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Foreword 

From its very beginning, fuzzy set theory has generated a multitude of research 
streams and formed many interdisciplinary scientific communities. The idea to 
fuzzify crisp boundaries has become an important ingredient in many fields in 
mathematics, engineering, and computer science. The roots of fuzzy decision 
making can be viewed in operations research, expert systems, and knowledge 
processing. Fuzzification here means to blur decision boundaries and to avoid 
'black or white' decisions that lead to sub-optimal solutions in many real appli­
cations. The mathematical elegance in fuzzy decision making lies in the unified 
representation of goals and constraints. 

Fuzzy modeling has been driven by pattern recognition, function approxima­
tion, and by process identification in control engineering. We distinguish the ex­
traction of models from observed process data (identification) and the computa­
tion of model outputs from measured inputs (evaluation). Fuzzy clustering plays 
an important role in model identification. In pattern recognition, clustering is used 
to fuzzily assign objects to classes. This scheme is adapted in control engineering 
to assign process states to prototypical operating points or local process charac­
teristics. Fuzzy models identified by clustering can be evaluated using fuzzy rule 
based models (Mamdani-Assilian, Takagi-Sugeno), so fuzzy modeling can also 
be viewed as the extraction of fuzzy rules from data. This is also an important 
application field for neural networks and evolutionary algorithms. 

More and more, fuzzy control techniques use the power of modern control 
methods, solving the problems of multiple-model approaches in the sense of a 
fuzzy combination of local models and controllers. In this connection, with re­
spect to the total system, the notions of stability of the whole system, its ro­
bustness, and performance play an eminent role. It is, furthermore, evident that 
fuzzy control problems can only satisfactorily be solved in the presence of a well-
balanced combination of control issues on the one hand and modeling, optimiza­
tion, and decision making on the other. This requires the interplay of control 
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strategies like fuzzy model based control, gain scheduling, or fuzzy predictive 
control and corresponding modeling and optimization methods. Other control 
techniques such as Fuzzy Aggregated Membership Control go back to the roots 
of fuzzy decision making and open the way for the control engineer to a direct 
influence on the control rules and the nonlinear control behavior obtained from 
expert knowledge. 

Fuzzy model based control and fuzzy gain scheduling deal with multiple-
model Takagi-Sugeno fuzzy systems that approximate nonlinear control systems 
both in operating points and in off-equilibrium regions. Here the aspects of mod­
eling and the choice of appropriate input signals come into play. An important 
point is the derivation of inverse affine Takagi-Sugeno fuzzy models for compen­
sation purposes in model-based control and predictive control, respectively. In­
verse models are especially useful for process control applications, e.g., in chem­
ical plants or for fermentation processes. Optimization in fuzzy model predictive 
control can be done in many ways. Useful methods are the well-known gradient 
descent method, branch-and-bound methods, and genetic algorithms. 

Fuzzy optimization can be viewed in a first instance as a pure math domain. 
We distinguish to find (crisp) extrema of functions defined by fuzzy models and 
to find fuzzy extrema using fuzzy goals and constraints. Process optimization 
with fuzzy models can be done using crisp optimization methods or using crisp 
or fuzzy controllers. The determination of fuzzy extrema, however, is a fuzzy 
decision making process again. 

All these four fields: fuzzy decision making, fuzzy modeling, fuzzy control, 
and fuzzy optimization, play an important role in automation and control today. 
Originally stemming from different scientific areas, these fields are in a contin­
uous process of merging together. Today's state-of-the-art high-level controllers 
perform decision making and optimization functions based on data or knowledge 
driven models. These tendencies are well reflected in this book, which covers 
many of the most important areas of fuzzy technologies in the field of modern 
automation and control. We expect the techniques studied here to be the basis of a 
wide range of modern control applications, and we hope that this book contributes 
to a unification of the promising research areas related to fuzzy decision making. 

Thomas A. Runkler 
Rainer Palm 



Preface 

Since Lotfi Zadeh's introductory paper in 1965, the fuzzy set theory and the ap­
plications of fuzzy systems have come a long way. The initial hesitation, even 
the hostile reaction to fuzzy set theory has made way for enthusiasm, or at least 
tolerance for fuzzy systems. The successes of the practical application of fuzzy 
set theory in fuzzy systems is an important factor in the change of attitude towards 
fuzzy set theory. Control engineering has contributed significantly to the number 
of successful applications of fuzzy systems, including the first industrial applica­
tion of a fuzzy system. Today, fuzzy modeling and control have taken their place 
amongst the tools of control engineers for designing control systems. In contrast, 
fuzzy decision making methods have been applied to a comparatively smaller de­
gree, although the literature on the basics of fuzzy decision making extends back 
to the beginning of the 1970s. Despite the fact that decision making and control 
are related fields, the combination of fuzzy control methods and fuzzy decision 
making methods has hardly been investigated. This book addresses the combina­
tion of the two fields. It is shown that looking at control problems from a fuzzy 
decision making perspective leads to new insights, which can be used in the design 
of improved control systems. 

Various ways in which fuzzy decision making methods can be applied to sys­
tems modeling and control are considered in this book for the design of fuzzy 
controllers. The book consists of three parts. In the first part, which consists of 
Chapters 2-A, basics of fuzzy decision making as used in the remaining chapters 
are explained. This part also includes a description of how direct fuzzy controllers 
can be designed by directly applying the theory of fuzzy decision making to con­
troller design. The second part of the book consists of Chapters 5-9. The main 
focus of the book, including various forms of fuzzy model-based control (FMBC) 
and the use of fuzzy decision making in FMBC, is found in this part. In the third 
part, which consists of Chapters 10-13, we discuss optimization issues in the 
control schemes presented, and we give an example of a real-world application. 
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Finally, some guidelines for future research in FMBC are also discussed. 
The large spectrum of fields covered by this book, i.e., fuzzy decision mak­

ing, fuzzy modeling, fuzzy control, and fuzzy optimization, makes it attractive 
to a large number of possible readers. Previous knowledge of fuzzy set theory, 
modeling, control and decision making is not mandatory, but it would help to un­
derstand the contents presented. As such, the book is intended for researchers, 
graduate students and advanced undergraduate students. We expect that lecturers, 
who teach courses related to any of the four main areas covered by the book at an 
advanced undergraduate or higher level, would also find the contents interesting. 

Joao M. C. Sousa 
Uzay Kaymak 
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Chapter 1 

Introduction 

Control engineering deals with the design, realization and the theory of control 
systems. Although building 'controlled' systems that behave within design pa­
rameters or according to expectations has always been an issue, the real advances 
in the control theory and control science have appeared in the twentieth century. 
This chapter describes the recent developments in control engineering. The mo­
tivation for using fuzzy control systems is given. It is shown that, due to the new 
developments in modern process operation and production methods, the control 
problems are attaining more and more the characteristics of decision problems. In 
this respect, the motivation for the main theme of this book, i.e., a combination of 
techniques from fuzzy decision making and fuzzy control, is explained. 

Section 1.1 discusses two basic approaches to the design of control systems. 
The two main design methods for controllers and the importance of measurement 
in control systems is also discussed. Section 1.2 considers the developments in the 
advanced control systems and establishes the link to intelligent control systems. 
The link to fuzzy control and the relation to fuzzy decision making are discussed 
in Sec. 1.3. Finally, a detailed chapter outline for the book is given in Sec. 1.4. 

1.1 Control systems 

The design of equipment and systems for accomplishing various tasks has been 
an important human activity for centuries. One of the most challenging tasks in 
designing these systems has always been the control of the important quantities 
for the designed system. Until the twentieth century, the control of desired quan­
tities, such as the speed of steam engines, was the domain of skilled craftsmen, 
who used experiments, their common sense and their experience to design suc­
cessful systems. Many of these systems have been vital for the development and 
sustenance of large communities, like the waterwheels of Hamah in Syria, built 

1 



2 Fuzzy Decision Making in Modeling and Control 

in the fourteenth century. Several of these impressive waterwheels, with carefully 
designed wheels ranging from 10m to over 20m, used to haul water to different 
heights for irrigation and drinking, are still in present-day use. 

Not all the systems designed were as useful as the waterwheels of Hamah, 
however. Some were mere curiosities in their time, such as several mechanical 
toys that satisfied the fascination of humans for automata. Already in the first 
century AD, Heron of Alexandria invented a self-moving stand with puppets that 
could be made to replay whole scenes from a play. The movements of the puppets 
were caused by special boxes filled with sand, where the sand escaped from a 
reservoir through a sand hole, inducing motion due to the change in the mass of the 
boxes. By modifying the size of the sand hole and the amount of sand, the puppets' 
speed and direction of motion could be controlled. This system essentially uses 
a feedforward control strategy, where the controller parameters are changed up 
front, depending on the system characteristics and the desired response. 

The second and certainly more important control strategy is that of feedback 
control. The notion of feedback control was also familiar to Heron. It is reported 
that he had built an ingenious system powered by the expansion of heated air that 
opened the doors of a temple during religious ceremonies by burning a fire on 
the holy altar. The doors of the temple opening without any human 'intervention' 
must have been a major attraction at the time, and the priests running the ceremony 
made sure that the doors opened only when the believers brought in sufficient 
presents (offerings) by opening or closing a small secret outlet for the expanding 
air. 

Despite the ingenuity of these systems and their designers, a mathematical de­
scription and analysis of control systems would not come until the beginning of 
the twentieth century. The significant change in the design of control systems was 
brought about by the systematic inclusion of measurement systems for control 
purposes. Feedback controllers could now be implemented, which processed the 
information from the measurement equipment and delivered information to the 
actuators acting on the manipulated variables to influence the system. The pos­
sibilities for the control engineering increased even further by the introduction of 
computer systems. Sophisticated control algorithms could now be implemented, 
while major developments in the theory of control systems improved the analysis. 

The general feedback control scheme for multivariable systems is depicted 
in Figure 1.1. Various input signals (actions) influence the process P resulting 
in output variables y. The input variables are usually divided in control actions 
or manipulated variables u and system disturbances d, which can not be influ­
enced before entering the process. The goals to be achieved are imposed on the 
controller (indicated by the double arrow in Fig. 1.1), such that the system under 



Introduction 3 

control achieves the desired specifications. Note that the reference r can also be 
seen as a goal to be achieved by the control system. The plant under control and 
the actuators manipulated by u are included in the process. The sensors are repre­
sented by the operator S, having as inputs, the output variables from the process y 
and the measurement disturbances d m , generating the measured outputs yOT. The 
controller C generates the control actions u based on the received information: 
the measured outputs y m , the references r to be followed, the disturbances d and 
d m if available, and the goals to be obtained. 

r 

ym 

— • 

goals | 

c u 

d 

P 
y 

i ' 

S 
dm 

Fig. 1.1 Block diagram of a feedback control scheme. 

Two main methods can be distinguished for designing controllers in the gen­
eral control scheme of Fig. 1.1. 

(i) Signal-based control. Measurements of various signals of the system are used 
for computing the control action directly, without evaluating the process knowl­
edge on-line. In other words, the knowledge of the system (e.g. a model) is only 
used during the design stage to determine the proper setting of the controller 
parameters. 

(ii) Model-based control. The parameters of the control are optimized based on a 
given desired response (a reference), a model of the process and performance 
criteria. Contrary to signal-based control, the model of the system and the 
controller parameters are directly related in model-based control. In digital 
control, the model is used at each sampling instant to predict the output of the 
system. 

In this book, both design approaches are considered. As indicated in Sec. 1.3, 
the relations between fuzzy control and fuzzy decision making are considered in 
detail, and a synergistic combination of the two fields is studied. 
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1.2 Advanced control systems 

Signal-based control is still by far the most common design approach. This ap­
proach has often led to the widespread implementation of simple controllers and 
the application of simple tuning rules to set the parameters of the designed con­
trollers. In early control systems, the outputs of the controller were derived di­
rectly from the difference between the desired and the measured signals obtained 
from the controlled system. The PID controllers which are extensively used in the 
industry make use of such a difference signal. Although PID controllers form a 
substantial part of the control systems used today, their performance is usually not 
sufficient when high performance requirements are imposed on the controlled sys­
tem, or when the controlled process shows large variations in the region for which 
the PID controller is tuned. This is increasingly the case with modern production 
systems. Verbruggen and Bruijn (1999) distinguish the following characteristics 
in modern process operation and production methods. 

• An increasing demand for flexibility. The plants operate with varying 
throughput, product mix and product grade. The customer obtains a lot of 
freedom in product definition up to the point of almost personalized product 
specification. Consequently, the process is required to operate at different op­
erating points, and to change from one operating point to another fast and fre­
quently, while taking various constraints into account. Hence, the system ex­
hibits strong nonlinear behavior, and often the control engineer will not have 
sufficient time for extensive analysis and modeling of the process, contrary to 
what is customary with production processes operating at a few well-defined 
operating points. 

• A strong drive for plant-wide control. New production methods involve mul­
tiple control loops, while the total manufacturing process must be optimized for 
efficiency because of tighter economic constraints {e.g. increased competition in 
many markets). The control and optimization of many loops, many subsystems 
and their interaction must now be considered simultaneously, so as to optimize 
the total production process. Mathematical description of many systems with a 
large degree of interaction amongst themselves is tedious and not always pos­
sible. However, experience may be available in the form of expert rules or 
operator best practice. Such knowledge about the system should be combined 
with the mathematical descriptions of the system to enhance the performance 
of the controllers. 

• A growing need for integrated information systems. The presence of multi­
ple, interacting control loops requires a more sophisticated organization of the 
controllers than simple feedback control. Typically, controllers are organized 
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hierarchically, leading to various levels of automation: control, monitoring, 
optimization, supervision, planning, task management. Such an organization 
requires the ability to deal with qualitative and quantitative information in a sin­
gle system with different levels of precision and complexity. Human-machine 
interaction is also very important, and sophisticated human interfaces are re­
quired. 

Clearly, these developments mandate the use of sophisticated control sys­
tems. Contrary to signal-based control, advanced control techniques use an on­
line model of the controlled process in order to determine the control signal. Ini­
tially, linear process models were used, and linear control systems based on these 
models have been an important area of investigation in control theory. Most real 
processes are in fact nonlinear, but as long as the system is considered around a 
constant operating point, it can be linearized and approximated by a linear model. 

Because of the approximations and the necessary simplifications, no process 
model is accurate to an arbitrary degree. Even assuming that a correct class of 
models can be identified for a process, the parameters of the models are usually 
identified from the results of experiments on the process itself. These experiments 
are sometimes time consuming and expensive, and so the model parameters can 
only be estimated approximately. Hence, there is always a model-process mis­
match and it is important to evaluate the sensitivity of the control system to the 
variations in the model parameters. Recent developments in linear control theory 
have then been towards the formalization of the design of robust control systems 
that are less sensitive to the changes in the process parameters and the mismatch 
between the model and the process, see, e.g., (Palm et al. 1997, Dullerud and 
Paganini 2000, Ioannou and Sun 1996, Tang et al. 2000). Robust control theory 
(such as Hm control) is motivated by such goals. Another approach that is some­
times combined with robust control and that can deal with deviations from the 
model parameters is adaptive control, where the controller parameters are modi­
fied depending on the changing conditions, see, e.g., (Calise et al. 2001, Su et al. 
1999, Veres and Sokolov 1998). These autonomously adapting systems are often 
protected by extensive safety nets and other safety systems. 

Due to the developments in production methods discussed above, the process 
nonlinearity has become an important issue, which has increased the interest in 
nonlinear control and modeling. Multiple approaches have been developed in the 
past decade for nonlinear control and modeling. In addition to the nonlinearity, 
the importance of the interaction between various control loops has also increased. 
In such a setting, the communication and the coordination between several con­
trollers, each with its own set of control goals and constraints, becomes dominant. 
To deal with increasing complexity in such a system, the control systems are or-
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ganized in hierarchies, which lead to supervisory systems and to task-oriented 
systems. Higher levels in a hierarchy perform more complicated tasks, while the 
lower levels are involved in less complicated tasks. Saridis (1977) proposes a three 
layer structure for classifying hierarchical control systems, as shown in Fig. 1.2. 
Since the controllers at higher levels of the hierarchy must deal with more varying 
situations and multiple goals and constraints, they need to be more flexible, mak­
ing a trade-off amongst the goals of the various controllers and their performance. 
This corresponds to an increased 'intelligence' in their functioning. Intelligent 
control recognizes this fact and considers control systems that can operate satis­
factorily despite the increasing complexity of a system and its functions. Saridis 
(1977) observes that the increase in intelligence leads to a decrease in the precision 
of available and processed information. The goals at higher levels are not known 
exactly, and they can often be defined in approximate terms only. Moreover, many 
conflicting goals and constraints must be dealt with to realize the overall objec­
tives of the control system, while the goals may change, depending on the oper­
ating conditions. Also, some constraints may be relaxed when important goals 
cannot be attained otherwise. 

High Level 

Z 
o 

OH 

PLANNING AND SCHEDULING 

Medium level I JA 

SUPERVISORY CONTROL 

( REGULATOR and SETPOINT TRACK CONTROL) 
Low Level 

Fig. 1.2 Three levels of organization for control systems, according to Saridis. 

Intelligent control methods use techniques inspired by ideas about the func­
tioning of biological systems to design controllers. The methods employed in­
clude neural networks, fuzzy sets and evolutionary computation. To deal with 
increasing complexity in the presence of multiple goals and constraints that may 
vary in time, as much information as possible about the control system and its rel­
evant variables must be used to design the controllers. However, obtaining precise 
information can be costly, due to the time it may take to collect the data and due to 
possible losses in the quality and the quantity of the products. Moreover, precise 
information is not always relevant, as expressed by the principle of incompatibility 
of Zadeh (1973). According to the principle of incompatibility, as the complexity 
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of a system increases, the ability to make precise and yet relevant statements about 
the system diminishes until the precision and relevance become mutually exclu­
sive beyond a certain point. To control complex systems, the controllers must be 
able to deal with approximate information in order to use relevant information. 
Fuzzy controllers use concepts from fuzzy sets theory to deal with nonlinearity, 
uncertainty and vagueness at various levels of organization. Although most of 
the material in this book concerns low and medium levels, fuzzy set theory also 
provides a mathematical framework to address explicitly the issues regarding su­
pervision, flexible constraints, subjective goals and multiobjective planning that 
one encounters in the supervisory and planning levels. 

1.3 Fuzzy control and decision making 

Fuzzy control systems deal with approximate information by using the fuzzy set 
theory for dealing with imprecise, fuzzy and vague information. Fuzzy controllers 
apply fuzzy sets and operations on fuzzy sets to model process nonlinearity, to es­
tablish a link between linguistic information and mathematics of the controller, 
to capture heuristic knowledge and rules of thumb, and to model the approximate 
behavior of systems. Especially in human decision making or in cases where hu­
mans are involved in controlling a process, a lot of expertise is available in the 
form of heuristic rules of thumb, global descriptions of the behavior of the system 
and the effects of various control alternatives in terms of the desired goals and 
the imposed constraints. Much of this knowledge is described in linguistic terms, 
which can be modeled by the use of fuzzy sets. In order to recognize specific situa­
tions (such as the occurrence of an error or entering a particular operating region), 
reasoning based on heuristic information may be required. By the use of heuris­
tic and vague information, the controller attains some ability to use knowledge 
in a context-dependent way, and to adjust the control actions or control strategy 
according to that context. 

1.3.1 Fuzzy logic control 

The objective of fuzzy logic control (FLC*), or conventional fuzzy control, is to 
control complex processes using a knowledge-based control strategy derived from 
human experience. These controllers are based on the work presented by Zadeh 
(1973). The first application of FLC on a system was made by Mamdani and As-
silian (1975). This type of control is used when a reasonable model of the physical 

* We use FLC as an abbreviation for both 'fuzzy logic control' and 'fuzzy logic controller'. It will 
be clear from the context in what sense we use the abbreviation. 
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system is not available, not possible to obtain, or if it is unreasonably complex to 
be used for control purposes (Sugeno 1985). Moreover, the determination of ap­
propriate models is time-consuming, requires a solid theoretical background, and 
models are always a simplification of the process. However, humans are able to 
control complex processes (e.g. driving a car in busy traffic), which cannot be eas­
ily controlled by conventional control systems without a model. Thus, the control 
design in FLC is based on empirical knowledge regarding the behavior of the pro­
cess, and does not use a strictly analytic framework. This knowledge, cast into a 
linguistic or rule-based form, constitutes the basis of a fuzzy logic control system. 

FLC design follows the signal-based control approach. It is based on imple­
menting expert knowledge in the form of If-Then control rules, linking the input 
variables of the controller with the control variables by using linguistic terms. 
Consider, for example, the control of the temperature in a room. A required tem­
perature can be obtained by using rules of the type: 'If the temperature is too high, 
decrease the heating power considerably'. The definition of all control rules, ac­
quired from an expert, constitutes the first step in the design of an FLC. 

r 
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Fig. 1.3 Fuzzy logic controller scheme. 

The set of all control rules constitutes the rule base. Furthermore, data are 
included in the data base that provides the necessary information for the proper 
functioning of the fuzzification module, the rule base and the defuzzification mod­
ule (see Fig. 1.3). 

Fuzzification converts the values of the measured process variables into lin­
guistic values that are represented by fuzzy sets, thereby making them compatible 
with the fuzzy set representation in the rule base. Sometimes, fuzzification is pre­
ceded by a normalization step, which maps the measured values into a suitable 
range constituting the normalized universes of discourse used in the rule base. 
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The module rule base in Fig. 1.3 contains a relation described in fuzzy terms. 
The inference engine computes the appropriate control action according to the 
fuzzified inputs and the rule base. Often, the compositional rule of inference is 
used (Zadeh 1973). 

The defuzzification translates the fuzzy outputs provided by the inference en­
gine into a numerical (crisp) representation. Sometimes this value must be de-
normalized, i.e., the values of the control output must be mapped onto their physi­
cal domains. The most common defuzzification methods are the center-of-gravity 
and the mean-of-maxima methods (Driankov et al. 1993). The result of defuzzi­
fication can be the control actions u. In that case, they can be applied directly 
to the controlled process. However, if the fuzzy controller computes the change 
Au in the control actions, the controller output must be integrated and a dynamic 
filter between the defuzzification block and the process is included in the control 
scheme, as presented in Fig. 1.3. 

The fuzzy rules contained in the conventional fuzzy controller do not include 
any dynamics. The dynamic behavior is provided by an external dynamic filter, 
that computes the variables needed as inputs in the FLC. Examples of these vari­
ables are the errors between the references r and the outputs y, the rate of change 
or the cumulative sum of these errors, or other dynamic time shift operations such 
as regressions on the inputs and outputs. The fuzzy control scheme in Fig. 1.3 
does not show the disturbances explicitly, but they are usually present in prac­
tice. The FLC must be designed such that it can cope with these disturbances, 
but unfortunately this problem is not always considered. Comparing the design of 
a conventional fuzzy controller to a classical controller, the steps concerning the 
modeling and the choice of design specifications are not explicitly present in the 
FLC. The If-Then rules implicitly contain the performance criteria and the choice 
and settings of the controller meeting the desired specifications. 

Fuzzy logic controllers are usually tuned by a trial-and-error method using 
simulations or experiments on the system. Unfortunately, experience shows that 
this design methodology has some significant drawbacks. Expertise to be ex­
tracted from operators can not always be expressed in a rule-base form, and it is 
a time-consuming task. Moreover, in an industrial environment, the in-line trial-
and-error controller tuning is often not acceptable for, e.g., safety, economical and 
environmental reasons. Furthermore, the performance of the FLC mimics the con­
trol actions performed by the operator, and therefore does not perform better than 
the best operator. However, this control is consistent, and independent from the 
'mood' of the operator. Therefore, the variance in the output could be reduced 
compared to manual control. 
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1.3.2 Fuzzy model-based control 

Model-based control can also be used for the design of fuzzy controllers. This ap­
proach is used in the larger part of this book, where the design of fuzzy controllers 
closely follows the classical control design of a model-based control system, start­
ing with the modeling of the process to control, followed by the choice of the 
design specifications and their combination in performance criteria, and finally, 
designing the controller to be used in the system. This approach is called fuzzy 
model-based control. Depending on how and where the fuzzy set theory is ap­
plied, the term fuzzy model-based control (FMBC) can have different meanings. 
In the following, we define the FMBC problem as a nonlinear control problem for 
which the main goal is as follows. 

Given the model of a system under control and the specifica­
tions of its desired behavior, design a feedback control law, such 
that the closed loop system behaves in the desired way, where 
the model and/or the design specifications and/or the developed 
controller use elements from the fuzzy set theory. 

This definition is rather broad, and several combinations of the different design 
components can be made. The explicit utilization of the fuzzy sets theory can be 
included in three distinct parts of controller synthesis, 

(i) by using fuzzy models, 
(ii) by defining fuzzy performance criteria as a confluence of fuzzy design speci­

fications, and 
(iii) by designing fuzzy control elements. 

Therefore, considering that the model, the specifications or the controller can be 
fuzzy, there are eight possible combinations of conventional and fuzzy design 
components in FMBC. 

(1) The model, the design specifications and the controller are all conventional. 
In this case, we have conventional model-based control. These types of con­
trollers are outside the scope of this book. Several basic schemes from con­
ventional model-based control, which are used in this book, are sketched in 
Appendix A and Appendix B. 

(2) Only the model is fuzzy. This is the most common application of FMBC. A 
fuzzy model of the system to be controlled is used in an otherwise conven­
tional model-based control scheme. The fuzzy model can be used to capture 
experts' knowledge about the system or to deal with nonlinearity in the sys­
tem. 
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(3) Only the controller is fuzzy. This type of FMBC is not very common, because 
when a conventional model of the process is available and the design specifi­
cations are classical, there are already good conventional model-based design 
methods that can be used. 

(4) Only the performance criteria are fuzzy. This type of FMBC can be very use­
ful in cases where there are already good process models and control schemes 
available, but the performance of the closed loop system is best described in 
linguistic or in approximate terms. 

(5) The model and the controller are fuzzy. This is a large class of FMBC that 
includes, amongst others, inverse fuzzy controllers operating in an internal 
model control scheme for robustness. The fuzzy controller is somehow de­
rived from the fuzzy model, but the performance of the controller is measured 
by using conventional crisp performance criteria. 

(6) The model and the performance criteria are fuzzy. This approach combines 
nonlinear control with specification of flexible design criteria. In that way, it 
becomes possible to obtain nonlinear model-based controllers that can deal 
with fuzzy and imprecise information. 

(7) The performance criteria and the controller are fuzzy. This approach com­
bines the design of fuzzy controllers with the flexible design specifications or 
constraints. 

(8) The model, the performance criteria and the controller are fuzzy. This is es­
sentially a union of the pairwise combinations discussed above. It can be 
considered as the most general form of FMBC, where all design components 
incorporate concepts from the fuzzy sets theory. 

In this book, we consider mainly fuzzy models in order to deal with process 
nonlinearity and to capture expert knowledge about the process. We combine 
fuzzy models with fuzzy controllers and/or with fuzzy performance criteria in 
most cases. 

Note that the FMBC approach is not based on trial-and-error, which makes the 
development of a fuzzy controller more systematic and more goal oriented. The 
most common design of FMBC systems considers only fuzzy models, leaving 
the design specifications and the control element non-fuzzy. Several authors have 
presented controllers based on fuzzy models. Johansen (1994), for instance, de­
scribes a nonlinear controller based on a fuzzy model of MIMO dynamic systems. 
This controller is a discrete-time nonlinear decoupler, also known as feedback 
linearizing controller. Zhao et al. (1997) present a controller based on various sta­
bilizing state-feedback controllers, which use linear matrix-inequalities methods. 
One of the approaches derives a fuzzy controller, where a gain matrix is obtained 
from fuzzy implications. Fuzzy model-based predictive controllers and controllers 
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based on the inversion of fuzzy models are presented in Babuska (1998). Palm 
et al. (1997) present a survey on several model-based design methods of fuzzy 
controllers, where the design of sliding mode FLC and Takagi-Sugeno FLC are 
presented. In these approaches the controller is always fuzzy, the model might 
or might not be fuzzy, and the design specifications are crisp. The use of fuzzy 
goals and fuzzy constraints in fuzzy decision making was first introduced by Bell­
man and Zadeh (1970). More recently, Kacprzyk (1997) has applied fuzzy goals 
and fuzzy constraints as fuzzy design specifications or as fuzzy criteria in control 
problems. 

As FMBC closely follows the classical model-based control design approach, 
the performance criteria must be explicitly defined, because they are not implic­
itly included in the rules, as in FLC. Therefore, human knowledge can be used 
at a higher level for defining the control goals. Because of the fuzzy approach, 
the goals can be quite general (fuzzy) at the beginning, e.g.human comfort in an 
air-conditioned room, being decomposed afterwards in several hierarchical lev­
els. For the given example, comfort has to be translated into different sub-goals, 
related, e.g., to a desired temperature interval and a desired humidity range for a 
certain season of the year. Several aspects regarding fuzzy model-based control 
are considered in this book. The selection of the different elements in the con­
trol design problem results in a wide range of possible combinations based on the 
type of (nonlinear) model, conventional or fuzzy performance criteria, and dif­
ferent control structures such as model-based predictive control or internal model 
control. 

1.3.3 Fuzzy decisions for control 

The control problems at the supervisory and task-oriented level are characterized 
by subjective goals for the control system, flexible constraints and a mix of con­
tinuous and discrete control actions. Due to these aspects, such control problems 
show many similarities to the decision making problems. Especially in fuzzy 
control, where fuzzy sets are used to represent vague, fuzzy and imprecise infor­
mation, fuzzy decision making methods provide mechanisms for designing fuzzy 
control systems (model-based or signal-based), in which the subjective informa­
tion is incorporated through decision making schemes. Such a combination of 
fuzzy decision making and fuzzy control improves the flexibility of the control 
systems, and it extends the applicability of the fuzzy control systems to a larger 
class of control problems. This book considers various ways in which fuzzy con­
trol methods can be combined with fuzzy decision making methods, so as to obtain 
more efficient and flexible controllers. 

Fuzzy decision making methods can be used to enhance various steps of rea-
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soning and control in the existing methods by solving sub-problems present in 
those methods. Furthermore, fuzzy decision making is a good paradigm for deal­
ing with human expert knowledge when designing fuzzy model-based control sys­
tems. The combination of fuzzy decision making and fuzzy control is shown in 
this book to lead to novel control schemes that improve the existing controllers in 
various ways. The following application of fuzzy decision making methods are 
considered for designing control systems. 

• Fuzzy decision making for designing signal-based fuzzy controllers. The con­
troller mappings and the defuzzification steps can be obtained by decision 
making methods. 

• Fuzzy decision making for enhancing fuzzy modeling. The selection of the 
values of important parameters in fuzzy modeling algorithms by the use of 
fuzzy decision making. 

• Fuzzy design and performance specifications in model-based control, where 
fuzzy constraints and goals are used. 

• Design of model-based controllers combined with fuzzy decision modules. 
Incorporation of human operator experience in the performance specification. 

The following section provides more details about the topics considered in the rest 
of the book and their division across the chapters. 

1.4 Chapter outline 

The material in this book is organized into 13 chapters and a couple of appendices. 
This section gives a detailed outline of the chapters and the main topics that each 
chapter considers. 

