

PERDITA STEVENS

WITH ROB POOLEY

SOFTWARE ENGINEERING

WITH OBJECTS AND COMPONENTS

USING UML

U
SIN

G
U

M
L

S
te

v
e
n

s
P

o
o
le

y

Completely updated with the new and expanded UML 2.0 standard, this is the ideal
introduction to the Unified Modelling Language.

Designed for students and practitioners learning about object- and component-based
software design and development, the book encourages a pragmatic and open-minded
approach to real-life software engineering. It places UML in the context of the software
engineering discipline as a whole, providing readers with a practical understanding of
best practice in software design and development.

Using UML
Software Engineering with Objects and Components
Perdita Stevens with Rob Pooley

Second Edition

Object Technology /
UML

Features of UML 2.0 discussed in this
edition include:

● The ball and socket notation for
interfaces.

● New notation for sequence diagrams.

● UML 2’s two different kinds of state
machines, and when to use them.

● Revised component structure and
deployment diagrams.

The companion website includes:

● Source code for case studies
● Pointers for additional research
● Instructors resource material

About the authors:

Perdita Stevens is a Reader in the School of Informatics at the University of Edinburgh.
Her teaching and research interests lie mainly in tools and techniques for supporting
software design and redesign.

Rob Pooley is a Professor in the School of Mathematical and Computer Sciences at
Heriot-Watt University in Edinburgh.

Using UML also provides a wealth of
learning aids, including:

● Self-test questions to promote
understanding.

● Discussion questions to encourage
deeper exploration.

● Technical notes on specific UML
features.

● Boxed sections covering important
issues such as Design by Contract,
the Law of Demeter, and persistence.

SECOND EDITION

S
E

C
O

N
D

E
D

IT
IO

N

Additional student support
at www.pearson.co.uk/stevens

Additional student support
at www.pearson.co.uk/stevenswww.pearson-books.com

0321269675_COVER 7/11/05 9:43 am Page 1

Copy Bookis copy of
1..* 1

Association with multiplicities
and navigability

Board row:{1,2,3}
column:{1,2,3} Square

Qualified association

SquareBoard

Composition

- stats : Collection

Report

+ report() : void

StudentList

MedianMean

Statistic

ReportStatistic
Recorder

<<interface>>

Recorder

Copy

Class with attribute
and operation

Simple class

<<bind>>〈Student〉

Parameterized class
and its uses

Generalization

Classes : Chapters 5 and 6

Student Module

is taking
mark:int

Association class

List

+ add(t:T,pos:int)

T

+ get(i:int) : T

Aggregation

DegreeCourse Module

List<Game>

Interfaces

Library

Façade

façade

subsystem
class

Book

Pattern - Chapter 18

Activity diagrams -
Chapter 11

Sequence diagrams -
Chapters 9 and 10

Use cases - Chapters 7 and 8

observe
behavior

collect
statistics

model
run

Experimenter

create model

<<extend>>

<<include>>

<<include>>Developer

destroy()

:Item

:User

query()

i := query()

s:Store

check(i)

newItem(3)
LocateReturn

RecordStamp

[borrowing]

[returning]
request()

Using UML

2nd edition

The Addison-Wesley Object Technology Series
Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

Ahmed/Umrysh, Developing Enterprise Java Applications
with J2EE and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building
Better Software with Archetype Patterns and UML

Arlow/Neustadt, UML 2 and the Unified Process, Second
Edition

Armour/Miller, Advanced Use Case Modeling: Software
Systems

Bellin/Simone, The CRC Card Book

Bergström/Råberg, Adopting the Rational Unified Process:
Success with the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns,
and Tools

Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented
Project

Booch, Object-Oriented Analysis and Design with
Applications, 2E

Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language
User Guide, Second Edition

Box et al., Effective COM: 50 Ways to Improve Your COM
and MTS-based Applications

Buckley/Pulsipher, The Art of ClearCase Deployment

Carlson, Modeling XML Applications with UML: Practical
e-Business Applications

Clarke/Baniassad, Aspect-Oriented Analysis and Design

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML, 2E

Denney, Succeeding with Use Cases

D’Souza/Wills, Objects, Components, and Frameworks with
UML: The Catalysis(SM) Approach

Douglass, Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for
Real-Time Systems

Eeles et al., Building J2EE Applications with the Rational
Unified Process

Fowler, Analysis Patterns: Reusable Object Models

Fowler, UML Distilled, 3E: A Brief Guide to the Standard
Object Modeling Language

Fowler et al., Refactoring: Improving the Design of Existing
Code

Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML

Gomaa, Designing Software Product Lines with UML

Heinckiens, Building Scalable Database Applications:
Object-Oriented Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Software Architecture

Jacobson/Booch/Rumbaugh, The Unified Software
Development Process

Jacobson/Ng, Aspect-Oriented Software Development with
Use Cases

Jordan, C++ Object Databases: Programming with the
ODMG Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

LaLonde, Discovering Smalltalk

Lau, The Art of Objects: Object-Oriented Design and
Architecture

Leffingwell/Widrig, Managing Software Requirements, 2E: A
Use Case Approach

Manassis, Practical Software Engineering: Analysis and
Design for the .NET Platform

Marshall, Enterprise Modeling with UML: Designing
Successful Software through Business Analysis

McGregor/Sykes, A Practical Guide to Testing
Object-Oriented Software

Mellor/Balcer, Executable UML: A Foundation for
Model-Driven Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven
Architecture

Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Software with UML, 2E:
Object-Oriented Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML

Pohl, Object-Oriented Programming Using C++, 2E

Pollice et al. Software Development for Small Teams: A
RUP-Centric Approach

Quatrani, Visual Modeling with Rational Rose 2002 and UML

Rector/Sells, ATL Internals

Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling
with UML: An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with
UML: A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language
Reference Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical
Guide

Smith, IBM Smalltalk

Smith/Williams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software

Stevens/Pooley, Using UML, 2E: Software Engineering with
Objects and Components

Tkach/Fang/So, Visual Modeling Technique

Tkach/Puttick, Object Technology in Application
Development, Second Edition

Unhelkar, Process Quality Assurance for UML-Based Projects

Warmer/Kleppe, The Object Constraint Language, 2E:
Getting Your Models Ready for MDA

White, Software Configuration Management Strategies and
Rational ClearCase: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor
For more information, check out the series web site at
www.awprofessional.com/csseries.

Cheesman/Daniels, UML Components: A Simple Process for
Specifying Component-Based Software

Szyperski, Component Software, 2E: Beyond Object-Oriented
Programming

Using
UML
Software engineering
with objects and
components

2nd edition

Perdita Stevens

University of Edinburgh

with Rob Pooley

Heriot-Watt University

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and associated companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 1999
Updated edition published 2000
Second edition published 2006

 Pearson Education Limited 1999, 2006

The rights of Perdita Stevens and Rob Pooley to be identified as authors of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

All trademarks used herein are the property of their respective owners. The use of any
trademark in this text does not vest in the author or publisher any trademark ownership
rights in such trademarks, nor does the use of such trademarks imply any affiliation with
or endorsement of this book by such owners.

ISBN-13: 978-32126-967-6
ISBN-10: 0-32126-967-5

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data
A catalog record for this book can be obtained from the Library of Congress

10 9 8 7 6 5 4 3 2 1
10 09 08 07 06

Typeset in 10/12 pt Times New Roman by 71
Printed in Great Britain by Henry Ling Ltd., at the Dorset Press, Dorchester, Dorset

The publisher’s policy is to use paper manufactured from sustainable forests.

Contents

Preface xvi

First edition acknowledgments xxi

Part I Conceptual background 1

Chapter 1 Software engineering with components 2
1.1 What is a good system? 2
1.2 Do we have good systems? 3

1.2.1 Problems . . . 3
1.2.2 . . . even drastic failures 4
1.2.3 Promises, promises 5

1.3 What are good systems like? 6
1.3.1 Encapsulation: low coupling 7
1.3.2 Abstraction: high cohesion 10
1.3.3 Architecture and components 11
1.3.4 Component-based design: pluggability 12

1.4 How are good systems built? 13

Chapter 2 Object concepts 14
2.1 What is an object? 14

2.1.1 Example 15
2.1.2 Messages 16
2.1.3 Interfaces 17
2.1.4 Classes 17

2.2 How does this relate to the aims of the previous chapter? 20
2.2.1 What have objects to do with components? 21

2.3 Inheritance 22
2.4 Polymorphism and dynamic binding 24

Chapter 3 Introductory case study 27
3.1 The problem 27

3.1.1 Clarifying the requirements 27
3.1.2 Use case model 28

3.2 Scope and iterations 31
3.3 Identifying classes 32

vii

viii

3.4 Relations between classes 34
3.5 The system in action 36

Panel 3.1 Design by Contract 1 38
3.5.1 Changes in the system: state diagrams 40
3.5.2 Further work 41

Panel 3.2 Persistence 41

Chapter 4 The development process 44
4.1 Defining terms 44

4.1.1 Models and modeling languages 45
4.1.2 Process and quality 46

4.2 The development process 47
4.2.1 A unified methodology? 48
4.2.2 Processes to use with UML 50

4.3 System, design, model, diagram 52
4.3.1 The uses of models 53

Part II The Unified Modeling Language 55

Chapter 5 Essentials of class models 56
5.1 Identifying objects and classes 56

5.1.1 What makes a class model good? 56
5.1.2 How to build a good class model 57
5.1.3 What kinds of things are classes? 59
5.1.4 Real-world objects vs their system representation 60

5.2 Associations 60
5.2.1 Multiplicities 62

5.3 Attributes and operations 63
5.3.1 Operations 64
5.3.2 Attributes 64

5.4 Generalization 65
Panel 5.1 Design by Contract 2 – Substitutivity 66

5.4.1 Using English to check whether a generalization exists 68
5.4.2 Implementing generalization: inheritance 68

5.5 The class model during the development 69
5.6 CRC cards 69

5.6.1 Creating CRC cards 70
5.6.2 Using CRC cards in developing a design 70
5.6.3 CRC card example 71
5.6.4 Refactoring 72

Chapter 6 More on class models 74
6.1 More about associations 74

6.1.1 Aggregation and composition 74
6.1.2 Roles 76

ix

6.1.3 Navigability 77
6.1.4 Qualified associations 78
6.1.5 Derived associations 79
6.1.6 Constraints 81

Panel 6.1 OCL, the Object Constraint Language 82
6.1.7 Association classes 83

6.2 More about classes 84
Panel 6.2 Stereotypes 85

6.2.1 Interfaces 86
6.2.2 Abstract classes 88

Panel 6.3 Properties and Tagged Values 88
6.3 Parameterized classes 89
6.4 Dependency 91
6.5 Components and packages 91
6.6 Visibility, protection 91

Chapter 7 Essentials of use case models 93
7.1 Actors in detail 95
7.2 Use cases in detail 97
7.3 System boundary 98
7.4 Using use cases 99

7.4.1 Use cases for requirements capture 99
7.4.2 Use cases through the development 99

7.5 Possible problems with use cases 101
Panel 7.1 Use Case Driven Development? 102

Chapter 8 More on use case models 104
8.1 Relationships between use cases 104

8.1.1 Use cases for reuse: <<include>> 104
8.1.2 Components and use cases 106
8.1.3 Separating variant behavior: <<extend>> 108

8.2 Generalizations 109
8.3 Actors and classes 110

8.3.1 Notation: actors as classes 111

Chapter 9 Essentials of interaction diagrams 112
9.1 Collaborations 113
9.2 Communication diagrams 114
9.3 Sequence diagrams 116

Panel 9.1 Where Should Messages Go? Law of Demeter 117
9.4 More advanced features 119

9.4.1 Messages from an object to itself 119
9.4.2 Returned values 119
9.4.3 Creation and deletion of objects 120

9.5 Interaction diagrams for other purposes 122
9.5.1 Show how a class provides an operation 122

x

9.5.2 Describe how a design pattern works 122
9.5.3 Describe how a component can be used 123

Chapter 10 More on interaction diagrams 124
10.1 Beyond simple sequences of messages 124

10.1.1 Conditional behavior 124
10.1.2 Iteration 125

10.2 Concurrency 127
10.2.1 Modeling several threads of control 128

Chapter 11 Essentials of state and activity diagrams 132
11.1 State diagrams 132

11.1.1 Unexpected messages 134
11.1.2 Level of abstraction 134
11.1.3 States, transitions, events 135
11.1.4 Actions 136
11.1.5 Guards 138

Panel 11.1 Designing Classes with State Diagrams 139
11.2 Activity diagrams 141

Chapter 12 More on state diagrams 145
12.1 Other kinds of events 145
12.2 Other kinds of actions 146
12.3 Looking inside states 147
12.4 Concurrency within states 149

Chapter 13 Architectural and implementation diagrams 150
13.1 Component structure diagrams 150
13.2 Deployment model 152

13.2.1 The physical layer 152
13.2.2 Deploying the software on the hardware 152

Panel 13.1 The Deployment Model in the Project 153

Chapter 14 Packages and models 155
14.1 Packages 155

14.1.1 Namespace control 155
14.2 Models 158

Part III Case studies 161

Chapter 15 CS4 administration 162
15.1 The case study 162

15.1.1 Class model 166
15.1.2 Dynamics 166

xi

15.1.3 State diagrams 167
15.1.4 Activity diagrams 167

15.2 Discussion 168

Chapter 16 Board games 170
16.1 Scope and preliminary analysis 171

16.1.1 Noughts and Crosses 171
16.1.2 Chess 172

16.2 Interaction 175
16.3 Back to the framework 178
16.4 States 180

Chapter 17 Discrete event simulation 182
17.1 Requirements 182

17.1.1 More detailed description 183
17.2 Outline class model 184
17.3 Use cases 185

17.3.1 Summary of create model 187
17.3.2 Summary of observe behavior 187
17.3.3 Summary of collect statistics 187
17.3.4 Summary of run a model 188

17.4 Standard mechanism for process-based simulation 188
17.5 Associations and navigability 189
17.6 Classes in detail 192

17.6.1 Class Scheduler 193
17.6.2 Class ActiveEntity 193
17.6.3 Class PassiveEntity 195
17.6.4 Class Resource 195

17.7 Class Report 197
17.8 Class Statistic 198

17.8.1 Class Average 198
17.9 Building a complete simulation model 199

17.10 The dining philosophers 199

Part IV Towards practice 203

Chapter 18 Reuse: components, patterns 204
18.1 Practicalities of reuse 204

18.1.1 What can be reused, and how? 204
Panel 18.1 What is a Component Really? Controversial! 205

18.1.2 Why reuse? 207
18.1.3 Why is reuse hard? 207
18.1.4 Which components are genuinely reusable? 208
18.1.5 What about building your own components? 209
18.1.6 What difference does object orientation make? 210

xii

18.2 Design patterns 211
18.2.1 Example: Façade 213
18.2.2 UML and patterns 214

18.3 Frameworks 215

Chapter 19 Product quality: verification, validation, testing 217
19.1 Quality review 217
19.2 How can high quality be achieved? 218

19.2.1 Focus on the product 218
19.2.2 Focus on the process 218
19.2.3 Further reading 218

19.3 Verification 218
19.4 Validation 220

19.4.1 Usability 220
19.5 Testing 221

19.5.1 Choosing and carrying out tests 222
19.5.2 Special problems of object orientation 224
19.5.3 Why is testing so often done badly? 226

19.6 Reviews and inspections 226
19.6.1 Problems of FTRs 227

Chapter 20 Process quality: management, teams, QA 229
20.1 Management 229

20.1.1 Project management 230
20.1.2 Estimating an iterative project 231
20.1.3 Managing component-based development 232
20.1.4 People management 232

20.2 Teams 233
20.3 Leadership 234

20.3.1 Reform of development process 235
20.4 Quality assurance 236

20.4.1 Quality assurance for iterative projects 237
20.4.2 Total Quality Management 237

Panel 20.1 Quality Assurance: The Case Against 238
20.5 Further reading 239

Bibliography 241

Index 245

List of Figures

Chapter dependencies, not quite in UML! xvii

3.1 Use case diagram for the library. 30
3.2 Use case diagram for the first iteration. 31
3.3 Nouns and noun phrases in the library. 33
3.4 Initial class model of the library. 35
3.5 Revised library class model. 36
3.6 Interaction shown on a sequence diagram. 38
3.7 State diagram for class Book. 41

4.1 A simple waterfall process. 47
4.2 A simple spiral process. 49

5.1 A very simple class model. 56
5.2 Simple association between classes. 62
5.3 A simple class model, with attribute and operation. 64
5.4 A simple generalization. 67
5.5 Example of CRC cards for the library. 72

6.1 An aggregation. 75
6.2 A composition. 75
6.3 An association shown with role names. 76
6.4 Association with no navigability shown. 77
6.5 Association with one-way navigability shown. 77
6.6 Plain association between Square and Board. 79
6.7 Qualified association. 79
6.8 Qualified composition. 79
6.9 A derived association. 80

6.10 An under-constrained diagram. 82
6.11 Using an xor-constraint. 82
6.12 An association class. 84
6.13 Avoiding an association class. 84
6.14 An interface and its use. 86
6.15 More parsimonious notation for interface dependency. 87
6.16 A parameterized class and its uses. 90

7.1 Use case diagram for the library. 94
7.2 Simple association between classes. 94

xiii

xiv

7.3 Simple communication between an actor and a use case. 95
7.4 Use case diagram for the library. 98

8.1 Use case reuse: <<include>>. 105
8.2 A use case diagram describing a component. 108
8.3 <<extend>> 108
8.4 <<extend>> with extension point. 109
8.5 Generalization between actors. 110
8.6 These two symbols mean the same. 111

9.1 A simple collaboration, showing no interaction. 113
9.2 Interaction shown on a communication diagram. 115
9.3 Interaction shown on a sequence diagram. 117
9.4 Bad design, breaking the Law of Demeter. 118
9.5 Interaction shown on a sequence diagram, with optional features. 120
9.6 Sequence diagram: creation and deletion of objects, and use

of return value. 121

10.1 Optional behavior in a sequence diagram. 125
10.2 Alternative behaviors in a sequence diagram. 126
10.3 Iterative behavior in a sequence diagram. 127
10.4 Variants of message sending in sequence diagrams. 130
10.5 Asynchronous message-passing. 131

11.1 State diagram of class Copy. 133
11.2 State diagram of class Copy, with actions. 136
11.3 State diagram of class Copy, with entry actions. 137
11.4 State diagram of class Copy, with exit actions. 137
11.5 Several actions in one diagram. 137
11.6 State diagram for class Book. 138
11.7 Business level activity diagram of the library. 143

12.1 State diagram for class Average: not good style! 146
12.2 State diagram for class Customer. 148
12.3 Nested state diagram activeDetail for class Customer’s

active state. 148
12.4 State diagram with concurrency. 149

13.1 A component diagram showing dependencies. 151
13.2 A deployment diagram without the software. 152
13.3 A deployment diagram with the software. 153

14.1 Packages and visibility example. 156
14.2 A hierarchy of packages. 156

15.1 Use case model. 165
15.2 Class model. 166

xv

15.3 Another class model. 167
15.4 CRC cards needed for Produce course handbook. 167
15.5 An activity diagram for course handbook preparation. 168

16.1 Noughts and Crosses. 172
16.2 Chess. 172
16.3 Communication diagram for an X move in Noughts and Crosses. 176
16.4 Class diagram for Noughts and Crosses. 177
16.5 Class diagram for games framework. 178
16.6 State diagram for CurrentPosition. 180

17.1 Class diagram of discrete event simulation system. 185
17.2 Some alternatives for classes used in reporting behavior. 186
17.3 Use case diagram of discrete event simulation system. 187
17.4 Detailed class diagram for a simulation experiment. 190
17.5 State diagram of the generic ActiveEntity. 194
17.6 State diagram of Resource. 196
17.7 activeDetail state diagram of class Worker. 196
17.8 State diagram of Average. 199
17.9 Collaboration diagram of the dining philosophers. 200

17.10 activeDetail state diagram of class Philosopher. 200

18.1 The Façade pattern applied to the library. 215

Preface

About the second edition

The first edition of this book appeared in 1998, at which point the Unified Modeling
Language, UML, was beginning to be widely adopted. Since then, it has become the
dominant software modeling language, widely used and taught. UML underwent several
minor revisions. Over the last several years, the Object Management Group (OMG)
has been working on the first major revision of UML, now released as UML2.0. This
makes many significant changes to the language, whilst leaving the core of the notation
intact.

This second edition of Using UML has been completely updated for UML2.0. At
the same time, I have taken the opportunity to make many improvements in the text,
responding to comments I have received on the first edition. It was important to me to
keep this book small, since many readers value that. Therefore there are many features of
UML2.0 – which is a much more complex language than UML1.1 – which we ignore here.
I have aimed to describe a usable, teachable subset of the language. As always, feedback
is very welcome.

In addition to those people thanked in the original preface below, I would like to thank all
those (too many to list) who have made comments or suggestions, especially my students
on the University of Oxford’s MSc in Advanced Software Engineering. I would also like
to thank Simon Plumtree, my current editor, and all the other people involved at Pearson.

Perdita Stevens
Reader in Software Engineering
School of Informatics
University of Edinburgh
May 2005

About the first edition

UML, the Unified Modeling Language, has been adopted as standard by the OMG, and
familiarity with it seems certain to become a core skill for software engineers. Realizing
that students increasingly need to know it, we introduced it as the modeling language for our
two redesigned undergraduate courses, for third and fourth year students. Unfortunately
we found that there was no suitable textbook; what material there was on UML was
principally aimed at experienced developers, not students. So we decided we’d have to
write the textbook ourselves, and this book is the result.

The philosophy of the book is to be eclectic. Some readers will be offended that we have
not jumped onto one or another bandwagon and declared how object-oriented development

xvi

Preface xvii

should be done. This is deliberate. We do not think any one faction has a monopoly on
truth; we think most successful OO developments in practice use techniques from several;
we think it unfair to students to try to sell them the idea that one way is best.

We have used American spellings throughout, on the advice of our publishers: we crave
the indulgence of our British readers.

How to use this book

This book is in four parts. Inevitably they overlap and are interrelated. We describe each
part, and then show some paths through the book.

Part I introduces the concepts of software engineering and object-oriented development.
Part II covers UML, the language. For most major diagram types there are two chapters.

The first chapter covers the basic material that any UML user needs to know. The
second covers more advanced or specialized features, which readers will want to know
before undertaking serious UML development, but which is better studied after a good
understanding of the core material is achieved. In our experience confusion as a result of
half understanding too many features is a much more serious problem than ignorance of
less central features.

Part III consists of three case studies. These are designed as starting points. The book’s
home page has code for the functionality analyzed in the chapters, but the chapters also
include hints for possible further extensions.

Part IV discusses quality and quality assurance, verification, validation and testing,
software project management, teamwork, etc. We concentrate on the differences between
the iterative, component-based development model and a traditional waterfall approach.
We give many pointers to other parts of this very large field of study.

Part I

1 2

3

4

5 7 9 11 13

15 16 17

18 19 20

10 12 146 8

Part II Part III

Part IV

Chapter dependencies, not quite in UML!

xviii Preface

There is a home page for the book (currently http://homepages.inf.ed.ac.uk/

perdita/Book) which contains links to relevant information on the Web. This can also
be accessed via the publisher’s web site at http://www.pearsoned.co.uk/stevens.

Paths through the book

The diagram of chapter dependencies is a bit misleading: it implies that nothing ever
depends on anything that comes later in the book! Of course we have tried to keep these
situations to a minimum: but it’s impossible to eliminate circular dependencies between,
for example, understanding the need for design and what it is, understanding a modeling
language and examples. So, while we encourage you to use the book in whatever way
seems most useful, some orders that we suggest are:

• For people new to OO: 1, 2, 3, 4, 5, 7, 9, 11, 15

• For people familiar with OO: 4, 3, then any subsequence of 5–20

• For people with some OO experience particularly interested in applying OO and UML
in practice: skim 1–4, then 5, 7, 9, 11, 13, 14, 17, 18, 19, 20.

Special sections

Some special sections need explanation.

• Panels describe topics which are important, but don’t completely fit the flow of the rest
of the chapter in which they occur. Several design techniques are included in the Part II
chapters in this way.

• Technical UML notes will be of interest to readers who want to understand how what
we say relates to the primary UML source material, its notation guide and semantics.

• Questions, indicated by the letter Q, are intended to be straightforward; they act as an
understanding check.

• Discussion questions, shown in tinted boxes, are more interesting: they require more
thought, or research using materials other than this book, such as material pointed
to from the book’s home page. We use these questions as the basis for small-group
discussion and feedback within lectures; we hope they will also be useful material for
tutorials and coursework, or just for provoking thought.

Teaching notes

This book is intended principally as a textbook for higher year (e.g. English second and third
year, Scottish third and fourth year) students of Computer Science, Software Engineering
and similar courses. Its early chapters are also intended to be readable as background to
introductory informatics courses for students in earlier years. Our fourth-year course is
also available to MSc students, so this book has been written to be adaptable for use with
a wide range of students.

The publicly available home page mentioned above also includes password-protected
material which is available only to instructors. Contact the publishers at http://

www.pearsoned.co.uk/stevens for access to the latter, which contains answers to

Preface xix

certain exercises, further notes, and, perhaps most helpfully, details of a larger case study
than any in this book. (The latter is, however, based on publicly available code, which
should be borne in mind if it is to be used for assessment!)

We deliberately do not teach a programming language in this book. There are three
reasons.
1. The range of programming languages used in relevant courses is large, and for each

possible language there are already many resources available to teach the specifics of
the language. We have collected some links to free teaching material for various OOPLs
on the book’s home page: please send us more!

2. We wanted to write a short, manageable, affordable book.
3. Most importantly, we feel it is very important for students to realize how much the

issues involved in OOA/D and CBD are language-independent.
At Edinburgh, we use the material in this book for two courses. Our third-year course,

Software Engineering with Objects and Components 1, covers most of the material in
Chapters 1–4, 5, 7, and 9, and also teaches an object-oriented programming language (in
our case, Java). By the end of this course we expect students to understand the concepts
of object orientation, component-based design and software engineering, and to be able
to do detailed design. Our fourth-year course, Software Engineering with Objects and
Components 2, deepens students’ understanding of design and the UML (the remaining
chapters of Part II), and explores the harder issues of analysis and architecture. It goes
on to deal with the material of Part IV, encouraging a pragmatic, open-minded approach
to real-life software engineering. To support this, in SEOC2 we make heavy use of
open-ended questions and we encourage students to use other resources, especially the
Web. (We think this is an important habit to establish, given the speed at which the field of
software engineering is likely to continue to move during these students’ careers.) Many of
the Discussion Questions in Part IV of the book require students to use other resources to
investigate questions. To help with this, the book’s public home page includes a collection
of links to relevant papers and useful starting points. Some of these links are mentioned
specifically in the text. Of course we can not guarantee that the owners of these pieces of
material will continue to keep them available, but we will do our best to maintain the links:
please let us know of any problems, and send us further links that may be useful to readers.

Tools

We had planned an appendix comparing the CASE (computer aided software engineering)
tools available that support UML; at the time, that seemed a reasonable aim. However, the
number of CASE tools supporting UML has grown tremendously since then, and it now
seems invidious to list some tools without listing all the ones we know about. The book’s
home page contains a link to the Cetus links Web site which includes a regularly updated
collection of links to tools which support UML.

We have used Rational Rose to support our courses that use UML, and have found the
experience positive. Compared with previous courses where all modeling was done with
pencil and paper, we find that students reach a higher level of competence more quickly
when they have a tool available. This seems to be because the tool gives quick feedback on
elementary mistakes like syntactically incorrect diagrams. The downside is that it is easy
to create models which are unnecessarily large and complicated.

xx Preface

About the revised edition

This printing of the revised edition describes UML 1.4, which was released in February
2001. Earlier printings of the revised edition described UML 1.3, which was released in
June 1999 and formally adopted by the OMG in March 2000. UML 1.3 was significantly
different from UML 1.1, but the changes between UML 1.3 and UML 1.4 are very minor.
For details of all the changes, see the book’s home page.

First edition acknowledgments

We thank our families for their support during the writing of this book.
We thank everyone at Addison Wesley Longman, especially Sally Mortimore and Keith

Mansfield, who have been helpful and encouraging throughout.
This book has benefited greatly from comments from anonymous reviewers. Many of

our friends and colleagues have also helped by commenting on drafts, discussing ideas
and answering questions. We thank in particular: Stuart Anderson, Adam Atkinson, Alan
Gauld, Martin Hofmann, Bernd Kahlbrandt, Scott Keir, Ben Kleinman, Lindsay Marshall,
Benjamin Pierce, Ian Redfern, Peter Thanisch, Pauline Wilcox, and Alan Wills.

Most of all we thank all our students everywhere, and all the other people who have sent
suggestions.

March 2001

The publishers wish to thank the following for permission to reproduce the following
copyright material.

Pearson Education Limited, UK
Text from p. 427, Jacobson: Software Reuse, 1997, ISBN: 0201 924765 Reprinted with
permission

John Wiley & Sons Limited, UK
Text from Buschmann: Pattern-Oriented Software Architecture, ISBN: 0471 958697, 1998
Reproduced with permission

Perdita Stevens
Division of Informatics
University of Edinburgh
JCMB, King’s Buildings
Mayfield Road
EDINBURGH EH9 3JZ
Scotland, UK
Perdita.Stevens@dcs.ed.ac.uk

Rob Pooley
Department of Computing and EE
Heriot-Watt University
EDINBURGH EH14 4AS
Scotland, UK
rjp@cee.hw.ac.uk

xxi

part I

Conceptual
background

Chapter 1 Software engineering with components 2

Chapter 2 Object concepts 14

Chapter 3 Introductory case study 27

Chapter 4 The development process 44

chapter 1
Software
engineering with
components

This chapter begins to address the following questions:

• What is a good system?

• Do we have good systems?

• What are good systems like?

• How can good systems be built?

We must say ‘begins’ since the whole of this book, and indeed the whole of the discipline
of software engineering, can be seen as an attempt to answer these questions more fully.
Our aim in this chapter is to set the scene for the rest of the book, and provide pointers to
more information to come.

Before we proceed, we should decide what we’re talking about. This book is concerned
primarily with software engineering. We will consider how software is deployed on
hardware; but we do not, for example, usually consider the special needs of embedded
systems. This is a book about object-oriented software engineering so we are thinking
principally of the kinds of systems that are often built with object-oriented technology.

1.1 What is a good system?

Ultimately a good (or high quality) system is one which meets its users’ needs. That is, it
must be:

• useful and usable: good software makes people’s lives easier or better.

• reliable: good software has few bugs.

• flexible: users’ needs change over time, even while software is being developed, so it is
important to be able to make changes to the software later. Moreover it must be possible
to fix the bugs! All changes made to software after it has been released are traditionally
called maintenance.

• affordable: both to buy and to maintain. Labor costs are the most significant element
of software costs, so what this comes down to is that it must be reasonably easy and
quick to develop and maintain.

2

Do we have good systems? 3

• available – otherwise it doesn’t matter how good it is! We’ll consider two aspects of
availability.

— Software must be able to run on available hardware, with an available operating
system, etc. This implies, for example, that a system must be sufficiently portable,
and also brings us back to maintainability, since it must be practicable to make any
changes which are necessitated by changes to the software’s environment.

— The software must exist in the first place! So a software project must complete
successfully, and deliver the software promised.

1.2 Do we have good systems?

Before we launch into all the problems of modern software systems, let us take a
moment to realize how much software does satisfactorily do for us. Advances in software
have revolutionized book preparation, banking, and information finding (think of library
catalogs, or the Web), to give just a few examples. We are doing some things right.

1.2.1 Problems . . .

Unfortunately you will, doubtless, know of failures too. You will know of many systems
which don’t meet their users’ requirements and/or have technical failings. Systems are
usually out of date even as they are being designed. Users’ needs are often missed during
requirements capture. Even if their needs are captured correctly at the beginning of a
project, they may change while the system is being developed, so that the delivered system
doesn’t meet the users’ needs by the time it is delivered. Companies still commonly give
‘computer error’ as an excuse for poor service to their customers. Most business PC users
expect their applications to crash, hang or otherwise misbehave fairly regularly. Software
is not always usable, useful, reliable, or available.

Q: Consider a piece of software that you enjoy using. In what respects is it a high-quality
system? Are there aspects of it that make it not a high-quality system in the sense
presented here? Which features are most important in influencing how you feel about it?
Are there important features that we haven’t considered here?

Q: Consider a piece of software which is very successful but which you personally do
not enjoy using. Answer the same questions.

Discussion Question 1
What are the best and worst experiences you, or people you know, have had recently
which have involved software?

Discussion Question 2
How might the delivery of a new system itself affect users’ requirements?

4 Software engineering with components

Flexibility is lacking too. Consider the millennium problem! As you probably know,
developers of early software were unwilling to use more space for storing a date than
was necessary, so their date formats didn’t specify the century. Instead they used just the
two-digit year, which was understood to be in the 20th century. This was in many cases
reasonable and understandable; for example, secondary storage, such as disks, used to be
much more expensive than it is now, and it wasn’t to be wasted. At the time of writing
the first edition of this book (late 1990s) there was great concern about getting these
systems updated to be able to cope with dates in the 21st century. Many systems were
abandoned altogether because it would be too expensive to make this change! Although,
in the event, the widespread chaos which some had predicted did not happen, the costs
of the changes were immense. The real reason why this is interesting from our point of
view is that, conceptually, it’s hard to imagine a simpler change to a system than this
change to date formats. When you consider the fact that users of software actually want
much more far-reaching changes, to allow their changing business processes to be properly
supported by software, you see why we have a problem with legacy systems. We need
techniques for building more flexible software, for not all inflexible systems are old. We’re
still building them.

Finally let us consider affordability. This turns out to be intimately connected with
reliability and flexibility, since the cost of bug-fixing and maintenance is the largest
cost in providing high-quality systems. Complexity, interdependence of components and
introduction of new errors are all factors in this. If software is in use over a long period of
time, the need for new staff to understand the whole of an old system to look after it makes
the problem worse. Often the best staff are not attracted to such work and it has to be given
to less able people. Even though maintenance can require as much skill and ingenuity as
other development, many people find it more rewarding to produce something new than to
improve something old.

1.2.2 . . . even drastic failures

Sometimes failures of these desirable attributes have more dramatic effects than we have
so far considered. You may be aware of some of these infamous examples:

Ariane 5 whose maiden flight on June 4, 1996 ended in the launcher being exploded
because of a chain of software failures.

Taurus A planned automated transaction settlement system for the London Stock
Exchange. The project was canceled in 1993 after having lasted more than five years. The
project cost was around £75m; the estimated loss to customers was around £450m; and the
damage to the reputation of the London Stock Exchange was incalculable.

Denver baggage handling system where a complex planned system, involving around
300 computers, overran so badly as to prevent the airport opening on time, and then turned
out to be extremely buggy and cost almost another 50% of its original budget of nearly
$200m to make it work.

London ambulance system where, because of a succession of software engineering
failures, especially defects in project management, a system was introduced that failed
twice in late 1992. Although the monetary cost, at ‘only’ about £9m, was small by

Do we have good systems? 5

comparison with the other examples, it is believed that people died who would not have
died if ambulances had reached them as promptly as they would have done without this
software failure.

Therac-25 where between 1985 and 1987 six people (at least) suffered serious radiation
overdoses because of software-related malfunctions of the Therac-25 radiation therapy
machine. Three of them are thought to have died of the overdoses. An important root cause
was a lack of quality assurance, which led to an overcomplex, inadequately tested, under-
documented system being developed, and subsequently to the failure to take adequate
corrective action.

Discussion Question 3
Which of our desirable attributes failed, in each case? Are any causes of failure not
covered?

Discussion Question 4
In both the Ariane 5 and Therac-25 cases, a contributory factor was that software
which had previously been used without apparent problems was reused, sometimes with
modifications, in a new context where it did give rise to serious problems. Find out in
more detail what happened (there are some Web links from the book’s home page), and
consider the implications of these cases for reuse.

Nor are these isolated examples. Returning to the economic perspective, consider the
following much-quoted statistics from an article by W. Wayt Gibbs [24]:

• on average, large projects take 50% longer than they were planned to do;

• three-quarters of large projects are operational failures;

• one-quarter of large projects are canceled.

(The article is not always credited, but even if these are significant overestimates the scale
of the problem is enormous.)

The RISKS mailing list and digest (see the book’s home page) is a good source of
contemporary problems with software projects, particularly when failures cause danger to
lives, businesses, or integrity and security of information. The Standish Group (see the
book’s home page) also collects useful statistics on software projects.

1.2.3 Promises, promises

Every new technology promises to reduce development times and increase success rates of
projects, but experienced software engineers tend to be justifiably skeptical of such claims.
One of the fundamental problems that a technique for dealing with large projects has to
handle is Fred Brooks’ ‘mythical man-month’ [9]. The larger the project, the higher the
proportion of the project’s costs and time which is eaten up by communication between
people on the project, because each person has more people with whom to communicate.
One effect of this is that the natural reaction to a project which starts to slip behind
schedule, namely to put more people to work on the project, often fails. If you double the
number of people on a project, you cannot expect to halve the time it takes. You may even

6 Software engineering with components

increase the time it takes! It takes time and effort for a large group of people working
together on a system to communicate all the information they need in order to keep their
work consistent; and if they fail, the result can be parts of a system that don’t plug together.
The effects are especially devastating if such a mismatch is discovered late in the project.
For this reason, large projects are both more expensive and more risky than small ones.

It was in an attempt to solve the software crisis that the US Department of Defense
commissioned the design of the language Ada, which was standardized in 1983. Ada
was intended to support the ‘best practice’ concepts of structured analysis, design and
programming. Modularity and encapsulation were key concepts in the language design,
as they have been in most general purpose languages since. More recent efforts have
concentrated on improving methodologies for software engineering, and on improving
software engineering education. See the book’s home page for links to the Software
Engineering Body of Knowledge (SWEBOK) for example. These efforts have made a
substantial difference: although software projects still have problems, it is arguable that
the term ‘software crisis’ is now outdated.

1.3 What are good systems like?

Over the last few decades we have gained a gradually deeper understanding of which
systems are most likely to be good. Much remains to be understood. The fundamental
problem is that

There is a limit to how much a human can understand at any one time.

Small systems, in which category we include almost everything university students
normally build, can be built by ‘heroic programming’ in which a single person does
attempt to have in mind everything relevant about the system; but in general it is
impossible for a developer or a maintainer to understand everything about the system all at
once. This means that it is essential to be able to undertake a development or maintenance
task without understanding everything about the system.

To see how understanding of the problem evolved, consider a maintainer who wants to
make a small change to a large system, perhaps changing three lines of code. What else
does the maintainer have to understand to see whether it may be affected by the change?
Naturally the first guess is that you have to understand the code which is close to those
three lines, but not code which is further away. Very early in the history of programming,
people realized that the wrongness of this guess was a major cause of bugs in programs; for
example, a go to statement in a remote piece of code which directed the flow of control
close to the change could mean that remote parts of the program were affected by the
change. Identifying which remote pieces of code could be affected was not always easy.
The term ‘spaghetti code’ was coined1 to describe systems in which the flow of control and
dependency was too complex to understand. Edsger Dijkstra’s short note ‘Goto statement
considered harmful’ [14] of 1968 was a famous early step in the direction of controlling
the complexity of systems so that they could be understood by humans.

1 seemingly by W.G.R. Stevens, father of P., in the early 1960s!

What are good systems like? 7

The next step is to think of a system as a collection of modules and to identify
dependencies between modules. In the most general sense of the word, a module might be
any identifiable ‘bit’ of a system which it makes sense to consider separately. For example,
modules might be:

• files;

• subroutines;

• library functions;

• classes, in an object-oriented language;

• other constructs known as modules or similar;

• independent or semi-independent programs or subsystems.

Of course not all modules are equal: taking a monolithic program and splitting it randomly
into files is not optimal. The rest of this section considers what characteristics modules
should have in order to make development and maintenance of systems as easy, cheap,
and reliable as possible. We must consider the related concepts of dependency, coupling,
cohesion, interface, encapsulation, and abstraction. (Different authors use slightly different
definitions of these terms, so the ones we use here are our favorites rather than the only
possible.) Having identified what it is to be a good module, we can contemplate reusing a
good module as a component.

Module A depends on Module B if it is possible for some change to Module B to mean
that Module A also needs to be changed.

We sometimes say that Module A is a client of Module B, or that Module B acts as a
server to Module A. (However, the terms client and server are also used in more specific
ways: in a ‘client–server architecture’ for example, the client and server are generally
separate processes on different machines.) In general, it is normal for the same module to
be both a client and a server. That is, it depends on some modules, whilst other modules
depend on it. It is even possible for a pair of modules each to have the other as a client;
however, this is an example of a circular dependency, which should be avoided where
possible because it hampers reuse.

Dependency is sometimes known as coupling. A system with many dependencies has
high coupling. Good systems have low coupling, because then changes to one part of a
system are less likely to propagate throughout the system.

Discussion Question 5
How can coupling be identified? Measured? Reduced? Consider: if you take a system with
two coupled modules, and merge the two modules into one, does this reduce coupling
in the system?

1.3.1 Encapsulation: low coupling

So, other things being equal, we want to minimize the number of cases in which a change
to one module necessitates a change to another module. This means we have to know
which changes inside a module may affect the rest of the system. However, in order to be
able to take advantage of the low coupling of a system, it is just as important to be able
to identify which modules are coupled; otherwise we may have to spend effort checking

8 Software engineering with components

whether changes are needed to a module, which is expensive even if the conclusion is that
no changes are needed. We would like to know with certainty which modules of a system
might be affected by a change to a given module.

In summary, once the boundaries between our system’s modules are settled, there are
two kinds of information that may be useful.

1. What assumptions may clients of a given module make about it? For example, what
services is it assumed to provide? Answering this should enable us to know what kinds
of changes to a module may be dangerous.

2. Which modules are clients of a given module? Answering this tells us which modules
we may have to change, if we do make a dangerous change to a module.

We’ll address these questions in turn.

Interfaces

An interface to a module defines some features of the module on which its clients may rely.
The rest of the system can only use the module in ways permitted by the interface(s); that
is, an interface encapsulates knowledge about the module. Parnas writes ‘The connections
between modules are the assumptions which the modules make about each other’. Any
assumption that a client makes about a server runs the risk of being wrong: so we should
document such assumptions in interfaces and check their correctness. If we successfully
document all the assumptions in the interface we will be able to say:

If a module changes internally without changing its interface, this change will not
necessitate any changes2 anywhere else in the system.

So far an interface could be, for example, a comment section at the head of a file which,
by convention, is kept up to date by everyone who changes or uses the file. The problem
with this is that there is no way to guarantee that everyone respects the conventions. Ideally,
there should be automatic checks that no other module makes any assumption about this
module that isn’t documented in its interface, and also that the module always justifies the
assumptions that are documented there. The more a programming language allows these
checks to be automatic, the more it is said to support modularity and encapsulation.

What information can be recorded in an interface and automatically checked depends
of course on the programming language. Typically there will be some functions which
can be called, possibly some names of data values or objects which can be used; some
languages permit types or exceptions to be named in an interface. Client modules will not
be permitted to mention anything defined in the server module that isn’t in the interface.
In many languages some checks will also be done on how client modules use the names
of things in the interface, for example, to check their assumptions about what types things
have. Using a name not in an interface, or using it on the assumption that it has a type
different from the one documented, results in an error, at compile, link or runtime. This
deals well with the syntactic aspects of dependency.

2 code changes, anyway: unfortunately, depending on the environment, even interface-preserving changes to
source code components may make recompilation necessary.

What are good systems like? 9

Discussion Question 6
Consider the examples of modules we listed above, and any others you know, in any
languages. What can be documented in interfaces to the modules, and how much checking
is automatic? Which checks happen when?

Ideally we’d like more: we’d like to be able to check semantic dependency. That is,
if an interface is truly to document the assumptions that may be made about modules, it
should be a real specification of the module, explaining what clients can assume about the
behavior of the module, not just the syntax of how they can interact with it. Unfortunately
present-day programming languages do not provide this information (with a few partial
exceptions). The main reason for this is that theoretical computer science has not yet
advanced far enough to make such features technically possible. This is a very active area
of research; you may expect future programming languages to have more powerful notions
of interface.

Context dependencies

There are several reasons for wanting to know not only what dependencies could exist – that
is, what features are documented in the interfaces of the system’s modules – but also what
dependencies really do exist. We’ve mentioned the situation in which you make a change
to a module that may affect its clients; its clients are (by definition) the modules which
may need to change, so it’s important to be able to tell which they are. Next suppose
you’re considering reusing a module. You need to know not only what services it will
provide – what its interface is – but also what services it requires in order to work. The
services a module requires are sometimes called its context dependencies. They may
themselves be expressed in terms of interfaces; the module may guarantee that if certain
interfaces are provided to it, then it in turn will provide its own interface.

Between them, the context dependencies of a module and the module’s own interface
constitute a contract describing the module’s responsibilities. If the context provides the
things the module needs, then the module guarantees to provide the services described in
its interface.

Benefits of modularity with defined interfaces

Even a very poor interface to a badly chosen module can make a system easier to understand
and modify. Why is this? The fundamental reason is that anything that reduces what has to
be known about a module by someone using it is beneficial in a number of ways.

• In a team development, people developing code that uses a module should only have to
understand the module’s interface, not how it works, so they can be more productive.

• Because developers can safely ignore some aspects of the system, they are more likely
to thoroughly understand the aspects they do need, so fewer bugs should be introduced.

• Bugs should be easier to find (both during development and during maintenance)
because it should be possible to avoid examining irrelevant modules.

• Once a module exists, with documentation of what it provides and what it requires, it is
at least possible to consider reusing it.

10 Software engineering with components

The real challenge, however, is to define good modules with the right things in their
interfaces. Only then can the full benefits be achieved.

Discussion Question 7
What are the results of badly chosen modules or poor interfaces? What makes an
interface ‘too big’ or ‘too small’? Have you encountered examples?

A module may have several interfaces

If we know that Module A can sometimes be affected by changes to Module B, we also
want to be able to identify as easily as possible what changes are required, if any, in our
particular case. Sometimes it is convenient to document the services that a module provides
as several different interfaces, so that we can be more precise about what services a given
client needs. Again, this is useful both for maintenance and for reuse.

We now have a partial answer to the question ‘what are good systems like?’

A good system consists of encapsulated modules.

1.3.2 Abstraction: high cohesion

Good modules often have the property that their interfaces provide an abstraction of
some intuitively understood thing which may nevertheless be complex to implement. Such
modules are said to have high cohesion.

The interface abstracts away from things the client developer does not have to understand
in order to use the module, leaving an uncluttered, coherent picture of what the user of a
module does want to know. The module does a sensible collection of things, but as far as
possible the client developer is shielded from irrelevant information about how the module
does what it does. This concern to allow the developer to concentrate on essentials is subtly
different from the concern of encapsulation to achieve low coupling, which is concerned
with preventing the developer from using hidden information.

As a simple concrete example, suppose a module provides an interface to a point in 2D
space, and that the interface allows clients to get and set the position of the point using
either its Cartesian co-ordinates (x, y) or its polar co-ordinates (r, θ), whichever is most
convenient to the client. Does the module store both sets of co-ordinates and keep them
consistent, or does it store one set and use that one to calculate the other on demand?
This information is of no interest to client programmers; the module interface should
abstract away from it, and encapsulate the data structure inside the module. This kind of
combination of abstraction and encapsulation is often referred to as information hiding,
but we repeat the warning that there’s no firm consensus on exactly what each of the three
terms covers. We prefer to summarize:

Abstraction is when a client of a module doesn’t need to know more than is in the
interface.
Encapsulation is when a client of a module isn’t able to know more than is in the
interface.

What are good systems like? 11

The situation in which the interface provides means of interacting with some data, but
reveals nothing about the internal format of the data, is typical of both object-oriented
and abstract data type style development. Some authors restrict their use of the word
encapsulation to cover only this kind of encapsulated module.

If a module, of whatever size and complexity, is a good abstraction – it has high
cohesion and low coupling – it may be feasible to reuse it in later systems, or to replace it
in the existing system. That is, it may be possible to regard it as a pluggable component.
However, whether this is possible also depends on the architecture in which the component
is developed and in which it is to be used. We are led to consider architecture-centric
component-based development (CBD).3 The meanings of these terms, which are more
recent buzzwords than those we’ve addressed so far, are even more controversial! In the
next subsection we will explain what we mean in this book by these terms. In Panel 18.1,
we will return to this controversy in the light of the rest of the book.

1.3.3 Architecture and components

In the 1980s and early 1990s, object orientation (which we will discuss in detail in
Chapter 2) was the fashionable technology which was going to solve the software crisis.
If your project used object orientation, you would automatically deliver a high-quality
product, on time and to budget, and your organization would experience phenomenal and
ever-increasing levels of reuse because classes developed for one project would be usable
on the next, and the next, and the next

That was the hype. As you will have guessed from the litany of failed projects from
this same era that we gave earlier, reality was slightly different. The best comprehensive
definition we can come up with for the word component is ‘thing we will be able to reuse
or replace’ – the cynical view is that component-based development achieves high levels
of reuse by definition, since if it doesn’t it isn’t really CBD!

For now we consider a component to be a unit of reuse and replacement. A component
may be a module with properties that make it reusable and replaceable. There are many
other forms of reuse, which we will discuss in more depth in Chapter 18; we will also
discuss the controversial question of what the definition of component should really
be. Many people regard late composition as an important feature of component-based
development: the point is that it is easier to replace a module if you can do so without
needing to recompile the system. However, opinions differ, especially about how late is
late, and we prefer not to impose this restriction.

What determines whether a module is reusable? It should not be a surprise that a
reusable module is good according to the criteria discussed above: it has high cohesion,
low coupling with the rest of the system, a well-defined interface, and is an encapsulated
abstraction of a well-understood thing. What may be more surprising is that whether a
module is reusable depends on the context in which it was developed and in which it is to
be reused. The context includes a wide variety of technical and nontechnical factors, which
we will return to in Chapter 18. As an illustrative example of a nontechnical factor, in an
organization which rewards programmers according to the number of lines of code they
write, no module is reusable since no programmer has any incentive to reuse anything!

3 You may also see the term component-oriented programming (COP) – it’s a synonym for CBD.

12 Software engineering with components

This is an extreme example, but such social and organizational factors are arguably more
important than technical factors.

To see the importance of the technical context, consider an organization which produces
a sequence of systems which have much in common; this is sometimes known as product-
line development, for obvious reasons. If the high-level structure of two successive systems
is the same, it is far more likely that it will be possible to take a module developed for one
system and plug it unchanged into the other – black box reuse – than if the two systems
have different architecture. The architecture of a system includes high-level decisions about
what the overall structure of the system should be, which apply to more than one system
and are taken in order to achieve repeatable benefits such as component reuse. It may also
include other decisions covering how the system is to be built. A low-level example is that
a decision always to handle unexpected errors in a certain way is an architectural decision;
a high-level example is a decision to use a certain manufacturer’s database or a certain
programming language. Part of the motivation for making these decisions is the same as
the motivation for identifying suitable modules: to reduce the burden on the developer or
maintainer. If certain things are reliably done in the same way throughout a system, and
better still from system to system, the developer or maintainer can expect things to be
this way and is spared the trouble of working out how they are in this particular instance.
A component developed in the context of a set of architectural decisions is most likely
to be reusable in a new context if the two contexts share architectural decisions. (In this
case the architecture itself is being reused: but it is also increasing our chances of reusing
components. We will briefly consider reusing architecture in Chapter 18.) Thus, just as any
interface is better than no interface at all, a suboptimal architectural decision can be better
than no architectural decision at all. Just as with interfaces, the real challenge is to identify
good architectural decisions.

1.3.4 Component-based design: pluggability

The ideal way to build a new system is to take some existing components and plug them
together. Pluggability is of course the property of something that lets you do this. The
metaphor suggests correctly that this is only partly a property of the things being plugged.
The components do have to be bits which fulfill needs in the whole system. More than that,
though, they have to be compatible with one another, and that depends on the presence of
a suitable architecture.

Consider an electrical appliance which plugs into the mains using a standard plug. We
have not told you what the functionality of the appliance is. That it is to be powered
by mains electricity and use a standard plug, though, are architectural decisions with
obvious advantages. An alternative possible architectural decision might have been to
make the appliance battery powered using readily available batteries. Which of these two
architectures is most appropriate is an important decision which depends on things about
the project which we haven’t detailed. Such a decision should probably be taken very early
in the project, since it will have an important influence on the design of the appliance. This
is characteristic of architectural decisions. An almost certainly poor architectural decision
would have been to design the appliance with a nonstandard plug. More interestingly, if
the appliance is to be sold exclusively in the UK it would be a bad decision to design
the appliance with a standard US plug, even though this would have been a perfectly

How are good systems built? 13

sensible decision if the appliance were to be sold exclusively in the US. Architectural
decisions:

• need to be taken early in a project

• are affected by the nature of the components in the architecture

• may be influenced by the environment of the project.

In summary, development is architecture-centric and component-based if it gives
high priority to following (and making) good architectural decisions, and to using (and
developing) good components.

Object orientation, as we shall see, is a (but not the only) suitable paradigm in which to
do architecture-centric CBD.

1.4 How are good systems built?

We will return to the development process in Chapter 4. Here let us set the background by
considering the term software engineering, whose adoption suggests that systems might
be built by analogy with engineered artifacts, e.g. engines or bridges. An engineering
approach:

• uses a defined process with clear phases, each of which has an end-product (maybe a
document, maybe something built)

• is concerned with meeting a clear set of requirements, carefully defined as early as
possible, and so

• regards forms of verification and validation, such as testing and sometimes proofs, as
just as essential as building the product itself

• uses a store of relevant knowledge, architectures and components

• makes sensible use of tools.

We have already identified that software systems should make use of a considered
modular architecture reusing components, as do engineered artifacts.

Discussion Question 8
What are the differences, and the other similarities, between software engineering and
other forms of engineering?

SUMMARY

This chapter was a whistle-stop motivation for and introduction to the kind of software
engineering this book is about. We considered what a high-quality software system is,
and the extent to which we have high-quality systems today. We discussed the need for
modularity, and covered the characteristics of good modules. We considered how to go
beyond engineering good modules in isolation towards engineering systems based on good
reusable architectures with endemic component reuse. Finally, we mentioned process.

chapter 2
Object concepts

In this chapter we continue to explore the question ‘what are good systems like?’ by
describing the object-oriented paradigm, whose popularity is due partly to the fact that it
supports the development of good systems. Using object orientation is neither necessary
nor sufficient for building good systems, however! We shall answer these questions:

• What is an object?

• How do objects communicate?

• How is an object’s interface defined?

• What have objects to do with components?

Finally we consider inheritance, polymorphism and dynamic binding.
This chapter applies to standard modern class-based object-oriented languages such as

Java, C-Sharp and C++. Most of it also applies to Smalltalk, Eiffel, CLOS, Perl5 and other
object-oriented languages you may meet: but a detailed comparison of object-oriented
programming languages (OOPLs) is outside the scope of this book.

This chapter includes questions about how the programming language you are using
provides the object-oriented features we discuss. If you already know the language, you
should be able to answer the questions as you go. If you do not, you may prefer to read
this chapter to the end, then study the basics of your chosen language, and then return to
the questions to check that you have understood the way in which the language provides
object orientation. (We refer to any language you are considering using as ‘your language’
for short.)

2.1 What is an object?

Conceptually, an object is a thing you can interact with: you can send it various messages
and it will react. How it behaves depends on the current internal state of the object, which
may change, for example, as part of the object’s reaction to receiving a message. It matters
which object you interact with, and you usually address an object by name; that is, an
object has an identity which distinguishes it from all other objects. So an object is a thing
which has behavior, state and identity: this characterization is due to Grady Booch [7]. Let
us consider these aspects in a little more detail.

14

What is an object? 15

Thing

This is more interesting than might at first appear. Not only is an object a thing in the
system; it is also the system representation of a conceptual thing. For example, an object
may represent a physical thing such as a customer, a board, or a clock. In fact the first
time objects arose explicitly was in Simula, where they did represent real-world objects,
the objects being simulated. Clearly, however, if general purpose software systems are to
be built using objects, an object need not represent a physical thing. We will return to the
question of how to identify objects in Chapter 5.

Q: Which of these might be objects: hammer, sphere, chemical process, love, fog, river,
anger, cat, grayness, gray cat?

State

The state of the object is all the data which it currently encapsulates. An object normally has
a number of named attributes (or instance variables or data members) each of which has a
value. Some attributes can be mutable; that is, their values can be changed. For example, an
object representing a customer might have an attribute address whose value must change
if the customer moves house. Other attributes may be immutable or constant; for example,
our customer object might have an attribute for the customer’s unique identifying number,
which might have to be the same throughout the life of the object. In most present-day
object-oriented languages the set of attributes that an object has cannot change during the
life of the object, even though the values of those attributes can change.

