. Chapter 10
extends the same kind of analysis to a particular problem-solving activity:

1.6. PREVIEW 19

the use of a computer system to lay out a VLSI electronic circuit The
analysis shows that the user behavior exhibits many of the characteristics
of manuscript editing and that the behavior is indeed a routine cognitive
skill, partially understandable in terms of the concepts already introduced.

Chapter 11 attempts to place results from the above studies in a larger
theoretical context It continues the discussion of text-editing as an
instance of cognitive skill and the relationship between cognitive skill
generally and problem solving. Chapter 12 addresses the role of psychol­
ogical studies in design. It is argued that psychological studies should
emphasize the creation of performance models. The several methods of
doing this are discussed and provide a framework for summarizing the
thrust of the present book. A number of guidelines for systems develop­
ment that arise from our studies are listed.

http://taylorandfrancis.com

SCIENCE BASE

21

http://taylorandfrancis.com

2. The Human
Information-Processor

2 .1 . THE MODEL HUMAN PROCESSOR
The Perceptual System

The Motor System

The Cognitive System
2 .2 . HUMAN PERFORMANCE

Perception
Motor Skill
Simple Decisions
Learning and Retrieval
Complex Information-Processing

2 .3 . CAVEATS AND COMPLEXITIES

Our purpose in this chapter is to convey a version of the existing
psychological science base in a form suitable for analyzing human-
computer interaction. To be practical to use and easy to grasp, the
description must necessarily be an oversimplification of the complex and
untidy state of present knowledge. Many current results are robust, but
second-order phenomena are almost always known that reveal an
underlying complexity: and alternative explanations usually exist for
specific effects. An uncontroversial presentation in these circumstances
would consist largely of purely experimental results. Such an approach
would not only abandon the possibility of calculating parameters of
human performance from the analysis of a task, but would also fail in the
primary purpose of giving the reader knowledge in a form relatively easy
to assimilate.

Our tack, therefore, is to organize the discussion around a specific,
simple model. Though limited, this model allows us to give, insofar as
possible, an integrated description of psychological knowledge about
human performance as it is relevant to human-computer interaction.

23

2.1. THE MODEL HUMAN PROCESSOR

A computer engineer describing an information-processing system at
the systems level (as opposed, for instance, to the component level)
would talk in terms of memories and processors, their parameters and
interconnections.^ By suppressing detail, such a description would help
him to envision the system as a whole and to make approximate pre­
dictions of gross system behavior.

The human mind is also an information-processing system, and a
description in the same spirit can be given for it. The description is
approximate when applied to the human, intended to help us remember
facte and predict user-computer interaction rather than intended as a
statement of what is really in the head. But such a description is useful
for making approximate predictions of gross human behavior. We
therefore organize our description of the psychological science base
around a model of this sort To distinguish the simplified account of the
present model from the fuller psychological theory we would present in
other contexts, we call this model the Model Human Processor.

The Model Human Processor (see Figures 2.1 and 2.2) can be
described by (1) a set of memories and processors together with (2) a set
of principles, hereafter called the “principles of operation.” Of the two
parts, it is easiest to describe the memories and processors first, leaving
the description of the principles of operation to arise in context.

The Model Human Processor can be divided into three interacting
subsystems: (1) the perceptual system, (2) the motor system, and (3) the
cognitive system, each with its own memories and processors. The
perceptual system consists of sensors and associated buffer memories, the
most important buffer memories being a Visual Image Store and an
Auditory Image Store to hold the output of the sensory system while it is
being symbolically coded. The cognitive system receives symbolically
coded information from the sensory image stores in its Working Memory
and uses previously stored information in Long-Term Memory to make
decisions about how to respond. The motor system carries out the
response. As an approximation, the information processing of the human
will be described as if there were a separate processor for each
subsystem: a Perceptual Processor, a Cognitive Processor, and a Motor

24 2. THE HUMAN INFORMATION-PROCESSOR

For a survey of computing systems in these terms see Siewiorek, Bell, and Newell
(1981).

Processor. For some tasks (pressing a key in response to a light) the
human must behave as a serial processor. For other tasks (typing,
reading, simultaneous translation) integrated, parallel operation of the
three subsystems is possible, in the manner of three pipelined processors:
information flows continuously from input to output with a character­
istically short time tag showing that all three processors are working
simultaneously.

The memories and processors are described by a few parameters. The
most important parameters of a memory are

¡1, the storage capacity in items,
6, the decay time of an item, and
K, the main code type (physical, acoustic, visual, semantic).

The most important parameter of a processor is

T , the cycle time.

Whereas computer memories are usually also characterized by their
access time, there is no separate parameter for access time in this model
since it is included in the processor cycle time.

We now consider each of the subsystems in more detail.

The Perceptual System

The perceptual system carries sensations of the physical world
detected by the body’s sensory systems into internal representations of
the mind by means of integrated sensory systems. An excellent example
of the integration of a sensory system is provided by the visual system:
The retina is sensitive to light and records its intensity, wave length, and
spatial distribution. Although the eye takes in the visual scene over a
wide angle, not quite a full half-hemisphere, detail is obtained only over
a narrow region (about 2 degrees across), called the fovea. The remain­
der of the retina provides peripheral vision for orientation. The eye is in
continual movement in a sequence of saccades, each taking about 30
msec to jump to the new point of regard^ and dwelling there 60~700
msec for a total duration of

2.1. THE MODEL HUMAN PROCESSOR 2 5

Russo (1978).

LONG-TERM MEMORY

^LTM “
MlTM =
L̂TM ~ S6fHdntic

WORKING MEMORY

VISUAL IMAGE AUDITORY IMAGE
STORE STORE

= 200 (70-1000] msec 5̂00 [900-3500] msec
/xy,s = 17 (7-17] letters / *̂IS = 5 (4.4-6.2(letters
Kyis = Physical ^ kais = Physical

MwM = ̂ [2.5-4.1) chunks
7 (5 -9 1 chunks

*̂ WM ~ ̂ [5~226| SBC
(1 chunk) = 73 (73-226) sec

iSŷ ,̂ (3 chunks) = 7 (5-34] sec
KyvM Acoustic or Visual

Figure 2.1. The Model Human Processor—memories and
processors.
Sensory information flows into Working Memory through the Perceptual Processor.
Working Memory consists of activated chunks in Long-Term Memory. The basic
principle of operation of the Model Human Processor Is the Recognize-Act Cycle of
the Cognitive Processor (PO in Figure 2.2). The Motor Processor is set in motion
through activation of chunks in Working Memory.

26

PO. Recognize-Act Cycle of the Cognitive Processor. On each cycle of the
Cognitive Processor, the contents of Working Memory initiate actions associatively
linked to them in Long-Term Memory; these actions in turn modify the contents of
Working Memory.

P1. Variable Perceptual Processor Rate Principle. The Perceptual Processor cycle
time Tp varies inversely with stimulus Intensity.

P2. Encoding Specificity Principle. Specific encoding operations performed on what
Is perceived determine what Is stored, and what is stored determines what retrieval
cues are effective In providing access to what Is stored.

P3. Discrim ination Principle. The difficulty of memory retrieval Is determined by the
candidates that exist In the memory, relative to the retrieval clues.

P4. Variable Cognitive Processor Rate Principle. The Cognitive Processor cycle
time is shorter when greater effort Is induced by increased task demands or
information loads; It also diminishes with practice.

P5. Fittses Law. The time to move the hand to a target of size S which lies a
distance D away Is given by:

P6.

P7.

P8.

P9.

T̂pos = ¡ x f \o g ^ {D /S ^ .5),

where ¡¡^ - fOO [70~120] msec/bit.

Power Law of Practice. The time
power law:

T„ = T,n-

(2.3)

T to perform a task on the nXh trial follows a

(2.4)

where a = .4 [.2~ .6].

Uncertainty Principle. Decision time T increases with uncertainty about the
judgement or decision to be made:

T I ^ H ,

where H is the information-theoretic entropy of the decision and
/^ = 150 [0-157] msec/bit. For n equally probable alternatives (called Hick’s Law),

H = iOQ^in -1-1). (2.8)

For n alternatives with different probabilities, /?•, of occurence,

/ / =S.p.log2(1/p, + 1). (2.9)

Rationality Principle. A person acts so as to attain his goals through rational
action, given the structure of the task and his inputs of Information and bounded by
limitations on his knowledge and processing ability:

Goals + Task Operators + Inputs
+ Knowledge -♦- Process-limits Behavior

Problem Space Principle. The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying operators, and (4)
control knowledge for deciding which operator to apply next.

Figure 2.2.
operation.

The Model Human Processor—principles of

27

Eye-movement = 230 [70~700] msec ?

(In this expression, the number 230 msec represents a typical value and
the numbers in brackets indicate that values may range from 70 msec to
700 msec depending on conditions of measurement, task variables, or
subject variables.) Whenever the target is more than about 30 degrees
away from the fovea, head movements occur to reduce the angular
distance. These four parts—central vision, peripheral vision, eye move­
ments, and head movements—operate as an integrated system, largely
automatically, to provide a continual representation of the visual scene of
interest to the perceiver.

PERCEPTUAL MEMORIES

Very shortly after the onset of a visual stimulus, a representation of
the stimulus appears in the Visual Image Store of the Model Human
Processor. For an auditory stimulus, there is a corresponding Auditory
Image Store. These sensory memories hold information coded physically,
that is, as an unidentified, non-symbolic analogue to the external
stimulus. This code is affected by physical properties of the stimulus,
such as intensity. For our purposes we need not enter into the details of
the physical codes for the two stores but can instead just write:

K = physical,
Kais = physical.

For example, the Visual Image Store representation of the number 2
contains features of curvature and length (or equivalent spatial frequency
patterns) as opposed to the recognized digit.

The perceptual memories are intimately related to the cognitive
Working Memory as Figure 2.1 depicts schematically. Shortly after a
physical representation of a stimulus appears in one of the perceptual
memories, a recognized, symbolic, acoustically-coded (or visually-coded)

28 2. THE HUMAN INFORMATION-PROCESSOR

Actual saccadic eye-movement times (travel -H fixation time) can vary quite
considerably depending on the task and the skill of the observer. Russo (1978, Table 2,
p. 94) lists 70 msec as the minimum time and 230 msec as a typical time. The largest
time given by Busswell (1922, p. 31) for eye-movements in reading is 660 msec (for first-
grade children), which we round to 700 msec.

representation of at least part of the perceptual memory contents occurs
in Working Memory. If the contents of perceptual memory are complex
or numerous (for example, an array of letters) and if the stimulus is
presented only fleetingly, the perceptual memory trace fades, and
Working Memory is filled to capacity before all the items in the
perceptual memory can be transferred to representations in Working
Memory (for letters the coding goes at about 10 msec/letter). However,
the Cognitive Processor can specify which portion of the perceptual
memory is to be so encoded. This specification can only be by physical
dimensions, since this is the only information encoded: after being
shown a colored list of numbers and letters, a person can select (without
first identifying what number or letter it is) the top half of the Visual
Image Store or the green items, but not the even digits or the digits
rather than the letters.

Figure 2.3 shows the decay of the Visual Image Store and the
Auditory Image Store over time. As an index of decay time, we use the
half-life, defined as the time after which the probability of retrieval is less
than 50%. While exponential decay is not necessarily implied by the use
of the half-life. Figure 2.3 shows that it is often a good approximation to
the observed curves. The Visual Image Store has a half-life of about

8 = 200 [90~ 1000] msec

but the Auditory Image Store decays more slowly.

2.1. THE MODEL HUMAN PROCESSOR 2 9

 ̂ A least-squares fit to data estimated from figures appearing in Sperling (1960) and
Averbach and Coriell (1961) yields the following facts. The half-life of the letters in
excess o f the memory span that subjects could report in the partial report condition of
Sperling’s (1960) experiment was 621 msec (9-letter stimulus) and 215 msec (12-letter
stimulus). Averbach and Coriell’s (1961) experiment gives a half-life of 92 msec (16-
letter stimulus). The typical value for S y j ^ has been set at 200 msec, representing the

middle o f these. The lower and upper bounds for 8 y j ^ are set at rounded-off values
reflecting the fastest subject in the condition with the shortest half-life and the slowest
subject in the condition with the longest half-life. The shortest half-life in these
experiments was 93 msec for Averbach and Coriell’s Subject GM (16-letter condition);
the longest half-life was 940 msec for Sperling’s Subject ROR (9-letter condition). It is
possible to have the average half-life be 92 msec, shorter than the half-life o f any
subject, because this average is computed by first taking the mean o f each point across
subjects, then computing the slope o f the best least-square fitting line in semilog
coordinates.

Figure 2.3. Time decay of Visual and Auditory Image Stores.
(a) Decay of the Visual Image Store. In each experiment, a matrix of letters was
made observable tachistoscopically for 50 msec. In the case of the Sperling
experiments, a tone sounded after the offset of the letters to indicate which row
should be recalled. In the case of the Averbach and Coriell experiment, a bar
appeared after the offset of the letters next to the letter to be identified. The
percentage of indicated letters that could be recalled eventually asymptotes to

/iw iv i*- The graph plots the percentage of letters reported correctly in excess of
/Xwivi* ^ function of time before the indicator.
(b) Decay of the Auditory Image Store. Nine letters were played to the observers
over stereo earphones arranged so that three sequences of letters appear to come
from each of three directions. A light lit after the offset of the letters to indicate
which sequence should be recalled. The graph plots the percentage of the
relevant 3-letter sequence In excess of reported correctly as a function of
time before the light was lit.

30

2.1. THE MODEL HUMAN PROCESSOR 31

= 1500 [900-3500] msec

consistent with the fact that auditory information must be interpreted
over time. The capacity of the Visual Image Store is hard to fix precisely
but for rough working purposes may be taken to be about

¡iyis = 17 [7~17] letters

The capacity of the Auditory Image Store is even more difficult to fix,
but would seem to be around

M/4/5 “ ̂[4.4~6.2] letters ?

PERCEPTUAL PROCESSOR

The cycle time Tp of the Perceptual Processor is identifiable with the
so-called unit impulse response (the time response of the visual system to

The half-life o f the letters in excess o f the memory span that subjects could report
in the partial report condition o f Darwin, Turvey, and Crowder’s (1972) experiment was
1540 msec, which we have rounded to 5 ^ /^ = 1500 msec. The difference in decay

half-life as a function o f letter order in their experiment (963 msec for the third letter,
3466 msec for the first letter) has been rounded to give lower and upper bounds of 900
and 3500. Other techniques have been used to obtain values for the “decay time” of the
Auditory Image Store. For example, use of a masking technique gives estimates of
around 250 msec full decay (Massaro, 1970), but these experiments have been criticized
by Klatzky (1980, p. 42) because they may only measure the time necessary to transmit
categorical information to Working Memory. On the other end, experiments that
measure the delay at which there is still some facilitation of the identification of a noisy
signal (Crossman, 1958; Guttman and Julesz, 1963) give very wide full-decay estimates:
from 1000 msec to 15 minutes!

 ̂ Sperling (1963, p. 22) estimates the capacity of the Visual Image store in terms of
the number o f letters available at least 17 letters and possibly more. The fewest number
o f letters available for any subject immediately after stimulus presentation in the 9-letter
condition (Sperling, 1960) was 7.4 letters for Subject NJ.

Range is from the number o f letters or numbers that could be reported by
Darwin, Turvey, and Crowder’s (1972) subjects in an experiment in which they had to
give the trio o f letters coming from one o f three directions (indicated by a visual cue
shortly after the end o f the sounds). Lowest value, 4.4 letters, is for accuracy of recalling
second letter o f triple when subjects had to name all items coming from a certain
direction (Figure 1, p. 259). Highest number, 6.2 letters, is for recall by category when
no location was required (Figure 2(B), p. 262).

a very brief pulse of light)* and its duration is on the order of

Tp = 100 [50- 200] msec

If a stimulus impinges upon the retina at time r = 0, at the end of time t
= Tp the image is available in the Visual Image Store and the human
claims to see it. In truth, this is an approximation, since different infor­
mation in the image becomes available at different times, much as a
photograph develops.^® For example, movement information and low
spatial frequency information are available sooner than other information.
A person can react before the image is fully developed or can wait for a
better image, according to whether speed or accuracy is the more
important.

Perceptual events occurring within a single cycle are combined into a
single percept if they are sufficiently similar. For example, two lights
occurring at different nearby locations within 60-100 msec combine to
give the impression of a single light in motion. A brief pulse of light,
lasting t msec with intensity /, has the same appearance as a longer pulse
of less-intense light, provided both pulses last less than 100 msec, giving
rise to Bloch’s Law (1885):

32 2. THE HUMAN INFORMATION-PROCESSOR

I»t = k, / < T p .

Two brief pulses of light within a cycle combine their intensities in a
more complicated way, but still give a single percept.^^ Thus there is a
basic quantum of experience; and the present is not an instantaneous
dividing line between past and future, but has itself duration.

Figure 2.4 shows the results of an experiment in which subjects were
presented with a rapid set of clicks, from 10 to 30 clicks per second, and
were asked to report how many they heard. The results show that they
heard the correct number when the clicks were presented at 10 clicks/sec,
but missed progressively more clicks at 15 and 30 clicks/sec. A simple

8 See Ganz (1975).

The source o f the range is the review by Harter (1967), who also discusses the
suggestion that the cycle time can be identified with the 77~125 msec alpha period in
the brain.

10

11
See Ericksen and Shultz (1978), Ganz (1975).

See Ganz (1975).

2.1. THE MODEL HUMAN PROCESSOR 33

Figure 2.4. Fusion of clicks within 100 msec.
A burst of sound containing an unknown number of auditory clicks at the uniform
rate of 10/sec, 15/sec, or 30/sec was presented to the subject. The graph plots
the number of clicks/burst reported as a function of the number presented. After
Cheatham and White (1954, Figure 1, p. 427).

analysis in terms of the Model Human Processor shows why. When the
experimenter plays the clicks at 10 clicks/sec, there is one click for each
Tp ~ 100 msec interval and the subject hears each click. But when the
experimenter plays the clicks at 30 clicks/sec, the three clicks in each 100
msec cycle time are fused into a single percept (perhaps sounding a little
louder) and the subject hears only one click instead of three, or 10
clicks/sec. The data in Figure 2.4 show that the number of clicks/sec
perceived by the subjects does in fact stay approximately constant in the
10 clicks/sec range (the measured values of the slopes are 9~11 clicks/
sec) for the three rates of presentation.

As a second-order phenomenon, the processor time Tp is not com­
pletely constant, but varies somewhat according to conditions. In
particular, Tp is shorter for more intense stimuli, a fact derivable from a
more detailed examination of the human information-processor using
linear systems theory, but which we simply adopt as one of the principles
of operation (Figure 2.2);

PI. Variable Perceptual Processor Rate Principle. The Per­
ceptual Processor cycle time Tp varies inversely with stimulus
intensity.

The effect of this principle is such that Tp can take on values within the
50~200 msec range we have given. Under very extreme conditions of
intense, high-contrast stimuli or nearly invisible, low-contrast stimuli, Tp
can take on values even outside these ranges.

The Motor System

Let us now consider the motor system. Thought is finally translated
into action by activating patterns of voluntary muscles. These are
arranged in pairs of opposing “agonists” and “antagonists,” fired one
shortly after the other. For computer users, the two most important sets
of effectors are the arm-hand-finger system and the head-eye system.

Movement is not continuous, but consists of a series of discrete
micromovements, each requiring about

34 2. THE HUMAN INFORMATION-PROCESSOR

■’’a/ “ [30~100] msec,12

which we identify as the cycle time of the Motor Processor. The
feedback loop from action to perception is sufficiently long (200~500
msec) that rapid behavioral acts such as typing and speaking must be
executed in bursts of preprogrammed motor instructions.

An instructive experiment is to have someone move a pen back and
forth between two lines as quickly as possible for 5 sec (see Figure 2.5).
Two paths through the processors in Figure 2.1 are clearly visible: (1)
The Motor Processor can issue commands (“open loop”) about once
every = 70 msec; in Figure 2.5 this path leads to the 68 pen reversals
made by the subject in the 5 sec interval, or = 74 msec/reversal. (2)
The subject’s perceptual system can perceive whether the strokes are

12 The limit o f repetitive movement of the hand, foot, or tongue is about 10
movements/sec (Fitts and Posner, 1967, p. 18). Chapanis, Gamer, and Morgan (1949, p.
284) cite tapping rates o f 8~13 taps/sec (38~62 movements/sec, assuming 2
movements/tap). Fox and Stansheld (1964) cite figures of 130 msec/tap = 65
msec/movement Repetition o f the same key in Kinkead’s data (Figure 2.15Z>) averages
to 180 msec/keystroke = 90 msec/movement The scribbling rate in Figure 2.5 was 74
msec/movement We summarize these as 70 [30~100] msec/movement

2.1. THE MODEL HUMAN PROCESSOR 35

5 sec

68 Corrections H

20 Corrections
^Contour of
Stroke Bottoms

Figure 2.5. Maximum motor output rate.
Marks made by subject moving pen back and forth between two lines as fast as
possible for 5 sec.

staying within the lines (the perception process requires Tp msec) and
send this information to the cognitive system, which can then advise (the
decision process requires msec) the motor system to issue a correction
(the motor process requires msec). Tire total time, therefore, to make
a correction using visual feedback (“closed loop”) should be on the order
of = 240 msec; in Figure 2.5, this path leads to the
roughly 20 corrections about the ruled guidelines as indicated by the
dotted line tracing the contours of the bottoms of the strokes, or (5
sec)/(20 movements) = 250 msec/movement.

The Cognitive System

In the simplest tasks, the cognitive system merely serves to connect
inputs from the perceptual system to the right outputs of the motor
system. But most tasks performed by a person are complex and involve
learning, retrieval of facts, or the solution of problems. As would be
expected, the memories and the processor for the cognitive system are
more complicated than those for the other systems.

COGNITIVE MEMORIES

There are two important memories in the cognitive system: a Working
Memory to hold the information under current consideration and a Long-
Term Memory to store knowledge for future use.

Working Memory. Working Memory holds the intermediate products
of thinking and the representations produced by the perceptual system.
Functionally, Working Memory is where all mental operations obtain
their operands and leave their outputs. It constitutes the general registers
of the Cognitive Processor. Structurally, Working Memory consists of a
subset of the elements in Long-Term Memory that have become
activated; this intimate association between Working Memory and Long-
Term Memory is represented in Figure 2.1 by the placement of Working
Memory inside Long-Term Memory. Although Working Memory infor­
mation can be coded in many ways, the use of symbolic acoustic codes is
especially common, related, no doubL to the great importance of verbal
materials to the tasks people frequently perform. The user of a
telephone, for example, is especially liable to dial numbers mistakenly
that sound like the numbers he has just looked up. Visual codes, if
required by the the task, are also possible (as are some other types of
codes). For purposes of the Model Human Processor we consider the
predominant code types to be

K = acoustic or visual.

It is important to distinguish the symbolic, nonphysical acoustic or visual
codes of Working Memory, which are unaffected by physical parameters
of the stimulus (such as intensity), from the nonsymbolic, physical codes
of the sensory image stores, which are affected by physical parameters of
the stimulus.

The activated elements of Long-Term Memory, which define Working
Memory, consist of symbols, called chunks, which may themselves be
organized into larger units. It is convenient to think of these as nested
abstract expressions; c h u n k i = (c h u n k 2 c h u n k s c h u n k 4), with, for
instance, c h u n k 4 = (c h u n k s c h u n k s).^ ̂ What constitutes a chunk is as
much a function of the user as of the task, for it depends on the contents
of the user’s Long-Term Memory. The sequence of nine letters below is
beyond the ability of most people to repeat back;

B C S B M I C R A

36 2. THE HUMAN INFORMATION-PROCESSOR

13 It is also possible to think o f these as semantic networks, such as those in
Anderson (1980) and other recent publications. At the level o f our discussion, any of
these notations will suffice about equally well. See also Simon (1974) for a technical
definition o f chunk.

2.1. THE MODEL HUMAN PROCESSOR 3 7

However, consider the list below, which is only slightly different:

C B S I B M R C A

Especially if spoken aloud, this sequence will be chunked into CBS IBM
RCA (by the average American college sophomore) and easily remem­
bered, being only three chunks. If the user can perform the recoding
rapidly enough, random lists of symbols can be mapped into prepared
chunks. A demonstration of this is the mapping of binary digits into
hexadecimal digits:

0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0
0100 0010 0001 0011 0110 0110 1000

4 2 1 3 6 6 8

This last can be easily remembered. The coding must be done in both
directions, binary to hexadecimal and hexadecimal to binary, and takes
substantial practice before it can be carried out as part of a regular
memory-span test, but it can be done. Indeed, with extended effort, the
digit span can be increased enormously. A Camegie-Mellon University
student holds the current record at 81 decimal digits, presented at a
uniform rate of 1 digit per second. '̂* This particular event occurred as
part of a psychological study, where it could be verified that all the gain
was due to elaborate recoding and immense practice in its use and
development, rather than any physiological endowment.

Chunks can be related to other chunks. The chunk r o b in , for
example, sounds like the chunk Ro b e r t . It is a subset of the chunk
BIRD, it has chunk w in g s , it can chunk f l y . When a chunk in Long-
Term Memory is activated, the activation spreads to related chunks and
to chunks related to those. As the activation spreads to new chunks, the
previously activated chunks become less accessible, because there is a
limited amount of activation resource. The new chunks are said to
interfere with the old ones. The effect of this interference is that the
chunk appears to fade from Working Memory with time (unless
reactivated), as the decay curves in Figure 2.6 show. The curves are
significantly affected by other variables, including the number of other
chunks the user is trying to remember, retrieval interference with similar

14 Ericsson, Chase, and Faloon (1980); Chase and Ericsson (1981).

38 2. THE HUMAN INFORMATION-PROCESSOR

10 20
Time (sec)

30

Figure 2.6. Working Memory decay rate.
Subject is given either one or three words or consonants to remember. He counts
backwards (preventing rehearsal) for a time and then recalls stimulus. Graph plots
proportion of items correctly recalled as a function of the time elapsed until recall
began.

chunks in Working Memory, and input and retrieval memory strategies
of the user. As a working value we take the half-life of 7 sec from the
curve in Figure 2.6, which together with other data gives

5 = 7 [5-226] sec .15

The decay parameter 6 has a wide range, because most of the
apparent decay comes about from the details of interference, as we have
noted above. But these details are difficult to analyze, so it is most
convenient to accept the range and talk in terms of decay. Since the

For three chunks, Peterson and Peterson’s (1959) data (Figure 2.6) give a half-life
o f about 5 sec. Murdock’s data (Murdock, 1961) in Figure 2.6 give a half-life o f about
7 sec for 3 words and also 9 sec for 3 consonants. On the other hand, Melton’s (1963)
data give a much longer half-life o f 34 sec. For one chunk, Murdock’s data in Figure
2.6 and Melton’s (1%3) give half-lives o f 73 sec and 226 sec, respectively.

decay rate is particularly sensitive to the number of chunks in the
recalled item, it is useful to record the decay rate of representative item
sizes:

8 chunk) = 73 [73-226] sec
SfynfO chunks) = 7 [5-34] sec

When people are asked to recall information a few seconds after
hearing it, they use both Working Memory and Long-Term Memory to
do so. Experimentally, these two systems have been teased apart showing
that there is a pure capacity o f Working Memory (example: number of
immediately preceding digits recallable from a long series when the series
unexpectedly stops),

P w A f - ^ [2.5-4.1] chunks

When this pure capacity is augmented by the use of Long-Term Memory,
the effective capacity o f Working Memory (example: longest
number that can be repeated back) extends to the familiar 7±2 chunks,

^ chunks P

Long-Term Memory. Long-Term Memory holds the user’s mass of
available knowledge. It consists of a network of related chunks, accessed
associatively from the contents of the Working Memory. Its contents
comprise not only facts, but procedures and history as well.

Apparently, there is no erasure from Long-Term Memory,

^LTM ~

However, successful retrieval of a chunk depends on whether associations
to it can be found. There are two reasons the attempt to retrieve a
chunk might fail: (1) effective retrieval associations cannot be found, or

2.1. THE MODEL HUMAN PROCESSOR 39

Crowder (1976) reviews several methods. Estimates are Waugh and Norman
(1%5) method, 2.5 items; Raymond (1969) method, 2.5 items; Murdock (19606, 1967)
method, 3.2~4.1 items; Tulving and Colatia (1970) method, 3.3~ 3.6 items. See also
Glanzer and Razel (1974).

17 MUler (1956).

(2) similar associations to several chunks interfere with the retrieval of the
target chunk. The great importance of these links between particular
chunks in Long-Term Memory, that is, the semantic coding of infor­
mation, leads us to list it as the predominant code type,

Kltm = semantic.

To be stored in Long-Term Memory, information from the sensory
memories must ultimately be encoded into symbolic form: a pattern of
light and dark might be coded as the letter A, an extended pattern coded
as a system error message. When the information from Working
Memory becomes part of Long-Term Memory, the precise way in which
it and the coincident Working Memory contents were encoded deter­
mines what cues will be effective in retrieving the item later. Suppose a
user names a computer-imaging file l ig h t (as opposed to d a r k). If he
later scans a directory listing of file names to identify which ones were
the ones he created and thinks of l ig h t (as opposed to h e a v y), he will
not be able to recognize the file, because he will be using a different set
of retrieval cues. As a principle of operation,

P2. Encoding Specificity Principle}^ Specific encoding
operations performed on what is perceived determine what is
stored, and what is stored determines what retrieval cues are
effective in providing access to what is stored

Because of interference with other chunks in memory that are more
strongly activated by the associations used as retrieval cues, information,
despite being physically present, can become functionally lost. Stated as
a principle,

P3. Discrimination Principle. The difficulty o f memory
retrieval is determined by the candidates that exist in the
memory, relative to the retrieval cues.

Items cannot be added to Long-Term Memory directly (accordingly.
Figure 2.1 shows no arrow in this direction); rather, items in Working

4 0 2. THE HUMAN INFORMATION-PROCESSOR

18 Tulving and Thompson (1973).

Memory (possibly consisting of several chunks) have a certain probability
of being retrievable later from Long-Term Memory. The more associ­
ations the item has, the greater its probability of being retrieved. If a
user wants to remember something later, his best strategy is to attempt to
associate it with items already in Long-Term Memory, especially in novel
ways so there is unlikely to be interference with other items. Of course
this activity, by definition, activates more items in Long-Term Memory,
causing new items to appear in Working Memory, and use capacity. On
a paced task, where a user is given items to remember at a constant rate,
the percentage of the items recalled later increases as the time/item
increases (the probability the item will be stored in Long-Term Memory
and linked so it can be retrieved increases with residence time in
Working Memory), until the time allowed per item is of the same
magnitude as the decay time of Working Memory (after which, more
time available for study does not increase the time the item is in Working
Memory), around 8 sec/chunk = 7 sec/chunk.^^

Storing new chunks in Long-Term Memory thus requires a fair
amount of time and several Long-Term Memory retrievals. On the other
hand, Long-Term Memory is accessed on every 70 msec cognitive-
processing cycle. Thus the system operates as a fast-read, slow-write
system. This asymmetry puts great importance on the limited capacity of
Working Memory, since it is not possible in tasks of short duration to
transfer very much knowledge to Long-Term Memory as a working
convenience.

COGNITIVE PROCESSOR

The recognize-act cycle, analogous to the fetch-execute cycle of
standard computers, is the basic quantum of cognitive processing. On
each cycle, the contents of Working Memory initiate associatively-linked
actions in Long-Term Memory (“recognize”), which in turn modify the
contents of Working Memory (“act”), setting the stage for the next cycle.
Plans, procedures, and other forms of extended organized behavior are
built up out of an organized set of recognize-act cycles.

Like the other processors, the Cognitive Processor seems to have a
cycle time of around a tenth of a second:

2.1. THE MODEL HUMAN PROCESSOR 41

Newell and Simon (1972, p. 793) reviews experiments that gives times o f 8~13
sec/chunk.

4 2 2. THE HUMAN INFORMATION-PROCESSOR

= 70 [25 ~ 170] msec 20

The cycle times for several types of tasks are given in Figure 2.7. The
times vary in the 25 ~ 170 msec/cycle range, depending on the specific
experimental phenomenon and experimental circumstances with which
one wishes to identify the cycle. We have chosen as a nominal value 70
msec, about at the median of those in Figure 2.7, but have included
within the upper and lower limits all the estimates from the figure. As
with the Perceptual Processor, the cycle time is not constant, but can be
shortened by practice, task pacing, greater effort, or reduced accuracy.

P4. Variable Cognitive Processor Rate Principle. The
Cognitive Processor cycle time is shorter when greater
effort is induced by increased task demands or information
loads; it also diminishes with practice.

The cognitive system is fundamentally parallel in its recognizing phase
and fundamentally serial in its action phase. Thus the cognitive system
can be aware of many things, but cannot do more than one deliberate
thing at a time. This seriality occurs on top of the parallel activities of
the perceptual and motor systems. Driving a car, reading roadside
advertisements, and talking can all be kept going by skilled intermittent
allocation of control actions to each task, along the lines of familiar
interrupt-driven time-sharing systems.

Sununary. This completes our initial description of the Model
Human Processor. To recapitulate, the Model Human Processor consists
of (1) a set of interconnected memories and processors and (2) a set of

on
On the fast end, memory scanning rates go down to 25 msec/item (Sternberg,

1975, p. 225, Figures 8 and 9, lower error bar for LETTERS). Michon (1978, p. 93)
summarizes the search for the "time quantum” as converging on 20~30 msec. On the

slow end, silent counting, which takes about 167 msec/item (Landauer, 1962), has
sometimes been taken as a minimum cognitive task. It has sometimes been argued (Hick
1952) that the subject in a choice reaction time experiment makes one choice for each bit
in the set of alternatives, in which case a typical value would be 153 msec/bit (Figure
2.22). Welford (1973, in Kornblum) has proposed a theory of choice reaction in which
the subject makes a series of choices, each taking 92 msec. Blumenthal (1977) reviews
an impressively large number of cognitive phenomena with time constraints in the tenth
o f a second range.

2.1. THE MODEL HUMAN PROCESSOR 43

Rate at which an item can be matched
against Working Memory:

Digits
Colors
Letters
Words
Geometrical shapes
Random forms
Nonsense syllables

33 [27~39] msec/item
38 msec/item
40 [24~65] msec/item
47 [36 -52] msec/item
50 msec/item
68 [42 -93] msec/item
73 msec/item

Range = 2 7 -9 3 msec/item

Rate at which four or fewer objects
can be counted:

Dot patterns
3-D shapes

46 msec/item
94 [40 -17 2] msec/item

Range = 4 0 -1 7 2 msec/item

Perceptual judgement:

Choice reaction time:

Silent counting rate:

92 msec/inspection

92 msec/inspection
153 msec/bit

167 msec/digit

Cavanaugh (1972)

Cavanaugh (1972)

Cavanaugh (1972)

Cavanaugh (1972)

Cavanaugh (1972)

Cavanaugh (1972)

Cavanaugh (1972)

Chi AKIahr (1975)

Akin and Chase (1978)

Welford'(1973)

Welford (1973)

Hyman (1953)

Landauer (1962)

Figure 2.7. Cognitive processing rates.
Selected cycle times (msec/cycle) that might be identified with the Cognitive
Processor cycle time.

principles of operation. The memories and processors are grouped into
three main subsystems: a perceptual system, a cognitive system, and a
motor system. The most salient characteristics of the memories and
processors can be summarized by the values of a few parameters:
processor cycle time t , memory capacity ¡i, memory decay rate 8, and

memory code type k. Each of the processors has a cycle time on the
order of a tenth of a second.

A model so simple does not, of course, do justice to the richness and
subtlety of the human mind. But it does help us to understand, predict,
and even to calculate human performance relevant to human-computer
interaction. To pursue this point, and to continue our development of
the Model Human Processor, we now turn to an examination of sample
phenomena of human performance.

2.2. HUMAN PERFORMANCE

44 2. THE HUMAN INFORMATION-PROCESSOR

We have said that in order to support cognitive engineering of the
human-computer interface, an applied information-processing psychology
should be based on task analysis, calculation, and approximation. These
qualities are important for the Model Human Processor to possess if we
are to address the practical prediction of human performance. Although
it might be argued that the primitive state of development in psycho­
logical science effectively prevents its employment for practical engi­
neering purposes, such an argument overlooks the often large amounts of
ur.c: rtainty also encountered in fields of engineering based on the
physical sciences. The parameters of soil composition under a hill, the
wind forces during a storm, the effects of sea life and corrosion on
underwater machinery, the accelerations during an earthquake—ail are
cases where the engineer must proceed in the face of considerable
uncertainty in parameters relevant to the success of his design.

A common engineering technique for addressing such uncertainty is
to settle on nominal values for the uncertain parameters representing low,
high, and typical values, and to design to these. Thus a heating engineer
might calculate heating load for a building at design temperatures of
10“ F. for winter, 105 “F. for summer, and a more common 70“ F. day.

A similar technique helps us to address the uncertainties in the
parameters of the Model Human Processor. We can define three
versions of the model: one in which all the parameters listed are set to
give the worst performance (Slowman), one in which they are set to give
the best performance (Fastman), and one set for a nominal performance
{Middleman).

The difference between the results of the Middleman (nominal) and
the Fastman-Slowman (range) calculations must be kept clearly in mind.
Secondary effects, outside the scope of the model, may mean that the

appropriate parameter value for a particular calculation lies at a place in
the range other than that given as the nominal value: the real predic­
tions of the Model Human Processor are that a calculated quantity will
lie somewhere within the Slowman~Fastman range. On the other hand,
because these ranges are set by extreme and not particularly typical
values, the range is pessimistically wide. The nominal value for each
parameter allows a complement to the range calculations based on a
typical value for the parameter at some increased risk of inaccuracy due
to secondary effects. The two types of calculation, range and nominal,
can be used together in a number of ways depending on whether we are
more interested, say, in assessing the sensitivity of a nominal calculation
to secondary effects or in identifying the upper or lower boundary at
which some user performance will occur.

We turn now to examples of human performance bearing potential
relevance to human-computer interaction, relating these, where possible,
to the Model Human Processor. The performances are drawn from the
areas of perception, motor skill, simple decisions, learning and retrieval,
and problem solving.

Perception

Many interesting perceptual phenomena derive from the fact that
similar visual stimuli that occur within one Perceptual Processor cycle
tend to fuse into a single coherent percept As an example, consider the
problem of the rate at which frames of a moving picture need to be
changed to create the illusion of motion.

MOVING PICTURE RATE

Example 1. Compute the frame rate at which an animated
image on a video display must be refreshed to give the
illusion of movement

Solution. Closely related images nearer together in time than t^, the
cycle time of the Perceptual Processor, will be fused into a single image.
The frame rate must therefore be such that:

2.2. HUMAN PERFORMANCE 45

Frame rate > l / t p = 1/(100 msec/frame)
= 10 frames/sec. I

This solution can be augmented by realizing that in order to be
certain that the animation will not break down, the frame rate should, of
course, be faster than this number. How much faster? A reasonable
upper bound for how fast the rate needs to be can be found by redoing
the above calculation for the Fastman version of the model (t^ = 50
msec):

Max frame rate for fusion = 1/(50 msec/frame)
- 20 frames/sec.

This calculation is in general accord with the frame rates commonly
employed for motion picture cameras (18 frames/sec for silent and 24
frames/sec for sound).

The Model Human Processor also warns us of secondary phenomena
that might affect these calculations. By the Variable Perceptual Processor
Rate Principle, Tp will be faster for the brighter screen of a cinema
projector and slower for the fainter screen of a video display terminal.

MORSE CODE LISTENING RATE

Because stimuli within Tp fuse into the same percept, the cycle time
of the Perceptual Processor sets fundamental limits on the speed with
which the user can attend to auditory or visual input

Example 2. In the old type of Morse Code device, dots and
dashes were made by the clicks of the armature of an
electromagnet dots being distinguished from dashes by a
shorter interval between armature clicks. Subsequently,
oscillators came into use which allowed the dots and dashes
to be done by bleeps of different lengths. Should there be
any difference between the two devices in the maximum
rate at which code can be received?

46 2. THE HUMAN INFORMATION-PROCESSOR

Solution. With the older device, a dot requires the perception of two
events (two clicks of the armatures). According to the model, this
requires 2rp msec, if each of these events is to be separately perceived.
Officially a dash is defined as 3 dots in length, leading to an estimate of
(¡Tp. However, high speed code often differs from the standard; and an
expert should be able to perceive a dash as different than a dot if it is at
least Tp longer, giving iTp+Tp = 3 rp msec as the minimum time for a

dash. Assuming a minimum 1t^ space between letters and 2rp space
between words, we can calculate the reception rate for random text by
first computing the minimum reception time per letter and then
weighting that by English letter frequencies, with an appropriate adjust­
ment for word spacing. This calculation should underestimate somewhat
the reception rates for each system, since it is only based on a first-order
approximation to English below the word level; but it will allow a
relative comparison. The probabilities for the letters in English are given
in Figure 2.8 together with their Morse Code representation and the
time/letter computed by the rates given above, assuming rp = 100
[50~200] msec. Weighting the time/code by the frequency of its occur­
rence gives a mean time of 709 [354~1417] msec/letter (including spacing
between letters). Assuming 4.8 char/word (the value for Bryan and
Harter’s 1898 telegraphic speed test) gives;

Max reception rate = (.709 [.354~ 1.417] sec/letter
X 4.8 letters/word)

+ .200 [.100~.400] sec/word-space
= 3.6 [1.9~7.0] sec/word
= 17 [9~32] words/min .

For the oscillator-based telegraph, on the other hand, a dot requires
the perception of only one event. This should require Tp. Assuming
that a dash can be distinguished from a dot if the dash is I t p long, the
time per letter would be 453 [227~907] msec and the calculation is:

Max reception rate = (.453 [.227~.907] sec/letter
X 4.8 letters/word)

.200 [.100~.400] sec/word-space
= 2.4 [1.3 ~ 4.6] sec/word
= 25 [13-47] words/min. I

2.2. HUMAN PERFORMANCE 47

So it would be expected that operators could receive code faster with
the newer oscillator-based system than with the older system. Informal
evidence suggests that this is true and that the oscillator-based rates are at
least in the right vicinity. Current reception rates are faster than the rates
of tum-of-the-century telegraphers, although this comparison may be
confounded with the effect of sending equipment. Whereas 20-25
words/min with the old telegraph was regarded as the range for very

Letter
Morse
Code

Calculated Minimum Reception Time

Armature System Oscillator System
(msec) (msec)

E
T
A
H
0
S
N
R
1
L
D
M
C
U
W
G
Y
F
B
P
K
V
J
X

0
z

.1332

.0978

.0810

.0772

.0663

.0607

.0601

.0589

.0515

.0447

.0432

.0248

.0236

.0309

.0287

.0218

.0212

.0179

.0163

.0153

.0107

.0099

.0015

.0014

.0008

.0006

300 [150-
400 [200-
600 [300-
900 [450-

1000 [500-
700 [350-
600 [300-
800 [400-
500 [250-

1000 [500-
800 [400-
700 [350-

1100 [550-
800 [400-
900 [450-
900 [450-

1200 [600-
1000 [500-
1000 [500-
1100 [550-
900 [450-

1000 [500-
1200 [600-
1100 [550
1200 [600-
1100 [550-

-600]
-800]
- 1200]

-1800]
-2000]
-1400]
- 1200]

-1600]
- 1000]

-2000]
-1600]
-1400]
-2200]

-1600]
-1800]
-1800]
-2400]
-2000]

-2000]
-2200]

-1800]
-2000]
-2400]
-2200]
-2400]
-2200]

200 [100-
300 [150-
400 [200-
500 [250-
700 [350-
400 [200-
400 [200-
500 [250-
300 [150-
600 [300-
500 [250-
500 [250-
700 [350-
500 [250-
600 [300-
600 [300-
800 [400-
600 [300-
600 [300-
700 [350-
600 [300-
600 [300-
800 [400-
700 [350
800 [400
700 [350

-400]
-600]
-800]
-1000]
-1400]
-800]
-800]
- 1000]
-600]
- 1200]
-1000]
- 1000]
-1400]
-1000]
-1200]
-1200]
-1600]
-1200]
-1200]
-1400]
- 1200]
- 1200]
-1600]
-1400]
-1600]
-1400]

Figure 2.8. Morse codes arranged in order of frequency of
individuai letters.
Frequencies (as a proportion of total letters) in column p are based on Mayzner
and Tresselt (1965).

48

good, experienced railroad telegraphers by Bryan and Harter (1898),
reception rates of 45~50 words/minute are seen with the oscillator-based
code (and the world record is over 75 words/minute!). This comparison
is in the predicted order and, as expected, somewhat faster than our
calculation based on a first-order approximation to English. A better
approximation to the first-order assumptions of our calculation (but, alas,
for Russian) is the set of rates achieved by a set of non-Russian-speaking
telegraphers whose job it was to transliterate Russian Morse Code; 30
words/minute average, 38~40 words/minute maximum, and 45 words/
minute top (Robin Kinkead, personal communication)—rates consonant
with our oscillator-based calculation.

PERCEPTUAL CAUSALITY

One way for two distinct stimuli to fuse is for the first event to appear
to cause the other.

Example 3. In a graphic computer simulation of a pool
game, there are many occasions upon which one ball
appears to bump into another ball, causing the second one
to move. What is the time available, after the collision, to
compute the initial move of the second ball, before the
illusion of causality breaks down?

2.2. HUMAN PERFORMANCE 4 9

Solution. The movements of the first and second balls must appear to
be part of the same event in order for the collision to appear to cause the
movement of the second ball, if the movement occurs within one cycle of
100 msec. Since the illusion will break down in the neighborhood of 100
msec, the program should try to have the computation done well before
this time. The designer can be sure the illusion will hold if designed for
Eastman, with the computation done in 50 msec. I

Figure 2.9 shows the results of an experiment analogous to Example 3
in which subjects had to classify collisions between objects (immediate
causality, delayed causality, or independent events) as a function of the
delay before the movement of the second object The perception of
immediate causality ends in the neighborhood of 100 msec; some degra­
dation of immediate causality begins for some subjects as early as 50
msec.

5 0 2. THE HUMAN INFORMATION-PROCESSOR

14 98 182

Time Before Second Object Moves (msec)

Figure 2.9. Perceived causality as a function of inter-event
time between the motion of two objects.
Three types of perceived causality are shown as a function of the interval
separating the end of Object A’s motion and the beginning of the second object’s
motion. Average over three subjects. From Michotte (1963, Figure 5, p. 94).

READING RATE

Many perceptual phenomena concern a visual area large enough that
the fovea of the eye must be moved to see them. When eye movements
are involved, they can dominate the time required for the task.

Example 4. How fast can a person read text?

Solution. Assuming 230 msec/saccade (from Figure 2.1), a reading
rate can be calculated from assumptions about how much the reader sees
with each fixation. If he were to make one saccade/letter (5 letters/
word), the reading rate would be;

(60 sec/min)/(.230 sec/saccade X 5 saccade/word)
= 52 words/min.

For one saccade/word, the rate would be;

(60 sec/min)/(.230 sec/saccade X 1 saccade/word)
= 261 words/min.

For one saccade/phrase (containing the number of characters/fixation
found for good readers, 13 chars = 2.5 words), the rate would be:

(60 sec/min)/(.230 sec/saccade X 1/2.5 saccade/word)
= 652 words/min .

How much the reader takes in with each fixation is a function of the
skill of the reader and the perceptual difficulty of the material. If the
material is conceptually difficult, then the limiting factor for reading rate
will not be in the eye-movement rate, but in the cognitive processing.
The calculation implies that readers who claim to read much more than
600 words/min do not actually see each phrase of the text. In other
words, speed readers skim.

Motor Skill

Just as fundamental limits on the rate of user perceptual performance
were set by the cycle time of the Perceptual Processor, limits on
movement are set by the rates of the Perceptual and Motor Processors.
Two basic kinds of movement occur in human-computer interaction: (1)
movement of the hand towards a target and (2) keystrokes.

FITTS’S LAW

The first kind of movemenL moving the hand towards a target, can be
understood, and an expression for movement time derived, using the
Model Human Processor plus some assumptions.^^ Suppose a person
wishes to move his hand D cm to reach an S cm wide target (see Figure
2.10). The movement of the hand, as we have said, is not continuous,
but consists of a series of microcorrections, each with a certain accuracy.

2.2. HUMAN PERFORMANCE 5 1

21
22

(1968).

This calculation is discussed in Hochberg (1976, p. 409).

This derivation is similar to that of Crossman and Goodeve (1963) and Keele

5 2 2. THE HUMAN INFORMATION-PROCESSOR

START f - TARGET

D

Figure 2.10. Analysis of the movement of a user’s hand to a
target.
The hand starts from the point labeled START and is to move to anywhere inside
the TARGET as fast as possible. D is the distance to the target and S is the
width of the target.

To make a correction takes at minimum one cycle of the Perceptual
Processor to observe the hand, one cycle of the Cognitive Processor to
decide on the correction, and one cycle of the Motor Processor to
perform the correction, or The time to move the hand to
the target is then the time to perform n of these corrections or
n{rp+T(2+ T¡^. Since ~ 240 msec, n is the number of
roughly 240-msec intervals it takes to point to the target.

Let Xg be the distance remaining to the target after the /th corrective
move and A'q (= D) be the starting point. Assume that the relative
accuracy of movement is constant, that is, that = e, where c < 1
is the constant error. On the first cycle the hand moves to

X^ = eXq = eD .

On the second cycle, the hand moves to

X2 — tX f = e{eD) = e^D.

On the nth cycle it moves to

= e^'D. (2.1)

2.2. HUMAN PERFORMANCE 53

The hand stops moving when it is within the target area, that is when

e"T) < ^kS.

Solving for n gives

n = — \o g ^ D /S) / logj e .

Hence the total movement time is given by

T̂ pos = '»(’■/>+’’C + ’’A/)

Tpos = log2(2/)/5),
where = - (t p+ t^ + t^) / logj e .

(2 .2)

Equation 2.2 is called Fitts’s Law. It says that the time to move the hand
to a target depends only on the relative precision required, that is, the
ratio between the target’s distance and its size. Figure 2.11a plots
movement time according to Equation 2.2 for an experiment in which
subjects had to alternate tapping between two targets S in. wide, D in.
apart. The points fall along a straight line as predicted, except for points
at low values of log2(2Z)/S).

The constant e has been found to be about .07 (see Keele, 1968;
Vince, 1948), so can be evaluated:

/ ^ = — 240 msec / log2(.07) bits
= 63 m sec/bit.

A Eastman ~Slowman calculation gives a range of = 27 ~ 122 msec/
bit. Several methods have been used to measure the correction time.
One is to turn out the lights shortly after a subject starts moving his hand
to a target and note the minimum light-on time that affects accuracy.^^
Another is to detect the onset of correction from trajectory acceleration
changes.^“* These methods have given cycle time values in the range

23 For a discussion, see Welford (1968).

Carlton (1980); Langolf (1973); Langolf, Chaffin, and Foulke (1976).

(a)

Figure 2 .11. Movement time as a function of two versions of
Fitts’s Law.
From Welford (1968, Figures 5.3 and 5.4).
(a) Times for reciprocal tapping with a 1 oz. stylus plotted in terms of Equation
2.2. Data from an experiment by Fitts (1954). Each point is based on a total of
613~ 2669 movements obtained from 16 subjects.
(b) The same data as in (a) plotted in terms of Equation 2.3, corrected for errors
by Crossman’s method (see Welford, 1968).

54

2. THE HUMAN INFORMATION-PROCESSOR 5 5

Tp-f T ^+ T ^ = 190~260 msec/cycle (we calculated Ty,+ T(j+T^ = 240
msec). The measured correction times correspond to = 50~68
msec/bit (we calculated 63 [27 ~ 122] msec/bit).

Measurements of determined directly by plotting observations
according to Equation 2.2 give somewhat higher values centering around

= 100 msec/bit. The slope of the line drawn through the points in
Figure 2.11a is about — 104 msec/bit. Slopes from other
experiments are in the = 70~120 msec/bit range. Since will be
useful for later calculations, we set here a value based on several
experiments:

= 100 [50~ 120] msec/bit

This value is a refinement of the value calculated from the Model
Human Processor.

The problem of the points that wander off the line for low values of
log2(Z)/5) and the slight curvature evident in Figure 2.11a can be
straightened by adopting a variant of Fitts’s Law developed by Welford
(1968):

T =7^1og2(Z)/5 + .5). (2.3)

In Figure 2.11i» the same data are plotted using Equation 2.3 (and a
method of correcting for errors). All the points now lie on the line and
the slight bowing has been straightened. This equation gives a somewhat
higher estimate for in Figure 2.116, = 118 msec/bit.

25 For single, discrete, subject-paced movements, the constant is a little less than
= 100 msec/bit and closer to the 50~68 msec/bit value cited above for other
experimental methods and for our nominal calculation. Fitts and Peterson (1964) get
70~75 msec/bit. Fitts and Radford (1966) get a value of 78 msec/bit (12.8 bits/sec).
Pierce and Karlin (1957) get maximum rates of 85 msec/bit (11.7 bits/sec) in a pointing
experiment For continuous movement repetitive, experimenter-paced tasks, such as
alternately touching two targets with a stylus or pursuit tracking, the constant is a little
above 100 m sec/bit Elkind and Sprague (1961) get maximum rates of 135
msec/bit (7.4 bits/sec) for a pursuit tracking task. Fitts’s original dotting experiment
(Figure 2.11) gives 118 msec/bit using Equation 2.3. Welford’s (1968) study using
Equation 2.3 and the actual distance between the dots gives 120 m sec/bit

Example 5. On a certain pocket calculator, the heavily used
gold f button employed to shift the meaning of the keys is
located on the top row (see Figure 2.12). How much time
would be saved if it were located in a more convenient
position just above the numbers?

Solution. Assume that the position of the 5 button is a fair repre­
sentation of where the hand is just before pressing the f button. From
the diagram, the distance from the 5 button to the present f button is 2
in., to the proposed location, 1 in. The button is 1/4 in. wide. By the
Equation 2.3 version of Fitts’s Law, movement time is log2 {D/S -F
.5), where is expected to be about 100 msec/bit. So the difference in
times required by the two locations is

5 6 2. THE HUMAN INFORMATION-PROCESSOR

Figure 2.12. Location of keys on the pocket calculator in
Example 5.

^ T = 100 [log2 (27.25 + .5) - log2 (17.25 + .5)]

= 100(3.09 - 2.17)
= 90 msec. I

A test of this calculation by an informal experiment is in agreement
with the predicted result. The time to press the f button was measured
by counting the number of times the hand could alternate between the f
and 5 button in 15 sec at both the old and the proposed location. By
this method, the mean time7movement is just 15 sec7number of move­
ments. The experiment was repeated three times:

2.2. HUMAN PERFORMANCE 5 7

Trial 1:
Trial 2:
Trial 3:
Mean:

Old Time
290 msec
240 msec
230 msec
250 msec

New Time
200 msec7button-press
170 msec7button-press
180 msec7button-press
180 msec7button-press

Observed difference:
Calculated difference:

70 msec7button-press
90 msec7button-press

Notice that the time to press the f button is greater than what it could be
in a more favorable location by over 173 (70 msec difference in a 180
msec operation). Of course, it is important to keep in mind that the
design of the entire calculator will entail some trade-offs in individual key
locations.

POWER LAW OF PRACTICE

Before considering the second type of motion, keystrokes, it is useful
to digress to consider a learning principle applicable to perceptual-motor
learning generally: The time to do a task decreases with practice. It
was Snoddy (1926) who first noticed that the rate at which time improves
is approximately proportional to a power of the amount of practice as
given by the following relationship.

P6. Power Law o f Practice. The time T^ to perform a task
on the nth trial follows a power law:

T„ = T,n a (2.4)

5 8 2. THE HUMAN INFORMATION-PRCXJESSOR

or
log = C - a log n , (2.5)

where is the time to do the task on the first trial,
C = log Tp and a is a constant.

It can be seen in Equation 2.5 that performance time declines linearly
with practice when plotted in log-log coordinates. Typical values for a
are in the .2~.6 range.

Example 6. A control panel has ten keys located under ten
lights. The user is to press a subset of the keys in direct
response to whatever subset of lights is illuminated. If the
user’s response time was 1.48 sec for the 1000th trial and
1.15 sec for the 2000th trial, what is the expected response
time for the 50,000th trial?

Solution.
eliminate it.

Using Equation 2.5, we can solve for in order to

n =T„n<^

(T’iooo)lOOO“ = (7’2ooo)2000«
a = log (7’iooo/7 ’20()o) / log (2000/1000) = .36

Solving for using Equation 2.6,

= (^looo)1000-36 = 18 sec.

The entire equation is

(2.6)

= 1 8 « - .3 6 (2.7)

Thus, the expected time on the 50,000th trial is

' 50,000 = (18)(50,000--36) = .37 sec ,

Figure 2.13 shows the results of an experimental study of this
situation carried out to 75,000 trials. The response time on the 50,000th
trial was .40 sec compared to the .37 sec calculated. Characteristically,

2.2. HUMAN PERFORMANCE 59

1,000 10,000
Number of Responses

100,000

Figure 2.13. An example of the Power Law of Practice.
Improvement of reaction time with practice on a 1023-choice task. Subjects
pressed keys on a ten-finger chordset according to pattern of lights directly above
the keys. After Klemmer (1962).

the data here are well fit by Equation 2.5, except at the ends. Estimating
by eye, the best-fitting straight line in the linear portion of the curve
gives T = 21«“ -̂ ,̂ comparable to Equation 2.7.

The Power Law of Practice applies to all skilled behavior, both
cognitive and sensory-motor.^^ However, practice does not cover all
aspects of learning. It does not describe the acquisition of knowledge
into Long-Term Memory or apply to changes in the quality of
performance. Quality does improve with practice, but it is measured on
a variety of different scales, such as percentage of errors, total number of
errors, and preference ratings, that admit of no uniform treatment.

KEYING RATES

The Power Law of Practice plays an important role in understanding
user keystroking performance. Keying data into a system is a highly
repetitive task: in a day’s time, a keypuncher might strike 100,000 keys.
The Power Law of Practice has three practical consequences here. FirsL
there is a wide spread of individual differences based primarily on the

See Newell and Rosenbloom (1981).

amount of previous typing practice. Typing speed ranges from 1000
msec/keystroke for an absolute novice to 60 msec/keystroke for a
champion typist, more than a factor of 15 difference. Second, the power
function form for the practice curve (Equation 2.4) has a very steep
initial slope (linear in the log means it drops through the first factor of 10
in one hundredth the time it takes to drop through the second factor of
ten—consult Figure 2.13). Thus typists pass through an initial unprac­
ticed state to one of moderate skill rather rapidly. Third, the practice
curve becomes relatively flat after a short time (though it never entirely
ceases to improve, according to the Power Law). This means that, for
users of moderate skill, performance is relatively stable and one can
indeed talk about constant rates for typing and keying.

Example 7. How fast can a user repetitively push with one
finger a key on the typewriter keyboard? How fast can he
push two keys using alternate hands?

60 2. THE HUMAN INFORMATION-PROCESSOR

Solution. In the case of a repeated keystroke, the finger must first be
cocked back, then brought forward. Each half of the stroke, according to
the Model Human Processor, will take = 70 msec and the whole
stroke will take t^-F = 140 msec. In the case of keystrokes between
alternate hands, it should be possible for one hand to stroke while the
other is cocking if the strokes are coordinated, so in these cases strokes
could follow each other within 70 msec. I

These two are the fastest and slowest cases, hence the typing rate for
a skilled typist might be expected to lie somewhere within 70~140
msec/keystroke for a mixture of same-hand and different-hand stroke
combinations (if the typist is given sufficient look-ahead so that per­
ceptual and cognitive processing overlaps motor processing).

Figure 2.14 gives data-entry rates for some keystroke-operated devices.
For typewriter-like devices, expert typing rates hover in the 100~300
msec range, as expected. Champion keypunch and typing performance is
in the 60~80 msec range, faster than the Middleman calculation above,
but slower than the 30 msec lower bound set by a Fastman calculation.
As Figure 2.14 shows, difficult text or lack of expertise exact perceptual
and cognitive costs that slow the rate.

More detailed calculations of user performance can be made using
data for individual interkeystroke times such as those collected by
Kinkead (1975) and reproduced in Figure 2.15, which breaks down

2.2. HUMAN PERFORMANCE 61

T y p e w rite rs (msec/stroke)

Best keying 60 Dresslar (1892)

Typing text 158-231 Hershman and Hillix (1965)

Typing random words 2 0 0 -2 7 3 Hershman and Hillix (1965)

Typing random letters 4 6 2 -5 0 0 Hershman and Hillix (1965)

Typing (1 char look-ahead) 75 0 -1 500 Hershman and Hillix (1965)

Unskilled typing of text 1154 Devoe (1967)

1 0 -K e y Pads (msec/stroke)

Numeric keypunching 112 -4 00 Neal(1977)

Keypunching 3 0 0 -4 4 4 Klemmer and Lockhead (1962)

10-key telephone 78 9 -9 5 2 Pollock and Gildner (1963), Deininger (1960)

10-key adding machine 1091 Minor and Revesman (1962)

O th e r K eyb o ard s (msec/stroke)

Simple pushbuttons 5 7 0 -6 9 0 Monger, Smith, and Payne (1962)

5 X 5 adding machine 6 0 0 -8 0 0 Pollock and Gildner (1963)

Coded physician’s order 779 -2 222 Minor and Pittman (1965)

10X 10 adding machine 1200 Minor and Revesman (1962)

C hord Sets (msec/chord)

Stenotypists 333 Seibel (1964)

8-key chordset 508 -1 017 Pollock and Gildner (1963)

Mail sorting 5 1 7 -8 8 2 Cornog and Craig (1965)

Hand Entry (msec/char)

Hand printing 5 4 5 -9 5 2 Devoe(1967)

Handwriting 732 Devoe (1967)

Mark sensing 8 0 0 -3 7 5 0 Devoe (1967). Kolesnick and Teel (1965)

Hand punching 3093 Kolesnick and Teel (1965)

Figure 2.14. Keying times for selected input techniques.

interkeystroke times by key and by whether the preceding keystroke was
on the same hand, finger, or key as the current keystroke. These times
can be used to make approximate comparisons between keyboard layouts.

Le
ft

Ha
nd

R
ig

ht
 H

an
d

To
p

R
ow

Li
tt

le
R

in
g

M
id

dl
e

In
de

x
In

de
x

M
id

dl
e

R
in

g
Li

tt
le

21
3

18
8

18
6

14
9

16
2

128
14

9
13

6
16

4
14

0
15

5
12

9
151

12

4
131

15

6
Q

W
E

R
T

Y

U
1

o
P

24
4

20
8

185
21

5
17

2
22

9
20

4
22

3
16

0
191

180
14

0
196

i
147

222
138

201
1

135
17

5
12

0
16

2
13

3
19

4
141

Ho
m

e
R

ow
A

S
D

F
G

H
J

K
L

O)
271

182
218

25
7

22
3

l>0
16

2
241

23
8

15
3

197
16

0
157

13
2

24
9

16
4

23
5

15
9

B
ot

to
m

 R
ow

z
X

c
V

B

N

IV)
9

•
241

221
147

23
9

Sp
ac

e
Ba

r
15

5

Le
ge

nd

Sa
m

e
A

lte
rn

at
e

H
an

d
H

an
d

16
8

13
2

Ke
y

N
am

e

Sa
m

e
Sa

m
e

Fi
ng

er

K
ey

(T
im

e
in

 m
se

c)

A
ll

Ke
ys

tro
ke

s
15

5

Fi
gu

re
 2

.1
5.

In

te
rk

ey
st

ro
ke

 t
yp

in
g

tim
es

.
B

as
ed

 o
n

15
5,

00
0

ke
ys

tr
ok

es
 f

ro
m

 2
2

ty
pi

st
s

(fr
om

 K
in

ke
ad

,
19

75
).

Example 8. A manufacturer is considering whether to use
an alphabetic keyboard (see Figure 2.16) on his small
business computer system. Among several factors influ­
encing his decision is the question of whether experienced
users will find the keyboard slower for touch-typing than
the standard Sholes (q w e r t y) keyboard arrangement.
What is the relative typing speed for expert users on the
two keyboards?

Solution, Figure 2.15 gives the time/keystroke for all but the most
infrequent letter keys, broken down by whether the previous key was the
same key, the same finger, the same hand, or the other hand. Figure
2.17 gives the frequencies f . with which two-letter combinations appear in
English (punctuation and space digraphs are, unfortunately, not available
in the table). The expected typing rate is just the weighted average.

2.2. HUMAN PERFORMANCE 63

r - 7 ‘
Sholes (Standard)

T — n - r - r — I— r - 1 -
I I i I I I

r ■
I

■T'
I

_L.
II

J_____

Q
_j_____

W
1

E
J ____

R
11

1 T
1 F

r —
1 u
J

J _____

1
-J_____

0
-J____

P
J t I *

1 L _

A S D
1

F 1 c
1

H 1
n 1 .

J K L

1
_ l

I
I
L _ - -

Z X C V
1
i B
J______

n 1

It ̂ \
I
1 M
1______

---- 1- - 7 - T
Alphabetic

r
I II

V
I

r ■
I

I
L-.

T '
I

“r “"i

A B C D
I
1 E
1 ,

F 1 G
1 J

H 1 J
— r ■

1 1
___J _

1 ■ “■ ■■■■
1
1-, _

K L M
1

N 1
1

P 1
1.

Q R S 1
i

1
-J

T U V W F
1
1 Z
1

Figure 2.16. Arrangement of letter keys on Sholes and on
one possible alphabetic typewriter.

6 4 2. THE HUMAN INFORMATION-PROCESSOR

S e c o n d L e t te r
F i r s t —
L e t te r A H I M

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
z

2
182
562
172
880
174
136
1056
210
32
8

452
547
250
64
343

229
15

577
252
456
98
78

571
23
25
17

354 242
2

— 49 —
— — 36
13 337 1213
2 — —

9
66

4
13
106

68

589
4

310

2
337

254 1476
132 208

9
547
496
660
433
233
380
3139
329
44
293
937
757
846
45
435

115 214

8
112
127

2
8

218

4
34

110

53
2

265

4 2
61 4
9 —
36 1190
942 62

13

543
6
19

312

4
2

19
11
61

375
121
248
403
165
290
170
848

4
138
655
325
288
74
142

19 142
13 —
— 168

38

— 59

25

70
87

2

15
6

32 108 167 1730
34
9
55

131
62
161

4
34
15

2
4
55

797
1103
131
929
507

28
140
61

19
11
8
15

76

842
227
125
51
583

66
61
8

543

17
740

6
79
365
295

335

11
310

2
6

339

34
76
28
553

6

15 615 — 112 129 117
2 473 464 — 74 72 102

— 3397 971 2 — 138 42
182 — 91 — 4 352 297
— — 229 — — — —
— 490 231 — 2 23 2
— 6 25 — — 2 —
— 4 38 — — 13 28
— — 8 — — 6 —

Figure 2.17. Frequencies of English digraphs.
Probability of digraph occurrence x 10^. Computed from data of Underwood and
Schulz (1960, Appendix D).

Typing rate = 2 . f . /. .

Applying this formula to both the Sholes keyboard (the conventional
one) and the alphabetic keyboard of Figure 2.16 (and dividing the result
by Sj.yj to compensate for the fact that only about 90% of the digraph
times are given in Figure 2.17) gives

Typing rate (Sholes) = 152 msec/keystroke (72 words/min)
Typing rate (alphabetic) = 164 msec/keystroke (66.5 words/min).

The alphabetic arrangement is calculated to be about 8% slower than the
Sholes arrangement I

2.2. HUMAN PERFORMANCE 6 5

S e c o n d L e t te r
F irs t —
L e t te r N U W

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
z

2146
2

34
1355

6
32
13

2394

97
11
2

64
1487

2

202
25

8
460

89

11

2
293
653
257

72
431
184

471
89

378
386
486
390
252

819
331
694

55
274

2
352

6

193

4
149

6
2

68

2
28

206
4

225
174

17
157

2
142

2 1128 1028 1362
— 140 15 4

2 333 9 333
— 108 161 2
25 2106 1285 431
— 210 — 127
— 176 81 19
— 98 23 197

2 386 1105 1238

2
9

19
6

1239
343

59
112

78
384
284

49

2
106

2
967
466

62

— 114 458 299
23 2 386 1151
— 413 363 263
— 541 481 524

115
246

81
131

13
123
87

127
8

57

100
142
87

1306
91

115
134
242
216

— — 25 28 6
61 - - - 34
17 — 6 104 30 —

252
4

21
288

2
288

26

34
138

62

70 13 272
127

32
70

204
4

13
19

— 26 —

8
170

11

— 9 —
2 — —

185

25

435

8
47
78

2
21

2 9 —

15
481
114
134
42
13

252
61

202
8
6

11

25

62

13

Kinkead (1975) used a similar calculation to show that the Dvorak
keyboard would be expected to be only 2.6% faster than the Sholes
keyboard. This calculation makes two strong assumptions. The first is
that the frequencies of the digraphs will not seriously affect the digraph
times, a reasonable assumption by the Power Law argument above. A
more difficult assumption is that there are no substantial leveling effects,
in which slow digraphs slow down faster ones. This last assumption has
been disputed by Yamada (1980a, 1980^).

Simple Decisions

We have discussed how simple calculations are possible for perceptual
and motor performance: now we can consider how the perceptual and

motor systems, together with central cognitive mechanisms, combine in
simple acts of behavior.

SIMPLE REACTION TIME

The basic reaction time for simple decisions can be derived from
Figure 2.1.

Example 9. A user sits before a computer display terminal.
Whenever any symbol appears, he is to press the space bar.
What is the time between signal and response?

Solution. Let us follow the course of processing through the Model
Human Processor in Figure 2.1. The user is in some state of attention to
the display (Figure 2.18a). When some physical depiction of the letter A
(we denote it a) appears, it is processed by the Perceptual Processor,
giving rise to a physically-coded representation of the symbol (we write it
« ') in the Visual Image Store and very shortly thereafter to a visually
coded symbol (we write it a") in Working Memory (Figure 2.18A). This
process requires one Perceptual Processor cycle Tp. The occurrence of
the stimulus is connected with a response (Figure 2.18c), requiring one
Cognitive Processor cycle, t^. The motor system then carries out the
actual physical movement to push the key (Figure 2.18d), requiring one
Motor Processor cycle, t^ . Total time required is ‘rp+T(^+rJ^^. Using
Middleman values, the total time required is 100-I-70-f 70 = 240 msec.
Using Fastman and Slowman values gives a range 105~470 msec. I

In practice, measured times for a simple reaction under laboratory
conditions range anywhere from 100 to 400 msec.

6 6 2. THE HUMAN INFORMATION-PROCESSOR

PHYSICAL MATCHES

If the user has to compare the stimulus to some code contained in
memory, the processing will take more steps.

Example 10. The user is presented with two symbols, one
at a time. If the second symbol is identical to the firsL he
is to push the key labeled yes, otherwise he is to push NO.
What is the time between signal and response for the yes
case?

2.2. HUMAN PERFORMANCE 6 7

Figure 2 .18. Simple reaction-time analysis using the Model
Human Processor.

Solution. The first symbol is presented on the screen where it is
observed by the user and processed by his Perceptual Processor, giving
rise to associated representations in his Visual Image Store and Working
Memory. The second symbol is now flashed on the screen and is
similarly processed (Figure 2.19a). Since we are interested in how long it
takes to respond to the second symbol, we now start the clock at 0. The
Perceptual Processor processes the second symbol to get an iconic
representation in Visual Image Store and then a visual representation in

e. Motor Processor pushes button.

Figure 2.19. Physical name-match analysis using the Model
Human Processor.

68

Working Memory (Figure 2.196), requiring one cycle, Tp. If not too
much time has passed since the first symbol was presented, its visual code
is still in Working Memory and the Cognitive Processor can match the
visual codes of the first and second symbols against each other to see if
they are the same (Figure 2.19c). This match requires one Cognitive
Processor cycle, t^. If they match, the Cognitive Processor decides to
push the YES button (Figure 2.\9d), requiring another cycle, t^. Finally,
the Motor Processor processes the request to push the YES button (Figure
2.19c), requiring one Motor Processor cycle, r ^ . The total elapsed
reaction time, according to the Model Human Processor, is

Reaction time = + 2t -̂ +

= 100 [50-200] + 2X(70 [25-170])+ 70 [30-100]
= 310 [130-640] msec.

As our analyses become more complex, it becomes convenient to use
a more concise notation. Such a notation can be had by writing sym­
bolically what the contents of the memories are after each step. This has
been done for the last two examples. Examples 9 and 10, in Figure 2.20.

NAME MATCHES

If the user has to access a chunk from Long-Term Memory, the
response will take longer.

Example 11. Suppose in Example 10 the user was to press
YES if the symbols had the same name (as do the letters A
and a), regardless of appearance and NO if they did not.
What is the time between signal and response for the yes
response?

2.2. HUMAN PERFORMANCE 69

The analysis is similar to the previous example except that instead of
performing the match on the visual codes, the user must now wait (see
Figure 2.20 Step 2.01) until the visual code has been recognized and an
abstract code representing the name of the letter is available. The
consequence of adding the new step is the addition of one more
Cognitive Processor cycle.

Reaction time = Tp + 3t(- +
= 100 [50-200] + 3X(70 [25-170]) + 70 [30-100]
= 380 [155-810] msec.

70 2. THE HUMAN INFORMATION-PROCESSOR

Step Display VIS W M Hand Elapsed Time

Example 9. Simple reaction
State at start of clock:

1. Symbol appears
2. Transmitted to VIS
3. Initiate response
4. Process motor command

Example 10. Physical match
State at start of clock:

1. Second symbol appears
2. Transmitted to VIS
2 .7. Match
3. Initiate response
4. Process motor command

Example 11. Name match
State at start of clock:

1. Second symbol appears
2. Transmitted to VIS
2.01. Recognize
2.1. Match
3. Initiate response
4. Process motor command

Example 12. Class match
State at start of clock:

1. Second symbol appears
2. Transmitted to WM
2.01. Recognize
2.02. Classify
2.1. Match
3. Initiate response
4. Process motor command

a'.p'
a'.p'

, PUSH-YES
PUSH-YES

, a
. a . MATCH = TRUE

. a ', PUSH-YES

. a " . PUSH YES

aj”:A
a , ":A

;A
,'':A .u 2 • ̂ ̂1 ^

MATCH = TRUE

PUSH-YES

PUSH YES

a ':A :LE TTE R

a";A ;LETTER

a ':A:LETTER
/3 ":B. a ":A :l e t t e r
)S ":B :l e t t e r . a ":A:l e t t e r

MATCH = TRUE
PUSH-YES
PUSH-YES I

p + 2 t c
n+ 2t̂ + T ̂

n+ 3t ^

pT 4t̂ + t i

Figure 2 .20. Trace of the Model Human Processor’s memory
contents for simple decision tasks.
The symbols a and P stand for the unrecognized visual representation of the

input; the symbols a ' and stand for the physical representation of the input in

the Visual Image Store (VIS); the symbols a " and P ” stand for the visual code of

the input in Working Memory (WM); and the symbols A and LETTER, stand for the

abstract representation. The notation a ":A means that both visual and abstract
codes exist in Working Memory and are associated \«ith one another.

CLASS MATCHES

It might happen that the user has to make multiple references to
Long-Term Memory.

Example 12. Suppose in Example 11 the user was to press
YES if both symbols were letters, as opposed to numbers.
What would be the time between signal and response?

The analysis is similar (see Figure 2.20) to the previous example
except that a new step, Classify, is required to convert both versions of
the symbol to the same representation.

2.2. HUMAN PERFORMANCE 71

Reaction time ^ T p + 4t^ +
= 100[50~200l + 4X(70 [25-170]) + 70 [30-100]
= 450 [180-980] msec . I

Experiments have been performed by many researchers to collect
empirical data on the questions presented in these examples. The results
are that name matches take about 70 msec longer than physical matches
and that class matches take about 70 msec longer yet. (70 msec is the
nominal value we have used for t^̂ .) Figure 2.21 shows one such
experimental result. Name matches are about 85 msec slower than
physical matches when there is very little time between the first and
second symbol. By the time 2 sec have elapsed, the visual code in
Working Memory has decayed so that the extra step of getting the name
must occur and, in fact, performance is close to that required for a name
match. For these predictions, the relative, nominal value calculation
gives good agreement with the data, but the absolute values of the
reaction times are low (data: 525 msec, calculation: 380 [155-810] msec),
reflecting some systematic, second-order effect adding a constant time to
all the data points. The absolute values remain within the Fastman-
Slowman range however.

CHOICE REACTION TIME

If the user has to make a choice between two responses, we can
analyze the task as in Example 10 where the choices were YES and NO.
If there are a larger number of choices, the situation is more complicated,
but still the task can be analyzed as a sequential set of decisions made by
the Cognitive Processor, each adding a nominal = 70 msec to the
response.^^ Regardless of the detailed analysis of the mental steps
involved in choosing between alternatives, more alternatives require more
steps and, hence, more time. The relationship between time required and
number of alternatives is not linear because people apparently can
arrange the processing hierarchically (for example, dividing the responses
into groups, then on the first cycle deciding which group should get

27 See Welford (1973) and Smith (1977).

7 2 2. THE HUMAN INFORMATION-PROCESSOR

Figure 2 .21. Reaction times for matching successively pre­
sented letters as a function of the inter-stimulus interval.
From Posner, Boies, Eichelman, and Taylor (1969, Figure 2, p. 8).

further consideration). The minimum number of steps necessary to
process the alternatives can be derived from information theory and, to a
first order o f approximation, the response time of people is proportional
to the information-theoretic entropy of the decision.

P7. Uncertainty Principle: Decision time T increases with
uncertainty about the judgment or decision to be made:
T = Iq H, where H is the information-theoretic entropy o f
the decision and is a constant.

For the case where a person observes n alternative stimuli, which are
associated one-to-one with n responses (example: sorting multiple-part

business forms by color), this principle can be given a simple mathe­
matical formulation;

2.2. HUMAN PERFORMANCE 73

H = logj (« - E l) . (2.8)

The equation, a variant of Hick’s Law, may be taken as an empirical
relationship that simply fits many measured situations, in that no partic­
ular mechanism is proposed. However, the equation is clearly related to
rational ways of processing that minimize expected time. / / is a function
of n-El rather than just n because there is uncertainty about whether to
respond or not, as well as about which response to make. As an
illustration. Figure 2.22 shows the reaction time required between the
onset of one of n equally probable signals and the pressing of the
appropriate button. The figure plots the reaction time against the

log ̂ (n + 1)

Figure 2.22. Hick’s Law of choice reaction time.
After Welford (1968, p. 62). At the onset of one of n lights, arranged in a row,
subject is to press the key located below the light.

the

number of alternatives (1 to 10), on a log scale showing that the measure­
ments form the straight line predicted from the equation.

Equation 2.8 can be generalized to the case where the n alternatives
have different probabilities of occurring,

7 4 2. THE HUMAN INFORMATION-PROCESSOR

/ / = 2 . ^ i ' ’p .lo g 2 (l/p .+ l) . (2.9)

Although the probability in the formula is the person’s subjective prob­
ability, it often can be estimated from the task. When all of the
probabilities are equal (= 1/«), Pj log (1/py -F 1) = (1/«) log2 (n-Fl)
and Equation 2.9 reduces to Equation 2.8.

Example 13, A telephone call director has 10 buttons.
When the light behind one of the buttons comes on, the
secretary is to push the button and answer the phone.
What is the percentage difference in reaction time required
between the cases where (1) each one of the telephones
receives an equal number of calls and (2) two of the
telephones are used heavily, receiving 50% and 40% of the
calls, with the remaining 10% uniformly distributed among
the remaining phones?

Solution. By the Uncertainty Principle and Equation 2.9, the reaction
time to signals of unequal probability is

T = I r H ,
where

/ / = 2 .^ i > . l o g 2 (l / p ,+ l) .

For case (1), p. = .1 and

/ / = 10 (.1 log2 (l / . l -F 1)) = 3.46 bits.

For case (2), Pi = .S, P2 = . ,̂ and p.=.0125 (where 3 < /< 1 0) ,

H = .5 log2 (1/.5 -F 1) -F .4 log2 (1/.4 + 1)
+ (8)(.0125)(log2(l/.0125) + 1)

= 2.14 bits.

The difference is = 3.46-2.14= 1.32 bits. So the response time for
case (2) is calculated to be 2.14/3.46 = 62% of the reaction time for case
(1). ■

Example 13 discussed one form of weighted occurrence probability.
Another way of creating uncertainty is not to have signals occurring with
fixed frequencies, but to have sequential dependencies of the signals.
For instance, suppose at each trial either the signal for response # 1 or
response # 2 can occur. However, the signal for response # 1 occurs
with .8 probability after a previous signal for response # 1, but only with
.2 probability after a signal for response #1. One can apply the same
information-theoretic formula to compute the uncertainty. Hyman (1953)
tried these different ways of inducing uncertainty, with the results shown
in Figure 2.23. As can be seen, all the different ways of inducing
uncertainty fit the same curve.

2.2. HUMAN PERFORMANCE 75

Bits Per Stimulus Presentation

Figure 2.23. Choice reaction time for three different ways
of manipulating the stimulus information H .
Data for a single subject. Hyman (1953, Figure 1, p. 192, subject G.C.).

Figure 2.23 shows that it takes about Iq = 150 msec/bit of
uncertainty, above a base of about C = 200 ms, which we could identify
as C = Tp+ T^. Using these values we can estimate the actual reaction
times in Example 13: (1) Where each of the telephones receives an equal
number of calls, the reaction time would be 200 msec + (150
msec/bitX3.46 bits) = 719 msec. (2) Where two of the telephones are
heavily used, the reaction time would be 521 msec. When the 200 msec
intercept is taken into account, case (2) is 72% of case (1).

There are also situations in which we do not know how to compute
H, but in which we do know that relatively more mental steps must be
involved in one case than in another. For example, if the lights and keys
in Example 13 were paired randomly with each other, the user would
require more mental steps, would be increased, and the response
could be expected to take more time. The relative number of mental
steps required as a function of the features of a particular set of inputs
and outputs of an interface is called its stimulus-response compatibility.
As the result of practice, fewer mental steps are required and becomes
smaller.

Learning and Retrieval

Most user behavior is, of course, more complex than the simple
decisions we have just been discussing for the fundamental reason that
most user behavior is performed in complex system environments and
depends on the user’s knowledge and understanding of those environ­
ments. How knowledge about systems and procedures is stored and
retrieved is, therefore, of some importance.

7 6 2. THE HUMAN INFORMATION-PRCX:ESSOR

FORGETTING JUST-ACQUIRED INFORMATION

Recall again the flow of information in Figure 2.1 from perceptual
memory to Working Memory to Long-Term Memory. The ratio between
the decay times of these stores is large, on the order of 200 msec : 7000
msec : oo, which reduces to 1:35: oo. The characteristics of retrieval will
depend on the elapsed time since the information was stored, because
that will determine which memories, if any, preserve the item. For
retrievals done a few seconds after input, items may be stored in either
Working Memory or Long-Term Memory, or in both. For retrievals
done a few minutes after input, items are retrievable only from Long-

2.2. HUMAN PERFORMANCE 77

Figure 2.24. Probability of recalling a word from a list as a
function of the position of the word in the list and of the
delay before starting recall.
From Glanzer and Cunitz (1966, Figure 2, p. 358). Each point represents the mean
for five iists and 46 subjects.

Term Memory. This fact is illustrated by Figure 2.24, which shows the
results of an experiment in which people were given a list of words to
learn and later to recall (in any order). Between presentation of the list
and recall they were prevented from rehearsal (that is, from physically or
mentally saying the list over and over) by the introduction of a different
task.

The curves show the probability of recall at each position of the
studied items (position 1 is the earliest one presented). The top curve
shows that both the initial and the final words in the list are remembered
better than the ones in the middle. The bottom curve shows what
happens if a delay of 30 seconds occurs before recall is started, allowing
new items to be activated in Working Memory, interfering with those to
be remembered. As can be seen, the difference is that the final words
lose all their extra memorability. The middle curve simply confirms the
analysis by showing that a delay of 10 sec is intermediate in its effect.

Example 14. A programmer is told verbally the one-
syllable file names of a dozen files to load into his pro­
gramming system. Assuming the names are all arbitrary, in

which order should the programmer write down the names
so that he remembers the greatest number of them (has to
ask for the fewest number to be repeated)?

Solution. Twelve arbitrary file names means the programmer has to
remember 12 chunks (assuming one chunk/name), which is larger than

names will be forgotten. The act of trying to recall
the file names will add new items to Working Memory, interfering with
the previous names. The items likely to be in Working Memory but not
yet in Long-Term Memory are those from the end of the list. If the user
tries to recall the names from the end of the list firsL he can snatch some
of these from Working Memory before they are displaced. The
probability of recalling the first names will not be affected since they are
in Long-Term Memory. Thus, the programmer should recall the last
names firsL then the oAers. I

Example 15. Suppose that in Example 14, the 12 files did
not have arbitrary names, but rather names such as i n i t i ,
INIT2, INIT3, INIT4, PERF1, PERF2, PERF3, PERF4,
SYSTEMS1, SYSTEMS2, SYSTEMS3, SYSTEMS4. In which
order should the programmer write down the file names so
that he remembers the largest number of them?

Solution. Unlike the case in Example 14 where each file was a
separate chunk, here there are only 4 chunks; in it # , p e r f # ,
SYSTEMS#, and the rule for # . Tlie number of chunks is within the
user’s Working Memory span and hence the order of recalling the files
should make little difference. I

78 2. THE HUMAN INFORMATION-PROCESSOR

Example 16. Show that the amount of time a programmer
can delay typing the name of the file before forgetting it
(with probability > .5) is much longer if the file name is
c a t than if it is t x d . (Assume the work involved does not
permit the user to rehearse the file name.)

Solution. The file name t x d is assumed to be a nonsense word and
therefore must be coded in three chunks. From Figure 2.1,
chunks) = 7 [5~34] sec, but the file name c a t is one chunk, 6 f^ ^ (l
chunk) = 73 [73~226] sec. Nominally, the user can remember the
meaningful name on the order of 73 sec / 7 sec = 10 times longer. I

Actually, the advantage of meaningful names is likely to be even
greater than this calculation shows, since meaningful names are easier to
transfer to Long-Term Memory and have more associates to get them
back.

Two more comments are in order. First, we have treated chunks as
if they were all alike. Experimental confirmation of the approximate
equivalence of chunks for memory decay appeared in Figure 2.6. The
figure thus shows that a list of three consonants like t x d is forgotten at
the same rate as a list of three words like (c a t pig m a n). Second, we
have assumed intervening demands on the user that prevented him from
rehearsing the chunks in Working Memory. If rehearsal is possible, a
small number of chunks can be kept in Working Memory indefinitely, at
the cost of not being able to perform many other mental tasks.

INTERFERENCE IN WORKING MEMORY

According to the Discrimination Principle, it is more difficult to recall
an item if there are other similar items in memory. The similarity
between two items in memory depends on the mental representation of
each item, which depends in turn on the memory in which the item
resides. The two most important dimensions of interference are acoustic
interference and semantic interference. Items in Working Memory are
usually more sensitive to acoustic interference (they are confused with
other items that sound alike) because they usually (but not necessarily)
use K = acoustic coding (Conrad, 1964). Items in Long-Term Memory
are more sensitive to semantic interference (they are confused with other
items with similar meaning) because they use k = semantic coding.

Example 17. A set of error indicators in a system have
been assigned meaningful three-letter words as mnemonics.
The idea is that, since each word is a single chunk, more
codes can be remembered and written down at a glance,
and since each code is only three letters the codes will be
fast to write. When the system crashes, the operator is to
write down a set of up to five code words that appear in a
special alphanumeric display. Which is more important to
avoid (in order to minimize transcription errors), codes that
are similar in sound or codes that are similar in meaning?

2.2. HUMAN PERFORMANCE 79

Because the codes are to be written down immediately, the codes will
be held largely in Working Memory during transcription. Because

8 0 2. THE HUMAN INFORMATION-PROCESSOR

Experiment I
(S p o k e n)

Group A
(N=20)

Group S
(N =2 1)

A c o u s t ic a l ly S e m a n t i c a l l y
S im i la r C o n t ro l S im i la r C o n tro l

Experiment III
(Visual)

Group AV
(N= 10)

A c o u s t ic a l ly
S im i la r C o n t ro l

m a d . m a n , c o w , d a y , b ig , lo n g o ld , d e e p . Same as Same as

Word Set m a t. m a p , fa r , fe w . b r o a d , g r e a t . fo u l,la te . Expt. I Expt. I

c a d , c a n , h o t, p e n , h ig h , ta ll. s a le , h o t, plus plus
caf, cap s u p , p it la r g e .w id e s tro n g , th in c a b , m a x r ig ,d a y

Percentage
Correctly 10%
Recalled

82% 65% 71% 2% 58%

Figure 2 .25. Acoustic vs. semantic interference in Working
Memory.
Subjects studied 25 five-word lists. The words in the lists were either acoustically
similar, semantically similar, or unrelated (control condition). The numbers in the
table are the proportion of lists recalled entirely correctly and in the proper order.
Data of Baddeley (1966) as presented in Calfee (1975, Figure 17.6).

Working Memory uses largely acoustic coding, transcription errors will
occur mainly from interference between acoustic codes. Similar sounding
codes should therefore be avoided. I

Figure 2.25 shows the result of a similar experiment in which subjects
had to remember lists of five words, then recall them twenty seconds
later. They made many errors with the acoustically similar lists (only
1~2% of the lists were recalled error-free), but substantially fewer with
the semantically similar lists (13% of the lists were recalled error-free),
and this was true regardless of whether they were given the lists aurally
or visually.

INTERFERENCE IN LONG-TERM MEMORY

The Discrimination Principle P4 says that the difficulty of recall
depends on what other items can be retrieved by the same cues. Thus, as
the user accumulates new chunks in Long-Term Memory, old chunks that
are semantically similar to the new chunks become more difficult to
remember.

2.2. HUMAN PERFORMANCE 8 1

I(0
scc
(/)■o
os
H-o
%(0
c0)o

I I I I I I I I I 7 I..r r " i ...I..I ! I
_./— Weiss-Margolius (1954)

i ^ •W illia m s (1950)

Gibson (1942)
Belmont-Birch (1951)

Williams (1950)
Underwood-Richardson (1956)

Johnson (1939)

-Underwood (1952,1953 a,b,c)
-Lester (1932)

10 -

Hovland (1940)
• Luh (1922)

Youtz(194D# ■
i -. 1 . . 1 . 1 I ... 1 1 . I 1 I

10 15
N u m b e r P rev io u s L ists

20

Figure 2 .26. Interference of previously learned material
with later learning.
Recall of serial lists 24 hours later as a function of number of previous lists
learned. Revised version of Underwood (1957, Figure 3, p. 53).

A demonstration of this fact is shown in Figure 2.26. When people
learn lists of words in the laboratory, they forget a large fraction of them
within 24 hours. Underwood (1957) managed to find 16 separate pub­
lished studies that both recorded the amount of forgetting after 24 hours
and gave enough detail to determine the number of previous lists that
had been learned prior to the one tested. Even though these lists
differed in length, time per list item, and details of experimental
procedure, it is clear that learning more prior lists results in more
forgetting and that this accounts for a very large fraction of the forgetting
that occurs. The size of the interference effect shows that much of what
passes for forgetting is failure to retrieve, not actual loss from the
memory.