In Chapter 2 we consider the basic formulation of fuzzy decision making. It 
contains a classification of the decision making problems and a description of the 
basic elements of the fuzzy discrete choice problem considered in the rest of the 
book. In this chapter, we also establish the terminology on fuzzy decision making 
according to the model of Bellman and Zadeh, which is used in the rest of the 
book. 

A key notion in fuzzy decision making is fuzzy aggregation and the decision 
functions used for the aggregation. Various decision functions used in fuzzy de­
cision making are reviewed in Chapter 3. A large number of decision functions is 
considered. Weighted aggregation, where the decision criteria are not equally im­
portant, is also studied, and various decision functions for weighted aggregation 
are presented. 

In Chapter 4, we consider conventional fuzzy controllers based on Mamdani-
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type systems. Then, the design of signal-based fuzzy controllers using a fuzzy 
decision making approach is explained. These so-called Fuzzy Aggregated Mem­
bership (FAME) controllers implement nonlinear control laws. The relations to 
the linear PID-controllers and the nonlinear fuzzy PID controllers are also estab­
lished. Furthermore, the function approximation capabilities of the FAME con­
trollers are studied. 

A significant part of the book is concerned with fuzzy model-based control 
and the application of fuzzy decision making in a fuzzy model-based control set­
ting. One of the most important stages in model-based control is the identification 
of the process to be controlled. This is often also the most time consuming step 
in the design of the control system. Fuzzy model-based control can use various 
types of models for describing the process. We consider in this book mainly the 
use of fuzzy models. In Chapter 5, we describe how fuzzy models can be obtained. 
Methods based on the formalization of expert knowledge as well as on identifica­
tion from process measurements are considered. Different types of fuzzy models 
such as Mamdani models and Takagi-Sugeno models are also explained in this 
chapter. Identification of Takagi-Sugeno fuzzy models using product-space fuzzy 
clustering is explained. 

The use of fuzzy decision making methods for obtaining fuzzy models of sys­
tems is considered in Chapter 6. A powerful method for obtaining fuzzy mod­
els from system measurements is fuzzy clustering. This chapter describes how 
fuzzy decision making is applied in compatible cluster merging for determining 
the number of clusters in the clustering algorithm. The second part of the chapter 
considers the decision points in a Mamdani fuzzy model and describes how the 
defuzzification step can be formulated as a decision making problem. Based on 
this formulation, a new defuzzification method is described, which is applied in 
fuzzy security assessment of power systems. 

Chapter 7 starts the discussion of fuzzy model-based control by considering 
model-based control with fuzzy models. A controller based on the inversion of a 
fuzzy model is described. The inversion of two different types of fuzzy models is 
considered, 

(i) singleton fuzzy models, and 
(ii) Takagi-Sugeno fuzzy models that are affine with respect to the control ac­

tion. 

A scheme for on-line adaptation of singleton fuzzy models is also discussed. Fur­
thermore, control based on fuzzy compensation is explained, as well as a predic­
tive controller based on a fuzzy model. The chapter concludes with an example of 
pressure control, using the fuzzy model-based control schemes presented. 
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All controllers must satisfy a set of specifications defined by the user. These 
specifications determine the final tuning of the controller parameters. In the 
model-based predictive control scheme, the design specifications are used on-line 
for computing the controller output. In Chapter 8, we present various design spec­
ifications and their translation to design criteria. Design specifications for linear 
and nonlinear systems are discussed. Classical performance specifications includ­
ing input-output specifications, regulation specifications and actuator effort are 
presented. Classical performance criteria are described by using norms and semi-
norms of signals and systems. A generalization to fuzzy performance criteria is 
made when the criteria are defined by using fuzzy sets. 

Model-based predictive control uses the performance criteria on-line to de­
termine a sequence of optimal control signals. When fuzzy performance crite­
ria are used, fuzzy objective functions aggregate the performance information. 
Model-based predictive control by using fuzzy objective functions is presented in 
Chapter 9. It combines fuzzy decision making theory with model-based predic­
tive control (MBPC). The application of fuzzy decision making in the predictive 
control setting has two main design problems, 

(i) the choice of the fuzzy criteria, and 
(ii) the aggregation operators to combine them. 

Both problems are addressed in this chapter. Moreover, fuzzy decision functions 
are used to mimic an experienced operator's control strategy. This approach il­
lustrates how fuzzy decision making provides a mechanism to combine expert 
knowledge with a formal mathematical description. The presented approaches are 
illustrated with several examples, including temperature control and a simulated 
container crane system. 

In Chapter 10, we discuss how on-line optimization can be used in fuzzy 
model-based control. First, MBPC using fuzzy models and classical objective 
functions is addressed. For this situation, the optimization problem is in general 
non-convex. Two methods are presented to cope with this optimization problem, 

(i) branch-and-bound, and 
(ii) genetic algorithms. 

Secondly, optimization in MBPC using fuzzy objective functions is discussed. A 
branch-and-bound algorithm is introduced to deal with optimization using fuzzy 
objective functions. 

In Chapter 11, we discuss a couple of advanced issues for on-line optimiza­
tion in FMBC. First, special conditions under which the optimization by using 
fuzzy objective functions remains convex are presented. Under these conditions, 



16 Fuzzy Decision Making in Modeling and Control. 

efficient optimization algorithms can be used for fast optimization. Second, the 
problem of optimization accuracy and steady-state stability of closed loop is con­
sidered when discrete search methods from Chapter 10 are used for the optimiza­
tion. A solution based on scaling of control alternatives by using a fuzzy gain 
factor is proposed. The value of the fuzzy scaling factor can be determined based 
on a simple decision making mechanism by using fuzzy criteria. 

Application of the control techniques based on fuzzy decision making is pre­
sented in Chapter 12. An air-conditioning system is controlled by using inversion 
control based on Takagi-Sugeno fuzzy models, PID control, MBPC with classical 
objective functions and MBPC with fuzzy objective functions. The performances 
of different methods are compared with one another. 

Finally, several promising directions for future research are presented in Chap­
ter 13. 

The material in this book assumes some degree of familiarity with conven­
tional model-based control design schemes. The reader who is not familiar with 
the model-based predictive control and the internal model control schemes can 
refer to the appendices. Appendix A describes model-based predictive control, 
which is used as the main model-based control methodology in this book. The 
model-plant mismatches that diminish the performance of model-based predic­
tive control are often dealt with using the internal model control (IMC) technique, 
which is described in Appendix B. 



Chapter 2 

Fuzzy Decision Making 

Two main approaches to decision making can be distinguished in literature. 

(1) Descriptive decision making considers a decision as a specific information 
processing process. It studies the cognitive processes that lead to decisions 
and the way information is processed in these processes. For example, the 
ways humans deal with conflicts, perceive the viability of the solutions and 
commit themselves to those solutions are studied (Janis and Mann 1977). De­
scriptive decision making searches for explanations for the ways individuals 
or groups of individuals arrive at decisions so that methods can be developed 
for influencing and guiding the decision process. 

(2) Normative decision making considers a decision as a rational act of choice 
amongst the viable alternatives. This is a prescriptive view which studies 
mathematical theories for modeling decision making (Luce and Raiffa 1957). 
Classical decision making theory, operations research and most technical ap­
plications of decision making follow this approach. Normative decision mak­
ing strives to make the optimal decision, given the available information. 
Hence, it is closely related to the optimization theory. 

Mathematical analysis of control systems and the design of optimal controllers 
play an important role in control engineering. Therefore, the normative approach 
to decision making relates favorably to the control engineering practice. For that 
reason, the normative decision making approach is followed in the rest of this 
book. Most of the contribution of the fuzzy set theory to decision making has also 
been in the context of the normative approach. The theoretical formulation of a 
decision problem in the normative approach considers a decision as a momentary 
act (of choice). The applications of decision making, however, must also con­
sider different aspects, such as data gathering, data analysis, or the reduction of 
complexity. The term 'decision process' is used in the following, when additional 
aspects for the specification of a decision problem in an application are considered 
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in addition to the act of choice. 
This chapter introduces the basics of fuzzy decision making in so far as they 

are of interest for this book. Emphasis lies on multicriteria, individual decisions. 
Single-step decisions are analyzed in detail, but multistage decisions are also con­
sidered when the application requires it. The outline of the chapter is as follows: in 
Sec. 2.1, we briefly discuss the classification of decision making methods; Sec. 2.2 
contains a general framework for decision making, which is valid both for con­
ventional decision making and fuzzy decision making. A general formulation of 
fuzzy decisions is given in Sec. 2.3; multiattribute fuzzy decision making is con­
sidered in detail in Sec. 2.4 since the methods in this book focus on multiattribute 
decision making, the elements of fuzzy multiattribute decisions are explained in 
greater detail; the conclusions and the discussion regarding the chapter are pre­
sented in Sec. 2.5. Note that even though this book concentrates on multiattribute 
decision making, most of the conclusions also apply to multiobjective decision 
making. For that reason, the terms multicriteria (covering both multiattribute and 
multiobjective decision making) and multiattribute decision making are used in­
terchangeably. 

2.1 Classification of decision making methods 

Decision making problems involve many aspects, and depending on the properties 
that one wants to highlight, many classifications for the decision making problems 
are given. The main types of classification for the decision problems are the fol­
lowing. 

• Multistage vs. single-step decisions. The selection of the best alternative 
from the available alternatives can occur in one stage by considering all the 
criteria simultaneously. These constitute the single-step decisions. Alterna­
tively, the decisions may be taken in several steps, possibly iteratively. These 
are multistage decision problems. Multistage decisions can simplify the de­
cision making process by dividing a large problem into smaller single-step 
decision problems which can be managed and analyzed more easily. Many 
control problems fall into this category. 

• Multiperson vs. individual decisions. In many cases, the decision is taken 
by one decision maker who considers only his/her own goals. A decision may 
also require that the goals of a group of decision makers are considered. In that 
case, a multiperson decision is taken where, in addition to the specification of 
decision goals and constraints, one must consider the interaction amongst the 
decision makers and their influence on the decision. This is in general a more 
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complex decision problem, since the decision makers can form different sub­
groups that follow different strategies. Some decision makers may cooperate, 
while others oppose one another. Some may be more dominating, while oth­
ers are submissive. In general, the group dynamics must be taken into account 
in multiperson decision making. These type of decisions are also considered 
in the game theory (Leinfellner and Kohler 1998, Rosenmuller 2000). 

• Multicriteria vs. relatively simple optimization decisions. Many activities, 
such as control, optimization and management, can be formulated as (a set 
of) decision problems. When optimizing, the decision is often based on a 
single criterion or on a set of criteria that are combined with (relatively sim­
ple) mathematical relations such as a summation. Well-known optimization 
methods can then be used for finding the optimal decision. In multicriteria 
decisions, several criteria are also considered, which are often mutually con­
flicting and a trade-off amongst them is needed. Multiple criteria must then 
be combined in a suitable manner. This combination should be sufficiently 
complex to reflect the goals of the decision. Alternatively, a hierarchy of cri­
teria can also be established, and the best decision can be found by gradually 
limiting the solution set at each level of the hierarchy by taking into account 
a new criterion at each stage. 

• Operational vs. exploratory decisions. Operational decisions are character­
ized by well-specified goals and the knowledge of the available alternatives. 
Moreover, the consequences and the rewards of alternatives are known. Since 
the goals of the decision making are known and the rewards can be expressed 
in mathematical terms, it becomes possible to formulate the decision mak­
ing problem as an optimization problem that can be solved numerically. In 
exploratory decisions, in contrast, the goals of the decision are not known 
precisely at the moment that the decision procedure starts. It is also possi­
ble that the available alternatives are not known exactly, and that they only 
become available during the decision making process. The decision making 
then typically consists of a number of iterations which decrease the uncer­
tainty at each iteration and which lead to the specification of decision goals 
and the alternatives. 

• Probabilistic vs. deterministic decisions. When the environment in which 
the decision making takes place is known and when the consequences of the 
alternatives can be specified deterministically, one talks about deterministic 
decisions. It is also possible that some of the quantities that are relevant for de­
cision making are of a probabilistic nature. In that case, one needs to take the 
probabilistic uncertainty into account and consider the expected gains from 
the alternative actions instead of the precise gains. 
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In control applications, the decisions are usually of an operational type since 
the goals are known beforehand. Often, a single controller determines the actions 
that need to be taken, and hence individual decisions are of interest. There are, 
however, multiple criteria to be considered. In feedback control, the controller 
output is determined from the values of the process signals that are fed back to 
the controller. These are often one-step decisions. When prediction is considered, 
or when the controller must be optimized over the system's future behavior, the 
control sequence must be determined for several stages after one another or for a 
sequence of sample instants. Hence, the type of decisions that are of interest in 
control engineering are in general multistage, multicriteria individual operational 
decisions. When the controlled process is deterministic, the decisions taken are 
also deterministic. Vagueness and non-probabilistic uncertainty can be accounted 
for by using decision making methods such as fuzzy decision making. Stochastic 
decision making can be used when the controlled process is stochastic. In the fu­
ture, multiperson decisions are likely to become more important, as decentralized 
control with multiple cooperating controllers (for example, in multiagent control 
systems) are considered more and more. 

2.2 General formulation of decision making 

The normative approach to decision making considers a decision as the selection 
of the best alternative from available alternatives, given the information regarding 
the decision problem and the goals of the decision maker. The decision is often 
formulated as a quintuple (.4,0, E, K, D) (Grabisch et al. 1995). The symbols 
herein are defined as follows. 

• A is the set of alternatives or possible actions. The decision maker is expected 
to make a selection from this set by using the available information. 

• 0 is the set of the states* of the environment in which the decision making 
is taking place. These states are usually not known, although a probability, 
possibility or plausibility distribution may sometimes be available. The states 
of the environment cannot be controlled by the decision maker, but they must 
be dealt with in the decision making process. 

• E is the set of consequences. The consequences result from the choice of a 
particular alternative. An alternative can lead to several consequences, all of 
which may need to be taken into account in multicriteria decision making. In 
that case S is multidimensional. 

*The word 'states' is used here in a different meaning than 'state' in control engineering. The 
states of the environment describe various conditions of the environment in which decisions are taken. 
However, this does not imply that the states give all the information regarding the environment. 
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• K is a mapping . 4 x 0 —• E, which specifies a resulting consequence for 
each element of the set of environment states © and each element of the set of 
alternatives A. E is the set of consequences of the decision alternatives. It is 
assumed that E is known completely and that a consequence can be calculated 
for each alternative-state pair. The space A x 0 defines the solutions for the 
decision problem and it is sometimes also called the solution space. 

• D is the decision function which is defined as D : E —> R. It reflects the 
preference structure of the decision maker. The decision function D incorpo­
rates the goals of the decision maker. It induces a preference ordering on the 
set of consequences S such that 

6 >- & if and only if D (&) > D (&:), (2.1) 

where £i,£j € E and >- is the preference relation, i.e., consequence f j is 
preferred to consequence £j. 

Note that in the deterministic case, K maps each alternative to a consequence, and 
so decision function implicitly induces a preference ordering on A such that for 
alternatives a;, a,j £ A 

at >- a,j if and only if £>(£;) > £>(£,). 

Consider the following simplified decision problem, which illustrates the above 
formulation of the decision problem. 

Example 2.1 A person is driving a car on a cold winter day down a road. Sud­
denly, a dog jumps in front of the car. Suppose that the driver can decide between 
two actions, 

(i) he can break hard, applying full power to the brakes, or 
(ii) he can brake soft, knowing that the car cannot come to a stop before a collision 

with the animal. 

Because it is a cold winter day, it is possible that the road is slippery, but the driver 
has no knowledge of the state of the road. What should the driver do? 

Figure 2.1 depicts the formulation of the decision problem. The set of the 
states of the environment are defined by 

0 = {slippery road, not slippery road}, 

and the set of actions is defined by 

A = {brake soft, brake hard}. 
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The solution space . 4 x 0 has four elements. The mapping K, associates for each 
alternative-state pair a consequence: 

(1) if the road is slippery and the driver brakes soft, he will hit the dog slightly, 
causing minor damage to both the dog and his car; 

(2) if the road is slippery and the driver brakes hard, the car will slip and hit a 
nearby tree, causing major damage to the car; 

(3) if the road is not slippery and the driver brakes soft, he will hit the dog slightly, 
causing minor damage to both the dog and his car; 

(4) if the road is not slippery and the driver brakes hard, he will not hit anything, 
and stop in time. 

Finally, the decision function D maps the consequences to real numbers {D i, D2, 
D3, Di}, which imposes a preference ordering on the solution set. 

hit dog slightly £) 

slip and hit tree D , 

hit dog slightly D ? 

do not hit anything D . 

consequences H • preference 
D ordering 

Fig. 2.1 The basic elements of a decision problem. 

The consequences can also be expressed in terms of several criteria as shown 
in Table 2.1. In that case, D is a mapping from a multidimensional S to R. Since 
the state of the environment is not known by the driver, the decision function 
D should reflect the decision attitude of the driver and his willingness to take 
risks. This decision attitude depends on the expectations of the decision maker 
concerning the uncertainties in the decision making. For example, if the decision 
maker expects that the likelihood of a slippery road is approximately equal to the 
likelihood of a non-slippery road, a risk-aware decision maker will brake softly 
(i.e., minimizes the worst consequence) while a risk-prone decision maker will 
brake hard (i.e., maximizes the best consequence). However, if the decision maker 
expects that the road is much more likely to be non-slippery, then a risk-aware 
attitude may still lead to braking hard. 

states 0 alternatives solution— 
set K 
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Table 2.1 Multidimensional consequences in mul-
ticriteria decision making. 

Damage to 
Consequence car animal tree 

hit dog slightly minor minor none 
slip and hit tree major none minor 
do not hit anything none none none 

In addition to the attitude of the decision maker, the importance of various 
criteria must be taken into account in specifying D. In the example given, for 
instance, the criterion 'damage to tree' can be given a lower importance than the 
other two criteria since the consequences of damage to the tree are not very se­
vere. Hence, the third criterion should have less influence on the outcome of the 
decision making than the other criteria. 

2.3 Fuzzy decisions 

Since the decision making involves the selection of the best available alternative, 
it is usually represented mathematically as an optimization problem. Following 
the formulation of Sec. 2.2, the optimization problem can be specified as follows. 
Consider first, the case where the states 0 of the environment are known to the 
decision maker. In that case, the elements of 0 can be incorporated in the set A, 
so that K is a mapping K : A —> H. The best decision alternative a* is then given 
by 

a* = maxD(/5(a)) (2.2) 
aeA 

where «(a) = [«i(a), • • •, K„(a)]T is a vector function for n different decision 
criteria. The notation Kj(a), a £ A is used to indicate that the mapping /ex­
acts on the variables regarding the alternative a e A. When the states of the 
environment are not known, the results of the decision function for different states 
must be combined by another function h : Rk —>• R, for k different states. The 
optimization problem is then formulated as 

a* = max/i(2?i(K(o, 0 i ) ) , . . . , Dk(K{a, 0*))). (2.3) 
aeA 

It is seen from Eq. (2.3) that the presence of uncertain states does not essen­
tially change the formulation of the decision making problem. The difference lies 
mainly in the definition of the decision functions and the interpretation of the final 
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aggregation function h. For example, if the state uncertainties are given in terms 
of probabilities, the aggregation function represents a combination of probability 
values which can impose certain requirements on the specification of the aggre­
gation function. Hence the states of the decision environment enter the decision 
problem in much the same way as different decision alternatives would. Because 
of this resemblance and for the sake of simplicity, the set of states 0 is assumed to 
be known in the following. In other words, the decision problems under certainty 
are considered, which can be formulated in terms of Eq. (2.2). 

The set A of alternatives can not always be defined explicitly. In many cases, 
this set is defined implicitly by the specification of a number of constraints that 
need to be satisfied. Suppose that in this case the alternatives for a decision prob­
lem can be represented by vectors x £ A C K". The optimization problem can 
then be formulated as 

maximize D(x) 
subject to 5i(x) > 0, i = l ,2, . . . ,Z, 

where <?i(x) are the constraints imposed on the solution. Thus, the decision opti­
mizes the overall decision function D, while the constraints define the set within 
which the search is performed (i.e., they define ^4). In this formulation, there is a 
clear distinction between the goals that are represented in the optimized objective 
function and the constraints. Because of this distinction, this decision model is 
also referred to as the asymmetric model. 

Attention is now paid to fuzzy decision making, which is proposed to deal 
with non-probabilistic uncertainty and vagueness in the environment in which the 
decision making takes place. Two important elements of decision making are the 
goals of the decision that are represented by the maximized objective function 
and the imposed constraints that confine the search space. Fuzzy decision making 
essentially replaces the crisp goals and the constraints with their fuzzy equivalents. 
The following definitions are due to Bellman and Zadeh (1970). 

Definition 2.1 Let A be a given set of possible alternatives which contains a 
solution to a decision making problem under consideration. A fuzzy goal G is a 
fuzzy set on A characterized by its membership function 

HG :A—> [0,1], 

which represents the degree to which the alternatives satisfy the specified decision 
goal. 

In general, a fuzzy goal indicates that a target should be obtained, but it also 
quantifies the degree to which the target is fulfilled. 
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Definition 2.2 Let A be a given set of possible alternatives which contains a 
solution to a decision making problem under consideration. A fuzzy constraint C 
is a fuzzy set on A characterized by its membership function 

HC-A—M0,1], 

which constrains the solution to a fuzzy region within the set of possible solutions. 

A fuzzy constraint is a generalization of a crisp constraint. In fact, the support of 
a fuzzy constraint determines the set of alternatives in which the solution to the 
decision making problem lies. The support defines a crisp set and thus it defines 
the crisp constraints to the problem. The solution set, however, is not the crisp 
constraint set as is the case in conventional optimization. Instead, certain alter­
natives in the solution set satisfy the constraints completely, while others violate 
them to some degree. 

Example 2.2 Suppose that the marketing department of a manufacturing com­
pany is looking for a sales engineer. Suppose further that the company policy 
requires that the recruits have had a few years of experience elsewhere. In con­
ventional decision making, this constraint could be represented in crisp terms by 
a condition such as 'the recruit must have more than three years of work expe­
rience.' Figure 2.2a shows the membership function representation of this crisp 
set. The solution set now includes applicants with three or more years of experi­
ence. The fuzzy set 'a few years of experience' can be represented as shown in 
Fig. 2.2b. In this case, the solution set includes experiences over two years with 
different degrees of membership. 

(J. U. 
more than 3 years 

1 - - I 1 

J I L 

2 3 4 experience 2 3 4 experience 
[years] [years] 

(a) Crisp (b) Fuzzy 

Fig. 2.2 Crisp and fuzzy representation of a few years of work experience. 

a few years 
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Realizing that a decision should satisfy the decision goals as well as the decision 
constraints, Bellman and Zadeh (1970) suggested the following model for the 
fuzzy decision. 

Definition 2.3 Let A be a given set of possible alternatives which contains a so­
lution to a decision making problem under consideration. Let G be the set of fuzzy 
goals for the decision, represented by the membership function /x G (a), a € A, 
and let C be the set of fuzzy constraints represented by the membership function 
He (a), a £ A- Then the fuzzy decision F results from the intersection of the 
fuzzy decision goals and the fuzzy constraints, i.e. 

F = GnC. (2.5) 

The fuzzy decision is characterized by its membership function 

tip(a) = HG{O) A nc(a) a € A, (2.6) 

where A denotes the minimum operation. 

Definition 2.4 The optimal decision a * in fuzzy decision making is the decision 
with the largest membership value, also called the maximizing decision, which is 
defined by 

a* = arg maxfjG(a) A fj,c(a)- (2.7) 

It is important to realize that the distinction between the goals and the constraints 
disappears in this model. Essentially, both the goals and the constraints are rep­
resented by membership functions denned on the set of possible alternatives. The 
decision function (the conjunction in the model) makes an appropriate combina­
tion of the goals and the constraints. Because of the symmetry between the goals 
and the constraints, this model is sometimes called a symmetric model. Since both 
the goals and the constraints are represented by fuzzy sets, it is quite possible that 
the goals are achieved only partially while the constraints are violated slightly, as 
the following simplified example shows. 

Example 2.3 A patient with hepatitis-C is going to receive interferon therapy. 
The medical specialist has to determine the optimum dosage of interferon a that 
the patient will get. The goal is to give as much of the drug as needed for efficiently 
counteracting the virus. However, the dosage is constrained by the negative effects 
of the drug on the body, especially the liver. Figure 2.3 shows the fuzzy sets that 
represent the fuzzy goal and the fuzzy constraint of the decision. 

The set of alternatives A is the set of possible dosage values, represented here 
by real numbers. In general, more medicine is better. Thus, the goal is to admin­
ister as much medicine as possible. There is, however, a minimum amount below 
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Large dosage (fuzzy goal) 

maximizing decision interferon dosage [mg] 

Fig. 2.3 Fuzzy decision for dosage determination in interferon therapy. 

which the medicine has no influence and a maximum amount above which the ef­
fectiveness of the treatment does not increase any more. The constraint indicates 
that above a certain dosage the acceptability of the interferon therapy starts to de­
crease due to its adverse influence on the internal organs, up to a maximum value 
beyond which death would follow. Assuming that the goal and the constraint can 
be represented by the fuzzy sets that are depicted in Fig. 2.3, the optimal decision 
(i.e., the optimal dosage) is given as shown in the figure. 

2.4 Fuzzy multiattribute decision making 

Multiattribute decision making is concerned with the selection of a decision alter­
native out of a finite and countable set of alternatives, taking into account multiple 
criteria that are of importance for the decision. Although the decision problem 
is essentially the same as in the multiobjective decision problems, the solution 
methods are more varied as the decision alternatives that need to be considered 
are known beforehand. Because of this knowledge, multiattribute decisions are 
used for modeling selection problems. This type of decision problem is denoted 
here by the term discrete choice problem. 

Fuzzy multiattribute decision theory applies fuzzy set theory to solve the dis­
crete choice problem which is concerned with the selection of the most suitable 
alternative out of a given set of possible alternatives, based on a number of de­
cision criteria. The principle elements of the fuzzy set approach to the discrete 
choice problem can be summarized as follows. 

• The set of alternatives. 
• The set of goals and/or constraints (criteria) upon which the decisions are 

based. 
• The judgments (ratings or membership values) per alternative per criterion, 
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which indicate the satisfaction of the criteria by the alternative. 
• The weight factors, which indicate the importance that the decision maker 

attaches to various goals and/or constraints. 
• A performance function, which orders the set of alternatives according to the 

satisfaction of the goals and/or constraints. 
• An ordering mechanism for the ranking of alternatives. 

Yager (1978) has proposed a fuzzy multiattribute decision making model, where 
the judgments are crisp numbers that are obtained from the membership of the 
alternatives to the fuzzy criteria. This model is used in the rest of this book. Other 
fuzzy multiattribute decision making models consider fuzzy judgments and possi­
bly fuzzy weight factors. An extension of Yager's model with fuzzy evaluations is 
obtained when one uses type II fuzzy sets for specifying the fuzzy criteria. Type II 
fuzzy sets and their use in Yager's fuzzy decision model are not considered in this 
book. Below, the elements of Yager's model are reviewed in more detail. 

2.4.1 Alternatives 

The aim of the decision process is the selection of an alternative out of a set A of 
possible alternatives. This set has as its elements the possible outcomes a,i,i = 
1 , . . . , m of the decision process that is under consideration, i.e., 

A = {ai,... , a m } . 

The set does not contain all the alternatives that may exist in the world, but only 
those that are available to the decision maker within the given context. The pre­
selection of the available alternatives occurs during the structuring of the decision 
problem. Theoretically, additional alternatives might be thought of, but they will 
not be available to the decision maker. It is assumed that the alternatives possess 
properties which allow them to be compared with one another, so that the decision 
process can lead to a justified selection. These properties are expressed by the 
decision criteria. 

Example 2.4 The fan of a temperature control system has four different velocity 
settings. A decision system can be used to determine the velocity setting that 
should be used. The alternative set consists of four velocity settings which are 
dictated by the system. The settings can be compared with one another based on 
various criteria, such as the power consumption of the setting and the expected 
drop in the temperature due to the setting. 
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2.4.2 Decision criteria 

The decision is taken based upon a number of decision criteria. The best alterna­
tive is selected according to the degree to which the decision criteria are satisfied. 
In fuzzy decision making, the criteria consist of the decision goals and the con­
straints which are treated equivalently following the Bellman-Zadeh approach to 
fuzzy decision making. In terms of the general formulation of a decision prob­
lem, the criteria represent different aspects of the set of consequences E. Let the 
decision criteria form the set 

Z = {(,,...,Cn}-

In order to compare the alternatives, it must be possible to evaluate them for dif­
ferent criteria. This implies that a function gj can be specified for each criterion 
such that the mapping 

gj-.A-^Xj, j = l,...,n (2.8) 

describes the values that the alternatives take on the variable form of the criterion. 
Herein, X, is the domain over which the variable form of the criterion j is defined. 
The selection of the criteria outlines the structure of the decision problem and 
must be determined carefully by the decision maker by studying various factors 
that have influence on the outcome of the decision. 

Example 2.5 Consider again the temperature control system of Example 2.4 
with four fan settings. The criterion 'power consumption', for example, can lead 
to the following function values <j\ (o^), i = 1,2,3,4. 

§ i ( a i ) = 0 W si(a2) = 10W g1(a3) = 25W gx(a4) = 50 W. (2.9) 

X\ in this example is the set of (non-negative) power consumption values. 

2.4.3 Membership values 

In order to be able to evaluate the alternatives based on the criteria, it should be 
known how the preference of the decision maker varies with the variable form of 
the criterion. For instance, if price is a decision criterion, it should be known what 
prices are acceptable for the decision maker and what prices are not. This infor­
mation leads to a judgment for each alternative for each criterion, which indicates 
the desirability of the alternative in the corresponding criterion. In fuzzy decision 
making, the judgment information is usually provided in the form of membership 
values fiij which indicate the degree of satisfaction of the decision maker for each 
criterion. The membership values fj,ij for each alternative at and criterion (j can 
be obtained by using membership functions that represent the fuzzy criteria. The 
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membership values indicate how much that alternative satisfies the particular cri­
terion. Hence, the term membership value is often used to denote the judgments 
in fuzzy decision making. The judgment information can be summarized in an 
evaluation matrix which looks like 

Cl • •• Cn 

a-i / Mn • ' • A*in \ 

: : : • ( 2 1 ° ) 

When a membership function cannot be specified explicitly (e.g.in dealing with 
data that is subjective or difficult to measure), the membership values / i y can be 
determined directly by the decision maker and filled into the evaluation matrix. 

The membership functions, from which the judgments are obtained, define 
fuzzy sets on the variable form of the criterion. The membership functions are 
given by the mappings 

Hj : Xj—> [0,1], j = l,...,n. (2.11) 

By evaluating the membership of the alternatives to this fuzzy set, a fuzzy set Fj 
is defined on the set A of alternatives. The membership function of Fj is given by 

VFj (a») = Vj(9j(ai)) = mj, i = l,...,m. (2.12) 

Each column of the evaluation matrix represents a fuzzy set Fj. The decision 
problem is the aggregation of the fuzzy sets Fj,j = 1 , . . . , n into the overall 
fuzzy decision F. The evaluation matrix thus fixes the structure of the decision 
problem. 