Behavior

This is the way an object acts and reacts, in terms of its state changes and message-passing.
An object understands certain messages, which is to say that it can receive the messages
and act on them. The set of messages that the object understands, like the set of attributes it
has, is normally fixed. The way in which an object reacts to a message may depend on the
current values of its attributes: in this way, even when (as usual) the outside world is not
granted direct access to the attributes, it may be indirectly affected by their values. This is
the sense in which the values of the attributes are the state of the object.

Identity

This is a little more slippery. The idea is that objects are not defined just by the current
values of their attributes. An object has a continuing existence. For example the values of
this object’s attributes could change, perhaps in response to a message, but it would still
be the same object. An object is normally referred to by a name (the value of a variable in
a client program, perhaps aCustomer) but the name of the object is not the same thing as
the object, because the same object may have several different names. (This is probably
only surprising if you are a pure functional programmer; and there are some distinguished
ones who say you can do OO in a purely functional way, but we will not consider the
question in this book.)

2.1.1 Example
Consider an object which we’ll call myClock, which understands the messages
reportTime and resetTimeTo(07:43), resetTimeTo(12:30), indeed more

16 Object concepts

generally resetTimeTo(newTime) for any sensible value of newTime. It may advertise
this by giving an interface which says that it accepts messages of the form reportTime()

and resetTimeTo(newTime: Time) where Time is a type1 whose elements are the
sensible values of newTime we mentioned.

How does it implement this functionality? The outside world doesn’t need to know – the
information should be hidden – but perhaps the object has an attribute time, the value of
which is returned by the object in response to the message reportTime, and which is reset
to newTime when the object receives the message resetTimeTo(newTime). Or perhaps
it passes these messages on to some other object, which it knows about, and has the other
object deal with the messages.

2.1.2 Messages

From this example we see some things about messages. A message includes a keyword
called a selector; here we’ve seen the selectors reportTime and resetTimeTo. A
message may, but need not, include one or more arguments, which are values being given
to the object just as values are passed into a function in a normal function call. In the
example, 07:43 is an argument forming part of the message resetTimeTo(07:43).
Usually, for a given selector, there is a single ‘correct’ number of arguments which should
be present in a message which starts with that selector; we will not expect myClock
to understand resetTimeTo with no argument, or resetTimeTo(4, 12:30) etc. The
acceptable values of arguments are also laid down2 in the interface of the object.

Q: What is the syntax for message sending in the language(s) you are using?

Notice that values – for example, values of attributes of an object, or values of arguments
sent as part of messages – do not have to be members of basic types (characters, integers,
etc. – exactly what’s a basic type is language-dependent). They can also be objects in their
own right.

Q: What are the basic types in your language?

One of the things that an object might do in response to a message is to send a message
to another object. If it wants to do this it has to have some way of knowing a name for the
object. Perhaps, for example, it has the object as the value of one of its attributes, in which
case it can send the message by using the attribute as the name.

Q: Suppose O is an object. Apart from any objects which O may have as values of its
attributes, to what objects might O be able to send messages?

Note that when you send a message to an object, you do not in general know what
code will be executed as a result, because that information is encapsulated. This will be
important at the end of this chapter when we discuss dynamic binding.

1 or a class: classes are discussed in 2.1.4.
2 by giving the class (see 2.1.4) or sometimes just the interface, which the object passed as an argument should

have, or its type if it should belong to a basic type like int or bool – the details here are language-dependent.

What is an object? 17

2.1.3 Interfaces

The object’s public interface defines which messages it will accept regardless of where
they come from. Typically the interface records the selectors of these messages together
with some information about what arguments are required and what, if anything, will
be returned. As we remarked in Chapter 1, we would probably prefer the interface to
include some kind of specification of what the effect of sending a message to the object
will be, but these specifications are normally given only in comments and accompanying
documentation. In most languages there can be attributes in the public interface of an
object as well; putting attribute X in the interface is equivalent to declaring that this object
has a piece of data, X, which the outside world can inspect and alter.

Discussion Question 9
If you are using a language which does not permit attributes in the public interface,
how can you achieve the same effects using messages to access the data? Are there any
advantages of using this style even in a language that does permit attributes in interfaces?
Disadvantages?

Often, it isn’t appropriate for everything in the system to be allowed to send every
message to an object that the object could possibly understand. So an object is typically
capable of understanding some messages that are not in the public interface. For example,
we explained in Chapter 1 that the data structures used by a module should normally be
encapsulated; here, this corresponds to the idea that an object’s public interface should
normally not include attributes.

An object can always send to itself any message which it is capable of understanding.
It may seem odd or overcomplicated to think of an object sending messages to itself: the
reason for thinking this way will become clearer when we discuss dynamic binding later
in the chapter.

So typically an object has at least two interfaces: the public interface, which any
part of the system can use, and the larger private interface which the object itself and
other privileged parts of the system can use. Sometimes another intermediate interface,
providing more capabilities than the public interface but fewer than the private interface,
is useful. Sometimes only part of an object’s public interface is needed in a given context;
this increases the number of objects which could potentially be used as replacements,
so it can be useful to record which features are really necessary in a smaller interface
than the whole public interface of the object. Because of this, an object can have (or
realize) more than one interface. Conversely, many different objects may realize the same
interface.

If not otherwise specified, ‘interface’ will mean public interface.

2.1.4 Classes

So far we have been discussing objects as though each object were separately defined, with
its own interface and its own individual way of controlling which other objects could send
it which messages. Of course this is not a sensible way to build a typical system, because
objects have a lot in common with one another. If my company has 10 000 customers and I

18 Object concepts

want to build a system with an object representing each of these people, the objects which
represent customers have a great deal in common! I will want them to behave consistently,
so that developers and maintainers of the system can understand it. We will have a class
of objects which represent customers. A class describes a set of objects with an equivalent
role or roles in a system.

In class-based object-oriented languages, every object belongs to a class, and the class
of an object determines its interface.3 For example, perhaps myClock belongs to class
Clock whose public interface specifies that each object of class Clock will provide the
operation resetTimeTo(newTime: Time); that is, it will understand messages with
selector resetTimeTo and a single argument which is an object of class (or type) Time.

In fact even the way in which an object reacts to a message is determined by the object’s
class, together with the values of the object’s attributes. A method is a specific piece of
code which implements the operation. Only the fact that the object provides the operation
is visible in the object’s interface; the method that implements the capability is hidden.

Similarly the set of attributes which an object has is determined by its class, although
of course the values taken by those attributes are not determined by the class, but may
vary. For example, perhaps objects belonging to class Clock have a private attribute called
time. If you send identical messages to two objects with the same class, the same method
is executed in both cases, although the effect of executing the method may be very different
if the objects have different values of their attributes.

In summary, objects from the same class have the same interfaces. We could describe
the public and private interfaces for the Clock class like this:

- time : Time

+ reportTime() : Time

+ resetTimeTo(newTime: Time)

The public interface consists of the lines marked with +; the private interface includes
the lines marked - as well.

Q: In your language, how does the programmer define a class such as Clock? Are the
interface and the implementation defined separately? What are the public and private
interfaces called? (Probably public and private!) Are there any other possibilities? What
do the possibilities mean?

We call the process of creating a new object belonging to class Clock instantiating
class Clock, and we call the resulting object an instance of class Clock – this, of course,
is why the variables whose values belong to the object, and may vary over its lifetime, are
sometimes called instance variables. Creating an object involves creating a new thing with
its own state and its own identity, which will behave consistently with all other objects
of the class. The creation process normally involves setting the values of the attributes;
the values may be specified in the creation request, or may be specified as default initial
values by the class of the object. In languages such as C++ and Java the class has a direct
role in the creation of new objects – it actually does the work, rather than just acting as a
template. That is, a class can often be seen as an object factory.

3 Actually an object can belong to more than one class, and the most specific class to which it belongs determines
its interface.

What is an object? 19

Q: In your language, how is a new object of a given class created?

Most languages allow a class to behave as though it were an object in its own right,
having attributes and understanding messages itself. For example, the class Customer

might have an attribute numberOfInstanceswhich might be an integer incremented each
time a new Customer object is created. Smalltalk takes this view particularly consistently,
but C++ and Java also have traces of it. In Smalltalk, for example, you’d create a new
Customer object by sending a message (e.g. new) to the Customer class. The class’s
reaction would be to create a new object and return it to the caller.

Discussion Question 10
Consider what happens if you try to apply this idea consistently. We said that every
object has a class; so when you regard a class C as an object, what is the class of C? And
the class of that?

Q: Does your language have features like this? Exactly what?

Digression: why have classes?

Why not just have objects, which have state, behavior and identity as we require?
Classes in object-oriented languages serve two purposes. First, they are a convenient

way of describing a collection (a class) of objects which have the same properties. Object-
oriented programming languages can use classes essentially just as a convenience. For
example, there is no need to store a copy of the code representing an object’s behavior in
every object, even though conceptually we think of every object as encapsulating its own
code. Instead, developers write the definition of a class once, and compilers create a single
representation of a class, and allow objects of that class to access the class representation
to get the code they need.

Remember that convenience is not a triviality. Our overall aim is to make systems easier
to understand, so that developing and maintaining them is as easy, cheap, and reliable as
possible. Making similar objects share the same design and implementation is an important
step towards this.

This is an important occurrence of a principle4 which is so important in software
engineering, and not only in code, that we will shout it:

WRITE ONCE!

We mean that if two copies of the same software engineering artifact – piece of any sort
of code, piece of a diagram, piece of text from a document – must always stay consistent,
then there shouldn’t be two copies. Any time you record the same information in more
than one place, you not only spend effort on repetition that might be better spent on doing
something new, but also you set yourself up for maintenance problems, since the two
versions will not stay synchronized without effort. The skill in applying the principle is
in spotting whether or not you really do have two copies of the same information, or two
potentially different pieces of information that just happen to be the same at the moment. In

4 emphasized by Kent Beck in particular.

20 Object concepts

the latter case, copy and paste is appropriate. In the former case, an attitude of resentment
to duplicating the information in more than one place is actually an asset: you should agree
to do so only for good reason.

Discussion Question 11
Does this principle mean that we think duplication of data in a distributed database is a
bad idea? Why?

You can see that there are other ways to get the capability to create arbitrarily many
similar objects whilst writing their code just once; for example, we could define a
prototypical object, and then define other objects as being ‘like that one, but with these
differences’. Again, we would need to keep only one copy of the code. This is roughly what
the elegant prototype-based language Self does. However, class-based languages dominate
object orientation today and will probably continue to do so.

Secondly, in most modern OO languages, classes are used in the same way that types
are used in many other languages, to specify what values are acceptable in given contexts,
and thus to allow the compiler – and, at least equally importantly, the human reader – to
understand the programmer’s intention and to check that certain kinds of errors do not
occur in the program.

People often think of classes and types as being the same thing – indeed it’s convenient,
and not often misleading, to do so. However, it’s wrong. Remember that a class defines not
only what messages an object understands – which is really all you should need to know
in order to check whether it is acceptable in some context. It also defines what the object
does in response to the messages.

2.2 How does this relate to the aims of the previous chapter?

We are looking for modules, ideally for the reusable replaceable modules which may make
good components. Where will we find them in an object-oriented system?

Individual objects could be considered as modules, but they would not be good modules,
because there are usually many different objects in a system which are very closely related
conceptually. If each object were considered as a separate module, then either there would
be confusing inconsistencies between conceptually related modules, or the need to maintain
consistency would create high coupling.

Classes are intended to be loosely coupled, highly cohesive modules. Therefore we may
hope (maybe still in vain, as we shall discuss in the next subsection) to obtain the benefits
advertised in Chapter 1, namely, reduced development time and cost, ease of maintenance
and high reliability. These benefits are not specific to OO, though OO is the best-known
path to them at present.

Another claimed major benefit of object orientation doesn’t fall into this category. It is
that it is inherently natural to look at the world in terms of objects. Recall that a major
requirement on a good system is that it should do what the users need, and that we cited
the difficulty of capturing this accurately and tracking changes in it as among the hardest
things about systems. It is important that the system’s model (of the problem domain and
the processes to be carried out) is compatible with the user’s model. It seems that the

How does this relate to the aims of the previous chapter? 21

domain objects change less frequently and less dramatically than the exact functionality
that the user requires. So if a system is structured on the basis of these objects, changes
to the system are likely to require less major upheaval than if the system were based on
the more volatile functional aspects. In summary, we hope that our system can match the
users’ model of the world, so we can

• capture requirements more easily and accurately

• follow changes in user requirements better

• allow for more naturally interacting systems. For example, it is easier to implement
a user interface that allows the user to interact with a file, a clock, or a printer as a
whole – which is sensible from the user’s point of view, because these things are like
real-world objects – if they are coherent objects from the system’s point of view too.
For this reason, user interfaces were one of the first major areas where object orientation
became popular.

Notice, however, that we have to be tentative in claiming these benefits. There are cases
(say, order processing systems) in which an object-oriented approach seems very natural,
and others (say, compilers) in which the argument looks much less compelling.

In any case, when OO achieves its aims, it is usually not because of any of the things
that are specific to OO. It’s because

• the object-oriented approach takes modularity, encapsulation and abstraction as funda-
mental

• and OOPLs make them (comparatively!) easy, so that there is a reasonable likelihood
that the obvious way to do something is also a good way to do it.

OO is a religion: it’s the people who become oriented towards objects.

Discussion Question 12
What effects, good and bad, does the statement ‘OO is a religion’ suggest might exist?

2.2.1 What have objects to do with components?

The hype surrounding object orientation sometimes suggests that any class is automatically
a reusable component. This, of course, is not true. In Chapter 1 we discussed the reasons
why the reusability of a component is not simply a fact about the component itself, but
depends on the context of development and proposed reuse. Another important factor
is that the class structure often turns out to be too fine-grained for effective reuse. For
example, in order to reuse a single class effectively and easily you have to be writing in
the same programming language and using a compatible architecture. This is not always
impracticable; successful, widely used class libraries exist and their classes can sensibly
be regarded as reusable components. Often, however, a group of related classes is a
more appropriate component. The greater the effort of plugging the component into a
context, the greater the benefit provided by the component has to be before the effort is
worthwhile.

We’ve deliberately blurred the question of whether components are built from objects
or from classes: we have not yet made a clear type/instance distinction. The reason is

22 Object concepts

that, given our wide definition of component, either or both can be the case. A class or
collection of classes can be a component at the source code level; the context in which
the component is used then makes use of the language’s facilities to create objects of the
classes. In other cases a component might provide access to a particular ready-made object
of some class, with or without also providing access to the capability of making more
objects of the class. Remember that a component itself has a well-defined interface. If the
component is made of objects and/or classes, the component’s interface does not normally
allow access to everything that is in the interfaces of the objects and classes inside. The
component itself is trying to be an encapsulated abstraction, and it is probably appropriate
for it to hide some or all of its own internal structure; for example, whether and how it is
composed of objects and classes.

Discussion Question 13
Use the Web and any other resources available to you to research a popular component
architecture such as JavaBeans, CORBA or .NET. What is the architecture? What internal
structure can a component have, and how is the interface of the component defined?

2.3 Inheritance

So far, in fact, we have only discussed the conceptual basis of what’s sometimes called
object-based design. In this section we consider inheritance, which is the icing on the cake,
and the remaining conceptual element underlying object-oriented design. The metaphor
indicates that it’s nice, and that people often think it important, but that in fact it’s less
nutritious than what we’ve already covered!

In this section we will consider inheritance as a technical feature of object-oriented
languages, useful (in a limited way) for low-level reuse. Chapter 5 will consider how it is
used in modeling.

Our example here is drawn from the case study in Chapter 15. We consider a system in
which there is a class whose objects represent lecturers and a class whose objects represent
directors of studies. Now a director of studies is a kind of lecturer: specifically, a director
of studies is a lecturer who, in addition to the normal duties of a lecturer, is responsible
for overseeing the progress of particular students. Within our system, let us suppose that
a DirectorOfStudies object ought to understand the same messages as a Lecturer

does, and in addition ought to be able to respond to the message directees by returning
a collection of Student objects.

Suppose we’ve already implemented the Lecturer class, and that we now have to
develop DirectorOfStudies. Suppose (just for concreteness) that we’re using a language
like C++ where the interface of a class and its implementation are stored in different files.
What do we need to do to implement the new class as easily as possible? We could cut and
paste the code that defines the interface of Lecturer into a new interface file, and type
the description of the extra message into the bottom. Similarly, we could copy the code
that implements the reaction of Lecturers to messages into the implementation file for
our new class, and then make any changes and additions. However, as we have already
mentioned, reuse of such code by cut and paste has disadvantages. The most important
is that if a change has to be made to some of the duplicate code – for example, if a bug

Inheritance 23

is discovered – we now have to make the changes in two places instead of one. This is a
nuisance, and is likely to lead to errors.

Instead, object-oriented programming languages allow us to define the new class
DirectorOfStudies in terms of the old class Lecturer. We simply specify that
DirectorOfStudies is a subclass of Lecturer, and then type only what pertains to the
extra attributes or operations of DirectorOfStudies.5

More interestingly, because in object orientation knowledge of which code an ob-
ject executes when it receives a message is encapsulated, it is possible for class
DirectorOfStudies to implement different behavior, on receipt of some message,
from what Lecturer implements. That is, we can override some of Lecturer’s methods
in DirectorOfStudies: as well as inheriting the methods of Lecturer,
DirectorOfStudies can include a new method implementing the same operation for
which Lecturer already had a method. When an object of class DirectorOfStudies
receives a message requesting it to perform the operation, the method to be invoked will
be the specialized version provided by the class DirectorOfStudies.

A subclass is an extended, specialized version of its superclass. It includes the
operations and attributes of the superclass, and possibly some more.

Q: How is a subclass defined in your language? Can a class be a direct subclass of more
than one class (multiple inheritance) or not?

Terminology

We say that

• DirectorOfStudies inherits from Lecturer

• DirectorOfStudies is a subclass (or derived class) of Lecturer

• DirectorOfStudies is a specialization of Lecturer

• DirectorOfStudies is more specialized than Lecturer

• Lecturer is a superclass (or base class) of DirectorOfStudies

• Lecturer is a generalization of DirectorOfStudies

These all mean almost the same. Often people use subclass/superclass as a description of a
concrete relationship between classes, and specialization/generalization as a description of
a relationship between the concepts represented by the classes. Usually the two coincide.
The conceptual relationship need not necessarily show in the class structure, though.
Conversely, sometimes people use inheritance in a class structure in cases where the
conceptual relationship of generalization between the classes does not hold. (We do not
recommend this: it can be convenient in the short term but you almost always pay in
confusion in the long run.)

Do we say that an object of class DirectorOfStudies belongs to class Lecturer?
We should, if we are thinking about classes as sets of objects. When we talk about ‘an

5 A few languages, notably Eiffel, also permit subclasses to delete attributes or operations of a superclass – but
this is now normally considered a bad idea.

24 Object concepts

object of class Lecturer’ we will certainly want to include the objects which also belong
to class DirectorOfStudies – it’s just too clumsy to write ‘class Lecturer or any
subclass’ the whole time and, moreover, the idea that an object of a subclass should be
substitutable for an object of the superclass is fundamental. Therefore whenever we talk
about objects belonging to a class we will include objects belonging to subclasses. On the
other hand, it is extremely convenient to be able to talk about ‘the class of this object’ as
though the object belonged to only one class. By ‘the class’ of an object we will mean the
most specialized class to which the object belongs. This means that it remains true that an
object’s behavior is determined by its class!

2.4 Polymorphism and dynamic binding

These terms are often used interchangeably by the object-oriented community. Actually
they are quite distinct concepts – in general, languages can have either without having the
other – but in OO they are related, both having to do with inheritance.

First of all notice that the simple fact that we can define one class in terms of another,
getting code reuse, does not have to have any implications for the way client code treats
objects of those classes. It would be quite possible to have a language in which inheritance
was just a device for code reuse. You could define DirectorOfStudies in terms of
Lecturer, but all client code (and the compiler) would have to be sure of the exact class of
any object with which it interacted. Technically, this says that you could have a language
with a form of inheritance that had only monomorphic types. Object-oriented languages,
however, do better.

Polymorphism

This term, derived from Greek, is to do with having many shapes. In programming
languages, it refers to a situation in which an entity could have any one of several types.
In an object-oriented situation, a polymorphic variable could refer (at different times) to
objects of several different classes. A polymorphic function can take arguments of different
types. Now, we said that an object of a subclass is supposed to be usable anywhere an
object of the superclass could be used. This should mean, in particular, that a subclass
object should be acceptable as the value of a variable, if an object of the base class is. In
other words, in an object-oriented language any variable is polymorphic, at least in this
limited sense! Similarly, if some function (e.g. method) can take an argument of class B
it should also be able to take an argument of any class C which is a subclass of B; so
any function is polymorphic in this limited sense. For example, a function which expects
a Lecturer object as argument should not break if it is given a DirectorOfStudies

object instead.

Discussion Question 14
Consider whatever programming languages you know (C, perhaps, or a typed functional
programming language). Do they have polymorphism? Is it more or less restrictive than
the OO polymorphism described here? (How) is it useful?

Polymorphism and dynamic binding 25

Thus polymorphism saves us a great deal of duplication of code. It really comes into its
own, however, when combined with dynamic binding.

Dynamic binding

The term ‘binding’ in dynamic binding (or late binding – the two are usually used
interchangeably) refers to the process of identifying what code should be executed as the
result of some message. To understand this, consider a couple of examples.

Suppose that the Lecturer interface includes the operation canDo(duty: Duty),
which takes something representing an administrative duty as argument, and that the
Lecturer is supposed to return a boolean value, which is true if the lecturer is able
to do the duty. Suppose further (slightly unrealistically!) that a DirectorOfStudies

is expected to be able to do anything, so should always return true. That is, the
subclass DirectorOfStudies has reimplemented – overridden – the operation canDo,
presumably replacing some complex code that examines information about the lecturer’s
interests or experience with some simple code that simply returns true.

Now suppose that lecturers is a variable which refers to a collection of Lecturer
objects. This collection may of course include some DirectorOfStudies objects, since if
we can add a Lecturer to lecturerswe can add a DirectorOfStudies. Suppose some
client – a task trying to find someone to do seminar organization – performs something
like:

for each o in lecturers

o.canDo(seminarOrganization)

(Notice the dot notation for message sending, which is common to many languages.
The expression o.canDo(seminarOrganization) indicates that the message canDo

(seminarOrganization) is sent to object o. It can also be used to represent the value
which o returns to the sender after acting on the message.)

The most we can assume, looking at this code, is that o is a Lecturer. Remember our
original idea that an object encapsulates its own behavior, and that classes were introduced
only as a shortcut. If o is in class Lecturer only, the Lecturer code for canDo should
be executed: that is its behavior on receipt of that message. What should happen when the
for loop reaches an object o which is in fact in class DirectorOfStudies? Clearly, in
this case the DirectorOfStudies code should be executed. (If the object o really were
carrying its own code around with it, this would happen automatically – and the fact that
it doesn’t is supposed just to be an optimization.) That is, the same piece of syntax should
cause two different pieces of code to be executed at different times. The message-send is
dynamically bound to the appropriate code.6

Finally consider another very simple example of dynamic binding, which also illustrates
why we may want to think about an object sending a message to itself.

Suppose that the Lecturer interface includes the message abilities, in response to
which the Lecturer object is supposed to return a collection of the duties that the lecturer
is able to undertake. Perhaps the Lecturer code implements this by something like the

6 This can most simply be done by checking at runtime what the type of the object is, although modern languages
allow the compiler to do most of the work, which is more efficient.

26 Object concepts

following pseudocode (in which self.canDo(duty) represents the result returned after
the message with selector canDo and argument duty is sent to this very object):

thingsICanDo := emptyCollection

for each duty in globalDutiesList

if (self.canDo(duty)) then add duty to thingsICanDo

else do nothing

return thingsICanDo

We could override this operation, too, in the new class DirectorOfStudies. But why
should we? (Performance is most unlikely to be important.) Suppose we leave it in place,
so that this code is inherited unchanged by DirectorOfStudies objects. Recall, though,
that DirectorOfStudies did override the operation canDo. What should happen when a
DirectorOfStudies object receives the message abilities? It will execute the code
above – there’s nothing more specific. This makes it send message canDo to itself. It’s a
DirectorOfStudies object, so when it receives the message canDo it will execute the
specialized version of the code defined in the DirectorOfStudies class.

If you use a pure object-oriented language, this behavior should quickly become second
nature. If you’re using C++ beware: only virtual methods have this behavior. Some people
(including me7) feel strongly that when you begin object-oriented programming in C++
you should get into the habit of making all methods virtual8 and learn about non-virtual
methods later.

SUMMARY

This chapter was a whistle-stop motivation for and introduction to object orientation. We
considered what an object is and how messages are sent between objects. We showed that
the objects in a system can usefully be divided into classes, rather than being considered
individually, and we began to consider the connection between objects and components.
We discussed how a class can be defined using another class’s definition by inheritance.
Finally we discussed the other feature of inheritance in object-oriented languages, its ability
to provide polymorphism and dynamic binding.

In the next chapter, we will introduce the main topic of the book, the Unified Modeling
Language, which can be used to express the specification and design of systems which take
advantage of object orientation.

7 Stevens
8 including (especially) destructors, but never constructors. Why?

chapter 3
Introductory
case study

In this chapter we introduce UML, the Unified Modeling Language. We aim to demonstrate
just enough of UML, and the way it is used to specify and design systems, to put the more
detailed chapters which follow into context. In the next chapter we will discuss the origins
of UML and its role in the development process. In Part II we will discuss UML in greater
depth, often drawing on the very simple case study used here.

3.1 The problem

The most difficult part of any design project is understanding the task you are attempting.
In this example we assume the following situation.

You have been contracted to develop a computer system for a university library. The
library currently uses a 1960s program, written in an obsolete language, for some
simple bookkeeping tasks, and a card index for user browsing. You are asked to
build an interactive system which handles both of these aspects online.

3.1.1 Clarifying the requirements

The problem statement given above is very vague, but is typical of the sort of initial
requests received when projects are first discussed. Before even agreeing whether to tackle
a design, a more detailed analysis of the requirements of the users is needed. This task of
requirements engineering is complex for a variety of reasons.

• Different users will have different, sometimes conflicting, priorities.

• Users are not likely to have clear, easily expressed views of what they want: for
example, they will find it hard to distinguish between what an existing system does and
what any suitable system must do.

• It is hard to imagine working with a system of which you’ve only seen a description, so
users may think a description of the system sounds OK when in fact it misses something
vital.

• The managers who talk most to the developers may not have direct experience of doing
the jobs that users of the system do.

27

28 Introductory case study

Discussion Question 15
How can you as the developer help to overcome any of these problems?

A full treatment of requirements engineering is outside the scope of this book: one good
treatment is [43].

After some careful investigation, the following facts emerge about the requirements that
an ideal system would satisfy.

• Books and journals The library contains books and journals. It may have several
copies of a given book. Some of the books are for short term loans only. All other books
may be borrowed by any library member for three weeks. Only members of staff may
borrow journals. Members of the library can normally borrow up to six items at a time,
but members of staff may borrow up to 12 items at one time. New books and journals
arrive regularly, and old ones are sometimes disposed of. The current year’s journals
are sent away to be bound into volumes at the end of each year.

• Borrowing It is essential that the system keep track of when books and journals are
borrowed and returned, since the current system already does that. The new system
should produce reminders when a book is overdue. There may in future be a requirement
for users to be able to extend the loan of a book if it is not reserved.

• Browsing The system should allow users to search for a book on a particular topic,
by a particular author, etc. to check whether a copy of the book is available for loan
and, if not, to reserve the book. Anybody can browse in the library.

This is better, but it’s still not clear what the different tasks are or who needs what.

Discussion Question 16
What further questions would you need to ask?

Discussion Question 17
What are the disadvantages of designing a system to meet the requirements above,
without further analysis?

3.1.2 Use case model

If a system is to be seen as having high quality, it must meet the needs of its users.1 So
we take a user-oriented approach to systems analysis. We identify the users of the system
and the tasks they must undertake with the system. We also seek information about which
tasks are most important, so that we can plan the development accordingly.

What do we mean by ‘users’ and ‘tasks’? UML in fact uses as technical terms actors
and use cases. An actor is a user of the system in a particular role. (In fact an actor can
also be an external system which is like a user from the point of view of our system: the
crucial point is that it’s someone or something external to the system we’re designing,

1 Some authorities prefer to talk about the needs of customers, on the grounds that he who pays the piper calls
the tune; but the customer is likely to get feedback from the users, and it is a strong-minded customer who
retains the idea that a system is high quality when the users curse it!

The problem 29

which interacts with our system and can place demands on our system.) For example, our
system will have an actor BookBorrower representing the person who interacts with the
system to borrow a book. It’s not clear to us whether this is a library member, or a librarian
acting on behalf of a library member, but for our present purposes we don’t need to know.
A use case is a task which an actor needs to perform with the help of the system, such as
Borrow copy of book. Notice that the simple name can hide quite complex behavior
with a variety of outcomes: borrowing a copy of a book will require checking that the
borrower is a member of the library and doesn’t already have the maximum number of
books on loan, for example. It’s possible that the use case may end without the user having
successfully borrowed a book, but we name the use case after what happens in the normal,
successful case.

The detail of each use case should be documented, usually in third-person, active-voice
English.2 For example:

• Borrow copy of book A BookBorrower presents a book. The system checks that the
potential borrower is a member of the library, and does not already have the maximum
permitted number of books on loan. This maximum is six unless the member is a staff
member, in which case it is 12. If both checks succeed, the system records that this
library member has this copy of the book on loan. Otherwise it refuses the loan.

Discussion Question 18
The library system considered in this chapter is simplified. By considering libraries that
you know, suggest what else a full system might have to do or check to carry out this use
case. Amend the use case description as appropriate, remembering that it should only
include requirements, not design.

Remark on user interfaces

User interface (UI) design is a vast and extremely interesting field, outside the scope of
this book. To the user interface designer, it may matter a great deal whether a book is
borrowed by a library member or a librarian. We assume here, though, that our task is
to build the underlying system, providing functionality which will be invoked by the user
interface which is being built by somebody else. This is not an unreasonable assumption:
user interfaces are more prone to change than the rest of the system will be, and a separation
between the user interface and the underlying system makes modification or replacement of
the UI more feasible. Moreover it makes sense to have user interface designs done by expert
user interface designers. For more on user interface design see, for example, [47] or [15].

At this point we can record the information pictorially, in a use case diagram for the
system, as shown in Figure 3.1. The notation is self-explanatory: stick figures represent
actors, ovals represent use cases, and there is a line between an actor and a use case if the
actor may take part in the use case.

Managing UML diagrams – drawing them, sharing them, keeping them consistent – can
be made easier by using a design tool or CASE tool which supports UML.3 However, for

2 ‘The system checks’ rather than ‘check’ or ‘. . . is checked by the system’.
3 There are some links from this book’s home page.

30 Introductory case study

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Borrow
journal

Update
catalog

Browse

Return
journal

Figure 3.1 Use case diagram for the library.

small systems a piece of paper or the back of the proverbial envelope will suffice. Beware
of making diagrams very complex, which is easy with a powerful tool. If a diagram is too
complex to draw by hand, it’s probably also too complex to think about clearly. In this
case it should probably be split, or drawn at a higher level of abstraction, or both. In this
case, we collapsed all the Librarian’s adding and removing of books, sending away of
journals, etc. into one use case Update catalog. When we considered this functionality
in detail, we might want to separate this out into separate use cases.

At this stage each use case should be documented, at least in outline. We emphasize that
you have to decide only what the system should do, not how it should do it. For example,
in Borrow copy of book we did not mention in what form the system should record the
information about the loan; we just said what had to be recorded.

Q: Write short use case descriptions for some of the use cases in Figure 3.1.

Do not invent requirements.

This may sound obvious – but as you examine use cases you will probably think of many
things the system could usefully do. It’s essential to avoid confusing things you know the
system must do because the customer told you so, with things you think the system could
or should do. You may find it useful to make a list of questions and possibilities with each
use case, for discussion with the customer: but do not incorporate dubious features into the
use case descriptions themselves.

Scope and iterations 31

3.2 Scope and iterations

Now we have a reasonably clear idea of what an ideal system would do. However,
experience has shown that the ‘big bang’ single-release approach to systems building, in
which the developers aim to deliver an ideal system in their first and only delivery, is
extremely risky. To limit the risks, it is better to aim to get to the ideal system in several
steps or iterations. The first iteration results in the delivery of a system with only the most
basic and essential functionality; later iterations enhance the system. We will discuss this
topic in more detail in the next chapter, but you might like to discuss it now.

Discussion Question 19
What advantages and disadvantages can you see in adopting an iterative approach to the
development of this system?

One of the main purposes of use cases is to help identify suitable dividing lines between
iterations: an iteration can deliver enough of the system to allow certain use cases to be
carried out, but not others.

In this case, let us suppose that after discussing priorities with the customer we decide
that the first iteration of the system should provide the use cases:

• Borrow copy of book

• Return copy of book

• Borrow journal

• Return journal

The limited use case diagram for the first iteration of our system is shown in Figure 3.2.
The following is a brief restatement of the requirements of the first iteration, discarding

irrelevancies. In a real project you might have to prepare a document like this that describes
all the use cases to be provided in the first iteration (for example, to be part of a contractual
document) or you might be able to use the use case descriptions and just list the names of
the use cases to be provided.

• Books and journals The library contains books and journals. It may have several
copies of a given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members of the library

BookBorrower

Borrow copy
of book

Return copy
of book

Return
journalJournalBorrower

Borrow
journal

Figure 3.2 Use case diagram for the first iteration.

32 Introductory case study

can normally borrow up to six items at a time, but members of staff may borrow up to
12 items at one time. Only members of staff may borrow journals.

• Borrowing The system must keep track of when books and journals are borrowed
and returned, enforcing the rules described above.

In a real project you would at some stage look at resource issues, including the choice of
suitable languages, tools and applications. For the purposes of this book, we will assume
that the outcome of this review is that the system is to be implemented in an object-oriented
language, and so you will develop the design in UML. We will ignore database issues: see
Panel 3.2 on Persistence, toward the end of this chapter.

Discussion Question 20
Our choice of the first iteration for this system was, we confess, influenced by our
aim in this book of introducing interesting OO techniques without spending much time
discussing things outside the scope of the book. Ignoring these constraints, what other
options for first iterations of the system do you see? Do you think any of these are
better?

3.3 Identifying classes

In the standard jargon of analysis we often talk about the key domain abstractions. The
term domain covers the application area we are working with, i.e. the library. We could
refer to the key domain classes; we use the term abstraction instead of class to emphasize
that we describe only the aspects of the domain which are important to the application.
(Remember, though, that we have argued in Chapter 2 that all good modules, including
classes, are abstractions.) Therefore, put more simply, we are looking for the features and
facts about the library, which matter in the system we are building to support it.

Identifying the right classes is one of the main skills of OO development. It is crucial
for building genuinely extensible software with reuse. We start the process of identifying
the key domain abstractions using the following approach, which is (rather long-windedly)
known as the noun identification technique.

This involves taking a coherent, concise statement of the requirements of the system
and underlining its nouns and noun phrases; that is, identifying the words and phrases that
denote things. This gives a list of candidate classes, which we can then whittle down and
modify to get an initial class list for the system.

This is only one technique among several that you will use to identify classes. In
Chapter 5 we will introduce several more techniques which can be used to select classes
and validate choices. At this stage we are just trying to get a rough list of possible
candidates.

We take the sentences given in subsection 3.1.1 and we underline the nouns and noun
phrases, giving the result in Figure 3.3. (You could also use the use case descriptions, of
course.)

Next we discard those which are ‘obviously’ not good candidate classes for any one
of a variety of reasons. (When you’re familiar with the technique, of course, you will
simply don’t underline those things that are obviously unsuitable.) We consider each in the

Identifying classes 33

Books and journals The library contains books and journals. It may have sev-
eral copies of a given book. Some of the books are for short term loans only.
All other books may be borrowed by any library member for three weeks.
Members of the library can normally borrow up to six items at a time, but
members of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

Borrowing The system must keep track of when books and journals are borrowed
and returned, enforcing the rules described above.

Figure 3.3 Nouns and noun phrases in the library.

singular. We will make this more general and systematic in Chapter 5. In this particular
case we discard:

• library, because it is outside the scope of our system;4

• short term loan, because a loan (short term or otherwise) is really an event, the lending
of a book to a user, which so far as we know is not a useful object in this system;

• member of the library, which is redundant: it means the same as library member, which
we keep;

• week, because it is a measure of time, not a thing;

• item, because it is vague: when we clarify it we see that it means book or journal;

• time, because it is outside the scope of the system;

• system, because it is part of the meta-language of requirements description, not part of
the domain;

• rule, for the same reason.

This leaves:

• book

• journal

• copy (of book)

• library member

• member of staff.

as our first-cut list of probable classes. At this point you might start to use CRC cards to
record the provisional responsibilities of the classes and to identify improvements in the
list, but we postpone discussion of that to Chapter 5.

Notice that library members and members of staff are people who use the system. Of
course a system’s users don’t always have to be represented inside the system (and, in
fact, in this case we have not represented the librarians), so one has to consider in each
case whether it’s desirable to do so. In this case, there are limits on how many books a
library member or member of staff can borrow, so it’s clear that the system has to keep
some data about these users. It is less obvious what behavior the object representing a

4 The question of whether there is a ‘main’ system object is discussed in Chapter 5.

34 Introductory case study

user should have. Here we will use a technique which is often useful, though it isn’t
appropriate for every system. We make the system objects representing actors responsible
for carrying out actions on behalf of those actors. For example, when the library member
Jo Bloggs is borrowing a copy of a book, the message borrow(theCopy) will be sent to
the LibraryMember object which represents Jo Bloggs. (The message is sent by the user
interface, which we do not model in this chapter.) This LibraryMember object will then
be responsible for carrying out whatever has to be done to record (or deny) the loan, by
sending messages to other system objects.

Of course this process of identifying objects and classes is not an exact science. We
could have discarded the same candidates for different reasons. In fact we do not have to
get it absolutely right at this stage and we are not trying to design the system: we are trying
to identify the important real-world objects within the domain of the system.

Discussion Question 21
Do you disagree with any of the decisions we made? Why?

It is important to be clear about what is meant by each term (classname, etc.). Some
methodologies dictate that at this stage you draft a data dictionary entry to define each
term. In our experience, most projects neither support nor need this bureaucratic overhead.
We assume that whatever document you are using to keep track of your design (maybe
a whiteboard or back of an envelope, maybe a ‘real’ document or a computer-supported
design document) includes whatever notes or further specifications may be necessary to
ensure that everyone on the project has the same understanding of the common terms. In
the early stages of a project you may have to settle for everyone agreeing that a term has
not been fully defined yet. That’s OK. What we must avoid is misunderstandings where
people have different ideas about what is meant.

3.4 Relations between classes

Next we identify and name important real-world relationships or associations between our
classes. We do this for two reasons:

• to clarify our understanding of the domain, by describing our objects in terms of how
they work together;

• to sanity-check the coupling in our end system, i.e. make sure that we are following
good principles in modularizing our design, as described in Chapter 1.

The second of these requires some explanation. If one object is believed to be closely
related to another, it is probably fairly harmless for the class that implements the one to
depend on the class that implements the other, i.e. for them to be closely coupled.

There are at least two justifications for this:

1. If domain objects are conceptually related, then a human maintainer who recognizes
this relation will be alerted to expect a dependency between the corresponding classes;
so it is more likely that the possibility of a dependency is taken into account when
modifying one of the classes. The likelihood of an unexpected problem arising because
of the dependency is thus comparatively low.

Relations between classes 35

2. If the domain objects are conceptually related, it is likely that an application which can
reuse one of the classes can also reuse the other; so although any coupling in a system
complicates reuse, the effect will be comparatively benign.

Recall that we said a major argument for OO is that the structure of an OO system
reflects the structure of reality: here is a concrete instance of that benefit. In this case we
can see that:

• a copy is a copy of a book
• a library member borrows/returns a copy
• a member of staff borrows/returns a copy
• a member of staff borrows/returns a journal.

We can record the information pictorially in the UML class model in Figure 3.4.
This class model in fact records a little more information than we have mentioned so far:

it also shows the multiplicities of the associations. For example, each copy is a copy of just
one, uniquely defined, book, so the number 1 appears at the Book end of the association
between Book and Copy. On the other hand there may be one or many copies of a given
book (presumably if there are no copies the system isn’t concerned with the book, but that
is a presumption that might have to be revised), so 1..* appears at the other end of that
association. We will treat this in detail in Chapter 5.

Notice that the diagram does not say whether a Copy object knows about (depends on)
the corresponding Book, or vice versa, or both: that is, it says nothing about the navigability
of the associations we have shown.

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

0..1 0..*

0..1 0..*

borrows/returns

borrows/returns

borrows/returns

0..1

0..*

is a copy of

Figure 3.4 Initial class model of the library.

36 Introductory case study

Discussion Question 22
In which direction(s) do you think the associations should be navigable, bearing in mind
that we should not introduce unnecessary coupling? Consider this again at the end of the
chapter.

Finally, we may notice that MemberOfStaff shares in all the associations that
LibraryMember does, and that this agrees with our intuition that a member of staff is a
kind of library member. Recording this in the class diagram will clarify our understanding
of the situation, that there is a generalization relationship between LibraryMember

and MemberOfStaff. We may or may not choose to implement this generaliza-
tion relationship using inheritance (that is, by making MemberOfStaff a subclass of
LibraryMember) – that design decision will depend on a deeper understanding of the
system than we currently have. Recording the generalization in UML notation, we get the
rather neater-looking class model shown in Figure 3.5.

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

0..1 0..*

0..1 0..*

borrows/returns

borrows/returns

is a copy of

Figure 3.5 Revised library class model.

3.5 The system in action

So far we have sketched the static structure of the system, but we have not yet described its
dynamic behavior: for example, we have yet to record how the objects in the system work
together to allow a user to borrow a copy of a book. There is no active connection between
the use cases we started with and the objects we have decided make up the system.

The system in action 37

In UML we can use interaction diagrams to show how messages pass between objects
of the system to carry out some task; for example, to realize a particular use case. We need
not do this for every use case, and some projects will do it for none: you should use an
interaction diagram when you think there is sufficient benefit to outweigh the costs. For
example, if a use case is particularly complicated, or if there is doubt about which of two
realizations is better, then interaction diagrams may be an aid to clear thought.

As an example let us consider in more detail what happens when a library member
borrows a copy of a book. In the physical world, a human library member will presumably
come to the issuing desk with a physical copy of a book, and via the system user interface
there will be some means of identifying the library member and copy concerned. (This may
be by means of a card reader and a barcode scanner, or by a person entering identification
details into a GUI: whatever.) So we can start from the position of having a certain
LibraryMember object (call it theLibraryMember) and a certain Copy object (call it
theCopy).

Recall that we said above that we would let the LibraryMember objects act on behalf
of the library members, so this interaction begins by a BookBorrower actor sending a
message to theLibraryMember. The message will specify what service is required: in
this case, to borrow theCopy. Let us call the message borrow(theCopy). The system
has to check that it is permitted for theLibraryMember to borrow another book: one of
the duties of theLibraryMember will be to perform this check. (This will probably be
implemented simply by comparing the number of items the user currently has on loan,
which may be recorded as an attribute of the class LibraryMember, with the maximum
permitted number of items: but we deliberately don’t decide this in detail at this stage.)
We should probably represent this by having theLibraryMember send itself a message,
say okToBorrow.

Next we want to update the system’s information about how many copies of this book
are in the library, since there’s now one fewer. This involves whatever Book object is
associated with theCopy by the association ‘is a copy of’: call this object theBook. Let us
suppose that theLibraryMember informs theCopy that it is being borrowed by sending it
the message borrow, and that theCopy then sends theBook a message to say that a copy
of the book is being borrowed, say borrowed(). Nothing else needs to be done: all these
messages receive replies signaling no error. The user interface will somehow signal to the
human borrower that all is well, and the human borrower will take the physical book away.

Q: How else could we have implemented this behavior? Do you think any of the
alternatives are better? Why?

One way – much more readable than the words above – to describe this in UML is by
the sequence diagram in Figure 3.6. A sequence diagram describes some piece of system
behavior – typically a use case or part of one – by showing which messages are passed
between objects and in what order they must occur (read the messages from top to bottom
of the page).

In a real project you probably wouldn’t feel the need to develop a sequence diagram
for an interaction as simple as this one. Sequence diagrams can be much more expressive
than we’ve yet shown; details are in Chapters 9 and 10. For example, in this example the
messages have to occur in a fixed order: there is only one thread of activity and activities
cannot proceed in parallel. Moreover, we were concerned only with the order in which

38 Introductory case study

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

okToBorrow

borrow
borrowed

aMember : BookBorrower

Figure 3.6 Interaction shown on a sequence diagram.

things happened. By attaching times to the various activities it is also possible to deal with
questions resulting in real-time problems.

There are other ways of looking at this sort of interaction. In Chapters 9 and 10 we see
how to record the same information in a collaboration diagram: each way has its own
advantages.

Q: Develop a sequence diagram for the alternative scenario in which okToBorrow

returns false, because the library member already has the maximum number of books.

PANEL 3.1 Design by Contract 1

In this panel we consider how we can record decisions about what the behavior of an
operation should be, in more detail than just its name and the types of its arguments
and return values.

Pre- and postconditions

A fundamental problem is that the types in a programming language are only a very
rough way to describe the properties which an object’s attributes and operations
should have. For example, the okToBorrow message takes no arguments and
returns a boolean value. This is true of the implementation which always returns
the value false; however, the library system won’t work correctly with such an
implementation, because it will never allow a library member to borrow a book! The
problem is that, although we definitely do want the value returned from the method
to be a boolean, that isn’t all we want: we also want it to have some particular
connection with the state of the object.

We can express extra conditions, or constraints, on operations using preconditions
and postconditions.

A precondition describes something that must be true when an operation is
invoked; it is a bug to invoke the operation otherwise. The precondition could

The system in action 39

involve the current state of the object (values of its attributes) and/or the arguments
to the operation. That is, the precondition describes what the operation demands.

A postcondition describes something that must be true when the operation
returns; the implementation of the operation is buggy if its postcondition ever turns
out to be false after it was invoked with its precondition true. The postcondition
could involve the value returned by the operation, the arguments to the operation, and
the state of the object both before and after the operation. That is, the postcondition
describes what the operation promises.

Consider the operation okToBorrow on LibraryMember again. The return
value should be true if the member has fewer than the member’s maximum
permitted number of books on loan, otherwise false. We may also want to say
that an implementation of the operation is allowed to assume that the member
had no more than the maximum allowed number of books out to start with.
Suppose LibraryMember has attributes numberOfBooksOnLoan : integer and
maxBooksOnLoan : integer. We could document the intended behavior of the
okToBorrow operation using a precondition and a postcondition in English like
this:

okToBorrow

pre: numberOfBooksOnLoan is less than or equal to maxBooksOnLoan

post: return value is true if numberOfBooksOnLoan is less than
maxBooksOnLoan, otherwise false. State of the object is unchanged.

Of course if you plan to write a lot of pre- and postconditions you will certainly
want a more concise notation than this! Options include boolean expressions of
a programming language, or statements in a special purpose language; Chapter 6,
which also discusses recording constraints in UML, has a panel on the special purpose
Object Constraint Language, OCL, which is designed to work well with UML.

Discussion Question 23
If the arguments to an operation or the return value from it are (as is often the
case) objects themselves, rather than being values of a base type like integer or
boolean, then what should the pre- and postcondition of the operation be allowed
to say about these objects?

Class invariants

In the example, the precondition wasn’t really specific to this operation. It would
always be a bug for a LibraryMember to have on loan more books than the
permitted maximum number. Rather than put this as a precondition on every
operation, we can more simply let it be a class invariant. That is, we put it as
documentation of the LibraryMember class that a valid object of the class always
has the value of the attribute numberOfBooksOnLoan no greater than the value of
the attribute maxBooksOnLoan. Conceivably this condition could be violated by the
object when it’s in the middle of processing a message, but it has to be restored by

40 Introductory case study

the time the processing is complete, so that it always holds at the time any message
is sent to the object.

Q: How would you check that the class invariant always holds?

Type, or constraint?

There is no gulf in meaning between something’s type and a constraint that should
hold on it. Both type and constraint are there to tell you something about what
the thing can be. The type of an object describes what attributes and operations
it has, and their types. (Because a class definition also gives this information, we
will often confuse the type of an object with its class – but remember that the
object’s class specifies its implementation as well.) A constraint – in this case a class
invariant – tells you something extra; for example, it may tell you something about
the connection between different attributes.

Similarly, the type of an operation tells you what the types of the arguments are
and what the type of the result is. A constraint on an operation takes the form of a
precondition and a postcondition. Just as an operation is expected to work only if it
is given arguments of the right type, it is expected to work only if its precondition
is satisfied. Just as it is expected to return a value of the right type, it is expected to
return a value that satisfies the postcondition.

So when you try to describe what things are permitted in some context – as objects
of a class, or as implementations of an operation – you first tie them down loosely,
using the type system of your programming language. If this isn’t precise enough
for your needs, you just add a constraint to express the rest of what you want to say.
At the extreme – a language like Smalltalk which has no static typing – everything
you want to say about what are suitable values for an expression has to go into a
constraint. Languages like Java and C++, which have static typing, allow you to let
some of the more routine checking be done by the compiler. You write constraints
only for the more interesting bits.

The disadvantage of constraints compared to types is that usually there is no
automatic checking that the constraints are satisfied, though an exception to this
is Eiffel. In several languages you can use assertions: boolean expressions of
your programming language which can be checked at runtime, perhaps only when
debugging is turned on.

3.5.1 Changes in the system: state diagrams

You will probably have noticed that the state of the book object may change significantly
when a copy of the book is successfully borrowed: the book may change from being
borrowable (there is a copy of it in the library) to not borrowable (all copies are out on
loan or reserved). (In fact this isn’t very important in this iteration, but it will be important
when we implement browsing or reservations in future iterations of the development.) We
can record this using a state diagram as shown in Figure 3.7.

The system in action 41

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

Figure 3.7 State diagram for class Book.

This notation shows that whether or not the borrowing of a copy causes a state change
in the book depends on whether there are any other copies still in the library. We’ve used
informal English to express the condition in this case.

Of course, in a sense anything which changes any of an object’s data causes a state
change. What we are doing in a state diagram is recording the significant state changes:
those which qualitatively change the object’s behavior. We will return to the question of
how to decide which changes are significant in Chapter 11.

Discussion Question 24
Have we recorded enough information? Do you think we might want to know how many
copies of the book are available for borrowing? What issues would arise if we tried to
model that?

3.5.2 Further work

In developing the sequence and state diagrams, we have identified certain messages which
our objects have to understand; that is, certain operations on our classes. We have, of
course, to carry this further by considering the other interactions of the system. We can also
identify the data which is encapsulated in the objects, including the data which implements
the associations we have shown, such as references to other objects. All of this information
can be added to the class model: we can list the attributes and operations of a class in the
class icon. However, we postpone discussion of how to show this in UML to Chapter 5.

Once we have identified how all the use cases are realized, down to the level of what
messages are passed and in what order, it is rather straightforward to implement the classes.
This gives us the first iteration of our system, which can then be tested by developers and
users to identify any misunderstandings or other failings. Further iterations of development
should produce a system which is closer to ideal.

PANEL 3.2 Persistence

So far we have not considered the very important issue of object persistence. Of
course it must be possible to shut down the system and restart it without losing the
information about library members, books and journals in the library, etc. Objects
which must last longer than the lifetime of a running instance of the program

42 Introductory case study

are called persistent. Persistent objects can also potentially be used by different
programs, but that is not the issue here.

In very simple cases, objects can simply be stored ‘raw’ in files: an object can
write itself into a file, and an object can be reconstructed by reading the file. The
details of how this is done are language-dependent: many, but not all, object-oriented
languages provide standard mechanisms, in which case the developer does not have
to worry about such issues as file formats. However, this mechanism is not suitable
for systems which need nontrivial object persistence; it is inflexible and inefficient.

Q: How can this kind of storage be done in your language? (Hint: in Java, look
at the Serializable interface; in Smalltalk-80, look at the storeOn:aStream

method; in C++, look in your class libraries.) Write a simple program that lets you
create an object and change its state, then write it to a file, then reconstruct the
object from the file.

Q: What disadvantages does this method have? Consider, for example, how you
can deal with objects which have links to other objects.

A more serious option is to use a database, which provides much more than just
persistence. For example, a database will provide support for transactions – sets
of updates which must succeed or fail together. The most common course is
to use a relational database. This is by no means straightforward, since there
is an impedance mismatch between SQL and the object-oriented programming
language. Data is stored as tables and must be translated between them and the
object form which is useful in the object-oriented system: the developer cannot
simply classify certain objects as persistent and expect changes to them to be
permanent. However, tool support is increasingly available, and recent developments
in RDBMSs (in particular, SQL3) aim to ease these problems. An alternative is
to use an object-oriented database. OODBs explicitly support object orientation,
including inheritance, and they usually also allow more flexible interaction with the
data than RDBMSs have done. However, they still have only a small share of the
market.

The study of object-oriented databases is outside the scope of this book; one good
and readable book on the subject is [30].

Q: If you have access to any databases, consider how they might be used to
support the application described here.

Discussion Question 25
What factors would affect whether it is desirable to integrate the library system
with other university systems, such as the student registration system?

The system in action 43

SUMMARY

This chapter described a simple case study. It introduced the main features of UML in a
necessarily sketchy way; Part II of the book covers each diagram type in detail, but since
the diagrams are designed to be used together in an iterative development it is important to
have an overview of what UML is before going on to discuss details.

We described a single iteration of the development of this system, and we did not justify
the techniques we used. In the next chapter we discuss the development process.

DISCUSSION QUESTIONS

1. We concentrated on just one use case – borrowing – in this chapter. Can you develop
similar diagrams for the other use cases?

2. How worthwhile do you think the effort of creating this model has been? Try to
remember how you would have approached the same problem before you read this
chapter and consider whether you have benefited from the understanding gained.

3. Librarians are seen as existing merely to service the use cases of the library members.
How could we model their own use cases, which include the need to add and remove
new books and new copies of existing books? How far would their addition to our
design require us to change our existing model?

4. What do you think about the way we treated journals?

5. We’ve modeled the members of staff actors as kinds of library members, but members
of staff are allowed to borrow more books than normal library members. Is this a
problem?

6. How will, or should, the system cope with books which consist of multiple volumes,
books with associated CDs or audiotapes, etc? List some options, and consider what
pros and cons you would want to discuss with your customer.

chapter 4
The development
process

This chapter addresses the question ‘How can good systems be built?’
In our simple case study, it was possible to imagine that we just sat down and did the

work, beginning at the beginning, going on until the end, and then stopping. For more
complex systems, however, the development process must be managed. It must be possible
to plan the development and to tell how much it has achieved and whether it is on schedule.
We must have an appropriate toolkit of techniques for developing a system. We must have
an understandable way of documenting and controlling what is done, for example so that
people can safely leave and join the project as it proceeds.

Many different development processes or methodologies have been used. This book
does not propose any one of them; at the end of the chapter we shall return to the question
of why not. In this chapter we shall briefly discuss some aspects of process, and give some
pointers to more information.

4.1 Defining terms

The terms ‘process’, ‘methodology’ and ‘method’ (with or without the prefixes ‘develop-
ment’ or ‘design’) are used in different ways by different people, often without definition.
By a development process we shall mean a set of rules which define how a development
project should generally be carried out. This may include a description of what documents,
design models and other artifacts should be produced and in what order.

The terms methodology and method are also used in similar ways; there is a tendency for
these terms to be used for things which specify techniques for developing particular design
artifacts, such as the class model we saw in Chapter 3. Sometimes this is emphasized
by talking about a design methodology. If there is a difference between ‘method’ and
‘methodology’ it tends to be, as the length of the words suggests, that a methodology is
a bigger thing with broader scope. The distinctions between these words are not absolute,
however, and it is not always possible to be definite about whether something is a process
or ‘just’ a methodology. Neither is the question particularly interesting!

A [design] method[ology] normally specifies what modeling language should be used in
describing the analysis and design work. It also tells you something about how you should
produce these things, for example by giving a list of steps to go through in order to capture
the users’ requirements. In this book we will discuss many such techniques that may form

44

Defining terms 45

part of a methodology, but we leave the choice of methodology open. Sometimes this
collection of techniques is itself called the process, but we will try to avoid this use.

Since we’ve mentioned the modeling language, let us discuss this before returning to
the other aspects of the development process.

4.1.1 Models and modeling languages

A model is an abstract representation of a specification, a design or a system, from a
particular point of view. It is often represented visually by one or more diagrams. It aims
to express the essentials of some aspect of what we’re doing, without giving unnecessary
detail. Its purpose is to enable people involved in the development to think about and
discuss problems and solutions without getting sidetracked. If it is to be useful, a model
must have a precise and well understood meaning: abstract does not mean woolly!

A modeling language is a way of expressing the various models produced during the
development process. A modeling language defines a collection of model elements, which
are roughly analogous to the utterances (words, sentences, television sitcom scripts) in a
spoken language; a model is made up of model elements, as a sentence is made up of
words. UML, the Unified Modeling Language, is of course an example of a modeling
language. A modeling language is normally diagrammatic, but could be text based.
It has

• syntax – in a diagram-based modeling language, the rules that determine which diagrams
are legal;

• semantics – the rules that determine what a legal diagram means.