Example 18. A user is about to learn how to use a new,
line-oriented text-editor, identical to one he already knows
except for the command names (such as e r a se instead of
delete). Will his learning of the new editor interfere with
his ability to remember the command names of the old
one?

Solution. Yes. When the user learns the new editor, there will be
new chunks in memory similar to those of the old editor and, by the
Discrimination Principle, these may interfere with retrievals about the old
editor. Indeed, it is a common experience for programmers to be unable
to recall how to use an old system on which they have spent hundreds of
hours after learning a similar new one. I

Not only does just-acquired knowledge interfere with previous
knowledge in Lx)ng-Term Memory, it also interferes with subsequent
knowledge, although usually with smaller effect.^*

SEARCHING LONG-TERM MEMORY

Information is retrieved from Long-Term Memory with each basic
cycle of the cognitive processor, but retrieval of the desired item is not
always successful. When sufficiently long times are available for search,
strategies can be used to probe Long-Term Memory repeatedly. Retriev­
ing the name for a known but rarely used command is a typical example.

It is worth emphasizing the difficulty faced by the user attempting to
retrieve an item from his Long-Term Memory, as given by the Encoding
Specificity Principle. When he learned the item, it was encoded in some
way. This encoding included various possible cues for recalling the item.
At retrieval time, the user knows neither the desired item nor its recall
cues. He must therefore guess, placing cues in Working Memory where
they will serve as calls on Long-Term Memory on the next cycle. The
guesses may be good and succeed immediately or, even if they fail, may
retrieve some information that can help on a subsequent try.

A graphic example of Long-Term Memory search, emphasizing its
capacity, the requirement for interactive strategic search, and the fact that
Long-Term Memory is in many ways an external body of knowledge, like
a phone book or an encyclopedia, is shown in Figure 2.27. The subject
was asked, seven years after being graduated, to remember the names of
all 600 members of her high school graduating class. (The experimenter
had the year book.) As the graph shows, even after ten hours of trying,
the subject was still retrieving new information from Long-Term
Memory. Her strategy was an elaborate version of the interactive
retrieval strategy above: In her mind, the subject scanned for faces,
attended old parties, worked the alphabet wandered down familiar streets
asking for the house occupants. The process also produced fabrications

82 2. THE HUMAN INFORMATION-PRCXÎESSOR

28 Murdock (1963).

2.2. HUMAN PERFORMANCE 83

Figure 2 .27. Recall of the names of high-school graduating
class, seven years after being graduated.
Replotted data from Subject S I in Williams and Hollan (1981).

where non-classmate names were recalled somewhat uncertainly during
early sessions and were later misrecalled as classmate names.

Complex Information-Processing

The psychological phenomena we have discussed so far comprise the
building blocks out of which more complex user behavior is composed.
This more complex behavior spans longer times and is rationally
organized.

OPERATOR SEQUENCES

More complex activities must ultimately be composed of the sorts of
elementary actions we have been discussing. These rudimentary actions
operate to cause physical changes in the state of the world or mental

changes in the state of the user, and to emphasize this property we call
them operators. It has been realized, in an insight into the structure of
behavior dating at least from the Gilbreths (Gilbreth, 1911), that the
operators are sufficiently independent of the behavioral situation in which
they are observed that different segments of behavior can be seen to be
composed of the same few operators differently combined. It further
turns out that it is possible to define operators sufficiently independent of
each other that the time required by an operator in isolation is a good
approximation to the time it requires as part of a sequence (although
there are generally second-order interactions that set limits to this
additivity).

Figure 2.28 shows a direct attempt to investigate whether the time
required by an operator was the same when it occurred in isolation as
when it occurred as part of a sequence. The tasks were simple operations
of reading analogue and digital dials, looking up values in a table,
computing a simple arithmetic formula, and entering data by keying it.

As the figure shows, the mean operator time required when the
operator is combined with other operators is about the same as the time
required in isolation, but the variability in the operator times is greater
when the operator is combined, with coefficients of variation roughly 15-
20% higher.^^ Thus, to a first approximation (and when careful task
definitions and measurements are made), integrated task behavior could
be decomposed, in this case, into component operators, which could be
defined and measured in independent contexts.

Example 19. In the experiment reported in Figure 2.286,
the total time to do the combined task was 51.56 sec (SD
= 18.85). How close is this result to the times predicted
from Figure 2.28a?

The total time to do the combined task should be the sum of the
mean times for the individual tasks:

T = 6.24 -F 3.45 -F 9.26 -F 34.20
= 53.15 sec.

84 2. THE HUMAN INFORMATION-PROCESSOR

29 It is convenient to express variability in terms of the coefficient o f variation CV
= Standard Deviation / Mean, because it makes variability from distributions with
different means more easily comparable; we often use this statistic in preference to the
standard deviation.

(a) INDEPENDENT TASKS
r^ R E A D -H N P U T -1

X X
^►LOOK— INPUT-n

UP Z Z
-► COMPUTE Q -►INPUT O -

METER TABLE LOOK UP COMPUTATION

-^ R E A D -^ IN P U T -
Y Y

DIG ITA L
READ OUT

N = 986
Median = 6.04

Mean = 6.24
CV = .25

N = 987
Median = 3.36

Mean = 3.45
CV = .26

N = 984
Median = 7.99

Mean = 9.26
CV = .55

N = 989
Median = 32.83

Mean = 34.20
CV = .43

Task Time (sec)

rR E A D — IN P U T -« -R E A D -IN P U T -L O O K ^ IN P U T
X X Y Y UP Z Z

(b) INTEGRATED TASK
---------------------►COMPUTE Q — INPUT Q-,

D IG ITAL
READ-OUT

TABLE
LOOK UP COMPUTATION

N = 1226 N = 1 2 3 0
Median = 6.31 Median = 3.33

Mean = 6.67 Mean = 3.47
CV = .31 CV = .30

N = 1225
Median = 8.36

Mean = 10.80;
CV = .65

N = 1236
Median = 30.04

Mean = 31.19
CV = .48

Figure 2 .28. Time distributions for four operators (a) when
measured in isolation and (b) when measured as part of an
integrated task.
Five university students performed each of the following operators: READ-METER-
AND-TYPE-INPUT, READ-DIGITAL-DISPLAY-AND-TYPE-INPUT, READ-X-Y-AND-
LOOKUP-Z, READ-X-Y-Z-AND-COMPUTE-Q. They performed the operators both in
isolation and as part of a iarger integrated task. From Mills and Hatfield (1974,
Figures 3 and 4).

85

The measured task time was (53.15-51.56)/53.15 = 3% higher than
calculated. I

The variance of the combined task should be the sum of the variance
for the individual tasks, assuming independence among the tasks:

S D = V [1.53 ̂ + .9Q2 + 5.1Q2 -f
= 15.73 sec

CV = SD/Mean = 15.73/53.15 = .30 .

The measured coefficient of variation is 18.85/51.56 = .37, which is
(.37 - .30)/.30 = 23% higher than calculated.

THE RATIONALITY PRINCIPLE

A person attempts to achieve his goals by doing those things the task
itself requires to be done. Much of the complexity of human behavior
derives not from the complexity of the human himself (he is simply
trying to achieve his goals), but from the complexity of the task environ­
ment in which the goal-seeking is taking place.^® It follows thaL to
understand and predict the course of human behavior, one should
analyze a task to discover the paths of rational behavior. We come,
therefore, to what might be called the fundamental principle of task
analysis:

P8. Rationality Principle. A person acts so as to attain his
goals through rational action, given the structure o f the task
and his inputs o f information, and bounded by limitations on
his knowledge and processing ability:

Goals -F Task -F Operators -F Inputs
+ Knowledge -F Process-limits -*■ Behavior.

The principle really offers a nested set of formulations that can be
used in order to predict a person’s behavior. The first version. Goals +
Task -F Operators, takes into account only the objective situation; the
other factors reflect hidden constraints, namely what the person can
perceive, what he knows, and, finally, how he can compute. The
additional factors offer successive approximations to how he will behave.

8 6 2. THE HUMAN INFORMATION-PROCESSOR

30 See Simon (1947, 1969), Newell and Simon (1972).

with the shorter equations being easier to use, but giving cruder approx­
imations.

THE PROBLEM SPACE PRINCIPLE

Rational behavior can often be given a more precise description.
Suppose a person has the goal to prove a theorem using the rules of
symbolic logic. There is a set of mental states through which he passes
(describable in terms of symbolic expressions) and a number of operators
for changing one state into another (operations in symbolic logic). This
set of states and operators is called a problem space. In general:

P9. Problem Space Principle. The rational activity in which
people engage to solve a problem can be described in terms o f
(I) a set o f states o f knowledge, (2) operators for changing
one state into another, (3) constraints on applying operators,
and (4) control knowledge for deciding which operator to
apply next.

There are different problem spaces for different tasks, and there may well
be changes in problem spaces over time, as the user acquires more
knowledge about the structure of the task.

An example of a short problem-solving task, and one that has been
examined in detail, is the cryptarithmetic puzzle. As shown below, each
letter is to be assigned a different digit so that replacing the letters by
their digits forms a correct addition. For example:

2.2. HUMAN PERFORMANCE 8 7

D
G

O
E

N
R

R O B

A
A

L
L
R

D
D

D =5

A typical way in which a person goes about solving such a problem is a
combination of elementary reasoning and trial-and-error. For example:

...1 can. looking at the two D’s (pause) each D is 5; therefore T is 0.
So I think I'll start by writing that problem here. I'll write 5. 5 is O.
Now do I have any other T's? No. But I have another D. That
means I have a 5 over the other side. Now I have 2 A's and 2 L's that
are each somewhere and this R, 3 R's, 2L's equal and R. Of course I'm
carrying a 1. Which will mean that R has to be an odd number.

8 8 2. THE HUMAN INFORMATION-PROCESSOR

D O N A L D
4 - G E R A L D D = 5

R O B E R T

Informal Description: Letters in the above array are to be

rep laced by num erals from zero though nine, so that all instances

of the sam e letter are rep laced by the sam e num eral. D ifferent

letters a re to be rep laced by d ifferent num bers. The resulting array

is to be a correctly w orked problem in arithm etic. The assignm ent

for the letter D Is a lready given to be 5.

States: Assignm ents of num bers to letters.

Operators: (a s sig n Letter Number)
(PROCESS-COLUMN Column)
(GENERATE-DIGITS Letter)
(TEST-DIGIT Number)

Path Constraint: d ^ d = t , etc.

Figure 2 .29 . External problem space for a cryptarithmetic
task.

Because the 2 L’s. any two numbers added together has to be an even
number and 1 will be an odd number. So R can be 1... [Excerpt from
protocol for Subject S3, Newell and Simon, 1972, p. 230],

The problem space for this subject (see Figure 2.29) consists of assign­
ments of numbers to letters (R = 3), and various relations that can be
known about the letters and digits (r > 5, R odd, r unassigned). The
mental operators used by this subject can be identified:

ASSIGN

PROCESS-COLUMN
Assign a number to a letter.
Infer other assignments and
constraints from a column.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223 24 2 5 2 6 2 7 2 8 2 9 3 0 3 1 32 33 34 35 36 37 38 39 40 41 42 43

Figure 2 .30. Search of subject through his internal problem
space for the cryptarithmetic task.
S u bject S3, N ew ell and S im on (1972, F igure 6.4 , P. 181) fo r D O N A LD + G E R A LD

= R O B E R T. Each d ot in the d iagram represents a state of know ledge of the

subject. Each link is the result of applying an operator.

89

9 0 2. THE HUMAN INFORMATION-PROCESSOR

GENERATE-DIGITS

TEST-DIGIT

Determine what numbers are
possible for a letter.
Determine if a digit can be
assigned to a letter.

There is also a more general operator:

SET-UP-GOAL Set up goal to obtain a certain
result or to check that a knowledge
expression is true.

These operators embody the limitations of human information-processing
in various ways. For example, with only ten digits to be assigned and
with the assignments just having been made, one might think that an
intelligent problem solver would always know what digits were available.
Not directly. Unless the t e s t -d ig it operator is applied, the problem-
solver will not know whether a digit has been assigned to another letter.

Figure 2.30 gives a graphic presentation of the behavior of the subject
whose protocol was excerpted above. Each state of knowledge of the
subject is represented by a point and the operation of an operator by a
connecting line. The double lines are places where the person repeats a
path previously trod. This repeating of a path is a reflection of Working
Memory limitations, it being easier to drop back repeatedly to an anchor
state than to remember the intermediate states. The graph can be
summarized by saying that: (1) the subject is involved in heuristic search;
and (2) upon close examination the apparently complex behavior resolves
into a small number of elements (the parts of a state and the operators)
interacting with the complex constraints of the task, an illustration of how
complexity in behavior arises from the environment.

2.3. CAVEATS AND COMPLEXITIES

We have attempted to convey a version of existing psychological
knowledge in a form suitable for analyzing human-computer interaction.
We have summarized this knowledge in a simple model of the human
processor and have suggested, through examples, how it might be used
with task analysis, calculation, and approximation to support engineering
calculations of cognitive behavior. Although it is hoped that the model

2.3. CAVEATS AND COMPLEXITIES 9 1

itself will be useful, the real point is in the spirit of the enterprise: that
knowledge in cognitive psychology and related sciences is sufficiently
advanced to allow the analysis and improvement of common mental
tasks, provided there is an understanding of how knowledge must be
structured to be useful. The present chapter is an illustration of one
possible way for structuring this knowledge.

In the foregoing description, we have chosen to concentrate on a
picture of basic human information-processing capabilities relevant for
human-computer interaction rather than to detail human engineering
studies of particular systems or techniques. Human-engineering studies
relevant to our particular concerns are referenced in context in later
chapters. For general reviews of behavioral studies of human-computer
interaction, the reader is directed to Moran (19816), Ramsey, Atwood,
and Kirshbaum (1978), Ramsey and Atwood (1979), Rouse (1977), Miller
and Thomas (1977), and Bennett (1972). For reviews of the general
“man-machine” literature, the reader is directed to Rouse (1980), Pew,
Baron, Feehrer, and Miller (1977), Meister (1976), Sheridan and Ferrell
(1974), and Parsons (1972).

There are also many papers that either review, or for other reasons
provide convenient entry into, specialized portions of the human-
computer interaction literature. Perceptual issues of video displays are
treated in Cakir, Hart, and Stewart (1980), Shurtleff (1980), and Gould
(1968). Reviews of the large literature on devices for data entry can be
found in Sperandio and Bisseret (1974), Seibel (1972), Alden, Daniels,
and Kanarick (1972), and Devoe (1967). The design of command
languages is treated in Barnard, Hammond, Morton, Long, and Clark
(1981); Moran (1981a); Boies (1974); Fitter and Green (1979); Reisner
(1981); and Martin (1973). Programming has received considerable
attention; Sheil (1981); Shneiderman (1980); Brooks (1977); Shepard,
Curtis, Milliman, and Love (1979); and Smith and Green (1980). And
finally, a number of systems have been proposed as frameworks for the
human operation of machines; for example. Lane, Streib, Glenn, and
Wherry (1980); Siegal and Wolf (1969); and Quick (1962).

The model of human information-processing that we have presented
is our own synthesis of the current state of knowledge. In many respects
(though not all) it corresponds to the dominant model of the seventies
(Fitts and Posner, 1967; Neisser, 1967; Atkinson and Shiffrin, 1968;
Welford, 1968; Newell and Simon, 1972; Lindsay and Norman, 1977;
Anderson, 1980). But beyond any general model, a large amount of

detailed knowledge is available in the literature on all the phenomena we
have examined. In order to make the reader aware in some general way
of the limits of our model, we mention briefly a number of the complex­
ities documented in the literature and some of the alternative theoretical
views.

9 2 2. THE HUMAN INFORMATION-PROCESSOR

BOXES VS. DEPTH OF PROCESSING

The dominant model of the seventies had as an underlying heuristic
the assumption that there was an elaborate logic-level structure of many
separate registers (the “boxes”), each with its own distinct memory
parameters and connected by a distinct set of transfer paths. There was a
Short-Term Memory consisting of seven chunks, brought into prominence
by Miller (Miller, 1956; cf. Blankenship, 1938); forgetting was accom­
plished by displacement from fixed slots in the registers. Short-Term
Memory was separate from Long-Term Memory, in contradistinction to
the earlier theory, which simply posited a single structure of stimulus-
response connections. The discovery by Sperling (1960) of the Visual
Image Store, which was clearly distinct from the Short-Term Memory,
provided impressive support for the “box” view.

A number of difficulties have beset this model, mostly in increased
complexities and muddying-up of initially clean distinctions, as experi­
mental evidence has accumulated. Initially it appeared that all infor­
mation in the Short-Term Memory was coded acoustically (Conrad, 1964)
and all information in Long-Term Memory coded semantically, but this
has proved not to be the case. For instance, in some of the examples in
this chapter, the use of visual codes in Working Memory is evident
Initially, rehearsal seemed to play the key role in the transfer of infor­
mation from the Short-Term Memory to the Long-Term Memory—the
more an item was rehearsed, the better chance it had of being stored
away permanently. It has since seemed necessary to distinguish
maintenance rehearsal, which has no implications for permanent memory,
from elaborative rehearsal, which does. This distinction proved to be the
crack in the edifice. It resulted in a new general view, called depth o f
processing, which attempts to do away with the structural boxes entirely
and substitute a continuum of processing depth to determine how well
material is remembered. “Depth” is defined somewhat intuitively:
examining the letters of words is shallow, finding rhymes a little deeper.

and creating stories using the words deeper still. This view is now itself
under serious attack (Wicklegren, 1981) for lack of precision in its theory
and for its unsuccessful predictions.

2.3. CAVEATS AND COMPLEXITIES 9 3

WORKING MEMORY SPAN

The original view of Working Memory, following Miller (1956), was
that it had a capacity of 7±2 items, coinciding with the immediate
memory span. Gradually, much of the support for the existence of an
independent Working Memory came from the recency effect in free
recall (the fading ability to remember the last few items heard that we
examined in Figure 2.24). Various ways of calculating Working Memory
size from the recency effect all give answers in the range 2.5 ~ 4.1 items
for the capacity. This implies that the immediate memory is a compound
effect of more than one process, which is the way we have described it.

At the opposite end of the spectrum from sizes of 2.5~4.1 vs. 7±2 is
the notion of Working Memory as an activation of Long-Term Memory,
hence, of essentially unlimited instantaneous extent, but of limited access.
The model presented here couples such a view with that of decay to get
the limited access. This view, though not widely stated explicitly, is
represented in a few places in the literature (Shiffrin and Schneider,
1977).

The Model Human Processor has moved some distance from the
model of the early seventies in replacing separate memory registers with
registers that are subregisters of each other; Working Memory is the
subset of activated nodes in Long-Term Memory, and the Visual and
Auditory Image Stores are not completely separate from Working
Memory. Baddeley (1976, 1981) and his co-workers have used the term
Working Memory functionally to include additional components of the
human limited-capacity short-term storage system, which combine for
skilled tasks such as reading to provide a capacity somewhat larger than
our MirA/' Chase and Ericsson (1982) have used the term Working
Memory to include rapid accessing mechanisms in Long-Term Memory,
what we have termed Effective Working Memory. They showed in a
series of ingenious experiments that, through extensive practice, people
can enormously increase their Effective Working Memory beyond our

The upshot of the Baddeley and Chase and Ericsson results is to
emphasize the intimate connection between Working Memory, Long-

Term Memory, and attention. For the sake of simplicity, we have not
attempted to incorporate these ideas into the Model Human Processor,
pending their further development.

MEMORY STRENGTH VS. CHUNKS

The notion that memories have strengths, and can be made stronger
by repetition, has been a central assumption of much psychological
theorizing. Wicklegren (1977) gives a good account of this view for the
whole of memory. The notion that memories come in discrete chunks,
which either exist or do not exist in Long-Term Memory, provides an
alternative conception that has risen to prominence with the information­
processing view of man. It is this view we have presented.

It is difficult to determine in a simple, experimental way which of
these two positions holds in general. Each type of theory can mimic and
be mimicked by the other. One basic difficulty is that memory
phenomena, being inherently errorful and varying, always lead to data
samples that show considerable variation. One can never tell easily
whether the variation arose from corresponding variation of strength or
from discrete probabilistic events. The same effects producible by
gradation in strengths also flow from multiple copies of chunks
(Bembach, 1970). Such multiplicity, far from being contrived, might be
expected if a system manufactured chunks continually from whatever was
being attended to.

9 4 2. THE HUMAN INFORMATION-PROCESSOR

WHAT IS LIMITING?

That humans are limited in their abilities to cope with tasks is clear
beyond doubt. Where to locate the constraint is less clear. One general
position has focused on memory as the limiting agent, as in the notion of
the register containing a fixed set of slots. Another general position has
focused on processing. A more sophisticated notion is that processing
and memory may each be limiting but in different regions of perform­
ance (Norman and Bobrow, 1975). The processing position has usually
taken the form of some sort of homogeneous quantity called processing
capacity, which is allocated to different tasks or components of a task,
usually within a parallel system. Another form of processing limit is to
posit a serial system and permit it only one operation at a time.

Again, it is not possible to formulate experimental ways of distin­
guishing these alternatives in general. Serial processing systems can

mimic parallel ones by rapid switching, and parallel systems of limited
capacity can show the most obvious sign of serial processing, linear time
effects.

INTERFERENCE VS. DECAY

The Model Human Processor incorporates spontaneous decay over
time and interference as mechanisms that produce memory-retrieval
failure. Typically these are held to be alternative mechanisms and much
effort has gone into trying to determine to which one forgetting is
attributable. Actually, with the advent of information-processing models,
a third alternative occurred: displacement of old items by new ones. This
is clearly a version of interference, though one that involves total loss at
storage time (of the interfered-with item), not of interaction at retrieval
time.

The strong role of interference in long-term forgetting has been well-
established. However, no one has ever accounted for the losses in very
long term memory (weeks, months, or years) in a way that excludes
genuine forgetting, although at least one investigator (Wickelgren, 1977)
believes he can separate true forgetting from interference in the long
term.

2.3. CAVEATS AND COMPLEXITIES 9 5

EXPANSIONS OF THE MODEL HUMAN PROCESSOR

There are at least three areas where the description of the Model
Human Processor might be significantly expanded at some cost in
simplicity. The first area is the semantic description of Long-Term
Memory. As the study of Long-Term Memory proceeded, it became
evident to psychologists that, in order to understand human performance,
the semantic organization of Long-Term Memory would have to be taken
into account. We have not described semantic memory in any depth
here, since the details of such an account would carry us beyond the
bounds set for this chapter. For surveys of the relevant literature, the
reader is referred to Anderson (1980), Lindsay and Norman (1977),
Norman and Rumelhart (1975), and Anderson and Bower (1973).

The second area is the description of the Perceptual Processor. In the
simplified description we have given of perceptual processing, we have
skipped over considerable detail that is appropriate at a more refined
level of analysis. A description based on Fourier analysis could be used
to replace various parts of the model for describing the interactions of

visual Stimuli with intensity and distance (Comsweet, 1970; Ganz, 1975;
Breitmeyer and Ganz, 1976).

The third area is the description of the Cognitive Processor. We have
not said much in detail about the control structure of the Cognitive
Processor; but it is necessary to consider the processors’s control
discipline if interruptability, errors, multiple-tasking, automaticity, and
other phenomena are to be thoroughly understood. A more detailed
description of the recognize-act cycle, and how the characteristics of
simple decisions arise from it, might be given in terms of a set of
recognize-act rules, called productions (Newell, 1973). According to this
description, the productions themselves reside in Long-Term Memory.
On each cycle, the recognition conditions of the rules are compared with
the contents of Working Memory (or said another way, some of the
recognition conditions of the rules are activated through spreading
activation in Long-Term Memory). The rule with the best match (the
highest state of activation) fires and causes its associated action to occur,
altering the contents of Working Memory (activating other chunks in
Long-Term Memory). Perceptual input whose recognition activates
previously non-activated chunks in memory may, through this mecha­
nism, interrupt and redirect the previous course of processing. The
description might be elaborated to give both an account of skilled
behavior that requires little conscious attention and an account of
unskilled behavior. A production system description has also been used
to give a description of complex information-processing where each
action might involve several dozen recognize-act cycles (for examples, see
Newell and Simon, 1972; Young, 1976; Anderson 1976).

9 6 2. THE HUMAN INFORMATION-PROCESSOR

THE EXISTENCE OF ALTERNATIVES

Does the existence of alternatives to various features of the Model
Human Processor, like those we have just mentioned, and the fact that
agreement on them is very difficult to obtain, rob the model of its
usefulness or show that it is impossible to settle things in psychology?
Not at all, and for two reasons.

The first reason is a technical issue about making progress in
psychology. Many of the difficulties arise because classes of quite
different mechanisms can mimic each other rather closely, as in the case
of interference and decay. However, this mimicking works only over
narrow ranges of behavior. For instance, if only one specific task is
considered—say, the immediate memory distractor task (Figure 2.6) in

2.3. CAVEATS AND COMPLEXITIES 9 7

which a single item is given, then counting backward by sevens, then
attempting to recall the item—it is easy to generate several explanations
(decay, interference, displacement) that are indistinguishable, even in
principle, by unlimited precision in the data. But if these same
mechanisms are required to provide the explanation in many diverse
tasks, it becomes much harder for the mimicking to succeed. Thus, the
comments we have made apply locally—mechanism X competes with
mechanism Y to explain a given phenomenon, but only when that
phenomenon is considered in relative isolation.

The current style in psychology is to have a highly elaborated base of
quantitative data over many diverse phenomena, with many local
theories. The science has not yet succeeded in putting together general
theories that are tight enough quantitatively so that the same posited
mechanism (for example. Working Memory decay) is forced to show
itself in action in a large diversity of tasks. Such comprehensive theories
may soon emerge—the groundwork seems well-laid for them—but there
has not yet been enough of this theorizing to settle the issues reflected in
this section.

The second reason that the existence of alternatives does not rob the
model of its usefulness concerns the use to which our model is to be put.
The model’s purpose is to provide a sufficiently good approximation to
be useful. Its function is synthesis, not discrimination of alternative
underlying mechanisms. If basic mechanisms are not distinguishable in a
domain where there has been extensive empirical investigation, there is
some assurance that working with either will provide a reasonable first
approximation. Then it is important to obtain a single overall picture
based on one set of mechanisms that works globally and fits in with an
appropriate unified theoretical perspective. This we have done.

Our purpose in this chapter has been to prepare the way for the
specific set of studies of human-computer interaction that is to follow.
Though these studies do not take the details we have been presenting for
granted, they do presume the basic orientation laid out here.

http://taylorandfrancis.com

TEXT-EDITING

9 9

http://taylorandfrancis.com

3. System and User Variability
3.1. THE STUDY OF TEXT-EDITING
3.2. TIME DIFFERENCES AMONG EDITORS (EXPERIMENT 3A)
3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS

(EXPERIMENT 3B)
3.4. CONCLUSIONS

The use of a computer for editing text is a paradigmatic example of
human-computer interaction, and for several reasons. (1) The interaction
is commonly rapid; A user completes several transactions a minute for
sustained periods. (2) The interaction is intimate; A text-editor, like all
well-designed tools, becomes an unconscious extension of its user, a
device to operate with rather than operate on. (3) Text-editors are
probably the single most heavily-used programs; There is currently a
massive effort to introduce text-editing systems into offices and clerical
operations. Even in a systems programming environment, one study
(Boies, 1974) found that 75% of the system commands issued were text-
editor commands. And (4) computer text-editors are similar to, and can
therefore be representative of, other systems for human-computer
interaction; Like most other systems, they have a discrete command
language and provide ways to input, modify, and search for data. The
physical details of their interfaces are not particularly unique. Because of
these similarities, progress in understanding user interaction with text-
editors should help us to understand interaction with other systems as
well.

The study of text-editors is a task that is reasonably within the range
of the analytic tools we have available from cognitive psychology and
computer science. It is a symbolic task of substantial, but manageable,
complexity. Because of the intrinsic importance of the task itself, the
similarities with other tasks, and the task’s tractable complexity, studies of
computer text-editing are a natural starting point in the study of human-
computer interaction.

101

3.1. THE STUDY OF TEXT-EDITING

102 3. SYSTEM AND USER VARIABILITY

Before proceeding to the description of our studies on text editing, it
is useful to set the stage by describing what is known from previous
studies, the details of the physical environment for the systems we shall
study, and a sample of typical text-editor dialogue.

STUDIES OF TEXT-EDITING

Despite its practical application and its apparent fruitfulness as a
research problem, there have been few studies of computer text-editing
(other than reports on specific editors). Previous work on editors falls
into two groups, analytical studies of editor design and behavioral studies
of users.

Analytical studies of editors have focused on editing time and
comparative functionality. By making idealized assumptions, Oren (1972,
1974, 1975) was able to derive equations for editing time as a function of
several system properties of “word-processing” systems; but he did not
report empirical validation of his models. Van Dam and Rice (1971)
compared several types of editors informally. Riddle (1976) and Roberts
(1979) both derived taxonomies of editing features and used these to
compare the functionality of widely used systems.

Behavioral studies have focused on editing time and to a lesser extent,
on the methods actually used by users, users’ errors, and learning.
Embley, Lan, Leinbaugh, and Nagy (1978) analyzed editors in terms of
the number of commands and number of keystrokes users required to
perform benchmark tasks. They also tried to predict the commands and
keystrokes required by deriving the editing commands from a comparison
of the file before and after editing (Anandan, Embley, and Nagy, 1980).
Hammer (1981) derived the minimum number of keystrokes required to
make an edit and compared that with human performance. We (Card,
Moran, and Newell, 1976, 1980a, 19806; Card, 1978) videotaped users of
text-editors to determine their methods and predict, using cognitively-
oriented models, their editing time. These studies are elaborated in the
present book. DeLaurentiis (1981) used keyboard protocols to determine
how users’ methods change as they move from novice to expert.
Hammer and Rouse (1979) tried to summarize users methods as a
Markov transition matrix. Roberts (1979) constructed a method for
evaluating editors from behavioral tests of editing time, learning time.

and errors, and also investigated mental loading. The behavioral studies
have recently been reviewed by Embley and Nagy (1981).

PHYSICAL TEXT-EDITING ENVIRONMENT OF THE STUDIES

The physical arrangement of the user, his computer terminal, and a
text manuscript, though particular to our experiments, is entirely typical
of the arrangements commonly encountered in offices where computer-
assisted document preparation systems are in use. This arrangement may
be assumed in the experiments we describe unless contradicted.

A person (the “user”) sits before a computer terminal with a keyboard
for input and a video display terminal for output (see Figure 3.1). In the

3.1. THE STUDY OF TEXT-EDITING 103

Figure 3.1. Physical layout for the manuscript-editing task.

computer is a text file. To the user’s left is a manuscript, consisting of a
printout of the text file on which modifications have been marked with
red ink. The user, working via a computer program for text-editing, is to
effect each of the marked modifications in the text file, producing an
updated file. Variations on the task occur with variations in the nature of
the computer, the editor program, the terminal, the size of the manu­
script, the kind and number of corrections, the physical layout, and the
familiarity of the user with the manuscript and the editor.

The keyboard the user employs is similar to that of a standard
American electric typewriter save for the addition of a few special keys,
such as ESC (“escape”), c o o t r o l (a type of shift key), l i n e f e e d ,

BACKSPACE, and DELETE. The extra keys are used for special system-
dependent functions.

Many systems we discuss also employ a special “mouse” pointing
device to select items on the video display. The mouse is a small box set
atop wheels or ball bearings and attached to the keyboard by a flexible
wire. The user can roll it about the table causing analogous movements
of the cursor on the video display. He can push one of the three buttons
protruding from the top of the mouse to indicate selection of the letter,
word, or text fragment indicated on the screen by the cursor.

For the most part, users whose behavior we observe are in daily
interaction with the systems on which they are recorded, as part of their
job duties. Overall, the experimental arrangement is very similar to the
user’s natural setting when working with the system. Experiments are
run in a room much like the user’s own office. The only difference is
the presence of a television camera in the room, but the user is typically
not much aware of the camera once he becomes absorbed in his task.

1 0 4 3. SYSTEM AND USER VARIABILITY

Look 1n

^■•ffara
clear!
constr
Sketch
high-r
should
by use
style.

g to the future
ch will need aigear
approach by de
te programs. Some
y suggest the Visua
ucted from a data f
approach needs con

esolytion Images wi
i\p within a sin

of]idioms, followe

¿hink both the use of idi
deal of further work,

on involves writing a co
idioms, such as bar chart
lizer approach, in which
ile rather than from inte
siderable work to permit
th text. Eventually the
gle system, with the gene
d by document composition

oms and the Sketch
In particular, the
nsiderable number of

ractIVB I’np̂ uts. The
true composition of
two approaches
ration of images
in the Sketch

Confisi
Figure 3.2. Sample fragment of a marked-up manuscript.
Four modifications are indicated by the markings on this fragment. The marks on
the manuscripts given to users in the experimental sessions are in red ink.

SAMPLE DIALOGUE WITH A TEXT-EDITOR

To make the details of editing concrete, let us consider the task of
making the modifications indicated on the manuscript fragment shown in
Figure 3.2 using a typical teletypewriter-oriented editor, p o e t . The first
instruction on the manuscript indicates that the word great has been
mistyped in the manuscript as geart. A typical dialogue between the
system and the user is as follows (the inputs by the user and the outputs
by the system are shown on the left, comments are shown on the right):

3.1. THE STUDY OF TEXT-EDITING 1 0 5

SYSTEM:
USER:

SYSTEM:

SYSTEM:

#
/

a p p ro a c h

SYSTEM: # Prompts the user for a command.
USER: " g e a r t ” The user indicates the line he wants by

typing between quotation marks a string of
characters, geart, that identify the line. The
system responds by finding the next line in
the file that contains the characters and
locating itself at that line, called the Current
Line.
Prompts for a command.
This command tells the system to print the
Current Line on the display. The user’s
purpose is to ensure that the system is
located at the intended line.

w ill n eed a g e a rt d e a l o f ...
(In the dialogue, an elipsis "..." is used to
shorten long typeouts by the system.)
The system displays the Current Line on the
bottom line of the display screen and
prompts for the next command.
The user decides to make the change by
using the Substitute command to substitute
the characters grea for the characters gear.

USER: S Invokes the Substitute command.

SYSTEM: u b s t itu te Completes the command name and waits for
the first argument to the Substitute
command.

USER: g re a r e tu r n Types the new text to be substituted and
terminates it with RETURN.

SYSTEM: (fo r) Prompts the user for second argument of
Substitute.

USER: g e a r r e tu r n Types the old text to be replaced and
terminates it with RETURN.

SYSTEM: [OK] Asks the user to confirm that the command
is stated correctly before executing it

1 0 6 3. SYSTEM AND USER VARIABILITY

USER: RETURN Types RETURN to confirm. The system
then makes the substitution every time it can
on the Current Line.

SYSTEM: 1 Responds by printing the number o f
substitutions it made—in this case, only one
was made.

SYSTEM: # Prompts for a command.

USER: / Again, the user wishes to look at the Current
Line to verify that the modification was
made as he intended.

SYSTEM: a p p ro a c h w ill n eed a g re a t d ea l o f ...
SYSTEM: # The system prompts for a command. The

modification was correct The user now
proceeds to the next task, in which the word
“idiom” is to be capitalized. The user
decides he will do this by substituting the
characters Idi for idi. Because the task is
located on the line immediately following,
this time the user decides to use the
LINEFEED command (instead o f the
“quoted string method”) to locate the line..

USER: LINEFEED Invokes command to increase Current Line
by 1 (move to the next line on the file) and
display it

SYSTEM: id iom a p p ro a c h by d e fin it io n in v o lve s ...
SYSTEM: # Prompts for a command.
USER: s Invokes Substitute command, etc.
SYSTEM: u b s titu te
USER: Id i RETURN
SYSTEM: (fo r)
USER: id i RETURN
SYSTEM: [OK]
USER: RETURN
SYSTEM: 1
SYSTEM: #

USER: /

SYSTEM:

The user proceeds in this manner through the rest of the manuscript,
making the indicated modifications as he encounters them on the
marked-up manuscript

3.1. THE STUDY OF TEXT-EDITING 107

The POET editor, discussed above, is typical of a large class of editors
designed to be usable on a teletypewriter terminal. An example of a
rather different sort of editor is the “display-oriented” editor, RCG (see
Englebart and English, 1968). This editor uses a five-key chordset for
entering commands and uses the mouse for pointing. With RCG, the user
could perform the task as follows:

USER:
SYSTEM:

USER:

SYSTEM:
USER:

SYSTEM:

SYSTEM:

rc Typed on chordset

Replace Character
Displayed at top of screen.
Points to first i in idiom with mouse.

MOUSE 1 Presses button 1 on mouse.
Underlines character.

Moves hands to keyboard.
I Capital “I” typed on keyboard.

The word idiom instantly changes to Idiom.
User moves left hand to chordset right hand
to mouse.

MOUSE1 Presses button 1 on mouse to indicate
termination o f command.
Redisplays entire screen of text with change
made.

The description is shorter because the more complex operations
required by po et to indicate the target text are replaced in r cg by a
simpler pointing and select operation.

There are many other schemes for designing an editor. Some will
have effects on user performance. The twin questions naturally arise, just
how much effect does the design of an editor have on the time to edit a
manuscript, and how do differences between editors compare with
differences between people? Before embarking on more detailed investi­
gations, it is important to get an approximate answer to these questions.
If the design of the editor makes little difference in editing time, then
there is little point to investigating editing rates for different designs
unless they are radically different from current ones. If differences in
editing time between users are much larger than those between editors,
then more leverage is gained by studying individual differences.
Consequently, we describe two exploratory experiments that bear on
these points.

3.2. TIME DIFFERENCES AMONG EDITORS
(EXPERIMENT 3A)

In order to discover how much difference the design of an editor
makes to the speed with which text can be edited, the obvious thing to
do is compare the speed of several editors on benchmark tasks.

108 3. SYSTEM AND USER VARIABILITY

METHOD FOR EXPERIMENT 3A

Editing Systems. Five editing systems of substantially different design
(see Figure 3.3) were chosen for study: p o e t , s o s , t e c o , b r a v o , and
RCG. Three of the systems (POET, SOS, and t e c o) are teletypewriter-
oriented; they assume a discipline imposed by a typewriter with a long
scroll of paper (although they were actually tested with a video display
on which the last 40 lines could be seen). One line at a time is typed on
the scroll, with both the system’s output and the user’s input intermixed.
The two remaining editors (b r a v o and RCG) are display-oriented. They
operate by showing the user a picture of a page of text and updating the
picture after each editing modification.

Benchmark Tasks. The editors were compared by testing user
performances on four benchmarks (see Figure 3.4): (1) a Letter Typing
benchmark, in which the user typed a letter from scratch; (2) a
Manuscript Modification benchmark, in which the user made corrections
to a text file; (3) a Text Assembly benchmark, in which the user
assembled a document from stored paragraphs; and (4) a Table Typing
benchmark, in which the user typed a table of numbers and labels into
the system.

Users. Each of the 13 users in the experiment was either a secretary
or a computer scientist All were expert users with the editors on which
they were tested: Each had used the system for more than a year and
had used the system within the week in which he was tested. About a
quarter of the users had programmed or maintained one of the systems.

Design. Each editor was tested on three users. (Three is the smallest
number that would give some notion of inter-user variability and
the largest for which experts on the different editors were available.)
Because few users were expert in more than one or two of these editors
and to avoid the possibility of practice effects from repeated exposure to
the tasks, each user was tested on a single editor. Only one user was
tested on sos because of its similarity to p o e t . Each of the four bench­
marks was done with the p o e t , s o s , t e c o , and RCG editors: only the

3.2. TIME DIFFERENCES AMONG EDITORS 109

POET (Russell, 1973). A version of QED (Deutsch and Lampson,
1967). “ Line-oriented” (basic addressing unit is a line of
text). Users select lines by giving text-strings contained
on desired line or (more rarely) by giving line numbers,
vy/hich change with each inserted or deleted line.
Commands are single letters issued from the keyboard
(example: D for the Delete command).

SO S (Savitsky, 1969). A line-oriented editor with fixed line-
numbers actually stored In the file with the text. The
command language is similar to that of POET.

TECO (BBN, 1973). A “character-oriented” editor (document is
treated as one long string of characters, including
RETURN characters). Pieces of text are referenced by
search strings or character position numbers. TECO is
distinguished by Its very large repertoire of low-level
commands, which can be combined Into higher-level
commands.

BRAVO A display-oriented editor, designed by Charles Simonyi
and Butler Lampson at Xerox PARC, which uses the
mouse for pointing at text on the display. BRAVO
contains a full repertoire of typefont and formatting
capabilities. It right-justifies text on the display after each
keystroke. The command invocation syntax in BRAVO is
similar to that of POET. BRAVO was called DISPED in
Card, Moran, and Newell (1976, 1980a, 1980b).

RCG A display-oriented editor written by William Duvall; It Is a
descendent of the NLS editor (Englebart and English,
1968). This editor also uses a mouse for pointing, and a
five-key chord device for input of commands.

Figure 3.3. Text-editors tested in Experiment 3A.

1 1 0 3. SYSTEM AND USER VARIABILITY

Letter Typing The user is provided with a paper copy of a letter
on which a few small changes are indicated in
red ink. He is to type the corrected letter Into the
editing system and save it on a file.

M anuscript The user is provided with a paper copy of a
M odification letter stored on a file. There are 12 small

modifications of one or two words each marked
on the letter. He Is to modify the file, using the
editor, according to the markings on the letter.

Text Assem bly The user is to assemble a single file out of three
files on the system, each of which contains a
single paragraph of text, then type In a fourth
paragraph copied from a supplied text.

Tab le Typing The user is to type a table (photocopied from a
book) into the system and store it on a file. The
table contains a five-by-five array of three-digit
numbers, plus labels for the rows and columns.

Figure 3.4. Benchmark tasks used for testing editors in
Experiment 3A.

Manuscript Modification benchmark was done with BRAVO (which was
run at a later date than the other editors). As a baseline against which to
measure performance, one user was measured performing the tasks using
an IBM Selectric II typewriter.

Procedure. Each user was tested individually. The user was seated in
front of a 6 line/sec video display terminal as shown in Figure 3.1 and
given a set of general instructions urging him to work as fast as possible
without making errors. It was stressed that the editor, and not the user’s
abilities, was under examination. The user was given a warmup exercise
on the editor of making some simple modifications, then each of the four
benchmarks in the order: (1) Letter Typing, (2) Manuscript Modifi­
cation, (3) Text Assembly, (4) Table Typing. The stimulus materials and
instructions for each task were bound in a notebook, and the user was

allowed to proceed through the benchmarks at his own pace. The
experimental session was recorded on video tape with the time (to a
sixtieth of a second) recorded on each video frame by means of a video
clock.

3.2. TIME DIFFERENCES AMONG EDITORS 1 1 1

RESULTS FOR EXPERIMENT 3A

How much of a time difference was there among editors? The answer
was a factor of 1.4~2.3 between the fastest and slowest editors, depending
on the benchmark. Figure 3.5 gives the total time required to perform
each benchmark. The differences on the Letter Typing benchmark (after

Task Type

Text-editor

Letter
Typing
M ±S D
(sec)

M anuscript
Modification

M ±S D
(sec)

Text
Assembly
M ±S D

(sec)

Table
Typing
M ±S D
(sec)

POET 238±28 220±33 160±65 244±21
SOS 315 215 147 234
TECO 252±25 159±26 131±15 283±41
BRAVO — 122±42 — —

RCG 224±4 94±21 102±32 306±54
Typewriter 229 901 489 483

Ratio of slowest
to fastest editor 1.4 2.3 1.6 1.3

Ratio of typewriter
to fastest editor 1.0 9.6 4.8 2.1

Figure 3.5. Performance times for the benchmark tasks in
Experiment 3A.
There were three users apiece for POET, TECO, BRAVO, and RCG, and only one
user each for the typewriter and SOS. The SOS user was also measured on RCG;
all other users were measured only once. The times for the Letter Typing
benchmark were normalized to compensate for different users’ typing rates by
dividing the separate parts of the task (type inside address, etc.) by the ratio
between a user’s time to type the body of the letter and the all-user mean time to
type the body.

1 1 2 3. SYSTEM AND USER VARIABILITY

normalizing for users’ typing speeds) and of the Text Assembly
benchmark generally reflected the setup costs of each system to do the
task. The differences in the Table Typing benchmark mainly reflected
the ingenuity of the users in capitalizing on features of the systems:
methods varied from typing in the rows of the table directly (using fixed
tabs provided by the system) to making many copies of the first line in
the table and then substituting for each of the entries. The largest
differences among the systems were in the Manuscript Modification
benchmark, where the ratio of the slowest to fastest system was 2.3.
Since there are small ways in which the RCG editor might be sped up and
since some editors in common use are known to be even slower than
POET, it is probably justified to say that, as a rough rule of thumb, the
design of an editor can make a factor of 3 difference in the time to
perform typical editing modifications.

Any of the editing systems was much faster to use than a typewriter.
In Figure 3.5, the Manuscript Modification time was almost 10 times
faster with the fastest editor. Of course, this ratio depends completely on
the ratio of the length of text to be typed and number of modifications to
be performed, so the number itself is not meaningful; but it does indicate
the generally large advantage obtainable by using text-editors over
typewriters.

How much of a difference was there among users? The answer here
was a ratio of 1.3 ~ 1.9 between the lowest and fastest time/modification,
depending on the editor. Figure 3.6 gives the mean time/modification
for the Manuscript Modification benchmark. Since users made errors on
14% of the modifications (examples: substituting a misspelled word or
invoking the wrong command) and the errors can severely distort
comparisons (a single serious error can require a substantial amount of
correction time), the mean time/modification for each user is also
presented based only on the error-free tasks.

It is apparent from Figure 3.6 that no matter whether all
modifications or only error-free modifications are considered, the times
for users within an editor are more similar to each other than are the
times among editors. The lower portion of the figure gives the average
modification times over all the users on each editing system, along with
the ratio of the slowest to fastest user on each system. The average
slowest/fastest user ratio is about 1.5 when all modifications are con­
sidered and about 1.3 when only error-free modifications are considered.
The editor bra vo has the largest slowest/fastest user ratio—almost a

All Modifications Error-Free Modifications
User M ± S D (N) M ± S D (N)
(System) (sec) (sec)

S4 (POET) 16.7 ± 5.3(10) 15.9 ± 4.9 (9)
S6 (POET) 21.6 ± 15.0(10) 17.4 ± 7.1 (9)
S13(P0ET) 16.9 ± 9.7(12) 16.9 ± 9.7 (9)

S I 2 (SOS) 17.9 ± 10.8(12) 10.4 ± 8.8 (6)

S18(TEC0) 13.9 ± 7.3(12) 1 1 .2 ± 3.9(10)
S19(TEC0) 15.0 ± 10.1 (12) 1 1 .5 ± 2.7(10)
S20 (TECO) 10.8 ± 4.0(15) 10.8 ± 4.0(12)

S I 6 (BRAVO) 7.2 ± 2.8(12) 7.2 ± 2.8(12)
S30 (BRAVO) 9.2 ± 2.5(11) 9.2 ± 2.5(11)
S31 (BRAVO) 14.0 ± 10.9(11) 13.9 ± 11.5(10)

S I 2 (RCG) 7.4 ± 4.9(12) 7.5 ± 5.4(10)
S14(RCG) 6.3 ± 2.4(11) 6.0 ± 2.5 (9)
S I 5 (RCG) 9.7 ± 6.6(12) 8.0 ± 2.7(11)

Ratio of Ratio of
slowest to slowest to
fastest fastest
user user

POET Users 18.5 ± 2.7 (3) 1.3 16.7 ± 0.8 (3) 1.1
SOS Users 17.9 — 10.4 —
TECO Users 13.1 ± 2.1 (3) 1.4 1 1 .2 ± 0.4 (3) 1.1
BRAVO Users 10.1 ± 3.5 (3) 1.9 10.1 ± 3.4 (3) 1.9
RCG Users 7.8 ± 1.7 (3) 1.5 7.2 ± 1.0 (3) 1.3

Ratio of slowest
to fastest editor 2.4 2.3

Figure 3.6. Time per modification in the Manuscript Modifi­
cation benchmark in Experiment 3A.

113

factor of 2—whereas all other editors have a factor of 1.5 or less. As a
rule of thumb, it is probably fair to say that the difference between
expert users is about a factor of 1.5—half the size of the difference
between editors. The time differences among text-editors are thus sub­
stantial and about twice as large as the differences among expert users.

SOURCES OF THE TIME DIFFERENCES

What is the source of the observed differences in the time to use the
different editors? A reasonable hypothesis is that the time for an expert
to make modifications with a system is proportional to the amount of
work required by the system as indexed by the number of keystrokes he
types. This hypothesis appears to be partially, but only partially, correct
In Figure 3.7 the time per modification is plotted against the keystrokes
per modification for the user who had the lowest error rates in each
editor. Four editors—poet , sos, teco , and RCG—fall exactly on a line
essentially through the origin:

1 1 4 3. SYSTEM AND USER VARIABILITY

^modification ~ ^ k e y s t r o k e s ' (3.1)

(R^ > .999, SE = .12 sec). Bravo , however, takes 4 sec longer per
modification than predicted—about twice the time predicted by the above
equation. More detailed comparison of the behavior of users using
BRAVO suggests that the users spent more time than predicted at the
beginning of each task and that the time required by the numerous
pointing operations needs to be considered. A more definitive explana­
tion requires additional experimentation. The real significance of
Equation 3.1 is that a rational basis for the the time required by different
editors appears within reach.

3.3 . TIME DIFFERENCES AMONG NON-NOVICE
USERS (EXPERIMENT 3B)

What about users who are not experts? How much will they vary in
time to edit a manuscript? To find out, let us consider another experi­
ment, this time using only the editor bravo from our previous set, but
considering non-novice users with widely different levels of expertise.
Rather than selecting different people and testing them, it is more

3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS 1 1 5

Figure 3.7. Mean time per modification for editors as a
function of the number of keystrokes per modification in
Experiment 3A.

efficient and insightful to hypothesize some of the characteristics thought
to be relevant and to test people who have different combinations of
those characteristics. Martin (1973) has suggested several user categories,
of which the category Casual vs. Dedicated and the category Operator
with Programming Skills look the most promising. (Several of his other
categories, such as Active vs. Passive, are characteristics of systems rather
than people and others, such as Rugged vs. Non-Rugged, are categories

that could only be established with separate experiments.) Equation 3.1
suggests that typing ability may be an important variable. We were
therefore led to test users on the following dimensions: Dedicated vs.
Casual, Technical vs. Non-technical, and Fast-typist vs. Slow-typist.

METHOD FOR EXPERIMENT 3B

Users. Eight users were selected who were familiar with the bravo
editor. They consisted of secretaries, computer scientists, and research
managers. Users were classified as:

Dedicated if they used the system at least once a day or
Casual if they used the system only about every two weeks
or less;

Technical if they had written at least one major piece of
code and had experience with several programming lan­
guages or Non-technical if they had had no programming
experience (although the Non-technical users used computer
systems for text generation, filing, and message sending);
and

Fast-typists if they typed at least 49 wpm or Slow-typists if
they typed less than 40 wpm.

1 1 6 3. SYSTEM AND USER VARIABILITY

Each of the eight users tested represented a different one of the 2X2X2
= 8 combinations of these characteristics.

Task. The manuscript was a 22-page memo containing 66 modi­
fications. The mixture of modifications on the manuscript was carefully
balanced to include many different modification types (insertions,
replacements, deletions, transpositions, and movements of text), many
different sizes of text to be modified, and many different boundary
conditions. The manuscript contained some very small modifications,
such as inserting or deleting a word or replacing a few characters, as well
as some very large tasks, such as switching two sentences on different
manuscript pages or inserting a new paragraph of text The modifications
were grouped into four classifications:

Simple. Modifications of 4 characters or less, requiring a
single editor command.

Complex. Alterations or movement of phrases or sentences,
usually requiring more than one editor command.

Long. Insertions of about 200 characters.

Other. Tasks that did not fall unambiguously into the
above categories.

Procedure. The procedure was similar to that of Experiment 3A.
First, the user was given a one-page memo containing ten modifications,
as a warmup task, then he was given the main manuscript, containing 66
modifications (as described above). The user was instructed to make
modifications as quickly as possible without making mistakes. Each
session was videotaped, with each frame of the tape time-stamped.

3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS 1 1 7

RESULTS FOR EXPERIMENT 3B

According to Figure 3.8, there was about a factor of 3.5 between the
slowest and the fastest user in the experiment The column labeled “All”
in the figure gives the mean time/modification for all modifications on
which no user made an error (there were 41 of these out of the 66 tasks).
The slowest user took an average of 67 sec/task, whereas the fastest took
19 sec/task.

Each dimension in the classification of the user seemed to have
roughly the same size of effect: the slower category in each dimension
increased user editing time by a factor of about 1.4 over the time
required by the faster category. The lower part of Figure 3.8 gives the
mean time/modification averaged over a single user category. The
average time required by the Casual Users was 1.5 times greater thafi the
time required by the Dedicated Users (53 sec/modification vs. 36
sec/modification). The average time of the Non-technical Users was 1.3
times greater than for the Technical users, and the Slow-typists were 1.4
times slower than the Fast-typists.

Surprisingly, the largest differences occur for the Simple modifi­
cations. The slowest user took 47 sec/modification for these, but the
fastest required only 8 sec/modification, a factor of 5.9 difference.
Dedicated Users got the largest advantage from the Simple modifications,
suggesting that the differences on the Simple modifications derived from
having the editing methods easily available in memory.

In view of the factor of 5.9 difference between the slowest and fastest
users for Simple modifications, the factor of 2.5 difference on Long

Modification Type

User Classification AM Sim­ Com­ Long
ple plex

/V = 41 12 14 3
(sec) (sec) (sec) (sec)

S34 (73 wpm, Dedicated, Technical, Fast) 19 8 16 57
S32 (36 wpm, Dedicated, Technical, Slow) 30 10 24 104
S I 3 (88 wpm, Dedicated, Non technical, Fast) 31 14 40 62
S37 (39 wpm. Dedicated, Non technical, Slow) 66 34 74 134
S I 4 (49 wpm. Casual, Technical, Fast) 60 36 57 145
S1 (32 wpm. Casual, Technical, Slow) 48 19 61 129
S36 (59 wpm. Casual, Non-technical, Fast) 38 17 37 90
S36 (32 wpm, Casual, Non technical, Slow) 67 47 74 140

Ratio of slowest to fastest (3.5) (5.9) (4.6) (2.5)
Ratio of 2nd slowest to 2nd fastest (2.2) (3.6) (3.1) (2.3)

All Users (51 wpm) 45 23 47 108

Casual Users (43 wpm) 53 30 55 126
Dedicated Users (59 wpm) 36 16 39 89

Ratio (1.5) (1.9) (1.4) (1.4)

Non-Technical Users (55 wpm) 50 28 56 106
Technical Users (48 wpm) 39 18 37 109

Ratio (1.3) (1.6) (1.5) (1.0)

Slow-Typist Users (35 wpm) 53 28 56 127
Fast-Typist Users (66 wpm) 37 19 38 88

Ratio (1.4) (1.5) (1.5) (1.4)

Figure 3.8. Time per modification for each user and for each
category of user in Experiment 3B.
Performance is for tasks without errors. N is the number of tasks in each
category.

118

modifications, and the factor of 3.5 difference over all modifications, a
reasonable rule-of-thumb would seem to be that non-novice users
(experienced users, but including non-experts) differ by about a factor of
4. The dimensions we used for users each seemed to make about the
same order of difference, in round numbers, a factor of 1.5. Thus
differences among people are about the same size (factor of 4) as
differences among different systems (factor of 3), contrary to Sackman’s
(1970) claim that “human differences are typically an order of magnitude
larger than computer system differences.” The discrepancy between this
result and Sackman’s is easily explained, however. The studies reviewed
by Sackman involve problem-solving tasks of long duration (many hours),
where it is possible for some users to spend considerable time exploring
fruitless paths, resulting in large individual differences. The text-editing
we have observed in this chapter, by contrast, is a skilled activity
involving little problem solving and occurring over a short duration
(measured in seconds). Also, none of our users were novices, further
reducing inter-user differences.

3 .4 . CONCLUSIONS 1 1 9

3.4. CONCLUSIONS

The exploratory experiments in this chapter have given us estimates
for the effect of different text-editor designs and different users on
performance time.

The design of an editor makes roughly a factor of 3 difference in the
time to edit a manuscript, with display-oriented systems about twice as
fast as teletypewriter-oriented systems. These differences among editors
are at least partially traceable to the relative amounts of work required by
alternative designs, such as the relative number of keystrokes required to
accomplish a task.

The factor of 3 difference among editors compares to a factor of 1.5
among dedicated, expert users, or to a factor of 4 among non-novice
users in general. The three dimensions of users tested each made a
difference of about a factor of 1.5; (1) whether a user is a dedicated
(frequent) user; (2) whether he is technically oriented; and (3) whether
he is a fast typist

The effects of text-editor design on speed, therefore, are comparable
to, and not dominated by, the effects of individual differences.

1 20 3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS

Furthermore, the effects involved are substantial. There is an order of
magnitude difference (an estimated factor of 3X4=12) in editing time
between the fastest user on the best editor and the slowest user on the
worst editor.

4. An Exercise in Task Analysis
4.1. SIMPLE MODELS OF TYPING AND EDITING
4.2. PREDICTION (EXPERIMENT 4A)
4.3. SENSITIVITY ANALYSIS
4.4. RESULTS
4.5. CONCLUSIONS

In the last chapter we reported exploratory experiments designed to
give a rough estimate of the speed variability among users and text­
editing systems. In this chapter we engage in exploratory modeling to
discover how well we can predict editing time with a simple model based
on the assumption that all editing tasks require a constant amount of
time. This model should be of service to our later studies in two ways.
First, it should reveal something of the characteristic difficulty of the
problem of modeling user behavior in text-editing. Second, it should
serve as a baseline against which to compare more complex models.

To make our modeling activity concrete, we address the following
problem:

Problem. The claim is made that it is faster to retype short
texts on a typewriter than to modify them with a text-
editor, and that the reverse is true for long texts. In order
to find the crossover point between these two cases, an
experiment is to be run measuring the times required to
make modifications to five text manuscripts of varying
lengths. The modifications are to be accomplished (1) by
retyping them on an electric typewriter and (2) by using the
W YLBUR text-editing system (Stanford, 1975), running on
a time-shared computer. Given information about the
marked-up texts to be modified, the problem is to predict
the outcome of this experiment.

In order to ensure that the model is predicting, rather than ration­
alizing an already known result, the problem was arranged so that it

121

corresponded to an actual experiment in progress by other researchers.^
By agreement, the model’s prediction and the experimental results were
exchanged simultaneously after both had been completed.

122 4. AN EXERCISE IN TASK ANALYSIS

4.1 . SIMPLE MODELS OF TYPING AND EDITING

The answer to the problem posed above can be derived from simple
models of typing and editing. The time T, to produce a new copy of a
manuscript using a typewriter depends only on the length of the
manuscript and the setup time of the typewriter:

Tt = Tst + (4.1)

where is the time to set up the typewriter (in seconds), L is the length
of the manuscript text (in lines), and is the time to type a line (in
sec/line).

The time to edit a manuscript, on the other hand, is assumed to
depend on the number of modifications to the manuscript. Suppose that
every modification with an editing system takes a constant amount of
time to accomplish. Suppose furthermore that secondary effects, such
as user fatigue and time spent turning pages, are negligible. Then the
time to edit the manuscript would be given by

Te = Tse m m (4.2)

(in
where is the time to set up the editor (in sec), the number of
modifications to be made, and the time per modification
sec/mod). Expressing Equation 4.2 in terms of the modification density
per unit tine, p = N ^ /L , makes it more comparable to Equation 4.1:

(4.3)

We refer to this model of text-editing time as the Constant Time per
Modification model.

1 The problem was posed to us by I. Sutherland, then at the RAND Corporation.
The experiment was run by F. Blackwell, also at RAND.

4.2. PREDICTION 123

LENGTH CROSSOVER POINT

If the typewriter is faster to set up < T^^), but the editor is faster
in making modifications {pT^ < Tj), then there exists some document
length L^, called the length crossover point, such that

for L> L^, the editor is faster, and
for L < , the typewriter is faster.

To find we use Equation 4.2 and Equation 4.3. The time for the
editor and the typewriter will be the same when

^se P^c^m ~ ^st ’

that is,

î c = (T ^ e - T j n T , - p T J . (4.4)

DENSITY CROSSOVER POINT

Similarly there exists a certain density , called the density crossover
point, such that

for p < , the editor is faster, and
for p > p^ , the typewriter is faster.

Solving for p in Equation 4.4 gives

I>C= r / T „ - (T „ - T „) / L T „ . (4.5)

4.2 . PREDICTION (EXPERIMENT 4A)

In order to calculate the outcome of the experimenL we need to have
estimates for the parameters of the above equations.

From the videotapes of Experiment 3A, we determine that the
average time to set up the typewriter in that experiment was

= 24 sec.

1 24 4. AN EXERCISE IN TASK ANALYSIS

Manuscript
Ml M2 M3 M4 M5 All

L (lines) 4 10 21 26 90 151

m (mods) 2 6 8 14 58 88
P (mods/line) .50 .60 .38 .54 .64 .58

Figure 4 .1 . Modification density parameter values for the
manuscripts used in the experiment.

The text-editor WYLBUR is similar to the p o e t and sos editors in
Experiment 3A. Again, from the videotapes we determine that the setup
time of these editors averaged 12 sec. Add to that the 25 sec to log into
the computer (measured time to telephone a local computer and log into
the TENEX operating system), and we get as an estimate

Tse = 37 sec.

The modification density of the manuscripts can be obtained by counting
lines and modifications of the text actually used in the experiment. As
Figure 4.1 shows, the texts vary from p = .38 to p = .64, with an
average of

p = .58 m od/line.

Again assuming that w y l b u r is similar to the p o e t and sos editors, its
modification time can be estimated from Experiment 3A (see Figure 3.6),

= 20 sec ?m

The average typing rate for the POET users in Experiment 3A was .22
sec/character. Since there were 63 characters per line in the test
manuscripts.

This number is slightly different from the numbers listed in Figure 3.6 for POET
and SOS, since those numbers reflect a later re-analysis o f the videotapes. In order to
preserve the original predictions, the original estimate for is used in this chapter.

4.2. PREDICTION 125

Ti = 14 sec/line ?

Substituting these parameter estimates into Equation 4.4, the length
crossover point is predicted to be:

= (T ^ e - T s t) n T , - p T J
= (37 - 24)/(14 - .58 X 20)
= 5.4 lines.

From Equation 4.5 the density crossover point is predicted to be:

Kc = (T , / T J - (r „ - T J / L T ,
= .70 - .65/L .

m

As L -* 00, .7 modifications/line. Another way of putting this
result is to say: if there is more than one modification to be done every
1/.7 = 1.4 lines, then it is better to retype the text.

Plotting the time to modify a text (from Equation 4.2 and Equation
4.3) as a function of the length of the text (Figure 4.2), it is apparent that
the editor beats the typewriter immediately on any manuscript longer
than about three lines. More importantly. Figure 4.2 reveals that as the
length of the manuscript increases the editor does not continue to
increase its superiority as much as might be expected.^ Why not?

The answer is that the density chosen for the experiment, p = .58, is
by chance near the critical crossover density p^ = .70—.65/L. Had the
experiment varied p, one manuscript at the critical value would not have
been a problem. But, since each of the manuscripts had a density near
this critical value, local fluctuations in or p led to wavering of the
length-crossover point Another way to display the model’s prediction is
to plot the density crossover point p^ as a function of text length L using
Equation 4.5 (see Figure 4.3). Note how close the manuscripts are to the

 ̂ It is interesting that in the time it takes to make one correction with WYLBUR,
the user could have typed /T j = (20 sec)/(14 sec/line) = 1.4 lines. Contrary to the
usual assumption, it was more effective to type slowly but carefully on the editing system
examined than it was to type at high speed and correct the errors later.

^ The dip in the WYLBUR curve comes from the low modification density for
manuscript M3.

126 4. AN EXERCISE IN TASK ANALYSIS

Figure 4.2. Predicted time to ed it/type the experimental
manuscripts as a function of the manuscript length.

Figure 4 .3. Density crossover point as a function of manu­
script length.
The typewriter is faster for ail manuscript length and modification density combi­
nations above the solid line, slower for those below.

4.3. SENSITIVITY ANALYSIS 1 27

Figure 4 .4. Predicted time to ed it/type a manuscript as a
function of the length of manuscript and of the modification
density.

crossover density line. Because all the manuscripts sit relatively near the
density crossover line, it can be predicted that the results of the exper­
iment will be equivocal, that is, that the length crossover point will not
be well-defined.

What about predictions at other values of p? The predicted task time
as a function of the length of manuscript for different values of p is
plotted in Figure 4.4. The typewriter either wins or loses immediately.
This is true because the difference in setup times for the typewriter and
for WYLBUR is (for manuscripts longer than five lines) only a small
percentage of the time required to do the task.

4.3 . SENSITIVITY ANALYSIS

There are several possible sources of error in our calculation. Only
the manuscripts for the experiment were available; there was no
information about the subjects, except that they were secretaries. Most of
the parameters, including the typing rates of the users, were taken from
pre-existing experiments by analogy. To what extent is the value of the

predictions dependent on the accuracy of these parameter estimates?
One way to determine the consequences of uncertainties in the parameter
values is to see how sensitive the predictions of the equations are to small
changes in the parameter values.

SENSITIVITY OF THE LENGTH CROSSOVER POINT

Let the values of p, T^, T ^ , and Tf be as estimated previously.
Let o', T T j , T j , and T! have other, but nearby, values. Then we
can use a Taylor expansion to approximate Equation 4.4 as

1 28 4. AN EXERCISE IN TASK ANALYSIS

L / ~ L, +

= I , + ^ (P ' - P) + - T„) + - T„)

In order to normalize the magnitudes of the coefficients and the results,
we express this equation in a ratio form:

-Lc L c _p dhc i p' Tm dLc
Lc ~ L c 5p V P Lc dT„

+

A Tm)

T,c d L c (T j - T c e \ Zt d L c f Z t ' - Z t \
Lc d z X Zc J ' ^L c d z A Zt)

Z d L c (T / - T A
Lc d z y Z) '

Using 8x for (x —x)/x.

+

4.3. SENSITIVITY ANALYSIS 1 29

Evaluating the derivatives and substituting (r - T^,)/{T, - p T) for
iJI / f/I

gives

6Lc =
1

/

V P'̂ m J

i
1

[6p + 6Tm) + 1

1 ^st

+

V ^ st)
^Tst +

V ^se /
\

1

P'^m _ j
\ Ti

6Ti.

(4.6)

Equation 4.6 expresses relative changes in as a linear combination
of relative changes in the parameters of Equation 4.4. The percentage
change in is approximated as the sum of the percentage change due to
each variable. The relative sensitivity of predicted due to the different
parameters may thus be assessed directly from the relative size of the
coefficients. At p = .6, Equation 4.6 becomes

= 6.00 5p + 6.00 8T^ + 2.85
- 1.85 - 7.00 ST/.

That is, a 1% error in will be amplified into a 7% error in L^. The
values of the coefficients for other values of p are plotted in Figure 4.5,
as are those of the three following equations. The value of is more
sensitive to changes in T^, p, and than to changes in and the
ostensible parameters of interest. The sensitivity analysis makes it quite
clear (1) that the prediction of = 5 lines from the model is not
robust over changes in the parameters and (2) that it will be difficult to
maintain adequate control over the variables in the experiment at this
level of p. Considerable variance in the measured value of is
predicted. Figure 4.5 shows that the coefficients for 8p, 8T^, and 8Ti
are alt very large in the region between p = .06 and p = .08.
Conversely, had the experiment been designed with p = .2, then it
would have been true that

8L^ = .40 fip + .40 8T^ + 2.85 8T^

- 1.85 8T^, - 1.40 8Ti ,

1 3 0 4. AN EXERCISE IN TASK ANALYSIS

Length (lines)
+5%

I K > 0

S
S

-5%
20 40 60
Length (lines)Length (lines)

Figure 4 .5. Coefficient values for the sensitivity equations.

in which case would have been much less affected by parameters
other than and T̂ .̂

SENSITIVITY OF THE DENSITY CROSSOVER POINT

We examine the density crossover point p^, by proceeding similarly
for Equation 4.5:

4.3. SENSITIVITY ANALYSIS 1 3 1

6pc

\
1 1

1 —
V

Tse - LTi T s t - L T i _ 1
Tst) Tse

X
/

6T..

+

\ \
1

6L - 6Tm +
1

LTi
— 1

/
1 — Tse — Tst

Tse - Tst LTi y

ST, .

(4.7)

At Z, = 20 lines, Equation 4.7 becomes

= .09 « r ,, - .13 + .05 8L
- 1.00 « r + 1.05 s r , .m i

Hence, a 1% change in either or will produce about a 1% change
in p^, but a 1% change in the other parameters produces only a
negligible change (.05%~.13%) in p^. For manuscripts of reasonable
length (longer than ten lines), p^ will depend mainly on and

SENSITIVITY OF TOTAL TYPING TIME T,

The total typing time is examined by converting Equation 4.1;

6Tt

\
1 6Tst^- 1

V Tst) 1 + ^V Lti y

{8L + 6Ti).

(4.8)

At L = 20 lines.

S r, = .08 + .92 SL + .92 bTf.

The sensitivity of to fades quickly as L increases. A 1% change in
the other parameters produces a little less than a 1% change in T^.

SENSITIVITY OF TOTAL EDITING TIME

The total editing time T is checked by converting Equation 4.2;

132 4. AN EXERCISE IN TASK ANALYSIS

1 +
pLT„

S T , , +

/
1 + pLTmJ

{6p + STm + SL).

(4.9)

At L = 20 lines and p = .6 mod/line,

ST^ = .13 + .87 5p + .87 8T^ + .87 8 L .

Again, the sensitivity of to fades quickly as L increases. And
again, 1% change in the other parameters produces a little less than a 1%
change in T^.

The results of the confidence interval and sensitivity analyses tell us
that, whereas it may be possible to predict the value of functionally
(that is, to produce an equation whose evaluation will give a reasonable
value for L^), it is not possible to predict the value of numerically
with any certainty on this group of manuscripts, because they are all set
so near to p^. Small errors in the parameter values will cause large
errors in the predictions. The analyses tell us, furthermore, that the
experiment is not likely to produce a well defined value of p^ against
which to compare a prediction. On the other hand, the predictions of
total time to process each text are likely to be reasonable and to depend
very little on the setup times of the editor or the typewriter.

4.4 . RESULTS

Figure 4.6 shows the time to edit each manuscript, both for the
typewriter and for w y l b u r , as a function of the length of manuscript
plotted in the same manner as Figure 4.2. As predicted from the model,
the crossover point was not well defined. Connecting the mean observed
times produces three crossover points. The times for manuscripts M2,
M3, and M5 were not reliably different from one another.

Accuracy o f Parameters. Just how accurate were the simple models
of typing and editing in Equation 4.2 and Equation 4.3? The comparison
needs to be made in two ways. First, how accurate were the models at
predicting the result in advance of any knowledge about the outcome?
This zero-parameter prediction is usual in practice where reasonable values

4.4. RESULTS 1 3 3

Figure 4 .6. Observed mean times to type/ed it the manu­
scripts in the experiment.
The users tested were eight professional secretaries, each a proficient user of
WYLBUR and of a typewriter. Each user was to edit all five texts twice, once with
the typewriter, once with WYLBUR. Half the users used the typewriter first, half
the editor. The order in which the texts were edited was varied systematically.
Properties of test manuscripts are listed in Figure 4.1.

for the parameters are known. Second, how good were the models at
predicting the result, given knowledge of the parameter values? This
would be a two-parameter prediction, since two values must be estimated
from the data. It allows an evaluation to be made of the accuracy of the
functional form of the model, and it allows us to partition the prediction
error into the error due to misestimating the parameters and error due to
form of the model. In order to make two-parameter predictions, esti­
mates of the parameters were made from regressions on the experimental
data. A comparison between the parameters estimated in this way and
the values assumed for making the predictions is given in Figure 4.7.
The values we used for making our predictions were poor estimates (off

134 4. AN EXERCISE IN TASK ANALYSIS

Assumed Observed % D ifference

’T s , (sec) 24 5 -85 %

T , (sec/line) 14 18 22%
Tse (sec) 37 179 649%
Tm (sec/mod) 20 16 -20 %

Figure 4.7. Comparison of the estimated parameter values
with the values observed in the experiment.

by 649% and 86%) for the two setup times and but were within
about 20% for the two rate parameters (f^ and T ^ .

Accuracy o f Typing Model Figure 4.8 compares the predicted and
observed times for the typing model (Equation 4.2). The zero-parameter
prediction is indicated by a dotted line and the two-parameter prediction

Figure 4.8. Comparison of the predicted typing time with
the typing times observed in the experiment.
The vertical bars on the observed times extend one standard deviation up and
down from the mean, based on the data from eight users.

4.4. RESULTS 135

by a solid line. When the actual typing rates of the subjects are used in
the equation, the fit to the data is excellent. Using the sensitivity equa­
tion for this model (Equation 4.8), we can partition the sources of error
in the zero-parameter prediction. The errors are tabulated for each
manuscript in Figure 4.9. On the average, the prediction was about 11%
too low. Almost all this error (10% of the 11%) resulted from the error
in estimating the parameters; only 1% resulted from the form of the
model. Although the estimate for was much worse than the estimate
for Tj, the latter was the source of twice as much error (19% for T̂ , to
9% for r^,). Since the errors were in opposite directions, they partially
offset each other.

M anuscript

Sources of Error

Param eters Model Total

T
St Subtotal

M1 + 27% -18% 9% 0% 9%
M2 + 11% -19% -8 % -2 % -10 %
M3 + 4% -20% -16 % -5 % -20 %
M4 + 4% -20% -16 % + 3% -13 %
M5 0% -20 % -20 % 0% -20 %

Mean 9% -19 % -10 % -1 % -11 %

Figure 4 .9. Partitioning the typing model’s prediction error.

Accuracy o f Editing Model. The editing model (Equation 4.3) is
compared with the observed times in Figure 4.10. There is a good fit
between the observed and the predicted editing times, even for the zero-
parameter predictions. In Figure 4.11, the prediction error is partitioned
using the sensitivity equation for the editing model (Equation 4.9). The
model was about 24% too low; but, again, errors in estimating the input
parameters were responsible for considerably more error (31%) than was
the form of the model (7%). This time the major source of errors in
estimating the parameters was underestimating the setup time of the
editor. (It is instructive to note the frequency with which the various
sources of errors partially cancel each other.)

1 36 4. AN EXERCISE IN TASK ANALYSIS

Manuscript Length (lines)

Figure 4 .10 . Comparison of the predicted editing time with
the editing times observed in the experiment.
The vertical bars on the observed times extend one standard deviation up and
down from the mean, based on the data from eight users.

4.5 . CONCLUSIONS

The main point of this exercise was to explore how much insight
could be gained from a simple model of text-editing, the Constant Time
per Modification model, in which each editing modification is assumed to
require the same amount of time. We investigated this model in a case
study comparing the w y l b u r editor with a typewriter. There were two
main results.

First, it was possible to produce several predictions leading to
practical insight A formula for the length crossover point showed its
functional dependence on other associated variables. A related concept
of modification density arose from the modeling effort, and the density

4 .5 . CONCLUSIONS 1 3 7

Sources of Error

Manuscript
Parameters Model

Subtotal

Total

M1
M2
M3
M4
MS

- 67% + 4%
-51% +9%
-47% +11%
-35% +14%
-13% +22%

-63%
-42%
-36%
- 21%

+ 9%

+ 46%
+ 17%
-17%
-13%

+ 1%

-47%
-33%
-46%
-32%
+ 10%

Mean -43% +12% -31% + 7% -24%

Figure 4 .11 . Partitioning the editing model’s prediction error.

crossover point was expressed in functional form. It was then possible to
predict some unfortunate consequences of an unlucky choice in modifi­
cation density for an experiment Without the insight of this derivation,
the results of the experiment would have been difficult to interpret at all.

Second, the major errors in the predictions made by the simple
editing and typewriting models did not result because they were too
simple, but because of errors in estimating the values of the input
parameters. For these predictions, a more sophisticated model would
have been useful only to the extent that it reduced dependence of the
prediction on the noisy parameters.

A sensitivity analysis identified those parts of the prediction from
these models in which little confidence could be placed. It also allowed
the prediction error to be quantitatively partitioned.

http://taylorandfrancis.com

5. The GOMS Model of
Manuscript Editing

5 .1 . THE GOMS MODEL
Components of the GOMS Model
Limitations of the GOMS Model
Design of the Experiments

5 .2 . SELECTION RULES (EXPERIMENT 5A)
5 .3 . TIME PREDICTIONS (EXPERIMENT 5B)
5 .4 . GRAIN OF ANALYSIS (EXPERIMENT 5C)
5 .5 . DISCUSSION

Assessment of the Models
Status of Goals and Operators
Operator Variability
Extending GOMS to Cover Errors
Manuscript Editing as a Cognitive Skill

5 .6 . CONCLUSIONS
APPENDIX: MATCHING OPERATOR SEQUENCES

In Chapter 4 we investigated a simple model of human text-editing
performance. We now consider how our understanding might be im­
proved by taking into account the cognitive information-processing
activities of the user. Our starting point is the fundamental principle of
task analysis, the Rationality Principle P8 from Chapter 2. According to
the principle, users act rationally to attain their goals. To predict a user’s
behavior we must analyze the task to determine the user’s goals and
operators and the constraints of the task. From Chapter 2, we expect
that underlying the detailed behavior of a particular user there is a small
number of information-processing operators, that the user’s behavior is
describable as a sequence of these, and that the time the user requires to
act is the sum of the times of the individual operators.

This, in outline, is the information-processing analysis of text-editing
to be carried through in this chapter. We address several general issues:
Is it possible to describe the behavior of a user engaged in text-editing as

139

the repeated application of a small set of basic information-processing
operators? Is it possible to predict the actual sequence of operators a
person will use and the time required to do any specific task? In
attempting to describe behavior in this way, the issue of the level of
analysis is critical. How does the model’s ability to describe and predict
a person’s behavior change as we vary the grain size of the analysis?

1 40 5. THE GOMS MODEL OF MANUSCRIPT EDITING

5.1. THE GOMS MODEL

In the models we describe, the user’s cognitive structure consists of
four components: (1) a set of Goals, (2) a set of Operators, (3) a set of
Methods for achieving the goals, and (4) a set of Selection rules for
choosing among competing methods for goals. We call a model specified
by these components a GOMS model.

As an example of the basic concepts of a GOMS model and the
notation used, let us consider a particular model (called Model F2) of
manuscript editing with the line-oriented p o e t editor we studied in
Chapter 3. According to the model, when the user begins editing he has
the top level goal:

GOAL: EDIT-MANUSCRIPT.

As we have seen, a user segments the larger task of editing the
manuscript into a sequence of small, discrete modifications, such as to
delete a word or to insert a character. Although it is often possible to
predict the user’s actual segmentation of the task into subtasks from the
way the instructions are expressed on the manuscript, it is worth
emphasizing that the definition of the subtasks is a decision of the user.
We use the term unit task to denote these user-defined subtasks.
Notationally, we write

GOAL: EDIT-MANUSCRIPT
. GOAL: EDIT-UNIT-TASK repeat until no more unit tasks.

The indentation above indicates that GOAL: e d it -u n it -t a s k is a subgoal
of GOAL: EDIT-MANUSCRIPT, and the notation in italics says that the
subgoal is to be invoked repeatedly until no more unit tasks remain to be
done.

5.1. THE GOMS MODEL 141

In order to edit a unit task, the user must first acquire instructions
from the manuscript and then do what is necessary to accomplish them;

GOAL: EDIT-UNIT-TASK
. GOAL: ACQUIRE-UNIT-TASK
. GOAL: EXECUTE-UNIT-TASK .

Each subgoal above will itself evoke appropriate methods. There is a
simple method for acquiring a task:

GOAL: ACQUIRE-UNIT-TASK

. GET-NEXT-PAGE i f at end o f manuscript page

. G ET-N EXT-TA SK .

The operator g e t -n e x t - p a g e is invoked only if there are no more edit
instructions on the current page of the manuscript The bulk of the work
towards the goal—looking at the manuscript finding an editing
instruction, and interpreting the instruction as an edit task—is done by
the operator g e t -n e x t -t a s k .

In POET, like most line-oriented text-editors, to accomplish a unit task
there is a two-step method:

GOAL: EXECUTE-UNIT-TASK
. GOAL: LOCATE-LINE
. GOAL: M O D IFY -TE X T .

In POET the editor must first be located at the line where the correction
is to be made. Then the appropriate text on that line must be modified.

To locate POET at a line, there is a choice between two methods:

GOAL: LOCATE-LINE
. [select: USE-LF-METHOD

USE-QS-METHOO] .

To use the l f -m e t h o d , the l in e f e e d key is pressed repeatedly, causing
the editor to advance one line each time. To use the q s -m e t h o d

(Quoted String), a string of characters is typed (between quotation marks)
to identify the line. Usually the l f -m e t h o d is selected when the text for
the new unit task is within a few lines of the text for the current unit

task, and the q s -m e t h o d is selected when the new unit task is farther
away.

Once the line has been located, there is a choice of how to modify the
text:

GOAL: M ODIFY-TEXT
. [se lect: USE-S-COMMAND

USE-M-COMMAND]
. V ER IFY-ED IT .

Either p o e t ’s Substitute command or its Modify command can be used
to alter text on a line. A detailed example of the Substitute command
has already been given (in Chapter 3). The Modify command allows the
user to invoke a series of subcommands for moving forward and
backward and for making modifications within a line. In either case, a
VERIFY-EDIT Operation is evoked to check that what actually happened
matched the user’s intentions.

Putting all the steps together into one structure, we have:

1 42 5. THE GOMS MODEL OF MANUSCRIPT EDITING

GOAL: EDIT-M ANUSCRIPT
GOAL: EDIT-UNIT-TASK repeat Until no more unit tasks

GOAL: ACQUIRE-UNIT-TASK

. GET-NEXT- PAGE if at end of manuscript page

. GET-NEXT-TASK
GOAL: EXECUTE-UNIT-TASK
. GOAL: LOCATE-LINE
. . [se lect: USE-QS-METHOD

USE-LF-METHOD]
. GOAL: M ODIFY-TEXT
. . [se lect: USE-S-COMMAND

USE-M-COMMAND]
. . VERIFY-EDIT.

The dots at the left of each line show the depth of the goal stack. To
complete this model of manuscript editing, we must still add method
selection rules for determining the actual submethods at the two
occurrences of select.

The step-by-step behavior of the model in performing a unit task is
traced in Figure 5.1. The user is assumed to have a goal stack with the
current goal at its top. New subgoals are pushed onto the stack, and
completed goals (whether satisfied or abandoned) are popped off the
stack. The goals eventually cause operators to be executed. It is during

st
ep

C

on
te

nt
s

of
 G

oa
l S

ta
ck

O

pe
ra

to
r

E
xe

cu
te

d
E

xt
er

na
l

U
se

r
A

ct
io

n

4̂ CO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
D

-M
S

E
D

-M
S

,
E

D

E
D

-M
S

,E
D

-

E
D

-M
S

,
ED

-

E
D

-M
S

,
ED

-

E
D

-M
S

,
ED

-

E
D

-M
S

,E
D

-

E
D

-M
S

,E
D

-

E
D

-M
S

,
ED

-

E
D

-M
S

,
ED

-

E
D

-M
S

,
ED

-

ED
-M

S,
ED

-
E

D
-M

S
,E

D
-

E
D

-M
S

,E
D

-

E
D

-M
S

U
T

U
T,

 A
C

Q
-U

T

U
T,

 A
C

Q
-U

T

U
T

U
T,

 E
X

-U
T

U
T,

 E
X

-U
T

,
LO

C
-L

IN
E

U
T,

 E
X

-U
T

,
LO

C
-L

IN
E

U
T,

 E
X

-U
T

U
T,

 E
X

-U
T

,
M

O
D

-T
E

X
T

U
T,

 E
X

-U
T

,
M

O
D

-T
E

X
T

U
T,

 E
X

-U
T

,
M

O
D

-T
E

X
T

U
T,

 E
X

-U
T

U
T

G
E

T-
N

E
X

T-
T

A
S

K

U
S

E
-L

F-
M

E
TH

O
D

U
S

E
-S

-C
O

M
M

A
N

D

V
E

R
IF

Y
-E

D
IT

Lo
ok

s
at

 m
an

us
cr

ip
t

Ty
pe

s
LI

N
E

FE
E

D

Ty
pe

s
si

di
 r

et
u

r
n

 id
i r

et
u

r
n

 r
et

u
r

n

Ty
pe

s
/

Fi
gu

re
 5

.1
.

Tr
ac

e
of

 M
od

el
 F

2
th

ro
ug

h
on

e
un

it
ta

sk
.

Th
e

ta
sk

 b
ei

ng
 t

ra
ce

d
is

 t
he

 s
ec

on
d

on
e

m
ar

ke
d

in
 F

ig
ur

e
3.

2.

In
 t

he
 g

oa
l

st
ac

k
co

lu
m

n,
 t

he
 t

op
 o

f
th

e
go

al
 s

ta
ck

 (
i.e

.,
th

e
cu

rr
en

t
go

al
)

is
 a

t
th

e
rig

ht
.

To
 s

av
e

sp
ac

e,

th
e

sy
m

bo
l

G
O

A
L:

is

 d
ro

pp
ed

 f
ro

m

th
e

be
gi

nn
in

g
of

 g
oa

l
ex

pr
es

si
on

s
an

d
th

e
fo

llo
w

in
g

ab
br

ev
ia

tio
ns

ar

e
us

ed
:

A
C

Q

=
A

C
Q

U
IR

E
,

ED

=
ED

IT
,

EX

=
E

X
E

C
U

TE
,

LO
G

=

LO
C

A
TE

,
M

S

=
M

A
N

U
S

C
R

IP
T,

M

O
D

=

M
O

D
IF

Y
,

an
d

U
T

=

U
N

IT
-T

A
S

K
.

execution of operators that interactions with the physical world take
place. For example, the user executes the operator g e t -n e x t -t a s k by
turning to the manuscript, scanning it until he finds the next task,
reading the instructions, and turning back to the terminal.

Components of the GOMS Model

The above example provides specific instances to help us understand
the information-processing components of GOMS models.

Goals. A goal is a symbolic structure that defines a state of affairs to
be achieved and determines a set of possible methods by which it may be
accomplished. In the example, the goals are g o a l : e d it -m a n u s c r ip t ,
GOAL: e d it -u n it -t a s k , GOAL: ACQUIRE-UNIT-TASK, GOAL: EXECUTE-
UNIT-TASK, GOAL: LOCATE-LINE, and GOAL: MODIFY-TEXT. The dynamic
function of a goal is to provide a memory point to which the system can
return on failure or error and from which information can be obtained
about what is desired, what methods are available, and what has been
already tried.

Operators. Operators are elementary perceptual, motor, or cognitive
acts, whose execution is necessary to change any aspect of the user’s
mental state or to affect the task environment. In the example, the
operators are: g e t -n e x t -p a g e , g e t -n e x t -t a s k , u s e -q s -m e t h o d , u s e -l f -
METHOD, USE-S-COMMAND, USE-M-COMMAND, and VERIFY-EDIT. The
behavior of the user is ultimately recordable as a sequence of these
operations. In the example traced in Figure 5.1, the sequence of
operators in the user’s behavior is:

GET-NEXT-TASK
USE-LF-METHOD
USE-S-COMMAND
VERIFY-EDIT .

1 4 4 5. THE GOMS MODEL OF MANUSCRIPT EDITING

A GOMS model does not deal with any fine structure of concurrent
operations. Behavior is assumed to consist of the serial execution of
operators.

An operator is defined by a specific effect (output) and by a specific
duration. The operator may take inputs, and its outputs and duration
may be a function of its inputs. An obvious example is the typing
operator, whose input is the text to be typed, whose output is the key-

Stroke sequence to the keyboard, and whose duration is (approximately) a
linear function o f the num ber o f characters.

For a specific model, the operators define a grain of analysis. In
general, they embody a mixture of basic psychological mechanisms and
learned organized behavior, the mixture depending on the level at which
the model is cast. The finer the grain of analysis, the more the operators
reflect basic psychological mechanisms. The coarser the grain of analysis,
the more the operators reflect the specifics of the task environment, such
as the terminal, the physical arrangement, and the editor. The example
model above is quite coarse, and its operators (e.g., u s e -s -c o m m a n d)
contain within themselves the specifics of poet’s command language.

Methods. A method describes a procedure for accomplishing a goal.
It is one of the ways in which a user stores his knowledge of a task. The
description of a method is cast in a GOMS model as a conditional
sequence of goals and operators, with conditional tests on the contents
of the user’s immediate memory and on the state of the task
environment In the example above, one of the methods was

GOAL: ACQUIRE-UNIT-TASK
. GET-NEXT- PAGE i f at end o f manuscript page
. GET-NEXT-TASK.

5.1. THE GOMS MODEL 145

This method is associated with its g o a l : a c q u ir e -u n it -t a s k . It will
give rise to either the operator sequence g e t -n e x t -pag e followed by
g e t -n e x t -t a s k or the single operator g e t -n e x t -t a s k , depending on
whether the test “at end o f manuscript page" is true of the task
environment at the time the test is performed.

In the manuscript-editing task, the methods are sure of success, up to
the possibility of having been mis-selected, the occurrence of errors of
implementation, and the reliability of the equipment By contrast in
problem-solving tasks (such as a first attempt at solving the DONALD+
GERALD problem in Chapter 2), methods have a chance of success
distinctiy less than certain, because of the user’s lack of knowledge or
appreciation of the task environment This uncertainty is a prime contri­
butor to the problem-solving character of a task; its absence is a
characteristic of a cognitive skill.

Methods are learned procedures that the user already has at
performance time; they are not plans that are created during a task
performance. They constitute one of the major ways in which familiarity
(skill) expresses itself. The particular methods that the user builds up

from prior experience, analysis, and instruction reflect the detailed
structure of the task environment. In the manuscript-editing task, they
reflect knowledge of the exact sequence of steps required by the editor to
accomplish specific tasks.

Control Structure: Selection Rules. When a goal is attempted, there
may be more than one method available to the user to accomplish the
goal. The selection of which method is to be used need not be an
extended decision process, for it may be that task environment features
dictate that only one method is appropriate. On the other hand, a
genuine decision may be required. The essence of skilled behavior is
that these selections are not problematical, that they proceed smoothly
and quickly, without the eruption of puzzlement and search that charac­
terizes problem-solving behavior.

In a GOMS model, method selection is handled by a set of selection
rules. Each selection rule is of the form “if such-and-such is true in the
current task situation, then use method M.” Selection rules for GOAL:
LOCATE-LINE of the example model might read; i f the number o f lines to
the next modification is less than 3, then use the l f -m e t h o d ; else use the
QS-METHOD. Such rules allow us to predict from knowledge of the task
environment (in this case the number of lines to the target) which of
several possible methods will be selected by the user in a particular
instance.

