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Preface

Designing interactive computer systems to be efficient and easy to use
is important so that people in our society may realize the potential
benefits of computer-based tools. Our purpose in this book is to help lay
a scientific foundation for an applied psychology concerned with the
human users of interactive computer systems. Although modern cogni-
tive psychology contains a wealth of knowledge of human behavior, it is
not a simple matter to bring this knowledge to bear on the practical
problems of design—to build an applied psychology that includes theory,
data, and methodology.

This book is our attempt to span the gap between science and
application. We have tackled a small piece of the general problem. With
respect to computer science, we have focused on the task domain of text-
editing and similar types of highly interactive systems. With respect to
psychology, we have focused on the notion of the expert user’s cognitive
skill in interacting with the system, especially the temporal aspects of the
interaction. We have constructed an empirically-based cognitive theory
of skilled human-computer interaction in this domain. This theory is our
keystone for linking science and application. On one side, we have
shown that the theory is a consistent extension of the science of human
information-processing. On the other side, we have simplified the theory
into practical engineering models, which are the tools for designers to
apply the theory. Thus, in addition to putting forth specific psychological
models in this book, we have tried to make clear the general framework
of an applied psychology, in which these models are but prototypical
examples.

THE AUDIENCE FOR THIS BOOK

Interest in the topic of human-computer interaction is shared by
people from a range of disciplines. We believe this book makes contact
with the specific interests of all of these disciplines. For instance:

vii
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(1) Cognitive psychologists will find that theory and empirical
methods can be extended to the analysis of a real-world
domain and that a practical problem can be a fruitful vehicle
for developing basic psychology.

(2) Computer scientists will find that the problem of matching
computer power with user abilities may be approached using
the theory and methods of the cognitive sciences.

(3) System designers will find that we have derived a number of
models and principles of user performance that may be used
in design.

(4) Human factors specialists, ergonomists, and human engineers
will find that we have synthesized ideas from modern cogni-
tive psychology and artificial intelligence with the old methods
of task analysis and brought them to bear on the human-
computer interface—which is rapidly becoming the most
important domain in human factors practice.

(5) Engineers in several fields concerned with man-machine sys-
tems will find that we have extended the notion of work
analysis by showing how techniques from cognitive science
can be applied to the analysis of procedures that are pre-
dominantly mental.

We have used the book as the primary reference in a graduate course
on “Applying Cognitive Psychology to Computer Systems,” taught (by
TM and SC) in the Departments of Psychology and Computer Science at
Stanford University (Moran and Card, 1982). Parts of the book, in
manuscript, have proven useful to others in teaching similar courses in
psychology, computer science, and industrial engineering. The book
would be suitable for a variety of courses: (1) a course on human factors
in computer systems within a computer science department; (2) a course
on human-computer interface design within a computer science
department; (3) a course on the psychology of computer users within a
psychology department; (4) a course on human-computer interaction
within an industrial engineering or human factors department; (5) an
advanced research seminar in either computer science, psychology, or
industrial engineering; or (6) in a focused short course for industrial
professionals. For courses with a design focus, Chapters 1 and 2 can be
used to provide psychological background; and Chapters 3, 5, 7, 8, 9, and
12 can be used for analytical and practical content. For courses stressing
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psychological issues, Chapters 1, 2, 5, 7, 8, 10, and 11 can be used to
develop basic concepts and theory.

HISTORY OF THIS RESEARCH

In 1970, Xerox established a new major research center in Palo Alto
with the express purpose of exploring digital electronic technologies in
support of Xerox’s general concern with office information systems.
Since that time, the Palo Alto Research Center (PARC) has become well
known for its developments in interactive computing, based on personal
computers with integral high quality graphic displays (the Alto being the
first such computer), connected by a high capacity local network (the
Ethernet). It has become known, as well, for being the first living
embodiment of this new computational style.

From the start (early 1971) there were discussions between George
Pake (then head of PARC), Robert Taylor (now manager of the
Computer Sciences Laboratory of PARC), and one of us (AN, as a
consultant to PARC) about the possibilities of an active role for
psychological research into human interaction with computers. PARC
seemed like the perfect place to attempt such an effort. Modern
cognitive psychology had come a long way in understanding man as a
processor of information, a view that meshed completely with the
developments in computer science and artificial intelligence—indeed,
derived from them in a number of particulars. The impact of the
psychological advances on the human factors of how computers were
used was not yet very great, though the potential was clearly there.
PARC itself, being both an industrial laboratory with the concomitant
underlying emphasis on application and a group engaged in basic
research in computer science and artificial intelligence, provided exactly
the right environment.

In 1974, opportunity became reality through Jerome Elkind (who had
joined PARC to become manager of the Computer Sciences Laboratory).
Two of us (TM and SC) joined PARC, and a small unit, called the
Applied Information-Processing Psychology Project (AIP), was formed. Its
charter was to create an applied psychology of human-computer
interaction by conducting requisite basic research within a context of
application. It was initially located within the Systems Sciences Labora-
tory, a sister laboratory to the Computer Sciences Laboratory, under
William English, who was in charge of a group constructing an experi-
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mental interactive office-information system. One reason for its location
was the early decision to concentrate on immediate, real-time human-
computer interaction, especially as embodied in the use of text-editing
systems, rather than on the activities of programming computers. The
AIP group has remained intact through many local reorganizations and is
presently a part of the Cognitive and Instructional Sciences Group.

The present book, then, presents the results of some of the main
strands of the AIP group’s research. The group has throughout consisted
of just the three of us, in equal collaboration (SC and TM at PARC, with
AN as a consultant), supported by research assistants, students, and col-
leagues in PARC and elsewhere.

ACKNOWLEDGEMENTS

As should be evident from the remarks above, we owe an immense
debt to the PARC environment. A few of the people who played a key
role in the creation of PARC were mentioned above. It is not possible to
enumerate all the individuals who have played a definite role in making
our tiny research group viable over the years. We would, however, like
to acknowledge a few, both inside and outside of PARC. Harold Hall,
Manager of the PARC Science Center, provided support for our studies
in his several managerial capacities (the analysis in Chapter 9 is the result
of a question he posed to us). Bert Sutherland, as Manager of the
Systems Sciences Laboratory, played an important role in supporting us
and allowing us the resources to pursue these studies. John Seely Brown,
as Area Manager for the Cognitive and Instructional Sciences, has had a
major impact on us by creating a stimulating intellectual environment of
cognitive scientists around us.

Don Norman and Richard Young provided extensive substantive
comments on the research reported in the book. Many productive
discussions with colleagues have influenced our thinking and helped us
formulate our position. They include: George Baylor, John Black, Danny
Bobrow, Ross Bott, Ted Crossman, Jerry Elkind, Austin Henderson, Ron
Kaplan, Tom Malone, Jim Morris, William Newman, Beau Sheil, Larry
Tesler, and Mike Williams. Several students, working with us at PARC,
have kept us on our toes: Terry Roberts, Marilyn Mantei, Jarrett
Rosenberg, Allen Sonafrank, Lucy Suchman, Keith Patterson, Kathy
Hemenway, Brian Ross, Sally Douglas, Frank Halasz, and Carolyn Foss.

Ralph Kimball, Robin Kinkead, Bill Bewley, and Bill Verplank—in
the development divisions of Xerox—gave us valuable advice and helped
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us test some of the models in this book. Steve Smith and Shmuel Oren
provided mathematical consulting. Warren Teitelman and Larry Masinter
provided programming help in Interlisp (Teitelman, 1978), the system in
which all of our analysis and simulation programs are written. Ron
Kaplan and Beau Shiel provided statistical consultation for the analysis of
our data and help in using the Interactive Data-analysis Language
(Kaplan, Sheil, and Smith, 1978), their statistical analysis system written
in Interlisp.

Our experimental work would not have been possible without help
and support in building and maintaining our laboratory systems and
equipment. Bill Duvall and George Robertson implemented our experi-
ment-running systems; and Jim Mayer, Bill Winfield, and others kept our
equipment running. The large amount of experimentation and detailed
analysis would not have been possible without the help of several
research assistants over the years: Betty Burr, Janet Farness, Steve Locke,
Marilyn Mantei, Beverly McHugh, Terry Roberts, Rachel Rutherford,
and Betsey Summers.

Many others at PARC have also been of help, Chris Jeffers and
Jeanie Treichel provided administrative backing. Barbara Baird, Connie
Redell, Malinda Maggiani, and Jackie Guibert provided secretarial sup-
port. Giuliana Lavendel and her library staff tracked down many ob-
scure references for us.

A number of people have helped directly with the production of the
book. Rachel Rutherford helped edit the text and brought to light
numerous errors, inconsistencies, and infelicities of expression. Betsey
Summers, Steve Locke, and Leslie Keenan helped manage and proof the
text and figures. Bill Bowman gave graphics advice on several figures.
Lyle Ramshaw guided us through the intricacies of various document
preparation systems. Terri Doughty helped us format the text and tables
for galley printing. The galleys for the book were printed on an experi-
mental phototypesetting printer developed at PARC.

In the preparation of this book—much of it about text-editing—we
have ourselves been heavy users of the computer text-editors. We have
spent several thousands of hours text-editing on BRAVO (one of the
systems we describe in the book) at tasks similar to those we have studied
on our subjects, performing perhaps a million editing tasks in the process.
From this experience and study, we have a great appreciation for the
display-based text-editing technology that our colleagues at PARC have
been able to fashion.
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We have no doubt missed some people who deserve mention. One
advantage of writing a book of this kind is that our excuse—that human
information-processing systems are limited—is contained herein. As we
explain in Chapter 2, searching Long-Term Memory requires con-
siderable effort, and we have not managed to move the full way along
the information retrieval curve pictured in Figure 2.27.

SC, TM, AN
Palo Alto
October 1982
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1. An Applied Information-
Processing Psychology

1.1. THE HUMAN-COMPUTER INTERFACE

1.2. THE ROLE OF PSYCHOLOGY

1.3. THE FORM OF AN APPLIED PSYCHOLOGY
1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY
1.5. THE YIELD FOR COMPUTER SCIENCE

1.6. PREVIEW

A scientific psychology should not only help us to understand our
own human nature, it should help us in our practical affairs. In
educating our children, it should help us to design environments for
learning. In building airplanes, it should help us to design for safety and
efficiency. In staffing for complex jobs, it should help us to discover
both the special skills required and those who might have them. And on
and on. Given the breadth of environments we design for ourselves,
there is no limit to the number of domains where we might expect a
scientific knowledge of human nature to be of use.

The domain of concern to us, and the subject of this book, is how
humans interact with computers. A scientific psychology should help us
in arranging this interface so it is easy, efficient, error-free—even
enjoyable.

Recent advances in cognitive psychology and related sciences lead us
to the conclusion that knowledge of human cognitive behavior is
sufficiently advanced to enable its applications in computer science and
other practical domains. The years since World War Il have been the
occasion for an immense wave of new understandings and new
techniques in which man has come to be viewed as an active processor of
information. In the last decade or so, these understandings and
techniques have engulfed the main areas of human experimental psychol-
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ogyl: perception,? performance,> memory,* learning,? problem solving,®
psycholinguistics.7 By now, cognitive psychology has come to be
dominated by the information-processing viewpoint.

A major advance in understanding and technique brings with it, after
some delay, an associated wave of applications for the new knowledge.
Such a wave is about to break in psychology. The information-processing
view will lead to a surge of new ways for making psychology relevant to
our human needs. Already the concepts of information-processing
psychology have been applied to legal eyewitness testimony8 and to the
design of intelligence tests.) And in the study of man-machine systems
and engineering psychology, it has for some time been common to
include a block diagram of the overall human information-processing
system in the introductory chapter of textbooks, 10 even though the reach
of that block diagram into the text proper is still tenuous. There are
already the beginnings of a subfield, for which various names (associating
the topic in different ways) have been suggested: user sciences, !
artificial psycholinguistics,1? cognitive ergonomics,!®> software psychol-
ogy,}* user psychology,’® and cognitive engineering.16

1 For representative examples see Lindsay and Norman’s (1977) Human Information
Processing, Anderson’s (1980) Cognitive Psychology and its Implications, the Handbook of
Learning and Cognitive Processes (Estes, ed. 1975-1978), the Attention and Performance
collections of papers (Kornblum, 1973; Rabbitt and Domni¢, 1975; Dornié, 1977; Requin,
1978; Long and Baddeley, 1981), and the journal Cognitive Psychology.

2 Examples: Broadbent (1958), Perception and Communication; Green and Swets
(1966), Signal Detection Theory and Psychophysics; Neisser (1967), Cognitive Psychology,
Cornsweet (1970) Visual Perception.

3 Examples:  Fitts and Posner (1967), Human Performance; Welford (1968),
Fundamentals of Skill; Kintsch (1974), The Representation of Meaning in Memory,
Tversky (1977), “Feature of similarity”; Posner (1978), Chronometric Explorations of the
Mind.

4 Examples: Anderson and Bower (1973), Human Associative Memory; Baddeley
(1976), The Psychology of Memory;, Crowder (1976), Principles of Learning and Memory,
Murdock (1974), Human Memory, Theory and Data.

3 Examples:  Fitts (1964), “Perceptual-motor skill learning”; Klahr and Wallace
(1976), Cognitive Development: An Information-Processing View,  Anderson (1981a),
Cognitive Skills and their Acquisition.

6 Example:  Newell and Simon (1972), Human Problem Solving.
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Our own goal is to help create this wave of application: to help
create an applied information-processing psychology. As with all applied
science, this can only be done by working within some specific domain of
application. For us, this domain is the human-computer interface. The
application is no offhand choice for us, nor is the application dictated
solely by its extrinsic importance. There is nothing that drives funda-
mental theory better than a good applied problem, and the cognitive
engineering of the human-computer interface has all the markings of
such a problem, both substantively and methodologically. Society is in
the midst of transforming itself to use the power of computers
throughout its entire fabric—wherever information is used—and that
transformation depends critically on the quality of human-computer
interaction. Moreover, the problem appears to have the right mixture of
industrial application and symbol manipulation to make it a “real-world”
problem and yet be within reasonable reach of an extended cognitive
psychology. In addition, we have personal disciplinary commitments to
computer science as well as to psychology.

This book reports on a program of research directed towards
understanding human-computer interaction, with special reference to text-
editing systems. The program was undertaken as an initial step towards
the applied information-processing psychology we seek. Before outlining
individual studies, it is appropriate to sketch how this effort fits in with
the larger endeavor.

7 Exampie: Clark and Clark (1976), Psychology and Language: An Introduction to
Psycholinguistics.

8 Loftus (1979).

9 Hunt, Frost, and Lunneborg (1973).

10 Sheridan and Ferrell (1974); McCormick (1976).
11 yallee (1976).

12 Sime and Green (1974).

13 Sime, Fitter, and Green (1975).

14 Shneiderman (1980).

15 Moran (19814).

16 Norman (1980).
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1.1. THE HUMAN-COMPUTER INTERFACE

The human-computer interface is easy to find in a gross way—just
follow a data path outward from the computer’s central processor until
you stumble across a human being (Figure 1.1). Identifying its bound-
aries is a little more subtle. The key notion, perhaps, is that the user and
the computer engage in a communicative dialogue whose purpose is the
accomplishment of some task. It can be termed a dialogue because both
the computer and the user have access to the stream of symbols flowing
back and forth to accomplish the communication; each can interrupt,
query, and correct the communication at various points in the process.
All the mechanisms used in this dialogue constitute the interface: the
physical devices, such as keyboards and displays, as well as computer’s
programs for controlling the interaction.

At any point in the history of computer technology there seems to be
a prototypical user interface. A few years ago it was the teletypewriter;
currently it is the alphanumeric video-terminal. But the actual diversity
is now much greater. All so-called “remote entry” devices count as
interfaces; and a large number of such specialized devices exist in the
commercial and industrial world to record sales, maintain inventory
records, or control industrial processes. - Almost all such devices are
fashioned from the same basic sorts of components (keyboards, buttons,
video displays, printers) and connect to the same sorts of information-
processing mechanisms (disks, channels, interrupt service routines).

The very existence of the direct human-computer interface is itself an
emergent event in the development of computers. If we go back twenty
years, the dominant scheme for entering information into a computer
consisted of a trio of people. First there was the user, someone who
wanted to accomplish some task with the aid of the computer. The user
encoded what he wanted onto a coding sheet, then sent it to a second
person, the keypunch operator, who used an off-line device, the
keypunch, to create a deck of punched cards that encoded the same
information in a different form. The cards in turn went to a third
person, the computer-operator, who entered the cards into the computer
via the card reader. The computer then responded by printing messages
and data on paper for the operator to gather up and send back to the
user. The relationship between the user and the computer was suf-
ficiently remote that it should be likened more to a literary
correspondence than to a conversational dialogue. It is the general
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Figure 1.1. The human-computer interface.

demise of such arrangements involving human intermediaries, and the
resultant coupling of the user directly to the computer, that has given rise
to the contemporary human-computer interface. Whatever continued
evolution the interface takes—and it will be substantial—human-
computer interaction is unlikely ever to lose this character of a
conversational dialogue.

Of course, there is much more to improving computer interfaces than
simply making them conversational. Informal evidence from the direct
experience of users provides numerous examples of current interface
deficiencies:

In one text-editing system, typing the word edit while in
command mode would cause the system to select every-
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thing, delete everything, and then insert the letter ¢ (this
last making it impossible to use the system Undo command
to recover the deleted text because only the last command
could be undone).

In another text-editing system, so many short commands
were defined that almost any typing error would cause
some disaster to happen. For example, accidentally typing
CONTROL-E would cause the printer to be captured by the
user. Since no indication of this event was given, no other
users would be permitted to print until the other users
eventually discovered who had the printer. In an even
more spectacular instance, accidentally typing CONTROL-Z
would delete all the user’s files—permanently.

In one interactive programming system, misspelling a
variable name containing hyphens (a common way of
marking off parts of a name) would cause the system to
rewrite the user’s program, inserting code to subtract the
parts of the name. In many cases, the user would have to
mend his program by hand, laboriously searching for and
editing the damaged code.

In a set of different subsystems meant to be used together,
the name “List” was given to many different commands,
each having a different meaning: (1) send a file to the
printer to make a hardcopy, (2) show the directory of files
on the display, (3) show the content of a file on the display,
(4) copy the workspace to a file, (5) create a particular kind
of data structure.

Yet, when one looks at the teletype interfaces of yesterday, it is clear
that substantial progress has been made. The emergence of the direct
human interface, circumventing the keypuncher and operator, must itself
be counted as an improvement of enormous value. We now have
interfaces that allow the use of computers for such highly interactive tasks
as making engineering drawings and taking airline reservations. But
despite considerable advancements, the systems we have are often ragged
and in places are sufficiently poor to cripple whole ranges of use.



1.2. THE ROLE OF PSYCHOLOGY 7

What strikes one most noticeably about existing interfaces, besides all
the little ways they fail, is that their failures appear to be unnecessary.
Why, when interaction could be so smooth, even elegant, is it often so
rough, even hazardous? Two observations may help explain this per-
plexing state of affairs.

First, interaction with computers is just emerging as a human activity.
Prior styles of interaction between people and machines—such as driver
and automobile, secretary and typewriter, or operator and control
room—are all extremely lean: there is a limited range of tasks to be
accomplished and a narrow range of means (wheels, levers, and knobs)
for accomplishing them. The notion of the operator of a machine arose
out of this context. But the user is not an operator. He does not operate
the computer, he communicates with it to accomplish a task. Thus, we
are creating a new arena of human action: communication with machines
rather than operation of machines. What the nature of this arena is like
we hardly yet know. We must expect the first systems that explore the
arena to be fragmentary and uneven.

Second, the radical increase in both the computer’s power and its
performance/cost ratio has meant that an increasing amount of
computational resources have become available to be spent on the
human-computer interface itself, rather than on purely computational
tasks. This increase of deployable resources exacerbates the novelty of
the area, since entirely new styles of interaction become available
coincidentally with an increased amount of computational ability available
per interaction. These new styles often lead to completely new interfaces,
which are then even more ragged than before. At the same time,
opportunities for the invention of good interfaces also increase rapidly,
accounting for the leaps and bounds we have seen in terms of major
improvements in functionality and ease of use.

1.2. THE ROLE OF PSYCHOLOGY

Many in the computer field agree that there is an obvious way to
design better human-computer interfaces. Unfortunately, they disagree
on what it is. It is obvious to some that psychological knowledge should
be applied. Their slogan might be, in the words of Hansen (1971):
“Know the user!” It is obvious to others that the interface should simply
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be designed with more care—that if designers were given the goal of
good interfaces, rather than stringent cost limits or tight deadlines, then
they would produce good designs. Their slogan might be: “Designers are
users too—just give them the time and freedom to design it right!” And
it is obvious to others still that one should pour the effort into some new
components—flat displays, color graphics, or dynamically codeable micro-
processors in the terminal. Their slogan might be: “Make the com-
ponents good enough and the system will take care of itself!”

Who is to gainsay each of these their point? The technology limits,
often severely, what can be done. All the human engineering in the
world will not turn a 10-character-per-second teletypewriter into a high-
resolution graphics terminal. The history of terminal development so far
is writ largely in terms of advances in basic interface components, most
notably the resources to allow substantial computational cycles to be
devoted to the interface. It is easy to point to current limitations whose
lifting will improve the interface by orders of magnitude. Immense gains
will occur when the display holds not the common 24 X 80 characters
(the typical alphanumeric video terminal, widely available today), but a
full page of 64 X 120 characters (the typical 1000 X 800 pixel video
terminal, available at a few places today), or even the full drafting board
of 512 X 512 characters (not really available anywhere, yet, as far as we
know).

Moreover, any accounting will have to credit the majority of the
capabilities and advances at the interface to design engineers and only a
few of them to psychologists. However many imperfections there remain
in the interface, the basic capabilities and inspired creations that do exist
came out of an engineering analysis of the functions needed and the fact
that the designer, being human, could empathize directly with the user.

And yet, there remain the mini-horror stories—of systems where, after
the fact, it became clear that either the nature or the limitations of the
user were not appreciated, and some design foolishness was committed.
Since it is these stories that come to mind in discussing the role of the
human at the interface, it is often assumed that all that one needs are
ways of checking to be sure that the obvious is not overlooked; “All we
need from psychology is a few good checklists!” might be the slogan
here. But as we shall see, there is more to human-computer interaction
than can be caught with checklists.

The role psychology might be expected to play in the design of the
user-computer interface is suggested by the results it was able to achieve
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for military equipment during World War II. At that time, it had
become apparent that a strong limiting factor in realizing the potential of
man-machine systems, such as radar sets and military aircraft, lay in the
difficulty of operating the equipment. Out of a wartime collaboration
between natural scientists, engineers, and psychologists came major
advances, not only with respect to the man-machine systems being
designed, but also with respect to psychological theory itself. Examples
of the latter include the theory of signal detection, manual control theory,
and a methodology for the design of cockpit instrument displays. That
with psychological attention to human performance airplanes became
more flyable encourages us to believe that with psychological attention to
human performance computers can become more usable.

1.3. THE FORM OF AN APPLIED PSYCHOLOGY

What might an applied information-processing psychology of human-
computer interfaces be like and how might it be used? Imagine the
following scenario:

A system designer, the head of a small team writing the
specifications for a desktop calendar-scheduling system, is
choosing between having users type a key for each
command and having them point to a menu with a
lightpen. On his whiteboard, he lists some representative
tasks users of his system must perform. In two columns, he
writes the steps needed by the “key-command” and “menu”
options. From a handbook, he culls the times for each
step, adding the step times to get total task times. The key-
command system takes less time, but only slightly. But,
applying the analysis from another section of the handbook,
he calculates that the menu system will be faster to learn;
in fact, it will be learnable in half the time. He has
estimated previously that an effective menu system will
require a more expensive processor: 20% more memory,
100% more microcode memory, and a more expensive
display. Is the extra expenditure worthwhile? A few more
minutes of calculation and he realizes the startling fact that,
for the manufacturing quantities anticipated, training costs
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for the key-command system will exceed unit manufac-
turing costs! The increase in hardware costs would be
much more than balanced by the decrease in training costs,
even before considering the increase in market that can be
expected for a more easily learned system. Are there
advantages to the key-command system in other areas,
which need to be balanced? He proceeds with other
analyses, considering the load on the user’s memory, the
potential for user errors, and the likelihood of fatigue. In
the next room, the Pascal compiler hums idly, unused,
awaiting his decision.

The system designer is engaged in a sort of psychological civil
engineering, trading computed parameters of human performance against
cost and other engineering variables. The psychological science base
necessary to make possible his design efforts is the sort of applied
psychology that is the topic of this book. Such a psychology must
necessarily be homogeneous in form with the rest of the engineering
science base to allow tradeoffs between psychological and other design
considerations. To be useful, we would argue, such a psychology must
be based on task analysis, calculation, and approximation.

Task Analysis. When psychology is applied in the context of a
specific task, much of the activity hardly seems like psychology at all,
but rather like an analysis of the task itself. The reason for this is clear:
humans behave in a goal-oriented way. Within their limited perceptual
and information-processing abilities, they attempt to adapt to the task
environment to attain their goals. Once the goals are known or can be
assumed, the structure of the task environment provides a large amount
of the predictive content of psychology.

Calculation. The ability to do calculations is the heart of useful,
engineering-oriented applied science. Without it, one is crippled. Appli-
cations are, of course, still possible, as witness mental testing, behavior
modification, assertiveness training, and human-factors investi-gations of
display readability. But what is needed to support an engineering
analysis are laws of parametric variation, applicable on the basis of a task
analysis.

Psychology is not strong on calculation, though a few useful laws,
such as Power Law of Practice, exist. The reason might be thought to
be an inherent characteristic of psychology, or maybe even more
generally, of all human sciences. Our view is the opposite. Psychology
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is largely non-calculational because it has followed a different drummer.
It has been excessively concerned with hypothesis testing—with building
techniques to discriminate which of two ideas is right. If one changes
what one wants from the science, one will find the requisite techniques.
Interestingly, a branch of the human sciences, work-measurement
industrial engineering, indeed asked a different question—namely, how
long would it take people to do preset physical tasks—and it obtained
useful answers,

Approximation. If calculations are going to be made rapidly, they are
necessarily going to be over-simplified. = Nature—especially human
nature—is too complex to be written out on the back of an envelope.
But in engineering, approximations are of the essence. It is vital to get
an answer good enough to dictate the design choice; additional accuracy
is gilding the computational lily.

Again, psychology has in general not asked after approximations,
though it has certainly learned to talk in terms of simplified models. The
neglect of approximation has been especially encouraged by the emphasis
on statistical significance rather than on the magnitude of an effect. A
difference of a few percent in performance at two levels of an
independent variable is usually of little practical importance and can
often be ignored in an approximation, even if the difference is highly
significant statistically. But if there is no external criterion—no design
decision to be made, for instance—then there is no way to tell which
approximations are sufficient,

But, whereas an applied psychology of human-computer interaction
should be characterized by task analysis, calculation, and approximation,
these are not the only considerations. It is obvious that an applied
psychology intended to support cognitive engineering should also be
relevant to design. [t is less obvious, but nonetheless true, that to be
successful, an applied psychology should be theory-based.

RELEVANT TO DESIGN

Design is where the action is in the human-computer interface. It is
during design that there are enough degrees of freedom to make a
difference. An applied psychology brought to bear at some other point is
destined to be half crippled in its impact.

We suspect that many psychologists would tend to pick evaluation as
the main focus for application (though some might have picked training).
Evaluation is what human factors has done best. Given a real system,



12 1. APPLIED INFORMATION-PROCESSING PSYCHOLOGY

one can produce a judgment by experimentation. Thus, the main tool in
the human-factors kit has been the methodology of experimental design,
supported by concomitant skill in experimental control and in statistics
with which to assess the results. The emphasis on evaluation is wide-
spread: There is a whole subfield of psychology whose concern is to
evaluate social action programs. The testing movement is fundamentally
evaluational in character, whether concerned with intelligence testing or
with clinical assessment.

Applying psychology to the evaluation of systems is assuredly easier
than applying it to the design of systems. In evaluation, the system is
given; all its parts and properties are specified. In design, the system is
still largely hypothetical; it is a class of systems. On the other hand,
there is much less leverage in system evaluation than in system design.
In design, one wants results expressed explicitly as a function of some
controllable parameters, in order to explore optimization and sensitivity.
In evaluation, this urge is much diminished; experimental evaluation is so
expensive as to be prohibitive, permitting exploration of only two or
three levels of each independent variable. Most importantly, by the time
a system is running well enough to evaluate, it is almost inevitably too
late to change it much. Thus, an applied psychology aimed exclusively at
evaluation is doomed to have little impact.

There are several choices for how to institutionalize an applied
psychology. First, psychologists could be the primary professionals in the
field. Though possible in some fields, such as mental health, counseling,
or education, we think this arrangement unlikely for computers. The
field is already solely in the possession of computer engineers and
scientists. Second, psychologists could be specialists, either as members
of separate human-factors units within the organizations or as another
individual specialty within the primary design team. Our reasons for not
favoring separate psychology units reflect the additional separation we
believe they imply between the psychology and the development of
interfaces. Application of psychology would shift too strongly towards
evaluation and away from the main design processes.

We favor a third choice: that the primary professionals—the computer
system designers—be the main agents to apply psychology. Much as a
civil engineer learns to apply for himself the relevant physics of bridges,
the system designer should become the possessor of the relevant applied
psychology of human-computer interfaces. Then and only then will it
become possible for him to trade human behavioral considerations
against the many other technical design considerations of system config-
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uration and implementation. For this to be possible, it is necessary that a
psychology of interface design be cast in terms homogeneous with those
commonly used in other parts of computer science and that it be
packaged in handbooks that make its application easy. Thus, the system
designer in our scenario finds the design handbook more efficient to use
than plunging blindly into code with his Pascal compiler, although he
may still find it profitable to engage in exploratory implementation.

THEORY-BASED

An applied psychology that is theory-based, in the sense of
articulating a mechanism underlying the observed phenomena, has
advantages of insight and integration over a purely empirical approach.
The point can be made by reference to two examples of behavioral
science lacking a strong theory in this sense: work-study industrial engi-
neering, referred to earlier, and intelligence testing. Rather than develop
the theory of skilled movement, the developers of the several movement
time systems chose an empirical approach, tabulating the times to make
various classes of movements and ignoring promising theoretical develop-
ments such as Fitts’s Law (at least until recently). Although their tables
of motion times ran to four significant figures, they ignored the variance
of the times and interactions between sequential motions, thus rendering
the apparent precision illusory. This lack of adequate theoretical
development made the work, despite its impressive successes, vulnerable
to attacks from outside the field (see Abruzzi, 1956; Schmidtke and Stier,
1961). Similarly, in mental testing, the lack of a psychological theory of
the mental mechanisms underlying intelligence (as opposed to a purely
statistical theory of test construction) has put the validity of mental tests
in doubt despite, again, impressive successes. '

It is natural for an applied psychology of human-computer interaction
to be based theoretically on information-processing psychology, with the
latter’s emphasis on mental mechanism. The use of models in which
man is viewed as a processor of information also provides a common
framework in which models of memory, problem solving, perception, and
behavior all can be integrated with one another. Since the system
designer also does his work in information-processing terms, the emphasis
is doubly appropriate. The lack of this common framework is one reason
why it would be difficult to meld in important techniques such as the use
of Skinnerian contingent reinforcement. It is not that the techniques are
not useful in general, nor that they cannot be applied to the problems of
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the human-computer interface; but within the framework that underlies
this book, they would show up as isolated techniques.

The psychology of the human-computer interface is generally
individual psychology: the study of a human behaving within a non-
human environment (though, interestingly, interacting with another active
agent). But within the study all psychological functioning is in-
cluded—motor, perceptual, and cognitive. Whereas much psychology
tends to focus on small micro-tasks studied in isolation, an applied
psychology must dwell on the way in which all the components of the
human processor are integrated over time to do useful tasks. For
example, it might take into account interactions among the following:
the ease with which commands can be remembered, the type font of
characters as it affects legibility of the commands, the number of com-
mands in a list, and anything else relevant to the particular interface.
The general desirability of such wide coverage has never been in doubt.
It appears in our vision of an applied psychology because wide coverage,
especially the incorporation of cognition, now seems much more credible
than it did twenty years ago. On the other hand, motivational and
personality issues are not included. Again, there is hardly any doubt of
the desirability of including them in an applied psychology, but it is
unclear how to integrate the relevant existing knowledge of these topics.

1.4. THE YIELD FOR COGNITIVE PSYCHOLOGY

The textbook view is that as a science develops it sprouts applications,
that knowledge flows from the pure to the applied, that the backflow is
the satisfaction (and support) that comes to a science from benefiting
society. We have been reminded often enough that such a view does
violence to the realities in several ways. Applied domains have a life and
source of their own, so that many ingenious applications do not spring
from basic science, but from direct understanding of the task in an
applied context—from craft and experience. More importantly in the
present context, applied investigations vitalize the basic science; they
reveal new phenomena and set forth clearly what it is that needs
explanation. The mechanical equivalent for heat, for instance, arose from
Count Rumford’s applied investigations into the boring of brass cannon;
and the bacteriological origin of common infectious diseases eventually
arose, in part, out of studies by Pasteur on problems besetting the
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fermentation of wine. The basic argument was made for psychology by
Bryan and Harter (1898); and numerous applied psychological models
exist to remind us of what is possible (for example, Bryan and Harter’s
1898 and 1899 studies of telegraphy, Book’s 1908 studies of typewriting,
and Dansereau’s 1968 study of mental arithmetic).

These general points certainly hold for an applied cognitive
psychology, and on the same general ground that they hold for all
sciences. However, it is worth detailing the three main yields for
cognitive psychology that can flow from a robust applied cognitive
psychology.

The first contribution is to the substance of basic cognitive psychol-
ogy. The information-processing revolution in cognitive psychology is
just beginning. Many domains of cognitive activity have hardly been
explored. Such explorations are not peripheral to the basic science. It is
a major challenge to the information-processing view to be able to
explain how knowledge and skill are organized to cope with all kinds of
complex human activities. Each application area in fact becomes an
arena in which new problems for the basic science can arise. Each
application area successfully mastered offers lessons about the ways in
which the basic science can be extended to cover new areas. Ultimately,
as a theory becomes solidified, application areas contribute less and less
to the basic science. But at the beginning, just the reverse is true.

The domain of human-computer interaction is an example of such an
unexplored domain. It has strong skill components. People who interact
with computers extensively build up a repertoire of efficient, smooth,
learned behaviors for carrying out their routine communicative activities.
Yet, the interaction is also intensely cognitive. The skills are wielded
within a problem-solving context, and the skills themselves involve the
processing of symbolic information. As we shall see in abundance, even
the most routine of these activities, such as using a computer text-editing
program, requires the interpretation of instructions, the formulation of
sequences of commands, and the communication of these commands to
the computer.

The second contribution is to the style of cognitive psychology rather
than to its substance. We believe that the form of the psychology of
human-computer interaction, with its emphasis on task analysis,
calculation, and approximation, is also appropriate for basic cognitive
psychology. The existing emphasis in psychology on discriminating be-
tween theories is certainly understandable as a historical development.
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However, it stifles the growth of adequate theory and of the cumulation
of knowledge by focusing the attention of the field on the consequences
of theories, however uninteresting in themselves, that can be used to tell
whether idea A or idea B is correct. Measurements come to have little
value in themselves as a continually growing body of useful quantitative
knowledge of the phenomena. They are seen instead primarily as indi-
cators fashioned to fit the demands of each experimental test. Since
there is no numerical correspondence across paradigms in what is
measured, the emphasis on discrimination fosters a tendency towards
isolation of phenomena in specific experimental paradigms.

The third contribution is simply that of being a successful application,
though it sounds a bit odd to say it that way. Modern cognitive psy-
chology has been developing now for 25 years. If information-processing
psychology represents a successful advance of some magnitude, then
ultimately it must both affect the areas in which psychology is now
applied and generate new areas of application.

1.5. THE YIELD FOR COMPUTER SCIENCE

It is our strong belief that the psychological phenomena surrounding
computer systems should be part of computer science. Thus, we see this
book not just as a book in applied psychology, but as a book in computer
science as well. When university curriculum committees draw up a list of
“what every computer scientist should know to call himself a computer
scientist,” we think models of the human user have a place alongside
models of compilers and language interpreters.

The fundamental argument is worth stating: Certain central aspects
of computers are as much a function of the nature of human beings as of
the nature of the computers themselves. The relevance of both computer
science and psychology to the design of programming languages and the
interface is easy to argue, but psychological considerations enter into
more topics in computer science than is usually realized. The presump-
tion that has governed two generations of operating systems, for instance,
that time-sharing systems should degrade response time as the number of
users increases, is neither dictated by technology nor independent of the
psychology of the user. A sufficiently crisp model of the effects of such
a feature on the user could have turned the course of development of
operating systems into quite different channels of development (into the
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logic of guaranteed service, contracted service, or proportionately graded
services, for example). The yield for computer science that can flow
from an applied psychology of human-computer interaction is
engineering methods for taking the properties of users into account
during system design.

1.6. PREVIEW

In this book, we report on a series of studies undertaken to
understand the performance of users on interactive computing systems.
Since new knowledge and insight are often achieved by first focusing on
concrete cases and then generalizing, we direct a major portion of our
effort towards user performance on computer text-editing systems. From
this beginning, we try to generalize to other systems and to cognitive skill
generally. We address four basic questions: (1) How can the science
base be built up for supporting the design of human-computer interfaces?
(2) What are user performance characteristics in a specific human-
computer interaction task domain, text-editing? (3) How can our results
be cast as practical models to aid in design? (4) What generalizations
arise from the specific studies, models, and applications?

SCIENCE BASE

Chapter 2 begins by discussing the existing scientific base on which to
erect an applied psychology of the human-computer interface. It does
not review all the sources in their own terms—what is available from
cognitive psychology, human factors, industrial engineering, manual
control, or the classical study of motor skills—rather, it lays out a model
of the human information-processor that is suited to an applied
psychology and justified by current research.

TEXT-EDITING

Attention then turns to a detailed examination of text-editing as a
prototypical example of human-computer interaction. An elementary
requirement for understanding behavior at the interface is some gross
quantitative information about user behavior, to provide a background
picture against which to place more detailed studies in context. The
three studies in Chapters 3 and 4 provide such a picture, Two of these
(Chapter 3), a benchmark study comparing text-editing systems and a
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study of the individual user differences, allow one to assess the variability
in performance time arising from editing system design and from
individual user differences. The third study (Chapter 4) uses the data of
Chapter 3 to explore how well a simple model, in which all editing
modifications are assumed to take the same time, does at analyzing
tradeoffs between using a computer text-editor vs. using a typewriter.

The next three chapters develop an information-processing model for
the behavior of users with an editing system. Chapter 5 introduces the
basic theory. The user is taken to employ goals, operators, methods, and
selection rules for the methods (the GOMS analysis) to accomplish an
editing task from a marked-up manuscript. Experimental verification of
the analysis is given, and the effect on accuracy due to the detail with
which the analysis is applied is also investigated. The routine use of an
editing system is discussed as an instance of cognitive skill. Chapter 6
extends the model in three ways. First, the model is reduced to a
complete, running computer simulation of user performance. Second, the
analysis is extended to user behavior on a display-oriented system. Third,
stochastic elements are introduced into the model to predict the
distributions of performance times. Chapter 7 examines in detail one
suboperation of editing: selecting a piece of text. Four different devices
for doing this are tested, and a theoretical account is given for their
performance.

ENGINEERING MODELS

Chapters 8 and 9 focus on the ways in which the GOMS analysis can
be simplified to provide practical models for predicting the amount of
time required by a user to do a task. In Chapter 8, a model at the level
of individual keystrokes is presented that is sufficiently simple and
accurate to be a design tool. The model is validated over several systems,
tasks, and users; and examples are given for ways in which the model
could be used in engineering applications. In Chapter 9, a second
simplification of the GOMS analysis, this time at a more gross level, is
presented This model is suited for cases where, as in the early stages of
design, the system to be analyzed is not fully specified.

EXTENSIONS AND GENERALIZATIONS

So far, the studies have focused mostly on manuscript editing and on
similar tasks where the user carries out a set of instructions. Chapter 10
extends the same kind of analysis to a particular problem-solving activity:
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the use of a computer system to lay out a VLSI electronic circuit. The
analysis shows that the user behavior exhibits many of the characteristics
of manuscript editing and that the behavior is indeed a routine cognitive
skill, partially understandable in terms of the concepts already introduced.

Chapter 11 attempts to place results from the above studies in a larger
theoretical context. It continues the discussion of text-editing as an
instance of cognitive skill and the relationship between cognitive skill
generally and problem solving. Chapter 12 addresses the role of psychol-
ogical studies in design. It is argued that psychological studies should
emphasize the creation of performance models. The several methods of
doing this are discussed and provide a framework for summarizing the
thrust of the present book. A number of guidelines for systems develop-
ment that arise from our studies are listed.
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2. The Human
Information-Processor

2.1. THE MODEL HUMAN PROCESSOR
The Perceptual System
The Motor System
The Cognitive System
2.2. HUMAN PERFORMANCE
Perception
Motor Skill
Simple Decisions
Learning and Retrieval
Complex Information-Processing
2.3. CAVEATS AND COMPLEXITIES

Our purpose in this chapter is to convey a version of the existing
psychological science base in a form suitable for analyzing human-
computer interaction. To be practical to use and easy to grasp, the
description must necessarily be an oversimplification of the complex and
untidy state of present knowledge. Many current results are robust, but
second-order phenomena are almost always known that reveal an
underlying complexity; and alternative explanations usually exist for
specific effects. An uncontroversial presentation in these circumstances
would consist largely of purely experimental results. Such an approach
would not only abandon the possibility of calculating parameters of
human performance from the analysis of a task, but would also fail in the
primary purpose of giving the reader knowledge in a form relatively easy
to assimilate.

Our tack, therefore, is to organize the discussion around a specific,
simple model. Though limited, this model allows us to give, insofar as
possible, an integrated description of psychological knowledge about
human performance as it is relevant to human-computer interaction.
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2.1. THE MODEL HUMAN PROCESSOR

A computer engineer describing an information-processing system at
the systems level (as opposed, for instance, to the component level)
would talk in terms of memories and processors, their parameters and
interconnections.! By suppressing detail, such a description would help
him to envision the system as a whole and to make approximate pre-
dictions of gross system behavior.

The human mind is also an information-processing system, and a
description in the same spirit can be given for it. The description is
approximate when applied to the human, intended to help us remember
facts and predict user-computer interaction rather than intended as a
statement of what is really in the head. But such a description is useful
for making approximate predictions of gross human behavior. We
therefore organize our description of the psychological science base
around a model of this sort. To distinguish the simplified account of the
present model from the fuller psychological theory we would present in
other contexts, we call this model the Model Human Processor.

The Model Human Processor (see Figures 2.1 and 2.2) can be
described by (1) a set of memories and processors together with (2) a set
of principles, hereafter called the “principles of operation.” Of the two
parts, it is easiest to describe the memories and processors first, leaving
the description of the principles of operation to arise in context.

The Model Human Processor can be divided into three interacting
subsystems: (1) the perceptual system, (2) the motor system, and (3) the
cognitive system, each with its own memories and processors. The
perceptual system consists of sensors and associated buffer memories, the
most important buffer memories being a Visual Image Store and an
Auditory Image Store to hold the output of the sensory system while it is
being symbolically coded. The cognitive system receives symbolically
coded information from the sensory image stores in its Working Memory
and uses previously stored information in Long-Term Memory to make
decisions about how to respond. The motor system carries out the
response. As an approximation, the information processing of the human
will be described as if there were a separate processor for each
subsystem: a Perceptual Processor, a Cognitive Processor, and a Motor

1 For a survey of computing systems in these terms see Siewiorek, Bell, and Newell
(1981).
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Processor. For some tasks (pressing a key in response to a light) the
human must behave as a serial processor. For other tasks (typing,
reading, simultaneous translation) integrated, parallel operation of the
three subsystems is possible, in the manner of three pipelined processors:
information flows continuously from input to output with a character-
istically short time lag showing that all three processors are working
simultaneously.

The memories and processors are described by a few parameters. The
most important parameters of a memory are

j, the storage capacity in items,
d, the decay time of an item, and
K, the main code type (physical, acoustic, visual, semantic).

The most important parameter of a processor is
7, the cycle time.

Whereas computer memories are usually also characterized by their
access time, there is no separate parameter for access time in this model
since it is included in the processor cycle time.

We now consider each of the subsystems in more detail.

The Perceptual System

The perceptual system carries sensations of the physical world
detected by the body’s sensory systems into internal representations of
the mind by means of integrated sensory systems. An excellent example
of the integration of a sensory system is provided by the visual system:
The retina is sensitive to light and records its intensity, wave length, and
spatial distribution. Although the eye takes in the visual scene over a
wide angle, not quite a full half-hemisphere, detail is obtained only over
a narrow region (about 2 degrees across), called the fovea. The remain-
der of the retina provides peripheral vision for orientation. The eye is in
continual movement in a sequence of saccades, each taking about 30
msec to jump to the new point of regard? and dwelling there 60~700
msec for a total duration of

2 Russo (1978).
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Figure 2.1. The Model Human Processor—memories and

processors.

Sensory information flows into Working Memory through the Perceptual Processor.
Working Memory consists of activated chunks in Long-Term Memory. The basic
principle of operation of the Model Human Processor is the Recognize-Act Cycle of
the Cognitive Processor (PO in Figure 2.2). The Motor Processor is set in motion

through activation of chunks in Working Memory.
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Recognize-Act Cycle of the Cognitive Processor. On each cycle of the
Cognitive Processor, the contents of Working Memory initiate actions associatively
linked to them in Long-Term Memory; these actions in turn modify the contents of
Working Memory.

Variable Perceptual Processor Rate Principle. The Perceptual Processor cycle
time 7, varies inversely with stimulus intensity.

Encoding Specifibity Principle. Specific encoding operations performed on what
is perceived determine what is stored, and what is stored determines what retrieval
cues are effective in providing access to what is stored.

Discrimination Principle. The difficulty of memory retrieval is determined by the
candidates that exist in the memory, relative to the retrieval clues.

Variable Cognitive Processor Rate Principle. The Cognitive Processor cycle
time 7, is shorter when greater effort is induced by increased task demands or

information loads; it also diminishes with practice.
Fitts’s Law. The time Tpm to move the hand to a target of size S which lies a
distance D away is given by:

T,ps = Iy109,(D/S + .5), (2.3)

where /,, = 100 [70~120] msec/bit.

Power Law of Practice. The time 7, to perform a task on the nth trial follows a
power law:

T,=T,n" @, (2.4)
where a = .4[.2~.6].