Both syntax and semantics can be given more or less formally. Most modeling languages
have both syntax and semantics given informally in everyday English. Our explanations
of UML in this book can be seen as an informal way of giving the syntax and semantics of
UML – that is, by the time you’ve read the book you should have a good understanding of
whether a diagram is legal UML and if so what it means, though you would not be able
to express your understanding in mathematics. UML’s official specification [48] describes
both the syntax and the semantics of UML in a structured, terse way, in between informal
English and mathematics. At the opposite extreme from informal English, it’s possible
(but very hard work) to give a completely formal, mathematical description of the syntax
and semantics of a language. To cite one of the few complete examples, [39] defines the
syntax and semantics of the programming language Standard ML. A formal definition of
a language is developed if it is necessary to eliminate any possibility of ambiguity. It is
not likely ever to be done for the whole of UML, since the benefit is not likely to match
the cost.

As well as being used to support the development of a particular system, a model-
ing language may be used to document a reusable artifact such as a component or a
framework.

UML is unusual in being a modeling language not tied to any particular process. In
the past each design methodology has had its own notation; that is, its own modeling
language. This distinction is the root of a great deal of confusion. People often consider
themselves to be using a methodology if they draw their diagrams in that methodology’s
notation, whether or not they use any of the techniques recommended by the methodology

46 The development process

or follow its rules. You are likely to hear people talking about ‘the UML methodology’
and comparing its supposed merits and demerits against their favorite methodology. This
is bogus: it’s comparing apples and oranges. A more sensible question might be ‘How easy
or sensible is it to follow my favorite methodology using UML as my notation?’

Why a unified modeling language?

Given that developers need a modeling language to help them to discuss the problems and
solutions involved in building a system, what should determine which language they use?
The chosen language should be:

1. expressive enough, so that it is possible to express the aspects of the design that it will
be necessary to discuss, and meaningfully to reflect changes in the design which are
made during the development as changes in the models;

2. easy enough to use, so that the modeling language aids clear thought rather than getting
in the way;

3. unambiguous, so that the modeling language helps to resolve misunderstandings rather
than introducing more;

4. supported by suitable tools, so that developers’ effort can be spent on work that requires
their skills, not on routine work such as making a diagram using a drawing tool;

5. widely used, for a variety of reasons. Of course the more widely used a language is the
more likely it is that the four points above will be satisfied. Also,

• when new people join the project, it’s an advantage if they already know the
modeling language instead of having to learn it then;

• to do component-based design you have to be able to read the descriptions of
components, and the more easily and quickly you can do so the cheaper it is to
consider a component. The more widely used your modeling language, the greater
the chance that it’s the same one the component writer chose to use.

Discussion Question 26
What other advantages can you see to having a unified modeling language? Disadvantages?

We’ll discuss the history of UML and the overall nature of its models toward the end of
this chapter.

4.1.2 Process and quality

As we shall see in Chapter 20, there is a significant overlap between the concerns of
a development process and those of a quality management system. The ultimate aim of
both is to insure that the process (and hence, it is to be hoped, the product) has high
quality. In general, the development process will specify more technical aspects of the
process and the quality management system the more managerial ones; but the terms do
overlap.

It is important to remember that no process or methodology, however good, can ensure
the success of a project. It can at best support the people involved in the project in

The development process 47

producing a good outcome. DeMarco and Lister’s excellent book Peopleware [13] rightly
emphasizes this fact.

4.2 The development process

In this section we consider the overall, high-level process of developing a system. You
have almost certainly seen the famous and now at least partly discredited waterfall process1

shown in Figure 4.1.
The process has a fairly small number of identifiable bits, in this case the five phases of

the lifecycle. Some sort of division into parts is an essential part of any process, because
the process aims to help humans to understand something, and humans like to identify
parts of things! In this case the process is divided into parts on the basis of the activity
which is being performed; however, there is also an implication that the activities are being
done one after the other, time proceeding down the page.

Figure 4.1 shows a simple version of the waterfall process sometimes called the ‘throw
it over the wall’ process, since it incorporates the assumption (or restriction) that once a
phase is supposed to have finished, it is never reentered. If it were possible to make perfect
decisions all the time it might be the way things worked. Unfortunately it isn’t possible,
for example because new information is constantly becoming available. In practice, it
is necessary to revise earlier decisions in the light of later experience: for example, to
revise the requirements specification when you find that the customer doesn’t like the
implemented system. Refusal to revise decisions can easily result in the complete failure
of the project. The waterfall process is often drawn with additional backward arrows, to
reflect this reality. However, the criteria for deciding to return to an earlier phase are often
left implicit. The implication is that the normal, correct situation is that we proceed from
one phase to the next: first we do all the requirements analysis, then we start system and
software design, and so on.

Analysis

Design

Implementation

Testing

Maintenance

Figure 4.1 A simple waterfall process.

1 More often known as the waterfall model (of the lifecycle), but the overloading of ‘model’ seems unnecessarily
confusing in this context.

48 The development process

Discussion Question 27
Given its rather obvious disadvantages, why is the ‘throw it over the wall’ process
so difficult to give up? What advantages does it have, and to whom? Under what
circumstances might you be right to decide to live with the disadvantages?

Now, though, it is recognized that for almost all systems it is right and necessary to
have some kind of iterative process. Modern development processes take iteration as
fundamental, and try to provide ways of managing, rather than ignoring, the risks.

Risk management is a large and extremely important topic. Let us consider just two
aspects here.

1. Any time you make a decision, you run the risk that it is wrong. More importantly, the
later an error is discovered the harder it is likely to be to put right. Therefore we may try
to control risk by discovering errors as soon as possible. One way is to have evaluation
steps frequently and explicitly defined by the process.

2. A major risk is that the developers may misunderstand the requirements. Anything
which increases confidence that the stated requirements are correct reduces risk. It is
often easier to criticize a system than to describe it, so prototyping a system may be a
good way to firm up the requirements.

Discussion Question 28
You will encounter the view (maybe unstated) that in order to manage the risk of making
a wrong decision it is best to put off making the decision as long as possible. Is this a
good idea? Does it depend on the type of decision? How and why?

Boehm’s spiral process [4] incorporated both of these ideas, and many variants of the
spiral process have appeared since. A simple variant is illustrated in Figure 4.2. Starting
from the center of the spiral, a project following the process goes through successive
risk analysis and planning, requirements analysis, engineering, and evaluation phases. The
engineering phase of the spiral process involves design, implementation, and testing. The
number of iterations is arbitrary.

Notice what the spiral process as shown here doesn’t say. It doesn’t prescribe how each
phase is done. Indeed, it doesn’t even specify what the outcome of an implementation
phase is: is it a running system with more functionality each time, or is it a more detailed
set of models of a system, which becomes a running system only in the final iteration?
This ambiguity about what is meant by an iteration is one of the main differences between
modern methodologies, which have their own versions of the basic spiral.

4.2.1 A unified methodology?

As object orientation has become fashionable, and now has moved through from being
fashionable into the mainstream of software development, a plethora of object-oriented
development methods has naturally been put forward, each with ideas and notations which
overlap, but are not identical. Three of the most popular – although there were and are
many others – were:

1. Grady Booch’s method, occasionally called OOD [7]

The development process 49

Evaluate

Analyze risks and

plan
Analyze requirements

for this iteration

Engineer:

design,

implement,

test

Figure 4.2 A simple spiral process.

2. James Rumbaugh’s OMT [40]
3. Ivar Jacobson’s OOSE and Objectory [28]

(Each had a major book which appeared in the early 1990s.) As you see, each method is
championed by a single inventor, who in each case is a highly experienced and respected ex-
pert in the field of OO development. Like most people, the authors expected that for the fore-
seeable future we would have more or less this situation, the methods war, with each method
having its proponents. (After all, we haven’t settled on one programming language yet!)

The methods war is over: we won

However, it isn’t turning out quite that way. Booch was in charge of Rational Software
(which has since been bought by IBM). In 1994 Rumbaugh also joined Rational, and the
two of them declared that they intended to merge their methods. In 1995 Rational bought
Ivar Jacobson’s company Objectory, and it was all over bar the shouting. Booch, Rumbaugh
and Jacobson became known as the Three Amigos.2 An early draft of documentation for
the so-called Unified Method was produced, and seemed likely to take over the world.
(Needless to say, not everybody was happy about this, and the development by the
OPEN consortium of OML, the Open Modeling Language [8] was one reaction. However
UML, as it now is, has dominated and was adopted by the main standardization body for
object-oriented matters, the Object Management Group (OMG).)

Later the focus was shifted away from developing a unified method toward developing a
unified modeling language, and so we have UML. The authors believe that this, doubtless
pragmatic, decision was correct. We have already given some reasons for wanting a unified

2 After the 1986 John Landis film of that name?

50 The development process

modeling language; however, we do not believe that there are such compelling reasons
for having a unified methodology. We think it will always be the case that different
methodologies suit different organizations with different kinds of projects. Indeed, we
think that the variety of methodologies that organizations have used has, up until now, been
concealed behind the different notations. In our experience, when someone claimed to be
using ‘OMT’ or ‘the Booch method’ they often meant little more than that they were using
that method’s notation. Different organizations ‘using OMT’ could in fact be following
quite different processes. It may be that settling on a single notation will make it easier in
future to identify the real differences between processes.

Of course, methodologies include techniques which can often be transplanted between
methodologies. We will discuss many such techniques that you might like to import into
your methodology.

4.2.2 Processes to use with UML

We will take as agreed that a development process should

• take risk management as a central concept, and in particular

• allow iteration as a means of controlling risk;

• be architecture-centric and component-based – that is, as discussed in Chapter 1, it
should have as high-priority activities the following and making of good architectural
decisions, and the use and development of good components.

The final characteristic which the developers of UML believe any development process
should have is that it be use case driven. We postpone discussion of this until Chapter 7:
without a detailed discussion of use cases, it is not really possible to define what this means.

Unified Process

In this section we will briefly discuss the so-called Unified Process, which incorporates
ideas from all the Three Amigos and from many other sources.

We started to discuss iterative methods above. However, this isn’t the end of the story.
An ad hoc iterative approach works well for small, fast developments, but even in those
there will be a stage before the project is definitely decided on, and a stage after it has
been ‘finally’ delivered, which it’s sensible to separate out. It is also normally essential, for
management and political reasons, to have a plan for what the iterations will be and what
will be covered by each, rather than simply taking as many as are required. The Unified
Process puts its main spiral inside its Construction phase.

• Inception ends with commitment from the project sponsor to go ahead: business case
for the project and its basic feasibility and scope known.

• Elaboration ends with:

— basic architecture of the system in place;
— a plan for construction agreed;
— all significant risks identified;
— major risks understood enough not to be too worried.

The development process 51

• Construction (definitely iterative) ends with a beta-release system.
• Transition is the process of introducing the system to its users.

These phases may differ wildly between projects in how long they take and what their
deliverables are. For example, for a small or straightforward project (or one with a laid-back
sponsor!) the Inception phase might even be a development manager having a short chat
with the project sponsor. At the other extreme, it might require a series of high-level board
meetings and a formally signed-off business case.

Other processes

In fact, UML is so expressive that it is unlikely to be impossible to use it with any
object-oriented development methodology or process. For example, any of the original
Three Amigos’ methods can still be used with UML.

Catalysis [16] is a particularly interesting development methodology which has adopted
UML as its modeling language. It is mostly concerned with the technical aspects of systems
development, and explicitly embraces the idea that there is no single correct process that
works for all software projects. It emphasizes the rigor with which a system is developed,
and especially the role of frameworks; a framework can be seen as a reusable chunk of
architecture, which defines how a group of objects or components interact. We will cover
frameworks briefly in Chapter 18, after developing a simple example in Chapter 16.

Agile methodologies, such as Extreme Programming pioneered by Kent Beck, concen-
trate on managing the risks associated with changing or unclear requirements. They use
very small, fast iterations and early customer feedback to check that what is being built
is what is needed. They use extensive automated testing and continual small redesigns to
ensure high quality, and they avoid building in features which are not certain to be needed.

Discussion Question 29
Use whatever means are available to you (the Web will be useful, and there are some
starting points on the book’s home page) to find out about some of the following
development processes and methods:

• The Rational Unified Process

• Catalysis

• OPEN

• Extreme Programming

• Fusion, developed at Hewlett Packard

• The Bazaar, most famous as the process used for developing the free operating system
Linux

• SCRUM

• DSDM, the Dynamic Systems Development Method

• SSADM, for contrast

• . . .

Consider what its scope is, and whether it either enforces or is compatible with an
architecture-centric, component-based approach. Compare and contrast.

52 The development process

4.3 System, design, model, diagram

Any development process aims to produce, probably after several iterations, an imple-
mented system. This is a program, or collection of programs, which work in an appropriate
environment to fulfill users’ needs, including implicit needs such as maintainability. The
design and (especially) the architecture of the system embody the important decisions
about how the system is built, abstracting away from many details. A language for de-
scribing a design should almost certainly be diagram based, since experience suggests
that’s how we naturally think about systems. It’s inconceivable that a single diagram could
capture everything about our design; and indeed that might not be desirable since we will
be interested in different aspects of the design at different times. We will build different
models of our design, reflecting these different aspects, and will express each model using
diagrams in a modeling language.

We will want to distinguish models on several axes.

• The use case model describes the required system from the users’ points of view.

• A static model describes the elements of the system and their relationships.

• A dynamic model describes the behavior of the system over time.

We may take a

• logical view – which parts notionally belong together? For example, what are the
classes and how are they related? We model this principally to check that the functional
requirements are met.

• process view – what threads of control are there? For example, which things can happen
concurrently, and what synchronization must happen? Modeling this helps to ensure
that the nonfunctional requirements such as performance and availability are met.

• development view – which parts can sensibly be developed by the same team of people,
and what can be reused? Modeling this helps to manage the project.

• physical view – which parts will run on the same computer? Modeling this helps to
ensure that nonfunctional requirements are met; it takes a more concrete view than the
process view.

These are the four models in Philippe Kruchten’s ‘4 + 1 view model of architecture’ [31].

The diagram is not the design: the diagram is a representation of (part of) a model of
the design, which captures an aspect of the design in a form which can be discussed.

There can be several diagrams of one model, which must of course be consistent.
Similarly, the models must be consistent. This is common sense: the whole set of diagrams,
describing various parts and aspects of the design, are all supposed to be descriptions of
aspects of a single system, so they must not contradict one another. For example, if one of
your dynamic diagrams involves an object of class Foo, your static structure diagram had
better show that class Foo exists. Some of this consistency checking can be automated by
a suitable tool.

System, design, model, diagram 53

4.3.1 The uses of models

Models are most often used for communication between developers: they record design
decisions. It has been observed that developing models is expensive, and sometimes the
expense does not seem to be justified. There are two strategies for rectifying this.

1. Reduce the expense. In agile methodologies, UML diagrams are typically drawn quickly
on whiteboards, and used to aid discussion. They are not usually drawn using a tool and
kept in a document, because this is not seen to be beneficial.

2. Increase the value. The OMG’s model-driven architecture aims to use UML models
as input for tools. The designers develop a Platform Independent Model (PIM), which
is then transformed by a tool into one or more Platform Specific Models (PSM). As
the name suggests, the PIM abstracts away from decisions such as what component
architecture is to be used; the tool automatically refines the PIM by adding necessary
information for the chosen platform. Code may be generated automatically from the
PSM, or may be written by hand. Ideally, when changes are required they can be made
at the PIM level, and the PSMs and code regenerated. This saves effort, especially if the
system exists in many versions for different platforms. However, this amounts to using
UML as a programming language, which has problems. Many aspects of UML are not
precisely defined, so the tools may understand something different from a given UML
diagram from what the designer intended. Moreover, tools for testing and debugging
UML models are not nearly as usable or as advanced as tools for testing and debugging
code.

SUMMARY

We discussed development methods in general, and the need for modeling languages. We
briefly discussed the history of UML, and the question of what development methodologies
can be used with UML. Finally we discussed the role of design, models, and diagrams. A
system has a design. There can be several models of a design, focusing on different aspects,
which must all be consistent. A model can be represented by some diagrams, which must
all be consistent. Models can be used to communicate between humans, or can be used as
input for tools.

part II

The Unified
Modeling
Language

Chapter 5 Essentials of class models 56

Chapter 6 More on class models 74

Chapter 7 Essentials of use case models 93

Chapter 8 More on use case models 104

Chapter 9 Essentials of interaction diagrams 112

Chapter 10 More on interaction diagrams 124

Chapter 11 Essentials of state and activity diagrams 132

Chapter 12 More on state diagrams 145

Chapter 13 Architectural and implementation diagrams 150

Chapter 14 Packages and models 155

chapter 5
Essentials of class
models

This chapter introduces UML class diagrams, which are used to document the static
structure of the system; that is, what classes there are and how they are related, but not how
they interact to achieve particular behaviors. A class diagram can also show other aspects
of static structure such as packages, which are discussed in Chapters 6 and 14.

In UML, a class is shown in a class diagram as a rectangle giving its name. Figure 5.1
is a class icon for the class Book.

Book

Figure 5.1 A very simple class model.

Later in this chapter we will see how to represent more information about the data and
behavior encapsulated by a class, but for now we will concentrate on identifying classes
and the associations between them.

5.1 Identifying objects and classes

Building a class model involves identifying the classes that should exist in our system: this
is a major part of the work of designing an object-oriented system. Before we discuss how
to identify objects and classes, let’s discuss the criteria for success.

5.1.1 What makes a class model good?

Ultimately, we have two objectives which we aim to meet:

• build, as quickly and cheaply as possible, a system which satisfies our current require-
ments;

• build a system which will be easy to maintain and adapt to future requirements.

56

Identifying objects and classes 57

These aims are often seen as being in conflict; a reason for the success of object-oriented,
and especially component-based, design techniques is that they take us a long way toward
reconciling them.

In order to meet the first objective:

Every piece of behavior which is required of the system must be able to be provided,
in a sensible way, by objects of the classes we choose.

We have already seen in Chapter 1 that in order to meet the second objective we should
build a system composed of encapsulated modules, with low coupling and high cohesion.
In addition:

A good class model consists (as far as possible) of classes which represent enduring
classes of domain objects, which don’t depend on the particular functionality required
today.

For example, any library system will involve books, so it’s reasonable to have a
class Book. (Notice that names are important: it would not be so clear to call the class
LiteraryPaperArtifact or B.)

Discussion Question 30
Why is there a conflict between the two aims above? What considerations might
determine whether an organization considered one more significant than the other?

5.1.2 How to build a good class model

Let us first emphasize that you can use any technique you like to get your classes: anything,
including divine inspiration, is fine, if it leads to a class model which is good by the criteria
we’ve given. Conversely, if you produce a bad class model (one that does not meet the
criteria) nobody will care what wonderful method you used to get it!

In practice you will not be likely to get it right first time. The collection of classes in your
design model is one of the things that will probably change over and within the iterations of
development. You will usually identify the most important classes of domain objects – i.e.
those belonging obviously to the problem rather than those you have introduced to solve
it – first and most easily. The other classes, which correspond less clearly to domain
objects, are harder to identify with confidence.

What drives?

OO experts tend to fall into one of two camps: those who advocate data-driven design and
those who advocate responsibility-driven design. As we have seen in Chapters 2 and 3,
classes have both data and responsibilities. A caricature of data-driven design (DDD) is
that it involves identifying all the data in the system and then dividing it up into classes,
before considering the classes’ responsibilities; the noun identification technique, which
we used in Chapter 3 and will consider further here, is a central part of DDD. A caricature
of responsibility-driven design (RDD) is that it involves identifying all the responsibilities
in the system and dividing them up into classes, before considering the classes’ data.

58 Essentials of class models

Of course both caricatures describe extreme approaches which could not work: nobody
seriously proposes anything so extreme. We feel that the distinction between RDD and
DDD is not a useful one in the context of this book. It is much easier to use a mixed approach
on a project than to describe it in a book. For clarity, we will present techniques separately,
but the nature of a successful object-oriented project is that a variety of techniques will
be used, often simultaneously. Noun identification, which we describe next, is a technique
associated with DDD; CRC cards, which we describe at the end of the chapter, is more an
RDD technique.

One technique: noun identification

In Chapter 3 we saw one example of how to identify objects and classes. We proceeded in
two stages.

1. Identify candidate classes by picking all the nouns and noun phrases out of a requirements
specification of the system. (Consider them in the singular form, and do not include
phrases containing ‘or’ as single candidates.)

2. Discard candidates which are inappropriate for any reason, renaming the remaining
classes if necessary.

The reasons (some of which we saw in Chapter 3) why we might decide that a candidate
is an inappropriate class include that it is:1

• redundant, where the same class is given more than one name. It is, however,
important to remember that similar objects may not be entirely identical: whether things
are different enough to merit different classes is one of the things you have to decide.
For example, we include under this heading pairs like ‘loan’ and ‘short term loan’: they
are different, but probably only in the value of attributes. Choose a name for the class
that encompasses all the descriptions you mean to include.

• vague, where you can’t tell unambiguously what is meant by a noun. Obviously you
have to clear up the ambiguity before you can tell whether the noun represents a class.

• an event or an operation, where the noun refers to something which is done to, by,
or in the system. Sometimes such a thing is well modeled by a class, but this is not the
usual case. Recalling the discussion in Chapter 2, ask yourself whether an instance of
the event or operation has state, behavior, and identity. If not, discard it.

• meta-language, where the noun forms part of the way we define things. We use the
nouns requirements and system, for instance, as part of our language of modeling, rather
than to represent objects in the problem domain.

• outside the scope of the system, where the noun is relevant to describing how the
system works but does not refer to something inside the system, e.g. library in the
example of Chapter 3. Names of actors are often discarded by this rule when there’s no
need to model them in the system. We could also use this rule to justify the discarding
of week in Chapter 3, though this is an example of where it’s much more obvious that
something isn’t a class than why.

1 This list is inspired by, but not identical to, one described by Rumbaugh et al. in [40], and adapted in the Open
University course M868 [46].

Identifying objects and classes 59

• an attribute, where it is clear that a noun refers to something simple with no interesting
behavior, which is an attribute of another class. (‘Name’ of library member might be an
example.)

Discussion Question 31
In general, if you are in doubt about whether to keep a class, do you think it is better to
keep it in (possibly throwing it out later) or to throw it out (possibly reinstating it later)?

This is a question on which experienced people disagree: there is probably an element
of individual psychology. Some people keep two lists, one for strong candidates and one
for weaker ones, and this is a useful technique for avoiding losing information while still
distinguishing between things you’re sure about and things that have yet to be settled. For
example, in the library example of Chapter 3, you might not be sure about discarding ‘loan’
or ‘rule’, so these might go on your ‘possibles’ list. (We’ll discuss association classes, of
which ‘loan’ might turn out to be an example, in Chapter 6. ‘Rule’ is not a very likely class
in this particular system, but it can be useful to code so-called business rules as classes,
especially in cases where the rules are complex and prone to change.) Once you begin
identifying associations among classes, the question of what classes belong in a conceptual
level class model will usually resolve itself quite quickly.

This rather simple technique is a remarkably useful way to get started. That’s all it is:
for example, the list of reasons for discarding candidate classes isn’t exhaustive, and there
may be more than one reason for discarding the same candidate. When you have more
experience, you will probably use it in your head as a check to find any domain abstractions
you may have forgotten. You will probably identify classes and associations in parallel,
although, for clarity, we present these as separate procedures here. Beginning to use CRC
cards at this stage is also useful: we discuss CRC cards at the end of this chapter.

Discussion Question 32
Is the list of reasons for discarding reasonable? Can you think of cases where it might be
too selective or too permissive? Do you want to alter the list?

5.1.3 What kinds of things are classes?

A class describes a set of objects with an equivalent role or roles in a system.
Objects and their division into classes often derive from one of the following sources

(originally given by Shlaer and Mellor [42] and later paraphrased by Booch [7] and adapted
further here):

• tangible or ‘real-world’ things – book, copy, course;

• roles – library member, student, director of studies;

• events – arrival, leaving, request;

• interactions – meeting, intersection.

These categories overlap, and the first two are much more common sources of objects and
classes than the last two. On the other hand, if we have identified objects which fall into the
first two categories, the other two may help us to find and name associations between them.

60 Essentials of class models

5.1.4 Real-world objects vs their system representation

It is important to remember that objects are really things inside a computer program – that
when we talk about ‘books’ and ‘copies’, for example, we really mean the representation
of these things within our system. The consequences of this are that we must be careful

• not to record information that is definitely irrelevant to our system;

• not to lose sight of the fact that the objects are the system!

The latter point is particularly interesting. A classic error for people not yet steeped
in OO is to invent a class, often called [Something]System, which implements all the
system’s interesting behavior. But in OO the whole caboodle is the system – that’s the
point! It’s easy to drift into monolithic design in which there is just one object that knows
and does everything. This is bad because such designs are very hard to maintain: they tend
to have assumptions built into them about how the system will be used. (There is a quite
different way of having a class which encapsulates the system: it is often useful, and in
some languages obligatory, for there to be a main class, which is instantiated just once in
each running instance of the system, and which provides the entry point of the program.
Starting the program automatically creates this main object, which in turn creates the other
objects in the system. The main object does not, however, have any complex behavior of its
own. At the very most, it might forward messages arriving from outside to the appropriate
object. This is related to the Façade pattern, which we will consider in Chapter 18.)

In Chapter 7 we will return to the question of how participants from outside our computer
system (known in UML as actors) are represented in our design. This (it will turn out) is
an essential part of what we’ve been discussing here. We’ve already touched on this in
Chapter 3.

Q: Revisit the requirements description for the library system in Chapter 3. Apart from
the classes identified for the first iteration, what classes should be in the final system?

5.2 Associations

In the same sense that classes correspond to nouns, associations correspond to verbs. They
express the relationship between classes. In the example in Chapter 3, we saw associations
like is a copy of and borrows/returns.

There are instances of associations, just as there are instances of classes. (Instances of
classes are called objects; instances of associations are called links in UML, though this
term is rarely used.) An instance of an association relates a pair2 of objects.

We can look at associations conceptually or from an implementation point of view.
Conceptually, we record an association if there is a real-world association described by a
short sentence like ‘a library member borrows a book’ and the sentence seems relevant to
the system at hand.

Class A and class B are associated if:

• an object of class A sends a message to an object of class B;

2 We discuss only binary associations in this book, though in fact UML does have associations of other arities.

Associations 61

• an object of class A creates an object of class B;

• an object of class A has an attribute whose values are objects of class B or collections of
objects of class B;

• an object of class A receives a message with an object of class B as an argument.

In short, they are associated if some object of class A has to know about some object of
class B. Each link, that is, each instance of the association, relates an object of class A
and an object of class B. For example, the association called borrows/returns between
LibraryMember and Copy might have the following links:

• Jo Bloggs borrows/returns copy 17 of The Dilbert Principle

• Marcus Smith borrows/returns copy 1 of The Dilbert Principle

• Jo Bloggs borrows/returns copy 4 of Software Reuse

Discussion Question 33
As an alternative to calling this association borrows/returns, we (the authors) could
have chosen to have two separate associations, one called borrows and the other called
returns. Indeed if, instead of considering who borrows and returns a copy, we had
been considering who is the author of a copy and who owns it, we would have chosen to
have two separate associations. What’s different about the two situations? Do you agree
with our choice?

Discussion Question 34
Think about how the cases of association listed above overlap, and consider whether
any of them should be removed. It is arguable, for example, that if an object of class A
receives a message with an object of class B as argument, but does not later send that
object a message or store it in an attribute, then this should not count as an association.
In fact such a situation is often, though not always, bad design anyway. Construct some
examples and consider whether you think they are sensible. Do you have an opinion on
whether this should count as association?

The secret of good object-oriented design is to end up with a class model which does not
distort the conceptual reality of the domain – so that someone who understands the domain
will not get unpleasant surprises – but which also permits a sensible implementation of the
required functionality. When you develop the initial class model, before you have identified
the messages which pass between objects, you necessarily concentrate on the conceptual
aspect of the model. Later, when we use interaction models to check our class model, we
will be more concerned with whether the model permits a sensible implementation of the
required functionality. However, the process isn’t that you first develop the conceptual
model, and then forget about conceptual relationships to develop the implementation class
model. Throughout the development, you aim to develop a model which is good in both
conceptual and implementational aspects. Success in this is a large part of what leads to a
maintainable system, because such a model tends to be comparatively easy to understand,
and therefore comparatively easy to modify sensibly.

In Figure 5.2 we can see how UML represents a general association between two classes,
by drawing a line between their icons. This is usually annotated in various ways. It should

62 Essentials of class models

BookCopy
is a copy of

Figure 5.2 Simple association between classes.

normally at least have a label giving it a name, for readability. In Chapter 6 we will
discuss the use of arrows on the association line to denote navigability: does the book
know about the copy, or vice versa, or both? You might like to think about these questions
now: some experts feel strongly that it is important to answer such questions early, others
disagree.

Discussion Question 35
What are the advantages and disadvantages of deciding about navigability at this stage?

In the earliest stages of the development of a model it is often enough to draw a single
line, indicating but not tying down the existence of some coupling. As the design matures,
this line may be replaced with several, indicating different sorts of association. Some sorts
of association are so common that UML has a predefined way of showing them; others can
be defined by the designer as needed. We will look at different forms in Chapter 6.

TECHNICAL UML NOTE

The definition of association that we use in this book is a dynamic one: if at runtime
objects may exchange a message, there must be a navigable association between
their classes. Sometimes it is convenient to take a more restrictive static view, in
which class A only has a navigable association to class B if an attribute of A contains
an object (or collection of objects) of class B. UML does not properly specify which
definition to use: in practice, it is up to the modeler to decide exactly what the
existence of an association means. (Sometimes your choice may be determined by
your choice of tool, especially if you use code generation features.) UML2 also
includes the notion of a ‘Connector’ which is a more general way of connecting
classes (and other classifiers). If you took a restrictive view of associations, you might
also want to use connectors in other circumstances. We will look at a particularly
useful kind of connector, an ‘assembly connector’, in the next chapter.

One annotation which is often used early on is the multiplicity of an association.
Although it may not always be clear initially and may change with subsequent refinement
of the design, this is so fundamental that we will spend some time thinking about it here.

5.2.1 Multiplicities

In the example in Chapter 3, we showed a 1 at the Book end of the association is a copy

of, because every copy (that is, every object of class Copy) is associated by is a copy

Attributes and operations 63

of with just one book (object of class Book). On the other hand, there may be any number
of copies of a given book in our system. So the multiplicity on the Copy end is 1..*.

As you see, we can specify:

• an exact number simply by writing it;

• a range of numbers using two dots between a pair of numbers;

• an arbitrary, unspecified number using *

Loosely, you can think of UML’s * as an infinity sign, so the multiplicity 1..* expresses
that the number of copies can be anything between 1 and infinity. Of course, at any time
there will in fact be only a finite number of objects in our whole system, so what this
actually says is that there can be any number of copies of a book, provided there’s at least
one.

Attributes, which we’ll discuss in the next section, can have multiplicities too.

Q: Express in UML that a Student takes up to six Modules, where at most 25
Students can be enrolled on each Module.

Q: Consider the various ways in which such an association can be implemented in your
programming language.

Discussion Question 36
Express in UML the relationship between a person and his/her shirts. What about the
person’s shoes? Do you think you have exposed a weakness in UML? Why, or why not?

Discussion Question 37
The number zero can never be a meaningful multiplicity, or can it?

Discussion Question 38
The existence of a multiplicity greater than one is sometimes assumed to mean that
objects of that class must exist as a collection of some sort. Is that a safe assumption?

5.3 Attributes and operations

The system that we build will consist of a collection of objects, which interact to fulfill
the requirements on the system. We have begun to identify classes and their relationships,
but this cannot proceed far without considering the state and behavior of objects of these
classes. We need to identify the operations and attributes that each class should have. Some
will be obvious; others will emerge as we consider the responsibilities of objects and the
interactions between them.

64 Essentials of class models

5.3.1 Operations

Most important are the operations of a class, which define the ways in which objects
may interact. As we said in Chapter 2, when one object sends a message to another, it is
asking the receiver to perform an operation. The receiver will invoke a method to perform
the operation; the sender does not know which method will be invoked, since there may
be many methods implementing the same operation at different levels of the inheritance
hierarchy. The signature of an operation gives the selector, the names and types of any
formal parameters (arguments) to the operation, and the type of the return value. Here, as
usual, a type may be either a basic type or a class. Operations are listed in the bottom,
third, compartment of a class icon.

Q: Revisit the example in Chapter 3 and derive operations for all the classes there.

5.3.2 Attributes

The attributes of a class – which, as discussed in Chapter 2, describe the data contained
in an object of the class – are listed in the second, middle, compartment of a class icon.
Figure 5.3 is a version of the Book class icon which shows that each object of class Book
has a title, which is a string, and understands a message with selector copiesOnShelf,
which takes no argument and returns an integer, as well as borrow, which takes as
argument an object of class Copy and returns no result.

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

Figure 5.3 A simple class model, with attribute and operation.

Notice that we do not normally include attributes that simply implement the associations
shown in the class diagram. For example, we do not show that Book has an attribute
copies in which to store the collection of references to the Copy objects associated with
the Book. The final implementation probably will have such an attribute, but to show
it would add extra notation to the diagram without adding useful information. (It would
also imply a decision about the navigability of the association, which would arguably be
premature. Navigability is discussed further in Chapter 6.)

A rule of thumb is that the types of attributes should be either primitive types (integer,
string etc.) or classes which do not appear in the class diagram, such as library classes. If
the type of an attribute is a class which does appear in the class diagram, it is usually better
to record an association between the two classes.

Q: Look for any obvious attributes that might exist for the other classes in the example
from Chapter 3.

Generalization 65

Views of operations and attributes

Just as with associations, we have a conceptual approach and a pragmatic approach, which
we attempt to make consistent.

The conceptual approach involves identifying what data is conceptually associated with
an object of this class, and what messages it seems reasonable to expect the object to
understand. The latter view can lead you into an anthropomorphic view of objects as having
an intelligence of their own – ‘If a book could talk, what questions would you expect it to
be able to answer?’ – which some people find disconcerting, but which can nevertheless
be worthwhile!

Pragmatically, we have to check that we have included enough data and behavior for
the requirements at hand. To do this, we have to start to consider how the objects of our
classes will work together to satisfy the requirements. One very useful technique for doing
this is CRC cards, which we describe later in this chapter.

5.4 Generalization

Another important relationship which may exist between classes is generalization. For
example, LibraryMember is a generalization of MemberOfStaff because, conceptually,
every MemberOfStaff is a LibraryMember. Everything that every LibraryMember can
do can certainly be done by every MemberOfStaff. So if some part of our system (e.g.
the facility to reserve a book) works on an arbitrary LibraryMember, it ought to work on
an arbitrary MemberOfStaff too, since every MemberOfStaff is a LibraryMember. On
the other hand, there may be things that don’t make sense for every LibraryMember, but
only for a MemberOfStaff (e.g. borrow journal). MemberOfStaff is more specialized
than LibraryMember; or LibraryMember is a generalization of MemberOfStaff.

In other words, an object of class MemberOfStaff should conform to the interface given
by LibraryMember. That is, if some message is acceptable to any LibraryMember, it
must also be acceptable to any MemberOfStaff. MemberOfStaff, on the other hand,
may understand other, specialized messages which an arbitrary LibraryMember might
not be able to accept – that is, a MemberOfStaff’s interface may be strictly broader than
LibraryMember’s.

From this we can see that to say that a generalization relationship exists between classes
is to make a strong, though informal, statement about the way the objects of the two classes
behave.

An object of a specialized class can be substituted for an object of a more general
class in any context which expects a member of the more general class, but not the
other way round.

This takes us to a further rule about the design of classes where one is a specialization
of the other.

There must be no conceptual gulf between what objects of the two classes do on
receipt of the same message.

66 Essentials of class models

Stating this more precisely is surprisingly difficult: see Panel 5.1.

PANEL 5.1 Design by Contract 2 – Substitutivity

In this panel we continue the discussion of the contract that an object must fulfill,
by considering how this concept is related to inheritance. An object of a subclass is
supposed to be usable anywhere that an object of the superclass was usable. In other
words, the subclass is supposed to fulfill the contract entered into by the superclass.
Let us examine what that means in practice.

The easier aspect is what it means for the attributes of the class and the class
invariant. (Recall from Chapter 3 that a class invariant is a statement about the
values of attributes of a class that must hold for all objects of the class.)

Q: In Chapter 2 we said that a subclass could have extra attributes and operations
as well as those of its superclass, but that it could not drop any of the superclass’s
attributes or operations. Why? What about operations that are not in the object’s
public interface?

Q: If a superclass has a class invariant, does the subclass need a class invariant?
What should the relationship between the two invariants be? Give examples of
correct (substitutive) and incorrect inheritance in this case.

Substitutivity needs checking if the subclass overrides any of the superclass’s
methods: that is, defines its own methods to implement the operations. We said that
the new methods must do conceptually the same job; now we will be more precise.
The overall slogan for the subclass, seen as a subcontractor, is

Demand no more: promise no less.

‘Demand no more’ describes the circumstances under which the subclass must
accept the message (without complaining). It must be prepared to accept any
arguments that the superclass would have accepted. Therefore its precondition
must be no stronger than the precondition of the superclass’s implementation. It
may be that the subclass’s implementation is an improvement on the superclass’s
implementation in the sense that it works in more situations: that’s fine.

‘Promise no less’ describes what the client can assume about the state of the
world after the operation has been carried out. Any assumption which was valid
when the superclass’s implementation was being used should still be valid when the
subclass’s implementation is used. Therefore the subclass’s postcondition must be
at least as strong as the superclass’s version.

Behavioral subtyping, often known as Liskov substitutivity after Barbara Liskov
who popularized it, is a strong and precise version of this slogan. Suppose some
program expects to interact with an object of class C, and that instead it is given
an object s of class S, a subclass of C. If Liskov substitutivity holds, there is some
object c of class C which could be used instead of s without altering anything about
the behavior of the program.

Generalization 67

Discussion Question 39
Construct a few examples to see what this means in practice. Are there circum-
stances under which this requirement might be too strong? Too weak?

Q: In your programming language, if a subclass overrides an attribute or operation
from a superclass, is it allowed to change their types? In what way?

Consider the list of cases in which two classes were associated (Section 5.2).
We should perhaps add ‘knowingly’ to some of the cases: class A and class B are
associated if an object of class A knowingly sends a message to an object of class B,
and so on. Suppose the code of class A mentions an object which the writer of class A
expected to belong to class B. The point is that the object could actually belong
to any subclass of class B, and – if substitutivity holds – class A will still work as
expected. It is not useful to add an association between class A and every subclass
of class B: this would clutter the diagram without adding any new information.

In other words, if there is an operation such as borrow(c:Copy) defined for any object
of the class LibraryMember, the way that operation is carried out should be clearly
comparable to the way it is carried out for a MemberOfStaff. Their behavior doesn’t have
to be identical, but it must be similar enough that other operations which rely on what the
operation borrow(c:Copy) does when requested from an object of a more general class
(LibraryMember) will also work with an object of a specialized class (MemberOfStaff).

Figure 5.4 shows how generalization is shown in UML.

LibraryMember

MemberOfStaff

Figure 5.4 A simple generalization.

68 Essentials of class models

5.4.1 Using English to check whether a generalization exists

Class Bar is probably a generalization of class Foo if it is true that every Foo is a Bar.
Often we just talk about ‘is a’ relationships – a Foo is a Bar.

However, if we rely too naı̈vely on this check, it is very possible to come unstuck,
because of the ambiguous nature of English. For example (from Fowler’s book, UML
Distilled, page 75 [19]), you might casually say ‘a Border Collie is a Breed’ and conclude
that Breed is a generalization of Border Collie, which is rubbish. Try out ‘every Border
Collie is a Breed’ which is more obviously rubbish.

The problem is actually that the statement in English ‘a Border Collie is a Breed’ is
wrong to start with, since it relates a single instance of Border Collie to a collective noun,
Breed. It should have been ‘Border Collie is a Breed’. Putting in ‘every’, replacing the
initial ‘a’, helps to show that the original claim was nonsense.

5.4.2 Implementing generalization: inheritance

One way (not the only way) to implement a generalization is by inheritance. Whereas gen-
eralization is a conceptual relationship between classes, inheritance is an implementation
relationship.3

Instead of duplicating the definition of LibraryMember, and possibly adding to
it, to define MemberOfStaff – which would be possible, and there would still be a
generalization between LibraryMember and MemberOfStaff – we often choose to
use inheritance, which is provided in object-oriented programming languages, to define
MemberOfStaff in terms of LibraryMember. We discussed inheritance as a technical
concept in Chapter 2; here we need to consider the pragmatic issues of how inheritance is
used.

Inheritance is not the silver bullet it may appear to be. The main problem is that
a subclass is dependent on its superclasses, so using inheritance tends to increase the
coupling in a system. If a superclass is later changed, even in ways which do not affect its
behavior, this may force the recompilation of subclasses, or even make changes to their
code necessary. This is sometimes called the fragile base class problem. Another effect of
the tight coupling between subclass and superclass is that, even if you are confident that
a superclass is correct, it is not usually possible to make use of this confidence to reduce
the amount of testing that has to be done on the subclass. We will return to this when we
consider testing in Chapter 19.

Because of these problems we recommend that you use inheritance between classes
only when it models a conceptual generalization relationship. It is tempting to use it for
convenience in other cases, but it is not usually worthwhile; an implementation using
composition is often more robust. Suppose, for example, that we have a class List

available and that we wish to implement a class AddressBook in which the addresses are
stored in a List. A classic mistake is to make AddressBook inherit from List. A better
solution is to make an AddressBook own a List, for example by having an attribute
addresses : List.

3 When the two notions are distinguished at all – as we remarked in Chapter 2, they are sometimes loosely used
as synonyms.

CRC cards 69

Discussion Question 40
Why is the composition solution better than the inheritance solution? Compare the
effort involved in initial development of the AddressBook. Then compare the changes
required if the List implementation or interface changes, and those required if it is
decided to use a different class instead of the List (Dictionary, say).

Q: Are Book and Journal related by generalization?

5.5 The class model during the development

As we have mentioned, the class model will be developed gradually over several iterations
of the system’s design. We start by recording conceptual relationships and capabilities,
independently of any implementation as far as possible.

Later we add more detail, introducing new operations and more specific associations.
Attributes are added in this refinement process, which is repeated until we are satisfied that
our design is complete and consistent.

Models vs diagrams

Remember that in Chapter 4 we explained the distinction in UML between a model of
a system, which is a collection of model elements representing a view of the design at
some level of abstraction, and a diagram of that model, which is a way of representing the
model graphically. We also warned that although the distinction is sometimes important,
in practice the terms model and diagram are often used interchangeably. Here is a case
where it is important to distinguish between them.

There is a single class model – more accurately called the static structural model since,
as we shall see, it can represent more than just classes – for a given system, and each
class of the system appears in it just once. The class model describes the overall static
structure of the system. It can, however, be described by several different class diagrams
for legibility. Similarly, although each class occurs just once in the class model, it is
possible to represent a class more than once on a class diagram. You might want to do this
if the layout of the diagram is such that it is more readable that way. However, since in the
underlying model there is only one model element representing the class, it is vital that two
iconic representations of the class in a diagram do not give conflicting information about
the class. A CASE tool can help to ensure this consistency. Without one, we recommend
that you do not represent the same class more than once on a class diagram.

5.6 CRC cards

One common way of checking for a good design and guiding its refinement is to use CRC
cards. CRC stands for Class, Responsibilities, Collaborations. CRC cards were introduced
(and described in a paper [2] at the major OO conference OOPSLA’89) by Kent Beck
and Ward Cunningham, as a technique to help programmers with experience in non-OO
languages to ‘think objects’.

70 Essentials of class models

Although CRC cards are not part of UML, they add some very useful insights throughout
a development, including in the very early stages when you are identifying classes and
their associations. We will therefore make a short detour to look at how to create and use
them.

5.6.1 Creating CRC cards

On a small card, we record:

• the name of a class, at the top;

• the responsibilities of the class, on the left-hand side;

• the collaborators of the class, which help to carry out each responsibility, on the
right-hand side of the card.

The responsibilities of the class describe at a high level the purpose of the class’s
existence: they are connected with the operations the class provides, but are more general
than that might imply. For example, ‘maintain data about the book’ is acceptable as a
description of a responsibility, though there might be many associated operations necessary
for getting or resetting the various bits of data concerned.

A class should not normally have more than three or four responsibilities, and many
classes will have only one or two. If a class does end up having more responsibilities,
consider whether you can describe them more concisely, and, if not, consider whether
it would be better to split the responsibilities and have two or more classes. You will
probably identify one or two responsibilities of the class immediately – if a class had no
responsibilities, you would not have invented it – but the responsibilities will be revised as
you use the CRC cards.

Too many responsibilities corresponds to low cohesion in your model; too many
collaborators corresponds to high coupling. Using CRC cards can help to identify and fix
both of these faults in your model.

At the beginning you may not know which other classes a class has to collaborate with
in order to fulfill a responsibility; this becomes clear as you use the cards. If an object of
one class collaborates with an object of another, it does so by sending it a message; so a
class has an association with each of its collaborators. Using CRC cards is the best way we
know to work out in which direction associations should be navigable, and it can also help
to identify the associations, especially between classes that do not represent real-world
objects.

5.6.2 Using CRC cards in developing a design

You can use CRC cards to walk through use cases, working out how the class model
provides the functionality required by the use cases, and where the missing bits are. (You
can see this as discovering the collaborations and interactions which realize your use
cases. We will discuss how to record this information permanently in UML notation in
Chapter 9.)

A possibly useful technique is role playing. If you are working in a team, each person
can take on one or more CRC cards’ responsibilities, where the complete set of cards
represents the classes responsible for one major aspect of the system’s responsibilities.

CRC cards 71

You can test the completeness of your design by working through the various scenarios of
the relevant use cases.

First pick a typical scenario from a use case. For example, in the Borrow copy of

book use case, start with the scenario of a borrower successfully borrowing a book. As
the design becomes more solid, anyone who suspects that there may be a problem with
the design can suggest a scenario that may illustrate the problem (e.g. what happens if
there is no copy available). The initial request is given to the person whose CRC card
represents a class whose responsibilities include realizing the scenario; this represents an
object of that class receiving a message from the initiator of the scenario. If the object
needs assistance from one of its collaborators, it will, in the eventual implementation, send
it a message requesting it to perform an operation. Each operation which an object may
be asked to perform should form part of one of the responsibilities of the object’s class;
the responsibilities of a class can be seen as a summary of the operations it can perform.
When you first use CRC cards, you will probably just consider whether it is broadly
reasonable to expect a particular collaborator to be able to help perform a particular part of
a responsibility; later, you can examine the interactions in more detail to design the actual
collection of operations for each class.

If there is a missing link – something has to be done, but no class has the responsibility
of doing it – this means the design is faulty or incomplete. You might need to create a
new class, change the collaborations and responsibilities of an existing class, or both. It’s
important to remember that the changes you make must preserve the overall sensibleness
of the models: avoid jumping at the obvious fix for the particular problem case that has
turned up, without thinking about the other implications of the change. It’s often useful to
write a new card for a class if you’ve substantially altered its original card.

Notice that the system actually works by means of objects, rather than classes, communi-
cating: you will need to bear in mind whether a CRC card for a class is always representing
the same object of that class, or whether several different objects of the class are involved.

A useful side effect of working through examples in this way is that it builds a team
spirit and gives everyone a feeling that they own a stake in the design. Naturally some
teams will find the technique more useful than others!

As an alternative, especially where you are working alone, you can arrange the cards
to represent relationships between them – you can consider this as drafting a class model.
For example, some people like to pile cards related by generalization together, with the
most abstract at the top, so that you use the specialized class only when the particular
specialization is relevant.

5.6.3 CRC card example

Figure 5.5 is an example drawn from the case study in Chapter 3. We start by drawing
some CRC cards for the classes LibraryMember, Book and Copy. Our decisions are
based on our intuition about how instances of these classes will collaborate. We can then
check how a particular use case might be carried out.

Although the amount written on each card is quite brief, this is not a toy example: its
scale is about right. Crowded CRC cards mean either badly expressed responsibilities or
non-cohesive classes.

72 Essentials of class models

LibraryMember

Responsibilities Collaborators
Maintain data about copies currently borrowed
Meet requests to borrow and return copies Copy

Copy

Responsibilities Collaborators
Maintain data about a particular copy of a book
Inform corresponding Book when borrowed and returned Book

Book

Responsibilities Collaborators
Maintain data about one book
Know whether there are borrowable copies

Figure 5.5 Example of CRC cards for the library.

If we follow through the processing of a request by a BookBorrower to Borrow copy

of book, we can check if any other classes would need to be involved. We can also check
the messages that might need to be sent. If a responsibility cannot be met by an object, it
needs to either add to its own definition or define a collaboration with another class which
can meet it.

We can also explore the generalization relationship between LibraryMember and
MemberOfStaff by seeing how far they share responsibilities and collaborators. We find
that all the responsibilities of a LibraryMember are shared by a MemberOfStaff, but
not the other way round. This confirms our earlier impression that a MemberOfStaff is
a specialization of a LibraryMember. More generally, we can watch for opportunities to
refactor the class model into a better one.

5.6.4 Refactoring

Refactoring is the process of altering the class model of an object-oriented design without
altering its visible behavior. For example, if at any stage you become aware that an
operation doesn’t fit properly in the class where it is – the responsibilities are not allocated
to classes in the best possible way – a refactoring step would be to make the necessary
changes to put the operation where it should be, updating whatever code and design
documentation needs to be modified.

The WRITE ONCE rule is a good source of refactoring steps. For example, if you
find you have two classes with overlapping responsibilities and behavior, you can often
usefully factor out the common behavior into a new superclass from which both inherit. In
fact, this process can help with one of the hardest aspects of object-oriented analysis and
design, namely finding the right abstractions which will make the design clean and robust.
Such classes often do not show up at all in the requirements document – because they are
not domain classes themselves, although they express what several domain classes have in
common – so noun identification will not find them. See Kent Beck’s book [3] for many
refactoring ideas.

CRC cards 73

Q: Work through the example of borrowing in the library, using the CRC cards shown
and modifying them if necessary.

Q: Try a similar analysis for returning a book and for borrowing and returning a
journal.

SUMMARY

This chapter introduced class diagrams, which represent the static structure of the system to
be built. We discussed how classes and their associations can be identified, and the concept
of multiplicity of an association. We showed how a class’s attributes and operations are
shown. Next we covered generalization, which can be implemented, for example, by
inheritance. Finally we discussed the role of the class model through the development, and
illustrated the use of CRC cards for validating a class model.

DISCUSSION QUESTIONS

1. Why should classes have names in the singular? Do you think there are any exceptions?

2. What are the advantages and disadvantages of formally deciding from what perspective
you’re drawing a particular class model?

3. Under what circumstances could you have classes in your model that don’t correspond
to domain objects? Can you think of any examples where this seems necessary in the
library example?

4. How are the associations set up in the implementation? How, if at all, should your class
model describe this? Does it depend on the stage of development? How?

5. Consider the dynamic and static notions of association mentioned in the Technical UML
Note in Section 5.2. Construct a small example of classes which are dynamically but
not statically associated, and consider the two versions of the UML class diagram you
get by adopting either notion. What do you think are the advantages and disadvantages
of each convention? What does the absence of an association between classes mean, in
each case?

chapter 6
More on class
models

In this chapter we consider other features of UML class diagrams. They are less central
than the ones described in Chapter 5, and you may choose to skip this chapter on a first
reading. However, one of UML’s strengths is its expressiveness, and here we give a taste
of that covering most (but not quite all) features of class diagrams.

Along the way we’ll discuss a few aspects of UML which are not specific to class models,
but which we use here for the first time. These are constraints, UML’s main extensibility
mechanisms (stereotypes, properties and tagged values), interfaces, dependencies and
packages.

We begin by considering extra information that may be recorded along with an
association between two classes.

6.1 More about associations

6.1.1 Aggregation and composition

Aggregation and composition are kinds of association: instead of just showing that two
classes are associated we may choose to show more about what kind of association this is.
Aggregation and composition are both ways of recording that an object of one class is part
of an object of another class.

For example, Figure 6.1, drawn from the case study in Chapter 15, shows that a Module
is part of an HonoursCourse. This notation, with the open diamond, denotes aggregation,
which is the more general way of denoting a part–whole relationship in UML. Notice that
the diamond goes at the end of the whole, not the part. We can still use all the other notation
that goes with associations. For example, we can show multiplicities just as with a normal
association. Notice that an object is allowed to be simultaneously part of several other
objects: in our case, a single Module could be part of several different HonoursCourses.
(For example, Software Engineering with Objects and Components 2 is part of both the
Software Engineering and the Computer Science honours courses.)

We normally don’t bother to name an aggregation association, since the name of the
association would normally be ‘is a part of’ and this is reflected in the aggregation notation
already, so there’s no need to put it in words too. However, if it helps to name the
association (for example, if we want to describe the function of the part in the whole) that’s
perfectly legal.

74

More about associations 75

HonoursCourse Module

1..* 6..*

Figure 6.1 An aggregation.

From this lack of any new restrictions we see that aggregation is essentially a conceptual
notion: seeing an aggregation in a class model should help you to understand the
relationships between the classes at an informal level, but it doesn’t give you any more
formal information about how they must be implemented or what you can do with them.
(Although see Discussion Question 47 later in this chapter: it is arguable that an aggregation
should imply some things, even though in UML it currently doesn’t.)

Composition is a special kind of aggregation which does impose some further restrictions.
In a composition association, the whole strongly owns its parts: if the whole object is copied
or deleted, its parts are copied or deleted with it. (In order for this to be implementable the
association must be navigable from the whole to the part, although UML does not explicitly
specify this.) The multiplicity at the whole end of a composition association must be 1 or
0..1 – a part cannot be part of more than one whole by composition. The example with
Module and HonoursCourse does not fit these restrictions, so a composition would not be
appropriate in that case. On the other hand, consider a Noughts and Crosses (Tic-Tac-Toe)
application of the game framework considered in Chapter 16, which might sensibly be
implemented in terms of classes Square and Board. Each Square is part of exactly one
Board, and it wouldn’t be sensible to copy or delete a Board object without copying
or deleting the Square objects that make up the Board. So in this case composition is
appropriate, and we show it in Figure 6.2. Composition is shown just as aggregation is,
except that the diamond is filled in.

WARNING

In our experience people new to object-oriented modeling use aggregation and
composition far too often. Remember that both are kinds of association, so whenever
an aggregation or composition is correct, so is a plain association. If in doubt, use a
plain association.

Board Square
9

1

Figure 6.2 A composition.

76 More on class models

Discussion Question 41
Think about some cases where aggregation or composition might be appropriate. For
example, what about the relationship between an Employee and a Team? Between Wheel
and Car? Account and Customer? Can you describe different contexts, in which classes
with these names might arise, where because of differences in the context different
relationships would be appropriate?

Discussion Question 42
If you know C++ or another object-oriented language which can refer to objects either by
value or by reference: people sometimes distinguish between aggregation and composition
by saying that you have aggregation if the whole contains a reference or pointer to the
part, and composition if the whole contains the part by value. Consider why this is, and
whether it’s appropriate.

Mnemonic

The stronger symbol, the solid diamond, represents the stronger relationship, composition.
When you rub out a solid diamond, you have to delete the inside of the diamond symbol,
as well as the border, just as when you delete a composite object you have to delete the
parts as well as the whole.1

6.1.2 Roles

We have shown how to name an association. Often you can naturally read an association
name in both directions (‘is taking’, ‘is taken by’). Sometimes, however, it’s more readable
to have separate names for the roles that the objects play in the association, either as well
as or instead of naming the association. For example, Figure 6.3 makes clear that the role
of the Student in this association is that of directee, which might possibly be useful,
for example, if directee was a commonly used term in an accompanying document. You
can show both an association name and the role names if you like, though this is likely to
be overkill in most situations.

Discussion Question 43
Would it be helpful to give role names to the association between Student and Module?
Why?

Director of

Studies

Student
directeeDoS

Figure 6.3 An association shown with role names.

1 Thanks to Ben Kleinman for suggesting this.

More about associations 77

6.1.3 Navigability

Consider a situation in which we have an association between two classes, for example
between Module and Student, as shown in Figure 6.4. The diagram records that:
• for each object of class Student there are six objects of class Module which are

associated with the Student;
• for each object of class Module there are some Student objects (the number of students

is unspecified) associated with the Module.

Student
Module

is taking

1..* 6

Figure 6.4 Association with no navigability shown.

It does not yet record, though, whether it should be possible to get hold of these objects
in both directions or just one. Should a Student object be able to send messages to
its associated Module objects? Should a Module object be able to send messages to the
Student objects representing students on the course? Both?

We can put an arrow on one or both ends of the association line to represent that it is
possible for messages to be sent in the direction of the arrow. We can also put a cross on
the end of the association line to represent that it is not possible for messages to be sent in
that direction. For example, Figure 6.5 indicates that a Module object can send messages
to the objects representing the students on the module, but not vice versa.