Limitations of the GOMS Model

1 46 5. THE GOMS MODEL OF MANUSCRIPT EDITING

For error-free behavior, a GOMS model provides a complete dynamic
description of behavior, measured at the level of goals, methods, and
operators. Given a specific task (a specific instruction on a specific
manuscript and a specific editor), this description can be instantiated into
a sequence of operations (operator occurrences). By associating times
with each operator, such a model will make total time predictions. If
these times are given as distributions, it will make statistical predictions.
But, without augmentation, the model is not appropriate if errors occur.
Yet errors exist in routine cognitive skilled behavior. Indeed, error rates
may not even be small, in the sense of having negligible frequency,
taking negligible time, or having negligible consequences. What is true
of skilled behavior is that the detection and correction of errors is mostly
routine (we discuss this more later). It cannot be entirely routine, since
the occurrence of rare types of errors for which the user is unprepared is

5.2. SELECTION RULES 147

always possible (the editor performing incorrectly, the terminal catching
fire). But, in the main, errors are quickly detected and result in
additional time to correct the error. The final effect of the behavior
remains relatively error-free, and the behavior can be characterized solely
by the time to completion. Thus, errors can be converted to variance in
operator times, so that the GOMS theory can be applied to actual
behavior at the price of degraded accuracy.

For a general treatment of errors and interruptions of the user, the
hierarchical control structure of a GOMS model is inadequate; a more
general control structure is required. The use of the stack-discipline
GOMS model instead of a more general control structure, such as
production systems (Newell and Simon, 1972), should be taken as an
approximation especially appropriate for skilled cognitive behavior and
preferred here because of its greater simplicity.

Design of the Experiments

The purpose of the experiments that follow is to describe the
manuscript-editing task in information-processing terms. The general
technique is to observe a user in a close laboratory analogue of the task
he commonly performs, to describe his behavior using a GOMS model,
and to evaluate in various ways the adequacy of the description. The
experiments are directed specifically at three elements of this analysis:
(1) description of how the user decides which method to use for a task,
(2) description of the time course of events, and (3) an investigation of
how the adequacy of the description varies as a consequence of the grain
of analysis.

5.2. SELECTION RULES (EXPERIMENT 5A)

The purpose of this experiment was to discover how users choose
which of several alternative methods to use and to determine if the
method choices could accurately be described in terms of the selection
rules of a GOMS model.

In the GOMS model for poet , we have seen two places where, for a
given goal, the user has a choice of methods. The first method selection
came in deciding how to locate the line;

GOAL: LOCATE-LINE
. [select: USE-LF-METHOO

USE-QS-METHOD] .

The second method selection came in choosing between commands for
making the text modification:

GOAL: MODIFY-TEXT
. [select: USE-S-COMMAND

USE-M-COMMAND]
. VERIFY-EDIT.

What we seek is a set of selection rules describing the conditions under
which the user will choose one method over another.

1 48 5. THE GOMS MODEL OF MANUSCRIPT EDITING

METHOD FOR EXPERIMENT 5A

Users were given a manuscript, marked with corrections, and asked to
use the po et text-editor to make the corrections. Although the experi­
ment was performed in the laboratory, an effort was made to make the
situation seem natural from the user’s point of view: the physical
surroundings, the task, the terminal, and the editor were all familiar as
part of the user’s daily activities. The manuscript and the modifications
to be made on it were selected to be typical.

Users. Users were two professional secretaries and a Ph.D. computer
scientist All had at least one year of daily experience using POET.

Manuscript. The manuscript was an eleven-page memo. Each page
was 8-1/2 by 11 inches, with 55 fines of text and 70 characters per fine,
printed unjustified in a 10-point fixed-pitch font There were 73 different
modifications marked with a red pen, giving an average density of one
modification every 8.3 fines, or 6.6 modifications per page (from 3 to 11
on any one page). An effort was made to vary the number of fines
between consecutive modifications and to place an equal number of
modifications in each of the left, right, and middle portions of the page.
The marked modifications were relatively short: four of them were
deletions (of an average of 5.5 characters), 26 were insertions (of an
average of 2.9 characters), and 40 were replacements (of an average of 4.1
characters to be replaced by an average of 4.4 characters). The
manuscript fragment in Figure 3.2 was taken from the manuscript given
to the users and illustrates the style in which modifications were indicated
to the user.

TemunoL Two terminals were used in the experiment: a Texas
Instruments “Silent 700” teletypewriter (prints on paper at 30 char-
acters/sec) and a video display, 8-1/2 inches wide by 10-3/4 inches high
(42 lines, 72 characters per line, maximum display rate about 6 lines/sec).
The display was programmed to operate according to a simple scrolling
discipline (the same discipline used on the teletypewriter): each new line
was displayed at the bottom of the screen with the other lines scrolling
up to make room. The last 42 lines of an interaction were visible on the
screen.

Procedure. The user was seated before the terminal with the
manuscript to his left He first performed editing tasks on a one-page
manuscript for warmup and for insurance that he understood what to do.
Then he edited the manuscript described above. One user was run on
the teletypewriter alone, one on the video display terminal alone, and one
was run twice, first on the display and two weeks later on the
teletypewriter. For two of the experimental sessions, users were in­
structed to proceed through the manuscript, inserting an asterisk at the
beginning of each marked line (since these sessions were originally run
only to investigate methods for locating the target line). In the other two
experimental sessions, the users were instructed to edit the eleven-page
manuscript Editing the manuscript required approximately 20 minutes.

The users’ keystrokes and the system’s responses were recorded on a
computer file. These data were used to infer the methods chosen for each
task and the reasons for choosing them.

RESULTS OF EXPERIMENT 5A

Typescripts of the four experimental sessions were examined to
identify the methods employed by the users. Figure 5.2 gives the
methods observed and the frequencies with which the methods were
selected, q s -m e th o d and l f -m e th o d are the methods previously
described for g o a l : l o c a t e -lin e . s -c o m m a n d and m -c o m m a n d are the
methods previously described for GOAL: m o d if y -t e x t . The other
methods were used less frequently and are described as follows:

5.2. SELECTION RULES 1 49

-f N-METHOO. The user estimates the number of lines n to
the next unit task then types the command + n / ,
which causes poet to advance n lines and print the
line. It is assumed that a correction may be

1 50 5. THE GOMS MODEL OF MANUSCRIPT EDITING

User / Terminal Type

S I
(Comp. Sci.)

(TTY)

S4
(Secy.)

(TTY) (DISP)

S22
(Secy.)

(DISP)

M ethods fo r g o a l : LOCATE-LINE:

LF-METHOD 11(16%) 14(21%) 45 (68%) 25 (38%)
QS-METHOD 44 (65%) 1 (2%) 0 40 (62%)
+ N-METHOD 2 (3%) 51 (77%) 20 (30%) 0
AN-METHOD 11(16%) 0 1 (2%) 0

M ethods fo r GOAL: M ODIFY-TEXT:

S-COMMAND

M'COMMANO

48 (73%)
18(27%)

57 (86%)
9(14%)

Figure 5.2. Frequency of method selections for three sub­
jects in Experiment 5A.
In two sessions no modifications were actually done, since only methods for GOAL:
LOCATE-LINE were being studied at the time.

needed: the user may have to type a few lin efeed
commands (each o f which moves him down a line),
t commands (each o f which moves him up a line),
or may even have to repeat the -F n / command with
a new n.

AN-METHOD. The user first selects an easily specified
“anchor” line near the target line, such as a blank
line (specified by the empty string ""), the last line
of a page (denoted by the special symbol $), or a
line that has a short unique string, such as a
paragraph number. Then the target line is reached
by using lin efeed ’s or t ’s. For example, the com­
mand ""L IN EFEED locates POET at the first line of
the next paragraph.

A striking feature of the method frequencies in Figure 5.2 is how
each user clearly has a dominant method. By knowing only the domi­
nant method of the user, his.method selection can be predicted correctly
about 66% of the time for GOAL: l o c a t e -l in e and 80% of the time for

GOAL: MODiFY-TEXT. Apparently, the user will use this dom inant
m ethod unless it is obviously inefficient (such as LiNEFEEDing a line at a
time through ten pages o f text to get to the next task).

That a user’s selection of methods depends systematically on the
features of the task environment is illustrated by the choice of method
for GOAL: LOCATE-LINE. The most important characteristic of the task
environment for this goal is the distance d (given in number of lines)
between the Current Line and the line with the text to be next modified.
As is clear from Figure 5.3, all users used the l f -m e th o d if the next line
was close enough. Where users differed was in the threshold for how far
away the target had to be before they shifted to other methods. The
time required to use the l f -m e th o d was sensitive to the speed of the
terminal, since the system prints out the new Current Line every time

5.2. SELECTION RULES 151

User Method
1 2 3 4 5 6 7 8 9 10-14 15 +

S1 LF 8 3
OS 2 4 5 2 1 3 4 8 15

(TTY) 1 1
AN 1 2 1 1 3 3

S4 LF 8 4 1 1
QS 1

(TTY) ♦ N 1 6 5 3 1 4 4 11 17
AN

S4 LF 6 7 6 5 3 1 3 2 2 10
QS

(DISP) •f N 1 1 2 9 7
AN 1

S22 LF 6 5 6 5 1 1 1
QS 1 1 2 4 4 10 18

(DISP) •f N
AN

Total
Frequency 8 6 6 5 4 0 1 4 4 11 19

Figure 5.3. Frequency of GOAL: LOCATE-LINE methods in
Experiment 5A as a function of the distance d from the
previous task.
The vertical bars indicate the thresholds where the LF-METHOD ceases being the

preferred method in each session. The Total Frequency row gives the frequency
of the different distances over the whole manuscript, taking the tasks in order.
Since users often did some tasks in a different order, totals for different experi­
ments in the same column are not necessarily equal.

LINEFEED is typed. It was not surprising, therefore, that the l f -m e th o d
was used less frequently by user S4 on the slower teletypewriter than on
the faster display terminal (21% of the time on the teletypewriter vs. 68%
of the time on the video display, according to Figure 5.2), or that the
threshold for when to abandon the l f -m e th o o was lower when S4 was
using a slow terminal than when she was using a fast one (rf=3 lines for
the teletypewriter vs. d= 10 lines for the display).

Figure 5.2 and Figure 5.3 make it clear that there are important
individual differences in how users decide which method to use. Using
the same terminal and doing the same task, S22 uses the q s -m e th o d 62%
of the time, but S4 never uses i t Averaging together the data for all
users and attempting to write rules to describe the choices of the group
would, therefore, produce inaccurate predictions, as well as be quite
misleading. Yet, despite the existence of significant individual differences
in methods for accomplishing this goal, each user’s behavior taken
individually was highly structured and amenable to a GOMS description.

The complete prediction of which method each user employed for
GOAL: LOCATE-LiNE is organized as a set of Selection Rules in Figure 5.4.
Each row gives the results of the accumulation of Rule 1 to Rule n,
adding rules one at a time. The “Hits” column shows the total number
of cases correctly predicted, and the “Misses” column shows the number
of cases in which the prediction was wrong (Hits + Misses = the total
number of method selections). As each rule is added, the set of rules
taken together predicts more cases correctly, but a few individual cases
that were predicted correctly may now be missed. For example, adding
Rule 2 for SI (the second line of the figure) correctly predicts 11 method
selections of the 24 that had been missed using Rule 1 alone, but at the
cost of missing 2 of the 44 that were previously hits—a net gain of 9. As
the figure shows, using from two to four simple rules, it is possible to
predict a user’s method selections an average of 90% of the time.

152 5. THE GOMS MODEL OF MANUSCRIPT EDITING

5.3 . TIME PREDICTIONS (EXPERIMENT 5B)

Experiment 5A showed that it is possible, using a GOMS model, to
describe users’ method selections. Experiment 5B was designed to
examine chronometrically how users sequence operators to accomplish
tasks. The technique was to observe users performing editing tasks.

5.3. TIME PREDICTIONS 153

U s e r R u le
T h i s R u le C u m u l a t i v e

G a i n L o s s H i t s M i s s e s % H i t s

S1 Rule 1: Use the q s -m e t h o d unless another rule
(TTY) applies.

Rule 2: \\ d< 3, use the l f -m e t h o d .

Rule 3: If the target line is the last line of the

page, use the a n -m e t h o d (with $).

Rule 4: If the current method Is to use paragraph

num bers for search strings and the target
line is near a paragraph number, use
th e AN-METHOD.

44 0 44 24 65%

11 2 53 15 78%

5 0 58 10 85%

0 60 8 88%

S4 Rule 1: Use the ♦ n -m e t h o d unless another rule 51

(TTY) applies.

Rule 2: If i /< 3, use the l f -m e t h o d . 12 1 62

0 51 15 77%

94%

S4 Rule 1: Use the l f -m e t h o d unless another rule
(DiSP) applies

Rule 2: If 9, use the ♦ n -m e t h o d .

Rule 3: If the target line is on the next page of
the manuscript, use the l f -m e t h o d .

45 45 21 68%

16 12 49 17 74%

56 10 56 10 85%

S22 Rule 1: Use the q s -m e t h o d unless another rule 40
(DISP) applies.

Rule 2: If ¿/< 5, use the l f -m e t h o d . 22

40 25 62%

60 92%

A v e r a g e F in a l % H i t s = 90%

Figure 5.4. Selection rules for GOAL: LOCATE-LINE in
Experiment 5A.
Each row tallies the effect of adding its m ethod selection rule to the rule set. W ith

the addition of each rule, som e m ore m ethods are predicted (G ain) and som e p re ­
viously predicted ones are now m ispredicted (Loss), for a cum ulative e ffect of so

m any predictions (Hits) and so m any m ispredictions (M isses).

recording (1) the sequence in which operators occurred and (2) the
duration of each operator occurrence. These data allow testing of task
time predictions calculated from the model.

METHOD FOR EXPERIMENT 5B

Users. Users were two secretaries and two computer scientists
familiar with p o e t . The terminal was similar to the video display of the
previous experiment.

Measurement Apparatus. The terminal was connected to a large
computer running the p o e t editor under the t e n e x time-sharing system.
For this experiment, the terminal was modified to time-stamp and record
all input events on a data file. Accuracy of time-stamping was to within
33 msec of the actual time of the event at the terminal.^ The average
response time of the editor to commands during the experiment was .8
sec (SD = .6 sec).

Two television cameras were directed at the user, one camera giving
an overall view of the user and terminal, the other a closeup of the user’s
face, from which it could be determined whether he was looking at the
manuscript, the keyboard, or the display. The user wore a lapel
microphone, recording onto the soundtrack of the video tape. A digital
clock was electronically mixed with the video picture, time-stamping each
frame. The times measured from video frames were accurate to 33 msec
(one video frame).

Procedure. The procedure was similar to that for Experiment 5A.
The user was first given a test to determine his typing rate and then
several editing tasks as a warmup. Finally, he edited the same manu­
script that was used in Experiment 5A.

Data Sets. The first three unit tasks were discarded before analysis to
minimize any warmup effect The remaining 70 unit tasks were parti­
tioned into two comparable data sets: a Derivation data set, consisting of
the 36 unit tasks on the odd-numbered pages, and a Crossvalidation data
set, consisting of the 34 unit tasks on the even-numbered pages. This
partition allowed basic operator statistics to be computed on the
Derivation data, while preserving the Crossvalidation data for an attempt
at prediction in a matched situation, no statistical advantage having been
taken of chance.

The data were also partitioned into the set of error-free unit tasks and
the set of error unit tasks, each of the latter containing at least one
identifiable error. The criterion for identifying an error was that the user

1 54 5. THE GOMS MODEL OF MANUSCRIPT EDITING

The accuracy o f the timing o f events did not depend on the response o f the time­
sharing system.

5.3. TIME PREDICTIONS 1 55

User

S34
(Comp. Sci.)

(sec)

S53
(Comp. Sci.)

(sec)

S50
(Secy.)
(sec)

(Secy.)
(sec)

S95

(sec)

Mean

Derivation data (36) 9.0 (25) 15.3 (27) 15.1 (28) 13.4 (21) 13.2 (25)

Crossvalidation data (34) 8.5(23) 14.7(25) 17.0(27) 14.0(24) 13.2(25)

Figure 5.5. Mean error-free unit task times for all users in
Experiment 5B.
T h e values a re the m ean task tim es over all erro r-free tasks fo r each user. The

num bers in parentheses are the num ber of erro r-free tasks. All d ifferences

betw een m ean num ber of erro r-free tasks, m ean error-free task tim e for Derivation

data vs. Crossvalidation data, or com puter scientists vs. secretaries, are non ­
significant by M an n-W hitney U-test, p > .05.

took some overt corrective action, defined as some action that undid the
effect of a preceding action. All the analyses below use the error-free
data.

Figure 5.5 gives statistics on the Derivation and Crossvalidation data
sets and shows that both the Derivation and Crossvalidation data were
comparable with respect to the number of tasks having errors and to the
mean time per task for error-free tasks.

Protocols. The videotaped record of the user’s behavior and the time-
stamped file of keystrokes were coded into a protocol of operator
sequences, using the operators of the GOMS Model F2 that was
described in Section 5.1. Occurrences of the operators were identified
according to the following operational definitions:

GET-NEXT-PAGE. Turning the manuscript page. Starts
when the user’s eyes begin to turn towards the
manuscript; ends when the turned page falls flat

GET-FROM-MANUSCRIPT. Lxx)king over to the manuscript
to get the next task. Starts when the user’s eyes
begin to turn towards the manuscript; ends when the
user types a keystroke for the next operation or
begins to look back to the display, whichever comes
first.

USE-LF-METHOD. Using the l f -m e th o d to locate the line of
the task. Starts when the user’s eyes begin to turn

towards the screen or the user types the first
LINEFEED, whichever comes first; ends when the last
LINEFEED is typed.

USE-QS-METHOD. Using the qs-method method to locate
the line of the task. Starts when the user’s eyes
begin to turn toward the screen or the user types the
first keystroke, whichever comes first; ends when the
final character of the search command is typed.

USE-S-COMMAND. Using the Substitute command to
modify the text Starts when the user types the first
keystroke of the command; ends when the final
character of the command is typed.

USE-M-COMMAND. Using the Modify command to modify
the text Starts when the user types the first
keystroke of the command; ends when the final
character of the command is typed.

VERIFY-EDIT. Examining the output on the display to check
that the modification is correct Starts when the
final character of the previous command is typed;
ends when the user’s eyes turn to the manuscript for
the next task.

1 5 6 5. THE GOMS MODEL OF MANUSCRIPT EDITING

RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Selection rules were derived for each user by
examining their method selections in the Derivation data. The results of
using these rules to predict method selections replicated the results in
Experiment 5A. One or two selection rules (Figure 5.6) were sufficient
to predict 88% of the method choices in the Derivation data and 80% in
the Crossvalidation data. Accuracy of the rules was about the same for
the two different goals. Interestingly, the rules were better at predicting
the secretaries (90%) than at predicting the computer scientists (77%).

Accuracy o f Sequence Predictions. In addition to wrong method
choices, there are other possible ways in which the model might make
errors in the prediction of operator sequences. Ultimately, these will be
registered as the intrusion into the observed data of unpredicted
operators or the non-occurrence of predicted operators.

Model F2 was used to calculate the predicted sequence of operators
for each task, and this sequence was matched against the sequence

5.3. TIME PREDICTIONS 157

%Hits
User Selection Rules DerivationData CrossvalidationData

Rules For G O A L : L O C A T E -L IN E

S34 R u le l: Use the QS-METHOD as default.
Rule 2: If d< 3, then use the l f -m eth o d .

84% 74%

S50 R u le l: Use the QS-METHOD as default.
Rule 2: \fd < 3 , then use the lf -m e th o d .

96% 93%

S53 R u le l: Use the QS-METHOD as default.
Rule 2: If d< 3, then use the lf -m e th o d .

63% 72%

S96 Rule 1: Always use the l f -m eth o d . 95% 71%

Rules For G O A L : M O D IF Y -T E X T

S34 R u le l: Use the M-COMMAND as default.
Rule 2: If a word is to be replaced neither at the very

beginning nor very end of the line, then use
the S-COMMAND.

85% 83%

S50 R u le l: Use the S-COMMAND as default.
Rule 2: If the correction is at the very beginning or the

very end of the line, then use the m -c o m m a n d .

84% 83%

S53 R u le l: Use s-coM MAND as default.
Rule 2: If the correction is at the very beginning or the

very end of the line or is a double task or involves
only punctuation, then use the m -c o m m a n d .

93% 60%

S95 R u le l: Always use the S-COMMAND. 100% 100%

Mean 88% 80%

Figure 5.6. Method selection rules for Experiment 5B.
Mean accuracy (%Hits) of the rules is significantly greater for Derivation data than
for Crossvalidation data, Mann-Whitney U(8,8) = 9, p = .014; greater for
secretaries (90%) than for computer scientists (77%), 0(8,8) = 12.5, p < .025; but
no different for GOAL: LOCATE-LINE (81%) than for GOAL: MODIFY-TEXT (86%),
0(8,8) = 25, p = .253.

actually observed. There is no standard statistical technique for indexing
how well one sequence matches another, so the following method was
used. The sites of mismatches because of operator insertions, deletions,
or replacements were determined using a simple dynamic programming
algorithm (based on Hirschberg, 1975, and Sakoe and Chiba, 1978) to
optimize the number of matches. Then the percentage of predicted

1 58 5. THE GOMS MODEL OF MANUSCRIPT EDITING

User

S 3 4 S53
(Comp. Sci.) (Comp. Sci.)

S50
(Secy.)

S95
(Secy.)

Mean

Derivation data
Crossvalidation data

79%

89%

81%

83%

98%

92%

94%

93%

88%

89%

Figure 5.7. Percentage of operator instances predicted in
Experiment 5B.
The secretaries’ operators were predicted significantly better (94%) than the
computer scientists’ (83%), Mann-Whitney U(4,4) = 0, p = .014; but the prediction
of the model matched the Derivation data as well (88%) as the Crossvalidation data
(89%), U(4,4) = 8, p = .56.

operator occurrences that matched observed operator occurrences was
computed (see Appendix to this chapter for details). Sequences gen­
erated by the model were generally in good agreement with those
observed (Figure 5.7). The percentage of matches varied from 79% to
98% with an average of 88%. There were no differences between the
Derivation and the Crossvalidation data, but again, the model did better
at calculating sequences for secretaries (94% of operators in sequences
matched) than for computer scientists (83%). Except for the already
noted method-selection errors (due to operator insertion, deletion, or
replacement), the only error made by the model was to predict that users
would always perform a v e r if y -e d it operation, whereas users sometimes
omitted it.

RESULTS OF TIME PREDICTIONS

The protocols contain times from which it is possible to compute
chronométrie statistics for each operator in each model. Estimates of the
time to perform a specific unit task were computed in two ways: (1)
Given the observed sequence of operators, sum the mean times for each
operator in the sequence. This estimate, which we call a Reproduction of
the data, corresponds with how well the models would do were there no
sequence prediction errors. (2) Using the sequence of operators predicted
by the models, sum the mean times for each operator in the sequence.
This latter estimate, which we call a Prediction, should correspond more
with what we might expect to find applying the models in practice.
Error can enter into the estimates either because an operator actually
takes longer in some contexts than others or, in the prediction case.

5.3. TIME PREDICTIONS 159

User

O pera to r S34
(Comp. Sci.)
{TR = .16)

S53
(Comp. Sci.)

{TR = .30)

S 50
(Secy.)

{TR = .16)

S95
(Secy.)

{TR = .12)

All
Users

M
(sec)

CV N M
(sec)

CV N M
(sec)

CV
1

N M
(sec)

CV N M
(sec)

CV

GET-NEXT-PAGE 2.50 .23 5 1.18 .45 4 1.81 .41 5 3.31 — 1 2.20 .42
GET-NEXT-TASK 1.29 .41 25 2.11 .41 27 2.07 .46 28 1.25 .44 21 1.68 .28

USE-QS-METHOD 2.07 .24 18 3.32 .37 12 4.48 .36 22 — — _ 3.29 .37
USE-LF-METHOD 2.10 .76 4 1.85 .53 4 3.47 .49 5 5.40 .53 17 3.21 .51
USE- *N METHOD 2.10 .40 3 4.07 .48 8 — — _ _ _ — 3.09 .45
USE-AN-METHOD — — — 8.18 .33 2 — — — 10.06 .21 3 9.12 .15

USE-S-METHOD 2.94 .29 5 6.60 .34 12 6.78 .40 21 4.66 .35 21 5.25 .35
USE-M-METHOD 4.38 .29 20 8.12 .44 15 8.52 .45 7 — — — 7.01 .33

VERIFY-EDIT .64 .30 11 .96 .31 21 .76 .37 18 .85 .68 18 .80 .17

Average between-user CV - .36

Mean CV .37 .41 .33 .44

Average within-user CV ~ .40

Figure 5.8. Operator duration statistics for all users in
Experiment 5B.
TR is the typing rate in sec/keystroke. The Mean and CV for all users (rightmost
column) is based on user means.

because the model predicts the wrong sequence of operators, and this
sequence takes a different amount of time than does the correct
sequence.

Operator Times. The durations of all occurrences of each operator
type in the Derivation data were used to estimate the operator times,
shown in Figure 5.8. Since the data come from a quasi-natural situation
and since a rare method may appear only once in the data, there is a fair
chance that some extreme times may show up in the distributions of
operator times. Though these must be accepted in any prediction test, it
is appropriate to avoid them in estimating the characteristics of the
operators. Consequently, in Figure 5.8 we have dropped outliers that fall
beyond two standard deviations from the raw mean and then recomputed
the mean and coefficient of variation CV for each operator.^

Here and elsewhere we report the coefficient of variation CV = SD/Mean as a
way of partially normalizing the SD to make it more comparable for operators of
different durations.

1 60 5. THE GOMS MODEL OF MANUSCRIPT EDITING

User

S34 S53 S50
(Comp. Sci.) (Comp. Sci.) (Secy.)

S95
(Secy.)

Mean

Derivation data:
Reproduction
Prediction

Crossvalidation data:
Reproduction
Prediction

32% 31% 29% 29% 30%
31% 32% 29% 34% 32%

35% 35% 36% 35% 35%
33% 36% 37% 39% 36%

Figure 5.9. Prediction error for task times in Experiment 5B.
T h e prediction error m easure is the RMS (root m ean square) erro r as a p ercentage

of the observed m ean task tim e. T h e prediction error is less for the Derivation

d ata (31%) than for the Crossvalidation d ata (36%), M an n -W h itn ey U(8,8) = 0, p
= .01; but there is no d iffe rence betw een R eproduction (33%) and P rediction

(34%), C/(8,8) = 24, p > .25; or betw een com puter scientists (33%) and secretaries

(34%), U(8,8) = 26, p > .40.

Whereas there are moderate differences between users in their
operator times, the variation in times between users is comparable to the
variation of times within a user. The average CV between users is .36,
whereas the average CV within a user is .40.

Accuracy o f Time Predictions. Comparing the time per task
calculated from the model with the observed times gives an RM S (root
mean square) error of 33% of the mean observed time. As shown in
Figure 5.9, there were no differences in prediction accuracy between
computer scientists and secretaries or between Reproduction and
Prediction, but the Derivation data was slightly more accurately predicted
(RMS error of 31%) than the Crossvalidation data (36%).

If the RMS error measure is interpreted as the average model error,
33% error may seem high. But predicting editing times unit task by unit
task for a single user is a very stringent test If the unit of prediction
were the whole manuscript rather than the unit task, then the prediction
error would drop considerably, since the high and low predictions of the
various unit tasks would tend to cancel each other. The RMS error
approximately obeys a square root of n law, where n is the number of
unit tasks.^ So the RMS error for predicting the time to edit the whole

 ̂ RMS(e) = V (Xe^/n], where is the prediction error on the /th unit task. The
RMS error is the standard deviation SD of e about zero, instead of the actual mean of e,
which is A/(e), and thus RMS(e) > SD{e). If M(e) = 0, then RMS(e) = SD(eX and

5.4. GRAIN OF ANALYSIS 1 6 1

manuscript (70 tasks) would be 33% X -/70 = 4% (neglecting, of
course, the effects of users’ mistakes, which are not addressed by this
model). The error for these models of variable-sequence cognitive
activity would thus seem to be in the same range (about 5%) as that
sometimes cited for predetermined time system predictions of invariable-
sequence physical activity by industrial engineers (Eady, 1977; Maynard,
1971).

5.4. GRAIN OF ANALYSIS (EXPERIMENT 5C)

The model discussed above is not the only possible GOMS model for
the manuscript-editing task. Because models could be constructed with
either more or less detail, there is an important issue of the appropriate
grain of the analysis.

A priori, it is not possible to know which grain size is appropriate.
As the grain of the analysis becomes finer, the model successively
accumulates opportunities for conditional behavior (either optional
application of some method or differentiation into cases). Thus, from
one point of view, models at a finer grain should be more accurate. But
opposing forces are also at work. At a finer grain, operators will be
likely to appear in a larger number of contexts. In combining low-level
operators to form functional units that a coarser grain would reflect
directly, one may miss setup or other operations that are properties of
the unit as a whole. The duration of operators may depend on other
operators in the sequence (Abruzzi, 1956). And finally, there is typically
greater error in the measurement of finer grain operators than of coarser
grain operators.

A direct test of how the grain of analysis affects the accuracy of a
GOMS model is to recast the analysis at several levels of detail. There
appear to be two essentially independent dimensions along which the
grain of analysis can be made finer or coarser. The primary dimension
involves duration of the operators. The second dimension involves
variations among operators of approximately the same duration.

We explore variations of GOMS models along both of these
dimensions. Figure 5.10 describes briefly the family of nine manuscript-

the RMS error is equivalent to the standard error. The square root law argument should
actually be made with respect to SD(e) about M(e), but the use o f the RMS error is
approximately correct if M(e) is close to zero.

M o d e l UT Constant time per unit task. Only one operator: e d it -u n it -t a s k . (This
model Is like the Constant Time per Modification model of Chapter 4,
except for the substitution of unit tasks for modifications.)

FUNCTIONAL LEVEL:

M o d e l F1 Single operator for each functional step in unit task sequence: g e t -n e x t -

t a s k , LOCATE-LINE, MODIFY-TEXT, VERIFY-EDIT.

M o d e l F 2 Like Model F1, but with operators l o c a t e -l in e and m o d if y -t e x t broken

into separate cases based on the methods used to accomplish them.

UNIT-TASK LEVEL:

ARGUMENT LEVEL:

M o d e l A1 Like Model F2, but with operators at the level of typing a system
command (s p e c if y -c o m m a n d) or typing an argument to a command
(SPECIFY-ARG).

M o d e l A2 Like Model A1, but with s p e c if y -c o m m a n d and s p e c if y -a r g broken Into

separate cases according to whether they involve an Implicit need to get
information from manuscript (suffix = /G) or not (suffix = / n g).

M o d e l A 3 Like Model A1, but with s p e c if y -c o m m a n d and s p e c if y -a r g broken into
separate cases according to four method contexts: quoted string method
(suffix = /Q), first argument to Substitute command (suffix = / s i) ,
second argument to Substitute command (suffix = /S 2), or Modify
command (suffix = / m).

M o d e l A 4 Like Model A1, but with all the distinctions in both Model A2 and Model
A3 combined multiplicatively.

KEYSTROKE LEVEL:

M o d e l K1 Like Model A2, but with operators at the level of basic perceptual,
cognitive, and motor actions: l o o k -a t , h o m e , t u r n -p a g e , t y p e , and
MOVE-HAND. All mental actions not overlapped with motor operations are
represented as the m e n t a l operator.

M o d e l K 2 Like Model K1, but with m e n t a l broken down Into s e a r c h -f o r , c o m p a r e ,

CHOOSE-COMMAND, and CHOOSE-ARG.

Figure 5 .10. Description of the family of GOMS models
investigated for POET.

162

5.4. GRAIN OF ANALYSIS 163

Figure 5 .11. Graph of the family tree of GOMS models
investigated for POET.
The links in the tree show how the m odels outlined in F igure 5 .10 can be derived
from each o ther by m aking further distinctions. D istinctions are m ade by either

case analysis (as in M odel F I into M odel F2) or by splitting operators (as in M odel
F I into M odel A1).

editing models that we consider in this experiment Figure 5.11 shows
the family tree, where the links in the tree show which models are
further elaborations of each other (either by splitting or by differentiating
operators). Finally, Figure 5.12 lays out the full models themselves.

Each model is given a name of the form “Model level number. ” We
distinguish models in Figure 5.11 at four levels; the Unit-Task Level, the
Functional Level, the Argument Level, and the Keystroke Level. We
begin at the Unit-Task Level with Model UT (see Figure 5.12), which
consists of a single operator, e d it -u n it -t a s k . The goal of manuscript
editing is accomplished by repeating this operator for each unit task.
With only a single operator. Model UT always predicts that it takes the
same amount of time to do a unit task. Functional Level models come
from decomposing the unit task into its functional cycle: (1) get the next

164 5. THE GOMS MODEL OF MANUSCRIPT EDITING

Model UT:
GOAL: EDtT-MANUSCRIPT

EDIT-UNIT-TASK

UNIT TASK LEVEL

. repeat until no more unit tasks

Model FI:
F U N C T IO N A L LEVEL

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE UNIT-TASK

GET-NEXT-PAGE
GET-NEXT-TASK

GOAL: EXECUTE-UNIT-TASK

LOCATE-LINE
MODIFY-TEXT
VERIFY-EDIT

. repeat until no more unit tasks

. . it task not remembered

. . . if at end of manuscript page

. . if an edit task was found

. . . if task not on current line

Model F2:
GOAL: EDIT-MANUSCRIPT

GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE-UNIT-TASK

GET-NEXT-PAGE
GET NEXT-TASK

GOAL: EXECUTE-UNIT-TASK

GOAL: LOCATE-LINE
[select USE-QS-METHOD

USE-LF-METHOD]
GOAL: MODIFY-TEXT

[select USE-S-COMMAND
USE-M-COMMAND]

VERIFY-EDIT

. repeat until no more unit tasks

. . if task not remembered

. . . if at end of manuscript page

. . if an edit task was found

. . . if task not on current line

Figure 5.12. GOMS models for POET.

edit task, (2) locate the editor at the line on which the modification is to
be made, (3) make the modification, and (4) verily that the edit was done
correctly. The model used to analyze Experiment 5B, Model F2, is a
Functional Level model. Argument Level models arise by decomposing
the methods used at the Functional Level into the individual steps of
specifying commands and arguments. Both Functional Level models and
Argument Level models are driven by the structure of the poet com­
mands. These are themselves reflections of the demands of the task as it
is defined in the manuscript

At the Keystroke Level, an entirely different set of operators comes
into view, defined not by their functional role in the command language,
but by reference to the basic physical and mental actions of the user:
typing, looking, moving a hand, plus various mental operations. These
operators are more task-independent than the operators at other levels.

5.4. GRAIN OF ANALYSIS 165

A R G U M E N T LE V E L
M odel A1:

GOAL: EDIT-MANUSCRIPT
GOAL:EDIT-UNIT-TASK

GOAL; ACQUIRE-UNIT-TASK

GET NEXT-PAGE
GET-NEXT-TASK

GOAL: EXECUTE-UNIT-TASK

GOAL; LOCATE-LINE
[select GOAL: USE-QS-METHOD

SPECIFY-COMMAND
SPECIFY-ARG

GOAL; USE-LF-METHOD
SPECIFY-COMMAND]

VERIFY-LOC
GOAL; MODIFY-TEXT

[select GOAL: USE-S-COMMAND
SPECIFY-COMMAND
SPECIFY-ARG
SPECIFY-ARG

GOAL: USE M-COMMAND
SPECIFY-COMMAND
SPECIFY-COMMAND
SPECIFY-ARG
SPECIFY-COMMAND]

VERIFY-EDIT

repeat until no more unit tasks
. if task not remembered
. . if at end of manuscript page

. if an edit task was found

. . if task not on current line

repeat until at line

repeat until at text

M odel A2: as in Model A 1 but substitute

SPECIFY-COMMAND/G Or SPECIFY-COMMAND/NG lor SPECIFY-COMMAND

SPECIFY-ARG/G Or SPECIFY-ARG/NG for SPECIFY-ARG

M odel A3; as in Model A1 but substitute

SPECIFY-ARG/Q Or SPECIFY-ARG/M Or
SPECIFY-ARG/S1 Or SPECIFY-ARG/S2 for SPECIFY-ARG

M odel A 4: as in Model A 1 but substitute

SPECIFY-COMMAND/G Or SPECIFY-COMMAND/NG for SPECIFY-COMMAND

SPECIFY-ARG/Q/G Or S P E C IF Y A R G / Q / N G Or
SPECIFY-ARG/M/G or SPECIFY-ARG/M/NG or
SPECIFY-ARG/S1/G Or SPECIFY-ARG/S1/NG Or
SPECIFY-ARG/S2/G Or SPECIFY-ARG/S2/NG for SPECIFY-ARG

The cost of obtaining the estimates of all the different operators and
selection rules increases as the size of the operators decrease, because
more data are required for a given level of robustness and because the
observation and measurement problems increase at the lower levels. A
possible compensation for the greater cost of using the Keystroke Level
operators is thaL unlike the larger operators, it may not be necessary to
determine lower-level operators for each new application.

KEYSTROKE LEVEL
M odel K2:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE-UNIT-TASK
GOAL: TURN-PAGE* (see below)
GOAL: GET-FROM-MANUSCRIPT*

GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE

CHOOSE-COMMAND
[select GOAL: USE QS-METHOD

GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG*

GOAL: USE-LF-METHOD
GOAL: SPECIFY-COMMAND*]

GOAL: VERIFY-LOC*
GOAL: MODIFY-TEXT

CHOOSE-COMMAND
[select GOAL: USE-S-COMMAND

GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG*
GOAL: SPECIFY ARG*

GOAL: USE-M-COMMAND
GOAL. SPECIFY-COMMAND*
GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG*
GOAL: SPECIFY-COMMAND*]

GOAL: VERIFY-EDIT*

. repeat until no more unit tasks

. . if task not remembered

. . . if at end of manuscript page

. . if an edit task was found

. . . if task not on current line

. repeat until at line

. repeat until at text

’ Expansion of goals appearing several times;

GOAL: TURN-PAGE
. LOOK-AT-MANUSCRIPT
. ACTION
. MOVE-HAND
. TURN PAGE

GOAL: GET-FROM-MANUSCRIPT
. LOOK-AT-MANUSCRIPT
. SEARCH-FOR
. LOOK-AT-DISPLAY

GOAL: SPECIFY-COMMAND
. GOAL: GET-FROM-MANUSCRIPT*
. CHOOSE-COMMAND
. GOAL: TYPE-STRING*

GOAL: SPECIFY-ARG
. GOAL: GET-FROM-MANUSCRIPT*
. CHOOSE-ARG
. GOAL: TYPE-STRING*

GOAL: VERIFY
. LOOK AT-DISPLAY
. GOAL: GET-FROM-MANUSCRIPT*

COMPARE
GOAL: TYPE-STRING
. HOME
. LOOK-AT-KEYBOARD
. LOOK-AT DISPLAY
. TYPE-STRING

. repeat twice

. repeat twice

. optional

. if not already selected

. if not already selected

. optional

. optional

. optional

. optional

. optional

(Figure 5.12. Conclusion.)

166

5.4. GRAIN OF ANALYSIS 167

METHOD FOR EXPERIMENT 5C

User. A single user, S13, was employed for this experiment, because
of the amount of data analysis required at the fine-grained levels. The
user was a highly skilled secretary (typing rate, 103 words per minute)
with two years experience on the p o e t editor, much of it on the type of
terminal used in this experiment

Procedure. The procedure was the same as in Experiment 5B.
ProtocoL A protocol of the user’s behavior was coded directly from

the videotape record and the time-stamped keystroke file, using a set of
descriptive operators not related a priori to any model. The over­
whelming bulk of behavior was coded by the operators t y p e , l o o k -a t ,

and m e n t a l , which are defined as follows:'*

TYPE (K e y i, K ey2, ...). A burst of typewriting starting with
the beginning of the finger trajectory toward the first
key and ending when the last key makes contact A
“burst” is defined as a sequence of keystrokes with
no more than .30 sec between successive key contacts
and is based on studies (Kinkead, 1975) showing that
keystrokes for skilled typists doing copy typing
usually do not take more than this time.

l o o k -a t (Place). The act of looking from one place to
another, where Place is either the video display, the
keyboard, or the manuscript l o o k -a t includes the
physical head movement and the gross eye
movement but does not include any perceptual
scanning within a place (such as searching a
manuscript page for a new task).

m e n t a l . The generic operator for any mental activity that
does not overlap with physical operations, m e n t a l

operations are identified as pauses between physical
operations.

Figure 5.13 shows a fragment of the protocol, which describes S13’s
behavior on the last unit task in Figure 3.2 in terms of these descriptive
operators.

'* Other operators, used infrequently, were HOME (Hand, Place) for moving a
hand to the keyboard preparatory to typing, MOVE-HAND (Hand, Place) for other
hand movements, TURN-PAGE, ACTION (Description), and EXPRESSION
(Description). The last two were miscellaneous categories for recording other behavior.

Start
{m in:sec)

Stop
{m in:sec)

A T

(sec)

Operator

18:56.33 18:56.73 .40 LOOK-AT-MANUSCRIPT

18:56.73 18:58.89 2.16 MENTAL

18:58.89 18:59.41 .52 HOME (LEFT-HAND)

18:59.41 18:59.66 .25 MENTAL

18:59.66 18:59.94 .23* LOOK-AT-KEYBOARD

18:59.89 19:00.14 .25 TY P E (")

19:00.14 19:00.24 .10 MENTAL

19:00.24 19:00.48 .24 LOOK-AT-DISPLAY

19:00.48 19:01.11 .63 MENTAL

19:01.11 19:01.43 .32 LOOK-AT-KEYBOARD

19:01.43 19:01.70 .27 MENTAL

19:01.70 19:01.82 .12 TYPE (e)

19:01.82 19:01.92 .10 MENTAL

19:01.92 19:02.66 .07* TYPE (x j s RETURN /)

19:01.99 19:02.34 .35 LOOK-AT-DISPLAY

19:02.34 19:04.16 1.82 MENTAL

19:04.16 19:04.53 .37 LOOK-AT-MANUSCRIPT

19:04.53 ;9:05.48 .95 MENTAL

19:05.48 19:05.83 .15* LOOK-AT-DISPLAY

19:05.63 19:05.91 .28 TYPE(. s)

19:06.06 19:06.40 .13* LOOK-AT-KEYBOARD

19:06.19 19:06.50 .31 TYPE (c o)

19:06.50 19:06.74 .24 MENTAL

19:06.74 19:06.86 .07* TYPE(-)

19:06.81 19:07.18 .32* LOOK-AT-MANUSCRIPT

19:07.13 19:07.25 .12 TYPE (e)

19:07.25 19:07.51 .26 MENTAL

19:07.51 19:07.63 .12 TYPE (x)

19:07.63 19:09.46 1.83 MENTAL

19:09.46 19:09.65 .19 TYPE (RETURN)

19:09.65 19:09.92 .27 MENTAL

19:09.92 19:10.04 .12 TYPE (e)

19:10.04 19:10.11 .07 MENTAL

19:10.11 19:10.46 .00* LOOK-AT-DISPLAY

19:10.11 19:10.72 .61 TYPE (x RETURN RETURN /)

19:10.72 19:11.76 1.04 MENTAL

Figure 5 .13 . Segment of the protocol record for one unit
task in Experiment 5C.
This part of the protocol describes S13’s performance of the last unit task shown
in Figure 3.2. On those cases marked with an asterisk, the time A t charged to an
operator is less than the difference between the Start and Stop clock times
because the operator overlaps with the next operator.

168

Data Sets. As in Experiment 5B, the first three tasks were discarded
and the remaining 70 tasks were partitioned into a Derivation data set
and a Crossvalidation data set. The two data sets were found to be
comparable with respect to time per unit task (Mann-Whitney i/(19,26)
= 180.5, p > .05).

Fitting the Models to the Data. The protocol record for the error-free
Derivation unit tasks was re-coded into a sequence of operators for each
model. For example, the protocol fragment in Figure 5.13 is encoded
into Model F2 as follows:

5.4. GRAIN OF ANALYSIS 1 6 9

18:56.33-18:59.94 3.61 sec
18:59.94-19:04.16 4.22 sec
19:04.16-19:10.72 6.56 sec
19:10.72-19:11.23 .51 sec

GET-UNIT-TASK

USE-QS-METHOD

USE-S-COMMAND

VERIFY-EDIT .

To encode each operator requires a recognizer that determines
whether the operator occurs in the data and, if so, what its boundary
times are. Such recognizers are insensitive to many of the details of what
happens. An odd m e n t a l operator within a s p e c if y -c o m m a n d (at the
Argument Level), a u s e -q s -m e t h o d (at the Functional Level), or an
e d it -u n it -t a s k (at the Unit-Task Level) is quite consistent and is
accepted by the recognizers for these operators. Thus, the higher-level
models account for all the descriptive operators in the protocol. But
these odd descriptive operators (e.g., the odd m e n t a l) are not without
consequence; they may show up as sequence errors in the lower-level
models and, in chronométrie analysis, as variance in the higher-level
operator times.

The Keystroke Level models, on the other hand, must map one-to-
one onto the protocol, since the Keystroke Level operators are at the
same level of aggregation as the protocol operators. Many of the
protocol operators (such as t y p e) are identical to the Keystroke Level
operators and are identified directly, whereas other protocol operators
(such as m e n t a l) must be relabeled (e.g., s e a r c h - f o r or c h o o s e -

COMMAND in Model K2) to fit the models. The possibility then exists
that there will be descriptive operators in the protocol that are not
accounted for by the models. More often, a descriptive operator, though
a possible operator type in the model, may not correspond to any
possible operator produced by the model at that point This happens for
78 of the 581 operator instances in the protocol. The most significant
kind of unaccounted-for operators are instances of m e n t a l that cannot

be interpreted as one of the Model K2 operators and are labeled
UNKNOW N. These mostly arise from our stringent rule of coding the
occurrence of a m e n t a l operator whenever there is a pause in the
protocol. The mean time of the u n k n o w n operators is only .28 sec. Of
the unaccounted-for operators, 71 are u n k n o w n s , 6 are m o v e -h a n d s ,
and one is an a c t io n .

It sometimes happens that two mental operators (such as v e r if y -l o c

and SPECIFY-COM M AND in Model Al) are predicted by the model to
occur in succession. In these cases there is a problem determining the
boundary between them, for there is no overt indication in the data.
Each operator type involved in such cases (e.g., v e r if y -l o c) was
compared to instances of the operator where the boundaries were
observable (instances where it was surrounded by non-mental operators).
This comparison showed clearly that the operator times of these adjacent
mental operators are not additive—that the time for v e r if y -l o c plus the
time for s p e c if y -c o m m a n d when each is surrounded by non-mental
operators is not the same as the combined time for the pair when they
occur together in sequence. These cases are listed later in Figure 5.15 as
if they were separate operator types (and are given combined names like
VL + sc). In all, there are four different combined operator types, two at
the Argument Level (g f m + s c and VL + sc) and two at the Keystroke
Level (S F + CM and c + cc). For purposes of predicting task times, the
values of the non-combined versions of these operators were used, thus
counting their non-additivity against the models.

RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Analysis of the Derivation data yielded selection
rules for the user very similar in form and in accuracy to those for users
in the previous experiments. The rules for S13 are:

Selection rules for GOAL: l o c a t e -l in e :

Rule 1. Use the q s -m e t h o d as default
Rule 2. Use the l f -m e t h o d if </< 5 lines.

Selection rules fo r GOAL: m o d if y -t e x t :

Rule 1. Use the s -c o m m a n d as default

170 5. THE GOMS MODEL OF MANUSCRIPT EDITING

The selection rules for g o a l : l o c a t e -l in e were correct 88% of the time.
The rule for g o a l : m o d if y -t e x t was correct 92% of the time.

5.4. GRAIN OF ANALYSIS 1 7 1

Accuracy o f Sequence Predictions. For some of the models it was
necessary to fix the conditions under which the “optional” operators
would be invoked. These operators mainly center around the question of
when to invoke extra g e t -f r o m -m a n u s c r ip t operators, either implicitly
(the /G versions of the s p e c if y operators in Model A2 and Model A4,
see Figure 5.12) or explicitly (the g o a l : g e t -f r o m -m a n u s c r ip t goal in
Model K2). Since the conditions that cause extra g e t - f r o m -m a n u ­

s c r ip t operators were not clear from the data, each option was decided
such that exactly one extra g e t -f r o m -m a n u s c r ip t was predicted for
each unit task.

The match between predicted and observed sequences was
comparable to that obtained in Experiment 5B for the comparable Model
F2 (96% in the present experiment vs. 88% in Experiment 5B). As
expected, the match declined as the grain of analysis became finer (see
Figure 5.14). The decline in accuracy for Model A2 and Model A4
resulted mainly from their inability to predict the exact sites in the
protocol at which the user would glance back at the manuscript for more
information and how often the user would consult the manuscript
Models at the Keystroke Level encountered two other difficulties as well.
First it happened that this particular user would always move her hand
to her mouth and lick her fingers before turning the page. In fact she
would usually also lick her fingers one task too early (a true case of
“fractional anticipatory goal response” in vivo). Because this action was
not in the model, it caused mismatched operators. The second difficulty
at the Keystroke Level was that the u n k n o w n operators counted as
mismatches.

RESULTS OF TIME PREDICTIONS

Operator Times. Durations of the operators for all models, as
empirically determined from the Derivation data, appear in Figure 5.15
along with the percentage of the time spent in each operator. Since
manuscript editing has the appearance of a motor-intensive task, it is
interesting that 60% of the time for the manuscript-editing task was
mental time; only 22% of the time was actually spent in typing.

Alt operators, except the t y p e operator, are assumed to take constant
time. Although it is obvious that t y p e should be parameterized by the
number of characters to be typed, we must be able to predict the search
strings and the substitution strings the user will employ in order to

Figure 5 .14. Percentage of operators correctly predicted by
each model in Experiment 5C.

172

capitalize on the parameterization. The time for t y p e was parameterized
by the number of shift characters carriage returns and other
characters according to the equation

^ =-05 + .17Â ,„y-,+ .19yV,,+ .llA^,,,,,sec.

The equation is based on the regression fit of 157 short typing bursts
from the Experiment 5A (1 to 18 characters in a burst, mean 3.8
characters).^ The equation explains 92% of the variance. The operator
times of this user for Model F2 were comparable to the times for the
same operators observed in Experiment 5B.

Accuracy o f Time Predictions. The main result is that time
calculations based on all the GOMS models were about equally accurate
(except for Model UT, which was somewhat less accurate). Accuracy of
the Functional Level Model was comparable to that obtained in
Experiment 5B. There the RM S error was 33%; here it was 29% for the
comparable Model F2. Various combinations of models, data sets, and
calculation methods varied in the range of 20% to 40% RM S error, as can
be seen in Figure 5.16. Finer grain models did better on Reproduction,
but not on Prediction, of the Derivation data. The finer grain models
were no better at either Reproduction or Prediction of the Crossvali­
dation data.^

A study of the prediction errors on unit tasks with different task
environment features revealed that the only task environment feature that
allowed gain in prediction was the one in which the unit task shared the
same line on the manuscript with another unit task (i.e., d = 0). There
were two tasks with this feature in the Derivation data, and they were the

5.4. GRAIN OF ANALYSIS 173

 ̂ Fitting this same data with only one parameter, the number of characters in a
burst, yields the equation T = .06 sec, which explains 89% of the variance.
The .12 sec per character rate is equivalent to 91 words per minute, which is quite close
to S13’s typing test speed of 103 wpm. Thus, the user types at almost her highest typing
rate even on these short bursts.

 ̂ In fact, prediction o f the Crossvalidation data is worse at the Keystroke Level than
at the Argument Level. This occurs because in one of the tasks the user compares
information on the display with information on the manuscript much more often than
the model predicts, resulting in a large underprediction. Recomputation of the points in
Figure 5.16 using the mean absolute error (an index not as sensitive to single outliers as
the RMS error) gave a graph similar to Figure 5.16, but with the prediction o f the
Derivation data indistinguishable from the curves for the Crossvalidation data, confirming
the general stability o f the results.

Du
ra

tio
n

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

in
 O

pe
ra

to
r

-N
l

O
p

er
at

o
r

M
(s

ec
)

C
V

N
M

od
el

UT
M

od
el

FI
M

od
el

F2
M

od
el

A1
M

od
el

A
2

M
od

el
A

3
M

od
el

A
4

M
od

el
K1

M
od

el
K

2

ED
IT

-U
N

IT
-T

A
S

K
11

.3
8

.3
0

26
10

0%

G
ET

-N
EX

T-
PA

G
E

2.
14

.6
4

5
—

3%
3%

3%
3%

3%
3%

—
—

G
ET

-N
EX

T-
TA

SK
1.

92
.3

3
24

—
16

%
16

%
—

—
—

—
—

—

LO
C

A
TE

-L
IN

E
3.

98
.2

9
24

—
32

%
—

—
—

—
—

—
—

M
O

D
IF

Y-
TE

XT
3.

85
.4

0
26

35
%

—
—

—
—

—

VE
R

IF
Y-

ED
IT

1.
49

.5
7

26
—

14
%

14
%

14
%

14
%

14
%

14
%

—
—

U
SE

-Q
S-

M
ET

H
O

D
3.

94
.3

0
21

—
—

28
%

—
—

—
—

—
—

U
SE

-L
F-

M
ET

H
O

D
4.

27
.2

5
3

—
—

4%
—

—
—

—
—

—
U

SE
-S

-C
O

M
M

A
N

D
3.

63
.3

7
24

—
—

29
%

—
—

—
—

—
—

U
SE

-M
-C

O
M

M
A

N
D

9.
72

.6
3

2
—

—
6%

—
—

—
—

—
—

G
ET

-F
R

O
M

-M
A

N
U

SC
R

IP
T

2.
06

.4
4

5
_

_
—

4%
4%

4%
4%

—
—

G
FM

 +
 S

C
1.

80
.2

2
18

—
—

—
12

%
12

%
12

%
12

%
—

—

VE
R

IF
Y-

LO
C

1.
94

.4
5

17
—

—
—

12
%

12
%

12
%

12
%

—
—

VL
4.

SC
2.

00
.4

4
7

—
—

—
4%

4%
4%

4%
—

—

SP
EC

IF
Y-

C
O

M
M

A
N

D
1.

47
.7

7
28

—
13

%
—

13
%

—
—

SP
EC

IF
Y-

A
R

G
1.

46
.5

7
76

—
—

—
38

%
—

—
—

—
—

S
P

E
C

IF
Y

-C
O

M
M

A
N

D
/N

G
.4

0
.8

8
11

—
—

—
2%

—
2%

—
—

S
P

E
C

IF
Y

-C
O

M
M

A
N

D
/G

2.
03

.4
9

17
—

—
—

—
11

%
—

11
%

—
—

S
P

E
C

IF
Y

-A
R

G
/N

G
1.

29
.5

4
63

—
—

—
29

%
—

—
—

—
S

P
E

C
IF

Y
-A

R
G

/G
2.

28
.4

5
13

—
—

—
—

10
%

—
—

—
—

S
P

E
C

IF
Y

-A
R

G
/Q

2.
07

.2
8

21
—

—
—

—
14

%
—

—
—

S
P

E
C

IF
Y

-A
R

G
/S

1
1.

34
.7

0
24

—
—

—
—

—
12

%
—

—
—

S
P

E
C

IF
Y

-A
R

G
/S

2
.9

4
.3

1
24

—
—

—
—

—
8

%
—

—
—

S
P

E
C

IF
Y

-A
R

G
/M

2.
04

.6
7

7
—

—
—

—
5%

—
—

—
S

P
E

C
IF

Y
-A

R
G

/Q
/N

G
1.

94
.2

2
14

—
-

—
—

—
—

9%
—

—

SP
EC
IF
Y

SP
EC
IF
Y

SP
EC
IF
Y-

SP
EC
IF
Y-

SP
EC
IF
Y-

SP
EC
IF
Y

SP
EC
IF
Y-

AR
G/

Q/
G

AR
G/

S1
/N

G
AR

G/
S1

/G
AR

G/
S2

/N
G

AR
G/

S2
/G

AR
G/

M/
NG

AR
G/

M/
G

2.
29

.3
3

7
—

—
—

—
—

—
5%

—

—

1.
12

.6
5

21
—

—
—

—
—

—
9%

—

—

2.
79

.3
4

3
—

—
—

—
—

—
3%

—

—
.9

3
.3

2
23

—
—

—
—

—
—

8%

—
—

1.
20

—
1

—
—

—
—

—
—

0%

—
—

2.
05

.5
9

5
—

—
—

—
—

—
3%

—

—
2.

02
1.

13
2

—
—

—
—

—
—

1%

—
—

O
l

ME
NT

AL
TY

PE
LO

OK
-A

T
HO

ME
TU

RN
-P

AG
E

MO
VE

-H
AN

D
AC

TI
ON

EX
PR

ES
SI

ON
SE

AR
CH

-F
OR

SF
^C

C
CH

OO
SE

-C
OM

MA
ND

CH
OO

SE
-A

RG
CO

MP
AR

E
C-
^C
C

UN
KN

OW
N

.6
2

.8
8

26
0

__
—

—
—

—
—

—

60
%

—

.3
9

.3
1

17
3

—
—

—
—

—
—

—

22
%

22
%

.3
1

.3
2

13
9

—
—

—
—

—
—

—

13
%

13
%

.5
2

.2
2

9
—

—
—

—
—

—

2%
2%

.6
7

.3
2

5
—

—
—

—
—

—
—

1%

1%
.1

9
.9

1
17

—
—

—
—

—
—

1%

1%
.1

3
1.

56
6

—
—

—
—

—
—

—

0%
0%

.2
3

—
1

—
—

—
—

—
—

—

0%
0%

.7
2

.7
1

28
7%

.0
7

.5
2

20
7%

.7
4

.5
7

8
2%

.4
1

.8
1

56
9%

.0
1

.8
2

59
22

%
.1

4
.6

0
18

7%
.2

8
.9

2
71

8%

Fi
gu

re
 5

.1
5.

O

pe
ra

to
r

du
ra

tio
n

st
at

is
tic

s
fo

r
al

l
m

od
el

s
in

E

xp
er

im
en

t
5C

.
In

co

m
p

u
ti

n
g

 t
h

e
Me

an

an
d

CV

 o
f

ea
ch

o

p
er

at
o

r,

al
l

in
st

an
ce

s
g

re
at

er
 t

h
an

2

S
D

’s

fr
o

m

th
e

m
ea

n

w
er

e
d

is
ca

rd
ed

,
an

d

th
e

Me
an

an

d

CV

w
er

e
re

co
m

p
u

te
d

w

it
h

th

e
re

m
ai

n
in

g

in
st

an
ce

s.

In

th
e

co
m

b
in

ed
-o

p
er

at
o

r
ab

b
re

vi
at

io
n

,
G

F
M

=

G
E

T
-F

R
O

M
-

M
A

N
U

S
C

R
IP

T
,

S
C

=

S
P

E
C

IF
Y

-C
O

M
M

A
N

D
,

S
F

=

S
E

A
R

C
H

-F
O

R
,

C
C

=

C
H

O
O

S
E

-
C

O
M

M
A

N
D

,
an

d
 C

=

C
O

M
P

A
R

E
.

176 5. THE GOMS MODEL OF MANUSCRIPT EDITING

Figure 5 .16. Task time predictions by
Experiment 5C.

all models in

reason why Model UT predicted the Derivation data less well than the
Crossvalidation data.

ERROR BEHAVIOR

So far we have concentrated on error-free behavior. But errors have a
significant effect on the efficiency with which text-editing is done.
Overall, about 26% of the total time spent in all the experimental tasks is
due to error. As Figure 5.17 shows, errors were frequent, occurring on

5.4. GRAIN OF ANALYSIS 1 7 7

N M
(sec)

CV

A l l u n i t t a s k s :

Derivation data 36 13.37 .66
Crossvalidation data 34 19.46 1.18

All d ata 70 16.33 1.06

E r r o r u n i t t a s k s :

D erivation data 10 16.96 .89
Crossvalidation data 15 29 .46 1.09
All d ata 25 24 .46 1.10

E r r o r u n i t ta s k s w i th e r r o r t im e r e m o v e d :

Derivation d ata 10 10.69 .25
Crossvalidation data 15 13.72 .47
All d ata 25 12.51 .43

E r r o r - f r e e u n i t ta s k s :

D erivation data 26 11.99 .38
Crossvalidation data 19 11.57 .31
All d ata 45 11.81 .35

Figure 5 .17. Unit task time statistics for error and error-
free unit tasks in Experiment 5C.

36% of the tasks (25 out of 70), and errors doubled the time to perform
the tasks in which they occurred (from 12.5 sec to 24.4 sec).

The longer time required for tasks in which errors occur is accounted
for by the extra operations that must be performed by users on these
occasions. When an error occurs, the user progresses through a sequence
of distinct stages:

1. Error. The user makes a mistake.
2. Detection. He becomes aware of the error.
3. Reset. He resets the editor to allow correction.
4. Correction. He undoes the effects of the error.
5. Resumption. He resumes error-free activity.

1 7 8 5. THE GOMS MODEL OF MANUSCRIPT EDITING

E rro r T y p e N M
(sec)

CV %N %T

Typing errors 7 1.53 .51 27% 4%

M eth od-abortion errors 8 4 .17 .51 31% 11%

M eth od -fa ilu re errors 7 4.41 .41 27% 10%

"B ig" errors 3 7 1 .89 .60 12% 72%

U nclassifiab le e rror 1 8 .1 8 — 4% 3%

All errors 26 11.49 25 .45 100% 100%

Figure 5 .18. Error times in Experiment 5C partitioned into
different error types.
C olum n % N gives the percentage of occu rrences of each error type, and Colum n

% T gives the percentage of the total erro r tim e in each error type.

The occurrence of an error requires additional time for Error, Detection,
Reset, and Correction stages over the time otherwise required for the
task. The time spent in these four stages is called error time. When the
error time is subtracted from S13’s protocol, the adjusted times are
similar to the times for error-free tasks (11.81 sec vs. 12.51 sec).

The errors for S13 can be classified into four categories: typing errors,
method abortion errors, method failure errors, or “big” errors (Figure
5.18). Simple typing errors required about 1.5 ~ 3.0 sec for recovery.
There was minor variation in the choice of method, leading to a small
variation in the correction time. The user detected mistyped characters
immediately, canceling the bad character by typing c o n t r o l -a . ̂ But this
action printed a b a c k s l a s h followed by the canceled letter, messing up
the displayed line of typing. This, in turn, caused S13 to sometimes
redisplay a clean version of the line with another command.

Method-abortion errors, in which the user abandoned a command
part-way through by pressing the d e l e t e key, required about 2~7 sec for
recovery. There were many reasons for aborting a method: the user
decided it was the wrong method, that there was a better method, or that

The notation CONTROL-A indicates the typing o f the key A while holding down
the CONTROL key, as is done with a SHIFT key.

the argument strings (to the Substitute command) would not work.
Once, the method was aborted as the result of mistyping a command
character. Method abortion was even used for its effect in cleaning up
the display after it had been made messy by too many c o n t r o l -a ’s. All
the abortions except one were done to the Substitute command; the
exception was a q s -m e th o d being aborted in favor of an l f -m e t h o d .

Method-failure errors, in which a correctly executed method produced
an unintended result, required 2~8 sec for recovery. All these method
failures were with the Substitute command—either no substitutions or too
many substitutions were made—and in all cases the user was able to
correct the error by issuing one additional Substitute command.

The above three categories of errors occurred with about equal
frequency. Together they accounted for 22 of the 25 classifiable errors,
but only for 25% of the error time. In contrast, the remaining 3 big
errors accounted for the remaining 72% of the total error time. Although
these big errors were method failures, they were classed separately
because their times (43, 52, and 121 sec) were an order of magnitude
larger than simple (4 sec) method-failure errors. The important charac-
eristic of these errors is that their correction involved real problem­
solving activity, mostly having to do with the user finding her place in a
large text file.* These results suggest two radically different sorts of
errors that system designers should consider: The first are small,
frequent, routine errors that can be corrected quickly in a skilled manner.
The second are big, infrequent, but enormously time-consuming errors
that require problem solving to correct

5.5. DISCUSSION

Assessment of the Models

5.5. DISCUSSION 1 7 9

Description o f Behavior. From the three experiments, it is apparent
that descriptions of a user’s error-free behavior in the manuscript-editing
task can be constructed from a reasonably small number of components.

o
It is not hard to describe where the time goes in the big errors. The 43-sec error

was straightforward: S13 modified the wrong line and had to undo the modification and
then find and modify the right line. In the 52-sec error, she issued two bad quoted
string commands and had to wait 41 sec for the system to search the entire file and
respond that these strings did not exist anywhere in the file. The 121-sec error was the
only occasion on which S13 was genuinely confused. She modified the wrong line,
which was on a different page of the manuscript than the target line, and then could not
find the correct line. She spent most o f the 121 sec moving back and forth in the file.

1 80 5. THE GOMS MODEL OF MANUSCRIPT EDITING

Depending on the grain of analysis, the behavior of each of the seven
users observed in these experiments has been described by 1~20 goals,
1~13 operators, 4~6 methods, and 1~4 selection rules. Moreover, this
description is a reasonably accurate account of each user’s error-free
behavior in the task. The selection rules were able to predict the user’s
choice of methods about 90% of the time using the data on which they
were derived and 80% of the time on new data. The various versions of
the GOMS model were able to predict 80~100% of the operators in
sequence for the manuscript-editing task at the Functional Level. But
models at the Argument Level or at the Keystroke Level that attempted
to predict the exact site and number of looks at the manuscript or that
attempted to account for pauses on the order of a quarter of a second
were considerably less accurate. Other work on visual feedback for
skilled keying (Long, 1976) indicates that users routinely look to the
manuscript for information concerning errors and to the keyboard to
locate unfamiliar keys. Undoubtedly, users also look to the manuscript
because they forget what they are supposed to do. Successful modeling
of this behavior would either require (1) models contingent on the
contents of the text, such as the familiarity of the user with certain words
or the clarity of particular editing instructions, or (2) stochastic models.

Prediction o f Task Times. The GOMS models likewise provide a
reasonable prediction for the amount of time taken by error-free tasks.
In Experiment 5B, the model was able to predict, on new data, the time
for a single task to within 36% (Figure 5.9, Crossvalidation). This
prediction included the times for all the operators as well as the operator
sequence. In Experiment 5C, the equivalent prediction on Crossvali­
dation data was within about 30% (Figure 5.16).

Even when the model fails to predict the sequence of operators
exactly, the resulting time prediction may sometimes not be far off. The
reason is that there is a certain amount of continuity in the space of
methods. If the model predicts the user will look to the manuscript and
he does not actually look until after the next operation, the time
prediction will not suffer, since the frequencies of the operators remain
unchanged. If the user inserts one extra operator into a sequence of 15
operators, the time prediction will be degraded only slightly. Even if the
user chooses the wrong method, there is a reasonable chance that the
substituted method will not be wildly different in time, because the
model is also likely to err in choosing among methods whose times are
comparable.

Grain o f Analysis. How do the abilities of the GOMS models to
predict the behavior of the user vary as a function of the grain of

analysis? In the current experiment, the rather surprising answer was that
accuracy at the Functional Level and finer levels was essentially
independent of the grain.

Two factors seem to be at work. First, the gain in chronométrie
predictive power arising from new opportunities for conditional behavior
in the finer grain models seems to have been canceled by the difficulties
in predicting the sequence of operations (Figure 5.14). Second, there
seems to have been insufficient task variability for the finer grain models
to display their advantage. With respect to the latter, if the models could
predict operator sequences perfectly, then the prediction curve in Figure
5.16 for the Derivation data would drop to the reproduction curve. That
the prediction curve is essentially horizontal implies that refining the
grain of analysis did not tap the sources of time variability. In the
models, variability is expressed in the method selection rules and optional
operator choices, both of which are triggered by features of the task
environment Thus, either the models did not capitalize on all the
available features in the task environment or there were no task
environment features that gave clues to the variability. In the case of the
Crossvalidation data, the gains made by the finer grain models were not
sufficient to overcome the error in predicting operator duration arising
from the determination of operator times from independent data. Both
the reproduction and prediction curves are essentially flat (and in a few
instances, the prediction is actually slightly better than the reproduction).

It is important to note that variability in the set of error-free unit
tasks in Experiment 5C is quite small (Figure 5.17), both with respect to
the user’s performance times and with respect to the possible range of
editing tasks—all are small edits of about the same complexity. This low
variance occurred because the experiment tried not to manipulate the
task environment, but to assess the natural variability in the data and the
ability of various models to deal with them. It appears that, whereas the
models as a whole were not bad at predicting the average time per unit
task, there was insufficient variation within the editing tasks to trigger
increased responsiveness from the finer grain models.

5.5. DISCUSSION 1 8 1

Status of Goals and Operators

What psychological reality is to be ascribed to the various components
and features of the GOMS model?

The occurrence of goals in a GOMS model is one of its primary
cognitive features. Goals are required in generating the model and in

supporting its rational character as behavior directed towards the end of
editing the manuscript As it stands, however, the goals do not make any
distinguishable contribution to the time calculations of the various
models. Technically, this arises from a confounding of goals and oper­
ators: any time assigned to creating a goal or to cleaning up and
disposing of a goal is not distinguishable from additional time in the
associated operators. Goal-manipulation operations should not take
longer than about .5 sec, so that goal operators should not show up at
any level above the Keystroke Level, in any event.

The confounding of goal-manipulation times results in part from
GOMS being a model of error-free skilled behavior, so that the overt
record contains evidence only of the sequence of effective actions. For
our users, there are essentially no verbal expressions that indicate goal
activity. However, protocols from inexperienced users are sprinkled with
goal statements that correspond to the goals in a GOMS model. In one
such experiment, when the model predicted the processing of the g o a l :
USE-QS-METHOO, the user would almost invariably make comments like:
“Okay, I want to get down to a line that starts with ‘Food store’.” When
the model predicted the g o a l : u s e -s -c o m m a n d , the user would say:
“Now I want to substitute ‘30’ for ‘39’.” But no verbalizations were
recorded in connection with low-level operators like t y p e .

182 5. THE GOMS MODEL OF MANUSCRIPT EDITING

Operator Variability

The order of precision of our operators, as measured by the CV,
ranges from about .9 at the Keystroke Level to .3 at the Unit-Task Level.
In general, CVs should be expected to decrease with increasing mean
when operators are composed of suboperators, a relationship that might
be called “Abruzzi’s Law” (Abruzzi, 1952, 1956). It is easy to see why
such a relationship is reasonable. Suppose a composite operator of mean
duration A/ were simply composed of strings of n identical elementary
operators of mean duration m. Then, M = nm and

var(A0 = n var(/n).

Recasting this equation in terms of the CV gives

C V\f = pM where p = m .

5.5. DISCUSSION 183

Figure 5 .19. Coefficient of variation for a
operators as a function of mean operator time.

variety of

That is, the CK is inversely proportional to the square root of the mean
operator time. The actual decrease is illustrated in Figure 5.19, which
plots CV against operator mean M. Each point on the graph is based on
multiple observations of a single person. The open symbols are
manuscript-editing operators from Figure 5.8 and Figure 5.15 that
occurred more than five times (excluding combination operators, t y p e ,
ACTION, and u n k n o w n). The solid circles are operators from Abruzzi
(1956, pp. 216-217), such as cutting and stitching clothing patterns in a
ladies’ garment factory. In log-log coordinates, the relationship between
mean and CK is essentially linear. A regression fit of the points in Figure
5.19 gives

l n C K = -.735 - .388In M

(R^ = .55, SE = .38, coefficient ^ 0 at p < 10®), or

CV = .480M--3®®.

Figure 5.19 suggests that, in absolute terms, the CKs observed in our
experiment are roughly what would be expected from the size of the
operations alone.

As C y increases, the number of observations needed to estimate the
mean operator duration to a fixed precision also increases (Abruzzi,
1956). This is reflected in the figure as greater dispersion for operators
having small durations and in the fact that many of the points on the
outlying edge are those with the lowest Ns. As the time for the operators
becomes shorter, approaching the grain of characteristic physiological
events, the operators tend to become more purely physical or mental.
Since the physical operators are easier to identify and measure, these
should have lower CKs. In Figure 5.19, the outlying points below the
regression line are mostly simple physical acts (indicated by squares),
such as LOOK-AT and t u r n -p a g e . The outlying points above the line are
mostly mental actions (indicated by triangles), such as c h o o s e -c o m m a n d
or VERiFY-EDiT. If the purely physical and purely mental operators are
ignored, the slope of the line becomes —.433, even closer to the - .5 for
the ideal case of simple composition.

Extending GOMS to Cover Errors

184 5. THE GOMS MODEL OF MANUSCRIPT EDITING

It is important to ask how a GOMS model might be extended to
cover errors and associated behavior. As we have seen, skilled behavior
does not preclude the existence of a substantial number of errors, with an
appreciable fraction of the total time spent correcting the errors. In
Experiment 5C, about half the time was spent in error unit tasks, and
about half that time (about a quarter of the total time) was error time,
time the user actually spent committing and corrrecting errors.
Compared with other experienced secretarial users we have run in our
laboratory, S13 produces a higher percentage of error unit tasks, but is
faster in overall performance (and also in performing error-free unit
tasks). S13 thus gives up accuracy in favor of speed, since she is able to
recover rapidly from errors.

We can model the states of an error unit task by a slight extension of
the GOMS theory. First, we must allow operators to fail as well as
succeed. Then we must specify how the user corrects the failure. The
extension to the GOMS theory is to add the provision that when an
operator fails, it produces an error condition, which can be represented as

the correction goal. This goal is accomplished by selecting a correction
method.

We have said that a skilled user committing an error proceeds
through the stages: (1) Error, (2) Detection, (3) Reset, (4) Correction,
and (5) Resumption of error-free activity. The Detection stage occurs
when the correction goal becomes active immediately after a failed
operator, thus causing an interruption in the error-free behavior
sequence.

The action in the Reset stage can be modeled by a new operator,
ABORT-COMMAND. This operator denotes more than just the physical
striking of the d e l e t e key to reset the editor to accept commands again;
the user’s mental goal stack also is cleared back to the last use goal—a
“mental reset” Although such an operator can be provided within the
general spirit of a GOMS model, it should be noted that this operator is
the first departure from the simple stack discipline for goal control.

The new unit task(s) in the Correction stage can be modeled simply
as error-free unit tasks with one exception—a new operator, g en er a te -
UNiT-TASK, is needed in place of the a c q u ir e -u n it -t a s k operator.

Let us now consider how an extended GOMS model would handle
the three types of errors noted in Experiment 5C: typing errors, method-
abortion errors, and method-failure errors. The method for handling
typing errors is the simplest. When a typing error occurs, the user
becomes aware that the last character typed may be wrong. In terms of
the model, the t y p e operator produces a goal to correct the bad
character. The method for accomplishing this goal is as follows:

GOAL: CORRECT (BadCharacter)
. LOOK-AT-DISPLAY
. COMPARE
. TYPE (CONTROL-A)

TYPE (CorrectCharacter).

5.5. DISCUSSION 185

That is, the user is to look at the display (if not already looking at it),
compare the last typed character witfi the intended one, delete the bad
one (if they are different), and type the correct one (if they are different).
The user may then resume typing the string in which the error occurred.
The predicted time for this method, using the operator times in Figure
5.15 and the typing formula in Equation 5.1, is from 1.36 sec to 1.80 sec
(depending on the specifics of the situation, such as whether the

CorrectCharacter is in the touch-typing zone). The predicted time
compares favorably with the observed mean typing error time of 1.53 sec
(Figure 5.18).

The COMPARE operator in the above method may, of course,
determine that the bad character is correct, in which case it is not
changed. There is no real error in this case, only a goal to check for one,
but the goal still causes an error-like interruption. Such behavior may
account for some of the u n k n o w n operators in Experiment 5C.

Method-abortion and method-failure errors also evoke routine
correction methods. A method-abortion error is triggered by the failure
of some operator subordinate to the goal of using some POET command.
For example, when specifying the second argument of the Substitute
command, the user may notice that the first argument will not work and
must be respecified:

GOAL: RESPECIFY-ARG
. ABORT-COMMAND
. GOAL: USE-S-COMMANO .

Method-failure errors are even simpler in structure. This kind of
error is produced by a failure signal from the v e r if y -e d it operator. For
the Substitute command, the failure is caused by either no substitutions
or too many substitutions. For the former, the corrective method is to
establish the goal of redoing the original modification using the
Substitute command.

GOAL: MODIFY-TEXT
. GOAL: USE-S-COMMAND
. VERIFY-EDIT.

A more general method would not specify which command to use, in
which case a command other than the Substitute command could be
selected for the second try. The remedy for extra, uncorrect substitutions
is to generate a new unit task to remove them:

GOAL: REDEFINE-UNIT-TASK
. GENERATE-UNIT-TASK
. GOAL: EXECUTE-UNIT-TASK .

1 8 6 5. THE GOMS MODEL OF MANUSCRIPT EDITING

These two methods cover all observed errors in Experiment 5C that were
classified as method-failure errors.

As a final note, we observe that the control structure of a GOMS
model begins to break down during error behavior. Some method
failures, such as the big errors in Experiment 5C, seem to require
genuine problem-solving behavior for recovery. For example, the failure
of a GOAL: LOCATE-LiNE method in POET can leave the user in a state of
confusion as to just where in the file POET is currently located. And if
the user does not detect the error until after making the modification (on
the wrong line), then the user must undo the modification before
searching for the correct line.^ Such errors are rather rare events, and
when they occur the user embarks on a correction course without
employing a routine method and without planning an optimal method,
leaving the user in a problem-solving mode of behavior. We assume that
the user would acquire a routine and nearly optimal method for
correcting this kind of error if it were to happen often enough.

5.5. DISCUSSION 1 8 7

Manuscript Editing as a Cognitive Skill

Our analysis of user behavior in the manuscript-editing task leaves
little doubt about its characterization as a cognitive skill, however that
phrase is ultimately defined. The cognitive apparatus is much in
evidence, epitomized by the GOMS models, which dictates that there be
selection of the course of action in accordance with the demands of the
task, mediated by hierarchical goal structures. The GOMS models give a
reasonable account of error-free user behavior and may be extended to
routine error-correction behavior.

It is likewise obvious that the users we observed were skilled.
Applied to physical motions, skill connotes smoothness, control, and
economy of effort (Bartlett, 1958; Welford, 1968). Although 60% of the
time was spent in non-physical activities, these descriptions certainly are
appropriate for the users we observed. One indicator of skill is the time
taken to perform the same task by those who are obviously unskilled. In
Chapter 3, we saw that low typing skills, lack of technical background,
and limited experience combined to make a factor of three difference in
text-editing time.

 ̂ In the biggest observed error in Experiment 5C, however, the user went searching
for the correct line before undoing the bad modification and then had to later return to
undo it again.

The notion of skill is intimately related to the routine character of a
task, for people generally become skilled in whatever becomes routine for
them. Observation of our users demonstrates, if any additional demon­
stration is needed, that, just as in sensory-motor tasks, skill is highly
evident in cognitively-dominated routine tasks.

Learmng. The absence of significant learning during performance can
often be taken as a characteristic of skilled routine performance. In
Experiment 5C, S13 seems to be engaged in a steady-state performance.
Within the experimental session, there is no evidence of learning; if
anything, rather than the increasingly faster times characteristic of
learning, there is a slight slowdown over the course of the 20-minute
experimental session. Nor is there evidence of S13 learning over
extended time. Five months earlier, S13 used the same terminal and
system to edit a different manuscript at the rate of 11.0 sec per unit task
(compared with 11.8 sec in this experiment). Our assertion that absence
of learning characterizes routine skilled behavior must be qualified.
Though there is no appearance of skill learning over a single session, it is
only through repeated sessions that a user becomes skilled, and much of
this happens after the user’s time is far enough out on the Power Law of
Learning curve to give the appearance of being very skilled. Further­
more, substantial learning does take place within a single session about
the specific manuscript being edited (which is, of course, entirely new to
the user).

Unit-Task Structure. Perhaps the most important feature to emerge
from our analysis of manuscript editing is its unit task structure.
Manuscript editing is broken into a sequence of almost-independent unit
tasks. Within each unit task the user’s behavior is highly organized and
under the control of well-learned methods, which are quickly triggered
into action by the dynamic features of the task situation. Unit tasks take
only about 12 sec each with the POET editor, and even less with faster
editors. This provides an extremely short time horizon for the integration
of behavior.

1 8 8 5. THE GOMS MODEL OF MANUSCRIPT EDITING

5.6. CONCLUSIONS

It is possible to describe the behavior of the user of a computer text­
editing system by a cognitive theory composed of a small number of
goals, operators, methods, and selection rules. In this chapter we have

5.6. CONCLUSIONS 189

exhibited models composed of these elements that give a reasonable
quantitative account of the behavior.

A GOMS model for the manuscript-editing task predicted the
sequences of user actions in the task reasonably well. It predicted a
user’s choices of methods about 80~90% of the time; and it predicted the
actual operators in sequence 80~100% of the time in models at the
Argument Level; but the accuracy for predicting operator occurrences in
sequence was reduced to 50% at the most detailed level, the Keystroke
Level.

The model also made reasonably good predictions for the amount of
time necessary to make individual modifications to the text It was able
to predict time to within about 35% on new (Crossvalidation) data. This
is comparable to achieving 4% error on the whole 20-min task of editing
the manuscript (neglecting user errors).

It is important to consider at what level of behavior a GOMS model
will operate—the issue of the grain size of the analysis. In this chapter
we answered this question directly, repeating our analyses with nine
different GOMS models. In general, there appears to be a gain in
accuracy when refining the model at the Unit-Task Level (which is
similar to the model of Chapter 4), but further gains in accuracy with
finer grains of analysis were hard to achieve. Accuracy in predicting the
sequences of user actions fell off as the model grain became finer,
whereas accuracy in predicting time remained constant.

We have argued that manuscript editing can be characterized as a
cognitive skill, at least for expert users. Even the user’s behavior
immediately after the occurrence of routine errors has the character of
cognitive skUl. One of the characteristic features of this skill is its unit
task structure.

Appendix to Chapter 5:
MATCHING OPERATOR SEQUENCES

The problem is to put two sequences of operators, which may be of
different lengths, into correspondence and then to assign a value to how
well they match. For example, if g f m , s c , SA, se , ve , and VL are
acronyms for operators, the algorithm to be described takes as input both
a Predicted sequence and an Observed sequence of operators:

Predicted: g fm s c s c v l s c s a s a ve
Observed: g fm s c s a s c s a s a ve .

It inserts dummy x operators to bring them into correspondence:

Predicted: g fm s c s c vl s c s a sa ve
Observed: g fm s c sa x s c s a s a ve .

There are now 6 matches out of a possible 8, or a 75% match. The
algorithm inserts dummy operators in such a way as to maximize the
number of matches.

The following procedure is a translation of the Interlisp function that
was used for computations in Experiments 5B and 5C into an informal
Algol-like notation. The algorithm is based on Hirschberg (1975) and
Sakoe and Chiba (1978). It takes as input predicted and observed
sequences and returns the percentage of matches and new versions of the
input sequences resulting from the addition of dummy operators.

procedure matchSeqstPredSeq, ObsSeq):

Step I. Initialize.
PredLength length(PredSeq);
ObsLength <- length(ObsSeq);
array PredSeq[1 :PredLength], ...Predicted sequence o f operators

ObsSeq[1 rObsLength], ...Observed sequence of operators
Score[0:PredLength, 0:0bsLength]<-0, ...Workingspace

PredSeqResutt[1 :PredLength -i- ObsLength],
ObsSeqResult[1 rPredLength -i- ObsLength];

190

Step 2. Compute scores for a matrix with one row for every operator in the
predicted sequence and one column for every operator in the observed
sequence.

for i from 1 to PredLength do
for j from 1 to ObsLength do

if (PredSeq[i] = ObsSeq[j])
then Score[i,j] ♦-Score[i - 1,j ~ 1] + 1;
else Score[iJ] max(Score[i - 1 ,j], Score[ij - 1]);

APPENDIX: MATCHING OPERATOR SEQUENCES 1 9 1

Step 3. Traverse the matrix backward along the path o f highest scores.
i PredLength; j ♦- ObsLength; k ♦-1;
until (i = 0 and j = 0) do

if (i^O and (j = 0 or (Score[i - 1 ,j] > Score[i ~ 1 ,j - 1]))
then PredSeqResult[k] <- PredSeq[i];

ObsSeqResult[k] "X";
k<-k + 1; i« - i -1 ;

elseif (j^O and (i = 0 or (Score[i J - 1] > Score[i - 1J - 1]))
then PredSeqResult[k] ^ "X";

ObsSeqResult[k] ^ ObsSeq[j];
k«-k + 1;

else PredSeqResult[k] ^ PredSeq[i];
ObsSeqResult[k] ObsSeq[j];
k«-k-i-1; i ^ i - 1 ;

%Match <- Score[PredLength, ObsLength] / (k - 1);
return(%Match, PredSeqResult, ObsSeqResult); end;

http://taylorandfrancis.com

6. Extensions of the
GOMS Analysis

6.1. TASK ANALYSIS
Editing Tasks
Physical Environment

6.2. MODEL OF THE USER
General GOMS Analysis
Observational Studies
Estimation of Parameters
Simulation of User Behavior

6.3. CONCLUSIONS

There are several directions in which the GOMS models might be
extended. In this chapter we consider the issues involved in three of
these. The first extension is to another editor. In particular, we would
like assurance that a GOMS description can be given for a display-
oriented editor (the editor in Chapter 5 was line-oriented). A display-
oriented editor may cause new issues to arise concerning the interaction
of the user with the display.

The second extension concerns the accuracy of a GOMS model for
predicting a user’s action. We saw in Chapter 5 that, as the detail of the
GOMS models increased, it became more difficult to predict the precise
operator sequence the user would employ on a specific occasion; it was
especially difficult to predict when the user would consult the manuscript
for information. Actually, for our purposes, it would be sufficient to
predict the distribution of operator sequences over a set of similar
occasions. But the GOMS notation would have to be extended to
incorporate stochastic elements of two types: (1) operator times expressed
as probability distributions rather than as single numbers and (2)
probabilistic selection rules and conditionalities for predicting which
method the user will employ and for expressing probabilistic condi­
tionality within those methods.

193

Third, we continue our information-processing task analysis of text­
editing by defining a symbolic representation for the instructions on the
manuscript and by further explicating how these instructions lead to the
behavior we observe.

1 9 4 6. EXTENSIONS OF THE GOMS ANALYSIS

EDITING COMMANDS

To delete text: Select old text with mouse
Type D

To insert text: Select insertion point with mouse
Type I
Type new text
Type ESC

To rep lace text: Select old text with mouse
Type R
Type new text
Type ESC

SELECTIONS WITH MOUSE

To select a character: Point to character with mouse
Push MOUSE-BUTTON-1

To select a word: Point to word with mouse
Push MOUSE-BUTTON-2

To select a string of characters: Point to first character with mouse
Push MOUSE-BUTTON-1
Point to last character with mouse
Push MOUSE-BUTTON-3

To select a string of words: Point to first word with mouse
Push MOUSE-BUTTON-2
Point to last word with mouse
Push MOUSE-BUTTON-3

Figure 6.1. Subset of BRAVO editor commands.

As a vehicle for discussing these extensions, we sketch a GOMS
model simulation of a user for the display-oriented editor b r a v o , one of
the editors tested in Chapter 3. This editor is similar to POET in
command structure (see Figure 6.1), but uses a mouse for selection of
text on a full-page video display (30~50 lines of text are displayed on the
page, depending on the typefont used and the spacing between lines).
Stochastic predictions are derived from the model by assuming proba­
bility distributions for operator times and method choices, then running
Monte Carlo simulations. The expanded task analysis is accomplished by
having the model operate on a symbolic representation of the manuscript
instructions.

6.1. TASK ANALYSIS 195

6.1 . TASK ANALYSIS

The purpose of a task analysis is to map out the constraints imposed
on behavior by the nature and features of the task environment. Here
we add two pieces of task analysis to that already developed in Chapter
5: (1) a description of the elements of knowledge a user can have about
the editing tasks he is to do and (2) a partial description of the physical
environment.

Editing Tasks

What information does the user know about the editing task he
performs and when does he know it? Take, for example. Task A2 of
Figure 6.2. The instructions marked on the manuscript indicate that the
character “a” is to be inserted as a word in front of the word “necessary.”
At some point during the execution of this task, the user must know that
the task is an insertion, where the insertion point is, what new text is to
be inserted, and, perhaps, information about where the task is, relative to
other tasks on the page (this knowledge may take the form of: the task
is the second task on the page; it is on line 12; it is before Task A3; it is
after Task Al). To keep track of these bits and pieces of information, we
can represent the user’s knowledge as a network, with chunks as nodes
and relations between the chunks as links. This is done for Task A2 in
Figure 6.3. Of course, at any moment the user might actually possess
only part of the knowledge indicated in the diagram, some of the links or
nodes being missing. The diagram shows the maximum knowledge we

While the official, chartered purpose of this Subcommittee on Data Base
Management systems is to investigate the potential for standardization in the
area of data base management systems, a necessary first step of the work of
the Subcommittee has been the development of a set of requirements for
effective data base management systems. These requirements have emerged
as the work of the Subcommittee^manifested^roceeded and have)themselves
in the form of a generalized model for the description of data base
management systems. As no existing or proposed implementation of a data
base management system completely satisfies these requirements nor
comprises all of the concepts involved^e (^tanJl^ds is
an explanation of this model. The bulk of this Report provides such an
explanation. ,

cUscviw biri’eVlu

Among the rcsponsibiUties of the
Specifications Planning and Requirements Task Force of the Ad Hoc
Marketing Committee for Computers and Information Processing is the
generation of recommendations for action by the parent Task Force on
appropriate areas for the initiation of specifications development efforts. For
some time, starting in about 1%9, the task force has been aware that data
base management systems are becoming central elements of information
processing systems, and that there is less than full agreement in the
community on appropriate design. In addition to the existence of a number
of implementations of such systems, a list that continues to grow, there are
several documents generated out of the collective wisdom of some segment
of the information processing community which are either proposals for
specific systems (SMITH 1971) or more general statements of requirements
(JAYME 1970). (HO 1971). As is well known, there is a debate in the
community on whether existing and proposed implementations meet the
indicated requirements, or whether the requirements as drawn are all really

Q ^necessary and ewtifely uaefafT Further, there have been serious questions
about the economics of systems meeting all the stated requirements.

Chapter I: INTRODUCTION

©

©

Figure 6.2. Sample page of a marked-up manuscript.
T h e labels A1 through A5 Identify the unit tasks for this study. T h e user did not
see these task labels.

196

6.1. TASK ANALYSIS 1 9 7

presume it is possible for the user to have about the task, regardless of
whether he actually has it at a given instant

Figure 6.3 is a diagram for a specific task. We can also describe some
of the general editing concepts possessed by the user by making a
distinction between (1) general notions, such as the general notion of an
« IN S E R T IO N , and (2) particular cases that exemplify the general notions,
such as the Task A 2 , which is a particular instance of an « i n s e r t i o n

task. The general notions are called concepts (notationally we begin
concept names with a « to distinguish them), and the particular cases
that exemplify the concepts are called exemplars. Concepts are defined
by schemata, which give the attributes and values the exemplars of a
concept may have and the higher-level superconcepts to which a concept
is related.