Uncertainty Principle. Decision time T increases with uncertainty about the
judgement or decision to be made:

T=I-H,

where H is the information-theoretic entropy of the decision and

lo = 150 [0~157] msec/bit. For n equally probable alternatives (called Hick's Law),
H =log,(n + 1). (2.8}
For n alternatives with different probabilities, p;, of occurence,
H =%plog,(1/p; + 1). (2.9)

Rationality Principle. A person acts so as to attain his goals through rational
action, given the structure of the task and his inputs of information and bounded by

limitations on his knowledge and processing ability:

Goals + Task + Operators + Inputs
+ Knowledge + Process-limits — Behavior

Problem Space Principle. The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying operators, and (4)
control knowledge for deciding which operator to apply next.

Figure 2.2. The Model Human Processor—principles of
operation.
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Eye-movement = 230 [70~700] msec .3

(In this expression, the number 230 msec represents a typical value and
the numbers in brackets indicate that values may range from 70 msec to
700 msec depending on conditions of measurement, task variables, or
subject variables.) Whenever the target is more than about 30 degrees
away from the fovea, head movements occur to reduce the angular
distance. These four parts—central vision, peripheral vision, eye move-
ments, and head movements—operate as an integrated system, largely
automatically, to provide a continual representation of the visual scene of
interest to the perceiver.

PERCEPTUAL MEMORIES

Very shortly after the onset of a visual stimulus, a representation of
the stimulus appears in the Visual Image Store of the Model Human
Processor. For an auditory stimulus, there is a corresponding Auditory
Image Store. These sensory memories hold information coded physically,
that is, as an unidentified, non-symbolic analogue to the external
stimulus. This code is affected by physical properties of the stimulus,
such as intensity. For our purposes we need not enter into the details of
the physical codes for the two stores but can instead just write:

Ky;s = physical
« 415 = physical .

For example, the Visual Image Store representation of the number 2
contains features of curvature and length (or equivalent spatial frequency
patterns) as opposed to the recognized digit.

The perceptual memories are intimately related to the cognitive
Working Memory as Figure 2.1 depicts schematically. Shortly after a
physical representation of a stimulus appears in one of the perceptual
memories, a recognized, symbolic, acoustically-coded (or visually-coded)

3 Actual saccadic eye-movement times (travel + fixation time) can vary quite
considerably depending on the task and the skill of the observer. Russo (1978, Table 2,
p. 94) lists 70 msec as the minimum time and 230 msec as a typical time. The largest
time given by Busswell (1922, p. 31) for eye-movements in reading is 660 msec (for first-
grade children), which we round to 700 msec.
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representation of at least part of the perceptual memory contents occurs
in Working Memory. If the contents of perceptual memory are complex
or numerous (for example, an array of letters) and if the stimulus is
presented only fleetingly, the perceptual memory trace fades, and
Working Memory is filled to capacity before all the items in the
perceptual memory can be transferred to representations in Working
Memory (for letters the coding goes at about 10 msec/letter). However,
the Cognitive Processor can specify which portion of the perceptual
memory is to be so encoded. This specification can only be by physical
dimensions, since this is the only information encoded: after being
shown a colored list of numbers and letters, a person can select (without
first identifying what number or letter it is) the top half of the Visual
Image Store or the green items, but not the even digits or the digits
rather than the letters.

Figure 2.3 shows the decay of the Visual Image Store and the
Auditory Image Store over time. As an index of decay time, we use the
half-life, defined as the time after which the probability of retrieval is less
than 50%. While exponential decay is not necessarily implied by the use
of the half-life, Figure 2.3 shows that it is often a good approximation to
the observed curves. The Visual Image Store has a half-life of about

8,5 = 200 [90~1000] msec ,*

but the Auditory Image Store decays more slowly,

4 A least-squares fit to data estimated from figures appearing in Sperling (1960) and
Averbach and Coriell (1961) yields the following facts. The half-life of the letters in
excess of the memory span that subjects could report in the partial report condition of
Sperling’s (1960) experiment was 621 msec (9-letter stimulus) and 215 msec (12-letter
stimulus). Averbach and Coriell's (1961) experiment gives a half-life of 92 msec (16-
letter stimulus). The typical value for 8V1S has been set at 200 msec, representing the
middle of these. The lower and upper bounds for 8VIS are set at rounded-off values
reflecting the fastest subject in the condition with the shortest half-life and the slowest
subject in the condition with the longest half-life. The shortest half-life in these
experiments was 93 msec for Averbach and Coriell's Subject GM (16-letter condition);
the longest half-life was 940 msec for Sperling’s Subject ROR (9-letter condition). It is
possible to have the average half-life be 92 msec, shorter than the half-life of any
subject, because this average is computed by first taking the mean of each point across
subjects, then computing the slope of the best least-square fitting line in semilog
coordinates.
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Figure 2.3. Time decay of Visual and Auditory Image Stores.
(a) Decay of the Visual Image Store. In each experiment, a matrix of letters was
made observable tachistoscopically for 50 msec. In the case of the Sperling
experiments, a tone sounded after the offset of the letters to indicate which row
should be recalled. In the case of the Averbach and Coriell experiment, a bar
appeared after the offset of the letters next to the letter to be identified. The
percentage of indicated letters that could be recalled eventually asymptotes to
I.LWM*. The graph plots the percentage of letters reported correctly in excess of
P’WM* as a function of time before the indicator.

(b) Decay of the Auditory Image Store. Nine letters were played to the observers
over stereo earphones arranged so that three sequences of letters appear to come
from each of three directions. A light lit after the offset of the letters to indicate
which sequence should be recalled. The graph plots the percentage of the
relevant 3-letter sequence in excess of P’WM* reported correctly as a function of
time before the light was lit.
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8 475 = 1500 [900~3500] msec

consistent with the fact that auditory information must be interpreted
over time. The capacity of the Visual Image Store is hard to fix precisely
but for rough working purposes may be taken to be about

By = 17[7~17] letters 8

The capacity of the Auditory Image Store is even more difficult to fix,
but would seem to be around

B g5 = 5 [44~6.2] letters ]

PERCEPTUAL PROCESSOR

The cycle time 7p of the Perceptual Processor is identifiable with the
so-called unit impulse response (the time response of the visual system to

5 The half-life of the letters in excess of the memory span that subjects could report
in the partial report condition of Darwin, Turvey, and Crowder’s (1972) experiment was
1540 msec, which we have rounded to & AlS = 1500 msec. The difference in decay

half-life as a function of letter order in their experiment (963 msec for the third letter,

3466 msec for the first letter) has been rounded to give lower and upper bounds of 900
and 3500. Other techniques have been used to obtain values for the “decay time” of the
Auditory Image Store. For example, use of a masking technique gives estimates of
around 250 msec full decay (Massaro, 1970), but these experiments have been criticized
by Klatzky (1980, p. 42) because they may only measure the time necessary to transmit
categorical information to Working Memory. On the other end, experiments that
measure the delay at which there is still some facilitation of the identification of a noisy
signal (Crossman, 1958; Guttman and Julesz, 1963) give very wide full-decay estimates:
from 1000 msec to 15 minutes!

6 Sperling (1963, p. 22) estimates the capacity of the Visual Image store in terms of
the number of letters available at least 17 letters and possibly more. The fewest number
of letters available for any subject immediately after stimulus presentation in the 9-letter
condition (Sperling, 1960) was 7.4 letters for Subject NIJ.

1 Range is from the number of letters or numbers that could be reported by
Darwin, Turvey, and Crowder’s (1972) subjects in an experiment in which they had to
give the trio of letters coming from one of three directions (indicated by a visual cue
shortly after the end of the sounds). Lowest value, 4.4 letters, is for accuracy of recalling
second letter of triple when subjects had to name all items coming from a certain
direction (Figure 1, p. 259). Highest number, 6.2 letters, is for recall by category when
no location was required (Figure 2(B), p. 262).
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a very brief pulse of light)® and its duration is on the order of
7 p = 100 [50~200] msec .?

If a stimulus impinges upon the retina at time ¢ = 0, at the end of time ¢
= 7p the image is available in the Visual Image Store and the human
claims to see it. In truth, this is an approximation, since different infor-
mation in the image becomes available at different times, much as a
photograph develops.!® For example, movement information and low
spatial frequency information are available sooner than other information.
A person can react before the image is fully developed or can wait for a
better image, according to whether speed or accuracy is the more
important.

Perceptual events occurring within a single cycle are combined into a
single percept if they are sufficiently similar. For example, two lights
occurring at different nearby locations within 60~100 msec combine to
give the impression of a single light in motion. A brief pulse of light,
lasting ¢ msec with intensity /, has the same appearance as a longer pulse
of less-intense light, provided both pulses last less than 100 msec, giving
rise to Bloch’s Law (1885):

Iet = k, t('rp.

Two brief pulses of light within a cycle combine their intensities in a
more complicated way, but still give a single percept.l!'  Thus there is a
basic quantum of experience; and the present is not an instantaneous
dividing line between past and future, but has itself duration.
Figure 2.4 shows the results of an experiment in which subjects were
presented with a rapid set of clicks, from 10 to 30 clicks per second, and
were asked to report how many they heard. The results show that they
heard the correct number when the clicks were presented at 10 clicks/sec,
but missed progressively more clicks at 15 and 30 clicks/sec. A simple

8 See Ganz (1975).

9 The source of the range is the review by Harter (1967), who also discusses the
suggestion that the cycle time can be identified with the 77~125 msec alpha period in
the brain.

10 See Ericksen and Shultz (1978), Ganz (1975).
W 5ee Ganz (1975).
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Figure 2.4. Fusion of clicks within 100 msec.

A burst of sound containing an unknown number of auditory clicks at the uniform
rate of 10/sec, 15/sec, or 30/sec was presented to the subject. The graph plots
the number of clicks/burst reported as a function of the number presented. After
Cheatham and White (1954, Figure 1, p. 427).

analysis in terms of the Model Human Processor shows why. When the
experimenter plays the clicks at 10 clicks/sec, there is one click for each
7p = 100 msec interval and the subject hears each click. But when the
experimenter plays the clicks at 30 clicks/sec, the three clicks in each 100
msec cycle time are fused into a single percept (perhaps sounding a little
louder) and the subject hears only one click instead of three, or 10
clicks/sec. The data in Figure 2.4 show that the number of clicks/sec
perceived by the subjects does in fact stay approximately constant in the
10 clicks/sec range (the measured values of the slopes are 9~11 clicks/
sec) for the three rates of presentation.

As a second-order phenomenon, the processor time 7, is not com-
pletely constant, but varies somewhat according to conditions. In
particular, 7p is shorter for more intense stimuli, a fact derivable from a
more detailed examination of the human information-processor using
linear systems theory, but which we simply adopt as one of the principles
of operation (Figure 2.2):
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P1. Variable Perceptual Processor Rate Principle. The Per-
ceptual Processor cycle time 7 p varies inversely with stimulus
intensity.

The effect of this principle is such that 7, can take on values within the
50~200 msec range we have given. Under very extreme conditions of
intense, high-contrast stimuli or nearly invisible, low-contrast stimuli, 7
can take on values even outside these ranges.

The Motor System

Let us now consider the motor system. Thought is finally translated
into action by activating patterns of voluntary muscles. These are
arranged in pairs of opposing “agonists” and “antagonists,” fired one
shortly after the other. For computer users, the two most important sets
of effectors are the arm-hand-finger system and the head-eye system.

Movement is not continuous, but consists of a series of discrete
micromovements, each requiring about

7y = 70 [30~100] msec 12

which we identify as the cycle time of the Motor Processor. The
feedback loop from action to perception is sufficiently long (200~500
msec) that rapid behavioral acts such as typing and speaking must be
executed in bursts of preprogrammed motor instructions.

An instructive experiment is to have someone move a pen back and
forth between two lines as quickly as possible for 5 sec (see Figure 2.5).
Two paths through the processors in Figure 2.1 are clearly visible: (1)
The Motor Processor can issue commands (“‘open loop™) about once
every 7,, = 70 msec; in Figure 2.5 this path leads to the 68 pen reversals
made by the subject in the 5 sec interval, or 7,, = 74 msec/reversal. (2)
The subject’s perceptual system can perceive whether the strokes are

12 The limit of repetitive movement of the hand, foot, or tongue is about 10
movements/sec (Fitts and Posner, 1967, p. 18). Chapanis, Garner, and Morgan (1949, p.
284) cite tapping rates of 8~13 taps/sec (38~62 movements/sec, assuming 2
movements/tap). Fox and Stansfield (1964) cite figures of 130 msec/tap = 65
msec/movement. Repetition of the same key in Kinkead's data (Figure 2.15b) averages
to 180 msec/keystroke = 90 msec/movement. The scribbling rate in Figure 2.5 was 74
msec/movement. We summarize these as 70 [30~100] msec/movement.
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Figure 2.5. Maximum motor output rate.
Marks made by subject moving pen back and forth between two lines as fast as
possible for 5 sec.

staying within the lines (the perception process requires 7, msec) and
send this information to the cognitive system, which can then advise (the
decision process requires 7.~ msec) the motor system to issue a correction
(the motor process requires 7,, msec). The total time, therefore, to make
a correction using visual feedback (“closed loop™) should be on the order
of 7p + 7~ + 7, = 240 msec; in Figure 2.5, this path leads to the
roughly 20 corrections about the ruled guidelines as indicated by the
dotted line tracing the contours of the bottoms of the strokes, or (5
sec)/(20 movements) = 250 msec/movement.

The Cognitive System

In the simplest tasks, the cognitive system merely serves to connect
inputs from the perceptual system to the right outputs of the motor
system. But most tasks performed by a person are complex and involve
learning, retrieval of facts, or the solution of problems. As would be
expected, the memories and the processor for the cognitive system are
more complicated than those for the other systems.

COGNITIVE MEMORIES

There are two important memories in the cognitive system: a Working
Memory to hold the information under current consideration and a Long-
Term Memory to store knowledge for future use.
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Working Memory. Working Memory holds the intermediate products
of thinking and the representations produced by the perceptual system.
Functionally, Working Memory is where all mental operations obtain
their operands and leave their outputs. It constitutes the general registers
of the Cognitive Processor. Structurally, Working Memory consists of a
subset of the elements in Long-Term Memory that have become
activated; this intimate association between Working Memory and Long-
Term Memory is represented in Figure 2.1 by the placement of Working
Memory inside Long-Term Memory. Although Working Memory infor-
mation can be coded in many ways, the use of symbolic acoustic codes is
especially common, related, no doubt, to the great importance of verbal
materials to the tasks people frequently perform. The user of a
telephone, for example, is especially liable to dial numbers mistakenly
that sound like the numbers he has just looked up. Visual codes, if
required by the the task, are also possible (as are some other types of
codes). For purposes of the Model Human Processor we consider the
predominant code types to be

K yp = acoustic or visual .

It is important to distinguish the symbolic, nonphysical acoustic or visual
codes of Working Memory, which are unaffected by physical parameters
of the stimulus (such as intensity), from the nonsymbolic, physical codes
of the sensory image stores, which are affected by physical parameters of
the stimulus.

The activated elements of Long-Term Memory, which define Working
Memory, consist of symbols, called chunks, which may themselves be
organized into larger units. It is convenient to think of these as nested
abstract expressions: CHUNK1 = (CHUNK2 CHUNK3 CHUNK4), with, for
instance, CHUNK4 = (CHUNKS CHUNK6).!3 What constitutes a chunk is as
much a function of the user as of the task, for it depends on the contents
of the user’s Long-Term Memory. The sequence of nine letters below is
beyond the ability of most people to repeat back:

BCSBMICRA

13 It is also possible to think of these as semantic networks, such as those in
Anderson (1980) and other recent publications. At the level of our discussion, any of
these notations will suffice about equally well. See also Simon (1974) for a technical
definition of chunk.
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However, consider the list below, which is only slightly different:
CBSIBMRCA

Especially if spoken aloud, this sequence will be chunked into CBS IBM
RCA (by the average American college sophomore) and easily remem-
bered, being only three chunks. If the user can perform the recoding
rapidly enough, random lists of symbols can be mapped into prepared
chunks. A demonstration of this is the mapping of binary digits into
hexadecimal digits:

0100001000010011011001101000
0100 0010 0001 0011 0110 0110 1000
4213668

This last can be easily remembered. The coding must be done in both
directions, binary to hexadecimal and hexadecimal to binary, and takes
substantial practice before it can be carried out as part of a regular
memory-span test, but it can be done. Indeed, with extended effort, the
digit span can be increased enormously. A Carnegie-Mellon University
student holds the current record at 81 decimal digits, presented at a
uniform rate of 1 digit per second.* This particular event occurred as
part of a psychological study, where it could be verified that all the gain
was due to elaborate recoding and immense practice in its use and
development, rather than any physiological endowment.

Chunks can be related to other chunks. The chunk ROBIN, for
example, sounds like the chunk ROBERT. It is a subset of the chunk
BIRD, it has chunk WINGS, it can chunk FLY. When a chunk in Long-
Term Memory is activated, the activation spreads to related chunks and
to chunks related to those. As the activation spreads to new chunks, the
previously activated chunks become less accessible, because there is a
limited amount of activation resource. The new chunks are said to
interfere with the old ones. The effect of this interference is that the
chunk appears to fade from Working Memory with time (unless
reactivated), as the decay curves in Figure 2.6 show. The curves are
significantly affected by other variables, including the number of other
chunks the user is trying to remember, retrieval interference with similar

14 Ericsson, Chase, and Faloon (1980); Chase and Ericsson (1981).
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Figure 2.6. Working Memory decay rate.

Subject is given either one or three words or consonants to remember. He counts
backwards (preventing rehearsal) for a time and then recalls stimulus. Graph plots
proportion of items correctly recalled as a function of the time elapsed until recall
began.

chunks in Working Memory, and input and retrieval memory strategies
of the user. As a working value we take the half-life of 7 sec from the
curve in Figure 2.6, which together with other data gives

8yps = 7[5~226] sec 13

The decay parameter 8,,, has a wide range, because most of the
apparent decay comes about from the details of interference, as we have
noted above. But these details are difficult to analyze, so it is most
convenient to accept the range and talk in terms of decay. Since the

15 For three chunks, Peterson and Peterson's (1959) data (Figure 2.6) give a half-life
of about 5 sec. Murdock’s data (Murdock, 1961) in Figure 2.6 give a half-life of about
7 sec for 3 words and also 9 sec for 3 consonants. On the other hand, Melton’s (1963)
data give a much longer half-life of 34 sec. For one chunk, Murdock’s data in Figure
26 and Melton’s (1963) give half-lives of 73 sec and 226 sec, respectively.
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decay rate is particularly sensitive to the number of chunks in the
recalled item, it is useful to record the decay rate of representative item
sizes:

8 was(1 chunk) = 73 [73~226] sec ,13
8 33 chunks) = 7 [5~34] sec .15

When people are asked to recall information a few seconds after
hearing it, they use both Working Memory and Long-Term Memory to
do so. Experimentally, these two systems have been teased apart showing
that there is a pure capacity of Working Memory (example: number of
immediately preceding digits recallable from a long series when the series
unexpectedly stops),

B = 3[2.5~4.1] chunks .16

When this pure capacity is augmented by the use of Long-Term Memory,
the effective capacity of Working Memory py,* (example: longest
number that can be repeated back) extends to the familiar 7+2 chunks,

Bwas = 7[5~9] chunks Ry

Long-Term Memory. Long-Term Memory holds the user’s mass of
available knowledge. It consists of a network of related chunks, accessed
associatively from the contents of the Working Memory. Its contents
comprise not only facts, but procedures and history as well.

Apparently, there is no erasure from Long-Term Memory,

prm = -

However, successful retrieval of a chunk depends on whether associations
to it can be found. There are two reasons the attempt to retrieve a
chunk might fail: (1) effective retrieval associations cannot be found, or

16 Crowder (1976) reviews several methods. Estimates are Waugh and Norman
(1965) method, 2.5 items; Raymond (1969) method, 2.5 items; Murdock (196056, 1967)
method, 3.2~4.1 items; Tulving and Colatla (1970) method, 3.3~3.6 items. See also
Glanzer and Razel (1974).

17 Miller (1956).
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(2) similar associations to several chunks interfere with the retrieval of the
target chunk. The great importance of these links between particular
chunks in Long-Term Memory, that is, the semantic coding of infor-
mation, leads us to list it as the predominant code type,

Kitm = semantic .

To be stored in Long-Term Memory, information from the sensory
memories must ultimately be encoded into symbolic form: a pattern of
light and dark might be coded as the letter A, an extended pattern coded
as a system error message. When the information from Working
Memory becomes part of Long-Term Memory, the precise way in which
it and the coincident Working Memory contents were encoded deter-
mines what cues will be effective in retrieving the item later. Suppose a
user names a computer-imaging file LIGHT (as opposed to DARK). If he
later scans a directory listing of file names to identify which ones were
the ones he created and thinks of LIGHT (as opposed to HEAVY), he will
not be able to recognize the file, because he will be using a different set
of retrieval cues. As a principle of operation,

P2, Encoding Specificity Principle. 1 Specific encoding
operations performed on what is perceived determine what is
stored, and what is stored determines what retrieval cues are
effective in providing access to what is stored.

Because of interference with other chunks in memory that are more
strongly activated by the associations used as retrieval cues, information,
despite being physically present, can become functionally lost. Stated as
a principle,

P3.  Discrimination Principle. The difficulty of memory
retrieval is determined by the candidates that exist in the

memory, relative to the retrieval cues.

Items cannot be added to Long-Term Memory directly (accordingly,
Figure 2.1 shows no arrow in this direction); rather, items in Working

18 Tulving and Thompson (1973).
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Memory (possibly consisting of several chunks) have a certain probability
of being retrievable later from Long-Term Memory. The more associ-
ations the item has, the greater its probability of being retrieved. If a
user wants to remember something later, his best strategy is to attempt to
associate it with items already in Long-Term Memory, especially in novel
ways so there is unlikely to be interference with other items. Of course
this activity, by definition, activates more items in Long-Term Memory,
causing new items to appear in Working Memory, and use capacity. On
a paced task, where a user is given items to remember at a constant rate,
the percentage of the items recalled later increases as the time/item
increases (the probability the item will be stored in Long-Term Memory
and linked so it can be retrieved increases with residence time in
Working Memory), until the time allowed per item is of the same
magnitude as the decay time of Working Memory (after which, more
time available for study does not increase the time the item is in Working
Memory), around &, sec/chunk = 7 sec/chunk.!?

Storing new chunks in Long-Term Memory thus requires a fair
amount of time and several Long-Term Memory retrievals. On the other
hand, Long-Term Memory is accessed on every 70 msec cognitive-
processing cycle. Thus the system operates as a fast-read, slow-write
system. This asymmetry puts great importance on the limited capacity of
Working Memory, since it is not possible in tasks of short duration to
transfer very much knowledge to Long-Term Memory as a working
convenience.

COGNITIVE PROCESSOR

The recognize-act cycle, analogous to the fetch-execute cycle of
standard computers, is the basic quantum of cognitive processing. On
each cycle, the contents of Working Memory initiate associatively-linked
actions in Long-Term Memory (“recognize”), which in turn modify the
contents of Working Memory (“act”), setting the stage for the next cycle.
Plans, procedures, and other forms of extended organized behavior are
built up out of an organized set of recognize-act cycles.

Like the other processors, the Cognitive Processor seems to have a
cycle time of around a tenth of a second:

19 Newell and Simon (1972, p. 793) reviews experiments that gives times of 8~13
sec/chunk.
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7 = 10 {25~170] msec .20

The cycle times for several types of tasks are given in Figure 2.7. The
times vary in the 25~170 msec/cycle range, depending on the specific
experimental phenomenon and experimental circumstances with which
one wishes to identify the cycle. We have chosen as a nominal value 70
msec, about at the median of those in Figure 2.7, but have included
within the upper and lower limits all the estimates from the figure. As
with the Perceptual Processor, the cycle time is not constant, but can be
shortened by practice, task pacing, greater effort, or reduced accuracy.

P4. Variable Cognitive Processor Rate Principle. The
Cognitive Processor cycle time 7. is shorter when greater
effort is induced by increased task demands or information
loads; it also diminishes with practice.

The cognitive system is fundamentally parallel in its recognizing phase
and fundamentally serial in its action phase. Thus the cognitive system
can be aware of many things, but cannot do more than one deliberate
thing at a time. This seriality occurs on top of the parallel activities of
the perceptual and motor systems. Driving a car, reading roadside
advertisements, and talking can all be kept going by skilled intermittent
allocation of control actions to each task, along the lines of familiar
interrupt-driven time-sharing systems.

Summary. This completes our initial description of the Model
Human Processor. To recapitulate, the Model Human Processor consists
of (1) a set of interconnected memories and processors and (2) a set of

20 On the fast end, memory scanning rates go down to 25 msec/item (Sternberg,
1975, p. 225, Figures 8 and 9, lower error bar for LETTERS). Michon (1978, p. 93)
summarizes the search for the "time quantum” as converging on 20~30 msec. On the
slow end, silent counting, which takes about 167 msec/item (Landauer, 1962), has
sometimes been taken as a minimum cognitive task. It has sometimes been argued (Hick
1952) that the subject in a choice reaction time experiment makes one choice for each bit
in the set of alternatives, in which case a typical value would be 153 msec/bit (Figure
2.22). Welford (1973, in Kornblum) has proposed a theory of choice reaction in which
the subject makes a series of choices, each taking 92 msec. Blumenthal (1977) reviews
an impressively large number of cognitive phenomena with time constraints in the tenth
of a second range.
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Rate at which an item can be matched
against Working Memory:

Digits 33 [27~39] msec/item Cavanaugh (1972)
Colors 38 msec/item Cavanaugh (1972)
Letters 40 [24~65} msec/item Cavanaugh (1972)
Words 47 [36~52] msec/item Cavanaugh (1972)
Geometrical shapes 50 msec/item Cavanaugh (1972)
Random forms 68 [42~93] msec/item Cavanaugh (1972)
Nonsense syllables 73 msec/item Cavanaugh (1972)
Range = 27~83 msec/item

Rate at which four or fewer objects
can be counted:

Dot patterns 46 msec/item Chi & Klahr (1975)
3-D shapes 94 {40~172] msec/item Akin and Chase (1978)

Range = 40~172 msec/item

Perceptual judgement:
92 msec/inspection Welford'(1973)
Choice reaction time:
92 msec/inspection Welford (1973)
153 msec/bit Hyman (1953)
Silent counting rate:
167 msec/digit Landauer (1962)

Figure 2.7. Cognitive processing rates.
Selected cycle times (msec/cycle) that might be identified with the Cognitive
Processor cycle time.

principles of operation. The memories and processors are grouped into
three main subsystems: a perceptual system, a cognitive system, and a
motor system. The most salient characteristics of the memories and
processors can be summarized by the values of a few parameters:
processor cycle time 7, memory capacity p, memory decay rate §, and
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memory code type x. Each of the processors has a cycle time on the
order of a tenth of a second.

A model so simple does not, of course, do justice to the richness and
subtlety of the human mind. But it does help us to understand, predict,
and even to calculate human performance relevant to human-computer
interaction. To pursue this point, and to continue our development of
the Model Human Processor, we now turn to an examination of sample
phenomena of human performance.

2.2. HUMAN PERFORMANCE

We have said that in order to support cognitive engineering of the
human-computer interface, an applied information-processing psychology
should be based on task analysis, calculation, and approximation. These
qualities are important for the Model Human Processor to possess if we
are to address the practical prediction of human performance. Although
it might be argued that the primitive state of development in psycho-
logical science effectively prevents its employment for practical engi-
neering purposes, such an argument overlooks the often large amounts of
urnc: rtainty also encountered in fields of engineering based on the
physical sciences. The parameters of soil composition under a hill, the
wind forces during a storm, the effects of sea life and corrosion on
underwater machinery, the accelerations during an earthquake—all are
cases where the engineer must proceed in the face of considerable
uncertainty in parameters relevant to the success of his design.

A common engineering technique for addressing such uncertainty is
to settle on nominal values for the uncertain parameters representing low,
high, and typical values, and to design to these. Thus a heating engineer
might calculate heating load for a building at design temperatures of
10°F. for winter, 105°F. for summer, and a more common 70°F. day.

A similar technique helps us to address the uncertainties in the
parameters of the Model Human Processor. We can define three
versions of the model: one in which all the parameters listed are set to
give the worst performance (Slowman), one in which they are set to give
the best performance (Fastman), and one set for a nominal performance
(Middleman).

The difference between the results of the Middleman (nominal) and
the Fastman-Slowman (range) calculations must be kept clearly in mind.
Secondary effects, outside the scope of the model, may mean that the
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appropriate parameter value for a particular calculation lies at a place in
the range other than that given as the nominal value: the real predic-
tions of the Model Human Processor are that a calculated quantity will
lie somewhere within the Slowman~Fastman range. On the other hand,
because these ranges are set by extreme and not particularly typical
values, the range is pessimistically wide. The nominal value for each
parameter allows a complement to the range calculations based on a
typical value for the parameter at some increased risk of inaccuracy due
to secondary effects. The two types of calculation, range and nominal,
can be used together in a number of ways depending on whether we are
more interested, say, in assessing the sensitivity of a nominal calculation
to secondary effects or in identifying the upper or lower boundary at
which some user performance will occur.

We turn now to examples of human performance bearing potential
relevance to human-computer interaction, relating these, where possible,
to the Model Human Processor. The performances are drawn from the
areas of perception, motor skill, simple decisions, learning and retrieval,
and problem solving.

Perception

Many interesting perceptual phenomena derive from the fact that
similar visual stimuli that occur within one Perceptual Processor cycle
tend to fuse into a single coherent percept. As an example, consider the
problem of the rate at which frames of a moving picture need to be
changed to create the illusion of motion.

MOVING PICTURE RATE

~ Example 1. Compute the frame rate at which an animated
image on a video display must be refreshed to give the
illusion of movement.

Solution. Closely related images nearer together in time than 7p, the
cycle time of the Perceptual Processor, will be fused into a single image.
The frame rate must therefore be such that:

Frame rate > 1/7p = 1/(100 msec/frame)
= 10 frames/sec .
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This solution can be augmented by realizing that in order to be
certain that the animation will not break down, the frame rate should, of
course, be faster than this number. How much faster? A reasonable
upper bound for how fast the rate needs to be can be found by redoing
the above calculation for the Fastman version of the model (7, = 50
msec):

Max frame rate for fusion = 1/(50 msec/frame)
= 20 frames/sec .

This calculation is in general accord with the frame rates commonly
employed for motion picture cameras (18 frames/sec for silent and 24
frames/sec for sound).

The Model Human Processor also warns us of secondary phenomena
that might affect these calculations. By the Variable Perceptual Processor
Rate Principle, 7, will be faster for the brighter screen of a cinema
projector and slower for the fainter screen of a video display terminal.

MORSE CODE LISTENING RATE

Because stimuli within 7p fuse into the same percept, the cycle time
of the Perceptual Processor sets fundamental limits on the speed with
which the user can attend to auditory or visual input.

Example 2. In the old type of Morse Code device, dots and
dashes were made by the clicks of the armature of an
electromagnet, dots being distinguished from dashes by a
shorter interval between armature clicks. Subsequently,
oscillators came into use which allowed the dots and dashes
to be done by bleeps of different lengths. Should there be
any difference between the two devices in the maximum
rate at which code can be received?

Solution. With the older device, a dot requires the perception of two
events (two clicks of the armatures). According to the model, this
requires 27 p msec, if each of these events is to be separately perceived.
Officially a dash is defined as 3 dots in length, leading to an estimate of
67p. However, high speed code often differs from the standard; and an
expert should be able to perceive a dash as different than a dot if it is at
least 7, longer, giving 27p+7p, = 37, msec as the minimum time for a
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dash. Assuming a minimum 17, space between letters and 27, space
between words, we can calculate the reception rate for random text by
first computing the minimum reception time per letter and then
weighting that by English letter frequencies, with an appropriate adjust-
ment for word spacing. This calculation should underestimate somewhat
the reception rates for each system, since it is only based on a first-order
approximation to English below the word level; but it will allow a
relative comparison. The probabilities for the letters in English are given
in Figure 2.8 together with their Morse Code representation and the
time/letter computed by the rates given above, assuming 7, = 100
[50~200] msec. Weighting the time/code by the frequency of its occur-
rence gives a mean time of 709 [354~1417] msec/letter (including spacing
between letters). Assuming 4.8 char/word (the value for Bryan and
Harter’s 1898 telegraphic speed test) gives:

Max reception rate = (.709 [.354~1.417] sec/letter
X 4.8 letters/word)
+ .200 [.100~.400] sec/word-space
= 3.6 [1.9~7.0] sec/word
= 17 [9~32] words/min .

For the oscillator-based telegraph, on the other hand, a dot requires
the perception of only one event. This should require 7,. Assuming
that a dash can be distinguished from a dot if the dash is 27, long, the
time per letter would be 453 [227~907] msec and the calculation is:

Max reception rate = (.453 [.227~.907] sec/letter
X 4.8 letters/word)
+ .200 [.100~.400] sec/word-space
= 2.4[1.3~4.6] sec/word
= 25 [13~47]} words/min . i

So it would be expected that operators could receive code faster with
the newer oscillator-based system than with the older system. Informal
evidence suggests that this is true and that the oscillator-based rates are at
least in the right vicinity. Current reception rates are faster than the rates
of turn-of-the-century telegraphers, although this comparison may be
confounded with the effect of sending equipment. Whereas 20~25
words/min with the old telegraph was regarded as the range for very



Calculated Minimum Reception Time

Morse
Letter D Code Armature System Oscillator System
(msec) (msec)

E 1332 . 300 [150~600] 200 [100~400]

T .0978 - 400 [200~800] 300 [150~600]

A .0810 . — 600 [300~1200] 400 [200~800}

H 0772 soes 900 [450~1800} 500 [250~1000]
0 .0663 - 1000 [500~2000] 700 [350~1400]
S .0607 700 [350~1400] 400 [200~800]

N .0601 — 600 [300~1200] 400 [200~800]

R .0589 o —o 800 [400~1600] 500 [250~1000]
| .0515 oo 500 [250~1000] 300 [150~600]

L .0447 o—eo 1000 [500~2000] 600 [300~1200]
D .0432 —e 800 [400~1600] 500 [250~1000]
M .0248 -—- 700 [350~1400} 500 [250~1000]
C .0236 —e—s 1100 [550~2200] 700 [350~1400]
u .0309 oo — 800 [400~1600] 500 [250~1000]
w .0287 ¢ — - 900 [450~1800] 600 [300~1200]
G 0218 —— 900 [450~1800] 600 [300~1200]
Y 0212 —.—— 1200 [600~2400} 800 [400~1600}
F 0179 oo 1000 {500~2000] 600 [300~1200]}
B 0163 —ee 1000 [500~2000} 600 [300~1200]
P 0163 o— o 1100 [550~2200] 700 [350~1400])
K .0107 —.— 900 [450~1800] 600 [300~1200]
\ .0099 see 1000 [500~2000] 600 [300~1200]
J .0015 ——— 1200 [600~2400} 800 [400~1600]
X .0014 —eo— 1100 [550~2200] 700 [350~1400}
Q .0008 ——— 1200 [600~2400] 800 [400~1600]
V4 .0006 ——e 1100 [550~2200] 700 [350~1400]

Figure 2.8. Morse codes arranged in order of frequency of

individual letters.

Frequencies (as a proportion of total letters) in column p are based on Mayzner

and Tresselt (1965).

48
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good, experienced railroad telegraphers by Bryan and Harter (1898),
reception rates of 45~50 words/minute are seen with the oscillator-based
code (and the world record is over 75 words/minute!). This comparison
is in the predicted order and, as expected, somewhat faster than our
calculation based on a first-order approximation to English. A better
approximation to the first-order assumptions of our calculation (but, alas,
for Russian) is the set of rates achieved by a set of non-Russian-speaking
telegraphers whose job it was to transliterate Russian Morse Code: 30
words/minute average, 38~40 words/minute maximum, and 45 words/
minute top (Robin Kinkead, personal communication)—rates consonant
with our oscillator-based calculation.

PERCEPTUAL CAUSALITY

One way for two distinct stimuli to fuse is for the first event to appear
to cause the other.

Example 3. In a graphic computer simulation of a pool
game, there are many occasions upon which one ball
appears to bump into another ball, causing the second one
to move. What is the time available, after the collision, to
compute the initial move of the second ball, before the
illusion of causality breaks down?

Solution. The movements of the first and second balls must appear to
be part of the same event in order for the collision to appear to cause the
movement of the second ball, if the movement occurs within one cycle of
100 msec. Since the illusion will break down in the neighborhood of 100
msec, the program should try to have the computation done well before
this time. The designer can be sure the illusion will hold if designed for
Fastman, with the computation done in 50 msec. i

Figure 2.9 shows the results of an experiment analogous to Example 3
in which subjects had to classify collisions between objects (immediate
causality, delayed causality, or independent events) as a function of the
delay before the movement of the second object. The perception of
immediate causality ends in the neighborhood of 100 msec; some degra-
dation of immediate causality begins for some subjects as early as 50
msec.
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Figure 2.9. Perceived causality as a function of inter-event
time between the motion of two objects.

Three types of perceived causality are shown as a function of the interval
separating the end of Object A’'s motion and the beginning of the second object’s
motion. Average over three subjects. From Michotte (1963, Figure 5, p. 94).

READING RATE

Many perceptual phenomena concern a visual area large enough that
the fovea of the eye must be moved to see them. When eye movements
are involved, they can dominate the time required for the task.

Example 4. How fast can a person read text?

Solution. Assuming 230 msec/saccade (from Figure 2.1), a reading
rate can be calculated from assumptions about how much the reader sees
with each fixation. If he were to make one saccade/letter (5 letters/
word), the reading rate would be:

(60 sec/min)/(.230 sec/saccade X § saccade/word)
= 52 words/min .
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For one saccade/word, the rate would be:

(60 sec/min)/(.230 sec/saccade X 1 saccade/word)
= 261 words/min .

For one saccade/phrase (containing the number of characters/fixation
found for good readers, 13 chars = 2.5 words), the rate would be:

(60 sec/min)/(.230 sec/saccade X 1/2.5 saccade/word)
= 652 words/min . §2!

How much the reader takes in with each fixation is a function of the
skill of the reader and the perceptual difficulty of the material. If the
material is conceptually difficult, then the limiting factor for reading rate
will not be in the eye-movement rate, but in the cognitive processing.
The calculation implies that readers who claim to read much more than
600 words/min do not actually see each phrase of the text. In other
words, speed readers skim.

Motor Skill

Just as fundamental limits on the rate of user perceptual performance
were set by the cycle time of the Perceptual Processor, limits on
movement are set by the rates of the Perceptual and Motor Processors.
Two basic kinds of movement occur in human-computer interaction: (1)
movement of the hand towards a target and (2) keystrokes.

FITTS'S LAW

The first kind of movement, moving the hand towards a target, can be
understood, and an expression for movement time derived, using the
Model Human Processor plus some assumptions.”2 Suppose a person
wishes to move his hand D cm to reach an S cm wide target (see Figure
2.10). The movement of the hand, as we have said, is not continuous,
but consists of a series of microcorrections, each with a certain accuracy.

21 This calculation is discussed in Hochberg (1976, p. 409).

2 This derivation is similar to that of Crossman and Goodeve (1963) and Keele
(1968).
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START ¢— + TARGET

—

D

Figure 2.10. Analysis of the movement of a user’s hand to a

target.

The hand starts from the point labeled START and is to move to anywhere inside
the TARGET as fast as possible. D is the distance to the target and S is the
width of the target.

To make a correction takes at minimum one cycle of the Perceptual
Processor to observe the hand, one cycle of the Cognitive Processor to
decide on the correction, and one cycie of the Motor Processor to
perform the correction, or 7p+7-+7,,. The time to move the hand to
the target is then the time to perform n of these corrections or
n(rp+7o+7)). Since Tp+7.+7,, = 240 msec, n is the number of
roughly 240-msec intervals it takes to point to the target.

Let X, be the distance remaining to the target after the ith corrective
move and X, (= D) be the starting point. Assume that the relative
accuracy of movement is constant, that is, that X,/X;_; = e, where ¢ < 1
is the constant error. On the first cycle the hand moves to

X, =¢€X, =¢€D.
On the second cycle, the hand moves to
X, =¢eX, =e(eD) = e’D.
On the nth cycle it moves to

X =¢D. Q1)

n
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The hand stops moving when it is within the target area, that is when
e"D < %S.
Solving for n gives
n = —logy,(2D/S) / log, € .

Hence the total movement time T pos is given by

Tpos =n(rp+7otT7)y)
Tpos = I, log,(2D/ ), 2.2)
where [, = —(1ptr1+7))/log, €.

Equation 2.2 is called Fitts’s Law. It says that the time to move the hand
to a target depends only on the relative precision required, that is, the
ratio between the target’s distance and its size. Figure 2.1la plots
movement time according to Equation 2.2 for an experiment in which
subjects had to alternate tapping between two targets S in. wide, D in.
apart. The points fall along a straight line as predicted, except for points

at low values of log2(2D/S).
The constant ¢ has been found to be about .07 (see Keele, 1968;

Vince, 1948), so 1, can be evaluated:

= —240 msec / log,(.07) bits
= 63 msec/bit .

Iy

A Fastman~Slowman calculation gives a range of /,, = 27~122 msec/
bit. Several methods have been used to measure the correction time.
One is to turn out the lights shortly after a subject starts moving his hand
to a target and note the minimum light-on time that affects accuracy.??
Another is to detect the onset of correction from trajectory acceleration
changes.24 These methods have given cycle time values in the range

3 For a discussion, see Welford (1968).
24 Carlton (1980); Langolf (1973); Langolf, Chaffin, and Foulke (1976).
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From Welford (1968, Figures 5.3 and 5.4).

(a) Times for reciprocal tapping with a 1 oz. stylus plotted in terms of Equation
from an experiment by Fitts (1954). Each point is based on a total of

2.2. Data
613~2669

(b) The same data as in (a) plotted in terms of Equation 2.3, corrected for errors

movements obtained from 16 subjects.

by Crossman’s method (see Welford, 1968).

54
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Tpt 1ot Ty = 190~260 msec/cycle (we calculated 7p+7,-+7), = 240
msec). The measured correction times correspond to [/ y = 50~68
msec/bit (we calculated 63 [27~122] msec/bit).

Measurements of /,, determined directly by plotting observations
according to Equation 2.2 give somewhat higher values centering around
13, = 100 msec/bit. The slope of the line drawn through the points in
Figure 2.1la is about /,, = 104 msec/bit.  Slopes from other
experiments are in the /,, = 70~120 msec/bit range. Since /,, will be
useful for later calculations, we set here a value based on several
experiments:

Iy, = 100[50~120] msec/bit .»

This value is a refinement of the value calculated from the Model
Human Processor.

The problem of the points that wander off the line for low values of
log,(D/S) and the slight curvature evident in Figure 2.11a can be
straightened by adopting a variant of Fitts’s Law developed by Welford
(1968): ‘

T =1,,log,(D/S +.5). (2.3)
M ™22

In Figure 2.115 the same data are plotted using Equation 2.3 (and a
method of correcting for errors). All the points now lie on the line and
the slight bowing has been straightened. This equation gives a somewhat
higher estimate for /,, in Figure 2.115, /,, = 118 msec/bit.

25 For single, discrete, subject-paced movements, the constant is a little less than / M
= 100 msec/bit and closer to the 50~68 msec/bit value cited above for other
experimental methods and for our nominal calculation. Fitts and Peterson (1964) get
70~75 msec/bit. Fitts and Radford (1966) get a value of 78 msec/bit (12.8 bits/sec).
Pierce and Karlin (1957) get maximum rates of 85 msec/bit (11.7 bits/sec) in a pointing
experiment. For continuous movement, repetitive, experimenter-paced tasks, such as
alternately touching two targets with a stylus or pursuit tracking, the constant is a little
above IM = 100 msec/bit. Flkind and Sprague (1961) get maximum rates of 135
msec/bit (7.4 bits/sec) for a pursuit tracking task. Fitts's original dotting experiment
(Figure 2.11) gives 118 msec/bit using Equation 2.3. Welford's (1968) study using
Equation 2.3 and the actual distance between the dots gives 120 msec/bit.
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Example 5. On a certain pocket calculator, the heavily used
gold f button employed to shift the meaning of the keys is
located on the top row (see Figure 2.12). How much time
would be saved if it were located in a more convenient
position just above the numbers?

Solution. Assume that the position of the 5 button is a fair repre-
sentation of where the hand is just before pressing the f button. From
the diagram, the distance from the 5 button to the present f button is 2
in., to the proposed location, 1 in. The button is 1/4 in. wide. By the
Equation 2.3 version of Fitts’s Law, movement time is /,, log, (D/S +
.5), where I, is expected to be about 100 msec/bit. So the difference in
times required by the two locations is

-1 {7
1 |4
X1 (1{ 2] |3
MO.

Figure 2.12. Location of keys on the pocket calculator in
Example 5.
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AT =100 [log, (2/.25 + .5) — log, (1/.25 + .5)]

= 100 (3.09 — 2.17)
=90 msec.l

A test of this calculation by an informal experiment is in agreement
with the predicted result. The time to press the f button was measured
by counting the number of times the hand could alternate between the f
and S button in 15 sec at both the old and the proposed location. By
this method, the mean time/movement is just 15 sec/number of move-
ments. The experiment was repeated three times:

OldTime  New Time
Triall: 290msec 200 msec/button-press
Trial 2:  240msec 170 msec/button-press
Trial 3: 230 msec 180 msec/button-press
Mean: 250 msec 180 msec/button-press

Observed difference: 70 msec/button-press
Calculated difference: 90 msec/button-press

Notice that the time to press the f button is greater than what it could be
in a more favorable location by over 1/3 (70 msec difference in a 180
msec operation). Of course, it is important to keep in mind that the
design of the entire calculator will entail some trade-offs in individual key
locations.

POWER LAW OF PRACTICE

Before considering the second type of motion, keystrokes, it is useful
to digress to consider a learning principle applicable to perceptual-motor
learning generally: The time to do a task decreases with practice. It
was Snoddy (1926) who first noticed that the rate at which time improves
is approximately proportional to a power of the amount of practice as
given by the following relationship.

P6. Power Law of Practice. The time T, to perform a task
on the nth trial follows a power law:

T, = Tyn~® 2.4)
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or
log7, =C— alogn, (2.5)

where T, is the time o do the task on the first trial,
C = log T}, and a is a constant.