Student
Module

is taking

1..*
6

Figure 6.5 Association with one-way navigability shown.

We say that Module knows about Student, but not vice versa. Such an as-
sociation might be implemented, for example, by letting Module have an attribute
(students: StudentCollection say) which was a collection of objects corresponding
to students taking the course. This has both good and bad consequences. The application
may need this information to be readily available: in our case, for example, we have to
produce lists of students for each course, since the lecturers need them, and the easiest
way to do this is to let a Module object retrieve a collection of student names by sending
a message to each object in such a student collection. However, if class A knows about
class B, then it is impossible to reuse class A without class B; so we should not introduce
navigability unless it is required for the current application, or there is good reason to think
it will be required in future. Sometimes it is essential to allow two-way navigability along
an association, but such decisions should be justified individually rather than being the
default.

78 More on class models

Discussion Question 44
(After considering Chapter 15.) Should this association be navigable also in the other
direction – that is, should Student know about Module? Why?

The cross notation for showing non-navigability is new in UML2. Using both arrows and
crosses, it is possible to be completely explicit about how associations can be navigated.
You won’t always want or be able to include all this information, however. When you
build your initial, conceptual class model you may (quite rightly) not yet have decided
what the navigability should be. Even when you have made all the decisions, you may not
want to record them explicitly: doing so is tedious, and many UML tools do not yet permit
the use of the cross notation. UML suggests different conventions which may be useful to
save effort and reduce clutter on the diagrams. For example, the absence of an arrow may
mean non-navigability, or may mean that navigability is unspecified. In this book, we do
not usually use the cross notation. If a class diagram shows any navigability arrow you can
assume that all such arrows are shown; if it does not, we are not specifying navigability.

Discussion Question 45
When, if ever, might an association be navigable in neither direction?

Discussion Question 46
When should navigability be decided?

Discussion Question 47
According to UML, the navigability of an association is independent of whether the
association is an aggregation, a composition, or neither. What navigability do you expect
an aggregation association to have? What about a composition? Can you say anything
definite about what kind of navigability either kind of association must always have to
make sense?

6.1.4 Qualified associations

Occasionally it is helpful to give finer detail about an association than we have so far.
Consider again the Noughts and Crosses application of the game framework described in
Chapter 16, which is implemented using classes Square and Board, and suppose that a
Square is identified relative to the Board it’s on by attributes row and column, each taking
a value between 1 and 3. Forgetting about the fact that the association is a composition
for the moment (remember that an association is always correct when an aggregation or
composition is correct), the association can be shown as in Figure 6.6.

However, this doesn’t capture the idea that the nine squares are found by giving the nine
possible pairs of values to the attributes row and column. To do this we use a qualified
association as shown in Figure 6.7.

The 1 on the right-hand end, attached to Square, specifies that if we take a Board

object, call it b, and specific values for both the attributes row and column, then there
is exactly one Square object which is associated with the Board object b. The 1 on the
Board end means the same as usual: each object of class Square is on exactly one Board.

More about associations 79

Board Square
91

Figure 6.6 Plain association between Square and Board.

Board
row:{1,2,3}

column:{1,2,3}
Square

11

Figure 6.7 Qualified association.

Essentially, for each Board we have a look-up table in which we look up a Square by
its row and column. The conditions we described simply ensure that each Square occurs
in just one look-up table, just once. Notice that in general there could be more than one
object for a given value of the look-up key: the elements in the look-up table could be sets,
not just single elements.

In fact we can combine the qualified association notation with the other adornments on
associations; for example, we can add back the information that this particular association
is a composition, as shown in Figure 6.8.

Board row:{1,2,3}

column:{1,2,3}
Square

11

Figure 6.8 Qualified composition.

You may have noticed that we have cunningly not told you what class the attributes row
and column are in! They could be attributes of Square; but formally they are attributes of
the association. Each link between a Board and a Square (recall that a link is an instance
of an association) has values for row and column, which identify where the Square is on
the Board.

Q: (Derived from an example in the UML specification.) Draw a qualified association
between Person and Bank to record the fact that a Person can be associated with many
Banks, but that given a Bank and an account number, there is at most one Person with
that account number at that bank.

6.1.5 Derived associations

When developing class diagrams you will frequently wonder whether you need to show
an association or whether it’s enough to deduce its existence from something else on the
diagram. For example, if Student is associated with Module by is taking, and Module

is associated with Lecturer by teaches course, do we need also to show an association

80 More on class models

teaches student between Lecturer and Student, which might relate a lecturer to all the
students taking courses which that lecturer teaches?

Discussion Question 48
What are the advantages and disadvantages of doing so?

We can do so or not, or we can use the third option which UML gives us, which is to
show that association as a derived association. In other words, it exists automatically once
we have implemented the main associations: there is no need for a designer to consider
separately how to implement this association. A derived association is shown using a slash
in front of its name, as in Figure 6.9. (The black triangles, by the way, can be used on
any association name and simply indicate which direction of the association the name
describes.)

Student
Module

is taking

Lecturer

teaches course
/teaches student

Figure 6.9 A derived association.

TECHNICAL UML NOTE

In UML there can be derived elements other than derived associations. In general,
a derived element is distinguished from the usual form of the element by adding a
slash in front of its name. For example, you can show that an attribute of a class is
derived – that is, that you can work out what its value is in a given object if you know
the values of all the object’s normal attributes, and have access to the other objects
which this object knows about – by putting a slash in front of the attribute’s name in
the class icon. (You may find it clearer, though, to define an operation of the class,
which takes no arguments and whose return value is the derived value instead. It’s a
matter of taste.)

More about associations 81

In the example we gave, there’s only one sensible choice of what the derived association
must actually be. A Lecturer l is associated by teaches student to a Student s if, and
only if, there is some Module m such that both s is associated with m by is taking, and l

is associated with m by teaches course. If we want to record this explicitly on the diagram
we can either write it in words in a note, or write it more formally.

6.1.6 Constraints

A constraint is a condition that has to be satisfied by any correct implementation of a
design. For example, a system with associations teaches course, is taking and teaches
student has a bug if the condition we added in the previous section is not always satisfied.
Constraints can be more general than that, however. They can constrain single model
elements, or collections of model elements. One of the most common – and safest – uses
is to express a class invariant. For example:

{self.noOfStudents > 50 implies (not (self.room = 3317))}

as an invariant of class Module says that it’s always the case for every object of class
Module that if the number of students enrolled on the course is greater than 50 then
the course does not take place in room 3317 (presumably, because room 3317 seats only
50 people).

This formal constraint is written in OCL, the Object Constraint Language which UML
has adopted for this purpose. See Panel 6.1 for more information on OCL.

Another common situation in which constraints may be useful is when there’s an
‘exclusive or’ between two association relations: an object takes part in (a link which is
an instance of) exactly one of the associations. For example, in the library example of
Chapter 3 we assumed that although there could be several copies of a book, there was
only ever one copy of a journal. Now let’s suppose we want to model a system in which
each Copy object represents either a copy of a Book or a copy of a Journal. We might
start off with the diagram shown in Figure 6.10. But this doesn’t rule out the nonsensical
possibility that a Copy could be associated with both a Book and a Journal, or with
neither. To do that, we can use an xor constraint, as shown in Figure 6.11.

The xor constraint is not written in OCL; it’s a special predefined constraint which is
part of UML.

Discussion Question 49
Can you see a way to solve this problem without introducing a constraint? Hint: consider
introducing an extra class.

The fact that UML allows you to add constraints in such a general way increases
its power tremendously. However, as always it’s important not to be carried away by
powerful features! Someone has to read any diagram you write, and this is harder the more
complex the diagram is – you should use constraints sparingly, considering in each case
whether it’s sensible to put in a piece of information. There are also technical reasons for
avoiding designs which need to be expressed using constraints which constrain several
model elements not contained within one class; as Ian Graham points out, such constraints
signal dependencies between the constrained model elements, which may hamper both
maintenance and reuse.

82 More on class models

Copy

is a copy of
Book

Journal

is a copy of

0..1

0..1

1..*

1..*

Figure 6.10 An under-constrained diagram.

Copy

is a copy of
Book

Journal

is a copy of

{xor}

0..1

0..1

1..*

1..*

Figure 6.11 Using an xor-constraint.

Discussion Question 50
In fact constraints can express some of the information which is normally expressed in
UML using more convenient specialized notation. How could you specify the multiplicity
of an association using constraints instead of the normal multiplicity notation?

PANEL 6.1 OCL, the Object Constraint Language

The Object Constraint Language is intended to be

• formal, so that constraints written in it are unambiguous;
• easy to use, so that every developer can write constraints in it.

More about associations 83

OCL originated in the Syntropy method developed by Steve Cook and John Daniels,
and has been developed by IBM as a business modeling language. It is used within
the UML specification to place constraints on which UML models are well formed,
as well as being available to users of UML to place constraints on their own models.

OCL is defined in the OMG standard document [49]. A book [51] is also available.
Combining the two goals of OCL is very hard, and we are not really convinced

that OCL completely achieves either goal. Unlike OCL1, OCL2 does have a formal
semantics, which is essential for it to be considered a formal language. However,
some technical problems remain in that semantics. Also, it’s not clear that a formal
language with the kind of power required could ever be really easy to learn. Whilst
we encourage you to consider learning more about OCL, we’d also like to give a
warning:

WARNING

Whilst using formal notations can be useful provided that the people involved
really know how to read and write them, a constraint in clear English is much
more useful than a constraint in a formal language that is buggy, or which
the intended readers can’t understand. So if you and your colleagues are not
confident that you know how to write something in OCL, write it in English.

.

6.1.7 Association classes

Sometimes the way in which two objects are associated is just as important as the objects
themselves. Consider, for example, the association between Student and Module. Where
should our system record the student’s marks on this course? The marks are really
connected with a pair consisting of both a student and a module. We might want to
implement an object for each such pair: the object would record this student’s marks on
that course, avoiding confusing them conceptually with any other student’s marks on this
course, or with this student’s marks on any other course. This amounts to treating the
association between the classes Student and Module as a class; of course an instance
of the association connects a student with a module, and we’re now saying that we want
there to be data attached to that link. We probably want operations too, if only to set and
get the marks. The result is a thing which is both an association and a class, which is
unsurprisingly called an association class. The notation is shown in Figure 6.12.

The class icon and the association line must have the same name, because they are the
same thing! This poses a slight problem, since associations normally have verb phrases as
names and classes normally have noun phrases as names. (Also, if you use the common
capitalization convention that association names are lower case and class names are
capitalized, you have to have a special case for association classes since you can’t obey
both conventions at once!) You may be able to think of a better name than is taking to
cover both.

84 More on class models

Student
Module

is taking

is taking

mark : int

1..* 6

Figure 6.12 An association class.

There are other ways to record the same relationship between Student and Module of
course: we could invent a new class, say Mark, and associate it with both classes in the
standard way, as shown in Figure 6.13.

Student
Module

is taking

mark : int

Mark

1
1

6 1..*

61..*

Figure 6.13 Avoiding an association class.

Discussion Question 51
What are the advantages and disadvantages of the two approaches? Consider: what
happens if the same student takes the same module twice for some reason; whether we
need a constraint in either case; whether there would actually be any difference in the
implementations which either notation would permit.

6.2 More about classes

In Chapter 2 we emphasized that a class actually serves two purposes: it defines the
interface that objects present to the rest of the system, and it defines an implementation

More about classes 85

of that interface. Sometimes it’s important for a design to separate the two concepts,
particularly in order to distinguish between different levels of dependency between model
elements. These two constructs can be useful:

1. Interface. An interface specifies a list of operations (and possibly attributes) which
anything matching the interface must provide. There are no associated implementations.
We’ll discuss interfaces in more depth in the next subsection.

2. �implementationClass�. A class which has the stereotype �implementation

class� defines the physical implementation of its operations and attributes.

Any object has exactly one implementation class, though it can match several interfaces.
A plain class can be somewhere in between, depending on the project’s conventions. For
example, you might choose to show a public attribute in a class, for brevity, when in fact
the implemented class will have a private attribute together with accessor functions.

TECHNICAL UML NOTE

Earlier editions of this book also discussed classes stereotyped �type� at this
point. The difference between such a class and an interface was that interfaces could
not have attributes in UML1.x, but �type� classes could. Both concepts still exist
in UML2, but now interfaces are also allowed to have attributes. We think that this
makes �type� classes practically redundant.

PANEL 6.2 Stereotypes

A stereotype is UML’s way of attaching extra classifications to model items; it’s one
of the ways that UML is made extensible. It describes a model element, and is placed
close to the element on a diagram. For example, Figure 6.14 shows the stereotype
�interface� on a class symbol, and the stereotype �use� on a dependency
arrow.2 This gives us extra information about the class and about the dependency.

Some stereotypes are predefined in UML; they are automatically available and
you can’t redefine them. One example is �implementationClass�. More
interestingly, you can define your own stereotype to express whatever extra classi-
fication is useful. For example, if you were implementing an application which had
persistent classes you might well choose to define a stereotype �persistent� to
show which classes are persistent. UML even permits you to define a new graphic
icon to represent a �persistent� class. The project team needs, of course, to
agree on some standard place where invented stereotypes are documented.

In this book we try to comment on the fact whenever we use a stereotype which
is not a predefined part of UML.

2 Technically, in the UML2 specification, neither of these is actually a stereotype – they are uses of the stereotype
notation to denote metaclasses. However, this makes no difference to either the notation or the use of UML, so
we will blur the distinction.

86 More on class models

Stringifiable

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

<<use>>

...

Figure 6.14 An interface and its use.

6.2.1 Interfaces

An interface specifies some operations of some model element, such as a class, which are
visible outside the element. It need not specify all the operations that the element supports,
so the same element could match several different interfaces.

In UML2, an interface may also specify some attributes and associations. This is
occasionally useful, but needs to be treated with care. The key is specify – if there are
different ways in which a class could appear to provide an attribute, for example, the
interface does not restrict that choice.

All the elements of an interface are public. An interface is defined on a class diagram
using a rectangle like a class icon, with the operations listed in a compartment of the
rectangle just as for a class. The icon is marked with �interface�. For example,
Figure 6.14 defines an interface which is satisfied by anything which understands the
message stringify and returns a string. The diagram also shows how interfaces are used
in UML.

The class Module matches (or realizes, or supports) the interface; that is, Module has a
method stringify of the right type. This is shown in two ways, by both:

1. the small circle labeled Stringifiable attached to Module’s icon;

2. the arrow from Module to Stringifiable. Notice the realization arrow used: it’s like
a generalization arrow except for the dashed shaft. As the notation suggests, matching
an interface can be seen as a weak form of inheritance. Module provides at least the
operations specified in Stringifiable, and may provide more, just as with inheritance
between classes. However, Module has to provide its own implementations, since the
interface Stringifiable doesn’t have any implementations: only the specifications
of the operations are inherited.

It’s unnecessary to show the same information twice, of course. It may be convenient to
omit the realization arrow, especially when a diagram contains many classes that realize

More about classes 87

the same interface. The class icon of the interface still has to be there, to define what the
interface means.

Class Printer requires the interface Stringifiable only. That is, Printer doesn’t
care about any other feature of a class Module; as long as it provides the method
stringify the Printer can use it. This is shown by the half circle attached to the
Printer class. For obvious reasons, the circle and half circle together are called ball and
socket notation. The ‘socket’ part is new in UML2; it’s very convenient, especially if your
design makes much use of interfaces.

Strictly speaking, there should also be an association between classes Printer and
Module, especially if you take a static view of associations (as discussed in Chapter 5).
We showed one in earlier editions of this book. However, it’s clumsy to have the classes
connected by an association as well as by the ball and socket notation. For most purposes,
the ball and socket notation alone is informative enough, so we have decided to omit the
association.

The diagram also shows the dependency arrow with stereotype �use� showing that
Printer depends on the interface Stringifiable. Like the realization arrow, this can
be omitted from the diagram since the socket carries the same information. Figure 6.14
is just designed to show you all the notation used with interfaces at once. Figure 6.15
illustrates more parsimonious notation. When using many interfaces, it’s common to put
all the interface boxes together in neat rows away from the main body of the class diagram.
This makes it easy to look up which operations each interface provides, but keeps the main
class diagram uncluttered. The main class diagram can then use only the names of the
interfaces, with ball and socket notation.

Q: How can an interface be implemented in your language? Write skeleton code that
corresponds to Figure 6.14.

<<interface>>
Stringifiable

stringify() : String

Printer

Stringifiable

Module

stringify() : String
...

Figure 6.15 More parsimonious notation for interface dependency.

88 More on class models

Discussion Question 52
Why are all the elements of an interface public?

As we shall see in Chapter 13, components can implement interfaces too.

TECHNICAL UML NOTE

In fact, in UML any classifier can match an interface. Classifiers include actors and use
cases, for example, as well as the classes, subsystems and components we mentioned.
The notation is the same as we’ve described: for example, you could attach a lollipop
to a use case symbol. The interface definition itself is always shown as a rectangle.
We’ve referred to the rectangle as the class symbol, but in fact in UML2 it’s more
generally the symbol for any classifier. By default, it is read as a class.

6.2.2 Abstract classes

A related notion is that of abstract class. An abstract class, which we will show using the
property {abstract} on the class icon, may have implementations defined for some of its
operations. However, to say that it is abstract means that for at least one of its operations no
implementation is defined. Therefore you cannot instantiate an abstract class. An abstract
class in which none of the operations have an implementation is effectively the same thing
as an interface. C++ programmers often use abstract classes to achieve the same effects
for which Java programmers use Java interfaces. An abstract class might well be used to
implement a UML interface in a C++ application. In this case a class which implements an
interface inherits from the abstract class.

Discussion Question 53
In Chapter 2 we said that classes often have a role as object factories. In what sense is
an abstract class an object factory?a

a Thanks to Bernd Kahlbrandt for pointing this question out.

PANEL 6.3 Properties and Tagged Values

We’ve just seen an example of a property being added to an element in a diagram
to give more information about it. This is a powerful mechanism in UML, and is the
other main way, apart from stereotyping, in which UML is made extensible.

Just as objects have values for their attributes, model elements, such as classes,
have values for their properties. Properties are essentially to do with the model
rather than the implemented system. For example, in a UML model every class
has a boolean property isAbstract, which is intended to have value true if the
class is abstract and false otherwise. There’s no suggestion that there should be
an actual attribute isAbstract anywhere in the system: the property just provides

Parameterized classes 89

a systematic way for a designer to record the design decision that this is an abstract
class.

Different kinds of UML model elements have different properties available for
recording appropriate decisions. Another particularly useful one is the isQuery

property of operations. If a developer specifies that an operation has its isQuery
property set to true, this records the design decision that invoking the operation
should not affect the state of the system in any way. Such operations can be used
whenever it’s convenient in the model and as many times as you like, without fear
of causing unwanted side effects. For example, they can be used in conditions or
constraints without causing confusion.

Any property can be written on a diagram by adding a label {propertyName =

value} near the name of the element to which the property applies. Because so
many properties are boolean-valued with names isSomething, UML provides a
short form for those. We could write in full {isAbstract = true}, but we can
instead write just {abstract}. Notice the similarity to how we write constraints: in
both cases, the expression is written in curly brackets near the element name. You
could think of a property as a kind of constraint.

The predefined properties of each kind of model element are described in the
UML specification document [48]. You can also define your own tagged values.
That is, for any element of your model you can define a name (a tag) which
should be filled in with a value. For example, if you wanted to record who was
to write the code for a class and who was to review it, you might define two tags
author and reviewer to apply to each class. Your class diagram could record
the information; for example, by inserting {author = "Perdita Stevens",

reviewer = "Stuart Anderson"} near the name of the class. Of course, this
will only be really useful if you have both an agreed set of tags among the
development team, and some tool support for managing and displaying the tags.

What is the difference between defining a new tagged value and defining a
new stereotype? Stereotyping is a more powerful, heavyweight option, which is
especially useful when you want to make several specialisations to a kind of model
element. Defining a tagged value is a more lightweight mechanism for when you
just want to associate a little more data with an element.

6.3 Parameterized classes

A parameterized class is not actually a kind of class! It can be seen as a kind of function:
instead of taking some values and returning a value, a parameterized class takes some
classes and returns a class. It is sometimes called a template: the idea is that it has some
slots into which you put classes, to get a new class. The classic example is List〈T〉,
which, given a class C to substitute for the formal parameter T, describes the class of
lists of C objects. For example, an object of class List〈Student〉 represents a list of
students, whereas an object of class List〈Game〉 represents a list of games. We could, of
course, implement new classes StudentList and GameList without needing any special

90 More on class models

facilities. However, lists of students and lists of games will have a lot in common: they
will both provide operations for adding and deleting elements of the list, for example, and
the code for both is likely to be identical regardless of whether the elements of the lists
are Students or Games. A parameterized class allows us to take advantage of this fact by
reusing the same parameterized class in both cases. By defining a parameterized class once,
and then using it twice, we may save both development and maintenance effort. In UML we
show a parameterized class using a variant on the class symbol which has a small dashed
rectangle in the top right corner, in which the formal parameters of the parameterized class
are listed. The types of the members of the class can (and almost always do) mention the
formal parameter. There are two ways of showing that a class is the result of applying a
parameterized class to an argument. We show them both in Figure 6.16.

T
List

add(t:T, pos:int)

get(i:int) : T

List<Game>

StudentList

<<bind>> 〈Student〉

Figure 6.16 A parameterized class and its uses.

The UML specification suggests more verbose notation like List〈T → Game〉 instead
of just List〈Game〉. Where there’s only one parameter, as in our example, this seems like
overkill. However, there can be any number of parameters; if you ever need to use more
than one you might find it worthwhile to use the more explicit notation.

Notice that in Figure 6.16 we show one dependency but not others. Both instantiations
depend on the parameterized class, as well as on their respective parameters. We omitted,
for example, the dependency of List〈Game〉 on List〈T〉 because that dependency is clear
from the name of the class.

Q: Why couldn’t we build class StudentList from class List using inheritance?

Not all languages support this way of constructing classes directly (sometimes known
as genericity); C++ does but Java, for example, does not. Even if the language to be used
in a project does not support parameterized classes, the design may sometimes be made
more readable using the notation.

Visibility, protection 91

Discussion Question 54
Another way to get the reuse benefits in the List example might be to define a single,
nonparameterized class List in terms of a very general class such as Object, of which
every class is a subclass, and then rely on substitutivity to let you put any object of any
class into a List. This is often done in languages which don’t support parameterized
classes directly. What advantages and disadvantages does this approach have, compared
with a parameterized class List? How else might you achieve some of the same reuse
benefits?

6.4 Dependency

We have now seen several examples of a dependency between two classes (and in one case
between a class and a parameterized class – remember a parameterized class is not really
a class!). Recall from Chapter 1 that A depends on B if a change to B may force a change
to A. We can show a dependency between any two UML model elements (and just about
anything in any UML diagram is a model element). In each case, the dependency of A on B

is shown by a dashed dependency arrow from A to B, like the one in Figure 6.16.
Notice the difference between a dependency between two classes and an association

between the classes. An association between two classes represents the fact that objects of
those classes are associated. A dependency is between the classes themselves, not between
the objects of those classes.

In fact when there is a dependency between classes it is usually possible, and preferable,
to be more specific about the nature of the dependency. For example, a class always
depends on a class from which it inherits, so there is no need to show a dependency
explicitly in such a case.

6.5 Components and packages

Dependencies are most commonly used in UML between packages. A package is a
collection of model elements, and defines a namespace for the elements. For example, a
package might be a collection of related classes and the relationships between them, or a
collection of objects and relationships between them. It is often convenient to be able to
package things like this, either because they form a component or simply to divide work
into team-sized chunks. A package can be shown on a class diagram (or indeed any other
kind of diagram) as a rectangle with a ‘tab’ in the top left-hand corner. If a diagram shows
a dependency or association linking a package to something, this means that there is some
element in the package which has the dependency or association. We do not need to specify
which. We will discuss components and packages in more detail in Chapters 13 and 14.

6.6 Visibility, protection

Classes often have attributes or operations which are not available to every client of
the class. UML allows the use of the symbols +, # and - to distinguish between public,

92 More on class models

protected and private members of a class.3 Public members can be accessed by any client of
the class. Private members can only be accessed by members of the same class. Protected
members can be accessed by members of the class or any subclass.

SUMMARY

This chapter considered some advanced features of UML class diagrams, and UML’s main
extensibility mechanisms: stereotypes, properties, and tagged values. We described some
ways of giving extra information about the association between classes, considering ag-
gregation and composition, roles, navigability, qualified associations, derived associations,
and association classes. We also covered constraints, which are a general feature of UML
that can be used for a wide variety of purposes; here we discussed their use for giving
class invariants and for recording the relationships between various associations. Next we
considered interfaces, which, again, can be applied more generally. We mentioned abstract
classes and so-called parameterized classes, which are not really classes at all, but rather
are functions which take one or more classes as arguments and return classes as the result.
Finally we considered dependency and visibility.

3 It also permits ∼ for package visibility, which we do not discuss here.

chapter 7
Essentials of use
case models

Use cases document the behavior of the system from the user’s points of view. By ‘user’
in this case we mean anything external to the system being developed which interacts with
the system. A user might be a person, another information system, a hardware device, etc.
Use case modeling helps with three of the most difficult aspects of development:

• capturing requirements
• planning iterations of development
• validating systems.

Use cases were first introduced by Ivar Jacobson in the early 1990s, as a development from
the earlier idea of scenarios. Scenarios still exist in UML, and we’ll discuss them later in
this chapter.

A use case diagram is comparatively easy to understand intuitively, even without
knowing the notation. This is an important strength, since the use case model can sensibly
be discussed with a customer who need not be familiar with UML. To see this look
at Figure 7.1, which shows the use case diagram from the introductory case study in
Chapter 3, before we look at the elements of a use case model in detail.

The diagram shows not a single use case, but all use cases for the given system. An
individual use case, shown as a named oval, represents a kind of task which has to be done
with support from the system under development. Of course the use case diagram shows
only a small part of the information we need. Each use case is also described in detail,
usually in text. The use case diagram can be seen as a concise summary of the information
contained in all the descriptions of the use cases.

An actor, usually shown as a stick person, represents a kind of user of the system
(where, remember, by user we mean anything external to the system that interacts with
it – do not be misled by the human appearance of the icon into thinking the actor must
be human).

There is a line connecting an actor to a use case if the actor (more correctly, someone or
something playing the role represented by the actor) may interact with the system to play
some part in the task.

A use case diagram is rather like a class diagram in the sense that the icons represent sets
of things and possible interactions, rather than individual things and definite interactions.
In Chapter 5 we discussed the simple association is a copy of between classes Copy
and Book, shown in Figure 7.2, which represents a relation between the set of objects of

93

94 Essentials of use case models

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Borrow
journal

Update
catalog

Browse

Return
journal

Figure 7.1 Use case diagram for the library.

BookCopy

is a copy of

Figure 7.2 Simple association between classes.

class Copy and the set of objects of class Book. That is, an individual object myCopy of
class Copy and an individual object thatBook of class Book might or might not be related.
In the same way, the very simple communication relation shown in Figure 7.3 shows that
there’s a relation between the set of BookBorrowers, and the set of scenarios in which a
BookBorrower reserves a book from the library. A particular BookBorrower might or
might not be involved in a particular book–reservation scenario. A scenario is an instance
of a use case, just as an object is an instance of a class. We’ll return to this point later. For
now, notice two things.

• An actor in a use case diagram represents a role that someone might play, rather
than representing a particular individual. For example, a librarian may also be a book

Actors in detail 95

BookBorrower

Reserve book

Figure 7.3 Simple communication between an actor and a use case.

borrower: someone who sometimes plays the role of a librarian may at other times play
the role of a book borrower.

• A communicates relation between an actor and a use case doesn’t mean that someone
in that role is necessarily involved in carrying out a task; it just means that they may be,
depending on the circumstances.

Now let us consider actors and use cases in more detail.

7.1 Actors in detail

Beneficiaries

Each use case has to represent a task, or coherent unit of functionality, which the system
is required to support. Normally this means that the use case has value for at least one
of the actors. We call an actor for whom a use case has value a beneficiary of the use
case. It’s important to identify the beneficiaries of each use case, since if a use case has
value for a particular actor, that actor will stay connected with the use case throughout the
development. (Perhaps the name of the actor may change, and perhaps we may even end
up with several actors because we reclassify the roles, but the humans or external systems
represented by the actor will always be represented somehow.) However, if an actor is not
the beneficiary of a use case, then the connection between the actor and the use case is less
certain. There may be other ways of providing the same value; that is, satisfying the same
requirements. For this reason developers need to be aware of who needs a use case and
who is involved in it without getting benefit from it.

Q: Consider the use case Borrow copy of book in the library system. We did not
show the librarian as an actor connected with this use case. What would have been the
advantages and disadvantages of doing so?

Discussion Question 55
It is sometimes argued that only actors who are beneficiaries should be shown on a use
case diagram, because which other actors are involved in realizing a use case is a design
decision, not part of requirements analysis. What do you think? Why?

There are circumstances in which nobody who interacts with a system to carry out a
task actually gets benefit from it: the beneficiary’s interaction with the system in that task
is indirect. See Section 7.4.1.

96 Essentials of use case models

Identifying actors

Potential human users of a system tend to be comparatively easy to identify.1 In order to
develop a use case model you need to identify the different roles that these humans may
play, remembering that one person may play different roles at different times. Identifying
roles is rather like regarding users from the system’s point of view. If Mary Smith and
Joe Bloggs might both be involved in some part of the system’s behavior (e.g. reserving
a book), and it ‘makes no important difference to the system’s behavior’ whether it is
interacting with Mary Smith or Joe Bloggs, this is likely to mean that Mary Smith and Joe
Bloggs are both capable of playing the role represented by a particular actor in connection
with the use case representing that task.

Discussion Question 56
What differences in a system’s behavior do you think might be important in this context?
Can you make this precise?

There are some subtleties which we’ll return to later in this chapter and in the next, but
normally any human who interacts with the system will be represented by at least one actor
in the use case model. Of course a user who plays several different roles is represented by
several actors, one for each role.

Nonhuman actors

The situation with nonhuman actors tends to be less clear, mostly because it’s less clear
what should count as an external system or device. For example, a keyboard doesn’t
count as a device which interacts with the system because there is a human operating the
keyboard. Showing the keyboard would not be useful; instead, we will naturally abstract
away from the fact that the human operator hits a keyboard whose key presses are sent to
the system, and show an actor representing the human interacting directly with the system.
What if we consider a system which gets input from a barcode reader? From a clock?
From the Internet? From a different computer system within the same company? What if
the system sends output to such an external system or device? Where are the boundaries
between systems? For example, suppose that our library system allows users to request
books on inter-library loan from another library, and that when such a request is placed the
system contacts the other library via the Internet. What actor should be shown on our use
case diagram? The Internet? The other library system? Neither?

The decision is a pragmatic one: you do whatever seems likely to be most useful, and
different people have different views. Even if it is clear what an external system or device
is, there is a question about which such things should be shown on a use case diagram.
Fowler and Scott [19] discuss the possible views, which we can summarize as saying that
you may show interactions with external systems:

1. always

1 If they aren’t, be very suspicious: you may possibly be being pushed into embarking on the surprisingly
common task of building a system which somebody wants built but which nobody really wants to use!

Use cases in detail 97

2. when it is the other system or device that initiates the contact

3. when it is the other system or device that gets value from the contact.

Other people again think that actors should always represent humans: for example, that
we might consider showing the other library’s librarian as an actor, but not the other
library’s system. The danger with this view is that it means you may have to understand
irrelevant things about how an external system works, in order to know what human roles
are involved.

TECHNICAL UML NOTE

In fact in UML ‘role’ tends to be used to denote what an object or an actor does in
one specific collaboration: so technically an actor plays a different role in each use
case and is a coherent set of roles. You may prefer to think of an actor as a person
‘wearing a particular hat’.

7.2 Use cases in detail

We said that a scenario is an instance of a use case, as an object is an instance of a class.
As with objects and classes, it’s easier to describe what a scenario is than what a use case
is since a use case describes a set of related scenarios.

A scenario is a possible interaction between the system and some people or sys-
tems/devices (in their various roles). The interaction can be described as a sequence of
messages. For example, here are two scenarios.

• Book borrower Mary Smith borrows the library’s third copy of War and Peace, when
she has no other book out on loan. The system is updated accordingly.

• Book borrower Joe Smith tries to borrow the library’s first copy of Anna Karenina,
but is refused because he already has six books out on loan, which is his maximum
allowance.

Discussion Question 57
What are the messages in each case? Should ‘message’ mean the same in this context as
it did in Chapter 2?

Both of these scenarios are possible instances of the use case Borrow copy of book.
Notice that not only the interactors but even the outcome differed between the two cases.
This is common. Just as not all objects in the same class send the same messages during
their lifetime, scenarios in the same use case can involve different behavior. The scenarios
in a use case should have in common that they are all attempts to carry out essentially the
same task, even though the use case includes unusual or alternative courses.

So a use case embodies a, possibly complex, set of requirements on the system, which
will start to emerge during initial requirements capture and will be refined as the system is
developed. We need some way to record the detailed information we have about what a use
case involves: what are the possible scenarios, and what determines which of them applies

98 Essentials of use case models

in any given set of circumstances? This is usually done by associating a textual description
with the use case. A tool may allow the tool user to click on the oval icon representing a
use case in order to see the text that gives the detailed description of what that use case is.
A UML activity diagram, or a description in some formal language, may also be used and
similarly associated with the use case it describes.

Later we need to be able to show how the designed collection of classes and components
enables the system to realize the use case. A use case may be associated with interaction
diagrams which show how it, or some subset of the scenarios it includes, is realized in a
particular system design.

7.3 System boundary

Optionally, there can be a box around the use cases in a use case diagram, labeled with
the name of the system. The box represents the system boundary. An example is shown in
Figure 7.4.

This can be useful when modeling a complex system which is split into different
subsystems: you could have one use case diagram for each subsystem, in which case
the system boundary may help to make it immediately clear which subsystem is being

Browser

Librarian

JournalBorrower

BookBorrower

Library system

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Browse

Update
catalog

Borrow
journal

Return
journal

Figure 7.4 Use case diagram for the library.

Using use cases 99

modeled. When drawing a use case diagram to represent a simple system, though, it is
common to omit the box and we shall do so in the rest of this book.

7.4 Using use cases

7.4.1 Use cases for requirements capture

Use cases can help with requirements capture by providing a structured way to go about it.

1. Identify the actors.

2. For each actor, find out:

• what they need from the system – that is, what use cases there are which have value
for them;

• any other interactions they expect to have with the system – that is, which use cases
they might take part in for someone else’s benefit.

For the purposes of prioritizing the work and planning iterations of the development, you
also need to know how much someone needs a given use case to be realized.

It may be helpful to list which actual people or systems can carry out the role of each
actor, but that is not usually recorded in the UML diagram. In discussing the system with
potential users, it is necessary to find out which actors they might be in the use case
diagram, and to find out if there are any functions they believe they would participate in
which are not currently included.

As we remarked when considering beneficiaries of the system as actors, there may be
aspects of system behavior that don’t easily show up as use cases for actors. We connect
an actor with a use case only when the actor participates in a use case, not, more generally,
when an actor is in any way concerned about the existence of a use case. So there may
very well be cases when a task is essential but not particularly valuable to any of the actors
which participate in it. The classic example (mentioned in [19], for example) is when a
utility company sends quarterly bills to each of its customers. The company as a whole
gets benefit from it; but the only obvious actor in the use case is the customer, and possibly
the company’s mailing office, which doesn’t itself particularly benefit from sending out
the bill. You should show such tasks as use cases when you discover them, even though
they are not of direct benefit to any of the actors involved. (Be careful, though, to ensure
that the use case does represent a real requirement.)

7.4.2 Use cases through the development

Planning

Before we can carry out a sensible estimation and planning process for the whole project,
we need to have a list of all the use cases for our system, together with:

• a good idea of what each means;

• an understanding of who wants each and how much;

• knowledge of which use cases carry most risk;

• a plan for how long it should take to implement each use case.

100 Essentials of use case models

A point which sounds elementary is that you should not plan to deliver a system in
less time (total effort, from all the developers involved) than the sum of the times for
the use cases you plan to deliver!2 Performing this arithmetic can be a useful antidote to
overoptimism. When (and it is when, rather than if) you find that the system absolutely
has to be delivered sooner than that, you must undertake negotiation with the customer
about which use cases should not be provided in the first release. (Kent Beck calls this
the planning game, which captures the fact that it has rules, for example about how time
works, which can’t be broken even to oblige the customer.) This is one of the places where
it makes a difference at what level of granularity use cases are described. The identification
of functionality which is common to several use cases and can therefore be reused is also
important: we’ll discuss this in the next chapter.

Once you know which use cases you are contracted to provide, you have to decide in
which order to implement them, and which use cases belong in which iteration of the
system. (Remember that an iteration may be low level, internal to the project, or may
be high level or external, that is, may result in a system delivered to the customer. The
customer is involved in the decision about which use cases should be provided in external
iterations, but not in decisions about the internal iterations.)

Political aspects

Remember the 25% of systems that were never delivered? It wasn’t because the developers
decided to go on holiday instead: it was because the project got canceled. That is, someone
somewhere decided it wasn’t worth going ahead with. How do we stop that happening to
our project?

If we’ve captured requirements in terms of use cases and actors, we are likely to have
a very good idea of which use cases – i.e. which aspects of the system’s behavior – are
most important to which people. So, other things being equal, we want to be able to
demonstrate the system doing something valuable to the most influential people first. As
soon as possible, we want to make sure that everyone who has the power to scupper
the system (and remember this may include people who don’t have formal power in the
organization!) has some good reason not to do so. This means that they must see that if
the system is completed and delivered, they will get something they want, which they will
lose if they get the project canceled.

Comparing use cases which are important to a given person, of course other things being
equal, we should implement the highest priority ones first.

Of course, it may be decided not to start a project if the use case analysis does
not demonstrate that it will provide enough benefit. This is another way to reduce the
probability that a given project gets canceled!

Technical aspects

Another criterion, which may conflict with the ones above, is that we should deliver the
use cases associated with highest risk first, so as to tackle the greatest risks when we still

2 taking into account any reuse you can predict.

Possible problems with use cases 101

have contingency to tackle them, and so that we don’t get tied into a design which will not
allow us to deal with the hardest (highest risk) use cases.

Discussion Question 58
In other circumstances, we may tackle the easiest parts of a problem first. When is this
the right approach?

Notice that the way in which the use case is described will vary through the development
process. To begin with it’s important that we identify what the system should achieve in
each use case, not how it should achieve it. Later we’ll choose an implementation. This
may well involve changing the actors; probably not the one who wants the use case, but
the ones who take part in a ‘helping’ capacity.

System validation

Each use case describes a requirement on the system, so a correct design allows each
use case to be carried out; that is, it realizes each use case. An obvious, and very useful,
technique for validating a system design is to take each use case in turn and check that
the design allows the use case to be carried out. This is sometimes called ‘walking’ the
use case.

The same technique can be used to derive system tests: there should be tests of each use
case, and where a use case includes significantly different families of scenarios an example
of each family should be included. For example, the library system must be tested to see
both that it does allow a user to borrow a book, and that it does not allow any user to borrow
too many books at once. The need for these tests is immediate from the use case model.

7.5 Possible problems with use cases

As we’ve seen, use cases can help with some of the most difficult aspects of system
development, namely requirements capture, planning, iteration management, and test
planning. However, some experts, notably Meyer [35], feel strongly against them. We too
have some reservations, but these apply more strongly to the features of use case modeling
described in the next chapter than to the simple form discussed here. Use case modeling
should be used with caution, however, since:

1. There is a danger of building a system which is not object-oriented. Focusing on use
cases may encourage developers to lose sight of the architecture of the system and
of the static object structure, in the rush to somehow deliver the use cases which are
required in the current iteration. Later, if the functionality of one use case has already
been developed, it may be hard to justify the time to modify the design to maintain
its integrity with respect to subsequent use cases. We may end up back where we
started, developing a top-down, function-oriented, unmaintainable, inflexible system.
This danger can be lessened by careful management of the beginning of each iteration.
If the previous iteration left the system in a state which is unsatisfactory, it should be
refactored before any new functionality is added, and the plan for the iteration should
allow for this.

102 Essentials of use case models

2. There is a danger of mistaking design for requirements. We’ve already seen one
example of how this can happen: the assumption that an actor is involved in a use
case from which it does not get value is normally a design decision, not a constraint.
More generally, requirements by use cases may encourage developers to think too
operationally: users are likely to describe the use case as a very concrete sequence of
interactions with the system which is one way, not the only way, of achieving their real
goal. For example, users naturally think of the things that have to be done happening in
some order, perhaps the order in which they are done at present, even though another
order might be just as appropriate. It’s important that developers distinguish between
requirements and candidate designs.

3. There is a danger of missing requirements if too much reliance is put on the suggested
process of finding the actors and then finding the use cases that each actor needs.
As mentioned, not all requirements emerge naturally in this way. This danger can be
lessened by doing use case analysis and conceptual class modeling in parallel.

Discussion Question 59
One tactic might be to develop a use case model in which only the actors who need
a given use case communicate with it; the ‘helper’ actors would not be shown. What
would be the advantages and disadvantages of this approach?

PANEL 7.1 Use Case Driven Development?

‘Use case driven’ is a buzz phrase often associated with UML, introduced by
Jacobson et al. in [28] and picked up by much of the UML community. In particular
the Unified Process is said to be use case driven. What does it mean, and are we
advocating it?

In essence, the idea is that use cases are the most important aspect of the design
process. They are not developed to do requirements capture and then abandoned
once design starts: they should be used throughout the project, to track changes and
define iterations for example. This approach helps keep the focus where it should
be, on the users’ requirements. There is an overlap here with user-centered design
which we will briefly consider in Chapter 19.

More controversially, [28] advocates examination of the use cases as a principal
method of finding objects and classes, for example, as well as a principal method of
finding components and ways of using them. However, we have described some of
the dangers of over-reliance on use cases. In particular, we do not believe that exam-
ination of the use cases is on its own a good way to find objects and classes. We think
instead that the development of the conceptual class model should proceed in parallel
with the development of the use case model, and that each will feed into the other.
Some classes will be discovered by examining the use cases. Some use cases will be
discovered by examining the classes. We don’t consider it useful to classify ourselves
as advocating ‘use case driven’ or ‘data driven’ or ‘responsibility driven’ develop-
ment. A good OO development will always include aspects of all three approaches.

Possible problems with use cases 103

SUMMARY

This chapter introduced simple use case models and showed how they are used to specify
the behavior of a system in a design-independent way. We discussed how to identify actors,
use cases and the communication relationships between them, and how to use the use case
model in the context of a development project.

In the next chapter, we will consider further features and uses of use case diagrams. In
Chapters 9 and 10 we will show how interaction diagrams are used to demonstrate how a
system design realizes a use case.

DISCUSSION QUESTIONS

1. Consider the actors in the library example, and consider the sets of people who may be
represented by each actor. Consider the intersections between the sets: for example, the
set of people (if any) who sometimes play the role of book borrower and sometimes
the role of librarian. Is any set contained in another? Do you think it would be helpful
for the diagram to show the relationships between these sets of people as relationships
between the actors? Why, or why not? If so, how?

2. Are there any interesting relationships between any of the use cases? If so, what are
they? Again, would it be useful to represent them on the diagram, and if so, why
and how?

3. We said that a use case should normally have value for at least one of the actors. Give
some examples, from systems you know, of use cases which have value for more than
one of the actors involved.

Chapter 8 shows how to represent some relationships between actors and between use
cases in UML: you may find it interesting to compare what UML provides with what you
thought you might want.

chapter 8
More on use
case models

In this chapter we consider further aspects of use case models and their use in development.
We will discuss:

• how and why we can show relationships between use cases;
• how and why we can show relationships between actors.

The reader should be warned that each of these features makes a use case model more
complex (though possibly smaller). At the beginning of the previous chapter we claimed
that an important strength of use case diagrams is their simplicity. There is an obvious
conflict here. Moreover, there is considerable scope for disagreement on exactly how the
features we describe here should be used. Different parts of the UML community have
different ideas, and the UML2 specification itself deliberately leaves many decisions open.
We recommend a KISS approach: if in doubt, don’t use these features.

Finally we shall discuss the circumstances in which an actor in the use case model
should be modeled by a class in the system, since this often causes confusion.

8.1 Relationships between use cases

There are two main kinds of situations in which we may want to document a relationship
between two use cases. On the use case diagram, this is shown as an open-headed
dashed arrow between two use case ovals. (This is the same arrow that is used to show
dependencies.). The two cases are distinguished by being labeled with different keywords:
the first is labeled �include�, the second is labeled �extend�.

8.1.1 Use cases for reuse: �include�
The most vital case is when we are able to factor out common behavior from two or more
of our original use cases, or (better still) when we discover that we can implement part of
one of our use cases by using a component.

For example, notice that the descriptions of the use cases Borrow copy of book and
Extend loan both mention the need to check whether there is an existing reservation on
the book. If there is, then the loan cannot be extended nor can the book be borrowed. We
might choose to show this common feature of the two use cases on the use case diagram,

104

Relationships between use cases 105

<<include>>

<<include>>

Extend loan

Check for reservation

BookBorrower

Borrow copy
of book

Figure 8.1 Use case reuse: �include�.

as shown in Figure 8.1. Note that the arrow goes from the ‘user’ use case to the ‘used’ use
case, and is labeled with the keyword �include�, to represent that the source use case
includes the target use case. More precisely, scenarios which are instances of the source use
case contain subscenarios which are instances of the target use case. If the target use case
changes to contain different scenarios, the source use case will be affected because its longer
scenarios will change too; but the target use case does not depend on the source use case.

There is of course a corresponding decomposition of the detailed use case descriptions.
The new descriptions might read:

• Borrow copy of book A BookBorrower presents a book. The system checks that the
potential borrower is a member of the library, and that s/he does not already have the
maximum permitted number of books on loan. This maximum is six unless the member
is a staff member, in which case it is 12. If both checks succeed, the system checks
whether there is a reservation on the book (use case Check for reservation);
otherwise the system refuses to lend the book. If the book is reserved, the system refuses
to lend it. Otherwise it records that this library member has this copy of the book on
loan and prompts for the book to be stamped with the return date.

• Extend loan A BookBorrower asks (either in person or by telephone) to extend the
loan of a book. The system checks whether there is a reservation on the book (use case
Check for reservation). If so, the system refuses to extend the loan. Otherwise it
records that this library member’s loan of this book has been extended, updating the
records of both. It prompts for the book to be marked with the new return date. This is
done by restamping it, if the borrower is present in person; alternatively if the extension
is being done by telephone, the borrower is asked to alter the return date.

• Check for reservation Given a copy of a book, the system searches the list of
outstanding reservations for reservations on this book. If it finds any, it compares the
number of them, n, with the number of copies of the book known to be on the reserved
book shelf, m. If n > m then the system returns that this copy is reserved, otherwise
that it is not.

Discussion Question 60
Is this the best factoring of functionality? How do you go about comparing this factorization
with others? Can you do it based on a use case model alone?

106 More on use case models

Documenting shared or reused functionality like this on a use case diagram has several
advantages.

• It is a convenient way to record the decision that a component is to be used, or to avoid
recording the same information in more than one detailed use case description.

• Factoring out parts of the use case description can make the use case descriptions shorter
and easier to understand, provided that the included use cases are themselves coherent
units of functionality.

• Identifying common functionality between use cases at an early stage can be a way of
discovering possible reuse of a component that can implement the shared functionality.
As we discussed in Chapter 7, the use case diagram is an important input to the planning
process. Therefore it is useful to know where functionality is shared between use cases;
this lets you avoid budgeting the time for the functionality twice, which you might
do if you did not discover the shared functionality until later. Notice, however, that
you would not develop a detailed plan on the basis of the use case model alone, so
�include� is not the only way to achieve accurate plans.

However, there are also certain pitfalls associated with identifying and documenting
reuse in this way, especially if the included use cases represent small pieces of functionality.

• There is a serious danger that by looking for reuse in the functionality-oriented use case
model, we effectively revert to a top-down functional decomposition style of design;
exactly the inflexible style that object orientation is supposed to help avoid.

• A use case model incorporating �include� is harder for someone not skilled in
UML to read, so it begins to lose its attractiveness as a customer-visible document.
Moreover the more complex the use case diagram the harder it is to keep up to date,
especially if it is allowed to incorporate information about design as well as about the
requirements.

To tackle the first point, it is advisable to develop the conceptual level class model in
parallel with the use case model, and to use techniques like CRC cards to ensure that
any reuse shown on the use case diagram makes conceptual sense at the object level too.
Conversely, of course, CRC card use and similar techniques can help to identify shared
functionality, which might then be shown in the use case model.

How much functionality needs to be shared, before it is worthwhile to document the
shared section as a separate use case? As a rough guideline, you should probably separate
out shared functionality only if the time taken to develop it is significant in planning terms,
which would normally mean that the time that has to be set aside to do it is greater than
the minimum unit of time in which the plan is formulated, perhaps an ‘ideal engineering
day’. In the case we illustrated that is unlikely to be true, so you probably would not want
to separate out this use case in practice.

8.1.2 Components and use cases

Components and use cases interact in (at least) two related ways. We first consider the
impact of using a component on the use case model, and then consider how a use case
model can help to specify a component.

Relationships between use cases 107

If we are to be serious about doing component-based design, it’s essential to think about
using components as early as possible, in fact from the very beginning of the project. There
are several reasons for this.

Firstly, we will certainly need to adapt the way we describe the use cases to match
the available components; we may well need to negotiate changes in the requirements
themselves to make good use of available components. This may sound radical but consider
the parallel case in, say, architecture. You are unlikely to be asked exactly what size and
shape you want your doors to be. More likely, you will be asked to choose from a range of
available shapes and sizes, each with its own cost; if it’s possible at all to specify that you
want a round, green door with a brass knob, you can expect to pay a much higher price for
it, and to wait longer, than if you want something standard. It seems reasonable to say that
if the software industry is to make the shift to component-based engineering, our approach
to flexibility of requirements will similarly have to change.

Discussion Question 61
Do you agree? Or do you think, for example, that the inherent flexibility of software will
be enough to mitigate this?

Secondly, if we will be able to implement some requirement using a component, we
want to know that before we expend time and effort working out how to build it ourselves.

We meet here for the first time a question which will recur: when we use a component
which we don’t have to develop, do we show it on our design diagrams? Or do we treat it as
though it were part of the programming language and just use it? Either is possible; which
is best depends on what the component is (and to some extent on taste). For example,
suppose we use an OrderedCollection class from a library of collection classes, to
order the items on an overdue book list. There’s probably no value in showing Order

things as an �include�d use case; this piece of functionality is too small. However,
if we use a more complex component we probably do want to show it.

Naturally if we are planning to develop a reusable component that will include some,
but not all, of the functionality of a given use case, it will also make sense to describe
the proposed component clearly by its own use case(s). The main difference between a
use case for a component and a use case for a whole system is that the actors that interact
with a component might be objects external to the component, rather than humans or
external systems or devices. An object external to the component looks like an external
system or device from the point of view of the component; we’ve just shifted perspective.
For example, if Check for reservation is a component which should be documented
separately, its documentation might include the detailed description given above and the
very simple use case diagram shown in Figure 8.2.

As we mentioned before, this small example is probably too simple to be worth treating
in this way.

Summary: using �include�
Consider using an �include� relationship between use cases:

• to show how the system can use a pre-existing component;

108 More on use case models

ReservationChecker

for
reservation

Check

Figure 8.2 A use case diagram describing a component.

• to show common functionality between use cases;
• to document the fact that the project has developed a new reusable component.

A project will probably begin by developing a simple use case diagram that does
not make use of the features described in this chapter; a diagram that makes use of
�include� is probably best viewed as a refinement of such a diagram, in which some
design decisions have been made.

8.1.3 Separating variant behavior: �extend�
If a use case incorporates two or more significantly different scenarios – that is, several
different things may happen depending on circumstances – we may decide that it would
be clearer to show these as a main case and one or more subsidiary cases. When to do
this is a matter of judgment, since we can always show variant cases in one use case. For
example, we could separate Borrow copy of book into the normal case in which the
user is allowed to borrow the book, and the unusual case in which the user is not allowed
to borrow the book because s/he has already borrowed the maximum number of items.

We use the �extend� arrow from the less central case to the central case, as shown
in Figure 8.3. Beware: the arrow goes from the exceptional case to the normal case, which
most people think of as being ‘the other way round’ from the �include� arrow!

BookBorrower

<<extend>> Refuse loan

Borrow copy of book

Figure 8.3 �extend�

Again there is a corresponding decomposition of the use case description. In the new
version of the description of the normal case we must show:

• the condition under which the exceptional case applies;

Generalizations 109

• the point at which the condition is tested and the behavior may diverge – this is the
extension point.

UML permits (but does not require) the condition to be shown by the extension arrow,
and the extension point to be recorded in the oval for the central use case, as shown in
Figure 8.4. This is probably most useful if you are using a formal or semiformal description
language to describe the use cases.

BookBorrower

Refuse loan

extension points
status validation:

after confirming identity

Borrow copy of book

<<extend>>
too many books on loan

Figure 8.4 �extend� with extension point.

8.2 Generalizations

Both actors and use cases can be related by generalization, just as two classes can be.1 For
example, in the library example every human JournalBorrower is a BookBorrower,
because the people entitled to borrow journals are also allowed to borrow books. We may
choose to record a generalization relationship between the corresponding actors using the
same notation that is used for classes, as shown in Figure 8.5.

When use cases are related by generalization the idea is to show a task and a specialized
version of it. Again, we use the standard generalization arrow, which goes from the
specialized use case to the more general use case. For example, if we have a use
case Reserve book, we might have a specialization of it called Reserve book by

telephone. This might be useful if the library system needed to behave differently for a
telephone reservation; for example, if it means that the user’s library card number has to be
entered manually since the card cannot be scanned. This is very similar to �extend� and
it is arguable that UML should not have both. A rule of thumb is that if you want to describe
extra behavior which should sometimes be added depending on ‘runtime’ conditions, you
probably want �extend�, whereas if you want a label for a specialized version of a
whole task you probably want generalization.

1 Classes, Actors and UseCases are all Classifiers in UML and any Classifier can be generalized.

110 More on use case models

BookBorrower

JournalBorrower

Figure 8.5 Generalization between actors.

8.3 Actors and classes

It is very common for a system to interact with an actor (instance) and also to have an
internal system object representing the actor instance. There are two main kinds of situation
in which this can happen.

1. The system may need to store data about an actor, typically a human in a certain role.
For example, the library system needs to know which people are entitled to borrow
books, and how many books each of them currently has on loan, in order to carry out
the Borrow copy of book use case. In an object-oriented system, this is likely to
mean that there is a set of real people who can take the role described by a given system
actor, and also a set of system objects, one for each person, which store information
about the people in that role.

2. A subtly different situation is when the system wraps an external system in order to
provide a manageable way for parts of the system to access the external system and
vice versa. For example, an external transaction processing monitor might be accessed
by sending messages to an internal TPMonitor object, which in turn invokes the real
functionality of the external system. Or a separate user interface program might be
represented inside the system by a UI object which in fact mediates between the external
UI program and the main system, passing messages both ways.

The features of these two cases can be combined: for example, one of the easiest ways
to provide a simple user interface to a system, which can handle the system needing to

Actors and classes 111

respond to different users in different ways, is to make the use cases which can be initiated
by Jane Bloggs available as methods of a system object representing Jane Bloggs. An
example of this is the way we implemented the Borrow copy of book use case in
Chapter 3.

It is, however, easy to get confused and important to remember where the system
boundary is. The main difference is that you can program system objects to do what you
want, but not system actors!

Discussion Question 62
What are the advantages and disadvantages of representing actor instances as system
objects?

8.3.1 Notation: actors as classes

Just to make things even more confusing, you will hear people say that actors are classes,
with the stereotype �actor�. This is true at the notational level: an actor can be
represented by a class icon with the keyword �actor� instead of by a stick figure,
as in Figure 8.6. (However, as we remarked earlier, in fact actors and classes are both
Classifiers, rather than either being a kind of the other.)

BookBorrower

<<actor>>

BookBorrower

Figure 8.6 These two symbols mean the same.

SUMMARY

In this chapter, we showed how the �include� relation can record what functionality is
common to several use cases, and how the �extend� relation can record what happens
in unusual cases. We discussed generalization between actors and between use cases, and
the relationship between actors and classes. In the next two chapters we will demonstrate
how interaction diagrams can record how objects interact to realize use cases.

DISCUSSION QUESTIONS

1. We’ve suggested that the version of a use case diagram using the features described
here should be used in conjunction with a simpler form as described in the previous
chapter. How do you think a CASE tool could sensibly support this?

chapter 9
Essentials
of interaction
diagrams

We’ve now seen the two most important UML models:

• the use case model, which describes the tasks which the system must help to per-
form;

• the class model, which describes the classes which are intended to achieve this and the
relationships between them.