Figure 6.4 shows the schemata for the general concepts used in Figure
6.3 and their relationships to the parts of Task A 2 ; The exemplar A 2 has
as its concept « i n s e r t i o n . The concept « i n s e r t i o n has as its
superconcept the concept « b a s i c -t a s k . The concept « b a s i c -t a s k has
an attribute l i n e - n u m b e r :, whose value is some (unknown) exemplar of
the concept « i n t e g e r . Therefore A 2 (which is also an exemplar of the
concept « B A S I C t a s k) also has an attribute l i n e -n u m b e r :, with a value
1 2 (which, in turn, is an exemplar of the concept « i n t e g e r) .

The diagram in Figure 6.4 also shows the relationship between other
parts of the exemplar a 2 and the schemata of the concepts it references.
The relationships quickly become complex. Whereas such diagrams are
illuminating for small networks of knowledge, they rapidly become
unreadable (and undrawable) as the number of elements increases. It is
therefore necessary to use a text-language notation for a description of
any complexity. The text-language equivalent for A2 in Figure 6.3 is;

A 2 = « IN S E R T IO N

where
X t = « C H A R A C T E R

{ F U N C T IO N : IN S E R T

IN S E R T IO N -P O IN T : ^ 4
N E W -T E X T : X 2
R E L -T A S K -N O : 2
L IN E -N O : 1 2
P R E V IO U S : A1

N EX T: A 3) ,

T E X T -T Y P E : C H A R A C T E R

B O U N D A R Y : W O R D

LEN G TH : 1) .

1 9 8 6. EXTENSIONS OF THE GOMS ANALYSIS

^INSERTION

(in s e r t) (j I) (2) (^ (^

(word) (character) (T)

Figure 6.3. Symbolic representation of Task A2.

This can be read as “ a 2 is an exemplar of the concept # i n s e r t i o n , with
F U N C T IO N : IN S E R T and IN S E R T IO N -P O IN T : and ...”, or more succinctly,
“ a 2 is an « IN S E R T IO N with ...”. The text-language definitions for the
schemata that define the user’s concepts describe the space of editing
tasks addressed by the model (see Figure 6.5). For purposes of our
simulation, we are concerned with only the common sort of text
manipulations, such as those in Figure 6.2, excluding formatting tasks,
such as specifying typefonts or leading between text lines. The tasks we
consider are; (1) insertion of new text, (2) deletion of old text, (3)
replacement of old text by new text, (4) movement of text to a new
location, and (5) transposition of two adjacent pieces of text.

Given the schemata in Figure 6.5, the tasks on the manuscript page
in Figure 6.2 can now be described (see Figure 6.6). Figure 6.6 is an
example of the symbolic description of editing tasks we use as input to
our simulation.

6.1. TASK ANALYSIS 1 9 9

Figure 6.4. Symbolic representation of Task A2.
This representation show s the relationship betw een the exem plars and the c o n ­

cepts of w hich they are instances.

Physical Environment

We have described the logical elements of the editing task, but there
are also physical elements of the user interface that affect the user’s
behavior. The video display might not be legible, for instance, or the

c o n c e p t # BA SIC-TA SK
SU PER C O N C EPT: NIL
H A S-PA R T S: (TASK-NO: {a # ATOM)

REL-TASK-NO: {a « INTEGER)

LINE-NO: {a «IN T E G E R)

f u n c t i o n : {a «ED IT -FU N C TIO N))

c o n c e p t # T A S K
IS-O N E-O F: ({a # DELETION}

{a # INSERTION}
{a # REPLACEMENT}
{a # TRANSPOSITION})

c o n c e p t # DELETION
SU PER C O N C EPT: # BA SIC-TA SK
H A S-PA R T S: (FUNCTION:

OLD-TEXT:
DELETE
{a # TEXT-IN-MS})

c o n c e p t # INSERTION
SU PER C O N C EPT:
H A S-PA R T S:

BA SIC-TA SK
(FUNCTION:
INSERTION-POINT:
NEW-TEXT:

INSERT
{a # PLACE-IN-M S}
{a #T EX T })

c o n c e p t # REPLACEMENT
SU PER C O N C EPT: # B A SIC-TA SK
H A S-PA R T S: (FUNCTION:

NEW-TEXT:
OLD-TEXT:

REPLACE
{a #T E X T }
{a # TEXT-IN-MS})

c o n c e p t # MOVE
SU PER C O N C EPT: # BA SIC-TA SK
H A S-PA R T S: (FUNCTION:

OLD-TEXT:
MOVE
{a # TEXT-IN-MS}

INSERTION-POINT: {a # PLACE-IN-M S})

c o n c e p t # TRA N SPO SITIO N
SU PER C O N C EPT: # B A SIC-TA SK
H A S-PA R T S: (FUNCTION:

LEFT-TEXT:
RIGHT-TEXT:

TR A N SPO SE
{a # TEXT-IN-MS}
{a # TEXT-IN-MS})

c o n c e p t A B O U N D S
H A S-PA R T S: (ST ART.-

END:

c o n c e p t # CHARACTER
SU PER C O N C EPT: # T E X T
H A S-PA R T S: (TEXT-TYPE:

BOUNDARY:
LENGTH:

{a
{a

n PLACE-IN-M S}
PLACE-IN-M S})

CHARACTER
{a «C H A R A C TER -B O U N D A R Y)
1)

200

c o n c e p t # CHARACTER-BOUNDARY
IS-O N E-O F: (IN-WORD

WORD)

c o n c e p t # CHARACTER-IN-M S
SU PER CO N C EPT: # CHARACTER
H A S-PA R T S:

c o n c e p t #T E X T
IS-O N E-O F:

c o n c e p t # TEXT-IN-MS
IS-ONE-O F:

(LOCATION: {a # PLACE-IN-M S})

({a #W O R D >
{a # CHARACTER)
{a #TEX T-SEG })

({a #W O R D -IN -M S}
{a #C H A R A C TER -IN -M S}
{a #TEX T-SEG -IN -M S})

c o n c e p t #T E X T -SE G
SU PER C O N C EPT: # T E X T
H A S-PA R T S: (TEXT-TYPE:

LENGTH:
BOUNDARY:

c o n c e p t #TEX T-SEG -B O U N D A R Y
IS-O N E-O F: (LINE

SPLIT-LINES
SPLIT-PA G ES)

TEXT-SEG
{a # INTEGER)
{a #TEX T-SEG -B O U N D A R Y))

c o n c e p t #TEX T -SE G -IN -M S
SU PER C O N C EPT: # TEXT-SEG
H A S-PA R T S: (START-LOC:

END-LOC:

c o n c e p t # W O R D
SU PER C O N C EPT: #T E X T
H A S-PA R T S: (TEXT-TYPE:

BOUNDARY:
LENGTH:

{a # PLA CE-IN -M S)
{a # PLACE-IN-M S})

WORD
W ORD
{a # INTEGER})

c o n c e p t # W ORD-IN-M S
SU PER C O N C EPT: #W O R D
H A S-PA R T S: (LOCATION: {a # PLA C E-IN -M S))

Figure 6 .5. Concepts that define the space of editing tasks
addressed by the simulation model.

201

PAGE-1 = #PA G E

A1 = #MOVE

A2 = # INSERTION

A3 = # INSERTION

A4 = # REPLACEMENT (

A5 = # DELETION

PAGE-NO:
TASKS:
NEXT:

FUNCTION:
OLD-TEXT:
INSERTION-POINT:
REL-TASK-NO:
LINE-NO:
NEXT:

FUNCTION:
INSERTION-POINT:
NEW-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
INSERTION-POINT:
NEW-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
NEW-TEXT:
OLD-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
OLD-TEXT:

REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

(LIST: A 1 A2 A3 A 4A 5)
PAGE-2)

MOVE

Xi

1
8
A2)

INSERT

^4
X2
2
12
A1
A3)

INSERT

X3
3
12
A2
A4)

REPLACE

X4
XS
4
16
A3
A5)

DELETE

X6
5
33
A4
NIL)

202

6.1. TASK ANALYSIS 203

X2= «CHARACTER

X 3 = «TEXT-SEG

X 4 = «TEXT-SEG

START-LOC: X2
ENDLOC: ^3
TEXT-TYPE: TEXT-SEG
LENGTH: 4
BOUNDARY: LINE)

TEXT-TYPE: CHARACTER
BOUNDARY: WORD
LENGTH: 1)

TEXT-TYPE: TEXT-SEG
LENGTH: 19
BOUNDARY: LINE)

TEXT-TYPE: TEXT-SEG
LENGTH: 79
BOUNDARY: SPLIT-LINES)

START-LOC: K
END-LOC: ^5
TEXT-TYPE: TEXT-SEG
LENGTH: 21
BOUNDARY: SPLIT-PAGES)

START-LOC: ^ 8
END-LOC: A ,
TEXT-TYPE: TEXT-SEG
LENGTH: 71
BOUNDARY: SPLIT-LINES)

Figure 6.6. Symbolic representation of the manuscript page
shown in Figure 6.2.

user might not be able to see certain information not on the current page
of the manuscript. Four main entities of the physical environment are of
interest to us; the user, the editor (including its input devices, the
keyboard and mouse), the editor’s video display, and the marked-up
manuscript. We take the point of view that a description of this
environment should permit any of these elements to be altered (the page
of the manuscript to be changed, for example) without altering the
description of the other three. A technique (based on the simulation

language Smalltalk: Kay, 1977, and Ingalls, 1978) that will permit such a
separation is to describe the physical environment in terms of a set of
transactions between these entities, each transaction consisting of a
message and its reply, if it has one (see Figure 6.7). The user’s act of
consulting the manuscript to get the next task after Task Al, for example,
is implemented in the simulation by having the model of the user send
the message * r e a d -n e x t -l o c a t io n : to the manuscript and having the

204 6. EXTENSIONS OF THE GOMS ANALYSIS

READ-LOCATION-OF

* INSERT-TEXT
* REPLACE-TEXT
* DELETE-TEXT
* JUMP-TO
*TYPE

SCROLL-TO
SELECT

REPOSmON-TO

* TURN-PAGE
* READ-NEXT-LOCATION-OF
* READ-TARGET-TYPE-OF
* READ-ATTRIBUTE-OF

EDITOR
(including keyboard
and mouse) MANUSCRIPT

Figure 6.7. Analysis of the physical environment as entities
and transactions.

manuscript reply with the message where X4 is a symbol denoting the
physical location of Task A2.

There are four types of transactions:
(1) The user consults the manuscript to find a new task or

to discover more details about the current task (User
^ Manuscript transactions, where the symbol =>
shows that the user initiates a transaction to the editor).

(2) The user issues commands to the editor (User =>
Editor transactions).

(3) The editor changes the display (Editor =► Display
transactions).

(4) The user consults the display to locate a piece of text
(User => Display transactions).

Two entities, the user and the editor, are active, able to initiate trans­
actions. The two other entities, the manuscript and the display, are
passive, only replying to messages sent them. In the simulation model,
each of these four entities is represented as a separate process, interacting
via the transactions.

We can describe the physical environment (according to this model)
by listing the model transactions available between the entities in the
environment Return messages, when they exist are listed following the
symbol

U s e r E d i to r T r a n s a c tio n s :
•INSERT-TEXT
•REPLACE-TEXT
•DELETE-TEXT
•JUMP-TO {{a #TASK})
•TYPE ({a #TEXT))
•SCROLL-TO {{a #TASK})
•SELECT.

These transactions reflect the commands available in the editor b r a v o .
•INSERT-TEXT is the insertion command and denotes the command
portion of the interaction (typing the key i to begin the command and
ESC to terminate it). The actual typing of the text to be inserted is
denoted by the t y p e transaction. The full series of keys that the user
would actually type to insert the letter “a” in Task A2 is

6.1. TASK ANALYSIS 205

1 A SPACE ESC .

In the simulation, this action would be modeled as sending two messages
from User =► Editor:

»INSERT-TEXT
•TYPE (A SPACE).

•REPLACE-TEXT is the command to replace some text with other text,
and »DELETE-TEXT is the command to remove text, »s c r o l l -t o is the
command to reposition (“scroll”) the text on the display so that the
cursor, controlled by the mouse, is at the top o f the display, »j u m p -to
is similar to the scroll command, except that the text to be positioned at
the top o f the display is specified by a search string, »s ele c t is the
command (invoked by pressing a button on the mouse) to make the text
indicated by the cursor the current selection.

The expression {a # t a s k } should be read: “an exemplar of the
concept #TASK.”

E d i to r D is p la y T r a n s a c tio n :
» REPOSITION-TO ({a # TASK}).

Only one editor ^ display transaction is modeled: repositioning the
display in response to a »s c r o l l -to or »j u m p -t o transaction from the
user.

206 6. EXTENSIONS OF THE GOMS ANALYSIS

U s e r ^ D is p la y T r a n s a c tio n s :
•READ-LOCATION-OF({a #TASK})

- * {a #MAIN-PART-OF-SCREEN}or
{a » BOTTOM-PART-OF-SCREEN} or
{a # OFF-SCREEN}.

When the user acts to find the text of a task on the video display, he
looks at the display and searches for the text We describe this activity in
terms of the model as the user sending a message »r e a d -l o c a t io n to
the display and the display making a reply giving the location of the task.
The exact location of the text on the screen is of little use in predicting
the user’s performance and is below the grain of the model. What is
important is whether the text is in the main (middle to top) part of the
screen, in the bottom part, or not on the screen at all. The user has his
own internal representation of where the task is, which may or may not
correspond with the display’s state.

U s e r => M a n u s c r ip t T m n s a c tio n s :
*TURN-PAGE({a «DIRECTION})

-*■ OK or
NO-MORE-PAGES

•READ-NEXT-LOCATION-OF ({a «TASK})
- * {a «TASK}or

NO-MORE-TASKS-THIS-PAGE
•READ-TARGET-TYPE-OF({a «TASK})

-*■ INSERTION-POINT or
{a «CHARACTER}or
{a «WORD}or
{a «TEXT-SEG}

•READ-ATTRIBUTE-OF({a «TASK}, {a «TASK-ATTRIBUTE})
-» {an «ATTRIBUTE}

According to these transactions, the user can turn the pages of a
manuscript either forward or backward. If he tries to turn past the last
page, he discovers immediately that there are no more pages. The user
can look for the next task on the manuscript, he can note what sort of
target he must select, or he can read the new text that is to be inserted or
other attributes of a task.

All the interactions between the display, the editor, the manuscript,
and the user are described in terms of the listed transactions. The strict
partitioning of the physical environment into independent processes that
communicate through messages reflects the structure of the physical
environment itself. If the manuscript is changed, for example, the other
entities should work as before.

6.2. MODEL OF THE USER 2 0 7

6.2 . MODEL OF THE USER

We have thus far described the task environment, the editing task and
its physical surroundings. Using the results of our task analysis, we can
now set out on a general GOMS analysis of a b r a v o user. But before
the GOMS model can be completed, it is necessary to augment our task
analysis with the details of how a user consults the manuscript for
information and how he scrolls the display. This latter must be
determined by observation of users. Consequently, we first sketch an
outline for the model, delaying the full presentation until observational
data have been presented.

General GOMS Analysis

To specify a GOMS model for a user we must, as discussed in
Chapter 5, specify goals, operators, methods, and selection rules. Figure
6.8 lists these elements of a GOMS model for a BRAVO user. The goals
are organized into a hierarchy as pictured in Figure 6.9. Eventually each
goal (a rectangular box in the figure) terminates on a set of operators
(rounded boxes in the figure). Associated with each goal is a set of
alternative methods (not shown in the Figure) by which the goal can be
achieved and a set of selection rules (also not shown) for selecting among
the methods.

GOALS

As in Chapter 5, the user is assumed to have a top-level goal to edit
the manuscript one unit task at a time;

GOAL: EDIT-MANUSCRIPT
. GOAL: EDIT-UNIT-TASK
. . GOAL: ACQUIRE-UNIT-TASK .

The accomplishment of GOAL: e d it -u n it -t a s k is again broken into an
acquisition part and an execution part, just as in the poet model; in the
simulation, though, e x e c u te is treated as an operator that causes a
subgoal to be set up for the task, based on the instructions acquired from
the manuscript during g o a l : a c q u ir e -u n it -t a s k . The subgoal to be set
up is one of the following:

GOAL: REPLACE Or
GOAL: DELETE or
GOAL: insert (InsertionPoint, NewText) or
GOAL: MOVE (InsertionPoint, OldText).

Unlike the simpler poet model, some of the goals are parameterized.
For example, the goal

208 6. E>CTENSIONS OF THE GOMS ANALYSIS

GOAL: in s e r t ({a # APPROXIMATE-TARGET}, X,) (6.1)

represents the user’s goal to insert, in an approximately-known location,
the text described by X2. where X2 is (as given earlier) a single character
of text on a word boundary:

6.2. MODEL OF THE USER 209

X t = # CHARACTER (TEXT-TYPE:
BOUNDARY:
LENGTH:

CHARACTER
WORD
1).

The parameters for goals and operators are listed in Figure 6.8. These
parameters are the memory chunks that must be maintained in Working
Memory at the time the goal is executed. Each chunk is given a
symbolic slot name (for accounting purposes) in the model. In
Expression 6.1, insertionPoint is the slot name associated in the model
with an exemplar of # a p p r o x im a t e -l o c a t io n , and NewText is the slot
name associated with Xj- Expression 6.1 is short for;

GOAL: INSERT (InsertionPoint = {a «APPROXIMATE-TARGET},
NewText = X2) •

The precise form in which the user has these pieces of knowledge
represented in memory, however, is not specified.

Also, unlike the p o e t model, the b r a v o model must contain a set of
goals related to the use of the mouse for selecting text:

GOAL: SELECT-TARGET (MSPosition, PositionType,
VisualSearchTarget),

. GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget,
Select?)

. . GOAL: POINT-THERE (ScreenPosition, TextType, Select?).

OPERATORS
The operators are cast roughly at the Argument Level. For example,

the user can gather information from the manuscript and the display:

GET-FROM-MANUSCRIPT (Desiredinformation, Attribute) and
GET-FROM-DISPLAY (Desiredinformation, Attribute, MSPosition).

He can point at a certain TextType in a certain ScreenPosition, then
(optionally) select it (notationally, the Select? parameter takes on the
value s ele c t) by pressing a button on the mouse:

POINT (ScreenPosition, TextType, Select?).

Goals:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GOAL: INSERT (In s e r t io n P o in tK e y , N ew Text)
GOAL: DELETE (OldTextKey)
GOAL: REPLACE (OldTextKey, NewText)
GOAL: MOVE (In s e r t io n P o in tK e y , O ldTextKey)
GOAL: SELECT-TARGET (M SPosi t ion , Posi t io n T y p e , V isu a lS e a rc h T a rg e t)
GOAL: POINT-TO-TARGET (M SPosit ion , V i s u a lS e a rc h T a rg e t , S e lec t?)
GOAL: POINT-THERE (S c re e n P o s i t i o n , T ex tType , S e lec t?)

Operators:

GET-FROM-MANUSCRIPT (D e s i re d in fo rm a t io n , A t t r ibu te)
GET-FROM-DISPLAY (D e s i re d in fo rm a t io n , A t t r ib u te , M SPosition)
SCROLL-TO (LineInMS)
JUMP-TO (LineInMS)
POINT (S c re e n P o s i t i o n , Tex tT y p e , S e lec t?)
INSERT-TEXT
DELETE-TEXT
REPLACE-TEXT
TYPE (NewText)
EXECUTE (Task)
VERIFY-EDIT

Methods:

ONE-AT-A-TIME-METHOD
ACQUIRE-EXECUTE-VERIFY-METHOD
READ-TASK-IN-MS-METHOD
INSERT-COMMAND-METHOD
DELETE-COMMAND-METHOD
REPLACE-COMMAND-METHOD
DELETE-INSERT-METHOD
ZERO-IN-METHOD
ROUGH-POINT-METHOD
CHAR-POINT-METHOD
WORD-POINT-METHOD
TEXT-SEG-POINT-METHOD
INSERTION-POINT-METHOD
POINT-WITHOUT-SCROLLING-METHOD
SCROLL-AND-POINT-METHOD
JUMP-METHOD

Selection Rules:

ROUGH-LOC-RULE
TEXT-SEG-RULE
CHAR-POINT-RULE
WORD-POINT-RULE
INSERTION-POINT-RULE
T O P -2 /3 -R U L E
BOTTOM-1 /3-R U LE
OFF-SCREEN-RULE

Figure 6.8. Outline of the GOMS model for a BRAVO user.

210

211

Figure 6.9. Hierarchy of goais and operators in the GOMS
model for BRAVO.
G oals are shown as square boxes and operators as round boxes.

And he can issue commands to the editor:^

SCROLL-TO (LIneInMs)
JUMP-TO (LineInMs)
INSERT-TEXT
DELETE-TEXT
REPLACE-TEXT
TYPE.

 ̂ These user operators should not be confused with the user = > editor transactions
with similar names. For example, INSERT-TEXT is a user operator that eventually
causes the transaction *INSERT-TEXT to occur.

METHODS
The simulation contains the methods for particular goals, expressed in

a formal notation. Some of the methods are essentially the same as for
the editor POET in Chapter 5;

Method for GOAL: EDIT-MANUSCRIPT
ONE-ATA-TIME-METHOD =

until NoMorePages = TRUE do GOAL: EOIT-UNIT-TASK .

Method for GOAL: EDIT UNIT TASK
ACQUIRE-EXECUTE-VERIFY-METHOD =

GOAL: ACQUIRE-TASK
EXECUTE (Task)
with-probabihty .4 do VERIFY-EDIT .

Method for GOAL: ACQUIRE UNIT-TASK
READ-TASK-IN-MS-METHOD =

GET-FROM-MANUSCRIPT ({slot Task}) }

The first method breaks the manuscript into unit tasks, the second breaks
a unit task into the Acquire-Execute-Verify cycle, and the third acquires
the instructions for a task by reading them from the manuscript.

Other methods, such as the method for performing an insertion, are
more detailed than in Chapter 5, taking into account the display-oriented
pointing operations:

Method for GOAL: INSERT
INSERT-COMMAND-METHOD =

if no InsertionPoint
then GET-FROM-MANUSCRIPT ({slot InsertionPointKey})

GOAL: SELECT-TARGET(MSPosition, {slot InsertionPoint},
InsertionPointKey)

INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})
if NewText * DEFAULT then TYPE (NewText).

According to this method, if the user does not know where to make the
insertion, he looks over to the manuscript to find out. Then he selects
the location he found and issues the Insert command to the editor. If he

2 1 2 6. EXTENSIONS OF THE GOMS ANALYSIS

If we think o f the upper/lower case symbols, such as Task, as variables
representing a pointer to particular types of information held in Working Memory, the
expression {slot Task} means the pointer itself rather than its contents.

cannot remember the text to be inserted, he consults the manuscript.
Finally, the user types in the new text (except in the special “default"
case, where the text to be inserted is the argument to a previous
command, such as a Delete command).

SELECTION RULES

Just as in the simulation model, the selection rules for choosing
among methods available for a particular goal are expressed in a formal
notation. A simple example is GOAL; p o in t -t o -t a r g e t . There are at
least three methods in b r a v o to accomplish this goal, depending on the
kind of target: (1) to select a character, the user moves the mouse (to
position the cursor at the character) and presses the first mouse button;
(2) to select a word, he moves the mouse (to position the cursor at any
part of the word) and presses the second button; (3) to select a text
segment, the user first does either (1) or (2) to point to the beginning of
a the text segment and then moves the mouse to point to the end of the
segment and presses the third button to select all text between the two
points. The corresponding selection rules are written:

Selection rules for GOAL; POINT-TO-TARGET
CHAR-POINT-RULE =

if VisualSearchTarget isa # CHARACTER
then CHOOSE (CHAR-POINT-METHOD)

WORD-POINT-RULE =
if VisualSearchTarget isa #WORD

then CHOOSE (WORD-POINT-METHOO)
TEXT-SEG-RULE =

if VisualSearchTarget isa #TEXT-SEG
then CHOOSE (TEXT-SEG-POINT-METHOD).

The expression VisualSearchTarget isa «CHARACTER is true if the
VisualSearchTarget is an exemplar of the concept «CHARACTER (or the
exemplar of any concept that has « c h a r a c t e r as its superconcept).

Observational Studies

6.2. MODEL OF THE USER 2 1 3

The modeling of two local sequences of user behavior requires
additional empirical observation. FirsL there is the question of how
frequently a user will consult the manuscript during a task? This is not a
new question. Difficulty in predicting the answer lowered the accuracy

of the POET models in Chapter 5. Second, there is the question of when
will the user scroll the display? This is a new question that derives from
the user’s interactions with the video display in b r a v o . Fortunately,
answers to both questions can be derived from a re-examination of the
videotaped protocols of the dedicated b r a v o users in Experiment 3B.

2 1 4 6. EXTENSIONS OF THE GOMS ANALYSIS

CONSULTING THE MANUSCRIPT

The user usually consults the manuscript several times during the
course of a task. How frequently does he look? What does he look for?
How can methods be written to describe this process?

To answer these questions, 40 instances were observed of the g e t -
FROM-MANUSCRiPT Operator (as performed by one user, S13, during the
course of 16 insertion tasks). Three different kinds of information that
the user sought from the manuscript could be identified: Getting the
instructions for the Next Task (g n t). Getting the Location of the task on
the manuscript (g l), and Getting the New text to be inserted (g n). Of
course, from a single glance at the manuscript the user often acquires
more than a single piece of information. Figure 6.10 shows the inferred
distribution of reasons for S B ’s consultation of the manuscript during
insertion tasks, grouped by number of characters in the inserted string.
Each row in the table describes a separate task. The three middle
columns tally how many times S13 looked at the manuscript for each task
for each reason.

On Task Al, for example, the user consulted the manuscript once at
the beginning of the task. Since she proceeded to point at the target and
then to insert the new text without further consultations, she must also
have obtained the information for each of these operators on that first
consultation.

On Task A18, she consulted the manuscript once at the beginning of
the task, then twice more before finally pointing to the targeL and a
fourth time before beginning to type the new text While typing the new
text, she looked at the manuscript, but glanced at the keyboard twice
more. From the first consultation, she probably learned the approximate
location of the task and the operation to be performed. On the second
look, she probably obtained a better, but still approximate, location for
the target insertion point. On the third look, she must have learned the
exact target position. And on the fourth look, she probably got the

6.2. MODEL OF THE USER 2 1 5

Task
ID

Reason for Looking
at Manuscript

Total
While­
typingN chars. GNT GL GN

A1 1 1 1
A21 1 1 1 2

B8 1 1 3 1 5

B 26 1 1 1

A6 4.7 1 1 2

A32 4.7 1 2 3
B2 4.7 1 1

B 23 4 .7 1 1

A3 18.2 1 1 2
A14 18.2 1 1 1 3 1
B1 18.2 1 1 1 3
B16 18.2 1 1 2 4 1

A 18 75 1 2 1 4 2
B6 75 1 1 1 3 2

A 30 522 1 1 1 3 4
B 10 522 1 1 7

Figure 6.10. Frequency of manuscript consultations.
Each row of the tab le describes a d ifferent unit task. All tasks are Insertion tasks,
and they are g rouped by the num ber of characters being inserted. The

num ber of consultations of the m anuscript a re tallied by reason for consultation:
G N T = G et N ext Task, G L = G et Location, GN = G et N ew text. "T o ta l" is the

colum n sum of G N T + GL + G N colum ns. "W hile -typ ing" is the num ber of tim es the

user consulted the m anuscrip t while typing.

beginning of the text to be inserted. At this point she proceeded to type
while watching the manuscript, taking small glances back to the display
or keyboard to check for suspected errors or to locate different keys (cf.
Long, 1976). Consultations of the manuscript while typing text passages
are tallied in the “While-typing” column in Figure 6.10. These g e t -
FROM -MANUSCRiPT operations overlap with the t y p e operation and can
be ignored for the present analysis.

S13’s procedure for locating a target on the display (reflected in the
GL column in Figure 6.10) is especially interesting. First, she extracts a
few words from the manuscript to use as a visual search target. The
words may be either the exact target or an approximate target in the
form of some other words or characters. In either case, she points to the
visual search target she has extracted from the manuscript. If the visual
search target is only an approximate target, she does not select it, but
looks over to the manuscript again and repeats the procedure. Otherwise,
she selects the visual search target and moves on to the next step of the
task. This method of locating the target is called the z e r o -in -m e th o d
and is described as follows:

Method for GOAL: SELECT-TARGET
ZERO-IN-METHOD =

while VisualSearchTarget isa # APPROXIMATE-TARGET
do POINT-TO-TARGET (MSPosition, VisualSearchTarget,

DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget},

PositionType)
finally POINT-TO-TARGET (MSPosition, VisualSearchTarget,

SELECT).

VisualSearchTarget is the identifying visual search target extracted from
the manuscript by the user. MSPosition represents the user’s memory for
which task she is doing. PositionType identifles which of several possible
targets she is considering (for example, a move task has an insertionPoint
and an oidText).

Although it is not known for any task how many times g e t -f r o m -
MANUSCRIPT will be invoked in succession (and in an engineering
analysis, a prediction would usually need to be done in the absence of a
particular manuscript), the numbers in the GL column of Figure 6.10 are
well approximated by a Poisson distribution of mean .81 (see Figure
6.11). This fact tells us that the g e t -f r o m -m a n u s c r ip t operator in the
simulation should be constructed so as to pick up approximate targets (as
opposed to exact targets) in such proportion that the number of iterations
will be Poisson distributed with the above mean.

2 1 6 6. EXTENSIONS OF THE GOMS ANALYSIS

SCROLLING THE DISPLAY

Before a user can make a modification with b r a v o , he must get the
task onto the screen using either the s c r o l l -t o or j u m p -t o commands.
Even if the task is already on the screen, the user sometimes prefers to
move it closer to the top (nearer to eye level), which he does by scrolling.

6.2. MODEL OF THE USER 217

Number of
GL Operations
in a Unit Task, N

Frequency

Observed Predicted
1 6 (.8 1 V ® V /V !)

0
1
2
3
4

7

6
2
1
0

7.1

5 .8

2 .3
.6
.1

Figure 6.11. Comparison of the observed number of GL
operations in a unit task with the number predicted by the
Poisson distribution.
D ata are from G L colum n of Figure 6 .10. G L stands for G et Location, or m ore

strictly, G E T -F R O M -M A N U S C R IP T ({s lo t T ask}), w hich obtains the location of the
task.

Thus, on a given task, the user may or may not scroll the text on the
screen. How can a set of selection rules be written that will predict the
user’s choice?

For a detailed examination of scrolling, S13’s performance on all the
tasks in the first half of the manuscript were examined. For each task,
the following were recorded: the number of lines from the top of the
screen to the target, whether her move repositioned the text on the
display, and what method she used.

Selection Based on M anuscrit Positions. Figure 6.12 shows the
number of times the user adopted each of these methods as a function of
the distance of the target from the top of the screen. The selection rules
used by S13 may be simply expressed: If the target is in the top two-
thirds of the screen, do not reposition the screen; if the target is in the
bottom third of the screen, scroll; and if the target is not on the screen,
use the jump command (defining the jitmain-p a r t -o f -screen as the
first 19 lines, and the # b o t t o m -p a r t -o f -screen as lines 20 to 24). In
our notation, this can be written:

Selection rules for GOAL: POINT-THERE
TOP-2/3-RULE =

if ScreenPosition isa #MAIN-PART-OF-SCREEN
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)

2 1 8 6. EXTENSIONS OF THE GOMS ANALYSIS

Number of Lines
from Top
of Screen

Method
PWSM SAPM JM

On Screen

Off Screen

1-4 6
5-8 9
9-12 3

13-16 2 1
17-20 1 2
21-24 2 1
25-28 1 1
29-32 0
33-36 1
37-40 3

Figure 6.12. Frequency of alternative methods for the
GOAL: POINT-THERE as a function of distance of the target
from the top of the screen.
The methods are abbreviated as follows: PWSM = POINT-W ITHOUT-SCROLLING-
METHOD, SAPM = SCROLL-AND-POINT-METHOD, JM = JUMP-METHOD.

BOTTOM-1/3-RULE =
if Screen Position isa # BOTTOM-PART-OF-SCREEN

then CHOOSE (SCROLL-AND-POINT-METHOD)
OFF-SCREEN-RULE =

if ScreenPosition isa # OFF-SCREEN
then CHOOSE (JUMP-METHOD). (6.2)

These rules predict the user’s method choices 85% of the time.
Why did the user go to the expense of scrolling the display, simply

because the target was in the bottom third? The answer is apparently
that the bottom third of the screen was outside her comfortable vision
zone. Normal comfortable vision is about 15° below the horizon, which,
with the comfortable head inclination of about 20°, gives a total of 35°
(Van Cott and Kinkade, 1972, p. 393; Cakir, Halt, and Stewart, 1980, p.
171). The bottom third of the screen was probably (on the basis of later
measurements) outside this comfort region. The mismatch of screen
height with user, a common phenomenon, apparently can reduce effective

screen size and, consequently, time-efficiency by causing more scrolling
operations.

The set of selection rules above (6.2) has the advantage that it makes
clear the mechanism whereby S13 makes her choices. It has the
disadvantage that it demands knowledge of the state of the screen at any
arbitrary point in the editing process. This disadvantage could be
overcome if the selection rules did not demand such detailed knowledge
of the dynamics of the situation.

Selection Rules Based on Manuscript Positions. The number of lines
d between tasks on the manuscript is easily determined by inspection of
the manuscript alone. Figure 6.13 shows the method selections of four
users as a function of d, the distance (in lines) from the site of the
previous unit tasks). A set of selection rules based on d is as follows:

6.2. MODEL OF THE USER 2 1 9

Selection rules for GOAL: POINT-THERE
LITTLE-d-RULE =

if d < 16
then CHOOSE (POINT-WITHOUT-SCROLLiNG-METHOD)

MEDIUM-d-RULE =
if 16<d < 25

then CHOOSE (SCROLL-AND-POiNT-METHOD)
BIG-d-RULE =

if d > 25
then CHOOSE (JUMP-METHOD). (6.3)

These rules correctly predict 85% of S13’s method selections, the same
percentage as the rules based on screen positions (Rule Set 6.2).

Selection Rules fo r Other Users. The results for selection rules based
on manuscript positions (Rule Set 6.3) encourage us to use the
manuscript distance between tasks as the measure by which to examine
the behavior of other users, to see how stable these rules are across users.
Figure 6.13 shows the frequency with which three other users in
Experiment 3B used the different pointing methods. The main difference
between these users and S13 is that they do not have the jum p -method
in their repertoires. All three switch from the point-w ithout-
scrolling-method to the scroll-and-point-method as the distance
between tasks increases. The crossover point, at which users switched
from one to the other of these methods, varied from a distance of 4 lines
between targets to a distance of 11 lines. The following rules characterize
their selections:

lO ro O

D
is

ta
n

ce
 f

ro
m

P

re
vi

o
u

s
T

as
k

d

S
I 3

S
32

S
34

S
37

PW
SM

SA
PM

JM
PW

SM

SA
PM

PW
SM

SA

PM
PW

SM
SA

PM

0
12

11
2

13
12

1
1

16
15

1
15

1
15

1
4

11
2

10
3

8
5

7
6

16
3

6
7

4
11

2
13

2
13

32
7

7
1

6
7

3
4

Fi
gu

re

6.
13

.
Fr

eq
ue

nc
y

of
al

te
rn

at
iv

e
m

et
ho

ds
fo

r
th

e
G

O
AL

:
PO

IN
T-

TH
ER

E
as

 a
 f

un
ct

io
n

of
 t

he
 d

is
ta

nc
e

be
tw

ee
n

ta
sk

s
on

 t
he

 m
an

us
cr

ip
t.

T
h

e
m

et
ho

ds
 a

re
 a

bb
re

vi
at

ed
 a

s
fo

llo
w

s:

P
W

S
M

=

P
O

IN
T

-W
IT

H
O

U
T

-S
C

R
O

L
L

IN
G

-
M

E
T

H
O

D
,

S
A

P
M

=

S
C

R
O

L
L

-A
N

D
-P

O
IN

T
-M

E
T

H
O

D
,

JM

=
JU

M
P

-M
E

T
H

O
D

.

Selection rules for GOAL: POINT THERE
LITTLE-d-RULE2 =

if d < 8
then CHOOSE (POINT-WiTHOUT-SCROLLING-METHOD)

BiG-d-RULE2 =
if d>8

then CHOOSE (SCROLL-AND-POiNT-METHOD) . (6.4)

These two rules explain 85~94% of the selections for the three users.
If scrolling is the only means employed to move the text on the

display, then the amount of scrolling will be determined by the
manuscript length almost independent of the distribution of tasks on the
manuscript From examination of the data from S32, S34, and S47, users
move the text approximately 16 lines each time they scroll the display.
Thus, the number of scrolls a user (who does not use the jum p-to or
FiND command) can be expected to perform is given by:

Total number o f scrolls = {Lines in manuscript) /1 6 .

Figure 6.14 shows the number of lines per scroll computed for individual
users. Reasonable scrolling behavior may be approximated by having the
model scroll 16 lines at a time.

Estimation of Parameters

In order to make time predictions with the model, it is necessary to
make numerical estimates of several of its parameters. Estimates for the
parameters are summarized in Figure 6.15. The time for the operator

6.2. MODEL OF THE USER 2 2 1

User Num ber of Lines
per Scroll (All tasks)

S13 20.0
S32 17.7

S34 11.6
S37 16.1

Average 16.4

Figure 6.14. Observed average number of lines per scroll.

2 2 2 6. EXTENSIONS OF THE GOMS ANALYSIS

Estimated Time
Param eter

M
(sec)

cv
Source

User parameters
GET-FROM-MANUSCRIPT 2.1 .44

SCROLL 2.6 .54

POINT 1.7 .76

TYPE .127 .50

VERIFY-EDIT 1.1 .91

Figure 5.15

Measurement of 10 instances

Measurements of S i3

Average of two typing tests,

SO = .5 M (Kinkead. 1975)

Measurement of 12 instances

System parameters
•INSERT-TEXT

•DELETE-TEXT

•REPLACE-TEXT

1.1 .36 Measured response. 25 instances

•JU M P -TO

•SCROLL-TO

1.0 1.0 Measured response, 10 instances

1.7 .71 Measured response. 10 instances

Figure 6.15. Parameter estimates for the simulation model.

GET-FROM-MANUSCRIPT is taken from Chapter 5. The time for point is
from measurements of S13 in Experiment 3B. The time for verify-edit
is based on the time previously measured for BRAVO in Experiment 3A.
TYPE time is based on an average of two typing tests embedded in an
editing exercise given to the user before the start of Experiment 3B as a
warmup. The standard deviation for the type time is estimated by
multiplying the mean time per keystroke by a typical coefficient of
variation for typing of .5 (Kinkead, 1975).

In order to estimate response times of the system, 25 each of the
command invocations ‘ insert-text , • replace-text, and • delete-text
were measured. Since there were no obvious differences between the
times taken by these commands, their measured times were pooled to
give a common estimated time. Ten invocations of the *jum p-to
command and ten of *scroll-to were also measured.

The assumption is made that operator times are gamma-distributed.
The assumption is reasonable for at least three reasons: (1) The sum of a

6.2. MCX5EL OF THE USER 223

sequence of gamma-distributed operators is also gamma-distributed.
Thus the distribution for smaller, more elementary operators has the
same shape as for larger, more composite operators. (2) The gamma
distribution is commonly found appropriate for operators in the industrial
engineering literature (Nanda, 1968; Johnson, 1965). (3) The basic shape
(skewed to the right) of the gamma distribution is correct, so that even if
there were to be second-order difficulties in the fit of the distribution, the
gamma distribution would still be a reasonable approximation of the real
distribution shape.

Simulation of User Behavior

The full model can now be stated. The GOMS elements of the
simulation model are listed in full in Figure 6.16, where the methods and
selection rules are grouped together with the goals they address. We can
illustrate the workings of the model by tracing out its behavior on a task.
Figure 6.17 shows a trace of the model for Task A2 (see Figure 6.1 and
Figure 6.3). Writing the sequence of operators from Figure 6.17, we get:

GET-FROM-MANUSCRIPT (Task, NIL)
GET-FROM-DISPLAY (ScreenPosition, {a «A PPRO XIM ATE-TAR G ET})
POINT ({a «M AIN-PART-O F-SCREEN}, WORD, DON’T-SELECT)
GET-FROM-MANUSCRIPT (V isualSearchTarget, INSERTION-POINT)
GET-FROM-DISPLAY (ScreenPosition, A^, A2)
POINT ({a «M AIN -PART-O F-SC REEN), CHARACTER, SELECT)
INSERT-TEXT
TYPE (NewText)
VERIFY-EDIT .

The sequence in Figure 6.17 is only one of the possible sequences the
model predicts for this task. If the simulation were run again it would
make different method selections, and it would eliminate conditional
operators (that appear in w ith -probabiiity statements). For example, it
might predict the sequence

GET-FROM-MANUSCRIPT (Task, NIL)
POINT ({a «M AIN-PART-O F-SCREEN}, CHARACTER, SELECT)
GET-FROM-MANUSCRIPT (NewText, INSERTION-POINT)
INSERT-TEXT
TYPE (N ew T ext).

GOAL: EDIT-MANUSCRIPT
METHOD:

ONE-AT-A-TIME-METHOD =
until NoMorePages = TRUE do GOAL: EDIT-UNIT-TASK

GOAL: EDIT-UNIT-TASK
METHOD:

ACQUIRE-EXECUTE-VERIFY-METHOD =
GOAL: ACQUIRE-UNIT-TASK
EXECUTE (Task)
with-probability .4 do VERIFY-EDIT

GOAL: ACQUIRE-UNIT-TASK
METHOD:

READ-TASK-IN-MS-METHOD =
GET-FROM-MANUSCRIPT ({slot Task})

GOAL: INSERT (InsertionPointKey, NextText)
METHOD:

INSERT-COMMAND-METHOD =
if no InsertionPointKey then GET-FROM-MANUSCRIPT ({slot InsertionPointKey})
SELECT-TARGET (MSPosition, {slot InsertionPoint}, InsertionPointKey)
INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})
if NewText ^ DEFAULT then TYPE (NewText)

GOAL: DELETE (OidTextKey)
METHOD:

DELETE-COMMAND-METHOD =
if no OidTextKey then GET-FROM-MANUSCRIPT (OidTextKey)
SELECT-TARGET (MSPosition, {slot OldText}, OidTextKey)
DELETE-TEXT

GOAL: REPLACE (OidTextKey, NewText)
METHOD:

REPLACE-COMMAND-METHOD =
if no OidTextKey then GET-FROM-MANUSCRIPT ({slot OidTextKey})
SELECT-TARGET (MSPosition, {slot OldText}, OidTextKey)
REPLACE-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})
if NewText ^ DEFAULT then TYPE (NewText)

GOAL: MOVE (InsertionPointKey, OidTextKey)
METHOD:

DELETE-INSERT-METHOD =
DELETE (OidTextKey)
INSERT (InsertionPointKey, DEFAULT)

GOAL: SELECT-TARGET (MSPosition, PositionType, VisualSearchTarget)
METHOD:

ZERO-IN-METHOD =
while VisualSearchTarget isa # APPROXIMATE-TARGET

do GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget}, PositionType)

finally GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, SELECT))

224

GOAL: POINT-TO'TARGET (MSPosition, VisualSearchTarget, SELECT)
SELECTION-RULES:

ROUGH-LOC-RULE =
if VisualSearchTarget isa # APPROXIMATE-TARGET then CHOOSE (ROUGH-POINT-METHOD)

TEXT-SEG-RULE =
if VisualSearchTarget isa #TEXT-SEG then CHOOSE (TEXT-SEG-POINT-METHOD)

CHAR-POINT-RULE =
if VisualSearchTarget isa # CHARACTER then CHOOSE (CHAR-POINT-METHOD)

WORD-POINT-RULE =
if VisualSearchTarget isa # WORD then CHOOSE (WORD-POINT-METHOD)

INSERTION-POINT-RULE =
if VisualSearchTarget isa # PLACE-IN-MS then CHOOSE (INSERTION-POINT-METHOD)

METHODS:
ROUGH-POINT-METHOD =

GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)

CHAR-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

WORD-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)

TEXT-SEG-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, START-LOC: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)
GET-FROM-DISPLAY ({slot ScreenPosition}, CHARACTER, SELECT)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

INSERTION-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

GOAL: POINT-THERE (ScreenPosition, TextType, SELECT)
SELECTION-RULES:

TOP-2/3-RULE =
if ScreenPosition isa # MAIN-PART-OF-SCREEN

then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
BOTTOM-1/3-RULE =

If ScreenPosition isa # BOTTOM-PART-OF-SCREEN
then CHOOSE (SCROLL-AND-POINT-METHOD)

OFF-SCREEN-RULE =
If ScreenPosition isa # OFF-SCREEN

then CHOOSE (JUMP-METHOD)
METHODS:

POINT-WITHOUT-SCROLLING-METHOD =
POINT (ScreenPosition, TextType, SELECT)

SCROLL-AND-POINT-METHOD =
SCROLL-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)

JUMP-METHOD =
JUMP-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)

Figure 6.16. Methods and selection rules for BRAVO.

225

GOAL: EDIT-MANUSCRIPT
The only method is ONE-AT-A-TIME-METHOD
Use ONE-AT-A-TIME-METHOD

GOAL: EDIT-UNIT-TASK
The only method is ACQUIRE-EXECUTE-VERIFY-METHOD
Use ACQUIRE-EXECUTE-VERIFY-METHOD
. GOAL: GET-TASK
. The only method is READ-TASK-IN-MS-METHOD
. Use READ-TASK-IN-MS-METHOD

GET-FROM-MANUSCRIPT (Task NIL)
□ User => Manuscript message *READ-NEXT-LOCATION-OF (Al)
□ Manuscript User; Reply: A2
□ User = > Manuscript message *READ-ATTRIBUTE-OF (A2, FUNCTION:)
□ Manuscript = > User; Reply: -*■ INSERT
□ User => Manuscript message ’ READ-ATTRIBUTE-OF (A2, NEW-TEXT:)
□ Manuscript User; Reply: X 2

GOAL: INSERT ({a # APPROXIMATE-TARGET},
The only method is INSERT-COMMAND-METHOD
Use INSERT-COMMAND-METHOD

GOAL: SELECT-TARGET (A2, InsertlonPoint, {a # APPROXIMATE-TARGET})
The only method is ZERO-IN-METHOD
Use ZERO-IN-METHOD
. GOAL: POINT-TO-TARGET(A2,{a # APPROXIMATE-TARGET}, DONT-SELECT)
. ROUGH-LOC-RULE recommends ROUGH-POINT-METHOD
. Use ROUGH-POINT-METHOD

GET-FROM-DISPLAY (ScreenPosition, {a # APPROXIMATE-TARGET}, A2)
□ User => Display message *READ-LOCATION-OF (A2)
□ Display => User; Reply: “♦{a #MAIN-PART-OF-SCREEN}

. . GOAL; POINT-THERE ({a # MAIN-PART-OF-SCREEN}, WORD, DONT-SELECT)

. . TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD

. . Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, WORD, DONT-SELECT)
GET-FROM-MS (VisualSearchTarget, InsertionPoint)
□ User ^ Manuscript message •READ-ATTRIBUTE-OF (A2, INSERTION-POINT:)
□ Manuscript => User; Reply: —►

. GOAL: POINT-TO-TARGET (A2, X ,̂ BUG)

. INSERTION-POINT-RULE recommends INSERTION-POINT-METHOD

. Use INSERTION-POINT-METHOD
GET-FROM-DISPLAY (ScreenPosition, X ,̂ A2)
□ User =» Display message • REA D-LOCATION-OF(A2) - » { a # MAIN-PART-OF-SCREEN}
□ Display => User; Reply: -►{a # MAIN-PART-OF-SCREEN}

. . GOAL: POINT-THERE ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)

. . TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD

. . Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
□ User Editor message * SELECT
INSERT-TEXT
□ User => Editor message * INSERT-TEXT
TYPE (X2>
□ User = > Editor message *TYPE (X2)
VERIFY-EDIT

Figure 6.17. Trace of the simulation model for Task A2.
The sequence of user operators produced in this trace correspond to sequence
number 8 in Figure 6.18, Traces of transactions are marked with a □ .

226

6.2. MODEL OF THE USER 227

Even if the model were to make all the same choices, the times for the
different operators would be different according to their distributions. By
running the simulation model several times on the same task, the model
can be used to make Monte Carlo predictions of (1) the set of possible
operator sequences the user will employ to do an editing task, (2) the
relative frequency with which the different operator sequences will be
employed, (3) the distribution of time for each sequence, and (4) the
distribution of times for all the sequences.

As an illustration, the simulation model was run 100 times on task A2
(Figure 6.18). The runs generated 14 different operator sequences,
containing from 4 to 11 operators, and having tasks times from about 3
to about 20 sec. The model predicted a mean task time of 9.5 sec. The
distribution of run times was characterized by a 5th percentile of 4.3 sec,
a 95th percentile of 17.4 sec, and a C F of .41 sec.

Seq.
No.

User O perator Sequence Freq. M
(sec)

CV
(sec)

5%
(sec)

95%
(sec)

1 GNT PS 1 GN T1 17 8.1 .23 5.5 12.8

2 GNT PS 1 T1 15 5.2 .24 3.1 7.4

3 GNT PD GL PS 1 GN T1 11 11.5 .22 8.2 17.4

4 GNT PS 1 T1 VE 10 7.0 .34 4.5 12.1

5 GNT PD GL PS 1 T1 9 8.1 .17 6.0 9.8

6 GNT PD GL PD GL PS I GN T1 8 15.6 .17 11.7 20.1
7 GNT PS 1 GN T1 VE 7 7.7 .12 7.0 9.6

8 GNT PD GL PS 1 T1 VE 6 9.9 .33 7.4 14.2

9 GNT PD GL PD GL PS 1 T1 5 12.0 .28 9.2 17.1

10 GNT PD GL PS 1 GN T1 VE 5 11.5 .17 9.3 14.2

11 GNT PD GL PD GL PD GL PS 1 T1 VE 2 17.2 .10 15.9 18.5

12 GNT PD GL PD GL PS 1 T1 VE 2 12.5 .42 8.8 16.1

13 GNT PD GL PD GL PD GL PS 1 T1 2 17.6 .05 17.0 18.1

14 GNT PD GL PD GL PS 1 GN T1 VE 1 13.1 - 13.1 13.1

Overall 100 9.5 .41 4.3 17.4

Figure 6.18. Predicted operator sequences and execution
times for Task A2.
The operators have been abbreviateid as follovy/s: GNT = GET-FROM-MANU-
SCRIPT (Task), GL = GET-FROM-MANUSCRIPT (VisualSearchTarget, ...), GN =
GET-FROM-MANUSCRIPT (NewText. ...), PD = POINT (..., DONT-SELECT), PS =
POINT (..., SELECT), I = INSERT-TEXT, Tn = TYPE n characters, VE = VERIFY-
EDIT.

6.3 . CONCLUSIONS

228 6. EXTENSIONS OF THE GOMS ANALYSIS

We can state several conclusions as the result of this theoretical
exploration. First, it was possible to construct a GOMS model for
another and quite different text-editor, the display-oriented editor BRAVO.

Both pointing at the display with the mouse and scrolling the display
could be described by goals, operators, methods, and selection rules
similar to those employed in the p o e t description.

Second, the GOMS notation was extended to a stochastic description
of user behavior. Stochastic models of users could be used to get around
some of the limits on predictability of sequences found in Chapter 5.
They could also be used to attempt estimates of time and sequence
variability.

Finally, we saw how our analysis of the task environment for editing
could be extended so as to allow an explicit accounting of the infor­
mation the user possesses moment-by-moment about the editing tasks on
which he is working.

It is important to restate that in this chapter we have been concerned
only with studying how the GOMS model could be extended. Additional
empirical studies would be necessary to validate the detailed predictions
of the GOMS extensions.

7. Models of Devices for
Text Selection

7 .1 . EXPERIMENTAL COMPARISON OF TEXT-SELECTION
DEVICES (EXPERIMENT 7A)

7 .2 . PERFORMANCE MODELS OF TEXT-SELECTION DEVICES
Mouse
Joystick
Step Keys
Text Keys
Comparison of Devices

7 .3 . APPLICATIONS
Rapid Test for Analogue Pointing Devices (Experiment 7B)
Maximum Mouse Velocity (Experiment 7C)

7 .4 . CONCLUSIONS

The apparently endless options for the design of human-computer
interfaces are composed from only a very few sensory-motor and
cognitive operations performable by the user. These include:

(1) the perceptual operations of
visual search and
reading and

(2) the motor operations of
typing on the keyboard and
reaching with a hand to a target, including

reaching for a button and
pointing to a target on the display.

Systems can be imagined that require extensions to this list—perceptual
judgments of alignment or motor drawing operations, for example—but,
these operations are adequate for the models in Chapters 5 and 6 and for
a great many other computer interfaces.

229

Each of these operations is worth studying in the context of human-
computer interaction, and the results can have implications for the design
of a computer interface. In this chapter, we shall focus on one issue
within this realm—the implications for design of the reaching-to-target
operations.

The editor b r a v o , in Chapter 6, made heavy use of the mouse
pointing device for selecting text on the display screen. Other devices
exist (the joystick, various key-operated devices) that might have been
chosen. Which pointing device is the best choice and why? The choice
of pointing device can have a significant impact on the ease with which
the selections can be made. In fact, since pointing typically occurs with
high frequency, ease of pointing can have a large effect on the success of
the entire system.

There have been several studies of pointing devices. English,
Englebart, and Berman (1967) measured mean pointing times and error
rates for the mouse, lightpen, Grafacon tablet (an extendable, pivoted
rod, intended originally for curve-tracing), and position and rate joysticks.
They found the mouse to be the fastest of the devices. Goodwin (1975)
measured pointing times for the lightpen, lightgun, and Saunders 720
step keys (r e t u r n , t a b , s p a c e , and the reversal of these functions using
the SHIFT key). She found the lightpen and the lightgun equally fast and
much superior to the Saunders 720 step keys. Whereas these studies
produced interesting comparative data on the devices measured, they did
not simultaneously control the three variables likely to affect perform­
ance: learning, target distance, and target size. They also did not
attempt to account theoretically for the results. The study that follows
addresses both these issues. We consider the mouse, a rate-controlled
isometric joystick, step keys, and text keys.

230 7. MODELS OF DEVICES FOR TEXT SELECTION

7.1. EXPERIMENTAL COMPARISON OF TEXT-
SELECTION DEVICES (EXPERIMENT 7A)

The purpose of the experiment was to compare the relative merits for
text-selection of a number of devices. To make the comparison meaning­
ful a number of factors had to be controlled, including individual
differences (controlled by using the same users on alt devices); learning
and asymmetrical transfer of training between devices (controlled by
having each subject practice to “assymptote” before collecting comparison

data); movement direction (controlled by randomizing target direction
and assessing effect in separate analysis): target size, target distance
(effect measured by factorially combining these variables into conditions
of the experiment), users’ motivation (kept high with performance
feedback), and the possibility of important extraneous variables
(controlled by using a realistic task and by identifying the cause of
response time effects through modeling).

7.1. COMPARISON OF TEXT-SELECTION DEVICES 231

METHOD FOR EXPERIMENT 7A

Users. Three men and two women, all undergraduates at Stanford
University, served as users in the experiment None had ever used any
of the devices previously, and all had little or no experience with
computers. Subjects were paid $3 per hour with a $20 bonus for
completing the experiments. One of the women was very much slower
than the other users and was eliminated from the experiment leaving four
users (inclusion of the eliminated user would not have changed the
qualitative conclusions of the study).

Text-Selection Devices. Four pointing devices were tested (see Figure
7.1). Two were continuous devices: the mouse and the rate-controlled
isometric joystick. Two were key operated: the step keys and the text
keys. The devices had been optimized informally by testing them on
local users, adjusting the device parameters to maximize performance.

The mouse, already described, was a small device which sat on the
table to the right of the keyboard, connected by a thin wire. On the
undercarriage were two small wheels, mounted at right angles to each
other. As the mouse moved over the table one wheel coded the amount
of movement in the x-direction, the other the amount of movement in
the >^direction. A cursor moved simultaneously on the display, two units
of screen movement for each unit of mouse movement on the table.

The joystick was a small strain gauge on which had been mounted a
rubber knob 1.25 cm in diameter. Applying force to the joystick in any
direction did not produce noticeable movement in the joystick itself, but
caused the cursor to move in the appropriate direction at a rate (in
cm/sec) = (.0178Xforce)^, where force is measured in Newtons. For
forces less than about 4 Newtons, the cursor did not move at all; and the
equation ceased to hold in the neighborhood of 45 Newtons as the rate
approached a ceiling of about 40 cm/sec.

The step keys were the familiar five-key cluster found on many
display terminals. On the four sides of a central HOME key were keys to

232 7. MODELS OF DEVICES FOR TEXT SELECTION

MOUSE

STEP KEYS

RATE-CONTROLLED
ISOMETRIC
JOYSTICK

TEXT KEYS

Figure 7.1. Pointing devices tested in Experiment 7A.

move the cursor in each of four directions. Pressing the h o m e key
caused the cursor to return to the upper left comer of the text. Pressing
one of the horizontal keys moved the cursor one character (.246 cm on
the average) backward or forward along the line. Pressing a vertical key
moved the cursor one line (.456 cm) up or down. Holding down one of
the keys for more than .100 sec caused it to go into a repeating mode,
producing one step in the vertical direction each .133 sec or one step in
the horizontal direction each .067 sec (3.43 cm/sec vertical movement,
3.67 cm/sec horizontal movement).

The text keys were similar to keys appearing on several commercial
“word processing” terminals. Depressing the p a r a g r a p h key caused the
cursor to move to the beginning of the next paragraph. Depressing the
LINE key caused the cursor to move downward to the same position in
the next line. The WORD key moved the cursor forward one word; the
CHARACTER key moved the cursor forward one character. Holding down
the REVERSE key while pressing another text key caused the cursor to

7.1. COMPARISON OF TEXT-SELECTION DEVICES 233

move opposite the usual direction. The text keys could also be used in a
repeating mode. Holding the l in e , w o r d , or c h a r a c t e r key down for
longer than .100 sec caused it to repeat at .133 sec per repeat for the LINE

key, .100 sec per repeat for the WORD key, or .067 sec per repeat for the
CHARACTER key. Since there were .456 cm/line, 1.320 cm/word, and
.246 cm/character, movement rates were 3.43 cm/sec for the LINE key,
13.2 cm/sec for the WORD key, and 3.67 cm/sec for the c h a r a c t e r key.

Procedure. Subjects were seated in front of a computer terminal with
a display, a keyboard, and one of the devices for pointing at targets on
the screen. On each trial, a page of text was displayed on the screen.
Within the text, a single word or phrase, the target, was highlighted by
inverting the black/white values of the text and background in a
rectangle surrounding the target The user struck the space bar of the
keyboard with his right hand and then, with the same hand, reached for
the pointing device and directed the cursor to the target. The cursor thus
positioned, the user pressed a button “selecting” the target as he would
were he using the device in a text-editor. For the mouse, the selection
button was located on the device itself. For the other devices, the user
pressed a special key on the keyboard with his left hand.

Design. There were five different distances from starting position to
target (1, 2, 4, 8, or 16 cm), and four different target sizes (1, 2, 4, or 10
characters). All targets were words or groups of words. Ten different
instances of each distance X target size pair were created, with varying
locations of the target on the display and angles of hand movement
giving a total of 200, randomly ordered, unique stimuli.

Each user repeated the experiment with each device. The order in
which users employed the devices was randomized. At the start of each
day, the users were given approximately twenty warmup trials to refresh
their memory of the procedure. All other trials were recorded as data.
At the end of each block of twenty trials they were given feedback on the
average positioning time and average number of errors for those trials.
This feedback was found to be important in maintaining users’
motivations. At the end of each 200 trials they were given a rest break
of about fifteen minutes. Subjects normally accomplished 600 trials/day,
requiring about two to three hours of work. They each used a particular
device until the positioning time was no longer significantly decreasing
with practice (operationally defined as when the first 200 and last 200
trials of the last 600 trials in the day did not differ significantly in
positioning time at the p < .05 level using a i-test). An approximation to
this criterion was reached in 1200 to 1800 trials (four to six hours) on

each device. Of the 20 user X device pairs, 15 reached this criterion,
three performed worse in their last trials (largely because several days
elapsed between these sessions); and only two were continuing (slightly)
to improve.

234 7. MODELS OF DEVICES FOR TEXT SELECTION

RESULTS FOR EXPERIMENT 7A
Improved Perfonmnce with Practice. In order to compare the devices

it is important that the effects of practice be isolated so as not to
confound the analysis. According to the Power Law of Practice in
Chapter 2, practice should improve performance as given by Equation
2.5:

= l o g r ^ - a lo g i V , (2.5)
where

logr.

a

N

T, =

Tn =

N =

estimated positioning time on the first
block of trials,
estimated positioning time on the yVth
block of trials,
trial block number, and
an empirically determined constant

Thus, the ease of learning for each device can be described by two
numbers, and a, which may be conveniently determined from a
regression of (log on (log N). Figure 7.2 shows the results of
plotting the data from error-free trials according to Equation 2.5. Each
point on the graph is the average of a block N of twenty contiguous trials
from which error trials have been excluded. Only the first 60 trial blocks
are shown. Since some users reached criterion at this poinL not all
continued on to further trials. The values predicted by the (fitted)
equation are given as the straight line drawn through the points. The
average target size in each block was 4.23 cm (the range of the average
target sizes for different trial blocks was 3.95 to 4.50 cm), and the average
distance to the target was 6.13 cm (range 5.90 to 6.42 cm).

The parameters and a, as determined by the regressions, are given
in Figure 7.3, along with the standard error and percentage of variance
explained from the regression analysis. Practice caused more improve­
ment in the mouse and text keys than on the other two devices used.
Use of the step keys, in particular, showed very little improvement with
practice. Equation 2.5 explains 39% of the variance in the average
positioning time for a block of trials for the step keys, and 61% to 66% of

ro co CJl

236 7. MODELS OF DEVICES FOR TEXT SELECTION

Device 1̂
(sec)

a Learning Curve
Equation

SL
(sec)

R̂-

Mouse 2 .2 0 .1 3 = 2 .2 0 /V - ’ 3 .12 6 6

Joystick 2 .1 9 .0 8 = 2 . 1 9 / V ' .08 .62

Step Keys 3 .0 3 .07 = 3 .0 3 ^ ' .11 .39

Text Keys 3 .8 6 .1 5 7 \ = 3 .8 6 - '5 .16 .61

Figure 7.3. Learning curve parameters.
N is the number of the trial block. There are 20 trials in each block,
equation is based on 1200 trials divided into 60 trial blocks.

Each

the variance for the other devices. The fiL at least for the mouse and the
joystick, is actually better than these numbers suggest Since users did 30
blocks of trials on a day, typically followed by a pause of a day or two
before they could be rescheduled, a break in the learning curve was
expected at that point; and indeed such a break is quite evident for the
mouse and the joystick between the 30th and 31st blocks. Fitting
Equation 2.5 to only the first day increases the percentage of variance
explained to 91% for the mouse and 83% for the joystick. In the case of
the step keys and text keys, there was no such obvious day effect.

Overall Speed. According to the Power Law of Practice, users’
response times for text selection will continue to decrease indefinitely.
But if response time were to be plotted in arithmetic coordinates as a
function of number of practice trials, the plot would give the illusion of
an asymptote as exponentially more trials are required for the same
response-time decrease. In order to compare the devices in this region of
the learning curve where response time is relatively flat (as would be the
case for daily use by office workers), a sample was examined of each
user’s performance on each device, consisting of the last 600 trials that
were not also the first 200 trials of a day (in order to diminish warmup
effects). The remaining analyses are based on this subset of the data,
excluding those trials on which errors occurred. Figure 7.4 gives the
homing time, positioning time, and total time for each device, averaging
over all the distances and target sizes. Homing time was measured from
when the user’s right hand left the space bar until when the cursor had

M
ov

em
en

t
Ti

m
e

fo
r

N
on

-E
rr

or
 T

ri
al

s
Er

ro
r

Ra
te

ro CO

D
ev

ic
e

T
ri

al
s

H
om

in
g

T
im

e
N

M

S

D

(s
ec

)
(s

ec
)

P
os

it
io

ni
ng

 T
im

e
T

o
ta

l
T

im
e

M

S
D

M

S

D

(s
ec

)
(s

ec
)

(s
ec

)
(s

ec
)

M
S

D

M
o

u
se

19
73

.3
6

.1
3

1.
29

.4
2

1.
66

.4
8

5%
22

%

Jo
ys

ti
ck

18
69

.2
6

.1
1

1.
57

.5
4

1.
83

.5
7

11
%

31
%

S
te

p
 K

ey
s

18
13

.2
1

.3
0

2.
31

1.
52

2.
51

1.
64

13
%

33
%

T
e

x
t

K
ey

s
18

77
.3

2
.6

1
1.

95
1.

30
2.

26
1.

70
9%

28
%

Fi
gu

re
 7

.4
.

O
ve

ra
ll

po
in

tin
g

tim
es

 f
or

 a
ll

de
vi

ce
s.

B
as

ed

on

d
at

a
fr

o
m

fo

u
r

u
se

rs

x
6

0
0

tr

ia
ls

/u
se

r,

w
it

h

er
ro

r
tr

ia
ls

h

av
in

g

b
ee

n

su
b

tr
ac

te
d

.

238 7. MODELS OF DEVICES FOR TEXT SELECTION

begun to move. Positioning time was measured from when the cursor
began to move until when the selection button had been pressed. From
the figure, it can be seen that homing time increases slightly with the
distance of the device from the keyboard. The longest time required is
to reach the mouse, the shortest to reach the step keys. Although the
text keys are near the keyboard, they take almost as long to reach as the
mouse. Either it is more difficult to position the hands on the text keys
or, as seems likely, users often spent some of the time between hitting
the space bar and beginning to press the keys in planning the strategy for
their next move. Further evidence for this hypothesis comes from the
relatively high standard deviation observed for the homing time of the
text keys. Whereas the differences in the homing times among all device
pairs except the mouse vs. the text keys are reliable statistically (at p < .05
or better using a /-test), the differences are actually quite small. But
although the step keys can be reached .15 sec sooner than the mouse,
they take 1.02 sec longer to position. Thus the differences in the homing
times are insignificant compared to the differences in the positioning
times.

The mouse is easily the fastest device, the step keys the slowest As a
group, the continuous devices (the mouse and the joystick) are faster than
the key-operated devices (the step keys and text keys). Differences
between the devices are all reliable at p < .001 using /-tests.

Effect o f Distance and Target Size. The effect of distance on
positioning time is given in Figure 7.5. At all distances greater than 1
cm, the continuous devices are faster. The positioning time for both
continuous devices seems to increase approximately with the tog of the
distance. The time for the step keys increases rapidly as the distance
increases, whereas the time for the text keys increases somewhat less than
as the log of the distance, owing to the existence of keys for moving
relatively large distances with a single stroke. Again, the mouse is the
fastest device, and its advantage increases with distance.

Figure 7.6 shows the effect of target size on positioning time. The
positioning times for both the mouse and the joystick decrease with the
log of the target size. The time for the text keys is independent of target
size, and the positioning time for the step keys also decreases roughly
with the log of the target size. Again, the mouse is the fastest device,
and again, the continuous devices as a group are faster for all target sizes.

Effect o f Approach Angle. The targets in text-editing are rectangles
often quite a bit wider than they are high, presenting different problems

7.1. COMPARISON OF TEXT-SELECTION DEVICES 2 3 9

when approached from different angles. In addition, the step keys and
text keys work differently when moving horizontally than when moving
vertically. To test whether the direction of approach has an effect on
positioning time, the target movements were classified according to
whether they were vertical (0 to 22.5 degrees), diagonal (22.5 degrees to
67.5 degrees), or horizontal (67.5 degrees to 90 degrees). Analysis of
variance shows that the angle makes a significant difference for every
device except the mouse. The joystick takes slightly longer to position
when the target is approached diagonally. The step keys take longer
when approached horizontally than when approached vertically, a
consequence probably deriving from the fact that a single keystroke

240 7. MODELS OF DEVICES FOR TEXT SELECTION

moves the cursor almost twice as far vertically as horizontally. By
contrast, the text keys take longer to position vertically, reflecting the
presence of the w o r d key. The differences induced by direction are not
of great consequence, however. For the joystick, it amounts to 3% of the
mean positioning time; for the step keys, 9%; for the text keys, 5%.

Errors. Of the four devices tested, the mouse had the lowest overall
error rate, 5%; the step keys had the highest, 13%. Differences are
reliable at p < .05 or better, using /-tests. The error rate increases only
very slightly with distance. However, it decreases with target size for
every device except the text keys (Figure 7.7). This finding replicates the
result of Fitts and Radford (1966), where, in an investigation of self-
initiated, discrete, pointing movements using a stylus, there was a similar
marked reduction in errors as the target increased in size and a similar
slight increase in error rate as the distance to the target increased.

7.2. PERFORMANCE MODELS OF
TEXT-SELECTION DEVICES

Although these empirical results are of direct use in selecting a
pointing device, a more useful understanding of the properties of these
devices can be had in terms of the Model Human Processor in Chapter 2.

7.2. MODELS OF TEXT-SELECTION DEVICES 2 4 1

Mouse

The time to move the mouse can be analyzed in terms of the time to
move the hand to a target and should therefore follow from Fitts’s Law,
Equation 2.3, which we may rewrite as:

where
^pos ~ ^0 ^A/ *^^2 Í.D/S + .5) sec,

 ̂pos
D
S
fM

= Positioning time,
= Distance to the target,
= Size of the target,
= .100[.070~.120]sec/bit,and
= a constant

(7.1)

The constant A'q has been added to include the time for the hand
initially to adjust its grasp on the mouse and the time to make the
selection with the mouse button.

Fitts’s Law predicts that plotting positioning time as a function of
log2(ZJ/5 + .5) should give a straight line. As the solid line in Figure
7.8 shows, this prediction is confirmed. Furthermore, the prediction that
the slope of the line should be in the neighborhood of .100 sec/bit is

242 7. MODELS OF DEVICES FOR TEXT SELECTION

Figure 7.8. Positioning time for the continuous devices as a
function of Fitts’s index of difficulty.

also confirmed. The equation for the line in Figure 7.8 as determined by
regression analysis is:

'̂ pos = ^082 + -5) sec. (7.2)

This equation has a standard error of .07 sec and explains 83% of the
variance of the means for each condition, comparable to the percentage
of variance explained by Fitts and Radford. The slope of .096 sec/bit is
in the .100 sec/bit range found in other studies. Since the standard error
of estimate for in fitting Equation 7.2 was .008 sec/bit, the mouse
would seem to be close to, but slightly slower than, the optimal rate of
around .08 sec/bit observed for use of the stylus and for finger-pointing.

The values for positioning time obtained in this experiment are
apparently in good agreement with those obtained by English et al.
(1967). Assuming that their display characters were about the same width
as ours and assuming an intermediate target distance of about 8 cm.
Equation 7.2 (with the addition of the .36 sec homing time from Figure

7.4) predicts 1.87 sec for 1-character targets (English et al. measured 1.93
sec) and 1.66 sec for “word” targets of 5 characters (English et al.
measured 1.68 sec).

Joystick

Although it is a rate-controlled device instead of a position device, we
might wonder if the joystick follows Fitts’s Law. Plotting the average
time per positioning for each distance X size cell of the experiment
according to Equation 7.1 shows that there is an approximate fit to the
following equation:

Tp,,= .99 + 220log^{D/S+ .5).

This equation has a standard error of .13 sec and explains 89% of the
variance of the means. The size of the slope, = .220 sec/bit, shows
that information is being processed at only half the speed of the mouse,
significantly below the maximum rate. Closer examination gives some
insight into the difficulty. The points for the joystick in Figure 7.8
actually form a series of parallel lines, one for each distance, each with a
slope of around .100 sec/bit. Setting to .100 sec/bit, we can therefore
write an alternative model:

7.2. MODELS OF TEXT-SELECTION DEVICES 243

^ p o .= ^Z)+-1001og2(77/5-F.5).

Kjy is the intercept for distance D. From the figure, Kj ̂ varies from 1.05
sec for Z) = 1 cm to 1.68 sec for 16 cm. For this model, the standard
error of the fit is reduced to .07 sec, the same as for the mouse. (Since
the slope was not determined by the regression, a comparable R? cannot
be computed.) Thus, the tested joystick can be thought of as a Fitts’s
Law device with a slope twice the .100 sec/bit slope for hand
movements; or it can be thought of as a Fitts’s Law device with the
expected slope, but having an intercept which increases with distance.
The problem with the joystick used in our experiment is probably related
to the non-linearity in the control (Poulton, 1974; Craik and Vince, 1963).
It should be noted that for the 1-cm distance (where the effect of non­
linearity is slight) the positioning time is virtually the same as for the
mouse. Thus, the possibility of designing a joystick with performance
characteristics comparable to the mouse is by no means excluded.

244 7. MODELS OF DEVICES FOR TEXT SELECTION

Step Keys

The time to use the step keys should be governed by the number of
keystrokes needed to move the cursor to the target. Since the keys can
only move the cursor vertically or horizontally, the number of keystrokes
is Z)jf/.456 + Dy/.2A6, where and Dy are the horizontal and vertical
components of distance to the target, .456 cm is the size of a vertical
step, and .246 cm is the size of a horizontal step,
time should be

Hence, positioning

T =pos ^0 + C(£>^/.456 + Z) /.246). (7.3)

If the operation of the key were done with a single finger, then according
to the Model Human Processor in Chapter 2, C ~ 2t^ = .140 sec, one
Motor Processor cycle would being required to cock the finger and one
to press with i t But some finger-cockings could be overlapped with
some key presses when the user uses two fingers, so C could be reduced
somewhat The regression to the observed data yields A'q = 1.20 sec and
C = .052 sec/keystroke (this equation has a standard error of .54 sec and
explains 84% of the variance of the means). Since in the extreme case,
where each cocking of the finger was completely overlapped with the
keypressing by another finger, C = .070 sec, the value of C
obtained from these data is still a bit fast to be identified with the
pressing of a key. It is also too fast to be identified with the .067
sec/keystroke automatic repetition mode. The puzzle is solved by
reference to a plot of positioning time against the predicted number of
keystrokes (Figure 7.9). Equation 7.3 with the above parameters (shown
by the long solid line) actually confuses two phenomena. As the figure
shows, positioning time is linear with the number of keystrokes until the
predicted number of keystrokes becomes large (that is, until the distance
to the target becomes large). In these cases, the user often has the
opportunity to reduce positioning time by using the HOME key. This
method change scatters the points on the right of the plot and results in a
fit for Equation 7.3 with loss of physical interpretation.

Fitting Equation 7.3 to only the first part of the graph (D^/A56 +
Dy/.246 < 40) gives

Tpô = .98 + .074 (D^ /.456 + Dy /.246).

7.2. MODELS OF TEXT-SELECTION DEVICES 245

Figure 7.9. Positioning time for the key devices as a
function of the predicted number of keystrokes.

This equation, indicated by a short solid line in Figure 7.9, has a
standard error of .18 sec and explains 95% of the variance in the means.
The slope of C = .074 sec/keystroke does have a reasonable
interpretation; it suggests that the .067 sec/keystroke automatic repetition
feature was heavily used, and indeed, this was confirmed by observation
of users.

Text Keys

The text keys present the user on most trials with a choice of methods
for reaching the target For example, he might press the p a r a g r a p h key
repeatedly until the cursor has moved to the paragraph containing the
target He could then press the l in e key repeatedly until it is on the
target line, then use the w o r d key to bring it over to the target Or he
might use the p a r a g r a p h key to move to the paragraph after the target
then, holding the r e v e r s e key down, use the LINE key to back up to the

line below the target line, and, still holding r e v e r s e down, use WORD to
back up to the target In fact there are 26 different methods for moving
the cursor to the target although only a subset will be possible in a given
situation. Which is the fastest method will depend on the target’s
location relative to the starting position and on the boundaries of
surrounding lines and paragraphs.

The obvious hypothesis is that positioning time is proportional to the
number of keystrokes and that, for well-practiced users, the number of
keystrokes will be the minimum necessary. The constant of
proportionality might be expected from the Model Human Processor to
be no faster than than = .070 [.030~.100] sec for multiple-finger
operations and might be close to the single-finger rate of 2t^ = .140
[.060~.200] sec. It is difficult to estimate how much the rate might be
slowed beyond this by activities of the Perceptual and Cognitive
Processors, since it is difficult to estimate the load imposed by visual
search, perceptual analysis, method selection, and degree of possible
overlap. To test the hypothesis that selection time is proportional to the
number of keystrokes, each trial was analyzed to determine the minimum
number of keystrokes necessary to reach the target. The average
positioning time as a function of is plotted'as the open circles in
Figure 7.9. A least-squares fit gives

246 7. MODELS OF DEVICES FOR TEXT SELECTION

r^„,= .66-F.209A^,„.

The standard error is .24 sec and the equation explains 89% of the
variance of the means. The keystroke rate of .209 sec/keystroke (a little
higher than 2t^) is approximately equal to the typing rate for random
words. Figure 2.14. Evidently, the automatic repetition mode was little
used. Examination of statistics on the minimum numbers of keystrokes
for each trial shows there was little need for i t For one thing, an
average of only six keystrokes were necessary for the text keys to locate a
target word, and ten or fewer keystrokes were sufficient to reach over
90% of the targets. For another, these keystrokes were distributed across
several keys, further limiting opportunities to use the repetition mode.
The PARAGRAPH key was needed on 48% of the trials, the LINE key on
85%, the word key on 83%, and the r e v e r s e key on 81%.

Comparison of Devices

Figure 7.10 summarizes the models, the standard errors of the fit, and
the percentage of variance of the means explained by the model. The
theory of pointing expressed in the models has strong implications for the
design and selection of pointing devices. The match of the Fitts’s Law
slope of the mouse to the I ~ .100 sec/bit constant observed in other
hand movement and manual control studies means that positioning time
is apparently limited by central information-processing capacities of the
eye-hand guidance system. Taking - .08 sec/bit as the most likely
minimum value for a similar movement task and = 1 sec as a typical

7.2. MODELS OF TEXT-SELECTION DEVICES 2 4 7

D e v ic e M o d e l SE N o te s
(sec)

M ouse T = 1.03 + .096 loQj + .5) .07 .83

Joystick T = .99 + .220 Io Qj (0 / S + .5) .13 .89 (a)

V v = \ o g ^ { D / S -f .5) .07 (b)

Step Keys = 1.20 + .052 {D/S^ + (c)

Text Keys = .66 + .209 .24 .89 —

Figure 7.10. Summary of models for positioning time.
All tim es in the m odels are in sec. Least-squares fits w ere perform ed on cell

m eans rather than individual trials to m ake the results com parable to Fitts (1954).

N O TES: (a) Least-squares fit to all d ata points; (b) Fitting a separate line with

slope .1 s e c /b it for each distance; (c) Least-squares fit to all d ata points; (d) Fit

for num ber of keystrokes ^ H O M E key is unlikely

to be used.

value observed in this experiment, it seems unlikely that a continuous
movement device could be developed whose positioning time is less than

248 7. MODELS OF DEVICES FOR TEXT SELECTION

T . = lmm + .08 log,(Z>/5 + .5) sec,

unless it could somehow either reduce the information that must be
centrally processed or use a different set of muscles (although something
might be done to reduce the value of Kq). If this is true, then an
optimal device would be expected to be no more than about 5% faster
than the mouse in the extreme case of one-character targets 16 cm distant
(1 -F .095 logjKló/l) + .5] = 1.38 sec vs. 1 + .08 logjKló/l) + .5]
= 1.32 sec). Typical differences would be much less. By comparison to
the mouse’s 5% slower-than-optimal rate, the joystick (in this experiment)
is 83% slower, the text keys 107% slower, and the step keys 239% slower.
Even if Kq were zero, the mouse would still be only 23% slower than the
minimum. Whereas devices might be built that improve the mouse’s
homing time, decrease its error rate, or increase its ability for fine
movement, it is unlikely their positioning times will be significantly
faster.

This maximum information-processing capacity probably explains the
lack of any significant difference in positioning time between the lightpen
and the lightgun in Goodwin’s (1975) experiment. Both are probably
Fitts’s Law devices, so both can be expected to have the same maximum
.100 sec/bit rate as the mouse (if they are optimized with respect to
control/display ratio and any other relevant variables).

In interpreting these results, highly favorable to the mouse, some
qualifications are in order. Of the four devices, the mouse is clearly the
most compatible for this task (cf. Poulton, 1974, Chapter 16), since less
mental translation is needed to map intended motion of the cursor into
motor movement of the hands than for the other devices. Thus, it would
be expected to be easier to use, to put lower cognitive load on the user,
and to have lower error rates. There are, however, limits to its
compatibility. Inexperienced users are often bewildered about what to do
when they run the mouse into the side of the keyboard while trying to
move the cursor across the screen. They need to be told that picking up
the mouse and setting it down at a more convenient place on the table
will not affect the cursor. Even experienced users are surprised at their
inability to control cursor movement when they hold the mouse
backwards or sideways.

7.3. APPLICATIONS 249

The greatest difficulty with using the mouse for text-editing occurs
with selecting small targets. Punctuation marks, such as periods, are
considerably smaller than an average character. The error rate for the
mouse, which was already up to 9% for one-character targets, would be
even higher for these sorts of targets. Yet this difficulty is even greater
for many other devices, including the lightpen and the joystick.

7.3. APPLICATIONS

The theory of pointing devices developed above has immediate
application in practical design and testing of commercial systems. We
cite two examples from experience within our own company. Xerox; the
development of a rapid test for analogue pointing devices and a
computation of system throughput needed to support the mouse at
maximum velocity.

Rapid Test for Analogue Pointing Devices^

Problem. A product development group wished to pursue
the development of a novel analogue pointing device.
Since only subjective impressions of the performance of the
device were available, and there was disagreement over
these, they needed a simple test procedure which could give
designers rapid, quantitative feedback about the effect of
various improvements to the device.

The testing procedure described in Experiment 7A was not a practical
test in this case, since it involved an expensive and time-consuming
process of training users until learning was no longer a significant factor.
It also required several days of trials using a computerized laboratory
system capable of simulating the appearance of random targets on a
display editor. Such a testing arrangement was beyond the equipment
resources and time available and would not be able to give developers
results quickly enough to be helpful.

1 This test was developed in collaboration with Richard Sperling, Xerox Office
Products Division.

250 7. MODELS OF DEVICES FOR TEXT SELECTION

0000
xxxx

xxxx

Figure 7.11. Four-character targets used for rapid measure­
ment of .
On each trial, the user points back and forth between the group of O ’s and the
group of X’s.

Fortunately, given the models for analogue pointing devices validated
with Experiment 7A, the time-consuming procedure of Experiment 7A is
now unnecessary for routine testing. Establishment of the fact that a
broad class of analogue devices can be expected to follow Fitts’s Law
means that a simpler test, based on Fitts’s (1954) dotting task, can be
devised to measure the Fitts’s Law slope ât­

test METHOD: MEASUREMENT OF FOR
ANALOGUE POINTING DEVICES

Stimuli A central target (consisting of letter O’s) and two test targets
(consisting completely of X’s) are displayed together as shown in Figure
7.11. The midpoints of the test targets are either 1 cm or 4 cm distant
from the central target^ There are three such displays, each consisting of
only 1-, 4-, or 8-character targets, giving a total of 2 distances X 3 sizes
= 6 conditions. Pure horizontal and vertical directions are avoided to
minimize possible effects due to the oblong shape of the targets.

Procedure. Each user is given three blocks of trials, a different
random order of target size and distance combinations occurring each
block. On each trial, at a verbal signal from the experimenter, the user
moves the cursor back and forth between the central O target and the
appropriate X target, selecting each target in turn (the targets indicate

An earlier version o f the test also used a 16-cm distance, but it was found that
users seemed to shift the set o f muscles they used for movement at this distance and that
the 16-cm points departed from Fitts’s Law.

they have been selected by the appearance of underlining that lasts until
the next target is selected). The user does this as many times as possible
within a 30-sec interval. At the end of the trial, the number of selections
is recorded. Users are instructed to emphasize accuracy over speed. The
average time per movement is determined by dividing 30 sec by the
number of selections made. The value for is determined by plotting
the time per movement for the third trial block as a function of
log2(D/S+ .5) according to Equation 7.1, then estimating the slope of the
straight line.

COMPARISON WITH EXPERIMENT 7A (EXPERIMENT 7B)

As a means of further validating this test, we ran an experiment
comparing the value of for the mouse obtained from the test
procedure with that obtained from Experiment 7A.

Procedure. Three users were run according to the above test
procedure. All users used the mouse in their daily work.

Results. The results for all three trials are given in Figure 7.12. The
values for are close (in fact, the third trial block value is identical) to
the value of .096 sec/bit obtained in Experiment 7A. It should be noted
that learning affects the value of the intercept A'q, but not the value of

7.3 . APPLICATIONS 2 5 1

^0
(sec) (sec/bit)

S E
(sec)

E x p e r im e n t 7A (f r o m F ig u r e 7 .1 0)

1 .0 3 .0 9 6 .07 .8 3

E x p e r im e n t 7B (R a p id M e a s u r e m e n t T e s t P r o c e d u r e)

T r ia l 1 .7 4 4 .1 0 2 .0 8 .81

T r ia l 2 .6 0 4 .1 1 0 .0 5 .9 4

T r ia l 3 .5 8 7 .0 9 6 .0 3 .95

Figure 7.12. Experiment 7B, rapid measurement of mouse
parameters for Equation 7.1 as a function of trial compared
to values obtained in Experiment 7A.
Each trial lasts 30 sec. Each trial is the average of three users. Regression was
performed on Target Size x Target Distance cell means.

the slope (see Figure 7.12) The use of three trial blocks allows the
data to stabilize on a better value, as indicated by the increase of the
percentage of variance explained from 81% to 95% and the reduction in
the standard error from .08 sec to .03 sec.

The test procedure described here can be run in less than a half hour
using a wrist watch and requires no special computer programming (other
than what would be required anyway to connect the pointing device to
the display editor). It produces values for practically indistinguishable
from those produced by the original study. Experiment 7A. In the
application, this procedure was used to quantify performance levels for
the device under consideration and to identify which improvements were
effective.

Maximum Mouse Velocity^

Problem. For technical reasons, it would have been
convenient to design the mouse support hardware for the
Xerox Star system in such a way that the maximum velocity
with which the mouse could move the cursor across the
screen would be 50 cm/sec. Is this velocity high enough
not to impede user behavior?

252 7. MODELS OF DEVICES FOR TEXT SELECTION

In Chapter 2 we derived the equation for Fitts’s Law from the
assumption that macroscopic movements towards a target are made up of
micromovements with constant error c. The distance of the cursor
from the center of the target on the nth micromovement of the mouse is,
according to Equation 2.1,

(2.1)

where D is the total distance to the target from the starting point Since
e < 1, the movement distance on each cycle will be less than on the
previous cycle. The maximum velocity of the mouse will, therefore, be
reached on the first cycle,
just:

The average velocity on the first cycle is

This analysis was performed in collaboration with Ralph Kimball, Xerox System
Development Division.

7.3 . APPLICATIONS 2 5 3

- i^O + T(- + Tj^f)

= (Z) — eD)/(t p + + Tyĵ)

= [(1 “ e)/(Tp + + T̂)] D (7.4)

Using Vince’s (1948, Experiment III) estimate of c = .07 and our estimate
from the Model Human Processor of '»'p+T^^+T^ = 240[105~470] msec
to substitute into Equation 7.4 gives;

^max - ^ cm /sec, (7.5)

with a range of 2.0~8.9 D cm/sec. We could improve the precision of
our calculation by using the experimentally measured values from
Chapter 2 of = 190~260 (instead of those synthesized from
Figure 2.1) to reduce the range, giving;

^max ~ [3-6~4.9] D cm/sec. (7.6)

The suggested maximum design velocity for the mouse of 50 cm/sec
will be exceeded for distances greater than 50/3.9=13 cm. according to
Equation 7.5. The diagonal of the video display being considered at the
time was about 35 cm, for which = (3.9X35) = 136 cm/sec, more
than twice the suggested design velocity. The suggested maximum
processing rate for mouse movement was, therefore, too low.

A good design should set the system parameters so the maximum
velocity will not be exceeded by a fast user. Using the Eastman value for
T^+T(-+T^ (= 190 msec). Equation 7.4 would become

= 4.9 D cm/sec.max

The Eastman calculation for maximum velocity on the longest run (the
35-cm screen diagonal) is = (4.9X35) = 171 cm/sec, more than
three times the 50 cm/sec proposed. As a consequence, the Star
hardware was redesigned to handle faster mouse velocities.

VERIFICATION FROM THE STEP-TRACKING LITERATURE

We have shown that mouse positioning is just an instance of hand
movement and thaL therefore, results from the motor movement and
tracking literature should apply. In a set of experiments where subjects

2 5 4 7. MODELS OF DEVICES FOR TEXT SELECTION

Figure 7.13. Maximum velocity of cursor as a function of
distance in the step-tracking task.
Maximum velocity for step tracking derived from Poulton (1974, Figure 5.5, P. 59).
Data from Craik and Vince (1963, Figure 14). Maximum velocity for mouse from
Experiment 7C.

tried to keep the point of a pencil on a step track moved behind a small
slit, Craik and Vince (1944, 1963, graphs reproduced in Poulton, 1974, p.
59) reported the movement velocities as a function of time for different
movement distances. We have replotted in Figure 7.13 the peak velocity
^max curves as a function of distance. The dotted lines
indicate the ranges in which the points are predicted to fall by Equation
7.4. Since the points fall in this region, the maximum velocities in these
experiments would seem to be well predicted.

VERIFICATION FROM ACTUAL EDITING PERFORMANCE
(EXPERIMENT 7C)

In order to verify that Equation 7.4 holds for actual text-editing, an
experiment was run measuring as a function of mouse movement
distance during editing. A user was given a manuscript marked with
modifications and was to make these modifications on the file using the
BRAVO display-oriented editor and a mouse. The position of the cursor
(moved by the mouse) was recorded 60 times per sec. A set of 40
pointing movements were selected for analysis. For each pointing
operation, the maximum speed of the mouse during a l/60th sec
interval was computed. Figure 7.13 also gives the median value of
recorded for all pointings, averaged over 2-cm target distance intervals.
Again the values are as predicted by Equation 7.4.

7.4 . CONCLUSIONS 2 5 5

7.4. CONCLUSIONS

Of the four devices tested, the mouse is clearly the superior device for
text selection on a display:

(1) The positioning time of the mouse is significantly faster than
that of the other devices. This is true overall and at every
distance and size combination save for single-character targets,
for which it is roughly equal to other devices.

(2) The error rate of the mouse is significantly lower than that of
the other devices.
The rate of movement of the mouse is nearly maximal with
respect to the information-processing capabilities of the eye-
hand guidance system.
a group, the continuous movement devices are superior in both
and error rate.