Example 2.6 One of the design goals for an electromagnetic component is its 
mass. Suppose that a design goal is defined as ' the mass of the component should 
be about 400g' . This goal can be represented by a fuzzy set as shown in Fig. 2.4, 
which denotes the satisfaction of the criterion as a function of g j(a) G Xj, where 
Xj denotes the set of all possible component mass values. The fuzzy set 'about 
400g' can also be interpreted as a definition of a fuzzy state. 

Figure 2.4 also shows four alternatives with various mass. The fuzzy set Fj is 
then given by 

Fj = { (380 ,0 .6) , (400 ,1 ) , (425,0 .5) , ( 475 ,0 )} . (2.13) 
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about 400g 

I A X , : i , _ 
v 350 380 400 425 450 475 

component mass [g] 

Fig. 2.4 Definition of fuzzy goal "about 400g". 

2.4.4 Weight factors 

Usually the decision criteria are not equally important for a particular decision 
problem. In this case, the criteria should have different influences on the result of 
the decision. More important criteria should influence the outcome of the decision 
more than the less important criteria. The difference in the importance of the 
criteria can be modeled by the introduction of weight factors into the decision 
problem. It is then possible to assign different weight factors to different criteria in 
order to model the difference in the importance of the decision criteria. The weight 
factors bring additional flexibility to the formulation of the decision problem by 
disturbing the symmetry between the criteria. 

2.4.5 Aggregation function 

When the evaluation matrix for a particular decision is determined and the corre­
sponding weight factors are known, the structure of the discrete choice problem is 
fixed. At this point, the information about the alternatives needs to be combined 
in order to determine the overall suitability of the alternative. This is done by an 
aggregation function 

Dw{na,...,fj,in),i = l,...,m (2.14) 

which is a function of the n membership values, n weight factors and possi­
bly other (external) parameters. Note that this corresponds to the aggregation 
of columns inEq. (2.10). 

In fuzzy decision making, the aggregation function D is often a suitable ag­
gregation operator with which the fuzzy sets Fj,j = 1 , . . . , n defined over A are 
combined. Since membership values lie in the unit interval, D is a mapping 

D:In —>I, (2.15) 

where I denotes the unit interval. The aggregation function in fuzzy decision mak-
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ing is usually called the decision function. The decision function should reflect the 
aims of the decision maker. Hence, it can be interpreted as a suitable translation of 
the goals of the decision into a mathematical representation. The decision maker 
may choose a decision function that suits his purposes. Furthermore, certain deci­
sion functions may be more suitable for certain types of decision problems. Hence 
the selection of a suitable decision function involves some flexibility and different 
possibilities exist. Consequently, many possible decision functions have been sug­
gested in literature. The aggregation function may consist of a single aggregation 
operator from the fuzzy set theory, or it can be a combination of these operators. 
More information about the decision functions is given in Chapter 3. The deci­
sion function leads to the fuzzy decision F, which is defined as follows (following 
Bellman and Zadeh (1970)). 

Definition 2.5 The aggregated fuzzy decision in multiattribute fuzzy decision 
making is a fuzzy set F defined on A and obtained by the combination of individ­
ual fuzzy criteria Fj,j = 1 , . . . , n, i.e., 

F = Dvl(F1,...,Fn). (2.16) 

2.4.6 Ranking 

Since the aggregated result is a fuzzy set defined on A, the maximizing decision 
is found by finding the height of F. The decision function assigns a value to 
each alternative, which indicates the overall suitability of the particular alternative. 
When this is a crisp value, the ordering of the combined judgments corresponds 
to the ranking of the alternatives such that 

Diflk) > D(ai) <£=> ak >- ax 

or equivalently, 

fJ-F{ak) > t*F(ai) «=>• ak y ai, 

where >- represents the preference relation. The relation D(a,h) indicates that the 
value of the function D is obtained from information regarding the alternative a /.. 
D can be a multivariable function. The function D is said to impose a preference 
ordering on the set of alternatives. 

It is also possible that the outcome of the decision function is a fuzzy set itself. 
This is the case when the fuzzy sets Fj are of type II. When Fj are type II fuzzy 
sets, D is a mapping 

£>:-P([0,l]n)—+7>([0,1]), (2.17) 
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where V([0,1]) denotes the set of all fuzzy subsets of the unit interval. In that 
case, there is not a total ordering structure of the alternatives that uniquely de­
termines the ranking. The partial ordering of the fuzzy evaluations must then be 
considered in order to determine the best alternative. This procedure is a decision 
making process itself and resembles the defuzzification procedure for the fuzzy 
controllers. The ranking of fuzzy evaluations has been the subject of many re­
search texts. Baas and Kwakernaak (1977), Bortolan and Degani (1985), Buckley 
(1985), Chen (1985), Dias Jr. (1993), Dubois and Prade (1983), Kim and Park 
(1990), Liou and Wang (1992) and Tseng and Klein (1989) are several references 
on the subject. 

2.4.7 Overview of the decision model 

Given the described elements of fuzzy multiattribute decision making, the solution 
procedure can be summarized as follows. 

• Determine the set of alternatives A — {ai, 02 , . . . , a j , . . . , am}. 
• Determine the set of criteria (goals and constraints) Z = {Ci j C2, • - •» 

01 • • • > Cn}> which will be used to evaluate the alternatives. 
• Determine the mappings cjj and evaluate gj(a,i),i = l,...,m,j = 1 , . . . , n. 
• Determine the fuzzy sets Fj,j — l , . . . , n by using the mappings fij, 

j = 1 , . . . , n and establish the evaluation matrix with judgments fiij, i = 
l,...,m,j = l,...,n. 

• Determine mutual importances Wj, j — 1 , . . . , n of the criteria. The decision 
problem is now represented by the following parameters. 

Ci • 

W\ • 

Ol / i n • 

0-m IMnl 

•• Cn 

•• Wn 

• • Mln 

\l"mn 

• Determine the final fuzzy decision F by evaluating the mapping 

£>w(Mii,---,Min), i = l , . . . , m . 
• Select the alternative that maximizes D (i.e., the maximal element of F). 

The following example illustrates various stages of fuzzy multiattribute deci­
sion making. 
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Example 2.7 Consider a simplified design problem for an electromagnetic com­
ponent such as an inductor. An inductor should satisfy certain criteria in order to 
be suitable for a particular application. Suppose that the component mass should 
be about 400g, while the cost should be small. First, several possible design al­
ternatives must be determined. These alternatives are to be considered further in 
the decision process. Assume that four possible design alternatives, a\, a2, a3, 
and 04 are available for consideration. The set of alternatives is thus given by 
A = {01,02,03,04}. The decision criteria are (1, 'mass about 400g\ and £2, 
'small component cost'. Hence, Z - {Ci, (2}- The mapping 51 now corresponds 
to the measurement of the mass, and the mapping 52 corresponds to the evaluation 
of the price of the component. For each of the alternatives, the mass and the cost 
of the component are evaluated. Suppose that the following values are found. 

Si(ai) = 380g 51 (a2) = 400g 51 (a3) = 475g 51(04) = 425g 
52(01) = $2.50 52(02) = $3.50 52(03) = $2.00 52(04) = $2.25. 

The fuzzy decision criteria are represented by their membership functions. Fig­
ure 2.5 shows the membership functions that might be used for representing 'about 
400g' and 'small component cost'. Fuzzy sets Fj can now be determined by using 

380 400 425 450 475 
component mass [g] 

small component cost 

2.00 2.50 3.00 
component cost [$] 

(a)About400g (b) Small cost 

Fig. 2.5 Membership functions for two decision criteria. 

Eq. (2.12). One obtains the following fuzzy sets from the membership functions 
in Fig. 2.5, and the evaluations of component mass and component cost. 

Fi = {(380,0.6), (400,1), (475,0), (425,0.5)} 

F2 = {(2.50,0.5), (3.50,0), (2.00,1), (2.25,0.75)}. 

We assume that both criteria are equally important for the designer. Hence, the 
weight factors are set to wi = 1 and w2 = 1. The decision problem is now 
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represented by the following matrix. 

alternative 

criterion 
Wi = 1 W2 — 

Cl C2 

1 

ai 0.6 0.5 
a2 1 0 
as 0 1 
a4 0.5 0.75 

Empirical studies have shown that geometric mean is a suitable decision func­
tion for aggregating information in this design problem (Holt et al. 1997). When 
we use the geometric mean as the decision function, the final fuzzy decision F 
becomes 

F = {(oi, 0.55), (02,0), (a3,0), (04,0.61)}. 

The decision that maximizes F is thus 04, which is selected as the best decision 
alternative in this design problem. 

2.4.8 Relationship to other decision methods 

A detailed treatise of the fuzzy multiattribute decision model described in previous 
paragraphs can be found in Chen and Hwang (1992). The model is related to other 
methods known from the decision making theory. The membership functions from 
which the judgments are obtained can be compared to the utility functions in util­
ity theory (Keeney and Raiffa 1976, Hwang and Masud 1979). By measuring the 
degree of satisfaction of a criterion by an alternative, the membership function 
fulfills a role similar to the utility that is obtained from the alternative. In utility 
theory, one tries to maximize the utility to be obtained from the possible alter­
natives. This corresponds to a maximizing decision. One of the multiattribute 
utility techniques that is used in literature is SMART (simple multiattribute rating 
technique) of Edwards (1977). In SMART, the judgments are elicited by a rating 
technique and the results aggregated using the weighted arithmetic mean opera­
tor (von Winterfeldt and Edwards 1986). The weight factors are normalized such 
that the sum of the weight factors is equal to 1. The fuzzy set approach follows 
a similar path, but uses operators from the fuzzy set theory for the aggregation 
step, so that more flexible aggregation behavior can be modeled. Moreover, the 
weight factors can be normalized in various ways, depending on the requirements 
of the decision problem. In addition to the rating techniques, the judgments can 
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also be elicited by pairwise comparisons. This method requires more input from 
the decision maker, but in some cases it may be more reliable. 

2.5 Summary and concluding remarks 

Various classifications can be given for decision making problems depending on 
different aspects of the problem. Often, the decision problems are classified based 
on the number of decision stages, the number of decision makers, the number of 
decision criteria, the type of the decision problem and the type of uncertainty in 
the decision. Control applications often deal with multistage or single stage, sin­
gle decision maker, multicriteria operational decisions. These decisions can be 
formulated as the selection of the best alternative out of a set of possible alterna­
tives by considering a set of criteria. The ranking of the alternatives is determined 
by a decision function which maps the consequence of selecting a particular al­
ternative to a real number. In fuzzy decision making, the consequence of an al­
ternative is determined by its membership to the decision goals and constraints, 
and the aggregation operators for fuzzy sets from the fuzzy set theory are used as 
the decision functions. In this setting, the fuzzy decision making is formulated 
according to Bellman and Zadeh's symmetric model, in which the (fuzzy) deci­
sion goals and the (fuzzy) decision constraints are treated as equivalent concepts. 
Fuzzy multiattribute decision making also uses Bellman and Zadeh's approach to 
fuzzy decisions. Its basic elements are a countable and finite set of alternatives, 
a countable and finite set of criteria, judgments that indicate how each alternative 
satisfies each criterion, the weight factors and the decision function. This decision 
making model considers only type-I fuzzy sets for representing the uncertainty in 
the decision problem. The extension to type-II fuzzy sets is the subject of current 
research, as discussed in Mendel (2000) or Tiirksen (1999). 



Chapter 3 

Fuzzy Decision Functions 

The decision function reflects the aims of the decision maker for the decision 
process. The decision function depends on the type of aggregation required, the 
subjective goals of the decision maker and the boundary conditions imposed on 
the solution. Fuzzy decision making uses aggregation operators on fuzzy sets for 
obtaining different types of decision functions. This chapter gives an overview of 
the available aggregation operators for working with fuzzy sets, and it describes 
the most common type of aggregation behavior used in fuzzy decision making. 
These operators are considered in detail in so far as they are relevant to this book. 
Others are mentioned mainly for comprehensiveness. 

The outline of the chapter is as follows: Sec. 3.1 discusses the main types of 
aggregation used in fuzzy decision making; Sec. 3.2 to Sec. 3.4 discuss different 
types of fuzzy aggregation operators that can be used in fuzzy decision making; 
weighted aggregation of decision criteria is considered in Sec. 3.5; finally, the 
conclusions of the chapter are presented in Sec. 3.6. 

3.1 Main types of aggregation 

Following the Bellman and Zadeh (1970) approach, the final fuzzy decision in 
fuzzy multiattribute decision making is arrived at by a confluence of the deci­
sion criteria, i.e., the decision goals and constraints. Initially, the decision criteria 
were combined by the minimum operator, which models a conjunctive aggre­
gation of the criteria. Nowadays, however, it is widely accepted that any suit­
able aggregation of fuzzy sets may be used in fuzzy decision making. Conse­
quently, many aggregation operators have been proposed in literature (Bellman 
and Zadeh 1970, Dubois and Prade 1985, Dubois and Prade 1988, Dyckhoff and 
Pedrycz 1984, Mizumoto 1989b, van Nauta Lemke et al. 1983, Yager 1978, Yager 
1988, Zadeh 1973, Zimmermann and Zysno 1980, Zimmermann 1987). These 

37 



38 Fuzzy Decision Making in Modeling and Control 

operators are used for modeling different types of decision behavior, and the de­
cision maker may choose a decision function that best reflects the goals of the 
decision. 

The following three types of aggregation are used most commonly in fuzzy 
decision making. 

(1) Conjunctive aggregation of criteria 
(2) Disjunctive aggregation of criteria 
(3) Compensatory aggregation of criteria 

Conjunctive aggregation of criteria implies simultaneous satisfaction of all deci­
sion criteria, while the disjunctive aggregation implies full compensation amongst 
the criteria. The compensatory aggregation is more suitable for dealing with con­
flicting criteria or with human aggregation behavior. 

Example 3.1 Consider a linear, open-loop dynamic system described by the 
transfer function 

U(S) 8(8 + 0.5)' V ' 

Suppose that the designer has to choose from three controllers. The step responses 
of the closed loop system have been plotted in Fig. 3.1. 

The selection criteria are 'small overshoot' and 'fast settling time'. Con­
troller 1 leads to the highest overshoot, but it is also the fastest. Controller 2 shows 
somewhat less overshoot, but it is also slower than Controller 1. Controller 3 leads 
to a response without overshoot but it is very slow. Assume that this information 
leads to the following judgments. 

controller 

1 
2 
3 

criterion 
small overshoot fast settling time 

0.2 0.9 
0.4 0.6 
1 0 

The decision maker may want the closed-loop step response to have 'small over­
shoot' and 'small settling time'. The minimum operator can be used for this type 
of aggregation. Then, Controller 2 is selected as the best alternative since it scores 
best in the worst criterion. Alternatively, the decision maker may want the closed-
loop step response to have 'small overshoot' or 'small settling time'. In contrast 
to the former conjunctive decision behavior, the latter is a disjunctive decision be­
havior which can be modeled by the maximum operator. In that case, Controller 3 
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0.8 

:0.6 

0.4 

0.2 
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Controller 1 \ 
/ \ ; Controller 2 

..../.... 

/ ; /""Controller 3 

8 10 12 
time [s] 

14 16 18 20 

Fig. 3.1 Closed-loop step responses of three controllers for the system of Eq. (3.1). 

is selected as the best alternative. 

It may also be the case that the decision maker seeks compensatory decision be­
havior. When there are conflicting criteria, this type of aggregation may inherently 
be more suitable. In that case, are the boundary conditions on the decision, rather 
than the personal preferences of the decision maker that determine the choice of 
the decision function. 

Example 3.2 Consider again the system given in Eq. (3.1). The decision maker 
now decides that a good characteristic for one of the criteria partially compensates 
for a bad characteristic of the other one. Some overshoot can be tolerated if the 
system becomes faster by doing so. In this case, the arithmetic mean can be used 
to aggregate the judgments. Controller 1 is then selected as the best alternative 
since the slight performance decrease in the overshoot compared to Controller 2 
is compensated for by the large increase in the speed of response. 

Fuzzy decision theory allows more complicated types of aggregation as well. For 
example, it is possible to use fuzzy quantifiers such as most, some and several to 
specify the decision goals. 
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Example 3.3 In designing an electromagnetic component, several criteria or at­
tributes have to be considered, such as the peak flux density, the air-gap volume, 
total power loss of the component, its volume and mass, and the cost. Most of 
these criteria are conflicting and a trade-off amongst them is often necessary. Al­
ternatively, the decision maker may decide to satisfy most of the criteria where the 
fuzzy quantifier most is defined by the decision maker. The ability to deal with 
fuzzy quantifiers is unique to fuzzy decision making. 

Clearly, the selection of a decision function is of vital importance for the outcome 
of the decision model. For that reason it is important to study classes of aggre­
gation operators that can be used as decision functions in fuzzy decision making, 
so that the properties of these operations and the type of decision behavior they 
model can be established. Fuzzy set theory provides the decision maker with a 
wide range of mathematical operators to model various types of decision behav­
ior. The next sections consider important classes of fuzzy aggregation operators. 

3.2 Triangular norms and conorms 

3.2.1 Triangular norms 

A triangular norm (t-norm) is a binary operation T : [0,1]2 —> [0,1] that satisfies 
the following conditions for all /ii , /X2, M3i A*4 £ [0,1]. 

(1) boundary conditions: 
T(0,0) = 0 ,T( A i 1 , l )=T( l , / i 1 ) = /ii, 

(2) commutativity: 
T(/il,M2) =T(fi2,fii), 

(3) monotone increasing: 

(4) associativity: 

T(/i1,T(/i2,M3)) = T(T( /i1)M2),M3). 

T-norms are fuzzy set versions of the intersection operation on sets. In this 
sense, they are used for conjunctive type of aggregation. This is the type of ag­
gregation when the decision maker wants to satisfy all the decision criteria si­
multaneously. Since simultaneous satisfaction of criteria can only lead to further 
constraint of the decision set, the addition of more criteria, in general, decreases 
the value of the overall aggregation. This is indicated by the following property 

T{n\,H2j < min(^i,/i2). (3.2) 
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In other words, the minimum operator is the largest t-norm. Values aggregated 
by other t-norms cannot be larger than the minimum of the values. A very large 
number of t-norms are known from the theory. Several important t-norms are: 
the minimum operator 

T(/ii,/i2) - min(^i,/i2), (3.3) 

the product operator 

T{fJ,i,H2) = Mi -M2, (3-4) 

and the bounded difference 

T(^i, / i2) = max(0,/ii+M2 - !)• (3-5) 

In addition to the above operators, there are also families of t-norms. These are 
parametric operators which generate a large number of t-norms when the parame­
ter values are varied. Several classes of t-norms that are also used in this book are 
the Yager t-norm 

r ( M l , / i 2 ) = m a X ( 0 , l - [ ( l - M l ) T + ( l - / / 2 n 1 / T ) , 7 > 0 , (3.6) 

the Hamacher t-norm 

T(W )^) = - — - r/^5 r, 7 > 0 , (3.7) 
7 + ( 1 - 7 ) ( M I +II2 -M1M2) 

the Schweizer and Skalar t-norm, 

T^ufi2) = l - [ ( l - M l ) T + ( l - M 2 ) T - ( l - M i ) 7 ( l - M 2 ) 7 ] 1 / T , 7 > 0. (3.8) 

and the Dubois t-norm, 

T(Ml,/x2) = — » — , 7 e [ 0 , l ] . (3.9) 
Mi V H2 V 7 

The Dubois t-norm is interesting as it is a combination of the product operator 
and the minimum operator. When /n,/u2 £ [0,7], the aggregation is a scaled 
product operator, otherwise it is equal to the minimum operator. For an axiomatic 
definition of t-norms, the reader is referred to Dubois and Prade (1985), Klir and 
Yuan (1995) and Mizumoto (1989a). Other references to t-norms include Yager 
(1980), Giles (1976), Dubois and Prade (1988) and Dombi (1982). 
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3.2.2 Triangular co-norms 

A triangular conorm (t-conorm) is a binary operation S : [0,1]2 —> [0,1] that 
satisfies the following conditions for all Hi,(i2, M3> M4 € [0,1]. 

(1) boundary conditions: 

S ( 1 , 1 ) = 1 ,SGUI ,0) = S ( 0 , M I ) = MI, 
(2) commutativity: 

5(/il,^2) = S(/J,2,Vl), 
(3) monotone increasing: 

Ml < M2,M3 < M4 => S{fJ,l,fl3) < S(lJ,2,Hi), 
(4) associativity: 

S(/ii,5(/i2,M3)) = S(5(^i,/x2),M3). 

T-conorms are fuzzy set versions of the union operation on sets. In this sense, 
they are used for disjunctive type of aggregation. This is the type of aggregation 
when the decision maker wants to satisfy at least one decision criterion. Hence, 
this is a case of extreme compensation, where good performance in one of the 
criteria can compensate for poor performance in all the remaining criteria. Since 
good performance can compensate for poor performance, no matter how the al­
ternative scores in the remaining criteria, the aggregation result can only increase 
when more criteria are considered. This is indicated by the following property 

S (1*1,1*2) > max(/ii,/i2). (3.10) 

In other words, the maximum operator is the smallest t-conorm. Values aggregated 
by other t-conorms cannot be smaller than the maximum of the values. 

T-norms and t-conorms are related to each other according to the expression 

T( /x1,M2) = -n(S(-(/i1) )-(M2))), (3.11) 

where ->(/ii) denotes the complement of /xi. A triple {T, S, ->} which satisfies 
Eq. (3.11) constitutes a De Morgan triple where the t-norm T is said to be the 
dual of the t-conorm S with respect to fuzzy complement ->. When Zadeh's com­
plement -i(^i) — 1 — /Ui is used, Eq. (3.11) becomes 

T(/ii,Ai2) = l - 5 ( l - / i i , l - M 2 ) , or (3.12) 

S(ni,f*2) = l-T(l-fi1,l-n2)- (3-13) 

Because of the duality relation between the t-norms and the t-conorms, a very 
large number of t-conorms are also known from the theory. Below, the duals of 
the t-norms of Sec. 3.2.1 are given according to Eq. (3.13). The following are also 
the most important t-conorms that are used in literature, such as 
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the maximum operator 

5(/ii,/i2) =max(/ i i , / i2) , (3.14) 

the algebraic sum 

S(ni,fi2) = Mi +M2 -M1M2, (3.15) 

and the bounded sum 

S(/J,i,fi2) = min(/xi + /z2 , l). (3.16) 

In addition to the above operators, there are also families of t-conorms. These 
are parametric operators which generate a large number of t-conorms when the 
parameter values are varied. Several classes of t-conorms are the Yager t-conorm 

5(/i1)/x2) = min(l,( /i7 + ^ ) 1 / 7 ) , 7 > 0 , (3.17) 

the Hamacher t-conorm 

S{,1,,2) = ^±f±h-Z3BEli 7 > 0 , (3.18) 
1 + ( 7 - l)/Lil/i2 

and the Schweizer and Skalar t-conorm 

S(Ml)M2) = (/4 + ^ - / i M ) 1 / 7 , 7 > 0 . (3.19) 

Because of the duality between t-norms and t-conorms, most of the literature on 
t-norms also considers the t-conorms. Hence, the interested reader is referred to 
references in Sec. 3.2.1. 

3.3 Averaging and compensatory operators 

3.3.1 Averaging operators 

T-norms and t-conorms model simultaneous satisfaction of criteria and complete 
compensation amongst criteria, respectively. Usually, however, the decision be­
havior does not fall into one of these extreme cases. Instead, some kind of com­
pensation amongst criteria is desired, so that good characteristics of an alternative 
compensate partially for the poor characteristics. Averaging operators model this 
compensatory decision behavior. Given fi 1 ; /x2, /U3, /U4 6 [0,1], averaging opera­
tors satisfy the following conditions 

(1) idempotent: 
M(/i1;/xi) = /JI , 
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(2) commutativity: 
M ( / i i , / i 2 ) = M(/ i 2 ,Mi) , 

(3) monotone increasing: 
Ml < ^2,^3 < M4 => M(jUi,/i3) < M(/i2,/i4) 

which imply 

min(/ui,/i2) < M(/ii,/Z2) < max(pi,/z2). (3.20) 

Unlike the t-norms and the t-conorms, the averaging operators are not associa­
tive (except for the medians). Because of the compensation, the output is always 
between the minimum and the maximum elements. 

Unlike the t-norms which model conjunctive aggregation (intersection) and 
the t-conorms which model disjunctive aggregation (union), the averaging opera­
tion has no counterpart in conventional set theory. The concept of partial member­
ship to a set allows the calculation of the mean of two sets. Since most averaging 
operators are not associative, it is customary to consider the formulae for the n-ary 
operator instead of the binary operator. The averaging operator with n arguments 
is a mapping 

M : E" —> K, (3.21) 

that is idempotent, commutative and non-decreasing in each component. A partic­
ular type of averaging operators are the medians. Medians are the only associative 
averaging operators and are defined as follows (Grabisch et al. 1995). 

Definition 3.1 Given n different numbers / z i , . . . , /j,n with (ii < •.. < [in, their 
median is defined as 

f Mn+i if n is odd 
med{m,...,nn) = < 1 2 (3.22) 

{ i O f +Mf+i) if n is even. 

Kolmogorov (1968) has studied the class of all decomposable continuous av­
eraging operators given by 

r( /* l , . . . ,Mn) = / X I -]T)/(Mj) f ' 

where / is a continuous, strictly monotonic function. A special case of this class 
of operators is the generalized averaging operator, sometimes also known as the 
Minkovski operator (Hardy et al. 1973). The generalized averaging operator is 
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obtained from Eq. (3.23) by substituting /i J, fj,j > 0 for f(fij). One obtains 

M7(/i!,. . . ,Mn) = < - ^ / i , - 7 > , fij>0, 7 £ K \ M (3-24) 

and 

n 

M7 = 0(/ii , . . . , nn) A J J Mj1/n (3-25) 

with 

M 7< 0( / i i , . . . , / i„) A 0, if3/ij = 0,j = l , . . . , n . (3.26) 

The generalized averaging operator generalizes a large number of averaging 
operators. Well-known special cases of the generalized averaging operator are 

n 

M7_>_0 O(^i , . . . , (j,n) = A fij, the minimum operator (3.27) 

M 7 = _ i ( / i i , . . . ,//„) = —^ j - , the harmonic mean (3.28) 

n 

M 7 = o( / i i , . . . , /in) = TT Mj1 > the geometric mean (3.29) 

1 n 

M 7 = j (jUi,..., /i„) = — Y_] /ij, the arithmetic mean (3.30) 
n j = i 

1 ™ 
M7 = 2(/xi , . . . , /xn) = — T^Mj2! the quadratic mean (3.31) 

\ U i=i 

n 

Mj-toodii,... ,jj.n) = \J A*j, the maximum operator. (3.32) 
3=1 

The well-known averaging operators satisfy 

M 7 ^ _ 0 0 < M 7 = _i < M 7 = 0 < M 7 = i < M 7 = 2 < M 7 ^ 0 0 . (3.33) 

In fact, it is known from literature (Hardy et al. 1973) that Eq. (3.24) is monotonic 
non-decreasing in 7, i.e., 

7 < 7 ' <=> My<MY. (3.34) 
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As the value of 7 increases from -00 to 00, the influence of the larger operand 
values on the aggregated result increases. When the averaging operator is used 
as a decision function, good characteristics of an alternative are emphasized for 
positive large 7 values, while poor characteristics are emphasized for negative 
large values. For that reason, one can interpret the parameter 7 as a characteristic 
index of optimism of the decision maker (Kaymak and van Nauta Lemke 1993). 

Similar to the duality between t-norms and the t-conorms, averaging operators 
also have their dual. The dual of an averaging operator is again an averaging op­
erator. When using Zadeh's complement, the dual generalized averaging operator 
M' becomes for fij £ [0,1], j = l,...,n 

M ; ( / X 1 ) . . . , ^ ) = 1 - ^ ( l - f t ) M , HjKl, 7 € E \ { 0 } 

(3.35) 
and 

n 

Af ' 7 = o( / i i , . . . , /^ ) A l - U ( l - f t ) 1 / n (3.36) 

with 

M'7<0(/xi,...,A«n) A 1 if3fij = l,j = l,...,n. (3.37) 

From Eq. (3.2), Eq. (3.10) and Eq. (3.20) it is seen that the t-norms, averag­
ing operators and the t-conorms cover the whole range of aggregation from the 
smallest t-norm Tw to the largest t-conorm Sw where Tw and Sw are defined as 

{Mi if/x2 = 1, 
H2 if Mi = 1, (3.38) 

0 otherwise 
and 

{Mi if/J2 = 0 , 
H2 if Mi = ° ) (3-39) 

1 otherwise, 
respectively. Figure 3.2 shows the scope of t-norms, averaging operators and t-
conorms as fuzzy aggregation operators. The results of aggregating fuzzy sets for 
different types of operators are shown in Fig. 3.3. 

Hardy et al. (1973) have studied generalized averaging operators extensively. 
Dyckhoff and Pedrycz (1984) have studied the generalized means within the con­
text of fuzzy set theory, while Kaymak and van Nauta Lemke (1993) have studied 
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Fig. 3.3 The results of aggregating fuzzy sets with different types of aggregation operators. 

this class of operators within the fuzzy decision making context. Other refer­
ences on the averaging operators include Klir and Yuan (1995), Dubois and Prade 
(1988), Dubois and Prade (1985), and Yager and Filev (1994). 

3.3.2 Compensatory operators 

Thole et al. (1979) and Zimmermann (1978) have found indications that t-norms 
and t-conorms are unsuitable for modeling of aggregation by human decision mak­
ers. It appears that human beings tend to partially compensate between criteria in­
stead of trying to satisfy them simultaneously or make complete compensations. 
It has been suggested in the literature that human beings use a mixture of conjunc­
tion and disjunction in their decisions. To model this, compensatory operators 
have been proposed, the general form of which has been defined by Mizumoto 
(1989b) as 

E((ii,ti2) = M(01(^1 , / i2),02(Mi,/"2)) (3.40) 

where M(/Ui,/i2) is an averaging operator and Oi(m, /J2) and 02(/^i, ^2) are t-
norms, t-conorms or averaging operators. Special cases of Eq. (3.40) have been 
suggested and investigated by Zimmermann and Zysno (1980). These operators 
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have the form 

E(vi,H2) = (T(fiUfi2))
1-'r(S(nUfji2)y (3.41) 

and 

£( M i , /X2) = (1 - 7)T(/i1 , /i2) + -rS{ni,iMi), (3.42) 

with 7 e [0,1]. Hence, a compensatory operator is defined as a weighted aver­
age between a t-norm and a t-conorm. The aggregated result is a compensation 
between a conjunctive aggregation (intersection) and a disjunctive aggregation 
(union). By varying the value of the parameter 7, the emphasis can be shifted 
from the conjunctive to the disjunctive behavior as desired. Because 7 controls the 
degree of 'or-ness' of the resulting operator, and hence indirectly also the degree 
of compensation between the two types of aggregation behavior, it is interpreted 
as the ' grade of compensation'. The scope of the compensatory operators extends 
from the t-norm to the t-conorm used in the definition, and the compensatory op­
erator exhibits a mixture of conjunctive, disjunctive and averaging behavior. 