In the discussion of CRC cards in Chapter 5, we began to address, informally, the issue of
how to ensure that the class model is capable of realizing the use cases. UML’s interaction
diagrams allow us to record in detail how objects interact to perform a task.

The main use for such diagrams is to show how the system realizes a use case,
or a particular scenario in a use case. We’ll consider other uses at the end of the
chapter.

We may use CRC cards to explore which objects interact and how, and we may
use interaction diagrams to record what happens precisely. This is useful for exploring
several possible options in difficult cases. Interaction diagrams can also be an aid to
communication between developers, if several different people or groups develop bits of
a single interaction. You would not normally expect to develop interaction diagrams for
every use case or for every operation: as always, you do it when the benefit is likely to
outweigh the cost. If you have a CASE tool which can use the interaction diagrams to help
with code generation, this makes it more likely to be worthwhile to develop interaction
diagrams.

UML provides two main sorts of interaction diagram, sequence and communication
diagrams. Sequence diagrams are much more expressive, allowing you to show alternative
courses of action, repetition of pieces of behavior, and much else. However, in the simplest
cases they show almost the same information; given an underlying class model, some
CASE tools can generate one from the other. Which is better depends on what aspect of
the interaction you need to concentrate on: we’ll come back to the question after showing
simple forms of both.

In this chapter we will describe the simplest forms of both kinds of interaction diagram,
and we will consider only straightforward procedural interactions. In Chapter 10 we will
consider more complex sequence diagrams, and the issues that arise when you want to
describe concurrent systems.

112

Collaborations 113

TECHNICAL UML NOTE

Interaction diagrams are an area of UML which has changed significantly in UML2.
The underlying technicalities are now quite complex (and not always completely clear
in the standard). For example, the boxes in interaction diagrams are not technically
‘objects’; they are specifications of objects, describing the roles that objects play
in the interactions. We will not go into this issue and will just talk about them
as objects.

9.1 Collaborations

Collectively, the objects which interact to perform some task, together with the links
between them, are known as a collaboration. For example, Figure 9.1 shows a collaboration
which is appropriate for realizing the use case Borrow copy of book which we briefly
considered in Chapter 3.

A collaboration, without any interaction shown, is rather like an instance of part of the
class model. It specifies objects, links and actors.

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

Figure 9.1 A simple collaboration, showing no interaction.

Objects

Each object is shown as a rectangle, which is labeled objectName:className. Here
className must be the name of a class in the class model. There need not be an object of
every class, because some classes will be irrelevant to the particular collaboration we’re
considering. There may be two or more different objects of the same class.

It may have occurred to you that object names like theLibraryMember are not very
informative. If, as here, such a name doesn’t make the diagram more readable, it can be
omitted; the object rectangle could be labeled just :LibraryMember.

114 Essentials of interaction diagrams

Links

Links between objects are shown like associations in the class model. Since a link is an
instance of an association, there should be an association in the class model between the
classes of any two linked objects. Again, the collaboration doesn’t have to include links
for all associations, just the relevant ones.

You can show extra information about the nature of the link here, as in the class model.
For example, arrows on the lines can be used to show navigability or the association names
can be shown, if you judge that it makes the diagram clearer.

Actors

Actors can be shown as on a use case diagram. If the collaboration is describing the
realization of a use case, the actors in the collaboration will correspond to the actors which
are connected to the use case in the use case diagram. There may be several actors, but
there will always be one which initiates the use case: we will call this the initiator.

9.2 Communication diagrams

Next we consider how to show an interaction on a collaboration diagram: that is, how to
show the sequence of messages that pass between the linked objects. The result is called a
communication diagram.

Use CRC cards or some other technique to decide what the sequence of messages should
be. Here we are considering only one particular interaction: for example, we decide to
show the case of Borrow copy of book in which the user is permitted to borrow the
book, rather than any of the possible variants in which the user has too many books on loan
or the book is reserved. (By the way, if it’s completely obvious what messages must pass
you should consider whether or not it’s worthwhile to draw the interaction diagram at all.
It may be, for example if the diagram will help people communicate.)

Record the messages next to the links on the collaboration diagram. For example,
Figure 9.2 shows the normal case of Borrow copy of book. Each labeled arrow repre-
sents a message sent from the object at the tail of the arrow to the object at the point of the
arrow. So there must be a link between those two objects, and it must be navigable in the
direction of the message. Furthermore, the target object must understand the message. That
is, the class of the object at the point of the arrow must provide the appropriate operation.
Developing interaction diagrams can help to identify associations between classes, and
operations needed on classes.

It is normal to revise the class model as you develop interaction diagrams. However,
it’s essential to make sure the class model stays sane!

The most obvious solution to the immediate problem may not be the best overall: you
may have to revisit previous decisions to get a solution that works well in all cases. It’s
essential to keep the models consistent: a CASE tool and/or a configuration management
tool can help.

Communication diagrams 115

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

borrow(theCopy)

1: okToBorrow

2 :borrow

2.1: borrowed

Figure 9.2 Interaction shown on a communication diagram.

Activations: flow of control

In procedural interactions (as opposed to those involving concurrency, which we consider
in Chapter 10), exactly one object is computing at any one time. An object starts to compute
when it receives a message; at this point it is said to have a live activation. Eventually it
should return a response to the sender of the message. In between it may just compute, or
it may send messages to other objects to get them to compute. If it sends a message it still
has a live activation, but it can’t do any more computing until it receives a response to the
message. That is, the message is synchronous and sending a message passes control to the
receiver of the message. At any time there is a stack of live activations, each associated
with an object which has received a message to which it has not yet replied. The object
associated with the top activation has control and is computing; objects whose activations
only appear lower down the stack are waiting for replies to messages they have sent.
The top object can send a message, in which case the receiver of the message gets a live
activation which becomes the new top of the stack. Alternatively the top activation may
finish its computation, reply to the message which caused this activation, and be removed
from the stack. The activation below it becomes the new top activation, and its associated
object – which sent the message which has just been replied to – regains control.

In ordinary procedural systems, which are all we’ve considered so far, only an actor
can initiate activity, that is send a message ‘out of the blue’. A system object sends
messages only after it has received a message (and before it has replied to it).

You can think of control as a token that gets passed as a message along the links
in a collaboration diagram, and then passed back when the message is dealt with. We
don’t explicitly show these returns. To keep track of what the stack of objects with live
activations is, the messages are uniquely numbered with a nested numbering scheme. The
first message from one object to another (i.e. not counting the message from the actor
to an object that kicks the interaction off – that message is unnumbered) is numbered 1.
Whenever an object O receives a message, the number of that message will be used as

116 Essentials of interaction diagrams

a prefix of all the messages that are sent until O sends a response to the message. For
example, if the message that activates O is number 7.3, all messages sent from then until
the response to that message are number 7.3 something. If O sends a message to another
object P , that message is numbered 7.3.1. If, after getting a reply to message 7.3.1, O

sends another message, it will be numbered 7.3.2, and so on.

Q: If, after receiving message 7.3.1 from O, object P sent a message, what would its
number be?

Discussion Question 63
You might think it would be more obvious just to number all the messages 1, 2, . . . ,
rather than using this nested scheme. What difference would it make? Can you construct
a situation in which it would be ambiguous?

Q: If messages 2.4.1, 2.4, and 2.4.1.7 have been sent but not replied to, what can you
say about the objects which sent and received each message? Which are active? How
many, and which, are computing?

Q: Is it possible for messages 4.5 and 4.6 both to have been sent and not replied to?
Why? Can you generalize?

9.3 Sequence diagrams

A sequence diagram shows the objects and actors which take part in a collaboration at
the top of dashed lines. The line represents time as seen by the object: it is the object’s
lifeline. Time is assumed to pass as we move from top to bottom of the diagram. You
show a message as an arrow from the lifeline of the sender to the lifeline of the receiver.
Later messages are further down the page. According to UML2, we never show message
numbers on sequence diagrams; normally, all the information you need about message
ordering is immediately visible on a sequence diagram. Figure 9.3 (also used in Chapter 3)
shows the sequence diagram version of the simple communication diagram we used
above.

The order in which you show the objects doesn’t matter, though it will make for a more
readable diagram if you put the objects which take part earliest furthest to the left, so that
most messages flow left to right.

When an object has a live activation, we show a narrow rectangle covering its lifeline.
Optionally you can shade the parts of the activation in which the object is actually
computing. Again optionally, we can show when the responses to messages happen:
though, as we discussed above, an object ceases to have a live activation exactly when
it responds to the message that caused the activation, so you can tell when the responses
happen by looking at the activations.

Q: Why do message arrows always point at the top of activation rectangles, never
part-way down? Why are messages from an object to itself an exception to this rule? (See
below for more on this.)

Sequence diagrams 117

aMember : BookBorrower

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

okToBorrow

borrow
borrowed

Figure 9.3 Interaction shown on a sequence diagram.

Notice that even though the links between objects are not explicitly shown on a sequence
diagram, there still is an underlying collaboration, just as there is in a collaboration
diagram. If two objects exchange a message, there should be an association between their
classes.

PANEL 9.1 Where Should Messages Go? Law of Demeter

As we have said, underlying every interaction there is a collaboration: a set of objects
with links between them. We have said that objects should exchange messages only
when there is an association between their classes (or they’re in the same class).
But this is not a design guideline, since if objects can exchange a message then by
definition there is an association between their classes: if in the class model it looks
as though there isn’t, this is just a bug in the model.

Consider the class diagram fragment in Figure 9.4.1 In this case we only show
the explicit navigabilities: for example, the arrow from Job to EverythingCon-

troller illustrates that eachJob object can send a message directly to the associated
EverythingController. (This might be because each Job had a reference to
an EverythingController; in fact in the real-life case there was a single global
EverythingController.) We don’t show an arrow from Job to JobController.
The reason is that if a Job object wants to send a message to its JobController
(which it frequently did in the real-life case) it must first send the message getJC to
the EverythingController, with itself as parameter (‘give me my Job-

Controller’). The EverythingController looks up which JobControl-

ler controls this job and returns a reference to that JobController. The Job can
now use that reference to send a message to the JobController.

1 Real commercial example: class names have been changed but were similar in meaning.

118 Essentials of interaction diagrams

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

Figure 9.4 Bad design, breaking the Law of Demeter.

Discussion Question 64
What alternative ways are there for providing Job with access to the behavior
JobController provides? Why do you suppose this way was chosen?

Discussion Question 65
What else is suspicious about this design?

The main problem with this kind of design is that it is hard to maintain.
If JobController changed, or if it was decided to alter the relationship
between EverythingController and JobController, clients of
EverythingController would have to be examined to see whether they had
to change too. In a sense EverythingController exposes not only what should
be its own interface, but also the structure of the class diagram to which it’s attached.
Its interface is much bigger than it looks.

Following the Law of Demeter allows designers to avoid ‘this kind of design’. It
says that in response to a message m, an object O should send messages only to the
following objects:

1. O itself;
2. objects which are sent as arguments to the message m;
3. objects which O creates as part of its reaction to m;
4. objects which are directly accessible from O, that is, using values of attributes

of O.

Q: How does the design above disobey the Law of Demeter?

More advanced features 119

Q: Consider again the case of an AddressBook which is implemented using a
List. We have already (in Chapter 5) ruled out as bad design the idea of allowing
AddressBook to inherit from List, and have said that instead AddressBook

should own a List by aggregation. Why should AddressBook not have a method
returning the List to objects which want to add or remove addresses from the
book? What should it do instead?

The Law of Demeter is described in [33]. It is a small part of what Karl Lieberherr,
its inventor, calls adaptive programming. We do not have space to describe this here
but there are some links from this book’s home page.

9.4 More advanced features

9.4.1 Messages from an object to itself

An object may, and frequently does, send a message to itself. On a collaboration diagram
you show a link from the object to itself, and in a communication diagram messages can
pass along that link in the usual way. On a sequence diagram you show a message arrow
from the object’s lifeline back to itself. There is a problem, though. We said above that
when an object receives a message it gets control, and a new live activation of that object
gets added to the top of the stack of live activations. In this case the object already had
a live activation when it sent the message; now it has a new, different activation because
it’s also the receiver of the message! That is, this object is associated with two different
activations on the stack. We can show this using a nested activation; the narrow rectangle
representing the new activation is shown slightly offset from the rectangle representing
the old activation, so that it is visible. Figure 9.5 shows a version of the sequence diagram
with all these optional features shown.

In pure object-oriented programming, every function invocation is the result of a
message, and objects may send messages to themselves so often that an interaction
diagram becomes cluttered. You might choose to omit messages from an object to itself,
counting such things as internal computation within the object.

Discussion Question 66
Does doing so create any problems or ambiguities? If so, how should they be resolved?
Consider a case where an object sends a message to itself, and part of its reaction to this
message is to send a message to a different object.

9.4.2 Returned values

Sometimes it is useful to name the value which is the response to a message; for example,
often the value returned from one message is an argument to a later message. Values being
returned are shown on the reply message arrow, by showing an assignment to a new variable

120 Essentials of interaction diagrams

borrow(theCopy)

borrow
borrowed

:LibraryMember :Copy : Book

okToBorrow

aMember : BookBorrower

Figure 9.5 Interaction shown on a sequence diagram, with optional features.

name. The assignment statement binds the variable, which can then be used in messages
which are sent later. It is also permitted (but not required) to show the concrete value which
is returned; for example, we could write n = getName():’’Fred Bloggs’’.

Figure 9.6 (which also shows creation and deletion of objects, to be described in the
next subsection) shows an example.

Discussion Question 67
Would it ever be useful to name the return value from a message even if it wasn’t
mentioned in a later message?

9.4.3 Creation and deletion of objects

The set of objects involved in an interaction is not always static; objects may be created and
deleted during an interaction. In UML2 (unlike UML1.x), only sequence diagrams provide
notation to show the creation and deletion of objects; this emphasizes that communication
diagrams are only intended to be used for quite simple interactions.

In a sequence diagram, we can show an object being created by putting its object box
part-way down the page at the point where it is created. An open-headed arrow is used
for the creation message. Destruction of an object is shown by its activation ending with a
large X.

Figure 9.6 shows an object being created and another being deleted. The example is an
extension of the case study in Chapter 15: it describes a scenario of a possible use case
Promote lecturer, which is not described in Chapter 15. A lecturer, described by an
object of class Lecturer in the system, is promoted to being a director of studies (that
is, a lecturer with special responsibilities for particular students). A new object of class
DirectorOfStudies must be created, and the old Lecturer object must be deleted.

More advanced features 121

:Lecturer

:DirectorOfStudies

:UTO
getName()

n = getName()

new DirectorOfStudies (n)

destroy()

Figure 9.6 Sequence diagram: creation and deletion of objects, and use of return value.

(In some programming languages this could have been done by changing the class of an
existing object.)2

Message names for creation and deletion

The mechanisms for creating and destroying objects are language-dependent. It is usually
possible to initialize an object with some values at the same time as creating it; it can be
convenient to show this on a sequence diagram using a message called something suitable
like ‘new’ or ‘create’, with the initializing values as arguments. Of course this isn’t a normal
message to an object, since the object doesn’t exist until after the message has arrived!

Many languages (for example Java and Smalltalk) are garbage collected: that is, objects
are automatically destroyed at some time when there are no references to them in the system
(roughly speaking). In this case the programmer does not need to delete objects explicitly.
(This eliminates a large class of programming errors: in fact it is so useful that Bertrand
Meyer made the presence of such automatic memory management one of his Seven Steps
to Object-Oriented Happiness [35].) Such languages normally have conventions about how
one object makes it clear to the garbage collector (and any reader of the code) that it no
longer needs another. For example, it may change a reference that previously pointed to
the object to point somewhere else. When no part of the system is using an object it will be
garbage collected. In languages where the programmer must manage memory explicitly,
it is crucial that an object destroys only the objects for which it is responsible, such as its
solely owned parts: see the discussion of composition in Chapter 6. It is also important that
some object does destroy an object which is no longer needed: failure to do so leads to

2 We assume that promotions happen between academic years, so that there are no Module or Student objects
associated with the Lecturer object that have to be reassociated with the new DirectorOfStudies.

122 Essentials of interaction diagrams

‘memory leaks’. In order to avoid both kinds of problems, the design must specify where
the responsibility for destroying each object lies.

Discussion Question 68
If the system is to be implemented in a garbage-collected language, is it ever sensible for
an interaction diagram to show an object being destroyed? If so, when and why?

Q: How are objects created and destroyed in the languages you know? Develop a
simple sequence diagram in which:

1. an object O receives message m from an actor;

2. O creates a new object P;

3. P sends a message to Q;

4. after receiving the response from Q, P returns;

5. O destroys or forgets P, following the conventions of your language.

Then write code to implement this scenario.

Q: If, on receiving a message, an object does some computation and then destroys
itself, what can the return value from the message be? If your language supports explicit
destruction of objects, write a method in which the receiver of the message destroys
itself.

9.5 Interaction diagrams for other purposes

So far we’ve been using interaction diagrams to show how a complete system realizes a
use case. They can also be useful for describing other behaviors. Here are some examples.

9.5.1 Show how a class provides an operation

When an object receives and acts upon a message, it will initiate an interaction with various
other objects in the system. An interaction diagram can be used to show which objects
are involved and what messages pass. Whatever it was that sent the original message is
external to this collaboration. It can be represented as an actor (perhaps Initiator).
Alternatively, the initial message can have a small black disk added to its tail, to show that
it is a found message, i.e. one which is not sent by any of the objects in the diagram.

9.5.2 Describe how a design pattern works

We will discuss design patterns in Chapter 18. In UML the structure of a design pattern
is treated as a parameterized collaboration, into which classes are plugged to get an actual
collaboration. The interaction between the objects of these classes can be described using
interaction diagrams.

Interaction diagrams for other purposes 123

9.5.3 Describe how a component can be used

The simplest kind of component, one which is self-contained and provides just an interface
describing what it can do, can be treated throughout as a black box. However, components
sometimes have more complicated interfaces to the rest of the system than this; they can
have several points of connection to the rest of the system, each requiring the presence
of an object which provides a certain interface. In such a case it can be important to
understand how the component expects to interact with these objects which are external
to it. An interaction diagram which is part of the documentation of the component can
represent each such object as an actor. The user of the component then has to ensure that
the objects that play these roles interact as expected with the component.

SUMMARY

We discussed how to use interaction diagrams – communication and sequence dia-
grams – to describe how objects interact to achieve some piece of behavior. Communication
diagrams are better at showing the links between the objects; sequence diagrams are better
for seeing the sequence of messages that passes. Interaction diagrams can be used to
describe how a system realizes a use case, or for various other purposes including showing
how a class realizes an operation or how a complex component is to be used.

chapter 10
More on
interaction
diagrams

In this chapter we consider two classes of more advanced features of interaction diagrams.
Most of this chapter concerns sequence diagrams, rather than the other kind of interaction
diagram, communication diagrams. This is because in UML2, especially, communication
diagrams are intended for use with simple interactions.

We will consider:

• how to show conditional and iterated behavior;

• how to model message-passing in concurrent systems.

10.1 Beyond simple sequences of messages

In Chapter 9 we considered how to show a single possible sequence of messages. Because
a use case can include substantially different scenarios, it is sometimes useful to show
conditional behavior or a variable number of iterations in an interaction diagram, to cover
a variety of situations.

As with any situation in which advanced features of UML can be used to increase
expressiveness, there is a serious danger of defeating the object,1 by developing a diagram
which is too complicated to read.

10.1.1 Conditional behavior

A message, or a bigger piece of behavior, may be guarded by a condition. We can see this
in several of the examples in the case studies. The behavior is executed only if the guard
evaluates to true at the time the system reaches that point in the interaction.

In a communication diagram, we can only put a guard on an individual message. We do
this by writing the condition in square brackets in front of the message. This represents
a simple if condition. A condition represents a boolean expression, i.e. it evaluates to
true or false. UML does not lay down what conditions can be: you could express them
in English, OCL, your target programming language, or another notation. Of course, the
project must agree what to use and be consistent.

1 pun intended.

124

Beyond simple sequences of messages 125

opt [ok to borrow]

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

borrow
borrowed

aMember : BookBorrower

Figure 10.1 Optional behavior in a sequence diagram.

In a sequence diagram, we have a more cumbersome but also more expressive notation.
See Figure 10.1 for an example. Part of the sequence diagram, representing the conditional
behavior, is enclosed in a rectangle. The rectangle is labelled opt, short for ‘optional’,
and the guard condition is written in square brackets close to the opt label. This is more
expressive because it lets you show a chunk of behavior controlled by the same condition;
on a communication diagram, you’d have had to put guards on each message. However,
it can seem very cumbersome if you only want to make a single message conditional. In
UML1.x it used to be legal to label a single message arrow with a condition in square
brackets, in sequence diagrams just as in communication diagrams. You might find it
convenient to agree to allow this in your project, even though it’s not formally correct in
UML2.

When you want to represent an if/then/else statement or a case statement, you can
use similar notation, but labeled alt rather than opt. The different cases are separated by
dotted lines, as shown in Figure 10.2. You must make sure that the different conditions are
mutually exclusive (at any one time, at most one of the conditions can evaluate to true).

Discussion Question 69
Recall that in UML2, messages in a sequence diagram are not numbered, unlike messages
in communication diagrams, or messages in UML1.x sequence diagrams. Consider how
best you could refer to a particular message in a complicated sequence diagram.

10.1.2 Iteration

Consider a scenario in which one object sends a message to another some number of times.
If the number of times is fixed – it’s the same for all scenarios in the use case – it would be
possible to show the message that number of times on the interaction diagram. It would,
however, be extremely inconvenient to have to do this, especially if sending the message

126 More on interaction diagrams

alt

: Reservations

returned(self)

[reservation]

[else]

borrow(theCopy)

notifyAvailability(self)

: Book: Copy

Figure 10.2 Alternative behaviors in a sequence diagram.

caused a further chain of messages every time. Worse, if the number of times the message
was sent varied between scenarios in the same use case, it would not in general be possible
to show this. Just as in programming languages, we need a loop, or iteration, construct.

UML allows a message in a communication diagram to be marked with an asterisk
to show that it is sent repeatedly. In the simplest case, we need not specify how many
times it is sent; but more often we combine the asterisk with an iteration clause, which
is an expression in square brackets like (but not to be confused with) the condition on a
conditional message. The iteration clause somehow describes how many times the message
will be sent. Again, the expression can be anything the project agrees to use. Examples
might include:

• [i := 1..10] the message will be sent 10 times;

• [x < 10] the message will be sent repeatedly, until x becomes less than 10;

• [item not found] the message will be sent repeatedly, until the item is found.

Q: What program fragments would you expect to implement each of the examples?

Q: What is the difference between a message marked with * and one marked with
*[true]?

As with conditional execution, this notation used to be (in UML1.x) usable in sequence
diagrams as well, but now it isn’t formally allowed. Instead, in sequence diagrams you can
use a rectangle labeled loop with the iteration clause nearby, as shown in Figure 10.3.
This has the advantage that it makes it clear which messages are to be iterated, which can
be a problem with the simpler notation. It is probably a good idea to use this notation
whenever more than one message has to be iterated; for example, avoid using a simple

Concurrency 127

loop [for each legal move m]

getBestMove

evaluate(m)

: AutoPlayer

: StrategyBuilder : MoveEvaluator

Figure 10.3 Iterative behavior in a sequence diagram.

iteration marker on a message if the receiver of the message reacts by sending another
message.

10.2 Concurrency

The interaction diagrams we’ve considered so far show how to describe the unfolding of a
use case or operation in terms of messages and responses which are passed one at a time
among actors and objects. We have assumed that, with each message, the sender waits for
a response before continuing with its own actions. At most one of our objects is computing
(performing useful work) at any one time. Of course this is a common case, since many
applications are designed to run on single computers which have only one processor.

Systems like this are sometimes called procedural or single-threaded, because there is a
step-by-step procedure with a single thread of execution. On a simple sequence diagram,
you can even envision this as a single thread, laid out along the message arrows, down
the activations and back along the returns. One piece of thread will suffice to cover all the
arrows! (Beware, though: the word ‘procedural’ is also used in several other senses.)

However, many systems today are not single-threaded; they are concurrent in some
way. Some examples of kinds of concurrent systems are:

• distributed systems, in which computation proceeds simultaneously on different pro-
cessors (each requiring at least one thread of execution);

128 More on interaction diagrams

• multi-threaded applications, in which several threads of execution proceed in parallel,
possibly by being scheduled onto one processor, or possibly using several;

• many reactive systems, which get input (data or events) from the environment in a
variety of ways and have to react, often satisfying real-time constraints.

These categories overlap, and are not exhaustive. The common feature is that several things
may be going on at once in the system we are building; several objects may be computing
at the same time, several messages may be sent at the same time.

In fact developers often have to consider concurrency even when each application they
design is single-threaded. If several applications are running at the same time on different
processors (perhaps on different networked machines), we have multiple flows of control.
External systems that are represented as actors often have their own flows of control (and
of course human actors always do!). The concurrency just becomes more obvious when
the system being designed consists of several interacting applications.

Concurrent systems are often confused with real-time systems, because real-time systems
are often concurrent and vice versa. However, the concepts are quite different and do not
always occur together: a single-threaded system can be a real-time system, and a concurrent
system need not be.

Q: Give examples of a single-threaded non-real-time system; a concurrent non-real-time
system; a single-threaded real-time system; a concurrent real-time system. (You may need
to use a broad definition of ‘system’.)

Q: (Particularly relevant if you’re using Java.) Do you have facilities available to write
multi-threaded code? Investigate how this can be done, and write small sample programs.

Discussion Question 70
In what ways can several single-threaded applications interact?

It is beyond the scope of this book to consider concurrent application design in depth. In
the rest of this chapter we will try to give just a flavor of the considerations that arise.

10.2.1 Modeling several threads of control

There are (at least) three ways a new thread of execution can start up.

1. A single existing thread can be split into several threads. That is, an object which is
computing (e.g. because it just received a message) can send two messages concurrently.

On a communication diagram we use the messages’ sequence numbers to show
which messages are concurrent. Recall from Chapter 9 that numbers are used to
represent sequential messages in the same activation, and if there are several nested
activations – caused by messages that have been sent but not yet replied to – there
will be several numbers separated by dots, with the first activation on the left and
the most recent activation on the right. For example, message 2.13.4 is sent from
the activation that was caused by message 2.13, after message 2.13.3. (In fact in a
procedural system, message 2.13.4 can’t be sent until after the reply to message 2.13.3
has been received – if there are messages 2.13.3.1, etc., they all have to have completed
too before we can go on to message 2.13.4.) The change when we consider concurrent

Concurrency 129

systems is that we can use names (strings of letters) instead of numbers, to show
messages which are sent concurrently. For example, messages 2.13.A and 2.13.B are
both sent concurrently within the activation caused by message 2.13.

Q: Draw a communication diagram in which messages with the following sequence
numbers appear (they won’t be in this order, and you will need some other messages
too): 2.B.2, 1, 2.A.

Discussion Question 71
Is this numbering sequence enough? Can you illustrate a sensible sequence of messages
that can’t be numbered using this scheme?

2. An actor, or an active object, can start a new thread of execution. That is, it can send
a message ‘on its own initiative’ without necessarily having received a message itself
first, while there is already computation going on somewhere else. This is in fact almost
the definition of an active object: an active object is one that owns its own thread
of control. Indeed, the canonical examples of active objects are objects that represent
processes or threads. An active object is shown in UML just like any other object except
that it has a heavy border.

Q: Does your programming language support active objects? What classes can active
objects have?

The decision of how to assign concurrent processes to different processors is recorded
in UML deployment diagram, which are described in Chapter 13. The decision is likely
to be made at an early stage of a project, as part of deciding its architecture.

3. An object can send an asynchronous message to another object – that is, it can cause
another object to start computing without having to stop computing itself. This is harder
to describe using the thread metaphor – the sender splits its single thread into two, cuts
one off, and hands it over to the receiver of its message!

In the latter two cases, the nested form of numbering may not be useful, because the
execution is not nested: the objects are concurrent. You can use the straightforward
numbering sequence 1, 2, . . . instead.

If you are modeling a complex real-time system, or a system in which concurrency is
important, you may wish to consider using a special variant (or profile) of UML designed
for such systems. For example, such a profile might define stereotypes for relevant kinds
of messages. Describing such a profile is beyond the scope of this book, though there are
some links to more information from the book’s home page. Even standard UML, though,
provides notation for asynchronous messages as described above; see Figure 10.4.

WARNING

In Figure 10.4 we show what UML describes, but in fact conventions differ so you
may see variants.

130 More on interaction diagrams

Interaction type Symbol Meaning
Synchronous or call –� The ‘normal’ procedural situation. The sender loses

control until the receiver finishes handling the message,
then gets control back, which can optionally be shown
as a return arrow.

Return <– – Not a message, but a return from an earlier message.
Unblocks a synchronous send.

Asynchronous → The sender does not lose control; it sends the message
and may continue immediately. The recipient of the
message may also become active, if it wasn’t already.

Figure 10.4 Variants of message sending in sequence diagrams.

Not all the messages in an application have to be of the same type. Some objects may
be interacting synchronously, i.e. as nonconcurrent parts of a single component, while
messages between other objects may be asynchronous. This might happen, for example,
when some messages are being sent to a separate, independently executing component.

For our example we consider again the student registration system developed in
Chapter 15. Suppose that the use case Register for modules (slightly more sophisti-
cated than anything discussed in the chapter) is as follows. This use case assumes that each
CS4DirectorOfStudies (each director of studies of a CS4 student, as actor: we write
DoS for short) has preapproved certain module combinations, possibly on a per-student
basis. For example, the most standard combinations might be preapproved for all students,
and a particular nonstandard combination might be approved for a particular student, after
the student has discussed the choice with the DoS. You might model this by a use case
Approve combinations with the DoS as actor.

Register for modules

The student visits a Web page and chooses a selection of modules. On confirmation, the
system records these choices. Not necessarily immediately, the system does one of three
possible things.

1. If the combination is preapproved for this student, it sends a confirmatory email to the
student and records that student on the modules named.

2. If the choices are not preapproved for this student, but are legal according to university
regulations, it sends an email to the student’s director of studies. The system’s
responsibilities end here: the DoS will contact the student, and may approve the choice
using use case Approve combinations.

3. If the choices are illegal according to university regulations, it sends an email explaining
the problem to the student.

Q: If you are familiar with Web programming, consider how such a system might
be implemented, and write a more detailed (use case?) description making clear your
high-level decisions, for example which parts of the system are in what language and run
where. What are the advantages and disadvantages of your description, compared with

Concurrency 131

Ada Lovelace : CS4Student Dr. J. Bloggs : CS4DirectorOfStudies

:DirectorOfStudies

email

confirmChoice(m1,...,m6,self)

chooseModules(m1,...m6)

:Student

Figure 10.5 Asynchronous message-passing.

the one above? Do you think it appropriate for a use case description to include the extra
information? Why?

Figure 10.5 shows one possible realization of the scenario of this use case described
as 2. We use asynchronous messages between system objects and actors to represent both
the student submitting course choices and the email message sent by the system.

Q: Develop realizations of the other scenarios in this use case. (You will need to read
Chapter 15 first.)

Discussion Question 72

1. Would it ever be useful to use asynchronous messages in interaction diagrams, even
if the final system was to be single threaded?

2. As we mentioned, UML has reduced the number of message variants available in
standard UML, on the understanding that more variants can be added when needed,
for example in a variant of UML that focuses on supporting the design of real-time
systems. What message types do you think might be needed in such contexts, and
why?

SUMMARY

This chapter covered two more advanced aspects of UML interaction diagrams. First we
showed how to show more than one scenario on a diagram, by permitting the expression of
conditional and iterated message passing. Then we very briefly introduced some features
suitable for modeling concurrent systems.

chapter 11
Essentials of
state and activity
diagrams

So far we have discussed:

• how to describe the requirements of a system using use cases;

• how to model the static structure of a system – including what classes there are and
what messages objects of those classes accept – using a class model;

• how to model the way in which objects interact to satisfy the requirements – by
describing the messages that pass between them – using interaction diagrams.

We haven’t discussed, though, how to model an object’s ‘decision’ about what to do when it
receives a message. Two interaction diagrams may show objects of the same class receiving
the same message, but responding differently. This is often reasonable, because an object’s
behavior may be affected by the values of its attributes. In order to implement, maintain,
or test the class, we need to understand what the dependencies are between the state of
an object and its reactions to messages, or other events. As we shall see in this chapter,
UML’s state diagrams (or statecharts, or statechart diagrams) record these dependencies
in a convenient way. In this chapter we will consider the commonest use of state diagrams,
namely to show how an object reacts to receiving a message by sending messages.

With a little lateral thinking, we shall be able to use much of the same notation to describe
complex activities. The idea is that moving on from one (sub)activity to the next when the
first activity is completed is rather like an object moving from one state to a significantly dif-
ferent one when it receives a message. We shall see that activity diagrams, which began as a
variant on state diagrams adapted to show the connections and dependencies between activ-
ities, can be an aid to understanding complex activities. Sometimes there is a choice between
using an activity diagram and using an interaction diagram; we will discuss the choice.

11.1 State diagrams

Let us start with a very simple example in which an object receives a message and what it
does depends on the values of its attributes and links.1 In our library system an object of

1 By ‘what it does’ we mean what messages it sends, not just what arguments or return values it chooses: we
may say its behavior depends qualitatively on the values of its attributes and links.

132

State diagrams 133

class Copy may have a boolean attribute onShelf, which is intended to record whether
the object describes a copy of a book which is currently in the library, or one which is
currently on loan. The interface of class Copy specifies that the object should be willing
to accept the message borrow(). This is intended to inform the Copy object that the
real-world copy has just been borrowed from the library. This message should only arrive
when the object’s onShelf attribute is true – if the real-world copy is being borrowed,
it must have been in the library! The Copy object’s reaction should be to set its onShelf
attribute to false (keeping itself in step with the aspect of the real world it is supposed to
describe), and to send a message to its associated Book object to inform it, in turn, that this
copy has just been borrowed.

What should happen if the borrow() message arrives when the onShelf attribute is
false? This means that something has gone seriously wrong – the state of the system does
not correctly describe the state of the real world – so it would not be appropriate for the
Copy object’s reaction to ignore the problem. Instead it should somehow signal an error,
perhaps by writing an error message to a log.

The value of the copy’s attribute onShelf is important for understanding the behavior
of the object, at the level of what messages it sends after receiving a message itself. We can
name the two significantly different states of a Copy object on the shelf and on loan

and record the messages that cause it to move between the states as the events that cause
transitions between states, as shown in Figure 11.1. (We haven’t shown what the object
should do if it receives an unexpected message; this is discussed in subsection 11.1.1.)

return()

borrow()

on loan on the shelf

Figure 11.1 State diagram of class Copy.

The black blob with an arrow into the on the shelf state is a start marker. It means
that when a new object of class Copy is created, it starts off in state on the shelf. Start
markers are optional. It’s useful to show them when objects of the class are always started
in one state. For example, this is the case if objects of a class are always created with
the same default values of their attributes. However, objects are often created with values
of their attributes given as part of the create instruction (arguments to a constructor, for
example). In that case, the initial state of the object varies depending on how it is created,
so no start marker should be shown.

Q: Is it reasonable to suppose that a Copy object is always created in the on the

shelf state, that is, with onShelf true? Why?

Q: How are the initial values of the attributes of an object set in your programming
language? For example, can the class definition specify default values? If so, can you still
choose to override the defaults when you create an object?

Discussion Question 73
Consider the alternative of having just a single message, say borrowOrReturn, in re-
sponse to which a Copy object toggles the value of onShelf. What are the consequences
of such a design change?

134 Essentials of state and activity diagrams

11.1.1 Unexpected messages

In Figure 11.1 we have not shown arrows to represent the receipt of message borrow()

in state on loan, or the message return() in state on the shelf. Under normal
circumstances, such messages should not arrive: if they do, it’s a bug. However, the class
defines the interface that an object of class Copy must satisfy, and this interface contracts
a Copy object to accept messages borrow() and return(). So the code of class Copy
will have to do something if these ‘wrong’ messages do arrive, like report an error in a
certain way. The decision about what should happen in unexpected circumstances like
these is an architectural decision which should be made and documented once, so that we
do not have to record separately what happens on any such event. A common solution is to
have a single, globally accessible object of a class Error, whose sole responsibility is to
report errors. Any object which receives a message it was not expecting sends a message
to the Error object describing what happened. We are using the convention that if a state
diagram does not show how a message is handled in a particular state, it means that the
message should never arrive when the object is in that state. We show error-handling
messages only if something special is required in this particular case.

TECHNICAL UML NOTE

An alternative convention – which used to be mandated by the UML specification – is
that an event, such as the arrival of a message, that does not trigger a transition
is simply ignored. This will be important when we consider other kinds of events
in Chapter 12. Our convention is commonly used in practice because it is very
convenient, but it applies only to the arrival of messages that are in an object’s
interface.

Discussion Question 74
How else might unexpected messages be dealt with? What are the advantages and
disadvantages of the approaches you consider?

11.1.2 Level of abstraction

The state diagram for Copy showed only two states, although there are presumably many
different possible settings of the attributes of a Copy object. (We have not defined the
attributes of class Copy completely, but probably it has some kind of library number,
some record of which book it’s a copy of, and possibly more.) This is because most of
the different settings of the attributes are equivalent as far as our current concerns go: the
behavior of a Copy object does not significantly depend on which Book it’s a copy of, for
example. What is significant may depend on what aspect of the system you’re interested
in. However, in the final implementation the values of an object’s attributes determine
which state of the state diagram it is in. In fact, the state of the object may also depend, in
principle, on the objects it is linked to and their attributes and so on, and maybe even on
the values of local variables in a method that’s being executed. However, systems in which
two objects with the same attribute values could be in different states of a state diagram

State diagrams 135

tend to be hard to understand and maintain. Given the values of all the object’s attributes,
you should be able to identify exactly one state on the state diagram which the object must
be in. It is sometimes helpful to record the range of attribute values that a state covers
in the state diagram. For example, we could add the constraint {onShelf = true} to
the on the shelf state of the state diagram, and {onShelf = false} to the on loan

state. Exactly one of these constraints should always be true. This is overkill in our simple
example, but is useful when a more complex combination of attributes determines the state
in a state diagram.

Q: What is the smallest number of states that there could be in a correct state diagram
for class Copy? Can you say anything about the largest number of states? Consider
drawing state diagrams with (a) the smallest possible number of states, (b) some number
of states larger than two. Are you convinced that the diagram with two states is more
useful?

Discussion Question 75
(After reading Chapter 6.) What difference does it make if the class has a class invariant?

11.1.3 States, transitions, events

Figure 11.1 demonstrates the most important elements of a state diagram, namely:

• states shown as boxes with rounded corners;

• transitions between states, shown as arrows;

• events that cause transitions between states – so far we’ve only considered the most
common kind of event, namely the receipt of a message; this is shown just by writing
the message (including the names of its arguments, if any) on the transition arrow;

• start marker shown as a black blob with an (unlabeled) arrow into the initial state of
the diagram.

TECHNICAL UML NOTE

Technically, in UML2, what we show on the diagram is not an event but a trigger. A
trigger specifies a kind of event; the event itself is the actual occurrence that causes
the transition to be fired. We will not labor this distinction, and will continue to use
the term ‘event’ for both.

It will not surprise you to know that a state diagram can also show a stop marker. This
is a black blob with a ring round it, and means that the object has reached the end of its life
and will be destroyed. There can be several stop markers in one diagram, or none.

Q: What’s the difference in meaning between a state with no outgoing transitions at all,
and one with an arrow into a stop marker?

So far, we have been considering a simple variety of state diagrams, which are known
as Protocol State Machines (PSMs). A PSM can show how an object’s state changes in

136 Essentials of state and activity diagrams

response to the messages it receives. It does not attempt to show any actions that the object
may take as a result. This is often the most useful way to use state diagrams in practice,
but sometimes you may want to show some of the object’s actions in a state machine. In
the next subsection we show how to do that.

11.1.4 Actions

We said that state diagrams were useful for understanding how an object’s reaction to a
message depends on its state; for example, we want to show what messages it sends. An
object sending a message in response to being sent one itself is an example of an action
being an object’s reaction to an event.

An event is something done to an object, such as it being sent a message. An action
is something that the object does, such as it sending a message.

We can show the action after the event on the transition, separating the two by
a slash. Figure 11.2 shows the Copy object sending messages borrowed(self) and
returned(self) to its associated Book object, as part of its reaction to receiving the
borrow() and return() messages.

on loan on the shelf
return() /book.returned(self)

borrow()/book.borrowed(self)

Figure 11.2 State diagram of class Copy, with actions.

Analyzing the notation: the slash (/) shows that what follows is an action. book followed
by a dot identifies the object to which a message is being sent: we are assuming that the
Copy class includes an attribute book to implement the association between Copy and
Book shown in the class diagram of Figure 3.5. Finally returned(self) is an example of
a message including a parameter; in this case, the message returned expects an argument
which is an object of class Copy, to say which copy has just been returned, and in this case
the Copy object sends itself (more precisely, in most languages, a reference to itself).

Discussion Question 76
In Chapter 5 we said that it is not useful to show attributes of a class whose sole purpose
is to implement the associations shown in the class diagram: this violates the WRITE
ONCE rule, which states that wherever possible you should avoid recording information
twice if that means you have to keep the versions consistent (see Chapter 2). Yet here
we needed some way to refer to the Book object associated with the Copy object.
Do you think our decision to invent an attribute book of Copy for the purpose was
reasonable? Should we now update our class model to show this attribute? What are the
options, and what are their pros and cons?

Writing an action on a transition is a convenient thing to do in this case. However,
suppose you have several different ways of entering the same state (which is perfectly
legal, indeed quite common) and that the same action should happen when you enter the

State diagrams 137

state, regardless of what transition is happening. You could show the action on each of
several transitions, but this is both tedious and error prone – it violates the WRITE ONCE
rule again. Instead, we can show our intention directly, by writing the action inside the
state as a reaction to the special event entry. There is implicitly an entry event every
time the object enters a state, though we don’t show or consider these events unless we
want to associate actions with them. Similarly, we can show actions which should happen
whenever a given state is left by associating the action with an exit event in a state.
Figure 11.3 shows the use of an entry event; Figure 11.4 shows the use of an exit event.
Both of these diagrams mean exactly the same as Figure 11.2!

return()

borrow()

on loan on the shelf

entry/book.borrowed(self) entry/book.returned(self)

Figure 11.3 State diagram of class Copy, with entry actions.

return()

borrow()

on loan on the shelf

exit/book.returned(self) exit/book.borrowed(self)

Figure 11.4 State diagram of class Copy, with exit actions.

You can use any combination of these actions.
Q: In what order do you think the actions foo(), bar(), and baz() will be executed
in Figure 11.5?

/bar()

exit/baz() entry/foo()

someEventaState anotherState

Figure 11.5 Several actions in one diagram.

Q: Draw some more state diagrams for Copy with the same meaning as those above.

Discussion Question 77
Even though Figures 11.2, 11.3, and 11.4 mean the same, there are various reasons why
you might prefer one form. Consider maintenance for example. What do you think?

In fact this use of entry and exit events shown inside a state is a special case of more
general notation, which we shall return to in the next chapter.

Making good use of actions

What exactly can you put after the slash on a transition? We’ve shown that you can
describe the sending of a single message. What about more complicated behavior? After
all, if a transition represents an object responding to a message using one of its methods,
you might consider showing the whole method implementation on the transition. UML
provides an action language that does allow arbitrarily complex behavior to be recorded

138 Essentials of state and activity diagrams

in UML. However, diagrams can easily become unreadable and confusing when complex
actions are used. Without good tool support, keeping the diagrams in step with the code is
practically impossible.

Once you go down the route of recording the complete behavior of the system in UML,
you are effectively using UML as a programming language. In the authors’ opinion, UML
is not a very good programming language. It was not designed to be convenient to use that
way, and there are also many technical issues in its definition which mean that different
tools may interpret the same UML diagrams differently.

Overall, it’s usually better to keep actions on transitions simple–perhaps informal – or
leave them out altogether. Sometimes, a good alternative is to use postconditions on
protocol state machine transitions to describe what should be true after a transition has
finished, but not how the system should ensure that. This is related to the use of guards, so
we’ll discuss this possibility at the end of the next subsection.

11.1.5 Guards
Sometimes the occurrence of the same event in the same state may or may not cause a change
of state, depending on the exact values of the object’s attributes. (That is, we need to care
about more detail than just what state of the state diagram the object is in.) We can show this
using the same conditional notation that is used in communication diagrams (Chapter 10).

To illustrate this, let us return to the example of the state diagram of class Book, which
we first showed in Chapter 3. Book objects have a slightly more interesting state than Copy
objects because there can be many copies of each book, and a Book object is borrowable
provided that there is at least one copy on the shelf. Therefore the borrowed() message
causes a state change out of state borrowable only if this is the last copy on the
shelf; otherwise, the Book object remains borrowable. Figure 11.6 illustrates this using
the two (mutually exclusive) conditions [last copy] and [not last copy]. As in
communication diagrams, a condition can be expressed in careful English, in a programming
language, in OCL, or any other convenient notation the project may decide on.

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

Figure 11.6 State diagram for class Book.

Since the reverse state transition, where a returned() message is received in the not
borrowable state, is unguarded, such an event will always cause the Book to change to
the borrowable state, as we’d expect.

Guards, often known as preconditions, can be used in protocol state machines as well
as in other state machines. Usually guards in PSMs are shown before the event name.

State diagrams 139

If it’s useful you can also show a postcondition after a slash, where an action might
be in a general state machine. For example, a transition in a PSM might be labeled
[last copy]borrowed()/[shelf empty]. This means that the transition cannot be
taken unless the message borrowed() arrives when the precondition [last copy]

is true; if the transition is taken then at the end of the transition the postcondition
[shelf empty] must be true. Note that it does not record anything about how the system
should ensure that the postcondition becomes true. This is the essential difference between
protocol state machines, with postconditions, and general or behavioral state machines,
with actions.

Figure 11.6 also illustrates that a transition can lead from a state back to the same state.
We need to be able to show such transitions if we follow the convention we mentioned
earlier, that the absence of a transition showing the arrival of some message indicates that
it’s an error for that message to arrive. If we omitted the self-transitions in the example,
our convention would mean, for example, that it was an error for someone to return a copy
of a book when there was already a copy of the same book on the shelf!

Q: Why are there no guards on the returned event?

Discussion Question 78
Why can we not just add an extra state to show a Book with one copy remaining and so
avoid using guards? If you cannot see a reason, try drawing the state diagram that would
result.

Discussion Question 79
Suppose that you decide to use a protocol state machine to model the behavior of an
object. Thus you cannot use actions on the transitions to model an object’s reaction
to an event. What UML diagrams, or other techniques, might be useful to model its
reaction?

Discussion Question 80
What are the pros and cons of using protocol state machines versus using general state
machines?

In the next chapter we will see further state diagram notation; for example, UML can
show nested state diagrams, and diagrams in which several things happen concurrently.

PANEL 11.1 Designing Classes with State Diagrams

The state diagram of a class should be as simple as possible. The more the behavior
of an object depends on its state, the harder it is to understand. Classes with complex
state diagrams cause several related problems.

Firstly, it is harder to write the code for such a class correctly; the method
implementations end up having many conditional sections.

Secondly, it is harder to test the class. We shall return to this topic in Chapter 19:
you might like to think now about how you would test the Book class, and about
how the tests required relate to the state diagram. (It’s worth remembering that there

140 Essentials of state and activity diagrams

is often a choice about how much detail to show in a state diagram. Of course,
showing less detail for the same class does not really reduce the number of tests
required, though it may reduce the number you know you need!)

Thirdly, and most importantly, it is much harder for external code to use a class
correctly if the behavior of the class depends on its state in a complex way. For
example, the client has to make sure that it does not send a message to an object
when the object is in a state where that message causes an error. Either the external
client has to somehow keep track of what has been done to the object, so that it can
work out what state the object will be in, or it has to query the object about its state
before it sends the message. In the first case, to be confident about the correctness
of the whole system you have to convince yourself that the client is always correct
in its assumptions about the state of the object. The second case may be safer but it
also results in extra querying messages being sent, which is more to understand and
get right, and also takes time.

Q: What is the relationship between the state of a Book object and the states of
the associated Copy objects?

So if you have a class with many states, it is worth considering whether there are
better designs. Sometimes a single class with many states can usefully be split into
two or more classes with simpler behavior. For example, instead of a single Copy

class with two states, we could consider having two classes; say CopyOnShelf

and CopyOnLoan. Then instead of state changes we’d have creation and deletion
of objects of these new classes. Whether this is an improvement depends on the
circumstances, and in particular on whether the smaller classes seem like good
classes in their own right or not. If it seems natural to think of the state change as
being a case of an object of one of the candidate new classes changing into an object
of another candidate new class, the splitting is likely to be good design. If this seems
unnatural, it is less likely to be helpful.

Discussion Question 81
Consider in detail the changes that would be necessary if we split the class Copy
as described above. Do you think this would be an improvement, or not?

Discussion Question 82
Another major factor in making this kind of decision is how often the change of
state or class is likely to be needed. Why is this important?

Discussion Question 83
Consider the CS4 Administration System described in Chapter 15. Instead of the
two classes Lecturer and DirectorOfStudies, we could have had a single class
Lecturer with an attribute isDirectorOfStudies. Consider what difference
this would make and whether you think it would be an improvement.

Activity diagrams 141

Discussion Question 84
Many people (Clemens Szyperski in [44], for example) say that a component should
not have any persistent state, so in particular its state diagram should have just one
state. Why is this?

11.2 Activity diagrams

Activity diagrams describe how activities are co-ordinated. For example, an activity
diagram may be used (like an interaction diagram) to show how an operation could be
implemented. An activity diagram is particularly useful when you know that an operation
has to achieve a number of different things, and you want to model what the essential
dependencies between them are, before you decide in what order to do them. Activity
diagrams are much better at showing this clearly than interaction diagrams.

Activity diagrams are also useful for describing how individual use cases unfold and
may depend on other use cases. Often the use cases that you uncover happen not in
arbitrary orders but as part of the overall workflow of an area of the customer’s activities.
For example, sometimes the updating of data as part of one use case must be finished
before another use case, which reads that data, can be started. The two may represent
separate tasks, so that it is sensible for them to be separate use cases, but not to be
independent.

In both cases, activity diagrams record the dependencies between activities, such as
which things can happen in parallel and what must be finished before something else can
start. As this suggests, the fundamental block in an activity diagram is an activity, and a
transition out of an activity normally means that the activity has been completed.

TECHNICAL UML NOTE

In UML1.x activity diagrams were, at the formal level, state diagrams extended for
convenience with some extra notation. In UML2 they are described independently.
However, activity diagrams and state diagrams still have enough in common for it to
make sense to consider them together.

We remark that although activity diagrams can be useful for modeling workflow, there is
a lot more to business modeling than this. There are some extensions of UML for business
modeling, but UML has been criticized for being weak in this area.

The elements of activity diagrams are described below.

• An activity is shown as a named box with rounded corners. That is, the notation for an
activity is the same as the notation for a state. You can think of an activity as a sort of
state which is left, not in response to some event arriving from outside, but when the
activity it represents is finished. The activity can involve many steps, including waiting
for events, though this detailed activity is not usually shown.

142 Essentials of state and activity diagrams

• An activity edge is shown as an arrow, just like a transition in a state diagram. Unlike
transitions, however, activity edges are not labeled with events or actions. (We do not
need to label them with events because they fire when the previous activity completes,
not because of an outside event; and we do not need to label them with actions because
actions are more conveniently included in the activities.) However, an activity edge can
be labeled with a guard condition, if the next activity depends on the situation.

• A synchronization bar is a thick horizontal bar describing the co-ordination of
activities. Once all the activities which have activity edges leading into the bar are
complete, the bar can be passed. At that point, all the activity edges leading out of the
bar are fired, so the activities to which those edges lead are started in parallel. That is,
the synchronization bar provides a way to express things such as waiting for all subtasks
to finish before proceeding (join), and starting several subtasks in parallel (fork).

• A decision diamond is used to show decisions, as an alternative to guards on separate
edges leaving the same state.

• Start and stop markers are used as in state diagrams.

The main differences between activity diagrams and state diagrams, apart from the extra
notation just described, are that:

• activity edges are not labeled with events or actions, as discussed above;

• activity is intended to proceed, following the flow described by the diagram, without
getting stuck. So, for example, if there are guards on the edges flowing out of an activity,
normally exactly one of them should be satisfied. This isn’t a universal rule: sometimes
you might want a final step of activity in some circumstances but not others, in which
case it might be correct to have non-exhaustive guards, that is, for it sometimes to be
the case that no guard is satisfied.

Figure 11.7 shows the workflow in the library from Chapter 3 as an activity diagram.
This does not describe how the library information system works: it describes the human
interaction into which the system must fit. Understanding this kind of business context
should help you to develop a genuinely useful and usable system; you may sometimes
find it helpful to develop diagrams like this one to clarify your understanding. We use the
synchronization bar to show the start and end of a concurrent activity, where the librarian
submits a borrow request to the system and returns the book to the shelf.2 We see the
merging of a customer’s activities with those of the librarian and the end of this phase
when the customer completes and the librarian returns to service the next customer. The
diagram also illustrates the use of decisions to show branching of behavior.

Q: Redraw Figure 11.7 to show an activity when the librarian stamps a borrowed book.
Should this be concurrent with an existing activity?

Q: Redraw Figure 11.7 to show the detailed activities within the library system itself.

2 Actually this is a loose use of ‘concurrent’, but one that’s common in UML. Probably the librarian cannot do
these two activities at the same time: what we mean is that it doesn’t matter what order they happen in.

Activity diagrams 143

prepare for
next member

find book
on shelf

wait in queue

borrowing

record

record
return

put book back
on shelf

[borrower]

[returner]

[returning]

[borrowing]

member librarian

Figure 11.7 Business level activity diagram of the library.

Partitions and swimlanes

An activity diagram may contain several groups of related activities. They may be related
according to which objects or actors perform them, which use cases they form part of, or
any other basis that appears useful. Illustrating this can be achieved by splitting the diagram
into partitions, sometimes known as swimlanes, which group the activities accordingly.

Figure 11.7 has partitioned the library into actions performed solely by customers and
those involving the librarian.

Q: Redraw Figure 11.7 to show activities partitioned in correspondence with the use
cases in Chapter 3.

Q: Draw an activity diagram to represent the operation borrow on a LibraryMember
object (described as a sequence diagram by Figure 3.6). Show things happening in sequence
only when they must.

UML2 contains a lot more notation for use in activity diagrams than we consider in this
book. For example, it is possible to record how objects are transformed by activities, how

144 Essentials of state and activity diagrams

signals are received and exceptions handled. You can even embed fragments of sequence
diagram in your activity diagram to give what’s known as an interaction overview diagram!
However, the simple notation discussed here is usually sufficient and, as always, developing
complex diagrams has risks as well as benefits. For further information, you could consult
the UML definition [48].

SUMMARY

We described how to use state diagrams to model the way that significant changes in an
object’s attributes affect the way it reacts to events, such as messages. We emphasized that,
even though an object may have such complex behavior that it can be useful to show it in
a state diagram, it is better to avoid designing classes with complex state-based behavior
where possible. We also discussed activity diagrams, which model the dependencies
between activities, such as the operations involved in the realization of a use case, or the
use cases of a system.

chapter 12
More on state
diagrams

This chapter considers some less usual, but sometimes useful, features of UML state
diagrams. We will consider:

• how to show events and actions, other than message-passing, in state diagrams;

• compound states, where a single state of a state diagram has a fine structure which we
want to show;

• concurrent compound states, where several state machines execute independently – this
is useful for modeling concurrent systems.

12.1 Other kinds of events

UML classifies the events that may cause a state transition like this.

• Call event: the receipt of a message requesting that an operation be performed. This is
the commonest case, which we considered in Chapter 11. As we saw, the event includes
the parameters to the message as well as its selector.

• Change event: occurs when a condition changes from false to true. A change event
is written as the keyword when followed by an expression describing the condition,
written in parentheses; e.g. when(X=10). A change event is useful to describe the
situation in which an object changes state because it alters the value of its attributes
after receiving a reply to a message that it sent, rather than as an immediate result of
the object receiving a message. There is an example of this in Chapter 16, where a
CurrentPosition object sends a message to a Game object, the reply to which will be
used as the new value of the CurrentPosition’s toMove attribute, which says which
player’s turn it is next. Depending on this new value, CurrentPosition may or may
not make a state transition. We model this with the event when(toMove = A).

• Signal event: the receipt of a signal. Like a call event, a signal event may have
parameters enclosed in parentheses. A signal must be defined as a special kind of
class, with the keyword �signal� before its name, no operations and the signals
parameters in the attributes compartment. Signals may be related to each other by
generalization, but must not be related to normal classes.

145

146 More on state diagrams

• Time event: in general an expression denoting a length of time which must elapse
after a named event but most often written, using the keyword after, relative to the
time at which the current state was entered, e.g. after(0.5 seconds). To show that
something must happen at a particular absolute time, use the keyword at, e.g. at(2am)

Discussion Question 85
How absolute do you think an absolute time event should be? Is our example at(2am)

reasonable, or should we only use expressions like at(2am, May 15th, 2006)? How
does this depend on your assumptions about the kind of system you’re dealing with?