These results can be understood in terms of the Model Human
Processor. For the continuous movement devices, positioning time is
given by Fitts’s Law. For key devices, it is proportional to the number
of keystrokes.

The practical use of the models derived for pointing device movement
was illustrated by two applications:

(1) A modification of Fitts’s dotting task can be used as a rapid
method for indexing the pointing speed of an analogue device.

(3)

As
speed

256 7. MODELS OF DEVICES FOR TEXT SELECTION

(2) For use in planning hardware support, the maximum
movement velocity of the mouse can be taken as 4.9 D, where
D is the distance to be moved in cm.

ENGINEERING
MODELS

2 5 7

http://taylorandfrancis.com

8. The Keystroke-Level Model
8.1. THE TIME PREDICTION PROBLEM
8.2. THE KEYSTROKE-LEVEL MODEL

Operators
Encoding Methods

Heuristics for the M Operator
Comparison with the GOMS Models

8.3. EMPIRICAL VALIDATION OF THE MODEL (EXPERIMENT 8A)
Description of the Experiment
Results of the Experiment

8.4. A FURTHER LOOK AT THEM OPERATOR (EXPERIMENT 8B)
8.5. SAMPLE APPLICATIONS

Calculated Benchmarks
Parametric Analysis
Sensitivity Analysis

8.6. SIMPLIFICATIONS OF THE MODEL
Keystrokes-Only Simplification
Prorated-Mental-Time Simplification
Constant-Operator-Time Simplification

8.7. CONCLUSIONS
APPENDIX: METHODS FOR THE TASKS IN EXPERIMENT 8A

In this part of the book we are concerned with how our theoretical
models of user behavior can be used as practical design tools. GOMS
models, as we saw in Chapter 5, can be formulated at several different
levels of analysis: the Unit-Task Level, the Functional Level, the
Argument Level, and the Keystroke Level. We illustrate two engineering
models, based on different levels of GOMS analysis. The first, called
simply the Keystroke-Level Model, is similar to Model K1 of Chapter 5,
but without an explicit analysis of goals and selection rules. This model
is useful where it is possible to specify the user’s interaction sequence in
detail. The second engineering model is an application of the GOMS
Model UT at the Unit-Task Level. This model is useful when it is not
possible to know the details of the interaction.

259

We describe the Keystroke-Level Model in this chapter and take up
the Unit-Task Level of analysis in Chapter 9.

260 8. THE KEYSTROKE-LEVEL MODEL

8.1 . THE TIME PREDICTION PROBLEM

It would be useful for a system designer to have a model that would
enable him to predict how much time a user would take to accomplish a
given task with a given interactive computer system. The Keystroke-
Level Model addresses a restricted subpart of this general problem:

Given: —A task (possibly involving several subtasks).
—The command language of a system.
—The motor skill parameters of the user.
—The response time parameters of the system.
—The method used for the task.

Predict: —The time an expert user will take to execute
the task using the system, providing he uses
the method without error.

This formulation stipulates several important boundary conditions on
the use of the Keystroke-Level Model. Like the GOMS models, the
Keystroke-Level Model predicts only error-free expert behavior. But,
unlike the GOMS models, the Keystroke-Level Model must be given the
method as input It does not predict the method—given the method, it
predicts the time.

The final restriction on the Keystroke-Level Model is that it predicts
only the time to execute a task, not the time to acquire i t Given a large
task, such as editing a document, a user will break it into a series of unit
tasks. The importance of unit tasks for our analysis is that they permit
the time to do a large task to be decomposed into the sum of the times
to do its constituent unit tasks.^

The detailed subgoal structure of the unit task was discussed in
Chapter 5. For the purposes of the Keystroke-Level Model, it is only
necessary to consider the top-level structure of the unit task, consisting of

Not all tasks have a unit-task substructure. For example, inputting an entire
manuscript by typing permits a continuous throughput organization. See Chapter 11 for
further discussion.

8.2. THE KEYSTROKE-LEVEL MODEL 261

two parts: (1) acquisition of the unit task method and (2) execution of the
method. To acquire a unit task, the user must not only construct a
mental representation of the task to be done, but also choose a method
for doing i t To execute the method, the user must interact with the
computer system to accomplish the task (which in text-editing includes
locating the text, modifying it, and verifying the modification). The total
time to do a unit task is the sum of the time for these two parts:

T = T + T unit-task acquire execute *

Acquisition time for a unit task depends on the characteristics of the
larger task situation in which it occurs. In the manuscript-editing task,
where unit tasks are read from a marked-up page or from written
instructions, it takes about 2~3 sec to acquire each unit task (Chapter 5).
In a routine design task, where unit tasks are generated in the user’s
mind, it takes about 5~30 sec to acquire each unit task (Chapter 10).
And in creative composition, it can take even longer.

Execution time for a unit task, though it depends on the structure of
the system’s command language, rarely takes over 20 sec (assuming that
the system has a reasonably efficient command language). If a unit task
requires a longer execution time, the user is likely to break it into smaller
unit tasks.

The Keystroke-Level Model predicts only the execution time of unit
tasks, and does not predict the acquisition time. Execution is the part of
the task over which the system designer has most direct control (i.e., by
manipulating the system’s command language), so prediction of execution
time suffices for many practical purposes.

Two assumptions underlie this treatment of execution time. First,
execution time is assumed to be the same no matter how a task is
acquired. Second, acquisition time and execution time are assumed to be
independent (reducing execution time by making the command language
more efficient, therefore, does not affect acquisition time).

8.2 . THE KEYSTROKE-LEVEL MODEL

The Keystroke-Level Model is comprised of several primitive oper­
ators. Methods can be encoded in terms of these operators by applying a
set of heuristics. In this section, we present the operators, discuss the
heuristics, and demonstrate a few examples of method encoding.

Operators

The execution part of a unit task can be described in terms of four
physical-motor operators, K (keystroking), P (pointing), H (homing) and
D (drawing), one mental operator M, and a system response operator R
(see Figure 8.1). Execution time is simply the sum of the times spent
executing the different operator types:

262 8. THE KEYSTROKE-LEVEL MODEL

^execute ~ ' (8.1)

So, for instance, the total time spent in keystroking is the number of
keystrokes times the time per keystroke or (Operators
D and R are treated somewhat differently.)

The most frequently used operator is K, which represents a keystroke
or a button press (on a typewriter keyboard or any other button device).
K refers to keys, not characters (hitting the SHIFT key counts as a
separate K). The keystroke time is taken to be the standard typing
rate, as determined by standard one-minute typing tests. This is an
approximation in two respects. First, keying time is different for dif­
ferent keys and key devices (see Figures 2.14 and 2.15). Second,
includes the time for immediately-caught typing errors (involving
BACKSPACE and rekeying). Thus is computed from a typing test by
dividing total test time by the total number of non-error keystrokes,
giving the effective keying time. We accept both these approximations in
the interest of simplicity.

Users can differ in their typing rate by as much as a factor of 15
(Figure 8.1). Given a population of users, an appropriate can be
selected. If a user population has members with large differences,
then the population should be partitioned into classes and the classes
analyzed separately, since the different classes of users will be likely to
employ different methods.

The operator P represents pointing to a target on a display with a
mouse. In Experiment 7A, we measured the time required to point with
the mouse and select a target by pressing a button, a sequence we now
write as PK. The time required by P can be estimated by subtracting
the time for K from Equation 7.2, giving:

/p = .8 + .1 Xog îD/S-k- .5) sec.

The fastest time, acx:ording to this equation, is .8 sec, and the longest
likely time (Z)/5=128) is 1.5 sec. In the interest of simplicity, we use an
average value for pointing time of 1.1 sec (1.3 sec from Figure 7.4 less .2
sec for K).

When there are different physical devices for the user to operate, he
will probably have to move his hands between them. This hand
movement, including the fine positioning adjustment of the hand on the
device, is represented by the H (“home”) operator. From the studies in
Chapter 5 and Chapter 7, we assign a constant of .4 sec for movement
between any two devices.

The D operator represents using the mouse to draw a set of straight-
line segments. D takes two parameters: the number of segments (w^)
and the total length of all segments (l^). The time ^^(nQ./p) is a linear
function of these two parameters. The coefficients of this function are
different for different users; Figure 8.1 gives average values. D is a very
specialized operator. Not only is it restricted to the mouse, it also
assumes that the drawing system constrains the cursor to lie on a .56 cm
grid. The D operator is included to indicate the wide scope of tasks
potentially addressable by the model.

The user spends some time “mentally preparing” to execute the
physical operators just described. Preparation can take the form of
deciding how to call a command, for instance, or whether to terminate an
argument string. These mental preparations are assumed to take an
average of 1.35 sec each, and are represented by the M operator (see
Section 8.3). Again, the use of a single mental operator is a deliberate
simplification.

Finally, the R operator represents the system response time. This
operator has one parameter t, a placeholder for the response time in
seconds of a particular instance in which the system causes the user to
wait. When, for example, a 2-sec system response is followed by a user
K operator (on a system that does not allow type-ahead), the user must
wait the 2 sec, which is denoted by R(2). When, on the other hand, a
system response is followed by an M operator by the user, only the
system response time in excess of the overlapped 1.35 sec M time is
counted, or 2-1.35 sec = .65 sec; and we write R(.65).

8.2. THE KEYSTROKE-LEVEL MODEL 263

Encoding Methods

Methods are represented as sequences of these operators. It is easiest
to introduce the method notation with examples. Suppose that there is a

264 8. THE KEYSTROKE-LEVEL K40DEL

O p e ra to r D escrip tio n and R em arks T im e (sec)

K PRESS KEY OR BUTTON.
Pressing the SHIFT or CONTROL key counts as a
separate K operation. Time varies with the typing skill of
the user; the following shows the range of typical values:

Best typist (136 wpm) .0 8
Good typist (90 wpm) .1 2
Average skilled typist (55 wpm) .2 0
Average non-secretary typist (40 wpm) .2 8
Typing random letters .5 0
Typing complex codes .7 5
Worst typist (unfamiliar with keyboard) 1 .2 0

P POINT WITH MOUSE TO TARGET ON A DISPLAY.
The time to point varies with distance and target size according
to Fitts’s Law, ranging from .8 to 1.5 sec, with 1.1 being an average.
This operator does n o t include the (.2 sec) button press that often
follows. Mouse pointing time is also a good estimate for other efficient
analogue pointing devices, such as joysticks (see Chapter 7).

1 .1 0

H HOME HAND(S) ON KEYBOARD OR OTHER DEVICE. .4 0

D(«q,/q) DRAW STRAIGHT-LINE SEGMENTS OF TOTAL
LEN G TH /^ CM.
This is a very restricted operator; it assumes that drawing is
done with the mouse on a system that constrains all lines to
fall on a square .56 cm grid. Users vary in their drawing skill;
the time given is an average value.

.9 n ^ + .1 6 /^

M MENTALLY PREPARE. 1 .3 5

n it) RESPONSE BY SYSTEM.
Different commands require different response times. The response
time is counted only if it causes the user to wait.

t

Figure 8 .1. The operators of the Keystroke-Level Model.
The K times are from Figure 2.14, except the .28 sec, which is the average typing
rate of the non-secretarial users in Experiment 8A. The P time is from Chapter 7.
The H time is from Chapter 6 and Chapter 7. The D time function and the coef­
ficients were derived from least-squares fits on the drawing test data from the four
MARKUP users. The time for M was estimated from the data in Experiment 8A.

command named p u t in some system, and that the method for calling it
is to type its name followed by the r e t u r n key. This method would be
coded by simply listing the operations in sequence: MK[P] K[u] K[T]
K [r e t u r n], which we abbreviate as M 4K[p u T r e t u r n]. In this

8.2. THE KEYSTROKE-LEVEL MODEL 265

Begin with a method encoding that includes all physical
operations and response operations. Use Rule 0 to place
candidate M ’s, and then cycle through Rules 1 to 4 for
each M to see whether It should be deleted.

R ule 0 . Insert M 's in front of all K ’s that are not part of
argument strings proper (e.g., text or numbers).
Place M ’s in front of all P ’s that select commands
(not arguments).

Rule 1. If an operator following an M is f u l l y a n t i c i p a t e d

in an operator just previous to M, then delete the
M (e g ., PMK -> PK).

Rule 2. If a string of MKs b e lo n g s to a c o g n i t i v e u n i t

(e.g., the name of a command), then delete all
M ’s but the first.

Rule 3 . If a K is a r e d u n d a n t t e r m i n a t o r (e.g., the

terminator of a command immediately following
the terminator of its argument), then delete the M
in front of It.

Rule 4 . If a K t e r m in a t e s a c o n s t a n t s t r i n g (e.g., a
command name),, then delete the M in front of it;
but if the K terminates a variable string (e.g., an
argument string), then keep the M in front of it.

Figure 8 . 2 . Heuristic rules for placing the M operations.

notation descriptive notes such as key names may be written in square
brackets. If, on the other hand, the m ethod to call the put command
were to point to its name in a menu, then press the red mouse button,
we would write: H[mouse] MP[PUT] K[RED] H[keyboard].

As another example, consider the text-editing task (called T l) of
replacing a 5-letter word with another 5-letter word, where this
replacement takes place one line below the previous modification. The
method for executing task T l in the line-oriented editor poet would be
described as follows:

Method for Task T1 -POET:
Jump to next line MK[linefeed]
issue Substitute command MK[S]
Type new 5-letter word 5K[word]

Terminate new word MK[return]
Type old 5- letter word 5 K [word]

Terminate old word MK[return]
Terminate command K[return] .

Using the operator times from Figure 8.1, and assuming the user is an
average skilled typist = .2 sec), we could predict the time it will take
to execute this method:

7’™ /e = 4/^ + 15iK = 8.4sec.

This method could be compared to the method for executing task T1
on the display-based system bravo:

Method for Task T1 -BRAVO:
Reach for mouse H [mouse]

Point to word P[word]
Select word K [yellow]
Home on keyboard H[keyboard]
Issue Replace command M K[R]
T ype new 5 - letter word 5 K [word]
Terminate type-in MK[esc]

^execute = + 2i^ -f tp = 6.2 S e c .

Thus, we can predict that the task would take about two seconds longer
using POET than using bravo.

The methods above are simple unconditional sequences. More
complex or more general tasks are likely to have multiple methods and
conditionalities within methods for accomplishing different versions of
the task. For example, in bravo the user often has to scroll the text on
the display before pointing to the desired target (see Chapter 6). In the
present notation, the method would be represented as:

266 8. THE KEYSTROKE-LEVEL MODEL

.4(MP[SCR0LL-SYMB0L] K[RED] R(.5)) P[word] K[YELLOW].

Here we have assumed the average number of scrolls per selection to be
.4 and the average system response time per scroll to be .5 sec. Using
these values, we would predict the average selection time:

8.2. THE KEYSTROKE-LEVEL MODEL 2 6 7

execute = Atf^ + 1.4i^ + 1.4ip + .4(.5) = 2.6 sec.

When there are alternative methods for doing a specific task in a
given system, we found (in Chapter 5) that expert users will, in general,
use the most efficient method (i.e., the method taking the least time).
Thus, in making predictions we can use the model to compute times for
alternative methods and then predict that the fastest method will be used.
(If the alternatives take about the same time, it does not matter which
method we predict) This optimality assumption holds, of course, only if
the users are familiar with the alternatives, which, fortunately, expert
users usually are. This assumption is helped by the tendency of optimal
methods to also be the simplest

Heuristics for the M Operator

It is useful to distinguish two versions of method encoding. The
physical encoding includes only the physical operations (K, P, H, D, and
R) required by the command language of the system. The cognitive
encoding includes the physical encoding plus the mental (M) operations.
The Keystroke-Level Model provides a set of heuristic rules (Figure 8.2)
for placing M’s in a physical encoding to obtain the cognitive encoding.^

M operations represent acts of mental preparation for applying
physical operations. Their occurrence does not follow directly from the
physical encoding, but from the specific knowledge and skill of the user.
The rules for placing M’s embody psychological assumptions about the
user and are necessarily heuristic, especially given the simplicity of the
model.

The rules in Figure 8.2 define a procedure that begins with a physical
encoding. First, all candidate M’s are inserted into the encoding accord­
ing to Rule 0, which is a heuristic for identifying all possible decision
points in the method. Rules 1 to 4 are then applied to each candidate M
to see if it should be deleted.

 ̂ Thus, only a physical definition of the method is required as input to the
Keystroke-Level Model (see the definition o f the prediction problem in Section 8.1).

268 8. THE KEYSTROKE-LEVEL MODEL

A single psychological principle lies behind all the deletion heuristics.
The principle is that physical operations in methods are chunked into
submethods. The user cognitively organizes his methods according to
these submethod chunks, which usually reflect syntactic constituents of
the system’s command language. Hence, the user mentally prepares for
the next physical chunk, not just the next physical operation. It follows
that in executing methods the user is more likely to pause between
chunks than within chunks. The rules attempt to identify submethod
chunks.

Rule 1 asserts that when an operation is fully anticipated in another
operation, the two belong together in a chunk. A common example is
pointing with the mouse and then pressing the mouse button to indicate
a selection. The button press is fully anticipated during the pointing
operation, and there is no pause between them (and thus PMK becomes
PK, according to Rule 1). This anticipation holds even if the selection
indication is done on another device (e.g., the keyboard or a foot pedal).
Rule 2 asserts that an obvious syntactic unit, such as a command name,
constitutes a chunk when it must be typed out in full.

The last two heuristics deal with syntactic terminators. Rule 3 asserts
that the user will bundle redundant terminators into a single chunk. For
example, in the POET example above, one RETURN is required to
terminate the second argument and another r e t u r n to terminate the
command: a user quickly learns simply to hit a double RETURN after the
second argument (i.e., MKMK becomes MKK according to Rule 3).
Rule 4 asserts that a terminator of a constant-string chunk will be
assimilated into that chunk. An example is that users quickly learn to
type, without pausing, a r e t u r n that always follows a command name.

It is clear that these heuristics do not capture the notion of method
chunks precisely, but are only approximations. Further, whether some­
thing is “fully anticipated” or is a “cognitive unit” is sometimes
ambiguous. Better general heuristics would help in reducing the ambi­
guity. However, some of the variability in what constitutes a chunk
stems from a corresponding variability in expertness. Users differ widely
in their behavior; their categorization into novice, casual, and expert users
provides only a crude separation and leaves wide variation within each
category. One way that experts differ from novices is in what chunks
they have (Chase and Simon, 1973). Thus, some of the difficulties in
placing M’s are unavoidable because not enough is known (or can be

8.2. THE KEYSTROKE-LEVEL MODEL 269

known in practical work) about the individual experts involved. Part of
the variability in expertness can be represented by the Keystroke-Level
Model as encodings with different placements of M operations.

Comparison with the GOMS Models

We are now in a position to consider the relation of the Keystroke-
Level Model to the GOMS models in Chapter 5. The Keystroke-Level
Model most closely corresponds to Model K1 in the GOMS family of
models. Both models are at the Keystroke Level, and they both have a
generic mental operator: M for the Keystroke-Level Model and m e n t a l

for Model Kl.
The mental operators in the two models are not the same, as can be

seen by comparing their times: M takes 1.35 sec, whereas m e n t a l takes
.62 sec (Figure 5.15). The reason for this discrepancy is that M is a much
more aggregate operator than m e n t a l : given a method, more m e n t a l ’s

will appear in a Model Kl encoding than M’s will appear in a Keystroke-
Level Model encoding. The correspondence between M’s and m e n t a l ’s

can be seen by examining Model K2, which classifies the generic m e n t a l

into several mental operators with more specific functions (see Figure
5.15). Roughly speaking, the M operator corresponds to the c h o o s e

operations of Model K2. Since c h o o s e operations account for less than
half of the mental operations in Model K2, this explains why m e n t a l

takes less than half as long as M.
The most important difference between the Keystroke-Level Model

and Model K l has to do with method prediction. The Keystroke-Level
Model does not predict methods^ and, hence, has no goals or method
selection rules (although it does predict where the mental operations
occur). This difference and the slight mismatch of operators are delib­
erate; they represent the ways in which the GOMS description has been
simplified to produce the more usable Keystroke-Level Model.

 ̂ The fact that the Keystroke-Level Model does not predict methods means that its
results are more appropriately compared to the “reproduction” results than to the
“prediction” results of the GOMS models, according to the distinction made in the
experiment in Section 5.3.

8.3 . EMPIRICAL VALIDATION OF THE MODEL
(EXPERIMENT 8A)

To determine how well the Keystroke-Level Model predicts actual
performance times, an experiment was run in which calculations from the
model were compared against measured times for a number of different
tasks, systems, and users.

Description of the Experiment

270 8. THE KEYSTROKE-LEVEL MODEL

A total of 1280 user-system-task interactions were observed, comprised
of various combinations of 28 users, 10 systems, and 14 tasks.

Systems. The systems were all typical application programs available
locally and widely used by both technical and non-technical users. Three
of the systems were text-editors, three were graphics editors, and five
were executive subsystems. The systems are briefly described in Figure
8.3.

Together, these systems display a considerable diversity of user
interface techniques. For example, poet, one of the text-editors, uses
first-letter mnemonics to specify commands and uses search strings to
locate lines. In contrast, DRAW, one of the graphics systems, presents a
menu of graphic icons on the display. These icons, representing the com­
mands, are selected by the user pointing with the mouse.

Tasks. The 14 tasks performed by the users (see Figure 8.4), though
diverse, were typical. Users of the editing systems were given tasks
ranging from a simple word substitution to the more difficult task of
moving a sentence from the middle to the end of a paragraph. Users of
the graphics systems were given tasks such as adding a box to a diagram
or deleting a box (but keeping a line that overlapped the box). Users of
the executive subsystems were given tasks such as transferring a file
between computers or examining part of a file directory.

Task-System Methods. In all, there were 32 task-system combi­
nations: 12 for the text editors (4 tasks X 3 systems), 15 for the graphics
systems (5 tasks X 3 systems), and 5 for the executive subsystems (one
task for each subsystem). For each task-system combination, the most
efficient “natural” method was determined (by consulting experts) and
then coded in Keystroke-Level Model operations. The encodings of the
methods for all the task-system combinations are listed in the Appendix
to this chapter.

System Description

Text-Editors

POET Line-oriented, with relative line numbers.

SOS Line-oriented, with absolute line-numbers.

BRAVO Display-oriented; full-page; uses mouse for
pointing.

Graphics Systems

MARKUP Uses mouse to draw and erase lines and areas
on a display; commands selected from a hidden
menu, which must be redisplayed each time.

DRAW Lines defined by pointing with mouse to end
points; commands selected with mouse from a
menu.

SIL Lines defined by pointing with mouse to end
points; boxes defined by pointing to opposite
vertices; commands selected by combinations of
mouse buttons.

Executive Subsystems

LOGIN TENEX command for logging In.

FTP Program for transferring files between computers.

CHAT Program for establishing a “teletype” connection
between two computers.

DIR TENEX command for printing a file directory; has
a subcommand mode.

DELVER TENEX command for deleting old versions of a
file.

Figure 8.3. Systems measured in Experiment 8A.
POET, described in Chapters 3 and 5, is a dialect of the QED editor (Deutsch and
Lampson, 1967). For SOS see Savitsky (1969). For MARKUP see Newman and
Sproull (1979), Chapter 17. For LOGIN, DIR, and DELVER, see Myer and Barnaby
(1973). All the rest are experimental systems local to Xerox PARC, designed and
implemented by many Individuals, including: Roger Bates, Patrick Baudelaire, David
Boggs, Butler Lampson, Charles SImonyl, Robert Sproull, Edward Taft, and Chuck
Thacker.

271

2 7 2 8. THE KEYSTROKE-LEVEL MODEL

Editing Tasks (used fo r POET, SOS, BRAVO)

T 1 . Replace one 5-letter word with another (one line from previous task).

T 2 . Add a fifth letter to a 4-letter word (one line from previous task).

T 3 . Delete a line of text (eight lines from previous task).

T 4 . Move a 52-character sentence, spread over two lines, to the end of its
paragraph (eight lines from previous task).

G raphics Tasks (used fo r MARKUP, DRAW, SIL)

T 5 . Add a rectangular box to a diagram.

T 6 . Add a 5-character label to a box.

T 7 . Disconnect a 2-segment line from one box and reconnect it to another
box.

T 8 . Delete a box, but keep an overlapped line.

T 9 . Copy a box to another part of the diagram.

Executive Tasks

T 1 0 . Phone computer and log in (4-character name, 6-character password).

T 1 1. Transfer a file to another computer, renaming it.

T 12 . Connect to another computer.

T 1 3 . Display a subset of the file directory and show file lengths.

T 1 4 . Delete old versions of a file.

Figure 8.4. Tasks used in Experiment 8A.

Experimental Design, The basic design of the experiment was to have
ten versions of each task on each system done by four different users,
giving 40 observed instances per task-system. To avoid transfer effects,
no user was observed on more than one system (except for the executive
subsystems). Four tasks were observed for each of the text-editing
systems, five tasks for each of the graphics systems, and one task for each
of the executive subsystems.

Users, There were, in all, 28 different users (some technical, some
secretarial): 12 for the editing systems, 12 for the graphics systems, and 4

for the executive subsystems. All were experts in that they had used the
systems for months in their regular work and had used them recently.

Experimental Procedure. Each user was first given five one-minute
typing tests to determine his keystroke time t^ . In addition, users of
MARKUP (the only system to require manual drawing) were given a series
of drawing tasks to determine the parameters of their drawing rate (as
discussed in Section 8.2).

After the preliminary tests, each user was given a small number of
practice problems of the sort to be tested and was told which method to
use (see above). In most cases, the methods presented were what users
claimed they would have used anyway; in the other cases, the method
was easily adopted. Users practiced tasks until they were judged to be at
ease with using the correct method; this was usually accomplished in
three or four practice trials on each task type.

After practicing, the user proceeded to the main part of the
experiment The user was given a notebook containing several manu­
script pages with the tasks to be done marked in red ink. Text-editing
and graphics tasks appeared in randomized order; executive subsystem
tasks were always ordered T il, T12, T13, T14; and all ten instances of
task TIO, logging into a computer, were done in succession.

Each experimental session, lasting approximately 40 minutes, was
videotaped and the user’s keystrokes were recorded automatically. Time
stamps on the videotaped record and on each keystroke allowed a
protocol to be constructed in which the time of each event was known to
within .033 sec. This protocol is the basic data from which the results
below were derived.

Results of the Experiment

Each task instance in the protocols was divided into acquisition time
and execution time according to the following definitions. Acquisition
time began when the user first looked over to the manuscript to get
instructions for the next task and ended when the user started to perform
the first operator of the method.'* Execution time then began at that

8.3. EMPIRICAL VALIDATION OF THE MODEL 273

 ̂ Technically, the boundary between acquisition and execution time was determined
by taking the first recorded operator of the execution method (usually a K) and using it
to estimate the starting time of the method’s first operator.

point and ended when the user looked over to the notebook for the next
task.

Those tasks on which there were significant non-typing errors or in
which the user did not use the prescribed method were excluded from
further consideration. After this exclusion, 855 (69%) of the task in­
stances remained as observations to be matched against the predictions.
No analysis was made of the excluded tasks.

The resulting observed times for task acquisition and execution were
stable over repetition. There was no statistical evidence for times
decreasing (implying learning) or increasing (implying fatigue) with repe­
tition.

CALCULATION OF EXECUTION TIME

Execution time was calculated using the method analysis for each
task-system combination together with estimates of the times required for
each operator (see chapter Appendix). All times, except for mental
preparation time, were taken from sources outside of the experiment
Pointing time tp and homing time were taken from Figure 8.1. Typ­
ing time and drawing time were estimated from the typing
and drawing tests by averaging the times of the four users involved in
each task-system. System response time Tp for each task-system was
estimated from independent measurements of the response times for the
various commands required in each method. For task TIO, logging into a
computer, a telephone button-press was assumed to take time
Moving the telephone receiver to the computer terminal modem was
estimated to take .7 sec, using the MTM system of times for industrial
operations (Maynard, 1971).^

Mental preparation time was estimated from the experimental data
itself. First, the total mental time for each method was determined by
removing the predicted time for all physical operations from the observed
execution time. Then, was estimated by a least-squares fit of the
estimated mental times as a function of the predicted number of M
operations. The result was = 1.35 sec = .84, standard error of
estimate = .11 sec, standard error about the regression line = 2.48 sec).
The SD of was 1.1 sec, indicating that the M operator had the
characteristic variability of mental operators (Section 5.5).

274 8. THE KEYSTROKE-LEVEL MODEL

 ̂ One point o f task TIO is to illustrate that the Keystroke-Level Model can be
extended by using existing catalogues of physical operators.

Execution times for each task-system combination were calculated by
Equation 8.1. The execution-time calculations are summarized in Figure
8.5, which also gives the observed execution times from the experiment
for comparison.

8.3. EMPIRICAL VALIDATION OF THE MODEL 275

EXECUTION TIME

The accuracy of the predictions can be seen in Figure 8.6, which plots
the predicted vs. observed data from Figure 8.5. The root-mean-square
(RMS) error is 21% of the average predicted execution time. This
accuracy is about the best that can be expected from the Keystroke-Level
Model, since the choice of methods used by the subjects were controlled
by the experimental procedure. The 21% RMS error is about the same
as the reproduction accuracy of Model K1 in Chapter 5 (Figure 5.16).

The distribution of relative prediction errors is evenly spread, as an
analysis of Figure 8.6 shows. No particular systems or tasks make
excessively large contributions. Predictions are not consistently positive
or negative for systems or tasks, except that the predicted executive
subsystem task times were uniformly too high. Examination of the
individual observations does not reveal any small set of outliers or
particular users that inflates the prediction error.

Prediction accuracy is related to the duration of the attempted
prediction. Since unit tasks are essentially independent, prediction of the
time to do a set of tasks will tend to be more accurate than prediction of
the time to do a single unit task (see Chapter 5 for the argument). For
example, using the model to predict how long it took to do all four text­
editing tasks, the average RM S error is only 5% and the corresponding
RM S error for the graphics editors over the five tasks is only 6%.

Ideally, all the parameters of the model should be determined
independently of the experiment The only parameter for which this was
not possible was the mental operation time because there was no
appropriate independent source of data available. The substantial
variability of indicates that the consequent inflation in the model’s
apparent accuracy is probably not too serious, since small changes in the
value of tfj! make little difference. For example, if a as small as 1.2
sec or as large as 2.0 sec were used in the predictions, the RMS error for
the Keystroke-Level Model would only increase from 21% to 23%. Of
course, the estimated from this experiment is now available as an
independent estimate for use by others.

The variability in the observed task times is of interest, since user
behavior is inherently variable (see Chapter 2). In our data, the average

T a s k -
S y s t e m ' k

(sec)

C a l c u l a t e d O b s e r v e d
P r e d .
E r r o rrip

(cm)

T r

(sec)

T execute

(sec)

T execute

M ± S E (N)
(sec) (sec)

T1-POET .23 4 15 8.8 7.8 ± 0.9(27) 11%

T1-SOS .22 4 19 -- -- - 9.6 9.6 ± 0 .8 (3 1) 1%

T 1-B r avo .23 2 8 2 1 -- 6.4 5.7 ± 0 .3 (3 1) 11%

T2-POET .28 4 14 -- - 9.4 8.9 ± 0 .7 (1 7) 5%

T2-SOS .23 4 18 .. 9.5 9.7 ± 0.8(32) - 3%

T2-BRAVO .24 2 4 2 1 -- 5.6 4.1 ± 0 .3 (3 2) 26%

T3-POET .19 3 12 -- 6.3 6.3 ± 0.4(24) 0%

T3-SOS .23 2 7 - 4.3 4.0 ± 0.3(37) 8%

T3-BRAVO .23 1 2 1 1 3.3 3.5 ± 0.2(38) - 7%

T4-POET .19 13 92 35.3 37.1 ± 4.3(20) - 6%

T4-SOS .23 12 47 26.8 32.7 ± 1.8(16) -22%

T4-BRAVO .24 2 6 1 3 3.8 11.6 14.3 ± 1.1(33) -23%

T5-MARKUP .25 3.2 -- 2.5 4 24.9 11.1 10.5 ± 1.1(27) 6%

T5-DRAW .25 7.6 12.6 5 18.9 12.5 ± 3 .0 (2 2) 34%

T5-SIL .27 1 4 0.4 2 4.8 5.4 ± 0.7(32) -12%

T6-MARKUP .26 1 7 2 1 5.0 6.2 ± 0.4(34) -23%

T6-DRAW .25 1 7 1 1 4.6 5.9 ± 0.4(34) -29%

T6-SIL .27 6 1.4 1 3.3 3.6 ± 0 .3 (1 9) - 9%

T7-MARKUP .24 8.6 4.8 6 13.6 15.1 15.0 ± 2.1(29) 2%
T7-DRAW .19 5 13 8 - 18.0 18.2 ± 1.9(9) - 1%
T7-SIL .28 1 8 -- 5 9.1 12.3 ± 2 .1 (2 3) -36%

TS-M ar ku p .26 8 8 1 4.0 12.3 9.3 ± 0.4(22) 24%
T8-DRAW .21 1 5 3 5.7 5.3 ± 0.3(25) 7%
T8-SIL .27 1 5 0.7 2 5.2 4.1 ± 0 .2 (3 3) 20%

T9-MARKUP .25 2 8 6.5 -- 3.5 15.4 13.0 ± 2.5(26) 15%
T9-DRAW .22 5.7 - 5.7 7.5 10.5 ± 1.0(25) -40%
T9-SIL .28 5 0.3 3 -- -• 4.8 6.0 ± 1.0(28) -24%

T 10-Lo g in .29 2 28 15.9 27.4 25.1 ± 0.7(29) 9%
T i l - F tp .30 5 31 - - 10.1 26.1 19.7 ± 0 .7 (2 9) 24%
T1 2-C hat .31 1 11 8.3 13.1 11.5 ± 0 .6 (3 6) 12%
T13-DIR .30 2 20 0.5 9.2 6.6 ± 0.3(32) 28%
T M -D elver .32 2 20 0.4 9.4 7.5 ± 0.4(33) 20%

Figure 8 .5. Calculated and observed execution times in
Experiment 8A.
The calculations are done according to Formula (8.1) using the operator times in
Figure 8.1, except for which is the average time from the actual typing tests for
the users on a given system. Each user’s time Is weighted by the correct number
of Instances for that user on a given task (column N). SE = S D /V A/, which is
the standard error of estimation of the population mean for samples of size N.
The calculated execution time for task T10 also includes .7 sec for the operation
of picking up the telephone receiver (see Section 8.3).

276

8.3. EMPIRICAL VALIDATION OF THE MODEL 277

Figure 8 .6. Predicted vs. observed execution times in
Experiment 8A.
The plotted values are taken from Figure 8.5.

CV of the individual observations over each task is .31, which is typical
of variability for behavior of this duration according to Figure 5.19. In
comparing predictions by the model against any actual behavior,
prediction error will always be confounded with some error from the
sampling process. Sampling error for each of our observed task times is
indicated in the SE column of Figure 8.5. The average standard error is
9%. The prediction error of the Keystroke-Level Model being more than
two times larger than this indicates that most of the prediction error is
due to a real failure in the model and not just to unreliable observations.

ACQUISITION TIME

Turning from the execution part of the task to the acquisition part,
the data show that it took users 2 sec on the average to acquire the tasks
from the manuscript. This number may be refined by breaking the tasks
into three types: (1) those tasks that the user already had in memory (the
executive subsystem tasks that were done each time in the same order);

(2) those tasks for which the user had to look at the manuscript each
time (all the graphics tasks, the poet and sos tasks, and task Til); and
(3) those tasks for which the user had to look at the manuscript, then
scan text on the display to locate the task. The times for these three
types of acquisition are given in Figure 8.7. Users took .5 sec when the
task was in memory, 1.8 sec when the task had to be retrieved from the
manuscript, and 4.0 sec when the users had to get the task from the
manuscript and search for it on the video display. The time for getting
the task from the manuscript is similar to the results obtained in Chapter
5, where the g e t -n e x t -t a s k operator took 1.92 sec (Figure 5.15). It is
interesting to note that although display editors are generally faster to
use, they impose a 2-sec penalty by requiring the user to scan the text on
the display.

278 a THE KEYSTROKE-LEVEL MODEL

T a s k T y p e T a s k n u m b e r s A c q u i s i t i o n T i m e
M ± SE{N)
(sec) (sec)

All tasks T 1 -T 1 4 2 .0 ± 2 .0 (885)

R epeated task, recalled

from m em ory

T10, T 1 2 ,T 1 3 .T 1 4 0 .5 ± 0 . 3 (130)

Task acquired by looking

at m anuscript

T 1 -T 4 (POET, SOS),

T 5 -T 9 , T 1 1

1.8 ± 1 .9 (6 2 1)

Task acquired by looking

at m anuscript, then scanning

for task on display

T 1 -T 4 (BRAVO) 4 .0 ± 1 .9 (1 3 4)

Figure 8 .7. Observed acquisition times in Experiment 8A.
SE is the standard error of estimate of the population mean for samples of size N.

We can use the acquisition times in Figure 8.7, along with the
calculated execution times in Figure 8.5, to predict total task times. The
resulting RMS error of these predictions is 21%, which is just as accurate
as predicting the execution times alone.

8.4 . A FURTHER LOOK AT THE M OPERATOR
(EXPERIMENT 8B)

We have presented evidence for the validity of the Keystroke-Level
Model by showing that it predicts overall task execution times, but we
have not examined unit-task executions to see if the Keystroke-Level
Model predicts performance in finer detail. There is little doubt that
performance of physical operations corresponds to the model. How well
does the generic M operator predict the pause times between the
observed physical operations? To investigate this issue, we consider an
exploratory experiment (Moran, 1980), in which the detailed performance
record of one user was compared to the model’s predictions.

DESCRIPTION OF THE EXPERIMENT

Task and Method. The user was given the task of converting
Sentence 8.2a to Sentence 8.2b using the b r a v o editor:

The sun shines when it rains; our weather is funny. (8.2a)
Our weather is funny; when it rains the sun shines. (8.2b)

In addition to switching the two outer clauses of the original, the task
requires changing punctuation and capitalization. The task is complex,
requiring several b r a v o commands, and there are several different ways
of performing i t The timewise optimal method requires seven com­
mands,^ as shown in Figure 8.8. As predicted by the Keystroke-Level
Model, this method requires seven M operations.

User. The user was an experienced b r a v o user. She had consid­
erable technical training, including some programming; but she was not
an experienced programmer.

Procedure. The optimal method was discussed verbally with the
user—but without actually executing it on the system—for about 30
minutes, after which she began the experimental session. Using b r a v o ,
the user executed the clause-switching task 100 times. The task was
exactly the same on each trial (the user edited a file with 100 copies of

8.4. A FURTHER LCX)K AT THE M OPERATOR 279

” The details o f how the optimal method works are not important for the present
discussion. However, we take up the clause-switching task as a problem-solving task in
Chapter 11.

280 8. THE KEYSTROKE-LEVEL MODEL

OPTIM AL METHOD:

(C 1) D elete 3rd clause a n d ...

(C 2) ...insert it in front of 1st clause.

(C 3) R eplace 0" by “ O ” .

(C 4) R eplace "T " by t".

(C 5) D elete 3rd clause and...

(C 6) ...insert it in front of 2nd clause.

(C 7) Find next task.

Himousel PK PK M K(Di

PK M K[l| K(ESC1

PK M K (r] K (S h if t i

H(keyboara] 2K10ESC]

Hjmousel PK M KjR)

Hlkeyboard) 4K |: SPACE T ESC)

H(mouse) PK PK M K|D)

P K M K ill K{ESC|

M K |r l

T/ME PREDICTION:

T , = [24/^ + 8/o + 5 /.J + 7l .c x i r u l c I K P / y ‘ M

= [24 (.15) + 8 (1 .03) + 5 (.57)| + 7 (1 .35)

= 14.7 + 9 .4

= 24.1 sec

Figure 8 .8 . Optimal method for the clause-switching task
and its predicted time.
The underlined K’s in the method indicate command-invocation keystrokes (see
Figure 8.9 and Figure 8.10). Unit operator times for the prediction were obtained
by measuring the user; see the text for the rationale. Pointing time tp decreases
with practice; the value of tp used here is the value at Trial 7 (see the caption for
Figure 8.11 for an explanation).

Sentence 8.2a on it), and the user employed exactly the same method
every time.^ On subsequent days, the user repeated 100-trial sessions
until she had completed eleven sessions (1100 trials) in all. Records of
time-stamped keystrokes were collected for all sessions.

' Note that the prediction o f the M’s in Figure 8.8 is based on the assumption that
the parts o f the method become fixed. For example, no M is predicted to occur before
the terminator (ESC) of the Replace command, since the replacement string is the same
every time (see Rule 4 in Figure 8.2).

8.4. A FURTHER LOOK AT THE M OPERATOR 281

ANALYSIS AND RESULTS

Atudysis. The data were analyzed first to isolate the method
execution times, as was done in Experiment 8A. Execution times were
then partitioned into physical and mental components using the
Keystroke-Level Model. Figure 8.8 shows the model’s predicted time for
an error-free trial. The time for the physical component (the physical
operations) was predicted to be 14.7 sec, and the time for the mental
component (the M operations) was predicted to be 9.4 sec.

The procedure for partitioning the user’s actual execution times was to
estimate the physical time and then to regard the remaining time as
mental time. In order to estimate the physical time as accurately as
possible, the unit physical operator times (/^, tp, and t^) were obtained
by direct measurement of the user (rather than by taking the values from
Figure 8.1). The physical component time was estimated by alotting unit
operation times for the physical operations, which were inferred from the
data record. For example, in executing the optimal method (Figure 8.8),
the first recorded keystroke would be a mouse button-press. Because of
the method analysis in Figure 8.8, this recorded keystroke is assumed to
represent not just a K operation, but three physical operations, HPK; the
estimated physical time is therefore + ip -F = .57 + 1.03 + .15
= 1.75 sec. If the recorded time for this keystroke were 3.0 sec, then the
remaining time (3.00—1.75 = 1.25 sec) would be assumed to be mental
time.

Mental Time Residís. Mental operations, as indicated by logical
analysis and by pauses in the user’s physical activity, appear to occur
close to the locations predicted by the model; but they are less regular
than idealized by the model, and they occur in more places. The user’s
mental time pattern is best examined by considering only error-free trials.
Since all error-free trials have the same sequence of physical operations,
the mental operations can be compared with each other and with the
model’s prediction. Figure 8.9 illustrates graphically the operation times
for a subset of the error-free trials that were selected to show the user’s
gradual reduction in execution time. Also shown is the model’s predicted
time, which is within 2% of the user’s overall execution time on her first
error-free trial. Trial 7. Further, the user is seen to require mental
operations uniformly throughout Trial 7; just as predicted, they occur in
every command of the method.

The correspondence between the user’s mental operations and the
model’s predicted M operations is directly exhibited in Figure 8.10. The

Figure 8 .9. Time-line graph of keystrokes for execution of
the clause-switching task in Experiment 8B.
Each of the eight horizontal bars is a time-line graph of the sequence of
operations in an execution of the optimal method. The topmost time line (labeled
"Pred.”) represents the execution time predicted by the Keystroke-Level Model
(Figure 8.8). Just above this time line are labels for the command-invocation
keystrokes and the mouse button-presses (indicated by * ’s); see Figure 8.8 for
where they occur in the method. The remaining time lines represent several of the
user’s performances, labeled by their trial numbers. The vertical strokes in the
time lines represent recorded keystrokes. The little black horizontal bars in the
time lines represent inferred mental operators. The diagonal lines between time
lines show the corresponding command boundaries (as defined in Figure 8.8)
between time lines.

figure shows histograms of the user’s mental time for the trials graphed
in Figure 8.9. A trial consists of seven command executions. Each
command has a command-invocation keystroke, such as D for the Delete
command or R for the Replace command, indicated in Figure 8.8 by the
underlined K’s. The model predicts an M operation immediately pre­
ceding each command-invocation keystroke. The command-invocation
keystrokes thus provide reference points in the execution by which to
compare the locations of mental time. The horizontal axis in Figure 8.10
represents the time preceding the recorded command-invocation key­
strokes, normalized to be at time 0. The model’s predicted M operations
occur uniformly between the times -1 .50 sec and -.1 5 sec, as is shown
by the lightly-shaded histogram at the top of Figure 8.10. The histogram

282

~6 - 5 - 3 - 2 - 1 0

Time (sec) Preceding Command-Invocation

Figure 8 .10. Histograms of mental times preceding com­
mand-invocation keystrokes in Experiment 8B.
Each histogram corresponds to one of the time-line bars in Figure 8.9. The lightly-
shaded histograms represent the M operations predicted by the Keystroke-Level
Model. The darkly-shaded histograms represent the user’s actual mental times in
each trial. The percentages In the lightly-shaded histograms represent the ratio of
the user’s mental time to the predicted mental time.

283

284 8. THE KEYSTROKE-LEVEL MODEL

is rectangular, since it represents seven identical M operations stacked on
top of each other. The distributions of the user’s actual mental times are
shown as the darkly-shaded histograms, which are superimposed over
copies of the predicted mental time histogram for comparison. As
predicted, most of the user’s actual mental time does occur in the two or
three seconds preceding the command-invocation keystrokes. The figure
also gives for each trial the percentage ratio of the user’s actual mental
time to the predicted mental time.

Figures 8.9 and 8.10 make clear several features of the user’s actual
mental time. The user’s mental time is more widely distributed than the
model predicts. This happens mainly because pointing operations usually
occur before command-invocation keystrokes, and the user requires
mental time to prepare for them. Most noticeably, the user requires
unpredicted mental operations at the beginning of each trial; these
mental operations are the leftmost regions of the histograms in Figure
8.10. The bimodal shape of the histograms in the early trials indicates
that the user often requires two mental operations corresponding to a
single predicted M operation. For example, in Trial 7 the user engages
in 13 mental operations, as compared to the predicted seven operations.
(Since the total mental time in Trial 7 was equal to the predicted mental
time, the average duration of the actual mental operations must have
been only about half of i^.) With repetitive practice on the clause­
switching task, the user reduces the amount of mental time required by
reducing both the number and the duration of her mental operations.
Although the user’s mental time in Trial 7 is 104% of the predicted
mental time, the user reduced her mental time to 35% of the predicted
time by Trial 527. Also, the number of mental operations is reduced
from 13 in Trial 7 to 7 in Trial 527. However, even on Trial 527—her
best trial—the user still required mental operations, although they were
reduced to less than a half-second each.

Learning Results. With practice, the amount of mental preparation
time spent by the user declines. We should expect the user’s
performance in this experiment to improve according to the Power Law
of Practice (Chapter 2). The user’s execution times over the 1100 trials
are plotted in Figure 8.11 on log-log coordinates. The times approx­
imately follow the power law, although the data is noisy in the later
sessions. The predicted execution time is also shown. It can be seen that
the user’s performance corresponds to the model’s prediction early in the
first session, as was also evident in Figure 8.9. The user’s execution time

8.4. A FURTHER LOOK AT THE M OPERATOR 285

Figure 8 .11 . Learning curve of execution times for the
clause-switching task in Experiment 8B.
Each circle represents the mean of 20 trials. The solid line is the least-squares fit
to the Power Law of Practice. The dashed line shows the time predicted by the
Keystroke-Level Model. The predicted time changes because the user improved
her unit pointing time, ip (from 1.31 sec in Session 1 to .86 sec in Session 11).
According to the Power Law of Practice, the value of tp for each trial was

estimated by interpolating with a power function.

becomes faster than predicted by the end of the first session and
continues to get faster thereafter. Most of this improvement over the
predicted time is due to compression of the mental time required by the
user, as just discussed.

Conclusion. In Section 8.3, we established that the Keystroke-Level
Model is an accurate predictor of expert behavior under normal human-
computer interaction conditions, where there is a variety of tasks.
However, under the special conditions of this study, where an identical
task was repeated over and over, the user’s behavior became much better
than the model’s prediction: much of this improvement was due to
compressing mental time. In particular, the user’s observed mental
operations were more dispersed throughout her editing activity than the
description given by the M operator of the Keystroke-Level Model. For

a more detailed account of the user’s mental operations, we must turn to
a GOMS model.^

286 8. THE KEYSTROKE-LEVEL MODEL

8 .5 . SAMPLE APPLICATIONS

We have provided evidence for the Keystroke-Level Model in a wide
range of user-computer interactions. The time required for experts to
perform a unit task was predicted to within about 20% by a linear
function of a small set of operators. The power of the Keystroke-Level
Model lies in permitting prediction without having to do any measure­
ments of the actual situation and in expressing the prediction as a simple
algebraic expression. Its limitation lies in requiring that the physical
method be specified at the Keystroke Level and in being limited to error-
free expert behavior.

In this section, we illustrate how the Keystroke-Level Model can be
used, both to exploit its possibilities and to work within its restrictions.
The basic application—point prediction of specific interaction times—has
been sufficiently illustrated in the course of the experiment, where such
predictions were made for 32 different tasks involving 10 highly diverse
systems. We now show three further uses: (1) calculated benchmarks; (2)
parametric analysis, where predictions are expressed as functions of task
variables; and (3) sensitivity analysis, where changes in the predictions
are examined as a function of changes in either task or model parameters.

Calculated Benchmarks

The Keystroke-Level Model makes it possible to calculate the
equivalent of a benchmark for a system and, hence, to compare systems.
This has obvious cost advantages over having to obtain actual measure­
ments. More importantly, it permits benchmarking at design time, before
the system exists in a form that permits actual measurement The
experimental data from Section 8.3 can be used as a ready illustration.

Suppose we were to use the four tasks T1 to T4 as a benchmark for
the three text editors, p o e t , s o s , and b r a v o . Without performing

Q
For example, the GOMS Model K2 (see Figure 5.12) has mental operators that are

not only less aggregate than the M operator (see Section 8.2), but that also provide
functional labels for each mental operation.

experiments, we could use the Keystroke-Level Model to compute the
total benchmark time for each system. The computed benchmark times
come directly from Figure 8.5 by summing the calculated T^^ecute
to T4 for each editor, giving 59.8 sec for POET, 50.2 sec for SOS, and 26.9
sec for BRAVO. Taking the p o e t time (the slowest) as 100, we get ratios
of 100:84:45. As we might have expected, the two line-oriented editors
are relatively close to each other and the display editor is substantially
faster. Since we have also done the experiment, we can compare these
calculated benchmarks with the observed benchmarks (by summing the
observed T^^ecute Figure 8.5). This time we get 60.1 sec for p o e t ,
56.0 sec for SOS, and 27.6 sec for b r a v o , or experimentally determined
ratios of 100:93:46—essentially the same result The agreement between
the calculated and observed benchmark provides confidence only in using
the calculated benchmark in place of a measured one. It does not
provide evidence for the validity of the particular benchmark (tasks Tl-
T4) or for whether benchmarks are generally a valid way to compare
editors.

A similar analysis can be performed for the three graphics systems,
using tasks T5-T9 as the benchmark. The analysis predicts ratios of
100:93:46 for m a r k u p , d r a w , and s il , respectively; the observed ratios
were 100:97:58. The ratio between M a r k u p and d r a w is close enough
to raise the question of whether the predicted difference is too small to
be reliable. The calculated difference between m a r k u p and d r a w on the
benchmark is 59.0—54.7 = 4.3 sec or 7%. The model has an RM S
prediction error of 21% for a single unit task. Since this benchmark is
essentially an independent sum of five unit tasks, the RM S error should
theoretically be 5 = 9%. ̂ Thus, predictions for the two systems
are within the RM S error of the model, so the predicted difference
between them can hardly be reliable. The fact that the model correctly
predicted that d r a w was slightly faster than m a r k u p was lucky—there is
no reason to expect the Keystroke-Level Model to always make such fine
discriminations successfully.

Parametric Analysis

We can illustrate the use of the model for parametric analysis and
sensitivity analysis with the following example problem:

8.5. SAMPLE APPLICATIONS 287

 ̂ Recall in Section 8.3 that the actual RMS error for the graphics systems was 6%.

Problem. A user is typing text into the b r a v o editor and
detects a misspelled word n words back from the word he is
currently typing. He wants to correct the misspelled word
and resume typing. What methods will the user use for this
task? How long will these methods take? Is it possible to
design a better method for this task?

Let us compare two methods available in BRAVO for making the
correction. Since the methods may behave quite differently depending
on how far back the misspelled word is, we need to determine how long
each method takes as a function of n.

The first method for correcting the word makes use of the Backword
command (invoked by hitting the c o n t r o l key and then w), which
erases the last typed-in word:

288 8. THE KEYSTROKE-LEVEL MODEL

Method W (Backword):
Set up Backword command
Execute Backword n times
Type new word
Retype destroyed text

M K [CONTROL]

«((1/c)MK[Wj)
5.5K[word]
5.5(/i-1)K

^execute ~ + + (l + 6 .5n)t^

= 1.6 + 2.16/j sec.
(8.3)

The execution time is a function not only of n, but also of the way
the user chunks repeated keystrokes. When a user has to repeat a single-
keystroke command several times, like the Backword command in the
above method, he will chunk the sequence into small bursts separated by
pauses (the pauses represented as M operations), according to Rule 2 in
Figure 8.2. The average number of Backword commands chunked in a
burst is represented by the parameter c. We use this parameter in the
second step in the above method, where we count 1/c M operations for
each use of the Backword command. Since we do not know an exact
value for c, we assume the value c = 4 in our calculations (we return to
this decision in the next section). In the calculations we also assume an
average non-secretarial typist (t^ = .28 sec) and an average word-length
of 4.5 characters (excluding associated punctuation and spaces).

The second method for correcting the word is to exit type-in mode,
use the Replace command to correct the word, and then re-enter type-in
mode, so that type-in can be resumed:

8.5. SAMPLE APPLICATIONS 289

Method R (Replace):
Terminate type-in mode
Point to target word and select it
Call Replace command
Type new word
Terminate Replace command
Point to last input word and select it
Re-enter type-in mode

M K [ESC]

H[mouse] P[word] K[YELLOW]

H (keyboard] M K [R]

4.5K[word]
M K[ESC]

H[mouse] P[word] K[YELLOW]

H [keyboard] MK[I]

^execute ~

= 12.1 sec.

The predicted times for the two methods as a function of n are
plotted as the two solid lines in Figure 8.12a. As the figure shows, it is
faster to use the Backword method up until a certain crossover point

after which it becomes faster to use the Replace method. Under
the above assumptions, the crossover from the Backword method to the
Replace method is found to be at 4.9 words.

Now, let us consider providing a new method to improve performance
on this correction task. The new method will require implementing two
new commands in b r a v o . We wish to determine, before implementing
the commands, whether they are likely to be much of an improvement

The first new command is a Backskip command (c o n t r o l s), which
moves the text-insertion point back one word without erasing any text
The second new command is a Resume command (c o n t r o l r), which
moves the insertion point back to where it was when the first Backskip
command was invoked. These commands allow the Backskip method:

Method S (Backskip):
Set up Backskip command
Execute Backskip n -1 times
Call Backword command
Type new word
Call Resume command

M K [CONTROL]
(rt-1)((l/c)MK[S])
MK[W]

4.5K[w ord]

M 2K [C 0N T R 0L R]

^execute = (3 + (/I-1)/c)t^ + («-»-7.5)/^
= 5.8 .62n sec.

(8.4)

The predicted time for the Backskip method is plotted as the dashed
line in Figure 8.12a. With the addition of this method there are two

290 8. THE KEYSTROKE-LEVEL MODEL

Figure 8.12a. Execution time of three methods for the
misspelled-word task as a function of n .
Method W uses BRAVO’S Backword command, and Method R uses the Replace
command. Method S uses the proposed new Backskip command.

additional crossover points, and between it and the other two
methods. As can be seen, the Backskip method is faster than both of the
other methods between and in the range from 2.7 to 10.2
words. Thus, a brief analysis provides evidence that the proposed new
feature probably will be useful in the sense that it will be the fastest
method over a significant region of the task space.

Sensitivity Analysis

How sensitive are the calculations above to variations in the
parameters of the methods? The question of interest is whether, over
such variations, there remains a region in the task space in which the
Backskip method is the fastest. An important parameter is the user’s
typing speed How much does the crossover between the Backword
method and the Backskip method change as a function of typing speed?

n (words)

Figure 8.12b. Boundaries for the fastest method.
The space is divided into three regions; each region is labeled with the name of
the fastest method over that region.

Figure 8 .12c. Boundaries adjusted for different chunk sizes.
As in Figure 8.12b, each region is labeled by the fastest method over that region.
The crosshatched areas indicate the variability in the boundary between regions as
c is varied from c = 2 to c = 6.

291

292 8. THE KEYSTROKE-LEVEL MODEL

Setting Equation 8.3 equal to Equation 8.4 and solving for n as a
function of gives

'ws = « = 1.2 -f .43//,

The crossover point n^rs increases with typing speed (decreasing /^),
rising to = 6.6 words for the fastest typist (/^ = .08 sec). As n
increases, slow typists can be expected to switch from the old Backword
method (which involves more typing) to the new Backskip method
(which involves less typing, but more mental overhead) sooner than fast
typists.

We can plot the crossover boundary between the two methods in the
space of the two parameters: n (characterizing different tasks) and /^
(characterizing different users). The two boundaries of the new Backskip
method are plotted in Figure 8.126. These boundaries define the regions
in the parameter space where each method is fastest. The circles mark
the crossover points corresponding to the ones in Figure 8.12a (i.e., at
= .28 sec). There is a large region in the space that is dominated by the
new method. In fact, the new method is dominant for certain values of
n, no matter what /^ is. Thus our conclusion, that the new Backskip
method may be a useful method, is not sensitive to assumptions about
the particular typing speed of the users. (Actually, of course, the analysis
should take into account the relative frequencies of various points in the
parameter space; we have omitted this complication to simplify the
example.)

How sensitive are these conclusions to the value assumed for c, the
number of keystrokes per chunk? To find out, we re-derive the crossover
between the Backword and Backskip methods by setting Equation 8.3
equal to Equation 8.4 and solving for « as a function of both c and /^,
giving

nyys~ 1-2 + .49//^ —.24/c/^ ,

Although we do not know an exact value for c, we can be reasonably
confident that it will stay between 2 and 6. With /^ = .28 sec, the
crossover varies between 2.5 and 2.8 words as c varies between 2 and 6;
the crossoverpoint is not very sensitive to the value of c at this point.

The sensitivities of the various crossover points for other values of /^
can be assessed by replotting Figure 8.126 using the reasonable extreme

values of c. The two crossover boundaries for the Backskip method are
plotted in Figure 8.12c as crosshatched lines defined by setting c to 2 and
to 6 in the crossover equations. The diagram shows that the value of c
affects the boundary between the Backskip and Replace methods more
than the boundary between the Backskip and Backword methods, since c
is not involved in the Replace method. Small chunk sizes especially
penalize the Backskip method. The boundary between the Backskip and
Backword methods is not affected much by c, since the chunk size is
involved in both methods in exactly the same way. Overall, varying c
does not squeeze out the region for the new Backskip method; and our
basic conclusion—that the new method is a useful addition—still holds.

The sensitivity analyses above illustrate how the Keystroke-Level
Model can be used to evaluate design choices—even when many aspects
of the calculation are uncertain—for the principal conclusions are often
insensitive to many of the uncertainties.

8.6. SIMPLIFICATIONS OF THE MODEL 293

8.6 . SIMPLIFICATIONS OF THE MODEL

The question naturally arises as to whether further simplifications of
the Keystroke-Level Model might do reasonably well at predicting
execution time. One could (1) count only the number of keystrokes, (2)
count just the physical operators and prorate the time for mental activity,
or (3) use a single constant time for all operators. We show below that
such simplifications degrade accuracy. However, they provide useful
approximations where lower accuracy can be tolerated.

Keystrokes-Only Simplification

The first simplification is to consider only the keystrokes, in which
execution time is proportional to the number of keystrokes:

execute —

We separate out the system response times so as not to confound the
comparison of the various simplifications. The constant of propor­
tionality K should be distinguished from the typing speed The latter,
determined from standard typing tests, is the keystroke time in a copy­

typing task, whereas the former is the average time per keystroke in an
interaction task. Estimating the value of k from a least-squares fit of the
values of and the observed Tĝ êcuie Figure 8.5 gives k = .49
sec/keystroke. The RM S error is 49% (compared to 22% for the
Keystroke-Level Model). The statistics for comparing all the simplifi­
cations are presented in Figure 8.13. As can be seen, using keystrokes
only is substantially less accurate than using the full Keystroke-Level
Model. This simplification is inappropriate for tasks that are not
dominated by keystroking. For example, it only predicts about a third of
the observed time for the m a r k u p tasks, which are dominated by
pointing and drawing operations.

The keystrokes-only simplification is essentially the model previously
introduced in Figure 3.7 (Chapter 3). The above estimate of k is strongly
influenced by one outlying point in the data, T4-Poet (/j^ = 92).
Estimating k with this one point removed gives k = .60 sec, a value
close to the .57 sec estimate obtained in Chapter 3. T4-Poet is the only
task that requires any input-typing of text One obvious refinement of
the keystrokes-only simplification would be to distinguish two kinds
of keystrokes: mass input-typing (at sec/keystroke) vs. command-
language keying (at k sec/keystroke). For command-language keying, a
K of .60 sec is the more reasonable value.

The model of Embley, Lan, Leinbaugh, and Nagy (1978; see
also Embley and Nagy, 1981), though formally similar to our keystrokes-

294 8. THE KEYSTROKE-LEVEL MODEL

Model Variation Param eters RMS Error

Keystrokes Only K = .49 sec/keystroke .76 49%
Prorated Mental Time /i = 1.67 .66 45%
Constant Operator Time T = .43 sec/operator .85 34%

Keystroke-Level Model (See Figure 8.1) .90 22%

Figure 8 .13 . Comparison of the Keystroke-Level Model with
simplifications of the model.
The correlations are between the execution times predicted by each of the models
and the observed execution times from Figure 8.5. The RMS error is given as a
percentage of the observed execution time, which was 11.0 sec. (This is why the
RMS error for the Keystroke-Level Model is 22% here.) More useful values for the

K and T parameters are K = .60 sec and r = .49 sec.

only simplification, is conceptually distinct The Keystroke-Level Model
is based on the notion of a unit-task structure; the Embley et al. model is
based on system commands. The Keystroke-Level Model is restricted to
skilled expert behavior, whereas Embley et al. attempt to model all kinds
of users (essentially, by varying their versions of the parameters T̂ cquire
and k). Since they did not compare their model against empirical
performance data, we cannot directly compare our results to theirs. But
because of the similarities to the keystrokes-only simplification, Embley et
al.’s model might be expected to have about the same accuracy.

8.6. SIMPLIFICATIONS OF THE MODEL 295

Prorated-Mental-Time Simplification

According to the prorated-mental-time simplification, execution time
is the time required for the physical operations multiplied by a factor to
account for the mental time:

execute — M -t- Tp -F Tq) + T p i .

The idea is that the physical operations will require a certain average
overhead of mental activity. Thus, instead of trying to predict exactly
how many mental operations there are, we can do fairly well by just
using a multiplicative mental overhead constant, ¡i.

Using a least-squares analysis to determine ¡i from the sum of the
calculated times for the physical operations and from the observed values
of in Figure 8.5 gives fi = 1.67, signifying a 67% overhead for
mental activity. The RMS error is 45%.

Like the keystrokes-only simplification, this simplification is also less
accurate than the Keystroke-Level Model, as can be seen in Figure 8.13,
suggesting that the extra detail in the Keystroke-Level Model, involving
the explicit placements of the mental preparation operator M, is effective.

There is an interesting relation between these simplifications and the
rules for placing occurrences of M in the Keystroke-Level Model (Figure
8.2). The initial placement of M’s (by Rule 0) near certain K’s and P’s is
essentially an assumption that mental time is proportional to a subset of
the physical operators. If Rule 0 had specified all physical operators, it
would, by itself, have been equivalent to prorating mental time. If the
other physical operators (P, H, and D) had been ignored, this would have
been equivalent to counting keystrokes only. Thus, the deletion of the
M’s according to Rules 1 to 4 constitutes the way in which the

Keystroke-Level Model departs from these simplifications. The evidence
for the superiority of the Keystroke-Level Model presented in Figure
8.13 is also evidence that rules Rules 1 to 4 had a significant effect. The
contribution of each of the rules individually is significant, in the sense
that each one’s removal leads to a decrease in the accuracy of the
Keystroke-Level Model.

Constant-Operator-Time Simplification

According to this simplification, execution time is proportional to the
number of Keystroke-Level Model operations:

296 8. THE KEYSTROKE-LEVEL MODEL

execute

Support for this simplification comes from the statistical observation
(Wainer, 1976; Claude, 1972) that the accuracy of linear models is not
very sensitive to the differential weighting of the factors—equal weighting
does nearly as well as any other weighting. Thus, we disregard the
different operator times and use a single time t for all operators. Note
that the constant-operator-time simplification is formally similar to the
keystrokes-only simplification; the latter can be viewed as using as a
crude estimate of the total number of operators.

Estimating t by a least-squares fit of the data in Figure 8.5 gives t =
.43 sec/operator. The RM S error is 34%. (Removing the long typing
task, T4-POET, gives t = .49 sec/operator.)

The constant-operator-time simplification is more accurate than the
keystrokes-only simplification, affirming that taking into account oper­
ators other than K is useful. In fact, most of the action in the constant-
operator-time simplification (over the set of data in Figure 8.5, at least)
comes from counting only the K, P, and M operators. The constant-
operator-time simplification is still less accurate than the Keystroke-Level
Model, showing that the use of estimates of each operator time yields yet
another increment of accuracy.

In summary, all the simplifications presented in this section are less
accurate than the full Keystroke-Level Model. However, these simplifi­
cations are probably good enough for many practical applications,
especially for “back-of-the-envelope” calculations, where it is too much
trouble to worry about the subtleties of counting the M’s required by the
full Keystroke-Level Model.

8.7. CONCLUSIONS 297

8.7 . CONCLUSIONS

The GOMS analysis at the Keystroke Level has been refined into a
model of practical use, the Keystroke-Level Model. Only a few
operators—keystroke, poinL home, draw, a generic mental operator, and
a system response operator—are needed to describe methods in a wide
range of interactive systems. Heuristic rules are provided to predict
where the mental operations are needed.

The generic mental (M) operator of the model appears to be more
aggregate than users’ actual mental operations, although there is a close
correspondence between M’s and the actual mental time. With highly
repetitive tasks, users can reduce their mental time below the model’s
predictions.

The Keystroke-Level Model can be used to estimate the execution
time of a method for doing a task. In laboratory experiments, the model
was accurate to a standard error of 21% over a variety of different tasks
and systems. Applications of the model include point prediction,
calculated benchmarks, parametric analysis, and sensitivity analysis.

Simplifications of the Keystroke-Level Model—such as counting only
keystrokes, prorating mental time, or using a constant operator time—are
much less accurate at predicting execution time; but they do provide the
designer with greater ease of use at the expense of accuracy.

Appendix to Chapter 8:
METHODS FOR THE TASKS IN EXPERIMENT 8A

This Appendix gives the methods and their Keystroke-Level Model
encodings for all the task-system combinations used in Experiment 8A.
The notation is explained in Section 8.2. The following notes elaborate
on specific points:

(1) .3P Fractional coefficients indicate that certain
actions occurred less than 100% of the time.
For example, the order in which tasks are
actually done influences the necessity of
certain actions.

(2) OH The coefficient of zero indicates this action
does not occur in this particular task,
although it could in similar tasks.

(3) R(0) A response time of zero indicates that the
actual response time is absorbed in the
beginning of the subsequent task and
therefore is not added to the task time of the
current task.

(4) 7K A search string is assumed to average 7
characters.

(5) 5K Line numbers in the SOS editor are 5 digits
long.

(6) M18C This is a special operator taken from the
MTM predetermined time standards
(Maynard, 1971).

(7) 5K A label is assumed to average 4 characters.
When capitalized, its total number of
keystrokes is five.

Citations to the notes appear in the extreme right-hand column of the
method encodings.

298

APPENDIX: METHODS FOR TASKS 2 9 9

Task T1: Replace one 5-letter word with another
(one line from previous task).

Method for Task T1 -POET:
Jump to next line M K[LINEFEED]
Issue Substitute command M K[S]
Type new word 5 K [word]
Terminate new word M K [RETURN]
Type old word 5 K [word]
Terminate old word M K [RETURN]
Terminate command K [RETURN]

Method for Task T1 -SOS:
Issue Substitute command M K[S]
Type old word 5 K [word]
Terminate old word M K[ESC]
Type new word 5K[word]
Terminate new word M K[ESC]
Type line number 5K [number] (5)
Terminate line number M K[RETURN]

Method for Task T1 -BRAVO:
Reach for mouse H [mouse]
Point to word P[word]
Select word K [YELLOW]
Home on keyboard H [keyboard]
Issue Replace command M K[R]
Type new word 5 K [word]
Terminate type-in M K[ESC]
Wait for completion R(0) (3)

Task T2: Add a fifth letter to 4-letter word
(one line from previous task).

300 8. THE KEYSTROKE-LEVEL MODEL

Method for Task T2-POET:
Jump to next line
Issue Substitute command
Type new word
Terminate new word
Type old word
Terminate old word
Terminate command

M K[LF]
M K[S]
5 K [word]
M K [RETURN]
4 K [word]
M K[RETURN]
K [RETURN]

Method for Task T2-SOS:
Issue Substitute command M K[S]
Type old word 4K[word]
Terminate old word M K[ESC]
Type new word 5 K [word]
Terminate new word M K[ESC]
Type line number 5K [number] (5)
Terminate command M K [RETURN]

Method for Task T2-BRAVO:
Reach for mouse H [mouse]
Point to word P[word]
Select word K [YELLOW]
Issue Append command M K[A]
Home on keyboard H [keyboard]
Type new letter K [letter]
Terminate type-in M K[ESC]
Wait for completion R(0) (3)

Task T3: Delete a single line of text
(eight lines from previous task).

Method for Task T3-POET:
Indicate search string
Type search string
Terminate search string
Print line

M K [QUOTE]
7 K [string]
M K[QU0TE]
K [SLASH]

(4)

APPENDIX; METHODS FOR TASKS 3 0 1

Issue Delete command
Terminate command

M K[D]
K [RETURN]

Method for Task T3-SOS:
Issue Delete command M K[D]
Type line number 5K[number] (5)
Terminate command M K [RETURN]

Method for Task T3-BRAV0:
Reach for mouse H [mouse]
Point to line P[line]
Select line K[RED]
Issue Delete command M K[D]
Wait for completion R(0) (3)

Task T4: Move a 52-character sentence (on two lines)
to the end of its paragraph
(eight lines from previous task).

Method for Task T4-P0ET:
Delete sentence at current location

Delete part of sentence on first line
Indicate search string M K[QUOTE]
Type search string 7 K [string] (4)

Terminate search string M K [QUOTE]
Print line K [SLASH]
Issue Edit command M 2K[E RETURN]
Issue Search subcommand M 2K[CTRLS]
Type first letter of sentence 2K[SHIFT letter]
Delete rest of line M K[RETURN]

Delete part of sentence on second line
Jump to next line M K[LINEFEED]
Issue Edit command M 2K[E RETURN]
Issue Delete subcommand M 2K[CTRLY]
Type first letter of sentence 2K [SHIFT letter]
Save rest of line M 2K[CTRLZ]

302 8. THE KEYSTROKE-LEVEL MODEL

Retype sentence at new location
Indicate search string
Type search string
Terminate search string
Print line
Issue Append command
Type sentence
Terminate type-in

M K [QUOTE]
7 K [string]
M K [QUOTE]
K[SLASH]
M 2K[A RETURN]
52K[sentence]
M 2K[CTRLZ]

(4)

Method for Task T4-SOS:
Break out sentence onto its own lines

Break sentence out of first line
Issue Alter command M K[a]
Type line number 5K [number] (5)
Terminate line number M K[RETURN]
Issue Search subcommand M K[S]
Type first letter of sentence 2 K [SHIFT character]

Issue Insert subcommand M K[l]
Type line break K [RETURN]
Terminate subcommand M K[ESC]
Terminate command K[RETURN]

'ea/c sentence out of second line
Issue Alter command M K[A]
Type line number 5K[number] (5)
Terminate line number M K [RETURN]
Issue Search subcommand M K[S]
Type first letter of next sentence 2K[SHIFT character]
Issue Insert subcommand M K[l]
Type line break K[RETURN]
Terminate subcommand M K[ESC]
Terminate command K[RETURN]

sentence to new location
Issue Transfer command M K[T]
Specify new location 5K [number] (5)
Type separator K [COMMA]
Specify first line to be moved 5K[number] (5)
Type separator K[COLON]
Specify last line to be moved 5K [number] (5)
Terminate command M K [RETURN]

APPENDIX: METHODS FOR TASKS 303

Method for Task T4-BRAV0;
Delete sentence from current location

Reach for mouse H [mouse]
Point to beginning of sentence P[character]
Select beginning point K[RED]
Point to end of sentence P[character]
Select ending point K[BLUE]
Issue Delete command M K[D]
Wait for completion R(3.8)

Move sentence to new location
Point to new location P[character]
Select new location K[RED]
Issue Append-deleted-text command M 2K[AESC]
Wait for completion R(0) (3)

Task T5: Add a box (rectangle) to a diagram.

Method for Task T5-MARKUP:
Select drawing mode

Reach for mouse OH [mouse] (2)
Point to place for menu .6P[display] (1)
Display menu .6K[YELL0W-D0WN] (1)
Expand menu .3P[menu] (1)
Point to menu icon .6P[icon] (1)
Undisplay menu .6K[yellow-up] (1)

Draw rectangle
Point to corner of rectangle P [corner]
Begin drawing mode K[RED-D0WN]
Draw rectangle 0(4 ,24 .86)
Terminate drawing mode K[RED-UP]

Method for Task T5-DRAW:
Get into line-drawing mode

Begin Draw mode
Reach for mouse

.6(M K[ESC])
OH [mouse]

(1)
(2)

304 8. THE KEYSTROKE-LEVEL MODEL

Draw first side of rectangte
Point to corner and select
Point to next corner and select
Draw line

Draw second side of rectangle
Reselect current corner
Point to next corner and select
Draw line

Draw third side of rectangte
Reselect current corner
Point to next corner and select
Draw line

Draw fourth side of rectangte
Reselect current corner
Point to first corner and select
Draw line

P[corner] K[BLUE]
P[corner] K[BLUE]
M K[ESC]

M K[BLUE]
P[corner] K[BLUE]
M K[ESC]

M K[BLUE]
P[corner] K[BLUE]
M K[ESC]

M K[BLUE]
Pfcorner] K[BLUE]
M K[ESC]

Method for Task T5-SIL:
Reach for mouse
Point to corner and select
Point to opposite corner and select
Draw rectangle

.4H [mouse]
P[corner] K[RED]
Pfcorner] K[BLUE]
M 2K[CTRL B]

(1)

Task T6: Add a label (5 characters, first one capitalized)
to a box.

Method for Task T6-MARKUP:
Home on keyboard H[keyboard]

Type shift and label 5K [shift label] (7)

Terminate type-in and get mouse M H[mouse]
Point to location of label Pfiocation]

Paste label K [r e d]

Method for Task T6-DRAW:
Home on keyboard
Type shift and label

H [keyboard]
5K [SHIFT label] (7)

APPENDIX: METHODS FOR TASKS 305

Terminate type-in M K [RETURN]

Point to location of label P[display]

Paste label K[RED]

Method for Task T6-SIL:
Reach for mouse •4H [mouse] (1)
Point to location of label and select P[display] K[RED]

Home on keyboard H [keyboard]

Type shift and label 5K[SHIFT label] (7)

Task T7: Disconnect a 2-segment line from one box
(rectangle) and connect it to a different box.

Method for Task T7-MARKUP:
S e le c t d ra w in g m o d e

Reach for mouse 0H[mouse] (2)
Point to place for menu ■3P[display] (1)
Display menu •3K[YELL0W -D0W N] (1)
Expand menu .15P[m enu] (1)
Point to menu icon ■3P[icon] (1)
Undisplay menu •3K[YELL0W -UP] (1)

E ra s e tw o lin e s e g m e n ts

Point to end of line P[end]

Enter erase mode K [BLUE-DOWN]

Trace line segments D {2 ,5 .6 5)
Exit from erase mode K [BLUE-UP]

R e d ra w d a m a g e d s e g m e n ts

Point to end of segment 1 P[end]
Enter drawing mode K [RED-DOWN]

Redraw segment D (1 ,1 .1 3)
Exit from drawing mode K [RED-UP]

Point to end of segment 2 P[end]

Enter drawing mode K [RED-DOWN]

Redraw segment D (1 ,1 .1 3)
Exit from drawing mode K [RED-UP]

306 8. THE KEYSTROKE-LEVEL MODEL

Draw segments in new location
Point to end of segment
Enter drawing mode
Draw segment
Exit from drawing mode

P[end]
K(R ED-DO W N)

0 (2 ,5 .6 5)

K [RED-UP]

Method for Task T7-DRAW:
Select Delete command mode

Reach for mouse OH [mouse] (2)
Point to Delete icon and select P[icon] K[RED]

Delete line segments
Point to line segment 1 P[line]
Delete line K[RED]

Point to line segment 2 P[line]
Delete line K[RED]

Redraw damaged line segments
Enter drawing mode M K[ESC]

Point to end of line and select P[end] K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment
Draw line segments in new location

M K[ESC]

Point to end of line and select P[end] K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment 1 M K[ESC]

Reselect end of segment 1 M K[BLUE]

Point to end of line and select P[end] K[BLUE]

Draw line segment 2 M K[ESC]

Method for Task T7-SIL:
Delete line segments (one by shortening)

Reach for mouse OH [mouse] (2)
Point to segment and select P[segment] K[BLUE]

Point to new endpoint P[location]
Shorten segment 2K[CTRL RED]

Delete other segment
Draw line segments in new location

M 2K[CTRL D]

Point to end of new segment P[end]
Select K[RED]

Point to other end of new segment P[segment]

APPENDIX: METHODS FOR TASKS 307

Draw segment
Point to end of second segment
Draw segment

K [YELLOW]

P[segment]
K [YELLOW]

Task T8: Delete a box (rectangle) with an overlapped
line to another part of the diagram,
keeping the overlapped line.

Method for Task T8-MARKUP:
Select area deletion mode

Reach for mouse OH [mouse] (2)

Point to place for menu P [display]
Display menu K [YELLOW -DOWN]

Expand menu .5P[menu] (1)
Point to menu icon P[icon]
Undisplay menu K [YELLOW-UP]

Erase rectangle
Point to corner of area P[corner]
Enter erase mode K [BLUE-DOWN]

Point to opposite corner of area P[corner]
Erase area K[BLUE-UP]

Select drawing mode
Point to place for menu P [display]
Display menu K [y e l l o w -d o w n]

Expand menu .5P[menu] (1)

Point to menu icon P[icon]
Undisplay menu K [YELLOW-UP]

Redraw damaged line segment
Point to end of segment P[end]
Enter drawing mode K [r e d -d o w n]

Draw segment D(1,3.96)
Exit from drawing mode K[R ED-UP]

Method for Task T8-DRA W:
Reach for mouse OH [mouse] (2)

Point to area-select icon and select P[icon] K [R ED]

Point to corner of area P[corner]

308 8. THE KEYSTROKE-LEVEL MODEL

Enter area selection mode K [r e d -d o w n]

Point to opposite corner of area Pfcorner]
Exit from area selection mode K[RED-UP]
Issue Delete command M 2K[CTRL D]

Method for Task T8-SIL:
Reach for mouse .7H[mouse] (1)
Point to corner of area and select P[corner] K[RED]

Point to opposite corner of area Pfcorner]
Select area 2K[CTRL BLUE]

Issue Delete command M 2K[CTRL D]

Task T9: Copy a box (rectangle) to another part of the
diagram.

Method for Task T9-MARKUP:
Select area deletion mode

Reach for mouse OH [mouse] (2)
Point to place for menu P [display]
Display menu K [YELLOW-DOWN]

Expand menu .5P[menu] (1)
Point to menu icon P[icon]
Undisplay menu K [YELLOW-UP]

Delete rectangle and save in buffer
Point to corner of area Pfcorner]
Enter erase mode KfBLUE-DOWN]

Point to opposite corner of area Pfcorner]
Erase area K [BLUE-UP]

Wait for deletion R(1.1)
Restore deleted rectangle from buffer

Enter copy-from-buffer command M K [RED-DOWN]
Point to location P[display]
Copy buffer to location K [RED-UP]

Wait for completion R(1.2)

APPENDIX: METHODS FOR TASKS 309

Copy rectangle to new location
Enter copy-from-buffer command
Point to new location
Copy buffer to location
Wait for figure to be pasted

M K [RED-DOWN]

P[display]

K [RED-UP]

R(1.2)

Method for Task T9-DRAW:
Select rectangle

Reach for mouse
Point to area-select icon and select
Point to corner of area
Enter area selection mode
Point to opposite corner of area
Exit from area selection mode

Execute copy command
Point to copy icon and select
Point to old location and select
Point to new location and select

OH [mouse]
■7(P[icon] K[RED])

P[corner]
K[RED-D0WN]
P[corner]
K [RED-UP]

P[icon] K[RED]

P[location] K[BLUE]

P[location] K[BLUE]

(2)
(1)

Method for Task T9-SIL:
Reach for mouse
Point to corner of area and select
Point to opposite corner of area
Select area
Point to new location
Issue Copy command

.3H[mouse]
P[corner] K[RED]
P[corner]
2 K [CTRL BLUE]
P[location]
2 K [CTRL YELLOW]

(1)

Task T 10: Phone the computer and login with a
4-character login name and a 6-character
password.

Method for Task T10-TENEX:
Dial up computer on phone

Press 8 digits on phone 8K[number]
Wait for computer tone R(1.8)
Put phone on terminal cradle M18C(.7) (6)
Wait for carrier signal light R(.9)

310 8. THE KEYSTROKE-LEVEL MODEL

Login to computer
Type login prompt
Wait for system greeting
Issue Login command
Type login name
Terminate name
Type password
Terminate password
Type account number
Terminate login
Wait for completion of login

M 2 K [c t r l c]

R(5.9)
4 K [L 0 G SPACE]

4 K [name]
K [SPACE]

6K [password]
K [SPACE]
K[1]
M K[RETURN]

R(7.3)

T a s k T i l : Transfer a file to a file server (5-character
name), renaming the file from a 4-character
filename to a 10-character filename.

Method for Task T11 -TENEX:
Connect to file server

Start up FTP program 4K[F T P SPACE]

Specify file server 5 K [name]
Terminate command M K [RETURN]
Wait for connection R(4.1)

Transfer and rename file
Issue Store command M 3 K [S T SPACE]

Type old filename 4K[name]
Terminate filename M K[SPACE]

Type new filename 10K[name]
Terminate command M K [RETURN]

Wait for completion R(1.4)
Close connection

Issue Quit command M 2 K [Q RETURN]

Wait for connection to close R(4.6)

APPENDIX; METHODS FOR TASKS 3 1 1

Task T 12: Connect from one computer to another
computer (5-character name).

Method for Task T12 TENEX:
Start up Chat program
Type computer name
Terminate command
Wait for connection

5 K [C H A T S P A C E]

5K[name]
M K[RETURN]

R(8.3)

Task T13: Display a subset of files (with a 10-character
specification) along with their file lengths.

Method for Task T13-TENEX:
Issue Directory command 4K[D I R SPACE]

Specify files 10K[name]
Call for subcommand mode M K [COMMA]

Enter subcommand mode K [RETURN]
Issue Length subcommand 2K[LE]
Terminate subcommand M K [RETURN]
Terminate command K [RETURN]
Wait for completion R(.5)

Task T 14: Delete all the old versions of a subset of files
(with a 10-character specification).

Method for Task T14-TENEX:
Issue Delver command 6K[d elver]
Terminate command M K [r e t u r n]

Answer first system question K[y]
Answer second system question K[y]
Specify files 10K[name]
Terminate file specification M K [r e t u r n]

Wait for completion R(.4)

http://taylorandfrancis.com

9. The Unit-Task Level of Analysis
9 .1 . CA SE S T U D Y O F A P A G E -LA Y O U T SYSTEM

Analysis of the Task

Analysis of the System

Unit-Task-Level Calculation

9 .2 . C H E C K S ON THE U N IT -TA S K -LE V E L A N A LY S IS

Experimental Check

Interaction Among Unit Tasks

Functional-Level Calculation
9 .3 . C O N C LU S IO N S

The Keystroke-Level Model presented in Chapter 8 requires that it be
possible to specify methods at the Keystroke Level of analysis. This
requirement places the conceptual stages of design, where this level of
detail is inappropriate, outside the range of the model’s applicability. Yet
it is precisely during conceptual design that important decisions on the
basic configuration of a system must often be made. These decisions
could be aided by approximate estimates of the time cost of various
design alternatives, since the designer’s concern is with a system’s gross
functional capabilities rather than with the details of which buttons to
press. In this chapter we develop a technique of GOMS analysis at the
Lfnit-Task Level, which is appropriate for this stage of system analysis.

The basis of the technique we describe is the unit task. We have seen
that users tend to break a large task into a series of unit tasks within
which behavior is highly integrated and between which dependencies are
minimal. This quasi-independence of unit tasks means that their effects
are approximately additive. Estimates of task time can therefore be ob­
tained by enumerating unit tasks and estimating both their frequencies
and duration. The total time for a task can be found by multiplying the
total number of unit tasks by the time per unit task. This is, essentially,
the GOMS Model LIT.

313

9.1 . CASE STUDY OF A PAGE-LAYOUT SYSTEM

Problem. A company is contemplating the development of
a computer-based system for page layout of journal articles
in the style of the Journal Cognitive Psychology. The
proposed system would assemble the elements of a
document from different on-line files into a single file
embodying the laid-out pages. Input files include a file of
the main text (the body of the document), a file of figures,
a file of figure captions, and a file of footnotes. The input
text files are assumed to have been created with simple
text-entry systems incapable of specifying font and format
information. Thus, the task includes: (1) positioning and
formatting the text, (2) setting various pieces of text into the
correct fonts, and (3) numbering pages, section headings,
figures, and footnotes. In order to assess the economics of
the proposed system, the company’s management needs to
know the average time it will take to lay out a page with
the proposed system. Since the system’s interface has not
yet been designed, the estimate cannot depend on details of
its user interface.

In order to calculate the time to lay out a page by the Unit-Task-
Level analysis, we need to first identify the unit tasks involved by
analyzing the requirements of the task and the properties of the proposed
system.

314 9. THE UNIT-TASK LEVEL OF ANALYSIS

Analysis of the Task

What are the possible unit tasks? The simplest way to enumerate
them is to consider the functions and objects involved in the page-layout
task. The types of document objects are text (including both large bodies
and small segments), headings, figures, figure captions, footnotes, and
finally pages. Document objects must be loaded from the input files into
the workspace where the pages will be laid out. Once loaded, the objects
must be positioned on the page, the font must be set for various text
objects, and some objects must be numbered. The set of all possible unit
tasks can be generated by applying all the different functions to all the
different object types, thus forming the array, shown in Figure 9.1.

9.1. CASE STUDY OF A PAGE-LAYOUT SYSTEM 315

P a g e s

H e a d in g s

T e x t

F ig u re s

C a p t io n s

F o o tn o te s

L o a d in g ----------- P o s it io n in g ------------- S e tt in g F o n ts N u m b e r in g

LOAD- POS-VERT- POS-HORIZ- NUMBER-
PAGE(R) PAGE PAGE PAGE

LOAD- ^ POS-VERT- POS-HORIZ- SET-FONT­ NUMBER­
HEADING (R) HEADING HEADING HEADING HEADING

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
TEXT (R) TEXT TEXT TEXT TEXT

LOAD- POS-VERT- POS-HORIZ-
FIGURE (R) FIGURE (R) FIGURE(R)

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
CAPTION (R) CAPTION(R) CAPTION(R) CAPTION CAPTION

LOAD- POS-VERT- POS-HORIZ- SET-FONT- NUMBER-
FOOTNOTE (R) FOOTNOTE (R) FOOTNOTE (R) FOOTNOTE FOOTNOTE

Figure 9 .1. Array of all possible unit tasks for the page-
layout task.
The vertical columns of the array represent the functions involved In the page-
layout task, and the horizontal rows represent the document objects to which the
functions are applied. The R ’s indicate the unit tasks that Involve a significant
system response time.

It is assumed that the system has sufficient functional capability to
allow each of the tasks in the array to be done by the user as a single
unit task. It is assumed further that there is a simple method for loading
each document object from its input file to the page-layout workspace so
that LOAD-FIGURE, for example, is a single unit task. It is also assumed
that positioning an object on a page, because it must be done vertically
and horizontally, requires two unit tasks, p o s -v e r t -f ig u r e and p o s -
HORiz-FiGURE. Not all Combinations of functions applied to document
objects make sensible unit tasks. For example, it makes no sense to set
the font of a figure, since a figure is not a piece of text; consequently,
there is no s e t -f o n t -f ig u r e unit task.

In the overall task of laying out a document, unit tasks are not
performed in a random sequence. Rather, they are grouped together to
accomplish higher-level goals, which we informally call task groups. For
example, in laying out a figure, the figure will be loaded and positioned,
its caption will be loaded and positioned, the caption font will be set, and
the caption and the figure callout in the text will be numbered. All these
tasks are grouped together under the task group p r o c e s s -f ig u r e .
Laying out a page consists of seven such task groups—setting up the new
page; processing the headings, the figures, the footnotes, and the refer-

3 1 6 9. THE UNIT-TASK LEVEL OF ANALYSIS

Task Groups

S a m p le A r t ic le

N, ^3

1.00 1.00 1.00 1.00 1.00

.68 1.88 1.36 .58 1.12

.29 .34 .22 .41 .24

.13 .18 .18 .25 .18

2.32 2.62 3.82 3 .7 5 3 .13

1.26 5.91 4.27 7 .50 4.42

3 .03 1.34 1.09 .25 1.43

PROCESS-NEW-PAGE

PROCESS-HEADING

PROCESS-FIGURE
PROCESS-FOOTNOTE

PROCESS-INDENTATION

PROCESS-TEXT-FONT

PROCESS-REFERENCE

Figure 9 .2. Frequency of the task groups per page from four
sample articles.
The sample articles contained from 12 to 32 pages each. The frequencies of the
task groups in the four articles are given in columns to N̂ . The Njq for each
task group is the average frequency over all four articles.

ences; formatting indented paragraphs; and setting the font (usually
italics) for various pieces of text—which are listed in Figure 9.2. It is
most convenient to carry out the analysis of the page-layout task in terms
of these task groups.

The average time to lay out a page depends on the frequency with
which the various task groups need to be performed, that is, on the
ecology of printed pages. To estimate the frequency of the task groups, a
small sample of four articles was taken from the journal Cognitive
Psychology and the number of task groups needed to lay out each article
was counted. The frequencies of task groups per page are shown in
Figure 9.2. The average frequencies of the four sample articles provide
an estimate of the ecological frequency for each task group.

Analysis of the System

In the analysis of the task so far, only general assumptions have been
made about features of the layout system, assumptions that would hold
over the whole class of layout systems under consideration. In order to
proceed further with the analysis, it is necessary to postulate more
specific system features: Is it necessary for the user to number each page
manually? Need the user manually indent each paragraph? In the

9.1. CASE STUDY OF A PAGE-LAYOUT SYSTEM 3 1 7

present problem, we do not know the answers to these questions and
therefore must make assumptions. In order to understand the effects of
these assumptions, we examine two very different layout systems; a
Manual System, in which the user has to do most of the layout steps
explicitly, and an Automatic System, which does many of these steps for
the user. We record explicitly the assumptions in the analysis so that
they can be later refined or corrected as more information about the
system becomes available.