The selection of different 7 values, and different intersection and union op­
erators leads to different aggregation operators. Usually the minimum and the 
maximum operators are used for the intersection and the union, respectively. Hur-
wicz's optimism-pessimism operator 

EH(/i i , / i2) = (1 -7)min(/xi,/x2) + 7max(/ii,/i2) (3.43) 

from the decision theory is such a compensatory operator (Luce and Raiffa 1957). 
Zimmermann and Zysno (1980) suggest the use of the algebraic product and the 
algebraic sum together with the geometric mean, leading to 

Ez(m,H2) = {ni^Y^ivi +M2 -M1M2)7. (3.44) 

The use of operators other than minimum and maximum allows the modeling of 
interaction between the operands. Figure 3.4 shows the aggregation of two fuzzy 
sets when the Zimmermann operator Eq. (3.44) is used. 

Fig. 3.4 The aggregation of two fuzzy sets with the Zimmermann operator (7 = 0.5). 
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3.3.3 Associative compensatory operators 

Compensatory operators based on the generalized means are not associative. Sev­
eral authors have investigated mathematical operators that are associative and pos­
sess compensatory characteristics. Mesiar (1995) calls these class of associative 
operators associative compensatory operators, while Yager and Rybalov (1995) 
call them uninorm aggregation operators. In the following, the nomenclature of 
Mesiar (1995) is followed. 

An associative compensatory operator is a binary operation 

r : [ 0 , l ] 2 \ { ( 0 , l ) , ( l , <))}—• [0,1] 

that satisfies the following conditions for all p i, \ii, P3, p± £ (0,1). 

(1) boundary conditions: 
r ( i , i ) = i,r(o,o) = o„ 

(2) monotone increasing: 

pi < pi,pz < PA => T(pi,p3) < T{p2,Pi), 
(3) associativity: 

r(/xi,r(/i2,M3)) = r(r(/ii,)U2),M3). 
(4) r is continuous. 

The commutativity property follows from these conditions (Mesiar 1995). Asso­
ciative compensatory operators exhibit reinforcement behavior under certain con­
ditions. They can be used to model reinforcement in decision aggregation. The 
following example illustrates the need for reinforcement in aggregation. 

Example 3.4 In order to achieve a high production rate in a yeast fermentation 
process, it is important to prevent the production of alcohol by the bio-organisms. 
The production of alcohol adversely influences the formation of the required prod­
ucts, and stimulates further production of alcohol, which further deteriorates the 
fermentation process. It is therefore important to monitor the production process 
by a fault diagnosis system, which can detect errors that result in conditions that 
lead to the production of alcohol. Consider two simplified rules from a fuzzy 
rule-based fault diagnosis system for yeast fermentation, which detects errors in 
relevant system quantities based on measured and/or computed data. 

(1) If ammonia consumption is very high and oxygen consumption is very high 
and carbon dioxide consumption is low, then possible error in carbon dioxide 
consumption. 

(2) If dissolved oxygen is high and oxygen coefficient is very high, then possible 
error in carbon dioxide consumption. 
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Assume now that both rules are valid to a relatively high degree (e.g.0.8). Since 
strong evidence for the same consequence comes from two different sources (the 
rules), it is more likely that an error in carbon dioxide consumption has occurred. 
Hence, the two sets of evidence should reinforce each other and the aggregated 
result should be higher than 0.8 which suggests a disjunctive aggregation. Con­
versely, if both rules fire to a low degree (e.g.0.2 and 0.1), then it is likely that the 
error has not occurred. In that case, the aggregated result should be lower than 
min(0.1,0.2) which suggests a conjunctive aggregation. If one of the rules indi­
cates strong evidence for the error and the other one does not, one can take the 
average. 

An associative compensatory operator T has a neutral element /x * for which 
T(ni,n*e) = pi. Then, for all/xi,/i2 e [0,1] 

r(/i i ,^2) > max(//i,/z2), Mi,M2 > ^ 

r(Mi,A«2) < min(//i,/x2), Mi>M2 < Me 

r(/ii,ju2) e [//i,M2], otherwise. 

(3.45) 

(3.46) 

(3.47) 

The neutral element /z* divides the unit square [0,1] x [0,1] into four quadrants. 
Depending on the values of the operands /ii and /x2, the associative compensatory 
operators exhibit t-conorm, t-norm or averaging operator behavior as shown in 
Fig. 3.5. Note that when /i* = 1, the associative compensatory operator reduces 
to a t-norm, and it reduces to a t-conorm when / j * = 0. 

(0,1) 

o 
•c 

_Q,i) 

averaging 

conjunction 

disjunction 

(ju*e,H*e) 

averaging 

(0,0) 
criterion 1 

(1.0) 

Fig. 3.5 Depending on the values of the judgments, associative compensatory operators exhibit dif­
ferent aggregation behavior. 

An example of an associative compensatory operator is the tangent associative 
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Table 3.1 Several aggregation results us­
ing the associative compensatory operator 
Eq. (3.48). 

Mi M2 r t ( / i i , / i 2 ) Aggregation 

0.1 
0.2 
0.3 
0.5 
0.7 
0.7 
0.9 

0.3 
0.8 
0.6 
0.5 
0.5 
0.4 
0.8 

0.082 
0.500 
0.378 
0.500 
0.700 
0.622 
0.930 

conjunctive 
averaging 
averaging 
neutral 
neutral 
averaging 
disjunctive 

compensatory operator given by 

r t ( M l ) M 2 ) = 0.5 - a r C t a n ( c Q t 7 r / i l + C O t 7 r / i 2 ) . (3.48) 

The neutral element of Eq. (3.48) is 0.5. Table 3.1 illustrates the averaging and 
the reinforcement behavior of Eq. (3.48) on some numerical values. 

3.3.4 Ordered weighted averaging operators 

A new compensatory aggregation technique based on averaging operators has 
been proposed by Yager (1988). The ordered weighted averaging operators makes 
use of a linear weighted averaging aggregation with a nonlinear ordering method. 

Definition 3.2 An ordered weighted averaging (OWA) operator of n variables 
is a mapping 

W : M" —• K (3.49) 

with an associated vector w T = (wi ,W2,...,wn) where the weight factors sat­
isfy 

n 

X > j = l. WjG[0,l],j = l,...,n, (3.50) 
3=1 

such that 

n 

r y w ( M l , . . . , M „ ) = ^ W j W (3-51) 
3 = 1 

with the convent ion fj,1 < • • • < p,n. 
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The re-ordering step is a fundamental property of OWA operators. This implies 
that a particular weight is not associated with a particular operand, but it is asso­
ciated with an ordered position of the operand. 

The flexibility of the OWA operators is due to the possibility of specifying 
different weight vectors together with the re-ordering of the alternatives. Different 
weight vectors lead to different aggregation operators. For example, 
forwT = (0 ,0 , . . . , 1) 

n 

Ww(iM1,...,lin)=\J fij, (3.52) 

while for w T = (1 ,0 , . . . , 0) 

n 

W w ( M l , . . . , / x „ ) = / \ W , (3.53) 

and for w T = (1 /n , . . . , 1/n) 

1 n 

Ww(Ml,...,/z„) = - 5 > , - . (3.54) 
n j = i 

Example 3.5 Suppose that a set of judgments for an alternative is given as y, j = 
(0.3,0.1,0.5,0.4). The transposed ordered judgment vector is then given by \i — 
(0.1,0.3,0.4,0.5). If the associated weight vector is w T = (0.2,0.4,0.1,0.3), 
then the aggregated membership value using the OWA operator is given by 

Ww(0.3,0.1,0.5,0.4) = 0.2 x 0.1 + 0.4 x 0.3 + 0.1 x 0.4 + 0.3 x 0.5 = 0.33. 

A desired property of the OWA operators is that fuzzy quantifiers can be used 
to determine the weight vector w. In this way, it becomes possible to transform 
the linguistic quantifiers into a set of weight factors that can be used in decision 
aggregation. 

Example 3.6 Let n — 5. The goal 'several criteria must be satisfied' with 
the fuzzy quantifier 'several' can be represented by the weight vector w r = 
(0,0,0.1,0.2,0.7). The zero elements in the weight vector imply that more than 
two criteria must be satisfied and have a high value in order for the aggregated 
value to be high. Hence, the weight vector introduces a thresholding effect. 

The OWA operators are mentioned for completeness here, and they are not con­
sidered in detail in this book. More information on OWA operators can be found 
in Yager (1988), Grabisch et al. (1995), Klir and Yuan (1995), and Fodor et al. 
(1995). 
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3.4 Generalized operators 

3.4.1 Monotonic identity commutative aggregation operators 

A further generalization of the associative compensatory operators has been pro­
posed by Yager (1994). These operators have been called Monotonic Identity 
Commutative Aggregation (MICA) operators. The concept of a bag can be used 
to define the MICA operators. 

Definition 3.3 A bag (jUi,..., /x„) drawn from an interval / is a collection of 
elements / i i , . . . , \in, all of which are contained in I. 

A bag is similar to a subset in that an ordering of elements in the bag does not 
matter. It is different, however, from a subset in that a bag may contain multiple 
copies of the same element. 

Definition 3.4 Let U be the set of all bags drawn from I. A function / : U —> I 
is called a bag mapping from U into the unit interval. 

Definition 3.5 Assume that A and B are two bags with the same cardinality. If 
the elements of A and B can be indexed in such a way that \x j > Vj,j = 1 , . . . , n, 
it is denoted by A > B. 

Let ® denote the concatenation of two bags. Then the MICA operators are denned 
as follows. 

Definition 3.6 A bag mapping M : U —> I is called a MICA operator if it 
satisfies 

(1) monotonicity: A > B => M(A) > M(B), 
(2) identity: for every bag A there exists an element \x*e £ I, called the identity of 

A under M, such that M(A © (,u*}) = M(A). 

If the identity element is fixed, i.e., it is independent of the bag A, the MICA 
operators reduce to the associative compensatory operators. 

Although the t-norms and the t-conorms are special cases of associative com­
pensatory operators, and associative compensatory operators are special cases of 
MICA operators, a separate consideration of different types of aggregation opera­
tors is preferred, since they represent different decision behaviors. General repre­
sentations of operators are useful in understanding the relations between different 
types of decision behavior, but they are not very useful when studying specific ag­
gregation behavior for the influence and interpretation of various parameters. For 
that reason, the MICA operators are not considered in detail here. For more in­
formation concerning the MICA operators, the reader can consult Yager and Filev 
(1994), Yager (1994), Yager and Rybalov (1995). 
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3.4.2 Fuzzy integrals 

As mentioned in Sec. 3.4.1, the generalization of the t-norms and the t-conorms 
leads to MICA operators. Fuzzy integrals can be interpreted as the generalization 
of specific types of averaging operators. In particular, medians and OWA operators 
are shown to be specific cases of fuzzy integrals. The concept of a fuzzy integral 
is based on fuzzy measures (Sugeno 1974). 

Definition 3.7 Let Z = {£ i , . . . , („} be the set of decision criteria. Let T(Z) 
denote the power set of Z, i.e., the set of all subsets of Z. A fuzzy measure on Z 
is a function f9 : V{Z) —> [0,1] that satisfies 

(1) fg(Q)=0,g(Z) = l. 
(2)ZACZBCZ =^fg{ZA)<fg{ZB). 

Using fuzzy measures, Sugeno (1974) proposed the concept of fuzzy integral, 
which Grabisch (1996) interprets 'as a kind of distorted mean' in the discrete case. 
Sugeno (1974) suggested a fuzzy integral based on the minimum and maximum 
operators. 

Definition 3.8 Given a fuzzy measure fgonZ, the Sugeno integral of a function 
fh : Z —> [0,1] with respect to fg is defined by 

n 

Sg(M(i),-.-Jh((n))= V (A(C(i))A/9((^)w)). (3.55) 
.7 = 1 

In Eq. (3.55), (-)(j) indicates that the indices have been permuted so that 0 < 

fh(C(i)) <•• < fh(((n)) < l,and{ZA)(j) = {C(j),---.C(n)}-

Later, Murofushi and Sugeno (1991) proposed a fuzzy integral based on linear 
operators. 

Definition 3.9 Given a fuzzy measure fg on Z, the Choquet integral of a func­
tion fh : Z —¥ [0,1] with respect to fg is defined by 

n 

C9(h(Ci),.-.,h(Cn)) = £(//i(C(*)) - h(Cu-i)))f9((ZA)U)). (3.56) 
3 = 1 

In Eq. (3.56), {-)(j) indicates that the indices have been permuted so that 0 < 

A(C(i)) < ••• < fh{C,(n)) < l./ft(C(o)) =0 , and (Z^ ) ( j ) = { ( ( j ) , . . . , Q n ) } . 

Kandel and Byatt (1978) have shown that the Sugeno integral is an associative 
averaging operator. The Choquet integral can also be formulated as an associative 
averaging operator to correspond to the median. Grabisch et al. (1995) have shown 
that the Choquet integral also covers the OWA operators, and in particular the 
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weighted arithmetic mean, where the weights Wj are represented by the fuzzy 
measure/fl((j). 

The advantage of using fuzzy integrals as fuzzy aggregation operators is that 
they can be used to model interaction amongst criteria in an explicit fashion. By 
considering subsets of decision criteria, fuzzy integrals can model different types 
of interaction, including synergy and redundancy amongst criteria. The interaction 
between pairwise combination of criteria as well as higher order combinations can 
be modeled. This property renders fuzzy integrals flexible operators. This flexibil­
ity, however, is obtained by the specification of 2" — 2 parameters (for all possible 
combinations except for the empty and the total sets) in a problem with n criteria. 
Hence, for problems with a high number of criteria, the determination of the fuzzy 
integral parameters (the values of the fuzzy measure fg) can be cumbersome, if 
not impossible. Guidelines exist for determining the fuzzy integral parameters. 
However, the dimensionality of the problem remains. For small problems, Gra-
bisch (1996) suggest the use of domain knowledge for specifying the problem. 
For medium size problems, or in cases where data about the decision problem 
can be collected, the identification can be made using optimization techniques. A 
formulation of the identification problem that leads to a quadratic programming 
formulation is given in Grabisch et al. (1995). It is mentioned, however, that 
the conditioning of the matrices may present a problem. Moreover, n!/[(n/2)!]2 

data points are required (Grabisch 1996). Therefore, large problems remain in­
tractable with this method, and heuristic approaches have been suggested by Ishii 
and Sugeno (1985). The heuristic methods do not guarantee optimality, but they 
reduce the dimensionality problem. 

Partly due to the identification problem of the fuzzy measure values, the ap­
plications of fuzzy integrals have remained limited despite their flexibility. The 
interested reader is referred to Sugeno (1974), Murofushi and Sugeno (1991), 
Grabisch (1993), Grabisch et al. (1995) and Grabisch (1996). 

3.4.3 Rule-based mappings 

It is known that fuzzy systems are universal function approximators (Wang 
1992, Kosko 1994). Hence, a rule based fuzzy system can be used to approxi­
mate a decision function that would represent the preference structure of the de­
cision maker, similar to the way fuzzy rule-based systems are used to specify a 
controller's input-output mapping. The decision maker can articulate his prefer­
ence information in the form of fuzzy rules which are used for the design of the 
fuzzy system. It is possible that the decision maker uses different types of ag­
gregation for different performance regions. Different types of aggregation can 
be specified in different rules, which are then combined by the fuzzy inference 
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mechanism. In addition to the fuzzy rules, the mapping described by a fuzzy sys­
tem is determined by the definition of the membership functions, the inference 
mechanism and the defuzzification method (see also Sec. 4.2). If the preference 
function should satisfy certain constraints (e.g.the monotonicity of the decision 
function in its parameters as is usually the case), the determination of the fuzzy 
system may prove to be tedious. The determination of the linguistic rules is then 
more difficult. In literature, the combination of decision criteria using linguistic 
rules has found little application. A few examples can be found in Mandic and 
Mamdani (1984) and Efstathiou (1984). 

3.4.4 Hierarchies of operators 

Another way of bringing more flexibility to the definition of the decision function 
is the use of hierarchies of aggregation operators. Three goals are aimed at by 
establishing a hierarchy of decision functions. 

(1) It becomes possible to model interaction amongst various criteria and to ob­
tain more complicated decision functions. 

(2) The formation of the hierarchy helps to divide a complex problem into smaller 
sub-problems which are more tractable for analysis. 

(3) The criteria which are logically related can be grouped together, increasing 
the transparency of the decision making. 

At different levels of the hierarchy, the information regarding the criteria can be 
combined with different aggregation operators. As far as the interaction amongst 
criteria is concerned, the interacting criteria can be combined with different ag­
gregation operators so that positive interaction (synergy) or negative interaction 
(redundancy) can be dealt with. The division of a complex problem into simpler 
sub-problems increases the ability of the decision maker to determine the correct 
aggregation for a given set of criteria. The criteria that are logically related can be 
grouped together, which improves the tractability of the decision problem. 

Example 3.7 Consider a controller whose gain factor must be adjusted for a 
process. The user may consider the following criteria and the available informa­
tion. 

(1) Speed of the response, which implies a large gain factor. 
(2) Energy consumption of the system, which implies a not very large gain factor. 
(3) The accuracy of the closed loop system, which implies a large gain factor. 
(4) The stability of the closed loop system, which implies a moderate gain factor. 
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The decision problem is formulated as the fulfillment of the goals G i (maximiza­
tion of the speed of response) and Gi (minimization of energy consumption), 
while the two constraints C\ (accuracy) and C2 (stability) are satisfied. Sup­
pose that the decision maker uses fuzzy decision analysis and wants to specify a 
decision function for combining the fuzzy goals and fuzzy constraints. The con­
straints must be satisfied simultaneously. The goals, however, can be combined 
in a compensatory manner, since an increase in the energy consumption can be 
compensated to some degree by an increase in the speed of the response, and vice 
versa. To model the different types of decision behavior, the decision maker de­
cides to establish a hierarchy of decision functions. The constraints are combined 
by using a t-norm T\ (e.g.minimum) for modeling the simultaneous satisfaction, 
and the goals are combined by using an averaging operator M (e.g.arithmetic 
mean). The aggregated results are then combined in a higher level with t-norm 
T2 (e.g.product operator), which can be a different operator from T\. Figure 3.6 
shows graphically the hierarchical tree that is formed. 

Final decision 

e.g. minimum 

e.g. product 

g. arithmetic mean 

Fig. 3.6 A decision tree showing the combination of decision goals and constraints by different 
operators. 

3.5 Weighted aggregation 

Most aggregation operators that are used as decision functions assume a symmet­
ric aggregation of the judgments, in the sense that the ordering of the judgments 
does not have any influence on the aggregation result, as long as the numerical 
values of the judgments do not change. In many decision problems, however, this 
symmetry does not exist. Usually, the decision maker considers some of the de­
cision criteria to be more important than others. These criteria must have more 
influence on the result of the decision making than other criteria. This means that 
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many of the decision functions that have been considered in this chapter cannot 
be used directly in the decision making process. They must be modified in order 
to account for the influence of different importance of the criteria. 

The importance of decision criteria is modeled by the introduction of addi­
tional parameters, called weight factors, to the decision model. A weight factor 
Wj > 0,j = 1 , . . . , n is a number that indicates the (relative) importance that a de­
cision maker assigns to a criterion in relation to other decision criteria. The larger 
the weight factor, the more important the corresponding criterion is assumed to be 
for the outcome of the decision problem. 

Usually, the weight factors are assumed to be elements of the unit interval, i.e., 
Wj € [0,1], j — 1 , . . . , n and they are normalized such that 

n 

X > i = l. (3.57) 
i= i 

When one criterion is more important than other criteria, it should have more 
influence on the outcome of the decision problem. In other words, it should in­
fluence the preference structure of the decision maker more than the remaining 
criteria. This interpretation of the weight factors leads to a general method for in­
corporating the weight factors into fuzzy aggregation operators (Kaymak and van 
Nauta Lemke 1998). In contrast, Keeney and Raiffa (1976) interpret the weight 
factors as scaling factors for the criteria. In this approach, the weight factor indi­
cates how many units of one criterion can be exchanged for one unit of another cri­
terion. The weight factors are then incorporated in the scaling of the variables, and 
one need not consider them explicitly at the aggregation step. The decision mak­
ers, however, feel distinctly that the importance of the criteria cannot be all equal 
and they prefer models with different weight factors for different criteria. Thus, 
the use of an anti-symmetric decision model is appreciated. Partly for this rea­
son, the former interpretation for the weight factors is more appropriate, and that 
interpretation is used in this book. Moreover, fuzzy sets (representing the deci­
sion criteria) are aggregated in fuzzy decision making. These fuzzy sets transform 
the information regarding the criteria to membership values which are then com­
bined further. Hence, different criteria are made commensurable by transforming 
them to measurements on a single scale (the membership). In this setting, the 
importance of criteria is a well-defined concept in terms of the sensitivity of the 
aggregation step to individual membership values. 

There are two main methods for increasing the influence of the important cri­
teria on the decision function. 

(1) Transforming the decision function. In this approach, the weights are in­
troduced into the decision function in such a way that the contribution of the 
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more important criteria to the aggregate result is increased. Kaymak and van 
Nauta Lemke (1998) have shown that there are rigorous ways of achieving 
this. 

(2) Transforming the operands. In this approach, the operands of a decision 
function are first transformed to different values, after which the original sym­
metric aggregation function is used for combining the transformed values. 
The modification of the operands should be selected such that the alternatives 
that score higher in more important decision criteria have more influence on 
the aggregated result. 

Various authors have suggested methods for extending fuzzy aggregation op­
erators to their weighted counterparts. Some methods use the method of trans­
forming the decision function, while others use the method of transforming the 
operands. The remaining sections of this chapter describe weighted counterparts 
of several frequently used aggregation operators in fuzzy decision making. These 
operators are also used in the subsequent chapters of this book. A derivation of 
these operators is not given below. The interested reader is referred to (Kaymak 
and van Nauta Lemke 1998, Yager 1978, Dubois and Prade 1985, Yager and Filev 
1994) for their derivation. 

3.5.1 Weighted counterparts oft-norms 

An important class of fuzzy t-norms is the class of Archimedean t-norms. 

Definition 3.10 A t-norm T is said to be Archimedean if it satisfies 

T(/ui,^i) < in. (3.58) 

Similarly, a t-conorm S is said to be Archimedean if it satisfies 

S(Mi,Mi)>Mi- (3-59) 

Kaymak, van Nauta Lemke and den Boer (1998) propose a general framework 
for finding the weighted counterparts of Archimedean t-norms by using sensitiv­
ity analysis on decision functions. This approach transforms the decision func­
tion according to a well-defined rule, and it has been shown that it satisfies gen­
eral conditions that can be expected from a weighted aggregation operator. This 
sensitivity-based method leads to the following weighted counterparts of the t-
normsfor Wi G [0,1]. 

The weighted counterpart of the product operator is given by 

T?{p1,K)=fi1 •$'• (3.60) 
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In Eq. (3.60), the notation T*( /z i , . . . , (im) is short for the multivariable function 
Tp(wi,.. .,wm,fii,... , / x m ) . 

The weighted counterpart of the Lukasiewicz t-norm is 

T^(/j,i,(i2) = max(0,1 - wi - w2 + wiMi +W2M2), (3.61) 

and the weighted counterpart of the Hamacher product is given by 

TSfaul*2) = 7 "llMt
 n T- ( 3 - 6 2> 

W1H2 + W2M1 + M1M2U -wi- w2) 
Parametric t-norms can also be generalized to their weighted counterparts. We 

give several examples below. 
With [ii,(i2 € (0,1), the Dombi class of parametric t-norms is given by 

TD([ii,H2) = , = ^ = , 7 > 0 . (3.63) 
1 +^)T +(^f)" 

The weighted version of the Dombi t-norm for w 1, W2 > 0 is given by 

TS(fii,ii2) = * 7 > 0 . (3.64) 
1+VW1(^) +W2(^f) 

With [ii,[i2 € (0,1), the Yager class of parametric t-norms is given by (see also 
Eq. (3.6)) 

TY(fi1,[i2) = max(0,1 - [(1 - / i i)7 + (1 - ^V]lh), 7 > 0. 

The weighted version of the Yager t-norm for w 1, W2 > 0 is then given by 

T^((n,[i2) = max(0,1 - ^ ( 1 - M i ) 7 + ^ ( 1 ~ M2)7), 7 > 0. (3.65) 

For (ii,[i2 £ (0,1), the Schweizer and Skalar 2 class of parametric t-norms is 
given by 

Ts{m,lMi) = ^/max(0,M
7 + / £ - 1), 7 > 0. (3.66) 

The weighted version of the Schweizer and Skalar 2 t-norm for w 1, w2 > 0 is then 
given by 

T"(/ii , / i2) = ymax(0,wi/»i + w2^2 + 1 - Wi ~ ^2), 7 > 0. (3.67) 

For the weighted extension of the idempotent t-norm (i.e., the minimum op­
erator), the method of transforming the operands from Sec. 3.5 is suitable. Yager 
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(1978) has proposed the following decision function for aggregating unequally 

weighted criteria, 

n 

D 7 ( / i i , . . . , / i n ) = / \ ^ (3.68) 

with WJ € [0,1] as the weight factors. In Eq. (3.68), the membership values 

are raised to the corresponding weight factors as powers. The reasoning behind 

Eq. (3.68) is that when the weight factors are small, the transformed membership 

will have a larger value (i.e., closer to 1) and it will thus be less likely to constrain 

the aggregation owing to the minimum operator (possibly, there are other values 

in more important criteria that are not close to 1, which influences the result when 

using the minimum operator). Hence, the less important criteria will have less 

influence on the aggregation result. 

Yager (1984) generalizes this result to a class of decision functions which have 

the form 

DV,(fl1,...,/J,n) = T[I(lVi, (ii), I(W2, H2), • • • , I(Wn, Hn)], (3.69) 

where T is a t-norm and / is a function of two variables for transforming the 

judgments. The power raising 

I(wj,nj) = ^ i , (3.70) 

is a commonly applied transformation, while the minimum operator (non-inter­

active AND) and the product operator (interactive AND) are usually applied as 

the t-norm. After the generalization of the t-norms, the extension of the t-conorm 

aggregation can be obtained by using the duality relation Eq. (3.13). 

Another transformation function has been proposed by Dubois and Prade 

(1986), which leads to weighted minimum (and maximum) operators that can 

also be applied in the setting of the possibility theory. The weighted minimum is 

given by 

n 

D w ( j i i , . . . , p„ ) = f\ [(1 - Wj) V fij}. (3.71) 

j=i 

The weighted maximum is again obtained from the duality relation Eq. (3.13). 

Yager and Filev (1994) give a generalization of Eq. (3.71) for t-norm aggre­

gation. Noting that 1 is the identity element for t-norms, Yager and Filev (1994) 

require that an operand whose importance is zero should be transformed to the 
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identity element for the aggregation. The weighted decision function then be­
comes 

Dw(ij,1,...,fj,n) = T{S(m,-<wi),S(n2,-<W2),---,S{nn,-iwn)), (3.72) 

where S(-) denotes a t-conorm, and -i is a negation operator. Note that when 
Wj is zero, S(WJ,HJ), j = 1 , . . . , n equals 1 (due to the t-conorm), which is the 
identity element for the t-norms. An example of a weighted decision function thus 
obtained is 

n 

Dm(m,... ,/in) = JJ(1 - Wj + Wjfij). (3.73) 

3.5.2 Weighted counterparts of t-conorms 

Weighted counterparts of t-conorms extend the t-conorm operators to weighted 
aggregation. They have not been investigated widely in the literature for two main 
reasons. 

(i) Conjunctive and compensatory aggregation are used much more than disjunc­
tive aggregation. Therefore, the incentive to study weighted disjunctive be­
havior is small. 

(ii) The duality relation Eq. (3.13) between t-norms and t-conorms should also 
hold for the weighted operators. Hence, the weighted counterparts of t-
conorms can be obtained in a straightforward manner from the weighted coun­
terparts of the t-norms. 

We present in this section weighted counterparts of several t-conorms obtained by 
using the duality relation Eq. (3.13). Indeed, the generalization of t-conorms to 
their weighted counterparts is completely analogous to the generalization of the 
t-norms, when the duality relation Eq. (3.13) is assumed to hold. 

The weighted counterpart of the algebraic sum becomes 

S ^ 1 ) M 2 ) = 1 - (1 - MI)" 1 (1 - /fc)"*, (3.74) 

and the weighted counterpart of the Hamacher sum becomes 

C W / „ „ \ Wj/Xi + W2jl2 ~ (Wl + W2)mfi2 , . „ . 

ZHVV-IIVV = TT1 T\ Ti T\ i~Ti \ > (3-75) 
1 + (Wl - 1)/Xi + (W2 ~ 1)/X2 + (1 - l«i - W2)(J,lfJ,2 

while the weighted counterpart of the general weighted decision function 
Eq. (3.72) is given by 

Dw(fiU. ..,/*„) = S(T(fi1,w1),T{n2,w2),..., T(iin, wn)). (3.76) 
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Note that the weighted counterparts of the operators reduce to the non-weighted 
operators as expected, when the weight factors are equal, with Wj = 1, j = 
l,...,n. 

3.5.3 Weighted averaging operators 

The decision functions that have been generalized to the weighted case so far 
have not imposed any conditions on the weight factors, except that they should 
be non-negative. An additional constraint is needed for the generalization of the 
averaging operators such that the weight factors are normalized according to 

5 3 ^ = 1, Wje[0,l],j = l,...,n. (3.77) 

The class of decomposable averaging operators is the most important class of 
operators that impose Eq. (3.77) as a necessary condition on the weight factors. 
The weighted form of Eq. (3.23) is then given by 

MJifH,... )Atn) = r l I X > ; / ( W ) > , (3-78) 

for /j,j e (0,1), j = 1 , . . . , n where the weight factors Wj satisfy Eq. (3.77). For 
the generalized mean operator in Eq. (3.24), one obtains 

X>W[ , (3-79) 

as the weighted extension. Note that this extension follows the 'transforming the 
decision function' method. It is accepted as the most suitable weighted extension 
of the generalized averaging operator (Kaymak and van Nauta Lemke 1998). 

3.6 Summary and concluding remarks 

Many aggregation operators are available from the fuzzy set theory that can be 
used as decision functions in fuzzy decision making. The properties of these ag­
gregation operators are well known, and they can be used to model different types 
of decision behavior. The most important classes of decision functions in fuzzy 
decision making are t-norms, t-conorms, the averaging operators and the compen­
satory operators. Other aggregation operators provide additional flexibility, but 
they have not yet been applied widely. 
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The decision function takes a central place in fuzzy decision making, as it 
combines decision goals and constraints and models the decision maker's pref­
erences. The selection of the decision function is then an important step in the 
decision procedure which requires detailed analysis. Note that the decision func­
tion combines the fuzzy sets for different criteria into a multidimensional fuzzy 
set from which the best decision is determined. This leads to a similarity-based 
interpretation of the fuzzy multicriteria decision process, where the final multi­
dimensional fuzzy decision set indicates the similarity of the alternatives to the 
best alternative. This interpretation is used in Chapter 4 for designing nonlinear 
controllers. 