12.2 Other kinds of actions

We have seen in Chapter 11 that state diagrams can show messages which an object sends
in reaction to an event. We also mentioned that UML allows a much more general notion of
actions, but that there are dangers in using it. Here we briefly give an example of a slightly
more complex action. Figure 12.1 shows a possible state diagram for class Average of the
simulation system described in Chapter 17. An Average object waits for update messages
from the simulation objects in a model. Such a message sends a new value, which must be
added to the current total held in the attribute sum. The number of updates received so far,
held in the attribute observations, must also be incremented. There are several points
to notice.

1. As usual, UML does not prescribe the syntax of the actions; you will probably find it
convenient to write them in English, pseudocode, or the target programming language.
They must not, of course, refer to anything that the object cannot be reasonably
considered to know about. They can sensibly refer to attributes, operations, and links of
the object, and to any parameters on the message that triggered the transition.

2. An action sequence is often shown by separating the actions with slashes, or with
semicolons; UML does not specify the syntax to use. The actions are executed from left
to right (although in this case that doesn’t matter).

3. We have shown update(val: Real) as an internal event by writing it inside the
box (as we did with the special events entry and exit in Chapter 11). The difference

reset() / sum := 0 / observations := 0

report() / printSummary() / sum := 0 /observations := 0

entry / startTime := now()

update(val : Real) / sum := sum + val/observations++

Figure 12.1 State diagram for class Average: not good style!

Looking inside states 147

between this and a self-transition shown as an arrow from the state to itself is that when
we write the event inside the state, the entry and exit events of the state are not triggered.
The idea is that showing an arrow from the state to itself corresponds to the object first
leaving the state (so the exit event occurs) and then re-entering the same state (so the
entry event occurs). Showing the event inside the state avoids causing entry and exit
events to happen.

4. Occasionally one-state diagrams like this are a convenient way to show how the object
reacts to events. Even the name compartment of a state is optional: since there is only
one state we haven’t named it here.

Q: Represent the same information on a diagram designed for clarity, rather than to
demonstrate as many points about UML as possible!

Discussion Question 86
Reconsider the Book class in the library example. How could it show more information?
Do you think this would be useful?

Q: Draw a state diagram for a Copy in the library where, if it is not returned within
three weeks, it becomes overdue. (You will need to make appropriate changes to the
class definitions.)

12.3 Looking inside states

So far we have considered states as single entities, without internal structure. Occasionally
it is useful to consider a state as containing an internal behavior which can itself be
represented as a state diagram. Such states are referred to as compound states.

Strictly speaking, we have already considered such compound states, when we looked at
the way that internal events are handled. An internal event and its resulting action sequence
is implicitly a single transition within an internal (nested) state machine.

TECHNICAL UML NOTE

UML2 actually provides several subtly different mechanisms for nesting one state
machine inside another: submachine states, compound states, and do activities
modeled by their own state diagrams. Since the differences are only important when
you use features not discussed in this book, we will not go into details.

Figure 12.2 shows the high-level state diagram of aCustomer, which is being modeled as
an ActiveEntity in the simulation model of a simple queue for service, using the discrete
event simulation package described in Chapter 17. The Customer object is either active
or in the event list, waiting for its next chance to be active. The line do/activeDetail in
the active state shows that the behavior activeDetail should be carried out as long as
the Customer object is in state active. The behavior activeDetail could be described
in any convenient way. One option is to develop a separate state diagram to describe

148 More on state diagrams

[not nextEvent=Finished]

[nextEvent=Finished]
in event list

active

do/activeDetail

when(evTime=now())

Figure 12.2 State diagram for class Customer.

that behavior. Then in effect active becomes a compound state: there is a detailed state
diagram called activeDetail nested in the active state. Figure 12.3 shows this nested
state diagram. The start and end markers are compulsory for compound states, although
they are optional for simple states. The reason is that we need to know where to start the
internal state machine, and to know when it has terminated. When the compound state is
reached by an outside transition, its start state is entered. When its internal state diagram
reaches its end state, there is an implicit ‘completion’ event. This doesn’t have a name, so
transitions out of a state with a nested state machine may be unlabeled, like transitions out
of activities in activity diagrams. As in activity diagrams, there can be several transitions
each with a guard; at most one of the guards should evaluate to true.

entry/trace("Start")
exit/evTime:=evTime+2;
 nextEvent :=2;

exit/evTime:=evTime+2;
entry/trace("Work")

 nextEvent :=3;

[nextEvent=1]

[nextEvent=2]

[nextEvent=3] entry/trace("Finish")

exit/nextEvent :=Finished;

Figure 12.3 Nested state diagram activeDetail for class Customer’s active state.

Figure 12.3 shows that the Customer enters one of three internal states, depending on
the current value of the attribute nextEvent. These substates represent:

1. waiting to join the queue;

2. waiting in the queue for service;

3. waiting for service to be completed once it reaches the server.

In all cases this simply means setting a value for evTime indicating the duration of the
activity, and setting an appropriate value for nextEvent.

Discussion Question 87
In fact Figure 12.3 shows a rather degenerate state diagram. Why? How else could you
model this behavior?

Concurrency within states 149

12.4 Concurrency within states

In Chapter 11 we saw that activity diagrams can express several activities happening
at once, using synchronization bars to express the forking and joining of subtasks. State
diagrams use a different notation, but they can also show forking and merging of concurrent
submachines. We do this by drawing a nested state where the internal behavior of the state
is made up of independently executing regions. Regions are separated by dashed lines, as
in Figure 12.4. Each region has its own start state and end state.

Figure 12.4 State diagram with concurrency.

Q: In our example there are no transitions from a state in one concurrent region to a
state in another. Do you think such a transition would ever be reasonable? If so, develop
an example and decide what it means.

SUMMARY

In this chapter we considered some further features of UML state diagrams. We considered
events and actions more general than the message-passing examples in Chapter 11, and
went on to consider state diagrams with compound states, with or without concurrency.

chapter 13
Architectural and
implementation
diagrams

Most of the discussion in this book has centered on how to analyze problems and design
solutions using object-oriented techniques. We have touched on the small scale issues about
how the design is turned into code, but we have not considered the overall architecture
of the application to be produced, although we said in Part I that such decisions were
important. In this chapter we begin to remedy the deficiency.

We have already seen how to use class diagrams, which are a kind of structure diagram,
to show the static structure of the system. Often classes are too fine-grained to give a
good overall picture of the system: one ends up unable to see the wood for the trees. A
higher-level structure diagram, showing logical components and their relationships, can
then be useful. This is one aspect of system architecture.

The implemented system has to run on hardware, meeting its nonfunctional requirements
such as performance and scalability. A deployment diagram shows the structure of the
runtime system: which component implementations run on which processors and how the
hardware is configured to provide necessary resources.

13.1 Component structure diagrams

WARNING

As we remarked in Chapter 1, the word ‘component’ has many meanings. UML2 uses
the word very differently from UML1.x too. Roughly speaking, UML2’s ‘components’ are
UML1.x’s ‘subsystems’, and UML2’s ‘artifacts’ are UML1.x’s ‘components’.

Panel 18.1 discusses the various definitions of ‘component’ but the main point is
that you have to know which definition someone is using.

For our purposes, a component is a logical part of a system, usually larger than a single
class, which can (in principle) be replaced, reused or sold separately.

Components are shown as rectangles with the component symbol in the top right-hand
corner, as shown in Figure 13.1.

150

Component structure diagrams 151

GameEngine

PlayerInterface

<<rmi>>

Figure 13.1 A component diagram showing dependencies.

TECHNICAL UML NOTE

In UML1.x, the little component symbol used to be the shape used for showing
components. This notation turned out to be inconvenient in practice, so it has been
dropped. Remember that though we often think of the rectangle as being the class
symbol, it is actually the symbol for any classifier. A component is not a class, but it
is a classifier. The little component symbol in the corner is what tells the reader that
this particular classifier is a component.

A component, like a class, may realize an interface; for example, it may provide certain
operations (see Section 6.2.1). We may show that a component realizes an interface by
attaching a small labeled circle to the component symbol.

Components may depend on one another; dependencies between components are shown
using dashed dependency arrows, which we have already seen used between classes in
Chapter 6.

In fact components usually depend just on one another’s interfaces: they shouldn’t
usually need to know about one another’s internal structure, for example. (That, after all,
is the point of defining interfaces.) To show this, a dependency arrow can point to the
interface circle, instead of to the body of the component. Often we use the ‘ball and socket’
notation to show the connections between components; see Chapter 6.

The example in Figure 13.1 illustrates dependencies among components. It uses the
example of a simple games package from Chapter 16. Here we assume that the game has
been implemented as a client–server application, with the server being the GameEngine

(including all the classes we talk about in Chapter 16) and the client being the player’s
interface (the user interface application, which we did not discuss). We have shown a
user-defined stereotype on the dependency.

Q: What mechanisms are there in your programming language by which one executable
component can use services provided by another?

152 Architectural and implementation diagrams

13.2 Deployment model

The deployment diagram shows:

• the physical communication links between hardware items (machines and other re-
sources, such as printers);

• the relationships between physical machines and processes – what runs where.

13.2.1 The physical layer

We start by considering the physical system, which consists of nodes with associations
between them. A node is usually a processor, capable of running software components.
However, it is occasionally useful to use nodes to model much simpler devices, such
as printers. As always you can define stereotypes to distinguish between kinds of nodes
if it seems useful to do so (see Panel 6.2). Nodes, which represent individual physical
things, have node types. For example, Figure 13.2 shows that the node shillay has type
Workstation.

<<LAN>>

ether C
craro : PCshillay : Workstation

Figure 13.2 A deployment diagram without the software.

Discussion Question 88
Does it matter whether, to describe a kind of node, you use a stereotype or a node type?

Unbroken lines between nodes represent physical connections between machines.
(Strictly speaking these are associations, like those in class diagrams, but associations
between nodes have to be physical connections.) These may represent cables, local area
networks, modems, and phone lines, or whatever. A link can be given a stereotype, so that
it is clear on the diagram what sort of link we have.

Further details may be given as properties within a textual specification of the link or
node. This might include a figure for processor power or a bandwidth for a link. Such
details are often as important as the topology.

13.2.2 Deploying the software on the hardware

Components are a design-level concept. The relationship between a component in the
design and actual files, executables, scripts, database tables, etc. in the final system can

Deployment model 153

P2:PlayerInterface

shillay : Workstation
craro : PC

<<LAN>> ether C

OXO:GameEngine

<<artifact>>

<<artifact>>

P1:PlayerInterface

<<artifact>>

Figure 13.3 A deployment diagram with the software.

be complex. UML2 provides a new concept, the artifact, to represent the more concrete
entities such as executables, which are actually deployed onto hardware.

By showing which artifacts are deployed on which hardware, as in Figure 13.3, we show
how the system is to operate at runtime. We show an artifact inside a node to represent that
the artifact runs on the node.

Often an artifact will be the implementation of a component, and we may then blur the
distinction between component and artifact. Our example allocates twoPlayerInterface
components and a GameEngine component to the two machines shown in the previous
diagram. The GameEngine and one PlayerInterface run on the workstation, while the
other PlayerInterface runs on the PC.

Naturally, if two artifacts are allocated to different nodes but implement components
which have a runtime dependency between them, there must be a physical link between
the nodes!

PANEL 13.1 The Deployment Model in the Project

Although we have left implementation models late in the book, decisions about the
structure of the system at this level are normally taken early in the project.

1. Your customer may have existing hardware which the system must use, or you
may be developing for a particular market segment. Your system may need to
communicate with existing systems, which may restrict what you can consider.

2. The non-functional requirements on the system may determine or influence your
decisions about hardware and low-level software such as operating systems. For
example, a hard real-time system will normally have to run under a special
real-time operating system; a system providing access to mission-critical data
might need to run on fault-tolerant hardware with a duplicated database. The
performance of the system will be strongly affected by the deployment, and
you will need to bear in mind the limitations of the chosen topology during the
development. For example, in a client–server application your decisions about
how to design the communication between client and server will be affected by
the bandwidth available.

154 Architectural and implementation diagrams

3. Decisions about hardware and operating systems are interrelated with decisions
about programming languages, component libraries, etc. – you must be able to
compile your code for your chosen environment!

4. In a short project, especially one that uses specialized hardware, you may need
to order the hardware early in the project, in order not to delay delivery of the
system while you wait for it.

SUMMARY

We have considered the two kinds of UML implementation diagrams, component structure
diagrams and deployment diagrams, and how to use them. Component diagrams express
the structure of the implemented system, helping to keep track of dependencies to ease
maintenance, and to record the reuse of components. Deployment diagrams show how the
system is deployed on a particular hardware configuration.

chapter 14
Packages
and models

Remember that a model element is UML’s general term for more or less anything that can
be represented by a diagram element. For example, classes, use cases, actors, associations,
generalizations, operations, packages, methods, etc., are all model elements.

14.1 Packages

A package is a collection of model elements. Typically, the model elements that comprise
a coherent part of the system, such as a component, are collected together in one package.
Packages themselves are model elements, so one package can contain other packages.
However, each model element is directly owned by at most one package, so the packages
in a system must form a sensible hierarchy: basic elements like classes are contained in
packages, which are contained in other packages, and so on until we reach the top-level,
where there is usually just one top-level package. This hierarchical view of a system can
be particularly useful in large systems.

A package is shown on a diagram (any sort of diagram) as a rectangle with a ‘tab’ on its
top edge. The elements contained by a package can be drawn inside the package symbol,
but need not be. They usually aren’t, since the amount of detail required to show all the
contents of a package usually makes this inconvenient: indeed the main purpose of using
a package is normally to be able to hide this detail. Instead, the interior of a package is
usually drawn in a separate diagram. In a CASE tool this diagram might be hyperlinked to
the package icon. It’s convenient to write the name of the package on the tab if its contents
are shown, and in the body of the package symbol otherwise. Figure 14.1 illustrates all this
notation.

As you see, the package hierarchy can be shown by including one package symbol in
another. Alternatively, you can use a tree structure; see Figure 14.2.

14.1.1 Namespace control

A package has no real meaning of its own. All its behavior is provided by the model
elements inside it, and it doesn’t have an interface. The only thing it can do is to define
the namespace of the elements inside it. The idea of a namespace is simply that within
a given namespace, two different things can’t have the same name. For example, you

155

156 Packages and models

P

Q

A

foo:??

B

C

R

D

E

S

Figure 14.1 Packages and visibility example.

Top

P Q

R

Figure 14.2 A hierarchy of packages.

can’t have two different classes both called Foo in the same namespace; indeed you can’t
have a use case called Foo and also have a class called Foo. In a different namespace,
however, another element can be called Foowithout causing confusion. We can distinguish
between the different things called Foo by specifying which namespace’s Foo we mean.
For example, a more precise name for the class A shown in Figure 14.1 is P::A, and a
more precise name for class C is P::R::C.

The most familiar example of a namespace is a class. You would not expect to be able
to have an operation and an attribute called the same thing, and indeed you can’t. There
can, however, be operations in different classes called by the same name, and this does not
cause any confusion: if we need to identify which operation we’re talking about, we just
have to mention the class name to resolve the ambiguity. Package control of namespaces
is a generalization of this idea.

This is useful when different teams are developing different parts of a system. It may
well happen that two teams happen to use the same name for different purposes. We do
not want to find that the UML model resulting from putting their bits together is illegal. If
they develop different packages, they work in different namespaces, and such clashes don’t

Packages 157

invalidate the model. Implicitly, each model element has a ‘full name’ which is its name
within its namespace (e.g. within its package) plus information about what namespace it’s
in (e.g. the full name of the smallest package that contains it).

Discussion Question 89
If you know a programming language with overloading, you might like to worry about a
class which defines two methods with the same selector but different parameters. What
might be going on?

Relationships between packages

Every model element is in at most one namespace. In general, an element can name (know
about) elements which are in its own package, and elements which are in surrounding
packages. It can’t, however, name elements from packages which don’t contain its own.
To see what this means, consider what the possible choices are for the class of attribute
foo of class A in Figure 14.1. It would be legal for the attribute to have class B, because A
and B are in the same package. D is also a legal choice, because D is in a package which
contains A’s package (there is always an implicit top-level package, which in this case
contains packages P and Q and class D). C is not a legal choice in UML and neither is E,
because these classes are not available in the namespace of A. To sum up:

Things outside a package can’t see in.

If some element inside P needs to name something in a package (call it Q) that doesn’t
contain P, this shows that P depends on Q; that is, it is possible for a change to Q to
break P. (For example, deleting an element in a package may break any other package
that uses the deleted element’s name.) Such dependencies should be recorded, so that
developers realize when changes may be necessary. Dependencies between packages, like
other dependencies, are recorded using plain dashed arrows (- - - ->).

A dependency has no effect on the way in which elements are named; that is, it doesn’t
change the namespaces involved. For example, if we record that P depends on Q, then we
can use class E as the class for attribute foo, but it will have to be referred to as Q::E.

If this is too clumsy, an alternative is to import the package Q, to make its elements
directly nameable inside P. If we put the keyword �import� on the arrow from P to Q,
then inside P we can refer to class E as though it were directly contained inside P, without
mentioning its package.

Discussion Question 90
Consider when you would want to access a package and when you would want to import
it. Maintenance of the model will be your main concern.

Visibility

So far we have no way to prevent something in a package seeing every detail of everything
in a package it must refer to. Returning to the analogy with classes, we expect to have more
control than this. A class makes some of its attributes and operations public, so that they

158 Packages and models

can be referred to by anything that can refer to the class at all, while keeping others private.
That is, a class can place restrictions on the visibility of the elements it owns. Packages
can do the same thing. Some elements of a package can be designated public, and others
private.

Things that access or import a package can see public things inside the package, but
not private things.

Just as with attributes and operations of classes, you can show whether an element is
public or private by putting a + or - in front of its name.

Imported elements of a package are just like other elements in the package: they can
be seen from outside if they are public. UML2 provides a second keyword �access�
which can be used instead of �import� if the imported elements should all be treated
as private.

Q: What packaging and namespace mechanisms are there in programming languages
you know? How does the namespace control at the programming language level compare
with the namespace control in UML? How do you implement an �import� dependency
between packages? What about �access�?

14.2 Models

In Chapter 4 we discussed the 4 + 1 view of a system, and we have now seen how the
views are described by the various UML models. The UML models don’t map exactly
onto the 4 + 1 views, but they do cover the necessary aspects. To recapitulate:

• the use case view (the +1) is taken by the use case model;

• the logical view is taken by the class model, and by interaction diagrams and state
diagrams to the extent that they are used to specify the logical behavior of the system;

• the process view is taken by interaction diagrams, state, and activity diagrams, to the
extent that they are used to determine the threads of control of the system, and by
deployment diagrams;

• the development view is taken by the component structure diagrams, and by packages
wherever they arise;

• the physical view is taken by deployment diagrams.

In each case, the model includes some model elements but not others. For example, the
use case model includes use cases, actors, and relationships between them, but not classes
and their associations.

Formally, UML defines a model to be a package containing the model elements making
up a particular view of the system being modeled. A model for a system must represent
the complete system as seen from the chosen point of view.

Discussion Question 91
Why do you suppose a model is not allowed to leave out arbitrary parts of the system?

Models 159

SUMMARY

In this chapter we discussed UML’s mechanisms for structuring the development of
systems. The most general mechanism is the package, which can contain any sensible
collection of model elements. UML’s notion of model formalizes the informal idea of
model we’ve been using all along: a model includes the model elements which make up a
particular view of a system at a certain level of abstraction. A model is represented by one
or more diagrams.

That completes our study of UML, the language. We have not covered every detail of it;
to learn more you could now go on to the official documentation [48], or to larger books
such as those by the Three Amigos. Next, in Part III, we will discuss three case studies.

part III

Case studies

Chapter 15 CS4 administration 162

Chapter 16 Board games 170

Chapter 17 Discrete event simulation 182

chapter 15
CS4
administration

In this chapter we will discuss a slightly more complex case study than that in Chapter 3.
We will not discuss everything in full detail, and we will not cover the step from detailed
design to code, since this is programming language-dependent, but Java code for the case
study is available from the book’s home page.

15.1 The case study

You are considering tendering for a contract to develop a system to help the computer
science department of a university administer its final year (‘honours’) degree courses.
You have been given the following description of the department’s current procedures as
part of the information on which to base your tender.

Read it carefully, considering what questions you will need to ask, and of whom you
might need to ask them, to clarify the requirements.

The current situation

Toward the end of each academic year, the Syllabus Committee in the Department of
Computer Science determines which modules will be available to CS4 students in the
following year. (A CS4 student is any student who is taking any fourth-year module in
the computer science department, whether or not the student is registered for a computer
science degree.)

At the end of each academic year, the Head of Department allocates duties to members
of teaching staff and others; in particular, one person is assigned to lecture each of the
modules which are supposed to be available in the following year. (We’ll call these people
lecturers for simplicity.)

Each lecturer updates the course handbook entry for his or her module. The CS4
co-ordinator updates other parts of each handbook and checks the module entries produced
by the lecturers. Module entries are written in the LATEX formatting language.

Somebody in the Undergraduate Teaching Office (from now on we’ll call any such person
‘the UTO’) produces the paper version of each course handbook; the CS4 co-ordinator
produces the HTML versions by running the conversion application latex2html on the
LATEX source.

162

The case study 163

The CS3 co-ordinator is supposed to give a list of the students entering CS4 from CS3
both to the CS4 co-ordinator and to the UTO. The CS4 co-ordinator tells the UTO about
any students entering CS4 other than from CS3, for example nongraduating students. The
UTO keeps the master list of all CS4 students, and updates the mailing list of students
taking CS4 modules, which is known by the email address cs4class.

Each student is advised by a member of staff acting as a Director of Studies (DoS). A
DoS is assigned to a student in their first year of study and remains in that role until they
leave.

Students provisionally register for modules by filling in paper forms and handing them
in to the Undergraduate Teaching Office. The UTO checks that every student who registers
is listed as a CS4 student, and that every CS4 student is registered for a reasonable set of
modules. In cases of doubt, the student’s DoS is consulted, and may have a discussion with
the student.

The UTO then produces lists for lecturers of the students taking their modules. These
lists cannot be guaranteed to reach lecturers sooner than week 3. This is, unfortunately, too
late to be useful for letting lecturers know how many copies of things to make . . .

Questions

Some possible questions are listed below. You may find more: we, the authors, are familiar
with the university setup described and may well be assuming knowledge that you, the
readers, don’t have. The prevalence of such assumptions is, of course, one of the factors
that makes requirements analysis so hard.

1. Which students are we concerned with, and is it always the same set? The text refers
sometimes to ‘CS4 students’ and sometimes to ‘students’.

2. What is the CS4 mailing list, and how is it updated?

3. Is there anything else that needs to be updated? Web pages, for example?

4. What are the course handbooks, and how many are there?

Q: Classify your questions according to whether you need to know the answers now,
before you can tender, or whether you will simply need to get answers before you can
complete the system.

We assume that on further inquiry we found (among other things) that there is a
course handbook for each honours course – ‘honours course’ and ‘degree’ are synonyms
for the purposes of this application. The honours courses relevant to the system are
Computer Science, Computer Science and Artificial Intelligence, Computer Science and
Electronic Engineering, etc. The assessment details, and the regulations about what module
combinations are acceptable, are different for each of these degrees, so there is a separate
handbook for each. However, many modules are acceptable in several different honours
courses, and in such a case the description of the module is the same in each handbook.
Each student (apart from nongraduating students, who visit the university for just one
year, do not get a degree, and can do arbitrary module combinations) is registered for
one honours course and receives the appropriate course handbook. The CS4 co-ordinator
is responsible for producing all the course handbooks. (In the cases of joint degrees, it is
usual for the other department also to produce its own course handbook, so students on

164 CS4 administration

joint degrees normally get two handbooks with some duplicated information; but because
of the university’s structure it is not deemed sensible to try to remove this duplication at
present.)

The investigation

The Department has asked you to investigate the possibility of developing a system to
automate parts of this process, because they hope it may be possible to:

• decrease the burden of routine work on all staff, especially the CS4 co-ordinator;

• allow students to register for modules online;

• make it easy to obtain (from the UTO) up-to-date, reliable information;

• improve the traceability of such information;

• make information such as the course handbooks and lists of students taking modules
available sooner, by automating their production.

The CS4 administration system should be able to report on any student: for example,
whether the student is graduating or nongraduating, what modules the student is taking,
what honours course a graduating student is registered for, or which member of staff is the
student’s DoS.

It also acts as a repository of information on modules: who lectures them, what degree
course they’re part of, and which students are taking them.

Discussion Question 92
Do you think the Department’s expectations are reasonable? Do you think that an
object-oriented approach is sensible here?

In this chapter we will not discuss how to implement querying mechanisms; these can
be provided sensibly by an off-the-shelf database in conjunction with standard techniques
for making objects persistent, which we touched on in Panel 3.2

Q: If you know a database query language, such as SQL, draft the queries that we know
are required. What assumptions have you made?

With the querying use cases removed, the remaining use cases that we have to provide
are:

• Produce course handbook;

• Produce CS4 list;

• Register for modules.

Figure 15.1 shows the general use case model. Here is a more detailed description of the
use case Produce course handbook. It takes a conservative view of what work should
be done by the system, which is likely to be appropriate in the first iteration of the system
(though see Discussion Question 93).

The case study 165

CS3CourseOrganizer
CS4CourseOrganizer

UTO

CS4Student

CS4DirectorOfStudies

CS4Lecturer

Create CS4 list

Produce
course handbook

Register for
modules

Figure 15.1 Use case model.

Produce course handbook

This use case can be used only after the syllabus committee has determined the set
of modules which will be available and the head of department has allocated duties to
lecturers.

The CS4 course organizer updates the core (module-independent) sections of each
course handbook by getting the current text from the system, modifying it and returning
the modified version to the system.

The lecturer of each module, similarly, updates the description of the module by getting
the text from the system, updating it, and returning it to the system.

These updates can happen in any order. The system keeps track of which updates have
been done. Once all updates for the handbook have been done, the system sends the
complete text of the handbook by email to the Undergraduate Teaching Office, which
prints it and updates the Web pages from it.

Discussion Question 93
Does this provide sufficient value to anybody to be worth proposing as functionality in a
first delivered iteration? Or should it be treated as an internal iteration only? If the latter,
what functionality would you expect to be required before it was sensible to try it on
the users? How would you clarify this?

Q: Develop use case descriptions for the other use cases. When questions arise that in
a real project would have to be discussed with the users, record what the issues are and
how you have chosen to resolve them in this exercise.

166 CS4 administration

15.1.1 Class model

Q: Draw a conceptual level class model. Include multiplicities, but don’t worry about
attributes and operations yet.

Figure 15.2 is one possible class model.

Lecturer

Module

HonoursCourseStudent

GraduatingStudent

DirectorOfStudies

NonGraduatingStudent

teaches

takes

directs

is on

6

1..* 1..*

6..*

1

0..*

0..*

1

1

0..*

Figure 15.2 Class model.

Discussion Question 94
Figure 15.3 is another. What do you think of it?

Q: In practice not all lecturers will be teaching CS4 modules. In particular, not every
DoS will necessarily be a lecturer for CS4. Does the diagram allow for this?

15.1.2 Dynamics

Figure 15.4 shows the CRC cards that we have come up with for the classes involved in
the Produce course handbook use case. We can use these to explore how the classes
must interact to achieve the use case. We have considered the responsibilities of the classes
only with respect to that use case. Even though it would make sense to give each class
more responsibilities – and it will probably be essential to do so as we consider more use
cases – to add these responsibilities before we have identified a clear need for them would
be an instance of inventing requirements, which we forbade in Chapter 3.

Q: Use these CRC cards to help identify the necessary operations of the classes involved
in the use case.

Q: Develop the CRC cards for the other use cases and identify the operations associated
with these classes.

The case study 167

Lecturer

Module

HonoursCourseStudent

GraduatingStudent

DirectorOfStudies

NonGraduatingStudent

teaches

takes

directs

is on

6

1..* 1..*

6..*

1

0..*

0..*

1

1

0..*

UI

knows about

knows about

knows about

Figure 15.3 Another class model.

Class name: HonoursCourse

CollaboratorsResponsibilities

Class name: DirectorOfStudies

CollaboratorsResponsibilities

Class name: Module

CollaboratorsResponsibilities

Keep collection of
modules

Module Provide human DoS's
interface to the system

Generate course
handbook text

Keep description of
course

Keep Lecturer of course

Figure 15.4 CRC cards needed for Produce course handbook.

15.1.3 State diagrams

There are no classes with interesting state changes.

15.1.4 Activity diagrams

In Chapter 11, we said that activity diagrams can be useful for modeling at the business
level, for better understanding how the organization, into which the system must fit, works.

168 CS4 administration

Determining what courses there are and who teaches them and then generating the course
handbooks is a nontrivial workflow, with synchronizations and task dependencies which
the developers will have to understand, particularly if the system is to be further developed
to help automate the process. Figure 15.5 is the workflow of the task shown in this way.

Determine
modules

Allocate
duties

Update
module entry

Update
core sections

Print
handbook

Generate
HTML version

syllabus
committee

head of
department

lecturer UTO CS4 course organizer

Figure 15.5 An activity diagram for course handbook preparation.

15.2 Discussion

Very data-heavy system

The major part of the responsibilities of all our classes is to encapsulate data. This shouldn’t
surprise us, since the main purpose of the system is to maintain data about CS4! But it isn’t
really typical of OO systems. Classes which do nothing but encapsulate data are often, but
not always, a sign that all the behavior is somewhere else, maybe in a single Controller
class. This is bad design because it tends to mean that the particular current use of the
system (the current set of use cases) is being hard coded. Therefore when your design has
such classes you should check that you aren’t missing some behavior that goes with the
data being encapsulated. In this case, we think what we have is reasonable: our system just
doesn’t have very much in the way of behavior.

The user interface

We haven’t shown the user interface(s), i.e. how the actors get to use these facilities. On
reflection, it became clear that a single user interface object was not going to do: different
actors need access to different parts of the system’s functionality.

Discussion 169

Probably, we would end up with something like a Model-View-Controller interface,
in which each actor is provided with a different (but consistent) view onto the system.
More design work is needed to deal with these aspects, but we leave it there for this
example.

chapter 16
Board games

We are asked to deal with the following problem.

A new company wishes to enter the computer board games market. They intend to
produce a range of on-screen versions of well known two-player games, starting
with Noughts and Crosses (also known as Tic-Tac-Toe) and Chess.

Two users share a screen and make moves in turn. The program makes sure that
only legal moves are allowed and declares the winner.

To make the implementation of new games easy, and to ease the work of
maintaining many different games, the company wants to design a game framework,
which can be reused as generally as possible.

Discussion Question 95
What questions would you ask your potential client?

One obvious question is ‘why do you expect anyone to pay good money for this?’ It isn’t
obvious that it has any advantages over a physical board game, and it is clear that it has
some disadvantages.

Q: List some disadvantages of this product relative to a physical board. Can you think
of any advantages?

Discussion Question 96
Suppose you are a provider of software development to this company. Is it your job (that
is, your professional responsibility) to question whether the product will be successful?
To what extent? Why? Does it depend on who or what kind of company ‘you’ are?

Discussion Question 97
Suppose that in fact the company hopes that this basic framework can be improved later.
What future enhancements can you see?

170

Scope and preliminary analysis 171

16.1 Scope and preliminary analysis

Let us suppose that there is some justification for proceeding with the simple framework
proposed above.

A major part of the work involved in developing a game will be concerned with
the user interface; indeed, this alone might well be a sufficient reason for choosing an
object-oriented language. It will also influence the choice of language, since you will want
a suitable graphical user interface package to be available. For the purposes of this chapter,
we will assume that the language is to be Java and that a game is to be implemented as an
applet.

This example is more abstract than either of the previous case studies. We are being
asked to develop a framework for a family of games, not a particular game. What is
a framework? In this case, we mean a suitable architecture for this class of systems,
together with any common functionality we can find. (We will discuss general frameworks,
briefly, in Chapter 18.) Our aim is to make it easy (quick, cheap) to implement systems
for particular games. We will design some abstract base classes, aiming to leave only
the details which are specific to a game to be filled in by a later developer, probably by
subclassing.

Developing good frameworks (e.g. ones that genuinely do increase the productivity
of developers and maintainers) is notoriously difficult, and it’s important not to get lost
in abstraction. In real life you would not expect to be able to develop a framework
for this system without implementing several examples. (James Newkirk and Robert
Martin’s paper [38] – and there’s a link from this book’s home page – tells the story of
the development of a real framework.) We try here to give the flavor of the process, but
undoubtedly the framework presented here could be improved. You should bear this in
mind, especially if you use it to develop a game not considered here.

Discussion Question 98
What are the pitfalls in developing frameworks?

There are many Java implementations of these games available on the Web, some with
source. You may find it interesting to compare some of them with one another and with
what we present here.

16.1.1 Noughts and Crosses

The game is played on a 3 by 3 square board between two players. The player who
starts (‘Player X’) chooses a square of the board and puts a cross on it. The other player
(‘Player O’) chooses an empty square and puts a nought on it. Thereafter the players
continue to alternate, placing their own marks in empty squares. The winner is the first
player to complete a straight line (horizontal, vertical or diagonal) of three of their own
tokens. If the board is filled without either player achieving this, the game is a draw.
Figure 16.1 shows an example of the board after a win by Player X.

172 Board games

��
��

��
��

�
�
��

�
�

��

�
�

��

�
�

��

�
�
��

�
�

��

Figure 16.1 Noughts and Crosses.

16.1.2 Chess

Chess is a much more complicated game and we may pity the developer who has
to implement it, however good a framework is provided! The following abbreviated
description should be sufficient to bear in mind.

The game is played on an 8 by 8 square board with pieces of various kinds: pawns,
rooks, knights, bishops, queens, kings, each of which comes in two colors, white
and black. There are two players, ‘Player White’ who owns white pieces and ‘Player
Black’ who owns black pieces. The initial configuration is as shown in Figure 16.2.
Players alternate moves, normally picking one of their own pieces to move. Which
moves are legal depends on what piece is being moved, and can also depend on the

Figure 16.2 Chess.

Scope and preliminary analysis 173

configuration of other pieces and on the history of the play. Pieces may be taken.
In certain configurations a king is in check. If a player’s king is in check the player
must move to a configuration in which the king is not in check, if possible. If this is
not possible, the king is checkmated and the other player wins. If play returns three
times to the same configuration it is a draw.

To develop a framework, we need to consider what these games have in common, and of
these things which are common to all games in the family of board games to be considered.
In both cases:

1. The game is played by two players.

2. The game is played on a square, squared board.
3. Players move alternately.
4. To make a move is to alter the state of the board by adding, removing and/or moving

some tokens which are things on the board (marks or pieces).
5. Any token on the board is owned by one or other player.

6. All relevant information is available to both players.
7. Which moves are legal depends on the state of the board – which tokens are

where – possibly together with other factors like the history of the play.
8. Who wins depends on the same factors.

Let us suppose that further discussion with your client reveals that features 1, 4, 6, 7
and 8 are expected to hold generally, but that 2, 3 and 5 may fail. We summarize, giving
example games that the client cited (but we do not discuss other examples in detail, and it
doesn’t matter if you don’t know the games in question). The board could be any shape
(e.g. in the game Hex, whose board is unsurprisingly hexagonal). Its state is determined
by the positions of tokens, but tokens need not belong to particular players; a move (as
described in item 4) might be legal for either or both players: for example, there could be
tokens which either player was allowed to move (e.g. in Kalaha). Players might not always
move alternately (e.g. in Draughts or Checkers); whose turn it is might be determined by
the history of the play and the state of the board.

Q: Give an example, from a game you know, where the legality of a move depends on
the history of the play, not just on the positions of the tokens before and after the move.

Use case analysis does not seem helpful in developing the framework, so we omit the
use case diagram.

Q: Draw the use case diagram, and decide whether it was useful to do so.

Let us proceed to identifying classes and relationships. This is much more challenging
in this case than in our previous examples, and the noun identification technique alone
will not suffice. The technique we adopted, rather difficult to describe, was to begin with a
few candidate classes and make a draft class model. Then, considering examples of actual
games, we thought through some of the main interactions, beginning to sketch CRC cards
as an aid to thought. We went through several iterations of this process before coming up
with a class model that seemed to work. Here we try to give a flavor of the procedure, and
then mention some of the alternatives we considered.

174 Board games

Our framework classes are:

• Player

• CurrentPosition

• Token

• Move

• Game.

The names, although as suggestive as we can make them, are not sufficient to explain
what is meant. Let us begin to make CRC cards to record the responsibilities of each class,
postponing identifying the collaborators that an object of each class will need in order to
carry out its responsibilities. We have marked some dubious responsibilities with question
marks and notes in square brackets, which is often a useful thing to do with CRC cards
when you know that you are unsure about something but want to record it tentatively.

Player

Responsibilities Collaborators
Maintain any required user data.
Identify a player of the game.
Provide a visual symbol for the player.

CurrentPosition

Responsibilities Collaborators
Maintain data seen by user: position; whose
turn it is; eventually who is the winner.
Accept a user move and package it for
validation.

Token

Responsibilities Collaborators
Represent a token of the game.
Maintain the position of the token? [Or is
this CurrentPosition’s job?]
Provide a visual symbol for the token.

Move

Responsibilities Collaborators
Encapsulate what changes during one player’s
turn.
Know how to confirm itself?

Game

Responsibilities Collaborators
Understand the rules of the game:
validate moves; determine winner; retain
any necessary information about past
moves.

Interaction 175

Next let’s consider the particular case of Noughts and Crosses. We will need to
implement classes which fulfill the responsibilities we identified. For some or all of the
framework classes, we will create a specialized subclass that fulfills, for the particular
game with which we are concerned, the responsibilities assigned to that framework class.
That is, the framework is of the kind sometimes called architecture-driven. The intention
is that an application developed using the framework gains a sensible architecture from the
framework ‘for free’. This is a benefit worth having even when, as in the immature example
presented here, the amount of code reuse which results from reuse of the framework classes
is minimal. A framework matures as it is developed in the light of several applications.
Common functionality, which the framework should provide, can be identified when it
appears in several applications of the framework. This functionality can then be factored out
and made the responsibility of the framework; the existing applications can be refactored
to take advantage of the new framework. In this way the framework gradually becomes
more powerful. Experience of using it in practice is important, though: it is difficult to
identify what functionality will be common in the first place.

As a simple naming convention, let us call the specialized class corresponding to Token,
OXOToken, and so on. In some cases we may need to use objects of more than one class
to fulfill the responsibilities assigned to an object of a single framework class. The most
obvious case is CurrentPosition; as we mentioned in Chapter 6, there are obvious
domain objects, Board and Square, which can collaborate to maintain the position of
the game as seen by the user. So we may invent two classes and describe their separate
responsibilities thus:

Board

Responsibilities Collaborators
Maintain data seen by user: position; whose
turn it is; eventually who is the winner.

Square

Accept a user move and package it for
validation.

Square

Responsibilities Collaborators
Maintain data pertaining to a single square
of the board: where it is; whether it contains
a token; and if so what kind.

Token

Say whether a point falls inside the square.

The (probably abstract) class CurrentPosition is realized by a class Board which
contains nine Squares. (That is, Board is a subclass of CurrentPosition, and it has a
non-inherited attribute which is the collection of Squares.)

16.2 Interaction

The CRC cards give a starting point for understanding interaction. As an example, we
will describe an interaction within the Noughts and Crosses application in terms of the
specialized classes.

176 Board games

The human player interacts with a screen representation of the Noughts and Crosses
board, controlled by the Board. The player clicks somewhere on the board, which causes
(by standard Java mechanisms) a message to be sent to the Board, with information about
where the click happened. The Board, with help from its Squares, works out from the
coordinates which Square of the Board has been clicked in. The Board knows that it
is Player X’s turn, so the meaning of the click is that X wishes to place a token on the
square. It creates a new OXOMove object which knows which Square and which Player are
concerned, and passes the OXOMove to OXOGame for validation. OXOGame checks that there
is not yet any OXOToken on the Square. There isn’t, so this is a valid move. OXOGame
must then check whether this move finishes the game. It does not. OXOGame’s reply to the
validate message says that the move is OK and that O is now to move. Board asks the
OXOMove to update the position it displays to the user – so the OXOMove creates a new X
OXOToken on the Square that it refers to, forgets the OXOMove object which is no longer
needed (so it will be garbage collected), records that the next move is to be made by O,
and waits for the next click, which will represent O’s move.

Notice that in the process we have settled, at least in this special case, some of the
questions we were dubious about in our initial set of CRC cards. For example, we have
decided that it is not an OXOToken’s job to know where it is; rather, a Square knows
about an OXOToken which is on it, and a Square knows its own position.

Crystallizing this into message-passing, we get Figure 16.3 as the communication
diagram for a correct Noughts and Crosses move by Player X. We’ve chosen to show a
communication diagram rather than a sequence diagram just for a change. You might like
to draw the corresponding sequence diagram and see whether you have an opinion on
which you consider more readable.

PlayerX : PlayerActor

3:validate(m)
:Board

2:new(s,X)

s:Square

4:confirm()

4.1:new(X)

1:isIn(x,y)

4.2:addToken(t)

mousePressed(e)

t:OXOToken

m : OXOMove

:OXOGame

Figure 16.3 Communication diagram for an X move in Noughts and Crosses.

Q: We did not record the detail of the way in which OXOGame carries out its
responsibilities. Consider how this can be done. Develop the interaction diagram further.

Q: Consider different scenarios, and consider drawing communication diagrams for
them. In which cases, if any, would you consider it worth developing a separate diagram?
For example:

1. legal move, not finishing the game, by O;
2. a winning X move;
3. an illegal O move, in which O tries to put an O on top of an X instead of in an
empty square.

Interaction 177

Discussion Question 99
(Especially if you have any HCI experience.) How should the system deal with the
responsibility to enforce the rules of the game? Will this framework permit a good
policy? Which responsibility lies where?

By exploring the ways in which objects collaborate in this way, we can make decisions
about the associations between the classes that implement Noughts and Crosses, their
navigability, and the operations that each class must provide. Figure 16.4 shows a possible
class model for Noughts and Crosses. We have simplified the diagram (but not the model!)
by omitting the base classes of the specialized classes we record, and also by omitting
Player. The justification for the latter point is twofold: firstly, it turns out that there is no
need for a specialized subclass of Player, and secondly, at this stage a Player object is
essentially a boolean data item, on which every class (innocuously) depends, so including it
would clutter the diagram needlessly. We have also omitted some private operations which
occur in the real implementation. If you know Java you will notice some aspects which
are peculiar to that language; for example, the fact that Board has an init() operation
instead of a constructor is because we have decided to make a Board an applet.

OXOGame

OXOGame(b:Board)

validate(m:Move) : Result

OXOMove

OXOMove(p:Player,s:Square)

confirm()

findSquare(i:Int,j:Int) : Square
owner(i:Int,j:Int) : Player
message(s:String)
init()
paint(g:Graphics)

BoardSquare

Square
isIn(i:Int,j:Int) : boolean

owner():Player
paint(g:Graphics)

OXOToken

OXOToken(p:Player)

owner() : Player

(i:Int,j:Int,h:Int,w:Int)

addToken(t:OXOToken)

paint(p:Player,x:Int,y:Int)

0..1

1 1

0..1

0..1

1

9 1
1

1

1

0..1

Figure 16.4 Class diagram for Noughts and Crosses.

Q: Go through a similar process based on Chess instead of Noughts and Crosses. How
does it differ?

As you will have seen, the details of the interaction that take place when a move happens
are different in different instantiations of the framework. However, there is a general
collaboration within which such interactions happen. Notice that in the particular case of
Noughts and Crosses, the role of CurrentPosition was played by Board and some
Squares.

Q: Draw this general collaboration. Do you need any notation we haven’t discussed?

178 Board games

16.3 Back to the framework

Now that we have a reasonable understanding of how one game fits into our initial
ideas about how the framework should be, we can make a first attempt at describing the
framework itself in more detail. We might want to document how the framework classes
work together, in order to help application developers planning to use the framework
and/or people developing the framework itself further. It may not be obvious, though, that
we have some decisions to make about how it is useful to do so. For example, remembering
that most of our implemented classes will be abstract – you can create objects belonging
to specialized subclasses, but not objects of the framework classes themselves – what are
the associations between framework classes? You could argue that there should be an
association between two framework classes when objects of the specialized subclasses
must be associated, or when they may be associated. In a mature framework you might
want to make sure that all associations were determined by the framework, so that these
options coincided. There is a similar question about multiplicities. What is important is
that you avoid ambiguous situations in which the person using the diagram understands
something different from what the writer of the diagram intended. In the draft class
diagram for the framework, Figure 16.5, we show only the associations which must exist,
and omit multiplicities altogether. For example, because the framework specifies that
Game provides a validate operation which takes a Move as argument and is invoked
by CurrentPosition, we document the corresponding associations. As before, we omit
Player from the diagram.

Q: In neither class diagram did we name the associations. Add names or role names,
whichever you consider most useful.

Token

Move

Game

CurrentPosition

Figure 16.5 Class diagram for games framework.

Back to the framework 179

Discussion Question 100
What can you say about what operations should be specified by the framework? Add
them to the framework class diagram.

Discussion Question 101
Using a general framework may lead you into developing a more complex design than
would have been necessary for the particular application. For example, if you were
designing just for Noughts and Crosses, you would probably not invent separate classes
Square, OXOToken and OXOMove because the relationship between OXOMove and
OXOToken is so close. Consider what you would have done, and what the implications
of the differences are. How do you think pitfalls can be avoided?

Here are some leading questions, intended to give you the chance to consider some of
the options we rejected (among others).

Discussion Question 102
Why are we talking about tokens at all, rather than generalizing further and talking just
about the state of the board? If we must talk about tokens, why is a token an object?
Does a token have identity? In all games?

Discussion Question 103
Move was a fairly late addition to our list of classes. Initially we rejected it as a candidate
class, on the grounds that it was an Event. Later we added it back, partly because games
are described in terms of moves, and to avoid having a Move class in our model seemed
forced. Consider how you validate a player’s (real-life) moves without an explicit Move
class. Develop a class model that does not have such a class, and discuss its merits with
respect to the one shown here.

Discussion Question 104
At one stage, instead of the single class Game we had two classes:

• Play, which recorded any necessary information about past moves when Current-

Position passed it such information;

• Rules, which validated moves when requested to do so by CurrentPosition, using
information from Play, CurrentPosition, and Move as required.

Consider the implications. Which solution do you favor?

Discussion Question 105
Our concept of the Player is that this object is essentially data; it has so little behavior
that we might possibly choose to implement it as a simple type (say, by using booleans)
which could be attributes of tokens and moves. Contrast this with the situation in the
previous case study where we used classes that corresponded to actors as the access-
control mechanism: for example the Lecturer class provided access to the facilities
needed by lecturers. Consider why we have decided not to pursue that approach here.

180 Board games

Discussion Question 106
Although we show a one-way association between the framework classes Current-

Position and Game, we had a two-way association between Board and OXOGame,
the corresponding classes in the Noughts and Crosses application. These classes are
therefore tightly coupled; it would not be possible to reuse one without the other. Why
does this difference in navigabilities exist? Consider alternative designs, and see whether
you think this situation is improvable.

16.4 States

Finally we will consider a state diagram, which might be useful in implementing the
operations we have identified. The class with the most obviously interesting state dia-
gram – that is, the one whose behavior will most clearly vary depending on the history of
what has been done to the object so far – is CurrentPosition (Figure 16.6) since among
its responsibilities are to show the user who is to move, and eventually who won. This
immediately gives us three states:

1. A to move

2. B to move

3. Game over.

We have to identify what events cause transitions between these states, and what actions
the CurrentPosition object must carry out. When does it move from A to move to B

to move? When A has moved, and the move has been validated by the Game, and the Game
has told us that B is to move next. To show this we need to use the when form of event

Game over

A to move

B to move
when(toMove = null)

when(toMove = null)

when(toMove = A) when(toMove = B)

Figure 16.6 State diagram for CurrentPosition.

States 181

(described in Chapter 12), because the event that causes the change of state is actually the
reply to a message (validate) sent by CurrentPosition, not the receipt of a message
sent to CurrentPosition.

Discussion Question 107
Recall the discussion in Chapter 11 about the choice of the level of abstraction at which
to draw the state diagram. Consider alternative versions of this diagram and discuss their
merits. For example (there are others), we have chosen to show a single state Game

over, rather than distinguishing between A won, B won and Draw, but it would have
been possible to do it the other way. What do you think?

DISCUSSION QUESTIONS

1. Pick your three favorite board games and consider whether they fit into the class of
games considered here. If so, analyze how and design an application of the framework
for the game. Develop code in a suitable language.

2. Consider the issues that arise in making a distributed version.

3. The company finds that users want to be able to play against the computer, not just
against one another. What are the implications? In particular, which object (of an
existing or new class) should have responsibility for choosing the computer’s moves?

4. Consider the interactions between the objects of the design in this chapter in detail, and
consider whether the implementations of the operations obey the Law of Demeter (see
Chapter 9). If not, can you find better solutions that do?

5. If you implement the framework and the Noughts and Crosses application, you
will probably be irritated by the need to use ‘down-casts’, for example because the
framework specifies that any Game provides a validate operation which takes a Move
as an argument, whereas an OXOGame expects to have to deal with only an OXOMove:
that is, a specialization of one class expects to deal with compatible specializations of
the other classes. Consider the root causes and implications of this problem, and how it
might affect your framework design and use.

chapter 17
Discrete event
simulation

In this chapter we look at a significant application package, which forms part of an
object-oriented Integrated Modeling Support Environment (IMSE) to support discrete
event simulation in the process style.

An IMSE supports the development of specialized applications called simulation models,
which are then used by experimenters who are also supported by the tool. We will consider
how the IMSE supports the development of applications by providing a framework for
use by the developer; we will not describe how the interaction between the users and the
tool works.

Unlike the case considered in the previous chapter, however, there is a well-developed
literature on what classes are needed to support discrete event simulation in the process
style. A developer building an IMSE would naturally take advantage of this, so this
chapter discusses identifying classes only briefly. We concentrate on the use of UML to
understand and document the detailed behavior of a system of classes. Such documentation
is particularly important in this case, because a developer who may not be familiar with
the conventions of the subject needs to understand how to use the classes provided by the
IMSE effectively. The interactions between the objects are necessarily quite subtle, and
there are classes with complex (nested) state diagrams, so detailed UML documentation
is likely to be useful to a developer. At the end of the chapter we will discuss a simple
example of a simulation model which a developer can build using the IMSE.

17.1 Requirements

A discrete event simulation model is an executable program which mimics the behavior of
a real-world system by following the pattern of events and interactions which take place in
that system. Following the conventions of the process view of simulation, the models will
contain active entities, which correspond to the active parts of the system being modeled,
and passive entities, which correspond to resources, queues, and other nonactive parts of
that system. A simulation model must preserve the order of occurrence of events; simulated
events in the model must occur in the same order as the real events they simulate.

As we have said, the IMSE must support both the development of discrete event
simulation models and their use in experiments.

182

Requirements 183

From the developer’s point of view, it can be seen as a specialized CASE tool for
developing simulation models. A good IMSE should minimize the amount of work that
a developer must do to build a simulation model. For example, although a model will
contain different entities, depending on what system it represents, much behavior is
common. Therefore the IMSE should include classes that provide as much as possible
of the functionality of the active and passive entities. It should also provide facilities for
collecting commonly used statistics, and it should handle the scheduling of events and the
interactions between entities as generically as possible.

The IMSE must also provide an editor which supports the building of executable models
based on this framework, but we do not discuss this here.

From the experimenter’s point of view, the tool must support the running of a discrete
event simulation model constructed from these reusable features and the collecting of
information about what happens as it runs. This information must include a record
of the events which occur in the model, known as a trace, and statistical summaries of
observations made of important values during the running of a model.

17.1.1 More detailed description

In the following description, noun clauses are underlined in preparation for the identification
of candidate objects. A certain amount of preselection has been done, for instance to avoid
including obvious actors. The details of how a model is to be run are based on standard
mechanisms from discrete event simulation.

Users

There are two kinds of users.

• Developers are people who build simulation models and check that they run with-
out errors.

• Experimenters have the following goals:

1. always to watch the unfolding of the events of a model under controlled conditions;
2. sometimes to collect statistics about what happens.

Both of these goals involve running the simulation model.

Simulation models

The process view divides a modeled system into active entities and passive entities.
The active entities represent things in the modeled system which carry out activities, such

as workers in a factory. When a real-life worker does something significant which affects
other real-life things, the active entity which models that worker causes a simulated event
which affects any entities (active or passive) which model those real-life things.

Typical passive entities are resources, semaphores, and buffers. They represent things
in the modeled system which, although they are not active themselves, may affect the
behavior of active entities in significant ways. They also observe and report statistics about
their state over time.

For instance, the ability of an active entity to carry out some activity often depends
on whether a certain amount of some resource is currently available. If the active entity

184 Discrete event simulation

requests an amount that is available, that active entity moves to a state indicating that it is
performing the activity, and that resource moves to a state where less resource is available
for succeeding requests. If the required amount is not available the active entity will have
to wait until some other active entity has finished with enough of the resource to allow it
to proceed; that is, the active entity becomes blocked because of the state of the resource.
The average amount of the resource used is typically a statistic of interest.

The behavior of a type of active entity is defined by a sequence of events to be
simulated, often called its lifecycle. This sequence can include conditional choices
and repetitions.

At any point in the simulation, an active entity is in one of three states:

1. active, where it is responding to an event in its lifecycle; only one active entity can be
in this state at a time and its event time defines the current simulated time;

2. blocked, waiting for a request to be satisfied by a passive entity;
3. waiting for simulated time to reach this object’s next event time – in this state it always

knows at what simulated time its next simulated event is to be scheduled and what event
that will be.

Simulated events arise as messages either from a scheduler which controls the advance
in simulated time, or from a passive entity whose state has changed due to something like
the freeing of a resource by another active entity.

Any simulated event should cause a message to be sent to a trace file, so that an
experimenter can follow the detailed internal behavior of the model.

We need to collect statistics by updating information about passive entities and about
other values for which information is needed. Examples of values being monitored
and their derived statistics are counts of how many times something occurs and the
average value over time of something like a queue’s length.

The conditions under which a model executes are varied to observe how the system would
respond. To make this more flexible, values to be varied are read from an external data set,
which is set up before the model is run.

17.2 Outline class model

If you were designing the package with no prior knowledge, the next step would be to
find candidate classes, perhaps beginning with the noun clauses underlined in the problem
description. As usual, you would make use of CRC cards and/or use case descriptions
to evaluate your selection. In fact, as we said, the selection of classes for this kind of
application is well understood in the field, so we will not dwell on it. We will, however,
consider the class model in more detail later. The high-level class diagram is shown in
Figure 17.1.

Q: If you know about discrete event simulation, how might random number streams be
added to this model?

Q: Is the association PassiveEntity updates Statistic really aggregation or
composition? Justify your answer.

Use cases 185

Scheduler

schedules

1..*

1

1..*

ExternalDataset

1
driven by

Report

AverageCount

PassiveEntity

BufferResource

1..*

invokes

1

1..*

asks summary from

1

1

makes requests to

1

updates

1
asks time from

1

0..*

set by

1

1..*

1

ActiveEntity

{abstract}

{abstract}

Statistic

Figure 17.1 Class diagram of discrete event simulation system.

Discussion Question 108
An earlier version of the class model showed Statistic and PassiveEntity as
distinct classes, related in that both supply the interface required by Report. In another
version, Statistic was a generalization of PassiveEntity. We have chosen to show
an updates association, where each PassiveEntitymakes use of a Statistic object.
The older variants of this part of the class model are both shown in Figure 17.2. What
are the arguments for and against these different ways of modeling the classes?

Discussion Question 109
Try implementing the behavior required for Report, Statistic, and PassiveEntity

following the three alternatives presented. Which form of design does your implementa-
tion language support best?

17.3 Use cases

Developers create models and run them to check for runtime errors. Experimenters wish to
extract information. They execute the models to observe detailed behavior and, optionally,
to collect statistics. Before running a model they always set up values in some external

186 Discrete event simulation

PassiveEntity

BufferResource

Statistic

AverageCount

summarizes for

Report 1

Recorder
<<interface>>

1..*
1..*

summarizes for

1

(a) Using an interface to show common behavior

(b) One way to use generalization to show common behavior

Recorder

PassiveEntity

BufferResource

Statistic

AverageCount

Report
summarizes for

1 1..*

Recorder

Recorder

Figure 17.2 Some alternatives for classes used in reporting behavior.

dataset to specify the conditions being modeled. This leads to the use case diagram shown
in Figure 17.3.

The three principal use cases are create model, observe behavior, and collect

statistics. All of these depend on the behavior defined for run a model, so a natural
way to model this is to make run a model a separate internal use case, which both
create model and observe behavior include.

Since collect statistics is a variant on observe behavior, the former extends
the latter.