It can be seen in Equation 2.5 that performance time declines linearly
with practice when plotted in log-log coordinates. Typical values for a
are in the .2~.6 range.

Example 6. A control panel has ten keys located under ten
lights. The user is to press a subset of the keys in direct
response to whatever subset of lights is illuminated. If the
user’s response time was 1.48 sec for the 1000th trial and
1.15 sec for the 2000th trial, what is the expected response
time for the 50,000th trial?

Solution.  Using Equation 2.5, we can solve for 7; in order to
eliminate it.

T, =T, n
(T1000)1000% = (Ty0,)2000%
a = 1og (Tygy/ Tyono) / 108 (2000/1000) = .36. 2.6)

Solving for 7 using Equation 2.6,
T, = (Tygge) 1000 =18 sec.
The entire equation is
T, =18n"%, .7
Thus, the expected time on the 50,000th trial is
Ts5.000 = (18)(50,0007-6) = 37 sec.. B
Figure 2.13 shows the results of an experimental study of this

situation carried out to 75,000 trials. The response time on the 50,000th
trial was .40 sec compared to the .37 sec calculated. Characteristically,
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Figure 2.13. An example of the Power Law of Practice.
Improvement of reaction time with practice on a 1023-choice task. Subjects
pressed keys on a ten-finger chordset according to pattern of lights directly above
the keys. After Kiemmer (1962).

the data here are well fit by Equation 2.5, except at the ends. Estimating
by eye, the best-fitting straight line in the linear portion of the curve
gives T = 21038, comparable to Equation 2.7.

The Power Law of Practice applies to all skilled behavior, both
cognitive and sensory-motor.26 However, practice does not cover all
aspects of learning. It does not describe the acquisition of knowledge
into Long-Term Memory or apply to changes in the quality of
performance. Quality does improve with practice, but it is measured on
a variety of different scales, such as percentage of errors, total number of
errors, and preference ratings, that admit of no uniform treatment.

KEYING RATES

The Power Law of Practice plays an important role in understanding
user keystroking performance. Keying data into a system is a highly
repetitive task: in a day’s time, a keypuncher might strike 100,000 keys.
The Power Law of Practice has three practical consequences here. First,
there is a wide spread of individual differences based primarily on the

2 See Newell and Rosenbloom (1981).
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amount of previous typing practice. Typing speed ranges from 1000
msec/keystroke for an absolute novice to 60 msec/keystroke for a
champion typist, more than a factor of 15 difference. Second, the power
function form for the practice curve (Equation 2.4) has a very steep
initial slope (linear in the log means it drops through the first factor of 10
in one hundredth the time it takes to drop through the second factor of
ten—consult Figure 2.13). Thus typists pass through an initial unprac-
ticed state to one of moderate skill rather rapidly. Third, the practice
curve becomes relatively flat after a short time (though it never entirely
ceases to improve, according to the Power Law). This means that, for
users of moderate skill, performance is relatively stable and one can
indeed talk about constant rates for typing and keying.

Example 7. How fast can a user repetitively push with one
finger a key on the typewriter keyboard? How fast can he
push two keys using alternate hands?

Solution. In the case of a repeated keystroke, the finger must first be
cocked back, then brought forward. Each half of the stroke, according to
the Model Human Processor, will take 7,, = 70 msec and the whole
stroke will take 7, +7, = 140 msec. In the case of keystrokes between
alternate hands, it should be possible for one hand to stroke while the
other is cocking if the strokes are coordinated, so in these cases strokes
could follow each other within 70 msec. il

These two are the fastest and slowest cases, hence the typing rate for
a skilled typist might be expected to lie somewhere within 70~140
msec/keystroke for a mixture of same-hand and different-hand stroke
combinations (if the typist is given sufficient look-ahead so that per-
ceptual and cognitive processing overlaps motor processing).

Figure 2.14 gives data-entry rates for some keystroke-operated devices.
For typewriter-like devices, expert typing rates hover in the 100~300
msec range, as expected. Champion keypunch and typing performance is
in the 60~80 msec range, faster than the Middleman calculation above,
but slower than the 30 msec lower bound set by a Fastman calculation.
As Figure 2.14 shows, difficult text or lack of expertise exact perceptual
and cognitive costs that slow the rate.

More detailed calculations of user performance can be made using
data for individual interkeystroke times such as those collected by
Kinkead (1975) and reproduced in Figure 2.15, which breaks down



2.2, HUMAN PERFORMANCE 61

Typewriters (msec/stroke)
Best keying 60 Dresslar (1892)
Typing text 168~231 Hershman and Hillix (1965)
Typing random words 200~273 Hershman and Hillix (1965)
Typing random letters 462~500 Hershman and Hillix (1965)
Typing (1 char look-ahead)  750~1500  Hershman and Hillix (1965)
Unskilled typing of text 1154 Devoe (1967)
10-Key Pads {msec/stroke)
Numeric keypunching 112~400 Neal(1977)
Keypunching 300~444 Klemmer and Lockhead (1962)
10-key telephone 789~952 Pollock and Gildner (1963), Deininger (1960)
10-key adding machine 1091 Minor and Revesman (1962)
Other Keyboards (msec/stroke)
Simple pushbuttons 570~690 Munger, Smith, and Payne (1962)
5X5 adding machine 600~800 Pollock and Gildner (1963)
Coded physician’s order 779~2222  Minor and Pittman (1965)
10X 10 adding machine 1200 Minor and Revesman (1962)
Chord Sets (msec/chord)
Stenotypists 333 Seibel (1964)
8-key chordset 508~1017  Pollock and Gildner (1963)
Mail sorting 517~882 Cornog and Craig (1965)
Hand Entry (msec/char)
Hand printing 545~952 Devoe (1967)
Handwriting 732 Devoe (1967)
Mark sensing 800~3750  Devoe (1967), Kolesnick and Teel (1965)
Hand punching 3093 Kolesnick and Teel (1965)

Figure 2.14. Keying times for selected input techniques.

interkeystroke times by key and by whether the preceding keystroke was
on the same hand, finger, or key as the current keystroke. These times
can be used to make approximate comparisons between keyboard layouts.
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Example 8. A manufacturer is considering whether to use
an alphabetic keyboard (see Figure 2.16) on his small
business computer system. Among several factors influ-
encing his decision is the question of whether experienced
users will find the keyboard slower for touch-typing than
the standard Sholes (QWERTY) keyboard arrangement.
What is the relative typing speed for expert users on the
two keyboards?

Solution. Figure 2.15 gives the time/keystroke ¢; for all but the most
infrequent letter keys, broken down by whether the previous key was the
same key, the same finger, the same hand, or the other hand. Figure
2.17 gives the frequencies f; with which two-letter combinations appear in
English (punctuation and space digraphs are, unfortunately, not available
in the table). The expected typing rate is just the weighted average,

Sholes (Standard)

r=- " 1T r= 7/~ r-1-T 1T- T-T™71
| { | t I' : ' | ! I : | : I ! |
r_]___]_ 1 'l 1 'I | A —T'—"]L"'IJ
l QIW]|JE|RITHYI1U IO | P j_ | |
LT"" — 1 T "'TL"J1
I AJSID|IFIG]H K|lL | |
el —— L - -t
1 1
1 1 ZIX|]CclVvIBlINIM |
[ T, i l.1 1 1 1 1
1 T
| |
e e e e e e e e o ]
Alphabetic
r=a-—"-"r"F = " 77" TT T TrrTrTTrToOITITTrTM
1 (N T S AN TR (N N SR A IR RS BN |
Jo_d__ 1 | 1 'I | ll 1 ! 1 11__11__'_1
| AlB|CI|DIEfFIG|HTIT ]|J 1 | |
- i I 1 L__'_l__j_l
| K LIM|INIO PIQ]|R}S | |
rJ_' _____ II T ~l___1
] ] THUIV|IW ) X|jY!'Z |
Lo o T 1 | _————dd
1 |
b e e e — — J

Figure 2.16. Arrangement of letter keys on Sholes and on
one possible alphabetic typewriter.
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Second Letter

First
Letter A B C D E F G H { J K L M
A 2 229 354 242 9 118 214 13 375 19 142 842 335
B 182 15 — 2 547 — — — 121 13 — 227 —_
C 562 — 49 — 496 - 4 543 248 — 1868 125 —
D 172 —_ - 36 660 8 34 6 403 — — 51 1
E 880 13 337 1213 433 112 110 19 165 2 38 583 310
F 174 2 — — 233 127 — — 290 — — 66 —
G 136 — — — 380 2 583 312 170 —_ —_ 61 2
H 1056 9 —_ 4 3139 8 2 — 848 — — 8 6
| 210 66 589 310 329 218 265 — — — 59 543 339
J 32 — — — 44 — — — 4 — —_ — —
K 8 4 — 2 293 4 2 4 138 — — 17 —
L 452 13 6 337 937 61 4 2 655 — 25 740 34
M 547 106 - — 757 9 — — 328 —_— — 6 76
N 250 — 254 1476 846 36 1190 19 288 15 70 79 28
(o] 64 68 132 208 45 942 62 iR 74 6 87 365 553
P 343 — —_ — 435 — — 61 142 - 2 295 6
Q — — — — — — — — — — — — —
R 577 32 108 167 1730 19 76 15 615 — 112 129 117
S 252 34 13 2 797 11 2 473 464 — 74 72 102
T 456 9 62 4 1103 8 — 3397 971 2 — 138 42
1] 98 55 161 55 131 15 182 — N — 4 352 297
v 78 — — — 929 — — — 229 — — — —
w 571 — 4 6 507 — — 490 231 — 2 23 2
X 23 — 34 — 28 4 —_ 6 25 - — 2 —
Y 25 je] 15 4 140 — — 4 38 — — 13 28
z 17 —_ — — 61 —_ —_ _ 8 —_ - 6 —_

Figure 2.17. Frequencies of English digraphs.

Probability of digraph occurrence x 105. Computed from data of Underwood and
Schulz (1960, Appendix D).

Typingrate = 2, f. 1, .

Applying this formula to both the Sholes keyboard (the conventional
one) and the alphabetic keyboard of Figure 2.16 (and dividing the result
by Z,f; to compensate for the fact that only about 90% of the digraph
times are given in Figure 2.17) gives

Typing rate (Sholes) = 152 msec/keystroke (72 words/min)
Typing rate (alphabetic) = 164 msec/keystroke (66.5 words/min).

The alphabetic arrangement is calculated to be about 8% slower than the
Sholes arrangement. #
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Second Letter

First

Letter N (o) P Q R S T u v w X Y z
A 2146 2 193 2 1128 1028 1362 115 252 70 13 272 25
B 2 293 — _— 140 15 4 246 4 — — 127 —
C — 8653 — 2 333 g9 333 81 — — — 32 —_
D 34 257 4 — 108 161 2 13 21 8 — 70 —
€ 1355 72 149 25 2106 1285 431 13 288 170 185 204 4

F 6 431 - — 210 — 127 123 _— — — 4 —
G 32 184 6 —_ 176 81 19 87 — — — 13 —
H 13 — 2 — 98 23 197 127 2 11 — 19 —
I 2394 471 68 2 386 1105 1238 8 288 — 26 — 62
J — 89 —_ — — — - 57 — —_ -— - —
K 97 — 2 — 2 59 2 — — —_ - 15 —
L 11 378 28 — 9 112 106 100 26 25 — 481 —
M 2 386 206 — 19 78 2 142 — — — 114 —
N 64 486 4 8 6 384 967 87 34 — 2 134 e]
O 1487 390 225 2 1239 284 466 1306 138 435 21 42 8
P 2 252 174 — 343 49 62 91 — — — 13 —
Q — — -_ - — — — 115 — — — — —
R 202 819 17 — 114 458 299 134 62 8 —_ 252 —
S 25 331 157 23 2 386 1151 242 — 47 — 61 —
T 8 694 2 — 413 363 263 216 — 78 — 202 —
V) 460 — 142 — 541 481 524 — 9 — 2 8 2
v — 55 - —_ — -— — 2 —_ — — 6 —
w 89 274 — — 25 28 6 — —_ — — 1 —
X — 2 61 _ — — 34 4 — — — — —
Y 11 3562 17 —_— 6 104 30 — 2 9 — — —
r4 — 6 - —_ — — - — — — —_ 8 13

Kinkead (1975) used a similar calculation to show that the Dvorak
keyboard would be expected to be only 2.6% faster than the Sholes
keyboard. This calculation makes two strong assumptions. The first is
that the frequencies of the digraphs will not seriously affect the digraph
times, a reasonable assumption by the Power Law argument above. A
more difficult assumption is that there are no substantial leveling effects,
in which slow digraphs slow down faster ones. This last assumption has
been disputed by Yamada (1980a, 19800).

Simple Decisions

We have discussed how simple calculations are possible for perceptual
and motor performance; now we can consider how the perceptual and



66 2 THE HUMAN INFORMATION-PROCESSOR

motor systems, together with central cognitive mechanisms, combine in
simple acts of behavior.

SIMPLE REACTION TIME

The basic reaction time for simple decisions can be derived from
Figure 2.1.

Example 9. A user sits before a computer display terminal.
Whenever any symbol appears, he is to press the space bar.
What is the time between signal and response?

Solution. Let us follow the course of processing through the Model
Human Processor in Figure 2.1. The user is in some state of attention to
the display (Figure 2.18a). When some physical depiction of the letter A
(we denote it a) appears, it is processed by the Perceptual Processor,
giving rise to a physically-coded representation of the symbol (we write it
a’) in the Visual Image Store and very shortly thereafter to a visually
coded symbol (we write it a’') in Working Memory (Figure 2.185). This
process requires one Perceptual Processor cycle 7p. The occurrence of
the stimulus is connected with a response (Figure 2.18¢), requiring one
Cognitive Processor cycle, 7. The motor system then carries out the
actual physical movement to push the key (Figure 2.184), requiring one
Motor Processor cycle, 7,,. Total time required is 7p+7,+7,,. Using
Middleman values, the total time required is 100+70+70=240 msec.
Using Fastman and Slowman values gives a range 105~470 msec. U

In practice, measured times for a simple reaction under laboratory
conditions range anywhere from 100 to 400 msec.

PHYSICAL MATCHES

If the user has to compare the stimulus to some code contained in
memory, the processing will take more steps.

Example 10. The user is presented with two symbols, one
at a time. If the second symbol is identical to the first, he
is to push the key labeled YES, otherwise he is to push NO.
What is the time between signal and response for the YES
case?
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a. Symbol appears on video display. b. Symbol is pi by P to
give physical representation in the Visual Image
Store and a visual code in Working Memory.

t=rp-7c*Tm

c. Cognitive Processor transiates this to d. Motor Processor pushes button.
motor command.

Figure 2.18. Simple reaction-time analysis using the Model
Human Processor.

Solution. The first symbol is presented on the screen where it is
observed by the user and processed by his Perceptual Processor, giving
rise to associated representations in his Visual Image Store and Working
Memory. The second symbol is now flashed on the screen and is
similarly processed (Figure 2.19a). Since we are interested in how long it
takes to respond to the second symbol, we now start the clock at 0. The
Perceptual Processor processes the second symbol to get an iconic
representation in Visual Image Store and then a visual representation in



b. Second symbol transferred 1o Visuai image
Store and Working Memory.

d. Cognitive P
match to motor command.

e. Motor Processor pushes button.

Figure 2.19. Physical name-match analysis using the Model
Human Processor.
68
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Working Memory (Figure 2.19b), requiring one cycle, 7 p- 1f not too
much time has passed since the first symbol was presented, its visual code
is still in Working Memory and the Cognitive Processor can match the
visual codes of the first and second symbols against each other to see if
they are the same (Figure 2.19¢). This match requires one Cognitive
Processor cycle, 7. If they match, the Cognitive Processor decides to
push the YES button (Figure 2.19d), requiring another cycle, 7c- Finally,
the Motor Processor processes the request to push the YES button (Figure
2.19¢), requiring one Motor Processor cycle, 7,,. The total elapsed
reaction time, according to the Model Human Processor, is

Reaction time Tp+ 21C + Ty
= 100 [50~200] + 2X(70 [25~170])+ 70 [30~100]

= 310 {130~640] msec .

As our analyses become more complex, it becomes convenient to use
a more concise notation. Such a notation can be had by writing sym-
bolically what the contents of the memories are after each step. This has
been done for the last two examples, Examples 9 and 10, in Figure 2.20.

NAME MATCHES

If the user has to access a chunk from Long-Term Memory, the
response will take longer.

Example 11. Suppose in Example 10 the user was to press
YES if the symbols had the same name (as do the letters A
and a), regardless of appearance and NO if they did not.
What is the time between signal and response for the YES
response?

The analysis is similar to the previous example except that instead of
performing the match on the visual codes, the user must now wait (see
Figure 2.20 Step 2.01) until the visual code has been recognized and an
abstract code representing the name of the letter is available. The
consequence of adding the new step is the addition of one more
Cognitive Processor cycle,

Reaction time = 7, + 37C + Ty
= 100 [50~200] + 3X(70 [25~170]) + 70 [30~100]
= 380 [155~810] msec .



70 2. THE HUMAN INFORMATION-PROCESSOR

Step Display VIS wM Hand Elapsed Time

Example 9. Simple reaction

State at start of clock:
1. Symbol appears a 0
2. Transmitted to VIS a a” Tp
3. Initiate response a a’’. PUSH-YES TptTc
4. Process motor command « a”’. PUSH-YES PUSH-YES TptT Ty
Example 10. Physical match
State at start of clock: a a”’
1. Second symbol appears a a a” 0
2. Transmitted to VIS a.a a’ a” Tp
2.1. Match a.a a”. a”. MATCH = TRUE TptTe
3. Initiate response o a”. a”, PUSH-YES Tpt2r,
4.  Process motor command a”. a”. PUSH-YES PUSH-YES Tpt 2oty
Example 11. Name match
State at start of clock: a a,":A
1.  Second symbol appears a N A 0
2. Transmitted to VIS ) ay " a;":A Tp
2.01. Recognize a’. a, a, 1A a)":A TptTe
2.1. Match a ay MATCH = TRUE Tpt27e
3. Initiate response @, PUSH-YES Tpt3re
4. Process motor command PUSH-YES PUSH-YES TptITotTy,
Example 12. Class match
State at start of clock: a o’ :ALETTER
1. Second symbol appears B a o' ":ALETTER 0
2. Transmitted to WM a'. g B a:A:LETTER Tp
2.01. Recognize a' g B8, a":A:LETTER TptTc
2.02. Classify a B B":B:LETTER. a'":A:LETTER Tp+ 21,
2.1. Match B MATCH = TRUE Tpt3r,
3. tnitiate response PUSH-YES Tpt 41(.
4. Process motor command PUSH-YES PUSH-YES Tptdr oty

Figure 2.20. Trace of the Model Human Processor’s memory
contents for simple decision tasks.

The symbols « and ﬁ stand for the unrecognized visual representation of the
input; the symbols a’ and ,8' stand for the physical representation of the input in
the Visual Image Store (VIS); the symbols a” and B'' stand for the visual code of
the input in Working Memory (WM); and the symbols A and LETTER, stand for the
abstract representation. The notation a':A means that both visual and abstract
codes exist in Working Memory and are associated with one another.

CLASS MATCHES

It might happen that the user has to make multiple references to
Long-Term Memory.

Example 12. Suppose in Example 11 the user was to press
YES if both symbols were letters, as opposed to numbers.
What would be the time between signal and response?
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The analysis is similar (see Figure 2.20) to the previous example
except that a new step, Classify, is required to convert both versions of
the symbol to the same representation.

Reaction time = 7 pt 41'C + Ty
100 [50~200] + 4X(70 [25~170]) + 70 [30~100]
= 450 [180~980] msec . 1

Experiments have been performed by many researchers to collect
empirical data on the questions presented in these examples. The resuits
are that name matches take about 70 msec longer than physical matches
and that class matches take about 70 msec longer yet. (70 msec is the
nominal value we have used for 7..) Figure 2.21 shows one such
experimental result. Name matches are about 85 msec slower than
physical matches when there is very little time between the first and
second symbol. By the time 2 sec have elapsed, the visual code in
Working Memory has decayed so that the extra step of getting the name
must occur and, in fact, performance is close to that required for a name
match. For these predictions, the relative, nominal value calculation
gives good agreement with the data, but the absolute values of the
reaction times are low (data: 525 msec, calculation: 380 [155~810] msec),
reflecting some systematic, second-order effect adding a constant time to
all the data points. The absolute values remain within the Fastman~
Slowman range however.

CHOICE REACTION TIME

If the user has to make a choice between two responses, we can
analyze the task as in Example 10 where the choices were YES and NO.
If there are a larger number of choices, the situation is more complicated,
but still the task can be analyzed as a sequential set of decisions made by
the Cognitive Processor, each adding a nominal 7~ = 70 msec to the

response.?’  Regardless of the detailed analysis of the mental steps
involved in choosing between alternatives, more alternatives require more
steps and, hence, more time. The relationship between time required and
number of alternatives is not linear because people apparently can
arrange the processing hierarchically (for example, dividing the responses
into groups, then on the first cycle deciding which group should get

27 See Welford (1973) and Smith (1977).
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Figure 2.21. Reaction times for matching successively pre-
sented letters as a function of the inter-stimulus interval.
From Posner, Boies, Eichelman, and Taylor (1969, Figure 2, p. 8).

further consideration). The minimum number of steps necessary to
process the alternatives can be derived from information theory and, to a
first order of approximation, the response time of people is proportional
to the information-theoretic entropy of the decision.

P7. Uncertainty Principle: Decision time T increases with
uncertainty about the judgment or decision to be made:
T = I- H, where H is the information-theoretic entropy of
the decision and I is a constant.

For the case where a person observes n alternative stimuli, which are
associated one-to-one with n responses (example: sorting multiple-part
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business forms by color), this principle can be given a simple mathe-
matical formulation:

H=log,(n+1). (2.8)

The equation, a variant of Hick’s Law, may be taken as an empirical
relationship that simply fits many measured situations, in that no partic-
ular mechanism is proposed. However, the equation is clearly related to
rational ways of processing that minimize expected time. H is a function
of n+1 rather than just n because there is uncertainty about whether to
respond or not, as well as about which response to make. As an
illustration, Figure 2.22 shows the reaction time required between the
onset of one of n equally probable signals and the pressing of the
appropriate button. The figure plots the reaction time against the

600
%
500 / (3
—_ //
g 400 V4
£ ¥
E v
i 300
F o
& 200 /
100 /
0
0 1 2 3 4 56 782910
n
L | | 1 i
0 1 2 3
log, (n +1)

Figure 2.22. Hick’s Law of choice reaction time.
After Welford (1968, p. 62). At the onset of one of n lights, arranged in a row, the
subject is to press the key located below the light.
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number of alternatives (1 to 10), on a log scale showing that the measure-
ments form the straight line predicted from the equation.

Equation 2.8 can be generalized to the case where the n alternatives
have different probabilities of occurring,

H=32_,"plog,(1/p,+ 1). Q.9)

Although the probability in the formula is the person’s subjective prob-
ability, it often can be estimated from the task. When all of the
probabilities are equal (= 1/n), p; log (1/p; + 1) = (1/n) log, (n+1)
and Equation 2.9 reduces to Equation 2.8.

Example 13. A telephone call director has 10 buttons.
When the light behind one of the buttons comes on, the
secretary is to push the button and answer the phone.
What is the percentage difference in reaction time required
between the cases where (1) each one of the telephones
receives an equal number of calls and (2) two of the
telephones are used heavily, receiving 50% and 40% of the
calls, with the remaining 10% uniformly distributed among
the remaining phones?

Solution. By the Uncertainty Principle and Equation 2.9, the reaction
time to signals of unequal probability is

T =1I.H,
where
H=%2_," p;log, (1/p; + 1).
For case (1), p, = .1 and
H =10(1log,(1/.1 + 1)) = 3.46 bits.
For case (2), py=35, py=4, and p;=.0125 (where 3<i<10),

H = 5log,(1/.5 + 1) + 4log,(1/4 + 1)
+ (8)(.0125)(log, (1/.0125) + 1)
= 2.14 bits .
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The difference is AH = 3.46—2.14= 1.32 bits. So the response time for
case (2) is calculated to be 2.14/3.46 = 62% of the reaction time for case
1.1

Example 13 discussed one form of weighted occurrence probability.
Another way of creating uncertainty is not to have signals occurring with
fixed frequencies, but to have sequential dependencies of the signals.
For instance, suppose at each trial either the signal for response #1 or
response #2 can occur. However, the signal for response #1 occurs
with .8 probability after a previous signal for response #1, but only with
.2 probability after a signal for response #2. One can apply the same
information-theoretic formula to compute the uncertainty. Hyman (1953)
tried these different ways of inducing uncertainty, with the results shown
in Figure 2.23. As can be seen, all the different ways of inducing
uncertainty fit the same curve.

800 I I I
STIMULUS INFORMATION VARIED BY:
® Number of Alternatives
B Stimulus Probabilities
A Sequential Dependencies @
600 — —1
g
(7]
E
@
E
l_
c 400 — —]
2
1]
@
v
]
RT = 212+ 153 H
200 — r=.985 N
0 | | 1
0 1 2 3 4

Bits Per Stimulus Presentation

Figure 2.23. Choice reaction time for three different ways
of manipulating the stimulus information H.
Data for a single subject. Hyman (1953, Figure 1, p. 192, subject G.C.).
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Figure 223 shows that it takes about /. = 150 msec/bit of
uncertainty, above a base of about C = 200 ms, which we could identify
as C = 7p+7,,. Using these values we can estimate the actual reaction
times in Example 13: (1) Where each of the telephones receives an equal
number of calls, the reaction time would be 200 msec + (150
msec/bit)(3.46 bits) = 719 msec. (2) Where two of the telephones are
heavily used, the reaction time would be 521 msec. When the 200 msec
intercept is taken into account, case (2) is 72% of case (1).

There are also situations in which we do not know how to compute
H, but in which we do know that relatively more mental steps must be
involved in one case than in another. For example, if the lights and keys
in Example 13 were paired randomly with each other, the user would
require more mental steps, /- would be increased, and the response
could be expected to take more time. The relative number of mental
steps required as a function of the features of a particular set of inputs
and outputs of an interface is called its stimulus-response compatibility.
As the result of practice, fewer mental steps are required and /- becomes
smaller.

Learning and Retrieval

Most user behavior is, of course, more complex than the simple
decisions we have just been discussing for the fundamental reason that
most user behavior is performed in complex system environments and
depends on the user’s knowledge and understanding of those environ-
ments. How knowledge about systems and procedures is stored and

retrieved is, therefore, of some importance.

FORGETTING JUST-ACQUIRED INFORMATION

Recall again the flow of information in Figure 2.1 from perceptual
memory to Working Memory to Long-Term Memory. The ratio between
the decay times of these stores is large, on the order of 200 msec : 7000
msec : 00, which reduces to 1:35:00. The characteristics of retrieval will
depend on the elapsed time since the information was stored, because
that will determine which memories, if any, preserve the item. For
retrievals done a few seconds after input, items may be stored in either
Working Memory or Long-Term Memory, or in both. For retrievals
done a few minutes after input, items are retrievable only from Long-
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Figure 2.24. Probability of recalling a word from a list as a
function of the position of the word in the list and of the

delay before starting recali.
From Glanzer and Cunitz (1966, Figure 2, p. 358). Each point represents the mean
for five lists and 46 subjects.

Term Memory. This fact is illustrated by Figure 2.24, which shows the
results of an experiment in which people were given a list of words to
learn and later to recall (in any order). Between presentation of the list
and recall they were prevented from rehearsal (that is, from physically or
mentally saying the list over and over) by the introduction of a different
task.

The curves show the probability of recall at each position of the
studied items (position 1 is the earliest one presented). The top curve
shows that both the initial and the final words in the list are remembered
better than the ones in the middle. The bottom curve shows what
happens if a delay of 30 seconds occurs before recall is started, allowing
new items to be activated in Working Memory, interfering with those to
be remembered. As can be seen, the difference is that the final words
lose all their extra memorability. The middle curve simply confirms the
analysis by showing that a delay of 10 sec is intermediate in its effect.

Example 14. A programmer is told verbally the one-
syllable file names of a dozen files to load into his pro-
gramming system. Assuming the names are all arbitrary, in
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which order should the programmer write down the names
so that he remembers the greatest number of them (has to
ask for the fewest number to be repeated)?

Solution. Twelve arbitrary file names means the programmer has to
remember 12 chunks (assuming one chunk/name), which is larger than
B+ SO some file names will be forgotten. The act of trying to recall
the file names will add new items to Working Memory, interfering with
the previous names. The items likely to be in Working Memory but not
yet in Long-Term Memory are those from the end of the list. If the user
tries to recall the names from the end of the list first, he can snatch some
of these from Working Memory before they are displaced. The
probability of recalling the first names will not be affected since they are
in Long-Term Memory. Thus, the programmer should recall the last
names first, then the others. §l

Example 15. Suppose that in Example 14, the 12 files did
not have arbitrary names, but rather names such as INIT1,
INIT2, INIT3, |[NIT4, PERF1, PERF2, PERF3, PERF4,
SYSTEMS1, SYSTEMS2, SYSTEMS3, SYSTEMS4. In which
order should the programmer write down the file names so
that he remembers the largest number of them?

Solution. Unlike the case in Example 14 where each file was a
separate chunk, here there are only 4 chunks: INIT#, PERF#,
SYSTEMS #, and the rule for #. The number of chunks is within the
user’s Working Memory span and hence the order of recalling the files
should make little difference. i

Example 16. Show that the amount of time a programmer
can delay typing the name of the file before forgetting it
(with probability > .5) is much longer if the file name is
CAT than if it is TxD. (Assume the work involved does not
permit the user to rehearse the file name.)

Solution. The file name TXD is assumed to be a nonsense word and
therefore must be coded in three chunks. From Figure 2.1, Sy 3
chunks) = 7 [5~34] sec, but the file name CAT is one chunk, Sy
chunk) = 73 [73~226] sec. Nominally, the user can remember the
meaningful name on the order of 73 sec / 7 sec = 10 times longer. 1
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Actually, the advantage of meaningful names is likely to be even
greater than this calculation shows, since meaningful names are easier to
transfer to Long-Term Memory and have more associates to get them
back.

Two more comments are in order. First, we have treated chunks as
if they were all alike. Experimental confirmation of the approximate
equivalence of chunks for memory decay appeared in Figure 2.6. The
figure thus shows that a list of three consonants like TxD is forgotten at
the same rate as a list of three words like (CAT PIG MAN). Second, we
have assumed intervening demands on the user that prevented him from
rehearsing the chunks in Working Memory. If rehearsal is possible, a
small number of chunks can be kept in Working Memory indefinitely, at
the cost of not being able to perform many other mental tasks.

INTERFERENCE IN WORKING MEMORY

According to the Discrimination Principle, it is more difficult to recall
an item if there are other similar items in memory. The similarity
between two items in memory depends on the mental representation of
each item, which depends in turn on the memory in which the item
resides. The two most important dimensions of interference are acoustic
interference and semantic interference. Items in Working Memory are
usually more sensitive to acoustic interference (they are confused with
other items that sound alike) because they usually (but not necessarily)
use xk = acoustic coding (Conrad, 1964). Items in Long-Term Memory
are more sensitive to semantic interference (they are confused with other
items with similar meaning) because they use k = semantic coding.

Example 17. A set of error indicators in a system have
been assigned meaningful three-letter words as mnemonics.
The idea is that, since each word is a single chunk, more
codes can be remembered and written down at a glance,
and since each code is only three letters the codes will be
fast to write. When the system crashes, the operator is to
write down a set of up to five code words that appear in a
special alphanumeric display. Which is more important to
avoid (in order to minimize transcription errors), codes that
are similar in sound or codes that are similar in meaning?

Because the codes are to be written down immediately, the codes will
be held largely in Working Memory during transcription. Because
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Experiment | Experiment i1l
(Spoken) (Visual)
Group A Group S Group AV
(N=20) (N=21) (N=10)
Acoustically Semantically Acoustically
Similar Control Simitar Control Similar Control
mad, man, cow, day, big, long old, deep, Same as Same as
Word Set  mat, map, far, few, broad, great,  foullate, Expt. | Expt. t
cad, can, hot, pen, high, tall, sale, hot, plus plus
cat, cap sup, pit large,wide strong, thin cab, max rig.day
Percentage
Correctly 10% 82% 65% 71% 2% 58%
Recalled

Figure 2.25. Acoustic vs. semantic interference in Working

Memory.

Subjects studied 25 five-word lists. The words in the lists were either acoustically
similar, semantically similar, or unrelated (control condition). The numbers in the
table are the proportion of lists recalled entirely correctly and in the proper order.
Data of Baddeley (1966) as presented in Calfee (1975, Figure 17.6).

Working Memory uses largely acoustic coding, transcription errors will
occur mainly from interference between acoustic codes. Similar sounding
codes should therefore be avoided. 11

Figure 2.25 shows the result of a similar experiment in which subjects
had to remember lists of five words, then recall them twenty seconds
later. They made many errors with the acoustically similar lists (only
1~2% of the lists were recalled error-free), but substantially fewer with
the semantically similar lists (13% of the lists were recalled error-free),
and this was true regardless of whether they were given the lists aurally
or visually.

INTERFERENCE IN LONG-TERM MEMORY

The Discrimination Principle P4 says that the difficulty of recall
depends on what other items can be retrieved by the same cues. Thus, as
the user accumulates new chunks in Long-Term Memory, old chunks that
are semantically similar to the new chunks become more difficult to
remember,
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Figure 2.26. Interference of previously learned material
with later learning.

Recall of serial lists 24 hours later as a function of number of previous lists
learned. Revised version of Underwood (1957, Figure 3, p. 53).

A demonstration of this fact is shown in Figure 2.26. When people
learn lists of words in the laboratory, they forget a large fraction of them
within 24 hours. Underwood (1957) managed to find 16 separate pub-
lished studies that both recorded the amount of forgetting after 24 hours
and gave enough detail to determine the number of previous lists that
had been learned prior to the one tested. Even though these lists
differed in length, time per list item, and details of experimental
procedure, it is clear that learning more prior lists results in more
forgetting and that this accounts for a very large fraction of the forgetting
that occurs. The size of the interference effect shows that much of what
passes for forgetting is failure to retrieve, not actual loss from the
memory.

Example 18. A user is about to learn how to use a new,
line-oriented text-editor, identical to one he already knows
except for the command names (such as ERASE instead of
DELETE). Will his learning of the new editor interfere with
his ability to remember the command names of the old
one?
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Solution. Yes. When the user learns the new editor, there will be
new chunks in memory similar to those of the old editor and, by the
Discrimination Principle, these may interfere with retrievals about the old
editor. Indeed, it is a common experience for programmers to be unable
to recall how to use an old system on which they have spent hundreds of
hours after learning a similar new one. i

Not only does just-acquired knowledge interfere with previous
knowledge in Long-Term Memory, it also interferes with subsequent
knowledge, although usually with smaller effect.28

SEARCHING LONG-TERM MEMORY

Information is retrieved from Long-Term Memory with each basic
cycle of the cognitive processor, but retrieval of the desired item is not
always successful. When sufficiently long times are available for search,
strategies can be used to probe Long-Term Memory repeatedly. Retriev-
ing the name for a known but rarely used command is a typical example.

It is worth emphasizing the difficulty faced by the user attempting to
retrieve an item from his Long-Term Memory, as given by the Encoding
Specificity Principle. When he learned the item, it was encoded in some
way. This encoding included various possible cues for recalling the item.
At retrieval time, the user knows neither the desired item nor its recall
cues. He must therefore guess, placing cues in Working Memory where
they will serve as calls on Long-Term Memory on the next cycle. The
guesses may be good and succeed immediately or, even if they fail, may
retrieve some information that can help on a subsequent try.

A graphic example of Long-Term Memory search, emphasizing its
capacity, the requirement for interactive strategic search, and the fact that
Long-Term Memory is in many ways an external body of knowledge, like
a phone book or an encyclopedia, is shown in Figure 2.27. The subject
was asked, seven years after being graduated, to remember the names of
all 600 members of her high school graduating class. (The experimenter
had the year book.) As the graph shows, even after ten hours of trying,
the subject was still retrieving new information from Long-Term
Memory. Her strategy was an elaborate version of the interactive
retrieval strategy above: In her mind, the subject scanned for faces,
attended old parties, worked the alphabet, wandered down familiar streets
asking for the house occupants. The process also produced fabrications

28 Murdock (1963).
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Figure 2.27. Recall of the names of high-school graduating
class, seven years after being graduated.
Replotted data from Subject S1 in Williams and Hollan (1981).

where non-classmate names were recalled somewhat uncertainly during
early sessions and were later misrecalled as classmate names.

Complex Information-Processing

The psychological phenomena we have discussed so far comprise the
building blocks out of which more complex user behavior is composed.
This more complex behavior spans longer times and is rationally
organized.

OPERATOR SEQUENCES

More complex activities must ultimately be composed of the sorts of
elementary actions we have been discussing. These rudimentary actions
operate to cause physical changes in the state of the world or mental
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changes in the state of the user, and to emphasize this property we call
them operators. It has been realized, in an insight into the structure of
behavior dating at least from the Gilbreths (Gilbreth, 1911), that the
operators are sufficiently independent of the behavioral situation in which
they are observed that different segments of behavior can be seen to be
composed of the same few operators differently combined. It further
turns out that it is possible to define operators sufficiently independent of
each other that the time required by an operator in isolation is a good
approximation to the time it requires as part of a sequence (although
there are generally second-order interactions that set limits to this
additivity).

Figure 2.28 shows a direct attempt to investigate whether the time
required by an operator was the same when it occurred in isolation as
when it occurred as part of a sequence. The tasks were simple operations
of reading analogue and digital dials, looking up values in a table,
computing a simple arithmetic formula, and entering data by keying it.

As the figure shows, the mean operator time required when the
operator is combined with other operators is about the same as the time
required in isolation, but the variability in the operator times is greater
when the operator is combined, with coefficients of variation roughly 15-
20% higher.?? Thus, to a first approximation (and when careful task
definitions and measurements are made), integrated task behavior could
be decomposed, in this case, into component operators, which could be
defined and measured in independent contexts.

Example 19. In the experiment reported in Figure 2.285,
the total time to do the combined task was 51.56 sec (SD
= 18.85). How close is this result to the times predicted
from Figure 2.28a?

The total time to do the combined task should be the sum of the
mean times for the individual tasks:

T=06.24+ 345+ 9.26 + 34.20
= 53.15 sec.

29 It is convenient to express variability in terms of the coefficient of variation CV
= Standard Deviation / Mean, because it makes variability from distributions with
different means more easily comparable; we often use this statistic in preference to the
standard deviation.
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Figure 2.28. Time distributions for four operators (a) when
measured in isolation and (b) when measured as part of an
integrated task.

Five university students performed each of the following operators: READ-METER-
AND-TYPE-INPUT, READ-DIGITAL-DISPLAY-AND-TYPE-INPUT, READ-X-Y-AND-
LOOKUP-Z, READ-X-Y-Z-AND-COMPUTE-Q. They performed the operators both in
isolation and as part of a larger integrated task. From Mills and Hatfield (1974,

Figures 3 and 4).
85
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The measured task time was (53.15—51.56)/53.15 = 3% higher than
calculated. 1

The variance of the combined task should be the sum of the variance
for the individual tasks, assuming independence among the tasks:

SD = v/ [1.532 + 907 + 510 + 1477}
= 15.73 sec
CV = SD/Mean = 15.73/53.15 = .30.

The measured coefficient of variation is 18.85/51.56 = .37, which is
(.37-.30)/.30 = 23% higher than calculated.

THE RATIONALITY PRINCIPLE

A person attempts to achieve his goals by doing those things the task
itself requires to be done. Much of the complexity of human behavior
derives not from the complexity of the human himself (he is simply
trying to achieve his goals), but from the complexity of the task environ-
ment in which the goal-seeking is taking place.3° It follows that, to
understand and predict the course of human behavior, one should
analyze a task to discover the paths of rational behavior. We come,
therefore, to what might be called the fundamental principle of task
analysis:

P8. Rationality Principle. A person acts so as to attain his
goals through rational action, given the structure of the task
and his inputs of information, and bounded by limitations on
his knowledge and processing ability:

Goals + Task + Operators + Inputs

+ Knowledge + Process-limits — Behavior .

The principle really offers a nested set of formulations that can be
used in order to predict a person’s behavior. The first version, Goals +
Task + Operators, takes into account only the objective situation; the
other factors reflect hidden constraints, namely what the person can
perceive, what he knows, and, finally, how he can compute. The
additional factors offer successive approximations to how he will behave,

30 See Simon (1947, 1969), Newell and Simon (1972).
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with the shorter equations being easier to use, but giving cruder approx-
imations.

THE PROBLEM SPACE PRINCIPLE

Rational behavior can often be given a more precise description.
Suppose a person has the goal to prove a theorem using the rules of
symbolic logic. There is a set of mental states through which he passes
(describable in terms of symbolic expressions) and a number of operators
for changing one state into another (operations in symbolic logic). This
set of states and operators is called a problem space. In general:

P9. Problem Space Principle. The rational activity in which
people engage to solve a problem can be described in terms of
(1) a set of states of knowledge, (2) operators for changing
one state into another, (3) constraints on applying operators,
and (4) control knowledge for deciding which operator to
apply next.

There are different problem spaces for different tasks, and there may well
be changes in problem spaces over time, as the user acquires more
knowledge about the structure of the task.

An example of a short problem-solving task, and one that has been
examined in detail, is the cryptarithmetic puzzle. As shown below, each
letter is to be assigned a different digit so that replacing the letters by
their digits for;ns a correct addition. For example:

D O N A L D
+ G E R A L D
R O B E R T D=5

A typical way in which a person goes about solving such a problem is a
combination of elementary reasoning and trial-and-error. For example:

.1 can, looking at the two D's (pause) each D is 5; therefore T is 0.
So [ think ['ll start by writing that problem here. [I'll write 5, 5 is O.
Now do I have any other T's? No. But I have another D. That
means | have a 5 over the other side. Now I have 2 A’s and 2 L's that
are each somewhere and this R, 3 R’s, 2L’s equal and R. Of course I'm
carrying a 1. Which will mean that R has to be an odd number.
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R O B E R T

Informal Description: Letters in the above array are to be
replaced by numerals from zero though nine, so that all instances
of the same letter are replaced by the same numeral. Different
letters are to be replaced by different numbers. The resulting array
is to be a correctly worked problem in arithmetic. The assignment
for the letter D is already given to be 5.

States: Assignments of numbers to letters.

Operators: {ASSIGN Letter Number)
(PROCESS-COLUMN Column)
(GENERATE-DIGITS Letter)
(TEST-DIGIT Number)

Path Constraint: D+D=T,etc.

Figure 2.29. External problem space for a cryptarithmetic
task.
\

Because the 2 L’s, any two numbers added together has to be an even
number and 1 will be an odd number. So R can be 1... [Excerpt from
protocol for Subject S3, Newell and Simon, 1972, p. 230].

The problem space for this subject (see Figure 2.29) consists of assign-
ments of numbers to letters (R=3), and various relations that can be
known about the letters and digits (R > 5, R odd, R unassigned). The
mental operators used by this subject can be identified:

ASSIGN Assign a number to a letter.
PROCESS-COLUMN Infer other assignments and
constraints from a column.
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Figure 2.30. Search of subject through his internal problem

space for the cryptarithmetic task.

Subject S3, Newell and Simon (1972, Figure 6.4, P. 181) for DONALD + GERALD
= ROBERT. Each dot in the diagram represents a state of knowledge of the
subject. Each link is the result of applying an operator.

89
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GENERATE-DIGITS Determine what numbers are
possible for a letter.

TEST-DIGIT Determine if a digit can be
assigned to a letter.

There is also a more general operator:

SET-UP-GOAL Set up goal to obtain a certain
result or to check that a knowledge
expression is true.

These operators embody the limitations of human information-processing
in various ways. For example, with only ten digits to be assigned and
with the assignments just having been made, one might think that an
intelligent problem solver would always know what digits were available.
Not directly. Unless the TEST-DIGIT operator is applied, the problem-
solver will not know whether a digit has been assigned to another letter.

Figure 2.30 gives a graphic presentation of the behavior of the subject
whose protocol was excerpted above. Each state of knowledge of the
subject is represented by a point and the operation of an operator by a
connecting line. The double lines are places where the person repeats a
path previously trod. This repeating of a path is a reflection of Working
Memory limitations, it being easier to drop back repeatedly to an anchor
state than to remember the intermediate states. The graph can be
summarized by saying that: (1) the subject is involved in heuristic search;
and (2) upon close examination the apparently complex behavior resolves
into a small number of elements (the parts of a state and the operators)
interacting with the complex constraints of the task, an illustration of how
complexity in behavior arises from the environment.

2.3. CAVEATS AND COMPLEXITIES

We have attempted to convey a version of existing psychological
knowledge in a form suitable for analyzing human-computer interaction.
We have summarized this knowledge in a simple model of the human
processor and have suggested, through examples, how it might be used
with task analysis, calculation, and approximation to support engineering
calculations of cognitive behavior. Although it is hoped that the model
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itself will be useful, the real point is in the spirit of the enterprise: that
knowledge in cognitive psychology and related sciences is sufficiently
advanced to allow the analysis and improvement of common mental
tasks, provided there is an understanding of how knowledge must be
structured to be useful. The present chapter is an illustration of one
possible way for structuring this knowledge.

In the foregoing description, we have chosen to concentrate on a
picture of basic human information-processing capabilities relevant for
human-computer interaction rather than to detail human engineering
studies of particular systems or techniques. Human-engineering studies
relevant to our particular concerns are referenced in context in later
chapters. For general reviews of behavioral studies of human-computer
interaction, the reader is directed to Moran (19815), Ramsey, Atwood,
and Kirshbaum (1978), Ramsey and Atwood (1979), Rouse (1977), Miller
and Thomas (1977), and Bennett (1972). For reviews of the general
“man-machine” literature, the reader is directed to Rouse (1980), Pew,
Baron, Feehrer, and Miller (1977), Meister (1976), Sheridan and Ferrell
(1974), and Parsons (1972).

There are also many papers that either review, or for other reasons
provide convenient entry into, specialized portions of the human-
computer interaction literature. Perceptual issues of video displays are
treated in Cakir, Hart, and Stewart (1980), Shurtleff (1980), and Gould
(1968). Reviews of the large literature on devices for data entry can be
found in Sperandio and Bisseret (1974), Seibel (1972), Alden, Daniels,
and Kanarick (1972), and Devoe (1967). The design of command
languages is treated in Barnard, Hammond, Morton, Long, and Clark
(1981); Moran (1981a); Boies (1974); Fitter and Green (1979); Reisner
(1981); and Martin (1973). Programming has received considerable
attention: Sheil (1981); Shneiderman (1980); Brooks (1977); Shepard,
Curtis, Milliman, and Love (1979); and Smith and Green (1980). And
finally, a number of systems have been proposed as frameworks for the
human operation of machines; for example, Lane, Streib, Glenn, and
Wherry (1980); Siegal and Wolf (1969); and Quick (1962).