In some decision problems, the decision criteria have unequal importance. 
In that case, unequal weight factors are used for modeling the differences in the 
importance of the criteria for decision making. The weight factors can be intro­
duced into the decision model either by a transformation of the decision functions, 
or by a transformation of the evaluated membership values (operands of the deci­
sion function). Weighted extension of t-norms, t-conorms and averaging operators 
have been given according to both methods. 



Chapter 4 

Fuzzy Aggregated Membership Control 

We have discussed, in previous chapters, the basics of fuzzy decision making 
according to Bellman and Zadeh's decision model. In this chapter, we investigate 
the relation between decision making and control engineering further. The relation 
between the decision problems and the control problems is studied in detail in the 
remainder of this chapter. The chapter shows how the fuzzy decision making 
approach can be applied in control systems. The resulting control systems are part 
of the fuzzy control paradigm, but the design of the controller is different from 
that of conventional fuzzy controllers. 

We show in Sec. 4.1 that there exists a one-to-one relation between con­
trol problems and decision problems. An overview of conventional fuzzy con­
trol is given in Sec. 4.2. We describe in Sec. 4.3 how nonlinear controllers can 
be designed in a simple but powerful way by using the fuzzy decision making 
paradigm. The properties of these controllers are investigated. Examples are given 
in Sec. 4.4, before Sec. 4.5 concludes the chapter. 

4.1 Decision making and control 

By using the results and the terminology from Chapter 2, a one-to-one relation 
between control problems and decision problems can be established as follows. 

(1) In control problems, a number of control actions u 6 U are available to the 
controller. The controller must make a selection for the suitable control action 
out of those available for achieving the specified control objectives. In other 
words, the control actions correspond to the set of alternatives A. 

(2) There are a set of conditions which cannot be influenced by the control sys­
tem. These are typically the disturbances that act on the system from the 
environment. They correspond to the set 0 in decision making. 

(3) The control actions and the disturbances act on the controlled system, and lead 

65 
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to several consequences, such as new states, and error signals. The system 
description that maps its manipulated variables and the disturbances to the 
outputs corresponds to the mapping K in decision making. 

(4) The consequences of the control actions are evaluated within a time window 
by using various criteria, which are typically norms of various signals or quan­
tities derived from the consequences, such as the squared sum of various error 
signals. The consequences thus correspond to the set H of consequences in 
decision making, and they are evaluated using several criteria, just like in the 
multicriteria approach to decision making. 

(5) The evaluations for the consequences of the control actions are combined by 
an objective function. The optimal control action is determined by minimiza­
tion (or maximization) of the objective function. The objective function cor­
responds to the decision function D in decision making. 

Due to the close relation between decision making and control problems, it is not 
surprising that decision making methods can be used in control engineering for 
controller design and implementation. Control engineering studies dynamic sys­
tems and develops methods for designing controllers such that the overall interac­
tion between the dynamic system and the controller results in a behavior accept­
able to the control engineer. In many cases, the controller implements a mapping 
tuned for the controlled system, so that the required behavior is obtained, or it is 
approximated as much as possible in the judgment of the control engineer. Since 
a decision function also implements a mapping from the decision criteria to the 
decision outcome, the selection and design of decision functions could also be 
used to determine the desired controller mapping. 

Traditionally, control engineering has been concerned with the development 
of methods such that a required mapping for the controller is found. Off-line 
state-space methods (e.g.pole placement), frequency domain analysis, and heuris­
tic tuning of controller parameters are examples of techniques that help the control 
engineer system during the design of a controller. Although the first applications 
of fuzzy control were motivated by the implementation of human operators' con­
trol strategy in an algorithmic form (Holmblad and 0stergaard 1982), the attention 
has shifted towards the specification of a static mapping from the input variables 
of the fuzzy system to its output variables (Driankov et al. 1993). This static map­
ping is often called the control surface. Almost all fuzzy logic tools available on 
the market have functionality to view the control surface (or a part of it projected 
on a two or three dimensional subspace) in three dimensional graphs. 

The tuning of a fuzzy controller shapes the control surface such that the non­
linear control law it represents leads to the desired controller performance. Due 
to the interaction between various parts of a conventional fuzzy controller, the 
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control surface often exhibits (additional) nonlinearity that the control engineer 
would not specify directly. The influence of such nonlinearity on the control sys­
tem is often unknown. However, it is desirable to have direct control on this 
nonlinearity, since it specifies the controller's behavior, and therefore influences 
its performance. As explained in Sec. 4.3, the fuzzy decision making paradigm 
could be used for achieving this, where a new type of fuzzy controllers called 
fuzzy aggregated membership (FAME) controllers allows the control engineer to 
influence and shape the nonlinearity of the control surface directly. 

The relation between decision making and control engineering is more ap­
parent in model-based control. Many powerful methods for controller design are 
based on estimating a system's behavior by using its model. Since a controller 
can be seen as a 'decision maker' that must decide upon the best course of action 
given the information regarding 

• the controlled system, 
• its environment, 
• the control goals, and 
• the control constraints, 

fuzzy decision making can be applied to control when a model of the controlled 
process is available. In this approach, the controller uses the model of the sys­
tem to estimate the consequences of various control actions, and can decide upon 
a control action to be taken, based on the available information. Therefore, the 
decision making approach essentially fulfills the role of determining 'an optimal' 
control action. In contrast to conventional optimization, however, the fuzzy de­
cision making approach allows the use of linguistic goals, soft constraints and 
flexible preferences. This introduces additional flexibility to the controller, as the 
designer now has more possibilities for specifying a suitable objective function to 
optimize. Fuzzy decision theory is used for translating the general objectives of 
the designer into a mathematical function that the controller uses, as discussed in 
later chapters. 

4.2 Conventional fuzzy controllers 

A fuzzy controller implements a mapping between its inputs and its outputs. The 
controller inputs consist of process variables such as process outputs, errors and 
measured or reconstructed states. The core of the fuzzy controller implements a 
static mapping between its antecedent and the consequent variables. Additional 
dynamics are usually introduced by filtering the input as shown in Fig. 4.1. One 
of the most commonly used fuzzy controllers is the so-called Mamdani type con-
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trailer, which is described in many publications about fuzzy control (Driankov 
et al. 1993, Lee 1990a, Lee 1990b, Yager and Filev 1994). Here, a summary is 
given of the most salient points. 

Dynamic 
Filter 

e 

rie 
Static map Dynamic 

Filter 
U 

Static map 

j Fuzzifier - * | Inference 
I 

Deiuzzificr|—*• 

Fig. 4.1 General structure of a fuzzy controller. 

4.2.1 Basic elements of a fuzzy controller 

Figure 4.2 shows the basic elements of a (Mamdani-type) fuzzy controller. The 
control protocol is stored in the form of if-then rules in a rule base, which is a 
part of the knowledge base. Assume without loss of generality that the controller 
has n inputs x\,...,xn, and one output u. The if-then rules are written as 

Rk: If xi is A\ and x2 is A\ and . . . and xn is Ak
n 

then u is Bk, (4.1) 

where Ak- and Bk denote membership functions, and Rk, k = 1 , . . . , K is the /cth 
rule in the rule base. The if-part of the rule is often called the rule antecedent, 
while the then-part is called the rule consequent. The fuzzy rules describe associ­
ations between fuzzy regions in the product space of antecedent variables X and 
fuzzy regions in the consequent space U, as shown in Fig. 4.3. One can also say 
that the fuzzy region in the antecedent space is mapped to a fuzzy region in the 
consequent space by the mapping / . The membership functions that partition the 
antecedent and the consequent spaces are also part of the knowledge base. 

output input 
^ Fuzzifier 

Knowledge Base 

Inference System 
• Defuzzifier 

Fig. 4.2 Basic elements of Mamdani-type fuzzy controller. 
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antecedent space consequent space 

Fig. 4.3 Fuzzy rules associate fuzzy regions in the antecedent space with fuzzy regions in the conse­
quent space. 

The rules are based on qualitative knowledge, while the membership functions 
defining the linguistic terms provide a smooth interface to the numerical process 
variables and the set-points. The linguistic terms are defined in the fuzzifier, which 
determines the membership degrees of the controller input values in the antecedent 
fuzzy sets. The inference mechanism combines this information with the knowl­
edge stored in the rules and determines what the output of the rule-based system 
should be, as explained in Sec. 4.2.2. In general, this output is again a fuzzy 
set. For control purposes, a crisp control signal is often required. The defuzzifier 
calculates the value of this crisp signal from the fuzzy controller outputs. 

4.2.2 Fuzzy inference mechanism 

The inference mechanism of a fuzzy controller combines its inputs with the rules 
stored in the rule base to determine the outputs of the fuzzy controller. The 
main steps in the inference mechanism can be summarized as follows (see also 
Sec. 5.2.1). 

(1) Fuzzy relation. Each fuzzy rule establishes a relation between a fuzzy region 
in the antecedent product space and the consequent space. The fuzzy regions 
are described by membership functions that are defined for the antecedent 
and consequent variables. The membership functions are representations of 
the linguistic terms that are used for defining the rules. The fuzzy relation that 
the rule describes is often interpreted as an implication operation, although 
the operators used are not strictly fuzzy implication operators. The most com­
monly used operation for representing the fuzzy relation is Mamdani's min 
operator. A fuzzy rule with n antecedent variables and one consequent vari-
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able can then be represented by the membership function 

n 

A»H*(X,U)= / \ / » - ( i j )A/ j J (u ) , k = l,...,K 
3 = 1 

for x £ Xi x . . . x Xn and u £ U. The overall fuzzy relation R is found 
by aggregating individual fuzzy relations described by the fuzzy rules. The 
aggregation operator for this purpose depends on the operator that is used for 
representing the fuzzy relation for individual rules. When Mamdani implica­
tion (minimum operator) is used, the aggregation of individual rules is found 
by taking the union of individual rules by using the maximum operator. The 
total relation is given by the membership function 

K 

/xfi(x,w) = \J i?*(x,it). 
* = i 

(2) Inference. The inference mechanism calculates the fuzzy output of the sys­
tem given its inputs. In Mamdani systems, the compositional rule of inference 
is used for this purpose. Given the input A1 to the system, the fuzzy output 
B' is found by composing the input with the total relation that is described by 
the fuzzy rules, i.e., 

B'=A'o R. 

The composition operator is often the sup-t composition, 

fj,B' (u) = sup \iA> (x) © R(x, u), 
xgX 

where © denotes a t-norm. Usually, the minimum operator or the (algebraic) 
product operator is used for the t-norm. 

(3) Defuzzincation. In most applications, a crisp value is required, which implies 
that the fuzzy output B' must be defuzzified to determine a crisp output u*. 
The defuzzification can be seen as an operator that replaces a fuzzy set by a 
representative value, such as the mode (element with the highest membership) 
or the center of area. A commonly used defuzzifier is the center of gravity 
defuzzifier, which is given mathematically by 

zcog = Leuu^'(u)du 

/ u e i / W ' ( u ) d u ' 

where Zu denotes defuzzification over the domain U of the control output. 

When the inputs to a fuzzy system are crisp, and the output is defuzzified, the 
fuzzy system represents a static mapping from the inputs to the outputs. This 
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Table 4.1 A typical rule base for a fuzzy 
PD controller. 
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mapping describes a hypersurface in the product space of inputs and outputs, and 
it is in general a nonlinear mapping. In case of fuzzy controllers, this hypersurface 
is also called a control surface. Example 4.1 describes a fuzzy counterpart of a 
PD-controller and the associated control surface. 

Example 4.1 The rule base of a fuzzy counterpart of a linear PD controller 
with two inputs (error e and error change Ae) and one output - the control action 
u typically looks as shown in Table 4.1. 

Five linguistic terms are used for each variable, (NB - Negative big, NS - Neg­
ative small, ZE - Zero, PS - Positive small and PB - Positive big). The linguistic 
terms are depicted in Fig. 4.4. Each combination of e and Ae in Table 4.1 defines 
one rule, e.g.the rule for the highlighted (boxed) element in Table 4.1 reads 

R8: If e is NS and Ae is ZE then u is NS. 

Figure 4.5 shows the resulting control surface obtained by plotting the inferred 
control action u for discretized values of e and Ae. In this example, max-min 
inference with center-of-gravity defuzzification has been used. 

The shaping of the control surface directly influences the dynamics of the re­
sulting controller. In addition to the parameters of the fuzzy controller, such as the 
shape and location of membership functions, as well as the approximate mapping 
described by the fuzzy rules and the scaling factors, the selection of the inference 
mechanism and the defuzzification method influence the control surface. Usu­
ally, the selection of the inference mechanism and various operators is directly 
related to the controlled system, such as the ease of implementation, the available 
inference operators in a software package and so on. If the performance of the 
controller is found to be unsatisfactory, controller parameters are varied to im­
prove the performance. It is important to realize, however, that the selection of the 
inference and defuzzification operators has a profound influence on the control 
surface. 
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antecedent functions 

Fig. 4.4 Membership functions for the linguistic terms of a fuzzy PD controller. 

Example 4.2 Figure 4.5 depicts the control surface obtained for a fuzzy PD-
controller when minimum operator is used for aggregation of antecedent mem­
bership functions and max-min composition for the inference. When product op­
erator is used for the aggregation with max-product composition for the inference, 
the shape of the control surface changes to that shown in Fig. 4.6. Note that the 
control surface has become smoother. This effect can also be seen by studying the 
contour lines depicted in Fig. 4.7, which indicate the antecedent conditions that 
lead to the same control action. The contour lines for the max-product inference 
are smoother compared to the contour lines obtained from the max-min inference. 
In addition to a smoothing effect, the product operator can also be used together 
with the bounded sum aggregation operator (Lukasiewicz t-conorm) to obtain a 
linear control surface. 

4.2.3 Nonlinearity in fuzzy controllers 

The response of the fuzzy controller is characterized by a nonlinear control sur­
face in the product space of antecedent and consequent variables. The nonlinearity 
of the control surface should be related to the process characteristics in order to 
ensure a desirable controller response. The controller's nonlinearity can be influ­
enced in two main ways. 

(1) By changing the rules in the rule base. The working of the fuzzy controller 
is described by the fuzzy rules in the rule base. The control strategy of the 
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max-min inference 

Fig. 4.5 Fuzzy PD control surface with max-min inference. 

controller is coded in these rules. By changing the approximate mapping de­
scribed in the rules, the nonlinear response of the controller can be modified. 

(2) By changing the parameters and the inference mechanism of the fuzzy 
controller. The inference mechanism interpolates between the rules. The na­
ture of the interpolation depends on the type of membership functions, their 
parameters (shape, location, support, core), the inference rule, the selected 
conjunction operator, the aggregation operator and the defuzzification opera­
tor. By modifying these elements, the shape of the nonlinear control surface 
can be influenced. 

Since the fuzzy rules describe the controller's strategy, they should be used to 
shape the nonlinearity of the control surface, as the nonlinearity of the controller 
should be a result of the process properties and the control goals. However, the 
controller may exhibit additional nonlinearity even though the relation described 
by the rules shows no nonlinearity. As shown in Example 4.1, the fuzzy rule 
base may be an approximation of a linear PD controller. The control surface, 
however, is usually nonlinear because of the selected controller parameters, as 
shown in Fig. 4.5 and Fig. 4.6. This nonlinearity may not always be desirable 
and additional tuning of the controller is needed to obtain a desired response. The 
tuning of the Mamdani controller requires the adjustment of a large number of 
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max-product inference 

Fig. 4.6 Fuzzy PD control surface with max-product inference and product aggregation of an­
tecedents. 

parameters, especially when the number of antecedent variables is high, and it 
is thus usually a tedious task. Hence, it is desirable to have a controller whose 
nonlinearity can be explicitly designed and can be tuned with a small number of 
parameters. 

4.3 Nonlinear controllers using decision functions 

A decision function which combines n criteria is a mapping Rn —y R. The over­
all mapping is defined by a combination of one dimensional membership func­
tions which show the degree of satisfaction of a single criterion. In this sense, a 
fuzzy decision system can be used as a fuzzy controller, since fuzzy controllers 
are nonlinear systems which implement a nonlinear control law (mapping) be­
tween controller inputs and controller outputs. In conventional fuzzy controllers, 
the nonlinear control law is obtained from the interaction of the approximate non­
linear control behavior described by the fuzzy rules and the way information is 
combined by the selected inference mechanism including the defuzzification op­
eration. This nonlinear control law is given by the static mapping that the fuzzy 
system implements between its inputs and its defuzzified outputs. The static map-
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(a) Max-min inference (b) Max-product inference 

Fig. 4.7 Comparison of contour lines for the control surface of two fuzzy PD controllers. 

ping is represented by the control surface in the product space of the controller 
inputs and the outputs. Because of the interaction between the fuzzy rules and the 
selected inference mechanism, the designer does not have explicit control over 
the shaping of the control surface, since many of the parameters are determined 
by considerations not directly related to the properties of the controlled system. 
This often leads to trial-and-error tuning for obtaining an acceptable controller 
behavior, which could have been improved if the control surface could have been 
shaped by the designer explicitly. In order to deal with this problem, this section 
introduces a type of nonlinear controller, which is based on the aggregation of 
fuzzy sets using decision functions. The fuzzy sets are defined on the universe 
of discourse of the individual input variables of the controller, and they indicate 
the degree of satisfaction of a particular control goal by the input variables. The 
nonlinear control surface is formed by a suitable aggregation of the fuzzy sets. 
The nonlinearity of the control surface is determined explicitly by the selection of 
the membership functions and the aggregation operator. Only one fuzzy set per 
variable is defined, which reduces the number of controller parameters compared 
to a conventional fuzzy controller. However, the resulting controller belongs to a 
more restrictive class of fuzzy controllers. 

4.3.1 Fuzzy aggregated membership controllers 

The fuzzy decision making paradigm that is described in Chapter 2 and Chapter 3 
is used in this section to obtain a new type of nonlinear controller called fuzzy 
aggregated membership (FAME) controllers (Kaymak et al. 1996). The decision 
function defines a decision surface in the product space of the n criteria and the 
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decision: £i x • • • x (n x D. By mapping every point on this decision surface to a 
unique control action (the value of the control variable), a control surface can be 
obtained from the decision surface. Because every point of the decision surface 
corresponds to an alternative with distinct values of membership for the criteria, 
a control action can be calculated for every combination of input values of the 
controller. 

The proposed controller is obtained in the following way. A particular struc­
ture for the controller inputs and the outputs are selected, depending on the spe­
cific control problem. For example, if the characteristics of the controlled process 
require the use of a nonlinear PD controller, the error signal e and its derivative 
Ae should be selected as the inputs of the controller. Then, one membership func­
tion for each variable is defined. The membership function should be defined in 
such a way that the resulting control surface corresponds to the characteristics of 
the controlled process (gain factors, etc.). This membership function describes 
a particular property for the variable, such as 'large error signal'. The measured 
values for the inputs (e.g.error and error derivative) can now be converted into a 
membership value by using the membership functions. In this manner, different 
variables are brought into a decision space within which various quantities can be 
combined using a decision function. The decision function, which should reflect 
the goals of the controller, combines the membership values from different inputs 
into a single decision value. Finally, the output of the controller is determined by 
transforming the aggregated membership value into a control value. Figure 4.8 
shows the structure of the proposed FAME controller. 

, 
1 
1 
1 

. 

Fuzzifi cation | 

' > 

membership 
function 1 

_ ^ " ~ 
1 
1 
1 

_ ^ ~ ~ 
membership 
function n 

1 

ii • 
^ ' l » 

l 

1 

M 1 

^ 1 > 

1 

| 

Decision 
function 

— • output 
transformation 

Fig. 4.8 Structure of a fuzzy aggregated membership controller. Reproduced from (Kaymak et al. 
1996), ©1996 IEEE. 

Consider a FAME controller with n inputs. The steps that the controller takes 
for calculating the output can be summarized as follows. 

(1) Determine the membership values fij for each input variable using the mea-
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sured values of the variables and the membership functions defined for each 
variable. Here, the membership function is a mapping R —> [0,1], and it 
need not have a height of one or a bounded support. 

(2) Determine the aggregated membership value fi using the decision function 
and possibly the weight factors 

li = DV(fi1,...,fin). (4.2) 

(3) Calculate the controller output u using an appropriate function of /i 

u = h(fj). (4.3) 

This transformation is typically a scaling of the closed interval [0,1] to the 
interval of operating values using a linear mapping. 

Example 4.3 Figure 4.9 depicts a nonlinear PD controller using the proposed 
scheme. The controller has as inputs the error signal e and its derivative Ae. The 
membership functions that are defined for the two inputs and the resulting control 
surface of the controller are shown in the figure. The aggregation operator that 
is used is the arithmetic mean. Note that a linear PD controller would have been 
obtained if the membership functions for the inputs had been trapezoidal. 

(a) Membership functions (b) Control surface 

Fig. 4.9 A nonlinear PD-controller implemented using arithmetic mean as the fuzzy decision func­
tion, (a) Input membership functions, (b) Control surface of the controller. Reproduced from (Kaymak 
etal. 1996), ©1996 IEEE. 
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4.3.2 Decomposability of control surface 

A disadvantage of the proposed scheme is that the decision surface of the con­
troller can consist only of 'decomposable' functions. Therefore, an arbitrary non­
linear mapping cannot be obtained using the proposed scheme. The function 
approximation capability of the FAME controllers is considered in more detail 
in Sec. 4.3.3 and Sec. 4.3.4. In this section, the decomposability of tfie con­
trol surface is discussed. Decomposability means in this context that the final 
n-dimensional control surface can be found by combining n functions of one 
variable by using a fuzzy aggregation operator. The following relations are then 
established. Suppose that the controller has n inputs x\,...,xn and one output u. 
A membership function defined on input XJ, j = 1 , . . . , n is a mapping 

lijix^-.R—>[0,1], 

and denotes how much input Xj satisfies the jth fuzzy criterion. For n inputs with 
(possibly) different weights Wj, the aggregation function is a mapping 

D w (Mar i ) , • • • - M * » ) ) : [0,1]" —• [0,1], (4.4) 

where D w is increasing in its operands. The final output is found by a third 
mapping 

h(Dw) : [0,1] —-»• K. (4.5) 

Typically, Eq. (4.5) is a linear mapping, so that it scales the closed interval [0,1] 
to another closed interval of real numbers. The output of the fuzzy system is thus 
given by 

u = h{DY'{ni{xi),...,fin{xn))). (4.6) 

Example 4.4 Allowing a large degree of freedom in the specification of the 
membership functions m(xj) and in the selection of the aggregation operator, a 
large variety of control surfaces can be generated. Knowledge about the fuzzy 
aggregation operators and the requirements for the control surface are used to 
select a required decision function D w and the shape of the membership functions. 
Suppose that for a fuzzy controller with two inputs, the membership functions are 
defined as shown in Fig. 4.10a. When the output mapping h is selected such that 

h(fi)= 2 ( ^ - 0 . 5 ) , 

where \± is given by Eq. (4.4), the resulting control surface looks as shown in 
Fig. 4.10b for the product t-norm. The control surface for the arithmetic mean is 
shown in Fig. 4.10c, while the control surface for the algebraic sum is shown in 
Fig. 4.10d. Note the large degree of influence the aggregation operator has on the 
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shape of the control surface, leading to different control surfaces from the same 
set of membership functions. 

(a) Input membership functions (b) Product t-norm 

(c) Arithmetic mean (d) Algebraic sum 

Fig. 4.10 Membership functions and control surfaces for a FAME controller with two inputs and 
various aggregation methods. 

An important class of controllers in control engineering possesses a decom­
posable form. Consider a nonlinear PID controller given by 

u(t) = Ki{xx)e{t) + K2{x2)^- + K3(x3) [ e(t)dt, (4.7) 
at Jo 

where u is the controller output, and the controller 'constants' K\, K2 and K3 are 
functions of the variables xi, x2 and x3, respectively. Assume in the following 
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without loss of generality that the controller output is given by 

u(t) = /fi(e)e(t) + K2 (~\ ^ L + K J J edt) J e(t)dt (4.8) 

= Ki(e)e(t) + K2{e')e' + K3(E)E, (4.9) 

where e(t) — r(t) - y(t) is the error signal between the desired output r(t) and 
the system output y(t), e'(t) is its time derivative and E(t) is its time integral. In 
Eq. (4.8), K\, K2 and K3 change with time as they are also functions of the error 
signal. The time-invariant PID controller is obtained when K\,K2 and K3 are 
constants. Although the PID controller according to Eq. (4.8) does not put bounds 
on the error signal, in practice this signal and its derivatives are bounded. Hence, 
it is assumed that e, e' and E take on values from a closed interval. Note that 
the integrated signal E is also kept bounded in order to avoid wind-up problems 
(Astrom and Hagglund 1995). 

The nonlinear PID controller from Eq. (4.8) can be designed by using the 
nonlinear controller design method described above. Let h be an affine mapping 
so that the aggregated membership is given by 

H = K-l(u) = ̂ —-, (4.10) 
c 

where b and c are constant. Let the aggregation operator for the FAME controller 
be the arithmetic mean. Further, suppose that the membership functions fii(e), 
/i2(e') and ^{E) are given where the membership functions are mappings de­
fined as [ij : K —> [0,1]. The aggregated value is then given by 

^ /ii(e) + fi2{e') + »3{E) 

o 

Since u = cfi + b, one finds that 

« = l^i(e) + IMt(e') + na(E)) + b. (4.12) 

Comparing Eq. (4.9) with Eq. (4.12), one sees that they can be made equivalent 
by selecting the membership functions in a special way. One way of achieving the 
equivalence is to divide Eq. (4.12) into three parts according to u — u \ + u2 +113 
with 

c . . b 
ui = g M e ) + - , 

U2 = ^2{e') + ~, (4.13) 

c . _,. b 
us = -fi3{E) + -. 
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Provided that the membership functions are chosen such that 

//i(e) = -Ki(e)e , 
c c 

fMt(e') = -K2(e')e' - - , 
c c 

M3(S) = -K3(E) - - , 
c c 

and (4.14) 

the nonlinear FAME controller becomes equivalent to a nonlinear PID controller. 
Note that the gradient of the membership functions is proportional to the corre­
sponding PID constants. Hence, a large gradient for the membership function 
pi (e) corresponds to a large proportional action, and so on. By selecting the form 
of the membership functions, the controller can be tuned for a particular system. 

Within the working region of the PID controller, a linear controller is obtained 
when the membership functions (i\, m and /z3 are linear functions {e.g.triangular 
or trapezoidal membership functions). Suppose that the membership function (i \ 
is given by 

m e j 
e + kx 

2fci 
(4.15) 

Figure 4.11 depicts (i\{e) graphically. The proportional action of the resulting 
linear PID controller can then be tuned by varying the value of k i. A similar 
observation can also be made for the derivative and the integral actions. Increasing 
the value of k\ decreases the proportional action, and vice versa. Note that k i 
indicates the limits of the working region of the PID controller, and it corresponds 
to the scaling factors of a Mamdani fuzzy controller. Therefore, the scaling factors 
influence the gain factors of the controller (Astrom and Hagglund 1995). 

Fig. 4.11 A trapezoidal membership function from which a linear PID controller can be obtained. 

The decomposition properties of specific classes of fuzzy systems have re­
cently been studied in literature. The analysis often concentrates on fuzzy systems 
which use center-average defuzzifier (Zeng and Singh 1996a, Zeng and Singh 
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1996b). In that case, the output of the fuzzy controller can be represented as a 
sum of basis functions, similar to the radial basis function networks from neural 
network theory. Then, the aggregation of fuzzy sets leads to the basis functions 
that span the input product space of the fuzzy system, which are summed with 
various weights to yield the system output. Zeng and Singh (1996b) show that a 
multidimensional mapping from an n-dimensional space to a single dimensional 
space can be decomposed with such a fuzzy system into a collection of simpler 
fuzzy subsystems that describe the mapping defined on a subspace of the origi­
nal input space, similar to the composition of a multidimensional mapping from 
functions of a single variable, as explained above. 

Additivity plays an important role in theoretical considerations of decompos-
ability. For the type of decomposability considered in this book, where a nonlinear 
combination of basis functions is considered, the analysis is more complicated. 
Instead of the additivity, one must then consider additive generators of the aggre­
gation functions. A more interesting question for the control engineer, however, is 
not the mathematical properties of such systems, but it is the methods for synthe­
sizing them from some observation data. A heuristic method proposed below for 
doing this is based on studying the projections of the available data points onto the 
variable axes, and determining the general shape of membership functions from 
these projections. Then, the type of fuzzy aggregation that leads to the desired 
output is considered. The algorithm, which can also be used to design FAME 
controllers, can be summarized as follows. 

(1) Study projections of the available data onto a single input variable. Take as a 
membership function for that variable either the upper envelope or the lower 
envelope. If necessary, some curve fitting can be made at this stage. The upper 
or the lower envelope are used instead of average values in order to obtain a 
mapping that reaches the extremes in the data. 

(2) Use a linear transformation for the output. This implies that the aggregated 
membership value is translated and scaled for obtaining the output value. This 
is a mapping from the unit interval to the full range in which the values of the 
output variable are found. 

(3) Using the mathematical properties of fuzzy aggregation operators, determine 
a class of aggregation operators for use. If the values tend to average one 
another, averaging operators should be used for the aggregation. If one of the 
variables dominate along the edges of the input space, t-norms or t-conorms 
can be used. 

(4) Having selected a class of aggregation operators (e.g. t-norms, averaging op­
erators or t-conorms), select a parametric family of aggregation operators. 

(5) Tune the parameters of the aggregation operator, possibly including the 
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weight factors, which can be used to introduce some asymmetry into the ag­
gregation. 

This method is especially useful when the number of inputs is relatively small (up 
to four inputs). When there are more inputs, it may be more suitable to decompose 
the input product space into several subspaces of lower dimension. The systems 
designed from the reduced spaces can then be combined at a higher level (either 
additively or otherwise), resulting in a hierarchy of decision functions. 

4.3.3 Relation to rule-based systems 

One of the disadvantages of the FAME controllers is that the link to rule-based 
linguistic systems is less apparent. Strictly speaking, FAME controllers are not 
rule based systems, as they are based on an aggregation of several membership 
functions according to a formula. Since one of the advantages of fuzzy systems is 
their transparency revealed by the linguistic rules, an explicit link to the rule-based 
systems is desirable. Note first that the FAME controllers are not completely non-
interpretable, since the membership functions represent a particular property that 
one of the input variables should satisfy. Depending on the application domain, 
these membership functions can be given at least the following three interpreta­
tions. 

(1) A fuzzy criterion. The membership value represents a particular property 
that the input signal should attain, e.g.small output error. 

(2) A gradual rule. (Dubois and Prade 1992) The membership function denotes 
how elements of the input domain relate to the elements of the output do­
main, given a relation between two typical elements in the input and output 
domains. For example, 'the more positive the error, the more positive the 
control action'. 

(3) Nonlinear gain factor. It has been explained above that a nonlinear PID 
controller can be implemented using the method based on decision functions. 
The membership functions are then related to the gain factors of the controller. 