Use cases 187

collect statistics

Developer

<<extend>>

<<include>>

create model

run a model

<<include>>

observe behavior

Experimenter

Figure 17.3 Use case diagram of discrete event simulation system.

17.3.1 Summary of create model

The actor Developer creates an initial executable model, of the sort required by the run
a model use case, by interaction with the editing functions of the tool. S/he then creates
a dataset which allows the model to be run in a controlled manner and checks the model
by following the behavior defined in the use case run a model. If there are errors when
the model is run, the Developer modifies the model and runs it again. Once there are no
errors the use case is complete.

17.3.2 Summary of observe behavior

The actor Experimenter first selects a model. This is assumed already to exist as the
output of an earlier instance of the create model use case. The Experimenter selects or
creates an external dataset which holds values describing the conditions for this particular
run of the model, such as the amounts of any resources and the durations of any variable
delays in the model. The Experimenter then follows the behavior in the run a model

use case and, when the model has run, reads the trace generated to follow the sequence
of events.

17.3.3 Summary of collect statistics

This is a variant on the observe behavior use case. Before using the run a model

use case, the Experimenter sets a flag which the model can read when it runs, to say that
statistics should be collected and reported by writing them to a file at the end of the run.

188 Discrete event simulation

17.3.4 Summary of run a model

This use case assumes that the actor initiating it has already selected the model to run and
created or selected a matching dataset, which specifies the conditions under which to run
the model.

The actor now starts the executable model, which is made up of instances of the objects
used to model and observe the system. Each active entity sets itself to an initial simulated
event time and to an initial next simulated event, which it reads from the external dataset.
Each passive entity reads its initial settings from the same external dataset.

The entities act out the detailed behavior specified in the description of each active
entity’s lifecycle, under the control of the scheduler, which ensures that events occur in
the order of their simulated time. Passive entities ensure that constraints on the ability of
active entities to proceed are respected. The occurrence of simulated events causes trace
messages to be output.

Where an event changes a value for which a report is required and the statistical
collection flag has been set, appropriate information is added to that to be used by the
reporting mechanisms.

A runtime error may happen at any point if the model has errors. This is checked
in the create model use case and dealt with there. For simplicity, we assume that an
Experimenter never encounters such errors.

Q: Produce an activity diagram showing the interactions and dependencies among all
potential users of the complete system.

Q: How would the use case model be changed if we were to discover that all
Experimenters always build their own models each time they want to carry out either
of their current use cases?

17.4 Standard mechanism for process-based simulation

To support the detailed design of our classes, we describe in some detail the mechanism of
discrete event simulation which is employed. It is a standard one from the literature on the
subject, such as [21].

The model is created as a collection of active entities and passive entities, plus a
controlling scheduler and appropriate statistical collection objects. The active entities read
in any initial values, such as timings of delays for this run, from the external dataset
and enter their waiting state. The input from the external dataset is also used by the
passive entities to set their initial values – for instance it specifies an initial amount for
each resource.

The active entity with the lowest simulated event time receives a message from the
scheduler and enters its active state. This active entity records the event which is being
activated, with its event time, in the trace for this run of the model. The event time of the
currently enabled active entity always defines the current simulation time.

If the current event involves an interaction with a passive entity – for instance obtaining
the use of a resource – the active entity sends an appropriate message to the passive entity.
If the message is a request which, depending on the current state of the passive entity,
might block the active entity:

Associations and navigability 189

1. either the passive entity is updated to show how it satisfied the request – for instance
by decrementing the amount available of the resource it represents – and the active
entity proceeds;

2. or the active entity waits for the condition to be met, entering a blocked state until the
passive entity reschedules it.

The event may also mean that a passive entity must be updated without the possibility
of the current active entity being blocked – for instance that a resource is being released.
When a passive entity is updated in this way, it must schedule any active entities that are
waiting for such a change and which are now able to carry on, setting their next event time
to the current simulated time.

When an active entity leaves its active state without being blocked, either it updates its
simulated next event time and its next event, and returns to its waiting state, or it terminates.

The active entity which now has the lowest next event time is moved by a message from
the scheduler into its active state.

This pattern is repeated until either there are no unterminated active entities or the
simulation time exceeds the simulated period for which the simulation is to run.

If the report flag was set before the model started running, the scheduler will now send a
message to the various objects which have been collecting observations requesting them to
produce a report of their statistics, either each time a certain interval of simulated time has
passed or at the end of the execution of the model. For the sake of presentation, these objects
may be collected into related subreports and the final output formatted correspondingly.

17.5 Associations and navigability

Which objects will need to know about which others? In other words what are the
associations and what are their navigabilities in our class model? We have begun by
showing all associations without comment, but as we move to a detailed design, suitable
for implementation, we must define and justify their meaning and direction. At the same
time we will need to ensure that a way for objects to know about each other is included
in their attributes or operations. As we explained in Chapter 6, most associations are one
way. Where a two-way association is proposed, it must be justified.

Figure 17.4 shows a more detailed class diagram, which includes attributes and opera-
tions to support the associations and their navigability. Notice that in showing even those
attributes whose purpose is to implement associations we are breaking the rule we made
in Chapter 5 and have followed since. We choose to do this, at the expense of making the
diagram more complex than it might be, because the mechanisms for implementing the
associations are quite subtle and we will want to discuss them in terms of the attributes of
the classes.

Scheduler invokes Report

• Direction One way, from Scheduler to Report.

• Meaning The Scheduler is given the responsibility for requesting summaries of
their observations from any Report objects once the end of the run is reached.

190 Discrete event simulation

ExternalDataset

+ giveValue() : Real

- evList: TimeOrderedList
- reports: Collection

Report

1..* - stats: Collection
+ report()

Resource

invokes

Scheduler

1..*

1

PassiveEntity

1

myStat : Statistic
blocked : FIFOList

+ wait(a : ActiveEntity)
+ now() : Real

- avail : boolean

+ acquire(a:ActiveEntity)
+ release()

1

1
set by

0..*

asks time from

driven by
1

1..*

+ trace(m : Text)
+ reschedule()

+ getTime() : Real

makes
requests to

updates

1
1

input : ExternalDataset

ActiveEntity
{abstract}

- total : Integer

Count

+ update(r:Real)
+ update(r:Real)

+ report()

- sum : Real

Average

+ report()

1

schedules

1..*

+ run(runTime:Real)

input : ExternalDataset
s : Scheduler

evTime : Real
nextEvent : Integer

Buffer

+ reset()
+ reset()

+ report()

1
asks for summary from

0..*
1..*

{abstract}
observations : Integer
clock : Scheduler
startTime : Real
+ reset()
+ update(r:Real)

+ act()

Statistic

Figure 17.4 Detailed class diagram for a simulation experiment.

• Implementation A Collection attribute – reports – in Scheduler, and an
operation – report() – in Report.

Scheduler schedules ActiveEntity

• Direction Two way, since the Scheduler needs to be able to activate each
ActiveEntity when its turn comes, while ActiveEntitys also need to find the
Scheduler when they need to rejoin the event list, as we see below.

• Meaning The Scheduler controls the order of execution of the ActiveEntitys to
ensure that they always execute in simulated time order.

• Implementation A special ordered collection of active entities, evList : Time-

OrderedList, within Scheduler, and an operation act() in ActiveEntity. An
attribute s : Scheduler within ActiveEntity and an operation – wait() – in
Scheduler. For details see below.

Associations and navigability 191

ActiveEntity driven by ExternalDataset

• Direction One way from ActiveEntity to ExternalDataset.

• Meaning Each ActiveEntity reads its initial event time and next event from the
one ExternalDataset.

• Implementation The attribute input:ExternalDataset in ActiveEntity, and
the operation getValue(): real in ExternalDataset.

PassiveEntity set by ExternalDataset

• Direction One way from PassiveEntity to ExternalDataset.

• Meaning Each PassiveEntity reads its initial settings from the one External-

Dataset.

• Implementation The attribute input:ExternalDataset in PassiveEntity, and
the operation getValue(): real in ExternalDataset.

PassiveEntity updates Statistic

• Direction One way, from PassiveEntity to Statistic.

• Meaning Whenever a request is made to a PassiveEntity it may send an update to
its associated Statistic object.

• Implementation The attribute myStat:Statistic in PassiveEntity and the
operation update(r:Real) in Statistic.

ActiveEntity makes request to PassiveEntity

• Direction Two way, since the ActiveEntity needs to make an initial request to the
PassiveEntity, while the PassiveEntity will need to send back a message when
the request has been satisfied.

• Meaning The exact meaning of such a request depends on the specialization of
PassiveEntity to which it is sent.

• Implementation The ActiveEntity to PassiveEntity direction is implemented
by attributes declared in the specializations of ActiveEntity as required (which may
refer to PassiveEntity objects) and by particular request operations in specializations
of PassiveEntity. The other direction is implemented by passing of self as a
parameter with all request messages, by the attribute blocked in PassiveEntity

(which lists the ActiveEntitys which are blocked waiting for this PassiveEntity)
and by the operation reschedule() in ActiveEntity. See below for examples.

Report asks for summary from Statistic

• Direction One way from Report to Statistic.

• Meaning When a report is requested by the Scheduler, each Report object
delegates the task of producing individual summaries to appropriate objects which are
specializations of Statistic.

192 Discrete event simulation

• Implementation The attribute stats:Collection within Report, and the opera-
tion report() within Statistic.

Statistic asks time from Scheduler

• Direction One way from Statistic to Scheduler.

• Meaning Observations need to be recorded along with the time they happen.

• Implementation The attribute clock:Schedulerwithin Statistic, which allows
a now() message to be sent.

Discussion Question 110
We have not discussed how collection classes are obtained or implemented; for example
we gave the class of Scheduler’s reports attribute as Collection without comment.
Suppose that you are implementing this system, in whatever language you use, and
investigate the availability of reusable classes which would save you from having to
write your own collection classes. How can such classes sensibly be implemented in
your language, and what difference does the technique used make to the user of the
class? For example, can you make use of the parameterized class construct discussed in
Chapter 6?

Discussion Question 111
There are several circular dependencies in the class diagram shown in Figure 17.4. Identify
them, and see what simple changes you could make to the design to eliminate them.

17.6 Classes in detail

We have now documented the static structure of the discrete event simulation package, and
have discussed the intended interactions between objects at a high level. Next we should
document the main classes in enough detail for a Developer to be able to use them to
build a model.

We will find state diagrams particularly helpful in capturing the rather complex behavior
of this design. We will also find collaboration diagrams useful, since the behavior of the
objects involves a lot of interaction between them.

A Developer must create a specialized subclass of the abstract class ActiveEntity,
adding a method to implement the operation act(). This method defines the behavior of
the particular active entity which the developer wishes to model.

Similarly, a Developer may create a specialized subclass of the abstract class
PassiveEntity. Here, however, two specializations are so common that they are
provided in the package. For example, a Developerwhich needs to model a passive entity
that behaves like a single discrete resource, which can be used by one active entity at a
time, can use the class Resource directly rather than having to write more code.

We shall show an example of a simulation model built in this way which involves a
specialization of ActiveEntity along with some instances of Resource.

Classes in detail 193

17.6.1 Class Scheduler

There is a single instance of Scheduler in a simulation model. It is the first object to
receive a message – run(runLength:Real) – and the operation which is thus invoked
controls the execution of the model. Scheduler has attributes:

• reports – the Collection of groups of reportable objects;
• evList – the TimeOrderedList, which holds ActiveEntitys in the order of

their eventTime.

It also supports the operations:

• run(runLength:Real) – the controlling function of the whole simulation. It takes
the first member of evList and sends it an act() message. It repeats this until
the simulation has reached an ActiveEntity whose eventTime value exceeds
runLength – the required simulated run length – or until there are no unterminated
ActiveEntitys left. It then sends report() messages to all the Report objects in
its reports collection, asking them to produce reports on any Statistic objects
they hold.

• now():Real – a query function to return the eventTime of the current first
ActiveEntity, which defines the current simulation time. This allows access to
this important information without allowing direct access to the list itself.

• wait(a:ActiveEntity), which supports the return to evList of ActiveEntitys
once they have left their active state. It takes a and adds it to evList in the appropriate
position for a’s evTime.

17.6.2 Class ActiveEntity

The class ActiveEntity has the property abstract, since it contains an opera-
tion – act() – for which no implementation (no method) is provided and which is therefore
shown in italics. No instances of ActiveEntity can be generated. It can only be used as
a generalization and the final simulation model will use specializations where a method for
act() is provided. It contains the attributes:

• s – the Scheduler;
• input – the ExternalDataset;

• eventTime – the simulated time of its next simulated event;
• nextEv – a code representing its next simulated event.

These are all shown with a protected marker, the # sign. In C++, protected attributes
and operations of a class can be accessed from methods of that class or any subclass. This
is sometimes a convenient intermediate access restriction, more permissive than private
but less permissive than public; however, if you are not using such a language you may
regard all protected attributes and operations as having public access, shown with +.

It has the operations:

• getTime():Real – a query function, which returns the value of eventTime;

• reschedule() – which will place this ActiveEntity in the event list with the current
simulation time as its eventTime;

194 Discrete event simulation

• act() – whose method has to be supplied in any specialization and which defines the
simulated behavior of the active components of the system being simulated. The form
of this behavior is described below.

States of an ActiveEntity

in event list
[nextEvent=Finished]do/activeDetail

active

[not nextEvent=Finished]s.wait(self)

act()

Figure 17.5 State diagram of the generic ActiveEntity.

In general, an ActiveEntity will follow the simple behavior shown in Figure 17.5.
This shows the scheduling behavior of all instances of ActiveEntity, which all respond,
at this level of abstraction, in equivalent fashion to act() messages from the Scheduler.

Initially an ActiveEntity is in the state in event list, which represents its
waiting in the evList of the Scheduler. When it receives an act() message, it enters
its active state. On completion of its active state, it either terminates or sends itself to the
Scheduler, s, in a wait(self) message. This causes it to re-enter the event list in the
appropriate position.

An ActiveEntity has an internal state machine, which is defined to be the state
machine called activeDetail. This state machine is nested within the active state of
an ActiveEntity, since its name follows the keyword do in that state. It represents the
specialized detail of act() and must be defined by the Developer in every specialization
of ActiveEntity which is to be instantiated in the simulation model.

A typical example is given later in the chapter in Figure 17.7. An ActiveEntity

always knows its nextEvent value and uses this to decide which branch to take each time
it enters the activeDetail state. Each branch prints an appropriate trace message. After
that, behavior depends on the type of event which corresponds to nextEvent.

Simulating time delays

Some of the transitions merely pass from the start state to the end state, invoking actions
and sending messages to other objects. These implement simulated time delays by updating
both the next event time (evTime) and the event to happen at that time (nextEvent).

Simulating requests to PassiveEntitys

Other transitions send requests to PassiveEntity objects. To allow the implementation
of blocking, all requests must have the current ActiveEntity as a parameter. These
transitions all lead to the blocked state, which is left when a reschedule() message is
received from the PassiveEntity, indicating that the request can be satisfied.

In the example in Figure 17.7 the PassiveEntity is a Resource, whose corresponding
behavior is explained below.

Q: Use a communication diagram to work through the interaction of twoActiveEntity
objects whose behavior is identical to the one shown but which have different increases

Classes in detail 195

in their event times. How many different sequences of tracing messages can be output
depending on this combination of event times?

17.6.3 Class PassiveEntity

PassiveEntity is a class with no operations. It is intended as the generalization of all
passive components of a simulation model. It has the attributes:

• blocked – a first-in-first-out list to hold blocked ActiveEntitys;

• myStat – a reference to a suitable specialization of Statistic, which can be updated
to record changes in the state of this object;

• input – the ExternalDataset used to set the initial values of this entity, such as the
initial amount available in a resource.

Again, the attributes are specified as protected, indicating that they are to be available
only to specializations of this class.

Discussion Question 112
Why is it not appropriate to define PassiveEntity as having the property abstract?
Is this sensible?

17.6.4 Class Resource

Resource is a subclass of PassiveEntity. An object of class Resource represents a
thing which can be used as a whole by just one active entity at a time. As well as inheriting
the attributes of PassiveEntity, it adds an attribute:

• avail – a boolean, which is true if the resource is available for use, and false

otherwise.

It also understands the messages:

• acquire(a:ActiveEntity) – the request to gain exclusive use of this resource;

• release() – the message to say that the resource is free again.

If one ActiveEntity wants to use a Resource when another ActiveEntity is already
using it, the message acquire(a:ActiveEntity) will arrive when avail is false. In
that case, the Resource adds the active entity a to its (inherited) list blocked. Whenever
the Resource becomes free – that is, receives a release() message – it checks to see
whether it has any ActiveEntitys in its blocked list; that is, is any active entity waiting
to use this resource? If so, it takes the first active entity from the list and sends it the
message reschedule() to inform it that the resource is now available.

A side effect of the need to handle a collection of ActiveEntitys, all waiting for the
same Resource, in a fair way is that what happens when an ActiveEntity wants a
Resourcewhen it is available is more complex than you might expect. When a Resource
receives the message acquire(a:ActiveEntity) while avail is true, it reacts by
setting avail to false and sending the message reschedule() to the ActiveEntity.
When it receives the reply to reschedule(), it in turn replies to the original message
acquire(self). The point is that the signal to the ActiveEntity that the Resource is
available is not that it receives the reply to the message acquire(self) – this happens

196 Discrete event simulation

quickly whether or not the Resource is available – but that it receives the message
reschedule().

We can model this behavior of a Resource using the state diagram shown in Figure 17.6.

available in use

release()[blocked.empty()]

acquire(a:ActiveEntity) /blocked.add(a)

acquire(a:ActiveEntity) /a.reschedule()

release()[not blocked.empty()] /a:=blocked.next() /a.reschedule()

Figure 17.6 State diagram of Resource.

Let us consider a simple example of the interaction between an active entity and a passive
entity. Suppose that a Developer is modeling two workers who have to share one spanner,
which lies on the bench between them. The Developer defines a specialized subclass
Worker of ActiveEntity and writes (possibly with help from parts of the CASE tool
which we do not discuss) the method act(). Since a Worker needs to use a spanner, there
will also be a new attribute spanner in the class Worker. The high-level state diagram of
the class Worker is the same as for its parent class ActiveEntity, shown in Figure 17.5,
but the detailed behavior in the nested state diagram activeDetail is specific to class
Worker. We show a possible activeDetail in Figure 17.7.

/trace("Start")[nextEvent=1] /evTime:=evTime+2/nextEvent:=2

[nextEvent=3]/trace("Work")/evTime:=evTime+2/nextEvent:=4

[nextEvent=4]/trace("Finish")/nextEvent:=Finished/spanner.release()

reschedule()/evTime:=s.now()
blocked

[nextEvent=2]/trace("Acq")/nextEvent:=3/spanner.acquire(self)

Figure 17.7 activeDetail state diagram of class Worker.

Since the spanner does not have any special behavior of its own, the spanner can be
modeled by an instance of class Resource whose state diagram was shown in Figure 17.6.

Putting the behaviors together, let’s follow what happens when an object ruth of class
Worker wants to use the object spanner of class Resource, but jo is already using it.
We haven’t given full details of the class Worker, but let us assume that ruth wanting
to use the spanner is modeled by ruth’s nextEvent being 2 when it receives the act()
message from the scheduler. According to the state diagram, ruth’s nextEvent is set
to 3, and then ruth sends the message spanner.acquire(ruth) to spanner, entering
its blocked state. We are assuming that jo is using the spanner, so spanner is in its
in use state. According to its state diagram, its reaction to receiving the message is to
add ruth to its blocked list. On receiving the reply to its spanner.acquire(ruth)

Class Report 197

message, ruth replies to the message act() that it received from the Scheduler, so the
Scheduler will send act() to the next ActiveEntity.

Eventually (we hope!) jo finishes using the spanner and, as part of its reaction to
being sent an act() message, sends the message release() to spanner. At this point,
according to the state diagram for Resource, spanner must get the next ActiveEntity
out of its blocked list and send the message reschedule() to that ActiveEntity.
Assuming that ruth was the only blocked ActiveEntity, the result is that ruth

receives the message reschedule(). According to the Worker state diagram, ruth sets
its evTime to s.now(), the current simulated time, and then reaches the end state of
activeDetail. As usual when leaving activeDetailwith a value of nextEvent other
than Finished, it then sends a wait(ruth) message to the Scheduler, indicating that
it is to rejoin evList.

Q: Draw a sequence diagram to illustrate this scenario. You will probably find it helpful
to show message return arrows and to use the notation for nested activations.

Q: Go through the slightly simpler interaction in which ruth wants to use spanner

and it is available.

Q: Draw the sequence diagram which shows the interaction of two Worker objects
which, like the one shown, share a spanner, but have differing patterns of time intervals.
How many different sequences of trace messages can be produced in this example?

Discussion Question 113
We have assumed that a Resource models a single item. How could our design be
extended to cope with resources where amounts of more than one might be acquired
and released?

Discussion Question 114
Can you describe systematically how to check consistency between state diagrams and
interaction diagrams in an example such as this? How much could a CASE tool help, in
principle?

17.7 Class Report

Report is used to provide a grouping of individual statistical reports. Each instance will
collect some instances of class Statistic together. This class has an attribute:

• stats – a Collection of Statistic objects.

It has an operation:

• report() – which is invoked by the Scheduler and first prints a heading for this
group of summaries and then asks for a summary from each of the Statistic objects
in stats, by sending a report() message to each in turn.

198 Discrete event simulation

17.8 Class Statistic

Statistic has the property abstract, since it has operations for which it does not
provide a method. These must be implemented in any specializations. It provides three
attributes for use in specializations:

• observations – an Integerwhich records how many times the value being observed
by this object is updated;

• startTime – a Real value, which records when the current set of observations began
to be collected, in terms of simulated time;

• clock – a reference to the Scheduler, which allows this object to query the current
simulation time, by sending a clock.now() message.

As with some of our other classes, these attributes are specified to be protected, since they
are provided only for use in specializations of this class.

It has three operations, all without an implementation and so shown in italics:

• reset() – which allows the attributes of the object to be reset to zero at any point; this
may be used to limit the period for which statistics are collected;

• report() – which allows the Report object holding this Statistic object in its
collection to request that it prints out a summary of its observations;

• update(r:Real) – which allows the value of an observation to be sent to this object, to
be included in its report.

17.8.1 Class Average

Average is an example of a specialization of Statistic, which in fact we used
as an example in Chapter 12. It implements the operations reset(), report(), and
update(r:Real), required by its generalization Statistic. It also adds the attribute:

• sum – a Real used to accumulate the sum of its observations’ values.

Its responses to the three messages it can receive are as follows:

• a reset() message causes it to set its recording values, sum and observations, back
to zero, and to set startTime to the current simulation time, clock.now();

• a report() message causes it to print out the average since the last report() or
reset(), and then to behave as though it had received reset();

• an update(r:Real) message brings a new observation, in the form of a new value to
be included in the average – the attributes sum and observations must be updated
appropriately, but startTime is not affected.

A state diagram for this behavior, which we showed in Chapter 12, is reproduced in
Figure 17.8.1

1 We confess that we drew it this way because in Chapter 12 we wanted to demonstrate action sequences
appearing on transition arrows – it would probably be clearer to put the resetting of sum and observations
in the entry action instead.

The dining philosophers 199

reset() / sum := 0 / observations := 0

report() / printSummary() / sum := 0 /observations := 0

entry / startTime := now()

update(val : Real) / sum := sum + val/observations++

Figure 17.8 State diagram of Average.

Discussion Question 115
How might you represent this information other than by using a single-state state
diagram?

17.9 Building a complete simulation model

A complete discrete event simulation model built using our package will form a collab-
oration of a number of objects. This must include a single Scheduler and one or more
instances of specializations of the class ActiveEntity. Each of the latter requires a fully
defined behavior for the state machine activeDetail, following the pattern shown in the
example above.

If we assume that a report is to be generated, we must have a Report object.
Most interesting models will also have one or more instances of specializations of
PassiveEntity, and probably of Statistic.

17.10 The dining philosophers

We end this case study with an example based on the dining philosophers model. This
famous example has a circle of philosophers who spend their time first thinking great
thoughts and then, at varying intervals, eating from a common bowl of spaghetti in the
middle of their circle. To eat, each philosopher needs to pick up two forks, one on the
philosopher’s right, one on the left. A philosopher always tries to pick up the right fork
first, then the left. If s/he successfully acquires both forks, s/he spends some time eating
before replacing the forks.

This situation was introduced by the famous computer scientist Edsger Dijkstra as an
example of a system which could deadlock. It can be described using a discrete event
simulation model by defining a new subclass Philosopher of ActiveEntity, and by
modeling each fork as an instance of Resource.

200 Discrete event simulation

sartre : Philosopher

fork2 : Resource

1
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()

2
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()

3
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()
s : Scheduler

fork1 : Resource

hegel : Philosopher

fork3 : Resource

2.1 : acquire(plato)

2.1.1 : reschedule()

1.1 : acquire(plato)

1.1.1 : reschedule()

3.1 : release()
3.2 : release()

1.1.1.1 : w
ait(plato)

2.1.1.1 : w
ait(plato)

3.3 : w
ait(plato)

plato : Philosopher

Figure 17.9 Collaboration diagram of the dining philosophers.

The communication diagram, Figure 17.9, shows the scenario where plato successfully
acquires and releases his two forks, and neither sartre nor hegel is hungry during this
period. Only one scenario is shown; we also omit the report related objects for clarity.
(They are easy to add: you might like to consider how.)

Q: Draw the sequence diagram which corresponds to Figure 17.9.

Q: Draw the extended model if marx decides to join the circle. What does he need to
bring with him?

The activeDetail state diagram of a Philosopher is shown in Figure 17.10.

blocked

[nextEvent=1]/trace("Think")/evTime:=evTime+2/nextEvent:=2

[nextEvent=4]/trace("Eat")/evTime:=evTime+2/nextEvent:=5

reschedule()/evTime:=s.now()

[nextEvent=3]/trace("F2")/nextEvent:=4/ lFork.acquire(self)

[nextEvent=2]/trace("F1")/nextEvent:=3/rFork.acquire(self)

[nextEvent=5]/trace("Finished")/nextEvent:=1/rFork.release() / lFork.release()

Figure 17.10 activeDetail state diagram of class Philosopher.

The dining philosophers 201

Discussion Question 116
Since the actions in our models are all sequential – two actions can never happen at
the same time – you might think that the dining philosophers could never get stuck in a
deadlock. Deadlock would require that each philosopher had succeeded in picking up his
right-hand fork and was waiting for his left-hand fork to be replaced by the philosopher
on that side. In fact that can happen here. How, and how can this be fixed?

Discussion Question 117
Could the simulation system be extended to cope with running the same model several
times, under varying conditions, and collecting the statistics from successive runs as rows
in a table of reports? Try to modify this design as little as possible to produce such a
system.

part IV

Towards
practice

Chapter 18 Reuse: components, patterns 204

Chapter 19 Product quality: verification, validation, testing 217

Chapter 20 Process quality: management, teams, QA 229

chapter 18
Reuse:
components,
patterns

In this chapter we summarize what the book has said about reuse, revisit what Chapter 1
said about components, frameworks and architecture in the light of the rest of the book,
and address some nontechnical issues which have so far been ignored. So far we have
emphasized the reuse of components, but there are several other important kinds of reuse
which we consider here. In particular, we will discuss the use of patterns; this can be seen
as the reuse of good ideas, for example successful designs.

18.1 Practicalities of reuse

In its broadest sense, the term reuse covers any situation in which work done for one
software project is used to help another.

We will address the questions (some of which we began to tackle as early as Chapter 1):

1. What can be reused, and how?
2. Why reuse?
3. Why is reuse hard?
4. Which components are genuinely reusable?
5. What about building your own components?
6. What difference does object orientation make?

One of our conclusions will be that an organization which wants to achieve high levels
of reuse must support the aim by taking seriously the quality of its products and processes,
verification, validation and testing, and by having in place the right organizational and
procedural structures. These topics are addressed in the remaining two chapters.

18.1.1 What can be reused, and how?

• Architecture, which we considered in Chapter 1, including frameworks.
• Code: most obviously components, which we have already started to consider.
• Designs, even sections of analysis: see patterns below.
• Documentation: parts of user manuals and development documents tend to be ‘boiler

plate’ text.
• Tests: many are standard, e.g. what happens if we run out of memory or disk.

204

Practicalities of reuse 205

Various other labor-saving techniques are usually not counted as reuse. For example, if a
developer gets trained in a new language for one project and the same language is used
for the next project, is this reuse? It is one of the beneficial aspects of reusing successful
architecture, at least: recall that the decision about what language to use can be regarded
as an architectural one.

For another example consider tools: that is, code that isn’t directly part of the system
being built, but which can be used to assist several projects. Test harnesses are a common
example.

Discussion Question 118
What about off-the-shelf tools, such as development environments or bug-tracking
systems? Can you think of any other examples of reuse?

Reuse can be achieved in a variety of different ways. Most simply, we can cut and paste,
that is, simply copy the original artifact. We save the effort of rewriting the reused artifact,
but changes to the original do not automatically get propagated to the copy, or vice versa.
Sometimes this is sensible, but in many situations it can lead to problems.

Discussion Question 119
Consider each of the areas of reuse listed above. Is it desirable to keep the two versions
in synchrony? Why, or why not?

At present, component reuse is just about the only area in which anything other than
cut and paste is regularly done. Even component reuse is in its infancy: it is rare to reuse
components which are larger than single classes. Class libraries, however, are commonly
used. Although it is clear that it is more beneficial to reuse a component that is larger
than one class, a good class library is an important asset. For example, collections of
various kinds are sensibly implemented as single classes, and there is no good reason why
any developers should have to write their own. Many languages, such as Smalltalk and
Java, have standard libraries, which further increases the benefit. The library may be a
commercial product, or a resource which is internal to an organization.

PANEL 18.1 What is a Component Really? Controversial!

‘Component’ (and for that matter ‘architecture’) are words whose meaning varies
enormously depending on who’s using them.

Let’s consider ‘component’. The definition we gave in Chapter 1 is one of the
more broad. We considered a module to be a component if it was reusable and
replaceable; this required it to have a well-defined interface and to be a cohesive
abstraction with low coupling with the rest of the system.

Our definition isn’t quite the most broad: a few people consider any object – or
sometimes, any class – to be a component. This seems to be a waste of a good
word – why not just say ‘object’ or ‘class’ if that’s what is meant? A more
interesting candidate is Rational’s definition as quoted by Grady Booch [6]:

206 Reuse: components, patterns

A component is a physical and replaceable part of a system that conforms to
and provides the realization of a set of interfaces.

Booch clarified that ‘replaceable’ is intended to mean replaceable at runtime, and
this is the major difference from the definition we use in this book.

After much consideration, we prefer to include in our definition modules that can
be replaced at maintenance time, without requiring changes to the rest of the system.
Both definitions require that a component be pluggable – the only question is when?
Whilst UML1.x used to use a definition very close to Booch’s, UML2 uses a broader
notion of component, like ours.

It’s always important to remember that (with any definition) a component does not
function in isolation; whether it is replaceable depends on the architecture, not just
on the component. (Architecture is itself another controversial term. Some people
would separate what we describe here into architecture and architectural style [41].)

Here are some more definitions of component.

1. A high-quality type, class or other UML workproduct designed, documented and
packaged to be reusable. A component is cohesive and has a stable interface.
Components include interfaces; subsystems; use cases, types, actors or classes;
and attribute types. Components also include other workproducts, such as
templates or test case specifications [29].

2. An encapsulated part of a software system. A component has an interface that
provides access to its services. Components serve as building blocks for the
structure of a system. On a programming language level, components may be
represented as modules, classes, objects, or a set of related functions [10].

3. A component is an object that lives in the binary world. [5], in explanation of
Booch’s definition [6] mentioned above.

Discussion Question 120
Consider the definitions and explain the differences between them with the help
of examples.

Discussion Question 121
Can a component be reusable without being replaceable, or vice versa? Why?

Discussion Question 122
Is a component something you might instantiate, or something you get after you’ve
instantiated something else? In which case, what is the something else? Consider
Booch’s statement [6].

Further reading on components and component-based development (aimed at
comparatively experienced professionals) includes [44] and [16]. Further reading
on architecture includes [41].

Practicalities of reuse 207

18.1.2 Why reuse?

The bottom line is financial, of course. Some of the ways in which achieving high levels
of reuse can save a company money are as follows.

• The obvious: developers’ time saved on developing the component! Realize that only a
small part of this time represents coding. Analysis, design, reviews, documentation, and
testing are far more significant overall. Moreover a good solution has to be developed
only once, and then it can be used even by people who lack the experience to have
developed it themselves.

• Products can be more reliable, because of ‘cumulative debugging’ of reused components.
Someone else has ironed out the problems before you. This saves money by reducing
testing, debugging, and maintenance effort; it may also result in higher reliability as
seen by the customer, which may increase the organization’s reputation and hence sales.

• Reduced market cycle time. Faster product development not only saves developers’
time, but may also allow the organization to be first to exploit a particular market
opportunity – increasing profits.

• Moving to a component-based design style in order to achieve high levels of reuse may
focus developers’ attention on achieving modular designs; so even if in a particular
product every module is new, the product may still be easier and cheaper to maintain
than in the organization’s pre-CBD days.

• Developers may spend less time doing routine tasks, and more on the more interesting
and important tasks of making sure that the customers’ requirements are met. So staff
turnover might be lower, saving money, and quality might be higher, improving sales.
(This point is pure speculation. It assumes that developers would think the change to
be an improvement, which may be wrong given the history of software development;
and it probably becomes significant only at higher levels of reuse than organizations
commonly achieve today.)

It isn’t trivial to achieve these benefits, of course, otherwise we wouldn’t still have a
software crisis . . .

18.1.3 Why is reuse hard?

In this subsection let us consider the question from the point of view of the user of a
component: this is the most important perspective, as we shall argue below. Even when a
project has access to a component library, reuse is not automatic. To see why, put yourself
in the shoes of the developer searching for a component to fulfill some task, and consider
the following questions.

• Even if a suitable component exists, can you find it, and understand its relevance? Once
component libraries get bigger than a few hundred things the searching problem is very
serious.

Discussion Question 123
How should a component library be arranged and indexed? What search facilities should
be available?

208 Reuse: components, patterns

Once you find a candidate component, further questions become relevant.

• Does it do what you want? If you go looking for a component that does a well-specified
job once the design it is supposed to fit into is well under way, the answer is almost
certainly not. Ideally you need to go into the problem with a reasonable understanding of
what components are available to you, and even be prepared to adapt the requirements to
fit the available components. This goes against several decades of software engineering
practice: customers and developers may both be unhappy with it. Moreover, it brings
us up against the previous point: how do you go into requirements analysis with an
understanding of the components available to you if there are many components?

• Do you trust it? ‘Not Invented Here’ syndrome, the reluctance to use something not
developed by oneself or one’s colleagues, is easy to laugh at – but if you decide to reuse
a component instead of developing a new module, who gets blamed if it doesn’t work
out?

It may indeed not work – and even if source is available, if you didn’t develop it, it can be
harder to debug it than it would have been to develop it in the first place. Or (not so very
different) it may work, but not be properly documented, and you may misunderstand it.

Discussion Question 124
What factors influence you, or should, when you decide whether to trust a component?

• A comparatively minor point: you may have to import things you don’t need along with
the functionality you want to reuse, getting software bloat.

Notice that all of these problems (except possibly the first) tend to be more severe the bigger
the component – but the main benefits of reuse come from reusing large components.

Q: Why is reusing a large component to do a job more beneficial than reusing several
small ones to do the same job?

Discussion Question 125
List the features of good components that help to overcome these problems. Are there
relevant features of the organization that uses the component? Of the organization that
creates it?

18.1.4 Which components are genuinely reusable?

• A component must be sufficiently general, in a usable way. In fact the mistake of making
a component too general, with interfaces which are too large and complex – inventing
requirements – is more common than the mistake of making it not general enough.
Getting this right simply is hard, and the consequence of getting it wrong in either
direction is that the component will not be reused. At least if you didn’t put some extra
feature in and the component is never reused, you haven’t wasted the time it would
have taken to add it . . . If in doubt, leave it out.

Practicalities of reuse 209

• A component must be properly documented with specification. What form should the
documentation take? Components, by definition, realize interfaces and have context
dependencies; both aspects should obviously be documented. In a UML-literate envi-
ronment, the documentation might include, for example, a use case diagram showing
the tasks which the component supports. The question of how the detail of the use cases
should be recorded is harder, particularly if a use case involves several actors who
must behave in a particular way if the component is to perform correctly. Interaction
diagrams may help, as may state diagrams, as may English descriptions.

Actually there is a white box/black box issue here, as in testing. Strictly speaking,
users should not need – or perhaps even be permitted – to know how the component is
implemented. They should depend only on there being some realization of the interface,
provided the context dependencies are satisfied. This suggests, for example, that any
interaction diagrams used in the documentation should show the component as a ‘black
box’ (actually, as a UML component, as described in Chapter 13) that just interacts
with actors external to itself. On the other hand, software engineers, being people who
understand software design, often find it easier to understand a component from a
description of how it works than from a specification of what it does. Provided that the
component is sufficiently encapsulated that it is impossible for the user of a component
to rely on a particular implementation, there may be no harm in using a description of
the implementation in the documentation.

Discussion Question 126
In this case, would the description of the implementation have to be truthful? For example,
if the component was later modified in such a way as to outdate the description, but
without changing the interface, need the description be updated?

• A component must be thoroughly tested. The consequences of an error in a module are
much more severe when the developer of the module is not around to help fix it, and
when the module is used in several places. So it’s important for components to be more
thoroughly tested than modules purpose-built for one system.

18.1.5 What about building your own components?

There are some extra risks involved (as well as extra opportunities) if the organization
develops its own components: these both apply especially to organizations which are
starting a reuse program with little experience.

As we have seen, genuine reusable components have characteristics that do not arise
by accident. Extra effort may be required to make such a component, compared with the
effort required to make a component for one-off use. The component must be documented
and tested in a way which does not assume that the reader or user is familiar with the
assumptions of the system within which the component is being developed, for example. If
for any reason ‘reusable’ components are not reused, the extra effort involved in building
them was wasted, and counts against any benefits of successful reuse.

The easiest ‘reusable’ things to build, and therefore too often the first attempted, are
useless because the functionality can be acquired more cheaply by buying it. For example,

210 Reuse: components, patterns

one of the authors once worked in an organization where someone put a considerable
amount of effort into developing a ‘reusable’ linked list class in C++. Better functionality
was available in a commercial C++ class library that the organization bought (belatedly) a
few months afterwards.

The moral has to be that a reuse program should concentrate on learning to use
components before trying to build them. Not only is building components harder, but
there’s no point in building them if they won’t be used!

Using components is more important, more beneficial and easier to get right than
building them.

Most academic and industrial interest in component-based development has focused on
developing components, not on using them. This is not surprising: it is a long-established
tradition in software that people like to build new things. However, the benefits of CBD
arise from using components, while most of the costs arise from building them.

Given that developing reusable products requires extra work, when can the extra work
be done? The single main reason why reuse efforts fail is that the answer is often ‘it
can’t’ – at least, not without substantial change to the organization. Here are some options
(adapted from [22], which in turn cites [27]).

• At the end of the project: but with what resources?

• During the project: so the customer pays for the development of components to be used
on the next project (and, presumably, benefits from the development of components on
previous projects). This may work until the project gets behind schedule. Since most
projects do . . .

• As time permits: by having two component libraries, one of which is ‘ready’ components
and one of which is ‘prototype’ components, and gradually moving components from
the prototype to the ready library.

• In parallel with mainstream development: have a permanent team to do reuse work.
This requires that the organization is willing to fund such a team; and in any case,
are its members in a position to do the work, not being the original developers of the
components in question?

18.1.6 What difference does object orientation make?

• OO encourages the high cohesion/low coupling style that is anyway good practice. This
has been oversold, but is not false.

• Object-oriented analysis concentrates on problem domain objects, which are more
stable than the functionality of a particular application.

• A related but different point is that problem domain objects, by their nature, frequently
recur in different contexts, so they make good reuse candidates. A company can
develop a collection of business objects reflecting the common entities in its own
business.

• In OO reusing a class may not mean putting up with its functionality just as it is:
a class can be reused as the base class of a more specialized class. This allows
developers to follow the Open–Closed rule – that is, to develop classes that are both

Design patterns 211

closed (stable and usable now) and open (extensible later). If we use a notion of
component which permits a component to inherit from another – even if the component
consists of more than one class – then this advantage can be extended to general
components. Unfortunately this form of reuse is not as beneficial as it might seem;
and whether it is desirable to allow this kind of reuse of components in general
is doubtful (and controversial). The root problem is that inheritance creates tight
coupling. For example, as we shall see in the next chapter, all subclass capabilities
must be tested, even those inherited from a superclass; we do not at present have
reliable ways of taking advantage of the fact that the superclass has been carefully
tested. So using a component by inheritance is often not as beneficial as using it by
composition.

One of the main claims for object orientation is that it enables higher levels of reuse than
traditional software development methods. People do quote reuse percentages – sometimes
as high as 70% – but beware, these are practically meaningless without a good definition
of what’s being measured!

18.2 Design patterns

The use of patterns is essentially the reuse of well-established good ideas. A pattern is a
named, well-understood good solution to a common problem in context.

The idea comes originally from the architect Christopher Alexander, who described and
named common architectural problems and discussed solutions to them. For example, he
discusses how architecture can support a family with a teenager in the pattern Teenager’s
Cottage. The problem is that a teenager and her/his family need to be supportive of one
another, whilst at the same time the teenager becomes more independent; static architecture
that keeps the teenager sleeping in a child’s bedroom undermines this change. The proposed
solution, the ‘teenager’s cottage’, is a place which acts as the teenager’s private home.
It has its own entrance, but is strongly attached to the main house; it may be part of the
main house or, for example, a small building attached by a covered walkway. Alexander’s
description describes (with diagrams) possible variants on the idea. He discusses the
objections that people sometimes have to it – for example, that the cottage will be used for
only a few years and will then lie empty – and possible ways round the objections, such
as designing the cottage so that it can later be used as a study or workroom. Finally he
discusses other patterns which are relevant, for example those which may help with the
detailed design of the cottage. The full (four-page) description can be found in [17].

Similarly, there are many commonly arising technical problems in software design.
Experienced designers recognize them and understand how to solve them. Without
patterns, novices have to find solutions from first principles.

Patterns help novices to learn by example to behave more like experts.

The point is that you get to spend your effort on building the best solution, whereas if
you have to start from scratch you may have to spend a significant amount of time hunting
for any solution at all: and you may not spot disadvantages of a solution until you get bitten
by them. Patterns let you stand on the shoulders of giants.

212 Reuse: components, patterns

Patterns are by definition not new: they document, at a suitable level of abstraction,
designs which are already tried, tested and well understood. A pattern is not likely to be a
revelation to an experienced designer. However, a good abstracted description of a solution
in context – of a pattern – can be useful even to experts who would essentially have used
the pattern anyway. For one thing, this makes it easier to spot improvements and variants:
for another, having a name for the pattern, with a commonly agreed meaning, makes it
easier to discuss designs.

Rather than giving general instructions about what constitutes good design, a pattern
catalog documents particular designs that are useful in certain contexts. One of the main
challenges for the pattern writer is to get the level of abstraction, at which the pattern
is described, right: it must be abstract enough to be applicable to as large a family of
situations as possible, but not so abstract as to be platitudinous.

Pattern catalogs have to be easy and quick to refer to. A common format for describing
patterns helps. For example, a pattern catalog might describe all its patterns using these
elements.

• Name and possibly aliases – as with classes, the name should be short, but as descriptive
as possible.

• Abstract – a very brief overview of the pattern: not more than about three sentences.
• Context – a very brief description of the situation in which the problem can arise.
• Problem – what is the problem that arises in this context? This can usually be explained

in terms of (often conflicting) forces; things that have to be taken into consideration,
such as requirements and constraints.

• Solution – including explanatory text, models, CRC cards, and/or example code as
appropriate.

• Consequences – good and bad things about what happens if you use the pattern, variants
on the pattern, references to other patterns that may be relevant.

The elements aren’t always named in this way; for example, [23] lumps context and
problems together, while [10] doesn’t have a separate consequence section. Opinions
run high about whether examples should be included. Alexander’s original patterns are
comparatively freely written (which is not to say that they are carelessly written: far from
it!). There is a name, and a very concise description of the problem, set in boldface, followed
by a more detailed discussion of the context, problem, solution, and consequences. After
this there is the keyword Therefore: followed by a very concise, boldface description of
the solution. The description of how other patterns are related is split into a brief paragraph
at the beginning about what patterns may be implemented using this one, and a brief
paragraph at the end about what patterns may be helpful in the implementation of this one.

The extent to which patterns work together varies. As the name suggests, a pattern
catalog need be no more than a collection of patterns. Ideally we want a pattern language:
the difference is that a pattern language describes how the patterns can be used together
(the syntax and grammar of the language) rather than just what they are (the words).1

In fact, the patterns approach is not limited to design. Almost every area of software
engineering now has its own patterns; to take a comparatively obscure example, the authors

1 However, understanding the interactions between patterns is not easy. Beware: some so-called pattern languages
are really just pattern catalogs with some limited cross-referencing.

Design patterns 213

have worked on patterns for re-engineering legacy systems. Many patterns describe the
process by which something can be done, rather than the artifact which is produced.

Moreover patterns exist at many levels; [10] distinguishes between:

• architectural patterns (such as layered architecture; this is also an oft-cited example of
architectural style, and indeed architectural pattern and architectural style are at least
near synonyms) at the highest level;

• design patterns in the middle – Façade, which we’ll study next, is an example;

• idioms at the programming level.

Confusingly all three of these levels are included in what most of the patterns community
calls design patterns; this is to distinguish them from the other large families of patterns
such as process patterns and analysis patterns.

Many books exist on various kinds of patterns. The ‘Gang of Four book’, [23] is
undoubtedly the best known, followed by the ‘Siemens book’ [10] and [20]. The Web is
also an excellent source, and as usual there are links from this book’s home page.

Discussion Question 127
Pick two patterns from books or the Web. What do they have in common? How do
they differ?

18.2.1 Example: Façade

The full description of Façade can be found in [23]. Here we give just a summary.

• Name Façade

• Abstract Façade defines a clean, high-level interface to a component, hiding its
structure to make it easier to use.

• Context Building easy-to-use components.

• Problem If a component consists of many related classes, each providing part of the
component’s functionality, clients of the component have to understand the structure of
the component in order to use it effectively. This increases the burden on the developers
of clients. It also increases the coupling in the system: changes to the structure of the
component may require changes to the clients.

• Solution Add a new Façade class which provides a single unified interface to the
component. An object of this class (the Façade) accepts messages asking for any
functionality of the component. It knows the structure of the component, and forwards
the messages to the appropriate object. The classes in the component do not depend on
the Façade: for example, no object inside the component keeps a reference to it.

• Consequences Clients can avoid depending on the structure of the component, though
they may be permitted to access the component’s classes directly if need be. As a variant,
the Façade class may be the only publicly accessible class in the component: in this
case clients cannot depend on the structure of the component. The component becomes
easier for clients to use, and the component can be maintained with less impact on the
clients. This is particularly useful when components are layered: each layer can have a
façade providing access to its functionality.

214 Reuse: components, patterns

Discussion Question 128
What is the relevance of Façade to components?

18.2.2 UML and patterns

UML is useful in two different ways in connection with patterns. Firstly, it can be used to
help communicate the patterns. The original patterns books each used their own notation,
usually some form of OMT-like class diagram and sequence diagrams like UML’s.
Increasingly, pattern catalogs describe patterns using UML, removing the language barrier
imposed by the need to understand different notations in different books.

Secondly, UML makes it easy to record how patterns are used in a design. Provided that
the reader is familiar with the pattern, this makes it easier for someone reading a UML
diagram to understand how it works. It also makes it less likely that someone modifying
the design will accidentally modify the design out of the pattern without understanding
that they’re doing so.

In an object-oriented system, a design using a pattern will have a family of objects each
playing a role described in the pattern; that is, interacting in the way described in the pattern.
For example, a design which uses Façade will have a component containing an object which
acts as the Façade to the component; that is, it receives messages for the component and
passes them on to the correct objects. Its class has an interface which includes operations
for all the component’s functionality, and there are associations between the class of the
Façade object and the class of each relevant object in the component, navigable from the
Façade class to the component class but not the other way.

This is starting to sound like a collaboration, which as we saw in Chapter 9 is UML’s
term for a family of related object roles. If we regard the pattern as a collaboration, then the
use of a pattern in a particular design is a collaboration occurrence. This can be shown on
a class diagram as a dotted oval, with dotted lines joining it to the class rectangles which
represent the classes taking part in the pattern. The lines are labeled by role names. For
example, suppose that in a future iteration of the Library case study of Chapter 3 it turns
out to be necessary to provide other library systems with access to information about which
books and journals the library has. We would like to allow external systems to access the
library system through a clean interface that allowed them access to the information they
need about books and journals, but not to information which is of no interest to them. If we
decide to use the Façade pattern we could notate it as in Figure 18.1. Notice that we have
chosen to omit the associations between the Façade class Library and the component
classes Book and Journal, because they can be deduced from knowing the pattern, and
including them would clutter the diagram.

Q: What would be in the interface of class Library?

If you do use patterns, by name without explaining them, as part of your design, it is, of
course, important to have an agreed ‘vocabulary’ of patterns which can be used in this way!
This might be agreed at the team level or the organization level. Probably you would name
one or two pattern catalogs whose patterns could be used without description: one would
almost certainly be [23], which already gets used in this way. Possibly an organization
might build up its own collection of patterns as well as agreeing on standard ones: but

Frameworks 215

LibraryMember

MemberOfStaff

Book

Copy

Journal

Library

Façade

Façade

Subsystem class

Subsystem class

1

1..*

0..1 0..*

0..1 0..*

borrows/returns

borrows/returns

is a copy of

Figure 18.1 The Façade pattern applied to the library.

we have a suspicion that the need to do this might be a sign that the patterns are being
described at too low a level of abstraction. We doubt that genuinely commonly occurring
design problems are really domain-specific. This really remains to be seen: the use of
patterns in software is young.

18.3 Frameworks

In Chapter 4 we described a framework as ‘a reusable chunk of architecture’. Now let’s be
a little more precise. We won’t be very much more precise because – you guessed it – the
exact meaning of the term is still rather fluid.

A framework is rather like the structural part of a pattern, only bigger. It describes how
a collection of objects work together, usually by defining classes which will be subclassed
when the framework is applied, and describing the collaborations between the objects.
To use a framework you implement the variable parts of the framework, for example
by subclassing from what is provided. Some of the classes in a framework are normally
abstract: that is, you have to create a subclass before you can use the framework.

The games framework in Chapter 16 is a small example. Developing frameworks is very
hard, and we do not claim to be expert: send us your improvements to that framework! The
arguments for buying a framework if possible, rather than developing it, are even more
compelling than the same argument for buying components.

It has been convincingly argued (for example, by the frameworks expert Don Roberts:
see the links from the book’s home page) that reuse of frameworks is the key to establishing
reuse in object-oriented systems.

SUMMARY

We discussed reuse, covering what can be reused and the practical problems in getting a
reuse program established. As a special case, we considered patterns, which can be seen as

216 Reuse: components, patterns

the reuse of expertise. Many of the difficulties in achieving a high level of reuse, especially
by building components in-house, stem from the need for reused artifacts to have high
quality and for the organization to support the work needed to build and to use them. In
the next chapters we consider these questions more generally.

Discussion Question 129
It often happens that when one object changes state, one or more other objects need to
know about it, so that their states remain consistent. For example, one or more elements
of a user interface may need to show the correct version of some data in an object;
perhaps several client user interfaces must show up-to-date versions of a share price, for
example. Consider how this can be arranged. Then investigate the Observer pattern, also
known as Publisher–Subscriber, which describes how to keep some (subscriber) objects
up to date when another object (the publisher) changes. This is in both [23] and [10],
and there are also Web sources available from this book’s home page.

chapter 19
Product quality:
verification,
validation, testing

This chapter returns to the question of what a high-quality system is. We suggest that to
build high-quality systems an organization needs both techniques that focus on the quality
of the product, and techniques that focus on the quality of the process.

In the remainder of the chapter we consider product-focused techniques for ensuring that
a software system has high quality. Often considered together as ‘VV&T’, verification,
validation, and testing do not fall into the same category. Verification is the process of
making sure that we have built the product right, that is, that it meets its stated requirements.
Validation is the process of making sure that we have built the right product, that is, that
the product is fit for its purpose, even in ways which may not have been captured by the
stated requirements. The main way to ensure both of these things is to try the system out
and look for problems of either kind: that is, to test it. In the next sections we consider how
testing and other techniques can be used for verification and for validation.

We will try to bring out what’s special about VV&T for projects that follow an iterative,
architecture-centric, component-based process, as recommended for use with UML. As
always, what we say is independent of which particular such process is used.

19.1 Quality review

Discussion Question 130
What does ‘high quality’ mean in other areas of life?

Recall that the high-level definition of software quality is that a system has high quality if
it meets the customer’s requirements: in Chapter 1 we gave a short classification of what
this means.

Q: Review that classification, and consider what if anything needs to be added.

In order to ensure that these requirements are met, we may require some attributes which
the user doesn’t directly care about but which contribute to things the customer does care
about: for example, we want the system to have high testability so that the developers can
practically ensure that there are few bugs; and we want it to be highly maintainable so that
it is possible to respond promptly and helpfully to bug reports and change requests. Notice

217

218 Product quality: verification, validation, testing

that these are not aspects of quality in themselves. For example, if we knew for sure that a
system would only be used once and that there would never be any bug reports or change
requests, we might not care whether it was maintainable.1

Terminology

In software as elsewhere it has become conventional to use ‘quality’ as a synonym for
‘high quality’.

19.2 How can high quality be achieved?

There are two orthogonal ways of approaching this question: in practice one needs to
combine the approaches.

19.2.1 Focus on the product

Examine the product, and the products of intermediate stages of the development process,
to see whether quality standards are being met. The examination can take the form of
verification, checking whether the product has the characteristics that we know it should
have; or validation, checking that it does the job it is supposed to do. We will examine
techniques for both sorts of examination, the most important of which is testing.

19.2.2 Focus on the process

We may take the view that focusing on the product alone is not enough. For example, if
our tests repeatedly find similar faults in different products, we will, of course, want to
find out how to prevent the same faults occurring in future products. We have already
argued in Chapter 4 that an iterative process with evaluation at every stage is essential.
Chapter 20 discusses how quality assurance can help, both by controlling the process
which is followed on each project, and by improving the process itself.

19.2.3 Further reading

There are many resources that deal with software quality on the Web and elsewhere. Some
links are collected on this book’s home page. There are many specialist books on software
quality: one popular one is [25].

19.3 Verification

Verification always involves the testing of one explicit thing (the product) against another
(the specification). However, the identity of the product and the specification can vary. The

1 In the authors’ experience, though, it is dangerous to believe anyone when they say that software will be
short-lived. Successful software tends to live longer than anyone expects – hence the Millennium Bug!

Verification 219

most obvious example is when we test the code (or more accurately, the running system)
against the requirements specification, and we’ll consider this in more detail later in the
chapter. In the context of a UML development we may also, for example, split that check
up into stages.

1. Verify that the use cases described in the UML model satisfy the requirements described
in the requirements specification (if that isn’t just a collection of use case descriptions).

2. Verify that the classes are capable of providing the use cases.

3. Verify that the code corresponds to the classes in the design.

Of course in an iterative development these checks will be done for each iteration.
Certain ‘sanity’ checks are also usually considered as part of verification. For example,

we assume that all projects have as part of their requirements that the code they produce
should compile cleanly, and should run without errors. (By ‘error’ we mean unexpected
behavior which cannot be explained by the program responding correctly to exceptional
circumstances or user error. Admittedly, without further explanation this is a fuzzy
concept: we have in mind that the program should not have segmentation faults, Message
Not Understood errors, or other such ‘definitely bad’ properties.) UML models produced
as part of a project should be syntactically correct and should be consistent, in the sense
that there should always be some program that is described by the model (otherwise some
later verification task is bound to fail!). Verification, then, includes the task of checking
such sanity conditions.

Apart from testing code, how can such checks be done? At the most informal end, a
developer may read the two models, documents, or source files and check in his or her
head that there is an appropriate correspondence. At the most formal end we might produce
a proof that the two models, documents, or source files correspond. This is rarely done
in practice, and it makes sense only if both of the things being compared are themselves
formally well-understood objects, with a well-defined semantics – that is, meaning. UML
itself does not have a formal semantics, so completely formal verification against a UML
model is not possible even in principle. In practice, given the state of the art, formal
verifications tend to be very time consuming and therefore very expensive, so that even
where they are practicable they tend to be done only for safety-critical systems.

Let us consider some techniques in between these two extremes. The most ubiquitous is
the use of a compiler! The fact that the code compiles without error is itself verification of
one of the sanity checks we mentioned. Rather similarly, a UML modeling tool will enable
the developers to exclude some other routine errors such as writing syntactically incorrect
UML models. It may help in the process of checking consistency between the various
UML models, enabling problems to be found at the modeling stage that might otherwise
not become apparent until implementation of the relevant iteration. Some tools are able
to generate code from UML models, and vice versa. This makes it easier to maintain
consistency between the UML models and the code, which increases the likely usefulness
of testing UML models.