The first step in following this strategy is to define the task groups by
specifying their unit-task constituents. The unit tasks for each task group
in the Manual System are shown in Figure 9.3. The decisions about
what unit tasks are required for the task groups make clear many
assumptions about the system. The assumptions about the Manual
System are listed in Figure 9.4, and are indexed in Figure 9.3 to the unit
task decisions they affect For example, assumption A2, that the user
must explicitly call for page, heading, figure, and footnote numbers to be
placed, affects the n u m b e r -pa g e , n u m b e r -h e a d in g , n u m b e r -c a p t io n ,
NUMBER-TEXT, and NUMBER-FOOTNOTE unit tasks, as indicated by the
indexing in Figure 9.3.

Unit tasks required by the Automatic System are specified in exactly
the same way in Figure 9.5 and Figure 9.6. The Automatic System
shares the assumptions of the Manual System, with the exception of
assumptions A2 and A5, and the addition of assumptions A9 to A12
(compare Figure 9.4 and Figure 9.6). For example, substituting assump­
tion A9 for A2 means that the n u m b e r -pag e unit task is not required in
the PROCESS-NEW-PAGE task group for the Automatic System. In all,
many fewer unit tasks are required in the Automatic System.

We must also make assumptions about the computing technology for
the layout system. Here we assume that the layout system will reside on
a small, personal computer with limited main memory and a large disk.
Experiences with similar systems, such as the BRAVO editor, suggest that
many of the functions of the layout system will probably require
significant time for the system to carry ou t For example, locating a file
on disk, loading the material from the file into main memory, and
displaying the material might take a few seconds. Since the response
time of the system could be as long as a unit-task time, we need to keep
track of the number of significant system responses, as well as of unit
tasks, in our calculation. In Figure 9.1 we noted (with an r) the unit
tasks requiring a significant response time; those unit tasks are also
marked in Figure 9.3 and Figure 9.5.

Task Groups Unit Tasks R’S Assumptions

PROCESS-NEW-PAGE
LOAD-PAGE R A1
NUMBER-PAGE A2

PROCESS-HEADING A3
SET-FONT-HEADING A4
POS-VERT-HEADING A5
PQS-HORIZ-HEADING AS
NUMBER-HEADING A2

PROCESS-FIGURE A6
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R A7
LOAD-CAPTION R
POS-VERT-CAPTION R
POS-HORIZ-CAPTION R A7
SET-FONT-CAPTION A4
NUMBER-CAPTION A2
NUMBER-TEXT (callout in text) A2

PROCESS-FOOTNOTE A6
LOAD-FOOTNOTE R
POS-VERT-FOOTNOTE R
SET- FONT- FOOTNOTE A4
NUMBER-FOOTNOTE A2
NUMBER-TEXT (callout in text) A2

PROCESS-INDENTATION
POS-HORIZ-TEXT A8

PROCESS-TEXT-FONT
SET-FONT-TEXT A4

PROCESS-REFERENCE A3
SET-FONT-TEXT (title italic) A4
SET-FONT-TEXT (volume no. bold) A4

Figure 9 .3. Unit-Task-Level definitions of the task groups
for the Manual System.
T h e R ’s colum n ind icates w hich unit tasks involve a significant system response

tim e (see F igure 9 .1). T he num bered assum ptions are listed in F igure 9.4.

318

9.1. CASE STUDY OF A PAGE-LAYOUT SYSTEM 3 1 9

A1 A new page fram e is initialized with m argins set and just enough

text loaded autom atically from the text file to fill the fram e.

A2 The system keeps track of all num bers (pages, headings, figures,
footnotes), but the user must explicitly call for them to be placed.

A3 H eadings and references are Included in the text file and thus need

not be loaded separately.

A4 No fonts are set in the text, footnote, caption, or re ference files;
they must be set explicitly during page layout.

A5 Headings must be positioned manually.

A6 W hen figures and footnotes are placed, the text body Is

autom atically adjusted and the d isplaced text is autom atically

returned to the text file.

A7 F igures can go next to each other and thus need to be explicitly

positioned horizontally.

A8 Indented paragraphs need to be positioned explicitly.

Figure 9.4. Specific assumptions about the Manual System.
S e e F igure 9 .3 fo r w hich unit tasks a re a ffected by each assum ption.

Having enumerated the unit tasks and system responses, we need a
reasonable estimate of the amount of time required by each of these.
The unit task time is best obtained from existing data on systems as
similar as possible to the proposed layout system. The system closest to
the envisioned layout system is the display-based b r a v o editor, which
was measured in Chapter 3. The measured error-free unit-task time from
Figure 3.6 is 10.1 sec, which we round to 10 sec per unit task. (The
numbers are rounded off to emphasize the rough nature of this analysis.)

The times obtained from Chapter 3 are based on tasks not requiring
any significant amount of system response time. Since we assume that
system response time will be significant in the page-layout environment,
it is useful to partition the time for a unit task into two parts; the user’s
working time and the system’s response time (the latter being
optional for any particular unit task). (We also partitioned the unit task
this way in Section 8.6.) Thus, the 10 sec estimate above is for

In order to obtain estimates of system response time, informal empir­
ical measurements were made on several readily available display-based

320 9. THE UNIT-TASK LEVEL OF ANALYSIS

T a s k G ro u p s U n it T a s k s R ’S A s s u m p tio n s

PROCESS-NEW-PAGE
LOAD-PAGE R A1, A9

PROCESS-HEADING A3
NUMBER-HEADING AID

PROCESS-FIGURE A6
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R A7
LOAD-CAPTION R A l l
NUMBER-TEXT (callout in text) A2

PROCESS-FOOTNOTE A6
LOAD-FOOTNOTE R A12
NUMBER-TEXT (callout in text) A2

PROCESS-INDENTATION
POS-HORIZ-TEXT A8

PROCESS-TEXT-FONT
SET-FONT-TEXT A4

P ROCESS REFERENCE A3
SET-FONT-TEXT (title italic) A4
SET-FONT-TEXT (volume no. bold) A4

Figure 9 .5. Unit-Task-Level definitions of the task groups
for the Automatic System.
T h e R ’s colum n ind icates w hich unit tasks involve a s ignificant system response

tim e (see F igure 9 .1). T h e num bered assum ptions a re listed in F igure 9.6.

systems. The times to load a file of texL to move text on the screen, and
to load and move various sorts of pictures were measured. Whereas the
extremes of these times ranged around 2 sec an the low end and up to
425 sec on the high end, a large number clustered around 6 sec per
system response. As a working estimate, we use a constant 6 sec for the
system response time

9.1. CASE STUDY OF A PAGE-LAYOUT SYSTEM 3 2 1

A1 A new page fram e is initialized with m argins set and just enough

text loaded autom atically from the text file to fill the fram e.

A3 H eadings and references are Included in the text file and thus need

not be loaded separately.

A4 No fonts are set in the text, footnote, caption, or re ference files;
they must be set explicitly during page layout.

A6 W hen figures and footnotes are placed, the text body Is
autom atically adjusted and the d isplaced text is autom atically

returned to the text file.

A7 Figures can go next to each other and thus need to be explicitly

positioned horizontally.

A8 Indented paragraphs need to be positioned explicitly.

A9 Page num bers are autom atically p laced w hen a new page fram e Is

loaded.

A 10 A heading Is autom atically form atted (position and font) by just
giving the type of the heading.

A 1 1 W hen a caption is loaded. It Is autom atically positioned under the

figure, its font set, and a num ber given.

A 12 W hen a footnote is loaded, it is autom atically positioned at the

bottom of the page and num bered.

Figure 9.6. Specific assumptions about the Automatic
System.
S ee F igure 9 .5 for which unit tasks are affected by each assum ption.

Unit-Task-Level Calculation

The necessary pieces have now been gathered to do the calculation.
The task group time per page is:

^TG ~ ^TG •
(9.1)

The number of unit tasks in the task group is n^i- and the number of
system responses is n^, both taken from Figure 9.3 and Figure 9.5. Thus,
'^UT̂ w working time in the task group, and is the total
response time. N j-q (taken from Figure 9.2) is the frequency with which
each task group occurs per page. And T^q is the total task group time
per page.

Tire total error-free time to lay out a page is the sum of the Tj q S
plus a correction to account for the likely amount of errors. In
Experiment 5C (Figure 5.18), we found that the user spent 25% of her
time handling errors with the poet editor. Thus we charge 25% overhead
to account for errors in the page-layout task.

The calculation of the page-layout time for both the Manual System
and the Automatic System is given in Figure 9.7. The resulting
prediction is that it takes 270 sec (about 4.5 minutes) to lay out a page
with the Manual System, with time being distributed fairly evenly over
all the task groups. Surprisingly, the time required by the Manual
System is about half as long as it would take an average typist (60
words/minute) to type in a full page of text (550 words). The Automatic
System is predicted to take 192 sec per page, about 80 sec per page faster
than the Manual System, with most of this improvement lying in the
PROCESS-HEADING and PROCESS-FIGURE task groups.

322 9. THE UNIT-TASK LEVEL OF ANALYSIS

9.2 . CHECKS ON THE UNIT-TASK-LEVEL ANALYSIS

Many assumptions about the page-layout task were made to keep the
Unit-Task-Level analysis simple. Some of the assumptions and conse­
quences of their being wrong are as follows:

(1) Performance of the page-layout task was assumed to consist of
a string of independent unit tasks as we have defined them.
It is possible that we have ignored some dominant global
feature of the layout task. For example, the complexity of
managing all the files might require significant planning time.

(2) The task analysis for the page-layout task was very approx­
imate; it assumed that the task groups were simple linear
sequences of unit tasks. Real user behavior in this task would
be substantially more conditional and variable. This variabil-

MANUAL SYSTEM

Task groups ^U T ^ T G
T̂

T G %T

PROCESS-NEW-PAGE 2 1 1 .0 0 2 6 .0 12%

PROCESS-HEADING 4 0 1 .1 2 4 4 .8 2 1 %

PROCESS-FIGURE 9 6 .24 3 0 .2 14%

PROCESS-FOOTNOTE 5 2 .1 8 1 1 .2 5%

PROCESS-INDENTATION 1 0 3 .1 3 3 1 .3 1 5%

PROCESS-TEXT-FONT 1 0 4 .4 2 4 4 .2 2 1 %

PROCESS-REFERENCE 2 0 1 .4 3 2 8 .6 1 3%

= 1 0 .0 s e c S u m o f tim es = 2 1 6
tf̂ = 6 .0 se c 2 5 % e rro r tim e = 5 4

T o ta l tim e = 2 7 0 s ec

AUTOMATIC SYSTEM

Task groups "ur ^ T G ^ T G %T

PROCESS-NEW-PAGE 1 1 1 .0 0 1 6 .0 10%

PROCESS-HEADING 1 0 1 .1 2 1 1 .2 7%

PROCESS-FIGURE 5 4 .24 1 7 .8 12%

PROCESS-FOOTNOTE 2 1 .1 8 4 .7 3 %

PROCESS-INDENTATION 1 0 3 .1 3 3 1 .3 2 0 %

PROCESS-TEXT-FONT 1 0 4 .4 2 4 4 .2 2 9 %

PROCESS-REFERENCE 2 0 1 .4 3 2 8 .6 19%

= 1 0 .0 s e c S u m of tim es - 1 54

= 6 .0 s e c 2 5 % e rro r tim e = 3 8

T o ta l tim e = 1 9 2 s e c

Figure 9 .7. Unit-Task-Level calculation of the page-layout
time for the Manual System and the Automatic System.
T h e f i j j ’s and n̂ 's a re counted from Figure 9 .3 and F igure 9 .5 , and the

are taken from F igure 9.2 . Tjq is ca lcu lated from Form ula 9

p ercentage of total tim e taken by each task group.

%T is the

323

ity could require the user to spend substantial time making
decisions.

(3) The Unit-Task-Level analysis does not deal with errors
directly; it only uses a multiplicative factor for error. Thus, it
ignores the possibility that large errors, even though they
occur with relatively low frequency, could dominate the page-
layout task.

(4) The analysis assumed a particular skill level for the user.
From Chapter 3 we know that performance time can vary by
up to a factor of three in text-editing tasks, even for expert
users. We might expect even greater user variance in the
page-layout task, since it is more complex.

(5) The analysis assumed a particular kind of interface design for
the page-layout system. Performance can be greatly affected
by the functionality and interface of the system. Although we
made the specific assumptions about the system explicit, the
actual layout system could be quite different

(6) Finally, the analysis assumed a particular complexity of pages
to be laid ou t Again, although our assumptions were made
explicit the actual layout task could involve substantially
different kinds of pages.

Many of these assumptions could be checked by sensitivity analyses
on the parameters of Formula 9.1 (such analyses have been illustrated in
Chapter 4 and Chapter 8). For example, the assumption about skill level
of the user would mostly affect the parameter

In the remainder of this section we concentrate on the assumption of
the independence of unit tasks. First, we check this assumption empir­
ically by observing a user in a simulated layout task. (This also provides
a crude check for the effect of conditional methods and large errors.)
Then, we attack the independence assumption analytically by pushing the
Unit-Task-Level analysis to a finer level of detail.

324 9. THE UNIT-TASK LEVEL OF ANALYSIS

Experimental Check

As a check on the assumptions of the foregoing analysis, an analogue
of the layout system was constructed using the bra vo editor, in which
the user performed a task approximately equivalent to the p r o c e s s -
f ig u r e task. The procedure involved loading a small text file, simulating

a page, which sometimes contained a “Figure here” mark; the user was
to:

—search for a “Figure here” mark and (if there was one)
get the figure identifier,

—use the identifier to load a file containing the “figure”
(simulated as an array of characters) and to load a
caption,

—check whether the caption went with the figure,
—move the figure, if it occurred in the middle of a para­

graph, to the front of the paragraph,
—make sure there were two blank lines preceding the

figure, two blank lines following the caption, and one
blank line between the figure and the caption, and

—edit the caption to conform to the numbering style.

Most of the steps of this procedure are conditional, so there is not a fixed
sequence of unit tasks for each simulated process-figure.

An expert b r a v o user performed this analogue procedure six times.
Each trial consisted of “laying out” seven “pages,” of which four pages
had “figures” to be processed. The user’s performance improved (by a
factor of three) over the first three trials, but leveled off in the last three
trials, indicating a certain amount of gained expertise in the analogue
task.

For the page-layout problem, we are interested in the performance of
an expert user. Accordingly, we need only consider data from the last
trial, when the user had had enough practice to become expert in the
analogue task. The user’s behavior was generally in accord with the anal­
ysis given. His performance consisted entirely of unit tasks of the type
we have predicted and included no non-routine errors. The user
averaged 8.6 sec per unit task on the last trial—14% less than the 10 sec
per unit task estimated by the Unit-Task-Level analysis. Although this
result is within our expected prediction error, it may suggest that some
interaction occurs among the unit tasks in this context that allows unit
tasks to be done faster than in a text-editing context.

Interaction Among Unit Tasks

9.2. CHECKS ON THE UNIT-TASK LEVEL ANALYSIS 3 2 5

The Unit-Task Level of analysis assumes that the time to perform a
unit task is independent of the surrounding unit tasks. There is surely
some level of detail at which this is no longer the case, especially for unit

tasks within a well-integrated task group. We can check how much the
independence assumption affects our result by carrying the analysis down
one level of detail to the Functional Level, discussed in Chapter 5.

Recall from Chapter 5 that a unit task is composed of four operations
at the Functional Level, which we may for convenience denote with
single letter symbols:

326 9. THE UNIT-TASK LEVEL OF ANALYSIS

Acquire the unit task.
Locate the objects of the task.
Make the change specified in the task.
Verify the change.

A
L
C
V

If there were a system response R, it would probably occur after the C.
But since we have already factored out the response time in the Unit-
Task-Level analysis in Section 9.1, we may ignore R operators here.

An example is the pos-vert-heading unit task, in which the user
adjusts the vertical spacing around a heading. The Functional-Level
operations for this unit task considered in isolation would be:

POS-VERT-HEADING =
Determine the heading needs spacing. A
Point to the heading. L
Insert space in front of the heading. C
Insert space below the heading. C
Verify that the spacing is correct V

However, consider what this unit task would be like were it to occur in
the middle of the highly integrated task group, process-heading:

SET-FONT-HEADING =
Detect that the heading needs alteration. A
Point to the heading. L
Change the font of the heading. C

POS-VERT-HEADING =
Insert space in front of the heading. C
Insert space below the heading. C

POS-HORIZ-HEADING =
Center the heading. C
Verify position of heading. V

9.2. CHECKS ON THE UNIT-TASK LEVEL ANALYSIS 327

NUMBER-HEADING =
Look up the heading number. A
Point to the heading number location. L
Replace the heading number. C
Verify that the heading is correct. V

Not all the Functional-Level operations are required in pos-vert-
HEADING in this contexL The A (acquiring the positioning task) and the
L (pointing to the heading) can be done in the previous unit task and the
V (verifying that the vertical positioning is correct) in the following unit
task. The vertical positioning itself, then, only requires two steps (two
C’s). Thus, context can have a considerable effect on a unit task.

To carry out an analysis of the unit tasks in Functional-Level
operations requires either that we make some more specific assumptions
about the system (as in Figure 9.4 and Figure 9.6) or that we appeal to
some principles of organization at the Functional Level. We take the
latter course by setting out a few heuristic rules for deciding which
Functional-Level operations are required for a unit task (in the spirit of
the Keystroke-Level Model’s rules for placing M operators, given in
Figure 8.2). For each unit task in a task group, we assume that the unit
task requires the basic set of four operations. A, L, C, and V, and use
the following rules to modify the set:

(1) An A operation can result in more than one unit task being
acquired, if they are closely related. Thus, if the current unit
task is likely to have been acquired together with the previous
unit task, then delete the A for the current one.

(2) If the current unit task deals with the same task objects as the
previous unit task, then delete the L, since there is no need to
locate them again.

(3) On a display-based system, which immediately shows the
effects of changes to the user, some changes are so
perceptually easy to check that a separate verification step is
not required. Thus, for example, in all unit tasks concerned
with font changes, delete the V.

(4) If two unit tasks require similar changes, then only one
verification is required. Thus, for example, if the current unit
task is the first of a two-part positioning task, then delete one
of the V’s.

Task Groups Unit Tasks R’s Functional-
Level
Operations

PROCESS-NEWPAGE
LOAD-PAGE
NUMBER-PAGE

A
A

C
CC V

PROCESS-HEADING
SET-FONT-HEADING
POS-VERT-HEADING
POS-HORIZ-HEADING
NUMBER-HEADING

C
CC
C V

PROCESS-FIGURE
LOAD-FIGURE R
POS-VERT-FIGURE R
POS-HORIZ-FIGURE R
LOAD-CAPTION R
POS-VERT-CAPTION R
POS-HORIZ-CAPTION R
SET-FONT-CAPTION
NUMBER-CAPTION
NUMBER-TEXT

L
LL

C
C
C
C
C
C
C
C
c

PROCESS-FOOTNOTE
LOAD-FOOTNOTE
POS-VERT-FOOTNOTE
SET- FONT- FOOTNOTE
NUMBER-FOOTNOTE
NUMBER-TEXT

A
A

L
LL

PROCESS-INDENTATION
POS-HORIZ-TEXT

PROCESS-TEXT-FONT
SET-FONT-TEXT A L C

PROCESS-REFERENCE
SET-FONT-TEXT
SET-FONT-TEXT

A L C
A L C

Figure 9.8. Functional-Level definitions of the task groups
for the Manual System.
T h e R ’s colum n indicates w hich unit tasks involve a s ignificant system response

tim e (see F igure 9 .1). T h e Functional-Level operators are: acqu ire a task (A),
locate the e lem ents of a task (L), m ake the required ch an ge (C), and verify the

c h an g e (V). T h e double letters in the O perations colum n Ind icate that two
operations are required.

328

(5) Some unit tasks require multiple operations to locate the
objects or to make the changes required. If such is the case,
add the requisite number of L’s and/or C’s.

This analysis is carried out for all the task groups in Figure 9.8.
This Functional-Level analysis shows that the unit tasks are, for the

most part, compressed to fewer than the four functional operations per
unit task assumed by the complete Unit-Task-Level analysis. To
understand quantitatively how much compression there is, we define the
compression ratio of a task group to be the ratio of the number of
Functional-Level operations over the nominal four operations per unit
task. For example, p r o c e s s -h e a d in g has four unit tasks and hence 16
expected operations, but there are only 11 operations in the analysis
above, giving a compression ratio of 11/16 = .69. Carrying this
calculation out for all the task groups gives the following compression
ratios:

9.2. CHECKS ON THE UNIT-TASK LEVEL ANALYSIS 329

PROCESS-NEW-PAGE .88
PROCESS-HEADING .69
PROCESS-FIGURE .81
PROCESS-FOOTNOTE .90
PROCESS-INDENTATION 1.00
PROCESS-TEXT-FONT .75
PROCESS-REFERENCE .75

Average compression ratio = .83

We can now give an estimate of the error induced by ignoring
interaction between unit tasks in our earlier analysis. An average task
group compression ratio of .83 means that, due to interactions among the
unit tasks, the average unit task time may be about 17% faster than a
series of completely unrelated unit tasks, as assumed by the Unit-Task-
Level analysis.

Functional-Level Calculation

Having gone to the effort to calculate the number of each of the
Functional-Level operations in each task group, we are close to being
able to do a Functional-Level calculation of the page-layout time. This
will provide a further check on the Unit-Task-Level analysis. The task
group time is;

330 9. THE UNIT-TASK LEVEL OF ANALYSIS

^TG ~ ^TG (”a Â ” l L̂ ” C^C "*■ ”vV ' (9.2)

This formula is the same as Formula 9.1, except that the unit-task
working time is replaced by the times for the Functional-Level
operations, -f ... -F

We need to estimate the unit times for the functional operators, but
we do have independent data for estimating each of them. In Chapter 8
(Figure 8.7), we found that was 4 sec for the b r a v o editor. (Again,
we round our estimates to the nearest .5 sec to emphasize their
approximate nature.) In Chapter 5 (Figure 5.15), we measured the
V E R iF Y -E D iT operator to be 1.5 sec for the p o e t editor. Other experi­
ments with B R A V O in our laboratory (not reported in this book) provided
estimates of 2 sec for and 2.5 sec for Note that these estimates
partition the 10 sec working time that we used in the Unit-Task-Level
analysis, so that + /̂_ + V “ V - 9.2 will thus yield
the same time prediction as did Formula 9.1 when all unit tasks consist
of the four functional operations, ALCV.

The Functional-Level calculation for the Manual System is shown in
Figure 9.9. The Functional-Level prediction for the page-layout time is

T a s k g ro u p s "r ”c ^ T G
T
' TG %T

PROCESS-NEW-PAGE 2 1 3 1 1 1.00 25 .0 14%
PROCESS-HEADING 2 2 5 2 0 1.12 30 .8 17%
PROCESS-FIGURE 6 7 9 7 6 .24 25.7 14%
PROCESS-FOOTNOTE 4 5 5 4 2 .18 10.2 6%
PROCESS-INDENTATION 1 1 1 1 0 3 .13 31 .3 17%
PROCESS-TEXT-FONT 1 1 1 0 0 4 .42 37 .6 21%
PROCESS-REFERENCE 2 2 2 0 0 1.43 24.3 13%

= 4 .0 sec, = 2 .0 sec Sum of times = 185
= 2 .5 sec, = 1.5 sec 25% error time = 46

ip = 6 .0 sec Total time = 231 sec

Figure 9.9. Functional-Level calculation of the total time per
page for the Manual System.
T h e n ’̂s, n̂ 's, n̂ 's, n̂ 's, and n ^ 's a re counted from F igure 9.8; th e Nj-q's a re

taken from F igure 9 .2 . Tjq is ca lcu lated from Form ula 9.2 . %T is the p ercentage

of tim e spent doing each task group.

231 sec, 15% faster than the 270-sec prediction of the Unit-Task-Level
calculation. This reduced prediction is quite close to the 17% faster
found in the compression-ratio calculation above. Both analytic calcu­
lations yield results that are quantitatively close to the experimental result
(14% faster), and thus the notion of interaction among highly integrated
unit tasks is sufficient explanation for the experimental results. The
14~17% differences in these predictions from the Unit-Task-Level
analysis are within expected prediction errors, confirming the basic
soundness of the analysis.

9.3. CONCLUSIONS 3 3 1

9.3. CONCLUSIONS

Systems in the early, conceptual stages of design can be analyzed at
the Unit-Task Level. In this analysis, the unit tasks to be accomplished
are enumerated, their frequencies estimated, and the time per unit task
determined. Then, the total time can be found by multiplying the total
number of unit tasks by the time per unit task.

To illustrate the Unit-Task-Level analysis, we have computed the
estimated time per page required by two versions of a hypothetical
system for laying out a scientific journal. The time per page calculated
from the Unit-Task-Level analysis was close to predictions derived from a
more elaborate Functional-Level analysis and close to empirical measure­
ments on a mockup analogue of the task.

http://taylorandfrancis.com

EXTENSIONS
AND

GENERALIZATIONS

333

http://taylorandfrancis.com

10. An Exploration into
Circuit Design

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN
10.2. BEHAVIOR WITH ICARUS (EXPERIMENT 10A)

Procedure and Data
Analysis of Task Structure
Keystroke-Level Model Analysis
Error Data

10.3. CONCLUSIONS

Our strategy in studying the psychology of human-computer
interaction has been to focus on the specific domain of computer text­
editing, then to generalize to other systems and tasks. In this concluding
part of the book, we wish to place these studies of text-editing in broader
perspective. First, this chapter considers to what degree our results can
be further extended to a more “creative” task domain, in which the user
is not given specific instructions to follow, but must use the system to
solve a problem. Then, the next two chapters concentrate on under­
standing those general characteristics of human performance implied by
our studies. Corresponding to the dual orientation put forward in
Chapter 1 towards basic science on the one hand and application on the
other. Chapter 11 focuses on the basic nature of cognitive skill, and
Chapter 12 focuses on how our results fit into the total scheme for
applying psychology to design.

The development of a theory of human-computer interaction must be
based on an analysis of diverse interactive task domains. In this book,
we have mostly concentrated on the task of correcting a text file from a
marked-up manuscript (Chapters 3-6); but we have also studied graphics
systems for creating and editing line drawings (Chapter 8), executive
subsystem commands, (Chapter 8), and a page-layout system (Chapter 9).
In each of the task domains, a variant of the basic GOMS model has
been found applicable. Yet, all the tasks studied so far have been

335

instruction-foliowing tasks, in which the user follows simple directions on
a set of small, independent subtasks.

The present chapter explores human-computer interaction on a task
that is not an instruction-following task: the computer-aided design of a
VLSI circuit-layout In this task, there is no externally-given set of
activities to be accomplished. The user is a designer who generates the
tasks as he proceeds, in response to the evolving state of the design. We
want to know the extent to which the GOMS account holds in this new
domain.

336 10. AN EXPLORATION INTO CIRCUIT DESIGN

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN

We report a case study of the design of an actual circuit. The design
of a VLSI circuit is a complex problem, whose solution depends on
finding an appropriate decomposition of a large circuit into sub-circuits
(Mead and Conway, 1980). Our study will make observations of a basic
element of the design process, the detailed layout of one of the sub­
circuits. In this task, the user begins with a rough sketch of the circuit
on paper and uses the system to produce a circuit specification that is (a)
geometrically defined and dimensioned, (b) optimized to minimize the
area required, and (c) contained in the memory of a computer system. In
the course of producing the circuit, the user must solve several
subproblems: (1) transcribe the sketch into the computer system, (2)
dimension the circuit elements according to VLSI standards (called
“VLSI design rules”), (3) compress the dimensioned circuit to minimize
the area it occupies on a chip, and (4) define the boundaries of the
compressed circuit so they will mesh with other sub-circuits. The user in
our study uses a specialized VLSI circuit-layout system called iCARUS.

Ic a r u s is an interactive, display-based computer system for drawing
and editing VLSI circuit-layouts (Fairbaim and Rowson, 1978; Mead and
Conway, 1980, Ch. 4). Its user interface^ is described in two parts
(Moran, 1981a): first, in terms of the conceptual model it imposes on the
circuit-layout task and, second, in terms of its command language. The
reader need not assimilate all the details of iCARUS’s interface, but some
knowledge about how it works is necessary to understand the user
behavior.

This study was done on a very early version of the ICARUS system. The later
versions of ICARUS have a somewhat different (and much improved) user interface.

ICARUS CONCEPTUAL MODEL

Icarus processes circuit-layout descriptions stored in files. A circuit
description is brought into the ICARUS workspace and presented
graphically to the user (Figure 10.1), who can then can edit the circuit
and store it on a new file.

In ICARUS, a circuit is constructed in a circuit space, which has
virtually unlimited extent in two dimensions (i.e., in the plane) and has a
limited third dimension made up of five discrete layers, indicated by
different texture patterns on the display. (Each layer is the mask for a
different step in the VLSI circuit manufacturing process.)

A circuit layout in ICARUS may be totally described as a set of
rectangles, as an examination of Figure 10.1 confirms. Each rectangle has
an ju^location in the plane and is located on a particular layer. Thus, a
circuit description in fcarus is purely geometric; there are no notions of
electronic components like nodes or transistors. Circuit layouts in iCARUS
are dominated by two special kind of rectangles: long, thin rectangles,
called lines (the “wires” of the circuit), and square rectangles, called
fla sh es (the connection points between layers). The system provides
special conunand language facilities for these special rectangles. We use
the term elem ents in this discussion when referring to the rectangles in a
layout without regard to their shape. Icarus allows the user to draw,
delete, move, copy, mirror, and rotate elements in the circuit space.

VLSI circuits are made up o f many repeated sub-circuits. Icarus
allows a sub-circuit (any contiguous rectilinear region) to be defined as a
sym bol, which can then be manipulated as a unit We need not be
concerned here with the details o f the symbol facility except to note that
the system provides command language facilities for defining and
manipulating them.

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN 3 3 7

ICARUS COMMAND LANGUAGE

The layout of the ICARUS display is shown in Figure 10.1. The
display contains two windows for viewing the circuit-layout in the work­
space: a gross window that gives an overall view of the circuit and a f in e
window that provides a close-up view of a part of the circuit. The
position of the fine window’s view is outlined in the gross window.
Thus, the user can work on a small piece of a circuit in the fine window
and still have a view of its larger spatial context The windows can be
moved around over the circuit to give views of any region of the circuit

There is also a param eter area and a layer m enu on the display. The
parameter area shows the current values of various command language

Parameter Area

Layer Menu

□
□
□
□
□

Gross Window

Fine Window

Figure 10.1. Layout of the ICARUS display.

3 3 8

parameters. For example, there are parameters for the viewing scales of
the fine and gross windows, and there are parameters for the current
flash size and the current line width, all of which can be reset by various
commands. There are five icons in the layer menu, one for each layer of
the circuit space; only one icon is highlighted at any given time to
indicate the current layer. Creation of new elements only takes place on
the current layer.

For input, ICARUS uses a mouse, a five-key keyset, and a keyboard.
The mouse is used for giving commands (with its three buttons: m a r k ,
DRAW, and d e l e t e) as well as for pointing to locations on the display.
The keyset is used for issuing commands and specifying arguments. Only
three of the five keys on the keyset need to be considered in this
discussion: c e n t e r , f l a s h , and r e c t a n g l e . ̂ The keyboard is also
used for commands and arguments. The normal (home) position for the
user’s hands is with his left hand on the keyset and his right hand on the
mouse. He only moves his hands to the keyboard when required.

Figure 10.2 lists some of ic a r u s ’s commands and describes the
methods for executing them, using the notation from the Keystroke-Level
Model (Chapter 8).

There are several commands for drawing new elements on a layout.
A line, the most common element, is drawn by simply pointing to where
its end points are to be located. Pressing the m a r k button causes a small
mark to be made on the display, which indicates where one end of the
line will be. The line is actually drawn (from the mark to the location
currently being pointed at) when the d r a w button is pressed.
Sometimes the mark is already at the position of one of the end points,
in which case only the other end point need be indicated (these two cases
are distinguished in Figure 10.2 as two separate commands, Line2 and
Linel).

A flash is drawn by holding down the f l a s h key, pointing to where
its center is to be located, and pressing d r a w . An arbitrary rectangle is
drawn by pointing to two of its diagonally-opposite vertices while holding
down the r e c t a n g l e key. All elements are drawn on the current layer,
although the layer can be changed by pointing to one of the non-
highlighted icons in the layer menu. The width of the lines is deter­
mined by the line-width parameter, which can be changed by the Width
command (see Figure 10.2). Circuit elements are deleted from the layout

10.1. THE ICARUS SYSTEM FOR CIRCUIT DESIGN 3 3 9

The keyset keys and the mouse buttons are not actually marked with these labels,
but the labels are mnemonics for purposes of this discussion.

C o m m an d E xecutio n M eth od

D r a w in g C o m m a n d s :

(draw) L in e2 (2 end points)
(draw) L in e l (1 end point)
(draw) F lash
(draw) R e c ta n g le
(create) L ab e l

P[locationJ K[MARK] P[locationJ K[DRAW]

P[location] K[DRAW]

M K [FLASH) Pflocation] KfDRAW]

M K[RECTANGLE] P[locationJ KfMARK] P[location] K[DRAW)

P[location] K[MARK] H[keyboard] M 6K[CONTROL I string] M K[ESC]

H[mouse/keyset]

P a r a m e t e r C h a n g in g C o m m a n d s :

(change) L a y e r
(change) W id th (of line)

Pfmenu] K[MARKJ

H[keyboard] M 3 K [CONTROL W number] M K[ESC] H[mouse/keyset]

D e le t io n C o m m a n d s :

D e le te (element)
U ndo (last deletion)

P[element] K[DELETE]

H[keyboard] K[U] H[mouse]

T r a n s f o r m a t io n C o m m a n d s :

M ove (elements)

C o py (elements)

S tre tc h (element)

H [keyboard] M 2K[M M] H [mouse] 4(P[location] K[MARK]) K[ESC]

P[location] K[MARK] P[location] K[MARK] H[keyset]

H[keyboard] M 2K[M C] H[mouse] 4(P[location] K[MARK]) K[ESC]

P[location] K[MARK] P[location] K[MARK] H[keyset]
H[keyboard] M 2K[M S] H[mouse/keyset] P[elementJ K[MARK]

P[edge] K[MARK] P[location] K[MARK]

D is p la y C o n t r o l C o m m a n d s :

C e n te r (drawing)
(change) M a g n ific a tio n
R e d ra w (window)

M K [CENTER] P[location] K[MARK]
H[keyboard] M 2K[F|G digit] H[mouse/keyset]
H[keyboard] M K[R] H[mouse/keyset]

D i m e n s io n in g C o m m a n d s :

(measure) D is ta n c e

(measure) S ize
2(P[location] K[MARK])

4(P[location] K[MARK])

Figure 10.2. Methods for executing ICARUS commands.
The notation for the methods is taken from the Keystroke-Level Model (Chapter 8).
The ESC and CONTROL keys are on the keyboard. FLASH, RECTANGLE, and
CENTER are buttons on the keyset. MARK, DRAW, and DELETE are buttons on
the mouse. The "string" in the Label command is assumed to be 4 characters
long (on the average) and the "number" in the Width command is assumed to be
one digit.

3 4 0

by simply pointing to them and pressing the DELETE button, and the
most recent deletion can be undone by hitting the u key on the
keyboard. There are also commands for stretching the size of existing
circuit elements and for sticking labels on the layout

The command for moving elements on the layout is rather complex.
The set of elements to be moved is specified by an enclosing rectangle
defined by pointing to its four comers with m a r k (items that are only
partially within the rectangle are included in the set). The Move vector
is specified by pointing to a reference point on one element in the set
and then pointing to the new position of that point. Since the Move
command is so complex, ICARUS users often just delete the elements to
be moved and then redraw them in the new location.

The views of the circuit-layout in the two display windows can be
easily adjusted. Holding down the c e n t e r key and pointing with m a r k
to a location in either window causes the circuit to be redrawn with the
specified location shifted to the center of the window. There is also a
simple command for changing the scale (Magnification) of the layout in
each window.

Every time MARK or DRAW is pressed, the xy coordinates of the
cursor position on the circuit-layout are displayed in the parameter area,
as are the differences between the current coordinates and the coor­
dinates at the previous press of m a r k or d r a w . This information allows
the two successive m a r k presses to be used to measure distances between
points (indicated in Figure 10.2 as the Distance and Size commands).

All in all, the command language of i c a r u s is not unusual. It con­
tains both simple and complex commands; and it uses standard command
language devices, such as parameters to specify default values for
command arguments.

10.2. BEHAVIOR WITH ICARUS (EXPERIMENT 10A)

An experiment was run to collect a sample of actual performance with
ICARUS. A single user was observed in a single session, and the behavior
was recorded and analyzed.

Procedure and Data

10.2. BEHAVIOR WITH ICARUS 3 4 1

User. The user was an experienced designer of VLSI circuits and an
expert user of ICARUS (with a year’s experience of regular use, roughly
300 hours of practice). The user was asked to choose a task that was

“typical” of the kinds of things he did in ic a r u s and that would take
about a half hour to do. The task he chose was to lay out a circuit for a
cell in a content-addressable memory. The function of the circuit was to
store, shift, and match one bit of information. The user had previously
tried to lay out this same circuit, and the experimental task was to
attempt a different arrangement Thus, the user was familiar with the
experimental design task, which was of immediate interest to him.

Experimental Procedure. The user was placed in a room with a
terminal connected to the ICARUS system, an arrangement similar to that
in Figure 3.1. He brought a rather detailed sketch of the circuit (shown
in Figure 10.3), to which he referred during the initial part of the session.
He was asked to talk aloud about what he was doing as he performed the
task, then he was left alone to do the task. The session was videotaped
with two cameras, one viewing the user and the other viewing monitor
showing the user’s display screen. The user’s keystrokes were recorded

3 4 2 10. AN EXPLORATION INTO CIRCUIT DESIGN

Figure 10.3. Hand-drawn sketch that the user brought to
Experiment 10A.
The user’s original sketch was drawn with various colored pencils, each color
representing a different layer.

on a data file. The user paced himself on his task and decided when to
end the session, which he did after about 40 minutes. His final circuit-
layout from the experimental session is shown in Figure 10.4.

Data Calibration and Encoding. A data file recorded the name and
clock time for each key and button-press plus the screen coordinates at
the time of each mouse button-press. Recorded times were calibrated
with the videotape to within an accuracy of about .1 sec. The recorded
screen coordinates were offset from the coordinates that the ic a r u s

system used. It was difficult to calibrate these two, since there were no
precise reference points on the screen. Although an attempt at
calibration was made using the layer menu as a referent, the calibration
was probably accurate to only about 1.5 cm.

Keystroke data were encoded into a sequence of ic a r u s commands
by a combination of heuristic programs and hand editing. All keystrokes
within .3 sec of each other were grouped into events. A program scanned
the events and attempted to recognize each of them as a command
according to the command syntax in Figure 10.2. Some of the events
had to be regrouped manually, and some automatic command recog-

10.2. BEHAVIOR WITH ICARUS 3 4 3

DATA

OATA

Figure 10.4. Final ICARUS circuit layout produced by the
user in Experiment 10A.
The layers on which the circuit elements lay are indicated by the texture pattern of
each element.

nitions were corrected manually. The most difficult part was interpreting
the recorded screen coordinates. For example, the cursor location
determined whether a press of m a r k was a drawing command or a
selection of a layer in the menu. Most of the menu selections were
identified by the program, but many had to be checked by looking at the
videotape. It was not possible to recognize automatically the various
circuit elements being operated upon without simulating part of the
ICARUS command interpreter (since the layout display could move and
change scale). The error in the coordinate calibration made this effort
impractical. The circuit elements could have been recognized by
scanning the videotape, but this was too expensive. Instead, only a few
of the key circuit elements (about every fifth element) were extracted
from the tape to identify the place in the circuit that the user was
working.

Analysis of Task Structure

The user’s performance during the experimental session was organized
as a sequence of unit tasks; these, in turn, were grouped into major
phases of the session.

3 4 4 10. AN EXPLORATION INTO CIRCUIT DESIGN

MENTAL PAUSES AND UNIT-TASK STRUCTURE

The user frequently paused during the experimental session to check
the work he had done and to think about what to do next. A complete
protocol description of the experimental session was made, which
identified and incorporated these Pauses between events. A threshold of
5 sec was chosen as a first cut at mechanically identifying Pauses from
the inter-event intervals (which varied from .3 sec to 80 sec). This
divided the session into about 100 episodes, each with an average time of
25 sec and each consisting of a Pause followed by a varying number of
ICARUS commands. These episodes were then edited manually. The
videotape was perused to determine which task was accomplished during
each episode (drawing a transistor, making a connection, moving a
structure over, etc); the user’s verbalizations were very helpful in
identifying these. In this process several new gaps between actions (less
than 5 sec long) were found; they were identified as Pauses if there were
at least 2 sec between commands. Some Pauses also occurred within
Move commands. The user viewed the videotape with the experimenter
and made a few minor corrections to the experimenter’s interpretations.

Finally, the protocol was segmented into unit tasks (as defined in
Chapters 5 and 8) by identifying many of the Pauses as task Acquisitions
and the commands between them as Executions. Figure 10.5 shows an
example fragment of the data record and how it was encoded into the
protocol.

10.2. BEHAVIOR WITH ICARUS 3 4 5

Data Record Protocol Encoding

Clock Keys X Y Commands Unit Tasks

1:05.92 DRAW 99 300

Pause Acquire
1:11.70 MARK 42 49 Layer(2)

Pause
Execute

1:15.77 MARK 39 466 Line2
1:16.75 DRAW 139 468 "

1:17.68 DELETE 121 469 Delete
1:18.68 CONTROL Width (6)
1:19.22 W "

1:19.92 6 "

1:21.93 MARK 36 478 Line2
1:23.00 DRAW 125 475 ”

1:25.28 ESC

Pause Acquire
1:31.55 MARK 31 12 Layer(1) Execute

Figure 10.5. Segment of data record from Experiment 10A
and its encoding.
This segment shows the third unit task in the Transcription phase (see the third
task, on line 1:06, in Figure 10.7). Clock times are in minutes and seconds. X
and Y are the coordinates of the cursor at the time of each mouse button-press.
The names of the keys and the names of the commands are given in Figure 10.2.

The unit tasks thus identified were generated by the user to
accomplish many different types of goals. The following is a useful
classification of the unit tasks into four types:

Draw tasks. These create new circuit elements on the
layout, using mostly Line and Flash commands.

Alter tasks. These move circuit elements or change their
configuration, usually by means of Move commands.
Stretch commands, or deletion and drawing com­
mands.

Dimension tasks. These measure the dimensions of
substructures, the distances between circuit elements,
or the alignment of elements. This is done using the
Distance and Size commands.

Check tasks. These check the circuit for connectivity, for
VLSI design rule violations, or for places that can be
spatially compressed. There are really many dif­
ferent kinds of Check tasks, all of which are
characterized by long periods of thinking and little
action. Since there are so few of them, they are all
grouped together here as one type.

PHASE STRUCTURE

The experimental session is clearly partitioned into phases lasting
several minutes each. In each phase, unit tasks are organized around one
of the major subproblems of the VLSI circuit-layout problem. Phases are
similar to task groups in the Chapter 9 page-layout task in that they
provide a higher-level structuring of the unit tasks; they differ from the
task groups in that they are more extensive and in that their unit tasks
are deployed in more of a problem-solving mode.

In the experimental session, the user first input the circuit to f c a r u s

and then compressed it to minimize its area. His strategy for
compressing the circuit was to concentrate on reducing its vertical
dimension first and then its horizontal dimension. Thus, the phases in
the experimental session were:^

Transcription phase (14 minutes). The layout of the circuit
was transcribed from the hand sketch into the

3 4 6 10. AN EXPLORATION INTO CIRCUIT DESIGN

There was also a fourth phase during the experiment: a Symbol Definition phase
(5 minutes), during which the circuit was checked and packaged into a unit to be used
as a cell in a circuit array. In the original ICARUS study, this phase was not analyzed
and so is not included here.

ICARUS system. The circuit was checked to make
sure it was functionally accurate.

Vertical Compression phase (7 minutes). The circuit was
compressed vertically by moving substructures
around to make them fit together more closely.

Horizontal Compression phase (15 minutes). The circuit was
compressed horizontally.

Figure 10.6 presents summary statistics for the three phases and for
each task type within those phases. The phase structure of the layout
task imposes a characteristic sequencing of task types. For example, as
might be expected, most Draw tasks occurred in the Transcription phase
and most Alter tasks in the Compression phases. The mean unit task
time in the session was about 20 sec per task. The mean task time was
about the same in each phase, but varied for different task types: 20 sec
for Draw and Alter tasks, 8 sec for Dimension tasks, and 38 sec for
Check tasks.

10.2. BEHAVIOR WITH ICARUS 3 4 7

U n it-T a s k
T yp e

T ra n s c rip tio n
P h ase

{N)M±CV
(sec)

V e rtic a l
C o m p ress ion

Phase
{N)M±CV

(sec)

H o rizo n ta l
C o m p ress ion

Phase
{N)M±CV

(sec)

All P h ases

{N)M±CV
(sec)

Draw tasks (28) 23.1 ± .3 6 (1) 19.0 (5) 1 1 .6± .50 (3 4)2 1 .3 ± .4 2

Alter tasks (7) 18 .6± .69 (16) 20.1 ± .31 (31) 1 9 .4± .72 (54) 19.5±.61

Dimension tasks (1) 9.0 (1) 9.0 (8) 8.1 ± .6 6 (10) 8 .0 ± .6 0

Check tasks (2)3 2 .5 (2)3 4 .5 (4)4 2 .8 ± .6 6 (8) 38.1 ± .5 9

All T as k s (38) 2 2 .3 ± .4 6 (20) 21.0 ± .45 (48) 1 8 .6± .86 (106) 2 0 .4 ± .6 4

Figure 10.6. Unit-task statistics by phase and task type in
Experiment 10A.

Keystroke-Level Model Analysis

To determine whether the phases of the experimental session were
structured into unit tasks, it is necessary to examine the acquire-execute
structure of the unit tasks and to see whether the execution parts conform
to the predictions of the Keystroke-Level Model.

Clock
T ime

10 20 30 40 50 60 sec
• I

Transcription Phase

18
55
06
25
36

2:17
2:50
3:30
3:41

01
22
31
52
23
30
38
00
20
44
57
23
46

8:11
8:33

01
14
45

10:18
10:38
10:54
11: 18
11:44
11:46
12:21
13:05
13:09
13:47
14:07

------ DDDD=DDD=DDDDDDDDD=DDDD=DDDDDD
------D=D=D
---- D===DDDDDDDDDD
---- DD==DD
-- AAAAAAAAAAAAAAAA
--------- DDDDDD= = =DDDD = DDDDDDDDD
------- DDD=DDDDDDDDDD==ODD=D==DDDDD
--- DDDD==DDDDD------ □------- □□
---------------------- AAAAAAAA---- =
------ DDDDDD=DDD==DD
--- I
---- DD i
---------= I
------ OD====DDDDD=DDD i
-------------- D==DD
---- DDDD=DDODDDDDDD
---D-D----- D==DD
----------- DDDDDDDDD=DDDD
------------D---DD--- D
-----------------AAAAAAAA==AAAAA
------------ A=A=AAA=AAAAAAA
-------- D===DDDD=DDDD==DDDD
-------- D = DD
---------- DDDD==DDD=DDD==DDDDD
------------- D==D=DD=DDDDDDDDDDD
---- DDDD==DDD===DDD
--------DD=DDDDD
---------- D==D=DD===DDD
---- D=DD==DDDD==DDDDD
------ MM
----------D-DDDD--- DDDD==DDDDDDD
Q-------------------------------
A = AA
-----------DDDDD = DDDDD = DDDDDDD= = = = DDDD
-------DDDDD=DDDDDDD

Sym bol C ode :

Task acquisition
Draw task execution
Alter task execution
Dimension task execution
Check task execution
Intra-execution pause
Pause within Move command

Vertical Compression Phase

14:26
14:35
15:32
15:39
15:55
16:10
16:34
17:01
17:26
17:34
17:51
18:20
18:49
19:03
19:23
19:47
20:06
20:28
20:54
21:08

M=M==M==M
-C=C=C=CC

--------AAAAAAA
------------- AAAAAAA
--------AAAA===AAA
------------------------ AAAAAAAAAA
--- A==A
------------- AAAAA+++++++A
------ A=AAA==A----------------C
--------------AAAAAAAAAAAA+++++AA
------------------------ a a =a ====a a ==a a a a a
----------AAAAAAAA
--------------- AAAAAAAA
---AA=AAA=AAA==AA==AAA=A
---D===DDDDD=DDDDDD
---------------------AAAAAAAAAAAAA
AA------------- A------ AAAA= = AAAAA
------------AAAAAAA
------------AAAAAAAAAAA (c o n t in u e d o n n e x t p a g e)

Figure 10.7. Time iine representing the user’s behavior
sequence in Experiment 10A.
Each (single-character) symbol represents one second of behavior. The symbol
sequence begins on a new line at the beginning of each unit task, and the clock
time is the time at the beginning of the unit task.

3 4 8

10.2. BEHAVIOR WITH ICARUS 3 4 9

Clock
T ime

10 20 30 40 50 60 sec

Horizontal Compression Phase
21:28
22:51
22:56
23:07
23:41
24:05
24:39
24:58
25:11
25:37
25:58
26:41
26:50
27:16
27:34
27:44
27:56
28:04
28:32
28:58
28:59
29:43
29:54
30:00
30:05
30:11
30:13
30:28
30:51
31:00
31:22
31:26
31:35
32:34
32:42
33:05
33:22
33:31
34:24
34:38
34:53
35:06
35:09
35:27
35:33
35:46
36:15

CC = C-------
AAAAA
------ M=M==MM

-//-
(85 sec)

- - A - A ------- A=AAA= = = AAAAAAAAA
----------AA=A==AAA=A===AAAAAAAAAAA==A
--------------- AAAAAAAAAA
------ DD=DDD
--------AAAAAAAAAAA--AAAAAAAA
--------------DD==DDD
---AAAAAAAA
---AAAA==AAA
----------A---------------------------- AAA
--------A=AAA==A=AA
- - AAAAA
--------AAAAAAAAA
---A==AAAAA
------------- AA=AAAAA==A=A===AAAA

M
-AA=AAAAAA=AAAA

---A==AA
--MM
---AAA
-M
---A==AA=AAAAAAAAA
------------------------ AAAAAAAAA
------------- M
-----------------AAAAAAAAA
---AAAA
----------- MM

-A=AAAAA=A=AAA===AA==AAA==AA
-AAAAAAAA
------A==AAAAAAAA==AAA

-DDD
=A==A=A= ==AAAA=A=AAA=AA

----- DDD
--------AAA++++++AAA
--------A ---AAA
------AAA
------------------------ MM
--AAAAAA
-------------------MM

DDDDDD

ACQUISITIONS AND EXECUTIONS

Let us consider more closely how each unit task was decomposed into
an acquisition part and an execution part. The acquisition part of a unit
task was indicated on the protocol by a Pause; the execution part
consisted of a sequence of ic a r u s commands, possibly including some
Pauses. Sometimes the acquisition part of a task was broken by display
commands, in which case the display commands were counted as part of
the execution, whereas the Pauses after them were counted as part of the

acquisition. The only difficulty with this decomposition was with the
Check tasks, since they each consisted mostly of a Pause time followed by
a few quick display-changing commands.

This decomposition of task times is graphically presented in Figure
10.7, which is a second-by-second time-line encoding of the protocol into
acquisition and execution parts. Several features of the overall perfor­
mance can also be seen on this figure: the long Check tasks at the end
of the Transcription phase and at the beginning of both Compression
phases, the relatively uniform task times in the Transcription and Vertical
Compression phases, and the relatively high variance of the task times in
the Horizontal Compression phase (see Figure 10.6).

Figure 10.8 shows the means and C F’s of the acquisition, execution,
and unit task times, grouped by different categories of tasks. Overall,
acquisition and execution took about equal time, but acquisition had
more variance. The greatest differences were between the different task
types. Draw and Alter tasks were about the same, but the Dimension
tasks were faster than either in both acquisition and execution, and the
Check tasks consisted of long acquisition times with short execution
times. The greater mixture of task types in the Horizontal Compression
phase accounted for its greater variance and for the execution time being

3 5 0 10. AN EXPLORATION INTO CIRCUIT DESIGN

Tasks

Tacquire

M ± C V
(sec)

execute

M ± C V
(sec)

 ̂task

M ± C V
(sec)

All tasks 10.7 ± 1 .0 4 9.7 ± .77 20.4 ± .64

Transcription phase 10.9 ± .76 11.4 ± .69 22.3 ± .46
Vertical Compression phase 10.5 ± .91 10.5 ± .49 21.0 ± .45
Horizontal Compression phase 10.7 ± 1.28 7.9 ± .96 18.6 ± .86

Draw tasks 9.2 ± .57 12.1 ± .64 21.3 ± .42
Alter tasks 8.9 ± .86 10.6 ± .64 19.5 ± .61
Dimension tasks 5.1 ± .94 2.9 ± .95 8.0 ± .60
Check tasks 36.6 ± .57 1.5 ± 2.0 38.1 ± .59

Draw + Alter tasks 9.0 ± .75 11.2 ± .64 20.2 ± .53

Alter tasks (with Move) 9.7 ± .69 11.5 ± .44 21.2 ± .39
Alter tasks (without Move) 8.2 ± 1.03 9.8 ± .82 18.0 ± .78

-igure 10.8. Decomposition of unit-task times in
iition and execution parts Experiment 10A.

into acqui-

faster during this phase. The acquisition time remained constant between
phases.

Draw and Alter tasks comprised over 80% of the tasks. They typically
took about 9 sec to acquire and 11 sec to execute. The Alter tasks can be
partitioned into those that used a Move command (the m o v e -c o m m a n d -

m e t h o d) and those that did not, with the latter consisting of a series of
deletion and (re)drawing commands to accomplish the move (the d e l e t e -
a n d -r e d r a w -m e t h o d). The Move command itself took 9.4 sec (see
below), accounting for 82% of the execution time of the Alter tasks that
had a Move. The Alter tasks without a Move were 15% faster than those
with a Move in both acquisition and execution time, but their task times
were much more variable, since the d e l e t e -a n d -r e d r a w -m e t h o d was
more sensitive to the number of elements being moved.

COMMAND FREQUENCY

The frequencies of use of the different i c a r u s commands are listed in
Figure 10.9 (in the N column). The four most frequently used com­
mands were the Layer command, the Line commands, the Delete
command, and the Flash command. Perhaps the biggest surprise was the
high frequency of Layer commands—there were three Layer commands
for every four drawing commands. The frequency of Delete commands
was less surprising, since 90% of them occurred in Alter tasks to move
items by the d e l e t e -a n d -r e d r a w -m e t h o d , and the rest were used to
correct errors in Draw tasks (as in Figure 10.5). These four high-
frequency commands—Layer, Line, Delete, and Flash—accounted for
70% of the command instances. Because they were all short commands,
each requiring only one or two pointing actions, altogether they took
only 48% of the total execution time (based on the calculations described
below).

The fifth most frequent command type was the Move command.
There were 25 Move commands in the protocol, accounting for 26% of
the total execution time. The mean execution time for a Move command
was 9.4 sec. (If the time for the Pauses that occur within three of the
Move commands is excluded, the mean Move time becomes 8.6 sec.)

10.2. BEHAVIOR WITH ICARUS 3 5 1

CALCULATION OF EXECUTION TIME

Using the method analysis for each command in Figure 10.2, a
Keystroke-Level Model calculation of the execution time is presented in
Figure 10.9. The total predicted execution time is 1192 sec, 16% longer
than the total observed execution time of 1028 sec.

Com m and rip "k "h "m Texecute

{sec)
N T' total

(sec)

2 2 0 0 2.8 68 188
1 1 0 0 1.4 8 11
1 2 0 1 3.0 51 154
2 3 0 1 4.4 1 4
1 8 2 2 6.8 6 41

1 1 0 0 1.4 87 120
0 4 2 2 4.6 5 23

1 1 0 0 1.4 59 81
0 1 2 0 1.1 5 5

6 9 3 1 11.7 25 292
6 9 3 1 11.7 1 12
3 5 2 1 6.9 21 144

1 2 0 1 3.0 15 45
0 2 2 1 2.7 7 19
0 1 2 1 2.4 5 12

2 2 0 0 2.8 11 30
4 4 0 0 5.5 2 11

Drawing Commands:
(draw) Line2^ (2 end points)
(draw) L in e l (1 end point)
(draw) Flash
(draw) Rectangle
(create) Label

Parameter Changing Commands:
(change) Layer
(change) W idth (of line)

Deletion Commands:
D elete (element)
Undo (last deletion)

Transformation Commands:
Move (elements)
Copy (elements)
S tre tch (element)

Display Control Commands:
C en te r (drawing)
(change) M agnification
Redraw (window)

Dim ensioning Commands:
(measure) D istance
(measure) S ize

Predicted time to execute all commands = 1192 sec
Total observed execution time = 1028 sec
Prediction error = +16%

Figure 10.9. Execution time calculation for Experiment 10A.
This calculation is based on the Keystroke-Level Model (Chapter 8) and Is similar
to the calculation in Figure 8.5. The n's are obtained from the execution methods
in Figure 10.2. The system response time in ICARUS Is very fast and so does not
need to be included. The unit operator times are taken from Figure 8.1; a typing
rate of .28 sec/character Is used. N is the number of Instances of each command
during the experimental session. T.

2 t;
total = NTexecute’ Predicted total time =

total

3 5 2

The 16% over-prediction is, however, more than just prediction error.
For 106 unit tasks, we would expect the standard error of our prediction
to be about 2% of the observed time (21%/-/106). If we regard the
Keystroke-Level Model calculation as a yardstick for expertness, then the
user may be so highly practiced on the i c a r u s commands that he
requires fewer M operations than would be predicted from the rules in
Chapter 8. The physical operations (P, K, and H) alone account for 96%
of the user’s execution time, which leaves little time for mental (M)
operations. This is consistent with the idea that the user, because he is
expert, has virtually eliminated his need for mental operations in
executing ic a r u s commands (see Section 8.3).

The Move command is the only command for which we have
individual command execution times. The predicted Move time of 11.7
sec is 24% longer than the mean observed Move time of 9.4 sec. The
Move commands account for almost all the long commands, with most of
the remaining (non-Move) commands being much shorter. The predicted
time for the non-Move commands is 13% longer than the observed time.
Thus, the over-prediction is somewhat greater on the longer commands.

It is interesting to compare the tradeoff for the two methods for
moving circuit elements on the layout: the m o v e -c o m m a n o -m e t h o d

and the d e l e t e -a n o -r e d r a w -m e t h o d . For each circuit element to be
moved, the d e l e t e -a n d -r e d r a w -m e t h o d requires a Delete command
(1.4 sec) plus a drawing command (3.0 sec)'* for each circuit element to
be moved, which totals 4.4 sec per element Since the Move command
requires 9.4 sec, the m o v e -c o m m a n d -m e t h o d should be faster when
there are 3 or more elements to be moved; and the d e l e t e -a n d -

r e d r a w -m e t h o d should be faster when only 1 or 2 elements are to be
moved. The user in the experiment moved an average of 1.8 elements
with the DELETE-AND-REDRAW-METHOD, but on one-third of the delete-
and-redraw tasks he moved 3 or 4 elements. (Data on the exact number
of elements with the Move command was difficult to obtain.) Thus, the
user appears to be operating near the timewise-optimal threshold in
choosing between m o v e -c o m m a n d -m e t h o d and d e l e t e -a n d - r e d r a w -

m e t h o d , with some bias towards the d e l e t e -a n d -r e d r a w -m e t h o d .
This situation is comparable to the method selections observed for p o e t

(see Section 5.2). P o e t users choose nearly optimally between the l f -

10.2. BEHAVIOR WITH ICARUS 3 5 3

 ̂ The 3.0 sec is the average drawing command execution time, where the different
kinds of drawing commands are weighted by their frequency in Figure 10.9.

METHOD and the q s -method for locating lines, but with a bias towards
the LF-METHOD.^

3 5 4 10. AN EXPLORATION INTO CIRCUIT DESIGN

Error Data

There are 15 error tasks out of the 106 unit tasks. The errors can be
grouped into four classes:

Selection errors. These occurred within the Move
command. Either too many circuit elements (4
cases) or too few circuit elements (1 case) were
selected to be moved. New Move commands had to
be performed to correct these errors.

Deletion error. In one case, the user anticipated that a
circuit element would unavoidably be selected in
subsequent Move commands, even though he did
not want it to be moved. To prevent this, he deleted
the element with the intention of later redrawing it
in its present location. After the Moves, however, he
forgot, and only discovered the omission days later.

Location errors. Because it is often difficult to specify the
exact placement of elements, elements were moved
to the wrong location (3 cases), flashes were drawn
off center (2 cases), and a line was drawn the wrong
size (1 case). There was also one case where two
items at the opposite edges of the circuit were
misaligned. The correction for Location errors was
either to delete-and-redraw or to move the misplaced
elements.

Parameter-setting errors. Once, the user drew a line using
the wrong line-width parameter; he had to reset the
parameter, delete the line, and redraw i t Another

 ̂ It is interesting to speculate on the reasons for the bias. Why are the two
methods (the DELETE-AND-REDRAW-METHOD in ICARUS and the LINEFEED-
METHOD in POET) psychologically favored? One feature of both favored methods is
that they are incremental: they accomplish their tasks with a series o f small commands
rather than by building up one big command. These methods are thus less risky. The
user gets feedback at each increment, and the necessary corrections are small in case of
an error. When using the big-command methods, however, the errors are larger and
their recovery more difficult

time the user forgot to type esc after setting the
line-width param eter (and had to retype it later).

The most serious iCARUS error was undoubtedly the forgotten
deletion, since it remained undetected. Other errors were corrected at a
modest time cost. The time taken for the user to make all the above
corrections was a little over two minutes, about 6% of the total time spent
in the first three phases. This seems low compared to the 26% error time
observed in the earlier manuscript text-editing experiment with the poet
editor (Experiment 5C). However, 72% of the error time in the poet
session was due to three large errors in which the user lost her place in
the manuscript; the remaining errors in the POET session constituted only
about 8% of the time. These latter errors were mostly command exe­
cution errors and typing errors, comparable to the iCARUS errors above.
Perhaps an icarus user would have corresponding place-keeping errors
with a large circuit, but the two viewing windows provided in icarus
make losing one’s place less severely penalizing in icarus than in poet .

10.3. CONCLUSIONS 3 5 5

10.3. CONCLUSIONS

The case study of computer-aided circuit design suggests that the
GOMS theory can be extended to semi-creative, human-computer
interaction tasks that are not explicitly given, but are generated by the
user. On analysis, computer-aided circuit design was seen to comprise a
creative part and a routine part not much different from the manuscript­
editing tasks studied earlier.

The routine part of the circuit-layout task had the following
similarities to the text-editing tasks studied by GOMS analysis earlier:

(1) The user’s behavior was comprised of relatively independent
unit tasks, each with a distinct acquire-execute cycle, each
lasting about 10~30 sec.

(2) The time to execute commands was predicted by the
Keystroke-Level Model with about 16% error.

(3) The frequency and cost of correcting execution errors was low
(6% of execution time), as expected with skilled behavior.
This error rate is comparable to that in the manuscript-editing
task for the same types of errors.

3 5 6 10. AN EXPLORATION INTO CIRCUIT DESIGN

(4) The user employed stereotypic methods: only six different
command types were used for 85% of the command
executions.

(5) Where the user had a choice of methods, he made near-
optimal choices quickly.

(6) The user processed only a few elements at a time. For
example, he transcribed only about three circuit elements at a
time.

One important difference between circuit-layout and manuscript
editing was the phase structure. The circuit-layout task was partitioned
into phases of 5~15 minutes. Each phase had a distinct purpose and was
governed by a loose plan that gave a distinct pattern to the unit tasks
within the phase, yet that allowed the spontaneous generation of local
unit tasks.

11. Cognitive Skill
11 .1 . THE SKILL DIMENSION OF COGNITIVE BEHAVIOR
11 .2 . COGNITIVE SKILL FROM PROBLEM SOLVING

Problem Space for the Tower of Hanoi Puzzle
Accumulation of Search Control Knowledge

Construction of Problem Space Operators
Levels of Cognitive Behavior

11 .3 . PROBLEM SOLVING PRECEDING COGNITIVE SKILL
Problem Space for BRAVO Text-Editing
Problem Solving Behavior in Text-Editing (Experiment 11 A)

11 .4 . THE UNIT TASK
The Nature and Function of Unit Tasks
Determinants of Unit-Task Structure

11 .5 . TEXT-EDITING W ITHIN COGNITIVE SKILL
11 .6 . CONCLUSIONS

Throughout this book we have been treating particular cognitive skills.
The paradigm skill has been that of manuscript editing with a computer,
though as Chapters 8, 9, and 10 have shown, the class of tasks to which
the analysis applies is considerably broader. Our approach throughout
has been to work close to the detailed structure of the tasks, drawing on
the general base of modem information-processing psychology, as
exemplified in Chapter 2, but not attending to how the models and
results fit into a more general picture. It is this integration we now
pursue.

What sets apart the human-computer interaction tasks dealt with in
this book from many of the tasks that psychology has studied in detail is
the combination of skilled behavior and a domain that is strongly
cognitive. The primary substantive contribution of the studies of this
book to basic psychology lies in helping to characterize the general nature
of cognitive skill by the detailed understanding of one species of such
skill.

Historically, the psychological study of skill has focused on
perceptual-motor skills. Consequently, the obvious tack is to take cogni-

3 5 7

3 5 8 11. COGNITIVE SKILL

Live skills to be those skills that involve cognition, as opposed to those
skills that involve the motor and/or perceptual systems. However, it is
not possible to distinguish the skills we have been studying from others
simply by the existence of a cognitive component. As Welford says in
his Fundamentals o f Skill:

Although a distinction is commonly drawn between sensory-motor and
mental skills, it is very difficult to maintain completely. All skilled
performance is mental in the sense that perception, decision, knowledge
and judgment are required. At the same time all skills involve some
kind of co-ordinated, overt activity by hands, organs of speech or other
effectors. In sensory-motor skills the overt actions clearly form an
essential part o f the performance, and without them the purpose of the
activity as a whole would disappear, in mental skills overt actions play
a more incidental pait serving rather to give expression to the skill than
forming an essential part o f it (Welford, 1968, p. 21)

Thus, all skill involves cognition. Perhaps, then, cognitive skills could be
distinguished by saying that they are primarily cognitive. More pene­
trating is Welford’s characterization (above) of the role of motor behavior
in mental (i.e„ cognitive) skill, namely, that it expresses the cognitive
skill. Manuscript text-editing includes the skills of keystroking and
viewing the manuscript and display; however, these perceptual-motor
skills are not the essential activity, but the medium through which the
cognitive activity gains expression.

The primacy of cognitive activity in cognitive skill does not rob the
behavior of its skillful character, taking the term skillful to mean
“competent, expert, rapid and accurate performance” (Welford, 1968, p.
12). This includes the sense of effortlessness—smoothly coordinated and
patterned behavior—that is the visible hallmark of skilled performance.
Our text-editing experts truly fly over the keyboard; and the contrast of
their behavior with that of beginners leaves no room for doubt that skill,
both perceptual-motor and cognitive, has been acquired.

We now attempt to characterize the general nature of cognitive skill to
see how skill in text-editing both confirms and illuminates it. We start
by presenting a view of all cognitive behavior as having a dimension of
skill, so that any cognitive behavior is more or less skilled (Section 11.1).
We illustrate this by showing how a task that initially requires problem
solving gradually becomes skilled (Section 11.2) and how text-editing,
which becomes a skill for most users, has its roots in problem solving
(Section 11.3). We next examine the distinguishing features of the skill

of text-editing, its most dominant feature being the unit-task structure
(Section 11.4). However, skills are characterized and differentiated along
many dimensions, of which the unit task is only one (Section 11.5).

Our development of the notion of cognitive skill in this chapter is
consonant with current work in cognitive psychology on this topic, as
exemplified by the recent collection. Cognitive Skills and their Acquisition
(Anderson, 1981a). In particular, our view of cognitive skill is in
substantial agreement with the picture of cognitive skill acquisition
emerging from the contemporaneous work of John Anderson (1980,
Chapter 8; 1981^).

11.1. THE SKILL DIMENSION OF COGNITIVE BEHAVIOR 3 5 9

11.1. THE SKILL DIMENSION OF
COGNITIVE BEHAVIOR

Human behaviors tend to get labeled—as problem solving, skill,
learning, imagining, creating, day-dreaming, etc. This leads to viewing
behavior in typological terms, with many distinct species of behavior,
each having its own separate characteristics. The actual situation seems
to be considerably different. As epitomized by the Rationality Principle
in Chapter 2, behavior is responsive to (1) the nature of the task and the
human’s goals, (2) the nature of the human's processing capabilities, and
(3) the preparation of the human for dealing with the particular task.
These factors provide different ways to classify behaviors. On the one
hand, task demands and human goals are as diverse as the world itself,
and human behavior reflects this diversity. However, strong commu-
nalities arise in behavior by the common involvement of the basic
processing system. All behavior feeds through the perceptual, cognitive,
and motor processors, whose fixed properties make all behavior similar in
many respects. But also, as indicated by the third factor, humans are
able to perform the same task in many ways and with many degrees of
facility, depending on their state of preparation—their knowledge of facts
and procedures and their internal organization to use them.

Thus, all cognitive behavior can be located in a three-dimensional
space, as sketched in Figure 11.1. The task (vertical) dimension indicates
the vast geography of different tasks. The processing dimension (shown
as depth) reflects the perceptual, cognitive, and motor structuring of the
human processor. In fact, any behavior will involve all three compo-

3 6 0 11. COGNITIVE SKILL

Cognitive
Cr

Perceptual

Motor

(/)
^ editing

Text-

Problem
solving

Cognitive
skill

SKILL

Figure 11.1. Three dimensions of cognitive behavior.
All cognitive behaviors, including both problem-solving behaviors and cognitive-skill
behaviors, can be classed along three dimensions; a task dimension, a processing
dimension, and a skill dimension. Any cognitive behavior on a given task will, with
practice, shift to the right along the skill dimension.

nents, and so a given behavior on a task would actually be characterized
by a relative emphasis on each subsystem. The skill (horizontal) dimen­
sion indicates the degree of skill with which the behavior is performed.
The further to the right, the more skilled is the performance of the task;
the further to the left, the more the behavior becomes that of solving a
problem.

The skill dimension is the most important one for us here. All
behaviors lie at some degree of skill along this dimension (although, of
course, complex behaviors dealing with different subtasks of a total task
can vary in their skill). Moreover, problem-solving behavior is simply the

less skilled end of this dimension; it is not a separate species of behavior
nor a separate class of tasks. The notion of a skill dimension that
includes both cognitive skill and problem solving is consonant with the
Model Human Processor of Chapter 2, both the Problem Space Principle
and the Law of Practice providing grounds for its support. We take up
each of these principles in turn.

THE PROBLEM SPACE HYPOTHESIS

The Problem Space Principle in Chapter 2 states that problem solving
takes place by search in a problem space, with the partial knowledge of
how to proceed—the search control knowledge—being used to guide the
search through the space. The principle, as stated, applies only to
problem solving, where it has attained an impressive amount of support.
However, it can be extended from problem solving to cover all cognitive
behavior (Newell, 1980);

Problem Space Hypothesis: The fimdamental organizational
unit o f all human symbolic activity is the problem space.

The status of this extended principle is much more tentative, but it can
still serve our purposes. It implies a homogeneity of structure for all
cognitive behavior, from problem solving to cognitive skill. It thus
supports the notion of a continuous skill dimension.

The difficulty of performance in a problem space can be graded by
how much the search control knowledge available in the problem space
constrains behavior. With little knowledge, the operators selected have
small chance of being the right ones. The paths through the problem
space are bound to go astray, leading to backtracking, pauses from
ignorance, trial search—the whole panoply of behaviors characteristic of
problem solving. With abundant search control knowledge, the operators
selected are almost always right. Behavior proceeds directly from the
initial point in the problem space to the final goal state with only
occasional error, and even then with knowledge usually available to
recover quickly and get back on the track.^ This grading of problem

11.1. THE SKILL DIMENSION OF COGNITIVE BEHAVIOR 3 6 1

 ̂ Implicit in this account is that search control knowledge is knowledge ready to be
brought immediately to bear on selection, without hesitation or puzzlement See Newell
(1980) for elaboration.

spaces according to control knowledge provides the basis for a scale from
problem solving to skilled behavior.

For behavior at the skilled end of the dimension, the sequence of
operators performed are highly predictable from the structure of the task.
When the task itself is only moderately complex (as are the text-editing
tasks in this book), the behavior will be specifiable simply by listing the
sequences of operators to be performed, explicitly conditional on the
appropriate features of the task. This, of course, is just the condition
under which behavior is easily specified by a standard programming
language, such as Basic or Pascal. We found it convenient to use our
own notational variant, the GOMS notation introduced in Chapter 5; but
it comes to basically the same thing.

The GOMS scheme, however, contains one more control feature
beyond operator sequence and explicit conditionals, namely goals. These
help to reveal the relationship between the procedural representation of a
behavior and its skill. Goals are analogous to procedure calls in standard
programming languages; but they have an additional degree of condi­
tionality in selecting the method (i.e., the procedure body) to attain the
goal, depending on the characteristics of the particular environment being
faced. This conditionality, embodied in the GOMS selection rules, is not
provided explicitly in standard programming languages,^ where it is
assumed that sufficient analysis has been done by the programmer to
directly call each procedure (via a unique name). On the other hand,
artificial intelligence programming languages (e.g., Bobrow and Raphael,
1974) have goals, with methods selected by pattern-matching against the
global database (so-called pattern-evoked procedure^). This is a more
open technique of method selection than the fixed selection rules of
GOMS. Thus, behaviors with a greater degree of skill can be adequately
represented with more rigid and explicit control structures. The rigidity
of the GOMS scheme is a direct reflection of its being a model of
cognitive skill.

THE POWER LAW OF PRACTICE

A second line of evidence for the continuous character of the skill
dimension comes from the Power Law of Practice (Chapter 2), which
states that the time to perform any task decreases with practice according

3 6 2 11. COGNITIVE SKILL

It is not required technically; the same selection can be attained by explicitly
making the requisite tests at the beginning o f the procedure body. BuL in representing
control, the issue is always where and in what form to encode conditionality.

to a common quantitative law (a power function). This law is a
quantitative reflection of the process that produces skilled behavior. The
important aspect of this law in the present context is that it applies
uniformly to all types of cognitive behavior, so long as the behavior is
sufficiently well organized to attain the task. The law applies not only to
skilled behaviors (cognitive and perceptual-motor), but also to problem­
solving behaviors (Newell and Rosenbloom, 1981). The exact mechanism
through which the law operates is still unclear (and under active
research). For example, it cannot yet be tied firmly to the problem space
organization of behavior, as implied in the Problem Space Hypothesis
above. Yet, in showing that learning proceeds in a gradual way, the
Power Law of Practice implies that all cognitive behavior, with practice,
moves smoothly—within a homogeneous structure—along a continuous
skill dimension.

11.1. THE SKILL DIMENSION OF COGNITIVE BEHAVIOR 3 6 3

THE SKILLED END OF THE DIMENSION

Ihere is some indication that, as behavior becomes highly skilled,
some of it may become organized differently, contrary to the notion of a
homogeneous organization implied by the Problem Space Hypothesis.
The key phenomenon is that of automaticity. In general, people are
aware of much that goes on while performing tasks—they can comment
on what they are doing, what they want, what they plan to do, what task
features they have noticed, etc. But some behaviors can become highly
automatic, so that the entire performance proceeds outside awareness.
There may be no awareness even that the behavior occurred or no ability
to recollect any intermediate aspects of internal processing. Automatic
behaviors are highly skilled behaviors, and they develop gradually with
extreme practice, following typical power-law practice curves, with
nothing special to indicate the degree of automaticity. Thus, the natural
interpretation is that automaticity is simply another attribute of skill,
which increases with degree of skill, becoming highly salient at the
extreme end of the skill dimension.

However, such a uniform dimension would imply that all behaviors
could become fully (at least extensively) automatic; but that does not
seem to be the case. The simpler and less varied a behavior, and the less
cognitive (hence more perceptual-motor), the easier it appears to be for it
to become automatic, though some quite complex extended tasks can
become automatic. On the other hand, some rather simple (though per­
ceptually varying) tasks have been shown to be very resistant to becoming
automatic (see, e.g., Shiffrin and Dumais, 1981). It seems unlikely that

text-editing could ever become highly automatic, however skilled it
became (e.g., consider that the user in Section 8.4 still required mental
preparation time even after executing the same method 1100 times).
Therefore, automatic behavior could imply use of a structurally different
process than cognitive skill behavior and thus a non-homogeneity in the
skill dimension. This is simply another place where our simplified Model
Human Processor does not yet reflect some important psychological
issues, and we do not pursue it further here.

3 6 4 11. CXX3NITIVE SKILL

11.2. COGNITIVE SKILL FROM PROBLEM SOLVING

Problem-solving behavior will, with practice, become cognitive skill.
To illustrate, we start with a classic example of problem solving, the
Tower of Hanoi puzzle, whose problem space has been given ample
analysis (Nilsson, 1971; Simon, 1975; Newell 1980). We show what
happens theoretically to problem solving when (1) the search control
knowledge increases and (2) the problem space is altered by the
construction of new operators.

Problem Space for the Tower of Hanoi Puzzle

A problem space, as outlined in Chapter 2, consists of a set of
knowledge states plus a set of operators for transforming states to other
states. A problem within a problem space is defined by an initial state
and a goal (a state or set of states). Solving the problem consists of
finding a sequence of operators (often called a path) to transform the
initial state into a goal state. The Tower of Hanoi puzzle consists of a set
of three pegs with disks of different sizes stacked on the pegs (see Figure
11.2a). The problem is to move a pyramid of disks from one peg to
another peg. A state in the problem space is a configuration of the disks
on the pegs, where no disk rests on top of a smaller disk. There is only
one operator in this problem space, m o v e -d is k , and it moves a single
disk from one peg to another. There is a path constraint on this operator
which only allows the top disk on a peg to be moved and which does not
allow a disk to be placed on top of a smaller disk. (This problem space
is more carefully defined in Figure 11.2a.) A problem space can be
viewed as a graph, where the states are the nodes and the operators are

the links between nodes. The problem space graph for a three-disk
version of the Tower of Hanoi puzzle is shown in Figure 11.26. The
graph is a map of all possible paths from the initial state to the goal state.

The important psychological assertion about a problem space is that
the problem solver will confine his behavior to lie within its boundaries.
According to the theory of human problem solving, a person solves a
problem by searching through the problem space state by state. At any
point in time the problem solver resides in some state, called the current
state', and there is a small set of previously visited states that he can still
remember, called the stock. The units of behavior in a problem space
are the successive applications of operators. For each application of an
operator, there is a control cycle of functions to be performed (Figure
11.3). The functions involve selecting a state in the stock to work from,
selecting an operator, applying the operator, and deciding whether a goal
has been reached. By cycling through these functions, the problem solver
will proceed from the initial state through a succession of intermediate
states, perhaps reaching a goal state.

11.2. COGNITIVE SKILL FROM PROBLEM SOLVING 3 6 5

Accumulation of Search Control Knowledge

Many of the control cycle functions involve decisions, such as what
operator to select The knowledge on which to base these decisions is
called search control knowledge. With little control knowledge, the
problem solver will wander about the problem space in search of a goal
state (such as is illustrated in Figure 11.4a). But with training or
experience in doing the problem, the problem solver will acquire
knowledge for guiding the search and making it more efficient In the
Tower of Hanoi, for example, it is quickly evident that moving back to
the just-previous state is useless; other examples of control knowledge for
the Tower of Hanoi are given in Figure 11.3. The problem solver
eventually may build up enough search control knowledge so that he
goes straight to the goal (Figure 11.46). As his search control knowledge
increases, he becomes more expert; and his behavior changes from
problem solving to cognitive skill.

Thus, problem solving and cognitive skill both take place in a
problem space, the main difference being the amount of search control
knowledge available. In cognitive-skill behavior, decisions have to be
made; but they are non-problematic, since the problem solver knows the

Informal Description: Three pegs— labeled peg-A. peg-b. peg-
c — are attached to a board as illustrated above. Disks of d ifferent

d iam eters— labeled d is k - i (the sm allest), d is k -2. d is k -3, e tc .— are

stacked on peg-a in a pyram id. The goal of the puzzle is to move

the pyram id of disks to peg-c by moving the disks from peg to peg.
one at a time. A disk may be moved from any peg to another

providing that it is the top disk on its peg and that it is not moved

on top of a sm aller disk.

States: Any configuration of the disks on the pegs

such that a larger disk is not on top of a

sm aller disk.

Operator: m o v e -d isk (Disk. FromPeg, ToPeg)
causes Disk to be moved from FromPeg to

ToPeg.

Path Constraint: On each m o v e -d is k . Disk must be the top disk

on FromPeg and Disk must be sm aller than the

top disk on ToPeg.

Problem: All disks on peg-a . All disks on peg-c .

Figure 11.2a. Problem space definition for the Tower of
Hanoi puzzle.
The description above completely defines the state space, which is laid out
explicitly in Figure 11.2/).

3 6 6

IN IT IA L
STATE

11.2. COGNITIVE SKILL FROM PROBLEM SOLVING 3 6 7

Figure 11.2b. Problem space graph for the three-disk Tower
of Hanoi puzzle.
Each state is described as “Disks-on-PEG-A / Disks-on-PEG-B / Disks-on-PEG-C.”
For example, the state 2 3 / 1 / - indicates that DISK-1 is on PEG-B and DISK-2 and
DISK-3 are on PEG-A; this state comes about by applying the operator MOVE-DISK
(DISK-1, PEG-A, PEG-B) to the initial state, 1 2 3 / - / - . Each link in the graph
represents an application of the MOVE-DISK operator.

appropriate actions to take. It is as though the flexible control structure
of problem solving were frozen into specific procedures that are available
at performance time. We have called these procedures methods in
previous chapters. What distinguishes cognitive skill from problem
solving is the packaging of operator sequences into integrated methods.
As we have seen in previous chapters, methods are not simply uncon­
ditional sequences. They also have conditional actions, although the
conditionality is limited to prepared alternatives. Method selection in the
GOMS model does not lead to search, but to the selection of whole
methods from a fixed repertoire. Furthermore, the method selection
process occurs rapidly and without any external signs of decision making.
These conditionalities and method selections are part of search control
knowledge.

As an example of the packaging of search control knowledge into
methods for cognitive skill, consider the method of solving the Tower of

3 6 8 11. COGNITIVE SKILL

Control Cycle

Step No. Control Function
Examples of Control Knowledge
in the Tower of Hanoi Puzzle

(1) (a) Select a state from the stock,
making it the current state.

(b) Select an operator.

(2) Apply the operator to the current
state, producing a new state.

(3) (a) Decide whether the new state
is a goal state.

(b) Decide whether to quit.

(c) Decide whether to add the new
state to the stock.

(4) Go back to step (1),
unless decision is to quit.

- Make the new state the curren t state.

-M o v e a disk to the peg specified by
a current goal.

- Move an obstructing disk to the no n ­
target peg.

- Do not move back to the just-
previous state.

- Do not move a disk tw ice in a row.

- A state is a goal state if it exactly
m atches the goal state pattern.

- Quit if successful.
- Quit when to ld by the experim enter.

- Add the new state to the stock.

Figure 11.3. Control cycle for searching in a problem space.
This scheme is adapted from Newell (1980). Note that the lettered functions within
numbered functions of the control cycle can be executed in any order.

Hanoi puzzle by simply memorizing all the moves. This method, the
MEMORiZED-MOVE-METHOD, is described at the top of Figure 11.5 in the
GOMS notation. The search control knowledge implicit in this method
can be categorized by the search control decisions (identified by the
number-letter labels on the functions in Figure 11.3) necessary for
problem solving:

(la) Proceed from the current state.
(lb) Select the next operator in the method.
(3a) The goal state is reached after executing the method.
(3b) Quit after applying the last operator in the method.
(3c) Make the new state the current state.

INITIAL
STATE

Figure 11.4a. Solution path in the Tower of Hanoi problem
space for a hypothetical novice.

INITIAL
STATE

Figure 11.4b. Solution path in the Tower of Hanoi problem
space for an expert.

369

3 7 0 11. COGNITIVE SKILL

MEMORIZED-MOVE-METHOD:

GOAL: MOVE-PYRAMID (PyramidO), PEG-A, PEG-C)
MOVE-DISK (DISK-1, PEG-A, PEG-C)
MOVE-DISK (DISK-2, PEG-A, PEG-B)
MOVE-DISK (DISK-1, PEG-C, PEG-B)
MOVE-DISK (DISK-3, PEG-A, PEG-C)
MOVE-DISK (DISK-1, PEG-B, PEG-A)
MOVE-DISK (DISK-2, PEG-B, PEG-C)
MOVE-DISK (DISK-1, PEG-A, PEG-C)

GOAL-RECURSION-METHOD:

GOAL: MOVE-PYRAMID (Pyramid(n), StartPeg, TargetPeg)
. FIND-OTHER-PEG (StartPeg, TargetPeg) OtherPeg
. GOAL: MOVE-PYRAMID (Pyramid(n - 1), StartPeg, OtherPeg)
. MOVE-DISK (Disk(n), StartPeg, TargetPeg)
. GOAL: MOVE-PYRAMID (Pyramid (n - 1), OtherPeg, TargetPeg)

PERCEPTUAL-MOVE-PATTERN-METHOD:

if n > I
i f n > ¡

i f n > ¡

if n is odd
if n is even
repeat until satisfied

GOAL: MOVE-PYRAMID (Pyi amid(n), StartPeg, TargetPeg)
GOAL: DEFINE-PEG-ORDER

FIND-OTHER-PEG (StartPeg, TargetPeg) OtherPeg
PegOrder = {StartPeg, TargetPeg, OtherPeg}
P egO rder = {S ta rtP e g , O therP eg, TargetP eg}

GOAL: DO-MOVE-PYRAMID
GOAL: MOVE-SMALLEST-DISK

FIND-SMALLEST-DISK DISK-1, PegOfDiskI
FIND-PEG-AFTER(PegOfDisk1, PegOrder) NextPeg
MOVE-DISK (DISK-1, PegOfDiskI, NextPeg)

GOAL: MOVE-SECOND-SMALLEST-TOP-DISK
FIND-SMALLEST-DISK DISK-1, PegOfDiskI
FIND-SECOND-SMALLEST-TOP-DISK -► Smallest2, PegOfSmallest2
FIND-OTHER-PEG (PegOfDiskI, PegOfSmallest2) OtherPeg2
MOVE-DISK (Smallest2, PegOfSmallest2, OtherPeg2)

Figure 11.5. Three methods for the Tower of Hanoi puzzle.
The methods are described using the GOM S notation (from Chapter 5), which has
been augmented to include variables (names in combined upper and lower case)

and variable assignment {—*).

There can be several methods for solving a problem, and different
methods may place quite different demands on the problem solver.
Simon (1975) has analyzed several methods (he called them strategies) for
the Tower of Hanoi. The three methods described in Figure 11.5 (the
MEMORIZED-MOVES-METHOD, the GOAL-RECURSION-METHOD, and the

p e r c e p t u a l -m o v e -p a t t e r n -m e t h o d) are taken from from Simon’s
analysis.

The MEMORiZED-MOVES-METHOD we have just seen. The principal
difficulty with this method is not only the large number of steps that
must be memorized, but the fact that the steps are very similar and hence
susceptible to interference. Also, because the steps are different depend­
ing on the number of disks in the puzzle, this method has no generality.

The g o a l -r e c u r s i o n -m e t h o d is based on a few observations about
the structure of the Tower of Hanoi puzzle. Note that a pyramid of
disks contains subpyramids—a three-disk pyramid consists of d i s k -3 plus
a two-disk pyramid. Moving a pyramid can be broken into moving its
largest disk plus moving its subpyramid. Moving a subpyramid is
structurally similar to moving the pyramid (which can be seen as the
nested triangular regions in the state space graph in Figure 11.26).
Hence, the following recursive procedure will move a pyramid to a target
peg:

—Move the subpyramid to the non-target peg.
—Move the largest disk to the target peg.
—Move the subpyramid to the target peg.

11.2. COGNITIVE SKILL FROM PROBLEM SOLVING 3 7 1

Moving a subpyramid is a subgoal of the goal of moving the pyramid,
and moving the largest disk can be done with a m o v e -d is k operation.
Each subgoal generates a further subgoal, until one works down to the
subgoal of moving a one-disk pyramid, which can be done with a single
m o v e -d is k operation. This method is very elegant, all of the operations
falling into place within the subgoal structure—provided that the problem
solver keeps track of the entire analysis. (In fact, if he could remember
the dynamic goal structure, he would not even have to look at the
puzzle’s state.) The main problem with this method, of course, is the
large amount of Working Memory required. Again, not only are there a
large number of subgoals, but they are very similar, causing interference.

In contrast, the p e r c e p t u a l -m o v e -p a t t e r n -m e t h o d uses the visible
state of the puzzle to determine the next move. The first subgoal in this
method is to determine which direction the smallest disk will cycle, which
depends on whether the number of disks in the puzzle is odd or even.
Then the disks can be moved according to a simple pattern: The
smallest disk is moved to the next peg in the cycle, and the next-smallest
exposed disk is moved to the one peg it can go to. This pair of moves is
repeated until the puzzle is solved. Thus, to determine each move, one
only need examine the visible state of the puzzle, which is accomplished

by the perceptual (f in d) operators in Figure 11.5. In this method there
is no dynamic goal structure to keep track of in Working Memory.

A person using any of these methods to solve the Tower of Hanoi
puzzle is engaged not in problem solving, but in cognitive skill.
Although the search control knowledge implicit in each of these methods
could be represented as individual items of control knowledge (as in
Figure 11.3), we have cast the methods in GOMS notation (Figure 11.5)
to emphasize that the problem solver’s search control knowledge is
compiled into integrated procedures for efficient performance. However,
a skilled expert is not restricted to executing precompiled methods only.
Since the methods are embedded in a problem space, the expert can
often revert to problem solving when necessary.

Consider what happens when an expert inadvertently makes an error
while executing a method. In Chapter 5 we showed that most (but not
all) error correction in text-editing just involves the execution of more
GOMS methods, but we had to strain the GOMS control structure to
make this scheme work. The problem space provides a better way to
understand errors. While executing a method, the user is moving along a
path of states in the problem space. The occurrence of an error throws
the user off the path into another state, but one that is still a state in the
problem space. He then has to formulate another goal to get back onto
the intended path. This goal may be reachable by an available error-
correction method; but, if there are no methods available, the user can
search for the solution in the problem space (which is what happened in
the three large errors observed in Experiment 5C in Chapter 5). This
ability to revert gracefully to problem solving allows the expert user to
deal with new, unfamiliar tasks.