Despite these interpretations and the transparency they introduce, a description of 
the fuzzy system in terms of fuzzy rules can be sometimes more desirable in order 
to identify the combination of inputs in which a particular condition described by 
the rule is valid. Note that given a rule-based fuzzy system, one may generate the 
mapping it represents, provided that the inference and the denazification methods 
are known. A fuzzy system based on decision functions can then be designed, for 
example, by using the heuristic method described above. The resulting fuzzy 
system approximates the mapping described by the rule based fuzzy system. The 



84 Fuzzy Decision Making in Modeling and Control 

inverse mapping from decision function based fuzzy systems to rule based fuzzy 
systems is also possible under certain conditions, as explained below. 

Let x be the input of a fuzzy system, and let y = f(x) be a mapping that the 
fuzzy system describes from the input x to the output y. As mentioned above, such 
a mapping can be interpreted as a nonlinear gain factor in a nonlinear controller 
based on fuzzy decision functions. Further, assume that f(x) is monotonic and 
continuous in x. Then, the following fuzzy system can be designed such that 
the system describes the mapping exactly. Let the input domain be defined by 
x £ X = [a, b]. Due to monotonicity and continuity, the output will also lie in a 
closed interval, for example given by y £ Y = [/(a), f{b)]. The case where f(x) 
is decreasing so that Y = [/(&), f{a)] is analogous. Divide both the input domain 
and the output domain into two fuzzy intervals and establish two rules 

R1: It x is A1 then y is B1 

R2: If a; is A2 then y is B2. 

Further, let A1 and A2 be two triangular fuzzy sets such that the sum of member­
ship values /i^i (x) and HA2 {%) equals 1.0. Figure 4.12 shows the partition of the 
input domain. The fuzzy sets on the input domain are given by 

Fig. 4.12 Partition of the input domain for a minimal fuzzy system. 

I \ b ~ X A I \ X ~ a 

VA^ (x) = - , and fiA2 (x) b — a 

Further, let the implication be given by 

6 — o 

Rk(x •»>={i: 
^A"ix)<iiBk{y), fc = l ,2 
otherwise. 

(4-16) 

(4.17) 

For the total relation described by the rule base, the conjunction of the rules is 
used, i.e. ,R = RlC\R2. The question that must now be answered is how to select 
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the output fuzzy set membership functions /u^i (y) and \IBI (y), so that the fuzzy 
system describes the mapping f(x) exactly. Let the output membership function 
be defined using the inverse mapping / _ 1 as 

W(v) = b^£^, and b — a 

^{y) = J—^1
 = 1-HAI(X). (4-18) 

b — a 

Since x = / _ 1 ( y ) , Eq. (4.17) and Eq. (4.18) lead to 

y>f(b-^(x)(b-a)), (4.19) 

for the output set of rule R1, and to 

y<f(b-in(x)(b-a)) (4.20) 

for the output set of rule R2. Since the total relation is a conjunction, Eq. (4.19) 
and Eq. (4.20) give the solution 

y = f(b-fi1(x)(b-a)) = f(x), (4.21) 

where Eq. (4.16) is also used. Hence, the output of the rule-based system is equal 
to the final (desired) mapping. Note that this system is a rule-based equivalent of 
the fuzzy extension of a crisp mapping according to the fuzzy extension principle. 
Given such a rule based system, any monotonic function of a single variable can 
be realized. By combining several systems, one can find a rule-based description 
for any function of the form 

n 

To see how Eq. (4.22) relates to nonlinear controllers based on fuzzy decision 
functions, suppose that an operator which possesses an additive generator function 
representation is used for the aggregation. Remember that this class includes many 
of the commonly used aggregation operators. It is observed from Eq. (4.5) that 
the overall mapping for the controller with n inputs is given by 

u = ft(J)w(/n(ii),.. .,Hn{xn))). (4.23) 

One obtains, by considering weighted aggregation in additive generator function 
representation, that 

u = h I / _ 1 ^Wjfinjixj)) 
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^u = go\Y,wjgj{xj)\. (4.24) 

Comparing Eq. (4.24) and Eq. (4.22) it is seen that the rule-based system can 
describe the argument of g0- For linguistic interpretability, a rule-based system 
can also be designed to match go, or it can be used to transform the consequents 
of the original rule based system to the output domain. 

In the analysis above, it is assumed that the one dimensional mappings are 
monotonic. If this is not the case for the modeled mapping, then the non­
monotonic mapping f(x) can be subdivided into a number of monotonic regions 
which are then combined together. Each monotonic region is modeled with one 
rule based system, each of which again leads to a minimal fuzzy system. Kosko 
(1997) has proposed a method based on similar concepts for designing Mamdani 
systems with a minimal number of rules. 

4.3.4 Function approximation capability 

Since they can only approximate decomposable functions, the FAME controllers 
cannot approximate an arbitrary nonlinear function. If general approximation ca­
pability is required for achieving more complicated dynamic behavior, several 
FAME controllers must be combined in a hierarchical system with at least two 
levels in the hierarchy. Zeng and Singh (1996b) have shown that a fuzzy system 
can be divided into a number of subsystems, each of which describe a mapping 
that is monotonic in its operands. Each such system can be approximated by a 
FAME controller as described above, and their union describes an arbitrary non­
linear continuous system. In other words, each FAME controller can be inter­
preted as a rule which describes the system behavior in a particular part of the 
input product space. The union of the individual rules describes the desired non­
linear mapping. The function approximation capability of these systems can also 
be seen from Eq. (4.24) which shows that a nonlinear controller based on fuzzy 
decision functions can be compared to a neuron in a neural network (Hunt et al. 
1992, Kosko 1992). The nonlinear function go is equivalent to the nonlinearity 
of a neuron which acts on a summation of its inputs. In the above case, the in­
puts to the neuron are modified through the functions gj(xj). Suppose that K 
of these elements are combined linearly as shown in Fig. 4.13. The system in 
Fig. 4.13 describes a mapping from n inputs to p outputs. The g j k , j — 1 , . . . , n, 
k — 1 , . . . , K are the nonlinear functions from Eq. (4.24) obtained for the FAME 
controller. They are the nonlinear transforms for the input layer of a neural net­
work. The outputs transformed through g jk are summed up weighted by Wjk, and 
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the output of each summation is passed to a nonlinear membership function gofc. 
whose outputs are the outputs of the hidden layer of the neural network. They 
are summed up weighted by Vik, i = 1 , . . . ,p, to yield the system outputs (third 
layer). Cybenko (1989) has shown that such a configuration can approximate any 
continuous mapping, provided that a sufficient number of nonlinear elements are 
available. Therefore, several FAME controllers can be used to approximate an 
arbitrary continuous function. 

Fig. 4.13 Several FAME controllers can be combined in a feedforward network structure for approx­
imating a general nonlinear continuous function. 

4.4 Examples of fuzzy aggregated membership control 

In this section, a couple of examples of nonlinear systems based on fuzzy decision 
functions (FAME controllers) are given. FAME controllers can be used in existing 
control systems to improve their performance, as discussed in Sec. 4.3.1. In this 
section, two additional examples are given of the use of FAME controllers in 
modeling and nonlinear PID control. 

4.4.1 Parameter estimation of nonlinear parity equations in aircraft 

One of the approaches to actuator failure detection and identification in aircraft is 
the parity space approach, which utilizes the redundancy contained in the static 
and dynamic relationships amongst the actuator commands and measured outputs 
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(Patton et al. 1989). Parity equations from linear model-based detection systems 
are applicable only in one operating point. Schram et al. (1998) have suggested 
a method whereby the parameters of the parity equations are scheduled between 
different operating points by using a fuzzy system, so that the failure detection 
and identification becomes more robust to changing flight conditions. One of the 
important aspects of their method is modeling the parameter values of the parity 
equations as a function of the changing flight conditions. The parity equations typ­
ically have many parameters, each of which must be modeled separately. Below, 
the modeling of only one of these parameters is considered. Schram et al. (1998) 
use a zero-order Takagi-Sugeno system for the modeling. The value of the gain 
parameter is determined from the airplane's air speed and its total mass. The gain 
is measured for 15 different operating conditions, each of which is represented as 
a rule in a rule base. Figure 4.14 shows the input membership functions as used 
by Schram et al. (1998) and the resulting relation between the inputs of the system 
and the parameter of the parity equation. 

airspeed [m/s] 

(a) Membership functions (b) Input-output mapping 

Fig. 4.14 Takagi-Sugeno system used by Schram et al. (1998) for estimating the parity equation 
gain; (*) are the measured data points. 

The modeling of the gain by using fuzzy decision functions starts by study­
ing the projections of the measured points onto the input variables. The lower 
envelopes of the projections of the measured data points on to the 'airspeed' and 
'mass' axes are chosen as the membership functions as shown in Fig. 4.15a. In this 
example, the membership functions are not parameterized, but they are derived 
directly from the measurements with linear interpolation between the measure­
ments. Since the output becomes low only when both the airspeed and the mass 

airspeed [m/sl 
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are low, a t-conorm operation is used for the aggregation. Hamacher t-conorm 
(Mizumoto 1989a) in its parametric form has been chosen for this purpose. The 
parameter 7 of the t-conorm is optimized for the best fit to the 15 points, and the 
aggregated result is scaled to the output domain by using an affine transformation. 
The optimal value of the parameter is found to be 1.18. Figure 4.15b shows the 
resulting mapping from the input domain to the output domain. The sum squared 
error is calculated to be 1.0 x 10 - 6 , which is lower than 2.7 x 10 - 5 , the sum 
squared error obtained by Schram et al. (1998). Note that the number of parame­
ters in the system based on fuzzy decision functions (two membership functions 
and the t-conorm parameter 7) is smaller than the number of parameters in the 
Takagi-Sugeno system with 15 rules (8 membership functions). Thus, the system 
with fuzzy decision functions achieves good approximation while decreasing the 
number of free parameters in the system. Hence, it is a good modeling tool for 
this system. 

small air speed 

1 1.05 1.1 1.15 1.2 1.25 1.3 135 1.4 1.45 1.5 M ' mass [kg] 
mass [kg] K10

5 airspeed [m/s] 

(a) Membership functions (b) Input-output mapping 

Fig. 4.15 System based on fuzzy decision functions for estimating the parity equation gain. The 
input membership functions are aggregated using Hamacher t-conorm; (*) are measured data points. 

4.4.2 Nonlinear PID control of a laboratory propeller setup 

A laboratory propeller setup is shown in Fig. 4.16. It consists of two propellers, 
one rotating along a horizontal axis and the other one rotating along the vertical 
axis. The two propellers are coupled together by a rigid rod that can rotate in 
the horizontal plane (yaw 0) and in the vertical plane (pitch 0). The goal of the 
control system is to bring the rod to a desired yaw angle and pitch angle by using 
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the horizontal and the vertical motors. The horizontal and the vertical motors 
show a strong coupling. 

Fig. 4.16 Schematic diagram of a laboratory setup. 

The two subsystems can be controlled by two PID controllers. However, the 
tuning is difficult, especially for the horizontal system, because the overshoot be­
comes very large if the proportional action is large. If it is small and the derivative 
action is large, then the response time is very long, i.e., the system response is too 
slow. Figure 4.17 shows the yaw and pitch responses for a PID controller tuned 
for the considered response. A consideration of the system indicates that the gain 
factors should preferably be small when the system is far away from the set point 
{i.e., when the error and its derivative is large), and it should be large around the 
steady-state in order to improve the response. A FAME controller is designed 
to implement this strategy. The nonlinear PID controller analysis presented in 
Sec. 4.3.1 is used for designing the controller. Since the derivatives of the mem­
bership functions are proportional to the gain factors, sine curves are used as the 
membership functions to model the effect described above. These membership 
functions are depicted in Fig. 4.18a. 

The sine curves are represented in parametric form and the slope of the mem­
bership functions are tuned by changing the scaling factors. The three member­
ship functions for the proportional, derivative and integrals actions are combined 
together with weighted arithmetic mean. A cross-section of the resulting control 
surface for the PD combination is shown in Fig. 4.18b. Figure 4.17 shows the re­
sponse of the system, which illustrates the improvement due to the nonlinearity in­
troduced in the PID controller. Note that the computational load of this controller 
consists only of evaluating three membership functions and a linear combination 
of them. 
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Fig. 4.17 Closed loop response of a conventional PID controller and a nonlinear PID controller based 
on fuzzy decision functions for the laboratory propeller setup. 

4.5 Summary and concluding remarks 

This chapter has considered the use of a new type of nonlinear controller that is 
based on a fuzzy decision making paradigm and fuzzy decision functions. In con­
trast to fuzzy logic controllers, whose nonlinearity may be the result of a number 
of factors, some of which are not explicit, the proposed FAME controller allows 
the specification of its nonlinearity in an explicit way. The controller uses aggre­
gation operators from fuzzy set theory and one membership function per input 
variable to determine its output. Tuning this controller requires relatively less ef­
fort because of the reduced number of parameters and the fact that it is based on 
aggregation operators whose properties are well-known from the fuzzy set theory. 
However, the controller is not as general as a fuzzy logic controller, due to the 
reduced degrees of freedom. In particular, it can only approximate mappings that 
can be decomposed into a number of single dimensional functions, which can be 
combined by a fuzzy decision function to compose the original mapping. 
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(a) Membership functions (b) PD cross-section 

Fig. 4.18 Nonlinear PID controller based on fuzzy decision functions for the laboratory propeller 
setup. 



Chapter 5 

Modeling and Identification 

In this chapter, we turn our attention to model-based control. In model-based 
control, the controller determines the current control actions by using a model 
of the controlled process. Some of the modeling and identification techniques 
used in this book, and that are particularly suitable for fuzzy model-based control 
(FMBC) are presented in this chapter. The goal of the chapter is to present fuzzy 
modeling and identification techniques in so far they are used for obtaining the 
fuzzy models used in this book. 

The development of a model of the process is essential for fuzzy model-based 
control. Traditional first-principles models are used, based on a deep knowledge 
of the nature of the system, and on a suitable mathematical treatment. This type 
of models is usually known as 'white-box' models or mechanistic models. Some 
systems are almost linear and can be approximated by a linear model. This is, 
however, generally not the case, and linear models are derived presenting the sys­
tem around a working point. This approach has the disadvantage of restricting 
the control to a certain operating region of the system. When the model is used 
in a model-based control scheme outside the region around the working point, it 
usually leads to poor control performance. 

If a first-principles approach is not possible, linear identification techniques 
can be used. The linear system is often represented as a state-space model of the 
form 

x(r + l) = Ax(r) + B u ( r ) , 

y(r) = Cx(r) , (5.1) 

forr = 0 , 1 , . . . . 
For some nonlinear processes, the system's behavior can be described by suit­

able mathematical laws, leading to a model, which can be used for control pur­
poses, i.e., the model is not too complex and does not involve heavy computational 
effort. These so-called nonlinear white-box models are highly desirable because 
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they can describe the system not only around a working point, but in the whole 
range of the system under control. However, many processes are complex and 
only partly understood. Generally, a good mathematical description of the under­
lying physics of the system is not possible. 

As this white-box approach is laborious, and inefficient for complex and par­
tially known systems, a nonlinear model based on soft computing techniques, 
e.g.fuzzy, neural, or neuro-fuzzy methods, can be used. These methods can repre­
sent highly nonlinear processes in an effective way, due to their general function 
approximation properties. Fuzzy modeling is an attractive modeling technique be­
cause it is possible to combine different types of knowledge and data such as first 
principles, knowledge obtained from linguistic rules describing the system and/or 
measurements. 

Linear models are mainly used in this book as test cases. Nonlinear white-box 
models are used as the 'real' process in some simulation tests. Fuzzy models are 
widely used throughout this book, also for real-time implementations. The general 
formulation of the modeling problem is presented in Sec. 5.1. The basic principles 
of fuzzy modeling are described in Sec. 5.2. When only data of the system under 
control is available, fuzzy identification, as presented in Sec. 5.3, can be used. The 
identification of fuzzy models using product-space fuzzy clustering, which is the 
type of fuzzy identification used in this book, is briefly described in Sec. 5.4. 

5.1 Formulation of the modeling problem 

Modeling is a technique that derives a model of the system under control. Discrete 
nonlinear autonomous open loop models are considered in this book. For the 
discrete case, the general form of these multiple input multiple output (MIMO) 
models is given by 

x(r + l ) = h ( x ( r ) , u ( T ) ) , 

y(r) = g(x(r)). (5.2) 

Let h ' and g' be the functions exactly describing the system. The objective of 
modeling is to approximate the functions h ' and g', by the functions h and g, 
respectively, such that the approximations are as close as possible to the functions 
describing the system. 

Suppose now that a black-box model must be identified from input-output 
data. In this case, the state vector x can be obtained from the inputs and outputs 
of the system, joining them in a vector, 

x(r) = [ J / I ( T ) , . . . , I / I ( T - P I + 1 ) , . . . , 
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yP(T),---,yP(T-pp + i), 

u i ( r ) , . . . , u i ( r - m i + 1 ) , . . . , 

u m ( r ) , . . . , u m ( r - m m + 1)]T. (5.3) 

The parameters m i , . . . , m m are the orders of the inputs u\,...,um, and the 
parameters p\,..., pp are the orders of the outputs yi,...,yp, respectively. Note 
that the dimension of the state vector is given by n = ]C*li rnj + S?= i Pj- With 
this state vector, Eq. (5.2) can be reduced to 

y(T + l) = f(x(r)). (5.4) 

The state variables x are called the regressor and the predicted outputs y the re-
gressand. The static nonlinear regression in Eq. (5.4) is widely used for the mod­
eling of nonlinear dynamic systems, either in input-output or state-space form. 
The general MIMO system in Eq. (5.4) is depicted in Fig. 5.1a. This model can 

* i ( T ) 

Xj(X) 

*„ (?) 

MIMO 
model 

y.Cc+l^ 

ttCw-i; 

y,(T+i)„ 

(a) Complete MIMO model. 

x2(x) 

*»(t) 

MISO 
model 

yfiz+1) 

(b) The ith MISO model of the total 
MIMO system. 

Fig. 5.1 Generic MIMO model and one of its ith MISO component. 

be decomposed in a collection of MISO systems, if each MISO system is rep­
resented by a MISO Nonlinear Auto Regressive with eXogenous input (NARX) 
model. Denote with yi,i — 1 , . . . , p, an output considered for a particular MISO 
NARX model i. This MISO system, shown in Fig. 5.1b, is given by 

» i ( r + l ) = / j(x(r)) . (5.5) 

The coupled MIMO system is given by the collection of all the p MISO systems. 
Note that the definition of the state vector as in Eq. (5.3) allows that any previous 
input or output of the system can be a state for each particular MISO model i, with 
i = l,...,p. A collection of the MISO systems, as in Eq. (5.5), defines thus a 
general MIMO system as in Eq. (5.4). 
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5.2 Fuzzy modeling 

From the modeling techniques based on soft computing, fuzzy modeling is one of 
the most appealing. In fact, when the process under control is nonlinear, and the 
system can not be totally described by first principles, but is only partly known, 
it is advantageous to use fuzzy modeling as a way to combine first principles, 
knowledge obtained from experts describing the system's behavior and linguistic 
rules obtained from measurements. This approach is also called gray-box model­
ing. If no a priori knowledge (physical models of parts of the system or linguistic 
rules) is available, the rules and membership functions can be directly extracted 
from process measurements, using various techniques, such as fuzzy clustering, 
neural learning methods or orthogonal least squares (see Guillaume (2001) for 
an overview). Fuzzy models provide a transparent, gray-box description of the 
process dynamics that reflects the nature of the process nonlinearity for low-order 
nonlinear systems (Babuska 1998). Many processes are partly known, where first 
principles and measurements on the system can be synergistically combined. 

The theory of fuzzy sets can be applied to the modeling of systems in differ­
ent ways. Traditionally, rule-based fuzzy systems are used (Zadeh 1973, Driankov 
et al. 1993). In computational terms, fuzzy models are flexible mathematical struc­
tures that, in analogy with neural networks and radial basis functions, are known 
to be universal function approximators (Wang 1992, Kosko 1994, Zeng and Singh 
1995). In fuzzy modeling, the fuzzy If-Then rules take the following general 
form, 

If antecedent proposition then consequent proposition. 

Fuzzy models use Tf-Then' rules and logical connectives to establish relations 
between the variables defined for the model of the system. The fuzzy sets in the 
rules serve as an interface amongst qualitative variables in the model, and the in­
put and output numerical variables. The rule-based nature of the model allows for 
a linguistic description of the knowledge, which is captured in the model. The 
fuzzy modeling approach has several advantages when compared to other nonlin­
ear modeling techniques, such as neural networks. In general, fuzzy systems can 
provide a more transparent representation of the system under study and can also 
give a linguistic interpretation in the form of rules. 

Depending on the form of the propositions and on the structure of the rule base, 
different types of rule-based fuzzy models can be distinguished. Two different 
types are used in this book. 

(1) Linguistic or Mamdani fuzzy model (Zadeh 1973, Mamdani 1977), where both 
the antecedent and consequent are fuzzy propositions (see Sec. 5.2.1). 
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(2) Takagi-Sugeno (TS) fuzzy model (Takagi and Sugeno 1985, Sugeno and 
Tanaka 1991), where the consequents are crisp functions of the antecedent 
variables rather than a fuzzy proposition. TS models are described in 
Sec. 5.2.3. 

The singleton fuzzy model, where the consequent is a singleton, can be seen 
as a particular case of both linguistic and TS fuzzy models, and is presented in 
Sec. 5.2.2. 

5.2.1 Linguistic fuzzy models 

The linguistic fuzzy model (Zadeh 1973, Mamdani 1977) consists of rules where 
both the antecedent and the consequent are fuzzy propositions. Linguistic fuzzy 
models represent static mapping of systems. A general rule of a linguistic or 
Mamdani fuzzy model is given by 

Rk: I fxis ,4 f cthenyisB f c , k = l,2,...,K, (5.6) 

where Rk denotes the fcth rule and K is the number of rules. The antecedent 
variable is given b y x g l c l ™ and represents the input of the fuzzy system. 
Similarly, y £ Y C W is a consequent variable representing the output of the 
fuzzy system. Note that these symbols are conform to states and outputs of sys­
tems presented in Sec. 5.1. Ak and Bk are fuzzy sets described by the membership 
functions pL^k (x): X —¥ [0,1] and fiBk (y): Y —• [0,1], respectively. Fuzzy sets 
Ak define regions in the antecedent space X, and fuzzy sets Bk define regions 
in the consequent space Y. The antecedents are usually defined as a combination 
of simple fuzzy propositions for each Xj, j = 1 , . . . , n of the vector x, instead 
of using multidimensional fuzzy sets. In a similar way, the consequents can also 
be divided in simple fuzzy propositions yt,i = 1 , . . . ,p. This decomposition has 
the advantage that the linguistic interpretability of the model increases. For the 
fuzzy propositions it is usual to attribute linguistic meanings such as 'high tem­
perature', 'small velocity', and so on. As the antecedent and consequent fuzzy 
sets take on linguistic meanings, they are called linguistic labels of the linguistic 
variables. For instance, if the linguistic variable is 'temperature', several fuzzy 
sets can be defined for this variable, e.g. 'low', 'medium', 'high'. Different fuzzy 
logic operators, such as conjunction, disjunction and complement can be used to 
combine the antecedent propositions. The most commonly used form is, however, 
the conjunctive form, given by 

Rk: If x\ is Ak and x2 is Ak and . . . and xn is Ak
n 

then yx is Bk and y2 is Bk and . . . and yp is Bk, (5.7) 
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where one-dimensional fuzzy sets are defined for each component of the an­
tecedent and consequent vectors. Note that the conjunctive form divides the an­
tecedent space in a lattice of axis-orthogonal hyperboxes. 

Given the rules and the known inputs, the inference mechanism derives the 
outputs of the fuzzy model. The compositional rule of inference (Zadeh 1973) 
performs the fuzzy inference for linguistic models. Each rule in Eq. (5.6) is a 
fuzzy relation Rk: X x Y -» [0,1]), which is computed by 

where the operator I can be a fuzzy implication or a conjunction operator (t-norm). 
The entire rule base is represented by combining the K relations R k of the individ­
ual rules into a global relation R. If I is an implication, R is obtained by making 
a conjunction of all the Rk, and if I is a conjunction operator, R is computed as 
a disjunction of the individual relations Rk. For a given input 'x is A", and the 
relation R, the corresponding output fuzzy set B' is derived by 

B' = A1 o R , (5.9) 

where o denotes the sup-i composition (Klir and Yuan 1995). The norm used most 
in this composition is the minimum i-norm, leading to the following composition 

HB'(y) = max min (fiA, (x), fiR(x,y)) . (5.10) 
x x,y 

When the implication I in Eq. (5.8) is chosen to be the minimum conjunction op­
erator, fin becomes the minimum of fiAk and figk, and the compositional rule of 
inference is simplified to the so called max-min or Mamdani inference (Driankov 
et al. 1993), which can be summarized in the following steps. 

(1) The degree of fulfillment fik of the antecedent is computed for each rule k as 

Pk = Mxj^i) hfiAk(x2) A . . . /\nAk(xn), k = l,...,K. (5.11) 

rk 

(2) For each rule derive the output fuzzy set B using the minimum t-norm. 

Ms'*(y) = /3fcA/xB,(y). (5.12) 

(3) Aggregate the output fuzzy sets by taking the maximum. 
MB'(y) = k=Yfx

 K^B'k(y))- (5-i3) 

The application of this fuzzy set algorithm gives as solution the fuzzy set B'. 
However, in many cases a numerical output value is required, and the output fuzzy 
set must be defuzzified. The defuzzification transforms a fuzzy set to a single 
representative numerical value. Two common defuzzification methods are the 
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center-of-gravity (COG) and the mean-of-maxima (MOM). For discrete domains 
Y, the COG method computes for each coordinate j/ j , i = 1 , . . . ,p the center of 
gravity for the fuzzy set B' as a weighted sum 

Z^(B') = E g ^ B ' ( y g ) R g , (5.14) 
E 9 = i w j ' ( y 9 ) 

where Nq is the cardinality of the discretized domain Y (i.e., number of quan­
tization levels used for the discretization of Y). The point yq is the qth discrete 
point in the quantization of Y. The MOM method computes the mean value of 
the interval with the largest membership degree. The MOM method is normally 
used with the inference based on fuzzy implications, to select the 'most possible' 
output. A broader discussion of defuzzification is given in Sec. 6.2. 

5.2.2 Singleton fuzzy model 

A special case of the linguistic fuzzy model is obtained when the consequent sets 
Bk are reduced to fuzzy singletons. This is possible if the dimension of the output 
is reduced to one, which is represented now by y, and F C i . Singleton sets can 
be represented as real numbers ck, yielding the rules 

Rk: I fx i sA*theny = c*, k = l,2,...,K. (5.15) 

This model is called the singleton fuzzy model. For this model, the COG defuzzi­
fication method is reduced to the, fuzzy mean method, i.e., 

fc=i 2^i j=i P 

This defuzzification depends on the number of rules K, and not on the number 
of fuzzy sets for a certain output yt,i = l,...,p, like in Eq. (5.14). The single­
ton model can also be seen as a special case of the Takagi-Sugeno fuzzy model 
discussed in Sec. 5.2.3. 

Contrary to the linguistic fuzzy model, the consequent parameters c k of the 
singleton model can easily be estimated from data by using least squares tech­
niques. Moreover, the singleton model belongs to a general class of function 
approximators, called the basis functions expansion (Friedman 1991), taking the 
form 

K 

^ $ f c ( x ) c ' c . (5.17) 
fc=i 
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Most of the structures used in nonlinear system identification, such as artificial 
neural networks, radial basis functions or splines belong to this class of systems. 
In the singleton model, the basis functions $fc(x) are given by the normalized 
degrees of fulfillment of the rule antecedents, and the constants ck in Eq. (5.17) 
are the consequents in Eq. (5.15). 

Beyond the fact that singleton fuzzy models are relatively easy to identify, they 
also have other attractive properties. When the antecedent membership functions 
are triangular, form a partition of unity and the product t-norm is used to repre­
sent the logical and connective in the rule antecedents, a multilinear interpolation 
between the rule consequents is obtained (Brown and Harris 1994). Under cer­
tain conditions, this singleton model can be exactly inverted, providing a control 
law based on the inverse of the process model. The inversion of singleton fuzzy 
models is presented in Sec. 7.2. 

5.2.3 Takagi-Sugeno fuzzy models 

Takagi and Sugeno (1985) introduced a fuzzy rule-based model that consists of 
a generalization of the singleton model, where the rule consequents are not con­
stants, but crisp functions of the model input according to 

Rk:IfxisAkthenyk = fk(x), k = l,2,...,K, (5.18) 

where Rk denotes the kth rule, K is the number of rules, x is the antecedent 
variable, y is the one dimensional consequent variable and Ak is the (multidi­
mensional) antecedent fuzzy set of the kth rule, as for the linguistic model in 
Sec. 5.2.1. Each rule k has a different function fk yielding a different value yk 

for the output. This fuzzy model can be generalized for p outputs as 

Rk: IfxisA^theny* = ffc(x), k = l,...,K. (5.19) 

Note that the index in the outputs yk and the functions fk corresponds to the kth 
rule. For the sake of simplicity, the form in Eq. (5.18) is used in the following. 
In fact, Eq. (5.19) is the representation of a MIMO fuzzy model, which is decom­
posed in several MISO systems as in Eq. (5.18). When the states x are defined 
as in Eq. (5.3), the MIMO fuzzy model in Eq. (5.19) can be decomposed into a 
collection of MISO fuzzy models as in Eq. (5.18), without loss of generality. The 
antecedent proposition Ak can again be a combination, usually in a conjunctive 
form, of simple propositions for each x j , j = 1 , . . . , n, asinEq. (5.7). The conse­
quent functions / * in Eq. (5.18) can be chosen as parameterized functions, where 
the structure remains the same for all the rules. The most simple and widely used 
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function is the affine linear form, which yields the rules 

Rk: If x is Ak then yk = (afc)Tx + bk , (5.20) 

where ak is a parameter vector and bk is a scalar offset. This model is called an 
affine TS model. The consequents of the affine TS model are hyperplanes in the 
product space of the inputs and the output, i.e., l " x l Note that when a* = 
0, k = 1 , . . . , K, the consequents in model Eq. (5.20) are constant functions, and 
the model is a singleton model as presented in Sec. 5.2.2. 

For the sake of simplicity of notation, let /3* A ^fe(x) denote the mem­
bership function of the antecedent Ak, i.e., the degree of fulfillment of rule k. 
The inference mechanism proposed by Takagi and Sugeno (1985) is reduced 
to a straightforward extension of the fuzzy-mean defuzzification presented in 
Eq. (5.16), 

K K 

fc=l ' k=l 

where fik is the normalized degree of fulfillment of the fcth rule's antecedent given 
by 

Bk 

Pk = = £ • (5.22) 

When the supports of the antecedent fuzzy sets overlap in the antecedent space, 
the TS model can be regarded as an approximation of a nonlinear function by local 
linear functions that are combined. 