The model of human information-processing that we have presented
is our own synthesis of the current state of knowledge. In many respects
(though not all) it corresponds to the dominant model of the seventies
(Fitts and Posner, 1967; Neisser, 1967; Atkinson and Shiffrin, 1968;
Welford, 1968; Newell and Simon, 1972; Lindsay and Norman, 1977,
Anderson, 1980). But beyond any general model, a large amount of

'
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detailed knowledge is available in the literature on all the phenomena we
have examined. In order to make the reader aware in some general way
of the limits of our model, we mention briefly a number of the complex-
ities documented in the literature and some of the alternative theoretical
views.

BOXES VS. DEPTH OF PROCESSING

The dominant model of the seventies had as an underlying heuristic
the assumption that there was an elaborate logic-level structure of many
separate registers (the “boxes”), each with its own distinct memory
parameters and connected by a distinct set of transfer paths. There was a
Short-Term Memory consisting of seven chunks, brought into prominence
by Miller (Miller, 1956; cf. Blankenship, 1938); forgetting was accom-
plished by displacement from fixed slots in the registers. Short-Term
Memory was separate from Long-Term Memory, in contradistinction to
the earlier theory, which simply posited a single structure of stimulus-
response connections. The discovery by Sperling (1960) of the Visual
Image Store, which was clearly distinct from the Short-Term Memory,
provided impressive support for the “box™ view.

A number of difficulties have beset this model, mostly in increased
complexities and muddying-up of initially clean distinctions, as experi-
mental evidence has accumulated. Initially it appeared that all infor-
mation in the Short-Term Memory was coded acoustically (Conrad, 1964)
and all information in Long-Term Memory coded semantically, but this
has proved not to be the case. For instance, in some of the examples in
this chapter, the use of visual codes in Working Memory is evident.
Initially, rehearsal seemed to play the key role in the transfer of infor-
mation from the Short-Term Memory to the Long-Term Memory—the
more an item was rehearsed, the better chance it had of being stored
away permanently. It has since seemed necessary to distinguish
maintenance rehearsal, which has no implications for permanent memory,
from elaborative rehearsal, which does. This distinction proved to be the
crack in the edifice. It resulted in a new general view, called depth of
processing, which attempts to do away with the structural boxes entirely
and substitute a continuum of processing depth to determine how well
material is remembered. “Depth” is defined somewhat intuitively:
examining the letters of words is shallow, finding rhymes a little deeper,



2.3. CAVEATS AND COMPLEXITIES 93

and creating stories using the words deeper still. This view is now itself
under serious attack (Wicklegren, 1981) for lack of precision in its theory
and for its unsuccessful predictions.

WORKING MEMORY SPAN

The original view of Working Memory, following Miller (1956), was
that it had a capacity of 7+2 items, coinciding with the immediate
memory span. Gradually, much of the support for the existence of an
independent Working Memory came from the recency effect in free
recall (the fading ability to remember the last few items heard that we
examined in Figure 2.24). Various ways of calculating Working Memory
size from the recency effect all give answers in the range 2.5~4.1 items
for the capacity. This implies that the immediate memory is a compound
effect of more than one process, which is the way we have described it.

At the opposite end of the spectrum from sizes of 2.5~4.1 vs. 7£2 is
the notion of Working Memory as an activation of Long-Term Memory,
hence, of essentially unlimited instantaneous extent, but of limited access.
The model presented here couples such a view with that of decay to get
the limited access. This view, though not widely stated explicitly, is
represented in a few places in the literature (Shiffrin and Schneider,
1977).

The Model Human Processor has moved some distance from the
model of the early seventies in replacing separate memory registers with
registers that are subregisters of each other: Working Memory is the
subset of activated nodes in Long-Term Memory, and the Visual and
Auditory Image Stores are not completely separate from Working
Memory. Baddeley (1976, 1981) and his co-workers have used the term
Working Memory functionally to include additional components of the
human limited-capacity short-term storage system, which combine for
skilled tasks such as reading to provide a capacity somewhat larger than
our py,, Chase and Ericsson (1982) have used the term Working
Memory to include rapid accessing mechanisms in Long-Term Memory,
what we have termed Effective Working Memory. They showed in a
series of ingenious experiments that, through extensive practice, people
can enormously increase their Effective Working Memory beyond our
By~ The upshot of the Baddeley and Chase and Ericsson results is to
emphasize the intimate connection between Working Memory, Long-
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Term Memory, and attention. For the sake of simplicity, we have not
attempted to incorporate these ideas into the Model Human Processor,
pending their further development.

MEMORY STRENGTH VS. CHUNKS

The notion that memories have strengths, and can be made stronger
by repetition, has been a central assumption of much psychological
theorizing. Wicklegren (1977) gives a good account of this view for the
whole of memory. The notion that memories come in discrete chunks,
which either exist or do not exist in Long-Term Memory, provides an
alternative conception that has risen to prominence with the information-
processing view of man. It is this view we have presented.

It is difficult to determine in a simple, experimental way which of
these two positions holds in general. Each type of theory can mimic and
be mimicked by the other. One basic difficulty is that memory
phenomena, being inherently errorful and varying, always lead to data
samples that show considerable variation. One can never tell easily
whether the variation arose from corresponding variation of strength or
from discrete probabilistic events, The same effects producible by
gradation in strengths also flow from multiple copies of chunks
(Bernbach, 1970). Such muitiplicity, far from being contrived, might be
expected if a system manufactured chunks continually from whatever was
being attended to.

WHAT IS LIMITING?

That humans are limited in their abilities to cope with tasks is clear
beyond doubt. Where to locate the constraint is less clear. One general
position has focused on memory as the limiting agent, as in the notion of
the register containing a fixed set of slots. Another general position has
focused on processing. A more sophisticated notion is that processing
and memory may each be limiting but in different regions of perform-
ance (Norman and Bobrow, 1975). The processing position has usually
taken the form of some sort of homogeneous quantity called processing
capacity, which is allocated to different tasks or components of a task,
usually within a parallel system. Another form of processing limit is to
posit a serial system and permit it only one operation at a time.

Again, it is not possible to formulate experimental ways of distin-
guishing these alternatives in general. Serial processing systems can
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mimic parallel ones by rapid switching, and parallel systems of limited
capacity can show the most obvious sign of serial processing, linear time
effects.

INTERFERENCE VS. DECAY

The Model Human Processor incorporates spontaneous decay over
time and interference as mechanisms that produce memory-retrieval
failure. Typically these are held to be alternative mechanisms and much
effort has gone into trying to determine to which one forgetting is
attributable., Actually, with the advent of information-processing models,
a third alternative occurred: displacement of old items by new ones. This
is clearly a version of interference, though one that involves total loss at
storage time (of the interfered-with item), not of interaction at retrieval
time.

The strong role of interference in long-term forgetting has been well-
established. However, no one has ever accounted for the losses in very
long term memory (weeks, months, or years) in a way that excludes
genuine forgetting, although at least one investigator (Wickelgren, 1977)
believes he can separate true forgetting from interference in the long
term.

EXPANSIONS OF THE MODEL HUMAN PROCESSOR

There are at least three areas where the description of the Model
Human Processor might be significantly expanded at some cost in
simplicity. The first area is the semantic description of Long-Term
Memory. As the study of Long-Term Memory proceeded, it became
evident to psychologists that, in order to understand human performance,
the semantic organization of Long-Term Memory would have to be taken
into account. We have not described semantic memory in any depth
here, since the details of such an account would carry us beyond the
bounds set for this chapter. For surveys of the relevant literature, the
reader is referred to Anderson (1980), Lindsay and Norman (1977),
Norman and Rumelhart (1975), and Anderson and Bower (1973).

The second area is the description of the Perceptual Processor. In the
simplified description we have given of perceptual processing, we have
skipped over considerable detail that is appropriate at a more refined
level of analysis. A description based on Fourier analysis could be used
to replace various parts of the model for describing the interactions of
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visual stimuli with intensity and distance (Cornsweet, 1970; Ganz, 1975;
Breitmeyer and Ganz, 1976).

The third area is the description of the Cognitive Processor. We have
not said much in detail about the control structure of the Cognitive
Processor; but it is necessary to consider the processors’s control
discipline if interruptability, errors, multiple-tasking, automaticity, and
other phenomena are to be thoroughly understood. A more detailed
description of the recognize-act cycle, and how the characteristics of
simple decisions arise from it, might be given in terms of a set of
recognize-act rules, called productions (Newell, 1973). According to this
description, the productions themselves reside in Long-Term Memory.
On each cycle, the recognition conditions of the rules are compared with
the contents of Working Memory (or said another way, some of the
recognition conditions of the rules are activated through spreading
activation in Long-Term Memory). The rule with the best match (the
highest state of activation) fires and causes its associated action to occur,
altering the contents of Working Memory (activating other chunks in
Long-Term Memory). Perceptual input whose recognition activates
previously non-activated chunks in memory may, through this mecha-
nism, interrupt and redirect the previous course of processing. The
description might be elaborated to give both an account of skilled
behavior that requires little conscious attention and an account of
unskilled behavior. A production system description has also been used
to give a description of complex information-processing where each
action might involve several dozen recognize-act cycles (for examples, see
Newell and Simon, 1972; Young, 1976; Anderson 1976).

THE EXISTENCE OF ALTERNATIVES

Does the existence of alternatives to various features of the Model
Human Processor, like those we have just mentioned, and the fact that
agreement on them is very difficult to obtain, rob the model of its
usefulness or show that it is impossible to settle things in psychology?
Not at all, and for two reasons.

The first reason is a technical issue about making progress in
psychology. Many of the difficulties arise because classes of quite
different mechanisms can mimic each other rather closely, as in the case
of interference and decay. However, this mimicking works only over
narrow ranges of behavior. For instance, if only one specific task is
considered—say, the immediate memory distractor task (Figure 2.6) in
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which a single item is given, then counting backward by sevens, then
attempting to recall the item—it is easy to generate several explanations
(decay, interference, displacement) that are indistinguishable, even in
principle, by unlimited precision in the data. But if these same
mechanisms are required to provide the explanation in many diverse
tasks, it becomes much harder for the mimicking to succeed. Thus, the
comments we have made apply locally—mechanism X competes with
mechanism Y to explain a given phenomenon, but only when that
phenomenon is considered in relative isolation.

The current style in psychology is to have a highly elaborated base of
quantitative data over many diverse phenomena, with many local
theories. The science has not yet succeeded in putting together general
theories that are tight enough quantitatively so that the same posited
mechanism (for example, Working Memory decay) is forced to show
itself in action in a large diversity of tasks. Such comprehensive theories
may soon emerge—the groundwork seems well-laid for them—but there
has not yet been enough of this theorizing to settle the issues reflected in
this section.

The second reason that the existence of alternatives does not rob the
model of its usefulness concerns the use to which our model is to be put.
The model’s purpose is to provide a sufficiently good approximation to
be useful. Its function is synthesis, not discrimination of alternative
underlying mechanisms. If basic mechanisms are not distinguishable in a
domain where there has been extensive empirical investigation, there is
some assurance that working with either will provide a reasonable first
approximation. Then it is important to obtain a single overall picture
based on one set of mechanisms that works globally and fits in with an
appropriate unified theoretical perspective. This we have done.

Our purpose in this chapter has been to prepare the way for the
specific set of studies of human-computer interaction that is to follow.
Though these studies do not take the details we have been presenting for
granted, they do presume the basic orientation laid out here.
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3. System and User Variability

3.1. THESTUDY OF TEXT-EDITING

3.2. TIME DIFFERENCES AMONG EDITORS (EXPERIMENT 3A)

3.3. TIME DIFFERENCES AMONG NON-NOVICE USERS
(EXPERIMENT 3B)

3.4. CONCLUSIONS

The use of a computer for editing text is a paradigmatic example of
human-computer interaction, and for several reasons. (1) The interaction
is commonly rapid: A user completes several transactions a minute for
sustained periods. (2) The interaction is intimate: A text-editor, like all
well-designed tools, becomes an unconscious extension of its user, a
device to operate with rather than operate on. (3) Text-editors are
probably the single most heavily-used programs: There is currently a
massive effort to introduce text-editing systems into offices and clerical
operations. Even in a systems programming environment, one study
(Boies, 1974) found that 75% of the system commands issued were text-
editor commands. And (4) computer text-editors are similar to, and can
therefore be representative of, other systems for human-computer
interaction:  Like most other systems, they have a discrete command
language and provide ways to input, modify, and search for data. The
physical details of their interfaces are not particularly unique. Because of
these similarities, progress in understanding user interaction with text-
editors should help us to understand interaction with other systems as
well.

The study of text-editors is a task that is reasonably within the range
of the analytic tools we have available from cognitive psychology and
computer science. It is a symbolic task of substantial, but manageable,
complexity. Because of the intrinsic importance of the task itself, the
similarities with other tasks, and the task’s tractable complexity, studies of
computer text-editing are a natural starting point in the study of human-
computer interaction.
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3.1. THE STUDY OF TEXT-EDITING

Before proceeding to the description of our studies on text editing, it
is useful to set the stage by describing what is known from previous
studies, the details of the physical environment for the systems we shall
study, and a sample of typical text-editor dialogue.

STUDIES OF TEXT-EDITING

Despite its practical application and its apparent fruitfulness as a
research problem, there have been few studies of computer text-editing
(other than reports on specific editors). Previous work on editors falls
into two groups, analytical studies of editor design and behavioral studies
of users.

Analytical studies of editors have focused on editing time and
comparative functionality. By making idealized assumptions, Oren (1972,
1974, 1975) was able to derive equations for editing time as a function of
several system properties of “word-processing” systems; but he did not
report empirical validation of his models. Van Dam and Rice (1971)
compared several types of editors informally. Riddle (1976) and Roberts
(1979) both derived taxonomies of editing features and used these to
compare the functionality of widely used systems.

Behavioral studies have focused on editing time and to a lesser extent,
on the methods actually used by users, users’ errors, and learning.
Embley, Lan, Leinbaugh, and Nagy (1978) analyzed editors in terms of
the number of commands and number of keystrokes users required to
perform benchmark tasks. They also tried to predict the commands and
keystrokes required by deriving the editing commands from a comparison
of the file before and after editing (Anandan, Embley, and Nagy, 1980).
Hammer (1981) derived the minimum number of keystrokes required to
make an edit and compared that with human performance. We (Card,
Moran, and Newell, 1976, 1980a, 1980b4; Card, 1978) videotaped users of
text-editors to determine their methods and predict, using cognitively-
oriented models, their editing time. These studies are elaborated in the
present book. DeLaurentiis (1981) used keyboard protocols to determine
how users’ methods change as they move from novice to expert.
Hammer and Rouse (1979) tried to summarize users methods as a
Markov transition matrix. Roberts (1979) constructed a method for
evaluating editors from behavioral tests of editing time, learning time,
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and errors, and also investigated mental loading. The behavioral studies
have recently been reviewed by Embley and Nagy (1981).

PHYSICAL TEXT-EDITING ENVIRONMENT OF THE STUDIES

The physical arrangement of the user, his computer terminal, and a
text manuscript, though particular to our experiments, is entirely typical
of the arrangements commonly encountered in offices where computer-
assisted document preparation systems are in use. This arrangement may
be assumed in the experiments we describe unless contradicted.

A person (the “user”) sits before a computer terminal with a keyboard
for input and a video display terminal for output (see Figure 3.1). In the

MANUSCRIPT

Marked for editing and

attached to notebook
(o with experiment

instructions to user.

Figure 3.1. Physical layout for the manuscript-editing task.



104 3. SYSTEM AND USER VARIABILITY

computer is a text file. To the user’s left is a manuscript, consisting of a
printout of the text file on which modifications have been marked with
red ink. The user, working via a computer program for text-editing, is to
effect each of the marked modifications in the text file, producing an
updated file. Variations on the task occur with variations in the nature of
the computer, the editor program, the terminal, the size of the manu-
script, the kind and number of corrections, the physical layout, and the
familiarity of the user with the manuscript and the editor.

The keyboard the user employs is similar to that of a standard
American electric typewriter save for the addition of a few special keys,
such as ESC (“escape”), CONTROL (a type of shift key), LINEFEED,
BACKSPACE, and DELETE. The extra keys are used for special system-
dependent functions.

Many systems we discuss also employ a special “mouse” pointing
device to select items on the video display. The mouse is a small box set
atop wheels or ball bearings and attached to the keyboard by a flexible
wire. The user can roll it about the table causing analogous movements
of the cursor on the video display. He can push one of the three buttons
protruding from the top of the mouse to indicate selection of the letter,
word, or text fragment indicated on the screen by the cursor.

For the most part, users whose behavior we observe are in daily
interaction with the systems on which they are recorded, as part of their
job duties. Overall, the experimental arrangement is very similar to the
user’s natural setting when working with the system. Experiments are
run in a room much like the user’s own office. The only difference is
the presence of a television camera in the room, but the user is typically
not much aware of the camera once he becomes absorbed in his task.

Looking to the future think both the use of idioms and the Sketch
IPegoach will need Gm- deal of further work. In particular, the
w approach by de on involves writing a considerable number of
farate programs. Some idioms, such as bar charts and_graghs
clearly suggest the Visualizer approach, in which lhe,‘,’
constructed from a data file rather than from interac y puts. The

Sketch approach needs considerable work to permit true composition of
high-resg ion images with text. Eventually the two approaches
should within a single system, with the generation of images
by use o dioms, followed by document composition in the Sketch

style.
Co- u}sf

Figure 3.2. Sample fragment of a marked-up manuscript.
Four modifications are indicated by the markings on this fragment. The marks on
the manuscripts given to users in the experimental sessions are in red ink.
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SAMPLE DIALOGUE WITH A TEXT-EDITOR

To make the details of editing concrete, let us consider the task of
making the modifications indicated on the manuscript fragment shown in
Figure 3.2 using a typical teletypewriter-oriented editor, POET. The first
instruction on the manuscript indicates that the word great has been
mistyped in the manuscript as geart. A typical dialogue between the
system and the user is as follows (the inputs by the user and the outputs
by the system are shown on the left, comments are shown on the right):

SYSTEM: # Prompts the user for a command.

USER: "geart” The user indicates the line he wants by
typing between quotation marks a string of
characters, geart, that identify the line. The

system responds by finding the next line in
the file that contains the characters and
locating itself at that line, called the Current

Line.
SYSTEM: # Prompts for a command.
USER: / This command tells the system to print the

Current Line on the display. The user’s
purpose is to ensure that the system is
located at the intended line.
SYSTEM: approach will need a geart deal of ...
(In the dialogue, an elipsis "..." is used to
shorten long typeouts by the system.)
SYSTEM: # The system displays the Current Line on the
bottom line of the display screen and
prompts for the next command.
The user decides to make the change by
using the Substitute command to substitute
the characters grea for the characters gear.

USER: S Invokes the Substitute command.

SYSTEM: ubstitute Completes the command name and waits for
the first argument to the Substitute
command.

USER: grea RETURN Types the new text to be substituted and
terminates it with RETURN.

SYSTEM: (for) Prompts the user for second argument of
Substitute.

USER: gear RETURN Types the old text to be replaced and
terminates it with RETURN.

SYSTEM: [OK] Asks the user to confirm that the command

is stated correctly before executing it
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USER: RETURN Types RETURN to confirm. The system
then makes the substitution every time it can
on the Current Line.

SYSTEM: 1 Responds by printing the number of
substitutions it made—in this case, only one
was made.

SYSTEM: # Prompts for a command.

USER: / Again, the user wishes to look at the Current

Line to vernify that the modification was
made as he intended.

SYSTEM: approach will need a great deal of

SYSTEM: # The system prompts for a command. The
modification was correct. The user now
proceeds to the next task, in which the word
“idiom” is to be capitalized. @ The user
decides he will do this by substituting the
characters Idi for idi. Because the task is
located on the line immediately following,
this time the user decides to use the
LINEFEED command (instead of the
“quoted string method™) to locate the line..

USER: LINEFEED Invokes command to increase Current Line
by 1 (move to the next line on the file) and
display it.

SYSTEM: idiom approach by definition involves

SYSTEM: # Prompts for a command.

USER: ) Invokes Substitute command, etc.

SYSTEM: ubstitute

USER: Idi RETURN

SYSTEM:  (for)

USER: idi RETURN

sYSTeM:  [OK]

USER: RETURN

SYSTEM: 1

SYSTEM: #

USER: /

SYSTEM: Idiom approach by definition involves
SYSTEM: #

The user proceeds in this manner through the rest of the manuscript,
making the indicated modifications as he encounters them on the
marked-up manuscript.
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The POET editor, discussed above, is typical of a large class of editors
designed to be usable on a teletypewriter terminal. An example of a
rather different sort of editor is the “display-oriented” editor, RCG (see
Englebart and English, 1968). This editor uses a five-key chordset for
entering commands and uses the mouse for pointing. With RCG, the user
could perform the task as follows:

USER: rc Typed on chordset.
SYSTEM: Replace Character
Displayed at top of screen.
USER: Points to first i in idiom with mouse.
MOUSE1 Presses button 1 on mouse.
SYSTEM: Underlines character.
USER: Moves hands to keyboard.
| Capital “I” typed on keyboard.
SYSTEM: The word idiom instantly changes to ldiom.
User moves left hand to chordset, right hand
to mouse.

MOUSE1 Presses button 1 on mouse to indicate
termination of command.

SYSTEM: Redisplays entire screen of text with change
made.

The description is shorter because the more complex operations
required by POET to indicate the target text are replaced in RCG by a
simpler pointing and select operation.

There are many other schemes for designing an editor. Some will
have effects on user performance. The twin questions naturally arise, just
how much effect does the design of an editor have on the time to edit a
manuscript, and how do differences between editors compare with
differences between people? Before embarking on more detailed investi-
gations, it is important to get an approximate answer to these questions.
If the design of the editor makes little difference in editing time, then
there is little point to investigating editing rates for different designs
unless they are radically different from current ones. If differences in
editing time between users are much larger than those between editors,
then more leverage is gained by studying individual differences.
Consequently, we describe two exploratory experiments that bear on

these points.
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3.2. TIME DIFFERENCES AMONG EDITORS
(EXPERIMENT 3A)

In order to discover how much difference the design of an editor
makes to the speed with which text can be edited, the obvious thing to
do is compare the speed of several editors on benchmark tasks.

METHOD FOR EXPERIMENT 3A

Editing Systems. Five editing systems of substantially different design
(see Figure 3.3) were chosen for study: POET, SOS, TECO, BRAVO, and
RCG. Three of the systems (POET, SOS, and TECO) are teletypewriter-
oriented; they assume a discipline imposed by a typewriter with a long
scroll of paper (although they were actually tested with a video display
on which the last 40 lines could be seen). One line at a time is typed on
the scroll, with both the system’s output and the user’s input intermixed.
The two remaining editors (BRAVO and RCG) are display-oriented. They
operate by showing the user a picture of a page of text and updating the
picture after each editing modification.

Benchmark Tasks. The editors were compared by testing user
performances on four benchmarks (see Figure 3.4): (1) a Letter Typing
benchmark, in which the user typed a letter from scratch; (2) a
Manuscript Modification benchmark, in which the user made corrections
to a text file; (3) a Text Assembly benchmark, in which the user
assembled a document from stored paragraphs; and (4) a Table Typing
benchmark, in which the user typed a table of numbers and labels into
the system.

Users. Each of the 13 users in the experiment was either a secretary
or a computer scientist. All were expert users with the editors on which
they were tested: Each had used the system for more than a year and
had used the system within the week in which he was tested. About a
quarter of the users had programmed or maintained one of the systems.

Design. Each editor was tested on three users. (Three is the smallest
number that would give some notion of inter-user variability and
the largest for which experts on the different editors were available.)
Because few users were expert in more than one or two of these editors
and to avoid the possibility of practice effects from repeated exposure to
the tasks, each user was tested on a single editor. Only one user was
tested on SOS because of its similarity to POET. Each of the four bench-
marks was done with the POET, SOS, TECO, and RCG editors: only the
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POET

SOS

TECO

BRAVO

RCG

(Russell, 1973). A version of QED (Deutsch and Lampson,
1967). ‘“Line-oriented” (basic addressing unit is a line of
text). Users select lines by giving text-strings contained
on desired line or (more rarely) by giving line numbers,
which change with each inserted or deleted line.
Commands are single letters issued from the keyboard
(example: D for the Delete command).

(Savitsky, 1969). A line-oriented editor with fixed line-
numbers actually stored in the file with the text. The
command language is similar to that of POET.

(BBN, 1973). A ‘‘character-oriented” editor (document is
treated as one long string of characters, including
RETURN characters). Pieces of text are referenced by
search strings or character position numbers. TECO is
distinguished by its very large repertoire of low-ievel
commands, which can be combined into higher-level
commands.

A display-oriented editor, designed by Charles Simonyi
and Butler Lampson at Xerox PARC, which uses the
mouse for pointing at text on the display. BRAVO
contains a full repertoire of typefont and formatting
capabilities. It right-justifies text on the display after each
keystroke. The command invocation syntax in BRAVO is
similar to that of POET. BRAVO was called DISPED in
Card, Moran, and Newell (1976, 1980a, 1980b).

A display-oriented editor written by William Duvall; it is a
descendent of the NLS editor (Englebart and English,
1968). This editor also uses a mouse for pointing, and a
five-key chord device for input of commands.

Figure 3.3. Text-editors tested in Experiment 3A.
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Letter Typing The user is provided with a paper copy of a letter
on which a few small changes are indicated in
red ink. He is to type the corrected letter into the
editing system and save it on a file.

Manuscript The user is provided with a paper copy of a
Modification letter stored on a file. There are 12 small
modifications of one or two words each marked
on the letter. He is to modify the file, using the
editor, according to the markings on the letter.

Text Assembly The user is to assemble a single file out of three
files on the system, each of which contains a
single paragraph of text, then type in a fourth
paragraph copied from a supplied text.

Table Typing The user is to type a table (photocopied from a
book) into the system and store it on a file. The
table contains a five-by-five array of three-digit
numbers, plus labels for the rows and columns.

Figure 3.4. Benchmark tasks used for testing editors in
Experiment 3A.

Manuscript Modification benchmark was done with BRAVO (which was
run at a later date than the other editors). As a baseline against which to
measure performance, one user was measured performing the tasks using
an IBM Selectric II typewriter.

Procedure. Each user was tested individually. The user was seated in
front of a 6 line/sec video display terminal as shown in Figure 3.1 and
given a set of general instructions urging him to work as fast as possible
without making errors. It was stressed that the editor, and not the user’s
abilities, was under examination. The user was given a warmup exercise
on the editor of making some simple modifications, then each of the four
benchmarks in the order: (1) Letter Typing, (2) Manuscript Modifi-
cation, (3) Text Assembly, (4) Table Typing. The stimulus materials and
instructions for each task were bound in a notebook, and the user was
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allowed to proceed through the benchmarks at his own pace. The
experimental session was recorded on video tape with the time (to a
sixtieth of a second) recorded on each video frame by means of a video
clock.

RESULTS FOR EXPERIMENT 3A

How much of a time difference was there among editors? The answer
was a factor of 1.4~2.3 between the fastest and slowest editors, depending
on the benchmark. Figure 3.5 gives the total time required to perform
each benchmark. The differences on the Letter Typing benchmark (after

Task Type
Letter Manuscript Text Table
Typing Modification Assembly Typing
Text-editor MxSD MxSD M£SD MxSD
(sec) (sec) (sec) (sec)
POET 238128 220+33 160165 244+ 21
SOSs 315 215 147 234
TECO 252425 159126 13115 28341
BRAVO — 122442 — —
RCG 224+4 94421 102432 306154
Typewriter 229 901 489 483
Ratio of slowest
to fastest editor 14 23 1.6 1.3
Ratio of typewriter
to fastest editor 1.0 9.6 4.8 2.1

Figure 3.5. Performance times for the benchmark tasks in

Experiment 3A.

There were three users apiece for POET, TECO, BRAVO, and RCG, and only one
user each for the typewriter and SOS. The SOS user was also measured on RCG;
all other users were measured only once. The times for the Letter Typing
benchmark were normalized to compensate for different users’ typing rates by
dividing the separate parts of the task (type inside address, etc.) by the ratio
between a user’s time to type the body of the letter and the all-user mean time to
type the body.
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normalizing for users’ typing speeds) and of the Text Assembly
benchmark generally reflected the setup costs of each system to do the
task. The differences in the Table Typing benchmark mainly reflected
the ingenuity of the users in capitalizing on features of the systems:
methods varied from typing in the rows of the table directly (using fixed
tabs provided by the system) to making many copies of the first line in
the table and then substituting for each of the entries. The largest
differences among the systems were in the Manuscript Modification
benchmark, where the ratio of the slowest to fastest system was 2.3.
Since there are small ways in which the RCG editor might be sped up and
since some editors in common use are known to be even slower than
POET, it is probably justified to say that, as a rough rule of thumb, the
design of an editor can make a factor of 3 difference in the time to
perform typical editing modifications.

Any of the editing systems was much faster to use than a typewriter.
In Figure 3.5, the Manuscript Modification time was almost 10 times
faster with the fastest editor. Of course, this ratio depends completely on
the ratio of the length of text to be typed and number of modifications to
be performed, so the number itself is not meaningful; but it does indicate
the generally large advantage obtainable by using text-editors over
typewriters.

How much of a difference was there among users? The answer here
was a ratio of 1.3~1.9 between the lowest and fastest time/modification,
depending on the editor. Figure 3.6 gives the mean time/modification
for the Manuscript Modification benchmark. Since users made errors on
14% of the modifications (examples: substituting a misspelled word or
invoking the wrong command) and the errors can severely distort
comparisons (a single serious error can require a substantial amount of
correction time), the mean time/modification for each user is also
presented based only on the error-free tasks.

It is apparent from Figure 3.6 that no matter whether all
modifications or only error-free modifications are considered, the times
for users within an editor are more similar to each other than are the
times among editors. The lower portion of the figure gives the average
modification times over all the users on each editing system, along with
the ratio of the slowest to fastest user on each system. The average
slowest/fastest user ratio is about 1.5 when all modifications are con-
sidered and about 1.3 when only error-free modifications are considered.
The editor BRAVO has the largest slowest/fastest user ratio—almost a



All Modifications

Error-Free Modifications

User M x SD(N) M+ SD(N)
(System) {sec) (sec)
S4 (POET) 16.7 £ 5.3(10) 159+ 49 (9
S6 (POET) 21.6 £ 15.0(10) 174 71 (9)
S13 (POET) 1691t 9.7(12) 169t 9.7 (9)
S12(sos) 179 £ 10.8(12) 104+ 88 (6)
S18(TECO) 139+ 7.3(12) 112+ 39(10)
S19(TECO) 15.0 £ 10.1 (12) 115+ 27(10)
S$20 (TECO) 108+ 4.0(15) 1081+ 4.0(12)
S$16 (BRAVO) 7.2+ 28(12) 7.2+ 28(12)
S30 (BRAVO) 92+ 25(11) 92+ 25(11)
S31 (BRAVO) 14.0 £ 10.9(11) 13.9 £ 11.5(10)
S12 (RCq) 74t 49(12) 75+ 5.4(10)
S$14 (RCG) 6.3+ 2.4(11) 60x 25 (9)
S15 (RCG) 9.7+ 6.6(12) 80 27(11)
Ratio of Ratio of
slowest to slowest to
fastest fastest
user user
POET Users 185+ 27 (3) 1.3 167+ 08 (3) 1.1
SOS Users 179 —_ 104 —_
TECO Users 131+ 21 (3) 14 11.2+ 04 (3) 1.1
BRAVO Users 101 35 (3) 19 101+ 34 (3) 19
RCG Users 78+ 17 (3) 15 72+ 10 3 13
Ratio of slowest
to fastest editor 24 2.3

Figure 3.6. Time per modification in the Manuscript Modifi-
cation benchmark in Experiment 3A.
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factor of 2—whereas all other editors have a factor of 1.5 or less. As a
rule of thumb, it is probably fair to say that the difference between
expert users is about a factor of 1.5—half the size of the difference
between editors. The time differences among text-editors are thus sub-
stantial and about twice as large as the differences among expert users.

SOURCES OF THE TIME DIFFERENCES

What is the source of the observed differences in the time to use the
different editors? A reasonable hypothesis is that the time for an expert
to make modifications with a system is proportional to the amount of
work required by the system as indexed by the number of keystrokes he
types. This hypothesis appears to be partially, but only partially, correct.
In Figure 3.7 the time per modification is plotted against the keystrokes
per modification for the user who had the lowest error rates in each
editor. Four editors—POET, SOS, TECO, and RCG—fall exactly on a line
essentially through the origin:

= .26 + STN, sec 3D

Tmodiﬁcation eystrokes

(R?2 > 999, SE = .12 sec). BRAVO, however, takes 4 sec longer per
modification than predicted—about twice the time predicted by the above
equation, More detailed comparison of the behavior of users using
BRAVO suggests that the users spent more time than predicted at the
beginning of each task and that the time required by the numerous
pointing operations needs to be considered. A more definitive explana-
tion requires additional experimentation. The real significance of
Equation 3.1 is that a rational basis for the the time required by different
editors appears within reach.

3.3. TIME DIFFERENCES AMONG NON-NOVICE
USERS (EXPERIMENT 3B)

What about users who are not experts? How much will they vary in
time to edit a manuscript? To find out, let us consider another experi-
ment, this time using only the editor BRAVO from our previous set, but
considering non-novice users with widely different levels of expertise.
Rather than selecting different people and testing them, it is more
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Figure 3.7. Mean time per modification for editors as a
function of the number of keystrokes per modification in
Experiment 3A.

efficient and insightful to hypothesize some of the characteristics thought
to be relevant and to test people who have different combinations of
those characteristics. Martin (1973) has suggested several user categories,
of which the category Casual vs. Dedicated and the category Operator
with Programming Skills look the most promising. (Several of his other
categories, such as Active vs. Passive, are characteristics of systems rather
than people and others, such as Rugged vs. Non-Rugged, are categories
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that could only be established with separate experiments.) Equation 3.1
suggests that typing ability may be an important variable. We were
therefore led to test users on the following dimensions: Dedicated vs.
Casual, Technical vs. Non-technical, and Fast-typist vs. Slow-typist.

METHOD FOR EXPERIMENT 3B

Users. Eight users were selected who were familiar with the BRAVO
editor. They consisted of secretaries, computer scientists, and research
managers. Users were classified as:

Dedicated if they used the system at least once a day or
Casual if they used the system only about every two weeks
or less;

Technical if they had written at least one major piece of
code and had experience with several programming lan-
guages or Non-technical if they had had no programming
experience (although the Non-technical users used computer
systems for text generation, filing, and message sending);
and

Fast-typists if they typed at least 49 wpm or Slow-typists if
they typed less than 40 wpm.

Each of the eight users tested represented a different one of the 2X2X2
= 8 combinations of these characteristics.

Task. The manuscript was a 22-page memo containing 66 modi-
fications. The mixture of modifications on the manuscript was carefully
balanced to include many different modification types (insertions,
replacements, deletions, transpositions, and movements of text), many
different sizes of text to be modified, and many different boundary
conditions. The manuscript contained some very small modifications,
such as inserting or deleting a word or replacing a few characters, as well
as some very large tasks, such as switching two sentences on different
manuscript pages or inserting a new paragraph of text. The modifications
were grouped into four classifications:

Simple. Modifications of 4 characters or less, requiring a
single editor command.
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Complex. Alterations or movement of phrases or sentences,
usually requiring more than one editor command.

Long. Insertions of about 200 characters.

Other. Tasks that did not fall unambiguously into the
above categories.

Procedure. The procedure was similar to that of Experiment 3A.
First, the user was given a one-page memo containing ten modifications,
as a warmup task, then he was given the main manuscript, containing 66
modifications (as described above). The user was instructed to make
modifications as quickly as possible without making mistakes. Each
session was videotaped, with each frame of the tape time-stamped.

RESULTS FOR EXPERIMENT 3B

According to Figure 3.8, there was about a factor of 3.5 between the
slowest and the fastest user in the experiment. The column labeled “All”
in the figure gives the mean time/modification for all modifications on
which no user made an error (there were 41 of these out of the 66 tasks).
The slowest user took an average of 67 sec/task, whereas the fastest took
19 sec/task.

Each dimension in the classification of the user seemed to have
roughly the same size of effect: the slower category in each dimension
increased user editing time by a factor of about 1.4 over the time
required by the faster category. The lower part of Figure 3.8 gives the
mean time/modification averaged over a single user category. The
average time required by the Casual Users was 1.5 times greater than the
time required by the Dedicated Users (53 sec/modification vs. 36
sec/modification). The average time of the Non-technical Users was 1.3
times greater than for the Technical users, and the Slow-typists were 1.4
times slower than the Fast-typists.

Surprisingly, the largest differences occur for the Simple modifi-
cations. The slowest user took 47 sec/modification for these, but the
fastest required only 8 sec/modification, a factor of 5.9 difference.
Dedicated Users got the largest advantage from the Simple modifications,
suggesting that the differences on the Simple modifications derived from
having the editing methods easily available in memory.

In view of the factor of 5.9 difference between the slowest and fastest
users for Simple modifications, the factor of 2.5 difference on Long



Modification Type

User Classification All  Sim- Com- Long
ple plex
N=a 12 14 3

(sec) (sec)  (sec) (sec)

S34 (73 wpm, Dedicated, Technical, Fast) 19 8 16 57
S32 (36 wpm, Dedicated, Technical, Slow) 10 24 104
S13 (88 wpm, Dedicated, Non-technical, Fast) 14 40 62
837 (39 wpm, Dedicated, Non-technical, Slow) 34 74 134
S14 (49 wpm, Casual, Technical, Fast) 36 57 145
S1 (32 wpm, Casual, Technical, Slow) 19 51 129
S36 (59 wpm, Casual, Non-technical, Fast) 17 37 90
S35 (32 wpm, Casual, Non-technical, Slow) 47 74 140
Ratio of slowest to fastest (35) (B9 (46) (2.5
Ratio of 2nd slowest to 2nd fastest (22) (3.6) (3.1) (2.9

28EBF2LE

All Users (51 wpm) 45 23 47 108
Casual Users (43 wpm) 563 30 565 126
Dedicated Users (59 wpm) 36 16 39 89
Ratio (1.5) (1.9 (14 (1.9
Non-Technical Users (55 wpm) 50 28 56 106
Technical Users (48 wpm) 39 18 37 109
Ratio (1.3) (1.6) (1.8 (1.0
Slow-Typist Users (35 wpm) 53 28 56 127
Fast-Typist Users (66 wpm) 37 19 38 88
Ratio (14) (1.5 (1.5 (1.4)

Figure 3.8. Time per modification for each user and for each
category of user in Experiment 3B.

Performance is for tasks without errors. N is the number of tasks in each
category.
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modifications, and the factor of 3.5 difference over all modifications, a
reasonable rule-of-thumb would seem to be that non-novice users
(experienced users, but including non-experts) differ by about a factor of
4. The dimensions we used for users each seemed to make about the
same order of difference, in round numbers, a factor of 1.5. Thus
differences among people are about the same size (factor of 4) as
differences among different systems (factor of 3), contrary to Sackman’s
(1970) claim that “human differences are typically an order of magnitude
larger than computer system differences.” The discrepancy between this
result and Sackman’s is easily explained, however. The studies reviewed
by Sackman involve problem-solving tasks of long duration (many hours),
where it is possible for some users to spend considerable time exploring
fruitless paths, resulting in large individual differences. The text-editing
we have observed in this chapter, by contrast, is a skilled activity
involving little problem solving and occurring over a short duration
(measured in seconds). Also, none of our users were novices, further
reducing inter-user differences.

3.4. CONCLUSIONS

The exploratory experiments in this chapter have given us estimates
for the effect of different text-editor designs and different users on
performance time,

The design of an editor makes roughly a factor of 3 difference in the
time to edit a manuscript, with display-oriented systems about twice as
fast as teletypewriter-oriented systems. These differences among editors
are at least partially traceable to the relative amounts of work required by
alternative designs, such as the relative number of keystrokes required to
accomplish a task.

The factor of 3 difference among editors compares to a factor of 1.5
among dedicated, expert users, or to a factor of 4 among non-novice
users in general. The three dimensions of users tested each made a
difference of about a factor of 1.5: (1) whether a user is a dedicated
(frequent) user; (2) whether he is technically oriented; and (3) whether
he is a fast typist.

The effects of text-editor design on speed, therefore, are comparable
to, and not dominated by, the effects of individual differences.
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Furthermore, the effects involved are substantial. There is an order of
magnitude difference (an estimated factor of 3X4=12) in editing time
between the fastest user on the best editor and the slowest user on the
worst editor.



4. An Exercise in Task Analysis

4.1. SIMPLE MODELS OF TYPING AND EDITING
4.2. PREDICTION (EXPERIMENT 4A)

4.3. SENSITIVITY ANALYSIS

4.4. RESULTS

4.5. CONCLUSIONS

In the last chapter we reported exploratory experiments designed to
give a rough estimate of the speed variability among users and text-
editing systems. In this chapter we engage in exploratory modeling to
discover how well we can predict editing time with a simple model based
on the assumption that all editing tasks require a constant amount of
time. This model should be of service to our later studies in two ways.
First, it should reveal something of the characteristic difficulty of the
problem of modeling user behavior in text-editing. Second, it should
serve as a baseline against which to compare more complex models.

To make our modeling activity concrete, we address the following
problem:

Problem. The claim is made that it is faster to retype short
texts on a typewriter than to modify them with a text-
editor, and that the reverse is true for long texts. In order
to find the crossover point between these two cases, an
experiment is to be run measuring the times required to
make modifications to five text manuscripts of varying
lengths. The modifications are to be accomplished (1) by
retyping them on an electric typewriter and (2) by using the
WYLBUR text-editing system (Stanford, 1975), running on
a time-shared computer. Given information about the
marked-up texts to be modified, the problem is to predict
the outcome of this experiment.

In order to ensure that the model is predicting, rather than ration-
alizing an already known result, the problem was arranged so that it

121



122 4. AN EXERCISE IN TASK ANALYSIS

corresponded to an actual experiment in progress by other researchers.!
By agreement, the model’s prediction and the experimental results were
exchanged simultaneously after both had been completed.

4.1. SIMPLE MODELS OF TYPING AND EDITING

The answer to the problem posed above can be derived from simple
models of typing and editing. The time 7, to produce a new copy of a
manuscript using a typewriter depends only on the length of the
manuscript and the setup time of the typewriter:

T, = T, +LT,, @)

where T, is the time to set up the typewriter (in seconds), L is the length
of the manuscript text (in lines), and 7, is the time to type a line (in
sec/line).

The time T, to edit a manuscript, on the other hand, is assumed to
depend on the number of modifications to the manuscript. Suppose that
every modification with an editing system takes a constant amount of
time 7, to accomplish. Suppose furthermore that secondary effects, such
as user fatigue and time spent turning pages, are negligible. Then the
time to edit the manuscript would be given by

T,=T,+N,T, . 42)

where T, is the time to set up the editor (in sec), N, the number of
modifications to be made, and 7, the time per modification (in
sec/mod). Expressing Equation 4.2 in terms of the modification density
per unit line, p = N, /L, makes it more comparable to Equation 4.1:

T,= T, +pLT,. “3)

We refer to this model of text-editing time as the Constant Time per
Modification model.

1 The problem was posed to us by I. Sutherland, then at the RAND Corporation.
The experiment was run by F. Blackwell, also at RAND.
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LENGTH CROSSOVER POINT L.

If the typewriter is faster to set up (T, < T,,), but the editor is faster
in making modifications (p7,, < T)), then there exists some document
length L, called the length crossover point, such that

for L> L_, the editor is faster, and
for L< L, the typewriter is faster.

To find L, we use Equation 4.2 and Equation 4.3. The time for the
editor and the typewriter will be the same when

T,+pLT, =T,+ LT,
that is,

L, = (T,-T)/(T)~pT,). 4.49)

DENSITY CROSSOVER POINT p_

Similarly there exists a certain density p_, called the density crossover
point, such that

for p <p_, the editor is faster, and
for p > p., the typewriter is faster.

Solving for p in Equation 4.4 gives

o, = T/T, —(T,,~ T,VLT,,. 4.5)

4.2. PREDICTION (EXPERIMENT 4A)

In order to calculate the outcome of the experiment, we need to have
estimates for the parameters of the above equations.

From the videotapes of Experiment 3A, we determine that the
average time to set up the typewriter in that experiment was

T, = 24 sec .
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Manuscript

M1 M2 M3 M4 M5 All

L (ines) 4 10 21 26 90 151
N, (mods) 2 6 8 14 58 88
p {mods/line) .50 .60 .38 54 .64 58

Figure 4.1. Modification density parameter values for the
manuscripts used in the experiment.

The text-editor WYLBUR is similar to the POET and SOS editors in
Experiment 3A. Again, from the videotapes we determine that the setup
time of these editors averaged 12 sec. Add to that the 25 sec to log into
the computer (measured time to telephone a local computer and log into
the TENEX operating system), and we get as an estimate

T, = 37sec.
The modification density of the manuscripts can be obtained by counting
lines and modifications of the text actually used in the experiment. As
Figure 4.1 shows, the texts vary from p = .38 to p = .64, with an
average of

p = .58 mod/line .

Again assuming that WYLBUR is similar to the POET and SOS editors, its
modification time can be estimated from Experiment 3A (see Figure 3.6),

. 2
Tm = 20sec.

The average typing rate for the POET users in Experiment 3A was .22
sec/character.  Since there were 63 characters per line in the test
manuscripts,

2 This number is slightly different from the numbers listed in Figure 3.6 for POET
and SOS, since those numbers reflect a later re-analysis of the videotapes. In order to
preserve the original predictions, the original estimate for Tm is used in this chapter.
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T, = 14sec/line 3

Substituting these parameter estimates into Equation 4.4, the length
crossover point is predicted to be:

L

c

Il

(T = T/ (TI —oT,)
(37 -24) /(04 — 58 X20)
= 5.4 lines.

From Equation 4.5 the density crossover point is predicted to be:

P = (TI/Tm) - (Tse - Tst)/LTm
=.70 — .65/L.

As L — 0, p. — .7 modifications/line. Another way of putting this
result is to say: if there is more than one modification to be done every
177 = 14 lines, then it is better to retype the text.