Construction of Problem Space Operators

As a problem solver accumulates search control knowledge, he
becomes more skilled. The process is gradual, so that a problem solver
has only partially integrated methods, and his behavior is a mixture of
problem solving and cognitive skill. This process can be illustrated with
the Tower of Hanoi puzzle. The most frequently moved disks are the
two smallest disks, d i s k - i and d i s k -2; a problem solver quickly learns a
special method^ for moving them:

372 11. COGNITIVE SKILL

 ̂ This method is, o f course, a special case of the GOAL-RECURSION-METHOD
(Figure 11.5). However, the problem solver in this case does not think of it as such, but
as a specific method that only applies to the two smallest disks.

—Move DISK-1 to the non-target peg.
—Move DISK-2 to the target peg.
—Move DISK-1 to the target peg.

With this method, the subgoal of moving the two smallest disks is no
longer a problem. The effect is to give the problem solver the equivalent
of a new operator, m o v e - d i s k s - 12, which moves these two disks. The
addition of this new operator reduces the size of the problem
space—from 27 states (Figure 11.26) to only 9 states (Figure 11.6a)—and
the number of operations to the goal has been reduced from seven to
three.

Thus, the acquisition of enough search control knowledge to define a
partial method results in the construction of a new operator that
restructures the problem space into two nested problem spaces; a reduced
problem space (Figure 11.6a) and a skill space (Figure 11.66). The
reduced problem space will still occasion problem-solving behavior,
though there will be fewer states through which to search. When the
problem solver executes the new operator, he descends into the skill
space, where the execution takes place. There will be little or no search
in the skill space, for the problem solver has methods for guiding him
through.

11.2. COGNITIVE SKILL FROM PROBLEM SOLVING 373

Levels of Cognitive Behavior

Complex and extended cognitive behavior is organized hierarchically
into many levels. This is reflected in the hierarchical goal structures and
the various models at different levels in the GOMS framework in
Chapter 5. This is also reflected in the problem space framework, where
complex cognitive behavior is organized into a nested hierarchy of
problem spaces. The various parts of a behavior (i.e., the various
problem spaces) are differentially skilled. Although in the Tower of
Hanoi example it is the lower levels of behavior that are the more skilled
(implying a strictly bottom-up growth of skill), it is also possible for the
higher levels of behavior to be more skilled than the lower levels
(imagine, for example, a computer-game version of the Tower of Hanoi
being played for the first time by an expert Tower of Hanoi player who
does not understand how to specify moves to the computer). Thus, a
complex cognitive behavior is a medley of varying degrees of skill.
When we speak of a given degree of skill for a behavior, we are really
referring to some sort of average skill over the various levels.

Figure 11.6a. Reduced problem space for the three-disk
Tower of Hanoi puzzle.
The single-line links represent MOVE-DISK operations, just as in Figure The
double-line links represent MOVE-DISKS-12 operations.

Figure 11 .6b. Skill space for the two-disk subproblem of the
Tower of Hanoi puzzle.
The solid links represent MOVE-DISK operations. The dashed links represent
potential MOVE-DISK operations that the user does not perform, since they are not
needed in the skill space.

374

Another good example of the composite nature of cognitive behavior
is the mixture of problem solving and cognitive skill observed in the
circuit-layout task studied in Chapter 10. During the phase of
compressing the circuit, the user was observed to be problem solving, yet
he was obviously highly skilled at using the layout system. The user was
clearly skilled in executing the various kinds of unit-tasks, since he had
methods for accomplishing them. The unit-task executions were available
as operators in the problem space where the user was searching for a
more compressed circuit configuration. Thus, the user’s problem-solving
behavior was taking place in a reduced problem space for circuit
compression—reduced by the unit task operators—and his skilled
behavior was taking place in skill spaces within the unit-task executions.

11.3. PROBLEM SOLVING PRECEDING COGNITIVE SKILL 375

11.3. PROBLEM SOLVING PRECEDING
COGNITIVE SKILL

We have illustrated how a familiar problem-solving behavior will,
with practice, become skilled. We now wish to look at a familiar
cognitive skill and show how it arose from problem solving with practice.
The obvious illustrative example for us is text-editing, the paradigm
cognitive skill of the book. Hence, let us consider the clause-switching
task introduced in Chapter 8 (Experiment 8B). The task is to change
Sentence 11.1a to 11.1b using the editing facilities of b r a v o :

The sun shines when it rains; our weather is funny. (11.1a)
Our weather is funny; when it rains the sun shines. (11.1b)

The task involves switching the two outer clauses and adjusting the
punctuation and capitalization of the sentence. In this task there is a
restriction that the user is not to retype any of the text within the clauses.
With this restriction, it is more convenient to consider the task in the
more abstract form;

[A— b—; c—.] —̂ [C—; b— a—.] .

Each clause is represented by a letter followed by a dash. The letter
labels the clause and indicates whether the first letter of the clause is
upper or lower case; the dash represents the rest of the text in the clause,
which is treated as an indivisible substring in this task.

Problem Space for BRAVO Text-Editing

Our first job is to lay out the problem space for this task. For the
most part, the problem space is determined by the structure of the
BRAVO editor and the further restrictions of the clause-switching task. It
is simplest to see how b r a v o shapes the problem space by first
considering a subtask of the clause-switching task—moving a substring of
text to a new location.

PROBLEM SPACE FOR THE MOVE-TEXT TASK

The problem space for the move-text task is defined in Figure 11.7.
Each state in the problem space has three parts: (1) the current
configuration of text in the workspace, (2) the substring of the text that is
currently selected, and (3) the contents of the deletion buffer. Bravo’s
commands provide the operators to change state and allow the user to set
and alter the selected text by pointing (see Figure 6.1). This is
represented in the problem space by the s e l e c t -t e x t operator. This
operator has one argumenL the text to be selected (which is designated
by pointing). The Delete command in bravo, represented by the
DELETE-TEXT operator, deletes the selected text from the workspace (and
makes the current selection be the character following the deleted text).
The Insert command in bravo has several variants, which differ so much
that they are represented by different operators. The simplest variant of
the Insert command is to type in new text (from the keyboard) in front
of the current selection; this is represented by the in s e r t -n e w -t e x t
operator.

These three operators, s e l e c t -t e x t , d e l e t e -t e x t , and in s e r t -n e w -

t e x t , are sufficient to allow text to be moved. A method for doing this,
the r e t y p e -a n d - d e l e t e -m e t h o d , is shown in Figure 11.7. Text to be
moved is (re)typed in its new location and then deleted from its old
location. Although this method is easily derived from means-ends
analysis, even moderately competent users of b r a v o have assimilated it
as an integrated method. The method is not allowed in the clause­
switching task because of the restriction against retyping the clauses.
However, there is an allowable method, the c o p y -a n d -d e l e t e -m e t h o d ,
which is very similar, the only difference being that text is copied instead
of retyped. This method requires the use of another variant of the Insert
command, which inserts a copy of a piece of text from another location.
This variant of the Insert command is represented by two operators, one

376 11. COGNITIVE SKILL

In fo rm a l D e s c rip tio n : M ove a substring of text to another location
using th e com m ands available In b r a v o .

S ta te s : [Text with selection underlined] {D eletion Buffer}

O p e ra to rs : s e l e c t -t e x t (TextToSelect)
DELETE-TEXT
INSERT-NEW-TEXT (NewText)
SELECT-COPY-TEXT (TextToBeCopied)
INSERT-COPIED-TEXT
INSERT-DELETED-TEXT
etc.

P ro b iem : [A— b— ; c— .] => [b— ; c— A— .]

M eth o d s : R E T Y P E -A N D -D E L E T E -M E T H O D

SELECT-TEXT
INSERT-NEW-TEXT

SELECT-TEXT

DELETE-TEXT

[A— b— ; c — .]

[A — b-~; c— J

[A — b - ; c— ^

[A — b - ; c -~ A -

[^ ; c—A— .]

{}
0

,] {}
•] 0

{A -

C O P Y -A N D -D E L E T E -M E T H O D

SELECT-TEXT
SELECT-COPY-TEXT
INSERT-COPIED-TEXT

SELECT-TEXT

DELETE-TEXT

[A - l>-: C-.]
(A— b—; c—J
[A— b—; c—,]
[A— b—: c—̂
[A— b^i c—A—

c - A - .]

0
{}
{}

•] 0
.] 0

{ A - }

D E L E T E -A N D -IN S E R T -M E T H O D

SELECT-TEXT

DELETE-TEXT

SELECT-TEXT

INSERT-DELETED-TEXT

[A— b— : C— .]

[A— b— : c—.]
[^ ; c -.]
[b— ; c— .]
[b— ; c— A— .1

{}
{}
{ A - }

{ A - }

{ A - }

Figure 11.7. Problem space and three methods for the
move-text task.
The methods are shown as paths in the problem space, i.e., as sequences of
states and the operators that change the states.

377

for selecting the text to be copied (s e l e c t -c o p y -t e x t) and one for
making the copy and insertion (in s e r t -c o p i e d -t e x t). The c o p y -a n d -

DELETE-METHOD is known and used by all expert b r a v o users.
A third method for moving text, the d e l e t e -a n d -in s e r t -m e t h o d ,

requires not only another operator, but also knowledge of b r a v o ’s

deletion buffer. Whenever a piece of text is deleted (d e l e t e -t e x t), it is
saved in a deletion buffer. The text in the buffer may be accessed by the
third variant of the Insert command, in s e r t - d e l e t e d -t e x t , which inserts
a copy of the buffer at the selected location. The d e l e t e -a n d -in s e r t -

m e t h o d , shown in Figure 11.7, is thus to delete the text to be moved
and to copy it from the buffer to the new location.^ This method is
riskier than the first two methods (the wrong text could be deleted, the
buffer contents could be lost, etc.), but is faster to execute (according to
the Keystroke-Level Model). Almost all b r a v o experts know this
method, and most use it at least occasionally despite the risk.

For an expert BRAVO user, moving text is not a problem; it is a
routine unit task, for which he knows several methods (of which the
three methods presented above are only a sample). The problem space
for moving text (Figure 11.7) is thus a skill space, and the activity of
moving text is available to the expert as a unitary operator in a larger
problem space context

PROBLEM SPACE FOR THE CLAUSE-SWITCHING TASK

We now describe a problem space for the clause-switching task in
which the m o v e operator is used. We could extend the problem space in
Figure 11.7 (by adding more operators to represent other commands) to
encompass the clause-switching task; but that space would be at too fine
a level of detail to represent expert behavior. That this is so can be seen
by considering the s e l e c t -t e x t operator. The expert user never has to
decide explicitly to use s e l e c t -t e x t , for he has control knowledge telling
exactly when to use it. He knows that s e l e c t -t e x t is always used just
before other operators that effect the selection. For example, it is used
before d e l e t e -t e x t to specify the text to be deleted; to the expert, these
two operators are bound together as a unit

Thus, there should be a reduced problem space for the clause­
switching task in which selections are incorporated within the operators.

378 11. COGNITIVE SKILL

This method is described at the Keystroke Level as task T4-BRAVO in the
Appendix to Chapter 8.

Informal Description: S ta rtin g w ith a th re e -c la u s e s e n te n c e , sw itch th e

o u te r c la u s e s a n d a d ju s t th e p u n c tu a tio n a n d c a p ita liza tio n , using th e

c o m m a n d s a v a ila b le in th e b r a v o ed ito r. T h e re Is a res tric tio n th a t th e

te x t w ith in th e c la u s e s is not to be re typ ed , e x c e p t fo r th e firs t le tte rs of

th e c lau ses .

States: [T ex t]

Operators: m o v e (ToLocation, TextToBeMoved)
COPY (ToLocation, TextToBeCopied)
DELETE (TextToBeDeleted)
INSERT (ToLocation, NewText)
REPLACE (TextToBeReplaced, NewText)
etc.

Path Constraint: N o tex t w ith in an y c la u s e (th e “ — ” p art of th e c la u s e) Is

to b e re typ ed .

Problem: [A — b— ; c— .] => [C— ; b— a — .]

Optimal Method:

MOVE
REPLACE
REPLACE
MOVE

[A — b — ; c — .]

[; C - - A— b— .]

[C — A— b— .]

[C— i a— b— .]

[C— I b— a — .]

Figure 11.8. Problem space and optimal method for the
clause-switching task.
T h e optim al m ethod is the sam e one described at the Keystroke Level in F igure
8.8. N ote that the state description does not Include a selection or a buffer, as

does the state descrip tion in F igure 11.7. T h e underlined portions of text thus do

not Ind icate the selections, but simply show the parts of the text a ffected by the

operators.

379

For example, s e l e c t -t e x t followed by d e l e t e -t e x t is represented by
the single operator d e l e t e , which takes the text to be deleted as an
argument Also, moving text is the single operator m o v e , which takes as
arguments the text to be moved and the new location. The other
relevant operators in this reduced problem space are listed in Figure 11.8.
Note that the state descriptions in this reduced problem space are simpler
than in the problem space of Figure 11.7. There is no longer any need
to keep* track of the current selection or the deletion buffer, since these
are managed within each operator.^ In this reduced space, the optimal
method for doing the clause-switching task (see Figure 8.8) takes only
four operations (see Figure 11.8): two m o v e operations to switch the
clauses and two r e p l a c e operations to clean up the punctuation and
capitalization.

Problem Solving Behavior in Text-Editing
(Experiment 11 A)

We have characterized a problem space for the clause-switching task;
the problem space is for a user who is expert in b r a v o , but who is not
(yet) expert in the clause-switching task. We now consider whether such
a user actually exhibits problem-solving behavior, in addition to the usual
cognitive-skill behavior of an expert. We expect problem-solving
behavior to take place within the reduced problem space (Figure 11.8)
and skilled behavior within the operators of that space (i.e., within the
skill spaces of the operators, such as in Figure 11.7). We consider two
types of evidence for problem-solving behavior. First, we expect to see
an inefficient use of the operators for the task at hand, possibly including
some backtracking. Second, we expect the time required to do the task
to be considerably longer than for skilled behavior, including long pauses
for deciding which operators to apply. We illustrate these phenomena
with some actual behavior.

Experimental Procedure. A pilot experiment. Experiment 11 A, was
run with an expert b r a v o user, a secretary with considerable technical
ability, performing the clause-switching task repeatedly. The procedure

380 11. COGNITIVE SKILL

The current selection and the buffer contents are, of course, aspects of BRAVO’s
state that the user may be aware of. But this reduced problem space makes the
substantive psychological assertion that these aspects o f state are only considered locally
by the user. A user in this problem space cannot, for example, deliberately make use, in
a subsequent operator, o f an operator’s side-effect on the buffer.

11.3. PROBLEM SOLVING PRECEDING COGNITIVE SKILL 381

was the same as in Experiment 8B, with one important exception. The
user in Experiment 8B was told a method for the task and then
proceeded to execute that method as quickly as possible. In the present
experiment, the user was given no information about how to do the task.
Since the user did not have a method, it was for her a problem-solving
task. She eventually acquired a method by repeatedly performing the
task. (The instructions to the user were to repeat the task over and over.
She was not to stop and attempt an elaborate analysis, although the latter
is a reasonable strategy.) There were two experimental sessions. The
user performed the task 60 times in the first session and 50 more times in
the second session (two weeks later). As in Experiment 8B, time-stamped
keystrokes were recorded.

Operator Sequence Results. The user’s behavior for the first three
trials, as a sequence of states and operators in the problem space, is
shown in Figure 11.9. The behavior in these trials is representative of
the behavior up to about Trial 33, when the user began to settle on a
single method. The figure also shows the best method found by the user,
which she first executed without error on Trial 35. Although the user’s
best method was not quite optimal (requiring one more m o v e operator
than the optimal method shown in Figure 11.8), it was a considerable
improvement over the first few trials (which required 3-4 more operators
than the optimal method).

There are several indications of the problem-solving nature of the
user’s behavior in the early trials. First is the use of c o p y operators
instead of m o v e operators, which are inefficient because they require the
use of extra d e l e t e operators (e.g., operators 1.1, 1.4, and 1.7 of Trial 1
in Figure 11.9). A second indication of problem solving is the overt
correction of previous operators, such as doing a d e l e t e (3.5) to modify
a previous c o p y (3.4). A third indication is the user’s failure to structure
the sequence of operators; even small local consolidations of operators
are missed. For example, the in s e r t (1.3) and r e p l a c e (1.6) in Trial 1
could have been accomplished by a single r e p l a c e operator, since the
text being edited was contiguous at the time of the in s e r t . Any of these
features of the behavior might occur occasionally in skilled behavior, but
they occur very frequently in these trials. The asterisks in Figure 11.9
mark the operators that could have been avoided by one of the above
considerations, that is, by acquiring specific search control knowledge
about this task.

The user’s lack of a stable method in the early trials is indicated by
the radically different operator sequences from trial to trial. On each

Trial 1:
1.1
1.2
1.3
1.4
1.5
1.6 *

1.7*

COPY

REPLACE

INSERT

COPY

INSERT

REPLACE

DELETE

[A - t > - ; C - .]

[c—A— b—; c—.]
[C—A— b— ; c—.]
[C - 1_ A - b -; c - .]
IC -
[C -
[C -
[C -

b—A—— b~“i c—.]
b—_A— b— ; c—.]
b— a— b— ; c—.]
b— a—.]

Trial 2:
2.1
2.2
2.3
2.4*
2.5
2.6
2.7*

MOVE

INSERT

REPLACE

REPLACE

COPY

INSERT

DELETE

[A— b—; c—.]
[» c—A— b— .]
[; c—[_A— b— .]
[G~; b - .]
[C - ; a - b - .]

[C— !
[C— b—_a— b “ .]
[C— ; b—■ a— .]

Trial 3:
3.1
3.2
3.3
3.4
3.5*
3.6
3.7*
3.8*

MOVE

MOVE

REPLACE

COPY

DELETE

INSERT

REPLACE

DELETE

[A— b— ; c—.]
r c - A ~ .1
[c—;_A— b—.]
[C—; A— b—.]
[C—; b—-A— b— .]
[C— i b —A— b— .]
[C - ; b -_ A — b— .]
[C—I b— a— b~“.]
[C—I b — a—.]

Trial 35 (User’s Best Method):
35.1 MOVE

35.2 MOVE

35.3 MOVE

35.4 REPLACE

35.5 REPLACE

[A— b ~ ; c— .]
[A—; b— c—.]
[; b ~ c—A— .1
[c—; b— A— .]
[c—; b ~ a—.]
[C—; b— a—.]

Figure 11.9. User’s behavior on selected trials in the
clause-switching task in Experiment 11 A.
T h e behavior is described in the problem space of F igure 11.8. T h e asterisks after

the o pera tor num bers m ark the operators that could have been elim inated by
sim ple local planning; see text.

382

trial the user was trying a different way to improve by reacting to local
aspects of the task. It was not until Trial 35 that the user settled on a
stable method, after which she always used this method (except for the
first four trials of the second session, during which she was trying to
recall this method). The user’s performance became more and more
skilled after Trial 35, just as did the performance of the user in
Experiment 8B.

Perforrmnce Time Results. The most dramatic indicator of the
character of the user’s behavior throughout the experiment is the
performance time curve, plotted in Figure 11.10. The top line in the
figure, representing the total performance time per trial, gives the overall
story of the behavior. The user took about 50 sec per trial for the early
trials, dropping sharply to about 32 sec per trial at about Trial 35.
Performance fell back in the first few trials of the second session as the
user was getting reoriented to the task, but quickly improved and leveled
off at about 22 sec per trial. It is instructive to compare this performance
against a standard of skilled performance. One obvious standard, the
calculated time to execute the user’s best method (the sequence in Trial
35) according to the Keystroke-Level Model, is plotted as the dashed line
in Figure 11.10. This clearly shows that the user had reached a skilled
level of performance on the last 40 trials.

More light can be shed on the user’s performance by decomposing
the performance time into its physical and mental components. (The
method for making this decomposition was explained in Section 8.4.)
The mental time component is further decomposed into large and small
mental time components, with the large mental time consisting of all
pauses over 3 sec and the small mental time consisting of the pauses
under 3 sec. A mental pause over 3 sec long must be more than simply
a preparation for skilled performance, since it is significantly longer than
skilled mental preparation (the M operator of the Keystroke-Level
Model).^ Thus, in the present context, we can interpret the large mental
time as the time needed for planning the operator sequence. This
decomposition is represented in Figure 11.10 by the variously shaded
regions under the execution time curve. The execution time is composed
of the physical time (unshaded region), the small mental time (lightly

11.3. PROBLEM SOLVING PRECEDING COGNITIVE SKILL 383

 ̂ The rationale for choosing 3 sec as the threshold for large mental time is as
follows. In Chapter 8, the mean M operator time was estimated to be 1.35 sec, and its
standard deviation was estimated to be 1.1 sec. 3 sec is 1.5 standard deviations from the
mean M time. Thus, assuming a normal distribution for M times, only about 10% of M
times will be 3 sec or greater.

60

384 11. COGNITIVE SKILL

I— I— ̂ I ̂ I ̂ r

50

40

o —
^ 3 0 0)
E

20 -

10 -

Predicted ”
Execution Time ■

Physical
Time

J____̂__L
0 10 20 30 40 50 60 70 80 90 100 110

Trial Number

Figure 11.10. User’s execution time in the clause-switching
task in Experiment 11 A.
T h e tim es a re averaged in 10-trial b locks. T h e top solid line show s the user’s

actual execution times; and the dashed line show s the predicted tim e to execu te

the u ser’s best m ethod, as ca lcu la ted w ith the K eystroke-Level M odel. T h e user’s

tim e is decom posed into th ree com ponents: the physical tim e (the unshaded a rea

on the bottom), the sm all m ental tim e (the lightly shaded a rea in the m iddle), and
the large m ental tim e (th e darkly shaded area on the top). S ee the tex t for how

these tim e com ponents are defined and interpreted.

shaded), and the large mental time (darkly shaded). The figure clearly
shows that the dramatic changes in overall performance time are not in
the physical time, but in the mental time, especially the large mental
time. It is the large mental time that drops around Trial 35, when the
user finally settles on a stable method. And further, the large mental
time is eliminated altogether around Trial 70, just as the user attains a
completely skilled performance level, i.e., betters the predicted time of
the Keystroke-Level Model.

Summary. We have observed a user who has attained a skilled level
of behavior in a specific task, switching two sentence clauses with a text-

11.4. THE UNIT TASK 385

editor; and we have shown that this skill starts out as problem solving
and becomes skill after practice on the task. We have illustrated a
problem space for the task and have described the user’s problem-solving
behavior in terms of this problem space. Finally, we have shown that the
observed skill could have emerged within the problem space by the
acquisition of specific search control knowledge about the task.

11.4. THE UNIT TASK

So far in this chapter we have been characterizing the general nature
of cognitive skill. We now return to the particular skill studied in the
book, text-editing. As shown by the preceding section, the text-editing
task fits well enough into the general picture, eliciting behavior that
moves along the skill dimension with practice from problem solving to
skilled performance. But text-editing has a striking feature—its unit task
structure—which sheds some light on the organization of cognitive skills.
The organization of behavior into a sequence of short quasi-independent
tasks is pervasive in the studies in this book. It originated in our analysis
of the manuscript-editing task (Chapter 5) as an obvious way to divide
the total task into smaller parts, based on the localized nature of the
corrections on the manuscript In the Keystroke-Level Model (Chapter
8), it provided a useful way to separate task acquisition from task
execution. It also proved an easy way to analyze other interactive tasks,
one involving page layout (Chapter 9) and another involving computer-
aided design (Chapter 10). The unit task partitions the behavior stream,
thus providing the basic structural foundation on which the detailed
models can be erected. We review here the basic nature and function of
the unit task and the determinants of unit task structure in more
fundamental psychological factors.

The Nature and Function of Unit Tasks

We consider several aspects of unit tasks: their well-defined internal
structure, their basic function as a control construct for the user, their
characteristic durations, and their relationship to problem solving.

STRUCTURE

In each of the cases of unit-task behavior studied, there has been a
structured cycle of repeated actions. The user first acquires a task and a
method for doing it (reads or decides what to do and how to do it) and
then executes the method;

Unit Task = Acquire + Execute.

The important point about acquisition is that more than just a task (goal)
is acquired—a method for accomplishing the task is also acquired.
Without a repertoire of readily available methods, behavior cannot be
structured into unit tasks.

The execution of a method involves locating the necessary data, acting
on the data, and then (optionally) checking to see if the action was
correct;

386 11. COGNITIVE SKILL

Execute = Locate + Act + (Verify).

The Act operation is the main purpose of the unit task, locating the data
being just a preliminary step enabling direct access to materials necessary
for carrying out the action. In text-editing. Locate and Act were specific
operations; locating a piece of text in a file and modifying the text.
However, Locate and Act (and, of course. Verify) are general functions
that apply to a wide variety of tasks. For example, the task of checking a
canceled check received from the bank involves locating the check and
the checkbook entry and then making a detailed comparison. Thus, one
of the properties of the unit task is its characteristic functional structure.

CONTROL FUNCTION

The most important point to understand about the unit task is that the
unit task is fundamentally a control construct, not a task construct. This
distinction can be made clear by considering the manuscript text-editing
task. The manuscript contains a set of spatially separated marks, each
denoting a different modification to be made. Thus, the task is
structured as a set of separate modifications. However, it is up to the
user to decide how to organize these modifications into a series of unit
tasks. Usually, as we have seen, the user makes each modification as a
unit task. But the user may perform two nearby modifications within a
single unit task, or he may sometimes find a way to make a whole series

11.4. THE UNIT TASK 387

of modifications at once (e.g., using a global substitution command). In
the other direction, a single complex modification may be broken into
several unit tasks. Inexperienced users may even as a general rule
separate the location of the site of the modification from the execution of
the modification, making separate excursions to the manuscript to seek
the information for these two aspects. Although the frequency of such
behavior in text-editing is low enough not to make them a prominent
part of our analysis, we have seen enough examples of such behavior to
make clear the basic point: that the unit task is not given by the task
environment, but results from the interaction of the task structure with
the control problems faced by the user.

The reason a user imposes unit-task structure on his behavior is
because each unit task can be kept within his performance limitations. In
a skilled behavior streams of inputs and outputs must be managed in
Working Memory if performance is not to be degraded. If the input and
output streams can be managed in a parallel (pipelined) fashion, then the
behavior can have a continuous structure rather than a unit-task structure.
But when conditions on the inputs and outputs do not allow this
pipelined processing (e.g., when the output process cannot keep up with
the input stream), then behavior must be structured into a series of unit
tasks.

Let us examine a particular task in more detail to see how the user
controls his behavior in response to his resource limitations. Consider
the skill of touch-typing, which does not have a unit-task structure, but
rather a continuous structure. The reason why it is continuous can be
seen by observing how behavior in this task is shifted to a unit-task
structure when the task is modified slightly so as to exceed the user’s
processing limits. In normal touch-typing, memory load remains low and
within Working Memory limits. The behavior is continuous—while the
user types one word, he reads the next, in accord with the pipelined
parallel model of Chapter 2. There is no unit-task structure.

Norman and Bobrow (1975) have suggested that a useful way to
depict the relationship between performance on a task and the processing
resources available is to plot the task’s performance-resource function as
in Figure 11.11. The figure shows the idealized relationship between a
resource (in this case, the amount of Working Memory available) and a
measure of performance (in this case, accuracy). Consider the resource-
performance curve labeled “Touch-Typing.” If the user had no Working
Memory at all, he could not remember what he had read long enough to
type it; and the accuracy would be zero (the curve would begin at the

388 11. COGNITIVE SKILL

>O
ro

03oc(U
£
V-O
O.

Possible

Resource
(Working Memory Available)

Not Possible

Figure 11.11. Idealized performance-resource functions for
touch-typing and dictation.
T ouch-typ ing is a continuous task (does not have unit-task structure) because

a c cep tab le accuracy can be obtained with availab le resources. For fast d ictation,

how ever, e ith er the user m ust low er his m inim um accep tab le accuracy , or the task

m ust be broken into unit tasks, each of w hich can be d on e at accep tab le

accuracy , is the user’s W orking M em ory capacity , is the user’s m inim um

a c cep tab le accuracy , / f ^ is the user’s accuracy for fast d ictation, is the user’s

accu racy fo r 4 sec bursts of fast d ictation.

origin). By devoting a small amount of Working Memory to the task,
however, typing accuracy increases to some asymptotic value.
Performance, as measured by accuracy, is “resource-limited” (more

11.4. THE UNIT TASK 389

available resource leads to better performance) up to about one word’s
worth of Working Memory and then is “data-limited” (more available
resource does not lead to improved performance, only better data can
improve performance).

Touch-typing is user-paced, with the user varying his reading speed to
maintain input and output in balance. If the task is changed to be
machine-paced, as in the similar task of transcribing dictation, where the
user plays out speech at its recorded speed, then segments of speech may
flow into Working Memory faster than they can be processed; and the
user needs more Working Memory to buffer the input until he can get
caught up during the pauses. In Figure 11.11, this need for more
resource (to obtain the same level of performance) is represented by a
leaning of the resource-performance function a little to the right, as in
the curve labeled “Slow Continuous Dictation,” and further to the right,
as in the curve labeled “Fast Continuous Dictation.”

Now, according to the Model Human Processor, each user has a
Working Memory capacity so performance requiring greater than

amount of Working Memory is not possible. Let be the
minimum performance accuracy acceptable to the user. The user’s
maximum possible accuracy (using amount of Working Memory)
for Fast Continuous Dictation is Aj-, which is lower than A^ and
therefore not acceptable. For speech this fast, the user, if he is to avoid
unacceptable performance, must stop treating the task as a continuous
task; instead, he must break it into a unit-task pattern by listening to a
bit of tape at a time and then typing it. As an idealization, let us
suppose he listens to a 4-sec burst of tape at a time. The resource-
performance function is then shifted back to the left, and the user’s
accuracy improves to A^—better, but still below the acceptable level A^.
But if he listens to small enough bursts of, say, 2 sec, he will finally be
able to shift the resource-performance curve far enough to the left to
meet his accuracy requirements. Of course, he could make the bursts
smaller yeL achieving acceptable accuracy using less than his full
Working Memory capacity. But the smaller the bursts become, the
longer the total time required to transcribe the tape, a force that will tend
to keep him from being any more accurate than necessary.

To summarize, we have seen how a continuous task can be shifted by
degrees into a task where the user’s performance is no longer acceptable
and how a unit-task control structure comes about as a method for the
user to shift performance back into an acceptable level.

390 11. COGNITIVE SKILL

DURATION

The unit task is an internally determined control construct, and its
duration is limited. In fact, we have seen very few error-free unit tasks
in this book that lasted longer than 30 sec.^ Most of the text-editing unit
tasks lasted 10~15 sec (Chapters 5 and 8), and the routine circuit-layout
unit tasks lasted 10~50 sec (Chapter 10). The duration of the acquisition
phase of a unit task is determined by how well the task is specified and
presented to the user, and the duration of the execution phase is
determined by the length of the method used. These two phases
independently determine the duration of the whole unit task (e.g., a long
acquisition time does not necessarily produce a long method). To acquire
unit tasks from a marked-up manuscript requires 2 sec (Chapters 5 and
8);^ to generate unit tasks mentally in a routine design task takes about
10 sec (Chapter 10); and to generate unit tasks in a creative composition
task would take even longer.

The execution phase of unit tasks averages about 10 sec in all the
interaction tasks we have studied (Chapters 5, 8, and 10). Execution can
be as short as a second or two (for a one-key command); we have
observed only two editing-task executions lasting over 30 sec.^ How long
an execution can be depends on how complex a method the user is
willing to spend the time and effort to assimilate. The most complex
methods we have studied are for the clause-switching task (Sections 8.4
and 11.3), which require about 25 sec to execute. The user in
Experiment 8B required a half-hour of discussion plus about 5 trials to
assimilate the optimal method. In Experiment llA , the user required 35
trials to formulate a method for the task, but the method was not yet
well-enough assimilated be treated as a single unit task; about 35 more
trials were required for that to happen. Given the considerable effort

' Unit tasks containing errors do, o f course, take longer, but errors often introduce
new unit tasks for error correction. Thus, the time per unit task may not be much
different for error unit tasks.

o
In Chapter 8, (Figure 8.7) we found that an added 2 sec is needed for acquisition

in a display-based editor, since the display has to be scanned for the text However, we
believe that the scanning operation actually belongs to the execution phase, as part of the
L(x:ate function.

 ̂ Tasks T4-POET and T4-SOS took 37 sec and 33 sec, respectively, to execute
(Figure 8.5). However, the T4-POET execution included about 10 sec of continuous
copy-typing behavior.

11.4. THE UNIT TASK 391

needed to assimilate complex methods, it is not surprising that we only
observe short and simple methods in human-computer interaction tasks.

RELATION TO PROBLEM SOLVING

Since unit tasks are a predominant feature of some cognitive skills
and since cognitive skill emerges from problem solving, we would expect
unit tasks to play some role in problem solving. Unit-task-structured
cognitive skill occurs in problem solving, with the unit tasks functioning
as operators in problem spaces. We pointed out earlier in this chapter
that the unit task of locally altering the parts of a circuit configuration
served as an operator for the problem of compressing a large circuit
layout (Chapter 10). Actually, only the execution part of a unit task
serves as the operator, for the execution part is based on a method—a
well-integrated, purposeful unit of behavior. Thus, problem-solving
operators derive from the existence of integrated methods. This was
illustrated in the text-editing example in Section 11.3, where the existence
of methods for performing the move-text task provided a m o v e operator
in the problem space for the clause-switching task.

The structure of unit tasks can be related to the search control cycle
of problem solving (Figure 11.3). The execution part of a unit task can
be identified with the control function of applying the operator (step 2);
and the acquisition part of a unit task can be identified with all the rest
of the control cycle, that is, with all the decisions about what to do next.
In manuscript editing, operators (unit tasks) can be acquired by a
straightforward interpretation of the markings on the manuscript. When
there is a strict method for acquiring operators—such as taking them in
the order they occur on the manuscript—then no problem solving is
required at all, since the choice of operators is not problematic. But
when there is no well-defined method for acquiring operators—as in a
complex rearrangement of text where individual modifications interact
with each other—then problem solving is required to decide the order in
which to make the modifications; and operator (unit-task) acquisition
becomes the search control cycle.

Determinants of Unit-Task Structure

There are constraints, both internal and external, on the user in
structuring his behavior to accomplish a task. The unit task is a control
construct available to the user in meeting some of these constraints:

Working Memory Capacity. The performance of tasks
requires the maintenance of temporary data, which
must be kept within the limits of the user’s Working
Memory.

Information Horizons. The performance of > tasks must
remain within certain information limits: the data
and task limits imposed by the task environment and
the repertoire of methods known to the user.

Error Control. TTie performance of tasks must control the
probability of errors and control the damage done by
the inevitable occurrences of errors.

These constraints tend to shape the user’s behavior into a series of unit
tasks. Let us consider them each in turn.

392 11. CCX3NITIVE SKILL

WORKING MEMORY CAPACITY

Probably the most severe constraint on behavior arises from the
limited capacity of Working Memory and the need to keep working data
within this limit As we have discussed in Chapter 2, the capacity of
Working Memory involves both the number of chunks and interference
between chunks. In this section we limit our consideration of Working
Memory capacity to the former.

Smaller tasks generally require less Working Memory for their
performance than do larger tasks. This is one reason why a user, when
confronted with a large task, will break it into smaller tasks, which we
have called unit tasks. In text-editing from a marked-up manuscript, we
have observed that the user decomposes the overall editing task into a
series of small edits. This is not just a result of the task structure.
Although the manuscript contains a series of marks denoting
modifications, these modifications are not necessarily identical to the unit
tasks that the user generates, as we have already noted. A single
modification mark can result in multiple unit tasks (e.g., a mark
indicating the alignment of items in a table can result in several unit
tasks), and multiple marks can be handled in a single unit-task (e.g., a
pair of marks to put quotes around a phrase). The user will, of course,
try to take advantage of the structure of a large task in deciding how to
decompose it into unit tasks.

There is a characteristic pattern of Working Memory load for
behavior structured in unit tasks. Consider a text-editing example, based
on the simulation program described in Chapter 6. Figure 11.12 shows

Working
Memory
Load

Figure 11.12. Data in Working Memory during a unit task.
This figu re is a hypothetical trace of the p erfo rm ance of one unit, the sam e unit

task that is traced in F igure 6 .17 . T im e runs to the right on the horizontal axis.
T h e bars Ind icate the tim e during w hich each slot (accord ing to the schem e In

C h ap ter 6) in W orking M em ory is filled with data. T h e arrow s ind icate writing Into
and read ing from W orking M em ory slots. T h e histogram on the top plots the total
W orking M em ory load over tim e, showing how the load peaks w ithin a unit task

and dips b etw een unit tasks.

393

the data which must be kept in Working Memory while the user executes
the unit task of inserting a character. The figure also plots the Working
Memory load during the execution. The memory load can be seen to
rise from a low of one chunk between unit tasks to a high of five chunks
within the task. Thus, the number of chunks in Working Memory rises
and peaks within unit tasks and dips between unit tasks. The frequent
dips in Working Memory are the important benefit of unit-task structure,
for these localize the use of the data. This pattern of Working Memory
usage makes behavior more robust: it helps to reduce the number of
Working Memory errors; it limits the scope of those errors; and it makes
the behavior more interruptable.

394 11. COGNITIVE SKILL

INFORMATION HORIZONS

A user often finds himself running out of information, forced to
generate new unit tasks to continue his performance. There are three
kinds of information limits: (1) He can run out of data to work with—a
data horizon. (2) He can run out of tasks to do—a task horizon. (3) He
can run out of method to execute—a method horizon.

Data Horizons. The execution of a task usually requires information
from the task environment. In text-editing, for example, the user needs
to know both the location of the change and the details of the text to be
changed. Missing pieces of data must be retrieved. If the retrieval is
simple, accomplished by a glance at the screen or at the manuscript, it is
a routine part of the execution of the unit task. But if the retrieval is
difficult, then the retrieval itself will require one or more unit tasks. This
is a data horizon: the user runs out of immediately accessible data
needed to complete a task. A data horizon is not (necessarily) an issue of
Working Memory capacity: the user could remember the data—it simply
is not available. Thus, data horizons force the generation of data-
gathering unit tasks.

Task Horizons. The user may not only run out of data, but may also
run out of tasks. For example, a manuscript to be edited may contain a
single short edit on each page forcing the user to take each one as a
separate unit-task. Again, the horizon does not involve Working Memory
capacity—the user could possibly remember two or three of the edits as a
single unit task if they were close to each other on the same page—but
the task environment supplies the tasks in small chunks that force a
particular unit task-structure.

Method Horizons The user may not know the method for doing a
whole task, but he may know methods for doing some parts of it. This

circumstance will force him to break the task into unit tasks corre­
sponding to the methods he knows. For example, the task of changing
thirteen instances of “Alan” to “Allen” on a page of text could require
up to thirteen unit tasks for a user who must make each change
individually, whereas a user who knows the multiple-substitution
command could do it in a single unit task.

ERROR CONTROL

A final determinant of unit-task structure is the need for error control.
By breaking down larger tasks into smaller unit tasks, a user can verify
the correctness of each unit task, thus localizing the effect of errors. An
example is the way in which users of the poet editor employ poet’s
Transfer command to move lines of text Suppose the task is to find the
paragraph beginning with Alpha and ending with beta and to move it to
follow the paragraph ending with gamma. The command syntax of poet
allows this to be accomplished in a single command:

"Alpha","beta" Transfer "gam m a".

This command causes POET to (1) search for the line containing Alpha,
(2) search for the line containing beta, (3) search for the line containing
gamma, and finally (4) move the lines. Few experienced users would
have the temerity to do the task this way, however, for errors are
probable (the wrong lines might be found in steps 1 to 3) and the
consequences severe (the text would be scrambled). What users actually
do in this task is to break it into four unit tasks. Each of the first three
unit tasks locates a line and produces its unique line number:

"Alpha" / = .

This command causes poet to search for the line containing Alpha,
display that line (the /) so the user can verify that it is the correct one,
and print the line number (the =). After obtaining the three line
numbers (which are, say, 11, 22, and 33), the user issues the Transfer
command with them:

11,22 Transfer 33.

11.4. THE UNIT TASK 395

This method is relatively safe from damaging errors, since the user has
checked that each line found was correct and since the tine numbers are

unambiguous. Thus, the user breaks the large task into a series of
individually verifiable unit tasks. Again, the reason has nothing to do
with Working Memory capacity (although this could also be a factor), but
only with controlling potential errors.

Summary. There are three classes of constraints on user
behavior—Working Memory capacity, information horizons, and error
control—that tend to give the behavior a unit-task structure as it develops
from problem solving into a cognitive skill.

3 9 6 11. COGNITIVE SKILL

11.5. TEXT-EDITING WITHIN COGNITIVE SKILL

Manuscript text-editing is a paradigm for many similar tasks. We saw
several of these in various chapters of the book: use of drawing
programs (Chapter 8), elementary command language interactions
(Chapter 8), page formatting (Chapter 9), and integrated circuit layout
(Chapter 10). The cognitive skill involved in all these tasks has many of
the same characteristics as does text-editing. On the other hand, text­
editing is quite different from many other cognitive skills. It is important
to appreciate this diversity of cognitive skills, so as not to over-generalize
the characteristics of text-editing. Unfortunately, there is no basis for
constructing a general taxonomy of cognitive skills. Cognitive skills exist
for all cognitive tasks (i.e., all situations that permit problem solving),
provided that practice on them is possible. Hence, as indicated in Figure
11.1, the taxonomy of all cognitive skills is an image of the taxonomy of
all possible tasks—hardly something to be taxonomized easily.
Furthermore, there does not at present exist a population of studies of
other cognitive skills that have been analyzed in ways that would permit
deep comparison, either with text-editing or with each other (though, as
we noted, some appropriate analyses are beginning to emerge). Thus, we
simply present a large handful of cognitive skills that differ on a number
of dimensions, providing an informal context within which to locate text­
editing.

The dimensions of cognitive skill we consider come from the nature
of the Model Human Processor and from the demands of the task. They
fall into four groups that address, respectively, the character of the skill,
the demands on Working Memory, the demands on Long-Term Memory,
and the external task demands. Figure 11.13 lists the dimensions and

11.5 TEXT-EDITING WITHIN COGNITIVE SKILL 397

CODE:
• H IG H

© IN TE R M E D IA TE

O LOW

C O G N ITIV E S K ILL D IM ENSIONS

SKILL
CHARACTER

WM LTM TASK
DEMANDS

Z
>
o
CO

cc
o
Ho
:e
-j
<
D
h-a.
in
Ü
ÛC
ina.

Ü
Z
zz
<
J
Û.

LU
CC
D
h~
CJ
D
CC
H-co

CO
<
»-
H
Z
D

Q
<
O

>
CC
O
LU

IE
H

O
H
h-
D
Q.z

Hu

o
cc
LL

<
>
m
CC
H
LU
CC

Ü
Z
CJ
<
CL

>
o
<
cc
D
O
Ü
<

TASKS

IE
UJ
u
CÛ
O
cc
Q.

CPA DOING INCOME TA X • O • • Q o m o #

RO U TIN E M EDICA L DIAGNOSIS • O • • • • m Q •

PLA YIN G BRIDGE • O • • • Q Q • •

W R ITIN G BUSINESS LETTER # 0 • • Q Q Q O 9

BALANCING CHECKBOOK • O Q • • Q Q o •

A IR TR A FF IC CONTROL Q Q • • • Q O • •

M E N TA L M U LT IP L IC A T IO N e O O • • O Q o •

MANUSCRIPT T E X T-E D IT IN G Q Q Q • Q O O o •

TYPIN G o • O O O o o o Q
SORTING M A IL o • O • O o • o •

FOOTBALL CO M M ENTAR Y o • o Q • • • • O

TENNIS o • e • O o o • •

SHORT-ORDER COOK o • Q Q • o Q # •

D R IV IN G CAR o • Q O Q o o • •

ASSEMBLY TASK o • o O O o • • •

Figure 11.13. Dimensions of cognitive skill.
Severa l g en eric tasks a re rated approxim ately on d im ensions of cognitive skill.
This collection of tasks show s the variety of cognitive skills and how the m an u ­
script text-ed iting task com pares with them .

several tasks and locates the cognitive skills associated with the tasks on
these dimensions. Since this discussion is only illustrative, we consider
the tasks and their associated cognitive skills at a generic level. Each of
these generic tasks has many variants with different properties; a serious
analysis would have to consider task specifics.

3 9 8 11. COGNITIVE SKILL

SKILL CHARACTER

Problem-Solvii^ EnUtedding. As we have discussed, cognitive skill is
often embedded in a context of problem solving. For example, an
accountant may perform skilled computations in the course of searching
for ways to solve an income tax problem, but a short-order cook simply
prepares orders as they arrive. We have already seen that a task will
demand more problem solving behavior from a novice than from an
expert. A new short-order cook must figure out the best way to manage
multiple orders. But even with expertise held constanL problem solving
varies with task. Manuscript text-editing, as we have discussed, usually
involves little problem solving.

Perceptual-Motor Involvement. At the high end of this dimension are
tasks in which perceptual-motor involvement is crucial, such as driving a
car or playing tennis; at the low end are purely mental tasks, such as the
mental multiplication of multi-digit numbers. The presence of a strong
perceptual or motor component presents possibilities for overlapping the
operation of the perceptual, cognitive, and motor processors (as discussed
in Chapter 2), allowing for a considerable gain in speed and the external
appearance of coordinated motion so characteristic of skill. Along this
dimension, manuscript text-editing occupies an intermediate point

Requirement for Plaiming. Writing a business letter and playing
bridge are tasks in which people usually plan ahead; assembling
electronic parts is a task in which they do not Planning, in problem
space terms, refers to taking steps in a simplified, abstracted problem
space (the planning space), and using the results to guide steps in a more
detailed problem space. Planning is unnecessary for simple text-editing
tasks, which is mostly what we have studied in the book; but more
complex text-editing tasks, such as the clause-switching task discussed in
Section 11.3, often require planning.

WORKING MEMORY DEMANDS

Umt-Task Structure. Some tasks, such as text-editing, have a strong
unit task character, whereas others, such as touch typing, are continuous.

Working Memory Load. Some tasks put higher demands on a user’s
Working Memory than do others. High on this dimension is mental
multiplication, where the limits on performance are due to the limits on
keeping track of intermediate results. A task with low Working Memory
demands is freeway driving. Text-editing is intermediate.

LONG-TERM MEMORY USAGE

Long-Term Memory contains knowledge of the cognitive skill
itself—the methods—and knowledge about the objects being processed by
the skill—the data. The former is, of course, involved in all cognitive
skill execution. We are here concerned with the latter.

Input to Loi^-Term Memory. There is little long-term, task-specific
information to remember in manuscript text-editing (once the basic skills
of the editor have been learned). In the game of bridge, on the other
hand, there is a large amount of task-specific data that players must
retain in Long-Term Memory—all the bidding and every card played.

Retrieval from Long-Term Memory. Some tasks, such as sorting the
mail or routine diagnosis of disease, make impressive demands on
knowledge stored in Long-Term Memory. This is quite different from
manuscript text-editing, which only involves a small amount of transient
data.

11.5 TEXT-EDITING WITHIN COGNITIVE SKILL 399

EXTERNAL TASK DEMANDS

Pacing. The extent to which a task is externally paced may make the
task substantially more difficult than it would otherwise have been,
because it may demand processing that exceeds the resources of the user.
Driving a car and certain assembly-line work are both tasks in which
external pacing is important: the text-editing tasks we have studied are
unpaced. Closely related to the rate of pacing is the input load. For
example, although the task of an air traffic controller may be paced, this
only becomes an issue when the number of planes he must control per
unit time reaches a certain level.

Accuracy (vs. Speed). A calculation, such as balancing a bank state-
menL where the task is not finished until a balance is obtained, is
different from producing a running commentary on a football game,
where only a few descriptive features of the action need to be reported.
The tatter example also illustrates that accuracy is traded off against
speed—the accuracy of the commentary is limited by the demand that it
be produced quickly. Manuscript text-editing has high accuracy de­
mands; and, since it is user-paced, the necessary time and precautions are
taken to insure accuracy.

The main purpose of Figure 11.13 is to emphasize the vast variety of
cognitive skills, of which manuscript text-editing and its variants are only
one small group. Perhaps the most important additional facts that can be

read from the figure are about the unit-task structure: (1) it is simply one
among many independent dimensions, and (2) it is not unique to text­
editing.

400 11. COGNITIVE SKILL

11.6. CONCLUSIONS

The human-computer interaction that we have studied is a cognitive
skill with modest perceptual-motor involvement We have attempted to
characterize the general nature of cognitive skill in a broader
psychological framework.

All cognitive behavior can be characterized along a continuous skill
dimension that includes both problem-solving behavior (at the low-skill
end of the dimension) and cognitive-skill behavior (at the high-skill end).
This view is consistent with two principles of the Model Human
Processor in Chapter 2. The Problem Space Hypothesis states that all
cognitive behavior has a homogeneous structure— t̂hat of problem solving
in problem spaces. The Power Law of Practice shows the continuous
character of changes in cognitive behavior with practice.

Problem-solving behavior, such as is exhibited by a novice attempting
the Tower of Hanoi puzzle, will, with practice, become a cognitive skill
that can be characterized by a GOMS-like model. Examples of the
mechanisms by which problem solving evolves into cognitive skill are the
accumulation of search control knowledge (which eventually becomes
skilled methods) and the construction of new operators (which effectively
reduce the problem space to be searched).

Cognitive-skill behavior, such as the text-editing behavior we have
analyzed in this book, has its roots in problem solving. Text-editing by a
novice can be characterized as search in a problem space. To become
skilled in text-editing requires the acquisition of editing-specific search
control knowledge and more powerful editing operators. We observed a
specific learning sequence in which a user clearly began with problem
solving on a complex editing task and proceeded to become a skilled
expert at the task (i.e., performed the task at the level predicted by the
Keystroke-Level Model).

The most striking feature of text-editing skill is its unit-task structure.
We have shown that unit tasks are primarily control (not task) constructs,
that they seem to have characteristic durations, and that they emerge
from the structure of problem solving in problem spaces. Further,

11.6. CONCLUSIONS 4 0 1

several constraints on skilled behavior—Working Memory limits, infor­
mation limits, and the need for error control—tend to shape skill as a
sequence of unit tasks.

Text-editing is but one skill in a vast population of cognitive skills,
varying among themselves in many ways (other than unit task structure):
in their basic skill/problem-solving character, in their demands on
Working Memory and Long-Term Memory, and in their external task
demands (such as pacing and accuracy). Although unit-task structure is
characteristic of text-editing, it is not unique to it.

http://taylorandfrancis.com

12. Applying Psychology
to Design

12.1. A FRAMEWORK FOR APPLYING PSYCHOLOGY
12.2. CONTRIBUTIONS TO APPLICATION
12.3. EXTENSION: AN EVALUATION METHODOLOGY
12.4. ADVICE TO THE DESIGNER
12.5. CONCLUSIONS

In this chapter, we return to the theme of an applied psychology
introduced in Chapter 1 and attempt to tie our studies together from the
vantage point of how such knowledge might be used in design. We do
this first by presenting a framework showing the way in which
psychological results can be applied to design and then by mapping our
studies into this framework. We also summarize an application-oriented
extension of our work by Roberts. Finally, we list some general system
design principles suggested by the studies.

12.1. A FRAMEWORK FOR
APPLYING PSYCHOLOGY

In Chapter 1 we proposed that an applied psychology of human-
computer interaction should be relevant to the system design process
itself (not just to after-the-fact evaluation) and that the designer himself
should do the actual application. Such an applied science must be based
on information-processing models, whose applicability to design depends
on three critical features; task analysis, calculation, and approximation.
This proposal rests on a view (until now implicit) of how psychology can
be applied to system design. We now present our view by briefly
sketching a framework for application. This framework includes (1) the
structure and performance of the human-computer system, (2) perfor­
mance models for predicting the performance of the human-computer

403

system, and (3) design functions for using the performance models in the
design process.

THE HUMAN-COMPUTER SYSTEM

Our present object of study is the human-computer system, which
consists of a human user interacting with a computer to accomplish a
task. The user, the computer, and the task are the structural components
of the system. Human-computer systems vary in many different respects,
called structural variables, in each of the components. Systems address
different task domains, and they have different models of the tasks in any
given domain. Users vary widely in general intellectual ability, experi­
ence with computers, specific knowledge of the task, specific knowledge
of the computer, cognitive style, and perceptual-motor skills. User-
interface aspects of computers vary in system architecture, dialogue style,
command syntax, input devices, and so on.^ The combination of all
these variables produces a vast space of possible human-computer
systems.

The ultimate concern of an applied psychology is not so much with
the structure of the human-computer system per se, as with its perfor­
mance. There are many different aspects to performance, which we call
performance variables. The basic performance variables of a human-
computer system are concerned with what tasks the system can do
(functionality), how long it takes to acquire the functionality (learning),
how long it takes to accomplish tasks (time), how frequently errors occur
and how consequential they are, how well tasks are done (quality), and
how robust the system is in the face of unexpected conditions. Other
performance measures are possible, such as performance under extreme
conditions (fatigue and stress) and the performance demands on the
user’s memories (Working Memory and Long-Term Memory). Finally,
there are variables concerning the user’s subjective feeling about the
system. All these performance variables are potential areas of concern to
the system designer.

The performance variables of a human-computer system are deter­
mined by its structural variables. This can be summarized in a formula
analogous to the Rationality Principle (Chapter 2):

404 12. APPLYING PSYCHOLCX3Y TO DESIGN

Task -y User -t- Computer System Performance. (12.1)

A systematic analysis o f the structure of the user-interface aspects of interactive
computer systems is a difficult undertaking. For some attempts, see Moran (1981a);
Young (1981); Newman and Sproull (1979, Ch. 28); and Ramsey and Atwcx)d (1979).

It is the task of an applied psychology to discover the specific relation­
ships between the structural and performance variables of human-
computer systems.

PERFORMANCE MODELS

The design of a human-computer system begins with a set of
requirements, which includes both structural constraints and performance
goals. The designer’s job is to specify a human-computer system
satisfying the requirements. But while specifications of a system are
readily checked against the structural constraints, the performance aspects
of a system are not derivable from a descriptive specification. A special
kind of representation of the human-computer system is needed for this,
which we call a performance model. To predict the performance of a
system, the designer must construct a specific performance model from
the system’s structural specifications and then use the model to generate a
prediction:

Model {Task, User, Computer)
-* Performance Prediction. (12.2)

The concept of a performance model is the key notion in this
framework. It is useful to construe this notion functionally, i.e., as any
model or description that can be used to predict system performance.
Performance models can be roughly categorized as experimental models,
symbolic models, and database models. Experimental models consist of
actual human users with actual running programs or physical mock-ups.
Such models are run, and performance variables are measured. Symbolic
models are calculational, algebraic, or simulation models. They are
represented on paper or in a computer and have no actual human
component (although, of course, they model the user). Performance
values are obtained by computation (by hand or computer). Database
models are stores of pre-measured or pre-calculated data. Performance
values are obtained simply by look-up. Each of these different kinds of
performance models has its place in the system design process.

12.1. A FRAMEWORK FOR APPLYING PSYCHOLOGY 405

DESIGN FUNCTIONS

The predictive function of performance models is primarily evaluative:
given a structure, predict performance. The designer’s problem, however,
is generative: given performance requirements, design the structure.

Although it is possible to invert, partially at least, some performance
models to generate design ideas, it is not possible to invert Formula 12.2
in a general way. For any interesting real-world domain of design, there
cannot be any global synthesis function that maps requirements into a
structure. How, then, can performance models be useful in design? To
answer this question we must consider the nature of the design process.

Design, as all designers know, is not a simple top-down or bottom-up
process of synthesizing a design solution from requirements. Design is an
open process, in the sense that the design problem is constantly being
redefined. Many requirements can emerge only in the course of the
design process, when partial design solutions provide enough context to
realize which issues are really important Thus, design proceeds in a
complex, iterative fashion in which various parts of the design are
incrementally generated, evaluated, and integrated. At the risk of being
over-simplistic, we characterize the complex process of design as con­
sisting of a set of different kinds of design functions, each attending to a
specific design subproblem:

406 12. APPLYING PSYCHOLOGY TO DESIGN

Design Process = a set o f Design Functions. (12.3)

Although we do not pretend to have even a crude taxonomy of design
functions, we can list some examples to make the notion more concrete.
We can group design functions into three broad categories: evaluation,
parametric design, and structural design. Evaluation, as we just noted,
refers to the situation in which the structure of the system (or of part of
the system) has been specified and its performance needs to be
understood. Parametric design refers to the situation in which the
structure of the system is relatively fixed and there are a set of
quantitative parameters of the structure to be determined. (What makes
parametric design tractable for analysis is the assumption that the
remaining structure of the system will not change in the range of para­
meter values under consideration.) Structural design is where a part of
the system is configured or restructured to satisfy specific requirements.
There are several functions in structural design, such as to identify an
opportunity for a change, to diagnose a problem, to generate an improve­
ment, and to synthesize a new structure.

Design functions require the use of performance models to solve
particular design subproblems:

Design Function {Design Subproblem, Model) -* Solution.

12.2 . CONTRIBUTIONS TO APPLICATION 4 0 7

The dependence on performance models is clear in evaluation and
parametric design. Formal performance models are seldom used in
structural design, although there are usually implicit, informal perfor­
mance assumptions underlying the design functions, which can be viewed
as vague, informal performance models. But partial inversions of more
formal performance models can also be used (e.g., to diagnose the causes
of performance deficits).^

This framework for applying psychology to design emphasizes the
pivotal role of performance models. Without models, the designer cannot
predict the performance of the system he is designing. If he cannot
predict performance, he will not be able to come to grips with
performance requirements. And if he does not deal with performance
requirements, then other requirements will dominate the design of the
system—and the user will be neglected. Thus, in our view it is clear that
the role o f an applied psychology is to supply performance models for the
designer.

12.2. CONTRIBUTIONS TO APPLICATION

We now have a framework for considering how the studies in this
book address the issues of applying psychology to system design. We
proceed by enumerating the principal aspects of the application
framework—the human-computer system, performance models, and
design functions—and by showing how far we have progressed and where
needs exist for future research.

THE HUMAN-COMPUTER SYSTEM

According to Formula 12.1, the structural variables of the human-
computer system—the task, the user, and the computer—determine its
performance variables. Figure 12.1 lists a set of structural variables for
characterizing the variety of possible human-computer systems, and

 ̂ Some o f the design principles to be presented in Section 12.4 can be viewed as
inversions o f our models o f cognitive skill in human-computer interaction. For example.
Principle 8 takes the GOMS model o f method-selection in Chapter 5 and, instead of
using the model to predict performance, observes that performance will be better if
method alternatives are designed so they can be selected with a simple set of method-
selection rules.

structural Variables Studies (Chapters/Sections)

TASK VARIABLES
Task domain

Task model

USER VARIABLES
INTELLECTUAL ABILITIES

General intelligence
Technical ability

COGNITIVE STYLE

Risk preference

Curiosity
Persistence

EXPERIENCE

Experience on system
Frequency of system use

KNOWLEDGE

Method knowledge
Conceptual knowledge
Task expertise

PERCEPTUAL-MOTOR SKILL

Typing rate

Manual skill

COMPUTER VARIABLES
Dialogue style

Command syntax
Naming conventions
Display layout
Input devices
Response time

Text-editing (3-6 ,8)
Graphics (8)
Page layout (9)
Circuit design (10)

Poet editing analysis (5.1)
Bravo editing analysis (6.1)

Individual differences (3.3)

Selection rules (5.2)
Error rates (12.3)

Individual differences (3.3)
Individual differences (3.3)

Selection rules (6.2)

Individual differences (3.3)
Model validation (8.4)

Compare editors (3.2,12.3)
Editor vs typewriter (4)
Interactive systems (8.3)

Interactive systems (8.3)

Pointing devices (7)

Figure 12.1. Studies classified by structural variables.

408

Performance Variables Studies (Chapters/Sections)

BASIC PERFORMANCE MEASURES

Functionality What tasks can the user
accomplish with the system?

Learning How does his performance
improve over time?

Time How long does it take the
user to do a task with the
system?

Error

Quality
Robustness

SUBJECTIVE MEASURES

Acceptability

Enjoyableness
EXTREME CONDITIONS

Fatigue

Stress

MEMORY VARIABLES

WMLoad

LTM Recall

What errors are made,
how frequently, and
how consequential are they?

How good is the output?

How does performance adapt
to unexpected conditions or
to new tasks?

How does the user subjectively
rate the system?

How much fun is it to use?

How does performance degrade
over time?

How does performance degrade
under adverse conditions?

How much immediate infor­
mation does the user have to
keep in Working Memory?

How easy is it for the user to
recall information needed to
accomplish a task?

Editing task population (12.3)

Pointing devices (7.3)
Text editing (12.3)

Editing benchmarks (3.2)
Individual differences (3.3)
Editor vs. typewriter (4)
Poet editing (5)
Bravo editing (6)
Pointing devices (7)
Interactive systems (8)
Page layout (9)
Circuit design (10)
Text editing (12.3)

Poet editing (5.4)
Pointing devices (7.3)
Circuit design (10.3)
Text editing (12.3)

Figure 12.2. Studies classified by performance variables.

409

Figure 12.2 lists a set of performance variables for characterizing the
behavior of these systems.

Task Variables. Our strategy has been to focus on a single task
domain and then to try to generalize to other domains. We have
therefore been largely concerned with text-editing. We have generalized
the results to other human-computer interaction task domains in the
Keystroke-Level Model (Chapter 8), in the page-layout analysis (Chapter
9), and in the study of a circuit-layout system (Chapter 10). Within the
domain of text-editing, we have analyzed two types of task models for
text-editing—the line-structure model of text in POET and the two-
dimensionally displayed character-stream model of text in BRAVO.

User Variables. We have not attempted to explore user variables
systematically, except for the preliminary individual-differences study in
Chapter 3. Instead, we have focused on expert users (who are best
characterized by the knowledge and experience variables in Figure 12.1).
Our strategy was to build a solid theoretical and empirical character­
ization of the expert user before attending to novice and casual users.
However, we have seen some variations within experts, such as their
knowledge of methods in the method selection study in Section 5.2.

Computer Variables. We have not attempted to explore computer
variables systematically. Rather, our focus has been on how the user
adapts to a given computer system structure. However, we have studied
a variety of computer systems interfaces, from 1960’s-style teletypewriter-
oriented systems to state-of-the-art display-based systems. In some cases,
we have directly compared behavior on alternative styles of system, such
as in the studies of Chapters 3 and 8.

Performance Variables. Figure 12.2 clearly reveals our deliberate
emphasis on performance time, which goes hand-in-hand with our
emphasis on expert users. We have also presented a few modest accounts
of the errors made by expert users. Our focus on performance time does
not imply that we think the other performance variables are less
important; indeed, they may be more important in many human-
computer interaction contexts.

410 12. APPLYING PSYCHOLCX3Y TO DESIGN

PERFORMANCE MODELS

Performance models, according to Formula 12.2, predict the
performance of the human-computer system from a specification of its
structure. Figure 12.3 lists several kinds of performance models. As can
be seen in the figure, almost every kind of performance model has been

12.2. CONTRIBUTIONS TO APPLICATION 4 1 1

Perform ance Models Studies (Chapters/Sections)

EXPERIMENTAL MODELS

Running system Use actual system. Benchmark comparison (3.2)
Editor evaluation (12.3)

Analogue system Use another similar
running system.

Layout test (9.2)

Mock-up system Use a physical mock-up. ------------

SYMBOLIC MODELS

Calculational model Code performance as a
set of operations.

Manuscript editing (5)
Keystroke-Level Model (8)
Unit task analysis (9)

Simulation model Code performance in a

runable program.
Bravo simulation (6)

Algebraic model Represent relationships
between variables and
parameters as equations.

Editor vs. typewriter (4)
Fitts’s Law (7)
New method analysis (8.4)

DATABASE MODELS

Data table Look up a pre-measured
or pre calculated value.

Model Human Processor (2)
Benchmark data (3.2)
Individual differences (3.3)
Manuscript editing (5)
Pointing devices (7)
Keystroke-level operators (8)
Editing data (12.3)

Checklist Check design against
principles or guidelines.

Design principles (12.4)

Figure 12.3. Studies ciassified by performance models.

presented. Our main emphasis, of course, has been on the development
of symbolic models, especially calculational models: the GOMS family of
models (Chapter 5), the Keystroke-Level Model (Chapter 8), and the
Unit-Task-Level Model (Chapter 9). We have also presented a simula­
tion model (Chapter 6) and several algebraic models, such as Fitts’s Law
(Chapter 7). We used running systems for the benchmark studies in
Chapter 3. Finally, we have tabulated data that are useful databases (e.g..
Figures 2.1, 2.2, 5.15, 7.4, 8.1, and 8.2).

DESIGN FUNCTIONS

The process of system design, according to Formula 12.3, consists of a
set of design functions, which address design subproblems and which use
performance models in finding solutions. We classified the design

412 12. APPLYING PSYCHOLOGY TO DESIGN

Design Function Studies (Chapters/Sections)

EVALUATION

Compare systems Compare on given

performance variables.
Benchmark comparison (3.2)
Device evaluations (7)
Computed benchmark (8.4)
Editor comparison (12.3)

Evaluate system Compare against
some standard.

Layout system (9)
Editor evaluation (12.3)

PARAMETRIC DESIGN

Optimize parameter Find best value on given

performance variables.
Editor vs. typewriter (4.2)

Analyze sensitivity Relate parameter value
to performance.

Editor vs. typewriter (4.4)
New method analysis (8.4)
Layout calculation (9.3)

STRUCTURAL DESIGN

Identify opportunity Find place where system
can be improved.

Crossover point (4.2)
Information rate limit (7.3)
New method (8.4)
Icarus Move command (10)

Diagnose problem Pinpoint structural com­
ponent causing problem.

Crossover point (4)
New method (8.4)

Generate improvement Find structural change. New method (8.4)
Synthesize structure Create new structure.

Figure 12.4. Studies classified by design functions.

functions as evaluation, parametric design, and structural design. Figure
12.4 lists several design functions, along with the studies illustrating them.
The coverage is heaviest in evaluation and parametric design, where
performance models are most clearly useful. System comparison usually
involves experimentation (such as the benchmark study in Chapter 3 and
the comparison of pointing devices in Chapter 7), but we have proposed
the notion of a calculated benchmark (Section 8.4) for making
comparisons analytically. The typewriter-versus-editor analysis in Chapter
4 illustrates both parameter optimization and sensitivity analysis. We
have had less to say about structural design, especially the synthesis of a
new design, for which we have no examples. Perhaps the best illustration
of structural design functions is the analysis of alternative methods in
Section 8.4, where an opportunity was identified (the task), the problem
diagnosed (the awkwardness of the existing methods), and an improve­
ment generated (the new method).

12.3. EXTENSION: AN EVALUATION METHODOLOGY 4 1 3

APPLICATION SUMMARY

The principal contribution of our studies to application is a set of
specific performance models. This is consonant with the view, sketched
in Section 12.1, that performance models are the keystones in the
application of psychology to system design. The main limitations are that
the models are restricted to predicting the error-free performance time of
expert users. The models have been validated in a variety of human-
computer systems, which has also produced a useful database of empirical
performance data. We believe that these models may be useful in design,
in the style exhibited in Chapters 4 and 9 and in the example of Section
8.4.

However, as of yet we have only small bits of evidence for the
usefulness of the models in actual design situations. Let us cite one
interesting application by a product testing group within our own
company. Xerox. The group was testing alternative command schemes
for a particular set o f routine tasks. They taught the schemes to novice
users in order to evaluate how easy they were to learn. However, they
did not have enough time to train the users to become experts and so
could not measure expert performance. Instead, they used the
Keystroke-Level Model to calculate the expert performance time. That
is, the initial part of the learning curve was measured experimentally,
while an asymptote was calculated from the model. Thus, they were able
to put together, within their constrained time limits, a fairly complete
picture of behavior with the alternative command schemes using both
experimental and calculational performance models.

12.3. EXTENSION:
AN EVALUATION METHODOLOGY

A study that builds on and extends the work in the present book
towards practical application was conducted in our laboratory by Teresa
Roberts (for her Ph.D diesis in computer science at Stanford University).
The goal of her study was to develop a practical methodology for
evaluating computer text-editors. In this section, we briefly describe
Roberts’s methodology for evaluating text editors, her empirical results,
and how these extend the results so far reported (see Roberts, 1979, for
the original technical report and Roberts and Moran, 1982, for additional
data and analysis).

4 1 4 12. APPLYING PSYCHOLOGY TO DESIGN

METHODOLOGY

Roberts began by enumerating a population of 212 text-editing tasks.
Each task was expressed in a way neutral with respect to any particular
type of text-editor. From this population she selected a set of 32 core
tasks, which included the basic editing tasks that any text-editor can be
expected to perform. This set of core tasks provides a common basis for
comparing the performance of different editing systems.

Roberts’s evaluation methodology covers four performance variables:
functionality, time, learning, and errors. The latter three are measured
over the core tasks, whereas functionality measures how well an editor
extends beyond the core tasks.

Functionality. In Roberts’s methodology, the functionality of an
editor is measured by having expert users rate whether each task in her
task population can be accomplished with the editor. (The rating levels
are: “can’t be done,’’ “can be done at manual speed,” “can be done
clumsily,” “can be done efficiently.”) Scores are summed up to give each
editor an overall functionality rating. The scores can be partitioned into
different task categories to show the strengths and weaknesses of the
editor.

Learning. Learning is measured experimentally in Roberts’s metho­
dology by teaching a novice with no computer experience how to do the
core tasks with the editor. The experimental learning session is made up
of five cycles, each consisting of a teaching part, followed by a quiz to
measure what the novice knows how to do (a learning session usually
takes from two to five hours). Learning is scored by taking the total time
in the session and dividing by the total number of tasks that the quizzes
reveal the novice has learned, i.e., the learning time per task. The overall
learning score for an editor is the average learning time for the four
novices.

Time. The time it takes experts to perform core tasks is also
measured experimentally. An expert user of the editor is clocked while
performing a benchmark set of about 60 editing tasks (usually taking
about 30 minutes). Note that this experiment is similar to our experi­
ment in Chapter 3, except that the times are measured with a stopwatch,
rather than with an on-line data collection facility. In addition to the
overall time, the time the expert spends correcting large errors (i.e., large
enough to be timed with a stopwatch) is also noted. The time score is
the error-free time (total time minus the error-correcting time) to edit the
benchmark tasks. The overall time score for the editor is the average
error-free time for the four expert users.

Errors. Errors are difficult to measure in a simple experiment. Large
damaging errors are rare enough so that it takes a long time to collect a
reasonable sample. Further, there are large individual differences in
error rates, even for routine errors. Roberts explored several methods of
assessing errors, none of which seemed satisfactory enough to be used in
practice. A modest indication of error effects, however, is the the
percentage of time spent correcting errors in the core benchmark
experiment above. Thus, the error score for an editor is the average
error time, as a percentage of error-free time, for the four expert users.

Cost o f Evaluation. An important constraint on this methodology is
that it must be relatively easy to use. This is why only manual
(stopwatch) measurements are required and why the minimal number of
users are measured in the time and learning experiments. The time
required to do a complete evaluation of a single editor depends on many
factors—the evaluator’s familiarity with the methodology, the effort
required to prepare the materials for the specific editor, and the difficulty
of recruiting users for the experiments. We have found that an editor
evaluation takes roughly a week to do for an experienced evaluator.

12.3. EXTENSION: AN EVALUATION METHODOLOGY 415

VALIDATION AND EMPIRICAL RESULTS

Roberts tested her methodology by evaluating four widely-used
editors: t e c o (BBN, 1973), WYLBUR (Stanford, 1975), NLS (Englebart and
English, 1968), and a display-based WANG word processor. We also
include here an evaluation of b r a v o , b r a v o x (an extended version of
b r a v o), g y p s y (another experimental editor developed at Xerox), and
EM ACS (Stallman, 1981).

The methodology provides a multidimensional evaluation of the
editors. Each editor can be characterized by a 4-tuple of numbers. This
summary evaluation is presented in Figure 12.5 for the eight editors,
which shows the performance tradeoffs between these editors. The major
differences are between the non-display editors (t e c o , w y l b u r) and the
display editors (all the others). With the exception of NLS on error time
and g y p s y on functionality, the display editors are better on all
performance dimensions. The display editors are up to twice as fast to
use and have about 50% more functionality. On learning, t e c o stands
out as taking nearly three times as long to learn as the others. One
surprising result is the high correlation (R = .80) between the time and
learning scores. It is usually thought that systems that are highly efficient

416 12. APPLYING PSYCHOLOGY TO DESIGN

Evaluation Scores
Editor

Functionality

(% tasks)

Learning
M ± C V
(min/task)

Time
M ± C V
(sec/task)

Errors
M ± C V
(% time)

Teco

Wylbur

Emacs

NLS
BravoX

Wang

Bravo

Gypsy

39%

42%

49%
77%

70%

50%

59%
37%

19.5 ± .29
8.2 ± .24

6.6 ± .22

7.7 ± .26

5.4 ± .08

6.2 ± .45

7.3 ± .14

4.3 ± .26

49 ± .17

42 ± .15

37 ± .15

29 ± .15

29 ± .29

26 ± .21

26 ± .32

1 9 ± .11

15% ± .70

18% ± .85

6% ± 1.2

22% ± .71

8% ± 1.0

11% ± 1.1

8% ± .75

4% ±2 .1

Figure 12.5. Evaluation summary of eight text-editors.
The Functionality score is the percent of the 212 tasks in Roberts’s task population
that can be accomplished with each editor. The Learning score is the average
learning time per task for four novices. The Time score is the average error-free
time per task for four expert users on the benchmark set of tasks. (The time
scores are large, because many of the tasks on the benchmark required many unit
tasks to perform.) The Error score is the average percentage of time the four
expert users spent correcting errors; the score is given as a percentage of the
error-free time. The CV’s show the amount of between-user variance. The
evaluation results for TECO, WYLBUR, NLS, and WANG are from Roberts (1979).

to use by experts take longer for novices to learn. This is not the case in
this set of editors; the faster editors to use are also faster to team.

The experimental results of the time dimension were compared
against the predictions of the Keystroke-Level Model. The model
predicted over 75% of the error-free benchmark time for most of the
editors. For TECO, however, the model only predicted 50% of the time.
The problem here was that the methods actually used by the expert users
were not predicted correctly; the users were much more cautious than
predicted in using t e c o . When the model’s prediction for TECO was
adjusted for the actual methods used by the test users, then it accounted
for 87% of their error-free time. These predictions are quite reasonable,
given the differences between the assumptions of the model and the
conditions of Roberts’s experiment.

12.4. ADVICE TO THE DESIGNER 417

Finally, since these evaluation experiments were run on 32 expert
users and on 32 novice learners, they provide us with some useful
empirical results on individual differences. On expert performance, there
was a factor of 1.5 to 2 between the fastest and slowest users within each
editor, which is consistent with the results of Chapter 3. It is interesting
and somewhat surprising that there was not a great deal more variation
among the novice learners than among the experts, i.e., there was about
the same range of ratio between the fastest and slowest learners as
between the fastest and slowest experts. By far the greatest individual
differences occurred with the error times. Expert users spent from as
little as 0% to as much as 28% of their time in errors, averaging 10% error
time. Roberts measured error time in real time with a stopwatch, and
she had to ignore the small errors. A more careful measurement of
errors (on videotape, say, as was done with all the error measurements we
have reported) would yield somewhat higher percentages.

APPLICATION

The places where Roberts’s study contributes to application have been
shown in Figures 12.1 to 12.4. Her study is mainly oriented to the design
function of system comparison. Now that her data can be used as a
standard of comparison, her methodology also enables the system
evaluation of individual editors. The most important aspect of Roberts’s
work, in the context of this chapter, is that it extends the scope of our
studies on two performance variables—functionality and learning.

12.4. ADVICE TO THE DESIGNER

We have presented an approach to applying psychology to design that
centers around the notion of performance models. Our implicit advice to
the system designer has been to use these models in design. We now
present this advice more explicitly in the form of a set of system design
principles (listed briefly in Figure 12.6) derived directly from the main
results of our studies. Since, as we have seen in Section 12.2, the studies
are highly skewed towards certain issues, the principles do not cover the
whole spectrum of design concerns. Nor do we attempt to exhaust all
the principles implicit in the models; we only present some of the more
important and fundamental principles.

418 12. APPLYING PSYCHOLCXBY TO DESIGN

1. Early in the system design process, consider the psychology of the
user and the design of the user interface.

2. Specify the performance requirements.

3. Specify the user population.

4. Specify the tasks.

5. Specify the methods to do the tasks.

6. Match the method analysis to the level of commitment in the design
process.

7. To reduce the performance time of a task by an expert, eliminate
operators from the method for doing the task. This can be done at
any level of analysis.

8. Design the set of alternative methods for a task so that the rule for
selecting each alternative is clear to the user and easy to apply.

9. Design a set of error-recovery methods.

10. Analyze the sensitivity of performance predictions to assumptions.

Figure 12.6. Some principles for user-interface design.

The first few principles summarize some high-level concerns and
attitudes about design.

Principle I: Early in the system design process, consider the
psychology o f the user and the design o f the user interface.

This may seem too obvious to mention, but it is fundamental and often
stated (e.g., Hansen, 1971). If consideration of the human-computer
interaction is put off until the computer system is designed, then the
psychology of the user will not have any weight among the variety of

concerns that face the designer. This principle does not itself tell the
designer what to do; the next few principles spell out some concrete
actions.

According to Formula 12.1, the human-computer system consists of
the task, the user, and the computer, which together determine the
system’s performance. The designer’s job is to specify the total human-
computer system. The designer does not have to be told to specify the
computer; but he may need to be reminded of the performance
requirements, the user, and the task.

P r in c ip le 2: Specify the performance requirements.

There are many performance variables—functionality, time, errors,
learning, etc. Designing to improve performance on one dimension does
not necessarily help performance on other dimensions. For example,
optimizing the performance time of a system does not improve its
leamability (in fact, high concentration on time optimization may make a
system harder to learn). There are tradeoffs to be made in performance.
For example, using the models we have presented to calculate
performance time and using Roberts’s methodology for measuring
learning, one can quantitatively compare the tradeoffs between ease of
learning and speed of execution in a system. Thus, it is important that
the designer be clear about his priorities on the performance variables.

P r in c ip le 3: Specify the user population.

In Chapter 3 we have seen that there is about a factor of three in
performance time among expert users—about the same range as the
performance among different editing systems. Considering non-expert
users, the range of user performance is much greater. Thus, in order to
predict the performance of the human-computer system, the designer
must know the important characteristics of the user population. If the
target population of users is highly varied, it is important to characterize
the different kinds of users, for their performances will be quite different.
Much of this characterization can be done quantitatively. For example,
the Keystroke-Level Model (Chapter 8) shows how the user’s typing
speed affects his performance time.

12.4. ADVICE TO THE DESIGNER 419

P r in c ip le 4 : Specify the tasks.

Performance can only be assessed relative to the set of tasks that must
be done. It is not possible to specify all the tasks that the user will want
to do. However, specifying a reasonable benchmark sample of tasks is
infinitely better than just listing gross task characteristics. The bench­
mark sample should include representatives of the qualitatively different
kinds of tasks the user will face. An example of task generation is given
in Chapter 9. The different types of tasks occur with unequal
frequency—most of the user’s time will be spent doing a very few task
types. It is important to specify these high-frequency tasks. The user
will become highly skilled on these tasks, and they should be made easy
and efficient to do.

Task analysis can be done at different levels of detail, for any task can
be decomposed into a task-subtask hierarchy (as was done in Chapter 5).
What is the appropriate level of task analysis? In order to keep the range
of design possibilities open, tasks should be specified in a way that makes
minimal assumptions about the structure of the computer system, except
for the structure that is fixed a priori as part of the design requirements.
The Unit-Task Level of task analysis, as illustrated in Chapter 9, is the
most detailed level of task specification that is practical early in design.

As analysis becomes more and more dependent on system structure,
task analysis turns into method analysis. Task analysis reflects more the
demands of the external environment, whereas method analysis reflects
more the demands of the computer system and the ways in which the
user adapts to them. There is, of course, no sharp line between task
analysis and method analysis.

Principle 5: Specify the methods to do the tasks.

420 12. APPLYING PSYCHOLOGY TO DESIGN

It is important to grasp the central role that the methods play in
determining the level of performance. Skilled human-computer inter­
action consists of execution of assimilated methods. What makes a user
skilled is his highly integrated knowledge of tasks, methods, and the
connections between them. System designers tend to concentrate on the
commands of the computer system (just look at the documentation for
almost any system, which is usually a catalogue of commands). Yet it is
how the commands are userf—the methods—that is most important to the
user. Once methods are laid out explicitly, many of the gross aspects of
performance can be seen by inspection, even without formal models. For

example, particularly long or awkward methods will stand ou t Also, it is
possible to assess informally the consistency between different methods.^

P r in c ip le 6 : Match the method analysis to the level o f
commitment in the design process.

As with tasks, methods can be specified at different levels of detail.
In order to predict performance from a method specification, a
performance model is required, which in turn determines the method
description. There is no single best model; different models are
appropriate at different stages of design—depending on the amount of
detail known about the system under design.

Several levels of method analysis were introduced in Chapter 5. The
Unit-Task Level requires only a modest commitment to the structure of
the computer system. This level of analysis is appropriate early in design
to assess the task domain by getting a rough picture of the total system
performance. It is also useful when trying to decide on major
components of the computer system, as was illustrated in Chapter 9. At
the Functional Level of analysis, the unit tasks are decomposed into their
four functional components—Acquire, Locate, Change, and Verify. This
level begins to show how the unit tasks interact, as illustrated in Chapter
9.

The next lower level of analysis is the Argument Level, in which there
is commitment to the set of commands and the arguments they take.
This level is appropriate while the command set is being designed, but
where the small details of the command syntax are ignored. Although
we have not given any illustrations, the Argument Level is actually a
quite useful level of analysis. For example, this is the level at which the
scheme for defaulting arguments can be considered. And finally, at the
Keystroke Level there is commitment to the actual keystrokes and other
physical operations for executing commands. This level of detail is not
appropriate until fairly late in design. But once this level of detail is
reached, it is possible to do considerable quantitative analysis of
performance time, as we have shown with the Keystroke-Level Model in
Chapter 8.

12.4. ADVICE TO THE DESIGNER 4 2 1

 ̂ Various kinds of rule-based descriptions of the methods can be used to assess
consistency more precisely (e.g., Moran, 1981a; Reisner, 1981), although existing rule-
system proposals are not yet developed enough to be performance models.

Principle 7: To reduce the performance time o f a task by an
expert, eliminate operators from the method for doing the
task. This can be done at any level o f analysis.^

Once methods are laid out, at whatever level, and the performance
time calculated, the designer may then want to make the performance
more efficient for expert users. All the performance models we have
presented suggest that expert performance is composed of a sequence of
operators and that the performance time is the sum of time for each of
the operators.

Which operators can be eliminated depends on the stage of design
and the level of analysis. For example, the performance time for a job
can be reduced either by reducing the number of unit tasks or by
reducing the time per unit task; however, only the former is possible
early in design at the Unit-Task Level of analysis. At the Unit-Task
Level, the most likely way to reduce unit tasks is to extend the
functionality of the computer system to, in effect, combine unit tasks
(e.g., a text-editing function for inserting a pair of parentheses around a
piece of text can combine what would otherwise be two unit tasks into
one). At the Argument Level, the most obvious way to reduce time is to
devise appropriate default values for arguments and even for commands
(e.g., with a Redo command). At the Keystroke Level, the way to
efficiency is to devise short codes to specify commands and arguments
and to eliminate redundant terminators.

Principle 8: Design the set o f alternative methods for a task
so that the rule for selecting each alternative is clear to the
user and easy to apply.

422 12. APPLYING PSYCHOLOGY TO DESIGN

Alternative methods can be provided to do a task. This allows the
different methods to better take advantage of the specific structural
features of the different task instances. From our study of method
selection in Chapter 5, we characterized the expert user as having simple
decision rules for selecting an appropriate method in each task instance.

This principle might well be called the “Gilbreth Principle,” for Gilbreth (1911)
was one o f the first to systematically code behavior into a sequence o f physical
movements (which he called “therbligs,” but which we would call "operators”) and to
optimize performance by eliminating unnecessary movements. Gilbreth, however, did not
have any notion o f levels o f analysis; all his analyses were at the same level o f physical
movement.

Another useful notion from the method selection study is the notion
of the “default method,” the method that the user selects by default in
preference to other alternatives. The default method is not the most
efficient method, but it is a general method; other alternative methods
are more specialized, but more efficient. Categorizing methods this way
provides a good strategy for designing method alternatives: provide a
general-purpose method plus a set of efficient special-purpose methods.
A similar strategy is to design alternative methods for specifying
commands, easy-to-remember but slow methods (such as typing out the
command names) and fast but harder-to-remember methods (such as
special single-key codes). These strategies allow incremental learning.
The novice user need only learn the general-purpose, easy-to-remember
methods at first; he can acquire the more efficient methods one by one
as he becomes more expert.

Principle 9: Design a set o f error-recovery methods.

Another aspect of expert performance is errors. We have seen that
expert users adopt strategies that permit up to about 30% of their time to
be spent correcting errors. Error-correction is also highly skilled
behavior. Thus, error-recovery methods should also be designed for
leamability and efficiency. This suggests, for example, that an Undo
command would be worthwhile. In designing the Undo command,
consider carefully how it will be used to help the user recover from
specific kinds of errors, for all errors are not the same in the scope or
severity of their effects.

In the analysis of errors, it is useful to separate the occurrence of
errors from the treatment of errors once they occur. We do not yet have
any models to help predict errors, although common sense can suggest a
few sources of errors, such as the user accidentally hitting an adjacent key
on the keyboard.^ But given that an error has occurred, the expert user’s
handling of the error is a skilled activity and is thus amenable to
quantitative analysis by the performance models of the sort we have
described.

12.4. ADVICE TO THE DESIGNER 423

 ̂ Such an accident would be a motor “slip.” See Norman (1981) for a
categorization of action slips, including cognitive slips. For some evidence that error
occurrences can be modeled, at least in closed task domains, see Brown and VanLehn’s
(1980) Repair Theory model of the sources of “bugs” in arithmetic procedures.

Principle 10: Analyze the sensitivity o f performance predic­
tions to assumptions.

In carrying out any kind of performance analysis, the designer must
make assumptions about the user (psychology does not have all the
answers), about the computer system (the design is not fully specified
until the end), and about the task environment (which cannot be fully
anticipated). Thus, any predictions of human-computer performance
should be checked for their sensitivity to these assumptions.

One of the main advantages of symbolic models, as we have
emphasized, is that they allow unknowns to be parameterized and hence
to be analyzed for their effects on performance. This use of parametric
and sensitivity analysis was illustrated in the examples in Chapter 4 and
in Section 8.4. Although performance usually does change, it often does
not change in ways that affect the design decisions that motivated the
performance analysis. Even if sensitivities are found, it is much better to
make design decisions knowing what factors critically effect the decision
and what factors do not matter. With such knowledge, it is possible to
know which previous design decisions must be re-evaluated as new
knowledge develops during the design process.

4 2 4 12. APPLYING PSYCHOLOGY TO DESIGN

12.5. CONCLUSIONS

We have proposed that an applied psychology should take a particular
form in order to be of use in the design of interactive human-computer
systems. The central feature of this applied psychology is the packaging
of psychological knowledge into performance models that can predict the
performance of the human-computer system from specifications of its
structure. The design process can be decomposed into several different
kinds of design functions, most of which require the use of performance
models.

In this book we have concentrated most heavily on performance
models for calculating expert performance time.

Roberts (1979) has extended the use of our models by developing a
practical methodology for evaluating text-editing systems along four
performance dimensions—functionality, learning, time, and errors.

We have expressed some of the results in this book as a set of design
principles to aid in the design of systems for human-computer inter­
action.

13. Reprise

In this book, we have reported on a program of research directed
towards understanding human-computer interaction. Let us briefly sum­
marize the extent of our progress.

The flow chart in Figure 13.1 gives the argument of the book in terms
of research questions addressed and the results obtained. Starting at the
very top of the figure, from the proposition argued in Chapter 1 that
current techniques of human-computer interaction can be improved
upon, we addressed four basic questions (numbered Q1-Q4 in the
figure):

Ql. How can the science base be built up for supporting
the design of human-computer interfaces?

Q2. What is the nature of user behavior and what are the
consequent user performance characteristics for a
specific human-computer interaction task (we chose to
study text-editing)?

Q3. How can our results be cast as practical engineering
models to aid in design?

Q4. What principal generalizations arise from the specific
studies, models, and applications of Q2 and Q3?

Let us trace through the figure, considering each of these in turn.

SCIENCE BASE

If human-computer interaction is to be improved, there needs to be a
science base of knowledge about human performance on which designers
can draw for actual design. Recent advances in cognitive psychology and
allied sciences can aid us in building this science base.

425

Figure 13.1. Reprise.
Principal research questions addressed are numbered Q1, Q2, etc. Answers to the
research questions in the form of empirical facts established, propositions argued,

426

ENGINEERING
MODELS

Q3. How can the results be ap­
plied to system design?

8A. Use Key­
stroke Level
Model when
know command
syntax.

9A. Use Unit-
Task-Level
Model at early
stages of design.

Q14. How can
model be used?

8B. Can compute
point estimates,
benchmarks,
parametric an­
alysis, sensitivity
analysis.

Q15. How ac­
curate is
model?

8C. RMSE = 21%
in laboratory.
Model is better
than simplified
models: Key­
stroke-only, Pro­
rated Mental,
Constant
Time/Operator.

EXTENSIONS
GENERALIZATIONS

Q4. What extensions and gen­
eralizations derive from the
specific studies?

016. Can GOMS
describe non­
instruction-
following tasks?

10A. Partly, it de­
scribed skill part
of "creative” cir­
cuit-layout task
(but not problem
solving part).*

018. What is
the role of an
applied psy­
chology in
design?

12A. The devel­
opment of per­
formance models.

017. How do tasks like text-editing fit into the
general science base?

5D. Text editing
is a cognitive
skill.

11B. Problem
solving becomes
cognitive skill
with practice by
increasing
search-control
knowledge and
by creating new,
larger-scale
operators.

11C. Unit tasks
arise from
constraints on
working memory
capacity and
available task
information.

11 A. Cognitive
skill is a limiting
case of problem
solving. 11D.Text-editing

is only one sort
of cognitive skill.

Q12. How can GOMS model be extended?

6A. Can make
GOMS model
of display
editor
(BRAVO).

6B. Can
extend GOMS
to stochastic
operations.

6C. Can
extend GOMS
to do account
ing of input
and memory
information.

013. Which text selection device is best and
how can this be accounted for?

7A. Mouse fast­
est with least
error.

7B. Time for ana­
logue devices
follows Fitts's
Law, for key de­
vices proportion­
al to keystrokes.

7C. Mouse nearly
optimal.

or models developed are attached to the question and numbered by chapter (3B
means the second result listed in the figure from Chapter 3). Many of the results
lead In turn to more detailed research questions as Indicated by the arrows.