5.3 Fuzzy identification 

The previous sections reviewed the structures and inference mechanisms of dif­
ferent rule-based fuzzy models. The construction of the fuzzy models, usually 
known as fuzzy identification, is now discussed. It is assumed that the structure of 
the system, i.e., the input and outputs variables, are determined beforehand. For 
dynamic systems as in Eq. (5.4), the choice of the model structure determines the 
representation of the dynamics within the fuzzy model. When considering a fuzzy 
modeling approach, one has to choose the type of the fuzzy model a priori, which 
depends on the particular application. The inference and defuzzification methods 
must be chosen afterwards. Finally, the rule base and the membership functions 
must be derived. In general, TS fuzzy models are more suitable for the identi­
fication of nonlinear systems from measured data, while linguistic fuzzy models 
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give a more qualitative description of the system, and as such can be used when 
dealing with process knowledge. Therefore, it is often useful to develop models of 
different types for the same system, where each model serves a different purpose 
such as control design, simulation, prediction, fault detection and user interfaces. 
A survey of various identification techniques for dynamic systems can be found 
in Guillaume (2001). In the following sections, we discuss construction of fuzzy 
models in so far as they are relevant to the material in this book. 

Several techniques using neuro-fuzzy identification, such as fuzzy-logic based 
neurons (Pedrycz 1985) or spline adaptive techniques (Brown and Harris 1994) 
can be used in fuzzy identification. Local approaches to fuzzy modeling and iden­
tification are also increasingly being used (Murray-Smith and Johansen 1997). 
One of these local modeling techniques is product-space fuzzy clustering where 
local linear models are derived to approximate a nonlinear regression problem 
by using fuzzy clustering methods. Fuzzy clustering algorithms are unsupervised 
algorithms that partition a number of data points into a given number of clus­
ters (Hoppner et al. 1999). The information regarding the distribution of data 
can be captured by the fuzzy clusters, which can be used to identify relations be­
tween various variables regarding the modeled system. Bezdek and Pal (1992) and 
Babuska (1998) discuss methods for applying fuzzy clustering methods to obtain 
fuzzy models. By applying fuzzy clustering on the data obtained from measure­
ments on dynamic systems, fuzzy models of these systems can also be obtained, 
as discussed in Babuska (1998), Sugeno and Yasukawa (1994), Yoshinari et al. 
(1993) and Zhao et al. (1997). Modeling of dynamic systems by fuzzy clustering 
generally entails the following steps. 

(1) Determine the model structure suitable to the problem by identifying the rele­
vant system variables. These may be data regarding the system states, output 
errors or others. 

(2) Collect data from the system by measuring, computing or constructing the 
relevant system variables. 

(3) Select a clustering algorithm and determine values of the parameters relevant 
to the clustering method used. 

(4) Select the number of required clusters. 
(5) Cluster the data with the selected clustering algorithm. 
(6) Obtain membership functions from clusters by projection or otherwise. 
(7) Determine a fuzzy rule from each cluster by using the membership functions 

obtained. 
(8) Validate the model. 

Typically, the modeling procedure will not follow the above steps successively. 
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Often, the user iterates several times through different parts of the modeling pro­
cedure to come up with an adequate model of the system. 

Gustafson and Kessel (1979) have proposed a powerful fuzzy clustering al­
gorithm that is based on adaptive distance measures. It can be used to obtain a 
nonlinear regression model from a collection of local linear models. This tech­
nique has a model structure that is easy to understand and interpret, and can in­
tegrate various types of knowledge, such as empirical knowledge, derived from 
first-principles and measured data (Kaymak et al. 1997). The data of the sys­
tem can be used to fine tune the parameters of an already existing fuzzy model, 
which is for instance derived from expert knowledge expressed in a collection of 
If-Then rules. Another approach, such as clustering in the product space of vari­
ables, must be used when no prior knowledge about the system is available, and 
the fuzzy model is then constructed, based only on measurements. Product-space 
fuzzy clustering is the identification method used in this text for the identification 
of fuzzy models, and it is briefly presented in the next section. 

5.4 Identification by product-space fuzzy clustering 

Assuming that the input and output variables are known, the nonlinear identifica­
tion problem is solved in two steps. 

(1) Structure identification. 
(2) Parameter estimation. 

These two steps are briefly reviewed below, with attention to the parameter es­
timation problem. The identification procedure presented below is for affine TS 
models as in Eq. (5.20). The identification of singleton models, also used in this 
book and presented in Sec. 5.2.2, is just a particular case of the affine TS model. 
Product-space clustering can also be advantageously used in the identification of 
linguistic and fuzzy relational models, as discussed in (Babuska 1998). 

5.4.1 Structure identification 

Structure identification allows us to transform the dynamic identification prob­
lem into a static nonlinear regression. Suppose that the structure of the model is 
given by Eq. (5.4). For the sake of simplicity, let each MISO system be identified 
separately. As described in Sec. 5.1, the total MIMO system can be derived as a 
collection of MISO systems. A MISO system can thus be described by 

y(r + l) = / (x( r ) ) . (5.23) 
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Product-space fuzzy clustering is based on the data in the product space X x Y 
of the regressor and the regressand. Let N denote the number of data samples, 
selected from the input and output data sequences. This number must be much 
larger than the number of states in the system, i.e., N > n. Let Nd be the number 
of points actually used in the identification. Also, let Th denote the highest order of 
the inputs and outputs in Eq. (5.3). Then, Nd = N - Th. Let $ denote the regres­
sand matrix in RNd Xn having the state vectors x ( r ) T in its rows, and T denote 
the vector in RNd containing the regressands y(r + 1), with r = Th, • • •, N — 1 

T $ = 

_x{N -l)1 

y(rh + l) 

y(N) 

(5.24) 

The matrix $ contains shifted versions of the input and output data, as in Eq. (5.3). 
An example is presented in Example 5.1. In this example Th = 2,andA^ = N—2. 

Example 5.1 Let an NARX model be given by T/(T + 1) = /( j / i (r) , 2/2(T), 
2/2(T — 1), U(T)), and let the considered output of the MISO model be 2/1: y &_ 
2/1. Having N data samples for 2/1,2/2, " i and u2, the regressor matrix and the 
regressand vector are given by 

$ = 

2/i(2) 2/2(2) 2/2(1) ui(2) 

2/i(3) 2/2(3) 2/2(2) U l(3) 

yi(N-l) y2(N-l) y2(N-2) ui(JV-l). 

T = 

'Vi (3) 

2/i (4) 

Assuming that the structure is correctly chosen, the unknown nonlinear mapping 
between T and $ can be estimated from the data set. The structural parameters 
m i , . . . , mm and p\,... ,pp, as in Eq. (5.3), are chosen either on the basis of 
prior knowledge or automatically by comparing different structures in terms of 
some suitable criteria (Sugeno and Kang 1988). 

5.4.2 Parameter estimation 

At this step, the number of rules K, the antecedent fuzzy sets Ak, and the con­
sequent parameters a*, bk for i = 1 , . . . , K, as in Eq. (5.20), are determined. 
Fuzzy clustering in the Cartesian product space X x 7 i s applied to partition the 
data into subsets, which can be approximated by local linear models (Babuska 
1998). Cluster analysis classifies objects according to similarities among them. In 
system identification, clustering finds relationships between the system variables. 
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The data set Z to be clustered is formed by appending T to $, 

Z = [*, T ] T . (5.25) 

The columns of Z are denoted by Z(,£ = l,...,Nd- Let U = [fiki] G 
[0, \\KxN<i denote a fuzzy partition matrix of Z. Let V be a vector of cluster 
prototypes (centers) to be determined, defined by V = [v i, v 2 , . . . , v # ], and let 
F be a set of cluster covariance matrices F = [ F i , . . . , F ^ j , where F^ are posi­
tive definite matrices in R( n + 1 ) x (ra+1). The GK algorithm searches for an optimal 
fuzzy partition U, the prototype matrix of cluster means V, and a set of cluster 
covariance matrices F. In other words, 

clustering 
(Z,K) K U , V , F ) . (5.26) 

The optimization minimizes the following objective function, 

K Nd 

J(Z,U,V)=£5>*/)ae&> (5-27) 
k=i i=i 

where a is a weighting parameter. The function dki is the distance of a data point 
%t to the cluster prototype vfc. In the Gustafson-Kessel clustering algorithm, the 
distance is computed from the covariance matrices according to 

4t = {zt - v fc)T
 | F ^ ( n + 1 ) (zt - v fc), (5.28) 

I ^ I 

where |F^| is the determinant of the covariance matrix F&. The GK algorithm is 
summarized in Algorithm 5.1. 

Algorithm 5.1 Gustafson-Kessel algorithm. 
Given the data set Z, choose the number of fuzzy rules (clusters) 1 < K <C N, 

the weighting exponent a > 1 and the termination tolerance e > 0. Initialize the 
partition matrix randomly. 

Repeat for I — 1,2, . . . 

Step 1: Compute cluster means (prototypes): 

k E ^ O ^ V ' 
Step 2: Compute covariance matrices: 

T? - 2-<i=i{Vki ) ize-vk ) ( z ^- v fc ) i s h <• K 

Kk< K. 
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Step 3: Compute distances: 

da
M = (-/-vi'))T|P*|^Pfc-

1(-/-vt,)). 

Step 4: Update partition matrix: 
if dkt > 0 for 1 < k < K, 1 < I < Nd, 

(0 = 1 

otherwise 

H{1\ = 0 if dkl > 0, and $ e [0,1] 
K 

wth £ > * i = 1 -
k=i 

until | |UO -UC- 1 ) ! ! < e . 

Given the triplet (U ,V,F) obtained by the GK algorithm, the antecedent 
membership functions Ak can be computed, and hence the consequent parame­
ters afc and bk can be calculated, as explained in the following. 

5.4.2.1 Number of clusters 

The number of clusters determines the number of rules in the obtained fuzzy 
model. This number is an important parameter that influences the accuracy and 
transparency of the fuzzy models, and it has thus been considered extensively in 
the literature (Setnes, Babuska, Kaymak and van Nauta Lemke 1998, Kaymak and 
Setnes 2000, Frigui and Krishnapuram 1996). Two main strategies to determine 
the appropriate number of clusters in data can be distinguished. 

• Cluster the data for different values of K and then use a mathematical expres­
sion to assess the goodness of the obtained partitions. This approach is called 
the validity measures approach. Different validity measures have been pro­
posed in connection with adaptive distance clustering techniques (Gath and 
Geva 1989). 

• Start with a sufficiently large number of clusters and reduce this number suc­
cessively by combining clusters that are compatible with respect to some pre­
defined criteria. This is a cluster merging approach. A cluster merging ap­
proach called compatible cluster merging is discussed in Chapter 6. 



Modeling and Identification 107 

5.4.2.2 Antecedent membership functions 

Each cluster represents one TS fuzzy rule, as in Eq. (5.20). The multidimensional 
membership functions Ak are given analytically by computing the distance of 
X(T) from the projection of the cluster center v j. onto X, and then computing the 
membership degree in an inverse proportion to the distance. Denote with F x

k = 
[/j(]> 1 < jj < n> m e submatrix of Ffc. This matrix describes the form of the 
cluster in the antecedent space X. Let v^ = [u l f c , . . . , vnk]T denote the projection 
of the cluster center onto the antecedent space X. From the GK algorithm, the 
inner-product distance norm, given by 

dkt = (x(T)-vl)T\(Ft)\^(Ft)-\x(T)-vl). (5.29) 

is converted into the membership degree by 

M ^ ( x ( r ) ) = ,2/(a-l)> ( 5 - 3 0 ) 

where a is the fuzziness parameter of the GK algorithm given in Algorithm 5.1. 

5.4.2.3 Consequent parameters 

Optimal consequent parameters are estimated by the least-squares method. Let 
[9k)T = [(afc)T, bk], let <I>e denote the matrix [4>, 1], and let Tk denote a di­
agonal matrix in B.N<'xN<' having the membership degree pAk(x(r)) as its fth 
diagonal element. Denote <&' the matrix in M.Nd xK(n+1) composed from matrices 
rk and $ e a s follows 

^ [ ( r ^ e M r 2 ^ ) , . . . , ^ * * ^ ] . (5.3i) 

Denote 9' the vector in RK(n+1) given by 

6'=[(6Y,W2)T,--;(.eK)T]T- (532) 

The resulting least squares problem, T = <&'#' + e, has the solution 

9' = [ ( * ' ) T * T 1 ( * ' ) T T . (5.33) 

The optimal parameters afc and bk are given by 

&* = [^ + n + 1 ] , where s = (fc - l)(n + 1). (5.34) 

With the determination of the parameters a* and fe'1, the fuzzy model identification 
procedure is completed. If several outputs are considered, the procedure must be 
repeated for each output. 
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5.5 Summary and concluding remarks 

This chapter presented the modeling and identification techniques used in this 
manuscript. These techniques are used as tools. In the next chapters, models based 
on first-principles or mathematical descriptions of a system are used when this is 
possible. The latter type of models, also known as white-box models, are used for 
control simulations or test case purposes. Unfortunately, this type of models can 
usually not be obtained because of the poor knowledge of the system, or they are 
too complex to be used in control applications. For this type of problem, which 
is mainly considered in this text, models extracted from data of several inputs and 
outputs of the system, possibly combined with other sources of knowledge, such 
as empirical or mathematical laws, are derived. 

The formulation of the modeling problem is described in the beginning of this 
chapter in order to introduce the necessary notation definitions. Fuzzy modeling 
is chosen from several modeling techniques based on soft computing due to its 
interesting properties. In fact, fuzzy models can incorporate different types of 
knowledge, and a gray-box model can be derived, i.e., a model that is not de­
scribed by mathematical principles, but that can be easily interpretable, because 
it is a rule-based linguistic model. Linguistic fuzzy models, singleton models and 
TS fuzzy models are briefly described. 

The identification of fuzzy models from different types of knowledge, is usu­
ally known as fuzzy identification. When only data is available, product-space 
fuzzy clustering has several advantages over other fuzzy identification techniques, 
such as the possible combination of different types of knowledge, and it is usu­
ally easy to interpret. The identification procedure of a TS fuzzy model has been 
described. It starts by defining the structure of the system. The parameters are 
estimated by using a clustering algorithm, such as the GK algorithm. After deter­
mining the number of clusters, the identification process must run the clustering 
algorithm, and extract the antecedent membership functions and the consequent 
parameters. Several examples of the application of this identification algorithm 
are presented in the next chapters* 



Chapter 6 

Fuzzy Decision Making for Modeling 

Fuzzy decision making methods can be applied to support the identification and 
construction of fuzzy inference systems in fields related to control engineering, 
such as systems modeling. This chapter considers applications of fuzzy decision 
making in fuzzy modeling by using product-space fuzzy clustering and in defuzzi­
fication. 

Various model parameters must be determined to obtain a good fuzzy model 
when the models are obtained from data. An important parameter for fuzzy mod­
els is the number of rules in the rule base. This parameter is a reflection of the 
trade-off between the required model accuracy and the reduction of the model 
complexity. Fuzzy clustering is a widely used method for obtaining fuzzy mod­
els, as discussed in Chapter 5. Determination of a relevant number of rules cor­
responds to the determination of a correct number of clusters for adequately de­
scribing the modeled system. We describe in Sec. 6.1 a method for determining 
a relevant number of clusters when identifying Takagi-Sugeno fuzzy models by 
using fuzzy clustering. Starting from a system description with a large number of 
rules, a multicriteria decision step determines whether the number of rules in the 
rule base can be decreased, leading to the simplification of models. This is one 
application of fuzzy decision making. 

Defuzzification is an important part of fuzzy systems, since many fuzzy sys­
tems must eventually provide the user with a crisp outcome. Defuzzification can 
be seen as an operation that replaces a fuzzy set by its representative crisp value. 
In terms of decision making, the problem is formulated as the selection of a crisp 
value that best represents a fuzzy set, given the goals of the fuzzy system. Many 
defuzzification methods have been suggested in literature. These defuzzification 
methods have in common that the defuzzification operation is equally sensitive to 
different elements in the domain over which defuzzification takes place. Hence, 
the defuzzification operator is not biased for different elements of the domain. 
The decision making interpretation of defuzzification points out, however, that 
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defuzziflcation is not an operation void of any context, but that it must be selected 
to match and satisfy the goals for which the fuzzy system is designed. Section 6.2 
describes a fuzzy decision making approach to defuzziflcation, which leads to 
a new defuzziflcation operator that is not equally sensitive to the elements over 
which the defuzziflcation takes place. An application to the security analysis of 
power networks, where the new defuzziflcation operator is used, is given as an 
example in Sec. 6.3 before the chapter concludes with a summary and several 
concluding remarks regarding the applications. 

6.1 Fuzzy decisions in fuzzy modeling 

Many algorithms in control engineering require the determination of the values 
of certain parameters in order to obtain satisfactory results. A number of crite­
ria must be considered, and a suitable parameter value is determined from the 
degree to which different performance criteria are satisfied. Many soft comput­
ing methods require the specification of parameters such as the learning rate in 
the back-propagation learning rule (Rumelhart et al. 1986). The successful use of 
methods depends on a correct specification of such parameters. The determination 
of fuzzy models from system measurements also requires the correct specification 
of a number of parameters, such as the number of rules and the definitions of 
membership functions. The values of these parameters are sometimes specified 
by the control engineer based on experience, on previous knowledge, and on trial 
and error. However, the designers can benefit significantly from methods that au­
tomate most of the fuzzy modeling. A decision making algorithm for selecting 
relevant values of the modeling parameters can then prove to be a useful aid to 
the designer, by reducing the effort of obtaining fuzzy models from data-driven 
approaches and thereby reducing the time needed for the design procedure. 

6.1.1 Fuzzy models from clustering 

Fuzzy modeling by using product-space clustering has been discussed in Sec. 5.4. 
Fuzzy modeling techniques are becoming increasingly popular for modeling com­
plex systems to which standard linear methods cannot be applied due to insuffi­
cient knowledge about the underlying physical mechanisms, process nonlinearity 
and parameter uncertainty. Most fuzzy models are based on the structure proposed 
by Mamdani (1974) or Takagi and Sugeno (1985). Takagi-Sugeno (TS) models 
differ from Mamdani models in that their consequents are linear functions of the 
antecedent variables instead of fuzzy sets. Recall from Chapter 5 that the rule base 
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in MISO Takagi-Sugeno models have the following structure, 

Rk: If xi is Ak and x2 is Ak and . . . and xn is Ak
n 

n 

then/ = Y,ak
jxj+bk, (6.1) 

where .Rfc is the fcth rule in the rule-base, x\,..., xn are the premise variables, yk 

is the output of the fcth rule and Ak,..., Ak
n are the fuzzy sets defined over their 

respective universes of discourse. The overall output y * of the model is calculated 
by a convex weighted sum of each of the rule consequents, 

* = E f c=i y kPk
 (6 2) 

where K is the total number of rules, /?fc is the non-normalized degree of fulfill­
ment of the fcth rule premise and yk is the output of rule k. 

TS models can be obtained by applying the Gustafson-Kessel clustering al­
gorithm (Gustafson and Kessel 1979) for clustering data in the product space of 
the antecedent and the consequent variables, as discussed in Sec. 5.4. One of 
the important parameters that must be determined when applying fuzzy clustering 
methods is the number of required clusters. This number determines the number 
of rules in the model obtained. Hence, correct specification of this parameter is 
important, because a large number increases unnecessarily the model complex­
ity and redundancy, while a small number decreases model accuracy. Unfortu­
nately, fuzzy clustering algorithms such as fuzzy c-means (Bezdek 1981) or the 
Gustafson-Kessel algorithm do not give an indication of the correct number of 
clusters needed. They just partition the data into the specified number of clus­
ters, no matter whether the partition obtained is meaningful or not. Consequently, 
methods have been suggested for determining the 'optimal' number of clusters in 
a clustering problem. 

The conventional approach to determine a correct number of clusters in clus­
ter analysis is based on validity measures. In general, clustering algorithms aim 
at locating well-separated and compact clusters. When the number of clusters is 
chosen equal to the number of groups that actually exist in the data, it can be ex­
pected that the clustering algorithm will identify them correctly. When this is not 
the case, some misclassification can be made and the clusters are not likely to be 
well separated and compact. A cluster validity measure can quantify the separa­
tion and the compactness of the clusters. However, as (Bezdek 1981, p. 98) points 
out, the formulation of the cluster validity problem in a mathematically tractable 
manner is extremely difficult. The definition of compactness and separation for a 
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specific data set, as well as the definition of a 'good' cluster is open to interpreta­
tion and can be formulated in different ways. Consequently, the literature contains 
many validity measures, some of which can be found in Bezdek (1981), Backer 
(1995) and Gath and Geva (1989). 

Another method to determine the correct number of clusters is to start with a 
large number of clusters and to reduce this number by merging similar clusters 
until no more clusters can be merged. The compatible cluster merging (CCM) 
techniques suggested by Krishnapuram and Freg (1992) are an example of this 
approach. CCM is especially attractive when an upper bound on the number of 
clusters may be estimated. In this section, the application of the CCM algorithm 
to fuzzy modeling is considered and a reduction method is described which uses 
a decision making step to determine the relevant number of clusters (Kaymak and 
Babuska 1995). An overview of various reduction methods for the simplification 
of fuzzy models and the determination of a relevant number of rules is found in 
Kaymak etal. (1997). 

6.1.2 Compatible cluster merging 

Denote the number of clusters in a clustering problem with K, since the number 
of clusters equals the number of rules in the fuzzy modeling scheme described 
in Sec. 5.4. When an upper limit on the number of required clusters can be esti­
mated, a correct number for K may be determined by using the compatible cluster 
merging technique. The cluster merging technique evaluates the clusters for their 
compatibility {i.e., similarity) to one another and merges the clusters that are found 
to be compatible. Then, the clustering is performed again with the new number of 
clusters. Although similar to the validity approach, the technique differs in that an 
upper estimate Km on the number of clusters is made and the number of clusters 
is gradually reduced by merging, until an appropriate number is found. 

A compatible cluster merging (CCM) technique for GK clustering has been 
introduced by Krishnapuram and Freg (1992). In the following, we present a mod­
ified version of this technique based on the material from Kaymak and Babuska 
(1995). 

Let the centers of two clusters be v; and Vj. Let the eigenvalues of the co-
variance matrices of the two clusters be {A^ , . . . , Xipi} and {Aji , . . . , \jpi} re­
spectively, both arranged in descending order. Let the corresponding eigenvectors 
be {(pn,..., 4>ip>} and {<j>ji,..., (j>jp>}. We define the following compatibility 
criteria. 

Cij = I</V • 4>jv'\, (}j close to 1, (6.3) 

C5 = l | v i - v , | | , enclose toO. (6.4) 
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Figure 6.1 shows the graphical illustration of the compatibility criteria in Eq. (6.3) 
and Eq. (6.4). Equation (6.3) states that the parallel hyperplane clusters should be 

' smallest 
"" - .. J1--*!, eigenvector 

smallest (p - '«•"•"* ,'" " -, 'V 

Fig. 6.1 Graphical illustration of compatible cluster merging criteria. Reproduced from (Kaymak 
and BabuSka 1995), ©1995 IEEE. 

merged. Equation (6.4) states that the cluster centers should be sufficiently close 
for merging. Figure 6.2 depicts various cases that these criteria cover. Clusters 1 
and 4 are parallel, but they are not close. Hence, they are not compatible. Clusters 
1 and 2, or 3 and 4 are not compatible either, since they are close to each other but 
not parallel. Clusters 2 and 3 are compatible since they are both parallel and close 
to each other. 

compatible 
clusters 

Fig. 6.2 Examples of compatible and incompatible clusters. 

6.1.3 The decision making algorithm 

Although the compatibility criteria quantify various aspects of the similarity of 
clusters, the overall cluster compatibility is obtained through the aggregation of 
the compatibility criteria. A fuzzy decision making algorithm is used for the ag­
gregation of the criteria. The fuzzy decision making is especially useful as par-
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allelism and closeness are gradual concepts, and different types of aggregation 
behavior can be studied by using different operators from the fuzzy set theory. 

The goal of the decision making step is to determine which pairs of clusters 
can be merged. The decision alternatives are the possible pairs of clusters. When 
K clusters are considered, the total number of decision alternatives is K(K-l)/2. 
The compatibility criteria in Eq. (6.3) and Eq. (6.4) are evaluated for each pair 
of clusters. This leads to the matrix Z1 for Eq. (6.3), and to the matrix Z2 for 
Eq. (6.4). Both Z1 and Z2 are symmetric matrices. Z1 has all l's on its main 
diagonal, since a cluster is always parallel to itself. Z2 has all O's on its main 
diagonal, as the distance of a cluster center to itself is zero. 

Following the fuzzy decision making approach, the decision goals for each 
criterion must be denned by using a fuzzy set. In this problem, this means that 
the fuzzy set 'close to 1' must be defined for Eq. (6.3), which represents the par­
allelism of the clusters, and 'close to 0' must be defined for Eq. (6.4), which 
represents the closeness of the clusters. Figure 6.3 shows the membership func­
tions defined for the two criteria. The important parameters for the membership 
functions are the limits of their support, characterized by the elements (vl, 0) and 
(^2,0). 

•5 0.6 

parallel 

0.2 0.4 0.6 0 
inner product distance 

(a) Parallelism (b) Closeness 

Fig. 6.3 Membership functions for parallelism and closeness of clusters. 

The values of v1 and v2 are found by averaging compatibility values, except 
for the elements on the main diagonal of Z x and Z2 , according to 

K K 

K(K - 1) 
(6.5) 
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V ' 1 = 1 3 = 1 

The elements on the main diagonal are not considered, as a cluster is always fully 
compatible with itself, and hence these elements do not provide any information. 
The varying support for the membership functions ensures the adaptability of the 
algorithm to specific merging problems that are encountered in practice. 

Evaluating the membership functions in Fig. 6.3 with the values of (,}• and 
Q-, one obtains the degree of parallelism y\- and closeness /x?- for the cluster 
pair i and j . Having determined the degree of parallelism and the closeness of 
the clusters, the overall cluster compatibility is determined by the aggregation of 
the two criteria. A fuzzy aggregation operator is used for this purpose. Note that 
the parallelism and the closeness of clusters partially compensate each other. In 
other words, two clusters that are not quite parallel but very close may need to be 
merged. The same also applies to the clusters that are parallel but somewhat far 
from each other. Taking this fact into account, the generalized averaging operator 
of Eq. (3.24) is a good candidate as the aggregation operator. 

The outcome of the decision procedure is the overall compatibility matrix S. 
The elements s^- of the compatibility matrix S are given by 

(/̂ •r + W 1 ' 7 
7 6 1 . (6.7) 

The selection of the parameter 7 is discussed in Sec. 6.1.6. The compatibility 
matrix S is a symmetric matrix whose main diagonal consists of Is by definition. 
The element Sij denotes the compatibility of cluster i with cluster j . 

6.1.4 Merging clusters 

Given the compatibility matrix S, the clusters that will be merged must be identi­
fied and combined. Clusters can be merged in several ways. One possibility is to 
merge the most similar pair of clusters, as long as the value of the corresponding 
s^ is above a threshold s*. In practice, this method merges two clusters at each 
merger. The disadvantage of the method is that clustering must be made for all K, 
K1 < K < Km, where K' is the 'correct' number of clusters for describing the 
data, and Km is the initial number of clusters used by the algorithm. 

Another merging method is based on fuzzy relational clustering (Dunn 1974, 
Yang 1993). Relational clustering computes the transitive closure of the matrix 
S by applying the max-min composition successively. The transitive closure of a 
fuzzy relation R is the smallest relation that is transitive and contains R. Given 
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a fuzzy relation R, its max-min transitive closure RT can be calculated by using 
the following iterative algorithm (Klir and Yuan 1995). 

(1) Letl40) = R. 
(2) Repeat for iteration number I = 1,2,... 

. i ?W= J R( ' - 1 )u( i? ( ' - 1 )o i? ( ' - i ) ) 

until RT
] =Ri

T~1), 

where o denotes the max-min composition of fuzzy relations. 
The transitive matrix determined by the algorithm above indicates groups of 

clusters that are similar at least to the degree denoted by the matrix elements. 
By applying a pre-determined and problem dependent threshold s *, the groups of 
clusters that need to be merged are identified. 

Example 6.1 Consider the following compatibility matrix. 

/ 1 0.4 0.8 0.3 \ 
0.4 1 0.6 0 
0.8 0.6 1 0 ' 

\ 0 . 3 0 0 1 / 

The transitive closure Sy of S is equal to 

0.3 \ 
0.3 

0.3 • 

1 J 
If s* is chosen to be 0.7, one obtains the following partition 

/ l 0 1 0 \ 
0 1 0 0 
1 0 1 0 ' 

\ 0 0 0 1 / 

which means that the clusters 1 and 3 are to be merged. 

Note that more than two clusters may also be merged, depending on the threshold 
s*. In this way, computationally intensive calculations are avoided, which reduces 
the computation time. 

Example 6.2 Consider the compatibility matrix discussed in Example 6.1. 
When a threshold is applied on it with a s * value of 0.5, one obtains the parti-

/ 1 0.6 0.8 
0.6 1 0.6 
0.8 0.6 1 

Vo.3 0.3 0.3 
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tion 

/ l 1 1 0 \ 
1 1 1 0 
1 1 1 0 ' 

\ 0 0 0 1 / 

which implies that clusters 1, 2 and 3 can be merged. 

In general, lowering the value of s * leads to increased cluster merging. For s * = 0, 
all clusters will be merged, while for s* = 1, no clusters will be merged. Hence, 
for s* = 1, the CCM algorithm reduces to the Gustafson-Kessel algorithm with 
K = Km, the maximum number of clusters. The selection of the threshold value 
s* requires tuning, but a value between 0.3 and 0.7 works for most problems. 
After the merging step, the clustering algorithm is re-initialized with the merged 
partition and the data are clustered again with the reduced number of clusters. 

6.1.5 Heuristic step 

Sometimes, it is possible that the merging process is not sufficiently discriminat­
ing to uniquely determine which clusters should be merged. The problem arises 
from the fact that the Gustafson-Kessel clusters possess a particular shape, which 
is not considered by the criteria of Eq. (6.3) and Eq. (6.4). This is illustrated in 
Example 6.3. 

Example 6.3 Consider three clusters that are depicted in Fig. 6.4. Clusters 1 
and 2 are parallel. Further, cluster center v 3 is slightly closer to cluster center 
vi than cluster center v2 . Suppose that Eq. (6.3) and Eq. (6.4), together with the 
membership functions in Fig. 6.3, lead to the membership values 

/ 1 1 0.7\ 
1 1 0.7 

\ 0 .7 0.7 1 / 

and 

1 0.6 0.7\ 
0.6 1 0.5 , 
0.7 0.5 1 / 

respectively. Assuming that the geometric mean is used for the aggregation as 
originally proposed by Kaymak and Babuska (1995), the overall compatibility 



118 Fuzzy Decision Making in Modeling and Control 

matrix becomes 

/ 1 0.77 0.7 \ 
S = 0.77 1 0.59 ] , 

V 0.7 0.59 1 / 

whose transitive closure is equal to 

/ 1 0.77 0.7\ 
S T = 0.77 1 0.7 . 

\ 0.7 0.7 1 / 

When the threshold s* is chosen as 0.75, one obtains the crisp partition matrix 

v-. 

Fig. 6.4 Example of cluster merging where the merging criteria may lead to over-merging. 