Plotting the time to modify a text (from Equation 4.2 and Equation
4.3) as a function of the length of the text (Figure 4.2), it is apparent that
the editor beats the typewriter immediately on any manuscript longer
than about three lines. More importantly, Figure 4.2 reveals that as the
length of the manuscript increases the editor does not continue to
increase its superiority as much as might be expected.4 Why not?

The answer is that the density chosen for the experiment, p = .58, is
by chance near the critical crossover density p ¢=-10—.65/L. Had the
experiment varied p, one manuscript at the critical value would not have
been a problem. But, since each of the manuscripts had a density near
this critical value, local fluctuations in 7, or p led to wavering of the
length-crossover point. Another way to display the model’s prediction is
to plot the density crossover point p_ as a function of text length L using
Equation 4.5 (see Figure 4.3). Note how close the manuscripts are to the

3 It is interesting that in the time it takes to make one correction with WYLBUR,
the user could have typed Tm /TI = (20 sec)/(14 sec/line) = 1.4 lines. Contrary to the
usual assumption, it was more effective to type slowly but carefully on the editing system
examined than it was to type at high speed and correct the errors later.

4 The dip in the WYLBUR curve comes from the low modification density for
manuscript M3,
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Figure 4.2. Predicted time to edit/type the experimental
manuscripts as a function of the manuscript length.
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Figure 4.3. Density crossover point as a function of manu-
script length.

The typewriter is faster for all manuscript length and modification density combi-
nations above the solid line, slower for those below.
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Figure 4.4. Predicted time to edit/type a manuscript as a
function of the length of manuscript and of the modification
density.

crossover density line. Because all the manuscripts sit relatively near the
density crossover line, it can be predicted that the results of the exper-
iment will be equivocal, that is, that the length crossover point will not
be well-defined.

What about predictions at other values of p? The predicted task time
as a function of the length of manuscript for different values of p is
plotted in Figure 4.4. The typewriter either wins or loses immediately.
This is true because the difference in setup times for the typewriter and
for WYLBUR is (for manuscripts longer than five lines) only a small
percentage of the time required to do the task.

4.3. SENSITIVITY ANALYSIS

There are several possible sources of error in our calculation. Only
the manuscripts for the experiment were available; there was no
information about the subjects, except that they were secretaries. Most of
the parameters, including the typing rates of the users, were taken from
pre-existing experiments by analogy. To what extent is the value of the
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predictions dependent on the accuracy of these parameter estimates?
One way to determine the consequences of uncertainties in the parameter
values is to see how sensitive the predictions of the equations are to small
changes in the parameter values.

SENSITIVITY OF THE LENGTH CROSSOVER POINT L.
Let the values of p, T, , T, T,, and T, be as estimated previously.

se’
Letp’. T,. T, T, and T, have other, but nearby, values. Then we
can use a Taylor expansion to approximate Equation 4.4 as

’ _ ’ i - _q_
Lc --Lc+ (,0 P +(T Tm)aTm +(Tse Tﬁe)aT'sc
+ (T = T) oo + (T — T) 2|
st st 6T 6T

OLe — ) + (Tl —To)

C

—T).

st — st)

In order to normalize the magnitudes of the coefficients and the results,
we express this equation in a ratio form:

L' —1L. P OL (p’ )+_T__8L Tw' — T
L. "L ) L. aT, T
e OL, (T’ — Tse Ter OL. (Tst' — Ty
+ . 0T, ( Tse )+ L, 6Tst( T )
1 OL.(T/ — T,
+ ( T )

Using 8x for (x'—x)/x,
p OL, ) ( ) (T AL
6L, ~ 6T, —se ¢ e
( L. t\Loor, )"

(Bt Yo (2%
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Evaluating the derivatives and substituting (T, — TN, — pT,) for
L, gives

1

1
6L, = T“— (6p + 6Tn) + 6T
l st
— 1 1— =3
me Tse
1 1
+ 6Tt +| —— |6T0.-
1 — =3¢ ﬁ"i —1
Tot T, (4.6)

Equation 4.6 expresses relative changes in L as a linear combination
of relative changes in the parameters of Equation 44. The percentage
change in L is approximated as the sum of the percentage change due to
each variable. The relative sensitivity of predicted L_ due to the different
parameters may thus be assessed directly from the relative size of the
coefficients. At p = .6, Equation 4.6 becomes

8L_ = 6.00 8p + 6.00 8T, + 2.85 8T,
— 185 8T, — 7.00 87,

That is, a 1% error in T, will be amplified into a 7% error in L .- The
values of the coefficients for other values of p are plotted in Figure 4.5,
as are those of the three following equations. The value of L is more
sensitive to changes in T, .p and T, | than to changes in Tse and Tst, the
ostensible parameters of interest. The sensitivity analysis makes it quite
clear (1) that the prediction of L, = 5 lines from the model is not
robust over changes in the parameters and (2) that it will be difficult to
maintain adequate control over the variables in the experiment at this
level of p. Considerable variance in the measured value of L, is
predicted. Figure 4.5 shows that the coefficients for 8p, 87, , and 87,
are all very large in the region between p = .06 and p = .08.
Conversely, had the experiment been designed with p = .2, then it
would have been true that

8L, = 40 8p + .40 8T, + 285 6T,
— 185 8T, — 140 8T, ,
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Figure 4.5. Coefficient values for the sensitivity equations.

in which case L, would have been much less affected by parameters

4. AN EXERCISE IN TASK ANALYSIS

+5%

Change in Length Crossover Point
=)

&
*

&
®

Change in Editing Time
)

—5%

T

-

0 \

T
Eq. 4.6 4
4
2

Eq. 4.8

6Tm&6p&6L\

|

N

PR SR B

20 40
Length (lines)

60

other than Tse and Tst.

SENSITIVITY OF THE DENSITY CROSSOVER POINT p.

We examine the density crossover point p ., by proceeding similarly

for Equation 4.5:

Change in Density Crossover Point

Change in Typing Time

+5%

5L Eq. 4.7 |
ST“ 1
/— 8T, b
0
N
-
— GT"
—~5% 1 | 1 L1 1
0 20 40 60
Length (lines)
+5% T
Eq. 49 |

o

~5%

‘ T

T T

|

20 40
Length (lines)



4.3. SENSITIVITY ANALYSIS 131

1 1
6pc =~ 6Tt + 6T
L Te—LT [ " Tu—LT,
Tst Tse
+ ! 6L — 6T, + ! 6T,
LT[ —1 " 1— Tse - Tst l
Toe — Tst LT, 4.7)

At L = 20 lines, Equation 4.7 becomes

8p, = 098T, — 13 8T, + 05 8L
— 1.00 87, + 1.05 8T,

Hence, a 1% change in either 7, or T; will produce about a 1% change
in p., but a 1% change in the other parameters produces only a
negligible change (.05%~.13%) in p,. For manuscripts of reasonable
length (longer than ten lines), p, will depend mainly on 7, and T,

SENSITIVITY OF TOTAL TYPING TIME T,
The total typing time T, is examined by converting Equation 4.1:

6Tt = 1 6T3t+ 1 (6L+6Tl)

LTI Tst
T 7 43)

At L = 20 lines,
OT,= 08 8T, + 92 8L + .92 8T,.

The sensitivity of Tl to Tst fades quickly as L increases. A 1% change in
the other parameters produces a little less than a 1% change in T,.

SENSITIVITY OF TOTAL EDITING TIME T
The total editing time T, is checked by converting Equation 4.2:
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1 1
— |6Te + | ———— |(6p + 6T, + 6L).
LT, + (60 + +6L)

e Yo, 49)

0T,

2

At L = 20 lines and p = .6 mod/line,
8T, = 138T,, + .878p + 8787, + 874L.

Again, the sensitivity of T, to T, fades quickly as L increases. And
again, 1% change in the other parameters produces a little less than a 1%
change in T,.

The results of the confidence interval and sensitivity analyses tell us
that, whereas it may be possible to predict the value of L functionally
(that is, to produce an equation whose evaluation will give a reasonable
value for L), it is not possible to predict the value of L, numerically
with any certainty on this group of manuscripts, because they are all set
so near to p.. Small errors in the parameter values will cause large
errors in the predictions. The analyses tell us, furthermore, that the
experiment is not likely to produce a well defined value of p . against
which to compare a prediction. On the other hand, the predictions of
total time to process each text are likely to be reasonable and to depend
very little on the setup times of the editor or the typewriter.

4.4. RESULTS

Figure 4.6 shows the time to edit each manuscript, both for the
typewriter and for WYLBUR, as a function of the length of manuscript
plotted in the same manner as Figure 4.2. As predicted from the model,
the crossover point was not well defined. Connecting the mean observed
times produces three crossover points. The times for manuscripts M2,
M3, and M5 were not reliably different from one another.

Accuracy of Parameters. Just how accurate were the simple models
of typing and editing in Equation 4.2 and Equation 4.3? The comparison
needs to be made in two ways. First, how accurate were the models at
predicting the result in advance of any knowledge about the outcome?
This zero-parameter prediction is usual in practice where reasonable values
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Figure 4.6. Observed mean times to type/edit the manu-

scripts in the experiment.

The users tested were eight professional secretaries, each a proficient user of
WYLBUR and of a typewriter. Each user was to edit all five texts twice, once with
the typewriter, once with WYLBUR. Half the users used the typewriter first, half
the editor. The order in which the texts were edited was varied systematically.
Properties of test manuscripts are listed in Figure 4.1.

for the parameters are known. Second, how good were the models at
predicting the result, given knowledge of the parameter values? This
would be a two-parameter prediction, since two values must be estimated
from the data. It allows an evaluation to be made of the accuracy of the
functional form of the model, and it allows us to partition the prediction
error into the error due to misestimating the parameters and error due to
form of the model. In order to make two-parameter predictions, esti-
mates of the parameters were made from regressions on the experimental
data. A comparison between the parameters estimated in this way and
the values assumed for making the predictions is given in Figure 4.7.
The values we used for making our predictions were poor estimates (off
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Assumed Observed

%Difference

T, (sec)

T/ (sec/line)

TSE (Sec)
{sec/mod)

24
14
37
20

5
18
179
16

- 85%

22%
649%
-20%

Figure 4.7. Comparison of the estimated parameter values
with the values observed in the experiment.

by 649% and 86%) for the two setup times (T, and T,), but were within
about 20% for the two rate parameters (7; and 7).

Accuracy of Typing Model. Figure 4.8 compares the predicted and
observed times for the typing model (Equation 4.2). The zero-parameter
prediction is indicated by a dotted line and the two-parameter prediction

2000 T T T T
M5
Two-parameter
1500 - prediction —
7
7
7
_ /7
§ 7
L 7
£ 1000 [ // =
il 7
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g Ve
-
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500 |- 7 -
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0 1l 1l 1 i
0 20 40 60 80 100

Manuscript Length (lines)

Figure 4.8. Comparison of the predicted typing time with
the typing times observed in the experiment.

The vertical bars on the observed times extend one standard deviation up and
down from the mean, based on the data from eight users.
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by a solid line. When the actual typing rates of the subjects are used in
the equation, the fit to the data is excellent. Using the sensitivity equa-
tion for this model (Equation 4.8), we can partition the sources of error
in the zero-parameter prediction. The errors are tabulated for each
manuscript in Figure 4.9. On the average, the prediction was about 11%
too low. Almost all this error (10% of the 11%) resulted from the error
in estimating the parameters; only 1% resulted from the form of the
model. Although the estimate for 7,, was much worse than the estimate
for T}, the latter was the source of twice as much error (19% for T, to
9% for T,). Since the errors were in opposite directions, they partially
offset each other.

Sources of Error

Parameters Model Total
Manuscript
Tﬂ T, Subtotal

M1 +27% -18% 9% 0% 9%
M2 +11% -19% -8% -2% -10%
M3 +4% -20% -16% -5% -20%
M4 +4% -20% -16% +3% -13%
M5 0% -20% -20% 0% -20%
Mean 9% -19% -10% -1% -11%

Figure 4.9. Partitioning the typing model’s prediction error.

Accuracy of Editing Model. The editing model (Equation 4.3) is
compared with the observed times in Figure 4.10. There is a good fit
between the observed and the predicted editing times, even for the zero-
parameter predictions. In Figure 4.11, the prediction error is partitioned
using the sensitivity equation for the editing model (Equation 4.9). The
model was about 24% too low; but, again, errors in estimating the input
parameters were responsible for considerably more error (31%) than was
the form of the model (7%). This time the major source of errors in
estimating the parameters was underestimating the setup time of the
editor. (It is instructive to note the frequency with which the various
sources of errors partially cancel each other.)



136 4. AN EXERCISE IN TASK ANALYSIS

2000 T T T T
1500~ M5 T
Zero-parameter
—_ prediction
] e
2
i 1000 - -
>
£
R
°
w
Two parameter
500 |- prediction —
M1
7
0 1 | | L
0 20 40 60 80 100

Manuscript Length (lines)

Figure 4.10. Comparison of the predicted editing time with
the editing times observed in the experiment.

The vertical bars on the observed times extend one standard deviation up and
down from the mean, based on the data from eight users.

4.5. CONCLUSIONS

The main point of this exercise was to explore how much insight
could be gained from a simple model of text-editing, the Constant Time
per Modification model, in which each editing modification is assumed to
require the same amount of time. We investigated this model in a case
study comparing the WYLBUR editor with a typewriter. There were two
main results,

First, it was possible to produce several predictions leading to
practical insight. A formula for the length crossover point showed its
functional dependence on other associated variables. A related concept
of modification density arose from the modeling effort, and the density
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Sources of Error

Parameters Model Total
Manuscript
e Tm Subtotal

M1 -67% +4% -63% +46% ~-47%
M2 -51% +9% -42% +17% ~33%
M3 -47% +11% -36% -17% -46%
M4 -35% +14% -21% -13% -32%
M5 -13% +22% +9% +1% +10%
Mean -43% +12% -31% +7% - 24%

Figure 4.11. Partitioning the editing model’s prediction error.

crossover point was expressed in functional form. It was then possible to
predict some unfortunate consequences of an unlucky choice in modifi-
cation density for an experiment. Without the insight of this derivation,
the results of the experiment would have been difficult to interpret at all.

Second, the major errors in the predictions made by the simple
editing and typewriting models did not result because they were too
simple, but because of errors in estimating the values of the input
parameters. For these predictions, a more sophisticated model would
have been useful only to the extent that it reduced dependence of the
prediction on the noisy parameters.

A sensitivity analysis identified those parts of the prediction from
these models in which little confidence could be placed. It also allowed
the prediction error to be quantitatively partitioned.
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5. The GOMS Model of
Manuscript Editing

5.1. THE GOMS MODEL

Components of the GOMS Model

Limitations of the GOMS Model

Design of the Experiments
5.2. SELECTION RULES (EXPERIMENT 5A)
5.3. TIME PREDICTIONS (EXPERIMENT 5B)
5.4. GRAIN OF ANALYSIS (EXPERIMENT 5C)
5.5. DISCUSSION

Assessment of the Models

Status of Goals and Operators

Operator Variability

Extending GOMS to Cover Errors

Manuscript Editing as a Cognitive Skill
5.6. CONCLUSIONS
APPENDIX: MATCHING OPERATOR SEQUENCES

In Chapter 4 we investigated a simple model of human text-editing
performance. We now consider how our understanding might be im-
proved by taking into account the cognitive information-processing
activities of the user. Our starting point is the fundamental principle of
task analysis, the Rationality Principle P8 from Chapter 2. According to
the principle, users act rationally to attain their goals. To predict a user’s
behavior we must analyze the task to determine the user’s goals and
operators and the constraints of the task. From Chapter 2, we expect
that underlying the detailed behavior of a particular user there is a small
number of information-processing operators, that the user’s behavior is
describable as a sequence of these, and that the time the user requires to
act is the sum of the times of the individual operators.

This, in outline, is the information-processing analysis of text-editing
to be carried through in this chapter. We address several general issues:
Is it possible to describe the behavior of a user engaged in text-editing as

139
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the repeated application of a small set of basic information-processing
operators? Is it possible to predict the actual sequence of operators a
person will use and the time required to do any specific task? In
attempting to describe behavior in this way, the issue of the level of
analysis is critical. How does the model’s ability to describe and predict
a person’s behavior change as we vary the grain size of the analysis?

5.1. THE GOMS MODEL

In the models we describe, the user’s cognitive structure consists of
four components: (1) a set of Goals, (2) a set of Operators, (3) a set of
Methods for achieving the goals, and (4) a set of Selection rules for
choosing among competing methods for goals. We call a model specified
by these components a GOMS model.

As an example of the basic concepts of a GOMS model and the
notation used, let us consider a particular model (called Model F2) of
manuscript editing with the line-oriented POET editor we studied in
Chapter 3. According to the model, when the user begins editing he has
the top level goal:

GOAL: EDIT-MANUSCRIPT.

As we have seen, a user segments the larger task of editing the
manuscript into a sequence of small, discrete modifications, such as to
delete a word or to insert a character. Although it is often possible to
predict the user’s actual segmentation of the task into subtasks from the
way the instructions are expressed on the manuscript, it is worth
emphasizing that the definition of the subtasks is a decision of the user.
We use the term unit task to denote these user-defined subtasks.
Notationally, we write

GOAL: EDIT-MANUSCRIPT
GOAL:EDIT-UNIT-TASK repeat until no more unit tasks.

The indentation above indicates that GOAL: EDIT-UNIT-TASK is a subgoal
of GOAL: EDIT-MANUSCRIPT, and the notation in italics says that the
subgoal is to be invoked repeatedly until no more unit tasks remain to be
done.
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In order to edit a unit task, the user must first acquire instructions
from the manuscript and then do what is necessary to accomplish them:

GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GOAL: EXECUTE-UNIT-TASK .

Each subgoal above will itself evoke appropriate methods. There is a
simple method for acquiring a task:

GOAL: ACQUIRE-UNIT-TASK
GET-NEXT-PAGE if at end of manuscript page
GET-NEXT-TASK .

The operator GET-NEXT-PAGE is invoked only if there are no more edit
instructions on the current page of the manuscript. The bulk of the work
towards the goal—looking at the manuscript, finding an editing
instruction, and interpreting the instruction as an edit task—is done by
the operator GET-NEXT-TASK.

In POET, like most line-oriented text-editors, to accomplish a unit task
there is a two-step method:

GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE
GOAL: MODIFY-TEXT.

In POET the editor must first be located at the line where the correction
is to be made. Then the appropriate text on that line must be modified.
To locate POET at a line, there is a choice between two methods:

GOAL: LOCATE-LINE
[select: USE-LF-METHOD
USE-QS-METHOD] .

To use the LF-METHOD, the LINEFEED key is pressed repeatedly, causing
the editor to advance one line each time. To use the QS-METHOD
(Quoted String), a string of characters is typed (between quotation marks)
to identify the line. Usually the LF-METHOD is selected when the text for
the new unit task is within a few lines of the text for the current unit
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task, and the QS-METHOD is selected when the new unit task is farther
away.
Once the line has been located, there is a choice of how to modify the
text:
GOAL: MODIFY-TEXT
[select: USE-S-COMMAND
USE-M-COMMAND]
VERIFY-EDIT .

Either POET’s Substitute command or its Modify command can be used
to alter text on a line. A detailed example of the Substitute command
has already been given (in Chapter 3). The Modify command allows the
user to invoke a series of subcommands for moving forward and
backward and for making modifications within a line. In either case, a
VERIFY-EDIT operation is evoked to check that what actually happened
matched the user’s intentions.
Putting all the steps together into one structure, we have:

GOAL: EDIT-MANUSCRIPT

GOAL: EDIT-UNIT-TASK repeat until no more unit tasks
GOAL: ACQUIRE-UNIT-TASK
GET-NEXT-PAGE if at end of manuscript page

GET-NEXT-TASK
GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE
[select: USE-QS-METHOD
USE-LF-METHOD)
GOAL: MODIFY-TEXT
[select: USE-S-COMMAND
USE-M-COMMAND]
VERIFY-EDIT .

The dots at the left of each line show the depth of the goal stack. To
complete this model of manuscript editing, we must still add method
selection rules for determining the actual submethods at the two
occurrences of select.

The step-by-step behavior of the model in performing a unit task is
traced in Figure 5.1. The user is assumed to have a goal stack with the
current goal at its top. New subgoals are pushed onto the stack, and
completed goals (whether satisfied or abandoned) are popped off the
stack. The goals eventually cause operators to be executed. It is during



MSVL-LINN
= 10N PuB ‘AJIGOW = GOW ‘LdIHOSNNYW = S ‘3LvD01 = 0071 ‘31n03X3
= X3 ‘LId3 = a2 ‘JYINOOV = DOV :pesn ase suoneinaiqge Buimolio) ayy
pue suoissaidxa |eob jo Buuuibaq ayy wouy paddosp s :YOD |OQWAS 8y ‘adoeds
anes 0] ybu syl je st (jeob wennd ay) “a7) Moeys [eob syl jo do} syl ‘uwniod
¥oels feob ayl uj ‘Z'e ainbi4 Ul paxiew auo puodas ay) Si padesy Buleq yse) |yl

*)sel yun auo ybnoiyy z4 12poy Jo adea] °L°'G ainbi4

SW-a3

1N-a3‘SW-Q3

1N-X3°‘LN-03 ‘SW-a3

/ SadAj 1103-A4143A 1X3L-GOW ‘LN-X3‘LN-a3 ‘SKW-a3

NHN13Y NHNL3YH IPINGNL3Y IPIS SadA | GNVIWNOD-S-3SN 1X3L-AOW ‘1N-X3 ‘LN-a3 ‘SW-a3
1X31-QOW ‘LN-X3‘LN-a3 ‘SN-a3

1n-x3°‘LN-a3 ‘SW-a3

a3343N1IT sadA) QOHI3NW-47-3SN aNIT-2071°LN-X3°1N-a3 ‘SW-a3
3NIT-001‘LN-X3 ‘4N-a3 ‘SW-a3

1N-X3°‘LN-a3 ‘SN-a3

iNn-a3‘sw-a3

1d19sSnuBW 1B $3007 NSVL-LX3N-139 1N-090V ‘LN-a3 ‘SW-a3
iN-09V ‘1N-a3 ‘SW-a3

1n-a3 ‘sw-a3

SW-a3

DO ~ QN M T W0
Al ol o A

- N0 YT O ONOD

uoNOY J19S() jeuldlIX] PpaIndaxg 1ojesadQ )oe}S |eox) JO S}uUdU0)

dajs

143
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execution of operators that interactions with the physical world take
place. For example, the user executes the operator GET-NEXT-TASK by
turning to the manuscript, scanning it until he finds the next task,
reading the instructions, and turning back to the terminal.

Components of the GOMS Model

The above example provides specific instances to help us understand
the information-processing components of GOMS models.

Goals. A goal is a symbolic structure that defines a state of affairs to
be achieved and determines a set of possible methods by which it may be
accomplished. In the example, the goals are GOAL: EDIT-MANUSCRIPT,
GOAL: EDIT-UNIT-TASK, GOAL: ACQUIRE-UNIT-TASK, GOAL: EXECUTE-
UNIT-TASK, GOAL: LOCATE-LINE, and GOAL: MODIFY-TEXT. The dynamic
function of a goal is to provide a memory point to which the system can
return on failure or error and from which information can be obtained
about what is desired, what methods are available, and what has been
already tried.

Operators. Operators are elementary perceptual, motor, or cognitive
acts, whose execution is necessary to change any aspect of the user’s
mental state or to affect the task environment. In the example, the
operators are: GET-NEXT-PAGE, GET-NEXT-TASK, USE-QS-METHOD, USE-LF-
METHOD, USE-S-COMMAND, USE-M-COMMAND, and VERIFY-EDIT. The
behavior of the user is ultimately recordable as a sequence of these
operations. In the example traced in Figure 5.1, the sequence of
operators in the user’s behavior is:

GET-NEXT-TASK
USE-LF-METHOD
USE-S-COMMAND
VERIFY-EDIT .

A GOMS model does not deal with any fine structure of concurrent
operations. Behavior is assumed to consist of the serial execution of
operators.

An operator is defined by a specific effect (output) and by a specific
duration. The operator may take inputs, and its outputs and duration
may be a function of its inputs. An obvious example is the typing
operator, whose input is the text to be typed, whose output is the key-
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stroke sequence to the keyboard, and whose duration is (approximately) a
linear function of the number of characters.

For a specific model, the operators define a grain of analysis. In
general, they embody a mixture of basic psychological mechanisms and
learned organized behavior, the mixture depending on the level at which
the model is cast. The finer the grain of analysis, the more the operators
reflect basic psychological mechanisms. The coarser the grain of analysis,
the more the operators reflect the specifics of the task environment, such
as the terminal, the physical arrangement, and the editor. The example
model above is quite coarse, and its operators (e.g., USE-S-COMMAND)
contain within themselves the specifics of POET’s command language.

Methods. A method describes a procedure for accomplishing a goal.
It is one of the ways in which a user stores his knowledge of a task. The
description of a method is cast in a GOMS model as a conditional
sequence of goals and operators, with conditional tests on the contents
of the user's immediate memory and on the state of the task
environment. In the example above, one of the methods was

GOAL: ACQUIRE-UNIT-TASK
GET-NEXT-PAGE if at end of manuscript page
GET-NEXT-TASK .

This method is associated with its GOAL: ACQUIRE-UNIT-TASK. It will
give rise to either the operator sequence GET-NEXT-PAGE followed by
GET-NEXT-TASK or the single operator GET-NEXT-TASK, depending on
whether the test “at end of manuscript page” is true of the task
environment at the time the test is performed.

In the manuscript-editing task, the methods are sure of success, up to
the possibility of having been mis-selected, the occurrence of errors of
implementation, and the reliability of the equipment. By contrast, in
problem-solving tasks (such as a first attempt at solving the DONALD+
GERALD problem in Chapter 2), methods have a chance of success
distinctly less than certain, because of the user’s lack of knowledge or
appreciation of the task environment. This uncertainty is a prime contri-
butor to the problem-solving character of a task; its absence is a
characteristic of a cognitive skill.

Methods are learned procedures that the user already has at
performance time; they are not plans that are created during a task
performance. They constitute one of the major ways in which familiarity
(skill) expresses itself. The particular methods that the user builds up
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from prior experience, analysis, and instruction reflect the detailed
structure of the task environment. In the manuscript-editing task, they
reflect knowledge of the exact sequence of steps required by the editor to
accomplish specific tasks.

Control Structure: Selection Rules. When a goal is attempted, there
may be more than one method available to the user to accomplish the
goal. The selection of which method is to be used need not be an
extended decision process, for it may be that task environment features
dictate that only one method is appropriate. On the other hand, a
genuine decision may be required. The essence of skilled behavior is
that these selections are not problematical, that they proceed smoothly
and quickly, without the eruption of puzzlement and search that charac-
terizes problem-solving behavior.

In a GOMS model, method selection is handled by a set of selection
rules. Each selection rule is of the form “if such-and-such is true in the
current task situation, then use method M.” Selection rules for GOAL:
LOCATE-LINE of the example model might read: if the number of lines to
the next modification is less than 3, then use the LF-METHOD, else use the
Qs-METHOD. Such rules allow us to predict from knowledge of the task
environment (in this case the number of lines to the target) which of
several possible methods will be selected by the user in a particular
instance. '

Limitations of the GOMS Model

For error-free behavior, a GOMS model provides a complete dynamic
description of behavior, measured at the level of goals, methods, and
operators. Given a specific task (a specific instruction on a specific
manuscript and a specific editor), this description can be instantiated into
a sequence of operations (operator occurrences). By associating times
with each operator, such a model will make total time predictions. If
these times are given as distributions, it will make statistical predictions.
But, without augmentation, the model is not appropriate if errors occur.
Yet errors exist in routine cognitive skilled behavior. Indeed, error rates
may not even be small, in the sense of having negligible frequency,
taking negligible time, or having negligible consequences. What is true
of skilled behavior is that the detection and correction of errors is mostly
routine (we discuss this more later). It cannot be entirely routine, since
the occurrence of rare types of errors for which the user is unprepared is
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always possible (the editor performing incorrectly, the terminal catching
fire). But, in the main, errors are quickly detected and result in
additional time to correct the error. The final effect of the behavior
remains relatively error-free, and the behavior can be characterized solely
by the time to completion. Thus, errors can be converted to variance in
operator times, so that the GOMS theory can be applied to actual
behavior at the price of degraded accuracy.

For a general treatment of errors and interruptions of the user, the
hierarchical control structure of a GOMS model is inadequate; a more
general control structure is required. The use of the stack-discipline
GOMS model instead of a more general control structure, such as
production systems (Newell and Simon, 1972), should be taken as an
approximation especially appropriate for skilled cognitive behavior and
preferred here because of its greater simplicity.

Design of the Experiments

The purpose of the experiments that follow is to describe the
manuscript-editing task in information-processing terms. The general
technique is to observe a user in a close laboratory analogue of the task
he commonly performs, to describe his behavior using a GOMS model,
and to evaluate in various ways the adequacy of the description. The
experiments are directed specifically at three elements of this analysis:
(1) description of how the user decides which method to use for a task,
(2) description of the time course of events, and (3) an investigation of
how the adequacy of the description varies as a consequence of the grain
of analysis.

5.2. SELECTION RULES (EXPERIMENT 5A)

The purpose of this experiment was to discover how users choose
which of several alternative methods to use and to determine if the
method choices could accurately be described in terms of the selection
rules of a GOMS model.

In the GOMS model for POET, we have seen two places where, for a
given goal, the user has a choice of methods. The first method selection
came in deciding how to locate the line:
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GOAL: LOCATE-LINE
[select: USE-LF-METHOD
USE-QS-METHOD] .

The second method selection came in choosing between commands for
making the text modification:

GOAL: MODIFY-TEXT
[select: USE-S-COMMAND
USE-M-COMMAND]
VERIFY-EDIT .

What we seek is a set of selection rules describing the conditions under
which the user will choose one method over another.

METHOD FOR EXPERIMENT 5A

Users were given a manuscript, marked with corrections, and asked to
use the POET text-editor to make the corrections. Although the experi-
ment was performed in the laboratory, an effort was made to make the
situation seem natural from the user’s point of view: the physical
surroundings, the task, the terminal, and the editor were all familiar as
part of the user’s daily activities. The manuscript and the modifications
to be made on it were selected to be typical.

Users. Users were two professional secretaries and a Ph.D. computer
scientist. All had at least one year of daily experience using POET.

Manuscript. The manuscript was an eleven-page memo. Each page
was 8-172 by 11 inches, with 55 lines of text and 70 characters per line,
printed unjustified in a 10-point fixed-pitch font. There were 73 different
modifications marked with a red pen, giving an average density of one
modification every 8.3 lines, or 6.6 modifications per page (from 3 to 11
on any one page). An effort was made to vary the number of lines
between consecutive modifications and to place an equal number of
modifications in each of the left, right, and middle portions of the page.
The marked modifications were relatively short: four of them were
deletions (of an average of 5.5 characters), 26 were insertions (of an
average of 2.9 characters), and 40 were replacements (of an average of 4.1
characters to be replaced by an average of 4.4 characters). The
manuscript fragment in Figure 3.2 was taken from the manuscript given
to the users and illustrates the style in which modifications were indicated
to the user.



5.2. SELECTION RULES 149

Terminal. Two terminals were used in the experiment: a Texas
Instruments “Silent 700" teletypewriter (prints on paper at 30 char-
acters/sec) and a video display, 8-1/2 inches wide by 10-3/4 inches high
(42 lines, 72 characters per line, maximum display rate about 6 lines/sec).
The display was programmed to operate according to a simple scrolling
discipline (the same discipline used on the teletypewriter): each new line
was displayed at the bottom of the screen with the other lines scrolling
up to make room. The last 42 lines of an interaction were visible on the
screen.

Procedure. The user was seated before the terminal with the
manuscript to his left. He first performed editing tasks on a one-page
manuscript for warmup and for insurance that he understood what to do.
Then he edited the manuscript described above. One user was run on
the teletypewriter alone, one on the video display terminal alone, and one
was run twice, first on the display and two weeks later on the
teletypewriter. For two of the experimental sessions, users were in-
structed to proceed through the manuscript, inserting an asterisk at the
beginning of each marked line (since these sessions were originally run
only to investigate methods for locating the target line). In the other two
experimental sessions, the users were instructed to edit the eleven-page
manuscript. Editing the manuscript required approximately 20 minutes.

The users’ keystrokes and the system’s responses were recorded on a
computer file. These data were used to infer the methods chosen for each
task and the reasons for choosing them.

RESULTS OF EXPERIMENT S5A

Typescripts of the four experimental sessions were examined to
identify the methods employed by the users. Figure 5.2 gives the
methods observed and the frequencies with which the methods were
selected. QS-METHOD and LF-METHOD are the methods previously
described for GOAL: LOCATE-LINE. S-COMMAND and M-COMMAND are the
methods previously described for GOAL: MODIFY-TEXT. The other
methods were used less frequently and are described as follows:

+N-METHOD. The user estimates the number of lines n to
the next unit task then types the command +n/,
which causes POET to advance n lines and print the
line. It is assumed that a correction may be
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User / Terminal Type

St S4 S22
{Comp. Sci.) (Secy.) (Secy.)
(TTY) (TTY) (DISP) (DISP)
Methods for GOAL: LOCATE-LINE:
LF-METHOD 11 (16%) 14 (21%) 45 (68%) 25 (38%)
QS-METHOD 44 (65%) 1 (2%) 0 40 (62%)
+N-METHOD 2 (3%) 51 (77%) 20 (30%) 0
AN-METHOD 11 (16%) 0 1 (2%) 0
Methods for GOAL: MODIFY-TEXT:
S-COMMAND - 48 (73%) — 57 (86%)
M-COMMAND — 18 (27%) — 9(14%)

Figure 5.2. Frequency of method selections for three sub-
jects in Experiment 5A.

In two sessions no modifications were actually done, since only methods for GOAL:
LOCATE-LINE were being studied at the time.

needed: the user may have to type a few LINEFEED
commands (each of which moves him down a line),
+ commands (each of which moves him up a line),
or may even have to repeat the +a/ command with
a new n.

AN-METHOD. The user first selects an easily specified
“anchor” line near the target line, such as a blank
line (specified by the empty string " "), the last line
of a page (denoted by the special symbol $), or a
line that has a short unique string, such as a
paragraph number. Then the target line is reached
by using LINEFEED’s or t’s. For example, the com-
mand " "LINEFEED locates POET at the first line of
the next paragraph.

A striking feature of the method frequencies in Figure 5.2 is how
each user clearly has a dominant method. By knowing only the domi-
nant method of the user, his.method selection can be predicted correctly
about 66% of the time for GOAL: LOCATE-LINE and 80% of the time for
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GOAL: MODIFY-TEXT. Apparently, the user will use this dominant
method unless it is obviously inefficient (such as LINEFEEDing a line at a
time through ten pages of text to get to the next task).

That a user’s selection of methods depends systematically on the
features of the task environment is illustrated by the choice of method
for GOAL: LOCATE-LINE. The most important characteristic of the task
environment for this goal is the distance d (given in number of lines)
between the Current Line and the line with the text to be next modified.
As is clear from Figure 5.3, all users used the LF-METHOD if the next line
was close enough. Where users differed was in the threshold for how far
away the target had to be before they shifted to other methods. The
time required to use the LF-METHOD was sensitive to the speed of the
terminal, since the system prints out the new Current Line every time

User Method

2 3 4 5 6 7 8 9 10-14 15+
S1 LF 8 3
Qs 2 4 5 2 1 3 4 8 15
(TTY) +N 1 1
AN 2 1 1 3
S4 LF 8 4 1 1
Qs 1
(ITY) +N 1 5 5 3 1 4 4 1 17
AN
S4 LF 6 7 6 5 3 1 3 2 2 10
Qs
(DISP) +N 1 1 2 9 7
AN 1
822 LF 6 5 6 5 1 1 1
Qs 1 1 2 4 4 10 18
(DISP) +N
AN
Total
Frequency 8 6 6 5 4 0 1 4 4 11 19

Figure 5.3. Frequency of GOAL: LOCATE-LINE methods in
Experiment 5A as a function of the distance d from the

previous task.

The vertical bars indicate the thresholds where the LF-METHOD ceases being the
preferred method in each session. The Total Frequency row gives the frequency
of the different distances over the whole manuscript, taking the tasks in order.
Since users often did some tasks in a different order, totals for different experi-
ments in the same column are not necessarily equal.
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LINEFEED is typed. It was not surprising, therefore, that the LF-METHOD
was used less frequently by user S4 on the slower teletypewriter than on
the faster display terminal (21% of the time on the teletypewriter vs. 68%
of the time on the video display, according to Figure 5.2), or that the
threshold for when to abandon the LF-METHOD was lower when S4 was
using a slow terminal than when she was using a fast one (d=3 lines for
the teletypewriter vs. d=10 lines for the display).

Figure 5.2 and Figure 5.3 make it clear that there are important
individual differences in how users decide which method to use. Using
the same terminal and doing the same task, S22 uses the QS-METHOD 62%
of the time, but S4 never uses it. Averaging together the data for all
users and attempting to write rules to describe the choices of the group
would, therefore, produce inaccurate predictions, as well as be quite
misleading. Yet, despite the existence of significant individual differences
in methods for accomplishing this goal, each user’s behavior taken
individually was highly structured and amenable to a GOMS description.

The complete prediction of which method each user employed for
GOAL: LOCATE-LINE is organized as a set of Selection Rules in Figure 5.4.
Each row gives the resuits of the accumulation of Rule 1 to Rule n,
adding rules one at a time. The “Hits” column shows the total number
of cases correctly predicted, and the “Misses” column shows the number
of cases in which the prediction was wrong (Hits + Misses = the total
number of method selections). As each rule is added, the set of rules
taken together predicts more cases correctly, but a few individual cases
that were predicted correctly may now be missed. For example, adding
Rule 2 for S1 (the second line of the figure) correctly predicts 11 method
selections of the 24 that had been missed using Rule 1 alone, but at the
cost of missing 2 of the 44 that were previously hits—a net gain of 9. As
the figure shows, using from two to four simple rules, it is possible to
predict a user’s method selections an average of 9% of the time.

5.3. TIME PREDICTIONS (EXPERIMENT 5B)

Experiment 5A showed that it is possible, using a GOMS model, to
describe users’ method selections. Experiment SB was designed to
examine chronometrically how users sequence operators to accomplish
tasks. The technique was to observe users performing editing tasks,
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This Rule Cumulative
User Rule
Gain Loss Hits Misses %Hits
St Rule 1: Use the as-METHOD unless another rule 44 0 44 24 65%
(TTY) applies.
Rule 2: If d< 3, use the LF-METHOD. 11 2 53 15 78%
Rule 3: If the target line is the last line of the 5 0 58 10 85%

page, use the AN-METHOD (with $).

Rule 4: If the current method is to use paragraph 2 0 60 8 88%
numbers for search strings and the target
line is near a paragraph number, use
the AN-METHOD.

S4 Rule 1: Use the +N-METHOD unless another rule 51 0 51 15 77%
(TTY) applies.

Rule 2: If d< 3, use the LF-METHOD. 12 1 62 4 94%
S4 Rule 1: Use the LF-METHGOD unless another rule 45 0 45 21 68%
(DISP) applies

Rule 2: I d> 9, use the + N-METHOD. 16 12 49 17 74%

Rule 3: If the target line is on the next page of 56 10 56 10 85%
the manuscript, use the LF-METHOD.

S22 Rule 1: Use the as-METHOD unless another rule 40 0 40 25 62%
(DISP) applies.
Rule 2: If d< 5, use the LF-METHOD. 22 2 60 5 92%

Average Final %Hits = 90%

Figure 5.4. Selection rules for GOAL: LOCATE-LINE in

Experiment 5A.

Each row tallies the effect of adding its method selection rule to the rule set. With
the addition of each rule, some more methods are predicted (Gain) and some pre-
viously predicted ones are now mispredicted (Loss), for a cumulative effect of so
many predictions (Hits) and so many mispredictions (Misses).

recording (1) the sequence in which operators occurred and (2) the
duration of each operator occurrence. These data allow testing of task
time predictions calculated from the model.
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METHOD FOR EXPERIMENT 5B

Users. Users were two secretaries and two computer scientists
familiar with POET. The terminal was similar to the video display of the
previous experiment.

Measurement Apparatus. The terminal was connected to a large
computer running the POET editor under the TENEX time-sharing system.
For this experiment, the terminal was modified to time-stamp and record
all input events on a data file. Accuracy of time-stamping was to within
33 msec of the actual time of the event at the terminal.! The average
response time of the editor to commands during the experiment was .8
sec (SD = .6 sec).

Two television cameras were directed at the user, one camera giving
an overall view of the user and terminal, the other a closeup of the user’s
face, from which it could be determined whether he was looking at the
manuscript, the keyboard, or the display. The user wore a lapel
microphone, recording onto the soundtrack of the video tape. A digital
clock was electronically mixed with the video picture, time-stamping each
frame. The times measured from video frames were accurate to 33 msec
(one video frame).

Procedure. The procedure was similar to that for Experiment 5A.
The user was first given a test to determine his typing rate and then
several editing tasks as a warmup. Finally, he edited the same manu-
script that was used in Experiment 5A.

Data Sets. The first three unit tasks were discarded before analysis to
minimize any warmup effect. The remaining 70 unit tasks were parti-
tioned into two comparable data sets: a Derivation data set, consisting of
the 36 unit tasks on the odd-numbered pages, and a Crossvalidation data
set, consisting of the 34 unit tasks on the even-numbered pages. This
partition allowed basic operator statistics to be computed on the
Derivation data, while preserving the Crossvalidation data for an attempt
at prediction in a matched situation, no statistical advantage having been
taken of chance. ,

The data were also partitioned into the set of error-free unit tasks and
the set of error unit tasks, each of the latter containing at least one
identifiable error. The criterion for identifying an error was that the user

1 The accuracy of the timing of events did not depend on the response of the time-
sharing system.
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User
S$34 S$53 S50 S95 Mean
(Comp. Sci.)  (Comp. Sci.) {Secy.) (Secy.)
(sec) {sec) {sec) (sec) (sec)
Derivation data (36) 9.0 (25) 15.3 (27) 156.1 (28) 13.4 (21) 13.2 (25)
Crossvalidation data (34) 8.5 (23) 14.7 (25) 17.0(27) 14.0 (24) 13.2 (25)

Figure 5.5. Mean error-free unit task times for all users in

Experiment 5B.

The values are the mean task times over all error-free tasks for each user. The
numbers in parentheses are the number of error-free tasks. All differences
between mean number of error-free tasks, mean error-free task time for Derivation
data vs. Crossvalidation data, or computer scientists vs. secretaries, are non-
significant by Mann-Whitney U-test, p > .05.

took some overt corrective action, defined as some action that undid the
effect of a preceding action. All the analyses below use the error-free
data.

Figure 5.5 gives statistics on the Derivation and Crossvalidation data
sets and shows that both the Derivation and Crossvalidation data were
comparable with respect to the number of tasks having errors and to the
mean time per task for error-free tasks.

Protocols. The videotaped record of the user’s behavior and the time-
stamped file of keystrokes were coded into a protocol of operator
sequences, using the operators of the GOMS Model F2 that was
described in Section 5.1. Occurrences of the operators were identified
according to the following operational definitions:

GET-NEXT-PAGE. Turning the manuscript page. Starts
when the user’s eyes begin to turn towards the
manuscript; ends when the turned page falls flat.

GET-FROM-MANUSCRIPT. Looking over to the manuscript
to get the next task. Starts when the user’s eyes
begin to turn towards the manuscript; ends when the
user types a keystroke for the next operation or
begins to look back to the display, whichever comes
first.

USE-LF-METHOD. Using the LF-METHOD to locate the line of
the task. Starts when the user’s eyes begin to turn



156 5. THE GOMS MODEL OF MANUSCRIPT EDITING

towards the screen or the user types the first
LINEFEED, whichever comes first; ends when the last
LINEFEED is typed.

USE-QS-METHOD. Using the @s-METHOD method to locate
the line of the task. Starts when the user’s eyes
begin to turn toward the screen or the user types the
first keystroke, whichever comes first; ends when the
final character of the search command is typed.

USE-S-COMMAND.  Using the Substitute command to
modify the text. Starts when the user types the first
keystroke of the command; ends when the final
character of the command is typed.

USE-M-COMMAND. Using the Modify command to modify
the text. Starts when the user types the first
keystroke of the command; ends when the final
character of the command is typed.

VERIFY-EDIT. Examining the output on the display to check
that the modification is correct. Starts when the
final character of the previous command is typed;
ends when the user’s eyes turn to the manuscript for
the next task.

RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Selection rules were derived for each user by
examining their method selections in the Derivation data. The results of
using these rules to predict method selections replicated the results in
Experiment 5A. One or two selection rules (Figure 5.6) were sufficient
to predict 88% of the method choices in the Derivation data and 80% in
the Crossvalidation data. Accuracy of the rules was about the same for
the two different goals. Interestingly, the rules were better at predicting
the secretaries (90%) than at predicting the computer scientists (77%).

Accuracy of Sequence Predictions. In addition to wrong method
choices, there are other possible ways in which the model might make
errors in the prediction of operator sequences. Ultimately, these will be
registered as the intrusion into the observed data of unpredicted
operators or the non-occurrence of predicted operators.

Model F2 was used to calculate the predicted sequence of operators
for each task, and this sequence was matched against the sequence
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%Hits
User Selection Rules Derivation Crossvalidation
Data Data
Rules For GOAL: LOCATE-LINE
S34 Rule 1: Use the 0s-METHOD as default. 84% 74%
Rule 2: If d< 3, then use the LF-METHOD.
S50 Rule 1: Use the as-METHOD as default. 96% 93%
Rule 2: It d< 3, then use the LF-METHOD.
S63 Rule 1: Use the aS-METHOD as default. 63% 72%
Rule 2: 1f d< 3, then use the LF-METHOD.
895 Rule 1: Always use the LF-METHOD. 95% 71%
Rules For GOAL: MODIFY-TEXT
S34 Rule 1: Use the M-COMMAND as default. 85% 83%
Rule 2: If a word is to be replaced neither at the very
beginning nor very end of the line, then use
the S-COMMAND.
S50 Rule 1: Use the 5-COMMAND as default. 84% 83%
Rule 2: If the correction is at the very beginning or the
very end of the line, then use the M-COMMAND.
853 Rule 1: Use S-COMMAND as defauit. 93% 60%
Rule 2: f the correction is at the very beginning or the
very end of the tine or is a double task or involves
only punctuation, then use the M-COMMAND.
895 Rule 1:  Always use the S-COMMAND. 100% 100%
Mean 88% 80%

Figure 5.6. Method selection rules for Experiment 5B.