Toward the other end of the human–tool spectrum we may consider ways of improving
on the ‘developer looks at the two models’ way of finding inconsistencies and errors.
The simplest is to have a developer other than the one who developed the two stages
check them for consistency. A checklist can help the developer remember to check for the
most common sources of problems. Another is to have reviews of some kind. Reviews,

220 Product quality: verification, validation, testing

like testing, contribute to both verification and validation, so we will consider them after
discussing validation.

19.4 Validation

Verification is the easy part of the job of ensuring that the product has high quality. It is
definite: you know what you are trying to check. Validation is harder because you do not
know exactly what you’re looking for: you are looking for anything that might make the
product less useful to the customer than it should be. To do validation effectively really
requires customer involvement. It is possible to try to perform some validation by having
a developer imagine being the customer; but the worst errors are caused by failures of
communication between the customer and the developer about what is wanted.

Of course it is desirable to find problems and misunderstandings as soon as possible:
this, as we have already discussed in Chapter 4, is the main reason for having an iterative
development process. There are various ways in which the customer can be involved.
The simplest is that the customer should need to sign certain documents, for example
the specifications of what functionality is to be provided in each iteration. The problem
with this approach is that it is difficult to criticize a system which is described in words.
All too often, the customer only realizes that they haven’t got what they wanted only
when faced with a running system that is wrong. The greater the uncertainty about the
requirements, the better the arguments for having short iterations to provide feedback as
early as possible. At the beginning of a project, or of a high-risk iteration, it may be
worthwhile to build a throw-away prototype solely for the purpose of checking that there
is a common understanding about the requirements.

19.4.1 Usability

A high-quality system must not only provide the right functionality, it must provide it in a
way which its users can effectively use. For example, users must be able to find out how to
carry out a task, carry it out quickly and without too much stress, and recover from errors.
Yet this aspect of software is often neglected. In part this is because it’s hard for developers
to believe that there can be problems with the usability of their software so serious as to
reduce customers’ satisfaction with the system. There are two main reasons why this is so.

1. If you understand how something can be done, it is practically impossible to put yourself
in the position of someone who does not understand it. Real users will make mistakes
that would never occur to the developers, however conscientiously they tried to imagine
possible problems.

2. Only rarely are software developers typical of the users of a system! Software developers
are, for example, much more competent and confident using strange computer programs
than the typical user of almost any system.

So you can’t assess your system’s usability yourself, and your colleagues can help
marginally if at all. Two other resources that may be available are an expert in usability and
real users. Ideally you use both, in an iterative cycle involving investigating what changes
might make the system more usable (expert involvement can help a great deal here),

Testing 221

making the change and testing to see whether the change really did help. This usability
testing may involve, for example, asking users to do a task with the system and observing
what problems they have.

Thomas Landauer’s highly readable book The Trouble with Computers [32] goes into
this question in depth, and proposes user-centered design as a solution. Part of what he
proposes is a task-based approach to requirements capture, taking into account the different
perspectives of different users. The strength of capturing requirements using use cases is
exactly this. Landauer also emphasizes that a small amount of well-directed work can bring
a large benefit: for example, he estimates that a single day of usability testing can result in
a 25% improvement in the work efficiency of a typical system (that is, in the amount of
work users get done in a given time).

Discussion Question 131
The easiest thing to do with barely usable software is just to document all its foibles in
the user manual. To what extent is this a solution?

19.5 Testing

Testing contributes to both verification and validation, probably more to the former.
Readers are probably familiar with the basic ideas and kinds of testing: we will summarize
briefly, before discussing the special features of object-oriented projects. Testing can be
carried out on many different artifacts, including not only running systems but also designs
and parts of systems. It has three major aims:

• to help you find the bugs2;

• to convince the customer that there are no (important) bugs;

• to provide information that will help with system evolution – for example, the testing
process can help to gather information about future requirements and priorities, as well
as information about present performance which may only have been estimated before.

The first aim is, of course, the most crucial, and leads directly to the conclusion:

A successful test is one that finds a bug.

It’s easy to make the system pass all its tests – just use an inadequate test suite. It is not
easy to eliminate all bugs. Different kinds of testing can help to eliminate different kinds
of defect.

• Usability testing tests that the system will be easy to use effectively. This may include
testing the whole system, some part of it, or its documentation.

• Module (or unit) testing tests the individual modules of the system; in an OO
development, as we shall see, this normally means the classes.

2 ‘bug’ here includes all defects, of whatever kind.

222 Product quality: verification, validation, testing

• Integration testing tests that the parts of the system at some level work together
correctly: for example, that the objects involved in a collaboration work together as
planned, or that components and frameworks really do plug together as they should.

• System testing tests that the system meets its requirements, both functional and
nonfunctional.

• Acceptance testing is usually performed by the customer, or some independent group
representing the customer; it validates that the system is really fit for purpose.

• Performance testing may happen at any level (module, integration, or system testing)
to check that the system’s performance is, or will be, satisfactory.

• Stress testing is a kind of performance testing that puts the system under greater loads
than will normally be expected, to check that it degrades gracefully rather than failing
catastrophically.

• Regression testing tests that those features of a system which worked before a
modification still work after it. The tests carried out are some of those carried out
previously: unit tests for any affected units, integration tests for any subsystem which
includes a modified unit, and some or all of the whole-system tests (usability, system,
acceptance, performance, and stress tests).

These categories are not mutually exclusive, and the boundaries are not always clear: the
most variable aspect is what’s covered by integration testing. Should it include all testing
of a subsystem or multi-class component, for example, or should it check only that all
use of interfaces is syntactically correct? The distinction is not important provided that all
kinds of tests are done under some heading!

19.5.1 Choosing and carrying out tests

Tests can be broadly classified as:

• black box (the tests are chosen by looking at the specification of the thing to be
tested), or

• white box (the tests are chosen by looking at the structure of the thing to be tested).

Which aspects of a thing is it most important to test? In [37], N.H. Petschenik identified
three facts about which kinds of testing are important in ensuring that the customer
experiences the software as having high quality.

• It is more important to test what the whole system does than to test its components.

• It is more important to check that the system can still do the things it could do before
than to check that new features work.

• It is more important to test typical cases than boundary value cases.

Q: Why? Do these statements seem counterintuitive?

Since it is essential to retest existing functionality when changes are made – that is, to
do regression testing – tests have to be:

• repeatable

• documented (both the tests and the results)

Testing 223

• precise

• done on configuration-controlled software.

In iterative projects, especially, the same functionality may have to be retested many times;
so some kind of automation of the testing process is a necessity. Specialist testing tools exist
that can also generate many test cases automatically. However, a simple Perl script [50]
(or even more primitive scripts, such as DOS batch files) can help considerably with:

• running a set of tests;

• recording what tests were done, on what configuration, and with what results;

• comparing the results with what was expected.

It is important to remember, of course, that automation cannot compensate for poor test
planning.

When should the test specification for an artifact, which describes what tests should be
done and what results are acceptable, be written? The short answer is ‘as early as possible,
but no earlier’. The test specification can be written at the same time and with the same level
of detail as the corresponding requirements specification; but it is futile to suppose that you
can write tests for something if you do not yet understand what it is supposed to do!

The reason for writing the test specification as early as possible is that it helps to
ensure that the requirements are clearly understood, and that they are highly testable.
Requirements may be written in numbered sentences, and a table can record which test (or
tests) checks which requirement (or requirements). Thinking about how a requirement can
be tested is often a good way to pin down what the requirement really is.

It is sometimes advocated that acceptance tests and their results should be precisely
defined at the beginning of a project, and that the developers should be contractually
bound to produce a system which passes these tests. The idea is that this benefits both
the customer, who does not have to accept an incorrect or incomplete system, and the
developer, who knows from the beginning exactly what is required. The problem with
this approach is that it can easily fail the ‘but no earlier’ test if detailed tests are written
when only the outline requirements are known. Capturing requirements using use cases
can help to ensure that tests are written at the right level, because the scenarios in the use
case describe the requirements and also serve as an obvious source of test cases. A good
way to keep clear of premature design is to concentrate on what changes occur between
the beginning and end of a scenario: for example, how does an actor benefit?

In an iterative development it is often useful to write the tests, which the result of the
iteration should pass, at the beginning of the iteration: one of the benefits of the iterative
approach is that this is likely to be possible, even if the requirements on later iterations are
not yet completely understood.

But that’s not the whole story. It’s very hard to describe complex tests properly, or to
define the right ones – but some bugs show up only if you do a complex sequence of things.
How can such bugs be caught?

• By writing well-modularized and module-tested software so that this is less likely to
happen in the first place!

• By having someone test software with the aim of breaking it, however sneakily.

That is, although precise, short, documented tests are essential, they are not sufficient.

224 Product quality: verification, validation, testing

DeMarco and Lister in [13] describe IBM’s Black Team, which was a team of particularly
fiendish testers who delighted in finding bugs in software. Of course, the team was a great
success for IBM – if the team found the bugs the customer didn’t!

This kind of testing is particularly important for graphical user interfaces, which are
hard to test systematically. It’s practically impossible to automate testing of a GUI without
a special tool, and even with one it isn’t easy. Moreover, a high proportion of the
problems with user interfaces are failures either of usability – and usability testing cannot
be automated! – or of behaviors which are required of every user interface irrespective of
the underlying system (‘sanity conditions’). For example, each button should have a label
(or some other visual indicator) to show what effect pressing it will have, and clicking it
should not hang the application.

Discussion Question 132
What other sanity conditions are there? How, if at all, should the requirement that a
user interface be sane, in the senses you consider, be documented in the requirements
specification? How can the interface best be tested?

19.5.2 Special problems of object orientation

There are three main extra problems at the unit testing level.

Unit test what?

The unit of test has to be (at least3) the class, and a class is harder to test than a function.
The reason is that an object has state, on which its behavior may depend, so testing each
method in isolation might miss bugs caused by one method changing an object’s state to
something that exposed a bug in another method.

State diagrams expose the problem as well as suggesting a way of tackling it. As
explained in Chapter 11, an object moves between two states of a state diagram when its
full state, the values of all its attributes, changes in a way that may qualitatively affect its
behavior. So, at the very least, an object must be tested in every state. Testing an object in
a state ought to include checking all the ways in which the object might leave that state;
so, in fact, every transition of a state diagram should be tested.

Discussion Question 133
Is this sufficient? If not, can you formulate a better rule?

Classes with complex state diagrams are hard to understand and to test – try to
avoid designing such classes.

3 The commonest view is that the unit of test is the class, but some experts – Martin Fowler in [19] for
example – say that they normally prefer to unit test a package containing a related family of classes.

Testing 225

Encapsulation

In Chapter 1 we claimed that encapsulation was important precisely because it decreased
the chances of bugs being introduced by ill-understood interactions between components.
This is true, but it can also make testing an encapsulated component difficult. For example,
to test whether an object has made a transition from one state to another, you need to be
able to tell what state the object is in, which should probably be encapsulated information,
not available to the outside world. One solution is for each class to provide a method, to be
used only during testing, that reports all of an object’s state.

Discussion Question 134
If there are state-reporting methods, how can you be confident that they themselves are
correct?

Inheritance and polymorphism

When a subclass extends a thoroughly tested class by overriding some of its methods,
what tests of the new subclass are necessary? You might hope it would be enough to
test the overridden methods; but unfortunately because of dynamic binding this is not
the case. Suppose the subclass D overrides method foo(), but not method bar(), of the
superclass G. The results of sending bar() to an object of class D could still be different
from the results of sending it to an object of class G. For example, the implementation of
bar() could involve the sending of the message foo() to the object itself. If the object has
class D, then D’s new implementation of foo() will be used. If this has different behavior
from G’s foo(), a knock-on effect could be that D’s bar() behaves differently from G’s
bar() as well – even though the code for D’s bar() method is identical to G’s! So to be
safe all of a subclass’s capabilities have to be tested, even those which are inherited from
the superclass.

Q: Write classes D and G with methods foo() and bar() that behave as described
above.

Discussion Question 135
Does the problem still arise when a subclass only adds new operations, without overriding
any methods?

Inheritance-based polymorphism adds an extra layer of complication. When an object
of class A interacts with an object of class B, it may in fact be interacting with an object of
any subclass of B – which may not even have been invented when class A is tested!

Discussion Question 136
How can this problem be dealt with in practice?

A class is tightly coupled with its superclasses, which creates difficulties for testing.
Use inheritance only when its advantages outweigh the disadvantages.

226 Product quality: verification, validation, testing

Of course, because the state dependency is in objects, which have well-defined interfaces,
we hope to save effort at integration and system testing, and to win overall. But this isn’t
automatic in object-oriented programs. The architecture of a system has a major effect on
its testability.

Testing aims to expose imperfections in systems, of whatever kind; yet imperfect
systems frequently pass their tests and are released to users. Why?

19.5.3 Why is testing so often done badly?

• It’s very very boring, especially the documentation of the whole process. Automation
may help; but there is still a substantial amount of work to be done to document how
the system must be set up for testing and what tests must be done. This is important
in order to ensure that tests are repeatable. This is an area where a streamlined quality
management system (see Chapter 20) is essential: boring tasks are tolerable provided
that it’s clear they are important, but can be extremely demoralizing if they seem to be
bureaucratic.

• It’s very expensive, in time and hence money. (Testing time may exceed 50% of project
time: 30% is about average.) The alternative – not testing thoroughly – may be worse,
but the cost may not show up until later, when the complaints start arising . . .

• Testing is often planned mostly for the end of the project, and gets squeezed by deadline
pressure. This is an argument in favor of an iterative process in which integration
happens frequently; testing is spread through the development cycle and is less likely
to get squeezed.

• Customers may pressure developers to deliver on time and untested, rather than late
and tested.

Discussion Question 137
What should you do?

Discussion Question 138
What are the special problems of verifying systems involving concurrency? How can they
be tackled?

In the next section we examine another family of techniques, complementary to
testing.

19.6 Reviews and inspections

Reviews and inspections of various sorts can contribute both to verification and to
validation, probably more to the latter.

A review, inspection, or walkthrough is essentially a meeting which attempts to find
problems with some product of the development process: this could be code or design, for

Reviews and inspections 227

example. They are sometimes known as a group as Formal Technical Reviews (FTRs).4

The Fagan inspection [18] is probably the best known.
FTRs vary widely in their process and degree of formality, but usually have the following

properties.

1. The participants are peers (not manager and subordinates) and include the main Author
of the thing being reviewed, someone designated as Moderator, and someone (the
Scribe) to record the meeting’s findings.

2. The artifact to be reviewed is made available to the participants in advance, and
they study it before the meeting. The main areas of concern are identified before the
meeting. Usually the artifact must satisfy some entry criteria to be considered ready for
inspection: for example, if it is code it may be required to compile without errors or
warnings.

3. The meeting follows some predefined agenda and delivers a record of the defects found,
with some kind of analysis of them. This might have to say how serious the defect is or
what its root cause is, for example.

4. The meeting does not discuss how to remedy the defects.

5. There is some predefined follow-up procedure, often just between the Moderator and
the Author, to check that the defects have been addressed. (Not necessarily fixed: some
defects may be considered too minor to be worth fixing.)

For example, a relatively informal design review of a UML class model for an iteration
of development which is supposed to deliver some use cases might involve a group of four
to seven people in a room for an hour or two. The Author, the main developer of the UML
model, may be asked to explain how the UML model provides the functionality of the use
cases, with the other participants asking questions and trying to expose possible problems.
The Moderator makes sure that the meeting stays on track and does not, for example,
deviate into on-the-spot design to fix the defects. The Scribe records the problems that
the meeting finds, and whether they are minor, moderate, or serious. After the meeting,
the Author is given a copy of the defect list and reconsiders the design with colleagues.
Some time later (usually not more than a week) there is a follow-up meeting between the
Author and the Moderator to check that the defects have been considered, and fixed where
appropriate.

In a code review, as the name suggests, a similar process is carried out with respect to
code.

19.6.1 Problems of FTRs

It is more than 20 years since Fagan inspections were first described and plenty of
authorities say that they can be cost-effective for finding defects, especially design defects.
Yet FTRs are nowhere near as ubiquitous as testing, and, if anything, they are less common
in projects that follow a modern iterative process than in those following the waterfall
model. Why? Basically, problems seem to fall into two categories.

4 ‘Formal’ here is being contrasted with an informal impromptu chat over coffee – nothing to do with formal
specification!

228 Product quality: verification, validation, testing

1. An FTR, which after all aims to find defects in an artifact, can easily feel like an attack
on the developers of the artifact.

2. FTRs are very time-consuming, especially when they review inadequately documented
code. Worse, FTRs sometimes produce long lists of trivial defects, whilst missing more
fundamental problems with the artifact.

Discussion Question 139
As the Moderator of an inspection, how can you influence its success?

Discussion Question 140
What advantages do code reviews have over code testing? What disadvantages?

Discussion Question 141
What might be suitable entry criteria for a design document?

Discussion Question 142
Some organizations invite a customer representative to design reviews. What advantages
and disadvantages does this have? What factors influence whether it is a good idea?

SUMMARY

This chapter considered product-focused techniques for improving quality, after briefly
returning to the question of what quality of software is. It classified product quality
improvement activities into verification (checking whether we’re building the product
right) and validation (checking whether we’re building the right product). It considered
techniques for verification ranging from informal human checks, perhaps aided by a list
of things to check, through to formal proof. An important part of validation is usability
analysis, which requires the involvement of users. Testing is useful both for verification and
for validation; we discussed the special needs of object-oriented systems. Formal technical
reviews, too, are useful in both areas. However, we suggested that focusing on the product
might not be sufficient; in the next chapter we consider process-focused approaches to
ensuring high quality.

chapter 20
Process quality:
management,
teams, QA

In this final chapter we consider the contribution made to the quality of systems by the
organizations which build them and the quality assurance processes of these organizations.
We start off with the management, leadership, and teamwork because these are the most
important determinants of success and failure. We go on to consider what is meant by
quality assurance in the context of the kind of project we are considering, and to discuss
the role of a quality management system.

20.1 Management

Two types of management are relevant to software:

• people management;
• project management.

Both kinds of management can be seen in two ways, between which there is a tension.

Management as enabling activity

The most important function of the manager of a task is to enable the people doing the
task to get on with the job. The ideal manager minimizes, removes or, ideally, prevents
the appearance of obstacles including risks – such as missing information, inadequate
training, or equipment – and other destructive influences, such as unrealistic schedules and
mindless bureaucracy. The manager may remove such an obstacle by making the necessary
arguments to make it go away, and, if necessary, by doing the dirty work him or herself.1

Management as (financial) control

Perhaps a more common view of management is that managers control what happens, with
the main aim of maximizing the financial success of the organization. According to this
view, building high-quality products, making a positive social contribution, ensuring the
happiness of customers or employees are all, at best, secondary aims: if they matter at all,
it’s because they indirectly further the financial goal.

1 See The Dilbert Principle [1] p. 233.

229

230 Process quality: management, teams, QA

Discussion Question 143
Can you make an argument that the financial consequences of the failure of a safety-
critical system are sufficient to make avoiding such a failure an important goal, even if
financial success is considered the single high-level aim? Do you believe it?

20.1.1 Project management

A project manager has overall responsibility for the success of the project. The manager’s
responsibilities include:

• analyzing and controlling risk;
• liaising with the customer or with other parts of the organization;
• defining lines of communication (between teams on the project, and between people

and the customer);
• making sure appropriate people are selected for the project, and that they are appropri-

ately trained;
• producing a plan for the project, including a schedule, a cost estimate, and a quality

plan;
• assigning tasks (among teams on a large project, to individual people on a small one);
• measuring the progress of the project;
• making sure appropriate components, tools, and techniques are used;
• keeping the project on track, and taking action to limit damage if it slips;
• ensuring that any contractual obligations, such as adherence to standards, are fulfilled;
• making sure that the project implements improvements suggested by previous projects’

experience and that this project’s experience is fed back into the organization’s other
projects.

Of course this does not mean that the manager personally does all of these tasks.

Discussion Question 144
Is anything missing?

Discussion Question 145
One classification of the tasks of a project manager [45] is that they are:

• planning

• organizing

• staffing

• monitoring

• controlling

• innovating

• representing.

Are the tasks listed above, and any others you found, covered by this classification? Is
anything missing?

Management 231

20.1.2 Estimating an iterative project

An organization which switches to an iterative development process from a traditional
waterfall process has to build up new expertise for estimating, planning, and scheduling.
For example, in an iterative project there aren’t automatical milestones, like ‘the end of
analysis’, which can be used to measure a project’s progress. An appropriate milestone,
for example, might be the delivery of an iteration containing particular functionality. In
Chapter 7 we mentioned Kent Beck’s planning game as a technique for estimating a project
from the use cases: that is, the units of time that go into the schedule are the times taken for
each use case (including design, test, and documentation time for the use case), rather than
being the phases of the project (all the design, all the documentation, etc.). We get back
the ability to build up a schedule from more understandable and estimatable parts, which
helps avoiding making unrealistically optimistic (or pessimistic!) estimates.

Recall (from Chapter 1) that whichever statistics you believe, a significant proportion
of large projects take much longer than scheduled. Why is estimation so hard to get right?
The principal reason is, of course, lack of information on which to base the estimate; this
applies particularly to large, one-off systems built to meet the needs of the customer’s
particular set of problems. The project schedule is normally set long before anyone has a
really detailed understanding of the requirements of the project. So the schedule is done
on the basis of a ‘best guess’ at the requirements, and the real requirements are found as
the project proceeds. In addition, requirements (even the ‘ideal’ ones which may or may
not be known!) are not static. The needs of the customer change. If a project lasts several
years, the nature of the problem to be solved may be very different at the end of the project
than at the beginning.

But hang on a moment. We’ve explained that estimating is hard to do: but if this was
all there was to it, wouldn’t we expect projects to deliver massively ahead of schedule as
often as they deliver massively behind schedule? They do not: estimates are usually (not
always) too optimistic, rather than too pessimistic. There is enormous pressure to come
up with an estimate which is acceptable to the customer (or the marketing department, or
another part of the organization which is acting as the customer). One of the most difficult
tasks of a project manager is to defend the project schedule even if it is unpopular with the
customer: see [34] on this.

The fact that projects often slip is not an excuse for complacency. Every slip is a
failure.

Discussion Question 146
Take a critical look at the statistics involved in measuring the success of project estimation:
do some back-of-envelope calculations along the lines of ‘If there are 100 projects and 50
of them deliver in half the time planned . . . ’ and see what you get for the mean slip. Is
this the right statistic to be looking at? Suppose you are a project manager deciding what
statistics your organization will use in order to measure how good or bad its estimation
practices are, and to track whether changes to your process are improvements or not.
What measurements should you collect? What statistics will be most useful?

232 Process quality: management, teams, QA

Discussion Question 147
Research one or more estimation models and tools, such as COCOMO. What might be
the benefits of using such a model or tool? (Consider social effects as well as technical
ones.) Will it suit an iterative process? Are there any disadvantages?

Discussion Question 148
What aspects of human psychology may affect estimation? You may find Mark Paulk’s
paper [36] interesting.

20.1.3 Managing component-based development

Part of the project manager’s responsibility is to enable the developers to make the best
possible use of available components. This may include authorizing the investigation and
purchase of component libraries, liaising with other parts of the organization about possible
reuse, and (perhaps most importantly) making sure that the project has mechanisms in
place to ensure effective internal reuse. This can be difficult in a use case driven project; it
is easy for different teams, charged with implementing different use cases, to reimplement
much of the same functionality because it occurs in several use cases and has not been
identified as common. Solution techniques include understanding enough about what teams
are doing to put teams in touch with one another when commonalities appear; and at a
technical level, making appropriate use of the �include� relationship when the use
case model is developed.

We have said that the development process needs to be architecture-centric. Somebody
has to champion the architecture: James Coplien’s Organizational Patterns (see the book’s
home page) suggests that in order to ensure coherence of the architecture of a system, there
should be a single architect, but that the architecture should be reviewed by other people.
The manager does not have to be the architect, indeed usually will not be, but does need
to ensure that somebody takes responsibility for the architecture and that the project team
accepts it.

Q: Why should the architecture be reviewed?

The project manager must also ensure that the project fulfills whatever responsibilities
it has to the organization’s component-building strategy; for example, that potential
components are identified, documented, tested, and placed in the component library.

Discussion Question 149
Under which of the headings we gave in subsection 20.1.1 do these responsibilities of a
project manager fall?

20.1.4 People management

Normally each employee will have a personal manager. This may be the same person as
the project manager, but (especially in a large organization) may not be. Whereas you may
have a different project manager for each project, a personal manager (sometimes called
a line manager) will have a long-term involvement. His or her job is to make sure your

Teams 233

career is progressing, that you are getting appropriate training, that your performance is
satisfactory, etc. He or she probably also has a role in deciding what projects to assign you
to. The term matrix management is sometimes used for a situation in which it’s normal to
have two different people managing your project and managing you: the idea is that one
defines which row of a matrix you’re in and the other defines which column you’re in.

The main argument for having two separate people as project manager and personal
manager is that there is a conflict of interests between the roles, since the project manager
has the immediate project’s best interests at heart, whereas the personal manager is aiming
to further the long-term interests of the company by making best use of people and enabling
them to develop their skills. On the other hand, a structure in which people have several
managers with different responsibilities needs careful definition if it is not to result in
confusion; and neither manager will know the employee’s work as well as a single manager
would.

Discussion Question 150
Does a line manager need to behave differently depending on whether the organization
uses the kind of development process we consider here, or a traditional waterfall method?
If so, how?

Discussion Question 151
What are the characteristics of a good manager? Does this differ according to whether
you consider project or people management? If so, how?

20.2 Teams

Discussion Question 152
Consider teams you’ve been part of. To what extent were they successful teams? What
factors influenced this?

What makes a successful team? A partial answer is that its members:

• have an appropriate balance of personal characteristics. For example, the team needs
people (perhaps different people) who are good at

— seeing the customer’s point of view
— coming up with ideas
— finding the flaws in ideas
— helping the team stay focused on the task
— making sure everyone’s voice is heard;

• have an appropriate balance of skills for the task;

• are people who get on with one another: at least, they have a reasonable level of trust
in and respect for one another;

• are part of a basically happy and successful wider organization.

234 Process quality: management, teams, QA

Success builds on success. For example, the more successful a team the more likely it is
to have low turnover, which is likely to lead to further success . . .

At the lowest level, teams normally have between three and eight people: this is small
enough to keep communication problems under control, though of course the size depends
on the project. Each team should have a clearly defined task, otherwise the burdens of
communicating with other teams will be overwhelming. There will usually be a team
manager: this may be a member of the team so designated for one project only, or it may
be a separate job title for a managerial person. The team manager will have the main
responsibility for managing interactions with other teams. On a large project there might
be a hierarchy with groups of teams forming sub-projects under a sub-project manager and
so on. Managing communications in such a project is very hard, and failure to do so is
one of the main reasons why projects fail. There are various approaches to tackling this.
At one extreme, a large project may try to keep all interaction between people on different
teams to managed pathways: you talk to your team manager, who talks to your sub-project
manager, who talks to another sub-project manager, who talks to a team manager on that
sub-project, who . . . At the other extreme, a project may try to keep all possible channels
of communication open, for example by having regular project meetings to which everyone
involved in the project is invited. (If we knew that one of these worked better than the
other, we might have less of a software crisis than we do!) Note, however, that having
a known structure to allow communication to happen is more important than what that
structure is.

Individual roles within a team may be well defined or not, depending on the process
being followed.

There’s also a wider concept of teamwork involving a whole company ‘pulling to-
gether’ – this is more nebulous, but depends on factors such as the developers feeling
valued by the organization, and everybody being committed to a common goal.

20.3 Leadership

Leadership is often confused with management (not least by managers!) but the functions
are essentially different, and need not be taken by the same people; indeed it’s possible to
argue that they shouldn’t be.2

So what’s the difference? It’s hard to characterize, but the best we’ve come up with is
the following:

A manager is a smoother-down and a leader is a shaker-up.

A leader is a person who knows where they’re going and has ideas about how to get there:
a vision person. Leaders may concentrate on the most important goals to such an extent
that they lose sight of more peripheral issues altogether. They aren’t easily sidetracked, or
indeed diverted from their course in any way. As you see, any of these characteristics can
be strengths or weaknesses, and which each one is in any circumstance may well depend
on whether the observer agrees with the leader or not!

2 The authors have several times observed apparently successful situations where the X is a leader whilst the
Deputy X is a manager: it would be interesting to see how common this is.

Leadership 235

Discussion Question 153
An alternative characterization of the difference (which Stephen Covey eloquently
explains in [11], where he attributes it to ‘both Peter Drucker and Warren Bennis’) is
‘Management is doing things right; leadership is doing the right things’. This is structurally
similar to the standard characterization of the difference between verification and
validation, which we discussed in Chapter 19. Can you make connections between the
four topics?

Management skills can (to some extent at least) be learned, and someone who’s a good
manager will probably be competent at managing any task which they understand well
enough. It’s not so clear that leadership skills can be learned. It’s certainly possible for
someone to be a good leader for one task and quite unable to lead another, since a personal
commitment to the task is important. On the other hand, it’s not essential for leadership
to come always from the same person, even within a task. Since a large part of good
management is about understanding lines of communication, we don’t think it’s possible
to distribute management in the same way. One may argue that in making appointments
into a hierarchy one should look primarily for good management skills, and let leadership
arise where it will; this is one of the justifications for matrix management.

Discussion Question 154
Can someone simultaneously lead and manage?

Discussion Question 155
What makes a good leader?

Discussion Question 156
Do you think you are more likely to make a good manager, or a good leader?

Discussion Question 157
Consider some people in authority over you. Are they good managers? Good leaders?
What would the ideal person for the job be like?

Discussion Question 158
What personal qualities and skills does the project’s architect need?

20.3.1 Reform of development process

Any major change in the way an organization operates, including a change to a new
development culture, needs a champion to lead the reform. Changes such as moving
to iterative development, instituting a reuse program, or adopting object orientation are
examples. It is equally necessary that the reform should be supported by good management;
if either management or leadership is lacking, the reform can be expected to fail.

236 Process quality: management, teams, QA

20.4 Quality assurance

Quality assurance is the process of:

• convincing oneself and one’s customer that any product delivered will have high quality;

• providing a basis for continuous improvement.

This is done by monitoring and improving the process of developing software with the
aim of increasing the chances that people following the process will produce high-quality
software.3

An organization will normally have a quality management system (QMS: the document
is sometimes called a quality assurance manual, or similar). This specifies what structures
and processes the organization has for ensuring that each project follows an appropriate
quality process, and that the process is continually improved using experience from
previous projects. For example, the QMS may specify that each project should have a
quality plan and define what should be covered in it. The quality plan is normally part of
the overall project plan, and prescribes aspects of the way the project will be run which are
intended to ensure high quality. It may define, for example, what design documents are to
be produced and how they are to be reviewed. The QMS also specifies what quality audits
the organization carries out to make sure that a project’s quality plan is adhered to, and
specifies how improvements are proposed, validated, and rolled out.

Discussion Question 159
Try to get access to a real QMS (e.g. from the book’s home page) and study it.

One way for an organization to increase its confidence that its quality control is adequate
is to acquire a quality certification such as ISO9001/BS5750 or TickIt. Usually several
project audits are carried out by external bodies before the certificate is awarded. In some
contexts, particularly development for defense or other government organizations and of
safety-critical systems, adherence to particular standards, or a particular certification, is
required, either legally or contractually.

Discussion Question 160
Research two or more quality standards; compare and contrast them.

The most important aspect of quality assurance, however, is that by documenting
and measuring what is done and how well it works, it provides a basis for continuous
improvement of the process of producing software, with the aim of achieving a continually
improving level of quality in the product. If you’re aware of what was done differently
in a particularly successful project, and you have a way of rolling out changes to a
whole organization, you can spread successful innovations throughout an organization.
Unfortunately, many quality systems actually work against this aim by making it difficult
and bureaucratic to change processes, even where people agree that the change is for the
better: see Panel 20.1 Quality assurance: the case against.

3 QA is sometimes used in a more restrictive sense including only the monitoring part of this definition, in which
case the term process improvement may be used for the rest.

Quality assurance 237

International and US companies often classify the process they follow by claiming to
be at ‘CMM level n’ for n between 1 and 5. This refers to the Capability Maturity Model
developed at CMU’s SEI, which also provides a framework for process improvement. In
brief, the idea is to improve the quality of the software development process by:

• documenting the way work is performed;

• measuring its performance;

• using data for controlling the performance;

• planning based on historical performance;

• training people.

CMM has five levels, from Level 1 (Initial) where process is ad hoc and projects succeed
through ‘individual heroism’, through to Level 5 (Optimizing) where the organization
makes quantitative measurements of its projects and makes use of those measurements to
tune the process. Level 3 (Defined) corresponds roughly to ISO9001; the organization has
a well-defined process, but does not necessarily support it with quantitative measurements.

Discussion Question 161
What kinds of quantitative measurements are relevant, and how? Investigate metrics
using whatever resources are available (as usual, this book’s home page is a starting
point). What qualities must a metric have in order to be useful?

Discussion Question 162
What are the differences between a suitable QMS for safety-critical projects and one for
mainstream projects?

20.4.1 Quality assurance for iterative projects

Iterative projects present challenges for a quality assurance system because, for example,
the documentation produced will exist in many different versions at different times of the
project. Having a document reviewed and signed by an appropriate person may be seen
as less significant when the document will be changed again the next week. A QMS for
an iterative project will probably define what has to be done before an iteration can be
released to the customer, for example, rather than specifying what has to be done before
the end of the analysis phase of a waterfall process.

20.4.2 Total Quality Management

TQM works on the basis that the quality of a product is affected more strongly by the
commitment to high quality of the people involved in producing the product, than by how
carefully people follow an approved process. Ken Croucher writes in [12] that ‘Quality is
achieved by making unlimited numbers of trivial improvements’. The idea of TQM is that
it is part of everybody’s job to contribute improvements.

Supporting this view, TQM also involves improving the quality of people to match
the needs of the projects they work on. Taking notice of training needs is a vital part of
adopting TQM.

238 Process quality: management, teams, QA

Discussion Question 163
What is the relationship between TQM and a formal quality assurance system? Are they
in conflict, or can they support one another? How?

PANEL 20.1 Quality Assurance: The Case Against

In universities, and in some industrial contexts, we are used to seeing formalized
quality assurance – ISO9001 registration, high CMM levels, etc. – sold as unequiv-
ocally Good Things.4

So why aren’t all organizations ISO9001 registered? Are their managers just
stupid?

Of course not. Some of the arguments that can be made against such registrations
are as follows.

• The costs involved outweigh the benefits. This is the crux of the matter. Increasing
the amount of documentation you produce and the number of meetings you have
is expensive: and the introduction of a QMS almost always causes these effects.
The benefit is supposed to be improved quality of products, and hence enough
financial benefit to outweigh the cost. However, great care is needed to make
sure that every aspect of the QA process pays for itself.

• Documenting the process that must be followed makes the project inflexible: it
cannot react properly to particular circumstances.

• It discourages people from thinking. If a QMS lays down the process you are
supposed to follow to achieve high-quality products, there is a temptation to give
up thinking independently about how to do that, and instead rely solely on the
QMS. This doesn’t work.

• It demoralizes the best staff. Writing documentation and having meetings is less
interesting than developing software. And introducing a QMS often seems to
involve writing documents that nobody ever uses, and having pointless meetings.

• Controlling what must be done actually stifles innovation because if you want to
do anything different you have to write it into the quality plan and get it approved.

The only hope is that these are criticisms of bad quality assurance, not of quality
assurance per se.

Discussion Question 164
(How) can a quality assurance process avoid the problems above?

Quality assurance is intended to assure high quality. If some activity doesn’t
contribute to raising quality, why are you doing it?

4 Except, tellingly, that people aren’t always so keen on QA as applied to their own activities . . .

Further reading 239

Of course there may be valid answers to this rhetorical question: the commonest
is ‘Because our customer will only deal with ISO9001 registered suppliers’. Even
here, though, there is usually no reason to continue with practices which aren’t
useful. Standards are intended to be sufficiently flexible that they should be a help
and not a hindrance.

Discussion Question 165
Is it true that some kinds of organizations or projects (for example, very small ones,
or those with very experienced staff) will not benefit from the introduction of a
QMS, however sane? If so, which organizations or projects fall into this category?

Discussion Question 166
Is it fair to lump process improvement frameworks like CMM together with
ISO9001 in this context? Or do these problems arise only if you concentrate on
monitoring process without improving it?

Discussion Question 167
What are the interactions between quality culture and reuse? You should consider
possible ill effects of an organization’s QA system on its reuse program, as well as the
beneficial effects. (You might like to consult Martin Griss’ paper [26] or see the book’s
home page which addresses the relationship between CMM and reuse.)

20.5 Further reading

There is a huge amount of further reading available on the subjects in this chapter, including
on the Web. As usual, there are some starting points on the book’s home page.

SUMMARY

In this final chapter we considered the contribution made to the quality of systems by the
organizations which build them, and the quality assurance processes of these organizations.
We discussed management, leadership, teams, organizations, and quality assurance. We
emphasized that quality and quality assurance are different but related things. Of course
they are essentially bound up with all sorts of other properties of an organization and the
software it produces.

DISCUSSION QUESTIONS

These final questions invite you to consider how you personally feel about some of the
issues we’ve discussed. There are, of course, no right and wrong answers!

240 Process quality: management, teams, QA

1. Would you prefer to work in a situation where you will have a great deal of autonomy and
responsibility for dealing with customers directly; or would you prefer to concentrate
on solving well-defined technical problems, leaving interfacing with the customer to
others?

2. Promotion: in some organizations being promoted necessarily involves taking on more
management responsibilities. In others, there is a ‘technical track’ such that it is possible
to be promoted into a position as ‘technical expert’ available for consultation in your
area of expertise, without moving into management. Which do you think is better?

3. Most management structures will include the idea that a given team has a ‘team leader’.
In some cases, the team leader will be someone with a different job title from the rest
of the team, and particular experience or expertise in management; that is, you have
to have a formal promotion before you can be a team leader, and from then on you
will (almost) always lead the team on which you work. In other organizations anyone,
however recently appointed, can act as team leader for a project. In the latter case the
decision might be made on the basis of such factors as the person’s experience in the
technical or business field. Which do you think is best, or which would you prefer?

4. Would you prefer to work on a large project or a small one?

5. Would you prefer to be involved in development of new products or in maintenance of
existing products?

6. Should your company frequently employ contractors to balance out peaks and troughs
of work? What about specialist consultants? What should its attitude be towards
subcontracting out parts of its work? Which parts? For example, should it contract out
the boring routine parts, or should it contract out the difficult parts to specialists?

7. Would you prefer to be involved with products which are well understood, where
the challenges are to do with producing exactly the right variant of a basically well-
understood thing? Or would you prefer to work on something technically innovative,
where the challenge is to make the thing work at all, and where this may prove
impossible?

8. Would you prefer to work in an organization which has a certification such as
BS5750/ISO9001 or in one which does not?

9. Would you prefer to work in the IT division of a larger organization, satisfying the
IT needs of that organization? Or would you prefer to work for a specialist software
company that bids for contracts from outside? Or for one whose business is selling ‘off
the shelf’ software?

Bibliography

[1] Scott Adams. The Dilbert Principle. New York: Harper Collins, 1996.

[2] K. Beck and W. Cunningham. ‘A laboratory for teaching object-oriented thinking’.
ACM SIGPLAN Notices, 24(10): 1–6, October 1989.

[3] Kent Beck. Smalltalk Best Practice Patterns. Englewood Cliffs, NJ: Prentice Hall,
1996.

[4] Barry W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, 21(5): 61–72, 1988.

[5] Grady Booch. Component ware chat hosted by Grady Booch transcript. http://

www.rational.com/connection/chats/docs/cwchat.html.

[6] Grady Booch. Rational’s definition of component. Posting to comp.object, May 11th,
1998.

[7] Grady Booch. Object-Oriented Design with Applications. Benjamin/Cummings
series in Ada and software engineering. Menlo Park, CA: Benjamin/Cummings Pub.
Co., 1991.

[8] Donald G. Firesmith, Brian Henderson-Sellers, and Ian Graham. The OPEN Modeling
Language (OML) Reference Model. Englewood Cliffs, NJ: Prentice Hall, 1998.

[9] Frederick P. Brooks. The Mythical Man-Month. Reading, MA: Addison-Wesley,
1975/1995.

[10] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stad. Pattern-Oriented Software Architecture – A System of Patterns. New York:
John Wiley, 1996.

[11] Stephen R. Covey. The Seven Habits of Highly Effective People. New York: Simon
& Schuster, 1992.

[12] Ken Croucher. Co-existence of TQM and quality management systems. SQM, 8,
1991.

[13] Tom DeMarco and Timothy Lister. Peopleware: Productive Projects and Teams.
New York: Dorset House, 1987.

[14] E. W. Dijkstra. Goto statement considered harmful. Communications of the ACM,
11: 147–148, 1968.

[15] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human–Computer
Interaction. Englewood Cliffs, NJ: Prentice Hall, 1993.

[16] Desmond D’Souza and Alan Cameron Wills. Catalysis: Objects, Frameworks and
Components in UML. Reading, MA: Addison-Wesley, 1998.

[17] Christopher Alexander et al. A Pattern Language. Oxford: OUP, 1977.

[18] M. E. Fagan. Design and code inspection to reduce errors in program development.
IBM Systems Journal, pp. 182–211, 1976.

241

242 Bibliography

[19] M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling
Language. Reading, MA: Addison-Wesley, 1997.

[20] Martin Fowler. Analysis Patterns: Reusable Objects Models. Reading, MA: Addison-
Wesley, 1997.

[21] W. R. Franta. A Process View of Simulation. Amsterdam: North-Holland, 1977.

[22] Bruce F. Webster. Pitfalls of Object-Oriented Development. Foster City, CA: M &
T Books, 1995.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Reading, MA: Addison Wesley, 1995.

[24] W. Wayt Gibbs. Software’s chronic crisis. Scientific American (International
Edition), pp. 72–81, September 1994.

[25] Alan Gillies. Software Quality: Theory and Management. Florence, KY: International
Thomson, 1997.

[26] Martin L. Griss. CMM as a framework for adopting systematic reuse. Object
Magazine, 10, 1998.

[27] B. Henderson-Sellers and Y. R. Pant. Adopting the reuse mindset throughout the
lifecycle. Object Magazine 3(4), Nov/Dec, 1993.

[28] I. Jacobson, M. Christenson, P. Jonsson, and G. Oevergaard. Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. Harlow: Addison-Wesley, 1992.

[29] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process and
Organization for Business Success. Harlow: Addison-Wesley, 1997.

[30] Setrag Khoshafian. Object-Oriented Databases. New York: Wiley, 1993.

[31] Philippe B. Kruchten. The 4 + 1 view model of architecture. IEEE Software, 12(6):
42–50, November 1995.

[32] Thomas K. Landauer. The Trouble with Computers: Usefulness, Usability and
Productivity. Cambridge, MA: MIT Press, 1996.

[33] Karl J. Lieberherr and Ian Holland. Formulations and benefits of the Law of Demeter.
ACM SIGPLAN Notices, 24(3): 67–78, March 1989.

[34] Steve McConnell. Best practices: How to defend an unpopular schedule. IEEE
Software, 13(3): 118–120, May 1996.

[35] B. Meyer. Object-Oriented Software Construction. New York: Prentice Hall, 1989.

[36] Mark C. Paulk. The rational planning of (software) projects. SEI Report 1995.

[37] Nathan H. Petschenik. Practical priorities in system testing. IEEE Software, 2(5):
18–23, September 1985.

[38] James Newkirk and Robert C. Martin. A case study of OOD and reuse in C++.
ROAD, 1995.

[39] Robert Harper, Robin Milner, Mads Tofte, and David MacQueen. The Definition of
Standard ML (Revised). Cambridge, MA: MIT Press, 1997.

[40] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[41] M. Shaw and D. Garlan. Software Architecture. Perspectives on an Emerging
Discipline. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Bibliography 243

[42] S. Shlaer and S. J. Mellor. Object-Oriented Systems Analysis – Modeling the World
in Data. Computing Series, Englewood Cliffs, NJ: Yourdon Press, 1988.

[43] I. Sommerville and P. Sawyer. Requirements Engineering. Chichester: Wiley, 1997.

[44] Clemens Szyperski. Component Software. Harlow: Addison-Wesley, 1997.

[45] The Course Team. M355, Topics in Software Engineering. The Open University,
Milton Keynes, UK, 1995.

[46] The Course Team. M868, Object-Oriented Software Technology. The Open Univer-
sity, Milton Keynes, UK, 1995.

[47] Harold Thimbleby. User Interface Design. Reading, MA: Addison-Wesley (ACM
Press), 1990.

[48] UML 2.0 Superstructure Specification, OMG ptc/04-10-02 2004.

[49] UML 2.0 OCL Specification, OMG ptc/03-10-14 2003.

[50] Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly & Associates,
Inc., 1992.

[51] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison-Wesley,
1999.

Index

4 + 1 view model, 52

abstract
class, 88
property, 193

abstraction, 7, 10, 21, 32
action, 136
action language, 137
action sequence, 146
activation, 115
active object, 129
activity, 141
activity diagrams, 132
activity edge, 142
actor, 28, 93

in collaboration, 114
nonhuman, 96

Ada, 6
adaptive programming, 119
aggregation, 74
agile methodologies, 51
analysis, 32, 44, 72
architectural decision, 134
architectural patterns, 213
architectural style, 206, 213
architecture, 11, 12, 50, 52, 150, 205, 206

4 + 1 view model, 52
client–server, 7

architecture-centric, 11, 232
argument, 16
artifact, 153
assertion, 40
association, 60, 74

black triangle on name of, 80
derived, 79
end, 76
navigability, 77
qualified, 78

association class, 83
asynchronous, 129
attribute, 15, 64

derived, 80

ball and socket notation, 87
base class, 23
Beck, Kent, 19, 51, 69, 72, 231
behavior, 14

beneficiary, 95
binary, 206
Booch, Grady, 14, 48, 49, 59
Brooks, Fred, 5
business

case, 50
modeling, 83, 141
object, 210
process, 4
rules, 59

C++, 19, 26, 40, 88, 90
Capability Maturity Model, 237
CASE tool, 29, 69, 111, 112, 114, 155
Catalysis, 51
circular dependency, 7
class, 18, 56

abstract, 88
base, 23
derived, 23
invariant of, 39, 81
parameterized, 89

class diagram, 56
class model

good, 56
classifier, 88
client, 7
client–server architecture, 7
code review, 227
cohesion, 7, 10
collaboration, 113, 214
communication diagram, 112, 114
component, 7, 11, 104, 106, 141, 150
component-based development, 11
component-oriented programming, 11
composition, 74, 75
concurrency, 127

in state diagrams, 149
configuration management, 114, 223
constraint, 74, 81, 135
construction

phase of Objectory, 51
Coplien, James, 232
coupling, 7
CRC cards, 33, 106
creation

of object, 18, 120

245

246 Index

Cunningham, Ward, 69
cut and paste, 205

data-driven design, 57
data member, 15
database, 42, 153
DDD, 57
decision diamond, 142
deletion

of object, 120
Demeter, law of, 117
dependency, 7, 74, 85

circular, 192
dependency arrow, 91
deployment diagram, 129, 150, 152
derived class, 23
derived elements, 80
design, 44, 52

by contract, 38, 66
data-driven, 57
monolithic, 60
responsibility-driven, 57
user-centered, 221

design review, 227
design tool, 29
development process, 44
domain, 20, 32, 57
dynamic binding, 25

Eiffel, 23, 40
elaboration

phase of Objectory, 50
encapsulation, 6–8, 10, 21, 225
end marker, 142
engineering

phase of spiral process, 48
error, 133, 134
estimation, 231
evaluation

phase of spiral process, 48
event, 133, 136

call, 145
change, 145
entry, 137
internal, 146
signal, 145
time, 146

extend, 104
extension point, 109
extreme programming, 51

Façade pattern, 213
Fagan inspection, 227
forces, 212
fork, 142

formal technical review, 227
found message, 122
Fowler, Martin, 68, 96, 224
fragile base class problem, 68
framework, 171, 215

architecture-driven, 175

Gang of Four, 213
generalization, 23, 36, 65

implementing with inheritance, 68
of actors, 109
of use cases, 109

genericity, 90
Graham, Ian, 81
Griss, Martin, 239
guard, 148

on interation diagram, 124
on state diagram, 138

hardware, 3, 150, 152, 153
as actor, 93

hobbit, 107

identity, 14
idioms, 213
implementation

of interface, 85
importing a package, 157
in name of element, 80
inception

phase of Objectory, 50
include, 104
information hiding, 10
inheritance, 22, 23, 68
inspection, 226
instance, 18
instance variable, 15
instantiate, 18
interaction diagrams, 98, 112
interaction overview diagram, 144
interface, 7, 8, 74, 84, 86

public, 17
internal event, 146
iteration, 31, 43, 48, 100, 125
iterative development, 31, 48, 50

estimating in, 231
FTRs in, 227
moving to, 235
quality assurance in, 237
testing in, 223, 226
verification in, 219

Jacobson, Ivar, 49, 93
Java, 19, 40, 90
join, 142

Index 247

late composition, 11
leadership, 234
legacy systems, 4
lifeline, 116
link, 60

maintenance, 2
management, 4, 48, 50, 229
Martin, Robert, 171
matrix management, 233
Mellor, Steve, 59
message, 14, 16

asynchronous, 129
guarded, 124
synchronous, 129

method, 18, 44
overriding in subclass, 23, 66

methodology, 44
methods war, 49
Meyer, Bertrand, 121
model, 45, 158

elements, 45, 155
model element, 155
model-driven architecture, 53
modeling language, 44, 45
modularity, 6, 8, 21
module, 7
multiple inheritance, 23
multiplicity, 62

in composition, 75

namespace, 155
navigability, 77

implementing, 189
Newkirk, James, 171
node, 152

object, 14
active, 129
behavior of, 15
identity of, 15
persistent, 42
state of, 15

Object Management Group (OMG), 49
object orientation, 11
OODB, 42
operating system, 3, 153
operation, 18, 23, 64

specifying behavior of, 38
specifying with activity diagram, 141

outside, 33
overloading, 157

package, 74, 155
pattern, 204, 211

analysis, 213
architectural, 213
design, 213
organizational, 232
process, 213

pattern catalog
contrasted with pattern language, 212

pattern language, 212
people management, 229
performance, 150, 153
persistence, 41
planning, 28, 44, 230

in Objectory, 50
in spiral process, 48
of testing, 223, 226
using use cases, 99

planning game, 100, 231
pluggability, 12
politics, 100
polymorphism, 24
portable, 3
postconditions, 38
preconditions, 38
private, 158
procedural, 115
process improvement, 236
product-line, 12
project management, 4, 229
property, 88
protected, 193
Protocol State Machines, 135
prototyping, 48
public, 157

QMS, 236
quality, 2, 28, 217
quality assurance, 218, 229, 236
quality audits, 236
quality management system, 46,

229, 236
quality plan, 236, 238

Rational Software, 49, 205
RDBMS, 42
RDD, 57
realization, 86
refactor, 72
refactoring, 101, 175
regression testing, 222
requirements

analysis
in spiral process, 48

nonfunctional, 150
testable, 223

requirements capture, 99

248 Index

requirements specification, 58
responsibility

of class, 70
of project manager, 230

responsibility-driven design, 57
return

in sequence diagram, 129
return value, 64

in interaction diagram, 119
reuse, 7, 11, 90, 204

black box, 12
review, 226

code, 227
design, 227

risk, 50, 100, 230
risk analysis

in Objectory, 50
phase of spiral process, 48

risk management, 48
RISKS, 5
role, 28, 76
Rumbaugh, James, 49

scalability, 150
scenario, 94, 97
selector, 16
semantics, 219
sequence diagrams, 112
server, 7
Shlaer, Sally, 59
signal, 145
signature, 64
Simula, 15
Smalltalk, 19
software bloat, 208
software crisis, 6, 11, 207, 234
specialization, 23
specification, 9

of component, 209
test, 223
verification of, 218

spiral process, 48
start marker, 133, 142
state, 14, 15, 132, 133

compound, 147
state diagram, 132

used in testing, 224
concurrency in, 149

stereotype, 74, 85
stop marker, 135

subclass, 23
substitutable, 24
superclass, 23
swimlane, 143
synchronization bar, 142
synchronous, 115
system, 52
system boundary, 98

tagged values, 89
template, 89
testing, 218
thread, 37
Three Amigos, 49, 159
Total Quality Management (TQM), 237
tracking, 44
transition, 133

phase of Objectory, 51
trigger, 135
type, 8, 40
typing

static, 40

UML, xvi–xvii
Unified Process, 50
usability, 220
usability testing, 221
use case, 28, 93

analysis, 102
and reuse, 104
detail of, 98
problems, 101
relationship between, 104
walking, 101

use case diagram, 29, 93
use case driven, 50, 102
use cases

for requirements capture, 99
user, 93
user interface, 21, 29
user-centered design, 102

validation, 101, 218
verification, 218
view, 52, 158
visibility, 158

walkthrough, 226
waterfall process, 47
workflow, 168

:User

:Item

Working

entry/ i++
exit / i--

Waiting

Collaboration diagrams - Chapter 9 Types of message

asynchronous

synchronous

return

diagrams
and collaboration

used in sequence

State diagrams - Chapters 11 and 12

1.2: i := query()

1.4: destroy()

1: request()

1.3: check(i)

1.1: newItem(3)
s:Store

[ready]doWork(j:Job)/p.tell(j)

finishedWork()

Awaiting confirmation confirm()

Holding Sending
after(5 s) when(empty)

Nested concurrent state diagram

GameEngine

<<rmi>>

shillay:Workstation craro:PC

<<LAN>>

Graphics

Contents hidden

Packages

Implementation diagrams - Chapter 13

Dependency between two components

<<rmi>>

craro:PCshillay:Workstation

Physical nodes without software

<<LAN>>

Software deployed on nodes

 - Chapter 14

Graphics

Contents shown

PlayerInterface

g:GameEngine

<<artifact>> <<artifact>>
p:PlayerInterface

	Cover
	Using UML 2nd edition
	Contents
	Preface
	First edition acknowledgments
	List of Figures
	part I Conceptualbackground
	Software engineering with components
	What is a good system?
	Do we have good systems?
	What are good systems like?
	How are good systems built?

	Object concepts
	What is an object?
	How does this relate to the aims of the previous chapter?
	Inheritance
	Polymorphism and dynamic binding

	Introductory case study
	The problem
	Scope and iterations
	Identifying classes
	Relations between classes
	The system in action
	Design by Contract 1
	Persistence

	The developmentprocess
	Defining terms
	The development process
	System, design, model, diagram

	part II The Unified Modeling Language
	Essentials of classmodels
	Identifying objects and classes
	Associations
	Attributes and operations
	Generalization
	Design by Contract 2 – Substitutivity
	The class model during the development
	CRC cards

	More on classmodels
	More about associations
	OCL, the Object Constraint Language
	More about classes
	Stereotypes
	Properties and Tagged Values
	Parameterized classes
	Dependency
	Components and packages
	Visibility, protection

	Essentials of usecase models
	Actors in detail
	Use cases in detail
	System boundary
	Using use cases
	Possible problems with use cases
	Use Case Driven Development?

	More on usecase models
	Relationships between use cases
	Generalizations
	Actors and classes

	Essentialsof interactiondiagrams
	Collaborations
	Communication diagrams
	Sequence diagrams
	Where Should Messages Go? Law of Demeter
	More advanced features
	Interaction diagrams for other purposes

	More oninteractiondiagrams
	Beyond simple sequences of messages
	Concurrency

	Essentials ofstate and activitydiagrams
	State diagrams
	Designing Classes with State Diagrams
	Activity diagrams

	More on statediagrams
	Other kinds of events
	Other kinds of actions
	Looking inside states
	Concurrency within states

	Architectural andimplementationdiagrams
	Component structure diagrams
	Deployment model
	The Deployment Model in the Project

	Packagesand models
	Packages
	Models

	part III Case studies
	CS4administration
	The case study
	Discussion

	Board games
	Scope and preliminary analysis
	Interaction
	Back to the framework
	States

	Discrete eventsimulation
	Requirements
	Outline class model
	Use cases
	Standard mechanism for process-based simulation
	Associations and navigability
	Classes in detail
	Class Report
	Class Statistic
	Building a complete simulation model
	The dining philosophers

	part IV Towards practice
	Reuse:components,patterns
	Practicalities of reuse
	Design patterns
	Frameworks

	Product quality:verification,validation, testing
	Quality review
	How can high quality be achieved?
	Verification
	Validation
	Testing
	Reviews and inspections

	Process quality:management,teams, QA
	Management
	Teams
	Leadership
	Quality assurance
	Quality Assurance: The Case Against
	Further reading

	Bibliography
	Index