427

We have argued that a successful applied cognitive psychology of
human-computer interaction requires an approach based on three tenets:
(1) Primary emphasis should be placed on task analysis, calculation, and
approximation. (2) The approach should be based on a theory of the
user as an information-processor. (3) It should be relevant to design, that
is, to the analysis of systems before they have been built These tenets
lead to the question of how the current science base of psychological
knowledge can be summarized in this form (Q5)? One answer is to
organize the science base into the architecture, parameters, and principles
of operation of a compact engineering-oriented model such as the Model
Human Processor. This, in turn, leads us to consider human-computer
interaction in terms of human information-processing operations (5A).

428 13. REPRISE

TEXT-EDITING

Since new knowledge and insight are often achieved by first focusing
on concrete cases and then generalizing, it is necessary to select a task for
detailed study (Q6), and the task we have selected is computer text­
editing. Computer text-editing is a prototypical human-computer inter­
action task, and as such its study is likely to shed light on other human-
computer interaction tasks. Furthermore, there is substantial variation in
user performance, a result of both different editor designs and because of
individual differences among users (Q7). The slowest editor designs
require users to spend three times as long to make the same edits as do
the fastest designs; the slowest users (long-time users, but not necessarily
“experts”) spend four times longer to make the same edits as the fastest
users; the slowest experts spend 50% longer than the fastest experts. The
faster-to-use editors are faster because they require users to type fewer
keystrokes or perform fewer other actions than the slower-to-use editors.
The faster users get their speed by possessing the following characteristics
(each about equally effective in our studies); using the system regularly,
technical background, and typing speed.

How can an information-processing analysis be constructed for text-
editing (Q8)? The simplest model of user editing performance is the
Constant Time per Modification Model. We investigated this model for
the WYLBUR editor and showed, in a case study comparing text-editing
and typewriting, that it could be used to predict tradeoffs between the
two and could also be used in sensitivity analysis (Q9).

More detailed are models based on an information-processing analysis
of the user’s goals, operators, methods, and selection rules. We

investigated a GOMS model for the p o e t editor and found that it was
capable of predicting users’ method selection about 90% of the time
(using 2~4 rules) and of predicting editing time to a RM S error of about
35% (QIO). To discover how much the accuracy of the GOMS model
depended on its level of detail (Q ll), we constructed nine models of
POET editing, with detail ranging from gross (12 sec/operator) to very fine
(.5 sec/operator). These models fell at four levels: the Unit-Task Level
(closely related to the Constant Time per Modification Model above, but
with a stricter definition of what constitutes a task), the Functional Level
(an operator for each major phase of an editing task), the Argument
Level (an operator for each command and argument), and the Keystroke
Level (an operator for each keystroke or other action). We found that
accuracy improved in going from the Unit-Task Level to the Functional
Level (RMS error 40%~30%, for one of the measures) and did not
decline thereafter. It was shown that a GOMS analysis could be
extended to the display-oriented b r a v o editor, to include stochastic
elements, and to give a detailed account of the flow of task information
(Q12).

We also considered a set of models for a component of the GOMS
models, the operation of selecting a piece of text on a display (Q13).
Here, experiments showed that the mouse is a faster, less error-prone
device than step keys, text keys, or the rate-controlled isometric joystick
measured. Models of each of these devices showed that pointing time for
the analogue devices (mouse and joystick) is proportional to the log of
the ratio of target distance and target size, as given by Fitts’s Law, and
that pointing time for the key devices is proportional to the number of
keystrokes. Further analysis showed that the time to point using the
mouse is not limited by the device itself, but by the information­
processing rate of the human eye-hand coordination system.

13. REPRISE 4 2 9

ENGINEERING MODELS

How can the models above be adapted for use in system design? If
the user’s method is known, a simplification of the GOMS model at the
Keystroke Level can be used to predict editing time, to calculate bench­
marks, and to conduct parametric and sensitivity analyses (Q14). The
Keystroke-Level Model is a compromise between simplicity (only five
operators) and accuracy (much less error than for simpler models such as
counting only keystrokes, adding a prorated mental overhead, or counting
each operator at a constant cost) (Q15). The Keystroke-Level Model was

shown to predict execution time, with an RMS error of 21% for text-
editors, graphics programs, and various system utilities. This compares
well with the accuracy of the GOMS models and is sufficient for practical
work.

At the early stages of design, or when the user’s method is not
known, the Unit-Task-Level Model can be used to predict times by
breaking the user’s task into unit tasks and assigning each a constant
time.

430 13. REPRISE

EXTENSIONS AND GENERALIZATIONS

Can the GOMS analysis be extended to more “creative,” less routine
tasks (Q16)? A case study on VLSI circuit design suggests that part of
the behavior in such tasks is problem solving, to which the GOMS
analysis is not applicable, and part of the behavior is skill, to which the
GOMS/Keystroke-Level-Model analysis is appropriate.

It is important to ask how text-editing fits with other cognitive tasks
(Q17). Computer text-editing is an example of a cognitive skill.
Cognitive skill is a limiting case of problem solving in which the search
for a solution has been greatly reduced through practice and experience.
The transition from problem solving to cognitive skill can be seen by
starting with a problem-solving task, such as the classic Tower of Hanoi
puzzle, and observing how search through the problem space of the
puzzle is reduced and finally eliminated as a consequence of practice,
until solving the puzzle has become a skill. The same transition can be
seen from the other end, from a task in which we know users exhibit
cognitive skill, such as text-editing, and observing how the skill arose,
with practice, out of earlier problem solving. Closer examination of the
transition from problem solving to cognitive skill shows that the
mechanisms whereby search is reduced are (1) accumulation of control
knowledge and (2) the formation of new, larger-scale operators, which
effectively partition the problem space into a reduced problem space and
a skill space. Unit tasks are a consequence of constraints on the task
resulting from the memory limitations of the user or lack of information.
Other cognitive skills, whereas they share much of the above
characterization with computer text-editing, also differ from text-editing
along a number of dimensions: in the basic skill/problem-solving
character, in their demands on Working Memory and Long-Term
Memory, and in their external demands (such as pacing and accuracy).

13. REPRISE 431

Finally, there is the question of what role psychological research on
human-computer interaction can play in design (Q18). We have argued
that research should emphasize the development of performance models,
enabling designers to predict the performance consequences of design
alternatives. In addition to their use in considering design alternatives,
performance models can also be used as an evaluation methodology, such
as the one designed by Roberts (1979), and in the formulation of design
principles, such as those listed in Chapter 12. These examples suggest
how performance models may be made the link for transferring
understanding to practice in a psychology of human-computer interaction.

http://taylorandfrancis.com

Symbol Glossary

This glossary lists the principal symbols used in the book and the pages on which
they are defined. It includes algebraic symbols and operator symbols from the
Keystroke-Level Model; additional goal and operator symbols are listed in the
Subject Index. The nominal value and range (in square brackets) is also given for
each constant. An F after a page number indicates that the reference is to a
figure on the page.

AIS

^LTM
^VIS
^WM
E
K

'^AIS
'^LTM

*^V!S

^A IS

t^LTM

P

Pc

’’c

Learning rate (= .2~.6).. 57-58
Memory decay half life ...25
Half life of Auditory Image Store
(= 1500 [900-3500] msec)...31
Half life of Long-Term Memory (= o o) 39
Half life of Visual Image Store (= 200 [70-1000] msec) 29
Half life of Working Memory (= 3 [2.5-4.1] chunks). . . 38-39
Accuracy of micromovement... 52-53
Code type of memory...25
Code type of Auditory Image Store (= Physical)....................28
Code type of Long-Term Memory (= Semantic).................... 40
Code type of Working Memory (= Acoustic of Visual) . . 36, 79
Code type of Visual Image Store (= Physical).........................28
Memory capacity... 25
Capacity of Auditory Image Store (= 5 [4.4-6.2] letters) . . . 31
Capacity of Long-Term Memory (= o o)40
Capacity of Working Memory (= 3 [2.5-4.1] chunks).............. 39
Effective capacity of Working Memory (= 7 [5-9] chunks) . 39
Capacity of Visual Image Store (= 1 7 [7-17] letters).............31
Modification density per lin e ... 122
Density crossover p o in t...123
Cycle time of Cognitive Processor (= 7 0 [25-170] msec) . . .42
Cycle time of Motor Processor (= 7 0 [30-100] m sec)...........34

433

Tp Cycle time of Perceptual Processor (= 100 [50~200] msec) . . 32
D Distance to target.. 52
H Entropy of a decision...72-76
H Home hands (Keystroke-Level Model operator).............. 262-264
Ip. Uncertainty Principle constant (= 150 msec/bit) 72, 74-76
I Fitts’s Law constant (= 100 [50~120] m sec/bit)................. 53-57
K Keystroke (Keystroke-Level Model operator)................ 262, 264F

Length crossover p o in t.. 123
M Mental preparation (Keystroke-Level Model operator) 262, 264F
P Point with mouse (Keystroke-Level Model operator). . . 262-264
R Response by system (Keystroke-Level Model operator). 262-264
S Size of ta rge t... 52-55

Time to home hands (= .40 sec)..................................... 263, 264F
Time to type a keystroke (= [.08 ~ 1.20] sec)................. 262, 264F
Time to make mental preparation (= 1.35 sec)........... 263, 264F

tp Time to point with mouse (= 1.10 sec).......................... 262, 264F
'^acquire acquire a ta sk ... 261
'^execute Total time to execute a ta sk 261

Total homing time during ta sk .. 262
Total keystroke time during ta sk ...262
Total mental preparation time during task 262

Tp Total pointing time during ta sk ... 262
Tp Total system response time during ta sk ..262

4 3 4 SYMBOL GLOSSARY

Bibliographic Index

The boldface numbers to the right of each reference indicate the pages in book on
which the reference is cited. An F after a page number indicates that the citation
is in a figure, and an n after a page number indicates that it is in a footnote.

A bruzzi, a . (1952). Work Measurement. New York: Columbia Uni­
versity Press.. 182

A bruzzi, A. (1956). Work, Workers, and Work Measurement. New
York: Columbia University Press. . . . 13, 161, 182, 183, 183F, 184

A k in , O., and Chase , W. (1978). Quantification of three-dimensional
structures. Journal o f Experimental Psychology 4, 397-410.......... 43F

Ald en , D. G., D an iels , R. W., and Ka n a r ic k , A. (1972). Keyboard
design and operation: A review of the major issues. Human Factors
14, 275-293... 9 i

An a n d a n , P., Em bley , D. W., and N agy , G. (1980). An application of
file-comparison algorithms to the study of program editors. Inter­
national Journal o f Man-Machine Studies 13, 201-211......................102

A n d er so n , J. R. (1976). Language Memory and Thought. Hillsdale,
New Jersey: Lawrence Erlbaum Associates... 96

An d er so n , J. R. (1980). Cognitive Psychology and its Implications. San
Francisco: W. R. Freeman.................................2 n i, 9 i , 95, 36n, 359

A n d er so n , J. R., ed. (1981a). Cognitive Skills and their Acquisition.
Hillsdale, New Jersey: Lawrence Erlbaum Associates.......... 2n i, 359

An d er so n , J. R. (19816). Acquisition of Cognitive Skills. Technical Re-
poit, Department of Psychology, Camegie-Mellon University. . . 359

An d er so n , J. R., and Bo w er , G. H. (1973). Human Associative Mem­
ory. Washington, D.C.: V. H. Winston and Sons....................2n4, 95

At k in so n , R. C., and Sh if f r in , R. M. (1968). Human memory: A pro­
posed system and its control processes. The Psychology o f Learning
and Motivation 2, 89-195.. 9 i

Atwood, M. E. See Ramsey and Atwood (1979); Ramsey, Atwood, and
Kirshbaum (1978).

435

Averbach , E„ and Co r ie ll , A. S. (1961). Short-term memory in vision.
Bell System Technical Journal 40, 309-328.............................. 29n, 30F

Ba d d eley , a . D. (1966). Short-term memory for word sequences as a
function of acoustic, semantic and formal similarity. Quarterly
Journal o f Experimental Psychology 18, 362-365............................. 80F

Ba d d eley , A. D. (1976). The Psychology o f Memory. New York: Basic
Books...2n4, 93

Ba d d eley , A. D. (1981). The concept o f working memory: A view o f its
current state and probably future development. Cognition 10,
1 7 -2 3 .. 93

Baddeley, A. D. See also Long and Baddeley (1981).
Bamaby, J. R. See Myer and Bamaby (1973).
Ba r n a r d , P. J., Ha m m o n d , N. V., Mo r t o n , J., Lo n g , J. B., and

C la r k . 1. A. (1981). Consistency and compatibility in hum an-
com puter dialogue. International Journal o f Man-Machine Studies
15, 87-134.. 91

Baron, S. See Pew, Baron, Feehrer, and Miller (1977).
Ba rtlett , F. C. (1958). Thinking. London: Allen and Unwin. . . . i8 7

BBN (1973). T enex Text Editor and Corrector Manual. Cambridge,
Massachusetts: Bolt, Beranek, and Newman.........................109F, 415

Bell, G. See Siewiorek, Bell, and Newell (1981).
Belm o n t , L., and Birch , H. G. (1951). Re-individualizing the repres­

sion hypothesis. Journal o f Abnormal & Social Psychology 46,
226-235.. 81F

Be n n ett , J. (1972). The user interface in interactive systems. Annual
Review o f Information Science and Technology 7, 159-196............ 91

Berman, M. L. See English, Englebart, and Berman (1967).
Bern ba ch , H. a . (1970). A multiple-copy model for post perceptual

memory. In D. A. Norman, ed.. Models o f Human Memory, 103-
116, New York: Academic Press... 94

Birch, H. G. See Belmont and Birch (1951).
Bisseret, A. See Sperandio and Bisseret (1974).
Bla n k en sh ip , A. B. (1938). Memory span: A review o f the literature.

Psychological Bulletin 35, 1-25... 92

Blu m en th a l , a . L. (1977). The Process o f Cognition. Englewood
Cliffs, New Jersey: Prentice-Hall.. 42n20

436 BIBLIOGRAPHIC INDEX

Blo ch , A. M. (1885). Expérience sur la vision. Comptes Rendus de
Séances de la Société de Biologie (Paris) 37, 493-495...................... 32

Bobrow , D., and R aphael , B. (1974). New programming languages for
artificial intelligence research. Computing Surveys 6, 155-174. . . 362

Bobrow, D. See also Norman and Bobrow (1975).
Bo ies , S. J. (1974). User behavior on an interactive com puter system.

IBM Systems Journal 13, 2-18... 9 1 , 1 0 1

Boies, S. J. See also Posner, Boies, Eichelman, and Taylor (1969).
Bo o k , W. F. (1908). The psychology of skill with special reference to its

acquisition in typewriting. University o f Montana Studies in Psychol­
ogy /. Reprinted, New York: Gregg, 1925... 15

Bower, G. H. See Anderson and Bower (1973).
Breitm ey er , B. G ., and G a n z , L. (1976). Implications of sustained and

transient channels for theories of visual pattern masking, saccadic
suppression, and information processing. Psychological Review 83,
1-36... 96

Bro a d ben t , D. E. (1958). Perception and Communication. London;
Pergamon Press.. 2n2

Bro o k s , R. (1977). Towards a theory of the cognitive processes in
computer programming. International Journal o f Man-Machine
Studies 9, 737-751.. 9 i

Bro w n , J. S., and Va n Le h n , K. (1980). Repair theory: A generative
theory o f bugs in procedural skills. Cognitive Science 4, 379-426. . .
.. 423n

Bry a n , W. L., and H a rter , N. (1898). Studies in the physiology and
psychology of the telegraphic language. Psychological Review 4,
27-53... 15, 47

Br y a n , W. L., and H a rter , N. (1899). Studies on the telegraphic
language, the acquisition of a hierarchy of habits. Psychological
Review 6, 345-375.. 15

Burr, B. J. See Card, English, and Burr (1978).
Bussw ell, G. T. (1922). Fundamental reading habits: A study of their

development. Education Monographs (Supplement) 21.................... 28n
C a k ir , a .. H art , D. J., and Stew a rt , T. F. M. (1980). Visual Display

Terminals. New York: Wiley...9 i, 218
C a lfee , R. C. (1975). Human Experimental Psychology. New York:

Holt, Rinehait, and Winston... 8OF

BIBLIOGRAPHIC INDEX 4 3 7

438 BIBLIOGRAPHIC INDEX

C a r d , S. K. (1978). Studies in the Psychology of Computer Text-editing
Systems. Ph.D. Thesis, Department of Psychology, Carnegie-Mellon
University..102

C a r d , S. K., En g lish , W. K., and Burr, B. J. (1978). Evaluation of
mouse, rate-controlled isometric joystick, step keys, and text keys for
text selection on a CRT. Ergonomics 21, 601-613...........................xiii

C a r d , S. K., M o ra n , T. P., and N ew ell, A. (1976). The Manuscript
Editing Task: A Routine Cognitive Skill. Palo Alto, California:
Xerox Palo Alto Research Center, Technical Report SSL-76-8............
... 102, 109F

C a r d , S. K., Mo r a n , T. P., and N ew ell , A. (1980a). Computer text­
editing: An information-processing analysis of a routine cognitive
skill. Cognitive Psychology 12, "il-lA.............................xiii, 102, 109F

C a r d , S. K., M o r a n , T. P., and N ew ell, A. (19806). The Keystroke-
Level Model for user performance time with interactive systems.
Communications o f the ACM 23, 396-410.................... xiii, 102, 109F

Card, S. K. See also Moran and Card (1982).
C a r lto n , L. G. (1980). Movement control characteristics of aiming

responses. Ergonomics 23, 1019-1032.. 53n24

C a v a n a u g h , J. P. (1972). Relation between the immediate memory
span and the memory search rate. Psychological Review 79, 525-530.
..43F

Chaffin, D. B. See Langolf, Chaffin, and Foulke (1976).

C h a pa n is , a .. G a rn er , W. R., and Mo r g a n , C. T. (1949). Applied
Experimental Psychology: Human Factors in Engineering Design.
New York: John Wiley and Sons... 34n

C hase , W. G., and Ericsso n , K. A. (1981). Skilled memory. In J. R.
Anderson, ed.. Cognitive Skills and their Acquisition, Hillsdale, New
Jersey: Lawrence Erlbaum Associates...37n

C h a se , W. G., and Ericsson , K. A. (1982). Skill and Working Memory.
Pittsburgh, Pennsylvania: Department of Psychology, Carnegie-
Mellon University, Technical Report No. 7; to appear in The
Psychology o f Learning and Motivation 16, in press............................93

C hase , W. G., and Sim o n , H. A. (1973). Perception in chess. Cognitive
Psychology 4, 55-81.. 268

Chase, W. G. See also Akin and Chase (1978); Ericsson, Chase, and
Faloon (1980).

BIBLIOGRAPHIC INDEX 4 3 9

C h eath a m , P. G „ and W h ite . C. T. (1954). Tem poral numerosity; III.
Auditory perception o f number. Journal o f Experimental Psychology
47, 425-428.. 33F

C h e n g , N. Y. (1929). Retroactive effect and degree of similarity.
Journal o f Experimental Psychology 12, 444-458................................ 81F

Chi, M. T., and K la hr , D. (1975). Span and rate of apprehension in
children and adults. Journal o f Experimental Child Psychology 19,
434-439.. 43 F

Chiba, S. See Sakoe and Chiba (1978).
C la rk , H. H., and C la rk , E. V. (1976). Psychology and Language: An

Introduction to Psycholinguistics. New York: Harcourt, Brace,
Jovanovich... 3n7

Clark, E. V. See Clark and Clark (1976).
Clark, I. A. See Barnard, Hammond, Morton, Long, and Clark (1981).
C laude , J. (1972). A comparison of five variable weighting procedures.

Educational and Psychological Measurement 32, 311-322............... 296

Colatia, V. See Tulving and Colatia (1970).
Co n r a d , R. (1964). Acoustic confusions in immediate memory. British

Journal o f Psychology 55, 15-^3... 79, 92

Conway, L. See Mead and Conway (1980).
Coriell, A. S. See Averback and Coriell (1961).
CORNOG, J. R., and Cr a ig , J. C. (1965). Keyboards and coding systems

under consideration for use in the sorting of United States mail. 6th
Annual Symposium o f the IEEE G-HFE, Boston, Massachusetts. . . .
... 61F

CORNSWEET, T. N. (1970). Visual Perception. New York: Academic
Press..2n2, 96

Craig, J. C. See Cornog and Craig (1965).
Cr a ik , K. j . W., and V ince , M argaret A. (1963). Psychological and

physiological aspects of control mechanisms. Ergonomics 6, 419-440.
... 243, 254, 254F

C ro ssm a n , E. R. F. W. (1958). Discussion of Paper 7 in National
Physical Laboratory Symposium. In Mechanisation o f Thought
Processes (Vol 2). London: H. M. Stationery Office..................3 in 5

C ro ssm a n , E. R. F. W., and G oodeve , P. J. (1963). Feedback control
of hand movements and Fitts’ Law. Paper prepared for a meeting of
the Experimental Psychology Society, Oxford, July 1963.......... 5 in22

440 BIBLIOGRAPHIC INDEX

C r o w d er , R. G. (1976). Principles o f Learning and Memory. Hillsdale,
New Jersey: Lawrence Erlbaum Associates........................2n4, 39n i6

Crowder, R. G. See also Darwin, Turvey, and Crowder (1972).
Cunitz, Anita R. See Glanzer and Cunitz (1966).
Curtis, B. See Shepard, Curtis, Milliman, and Love (1979).
Daniels, R. W. See Alden, Daniels, and Kanarick (1972).
D a n serea u , D. (1968). An Information Processing Model of Mental

Multiplication. Ph.D. dissertation. Department of Psychology, Car-
negie-Mellon University.. i s

D a r w in , C. J., T urvey , M. T., and C ro w der , R. G. (1972). An
auditory analogue of the Sperling partial report procedure: Evidence
for brief auditory storage. Cognitive Psychology 3, 255-267................
..30F, 31nS, 31n7

D e in in g e r , R. L. (1960). Human factors studies of the design and use
of push-button telephone keysets. Bell System Technical Journal 39,
995-1012.. 61F

D e Lau ren th s , E. C. (1981). Qualitative Differences in Levels of
Performance on a Computer Text-editing Task. M.A. Thesis,
Department of Educational Psychology and Counseling, McGill
University... 102

D eu tsch , P. L., and La m pson , B. W. (1967). An online editor.
Communications o f the ACM 10, 793-803........................... 109F, 27iF

D evoe, D. B. (1967). Alternatives to handprinting in the manual entry
of data. IEEE Transactions on Human Factors in Electronics HFE-
8, 21-31.. 6IF, 91

D ornfC, S. (1977). Attention and Performance VI. Hillsdale, New
Jersey: Lawrence Erlbaum Associates...2n

Dornid, S. See also Rabbitt and Domic (1975).
D resslar , F. G. (1892). Some influences which affect the rapidity of

voluntary movements. American Journal o f Psychology 4, 514-527.
... 6IF

Dumais, Susan T. See Shiffrin and Dumais (1981).
Ea d y , K. (1977). Today’s international MTM systems—decision criteria

for their use. Proceedings, AIIE 1977 Spring Annual Conference,
483^91..161

Eichelman, W. H. See Posner, Boies, Eichelman, and Taylor (1969).

El k in d , J. I., and Spra g u e , L. T. (1961). Transmission of information
in simple manual control systems. IEEE Transaction on Human
Factors in Electronics HFE-2, 58-60... 55n

Em bley , D. W., La n , M. T., Lein bau g h , D. W., and N a g y , G. (1978).
A procedure for predicting program editor performance from the
user’s point o f view. International Journal o f Man-Machine Studies
10, 639-650.. 102, 294

Embley , D. W., and N agy , G. (1981). Behavioral aspects of text
editors. Computing Surveys 13, 33-70..................................... 103, 294

Embley, D. W. See also Anandan, Embley, and Nagy (1980).
En g elbart , D. C., and En g lish , W. K. (1968). A research center for

augmenting human intellect. Proceedings o f the 1968 Fall Joint
Computer Conference, 395-410. Montvale, New Jersey: AFIPS Press.
... 107, 109F, 415

Engelbart, D. C. See also English, Engelbart, and Berman (1967).

En g lish , W. K., Engelbart , D. C., and Berm a n , M. L. (1967).
Display-selection techniques for text manipulation. IEEE Trans­
actions on Human Factors in Electronics HFE-8, 5-15. . . . 230, 242

English, W. K. See also Card, English, and Burr (1978); Engelbart and
English (1968).

Erick sen , C. W., and Sch u ltz , D. W. (1978). Temporal factors in
visual information processing: A tutorial review. In J. Requin, ed..
Attention and Performance VII, Hillsdale, New Jersey: Lawrence
Erlbaum Associates..32n io

Ericsso n , K. A., C hase , W. G., and F a loo n , S. (1980). Acquisition of
memory skill. Science 208, 1181-1182... 37n

Ericsson, K. A. See also Chase and Ericsson (1981); Chase and Ericsson
(1982).

Estes , W. K., ed. (1975-1978). Handbook o f Learning and Cognitive
Processes (6 vols). Hillsdale, New Jersey: Lawrence Erlbaum
Associates.. 2ni

F a irba irn , D. G., and Row son , J. H. (1978). Ica r u s : An interactive
integrated circuit layout program. Proceedings o f the I5th Annual
Design Automation Conference, IEEE, 188-192.............................. 336

Faloon, S. See Ericsson, Chase, and Faloon (1980).
Feehrer, C. E. See Pew, Baron, Feehrer, and Miller (1977).

BIBLIOGRAPHIC INDEX 4 4 1

4 4 2 BIBLIOGRAPHIC INDEX

Ferrell, W. R. See Sheridan and Ferrell (1974).
F itter, M., and G reen, T. R. G. (1979). When do diagrams make good

computer languages? International Journal o f Man-Machine Studies
II, 235-261.. 91

Fitter, M. See also Sime, Fitter, and Green (1975).
F itts, P. M. (1954). The information capacity of the human motor

system in controlling amplitude of movement Journal o f Experi­
mental Psychology 47, 381-391.. 54F, 247, 250

F itts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton,
ed.. Categories o f Human Learning New York: Academic Press. . . .
... 2n5

F itts, P. M., and Peterson, J. R. (1964). Information capacity of
discrete motor responses. Journal o f Experimental Psychology 67,
103-112.. 55n

F itts, P. M., and Posner, M. I. (1967). Human Performance. Belmont
California: Brooks/Cole.. 2n3, 34n, 9 i

F itts, P. M., and Radford, B. (1966). Information capacity of discrete
motor responses under different cognitive sets. Journal o f
Experimental Psychology 71, 475-482...................................... 55n, 240

Foulke, J. A. See Langolf, Chaffin, and Foulke (1976).
Fox, j . G., and Stansfield, R. G. (1964). Digram keying times for

typists. Ergonomics 7, 317-320.. 34n

Frost N. H. See H unt Frost and Lunneborg (1973).
G anz, L. (1975). Temporal factors in visual perception. In E. C. Car-

terette and M. P. Friedman, eds.. Handbook o f Perception, Vol. V,
Seeing. New York: Academic Press............ 32n8, 32n io , 3 2 n ii , 96

Ganz, L. See also Breitmeyer and Ganz (1976).
G ibson, E. J. (1942). Intralist generalization as a factor in verbal learn­

ing. Journal o f Experimental Psychology 30, 185-200.................... 8 iF

G ilbreth, F. B. (1911). Motion Study. New York: D. Van Nostrand. . .
... 84, 422n

Gildner, G. G. See Pollack and Gildner (1963).
G lanzer, M., and Cunitz, Anita R. (1966). Two storage mechanisms

in free recall. Journal o f Verbal Learning and Verbal Behavior 5,
351-360.. 77F

BIBLIOGRAPHIC INDEX 4 4 3

G la nzer , M„ and R azel. M. (1974). The size o f the unit in short-term
storage. Journal o f Verbal Learning and Verbal Behavior 13,
114-131... 39n16

Glenn, F. A. See Lane, Strieb, Glenn, and Wherry (1980).
Goodeve, P. J. See Crossman and Goodeve (1963).
G o o d w in , N ancy C. (1975). Cursor positioning on an electronic dis­

play using lightpen, lightgun, or keyboard for three basic tasks.
Human Factors 17, 289-295.. 230, 248

G o u l d , J. (1968). Visual factors in the design of computer-controlled
CRT displays. Human Factors 10, 359-376....................................... 9i

G re e n , D. M., and Sw ets, J. A. (1966). Signal Detection Theory and
Psychophysics. Huntington, New York: Robert E. Krieger Pub­
lishing Company..2n2

Green, T. R. G. See Sime, Fitter, and Green (1975); Sime and Green
(1974) Fitter and Green (1979); Smith and Green (1980).

G u ttm an , N., and J ulesz, B. (1963). Lower limits o f auditory
periodicity analysis. Journal o f the Acoustical Society o f America 35,
610...3 in 5

H a m m er , J. M. (1981). The Human as a Constrained Optimal Text
Editor. Ph. D. thesis. Department of Computer Science, University
of Illinois. Also Report T-105, Coordinated Science Laboratory,
University of Illinois, Urbana, Illinois.. 102

H a m m er , J. M., and Ro u se , W. B. (1979). Analysis and modeling of
freeform text editing behavior. Proceedings o f the 1979 International
Conference on Cybernetics and Society, Denver..............................102

Hammond, N. V. See Barnard, Hammond, Morton, Long, and Clark
(1981).

H a n sen , W. J. (1971). User engineering principles for interactive sys­
tems. Proceedings o f the Fall Joint Computer Conference 39, 523-
532.. 7, 418

Hart, D. J. See Cakir, Halt, and Stewart (1980).
H a rter , M. R. (1967). Excitability and cortical scanning: A review of

two hypotheses of central intermittency in perception. Psychological
Bulletin 68, 47-58.. 32n9

Harter, N. See Bryan and Harter (1898); Bryan and Harter (1899).

4 4 4 BIBLIOGRAPHIC INDEX

Hatfield, S. A. See Mills and Hatfield (1974).
H ersh m a n , R. L , and H illix , W. A. (1965). Data processing in typing,

typing rate as a function o f kind o f material and am ount exposed.
Human Factors 7, 483-492... 61F

H ic k , W. E. (1952). On the rate of gain of information. Quarterly
Journal o f Experimental Psychology 4, 11-26.................................. 42n

Hillix, W. A. See Hershman and Hillix (1965).
H ir s c h b e r g , D. S. (1975). A linear space algorithm for computing

maximal common subsequences. Communications o f the ACM 18,
341-343... 157, 190

H o c h b e r g , J. (1976). Toward a speech-plan eye-movement model of
reading. In R. A. Monty and J. W. Senders, eds.. Eye Movements
and Psychological Processes, 397-416, Hillsdale, New Jersey:
Lawrence Erlbaum Associates..5 in 2 i

Hollan, J. D. See Williams and Hollan (1981).
H o v l a n d , C. I. (1940). Experimental studies in rote learning theory. VI.

Comparison of retention following learning to same criterion by
massed and distributed practice. Journal o f Experimental Psychology
26, 568-587.. 8iF

H u n t , E. B., F rost , N. H., and L u n n eb o r g , C. (1973). Individual
differences in cognition: A new approach to intelligence. The
Psychology o f Learning and Motivation 7, 87-123............................. 3n9

H y m a n , R. (1953). Stimulus information as a determinant of reaction
time. Journal o f Experimental Psychology 45, 188-196.........................
...43F, 75, 75F

I n g a l l s . D. H. (1978). The Smalltalk-76 programming system: Design
and implementation. Conference Record o f the Fifth Annual ACM
Symposium on Principles o f Programming Languages, 9-16, Tucson,
Arizona..204

Jo h n s o n , L. M. (1939). The relative effect of a time interval upon
learning and retention. Journal o f Experimental Psychology 24, 169-
179... 81F

Jo h n s o n , W. J. (1965). Analysis of Independence of Predetermined
Time System Elements. M.S. Thesis, Department of Industrial
Engineering, University of Miami...223

Julesz, B. See Guttman and Julesz (1963).
Kanarick, A. See Alden, Daniels, and Kanarick (1972).

BIBLIOGRAPHIC INDEX 445

Karlin, J. E. See Pierce and Karlin (1957).
K aplan , R. M., Sh eil , B. A., and Sm ith , E. R. (1978). Interactive Data-

Analysis Language Reference Manual. Palo Alto, California: Xerox
Palo Alto Research Center, Technical Report SSL-78-4....................xi

Kay, a . (1977). Microelectronics and the personal computer. Scientific
American, September, 230-244.. 204

Keele , S. W. (1968). Movement control in skilled motor performance.
Psychological Bulletin 70, 387-403... 5 in 22 , 53

Kinkade, R. G. See Van Cott and Kinkade (1972).
K in k ea d , R. (1975). Typing speed, keying rates, and optimal keyboard

layouts. Proceedings o f the 19th Annual Meeting o f the Human
Factors Society............................ 34, 49, 60, 62F, 65, 167, 222, 222F

K in tsch , W. (1974). The Representation o f Meaning in Memory.
Hillsdale, New Jersey: Lawrence Erlbaum Associates.....................2n3

Kirshbaum, P. J. See Ramsey, Atwood, and Kirshbaum (1978).
Kla hr , D., and W allace, J. G. (1976). Cognitive Development: An

Information-Processing View. Hillsdale, New Jersey: Lawrence Erl­
baum Associates...2n5

Klahr, D. See also Chi and Klahr (1975).
K latzky , R. L. (1980). Human Memory: Structures and Processes, (2nd

ed.) San Francisco, California: W. H. Freeman and Company..........
... 31n5

Klem m er , E. T. (1962). Communication and human performance.
Human Factors 4, 75-79... 59F

K lem m er , E. T., and Lo c k h ea d , G. R. (1962). Productivity and errors
in two keying tasks: A field study. Journal o f Applied Psychology 46,
401-408.. 61F

Ko l esn ik , P. E., and T eel, K. S. (1965). A comparison o f three manual
m ethods for inputting navigational data. Human Factors 7, 451-456.
... 61F

Ko r n b lu m , S. (1973). Attention and Performance IV. New York:
Academic Press...2ni

Kr e u g e r . W. C. (1929). The effect of overlearning on retention.
Journal o f Experimental Psychology 12, 71-78.................................. 8 iF

Lampson, B. W. See Deutsch and Lampson (1967).
Lan, M. T. See Embley, Lan, Leinbaugh, and Nagy (1978).

La n e , N. E , Strieb , M. I., G l en n , F. A., and W h erry , R. J. (1980).
The Human Operator Simulator: An overview. NATO AGARD
Conference on Manned Systems Design: New Methods and
Equipment. Frieburg, Federal Republic of Germany.......................9i

La n d a u er , T. K. (1962). Rate o f implicit speech. Perception and
Psychophysics 15, 646.. 42, 43F

La n g o l f , G. D. (1973). Human Motor Performance in Precise Micro­
scopic Work. Ph.D. Thesis, University of Michigan. Also published
by the MTM Association, Fairlawn, New Jersey, 1973............. 53n24

La n g o l f , G. D., C h a ffin , D. B., and Fo u lk e , J. A. (1976). An inves­
tigation of Fitts’s Law using a wide range of movement amplitudes.
Journal o f Motor Behavior 8, 113-128.. 53n24

Leinbaugh, D. W. See Embley, Lan, Leinbaugh, and Nagy (1978).
Lester , O. P. (1932). Mental set in relation to retroactive inhibition.

Journal o f Experimental Psychology 15, 681-699.............................81F

L ind say , P. H., and No r m a n , D. A. (1977). Human Information
Processing: An Introduction to Psychology (2nd ed.). New York:
Academic Press...2n i, 9 i , 95

Lockhead, G. R. See Klemmer and Lockhead (1962).
Lo ft u s , E. F. (1979). Eyewitness Testimony. Cambridge, Massachusetts:

Harvard University Press.. 3ns

Lo n g , J. B. (1976). Visual feedback and skilled keying: Differential
effects of masking the printed copy and the keyboard. Ergonomics
19, 93-110.. 180, 215

Lo n g , J. B., and Baddeley , A., eds. (1981). Attention and Performance
IX. Hillsdale, New Jersey: Lawrence Erlbaum Associates.......... 2ni

Long, J. B. See also Barnard, Hammond, Morton, Long, and Clark
(1981).

Love, T. See Shepard, Curtis, Milliman, and Love (1979).
Luh, C. W. (1922). The conditions of retention. Psychological Mono­

graphs 31, No. 3 (Whole No. 142).. 8 iF

Lunneborg, C. See Hunt, Frost, and Lunneborg (1973).
M a r tin . J. (1973). Design o f Man-Computer Dialogues. Englewood

Cliffs, New Jersey: Prentice-Hall.. 9 i , 115

446 BIBLIOGRAPHIC INDEX

Margolius, G. See Weiss, and Margolius (1954).

M assaro , D. W. (1970). Preperceptual auditory images. Journal o f Ex­
perimental Psychology 85, 411-417...3in5

M a y n a rd , H. B. (1971). Industrial Engineering Handbook, 3rd ed. New
York: McGraw-Hill...161, 274, 298

M a y zn er . M. S., and T resselt, M. E. (1965). Tables o f single-letter
and digram frequency counts for various word-length and letter-
position combinations. Psychonomic Monograph Supplements I,
13-32... 48F

McCo r m ic k , E. J. (1976). Human Factors in Engineering and Design.
New York: McGraw-Hill... 3nio

M ead . C., and Con w a y . L. (1980). Introduction to VLSI Systems.
Reading, Massachusetts: Addison-Wessley...336

M eister , D. (1976). Behavioral Foundations o f System Development.
New York: John Wiley and Sons...91

M elton , A. (1963). Implications o f short-term memory for a general
theory o f memory. Journal o f Verbal Learning and Verbal Behavior
2, 1-21... 38n

M ich o tte . a . (1946/1963). The Perception o f Causality. New York:
Basic Books, 1963. Originally published as La Perception de la
Causalité. Lx)uvain: Publications Universitaires de Louvain, 1946. . .
...50F

M ic h o n , J. a . (1978). The making of the present: A tutorial review. In
J. Requin, ed.. Attention and Performance VII, 89-111, Hillsdale,
New Jersey: Lawrence Erlbaum Associates.. 42n

M iller , G. A. (1956). The magical num ber seven plus or minus two:
Some limits on our capacity for processing information. Psycho­
logical Review 63, 81-97... 39m 7, 92, 93

M iller , L. A., and T hom as, J. C., Jr. (1977). Behavioral issues in the
use o f interactive systems. International Journal o f Man-Machine
Studies 9. 509-536.. 91

Miller, D. C. See Pew, Baron, Feehrer, and Miller (1977).
Milliman, D. See Shepard, Curtis, Milliman, and Love (1979).

M ills, R. G., and H a tfield , S. A. (1974). Sequential task performance,
task module relationships, reliabilities, and times. Human Factors
16, 117-128... 85F

BIBLIOGRAPHIC INDEX 4 4 7

448 BIBLIOGRAPHIC INDEX

M inor, F. J„ and Pittman, G. G. (1965). Evaluation of variable format
entry terminals for a hospital information system. Paper presented at
the Sixth Annual Symposium o f the IEEE Professional Group on
Human Factors in Electronics, Boston.. 61F

Minor, F. J., and Revesman, S. L. (1962). Evaluation of input devices
for a data setting task. Journal o f Applied Psychology 46, 332-336. . .
..61F

Moran, T. P. (1980). Compiling Cognitive Skill. AIP Memo 150,
Xerox Palo Alto Research Center..279

Moran, T. P. (1981a). The Command Language Grammar: A
representation for the user interface of interactive computer systems.
International Journal o f Man-Machine Systems 15, 3-50.......................
... 3, 91, 336, 404n, 421n

Moran, T. P., ed. (19816). Special Issue: The Psychology of Human-
Computer Interaction. Computing Surveys 13, March....................252

Moran, T. P., and Card, S. K. (1982). Applying Cognitive Psychology
to Computer Systems. Proceedings o f the Conference on Human
Factors in Computer Systems, Gaithersburg, Maryland..................... viii

Moran, T. P. See also Card, Moran, and Newell (1976, 1980a, 19806):
Roberts and Moran (1982).

Morton, J. See Barnard, Hammond, Morton, Long, and Clark (1981).
Munger, S. j .. Smith, R. W., and Payne, D. (1962). An Index o f Elec­

tronic Equipment Operability. Pittsburgh, Pennsylvania: American
Institute for Research, Report AIR-C43-l/62-RP(l)........................ 6 iF

Murdock, B. B., Jr. (1960b). The immediate retention of unrelated
words. Journal o f Experimental Psychology 60, 222-234.......... 39n i6

Murdock, B. B., Jr. (1961). Short-term retention of single paired-asso­
ciates. Psychological Reports 8, 280... 38F, 38n

Murdock, B. B., Jr. (1963). Short-term retention of single paired
associates. Journal o f Experimental Psychology 65, 433-443. . . . 82n

Murdock, B. B., Jr. (1967). Recent developments in short-term
memory. British Journal o f Psychology 58, 421-433................. 39n l6

Murix)CK, B. B., Jr. (1974). Human Memory: Theory and Data.
Hillsdale, New Jersey: Lawrence Erlbaum Associates....................2n4

Myer, T. H., and Barnaby, J. R. (1973). Tenex executive language
manual for users. Cambridge, Massachusetts: Bolt, Beranek, and
Newman, Inc..27i f

BIBLIOGRAPHIC INDEX 4 4 9

Nagy, G. See Embley, Lan, Leinbaugh, and Nagy (1978); Anandan,
Embley, and Nagy (1980); Embley and Nagy (1981).

N a n d a , R. (1968). The additivity o f elemental times. Journal o f Indus­
trial Engineering 19(5), 235-242..
. . . 223

N eal, A. S. (1977). Time intervals between keystrokes, records, and
fields in data entry with skilled operators. Human Factors 19, 163-
170... 61F

N eisser , U. (1967). Cognitive Psychology. New York; Appleton-Cen-
tury-Crofts..2n2, 9 i

N ew ell , A. (1973). Production systems; Models of control structures.
In W. G. Chase, ed.. Visual Information Processing, 283-308, New
York; Academic Press... 96

N ew ell, A. (1980). Reasoning, problem solving, and decision processes;
The problem space as a fundamental category. In R. Nickerson, ed..
Attention and Performance VIII, Hillsdale, New Jersey; Lawrence
Erlbaum Associates... 3 61, 3 6 in, 364, 368F

N ew ell, A., and R osenbloom , P. S. (1981). Mechanisms of skill
acquisition and the law of practice. In J. R. Anderson, ed.. Cognitive
Skills and their Acquisition, 1-51, Hillsdale, New Jersey; Lawrence
Erlbaum Associates...59n, 363

N ew ell , A., and Sim o n , H. A. (1972). Human Problem Solving.
Englewood Cliffs, New Jersey: Prentice-Hall..
... 2n6, 41n, 86n, 88F, 89F, 91, 96, 147

Newell, A. See also Card, Moran, and Newell (1976, 1980a, 1980ft);
Siewiorek, Bell, and Newell (1981).

N ew m a n , W., and Spro ull , R. (1979). Principles o f Interactive
Computer Graphics, 2nd ed. New York; McGraw-Hill. . 27 i f , 404n

N ilsson . N. (1971). Problem-Solving Methods in Artificial Intelligence.
New York; McGraw-Hill.. 364

N o r m a n , D. A. (1980). Cognitive engineering and education. In D. T.
Tuma, and F. Reif, eds.. Problem Solving in Education: Issues in
Teaching and Research, 97-107, Hillsdale, New Jersey; Lawrence
Erlbaum Associates.. 3n i6

N o r m a n , D. A. (1981). Categorization o f action slips. Psychological
Review 88, 1-15... 423n

450 BIBLIOGRAPHIC INDEX

No r m a n . D. A., and Bo br o w , D. (1975). On data-limited and resource-
limited processes. Cognitive Psychology 7, 44-64.................... 94, 387

N o r m a n , D. A., and R u m elh a rt , D. E. (1975). Explorations in Cogni­
tion. San Francisco: W. H. Freeman... 95

Norman, D. A. See also Waugh and Norman (1965); Lindsay and
Norman (1977).

O r e n , S. S. (1972). A mathematical model for computer-assisted docu­
ment creation. Proceedings o f the Fourth International Symposium
on Computer and Information Sciences, Miami Beach, Florida. . . 102

O r e n , S. S. (1974). A mathematical theory of man-machine text editing.
IEEE Transactions on Systems, Man, and Cybernetics SMC-4,
256-267... 102

O r e n , S. S. (1975). A mathematical theory of man-machine document
assembly. IEEE Transactions on Systems, Man, and Cybernetics
SMC-5, 256-267...102

Pa rson s , H. M. (1972). Man-Machine Systems Experiments. Baltimore,
Maryland: Johns Hopkins University Press... 91

Payne, D. See Munger, Smith, and Payne (1962).
Peterson, J. R. See Fitts and Peterson (1964).
Peterso n , L. R., and Peterso n , M. J. (1959). Short-term retention of

individual verbal items. Journal o f Experimental Psychology 58,
193-198... 38F, 38n

Peterson, M. J. See Peterson and Peterson (1959).
P ew , R. W., Ba ro n , S., F eeh r er , C. E., and M iller , D. C. (1977).

Critical Review and Analysis o f Performance Models Applicable to
Man-Machine Systems Evaluation. Cambridge, Massachusetts: BolL
Beranek, and Newman, Inc., Report 3446... 91

P ierce , J. R., and Ka rlin , J. E. (1957). Reading rates and the
information rate of the human channel. Bell System Technical
Journal 36, 497-516.. 55n

Pittman, G. G. See Minor and Pittman (1965).
Po lla c k , W. T., and G ild n er , G. G. (1963). Study of Computer

Manual Input Devices. Hanscom Field, Bedford, Massachusetts: Air
Force Systems Command, Electronic Systems Division, September,
Report ESD-TDR-63-545... 6IF

Po sn e r , M. I. (1978). Chronometrie Explorations o f Mind. Hillsdale,
New Jersey: Lawrence Erlbaum Associates....................................... 2n3

Po sn e r , M. I., Bo ies , S. J., Eich elm an , W. H., and T aylor , R. L.
(1969). Retention of visual and name codes of single letters. Journal
o f Experimental Psychology 79, 1-16... 72F

Posner, M. I. See also Fitts and Posner (1967).
POULTON, E. C. (1974). Tracking Skill and Manual Control. New York:

Academic Press.. 243, 248, 254, 254F

Q u ic k , J. H. (1962). Work Factor Time Standards. New York:
McGraw-Hill.. 91

R abbitt, P. M. a ., and Do r n iC, S. (1975). Attention and Performance
V. London: Academic Press..2ni

Radford, B. See Fitts and Radford (1966).
Ram sey , H. R., and Atw o o d , M. E. (1979). Human Factors in

Computer Systems: A Review of the Literature. Englewood,
Colorado: Science Applications, Inc., Technical Report SAI-79-111-
DEN, NTIS AD A075679..91, 404n

R am sey , H. R., Atw o o d , M. E., and K irshbaum , P. J. (1978). A
Critically Annotated Bibliography of the Literature on Human
Factors in Computer Systems. Englewood, Colorado: Science
Applications, Inc., Technical Report SAI-78-070-DEN, NTIS AD-
A057081.. 91

Raphael, B. See Bobrow and Raphael (1974).
R a y m on d , B. (1969). Short-term storage and long-term storage in free

recall. Journal o f Verbal Learning and Verbal Behavior 8, 567-574.
.. 39n16

Razel, M. See Glanzer and Razel (1974).
Reed, S. K. See Simon and Reed (1976).
R eisn er , Phyllis (1981). Using a formal grammar in human factors

design of an interactive graphics system. IEEE Transactions on
Software Engineering SE-7, 229-240..91, 42 in

R eq u in , J. (1978). Attention and Performance VII. Hillsdale, New
Jersey: Lawrence Erlbaum Associates...2ni

Revesman, S. L. See Minor and Revesman (1962).
Rice, D. E. See Van Dam and Rice (1971).

BIBLIOGRAPHIC INDEX 451

452 BIBLIOGRAPHIC INDEX

Richardson, J. See Underwood and Richardson (1956).
R id d l e , E lizabeth A. (1976). Comparative Study o f Various Text

Editors and Formatting Systems. Washington, D.C.; Air Force Data
Services Center, The Pentagon, AD-A029 050................................ 102

Roberts , T eresa L. (1979). Evaluation of Computer Text Editors.
Ph.D. Thesis, Department of Computer Science, Stanford University.
Reprinted as Xerox Palo Alto Research Center Technical Report
SSL-79-9..102, 413, 416F, 424, 431

Roberts , T eresa L„ and Mo ra n , T. P. (1982). A methodology for
evaluating text editors. Proceedings o f the Conference on Human
Factors in Computer Systems, Gaithersburg, Maryland..................413

Rosenbloom, P. S. See Newell and Rosenbloom (1981).
R o u se , W. B. (1977). Human-computer interaction in multi-task

situations. IEEE Transactions on Systems, Man, and Cybernetics
SMC-7, 384-392... 9 i

Ro u se , W. B. (1980). Systems Engineering Models o f Human-Machine
Interaction. New York: North Holland...9 i

Rouse, W. B. See also Hammer and Rouse (1979).
Rowson, J. H. See Fairbaim and Rowson (1978).
Rumelhart, D. E. See Norman and Rumelhart (1975).
R ussell , D. S. (1973). Po e t : A Page Oriented Editor for T en ex .

Computer Science Division, University of Utah............................ 109F

R usso , J. E. (1978). Adaptation of cognitive processes to the eye-
movement system. In J. W. Senders, D. F. Fisher, and R. A. Monty,
eds.. Eye Movements and the Higher Psychological Functions, 89-109.
Hillsdale, New Jersey: Lawrence Erlbaum Associates.......... 25n, 28n

Sa ck m a n , H. (1970). Experimental analysis of man-computer problem­
solving. Human Factors 12, 187-201... 119

Sa k o e , H., and C hiba , S. (1978). Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing ASSP-26, 43-49. . 157, 190

Savitsky , S. (1969). Son of Sto pg a p . Stanford, California: Stanford
University Artificial Intelligence Laboratory, Operating Note 50.1. . .
... 109F, 271F

SCHMIDTKE. H., and St ie r , F. (1961). An experimental evaluation of the

validity of predetermined elemental time systems. The Journal o f
Industrial Engineering X II (3), 182-204.. 13

Schneider, W. See ShifFrin and Schneider (1977).
Schultz, D. W. See Ericksen and Schultz (1978).
Schulz, R. W. See Underwood and Schulz (1960).
Seibel, R. (1964). Data entry through chord, parallel entry devices.

Human Factors 6, 189-192... 61F
Seibel, R. (1972). Data entry devices and procedures. In H. P. Van

Cott and R. G. Kinkade, eds.. Human Engineering Guide to
Equipment Design, Washington, D. C.: U. S. Government Printing
Office.. 91

Sh eil , B. (1981). The psychological study of programming. Computing
Surveys 13, 101-120..9 i

Sheil, B. A. See also Kaplan, Sheil, and Smith (1968).
Sh epa rd , S., C u rtis , B., M illim an , P., and Love, T. (1979). Modern

coding practices and programmer performance. Computer 12, 41-49.
... 91

Sh er id a n , T. B., and F errell , W. R. (1974). Man-machine systems:
Information, control, and decision models o f human performance.
Cambridge, Massachusetts: M.I.T. Press..................................3nio, 9 i

Sh if f r in , R. M. and D um ais, Susan T. (1981). The development of
automatism. In J. R. Anderson, ed.. Cognitive Skills and their
Acquisition, 111-140, Hillsdale, New Jersey: Lawrence Erlbaum
Associates..363

Sh if f r in , R. M., and Sc h n e id e r , W. (1977). Controlled and automatic
human information processing: II. Perceptual learning, automatic
attending, and a general theory. Psychological Review 84, 127-190. .
..93

Shiffrin, R. M. See also Atkinson and Shiffrin (1968).
Sh n eid er m a n , B. (1980). Software Psychology. Cambridge, Massa­

chusetts: Winthrop..3n14, 91

Sh u r t l e ff , D. a . (1980). How to Make Displays Legible. La Mirada,
California: Human Interface Design...9i

SlEGAL, A. I., and WOLF, J. J. (1969). Man-machine simulation models.
New York: John Wiley and Sons..9 i

BIBLIOGRAPHIC INDEX 453

SiEWiOREK, D., B e l l , G„ a n d N e w e l l , A. (1981). Computer Structures.
New York: McGraw-Hill..24n

SiME, M. E„ F it t e r , M„ and G r e e n , T. R. G . (1975). Why is
programming computers so hard? New Behaviour (September 4). . . .
... 3 n 1 3

SiME, M. E„ and G r e e n , T. R. G . (1974). Psychology and the Syntax of
Programming. Medical Research Council, Social and Applied
Psychology Unit, Department of Psychology, The University,
Sheffield, MRC Memo No. 52.. 3 n i2

Simon, H. A. (1947). Administrative Behavior. New York: Macmillan.
.. 8 6 n

S i m o n , H. A. (1969). The Sciences o f the Artificial. Cambridge, Massa­
chusetts: M.I.T. Press.. 8 6 n

S i m o n , H. A. (1974). How big is a chunk? Science 183, 482-488.. . 36n

S i m o n , H. A. (1975). The functional equivalence of problem solving
skills. Cognitive Psychology 7, 268-288. . . 7 3 6 4 , 3 7 0

Simon, H. A. See also Newell and Simon (1972); Chase and Simon
(1973).

Smith, E. R. See also Kaplan, Shell, and Smith (1978).
S m it h , G. A. (1977). Studies of compatibility and a new model of choice

reaction time. In S. Domi£, ed.. Attention and Performance VI,
Hillsdale, New Jersey: Lawrence Erlbaum Associates........................7 in

S m i t h , H. T., and G r e e n , T. R. G ., eds. (1980). Human Interaction with
Computers. London: Academic Press.. 9 i

Smith, R. W. See also Munger, Smith, and Payne (1962).
S n o d d y , G. S. (1926). Learning and stability. Journal o f Applied Psy­

chology 10, 1-36...5 7

S p e r a n d i o , J. C., and B is s e r e t , A. (1974). Human Factors in the Study
of Information Input Devices. Royal Aircraft Establishment Library
Translation No. 1728. Originally published as Facteurs humains
dans l’étude des dispositifs d’entrée d’informations. Bulletin du
CERP 17, 4, 269-294 (1968).. 9 i

S p e r l i n g , G. (1960). The information available in brief visual
presentations. Psychological Monographs 74 (11, Whole No. 498). . .
...2 9n , 30F , 3 1 n 6 , 9 2

4 5 4 BIBLIOGRAPHIC INDEX

Sper l in g , G. (1963). A model for visual memory tasks. Human Factors
5, 19-31...31n6

Sprague, L. T. See Elkind and Sprague (1961).
Sproull, R. See Newman and Sproull (1979).
Sta llm a n , R. M. (1981). EMACS—^The extensible, customizable self-

documenting display editor. Proceedings o f the ACM SIGPLAN
SIGOA Symposium on Text Manipulation, Portland, Oregon,
147-156... 415

Sta n fo r d C enter fo r In form ation Processing (1975). Wylbur/
370—the Stanford Timesharing System—Reference Manual, 3rd ed.
Stanford, California: Stanford University................................121, 4i 5

Ste r n b e r g , S. (1975). Memory scanning: New findings and current
controversies. Quarterly Journal o f Experimental Psychology 27,
1-32... 42n

Stewart, T. F. M. See Cakir, Hart, and Stewart (1980).
Stier, F. See Schmidtke and Stier (1961).
Strieb, M. 1. See Lane, Strieb, Glenn, and Wherry (1980).
Swets, J. A. See Green and Swets (1966).
Taylor, R. C. See Posner, Boies, Eichelman, and Taylor (1969).
Teel, K. S. See Kolesnik and Teel (1965).
T eitelm a n . W. (1978). Interlisp Reference Manual. Palo Alto, Cali­

fornia: Xerox Palo Alto Research Center.. xi

Thompson, D. M. See Tulving and Thompson (1973).
Thomas, J. C., Jr. See Miller and Thomas (1977).
Tresselt, M. E. See Mayzner and Tresselt (1965).
T u lv in g , E., and C olatla , V. (1970). Free recall o f trilingual lists.

Cognitive Psychology 1, 86-98.. 39ni6
T u lv in g . E., and T h o m pso n , D. M. (1973). Encoding specificity and

retrieval processes in episodic memory. Psychological Review 80,
352-373... 40n

Turvey, M. T. See Darwin, Turvey, and Crowder (1972).
T versky , a . (1977). Features of similarity. Psychological Review 84,

327-352... 2n3
U n d er w o o d , B. J. (1952). Studies of distributed practice: VII. Learning

BIBLICX3RAPHIC INDEX 4 5 5

456 BIBLIOGRAPHIC INDEX

and retention of serial nonsense lists as a function of intralist
similarity. Journal o f Experimental Psychology 44, 80-87.............aiF

U n d er w o o d , B. J. (1953a). Studies of distributed practice: VIII.
Learning and retention of paired nonsense syllables as a function of
intralist similarity. Journal o f Experimental Psychology 45, 133-142. .
... 81F

U n d er w o o d , B. J. (1953b). Studies of distributed practice: IX. Learning
and retention of paired adjectives as a function of intralist similarity.
Journal o f Experimental Psychology 45, 143-149...............................81F

U n d er w o o d , B. J. (1953c). Studies of distributed practice: X. The
influence of intralist similarity on learning and retention of serial
adjective lists. Journal o f Experimental Psychology 45, 253-259..........
... 81F

U n d er w o o d , B. J. (1957). Interference and forgetting. Psychological
Review 64, 49-60.. 81,81F

U n d er w o o d , B. J., and R ich a rd so n , J. (1956). The influence of
meaningfulness, intralist similarity, and serial position on retention.
Journal o f Experimental Psychology 52, 119-126............................ 81F

U n d er w o o d , B. J., and Sc h u l z , R. W. (1960). Meaningfulness and
Verbal Learning Philadelphia: Lippincott..64F

Va llee , j . (1976). There ain’t no user science: a tongue-in-cheek
discussion of interactive systems. Proceedings o f the American
Society for Information Science Annual Meeting 13, San Francisco. . .
... 3n11

Van Co t t , H. P., and K in k a d e , R. G. (1972). Human Engineering
Guide to Equipment Design (revised ed.). Washington, D. C.: U. S.
Government Printing Office.. 2i8

Van D a m , A., and R ice , D. E. (1971). On-line text editing: A survey.
Computing Surveys 3, 93-114...102

VanLehn, K. See Brown and VanLehn (1980).
V in c e , M a rg a ret A. (1948). Conective movements in a pursuit task.

Quarterly Journal o f Experimental Psychology /, 85-103. . . . 53, 253

Vince, Margaret A. See also Craik and Vince (1963).
W a in e r , H. (1976). Estimating coefficients in linear models: It don’t

make no nevermind. Psychological Bulletin 83, 213-217............... 296

Wallace, J. G. See Klahr and Wallace (1976).

BIBÜCX3RAPHIC INDEX 457

W a u g h , N. C., and N o r m a n , D. A. (1965). Primary memory. Psycho­
logical Review 72, 89-104... 39n i6

W eiss, W., and M a rg o liu s . G. (1954). The effect of context stimuli on
learning and retention. Journal o f Experimental Psychology 48,
318-322.. 81F

W e l fo r d , a . T. (1968). Fundamentals o f Skill London: Methuen..........
..2n3, S3n23, 55, 55n, 54F, 73F, 91, 187, 358

W e lfo rd , A. T. (1973). Attention, strategy and reaction time: A ten­
tative metric. In S. Komblum, ed.. Attention and Performance IV,
37-54. New York: Academic Press................................42n, 43F, 7 in

Wherry, R. J. See Lane, Strieb, Glenn, and Wherry (1980).
White, C. T. See Cheatham and White (1954).
WiCKLEGREN, W . A. (1977). Learning and Memory. Englewood Cliffs,

New Jersey: Prentice-Hall... 94, 95

WiCKLEGREN, W. A. (1981). Human learning and memory. Annual
Psychology Review 32, 21-52.. 93

W illiam s, M. (1950). The effects o f experimental induced needs on
retention. Journal o f Experimental Psychology 40, 139-126........... 81F

W illiam s, M. D., a n d H o lla n , J. D. (1981). The process of retrieval
from very long term memory. Cognitive Science 5, 87-119.......... 83F

Wolf, J. J. See Siegel and Wolf (1969).
Yam ada , H. (1980a). A historical study of typewriters and typing

methods: From the position of planning Japanese parallels. Journal
o f Information Processing 2, 179-202.. 65

Yam ada , H. (19806). An analysis of the standard English keyboard.
Department of Information Science, Faculty of Science, University of
Tokyo, Technical Report 80-11... 65

Yo u n g , R. M. (1976). Sériation by Children: An Artificial Intelligence
Analysis o f a Piagetian Task. Basel: Birkhauser................................96

Y o u n g , R. M. (1981). The machine inside the machine: User’s models
of pocket calculators. International Journal o f Man-Machine Systems
15, 51-86... 404n

Y o u t z , a . C . (1941). An experimental evaluation of Jost’s laws. Psycho­
logical Monographs 53, No. 1 (Whole No. 238)..............................8 iF

http://taylorandfrancis.com

Subject Index

An F after a page number indicates that the reference is located in a figure on the
page, and an n indicates that the reference is located in a footnote.

Abruzzi’s L aw ..182
Accuracy in sk ills 397F, 399
Acquire Task (part of unit task)

.. 386, 391
BRA VO 208, 210F
IC A R U S..................................... 349-351
Keystroke-Level M od el.....................261
PO E T.. 141, 144

Adding machine, keying ra te 61F
AIS. See Auditory Image Store
Animation, frame ra te 45-46
Applications..................................... 241-255

See also Model, GOMS: applications;
Model, Keystroke-Level:
applications; Model Human
Processor: applications; Power Law
o f Practice: applications; Tasks

Applied psychology. See Psychology,
applied

Approximation, need f o r 44, 403
Argument L eve l.. 164

See also Model, GOMS
design a n d ..422
models a t 162F, 164

Artificial psycholinguistics.......................... 2
Auditory Image Store (AIS) 24, 28

See also Visual Image Store
parameters...........................26F, 29, 31
Working Memory a n d 28

Automaticity, cognitive skill and 363-364

B
Behavior

Rationality Principle......................... 86
as sequence of Operators...............144

Benchmark
calculated................... 286-287, 313-333
empirical . . . 108-114, 115F, 413^17

Bloch’s L a w ... 32
BRAVO (display-oriented text-editor) . . .

...109F, 271F
benchmark . . 108-114, 115F, 286-287
comparative evaluation of . . . 415-416
M operator................................. 279-286
m ethods.................. 224-225F, 288-290
models

G O M S 193-228
Keystroke-Level M od el.....................

. . . 266-267, 288-290, 299-303
mouse

scrolling................ 216-221, 266-267
speed of, m axim um255

observational stud ies..................213-223
problem solving i n 376-385
sim ulation.................................. 223-227
simulation trace.............................. 226F
time per modification.............................

......................... 113F, 118F, 286-287
BRA VOX (display-oriented text-editor) . .

...415^16

Calculation
applied science................................. 403
Model Human Processor................. 44

CHAT (system for connecting
computers).................................27 IF

Chordset, five-finger
speed o f ...59, 61F
systems that u s e 107, 339

Chunk
calculations.............................. 77-78, 79

4 5 9

460 SUBJECT INDEX

vs. memory strength......................... 94
memory u n it36, 39
method organization a n d

. 266, 268, 288, 291F2.12c, 292-293
simulation...195

Code type (in Model Human
Processor)......................26F, 28, 36

acoustic... 36, 80
matching, effect o n66-71
physical... 28, 36
sem antic..40, 80
v isual.. 36, 66-71

Cognitive behavior, levels o f . . . 373-375
Cognitive engineering.................................. 2
Cognitive ergonomics...................................2
Cognitive processing, rate o f

................................. 26F, 41-42, 43F
Cognitive Processor (of Model

Human Processor) 24, 41-44
applications...................................... 65-90

choice reaction t im e 71-76
cryptarithmetic.................................87
file name remembering . . . 77-79
Fitts’s Law s lo p e52
Hick’s Law s lo p e76
manuscript text-editing . . 103-331
matching..................................... 66-71
m ouse.. 253
reaction t im e66
scribbling ra te 35
testing o f pointing devices . . . 250
Tower o f H an o i........................... 364
unit task m em ory................... 393F

expansions t o ...96
serial vs. parallel..................... 42-44, 94
parameters......................................26F, 44

Cognitive psychology and
computer interfaces..................14-16

Cognitive skill. See Skill, cognitive
Cognitive system (of Model Human

Processor).......................... 24, 35-44
See also Cognitive Processor; Long-
Term Memory; Working Memory

Colors, memory scanning rate for . . 43F
Complex information processing . . 83-86
Computer-human interface design

approaches t o7-8
deficiencies i n 5-6

Computer science.................................16-17
Conceptual model o f ICARUS 337
Constant Operator Time Model. See

Model, Constant Operator Time

CONTROL, notation.............................. 178
Control cycle, problem solver . 365, 368F
Control function o f unit task . . 386-391
Control knowledge.................. 87, 365-372
Control structure

errors a n d ...185
goal stack vs. production rules . . 147
GOMS and 142, 143F, 146, 185

Crossvalidation d a ta154
Cryptarithmetic... 87
CV (Coefficient o f Variation),

reason for u sin g 159
Cycle time (in Model Human

Processor)................................ 25, 44
Cognitive Processor....................... 41-44
Motor Processor..............................34-35
Perceptual Processor......................31-34

D (drawing operator of Keystroke-
Level Model) 262, 263, 264F

Data horizons (for unit task).............. 394
Data-limited processing................ 387-389
Decay rate of m em ory.....................25, 29

See also Auditory Information Store;
Long-Term Memory; Visual
information Store; Working Memory

Auditory Information S tore
.........................26F, 29, 30F, 31, 76

Long-Term M em ory.................. 31, 76
Visual Information S tore........................

................................. 29, 29n, 30F, 76
Working M em ory....................................

................... 31, 38-39, 38F, 38n, 76
Decisions, sim ple.................................. 65-76
DELVER (TENEX executive

com m and)....................................271F
Density crossover p o in t................................

...................... 123, 125-126, 130-131
Depth o f processing...................................92
Derivation d a ta ... 154
D esign ..11-13, 407
Design functions 405-407, 411-412
Design principles..............................418-424
Dictation............................... 388F, 387-389
Digits, memory scanning rate for . . . 43F
DIR (TENEX executive command) 271F
Discrimination Principle............... 27F, 40

interference.. 79
Long-Term M em ory............................ 80

DISPED. See BRAVO

SUBJECT INDEX 4 6 1

Display. See Video display terminal
Dot patterns, counting r a te43F
DRAW (graphics system).................... 27IF

benchmark................................. 286-287
m ethods...................................... 303-309

E
Edit Unit Task. See

GOAL: EDIT-UNIT-TASK
Editing. Tasks: editing
Editor. See BRAVO; BRA VOX; EMACS;

GYPSY; NLS; POET; QED; RCG;
SOS; STAR; TECO; WANG;
WYLBUR; Tasks: manuscript­
editing; Text-editor

EM ACS (display-oriented text-editor) . . .
.. 415-416

Encoding Specificity Principle . . 27F, 40
Long-Term Memory search...............82

Engineering m odels....................... 257-331
Engineering psychology.............................. 2
Errors

b ig ..179
control structure a n d147, 185
GOMS model and . 146, 147, 184-187
s lip s ... 423n
statistics.. 178F
text-editing................................... 176-179
types o f 178, 354-355
unit task a n d 395-396

Evaluation. See also Benchmark
design a n d 11-13
Roberts’s methodology for

editor evaluation.................413-417
E xecute Task

(part of unit task)............ 386, 391
BRA VO 208, 210F
IC A R U S..................................... 349-351
Keystroke-Level M od el.....................261
PO E T... 141, 144

Experimental psychology advances in . . 2
Eye-movements 25, 26F, 28, 50-51

F
Fastman.. 44
Fetch-execute c y c le41
Fitts's dotting task. See

Tasks: Fitts's dotting
Fitts's L aw 27F, 53

derivation... 51-57

fit to d a ta 54F, 241-243
implications for design 247-248
joystick a n d 242F, 243. 247
mouse a n d 241-243. 247
rapid test u sin g 249-252
Welford's version........................ 54. 55

Foot, maximum rate of repetitive
m ovem ent.......................................34n

Forgetting, Working Memory 76-80
FTP (file transfer system)................. 271F
Functional L eve l.............................. 163-164

See also Model, GOMS
models at . . . 162F, 163-164. 329-331

G
GET-FROM-MANUSCRIPT

(GOMS operator)............. 155. 209
GET-NEXT-PAGE (GOMS

operator)............ 141, 144, 144, 169
GOAL: ACQUIRE-UNIT-TASK

(GOMS goal). 5ee Acquire Task
GOAL: EDIT-MANUSCRIPT

(GOMS goal)
BRA VO .. 208
PO E T... 140, 144

GOAL: EDIT-UNIT-TASK
(GOMS g o a l)..................... 140, 386

BRAVO.. 208
Keystroke-Level M od el.....................261
PO E T .. 144

GOAL: EXECUTE-UNIT-TASK.
Execute Task

GOAL: LOCATE-LINE (GOMS goal)
methods fo r 15IF, 153F
PO E T ... 141, 144

GOAL: MODIFY-TEXT (GOMS goal)
PO E T141, 142, 144

Goal stack
errors a n d .. 185
GOMS m od el...................... 142, 143F
vs. productions....................................147

Goals
GOMS model 140, 144, 181-182, 208
Rationality Principle............................ 86
Tower of H an oi....................... 364-371

GOMS. Model, GOMS. See also
Goals; Operators; Methods;
Selection rules

Grafacon tablet 5'ee Tablet Grafacon
Grain of analysis 145, 161-179, 189
GYPSY (display-oriented

text-editor)............................. 415-416

462 SUBJECT INDEX

H
H (Homing operator of Keystroke-

Level Model) 262, 263, 264F
H alf-life... .2 9

See also Decay rate o f memory
Hand, maximum rate of repetitive

m ovem ent.......................................34n
Hand printing, speed o f61F
Hand punching, speed o f 61F
Handwriting, speed o f 6 IF
Hick’s L a w ...73-74
HOME (GOMS operator)................. . 167

See also H; Homing time
Homing tim e 236-237
Human in formation-processing . . . 23-97
Human-computer interaction

cognitive psychology a n d15
computer science.............................16-17
information-processing psychology . . 3
literature o n ... 91
older form o f ...4
as a psychological task 357-358

Human-computer interface...........................
................................... 4-5, 7, 404-105

Human performance, calculation o f 44-97

I
ICARUS (computer-aided circuit-

design system)..................... 336-341
Individual differences....................................

. . . . 114-119, 108, 115, 158F, 417
Industrial engineering................................ 13
Information theory..................................... 72
Interference,

acoustic vs. sem antic..................... 78-80
vs. d ecay ..38, 95
Long-Term M em ory......................81-82
Working M em ory.................. 37, 79-80

Joystick, rate-controlled isometric 230, 231
error ra te 240, 241F
learning cu rve................................. 236F
picture o f ... 23IF
pointing time

effect of approach angle o n
... 238-240

effect o f distance and size on
........................... 238, 239F, 240F

m od el................................ 243, 247F
overall values........................... 237F

K
K (Keystroking operator o f Keystroke-

Level M odel).................. 262, 264F
Keyboard, alphabetic, speed of . . . 63-65
Keyboard, Sholes, speed o f 63-65
Keying rates...59
Keypunching, speed o f 61F
Keystroke Level. See also Model,

Keystroke-Level
design a n d ... 422
models a t161, 162,

164-166, 179, 259-297, 341-355

Learning
advances in study o f2
cognitive skill and 188, 365-372
M operator................................ 279-286
text editing...188

Length crossover p o in t.................................
...................... 123, 125-126, 128-130

Letters
frequencies of

digraphs, English................ 64-65F
single letters, English..................48F

memory scanning rate f o r43F
Lightgun.. 230, 248
Lightpen.. 230, 248
LOGIN (TENEX command)..............271F
Long-Term M em ory............ 24, 35, 94-96

application o f .. 81
asymmetry in read and write times 41
cognitive skills a n d 397F, 399
parameters............................26F, 39-41
searching...82-83
Working M emory.................. 36-37, 76

LOOK-AT (GOMS operator)...............167
LTM. See Long-Term Memory

M
M (Mental preparation operator of Key­

stroke-Level Model) 262, 263, 264F
IC A R U S... 353
learning a n d 279-286, 383-384
vs. MENTAL operator...................... 269
vs. Model K2 operators............... 286n

SUBJECT INDEX 463

VS. Prorated-Mental-Time Model
... 295-296

rules f o r 265F, 267-269
Mail sorting chordset speed of 61F
Man-machine system s........................ 2. 91
Manuscript

description o f 203-204
in experiments................... 104F, 196F

Mark sensing, speed o f61F
MARKUP (graphics system)............27IF

benchmark..287
Keystroke-Level Model

simplifications a n d 294
m ethods...................................... 303-309

Matching...66-71
M em ory..2, 24, 94

See also Auditory Information Store;
Long-Term Memory; Visual Image
Store; Working Memory

MENTAL (GOMS operator) . . . 167, 169
vs. M operator....................................269

Mental testing..13
Method horizons (for unit task) . 394-395
Methods

design a n d 420-421
examples,

BRAVO 212, 224-225F, 266,
288-290, 299-301, 377F, 379F

IC A R U S.................................... 340F
M A R K U P........................... 303-309
P O E T 265-266, 299-302
S O S .. 299-302
T E N E X 309-311
Tower o f Hanoi . . 370F, 370-372

GOMS model a n d140, 145
skill vs. problem solving..................367

Middleman (Model Human Processor
version)...44

Model, Constant Time per Modification
(of W Y LBU R)......................121-137

parameter error...........................132-137
sensitivity analysis......................131-132

Model, Constant-Operator-Time
(simplified version of
Keystroke-Level Model) 294F, 296

Model, G O M S 139-228
accuracy............... 173-176, 176F, 189,

vs. Keystroke-Level M od el.............
....................................... 269, 286n

applications
BRA VO 193-228
P O E T 161-166
at Unit-Task L eve l.............. 313-333

components.................................. 144-146
errors, analysis o f 176-179
extensions................................... 193-228
grain size a n d189
limitations... 146
naming conventions........................... 163
problem-solving methods and 145, 367

Model, GOMS (of POET)
Model A 1 162F, 165F
Model A 2 162F, 165F
Model A 3 162F, 165F
Model A 4 162F, 165F
Model F I162F, 164F, 386
Model F2 155-161, 162F, 164F

protocol... 169
trace...140-144

Model K 1162F, 163F
Keystroke-Level Model a n d

........................ 259, 269, 275-277
Model K 2 ..166F

Keystroke-Level Model a n d
....................................... 269, 286n

Model U T162F, 163, 164F
Unit-Task Level a n d259

Model, joystick........................... 242F, 243
Model, Keystroke-Level............... 259-297

accuracy 270-278
vs. G O M S 286n

applications
IC A R U S.............................. 347-354
exam ples.............................. 286-293

compared to other models
Embley et al. model 294-295
G O M S 259. 269. 275
simplified m odels............... 293-297

GOMS levels of analysis and . . . 259
MTM, use w ith 274
operators.. 264F
as programming language................363
sco p e ... 260
time, acquisition............. 261, 277-278
time, execution........................ 262, 267

Model, Keystrokes Only
(simplified version of
Keystroke-Level Model) . 293-295

Model, m ou se 241-243
Model, Prorated Mental Time

(simplified version of
Keystroke-Level Model) . . 295-296

Model, step k ey s 244-245
Model, typing................................ 122, 173

parameter error...........................132-137
sensitivity analysis.............................. 131

464 SUBJECT INDEX

Model Human Processor....................24-44
alternatives t o 91-97
applications.............................. 44-97

animation frame ra te 45-46
Bloch’s L aw 32
choice reaction t im e 71-76
click perception...............................33
cryptarithmetic.................................87
file name remembering . . . 77-79
Fitts’s Law s lo p e52
Hick's Law s lo p e76
joystick.. 243
manuscript text-editing . . 103-331
matching............................. 66-71
Morse Code reception rate . 46-49
m ou se.................. 241-243, 252-253
perceptual causality..................49-50
reaction t im e66
scribbling ra te 35
step k ey s 244-245, 246
testing of pointing devices . . . 250
Tower of H an oi........................... 364
typ ing.. 52
unit task m em ory................... 393F

expansions o f95-96
parameters..26F
serial vs. parallel control i n25

Models, classes o f 410-411
Modification density per l in e122
Morse Code listening ra te 46-49
Motor performance, calculation of . 51-65
Motor Processor (of Model Human

Processor)................................... 24-25
applications

Fitts’s Law s lo p e52
Hick's Law s lo p e76
matching..................................... 66-71
m ouse.. 253
reaction tim e66
step k ey s ...244
typ ing.. 52

parameters..................................26F, 34
Motor system (of Model Human

Processor).......................... 24, 34-35
See also Motor Processor

M ouse..231
error ra te 240, 241F
learning cu rve................................. 236F
maximum velocity o f 252-255
picture o f ... 231F

pointing time
effect o f approach angle o n

... 238-240
effect o f distance and size on

........................... 238, 239F, 240F
limit in hum an................... 247-248
m od el........................ 241-243, 247F
overall values........................... 237F

selection with, using BRAVO . . 194F
superior to other devices................. 255
use in systems

B R A V O 194F, 216-221
IC A R U S... 339
scrolling display....................216-221

Movement
discrete nature o f34-35
Perceptual Processor cycle time and 32
of user’s hand to target..................... 52

Moving-picture ra te 45-46
MTM (Methods Time Measurement) 274

N
NLS (display-oriented text-editor) 415-416

See also RCG

Operators
examples

BRAVO problem space 279F
cryptarithmetic.......................... 88-90
GOMS model o f BRAVO 209-211
GOMS model o f POET 174F-175F
Keystroke-Level M od el............ 262
ladies garment factory................. 183

GOMS m od el.................. 140, 144-145
grain o f ... 161
Keystroke-Level M od el................ 264F
problem space

new operators..................... 372-373
Problem Space Principle............ 87
Rationality Principle......................86

protocol encoding.......................155-156
psychological status o f181-182
sequences..83-86

effect on duration.................... 84-86
m atching............. 157-158, 190-191
prediction................ 170-171, 227F

SUBJECT INDEX 465

variability
Abruzzi's L aw 182
duration, effect o f182-184

p
P (Pointing operator o f Keystroke-

Level Model) 262-263, 264F
Pacing, in sk ills 397F, 399
Parallelism...25, 42
Parameters, uncertainty....................... 44-45
Parametric analysis........................ 287-290
Path constraints

cryptarithmetic.................................88-90
Problem Space Principle.................... 87
text-editing....................................... 379F
Tower of H anoi.................................. 364

Percept.. 32
Perception... 2, 45-51
Perceptual causality............................. 49-50
Perceptual event. See Percept
Perceptual judgement, rate o f 43F
Perceptual-motor involvement,

in sk ills............................. 397F, 398
Perceptual Processor (of Model

Human Processor)..........................24
applications

animation frame ra te 45^6
Bloch’s L aw 32
click perception.............................. 33
Fitts’s Law s lo p e 52
Hick’s Law s lo p e 76
matching t im e66-71
Morse Code reception rate . 46-49
perceptual causality................. 49-50
reaction t im e 66
scribbling ra te 35

expansions t o95-96
Fourier analysis.................................... 95
parameters...............................26F, 32-33

Perceptual span, reading rate and . 50-51
Perceptual system 24, 25-34

See also Audiioiy Information Store;
Perceptual Processor; Visual
Information Store

Performance models, design and . . . 405
Performance requirements..................... 419
Phases, IC A R U S...................................... 346
Planning, in sk ills 397F, 398

PO E T ..109F, 271F
benchmark..................... 108-114, 115F
errors... 395-396
m ethods..

. . . 150F, 151F, 265-266, 299-302
models of

G O M S 140-144, 161-166
Keystroke-Level M od el.....................

......................... 265-266, 299-302
sample dialogue.......................... 105-106
time per ta sk 113F

Pointing devices
comparison............... 230-240, 247-249
m odels.. 229-256
rapid test for analogue devices............

... 249-252
Positioning t im e ..238
Posner letter ta sk 66-71
Power Law of Practice............27F, 57-58

applications...................................... 58-59
cognitive sk ill 362-363
mental t im e 284
pointing devices.................. 234-236
text-editing..................................... 188
typing sp eed 59-60, 65

Principles o f Operation (of Model
Human Processor)............... 24, 27F

Problem solving. See also Problem space
advances i n .. 2
vs. cognitive skill . . 145, 363-385, 400
GOMS methods a n d145
in sk ills 397F, 398
in text-editing........................... 380-385
unit task a n d 391

Problem sp ace ...87
See also Problem solving

examples
cryptarithmetic.......................... 88-90
text-editing........................... 376-380
Tower of H an oi.................................

................... 364-365, 366F, 367F
new operators........................... 372-373
problem difficulty a n d 361
search control c y c le 368F
Working Memory limits and 90

Problem Space Hypothesis 361-362
Problem Space Principle...............27F, 87
Processing capacity.....................................94
Production ru les................................. 96, 147
Programming... 91

466 SUBJECT INDEX

ProtcKoI
exam ples................ 87-88, 168F, 345F
operator encoding.......................167-170

Psycholinguistics..2
Psychology..................................1-3, 14-16
Psychology, applied. See also

Approximation; Calculation;
Task analysis

alternative models a n d96-97
form fo r 9-14, 403-407
statistics, use o f 11
user interface a n d 1-3

Pursuit-tracking ta sk 55n
Pushbuttons, speed o f61F

QED (line-oriented text-editor) . . . 109F
QWERTY keyboard. See Keyboard, Sholes

R (system response operator o f Key­
stroke-Level Model) 262, 263, 264F

benchmark..................... 108-114, 115F
Rationality Principle...........27F, 86, 404

GOMS model a n d 139
taxonomy o f behavior a n d 359

RCG (display-oriented text-editor)............
.................................... 107, 109F, 113

Reaction time, calculation o f 66-67
Reading rate, calculation o f 50-51
Recency e ffec t...93
Recognize-Act Cycle o f the

Cognitive Processor............27F, 41
Reduced problem space . 373, 374F11.6a
Rehearsal.. 92
Resource-limited processing 387-389
RMS error, reason u se d160

Saccade......................... 25, 26F, 28, 50-51
Science base, human information

processing................................... 21-97
Scribbling ra te ...34n
Scrolling.................................. 216-221, 266
Search control (in problem solving)

.............................. 89F, 361, 365-372
unit task a n d 391

Selection ru les 140, 146, 422
BRA VO .. 213
POET . 147-152, 153F. 157F, 170, 180

Sensitivity analysis 127-132, 290-293, 424
Serial vs. parallel processing

See Parallelism
Shapes, memory scanning rate 43F
Short-Term M em ory.............................. 92

See also Working Memory
SIL (line-drawing system)............................

............................271F, 287. 304-309
Silent counting ra te 43F
Simulation....................................... 223-227
Skill, cognitive................................ 357-401

vs. problem solving.................................
............ 145, 364-375, 375-385, 400

vs. sensory-motor skill . . 187-188, 358
taxonom y................................... 396-400
text-editing a n d 187, 189

Skill, nature o f 187-188
Skill sp ace.......................... 373, 374F11.6b
Skilled mem ory...93
Slowman (Model Human Processor

version)...44
Smalltalk...204
Software psychology.................................... 2
SOS (line-oriented text-editor)...................

.. 109F, 271F
benchmark . . 108-114, 115F, 286-287
m ethods...................................... 299-302
time per modification.....................113F

Spatial frequency.. 32
Speed-accuracy tradeoff................ 32, 399
Speed reading..51
STAR (display-oriented text-editor)

... 252-255
States of knowledge................... 87, 88-90
Statistics

vs. approximation................................. 11
CK, use o f ... 159
RMS error, use o f 160

Stenotyping, speed o f 61F
Step k ey s ... 232-233

error ra te 240-241F
learning curve................................. 236F
picture o f ...231F
pointing time

effect o f approach angle . 238-240
effect of distance and s iz e

........................... 238, 239F, 240F

SUBJECT INDEX 467

m o d el........................ 244-245, 247F
overall values........................... 237F

Saunders step k e y230
Step tracking................................... 253-254
Stock (of a problem solver)..................365
Subitizing, rate o f43F
Systems

executive subsystems (see CHAT; DIR;
FTP; LOGIN)

graphics systems (see DRAW;
MARKUP; SIL)

text-editors (see BRAVO; BRAVOX;
EMACS; GYPSY; NLS; POET;
RCG; QED; SOS; STAR; TECO;
WANG; WYLBUR)

T
Tablet Grafacon.................................... 230
Tapping ra te ..34n
Task analysis 44, 195-207, 314-316
Task horizons..394
Tasks

air traffic control................... 397F, 399
assembly l in e 397F, 398, 399
bridge (cards)............... 397F, 398, 399
car driving..................... 397 F, 398, 399
checkbook balancing............ 397F, 399
choice reaction . . 42, 43F, 59F, 71-76

time f o r 43 F
circuit design 335-356
design principle a n d419
executive (of operating system) . 272F
finger pointing....................................55n
Fitts’s dotting

application to device test . 249-252
Fitts’s Law f i t 54F
Fitts’s Law slope from

................................. 55n, 249-252
football commentary............ 397F, 399
graphics.. 272F
income tax preparation . . . 397 F, 398
letter typ ing... 110
mail sorting........................... 397F, 399
manuscript editing, . . . 103-331, 397F

error behavior....................... 176-179
learning... 188
M operator a n d 279-286
models o f (see entries at Model)

vs. other tasks..................... 396^00
physical environment........................

......................... 103-104, 199-207
problem solving and cognitive skill

................................. 187, 375-385
reasons for studying.................... 101
task analysis...

. . . 121-137, 195-207, 314-316
types o f . . 116-117, 196-203, 272F

mental multiplication 397F, 398
Rationality Principle a n d86
routine medical diagnosis . . 397 F, 399
short-order c o o k 397F, 398
table typ ing..110
tenn is....................................... 397F, 398
text assem bly.......................................110
Tower of H an oi..

. . . 364-365, 366F, 367F, 370-372
typ ing...................................... 397F, 398
writing business letter 397F, 398

TECO (character-oriented text-editor) . . .
...109F

benchmark . . 108-114, 115F, 415-416
time per modification.....................113F

Telephone, pushbutton, keying rate of . .
...61F

Teletypewriter..4
T E N E X ... 309-311
Text k ey s .. 232-233

error ra te 240, 241F
learning cu rve................................. 236F
picture o f ...231F
pointing time

effect o f approach angle . 238-240
effect o f distance and s iz e

........................... 238, 239F, 240F
m o d el........................ 245-246, 247F
overall values........................... 237 F

Text-editor, See a/so BRAVO; BRAVOX;
EMACS; GYPSY; NLS; POET;
QED; RCG; SOS; STAR; TECO;
WANG; WYLBUR; Tasks;
manuscript editing

Roberts's evaluation methodology . . .
... 413^17

sample dialogues............. 105-106, 107
stud ies..102
tool-like character...............................101

Time quantum 42n

468 SUBJECT INDEX

Tongue, repetitive movement rate . . 34n
Tower o f Hanoi. See Tasks:

Tower of Hanoi
Transactions (GOMS model

o f B RA VO)............... 204, 205-207
TYPE (GOMS operator)..............................

.............................. 167, 171-173, 211
Typewriting

resource-performance function for . . .
..................................... 388F, 387-389

speed o f 34n, 59-61

u
Uncertainty Principle.............27F, 72, 74
Unit impulse response............................31
Unit ta sk 140, 385-396

See also A cquire Task;
E xecu te Task; Verify Edit;
Unit-Task Level

cognitive skill a n d 397F, 400
determinants o f 391-392
duration...................................... 390-391
editing modification and . . . 140, 188
IC A R U S.................................... 344-346
information limitations and . . 394-395
interactions am ong.................. 325-329
problem solving a n d391
sample protocol.................... 143, 168F
Working Memory a n d 393F

Unit-Task L ev e l.................... 162F, 259, 422
See also Model, GOMS; Unit task

models a t162F, 313-333

USE-LF-METHOD (GOMS operator) . .
... 141, 144, 155

USE-M-COMMAND (GOMS operator) .
....................................... 142, 144, 156

User
design a n d ..419
M operator a n d285
performance variation . . 114-119, 417
secretary vs. computer scientist............

... 108, 158F
typ es...115

User psychology..2
User sciences..2
USE-QS-METHOD (GOMS operator) . .

.............................. 141, 144, 156, 169
USE-S-COMMAND (GOMS operator) .

.............................. 142, 144, 156, 169

Variability
effect o f operator duration . . 182-184
effect o f operator sequence . . 85F, 86
system vs. u ser101-120

Variable Cognitive Processor
Rate Principle..................... 27F, 42

Variable Perceptual Processor
Rate Principle............... 27F, 33, 46

VERIFY-EDIT (GOMS operator).
See also Verify Edit

encoding....................................156. 169
source o f inaccuracy.......................... 158

Verify Edit (part of unit task 386
BRA VO 210F, 212, 222, 223
PO E T ... 142, 144
Unit-Task L evel.................................. 326

Video display terminal (VDT) . 4, 45. 91
VIS. See Visual Image Store
Visual Image S tore 28, 92

See also Auditory Image Store:
Perceptual Processor

applications
m atch66-71
reaction t im e66

parameters...........................26F, 29, 31
Working Memory a n d 28-29

Visual system ...25

V

w
WANG (display-oriented text-editor) . . .

...415-416
WM. See Working Memory
Word-processing. See Tasks:

manuscript-editing
Words

decay rate in Working Memory . 38F
memory scanning r a te 43F

Working M em ory................ 24, 36-41, 93
applications

file name remembering . . . 77-79
matching t im e66-71
reaction t im e 66
unit task m em ory................... 393F

Baddeley’s conception...................93-94
Chase and Ericcson’s conception 93-94
Long-Term Memory and 76, 93
parameters 26F, 29, 31, 37, 38-39, 93

SUBJECT INDEX 469

perceptual memories and 28-29
problem space path a n d 90
recency and primacy effects............77
skill a n d 93, 397F, 398
unit task and 387-389, 392-396

World War II, psychology and 1, 9
WYLBUR (line-oriented text-editor)

...................... 121-137, 124, 415-416

Xerox
pointing calculation applications

... 241-255
systems. See BRAVO; BRAVOX;

DRAW; CHAT; FTP; GYPSY;
MARKUP; RCG; SIL; STAR

http://taylorandfrancis.com

http://taylorandfrancis.com

78 898 598599

9780898598599

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	1: An Applied Information-Processing Psychology
	SCIENCE BASE
	2: The Human Information-Processor

	TEXT-EDITING
	3: System and User Variability
	4: An Exercise in Task Analysis
	5: The GOMS Model of Manuscript Editing
	6: Extensions of the GOMS Analysis
	7: Models of Devices for Text Selection

	ENGINEERING MODELS
	8: The Keystroke-Level Model
	9: The Unit-Task Level of Analysis

	EXTENSIONS AND GENERALIZATIONS
	10: An Exploration into Circuit Design
	11: Cognitive Skill
	12: Applying Psychology to Design
	13: Reprise

	Symbol Glossary
	Bibliographic Index
	Subject Index