Mean accuracy (%Hits) of the rules is significantly greater for Derivation data than
for Crossvalidation data, Mann-Whitney U(88) = 9, p = .014; greater for
secretaries (90%) than for computer scientists (77%), U(8,8) = 12.5, p < .025; but
no different for GOAL: LOCATE-LINE (81%) than for GOAL: MODIFY-TEXT (86%),

u@Bs8) = 25 p = .253.

actually observed. There is no standard statistical technique for indexing
how well one sequence matches another, so the following method was
used. The sites of mismatches because of operator insertions, deletions,
or replacements were determined using a simple dynamic programming
algorithm (based on Hirschberg, 1975, and Sakoe and Chiba, 1978) to
optimize the number of matches. Then the percentage of predicted
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User

$34 $53 S50 $95 Mean

(Comp. Sci)  (Comp. Sci.) (Secy.) (Secy.)
Derivation data 79% 81% 98% 94% 88%
Crossvalidation data 89% 83% 92% 93% 89%

Figure 5.7. Percentage of operator instances predicted in

Experiment 5B.

The secretaries’ operators were predicted significantly better (94%) than the
computer scientists' (83%), Mann-Whitney U(4,4) = 0, p = .014; but the prediction
of the model matched the Derivation data as well (88%) as the Crossvalidation data
(89%), U(4,4) = 8, p = .56.

operator occurrences that matched observed operator occurrences was
computed (see Appendix to this chapter for details). Sequences gen-
erated by the model were generally in good agreement with those
observed (Figure 5.7). The percentage of matches varied from 79% to
98% with an average of 88%. There were no differences between the
Derivation and the Crossvalidation data, but again, the model did better
at calculating sequences for secretaries (94% of operators in sequences
matched) than for computer scientists (83%). Except for the already
noted method-selection errors (due to operator insertion, deletion, or
replacement), the only error made by the model was to predict that users
would always perform a VERIFY-EDIT operation, whereas users sometimes
omitted it.

RESULTS OF TIME PREDICTIONS

The protocols contain times from which it is possible to compute
chronometric statistics for each operator in each model. Estimates of the
time to perform a specific unit task were computed in two ways: (1)
Given the observed sequence of operators, sum the mean times for each
operator in the sequence. This estimate, which we call a Reproduction of
the data, corresponds with how well the models would do were there no
sequence prediction errors. (2) Using the sequence of operators predicted
by the models, sum the mean times for each operator in the sequence.
This latter estimate, which we call a Prediction, should correspond more
with what we might expect to find applying the models in practice.
Error can enter into the estimates either because an operator actually
takes longer in some contexts than others or, in the prediction case,
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User
Operator S34 S$53 $50 $95 All
(Comp. Sci.) {Comp. Sci.) (Secy.) (Secy.) Users
(TR = .16) (TR = .30) (TR = .16) (TR = .12)
cVv N M CV N M CV N M CV N M CV
{sec) (sec) {sec) (sec) {sec)
GET-NEXT-PAGE 280 23 5 1.18 45 4 181 41 5 331 — 1 220 .42

GET-NEXT-TASK 129 41 25 211 41 27 207 46 28 1.26 44 21 1.68 .28

USE-QS-METHOD 207 24 18 332 .37 12 448 36 22 _ - = 329 .37
USE-LF-METHOD 210 76 4 185 53 4 347 49 5 540 53 17 321 51
USE- +N-METHOD 2.10 40 3 407 48 8 —_— = = —_ = — 303 .45
USE-AN-METHOD — - - 818 33 2 —_ - - 1006 21 3 912 .15
USE-S-METHOD 294 29 5 660 .34 12 678 40 21 466 .35 21 525 .35
USE-M-METHOD 438 29 20 812 44 15 852 45 7 _— - 701 .33
VERIFY-EDIT .64 .30 11 96 31 21 .76 .37 18 .85 68 18 80 17
Average between-userCV = .36

Mean CV .37 M .33 44
Average within-user CV = .40

Figure 5.8. Operator duration statistics for all users in

Experiment 5B.
TR is the typing rate in sec/keystroke. The Mean and CV for all users (rightmost
column) is based on user means.

because the model predicts the wrong sequence of operators, and this
sequence takes a different amount of time than does the correct
sequence.

Operator Times. The durations of all occurrences of each operator
type in the Derivation data were used to estimate the operator times,
shown in Figure 5.8. Since the data come from a quasi-natural situation
and since a rare method may appear only once in the data, there is a fair
chance that some extreme times may show up in the distributions of
operator times. Though these must be accepted in any prediction test, it
is appropriate to avoid them in estimating the characteristics of the
operators. Consequently, in Figure 5.8 we have dropped outliers that fall
beyond two standard deviations from the raw mean and then recomputed
the mean and coefficient of variation CV for each operator.2

2 Here and elsewhere we report the coefficient of variation CV = SD/Mean as a
way of partially normalizing the SD to make it more comparable for operators of
different durations.
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User
S34 S$53 S50 595 Mean
{Comp. Sci.}  {Comp. Sci.) (Secy.) {Secy.)
Derivation data:
Reproduction 32% 31% 29% 29% 30%
Prediction 31% 32% 29% 34% 32%
Crossvalidation data:
Reproduction 35% 35% 36% 35% 35%
Prediction 33% 36% 37% 39% 36%

Figure 5.9. Prediction error for task times in Experiment 5B.
The prediction error measure is the RMS (root mean square) error as a percentage
of the observed mean task time. The prediction error is less for the Derivation
data (31%) than for the Crossvalidation data (36%), Mann-Whitney U(88) = 0, p
= .01; but there is no difference between Reproduction (33%) and Prediction
(34%), U(8,8) 24, p > .25; or between computer scientists (33%) and secretaries
(34%), U(8,8) 26, p > .40.

[}

Whereas there are moderate differences between users in their
operator times, the variation in times between users is comparable to the
variation of times within a user. The average CV between users is .36,
whereas the average CV within a user is .40.

Accuracy of Time Predictions. Comparing the time per task
calculated from the model with the observed times gives an RMS (root
mean square) error of 33% of the mean observed time. As shown in
Figure 5.9, there were no differences in prediction accuracy between
computer scientists and secretaries or between Reproduction and

Prediction, but the Derivation data was slightly more accurately predicted
(RMS error of 31%) than the Crossvalidation data (36%).

If the RMS error measure is interpreted as the average model error,
33% error may seem high. But predicting editing times unit task by unit
task for a single user is a very stringent test. If the unit of prediction
were the whole manuscript rather than the unit task, then the prediction
error would drop considerably, since the high and low predictions of the
various unit tasks would tend to cancel each other. The RMS error
approximately obeys a square root of n law, where n is the number of
unit tasks.3 So the RMS error for predicting the time to edit the whole

3 RMS(e) = \/ [2e12/n], where 2 is the prediction error on the ith unit task. The
RMS error is the standard deviation SD of e about zero, instead of the actual mean of e,
which is M(e), and thus RMS(e) > SD(e). If M(e) = 0, then RMS(e) = SD(e), and
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manuscript (70 tasks) would be 33% X V70 = 4% (neglecting, of
course, the effects of users’ mistakes, which are not addressed by this
model). The error for these models of variable-sequence cognitive
activity would thus seem to be in the same range (about 5%) as that
sometimes cited for predetermined time system predictions of invariable-
sequence physical activity by industrial engineers (Eady, 1977; Maynard,
1971).

5.4. GRAIN OF ANALYSIS (EXPERIMENT 5C)

The model discussed above is not the only possible GOMS model for
the manuscript-editing task. Because models could be constructed with
either more or less detail, there is an important issue of the appropriate
grain of the analysis.

A priori, it is not possible to know which grain size is appropriate.
As the grain of the analysis becomes finer, the model successively
accumulates opportunities for conditional behavior (either optional
application of some method or differentiation into cases). Thus, from
one point of view, models at a finer grain should be more accurate. But
opposing forces are also at work. At a finer grain, operators will be
likely to appear in a larger number of contexts. In combining low-level
operators to form functional units that a coarser grain would reflect
directly, one may miss setup or other operations that are properties of
the unit as a whole. The duration of operators may depend on other
operators in the sequence (Abruzzi, 1956). And finally, there is typically
greater error in the measurement of finer grain operators than of coarser
grain operators.

A direct test of how the grain of analysis affects the accuracy of a
GOMS model is to recast the analysis at several levels of detail. There
appear to be two essentially independent dimensions along which the
grain of analysis can be made finer or coarser. The primary dimension
involves duration of the operators. The second dimension involves
variations among operators of approximately the same duration.

We explore variations of GOMS models along both of these
dimensions. Figure 5.10 describes briefly the family of nine manuscript-

the RMS error is equivalent to the standard error. The square root law argument should
actually be made with respect to SD(e) about M(e), but the use of the RMS error is
approximately correct if M(e) is close to zero.



UNIT-TASK LEVEL:

Model UT

Constant time per unit task. Only one operator: EDIT-UNIT-TASK. (This
model is like the Constant Time per Modification model of Chapter 4,
except for the substitution of unit tasks for modifications.)

FUNCTIONAL LEVEL:

Model F1

Model F2

Single operator for each functional step in unit task sequence: GET-NEXT-
TASK, LOCATE-LINE, MODIFY-TEXT, VERIFY-EDIT.

Like Mode! F1, but with operators LOCATE-LINE and MODIFY-TEXT broken
into separate cases based on the methods used to accomplish them.

ARGUMENT LEVEL:

Model A1

Model A2

Model A3

Model A4

Like Model F2, but with operators at the level of typing a system
command (SPECIFY-COMMAND) or typing an argument to a command
(SPECIFY-ARG).

Like Model A1, but with SPECIFY-COMMAND and SPECIFY-ARG broken into
separate cases according to whether they involve an implicit need to get
information from manuscript (suffix = /sG) or not (suffix = /NG).

Like Model A1, but with SPECIFY-COMMAND and SPECIFY-ARG broken into
separate cases according to four method contexts: quoted string method

(suffix = ra), first argument to Substitute command (suffix = /s1),
second argument to Substitute command (suffix = /s2), or Modify
command (suffix = /m).

Like Model A1, but with all the distinctions in both Model A2 and Model
A3 combined multiplicatively.

KEYSTROKE LEVEL:

Mode! K1

Model K2

Like Model A2, but with operators at the level of basic perceptual,
cognitive, and motor actions: LOOK-AT, HOME, TURN-PAGE, TYPE, and
MOVE-HAND. Aill mental actions not overlapped with motor operations are
represented as the MENTAL operator.

Like Model K1, but with MENTAL broken down into SEARCH-FOR, COMPARE,
CHOOSE-COMMAND, and CHOOSE-ARG.

Figure 5.10.

Description of the family of GOMS models

investigated for POET.

162
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Model UT
l
Model F1
l
Model F2
l
Model A1
Model A2 Model A3
Model A4
Model K1
l
Model K2

Figure 5.11. Graph of the family tree of GOMS models
investigated for POET.

The links in the tree show how the models outlined in Figure 5.10 can be derived
from each other by making further distinctions. Distinctions are made by either
case analysis (as in Model F1 into Model F2) or by splitting operators (as in Model
F1 into Model A1).

editing models that we consider in this experiment. Figure 5.11 shows
the family tree, where the links in the tree show which models are
further elaborations of each other (either by splitting or by differentiating
operators). Finally, Figure 5.12 lays out the full models themselves.

Each model is given a name of the form “Model level number.” We
distinguish models in Figure 5.11 at four levels: the Unit-Task Level, the
Functional Level, the Argument Level, and the Keystroke Level. We
begin at the Unit-Task Level with Model UT (see Figure 5.12), which
consists of a single operator, EDIT-UNIT-TASK. The goal of manuscript
editing is accomplished by repeating this operator for each unit task.
With only a single operator, Model UT always predicts that it takes the
same amount of time to do a unit task. Functional Level models come
from decomposing the unit task into its functional cycle: (1) get the next
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Model UT:

GOAL: EDIT-MANUSCRIPT
EDIT-UNIT-TASK

UNIT TASK LEVEL

. repeat until no more unit tasks

FUNCTIONAL LEVEL

Model F1:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GET-NEXT-PAGE
GET-NEXT-TASK
GOAL: EXECUTE-UNIT-TASK
LOCATE-LINE
MODIFY-TEXT
VERIFY-EDIT

Modeil F2:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GET-NEXT-PAGE
GET-NEXT-TASK
GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE

. repeat until no more unit tasks
. . if task not remembered

. . it at end of manuscript page

. .if an edit task was found

. . il task not on current line

. repeat until no more unit tasks
. .if task not remembered

. .if at end of manuscript page

. .1t an edit task was found

. . il task not on current line

[select USE-QS-METHOD
. USE-LF-METHOD]
GOAL: MODIFY-TEXT
[select USE-S-COMMAND
USE-M-COMMAND]
VERIFY-EDIT

Figure 5.12. GOMS models for POET.

edit task, (2) locate the editor at the line on which the modification is to
be made, (3) make the modification, and (4) verify that the edit was done
correctly. The model used to analyze Experiment 5B, Model F2, is a
Functional Level model. Argument Level models arise by decomposing
the methods used at the Functional Level into the individual steps of
specifying commands and arguments. Both Functional Level models and
Argument Level models are driven by the structure of the POET com-
mands. These are themselves reflections of the demands of the task as it
is defined in the manuscript.

At the Keystroke Level, an entirely different set of operators comes
into view, defined not by their functional role in the command language,
but by reference to the basic physical and mental actions of the user:
typing, looking, moving a hand, plus various mental operations. These
operators are more task-independent than the operators at other levels.
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ARGUMENT LEVEL
Model A1:
GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK . repeat until no more unit tasks

GOAL: ACQUIRE-UNIT-TASK . . it task not remembered
GET-NEXT-PAGE . . . if at end of manuscript page
GET-NEXT-TASK

GOAL: EXECUTE-UNIT-TASK . . ifan edit task was found
GOAL: LOCATE-LINE . . . iftask not on current line

[select GOAL:USE-QS-METHOD
SPECIFY-COMMAND
SPECIFY-ARG
GOAL: USE-LF-METHOD
SPECIFY-COMMAND] . . . .. repeat until at line
VERIFY-LOC
GOAL: MODIFY-TEXT
[select GOAL: USE-S-COMMAND
SPECIFY-COMMAND
SPECIFY-ARG
SPECIFY-ARG
GOAL: USE M-COMMAND
SPECIFY-COMMAND
SPECIFY-COMMAND . . . .. repeat until at text
SPECIFY-ARG
SPECIFY-COMMAND]
VERIFY-EDIT

Model A2: as in Model A1 but substitute
SPECIFY-COMMAND/G Or SPECIFY-COMMAND/NG for SPECIFY-COMMAND
SPECIFY-ARG/G Or SPECIFY-ARG/NG for SPECIFY-ARG

Model A3: asin Model A1 but substitute

SPECIFY-ARG/Q Or SPECIFY-ARG/M Or
SPECIFY-ARG/S1 Or SPECIFY-ARG/S2 for SPECIFY-ARG

Mode! A4: as in Model A1 but substitute
SPECIFY-COMMAND/G 0r SPECIFY-COMMAND/NG for SPECIFY-COMMAND

SPECIFY-ARG/Q/G Or SPECIFY-ARG/Q/NG or
SPECIFY-ARG/M/G or SPECIFY-ARG/M/NG or
SPECIFY-ARG/S1/G Or SPECIFY-ARG/S1/NG or
SPECIFY-ARG/S2/G Or SPECIFY-ARG/S2/NG for SPECIFY-ARG

The cost of obtaining the estimates of all the different operators and
selection rules increases as the size of the operators decrease, because
more data are required for a given level of robustness and because the
observation and measurement problems increase at the lower levels. A
possible compensation for the greater cost of using the Keystroke Level
operators is that, unlike the larger operators, it may not be necessary to
determine lower-level operators for each new application.



KEYSTROKE LEVEL

Model K2:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK
GOAL: TURN-PAGE* (see below)
GOAL: GET-FROM-MANUSCRIPT*
GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE
CHOOSE-COMMAND
[select GOAL: USE-QS-METHOD
GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG*®
GOAL: USE-LF-METHOD
GOAL: SPECIFY-COMMAND*]
. GOAL: VERIFY-LOC*
GOAL: MODIFY-TEXT
CHOOSE-COMMAND
[select GOAL: USE-S-COMMAND
GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG"®
GOAL: SPECIFY-ARG*
GOAL: USE-M-COMMAND
GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-COMMAND*
GOAL: SPECIFY-ARG*
GOAL: SPECIFY-COMMAND*]
GOAL: VERIFY-EDIT*

* Expansion of goals appearing several times:

GOAL: TURN-PAGE
. LOOK-AT-MANUSCRIPT

. ACTION

. MOVE-HAND

. TURN-PAGE

GOAL: GET-FROM-MANUSCRIPT

. LOOK-AT-MANUSCRIPT

. SEARCH-FOR

. LOOK-AT-DISPLAY

GOAL: SPECIFY-COMMAND

. GOAL: GET-FROM-MANUSCRIPT*
. CHOOSE-COMMAND

. GOAL: TYPE-STRING*

GOAL: SPECIFY-ARG

. GOAL: GET-FROM-MANUSCRIPT*
. CHOOSE-ARG

. GOAL: TYPE-STRING*

GOAL: VERIFY

. LOOK-AT-DISPLAY

. GOAL: GET-FROM-MANUSCRIPT*
. COMPARE

GOAL: TYPE-STRING

. HOME

. LOOK-AT-KEYBOARD

. LOOK-AT-DISPLAY

. TYPE-STRING

. repeat until no more unit tasks
. .iftask not remembered
. . if at end of manuscript page

. . if an edit task was found
. .if task not on current line

..... repeat until at line

..... repeat until at text

. repeat twice

. repeat twice

. optional

. if not already selected
.if not already selected

. optional

. optional

. optional
. optional
. optional

(Figure 5.12. Conclusion.)
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METHOD FOR EXPERIMENT 5C

User. A single user, S13, was employed for this experiment, because
of the amount of data analysis required at the fine-grained levels. The
user was a highly skilled secretary (typing rate, 103 words per minute)
with two years experience on the POET editor, much of it on the type of
terminal used in this experiment

Procedure. The procedure was the same as in Experiment 5B.

Protocol. A protocol of the user’s behavior was coded directly from
the videotape record and the time-stamped keystroke file, using a set of
descriptive operators not related a priori to any model. The over-
whelming bulk of behavior was coded by the operators TYPE, LOOK-AT,
and MENTAL, which are defined as follows:*

TYPE (Key1, Key2, ...). A burst of typewriting starting with
the beginning of the finger trajectory toward the first
key and ending when the last key makes contact. A
“burst” is defined as a sequence of keystrokes with
no more than .30 sec between successive key contacts
and is based on studies (Kinkead, 1975) showing that
keystrokes for skilled typists doing copy typing
usually do not take more than this time.

LOOK-AT (Place). The act of looking from one place to
another, where Place is either the video display, the
keyboard, or the manuscript. LOOK-AT includes the
physical head movement and the gross eye
movement, but does not include any perceptual
scanning within a place (such as searching a
manuscript page for a new task).

MENTAL. The generic operator for any mental activity that
does not overlap with physical operations. MENTAL
operations are identified as pauses between physical
operations.

Figure 5.13 shows a fragment of the protocol, which describes S13’s
behavior on the last unit task in Figure 3.2 in terms of these descriptive

operators.

4 Other operators, used infrequently, were HOME (Hand, Place) for moving a
hand to the keyboard preparatory to typing, MOVE-HAND (Hand, Place) for other
hand movements, TURN-PAGE, ACTION (Description), and EXPRESSION
(Description). The last two were miscellaneous categories for recording other behavior.



Start Stop AT Operator

(min:sec) {min:sec) (sec)

18:56.33 18:56.73 .40 LOOK-AT-MANUSCRIPT
18:56.73 18:68.89 2.16 MENTAL

18:58.89 18:59.41 52 HOME (LEFT-HAND)
18:59.41 18:59.66 .25 MENTAL

18:59.66 18:59.94 .23* LOOK-AT-KEYBOARD
18:59.89 19:00.14 .25 TYPE(")

19:00.14 19:00.24 10 MENTAL

19:00.24 19:00.48 .24 LOOK-AT-DISPLAY
19:00.48 19:01.11 .63 MENTAL

19:01.11 19:01.43 .32 LOOK-AT-KEYBOARD
19:01.43 19:01.70 .27 MENTAL

19:01.70 19:01.82 12 TYPE (e)

19:01.82 19:01.92 .10 MENTAL

19:01.92 19:02.66 .07* TYPE (x i s RETURN /)
19:01.99 19:02.34 .35 LOOK-AT-DISPLAY
19:62.34 19:04.16 1.82 MENTAL

19:04.16 19:04.53 37 LOOK-AT-MANUSCRIPT
19:04.53 19:05.48 .95 MENTAL

19:05.48 19:06.83 .16* LOOK-AT-DISPLAY
19:05.63 19:05.91 .28 TYPE(.s)

19:06.06 19:06.40 13 LOOK-AT-KEYBOARD
19:06.19 19:06.50 .31 TYPE (c o)

19:06.50 19:06.74 .24 MENTAL

19:06.74 19:06.86 .07°* TYPE ()

19:06.81 19:07.18 32* LOOK-AT-MANUSCRIPT
19:07.13 19:07.25 12 TYPE (e)

19:07.25 19:07.51 .26 MENTAL

19:07.51 19:07.63 12 TYPE (x)

19:07.63 19:09.46 1.83 MENTAL

19:09.46 19:09.65 19 TYPE (RETURN)
19:09.65 19:09.92 27 MENTAL

19:09.92 19:10.04 12 TYPE (e)

19:10.04 19:10.11 .07 MENTAL

19:10.11 19:10.46 .00* LOOK-AT-DISPLAY
19:10.11 19:10.72 .61 TYPE (x RETURN RETURN /)
19:10.72 19:11.76 1.04 MENTAL

Figure 5.13. Segment of the protocol record for one unit
task in Experiment 5C.

This part of the protocol describes S13's performance of the last unit task shown
in Figure 3.2, On those cases marked with an asterisk, the time AT charged to an
operator is less than the difference between the Start and Stop clock times
because the operator overlaps with the next operator.
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Data Sets. As in Experiment 5B, the first three tasks were discarded
and the remaining 70 tasks were partitioned into a Derivation data set
and a Crossvalidation data set. The two data sets were found to be
comparable with respect to time per unit task (Mann-Whitney U(19,26)
= 180.5, p > .05).

Fitting the Models to the Data. The protocol record for the error-free
Derivation unit tasks was re-coded into a sequence of operators for each
model. For example, the protocol fragment in Figure 5.13 is encoded
into Model F2 as follows:

18:56.33—18:59.94 3.61 sec GET-UNIT-TASK
18:59.94—19:04.16 4.22 sec USE-QS-METHOD
19:04.16—19:10.72 6.56 sec USE-S-COMMAND
19:10.72-19:11.23 .51 sec VERIFY-EDIT .

To encode each operator requires a recognizer that determines
whether the operator occurs in the data and, if so, what its boundary
times are. Such recognizers are insensitive to many of the details of what
happens. An odd MENTAL operator within a SPECIFY-COMMAND (at the
Argument Level), a USE-QS-METHOD (at the Functional Level), or an
EDIT-UNIT-TASK (at the Unit-Task Level) is quite consistent and is
accepted by the recognizers for these operators. Thus, the higher-level
models account for all the descriptive operators in the protocol. But
these odd descriptive operators (e.g., the odd MENTAL) are not without
consequence; they may show up as sequence errors in the lower-level
models and, in chronometric analysis, as variance in the higher-level
operator times.

The Keystroke Level models, on the other hand, must map one-to-
one onto the protocol, since the Keystroke Level operators are at the
same level of aggregation as the protocol operators. Many of the
protocol operators (such as TYPE) are identical to the Keystroke Level
operators and are identified directly, whereas other protocol operators
(such as MENTAL) must be relabeled (e.g., SEARCH-FOR or CHOOSE-
COMMAND in Model K2) to fit the models. The possibility then exists
that there will be descriptive operators in the protocol that are not
accounted for by the models. More often, a descriptive operator, though
a possible operator type in the model, may not correspond to any
possible operator produced by the model at that point. This happens for
78 of the 581 operator instances in the protocol. The most significant
kind of unaccounted-for operators are instances of MENTAL that cannot
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be interpreted as one of the Model K2 operators and are labeled
UNKNOWN. These mostly arise from our stringent rule of coding the
occurrence of a MENTAL operator whenever there is a pause in the
protocol. The mean time of the UNKNOWN operators is only .28 sec. Of
the unaccounted-for operators, 71 are UNKNOWNs, 6 are MOVE-HANDS,
and one is an ACTION.

It sometimes happens that two mental operators (such as VERIFY-LOC
and SPECIFY-COMMAND in Model Al) are predicted by the model to
occur in succession. In these cases there is a problem determining the
boundary between them, for there is no overt indication in the data.
Each operator type involved in such cases (e.g., VERIFY-LOC) was
compared to instances of the operator where the boundaries were
observable (instances where it was surrounded by non-mental operators).
This comparison showed clearly that the operator times of these adjacent
mental operators are not additive—that the time for VERIFY-LOC plus the
time for SPECIFY-COMMAND when each is surrounded by non-mental
operators is not the same as the combined time for the pair when they
occur together in sequence. These cases are listed later in Figure 5.15 as
if they were separate operator types (and are given combined names like
vL+sc). In all, there are four different combined operator types, two at
the Argument Level (GFM+SC and vL+SC) and two at the Keystroke
Level (sF+«CMm and c+cc). For purposes of predicting task times, the
values of the non-combined versions of these operators were used, thus
counting their non-additivity against the models.

RESULTS OF OPERATOR SEQUENCE PREDICTIONS

Selection Rules. Analysis of the Derivation data yielded selection
rules for the user very similar in form and in accuracy to those for users
in the previous experiments. The rules for S13 are:

Selection rules for GOAL: LOCATE-LINE:
Rule 1. Use the QS-METHOD as default.
Rule 2. Use the LF-METHOD if d< 5 lines.
Selection rules for GOAL: MODIFY-TEXT:
Rule 1. Use the S-COMMAND as default.

The selection rules for GOAL: LOCATE-LINE were correct 88% of the time.
The rule for GOAL: MODIFY-TEXT was correct 92% of the time.
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Accuracy of Sequence Predictions. For some of the models it was
necessary to fix the conditions under which the “optional” operators
would be invoked. These operators mainly center around the question of
when to invoke extra GET-FROM-MANUSCRIPT operators, either implicitly
(the /G versions of the SPECIFY operators in Model A2 and Model A4,
see Figure 5.12) or explicitly (the GOAL: GET-FROM-MANUSCRIPT goal in
Model K2). Since the conditions that cause extra GET-FROM-MANU-
SCRIPT operators were not clear from the data, each option was decided
such that exactly one extra GET-FROM-MANUSCRIPT was predicted for
each unit task.

The match between predicted and observed sequences was
comparable to that obtained in Experiment 5B for the comparable Model
F2 (96% in the present experiment vs. 88% in Experiment 5B). As
expected, the match declined as the grain of analysis became finer (see
Figure 5.14). The decline in accuracy for Model A2 and Model A4
resulted mainly from their inability to predict the exact sites in the
protocol at which the user would glance back at the manuscript for more
information and how often the user would consult the manuscript.
Models at the Keystroke Level encountered two other difficulties as well.
First, it happened that this particular user would always move her hand
to her mouth and lick her fingers before turning the page. In fact, she
would usually also lick her fingers one task too early (a true case of
“fractional anticipatory goal response” in vivo). Because this action was
not in the model, it caused mismatched operators. The second difficulty
at the Keystroke Level was that the UNKNOWN operators counted as
mismatches.

RESULTS OF TIME PREDICTIONS

Operator Times. Durations of the operators for all models, as
empirically determined from the Derivation data, appear in Figure 5.15
along with the percentage of the time spent in each operator. Since
manuscript editing has the appearance of a motor-intensive task, it is
interesting that 60% of the time for the manuscript-editing task was
mental time; only 22% of the time was actually spent in typing.

All operators, except the TYPE operator, are assumed to take constant
time. Although it is obvious that TYPE should be parameterized by the
number of characters to be typed, we must be able to predict the search
strings and the substitution strings the user will employ in order to
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Figure 5.14. Percentage of operators correctly predicted by
each model in Experiment 5C.
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capitalize on the parameterization. The time for TYPE was parameterized
by the number of shift characters N shift* carriage returns N, and other
characters N other» according to the equation

T=.05+ 17N,uﬁ+ AN, + 1IN ;.. s
The equation is based on the regression fit of 157 short typing bursts
from the Experiment 5A (1 to 18 characters in a burst, mean 3.8
characters).> The equation explains 92% of the variance. The operator
times of this user for Model F2 were comparable to the times for the
same operators observed in Experiment 5B.

Accuracy of Time Predictions. The main result is that time
calculations based on all the GOMS models were about equally accurate
(except for Model UT, which was somewhat less accurate). Accuracy of
the Functional Level Model was comparable to that obtained in
Experiment 5B. There the RMS error was 33%; here it was 29% for the
comparable Model F2. Various combinations of models, data sets, and
calculation methods varied in the range of 20% to 40% RMS error, as can
be seen in Figure 5.16. Finer grain models did better on Reproduction,
but not on Prediction, of the Derivation data. The finer grain models
were no better at either Reproduction or Prediction of the Crossvali-
dation data.b

A study of the prediction errors on unit tasks with different task
environment features revealed that the only task environment feature that
allowed gain in prediction was the one in which the unit task shared the
same line on the manuscript with another unit task (i.e., d = 0). There
were two tasks with this feature in the Derivation data, and they were the

5 Fitting this same data with only one parameter, the number of characters in a
burst, yields the equation 7 = .06 + .12N char S€6 which explains 89% of the variance.
The .12 sec per character rate is equivalent to 91 words per minute, which is quite close
to S13’s typing test speed of 103 wpm. Thus, the user types at almost her highest typing
rate even on these short bursts.

6 In fact, prediction of the Crossvalidation data is worse at the Keystroke Level than
at the Argument Level. This occurs because in one of the tasks the user compares
information on the display with information on the manuscript much more often than
the model predicts, resulting in a large underprediction. Recomputation of the points in
Figure 5.16 using the mean absolute error (an index not as sensitive to single outliers as
the RMS error) gave a graph similar to Figure 5.16, but with the prediction of the
Derivation data indistinguishable from the curves for the Crossvalidation data, confirming
the general stability of the results.
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Figure 5.16. Task time predictions by all models in
Experiment 5C.

reason why Model UT predicted the Derivation data less well than the
Crossvalidation data.

ERROR BEHAVIOR

So far we have concentrated on error-free behavior. But errors have a
significant effect on the efficiency with which text-editing is done.
Overall, about 26% of the total time spent in all the experimental tasks is
due to error. As Figure 5.17 shows, errors were frequent, occurring on
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N M cv
(sec)
All unit tasks:
Derivation data 36 13.37 .66
Crossvalidation data 34 19.46 1.18
All data 70 16.33 1.06
Error unit tasks:
Derivation data 10 16.96 .89
Crossvalidation data 15 29.46 1.09
All data 25 24.46 1.10
Error unit tasks with error time removed:
Derivation data 10 10.69 .25
Crossvalidation data 15 13.72 47
All data 25 12.61 .43
Error-free unit tasks:
Derivation data 26 11.99 .38
Crossvalidation data 19 11.57 .31
All data 45 11.81 .35

177

Figure 5.17. Unit task time statistics for error and error-
free unit tasks in Experiment 5C.

36% of the tasks (25 out of 70), and errors doubled the time to perform

the tasks in which they occurred (from 12.5 sec to 24.4 sec).

The longer time required for tasks in which errors occur is accounted
for by the extra operations that must be performed by users on these
occasions. When an error occurs, the user progresses through a sequence

of distinct stages:

1. Error. The user makes a mistake.
2. Detection. He becomes aware of the error.

3. Reset. He resets the editor to allow correction.
4, Correction. He undoes the effects of the error.
5. Resumption. He resumes error-free activity.
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Error Type N M cv %N %T
{sec)

Typing errors 7 1.53 51 27% 4%
Method-abortion errors 8 4.17 .51 31% 11%
Method-failure errors 7 4.41 41 27% 10%
“Big" errors 3 71.89 .60 12% 72%
Unclassifiable error 1 8.18 —_ 4% 3%
All errors 26 11.49 25.45 100% 100%

Figure 5.18. Error times in Experiment 5C partitioned into

different error types.
Column %N gives the percentage of occurrences of each error type, and Column
%T gives the percentage of the total error time in each error type.

The occurrence of an error requires additional time for Error, Detection,
Reset, and Correction stages over the time otherwise required for the
task. The time spent in these four stages is called error time. When the
error time is subtracted from S13’s protocol, the adjusted times are
similar to the times for error-free tasks (11.81 sec vs. 12.51 sec).
The errors for S13 can be classified into four categories: typing errors,
method abortion errors, method failure errors, or “big” errors (Figure
5.18). Simple typing errors required about 1.5~3.0 sec for recovery.
There was minor variation in the choice of method, leading to a small
variation in the correction time. The user detected mistyped characters
immediately, canceling the bad character by typing CONTROL-A.” But this
action printed a BACKSLASH followed by the canceled letter, messing up
the displayed line of typing. This, in turn, caused S13 to sometimes
redisplay a clean version of the line with another command.
Method-abortion errors, in which the user abandoned a command
part-way through by pressing the DELETE key, required about 2~7 sec for
recovery. There were many reasons for aborting a method: the user
decided it was the wrong method, that there was a better method, or that

1 The notation CONTROL-A indicates the typing of the key A while holding down
the CONTROL key, as is done with a SHIFT key.



55. DISCUSSION 179

the argument strings (to the Substitute command) would not work.
Once, the method was aborted as the result of mistyping a command
character. Method abortion was even used for its effect in cleaning up
the display after it had been made messy by too many CONTROL-A’s. All
the abortions except one were done to the Substitute command; the
exception was a QS-METHOD being aborted in favor of an LF-METHOD.

Method-failure errors, in which a correctly executed method produced
an unintended resuit, required 2~8 sec for recovery. All these method
failures were with the Substitute command—either no substitutions or too
many substitutions were made—and in all cases the user was able to
correct the error by issuing one additional Substitute command.

The above three categories of errors occurred with about equal
frequency. Together they accounted for 22 of the 25 classifiable errors,
but only for 25% of the error time. In contrast, the remaining 3 big
errors accounted for the remaining 72% of the total error time. Although
these big errors were method failures, they were classed separately
because their times (43, 52, and 121 sec) were an order of magnitude
larger than simple (4 sec) method-failure errors. The important charac-
eristic of these errors is that their correction involved real problem-
solving activity, mostly having to do with the user finding her place in a
large text file3 These results suggest two radically different sorts of
errors that system designers should consider: The first are small,
frequent, routine errors that can be corrected quickly in a skilled manner.
The second are big, infrequent, but enormously time-consuming errors
that require problem solving to correct.

5.5. DISCUSSION

Assessment of the Models

Description of Behavior. From the three experiments, it is apparent
that descriptions of a user’s error-free behavior in the manuscript-editing
task can be constructed from a reasonably small number of components.

8 It is not hard to describe where the time goes in the big errors. The 43-sec error
was straightforward: S13 modified the wrong line and had to undo the modification and
then find and modify the right line. In the 52-sec error, she issued two bad quoted
string commands and had to wait 41 sec for the system to search the entire file and
respond that these strings did not exist anywhere in the file. The 121-sec error was the
only occasion on which S13 was genuinely confused. She modified the wrong line,
which was on a different page of the manuscript than the target line, and then could not
find the correct line. She spent most of the 121 sec moving back and forth in the file.
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Depending on the grain of analysis, the behavior of each of the seven
users observed in these experiments has been described by 1~20 goals,
1~13 operators, 4~6 methods, and 1~4 selection rules. Moreover, this
description is a reasonably accurate account of each user’s error-free
behavior in the task. The selection rules were able to predict the user’s
choice of methods about 90% of the time using the data on which they
were derived and 80% of the time on new data. The various versions of
the GOMS model were able to predict 80~100% of the operators in
sequence for the manuscript-editing task at the Functional Level. But
models at the Argument Level or at the Keystroke Level that attempted
to predict the exact site and number of looks at the manuscript or that
attempted to account for pauses on the order of a quarter of a second
were considerably less accurate. Other work on visual feedback for
skilled keying (Long, 1976) indicates that users routinely look to the
manuscript for information concerning errors and to the keyboard to
locate unfamiliar keys. Undoubtedly, users also look to the manuscript
because they forget what they are supposed to do. Successful modeling
of this behavior would either require (1) models contingent on the
contents of the text, such as the familiarity of the user with certain words
or the clarity of particular editing instructions, or (2) stochastic models.

Prediction of Task Times. The GOMS models likewise provide a
reasonable prediction for the amount of time taken by error-free tasks.
In Experiment 5B, the model was able to predict, on new data, the time
for a single task to within 36% (Figure 5.9, Crossvalidation). This
prediction included the times for all the operators as well as the operator
sequence. In Experiment 5C, the equivalent prediction on Crossvali-
dation data was within about 30% (Figure 5.16).

Even when the model fails to predict the sequence of operators
exactly, the resulting time prediction may sometimes not be far off. The
reason is that there is a certain amount of continuity in the space of
methods. If the model predicts the user will look to the manuscript and
he does not actually look until after the next operation, the time
prediction will not suffer, since the frequencies of the operators remain
unchanged. If the user inserts one extra operator into a sequence of 15
operators, the time prediction will be degraded only slightly. Even if the
user chooses the wrong method, there is a reasonable chance that the
substituted method will not be wildly different in time, because the
model is also likely to err in choosing among methods whose times are
comparable.

Grain of Analysis. How do the abilities of the GOMS models to
predict the behavior of the user vary as a function of the grain of
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analysis? In the current experiment, the rather surprising answer was that
accuracy at the Functional Level and finer levels was essentially
independent of the grain.

Two factors seem to be at work. First, the gain in chronometric
predictive power arising from new opportunities for conditional behavior
in the finer grain models seems to have been canceled by the difficulties
in predicting the sequence of operations (Figure 5.14). Second, there
seems to have been insufficient task variability for the finer grain models
to display their advantage. With respect to the latter, if the models could
predict operator sequences perfectly, then the prediction curve in Figure
5.16 for the Derivation data would drop to the reproduction curve. That
the prediction curve is essentially horizontal implies that refining the
grain of analysis did not tap the sources of time variability. In the
models, variability is expressed in the method selection rules and optional
operator choices, both of which are triggered by features of the task
environment. Thus, either the models did not capitalize on all the
available features in the task environment or there were no task
environment features that gave clues to the variability. In the case of the
Crossvalidation data, the gains made by the finer grain models were not
sufficient to overcome the error in predicting operator duration arising
from the determination of operator times from independent data. Both
the reproduction and prediction curves are essentially flat (and in a few
instances, the prediction is actually slightly better than the reproduction).

It is important to note that variability in the set of error-free unit
tasks in Experiment SC is quite small (Figure 5.17), both with respect to
the user’s performance times and with respect to the possible range of
editing tasks—all are small edits of about the same complexity. This low
variance occurred because the experiment tried not to manipulate the
task environment, but to assess the natural variability in the data and the
ability of various models to deal with them. It appears that, whereas the
models as a whole were not bad at predicting the average time per unit
task, there was insufficient variation within the editing tasks to trigger
increased responsiveness from the finer grain models.

Status of Goals and Operators

What psychological reality is to be ascribed to the various components
and features of the GOMS model?

The occurrence of goals in a GOMS model is one of its primary
cognitive features. Goals are required in generating the model and in
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supporting its rational character as behavior directed towards the end of
editing the manuscript. As it stands, however, the goals do not make any
distinguishable contribution to the time calculations of the various
models. Technically, this arises from a confounding of goals and oper-
ators: any time assigned to creating a goal or to cleaning up and
disposing of a goal is not distinguishable from additional time in the
associated operators. Goal-manipulation operations shouid not take
longer than about .5 sec, so that goal operators should not show up at
any level above the Keystroke Level, in any event.

The confounding of goal-manipulation times results in part from
GOMS being a model of error-free skilled behavior, so that the overt
record contains evidence only of the sequence of effective actions. For
our users, there are essentially no verbal expressions that indicate goal
activity. However, protocols from inexperienced users are sprinkled with
goal statements that correspond to the goals in a GOMS model. In one
such experiment, when the model predicted the processing of the GOAL:
USE-QS-METHOD, the user would almost invariably make comments like:
“Okay, I want to get down to a line that starts with ‘Food store’.” When
the model predicted the GOAL: USE-S-COMMAND, the user would say:
“Now I want to substitute 30’ for ‘39°.” But no verbalizations were
recorded in connection with low-level operators like TYPE.

Operator Variability

The order of precision of our operators, as measured by the CV,
ranges from about .9 at the Keystroke Level to .3 at the Unit-Task Level.
In general, CVs should be expected to decrease with increasing mean
when operators are composed of suboperators, a relationship that might
be called “Abruzzi’s Law” (Abruzzi, 1952, 1956). It is easy to see why
such a relationship is reasonable. Suppose a composite operator of mean
duration M were simply composed of strings of n identical elementary
operators of mean duration m. Then, M = nm and

var(M) = nvar(m) .
Recasting this equation in terms of the CV gives

CVy = BM™5, where B = mSCV, .
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Figure 5.19. Coefficient of variation for a variety of
operators as a function of mean operator time.

That is, the CV is inversely proportional to the square root of the mean
operator time. The actual decrease is illustrated in Figure 5.19, which
plots CV against operator mean M. Each point on the graph is based on
multiple observations of a single person. The open symbols are
manuscript-editing operators from Figure 5.8 and Figure 5.15 that
occurred more than five times (excluding combination operators, TYPE,
ACTION, and UNKNOWN). The solid circles are operators from Abruzzi
(1956, pp. 216-217), such as cutting and stitching clothing patterns in a
ladies’ garment factory. In log-log coordinates, the relationship between
mean and CV is essentially linear. A regression fit of the points in Figure
5.19 gives

InCV=-73-.388InM
(R? = 55, SE = 38, coefficient # 0 at p< 10%), or

CV = AS0M—-388
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Figure 5.19 suggests that, in absolute terms, the CVs observed in our
experiment are roughly what would be expected from the size of the
operations alone.

As CV increases, the number of observations needed to estimate the
mean operator duration to a fixed precision also increases (Abruzzi,
1956). This is reflected in the figure as greater dispersion for operators
having small durations and in the fact that many of the points on the
outlying edge are those with the lowest Ns. As the time for the operators
becomes shorter, approaching the grain of characteristic physiological
events, the operators tend to become more purely physical or mental.
Since the physical operators are easier to identify and measure, these
should have lower CVs. In Figure 5.19, the outlying points below the
regression line are mostly simple physical acts (indicated by squares),
such as LOOK-AT and TURN-PAGE. The outlying points above the line are
mostly mental actions (indicated by triangles), such as CHOOSE-COMMAND
or VERIFY-EDIT. If the purely physical and purely mental operators are
ignored, the slope of the line becomes —.433, even closer to the —.5 for
the ideal case of simple composition.

Extending GOMS to Cover Errors

It is important to ask how a GOMS model might be extended to
cover errors and associated behavior. As we have seen, skilled behavior
does not preclude the existence of a substantial number of errors, with an
appreciable fraction of the total time spent correcting the errors. In
Experiment 5C, about half the time was spent in error unit tasks, and
about half that time (about a quarter of the total time) was error time,
time the user actually spent committing and corrrecting errors.
Compared with other experienced secretarial users we have run in our
laboratory, S13 produces a higher percentage of error unit tasks, but is
faster in overall performance (and also in performing error-free unit
tasks). S13 thus gives up accuracy in favor of speed, since she is able to
recover rapidly from errors.

We can model the states of an error unit task by a slight extension of
the GOMS theory. First, we must allow operators to fail as well as
succeed. Then we must specify how the user corrects the failure. The
extension to the GOMS theory is to add the provision that when an
operator fails, it produces an error condition, which can be represented as
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the correction goal. This goal is accomplished by selecting a correction
method.

We have said that a skilled user committing an error proceeds
through the stages: (1) Error, (2) Detection, (3) Reset, (4) Correction,
and (5) Resumption of error-free activity. The Detection stage occurs
when the correction goal becomes active immediately after a failed
operator, thus causing an interruption in the error-free behavior
sequence.

The action in the Reset stage can be modeled by a new operator,
ABORT-COMMAND. This operator denotes more than just the physical
striking of the DELETE key to reset the editor to accept commands again;
the user’s mental goal stack also is cleared back to the last use goal—a
“mental reset.” Although such an operator can be provided within the
general spirit of a GOMS model, it should be noted that this operator is
the first departure from the simple stack discipline for goal control.

The new unit task(s) in the Correction stage can be modeled simply
as error-free unit tasks with one exception—a new operator, GENERATE-
UNIT-TASK, is needed in place of the ACQUIRE-UNIT-TASK operator.

Let us now consider how an extended GOMS model would handle
the three types of errors noted in Experiment 5C: typing errors, method-
abortion errors, and method-failure errors. The method for handling
typing errors is the simplest. When a typing error occurs, the user
becomes aware that the last character typed may be wrong. In terms of
the model, the TYPE operator produces a goal to correct the bad
character. The method for accomplishing this goal is as follows:

GOAL: CORRECT (BadCharacter)
LOOK-AT-DISPLAY
COMPARE
TYPE (CONTROL-A)

TYPE (CorrectCharacter) .

That is, the user is to look at the display (if not already looking at it),
compare the last typed character with the intended one, delete the bad
one (if they are different), and type the correct one (if they are different).
The user may then resume typing the string in which the error occurred.
The predicted time for this method, using the operator times in Figure
5.15 and the typing formula in Equation 5.1, is from 1.36 sec to 1.80 sec
(depending on the specifics of the situation, such as whether the
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CorrectCharacter is in the touch-typing zone). The predicted time
compares favorably with the observed mean typing error time of 1.53 sec
(Figure 5.18).

The COMPARE operator in the above method may, of course,
determine that the bad character is correct, in which case it is not
changed. There is no real error in this case, only a goal to check for one,
but the goal still causes an error-like interruption. Such behavior may
account for some of the UNKNOWN operators in Experiment 5C.

Method-abortion and method-failure errors also evoke routine
correction methods. A method-abortion error is triggered by the failure
of some operator subordinate to the goal of using some POET command.
For example, when specifying the second argument of the Substitute
command, the user may notice that the first argument will not work and
must be respecified:

GOAL: RESPECIFY-ARG
ABORT-COMMAND
GOAL: USE-S-COMMAND .

Method-failure errors are even simpler in structure. This kind of
error is produced by a failure signal from the VERIFY-EDIT operator. For
the Substitute command, the failure is caused by either no substitutions
or too many substitutions. For the former, the corrective method is to
establish the goal of redoing the original modification using the
Substitute command.

GOAL: MODIFY-TEXT
GOAL: USE-S-COMMAND
VERIFY-EDIT .

A more general method would not specify which command to use, in
which case a command other than the Substitute command could be
selected for the second try. The remedy for extra, uncorrect substitutions
is to generate a new unit task to remove them: ‘

GOAL: REDEFINE-UNIT-TASK
GENERATE-UNIT-TASK
GOAL: EXECUTE-UNIT-TASK.

These two methods cover all observed errors in Experiment 5C that were
classified as method-failure errors.
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As a final note, we observe that the control structure of a GOMS
model begins to break down during error behavior. Some method
failures, such as the big errors in Experiment 5C, seem to require
genuine problem-solving behavior for recovery. For example, the failure
of a GOAL: LOCATE-LINE method in POET can leave the user in a state of
confusion as to just where in the file POET is currently located. And if
the user does not detect the error until after making the modification (on
the wrong line), then the user must undo the modification before
searching for the correct line? Such errors are rather rare events, and
when they occur the user embarks on a correction course without
employing a routine method and without planning an optimal method,
leaving the user in a problem-solving mode of behavior. We assume that
the user would acquire a routine and nearly optimal method for
correcting this kind of error if it were to happen often enough.

Manuscript Editing as a Cognitive Skill

Our analysis of user behavior in the manuscript-editing task leaves
little doubt about its characterization as a cognitive skill, however that
phrase is ultimately defined. The cognitive apparatus is much in
evidence, epitomized by the GOMS models, which dictates that there be
selection of the course of action in accordance with the demands of the
task, mediated by hierarchical goal structures. The GOMS models give a
reasonable account of error-free user behavior and may be extended to
routine error-correction behavior.

It is likewise obvious that the users we observed were skilled.
Applied to physical motions, skill connotes smoothness, control, and
economy of effort (Bartlett, 1958; Welford, 1968). Although 60% of the
time was spent in non-physical activities, these descriptions certainly are
appropriate for the users we observed. One indicator of skill is the time
taken to perform the same task by those who are obviously unskilled. In
Chapter 3, we saw that low typing skills, lack of technical background,
and limited experience combined to make a factor of three difference in
text-editing time.

9 In the biggest observed error in Experiment 5C, however, the user went searching
for the correct line before undoing the bad modification and then had to later return to
undo it again.
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The notion of skill is intimately related to the routine character of a
task, for people generally become skilled in whatever becomes routine for
them. Observation of our users demonstrates, if any additional demon-
stration is needed, that, just as in sensory-motor tasks, skill is highly
evident in cognitively-dominated routine tasks.

Learning. The absence of significant learning during performance can
often be taken as a characteristic of skilled routine performance. In
Experiment 5C, S13 seems to be engaged in a steady-state performance.
Within the experimental session, there is no evidence of learning; if
anything, rather than the increasingly faster times characteristic of
learning, there is a slight slowdown over the course of the 20-minute
experimental session. Nor is there evidence of S13 learning over
extended time. Five months earlier, S13 used the same terminal and
system to edit a different manuscript at the rate of 11.0 sec per unit task
(compared with 11.8 sec in this experiment). Our assertion that absence
of learning characterizes routine skilled behavior must be qualified.
Though there is no appearance of skill learning over a single session, it is
only through repeated sessions that a user becomes skilled, and much of
this happens after the user’s time is far enough out on the Power Law of
Learning curve to give the appearance of being very skilled. Further-
more, substantial learning does take place within a single session about
the specific manuscript being edited (which is, of course, entirely new to
the user).

Unit-Task Structure. Perhaps the most important feature to emerge
from our analysis of manuscript editing is its unit task structure.
Manuscript editing is broken into a sequence of almost-independent unit
tasks. Within each unit task the user’s behavior is highly organized and
under the control of well-learned methods, which are quickly triggered
into action by the dynamic features of the task situation. Unit tasks take
only about 12 sec each with the POET editor, and even less with faster
editors. This provides an extremely short time horizon for the integration
of behavior.

5.6. CONCLUSIONS

It is possible to describe the behavior of the user of a computer text-
editing system by a cognitive theory composed of a small number of
goals, operators, methods, and selection rules. In this chapter we have
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exhibited models composed of these elements that give a reasonable
quantitative account of the behavior.

A GOMS model for the manuscript-editing task predicted the
sequences of user actions in the task reasonably well. It predicted a
user’s choices of methods about 80~90% of the time; and it predicted the
actual operators in sequence 80~100% of the time in models at the
Argument Level; but the accuracy for predicting operator occurrences in
sequence was reduced to 50% at the most detailed level, the Keystroke
Level.

The model also made reasonably good predictions for the amount of
time necessary to make individual modifications to the text. It was able
to predict time to within about 35% on new (Crossvalidation) data. This
is comparable to achieving 4% error on the whole 20-min task of editing
the manuscript (neglecting user errors).

It is important to consider at what level of behavior a GOMS model
will operate—the issue of the grain size of the analysis. In this chapter
we answered this question directly, repeating our analyses with nine
different GOMS models. In general, there appears to be a gain in
accuracy when refining the model at the Unit-Task Level (which is
similar to the model of Chapter 4), but further gains in accuracy with
finer grains of analysis were hard to achieve. Accuracy in predicting the
sequences of user actions fell off as the model grain became finer,
whereas accuracy in predicting time remained constant.

We have argued that manuscript editing can be characterized as a
cognitive skill, at least for expert users. Even the user’s behavior
immediately after the occurrence of routine errors has the character of
cognitive skill. One of the characteristic features of this skill is its unit
task structure.



Appendix to Chapter 5:
MATCHING OPERATOR SEQUENCES

The problem is to put two sequences of operators, which may be of
different lengths, into correspondence and then to assign a value to how
well they match. For example, if GFM, SC, SA, SE, VE, and vL are
acronyms for operators, the algorithm to be described takes as input both
a Predicted sequence and an Observed sequence of operators:

Predicted: GFM SC SC VL SC SA SA VE
Observed: GFM SC SA SC SA SA VE.

It inserts dummy X operators to bring them into correspondence:

Predicted: GFM SC SC VL SC SA SA VE
Observed: GFM SC SA X SC SA SA VE.

There are now 6 matches out of a possible 8, or a 75% match. The
algorithm inserts dummy operators in such a way as to maximize the
number of matches.

The following procedure is a translation of the Interlisp function that
was used for computations in Experiments 5B and 5C into an informal
Algol-like notation. The algorithm is based on Hirschberg (1975) and
Sakoe and Chiba (1978). It takes as input predicted and observed
sequences and returns the percentage of matches and new versions of the
input sequences resulting from the addition of dummy operators.

procedure matchSeqs(PredSeq, ObsSeq):

Step 1. Initialize.

PredLength « length(PredSeq);

Obsiength « length{(ObsSeq);

array PredSeq[1:PredLength], .. Predicted sequence of operators
ObsSeq[1:0bsLength], ...Observed sequence of operators
Score[0:PredLength, 0:ObsLength]«0, .. Working space
PredSeqResult[1:PredLength + ObsLength],
ObsSeqResuit[1:PredLength + ObsLength];

190



APPENDIX: MATCHING OPERATOR SEQUENCES

Step 2. Compute scores for a matrix with one row for every operator in the
predicted sequence and one column for every operator in the observed
sequence.

forifrom 1 to PredlLength do
for j from 1 to ObslLength do
if (PredSeqfi] = ObsSeql[j})
then Score]i,j] « Score[i-1,j-1] + 1;
else Score[i,j] « max(Score[i - 1,j], Score[i,j- 1]);

Step 3. Traverse the matrix backward along the path of highest scores.
i « PredLength; j « ObsLength; k « 1;
until(i=0 and j =0) do
if (i#0 and (j = 0 or (Score[i - 1,j] > Score[i- 1,j - 1]))
then PredSeqResult[k] « PredSeq[i];
ObsSeqResult[k] « "X";
kek+1;iei-1;
elseif (j#0 and (i = 0 or (Score[i,j - 1] > Score[i- 1,j - 1]))
then PredSeqResult{k] « "X";
ObsSeqResult[k] < ObsSeq[j];
keket; jej=-1;
else PredSeqResult[k] « PredSeq[i];
ObsSeqResult]k] « ObsSeq[jl;
keke+l;ici-1; jej-1;
%Match « Score[PredLength, ObsLength] / (k - 1);
return(%Match, PredSeqResult, ObsSeqgResult); end;
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6. Extensions of the
GOMS Analysis

6.1. TASK ANALYSIS
Editing Tasks
Physical Environment

6.2. MODEL OF THE USER
General GOMS Analysis
Observational Studies
Estimation of Parameters
Simulation of User Behavior

6.3. CONCLUSIONS

There are several directions in which the GOMS models might be
extended. In this chapter we consider the issues involved in three of
these. The first extension is to another editor. In particular, we would
like assurance that a GOMS description can be given for a display-
oriented editor (the editor in Chapter 5 was line-oriented). A display-
oriented editor may cause new issues to arise concerning the interaction
of the user with the display.

The second extension concerns the accuracy of a GOMS model for
predicting a user’s action. We saw in Chapter 5 that, as the detail of the
GOMS models increased, it became more difficult to predict the precise
operator sequence the user would employ on a specific occasion; it was
especially difficult to predict when the user would consult the manuscript
for information. Actually, for our purposes, it would be sufficient to
predict the distribution of operator sequences over a set of similar
occasions. But the GOMS notation would have to be extended to
incorporate stochastic elements of two types: (1) operator times expressed
as probability distributions rather than as single numbers and (2)
probabilistic selection rules and conditionalities for predicting which
method the user will employ and for expressing probabilistic condi-
tionality within those methods.
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Third, we continue our information-processing task analysis of text-
editing by defining a symbolic representation for the instructions on the
manuscript and by further explicating how these instructions lead to the

behavior we observe.

EDITING COMMANDS

To delete text:

To insert text:

To replace text:

SELECTIONS WITH MOUSE

To select a character:

To select a word:

To select a string of characters:

To select a string of words:

Select old text with mouse
Type D

Select insertion point with mouse
Type

Type new text

Type ESC

Select old text with mouse
Type R

Type new text

Type ESC

Point to character with mouse
Push MOUSE-BUTTON-1

Point to word with mouse
Push MOUSE-BUTTON-2

Point to first character with mouse
Push MOUSE-BUTTON- 1
Point to last character with mouse
Push MOUSE-BUTTON-3

Point to first word with mouse
Push MOUSE-BUTTON-2
Point to last word with mouse
Push MOUSE-BUTTON-3

Figure 6.1. Subset of BRAVO editor commands.
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As a vehicle for discussing these extensions, we sketch a GOMS
model simulation of a user for the display-oriented editor BRAVO, one of
the editors tested in Chapter 3. This editor is similar to POET in
command structure (see Figure 6.1), but uses a mouse for selection of
text on a full-page video display (30~50 lines of text are displayed on the
page, depending on the typefont used and the spacing between lines).
Stochastic predictions are derived from the model by assuming proba-
bility distributions for operator times and method choices, then running
Monte Carlo simulations. The expanded task analysis is accomplished by
having the model operate on a symbolic representation of the manuscript
instructions.

6.1. TASK ANALYSIS

The purpose of a task analysis is to map out the constraints imposed
on behavior by the nature and features of the task environment. Here
we add two pieces of task analysis to that already developed in Chapter
S: (1) a description of the elements of knowledge a user can have about
the editing tasks he is to do and (2) a partial description of the physical
environment.

Editing Tasks

What information does the user know about the editing task he
performs and when does he know it? Take, for example, Task A2 of
Figure 6.2. The instructions marked on the manuscript indicate that the
character “a” is to be inserted as a word in front of the word “necessary.”
At some point during the execution of this task, the user must know that
the task is an insertion, where the insertion point is, what new text is to
be inserted, and, perhaps, information about where the task is, relative to
other tasks on the page (this knowledge may take the form of: the task
is the second task on the page; it is on line 12; it is before Task A3; it is
after Task Al). To keep track of these bits and pieces of information, we
can represent the user’s knowledge as a network, with chunks as nodes
and relations between the chunks as links, This is done for Task A2 in
Figure 6.3. Of course, at any moment the user might actually possess
only part of the knowledge indicated in the diagram, some of the links or
nodes being missing. The diagram shows the maximum knowledge we



Chapter I: INTRODUCTION

While the official. chartered purpose of this Subcommittee on Data Base
Management systems is to investigate the potential for standardization in the
area of data base management systems. a necessary first step of the work of
the Subcommittee has been the development of a set of requirements for
effective data base management systems. These requirements have emerged
as the work of the Subcommiueeﬁnanifesled roceeded and have)themselves @
in the form of a generalized model for the description of data base
management systems. As no existing or proposed implementation of a data
base management system completely satisfies these reqmrem s nor
comprises all of the concepts involved Kweegsary ?massla“ %
an explanation of this model. The bulk of this Report provides such an
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prapasatian of this document™ Among the responsibilities of the
Specifications Planning and Requirements Task Force of the Ad Hoc
Marketing Committee for Computers and Information Processing is the
generation of recommendations for action by the parent Task Force on
appropriate areas for the initiation of specifications development efforts. For
some time, starting in about 1969, the task force has been aware that data
base management systems are becoming central elements of information
processing systems, and that there is less than full agreement in the
community on appropriate design. In addition to the existence of a number
of implementations of such systems, a list that continues to grow. there are
several documents generated out of the collective wisdom of some segment
of the information processing community which are either proposals for
specific systems (SMITH 1971) or more general statements of requirements
(JAYME 1970). (HO 1971). As is well known. there is a debate in the
community on whether existing and proposed implementations meet the
indicated requirements. or whether the requirements as drawn are all really
necessury WFunher. there have been serious questions @
about the economics of systems mecting all the stated requirements.

Figure 6.2. Sample page of a marked-up manuscript.
The labels A1 through A5 identify the unit tasks for this study. The user did not
see these task labels.
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presume it is possible for the user to have about the task, regardless of
whether he actually has it at a given instant.

Figure 6.3 is a diagram for a specific task. We can also describe some
of the general editing concepts possessed by the user by making a
distinction between (1) general notions, such as the general notion of an
# INSERTION, and (2) particular cases that exemplify the general notions,
such as the Task A2, which is a particular instance of an #INSERTION
task. The general notions are called concepts (notationally we begin
concept names with a # to distinguish them), and the particular cases
that exemplify the concepts are called exemplars. Concepts are defined
by schemata, which give the attributes and values the exemplars of a
concept may have and the higher-level superconcepts to which a concept
is related.

Figure 6.4 shows the schemata for the general concepts used in Figure
6.3 and their relationships to the parts of Task A2: The exemplar A2 has
as its concept #INSERTION. The concept #INSERTION has as its
superconcept the concept # BASIC-TASK. The concept #BASIC-TASK has
an attribute LINE-NUMBER:, whose value is some (unknown) exemplar of
the concept #INTEGER. Therefore A2 (which is also an exemplar of the
concept # BASIC TASK) also has an attribute LINE-NUMBER:, with a value
12 (which, in turn, is an exemplar of the concept #INTEGER).

The diagram in Figure 6.4 also shows the relationship between other
parts of the exemplar A2 and the schemata of the concepts it references.
The relationships quickly become complex. Whereas such diagrams are
illuminating for small networks of knowledge, they rapidly become
unreadable (and undrawable) as the number of elements increases. It is
therefore necessary to use a text-language notation for a description of
any complexity. The text-language equivalent for A2 in Figure 6.3 is:

A2 = #INSERTION ( FUNCTION: INSERT
INSERTION-POINT: A,
NEW-TEXT: Xa
REL-TASK-NO: 2
LINE-NO: 12
PREVIOUS: A1
NEXT: A3 ),

where

X, = #CHARACTER ( TEXT-TYPE: CHARACTER

BOUNDARY: WORD

LENGTH: 1).
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#INSERTION

FUNCTION:

#CHARACTER

INSERTION POINT:

REL-TASK-NO.:

e PREVIOUS-TASK:

e NEXT-TASK:

( INS‘ERT )

NEW-TEXT

BOUNDARY:
TEXT-TYPE:
LENGTH:

(woRrD) (CHARACTER

Figure 6.3. Symbolic representation of Task A2.

This can be read as “A2 is an exemplar of the concept #INSERTION, with
FUNCTION: INSERT and INSERTION-POINT: A, and ...”, or more succinctly,
“A2 is an #INSERTION with ...”. The text-language definitions for the
schemata that define the user’s concepts describe the space of editing
tasks addressed by the model (see Figure 6.5). For purposes of our
simulation, we are concerned with only the common sort of text
manipulations, such as those in Figure 6.2, excluding formatting tasks,
such as specifying typefonts or leading between text lines. The tasks we
consider are: (1) insertion of new text, (2) deletion of old text, (3)
replacement of old text by new text, (4) movement of text to a new
location, and (5) transposition of two adjacent pieces of text.

Given the schemata in Figure 6.5, the tasks on the manuscript page
in Figure 6.2 can now be described (see Figure 6.6). Figure 6.6 is an
example of the symbolic description of editing tasks we use as input to
our simulation.
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Figure 6.4. Symbolic representation of Task A2.
This representation shows the relationship between the exemplars and the con-
cepts of which they are instances.

Physical Environment

We have described the logical elements of the editing task, but there
are also physical elements of the user interface that affect the user’s
behavior. The video display might not be legible, for instance, or the



concept # BASIC-TASK
SUPERCONCEPT: NIL

HAS-PARTS: (TASK-NO:
REL-TASK-NO:
LINE-NO:
FUNCTION:
concept # TASK
1S-ONE-OF: ({a # DELETION}

{a #INSERTION}

{a #ATOM)

{a #INTEGER}

{a #INTEGER}

{a #EDIT-FUNCTION})

{a #REPLACEMENT}
{a #TRANSPOSITION})

concept # DELETION
SUPERCONCEPT: # BASIC-TASK
HAS-PARTS: (FUNCTION:
OLD-TEXT:

concept # INSERTION
SUPERCONCEPT: # BASIC-TASK
HAS-PARTS: (FUNCTION:

INSERTION-POINT:

NEW-TEXT:

concept # REPLACEMENT
SUPERCONCEPT: #BASIC-TASK
HAS-PARTS: (FUNCTION:
NEW-TEXT:
OLD-TEXT:

concept # MOVE
SUPERCONCEPT: # BASIC-TASK
HAS-PARTS: (FUNCTION:
OLD-TEXT:

INSERTION-POINT:

concept # TRANSPOSITION
SUPERCONCEPT: # BASIC-TASK

HAS-PARTS: (FUNCTION:
LEFT-TEXT:
RIGHT-TEXT:
concept # BOUNDS
HAS-PARTS: (START:
END:

concept # CHARACTER
SUPERCONCEPT: # TEXT
HAS-PARTS: (TEXT-TYPE:
BOUNDARY:
LENGTH:

200

DELETE
{a #TEXT-IN-MS})

INSERT
{a #PLACE-IN-MS}
{a #TEXT))

REPLACE
{a #TEXT}
{a #TEXT-IN-MS})

MOVE
{a #TEXT-IN-MS}
{a #PLACE-IN-MS})

TRANSPOSE
{a #TEXT-IN-MS}
{a #TEXT-IN-MS})

{a #PLACE-IN-MS}
{a #PLACE-IN-MS})

CHARACTER
{a #CHARACTER-BOUNDARY}
1)



concept # CHARACTER-BOUNDARY

IS-ONE-OF:

(IN-WORD

WORD)

concept # CHARACTER-IN-MS

SUPERCONCEPT: # CHARACTER

HAS-PARTS: (LOCATION: {a #PLACE-IN-MS})
concept # TEXT
IS-ONE-OF: {{a #WORD)
{a #CHARACTER}
{a #TEXT-SEG})
concept # TEXT-IN-MS
IS-ONE-OF: ({a #WORD-IN-MS}

{a
{a

# CHARACTER-IN-MS}
# TEXT-SEG-IN-MS))

concept # TEXT-SEG
SUPERCONCEPT: # TEXT
HAS-PARTS: (TEXT-TYPE:
LENGTH:
BOUNDARY:

concept # TEXT-SEG-BOUNDARY
1S-ONE-OF: (LINE
SPLIT-LINES
SPLIT-PAGES)

concept # TEXT-SEG-IN-MS
SUPERCONCEPT: # TEXT-SEG
HAS-PARTS: (START-LOC:
END-LOC:

concept # WORD
SUPERCONCEPT: # TEXT
HAS-PARTS: (TEXT-TYPE:
BOUNDARY:
LENGTH:

concept # WORD-IN-MS
SUPERCONCEPT: # WORD
HAS-PARTS: (LOCATION:

TEXT-SEG
{a #INTEGER}
{a #TEXT-SEG-BOUNDARY})

{a #PLACE-IN-MS}
{a #PLACE-IN-MS})

WORD
WORD
{a #INTEGER})

{a #PLACE-IN-MS})

Figure 6.5. Concepts that define the space of editing tasks

addressed by the simulation model.
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PAGE-1 = #PAGE

A1 = #MOVE

A2 = #INSERTION

A3 = #INSERTION

A4 = #REPLACEMENT

A5 = #DELETION
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(

(

(
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PAGE-NO:
TASKS:
NEXT:

FUNCTION:
OLD-TEXT:

INSERTION-POINT:

REL-TASK-NO:
LINE-NO:
NEXT:

FUNCTION:

INSERTION-POINT:

NEW-TEXT:
REL-TASK-NO:
LINE-NO:
PREVIOUS:
NEXT:

FUNCTION:
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X), = #TEXT-SEG-IN-MS ( START-LOC: A,
END-LOC: A,
TEXT-TYPE: TEXT-SEG
LENGTH: 4
BOUNDARY: LINE )

X = # CHARACTER ( TEXT-TYPE: CHARACTER
BOUNDARY: WORD
LENGTH: 1)

X3 = #TEXT-SEG ( TEXT-TYPE: TEXT-SEG
LENGTH: 19
BOUNDARY: LINE )

X4 = #TEXT-SEG ( TEXT-TYPE: TEXT-SEG
LENGTH: 79
BOUNDARY: SPLIT-LINES )

X5 = #TEXT-SEG-IN-MS ( START-LOC: Ag
END-LOC: Ag
TEXT-TYPE: TEXT-SEG
LENGTH: 21
BOUNDARY: SPLIT-PAGES )

Xg = #TEXT-SEG-IN-MS ( START-LOC: Ag
END-LOC: Ay
TEXT-TYPE: TEXT-SEG
LENGTH: 71
BOUNDARY: SPLIT-LINES )

Figure 6.6. Symbolic representation of the manuscript page
shown in Figure 6.2.

user might not be able to see certain information not on the current page
of the manuscript. Four main entities of the physical environment are of
interest to us: the user, the editor (including its input devices, the
keyboard and mouse), the editor'’s video display, and the marked-up
manuscript. We take the point of view that a description of this
environment should permit any of these elements to be altered (the page
of the manuscript to be changed, for example) without altering the
description of the other three. A technique (based on the simulation
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language Smalltalk: Kay, 1977, and Ingalls, 1978) that will permit such a
separation is to describe the physical environment in terms of a set of
transactions between these entities, each transaction consisting of a
message and its reply, if it has one (see Figure 6.7). The user’s act of
consulting the manuscript to get the next task after Task Al, for example,
is implemented in the simulation by having the model of the user send
the message *READ-NEXT-LOCATION: to the manuscript and having the

* READ-LOCATION-OF
<

* INSERT-TEXT
* REPLACE-TEXT
* DELETE-TEXT

T
I Y

* SCROLL-TO

* SELECT a

D ’

* REPOSITION-TO

* TURN-PAGE
* READ-NEXT-LOCATION-OF
* READ-TARGET-TYPE-OF

Z; — ‘ * READ-ATTRIBUTE-OF
T
I ~

)

EDITOR
(including keyboard
and mouse)

MANUSCRIPT

Figure 6.7. Analysis of the physical environment as entities
and transactions.



6.1. TASK ANALYSIS 205

manuscript reply with the message A,, where A, is a symbol denoting the
physical location of Task A2.
There are four types of transactions:

(1) The user consults the manuscript to find a new task or
to discover more details about the current task (User
= Manuscript transactions, where the symbol =
shows that the user initiates a transaction to the editor).

(2) The user issues commands to the editor (User =
Editor transactions).

(3) The editor changes the display (Editor => Display
transactions).

(4) The user consults the display to locate a piece of text
(User => Display transactions).

Two entities, the user and the editor, are active, able to initiate trans-
actions. The two other entities, the manuscript and the display, are
passive, only replying to messages sent them. In the simulation model,
each of these four entities is represented as a separate process, interacting
via the transactions.

We can describe the physical environment (according to this modet)
by listing the model transactions available between the entities in the
environment. Return messages, when they exist, are listed following the
symbol -,

User => Editor Transactions:
*INSERT-TEXT
*REPLACE-TEXT
*DELETE-TEXT
*JUMP-TO ({a # TASK})
*TYPE ({a # TEXT))
*SCROLL-TO ({a # TASK})
*SELECT.

These transactions reflect the commands available in the editor BRAVO.
*INSERT-TEXT is the insertion command and denotes the command
portion of the interaction (typing the key I to begin the command and
ESC to terminate it). The actual typing of the text to be inserted is
denoted by the TYPE transaction. The full series of keys that the user
would actually type to insert the letter “a” in Task A2 is

I ASPACE ESC.
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In the simulation, this action would be modeled as sending two messages
from User => Editor:

*INSERT-TEXT
*TYPE (A SPACE) .

*REPLACE-TEXT is the command to replace some text with other text,
and *DELETE-TEXT is the command to remove text. *SCROLL-TO is the
command to reposition (“‘scroll”) the text on the display so that the
cursor, controlied by the mouse, is at the top of the display. *JuMP-TO
is similar to the scroll command, except that the text to be positioned at
the top of the display is specified by a search string. *SELECT is the
command (invoked by pressing a button on the mouse) to make the text
indicated by the cursor the current selection.

The expression {a #TASK} should be read: “an exemplar of the
concept #TASK.”

Editor = Display Transaction:
*REPOSITION-TO ({a #TASK}).

Only one editor = display transaction is modeled: repositioning the
display in response to a *SCROLL-TO Or *JUMP-TO transaction from the
user.

User = Display Transactions:
*READ-LOCATION-OF ({a # TASK))
—> {a # MAIN-PART-OF-SCREEN} or
{a # BOTTOM-PART-OF-SCREEN} or
{a # OFF-SCREEN}.

When the user acts to find the text of a task on the video display, he
looks at the display and searches for the text. We describe this activity in
terms of the model as the user sending a message *READ-LOCATION tO
the display and the display making a reply giving the location of the task.
The exact location of the text on the screen is of little use in predicting
the user’s performance and is below the grain of the model. What is
important is whether the text is in the main (middle to top) part of the
screen, in the bottom part, or not on the screen at all. The user has his
own internal representation of where the task is, which may or may not
correspond with the display’s state.
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User => Manuscript Transactions:
*TURN-PAGE ({a # DIRECTION})
— OKor
NO-MORE-PAGES
*READ-NEXT-LOCATION-OF ({a # TASK})
— {a #TASK}or
NO-MORE-TASKS-THIS-PAGE
*READ-TARGET-TYPE-OF ({a # TASK})
—> INSERTION-POINT or
{a # CHARACTER} or
{a # WORD}or
{a # TEXT-SEG}
*READ-ATTRIBUTE-OF ({a # TASK}, {a # TASK-ATTRIBUTE})

— {an # ATTRIBUTE}

According to these transactions, the user can turn the pages of a
manuscript either forward or backward. If he tries to turn past the last
page, he discovers immediately that there are no more pages. The user
can look for the next task on the manuscript, he can note what sort of
target he must select, or he can read the new text that is to be inserted or
other attributes of a task.

All the interactions between the display, the editor, the manuscript,
and the user are described in terms of the listed transactions. The strict
partitioning of the physical environment into independent processes that
communicate through messages reflects the structure of the physical
environment itself. If the manuscript is changed, for example, the other
entities should work as before.

6.2. MODEL OF THE USER

We have thus far described the task environment, the editing task and
its physical surroundings. Using the results of our task analysis, we can
now set out on a general GOMS analysis of a BRAVO user. But before
the GOMS model can be completed, it is necessary to augment our task
analysis with the details of how a user consults the manuscript for
information and how he scrolls the display. This latter must be
determined by observation of users. Consequently, we first sketch an
outline for the model, delaying the full presentation until observational

data have been presented.
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General GOMS Analysis

To specify a GOMS model for a user we must, as discussed in
Chapter 5, specify goals, operators, methods, and selection rules. Figure
6.8 lists these elements of a GOMS model for a BRAVO user. The goals
are organized into a hierarchy as pictured in Figure 6.9. Eventually each
goal (a rectangular box in the figure) terminates on a set of operators
(rounded boxes in the figure). Associated with each goal is a set of
alternative methods (not shown in the Figure) by which the goal can be
achieved and a set of selection rules (also not shown) for selecting among
the methods.

GOALS

As in Chapter 5, the user is assumed to have a top-level goal to edit
the manuscript one unit task at a time:

GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK
GOAL: ACQUIRE-UNIT-TASK

The accomplishment of GOAL: EDIT-UNIT-TASK is again broken into an
acquisition part and an execution part, just as in the POET model; in the
simulation, though, EXECUTE is treated as an operator that causes a
subgoal to be set up for the task, based on the instructions acquired from
the manuscript during GOAL: ACQUIRE-UNIT-TASK. The subgoal to be set
up is one of the following:

GOAL: REPLACE Or

GOAL: DELETE or

GOAL: INSERT (InsertionPoint, NewText) Or
GOAL: MOVE (InsertionPoint, OldText) .

Unlike the simpler POET model, some of the goals are parameterized.
For example, the goal

GOAL: INSERT ({a # APPROXIMATE-TARGET}, X,) 6.1)

represents the user’s goal to insert, in an approximately-known location,
the text described by X,, where X, is (as given earlier) a single character
of text on a word boundary:
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X2 = #CHARACTER ( TEXT-TYPE: CHARACTER
BOUNDARY: WORD
LENGTH: 1).

The parameters for goals and operators are listed in Figure 6.8. These
parameters are the memory chunks that must be maintained in Working
Memory at the time the goal is executed. Each chunk is given a
symbolic slot name (for accounting purposes) in the model. In
Expression 6.1, InsertionPoint is the slot name associated in the model
with an exemplar of # APPROXIMATE-LOCATION, and NewText is the slot
name associated with X,. Expression 6.1 is short for:

GOAL: INSERT (InsertionPoint={a # APPROXIMATE-TARGET},
NewText=X,) .

The precise form in which the user has these pieces of knowledge
represented in memory, however, is not specified.

Also, unlike the POET model, the BRAVO model must contain a set of
goals related to the use of the mouse for selecting text:

GOAL: SELECT-TARGET (MSPosition, PositionType,
VisualSearchTarget),
GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget,
Select?)
GOAL: POINT-THERE (ScreenPosition, TextType, Select?) .

OPERATORS

The operators are cast roughly at the Argument Level. For example,
the user can gather information from the manuscript and the display:

GET-FROM-MANUSCRIPT (Desiredinformation, Attribute) and
GET-FROM-DISPLAY (DesiredInformation, Attribute, MSPosition) .

He can point at a certain TextType in a certain ScreenPosition, then
(optionally) select it (notationally, the Setect? parameter takes on the
value SELECT) by pressing a button on the mouse:

POINT (ScreenPosition, TextType, Select?) .



Goals:

GOAL: EDIT-MANUSCRIPT

GOAL: EDIT-UNIT-TASK

GOAL: ACQUIRE-UNIT-TASK

GOAL: INSERT (insertionPointKey, NewText)

GOAL: DELETE (OldTextKey)

GOAL: REPLACE (OldTextKey, NewText)

GOAL: MOVE (insertionPointKey, OldTextKey)

GOAL: SELECT-TARGET (MSPosition, PositionType, VisualSearchTarget)
GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, Setect?)
GOAL: POINT-THERE (ScreenPosition, TextType, Select?)

Operators:

‘GET-FROM-MANUSCRIPT (Desiredinformation, Attribute)
GET-FROM-DISPLAY ( Desiredinformation, Attribute, MSPosition)
SCROLL-TO (LinelnMS)

JUMP-TO (LinelnMS)

POINT (ScreenPosition, TextType, Select?)

INSERT-TEXT

DELETE-TEXT

REPLACE-TEXT

TYPE (NewText)

EXECUTE (Task)

VERIFY-EDIT

Methods:

ONE-AT-A-TIME-METHOD
ACQUIRE-EXECUTE-VERIFY-METHOD
READ-TASK-IN-MS-METHOD
INSERT-COMMAND-METHOD
DELETE-COMMAND-METHOD
REPLACE-COMMAND-METHOD
DELETE-INSERT-METHOD
ZERO-IN-METHOD
ROUGH-POINT-METHOD
CHAR-POINT-METHOD
WORD-POINT-METHOD
TEXT-SEG-POINT-METHOD
INSERTION-POINT-METHOD
POINT-WITHOUT-SCROLLING-METHOD
SCROLL-AND-POINT-METHOD
JUMP-METHOD

Selection Rules:

ROUGH-LOC-RULE
TEXT-SEG-RULE
CHAR-POINT-RULE
WORD-POINT-RULE
INSERTION-POINT-RULE
TOP-2/3-RULE
BOTTOM-1/3-RULE
OFF-SCREEN-RULE

Figure 6.8. Outline of the GOMS model for a BRAVO user.
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EDIT-MANUSCRIPT

EDIT-UNIT-TASK

] L

ACQUIRE-UNIT-TASK CEXECUTE )

GET-FROM- ( :jb
MANUSCRIPT VERIFY-EDIT
MOVE

REPLACE DELETE INSERT

—
[ 1 [ I
GET-FROM- GET-FROM-
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L

1
GET-FROM- (
GANUSCR'PT) DELETE-TEXDJ

SELECT-TARGET

l

—

( GET-FROM-
MANUSCRIPT ) POINT-TO-TARGET
I

( GET-FROM- ) I 'I
DISPLAY POINT-THERE
[
] 1
JUMP-TO (scnou-m)( POINT )

Figure 6.9. Hierarchy of goals and operators in the GOMS
model for BRAVO.

Goals are shown as square boxes and operators as round boxes.

And he can issue commands to the editor:]

SCROLL-TO (LinelnMs)
JUMP-TO (LinelnMs)
INSERT-TEXT
DELETE-TEXT
REPLACE-TEXT

TYPE.

1 These user operators should not be confused with the user = editor transactions
with similar names. For example, INSERT-TEXT is a user operator that eventually
causes the transaction *INSERT-TEXT to occur.
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METHODS

The simulation contains the methods for particular goals, expressed in
a formal notation. Some of the methods are essentially the same as for
the editor POET in Chapter §:

Method for GOAL: EDIT-MANUSCRIPT
ONE-AT-A-TIME-METHOD =
until NoMorePages = TRUE do GOAL: EDIT-UNIT-TASK .

Method for GOAL: EDIT-UNIT-TASK
ACQUIRE-EXECUTE-VERIFY-METHOD =
GOAL: ACQUIRE-TASK
EXECUTE (Task)
with-probability .4 do VERIFY-EDIT .

Method for GOAL: ACQUIRE-UNIT-TASK
READ-TASK-IN-MS-METHOD =
GET-FROM-MANUSCRIPT ({slot Task}) .2

The first method breaks the manuscript into unit tasks, the second breaks
a unit task into the Acquire-Execute-Verify cycle, and the third acquires
the instructions for a task by reading them from the manuscript.

Other methods, such as the method for performing an insertion, are
more detailed than in Chapter 5, taking into account the display-oriented
pointing operations:

Method for GOAL: INSERT
INSERT-COMMAND-METHOD =
if no InsertionPoint
then GET-FROM-MANUSCRIPT ({slot insertionPointKey})
GOAL: SELECT-TARGET(MSPosition, {slot InsertionPoint},
InsertionPointKey)

INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})

if NewText ¥ DEFAULT then TYPE (NewText) .

According to this method, if the user does not know where to make the
insertion, he looks over to the manuscript to find out. Then he selects
the location he found and issues the Insert command to the editor. If he

2 If we think of the upper/lower case symbols, such as Task, as variables
representing a pointer to particular types of information held in Working Memory, the
expression {slot Task} means the pointer itself rather than its contents.
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cannot remember the text to be inserted, he consults the manuscript.
Finally, the user types in the new text (except in the special “default”
case, where the text to be inserted is the argument to a previous
command, such as a Delete command).

SELECTION RULES

Just as in the simulation model, the selection rules for choosing
among methods available for a particular goal are expressed in a formal
notation. A simple example iS GOAL: POINT-TO-TARGET. There are at
least three methods in BRAVO to accomplish this goal, depending on the
kind of target: (1) to select a character, the user moves the mouse (to
position the cursor at the character) and presses the first mouse button;
(2) to select a word. he moves the mouse (to position the cursor at any
part of the word) and presses the second button; (3) to select a text
segment, the user first does either (1) or (2) to point to the beginning of
a the text segment and then moves the mouse to point to the end of the
segment and presses the third button to select all text between the two
points. The corresponding selection rules are written:

Selection rules for GOAL: POINT-TO-TARGET
CHAR-POINT-RULE =
if VisualSearchTarget isa # CHARACTER
then CHOOSE (CHAR-POINT-METHOD)
WORD-POINT-RULE =
if VisualSearchTarget isa # WORD
then CHOOSE (WORD-POINT-METHOD)
TEXT-SEG-RULE =
if VisualSearchTarget isa # TEXT-SEG
then CHOOSE (TEXT-SEG-POINT-METHOD) .

The expression VisualSearchTarget isa # CHARACTER is true if the
VisualSearchTarget is an exemplar of the concept # CHARACTER (or the
exemplar of any concept that has #CHARACTER as its superconcept).

Observational Studies

The modeling of two local sequences of user behavior requires
additional empirical observation. First, there is the question of how
frequently a user will consult the manuscript during a task? This is not a
new question. Difficulty in predicting the answer lowered the accuracy
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of the POET models in Chapter 5. Second, there is the question of when
will the user scroll the display? This is a new question that derives from
the user’s interactions with the video display in BRAVO. Fortunately,
answers to both questions can be derived from a re-examination of the
videotaped protocols of the dedicated BRAVO users in Experiment 3B.

CONSULTING THE MANUSCRIPT

The user usually consults the manuscript several times during the
course of a task. How frequently does he look? What does he look for?
How can methods be written to describe this process?

To answer these questions, 40 instances were observed of the GET-
FROM-MANUSCRIPT operator (as performed by one user, S13, during the
course of 16 insertion tasks). Three different kinds of information that
the user sought from the manuscript could be identified: Getting the
instructions for the Next Task (GNT), Getting the Location of the task on
the manuscript (GL), and Getting the New text to be inserted (GN). Of
course, from a single glance at the manuscript the user often acquires
more than a single piece of information. Figure 6.10 shows the inferred
distribution of reasons for S13’s consultation of the manuscript during
insertion tasks, grouped by number of characters in the inserted string.
Each row in the table describes a separate task. The three middle
columns tally how many times S13 looked at the manuscript for each task
for each reason.

On Task Al, for example, the user consulted the manuscript once at
the beginning of the task. Since she proceeded to point at the target and
then to insert the new text without further consultations, she must also
have obtained the information for each of these operators on that first
consultation.

On Task A18, she consulted the manuscript once at the beginning of
the task, then twice more before finally pointing to the target, and a
fourth time before beginning to type the new text. While typing the new
text, she looked at the manuscript, but glanced at the keyboard twice
more. From the first consultation, she probably learned the approximate
location of the task and the operation to be performed. On the second
look, she probably obtained a better, but still approximate, location for
the target insertion point. On the third look, she must have learned the
exact target position. And on the fourth look, she probably got the
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Reason for Looking

at Manuscript
Tl%sk While-

Nchars. GNT GL GN Total typing
Al 1 1 1
A21 1 1 1 2
B8 1 1 3 1 5
B26 1 1 1
A6 4.7 1 1 2
A32 4.7 1 2 3
B2 47 1 1
B23 4.7 1 1
A3 182 1 1 2
A14 182 1 1 3 ]
B1 18.2 1 1 1 3
B16 18.2 1 1 2 4 1
A18 75 1 2 1 4 2
86 75 1 1 1 3 2
A0 522 11 3 4
B10 522 1 1 7

Figure 6.10. Frequency of manuscript consultations.

Each row of the table describes a different unit task. All tasks are insertion tasks,
and they are grouped by the number of characters Nchars. being inserted. The
number of consultations of the manuscript are tallied by reason for consultation:
GNT = Get Next Task, GL = Get Location, GN = Get New text. "Total" is the
column sum of GNT + GL + GN columns. "While-typing" is the number of times the
user consulted the manuscript while typing.

beginning of the text to be inserted. At this point she proceeded to type
while watching the manuscript, taking small glances back to the display
or keyboard to check for suspected errors or to locate different keys (cf.
Long, 1976). Consultations of the manuscript while typing text passages
are tallied in the “While-typing” column in Figure 6.10. These GET-
FROM-MANUSCRIPT operations overlap with the TYPE operation and can
be ignored for the present analysis.
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S13’s procedure for locating a target on the display (reflected in the
GL column in Figure 6.10) is especially interesting. First, she extracts a
few words from the manuscript to use as a visual search target. The
words may be either the exact target or an approximate target in the
form of some other words or characters. In either case, she points to the
visual search target she has extracted from the manuscript. If the visual
search target is only an approximate target, she does not select it, but
looks over to the manuscript again and repeats the procedure. Otherwise,
she selects the visual search target and moves on to the next step of the
task. This method of locating the target is called the ZERO-IN-METHOD
and is described as follows:

Method for GOAL: SELECT-TARGET
ZERO-IN-METHOD =
while VisualSearchTarget isa # APPROXIMATE-TARGET

do POINT-TO-TARGET (MSPosition, VisualSearchTarget,
DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget},
PositionType)
finally POINT-TO-TARGET (MSPosition, VisualSearchTarget,
SELECT) .

VisualSearchTarget is the identifying visual search target extracted from
the manuscript by the user. MSPosition represents the user’s memory for
which task she is doing. PositionType identifies which of several possible
targets she is considering (for example, a move task has an InsertionPoint
and an OldText).

Although it is not known for any task how many times GET-FROM-
MANUSCRIPT will be invoked in succession (and in an engineering
analysis, a prediction would usually need to be done in the absence of a
particular manuscript), the numbers in the GL column of Figure 6.10 are
well approximated by a Poisson distribution of mean .81 (see Figure
6.11). This fact tells us that the GET-FROM-MANUSCRIPT operator in the
simulation should be constructed so as to pick up approximate targets (as
opposed to exact targets) in such proportion that the number of iterations
will be Poisson distributed with the above mean.

SCROLLING THE DISPLAY

Before a user can make a modification with BRAVO, he must get the
task onto the screen using either the SCROLL-TO or JUMP-TO commands.
Even if the task is already on the screen, the user sometimes prefers to
move it closer to the top (nearer to eye level), which he does by scrolling.
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Frequency
Number of
GL Operations Observed Predicted
in a Unit Task, N 16 (.81Ne~81/N1)
0 7 7.1
1 6 58
2 2 23
3 1 6
4 0 A

Figure 6.11. Comparison of the observed number of GL
operations in a unit task with the number predicted by the
Poisson distribution.

Data are from GL column of Figure 6.10. GL stands for Get Location, or more

strictly, GET-FROM-MANUSCRIPT({slot Task}), which obtains the location of the
task.

Thus, on a given task, the user may or may not scroll the text on the
screen. How can a set of selection rules be written that will predict the
user’s choice?

For a detailed examination of scrolling, S13’s performance on all the
tasks in the first half of the manuscript were examined. For each task,
the following were recorded: the number of lines from the top of the
screen to the target, whether her move repositioned the text on the
display, and what method she used.

Selection Based on Manuscript Positions. Figure 6.12 shows the
number of times the user adopted each of these methods as a function of
the distance of the target from the top of the screen. The selection rules
used by S13 may be simply expressed: If the target is in the top two-
thirds of the screen, do not reposition the screen; if the target is in the
bottom third of the screen, scroll; and if the target is not on the screen,
use the jump command (defining the #MAIN-PART-OF-SCREEN as the
first 19 lines, and the #BOTTOM-PART-OF-SCREEN as lines 20 to 24). In
our notation, this can be written:

Selection rules for GOAL: POINT-THERE
TOP-2/3-RULE =
if ScreenPosition isa # MAIN-PART-OF-SCREEN
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
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Number of Lines Method
from Top
of Screen PWSM SAPM JM

On Screen 1-4
5-8

9-12

13-16

17-20

21-24

Off Screen 25-28

29-32

33-36

37-40

=N WwWooe
N N =
—

—
W= 0O =

Figure 6.12. Frequency of alternative methods for the
GOAL: POINT-THERE as a function of distance of the target
from the top of the screen.

The methods are abbreviated as follows: PWSM = POINT-WITHOUT-SCROLLING-
METHOD, SAPM = SCROLL-AND-POINT-METHOD, JM = JUMP-METHOD.

BOTTOM-1/3-RULE =
if ScreenPositionisa # BOTTOM-PART-OF-SCREEN
then CHOOSE (SCROLL-AND-POINT-METHOD)
OFF-SCREEN-RULE =
if ScreenPosition isa # OFF-SCREEN

then CHOOSE (JUMP-METHOD) . 6.2)

These rules predict the user’s method choices 85% of the time.
Why did the user go to the expense of scrolling the display, simply
because the target was in the bottom third? The answer is apparently
that the bottom third of the screen was outside her comfortable vision
zone. Normal comfortable vision is about 15° below the horizon, which,
with the comfortable head inclination of about 20°, gives a total of 35°
(Van Cott and Kinkade, 1972, p. 393; Cakir, Hart, and Stewart, 1980, p.
171). The bottom third of the screen was probably (on the basis of later
measurements) outside this comfort region. The mismatch of screen
height with user, a common phenomenon, apparently can reduce effective
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screen size and, consequently, time-efficiency by causing more scrolling
operations.

The set of selection rules above (6.2) has the advantage that it makes
clear the mechanism whereby S13 makes her choices. It has the
disadvantage that it demands knowledge of the state of the screen at any
arbitrary point in the editing process. This disadvantage could be
overcome if the selection rules did not demand such detailed knowledge
of the dynamics of the situation.

Selection Rules Based on Manuscript Positions. The number of lines
d between tasks on the manuscript is easily determined by inspection of
the manuscript alone. Figure 6.13 shows the method selections of four
users as a function of d, the distance (in lines) from the site of the
previous unit tasks). A set of selection rules based on d is as follows:

Selection rules for GOAL: POINT-THERE
LITTLE-d-RULE =
ifd <16
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
MED{UM-d-RULE =
if16<d <25
then CHOOSE (SCROLL-AND-POINT-METHOD)
BIG-d-RULE =
ifd>25
then CHOOSE (JUMP-METHOD) . (6.3)

These rules correctly predict 85% of S13’s method selections, the same
percentage as the rules based on screen positions (Rule Set 6.2).

Selection Rules for Other Users. The results for selection rules based
on manuscript positions (Rule Set 6.3) encourage us to use the
manuscript distance between tasks as the measure by which to examine
the behavior of other users, to see how stable these rules are across users.
Figure 6.13 shows the frequency with which three other users in
Experiment 3B used the different pointing methods. The main difference
between these users and S13 is that they do not have the JUMP-METHOD
in their repertoires.  All three switch from the POINT-WITHOUT-
SCROLLING-METHOD to the SCROLL-AND-POINT-METHOD as the distance
between tasks increases. The crossover point, at which users switched
from one to the other of these methods, varied from a distance of 4 lines
between targets to a distance of 11 lines. The following rules characterize
their selections:
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Selection rules for GOAL: POINT-THERE
LITTLE-d-RULE2 =

itd <8
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
BIG-d-RULE2 =
ifd>8
then CHOOSE (SCROLL-AND-POINT-METHOD) . (6.9)

These two rules explain 85~94% of the selections for the three users.

If scrolling is the only means employed to move the text on the
display, then the amount of scrolling will be determined by the
manuscript length almost independent of the distribution of tasks on the
manuscript. From examination of the data from S32, S34, and S47, users
move the text approximately 16 lines each time they scroll the display.
Thus, the number of scrolls a user (who does not use the JuMP-TO or
FIND command) can be expected to perform is given by:

Total number of scrolls = (Lines in manuscript) / 16 .
Figure 6.14 shows the number of lines per scroll computed for individual

users. Reasonable scrolling behavior may be approximated by having the
model scroll 16 lines at a time.

Estimation of Parameters

In order to make time predictions with the model, it is necessary to
make numerical estimates of several of its parameters. Estimates for the
parameters are summarized in Figure 6.15. The time for the operator

User Number of Lines
per Scroll (All tasks)

S$13 200
8§32 17.7
S34 1.6
837 16.1

Average 16.4

Figure 6.14. Observed average number of lines per scroil.
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Estimated Time
Parameter Source
M vV

(sec)

User parameters

GET-FROM-MANUSCRIPT 2.1 .44 Figure 5.15

SCROLL 2.6 .54 Measurement of 10 instances
POINT 1.7 .76 Measurements of S13

TYPE 127 .50 Average of two typing tests,

SD = .5M (Kinkead. 1975)
VERIFY-EDIT 11 AN Measurement of 12 instances

System parameters
*INSERT-TEXT 1.1 .36 Measured response, 25 instances
*DELETE-TEXT
*REPLACE-TEXT

*JUMP-TO 1.0 1.0 Measured response. 10 instances
*SCROLL-TO 1.7 71 Measured response. 10 instances

Figure 6.15. Parameter estimates for the simulation model.

GET-FROM-MANUSCRIPT is taken from Chapter 5. The time for POINT is
from measurements of S13 in Experiment 3B. The time for VERIFY-EDIT
is based on the time previously measured for BRAVO in Experiment 3A.
TYPE time is based on an average of two typing tests embedded in an
editing exercise given to the user before the start of Experiment 3B as a
warmup. The standard deviation for the TYPE time is estimated by
multiplying the mean time per keystroke by a typical coefficient of
variation for typing of .5 (Kinkead, 1975).

In order to estimate response times of the system, 25 each of the
command invocations *INSERT-TEXT, *REPLACE-TEXT, and *DELETE-TEXT
were measured. Since there were no obvious differences between the
times taken by these commands, their measured times were pooled to
give a common estimated time. Ten invocations of the *JuMP-TO
command and ten of *SCROLL-TO were also measured.

The assumption is made that operator times are gamma-distributed.
The assumption is reasonable for at least three reasons: (1) The sum of a
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sequence of gamma-distributed operators is also gamma-distributed.
Thus the distribution for smaller, more elementary operators has the
same shape as for larger, more composite operators. (2) The gamma
distribution is commonly found appropriate for operators in the industrial
engineering literature (Nanda, 1968; Johnson, 1965). (3) The basic shape
(skewed to the right) of the gamma distribution is correct, so that even if
there were to be second-order difficulties in the fit of the distribution, the
gamma distribution would still be a reasonable approximation of the real
distribution shape.

Simulation of User Behavior

The full model can now be stated. The GOMS elements of the
simulation model are listed in full in Figure 6.16, where the methods and
selection rules are grouped together with the goals they address. We can
illustrate the workings of the model by tracing out its behavior on a task.
Figure 6.17 shows a trace of the model for Task A2 (see Figure 6.1 and
Figure 6.3). Writing the sequence of operators from Figure 6.17, we get:

GET-FROM-MANUSCRIPT (Task, NIL)

GET-FROM-DISPLAY (ScreenPosition, {a ®# APPROXIMATE-TARGET})
POINT ({a # MAIN-PART-OF-SCREEN}, WORD, DON'T-SELECT)
GET-FROM-MANUSCRIPT (VisualSearchTarget, INSERTION-POINT)
GET-FROM-DISPLAY (ScreenPosition, A4, A2)

POINT ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
INSERT-TEXT

TYPE (NewText)

VERIFY-EDIT .

The sequence in Figure 6.17 is only one of the possible sequences the
model predicts for this task. If the simulation were run again it would
make different method selections, and it would eliminate conditional
operators (that appear in with-probability statements). For example, it
might predict the sequence

GET-FROM-MANUSCRIPT (Task, NIL)

POINT ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
GET-FROM-MANUSCRIPT (NewText, INSERTION-POINT)
INSERT-TEXT

TYPE (NewText) .



GOAL: EDIT-MANUSCRIPT
METHOD:
ONE-AT-A-TIME-METHOD =
until NoMorePages = TRUE do GOAL: EDIT-UNIT-TASK

GOAL:EDIT-UNIT-TASK
METHOD:
ACQUIRE-EXECUTE-VERIFY-METHOD =
GOAL: ACQUIRE-UNIT-TASK
EXECUTE (Task)
with-probability .4 do VERIFY-EDIT

GOAL: ACQUIRE-UNIT-TASK
METHOD:
READ-TASK-IN-MS-METHOD =
GET-FROM-MANUSCRIPT ({slot Task})

GOAL: INSERT (InsertionPointKey, NextText)
METHOD:
INSERT-COMMAND-METHOD =
if no InsertionPointKey then GET-FROM-MANUSCRIPT ({slot insertionPointKey})
SELECT-TARGET (MSPosition, {slot InsestionPoint}, InsertionPointKey)
INSERT-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})
if NewText # DEFAULT then TYPE (NewText)

GOAL: DELETE (OldTextKey)
METHOOD:
DELETE-COMMAND-METHOD =
if no OldTextKey then GET-FROM-MANUSCRIPT (OldTextKey)
SELECT-TARGET (MSPosition, {slot OldText}, OldTextKey)
DELETE-TEXT

GOAL: REPLACE (OldTextKey, NewText)
METHOD:
REPLACE-COMMAND-METHOD =
if no OldTextKey then GET-FROM-MANUSCRIPT ({siot OldTextKey})
SELECT-TARGET (MSPosition, {slot OldText}, OldTextKey)
REPLACE-TEXT
if no NewText then GET-FROM-MANUSCRIPT ({slot NewText})
it NewText ¥ DEFAULT then TYPE (NewText)

GOAL: MOVE (InsertionPointKey, OldTextKey)
METHOD:
DELETE-INSERT-METHOD =
DELETE (OldTextKey)
INSERT (InsertionPointKey, DEFAULT)

GOAL: SELECT-TARGET (MSPosition, PositionType, VisualSearchTarget)
METHOD:
ZERO-IN-METHOD =
while VisualSearchTargetisa # APPROXIMATE-TARGET
do GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, DON’T-SELECT)
GET-FROM-MANUSCRIPT ({slot VisualSearchTarget}, PositionType)
finally GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, SELECT))

224



GOAL: POINT-TO-TARGET (MSPosition, VisualSearchTarget, SELECT)
SELECTION-RULES:
ROUGH-LOC-RULE =
if VisualSearchTarget isa # APPROXIMATE-TARGET then CHOOSE (ROUGH-POINT-METHOD)
TEXT-SEG-RULE =
if VisualSearchTarget isa # TEXT-SEG then CHOOSE (TEXT-SEG-POINT-METHOD)
CHAR-POINT-RULE =
if VisualSearchTarget isa # CHARACTER then CHOOSE (CHAR-POINT-METHOD)
WORD-POINT-RULE =
if VisualSearchTarget isa # WORD then CHOOSE (WORD-POINT-METHOD)
INSERTION-POINT-RULE =
if VisualSearchTarget isa # PLACE-IN-MS then CHOOSE (INSERTION-POINT-METHOD)
METHODS:
ROUGH-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)
CHAR-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE {ScreenPosition, CHARACTER, SELECT)
WORD-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, LOCATION: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE (ScreenPosition, WORD, SELECT)
TEXT-SEG-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, START-LOC: (VisualSearchTarget), MSPosition)
GOAL: POINT-THERE {ScreenPosition, CHARACTER, SELECT)
GET-FROM-DISPLAY ({slot ScreenPosition}, CHARACTER, SELECT)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)
INSERTION-POINT-METHOD =
GET-FROM-DISPLAY ({slot ScreenPosition}, VisualSearchTarget, MSPosition)
GOAL: POINT-THERE (ScreenPosition, CHARACTER, SELECT)

GOAL: POINT-THERE (ScreenPosition, TextType, SELECT)
SELECTION-RULES:
TOP-2/3-RULE =
if ScreenPosition isa # MAIN-PART-OF-SCREEN
then CHOOSE (POINT-WITHOUT-SCROLLING-METHOD)
BOTTOM-1/3-RULE =
if ScreenPosition isa # BOTTOM-PART-OF-SCREEN
then CHOOSE {SCROLL-AND-POINT-METHOD)
OFF-SCREEN-RULE =
if ScreenPosition isa # OFF-SCREEN
then CHOOSE (JUMP-METHOD)
METHODS:
POINT-WITHOUT-SCROLLING-METHOD =
POINT (ScreenPosition, TextType, SELECT)
SCROLL-AND-POINT-METHOD =
SCROLL-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)
JUMP-METHOD =
JUMP-TO (MSPosition)
POINT (ScreenPosition, TextType, SELECT)

Figure 6.16. Methods and selection rules for BRAVO.
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GOAL: EDIT-MANUSCRIPT
The only method is ONE-AT-A-TIME-METHOD
Use ONE-AT-A-TIME-METHOD
. GOAL: EDIT-UNIT-TASK
. The only method is ACQUIRE-EXECUTE-VERIFY-METHOD
. Use ACQUIRE-EXECUTE-VERIFY-METHOD
. GOAL: GET-TASK
. The only method is READ-TASK-IN-MS-METHOD
. Use READ-TASK-IN-MS-METHOD
GET-FROM-MANUSCRIPT (Task Nit)
O user => Manuscript message *READ-NEXT-LOCATION-OF (A1)
O Manuscript = User; Reply: — A2
[0 user = Manuscript message *READ-ATTRIBUTE-OF (A2, FUNCTION:)
1 Manuscript => User; Reply: — INSERT
[ user => Manuscript message *READ-ATTRIBUTE-OF (A2, NEW-TEXT:)
[ Manuscript => User; Reply: — X2
. GOAL:INSERT {({a # APPROXIMATE-TARGET}, xz)
. The only method is INSERT-COMMAND-METHOD
. Use INSERT-COMMAND-METHOD
. GOAL: SELECT-TARGET (A2, InsertionPoint, {a # APPROXIMATE-TARGET})
. The only method is ZERO-IN-METHOD
. Use ZERO-IN-METHOD
. GOAL: POINT-TO-TARGET (A2, {a # APPROXIMATE-TARGET}, DON'T-SELECT)
. ROUGH-LOC-RULE recommends ROUGH-POINT-METHOD
. Use ROUGH-POINT-METHOD
GET-FROM-DISPLAY (ScreenPosition, {a # APPROXIMATE-TARGET}, A2)
0O user = Display message *READ-LOCATION-OF (A2)
0 Display = User; Reply: — {a # MAIN-PART-OF-SCREEN}
..... GOAL: POINT-THERE ({a # MAIN-PART-OF-SCREEN), WORD, DON'T-SELECT)
..... TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD
..... Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, WORD, DON'T-SELECT)
GET-FROM-MS (VisualSearchTarget, InsertionPoint)
[ User = Manuscript message *READ-ATTRIBUTE-OF (A2, INSERTION-POINT:)
0O Manuscript => User; Reply: — A,
. GOAL: POINT-TO-TARGET (A2, A, BUG)
. INSERTION-POINT-RULE recommends INSERTION-POINT-METHOD
. Use INSERTION-POINT-METHOD
GET-FROM-DISPLAY (ScreenPosition, A, A2)
B user => Display message *READ-LOCATION-OF (A2) —> {a # MAIN-PART-OF-SCREEN}
[ Display => User; Reply: — {a # MAIN-PART-OF-SCREEN}
..... GOAL: POINT-THERE ({a #MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
..... TOP-2/3-RULE recommends POINT-WITHOUT-SCROLLING-METHOD
..... Use POINT-WITHOUT-SCROLLING-METHOD
POINT ({a # MAIN-PART-OF-SCREEN}, CHARACTER, SELECT)
O user = Editor message * SELECT
INSERT-TEXT
[ user => Editor message *INSERT-TEXT
TYPE(X,)
03 user = Editor message *TYPE (xy)
VERIFY-EDIT

Figure 6.17. Trace of the simulation model for Task A2.
The sequence of user operators produced in this trace correspond to sequence
number 8 in Figure 6.18. Traces of transactions are marked with a [J.
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Even if the model were to make all the same choices, the times for the
different operators would be different according to their distributions. By
running the simulation model several times on the same task, the model
can be used to make Monte Carlo predictions of (1) the set of possible
operator sequences the user will employ to do an editing task, (2) the
relative frequency with which the different operator sequences will be
employed, (3) the distribution of time for each sequence, and (4) the
distribution of times for all the sequences.

As an illustration, the simulation model was run 100 times on task A2
(Figure 6.18). The runs generated 14 different operator sequences,
containing from 4 to 11 operators, and having tasks times from about 3
to about 20 sec. The model predicted a mean task time of 9.5 sec. The
distribution of run times was characterized by a Sth percentile of 4.3 sec,
a 95th percentile of 17.4 sec, and a CV of 41 sec.

Seq. UserOperator Sequence Freq M cv 5% 95%
No. (sec) (sec) (sec) (sec)
1 GNT PS I GN Tt 17 8.1 23 5.5 12.8
2 GNT PS I T 15 52 .24 3.1 7.4
3 GNT PD GL PS | GN T1 11 116 22 8.2 17.4
4 GNT PS I T1 VE 10 70 34 45 121
5 GNT PD GL PS | T1 9 8.1 A7 6.0 9.8
6 GNT PD GL PD GL PS | GN Tt 8 166 .17 11.7 20.1
7 GNT PS | GN T1 VE 7 77 12 7.0 9.6
8 GNT PD GL PS | T1 VE 6 99 .33 7.4 14.2
9 GNT PD GL PD GL PS | Tt 5 120 .28 9.2 17.1
10 GNT PD GL PS | GN T1 VE 5 116 .17 9.3 14.2
11 GNT PD GL PD GL PD GL PS | T1 VE 2 172 10 159 18.5
12 GNT PD GL PD GL PS 1 T1 VE 2 125 42 8.8 16.1
13 GNT PO GL PD GL PD GL PS I T1 2 176 .05 170 18.1
14  GNT PD GL PD GL PS | GN T1 VE 1 13.1 - 13.1 13.1
Overall 100 9.5 41 4.3 17.4

Figure 6.18. Predicted operator sequences and execution

times for Task A2.

The operators have been abbreviated as follows: GNT = GET-FROM-MANU-
SCRIPT (Task), GL = GET-FROM-MANUSCRIPT (VisualSearchTarget, ..), GN =
GET-FROM-MANUSCRIPT (NewText, ...), PD = POINT (..., DON'T-SELECT), PS =
POINT (..., SELECT), | = INSERT-TEXT, Tn = TYPE n characters, VE = VERIFY-
EDIT.
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6.3. CONCLUSIONS

We can state several conclusions as the result of this theoretical
exploration.  First, it was possible to construct a GOMS model for
another and quite different text-editor, the display-oriented editor BRAVO.
Both pointing at the display with the mouse and scrolling the display
could be described by goals, operators, methods, and selection rules
similar to those employed in the POET description.

Second, the GOMS notation was extended to a stochastic description
of user behavior. Stochastic models of users could be used to get around
some of the limits on predictability of sequences found in Chapter 5.
They could also be used to attempt estimates of time and sequence
variability.

Finally, we saw how our analysis of the task environment for editing
could be extended so as to allow an explicit accounting of the infor-
mation the user possesses moment-by-moment about the editing tasks on
which he is working.

It is important to restate that in this chapter we have been concerned
only with studying how the GOMS model could be extended. Additional
empirical studies would be necessary to validate the detailed predictions
of the GOMS extensions.



7. Models of Devices for
Text Selection

7.1. EXPERIMENTAL COMPARISON OF TEXT-SELECTION
DEVICES (EXPERIMENT 7A)
7.2. PERFORMANCE MODELS OF TEXT-SELECTION DEVICES
Mouse
Joystick
Step Keys
Text Keys
Comparison of Devices
7.3. APPLICATIONS
Rapid Test for Analogue Pointing Devices (Experiment 7B)
Maximum Mouse Velocity (Experiment 7C)
7.4. CONCLUSIONS

The apparently endless options for the design of human-computer
interfaces are composed from only a very few sensory-motor and
cognitive operations performable by the user. These include:

(1) the perceptual operations of
visual search and
reading and
(2) the motor operations of
typing on the keyboard and
reaching with a hand to a target, including
reaching for a button and
pointing to a target on the display.

Systems can be imagined that require extensions to this list—perceptual
judgments of alignment or motor drawing operations, for example—but,
these operations are adequate for the models in Chapters 5 and 6 and for
a great many other computer interfaces.
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Each of these operations is worth studying in the context of human-
computer interaction, and the results can have implications for the design
of a computer interface. In this chapter, we shall focus on one issue
within this realm—the implications for design of the reaching-to-target
operations.

The editor BRAVO, in Chapter 6, made heavy use of the mouse
pointing device for selecting text on the display screen. Other devices
exist (the joystick, various key-operated devices) that might have been
chosen. Which pointing device is the best choice and why? The choice
of pointing device can have a significant impact on the ease with which
the selections can be made. In fact, since pointing typically occurs with
high frequency, ease of pointing can have a large effect on the success of
the entire system.

There have been several studies of pointing devices.  English,
Englebart, and Berman (1967) measured mean pointing times and error
rates for the mouse, lightpen, Grafacon tablet (an extendable, pivoted
rod, intended originally for curve-tracing), and position and rate joysticks.
They found the mouse to be the fastest of the devices. Goodwin (1975)
measured pointing times for the lightpen, lightgun, and Saunders 720
step keys (RETURN, TAB, SPACE, and the reversal of these functions using
the SHIFT key). She found the lightpen and the lightgun equally fast and
much superior to the Saunders 720 step keys. Whereas these studies
produced interesting comparative data on the devices measured, they did
not simultaneously control the three variables likely to affect perform-
ance: learning, target distance, and target size. They also did not
attempt to account theoretically for the results. The study that foliows
addresses both these issues. We consider the mouse, a rate-controlled
isometric joystick, step keys, and text keys.

7.1. EXPERIMENTAL COMPARISON OF TEXT-
SELECTION DEVICES (EXPERIMENT 7A)

The purpose of the experiment was to compare the relative merits for
text-selection of a number of devices. To make the comparison meaning-
ful a number of factors had to be controlled, including individual
differences (controlied by using the same users on all devices); learning
and asymmetrical transfer of training between devices (controlled by
having each subject practice to “assymptote” before collecting comparison
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data); movement direction (controlled by randomizing target direction
and assessing effect in separate analysis); target size, target distance
(effect measured by factorially combining these variables into conditions
of the experiment), users’ motivation (kept high with performance
feedback), and the possibility of important extraneous variables
(controlled by using a realistic task and by identifying the cause of
response time effects through modeling).

METHOD FOR EXPERIMENT 7A

Users. Three men and two women, all undergraduates at Stanford
University, served as users in the experiment. None had ever used any
of the devices previously, and all had little or no experience with
computers. Subjects were paid $3 per hour with a $20 bonus for
completing the experiments. One of the women was very much slower
than the other users and was eliminated from the experiment leaving four
users (inclusion of the eliminated user would not have changed the
qualitative conclusions of the study).

Text-Selection Devices. Four pointing devices were tested (see Figure
7.1). Two were continuous devices: the mouse and the rate-controlled
isometric joystick. Two were key operated: the step keys and the text
keys. The devices had been optimized informally by testing them on
local users, adjusting the device parameters to maximize performance.

The mouse, already described, was a small device which sat on the
table to the right of the keyboard, connected by a thin wire. On the
undercarriage were two small wheels, mounted at right angles to each
other. As the mouse moved over the table one wheel coded the amount
of movement in the x-direction, the other the amount of movement in
the y-direction. A cursor moved simultaneously on the display, two units
of screen movement for each unit of mouse movement on the table.

The joystick was a small strain gauge on which had been mounted a
rubber knob 1.25 cm in diameter. Applying force to the joystick in any
direction did not produce noticeable movement in the joystick itself, but
caused the cursor to move in the appropriate direction at a rate (in
cm/sec) = (.0178)(force)?, where force is measured in Newtons. For
forces less than about 4 Newtons, the cursor did not move at all; and the
equation ceased to hold in the neighborhood of 45 Newtons as the rate
approached a ceiling of about 40 cm/sec.

The step keys were the familiar five-key cluster found on many
display terminals. On the four sides of a central HOME key were keys to



232 7. MODELS OF DEVICES FOR TEXT SELECTION

RATE-CONTROLLED
MOUSE ISOMETRIC
JOYSTICK

T

—

)\

STEP KEYS TEXT KEYS

7 -
— /o F /

Figure 7.1. Pointing devices tested in Experiment 7A.

move the cursor in each of four directions. Pressing the HOME key
caused the cursor to return to the upper left corner of the text. Pressing
one of the horizontal keys moved the cursor one character (.246 cm on
the average) backward or forward along the line. Pressing a vertical key
moved the cursor one line (.456 cm) up or down. Holding down one of
the keys for more than .100 sec caused it to go into a repeating mode,
producing one step in the vertical direction each .133 sec or one step in
the horizontal direction each .067 sec (3.43 cm/sec vertical movement,
3.67 cm/sec horizontal movement).

The text keys were similar to keys appearing on several commercial
“word processing” terminals. Depressing the PARAGRAPH key caused the
cursor to move to the beginning of the next paragraph. Depressing the
LINE key caused the cursor to move downward to the same position in
the next line. The WORD key moved the cursor forward one word; the
CHARACTER key moved the cursor forward one character. Holding down
the REVERSE key while pressing another text key caused the cursor to
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move opposite the usual direction. The text keys could also be used in a
repeating mode. Holding the LINE, WORD, or CHARACTER key down for
longer than .100 sec caused it to repeat at .133 sec per repeat for the LINE
key, .100 sec per repeat for the WORD key, or .067 sec per repeat for the
CHARACTER key. Since there were .456 cm/line, 1.320 cm/word, and
.246 cm/character, movement rates were 3.43 cm/sec for the LINE key,
13.2 cm/sec for the WORD key, and 3.67 cm/sec for the CHARACTER key.

Procedure. Subjects were seated in front of a computer terminal with
a display, a keyboard, and one of the devices for pointing at targets on
the screen. On each trial, a page of text was displayed on the screen.
Within the text, a single word or phrase, the target, was highlighted by
inverting the black/white values of the text and background in a
rectangle surrounding the target. The user struck the space bar of the
keyboard with his right hand and then, with the same hand, reached for
the pointing device and directed the cursor to the target. The cursor thus
positioned, the user pressed a button “selecting” the target as he would
were he using the device in a text-editor. For the mouse, the selection
button was located on the device itself. For the other devices, the user
pressed a special key on the keyboard with his left hand.

Design. There were five different distances from starting position to
target (1, 2, 4, 8, or 16 cm), and four different target sizes (1, 2, 4, or 10
characters). All targets were words or groups of words. Ten different
instances of each distance X target size pair were created, with varying
locations of the target on the display and angles of hand movement,
giving a total of 200, randomly ordered, unique stimuli.

Each user repeated the experiment with each device. The order in
which users employed the devices was randomized. At the start of each
day, the users were given approximately twenty warmup trials to refresh
their memory of the procedure. All other trials were recorded as data.
At the end of each block of twenty trials they were given feedback on the
average positioning time and average number of errors for those trials.
This feedback was found to be important in maintaining users’
motivations. At the end of each 200 trials they were given a rest break
of about fifteen minutes. Subjects normally accomplished 600 trials/day,
requiring about two to three hours of work. They each used a particular
device until the positioning time was no longer significantly decreasing
with practice (operationally defined as when the first 200 and last 200
trials of the last 600 trials in the day did not differ significantly in
positioning time at the p < .05 level using a t-test). An approximation to
this criterion was reached in 1200 to 1800 trials (four to six hours) on
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each device. Of the 20 user X device pairs, 15 reached this criterion,
three performed worse in their last trials (largely because several days
elapsed between these sessions); and only two were continuing (slightly)
to improve.

RESULTS FOR EXPERIMENT 7A

Improved Performance with Practice. In order to compare the devices
it is important that the effects of practice be isolated so as not to
confound the analysis. According to the Power Law of Practice in
Chapter 2, practice should improve performance as given by Equation
2.5:

logTy = logT;-alogN, 2.5)
where
T; = estimated positioning time on the first
block of trials,
Ty = estimated positioning time on the Nth
block of trials,
N = tnal block number, and
a = anempirically determined constant.

Thus, the ease of learning for each device can be described by two
numbers, 7; and a, which may be conveniently determined from a
regression of (log Ty) on (log N). Figure 7.2 shows the results of
plotting the data from error-free trials according to Equation 2.5. Each
point on the graph is the average of a block N of twenty contiguous trials
from which error trials have been excluded. Only the first 60 trial blocks
are shown. Since some users reached criterion at this point, not all
continued on to further trials. The values predicted by the (fitted)
equation are given as the straight line drawn through the points. The
average target size in each block was 4.23 cm (the range of the average
target sizes for different trial blocks was 3.95 to 4.50 cm), and the average
distance to the target was 6.13 cm (range 5.90 to 6.42 cm).

The parameters 7, and a, as determined by the regressions, are given
in Figure 7.3, along with the standard error and percentage of variance
explained from the regression analysis. Practice caused more improve-
ment in the mouse and text keys than on the other two devices used.
Use of the step keys, in particular, showed very little improvement with
practice. Equation 2.5 explains 39% of the variance in the average
positioning time for a block of trials for the step keys, and 61% to 66% of
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Device T a Learning Curve SE R-
(sec) Equation (sec)

Mouse 220 .13 T,=220N"" 12 66

Joystick 219 08 T,=219N"%® 08 62

StepKeys 303 .07 T, = 303N~ a1 39

TextKeys 386 .15 T,=38N""° 16 61

Figure 7.3. Learning curve parameters.
N is the number of the trial block. There are 20 trials in each block. Each
equation is based on 1200 trials divided into 60 trial blocks.

the variance for the other devices. The fit, at least for the mouse and the
joystick, is actually better than these numbers suggest. Since users did 30
blocks of trials on a day, typically followed by a pause of a day or two
before they could be rescheduled, a break in the learning curve was
expected at that point; and indeed such a break is quite evident for the
mouse and the joystick between the 30th and 31st blocks. Fitting
Equation 2.5 to only the first day increases the percentage of variance
explained to 91% for the mouse and 83% for the joystick. In the case of
the step keys and text keys, there was no such obvious day effect.

Overall Speed. According to the Power Law of Practice, users’
response times for text selection will continue to decrease indefinitely.
But if response time were to be plotted in arithmetic coordinates as a
function of number of practice trials, the plot would give the illusion of
an asymptote as exponentially more trials are required for the same
response-time decrease. In order to compare the devices in this region of
the learning curve where response time is relatively flat (as would be the
case for daily use by office workers), a sample was examined of each
user’s performance on each device, consisting of the last 600 trials that
were not also the first 200 trials of a day (in order to diminish warmup
effects). The remaining analyses are based on this subset of the data,
excluding those trials on which errors occurred. Figure 7.4 gives the
homing time, positioning time, and total time for each device, averaging
over all the distances and target sizes. Homing time was measured from
when the user’s right hand left the space bar until when the cursor had
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begun to move. Positioning time was measured from when the cursor
began to move until when the selection button had been pressed. From
the figure, it can be seen that homing time increases slightly with the
distance of the device from the keyboard. The longest time required is
to reach the mouse, the shortest to reach the step keys. Although the
text keys are near the keyboard, they take almost as long to reach as the
mouse. Either it is more difficult to position the hands on the text keys
or, as seems likely, users often spent some of the time between hitting
the space bar and beginning to press the keys in planning the strategy for
their next move. Further evidence for this hypothesis comes from the
relatively high standard deviation observed for the homing time of the
text keys. Whereas the differences in the homing times among all device
pairs except the mouse vs. the text keys are reliable statistically (at p < .05
or better using a t-test), the differences are actually quite small. But
although the step keys can be reached .15 sec sooner than the mouse,
they take 1.02 sec longer to position. Thus the differences in the homing
times are insignificant compared to the differences in the positioning
times.

The mouse is easily the fastest device, the step keys the slowest. As a
group, the continuous devices (the mouse and the joystick) are faster than
the key-operated devices (the step keys and text keys). Differences
between the devices are all reliable at p < .001 using ¢tests.

Effect of Distance and Target Size. The effect of distance on
positioning time is given in Figure 7.5. At all distances greater than 1
cm, the continuous devices are faster. The positioning time for both
continuous devices seems to increase approximately with the log of the
distance. The time for the step keys increases rapidly as the distance
increases, whereas the time for the text keys increases somewhat less than
as the log of the distance, owing to the existence of keys for moving
relatively large distances with a single stroke. Again, the mouse is the
fastest device, and its advantage increases with distance.

Figure 7.6 shows the effect of target size on positioning time. The
positioning times for both the mouse and the joystick decrease with the
log of the target size. The time for the text keys is independent of target
size, and the positioning time for the step keys also decreases roughly
with the log of the target size. Again, the mouse is the fastest device,
and again, the continuous devices as a group are faster for all target sizes.

Effect of Approach Angle. The targets in text-editing are rectangles
often quite a bit wider than they are high, presenting different problems
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Figure 7.5. Effect of target distance on positioning time.

when approached from different angles. In addition, the step keys and
text keys work differently when moving horizontally than when moving
vertically. To test whether the direction of approach has an effect on
positioning time, the target movements were classified according to
whether they were vertical (0 to 22.5 degrees), diagonal (22.5 degrees to
67.5 degrees), or horizontal (67.5 degrees to 90 degrees). Analysis of
variance shows that the angle makes a significant difference for every
device except the mouse. The joystick takes slightly longer to position
when the target is approached diagonally. The step keys take longer
when approached horizontally than when approached vertically, a
consequence probably deriving from the fact that a single keystroke
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STEP KEYS

|
zLTEXT KEYS
1

\_:
JOYSTICK

MOUSE

Positioning Time (sec)

0 | 1 ! |
1 2 4 6 8 10

Target Size (characters)

Figure 7.6. Effect of target size on positioning time.

moves the cursor almost twice as far vertically as horizontally. By
contrast, the text keys take longer to position vertically, reflecting the
presence of the WORD key. The differences induced by direction are not
of great consequence, however. For the joystick, it amounts to 3% of the
mean positioning time; for the step keys, 9%; for the text keys, 5%.

Errors. Of the four devices tested, the mouse had the lowest overall
error rate, 5%; the step keys had the highest, 13%. Differences are
reliable at p < .05 or better, using t-tests. The error rate increases only
very slightly with distance. However, it decreases with target size for
every device except the text keys (Figure 7.7). This finding replicates the
result of Fitts and Radford (1966), where, in an investigation of self-
initiated, discrete, pointing movements using a stylus, there was a similar
marked reduction in errors as the target increased in size and a similar
slight increase in error rate as the distance to the target increased.

7.2. PERFORMANCE MODELS OF
TEXT-SELECTION DEVICES

Although these empirical results are of direct use in selecting a
pointing device, a more useful understanding of the properties of these
devices can be had in terms of the Model Human Processor in Chapter 2.
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Figure 7.7. Effect of target size on error rate.
Mouse

The time to move the mouse can be analyzed in terms of the time to
move the hand to a target and should therefore follow from Fitts’s Law,
Equation 2.3, which we may rewrite as:

Tpos = K, + I,1log, (D/S + .5)sec, a.1)
where

T,,s = Positioning time,

D = Distance to the target,

S = Size of the target,

I, = .100[.070~.120] sec/bit, and

K, = aconstant.

The constant K|, has been added to include the time for the hand
initially to adjust its grasp on the mouse and the time to make the
selection with the mouse button.

Fitts’s Law predicts that plotting positioning time as a function of
log, (D/S + .5) should give a straight line. As the solid line in Figure
7.8 shows, this prediction is confirmed. Furthermore, the prediction that
the slope of the line 7,, should be in the neighborhood of .100 sec/bit is
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Figure 7.8. Positioning time for the continuous devices as a
function of Fitts’s index of difficulty.

also confirmed. The equation for the line in Figure 7.8 as determined by
regression analysis is:

Tpos = 1.03 + .096 log, (D/S + .5) sec. (1.2)
This equation has a standard error of .07 sec and explains 83% of the
variance of the means for each condition, comparable to the percentage
of variance explained by Fitts and Radford. The slope of .096 sec/bit is
in the .100 sec/bit range found in other studies. Since the standard error
of estimate for /,, in fitting Equation 7.2 was .008 sec/bit, the mouse
would seem to be close to, but slightly slower than, the optimal rate of
around .08 sec/bit observed for use of the stylus and for finger-pointing.

The values for positioning time obtained in this experiment are
apparently in good agreement with those obtained by English et al.
(1967). Assuming that their display characters were about the same width
as ours and assuming an intermediate target distance of about 8 cm,
Equation 7.2 (with the addition of the .36 sec homing time from Figure
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7.4) predicts 1.87 sec for 1-character targets (English et al. measured 1.93
sec) and 1.66 sec for “word” targets of 5 characters (English et al.
measured 1.68 sec).

Joystick

Although it is a rate-controlled device instead of a position device, we
might wonder if the joystick follows Fitts’s Law. Plotting the average
time per positioning for each distance X size cell of the experiment
according to Equation 7.1 shows that there is an approximate fit to the
following equation:

Tpos =.99 + 220 log, (D/S + .5).
This equation has a standard error of .13 sec and explains 89% of the
variance of the means. The size of the slope, /,, = .220 sec/bit, shows
that information is being processed at only half the speed of the mouse,
significantly below the maximum rate. Closer examination gives some
insight into the difficulty. The points for the joystick in Figure 7.8
actually form a series of parallel lines, one for each distance, each with a
slope of around .100 sec/bit. Setting /,, to .100 sec/bit, we can therefore
write an alternative model:

Tpos = K + .100 log, (D/S + .5).
K, is the intercept for distance D. From the figure, K, varies from 1.05
sec for D = 1 cm to 1.68 sec for 16 cm. For this model, the standard
error of the fit is reduced to .07 sec, the same as for the mouse. (Since
the slope was not determined by the regression, a comparable R? cannot
be computed.) Thus, the tested joystick can be thought of as a Fitts’s
Law device with a slope twice the .100 sec/bit slope for hand
movements; or it can be thought of as a Fitts’s Law device with the
expected slope, but having an intercept which increases with distance.
The problem with the joystick used in our experiment is probably related
to the non-linearity in the control (Poulton, 1974; Craik and Vince, 1963).
It should be noted that for the 1-cm distance (where the effect of non-
linearity is slight) the positioning time is virtually the same as for the
mouse. Thus, the possibility of designing a joystick with performance
characteristics comparable to the mouse is by no means excluded.
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Step Keys

The time to use the step keys should be governed by the number of
keystrokes needed to move the cursor to the target. Since the keys can
only move the cursor vertically or horizontally, the number of keystrokes
is D, /456 + D,/.246, where D, and D, are the horizontal and vertical
components of c{istance to the target, .456 cm is the size of a vertical
step, and .246 cm is the size of a horizontal step. Hence, positioning
time should be

Tpos =K, + C(D, /456 + Dy/.246). (71.3)
If the operation of the key were done with a single finger, then according
to the Model Human Processor in Chapter 2, C =~ 27,, = .140 sec, one
Motor Processor cycle would being required to cock the finger and one
to press with it. But some finger-cockings could be overlapped with
some key presses when the user uses two fingers, so C could be reduced
somewhat. The regression to the observed data yields K, = 1.20 sec and
= 052 sec/keystroke (this equation has a standard error of .54 sec and
explains 84% of the variance of the means). Since in the extreme case,
where each cocking of the finger was completely overlapped with the
keypressing by another finger, C =~ 7, = .070 sec, the value of C
obtained from these data is still a bit fast to be identified with the
pressing of a key. It is also too fast to be identified with the .067
sec/keystroke automatic repetition mode. The puzzle is solved by
reference to a plot of positioning time against the predicted number of
keystrokes (Figure 7.9). Equation 7.3 with the above parameters (shown
by the long solid line) actually confuses two phenomena. As the figure
shows, positioning time is linear with the number of keystrokes until the
predicted number of keystrokes becomes large (that is, until the distance
to the target becomes large). In these cases, the user often has the
opportunity to reduce positioning time by using the HOME key. This
method change scatters the points on the right of the plot and results in a
fit for Equation 7.3 with loss of physical interpretation.
Fitting Equation 7.3 to only the first part of the graph (D, /.456 +
Dy/.246 < 40) gives

T)ps = 98 + 074(D, /456 + D, /.246)
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Figure 7.9. Positioning time for the key devices as a
function of the predicted number of keystrokes.

This equation, indicated by a short solid line in Figure 7.9, has a
standard error of .18 sec and explains 95% of the variance in the means.
The slope of C = .74 sec/keystroke does have a reasonable
interpretation; it suggests that the .067 sec/keystroke automatic repetition
feature was heavily used, and indeed, this was confirmed by observation
of users.

Text Keys

The text keys present the user on most trials with a choice of methods
for reaching the target. For example, he might press the PARAGRAPH key
repeatedly until the cursor has moved to the paragraph containing the
target. He could then press the LINE key repeatedly until it is on the
target line, then use the WORD key to bring it over to the target. Or he
might use the PARAGRAPH key to move to the paragraph after the target,
then, holding the REVERSE key down, use the LINE key to back up to the
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line below the target line, and, still holding REVERSE down, use WORD to
back up to the target. In fact, there are 26 different methods for moving
the cursor to the target, although only a subset will be possible in a given
situation. Which is the fastest method will depend on the target’s
location relative to the starting position and on the boundaries of
surrounding lines and paragraphs.

The obvious hypothesis is that positioning time is proportional to the
number of keystrokes and that, for well-practiced users, the number of
keystrokes will be the minimum necessary. The constant of
proportionality might be expected from the Model Human Processor to
be no faster than than 7, = .070 [.030~.100] sec for multiple-finger
operations and might be close to the single-finger rate of 27, = .140
[.060~.200] sec. It is difficult to estimate how much the rate might be
slowed beyond this by activities of the Perceptual and Cognitive
Processors, since it is difficult to estimate the load imposed by visual
search, perceptual analysis, method selection, and degree of possible
overlap. To test the hypothesis that selection time is proportional to the
number of keystrokes, each trial was analyzed to determine the minimum
number of keystrokes N, . necessary to reach the target. The average
positioning time as a function of N, . is plotted ‘as the open circles in

Figure 7.9. A least-squares fit gives

T, =66+ 200N, .

pos

The standard error is .24 sec and the equation explains 89% of the
variance of the means. The keystroke rate of .209 sec/keystroke (a little
higher than 27,/) is approximately equal to the typing rate for random
words, Figure 2.14. Evidently, the automatic repetition mode was little
used. Examination of statistics on the minimum numbers of keystrokes
for each trial shows there was little need for it. For one thing, an
average of only six keystrokes were necessary for the text keys to locate a
target word, and ten or fewer keystrokes were sufficient to reach over
90% of the targets. For another, these keystrokes were distributed across
several keys, further limiting opportunities to use the repetition mode.
The PARAGRAPH key was needed on 48% of the trials, the LINE key on
85%, the word key on 83%, and the REVERSE key on 81%.
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Comparison of Devices

Figure 7.10 summarizes the models, the standard errors of the fit, and
the percentage of variance of the means explained by the model. The
theory of pointing expressed in the models has strong implications for the
design and selection of pointing devices. The match of the Fitts’s Law
slope of the mouse to the /;,, =~ .100 sec/bit constant observed in other
hand movement and manual control studies means that positioning time
is apparently limited by central information-processing capacities of the
eye-hand guidance system. Taking /,, = .08 sec/bit as the most likely
minimum value for a similar movement task and K, = 1 sec as a typical

Device Model SE  R? Notes
(sec)

Mouse T

1.03 + .096 log, (D/S + .5) 07 83 —

Joystick T

99 + .2201l0g, (D/S + .5) 13 .89 (a)

~
]

Kp + 11og, (D/S + .5) 07 — (b)

Step Keys T

oy = 120 + .052(D,/S, + D /S,) 54 84 (c)

T

pos

98 + .074(D /S + D/S) .18 .95 (d)

TextKeys T, = 66+ .200N,, 24 89 —

Figure 7.10. Summary of models for positioning time.

Al times in the models are in sec. Least-squares fits were performed on cell
means rather than individual trials to make the results comparable to Fitts (1954).
NOTES: (a) Least-squares fit to all data points; (b) Fitting a separate line with
slope .1 sec/bit for each distance; (c) Least-squares fit to all data points; (d) Fit
for number of keystrokes (DX/S ot DV/SV) < 40, where the HOME key is unlikely

to be used.
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value observed in this experiment, it seems unlikely that a continuous
movement device could be developed whose positioning time is less than

T, =1+ 08 log,(D/S + .5) sec,

unless it could somehow either reduce the information that must be
centrally processed or use a different set of muscles (although something
might be done to reduce the value of K;). If this is true, then an
optimal device would be expected to be no more than about 5% faster
than the mouse in the extreme case of one-character targets 16 cm distant
(1 + .095 log,[(16/1) + .5] = 1.38 sec vs. 1 + .08 log,[(16/1) + .5]
= 1.32 sec). Typical differences would be much less. By comparison to
the mouse’s 5% slower-than-optimal rate, the joystick (in this experiment)
is 83% slower, the text keys 107% slower, and the step keys 239% slower.
Even if K, were zero, the mouse would still be only 23% slower than the
minimum. Whereas devices might be built that improve the mouse’s
homing time, decrease its error rate, or increase its ability for fine
movement, it is unlikely their positioning times will be significantly
faster.

This maximum information-processing capacity probably explains the
lack of any significant difference in positioning time between the lightpen
and the lightgun in Goodwin’s (1975) experiment. Both are probably
Fitts’s Law devices, so both can be expected to have the same maximum
100 sec/bit rate as the mouse (if they are optimized with respect to
control/display ratio and any other relevant variables).

In interpreting these results, highly favorable to the mouse, some
qualifications are in order. Of the four devices, the mouse is clearly the
most compatible for this task (cf. Poulton, 1974, Chapter 16), since less
mental translation is needed to map intended motion of the cursor into
motor movement of the hands than for the other devices. Thus, it would
be expected to be easier to use, to put lower cognitive load on the user,
and to have lower error rates. There are, however, limits to its
compatibility. Inexperienced users are often bewildered about what to do
when they run the mouse into the side of the keyboard while trying to
move the cursor across the screen. They need to be told that picking up
the mouse and setting it down at a more convenient place on the table
will not affect the cursor. Even experienced users are surprised at their
inability to control cursor movement when they hold the mouse
backwards or sideways.
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The greatest difficulty with using the mouse for text-editing occurs
with selecting small targets. Punctuation marks, such as periods, are
considerably smaller than an average character. The error rate for the
mouse, which was already up to 9% for one-character targets, would be
even higher for these sorts of targets. Yet this difficulty is even greater
for many other devices, including the lightpen and the joystick.

7.3. APPLICATIONS

The theory of pointing devices developed above has immediate
application in practical design and testing of commercial systems. We
cite two examples from experience within our own company, Xerox: the
development of a rapid test for analogue pointing devices and a
computation of system throughput needed to support the mouse at
maximum velocity.

Rapid Test for Analogue Pointing Devices'

Problem. A product development group wished to pursue
the development of a novel analogue pointing device.
Since only subjective impressions of the performance of the
device were available, and there was disagreement over
these, they needed a simple test procedure which could give
designers rapid, quantitative feedback about the effect of
various improvements to the device.

The testing procedure described in Experiment 7A was not a practical
test in this case, since it involved an expensive and time-consuming
process of training users until learning was no longer a significant factor.
It also required several days of trials using a computerized laboratory
system capable of simulating the appearance of random targets on a
display editor. Such a testing arrangement was beyond the equipment
resources and time available and would not be able to give developers
results quickly enough to be helpful.

1 This test was developed in collaboration with Richard Sperling, Xerox Office
Products Division.
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Figure 7.11. Four-character targets used for rapid measure-

ment of I, .
On each trial, the user points back and forth between the group of O's and the
group of X's.

Fortunately, given the models for analogue pointing devices validated
with Experiment 7A, the time-consuming procedure of Experiment 7A is
now unnecessary for routine testing. FEstablishment of the fact that a
broad class of analogue devices can be expected to follow Fitts’s Law
means that a simpler test, based on Fitts’s (1954) dotting task, can be
devised to measure the Fitts's Law slope /.

TEST METHOD: MEASUREMENT OF [, FOR
ANALOGUE POINTING DEVICES

Stimuli. A central target (consisting of letter O’s) and two test targets
(consisti