( i i o ) , 
\o o \) 

which implies that clusters 1 and 2 should be merged. However, cluster 3 is 
located between them, geometrically, and hence clusters 1 and 2 should not be 
merged. 

A heuristic step is introduced to identify the cases where the merging of clus­
ters would be impermissible. Note that the compatible clusters should not be 
merged when there is an incompatible cluster in their mutual neighborhood. The 
mutual neighborhood is defined as the region of the antecedent product space of 
the fuzzy model, which is located within a certain distance of the compatible clus­
ter centers. Mathematically, the merging condition for the compatible clusters 
is 

min max d^ > max max da, (6.8) 
Vjfe£Mv;GM Vi6Mv3-eM 

where M is a group of compatible clusters, and 

di3 = | P ( v i ) - P ( v i ) | 

with P(-) representing the projection of the cluster centers onto the antecedent 
product space. The heuristic states that the compatible clusters are merged when 
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Eq. (6.8) is satisfied. The merging process is iterated until no more clusters can be 

merged. 

Example 6.4 Figure 6.5a illustrates the concept of mutual neighborhood for 

two-dimensional antecedent product space. There are two compatible clusters 

denoted by centers v i and v 2 . The shaded region is the mutual neighborhood 

given by Eq. (6.8). Since cluster center V3 is within the mutual neighborhood of 

v i and V2, the clusters are not merged. Figure 6.5b shows a similar situation, but 

this time with three compatible clusters. The mutual neighborhood of the clusters 

1, 2 and 4 is denned by the distance d\2, since 

max max dij = dyi-
V;6{V1,V2,V4} VjG{vi,V2,V4} 

The left hand side of Eq. (6.8) is given by 

min max d^ = min max(d3 1 , ^32,(^34) = d34. 
Vfce{v3} V,£{vi ,V2,V 4 } Vfc=V3 

The mutual neighborhood is now more restricted, and the compatible clusters may 

be merged, since d3i > d i 2 . 

(a) Compatible clusters may not be (b) Compatible clusters may be merged, 
merged. 

Fig. 6.5 A group of compatible clusters are not merged if an incompatible cluster center is within 
their mutual neighborhood (the shaded region) in the antecedent product space. 

6.1.6 Selection of the decision function 

Since the overall compatibility is determined by the aggregation operation, the ag­

gregation function influences the merging process. Because trade-off is required 
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between the criteria for the parallelism and the closeness, the generalized aver­
aging operator is a likely candidate for the aggregation. The geometric mean is 
used for the aggregation initially. However, experiments have suggested that the 
geometric mean allows very little compensation between the criteria. Therefore, 
the parametric form of the generalized averaging operator in Eq. (6.7) is used, and 
the influence of changing the parameter value is studied as follows. 

Various data sets are clustered, and the number of clusters that is found by 
the compatible cluster merging algorithm is compared for different values of the 
parameter 7 and the threshold s*. The heuristic step is not used in this study. It is 
found that 7 = 0 (geometric mean) leads to too little compensation, while 7 = 1 
(arithmetic mean) leads to too much compensation and over-merging. The value 
of 7 = 0.5 is empirically determined to give satisfactory results for most prob­
lems. Figure 6.6 shows the results of one such study, which involves the modeling 
of the pressure dynamics of a feed-batch fermentor. The details of the system are 
described in Sec. 7.6. It is known that this particular system can be modeled with 
three fuzzy rules, and therefore the cluster merging algorithm should find three 
clusters. Figure 6.6 depicts the number of clusters that the compatible cluster 
merging algorithm finds for the feed-batch fermentor data with different values of 
the aggregation operator's parameter 7 and the threshold s *. In each case, the al­
gorithm started with 10 clusters. In general, more clusters are merged as the value 
of s* decreases. Similarly, more clusters are also merged for increasing values 
of 7. As seen in Fig. 6.6, there is a sharp transition region from under-merging 
behavior to over-merging behavior between 7 = — 1 and 7 = 2. For 7 = 0.5 the 
sensitivity to the threshold s* is not very high (the number of clusters determined 
does not change for 0.4 < s* < 0.55). Therefore, it is a good candidate for the 
aggregation. The aggregation operator becomes 

liAi + 
(6.9) 

6.1.7 Compatible cluster merging algorithm 

Various steps of the compatible cluster merging algorithm have been explained in 
previous sections. The total algorithm is summarized in Algorithm 6.1. 

Algorithm 6.1 Modified compatible cluster merging (CCM) algorithm. 
Given a data set z*, I — 1 , . . . , Nj with Z( = (xa,..., xen,ye)T, choose the 
maximum number of clusters Km and the merging threshold s*. 
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5 0 4 threshold 
gamma 

Fig. 6.6 The number of clusters determined by the CCM algorithm for modeling a feed-batch fer-
mentor. The results are depicted for different averaging operators and different similarity thresholds 
without the heuristic step. 

Choose the parameters for the GK algorithm, i.e. the stopping criterion e and the 
fuzziness parameter a. Set K = Km. 
Repeat: 

/ . Perform GK clustering with K clusters. 
2. Evaluate the compatibility criteria in Eq. (6.3) and Eq. (6.4) for every pair of 

clusters. 
3. Calculate the overall compatibility s ij by using the membership functions from 

Fig. 6.3, the aggregation function Eq. (6.9) and the evaluations of the compat­
ibility criteria. 

4. Compute the transitive closure of the overall compatibility matrix S and thresh­
old with s*. 

5. Merge compatible clusters if Eq. (6.8) is satisfied. 
6. Decrease K accordingly. 

Until: No clusters can be merged. 

Compatible cluster merging has a number of advantages compared to the sim­
ple clustering approach without merging. The cluster merging approach can re­
duce the computation time for modeling considerably, compared to the validity 
approach. First of all, the data need not be clustered for all 2 < K < Km, 



122 Fuzzy Decision Making in Modeling and Control 

but only down to the relevant number of clusters. Secondly, more than two clus­
ters can be merged at one step, reducing the computational load even further. In 
addition to the computational advantages, the CCM method may lead to better 
partitions due to better initialization of the clustering algorithm. In the absence 
of additional knowledge, the initial partition is selected randomly. In CCM, how­
ever, the initial partition for subsequent clustering stages is formed by merging 
compatible clusters. Hence, the information from a finer partition is used for 
the initialization, which can guide the clustering algorithm to better local optima. 
Moreover, when the data are grouped into a large number of clusters, interesting 
regions in which only a few data points are found can be located. By a careful 
merging process involving the heuristic step for preventing over-merging of clus­
ters, the identified clusters in the interesting small regions can be preserved, while 
the clusters in other regions are merged. If the algorithm is initialized randomly, it 
is very unlikely that these regions may be located without increasing the number 
of clusters. 

6.1.8 Influence of the heuristic step 

The heuristic step prevents the over-merging of clusters that may result from the 
inadequate discrimination power of Eq. (6.3) and Eq. (6.4). To study the influence 
of the heuristic step, its influence is observed in the same experiments as in the 
feed-batch fermentor example in Sec. 6.1.6 using the same data set. Figure 6.7 
shows the number of clusters that the cluster merging algorithm with the heuristic 
step finds for different values of parameter 7 and the threshold s *. Comparing 
Fig. 6.6 with Fig. 6.7, it is seen that the heuristic step has an influence, especially 
for large values of 7, and small values of s * which lead to over-merging. When 
the heuristic step is active, it prevents merging in this region. When 7 is about 0.5 
and s* is about 0.5, the heuristic step has little influence, and the algorithm finds 
three as the optimal number of clusters. Therefore, the heuristic step is especially 
used when there is a danger of over-merging (e.g.for high values of 7). However, 
the heuristic step also influences the response for medium values of 7 (0 < 7 < 2) 
increasing the sensitivity to the parameter 7, and hence the tuning of the threshold 
s* requires more effort. 

6.1.9 Example 

Consider a system that is described by the static function 

2.9 
y = sin(0.0015z2)-^—, x 6 [0,100]. (6.10) 
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Fig. 6.7 The number of clusters determined by the CCM algorithm with the heuristic step for mod­
eling a feed-batch fermentor. The results are depicted for different averaging operators and different 
similarity thresholds. 

Data is generated for x — 1,2,. . . , 100. Uniformly distributed random noise with 
an amplitude of 2 is added to the function values. A TS-model is generated for 
this system by using the GK clustering algorithm. The CCM algorithm is applied 
to this system with s* — 0.5. Starting with 10 clusters initially, 3 clusters are 
merged in the first step, 2 in the second and 2 in the third, resulting in six clusters 
finally. The results of clustering with 10 randomly initialized clusters are shown in 
Fig. 6.8. As expected, the clustering algorithm has distributed the clusters evenly 
across the input x. Figure 6.9 shows the local models and the clusters that are 
determined by the compatible cluster merging. As Fig. 6.9 shows, the algorithm 
has located six clusters that give good local descriptions of the system. Note the 
large cluster on the left and the small cluster on the right, which would not have 
been found if the clustering algorithm had been initialized randomly. 

6.1.10 Similarity and rule base simplification 

The evaluation of compatible clusters can be interpreted as the evaluation of simi­
lar clusters. The compatible cluster merging algorithm reduces the redundancy in 
a partition by combining similar clusters. The decision making step relates to the 
evaluation of the similarity. In general, similarity can be evaluated using one of 
the two methods. 
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(a) Local Models 

Fig. 6.8 The local models (a) and the clusters (b) that are identified by the GK-clustering algorithm 
after randomly initializing 10 clusters. Reproduced from (Kaymak and BabuSka 1995),©1995 IEEE. 

(1) By using explicit similarity measures. 
(2) By using multicriteria evaluation of features that relate to similarity. 

Explicit similarity measures typically assess the similarity between two fuzzy sets 
based on the (pointwise) similarity of their membership. Setnes, Babuska, Kay­
mak and van Nauta Lemke (1998) have proposed simplifying rule based systems 
by evaluating the similarity of membership functions with explicit similarity mea­
sures. The authors have applied the method to the modeling of a washing process 
and observed encouraging results. The advantage of simplifying fuzzy models by 
assessing the similarity of fuzzy sets is that the redundant information in each vari­
able can be reduced, which also increases the interpretability of the fuzzy model. 
However, the combination of the reduced number of one-dimensional fuzzy sets 
by the inference mechanism may lead to results which are not supported by the 
data. Then, model validation techniques determine the applicability of the model 
determined. 

Kaymak and Setnes (2000) have also proposed a cluster merging approach 
based on explicit similarity measures applied during the optimization stage of the 
clustering algorithm. The advantage of this method is that it can be applied to any 
objective function based clustering algorithm (e.g.fuzzy c-means), and one need 
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Fig. 6.9 The local models (a) and the clusters (b) that are identified by the Compatible Cluster Merg­
ing algorithm. Reproduced from (Kaymak and BabuSka 1995), ©1995 IEEE. 

not try to identify explicit criteria to assess similarity. In the future, the use of 
explicit similarity measures in fuzzy clustering can be expected to increase. 

The compatible cluster merging can be categorized under multicriteria eval­
uation of similarity. In this approach, the similarity is formulated as a decision 
problem, and it is assessed by evaluating different features that are important for 
the similarity of the objects considered. The overall similarity is then obtained by 
aggregating the individual similarity criteria. Bonissone (1979) has also proposed 
such an approach for similarity assessment. It can be expected that the compat­
ible cluster merging benefits from a similar approach, where an extension of the 
similarity criteria leads to improved merging behavior. 

6.2 Defuzzification as a fuzzy decision 

The reasoning mechanism of fuzzy systems manipulates fuzzy data, information 
and knowledge to determine its outputs. When fuzzy systems must interact with 
other (non-fuzzy) systems, or when a crisp output is required from the fuzzy sys­
tem, the processed fuzzy information must be defuzzified to determine the crisp 
equivalent. This process is called defuzzification. The defuzzification may take 
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place at different stages for different reasoning mechanisms. Sometimes, the fuzzy 
system propagates the fuzziness all the way to its outputs, such as a Mamdani type 
fuzzy rule based system. The defuzzification then takes place at the outputs of the 
fuzzy system. Other reasoning mechanisms defuzzify the results at an earlier 
stage. For instance, Takagi-Sugeno systems with constant rule consequents are 
essentially fuzzy rule based systems where the rule outputs are defuzzified at an 
early stage of the reasoning, before the consequent modification of the rules takes 
place. 

Defuzzification reduces the fuzzy systems into nonlinear crisp mappings from 
the system inputs to the system outputs. Often, the defuzzification performs an 
interpolation, although this is not always the case. The selection of the defuzzi­
fication method is not context independent. The goals regarding the problem for 
which the fuzzy system is designed determine the selection of the defuzzification 
operation. When designing fuzzy PID controllers, for example, the defuzzifica­
tion operation must perform some kind of interpolation so that the control signal 
is an intermediate value between different rule outputs when multiple rules are ac­
tivated. For a mobile robot's path planner, however, a defuzzification method that 
returns an element with maximal membership (height of the membership function) 
may be more suitable in case two different rules follow different strategies while 
trying to avoid an obstacle (e.g.turn left and turn right). Therefore, the problem 
context has a direct influence on the selection of the defuzzification operation. 

Let B be a fuzzy set defined by the membership function fj, : y eY —> [0,1]. 
The two most commonly used defuzzification methods in the literature are the 
center-of-gravity (cog) defuzzification (Driankov et al. 1993) 

IYfJ-B(y)dy 

and the mean-of-maxima (mom) defuzzification 

„,mom 2/min + 2/max , , , 0 . 

y = 2 ' (6-i2) 

where ymin and ym a x are given by 

ymin = inf{y G Y : fiB(y) = height(fl)} (6.13) 

2/max = sup{y 6 Y : fiB(y) = he igh t^ )} . (6.14) 
v 

The defuzzification operators in Eq. (6.11) and Eq. (6.12) basically determine 
the first moment of the fuzzy set where the domain elements are weighted by 
the membership functions. More extended and generalized defuzzification meth­
ods have also been proposed in the literature (Filev and Yager 1991, Runkler and 
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Glesner 1993, Yager and Filev 1993). For example, Filev and Yager (1991) have 
proposed a parametric class of defuzzification operators known as BADD {basic 
defuzzification distributions) operators and given by 

JylWHl/)]'<*I/ 

where the parameter <5 can be used to adapt the defuzzification operator to spe­
cific problems. The extension of the method arises from the availability of 8 to 
the user for influencing the way the domain elements in Y are weighted by the 
membership values. Following the same line of thought, Yager and Filev (1993) 
have introduced the SLIDE (semi-linear defuzzification) operators given by 

S L I D E R s . = 0--s2)fYLVl*B (y)dy + 62 JYH y JXB (y)dy ^ ^ 

(1-S2)JYLHB(y)dy + S2 JYH fJ-B(y)dy 

with <5i e [0, height(S)], S2 € [0,1] and 

YL = {y€Y:liB{v)<81} (6.17) 

YH = {y G Y : My) > <*i}- (6-18) 

Most popular defuzzification methods have been developed for applications 
in control engineering and they reflect the interpolative characteristics of control 
problems. However, other fields of application or the way information is used by 
certain fuzzy systems may require other types of defuzzification operators. Zim-
mermann (1996) proposes four criteria for selecting the defuzzification operator 
in control problems, 

(1) computational effort, 
(2) representation of objective, 
(3) continuity, 
(4) plausibility. 

In a more general decision making setting, especially criterion 2 and criterion 4 
are important for selecting the defuzzification operator. The consideration of these 
criteria in particular problems may lead to new defuzzification operators as dis­
cussed in Sec. 6.2.2. 

The defuzzification operators that have been proposed in literature do not dif­
ferentiate amongst different elements of the domain on which the fuzzy set is 
defined. There is not any preference for one domain element over another and the 
defuzzification is mainly influenced by the corresponding membership values of 
the domain elements. In this sense, the defuzzification operator is equally sensitive 
to all the domain elements. Some applications, however, may require a method 
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which is not equally sensitive to all the domain elements. This section discusses a 
new defuzzification method with unequal sensitivity to the elements of the domain 
over which the defuzzification takes place. The proposed method is developed for 
a fuzzy security assessment system for power distribution networks and has been 
applied successfully (Kaymak, Babuska, van Nauta Lemke and Honderd 1998). 

6.2.1 Sensitivity of defuzzification to domain elements 

A defuzzification method can be interpreted as an aggregation operation that re­
places a fuzzy set by a representative crisp value. Since most implementations 
of defuzzification operators discretize the continuous domains, only the quantized 
versions of the defuzzification operators are considered in the following. Con­
sider a fuzzy set discretized into Nq elements as shown in Fig. 6.10. The fuzzy 
set B is determined by the ordered pairs (yq,^B(yq)), q = l,...,Nq. Defuzzi­
fication is the determination of the best crisp value that represents HB(V) given 
the ordered pairs. Hence, the problem is similar to the selection of a best alter­
native given the data regarding the satisfaction of the decision criteria. However, 
it is possible that the defuzzified value is not a member of the set of alterna­
tives, and therefore the defuzzification problem is more of an aggregation problem 
rather than a choice problem. The defuzzification operator aggregates the values 
(yq,HB{yq)), q = 1, • • •, Nq into a final defuzzified value y*, and it can be ex­
pected that modified versions of fuzzy aggregation operators can be used for this 
purpose. 

kMy) 

Fig. 6.10 Defuzzification of a discretized fuzzy set. 

A typical defuzzification operator combines the values for the domain ele­
ments with the (modified) membership values for obtaining the defuzzified value. 
In general, the membership function is used as a distribution function for nonlinear 
weighting of the domain elements. Different domain elements with equal mem­
bership value have equal influence on the defuzzification operation. In this sense, 
the defuzzification method is equally sensitive to different domain elements. 
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Definition 6.1 Let Y be a discretized domain, i.e., Y = {yq\q = 1,... ,Nq} 
and B a fuzzy set that is defined on Y. A defuzzification operator Z is said to be 
equally sensitive to the domain elements yq if it satisfies 

MB(2/,)=M* dyl' 

for all q, q' with fiB{yq) = VB{yq>)-

dZ 

9yq MB(V)=M* 

fi* £[0,1], (6.19) 

Definition 6.1 states that the contribution of element yq towards the defuzzified 
value is independent of the value of yq and that the influence on the defuzzifica­
tion operation of different domain elements with equal membership is equal. One 
consequence of Definition 6.1 is that the defuzzification of a crisp set in R (i.e., 
a crisp interval) is equal to the mid-point of the interval when the defuzzification 
operator is equally sensitive to its domain elements. If the defuzzification opera­
tor is not equally sensitive to the domain elements, the defuzzified value may be 
another element in the domain. 

The center-of-gravity defuzzification of a fuzzy set B is given in the dis­
cretized case by 

'z~2^B(yq)yq 

Z°°*(B) = ^ (6.20) 

^Z^B{yq) 
9 = 1 

with Nq the cardinality of the domain on which B is defined. Substituting 
Eq. (6.20) in Eq. (6.19) shows that the condition in Eq. (6.19) is satisfied. Hence 
the center-of-gravity defuzzification is equally sensitive to domain elements. Sim­
ilarly, it can be found for the mean-of-maxima defuzzification that 

9Zmom _ / jsb, Mvq) = height^) 
dyq \ 0 otherwise, 

(6.21) 

where Nm is the number of domain elements with maximal membership. 
The generalizations and extensions to the existing defuzzification methods 

have been suggested in literature such as the BADD defuzzification method from 
Filev and Yager (1991), the SLIDE method from Yager and Filev (1993) and the 
XCOA method from Runkler and Glesner (1993). These methods differ in the 
way the membership values are used for defuzzification, but they remain equally 
sensitive to the domain elements, which need not be suitable for all applications. 
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6.2.2 A defuzzification method with unequal sensitivity 

This section discusses a new defuzzincation operator that has unequal sensitivity 
to the domain elements. The new defuzzification operator that will be called cogus 
(center-of-gravity with unequal sensitivity) is based on the generalized averaging 
operator in Eq. (3.24). It is described by 

zcogus (B) = [E|MM^\ ) 7 G ^ s > Q ) ( 6 2 2 ) 

with wq > 0, q = 1 , . . . , Nq. The weight factors wq form one way of introducing 
unequal sensitivity to domain elements. They influence the relative contribution 
of each domain element to the defuzzified value. The other method for introduc­
ing unequal sensitivity to the domain elements is the use of the parameter 7. For 
negative values of 7, the result of the defuzzification moves towards the smallest 
element in the support of the defuzzified set. For positive values of 7, the de­
fuzzified value moves towards the largest element in the support. The operator 
S changes the sensitivity to membership values. When S increases, the influence 
of elements with high membership value increases on the defuzzification opera­
tion. The influence of the elements with lower membership value increases as 5 
approaches zero. 

The proposed defuzzification method is similar to the BADD defuzzification 
method except for the introduction of the weight factors wq and the parameter 7. 
Evaluating Eq. (6.19) with Eq. (6.22), one finds that the influence of the domain 
elements on the defuzzification is different because of the introduction of these pa­
rameters. Hence, the result is a defuzzification operator that is unequally sensitive 
to the domain elements. It should be mentioned that the transformation of y q must 
be allowed, which means that Eq. (6.22) cannot be used for domains with negative 
elements. In this case, the domain must be transformed to non-negative values, 
and the defuzzified value must then be transformed back to obtain the defuzzified 
value on the original scale. 

6.3 Application example: fuzzy security assessment 

This section describes an application for which the output of the fuzzy system 
needs to be defuzzified by a method that is unequally sensitive to the domain ele­
ments. The application is related to the operation of a power distribution network. 
An important task in the operation of power distribution networks is the assess­
ment of the network's security with the goal of determining which actions to take 
to control the process. The security assessment involves classifying the system's 
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state into one of the security classes, based on the predictions of its behavior after 
the failure of a component in the network. For this purpose, extensive power-flow 
simulations of the network are done, the results of which are presented to the op­
erators who interpret them for determining the security class. The operators are 
expected to take proper actions if the simulations predict violations of the safety 
margins. However, a lot of ambiguity still exists in determining the security class 
since not all the relevant data are available, the severity of the violations is differ­
ent, the effects of the violations are open to interpretation and the goals of the sys­
tem are usually expressed in linguistic terms. Hence, a fuzzy logic based security 
assessment system presents advantages as it can deal with the uncertainty in the 
system. Moreover, the fuzzy logic system can circumvent extensive simulations 
— which take a long time and require powerful, usually specialized hardware — 
by using the experience of the network. 

6.3.1 Security class determination 

A fuzzy knowledge-based system has been developed for assessing the security of 
the Dutch 380 kV distribution network (Heydeman et al. 1996, Kaymak, Babuska, 
van Nauta Lemke and Honderd 1998). For assessing the severity of possible vi­
olations, the security assessment system divides the security of the transmission 
network into four distinct classes, 

(1) very secure (VS), 
(2) normal secure (NS), 
(3) slightly insecure (SI), 
(4) very insecure (VI). 

The security of the network decreases from VS to VI. Figure 6.11 shows how the 
information is used to determine the security class. The security class is deter­
mined first at the level of components such as transformers, transmission lines 
and generators in the network. The results are then aggregated at the network 
level. The inference at the component level determines the security class of the 
network when considering only one type of component in the network. Each rule 
base thus determines a separate outcome for the security class. At this level, max-
min composition with the Mamdani minimum operator (Driankov et al. 1993) is 
used for inference. The output of the inference is a fuzzy set with four elements, 
where the membership value of each element denotes the membership of the net­
work to a particular security class. The resulting fuzzy classifications (outputs of 
each rule base) are then combined at the network level for arriving at an overall 
classification of the network security. In general, this aggregation can be done by 
using one of the many decision functions available from the fuzzy decision theory. 
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The selection of the operator should comply with the goals and the properties of 
the particular decision problem. The maximum operator is a suitable aggregation 
operator for security analysis, since there is not a specific preference for one of 
the rule bases and this operator allows the analysis of a variety of security clas­
sifications, including the extreme considerations such as the worst-case analysis. 

Rule base 
transformers 
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Fuzzy decision 
(aggregation) 
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lines 
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Network State 

Fig. 6.11 Determination of the security class. Reprinted from (Kaymak, BabuSka, van Nauta Lemke 
and Honderd 1998) by permission of IOS Press, ©1998 IOS Press. 

The result of the aggregation is an overall fuzzy security class, which is rep­
resented by a fuzzy set that is defined on the discrete space {1,2,3,4} with VS 
corresponding to 1 and VI corresponding to 4. This fuzzy set needs to be defuzzi-
fied to determine the security class of the network. Figure 6.12 shows a fuzzy 
security classification that is obtained from the fuzzy security analysis system. 
A couple of points are important for the defuzzification of this fuzzy set. First, 
the contribution of a security class to the overall security is not the same. The 
insecure classes SI and VI are much more important in determining the overall 
security class than the secure classes VS and NS and should have more influence 
on the defuzzification. Secondly, because of the way information is represented 
in the system and the way it is used, the membership of the secure classes will be 
high in general. Indeed, most of the components in the network are almost always 
in the secure classes and thus the membership of the secure classes is high. A 
defuzzification method should thus exhibit lower sensitivity to the secure classes 
so that the influence of these high membership values is limited. The next section 
describes a defuzzification method with unequal sensitivity to domain elements 
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when Eq. (6.22) is applied to the fuzzy security assessment system. 

6.3.2 Defuzzification for fuzzy security assessment 

The overall security class of the power network is determined after the defuzzifi-
cation of the fuzzy security class. Classical defuzzification methods such as the 
center-of-gravity cannot be used because of the way the fuzzy security class is 
determined. As mentioned in Sec. 6.3, the influence of the insecure classes on 
the defuzzification should be larger. Also, the membership values for the classes 
VS and NS will usually be high (close to 1) and a direct averaging amongst the 
domain elements biases the defuzzification towards the more secure classes. One 
way of decreasing this bias is the introduction of an unequal weighting of the do­
main elements (different security classes). Another method is the introduction of 
a parameter which increases the influence of the insecure classes on the defuzzifi­
cation. A new defuzzification method that uses both these methods is obtained as 
a special case of Eq. (6.22), 

r-(£=£&£\'\ 7€» (6.23) 

where y* £ [1,4] is the defuzzified value (class indicator) related to the security 
class of the network and yq € {1,2,3,4} correspond to the security classes VS, 
NS, SI and VI respectively. fiq indicate the membership degree that the security 
of the network is classified as class yq, and wq are the weight factors related to 
the importance of the particular class for the defuzzification purpose. In general, 
the weights of the secure states are lower since more attention needs to be paid to 
the components that result in an insecure class. Notice that the contribution of a 
particular class towards the indicator y* is determined both by the membership to 
that class and the weight of the class. 

The value of the class indicator (defuzzified value) can be moved towards or 
away from the largest element in the support of the fuzzy security class by varying 
the value of the parameter 7. This parameter can be interpreted as an index of risk 
awareness (van Nauta Lemke et al. 1983). For negative values of 7, the influence 
of the secure states on the defuzzification increases. The human operator then 
takes less corrective action, which corresponds to more economic operation at the 
expense of taking more risk. For positive values of 7, the influence of the insecure 
states on the defuzzification increases. This corresponds to an increased awareness 
for risk aversion and very secure operation, at the expense of increased operating 
costs. Therefore, by changing the value of 7, the sensitivity of the defuzzification 
to the insecure classes can be varied. Figure 6.12a shows the security class for 
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a particular state of the network when the operation is completely risk-aware. 
Since this is a worst-case situation, the risk index is zero. The final classification 
corresponds to SI. There are no components in the VI class. Figure 6.12b shows 
the network in the same state when the risk awareness of the operation is reduced. 
The final security class now becomes NS. Since the network is classified as NS 
(while some components in the network are classified in SI), some risk is being 
taken, as indicated by the black portion of the risk index. 
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Fig. 6.12 Fuzzy security classification with (a) complete risk avoidance, and (b) reduced risk aware­
ness. Reprinted from (Kaymak, BabuSka, van Nauta Lemke and Honderd 1998) by permission of IOS 
Press, ©1998 IOS Press. 

6.4 Summary and concluding remarks 

Fuzzy decision making methods can be applied to support the identification and 
construction of fuzzy inference systems. In fuzzy modeling, one needs to deter­
mine the values of the parameters in various algorithms. Fuzzy decision making 
can be used to automate these selection procedures. A compatible cluster merging 
algorithm is described in which the required number of clusters for describing a 
system is described. The clustering algorithm can be used to obtain a fuzzy model 
of a system. Since the number of rules in the fuzzy rule base is determined by 
the number of clusters, the decision algorithm leads to the determination of an 
'optimal' number of rules for describing the system. In this way, fuzzy modeling 
can be automated to a large degree, as the interaction from the user can be limited 
to a single parameter. 

Many operations in fuzzy systems theory can be formulated as a decision mak­
ing algorithm. The formulation of the defuzzification operation for fuzzy systems 
as a decision problem leads to new insights about defuzzification. Using this in-
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sight, a new defuzzification method (cogus defuzzification) has been introduced. 
Cogus defuzzification is unequally sensitive to the domain elements of the de-
fuzzified fuzzy set. An example of fuzzy security assessment is included in this 
chapter to show an application of this defuzzification method. 
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Chapter 7 

Fuzzy Model-Based Control 

In this chapter, we study various fuzzy model-based control schemes, where fuzzy 
process models are used in different model-based controllers. Several approaches 
for designing a controller based on a fuzzy model of the process have been investi­
gated by various authors. Braae and Rutherford (1979) derived a fuzzy controller 
based on a linguistic fuzzy model. The technique suffers from a major limitation, 
in that the model could not deal directly with the linguistic aspects of the FLC. 
Pedrycz (1993) has investigated methods for deriving a control law using fuzzy re­
lational models. Off-line controllers are synthesized based on one-step ahead pre­
diction of the corresponding local fuzzy models. These methods are not applied 
in this book, because fuzzy relational models are computationally more complex 
than linguistic or TS fuzzy models, implying larger computational effort, and loss 
of linguistic meaning for the fuzzy rules in the model. An adaptive fuzzy con­
troller based on fuzzy relational models is applied in Graham and Newell (1988) 
to a laboratory-scale liquid level rig. Driankov et al. (1993) present another exam­
ple of the application of model-based control methodologies, where local design 
techniques derived from linear control theory have been applied to Takagi-Sugeno 
models with linear consequents (Kuipers and Astrom 1994, Sugeno and Takagi 
1983, Tanaka and Sugeno 1992, Palm et al. 1997). 

The simplest way to control a process by using a fuzzy model is to invert the 
model and use it in an open-loop (feedforward) configuration. The obtained in­
verse model is used as a controller, and under special conditions stable control 
can be guaranteed for minimum phase systems. This type of control can only 
be applied if the inverse of a fuzzy model exists. If this inversion is not unique, 
some additional criteria most be added to the controller in order to choose the best 
control action at a given moment. Since this is a feedforward configuration, this 
'ideal' control configuration can not be directly applied in practice because the 
model is never a perfect mapping of the system, i.e., model-plant mismatches are 
present. Moreover, the system must cope with disturbances, and some variables 
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of the process (more often the control actions) can be subject to level and/or rate 
constraints. Therefore, if one wants to implement a controller based on the in­
version of a fuzzy model, the inversion must exist, some criteria must be added to 
choose a control action if more than one is obtained by the inversion, and the prob­
lems of model-plant mismatch, influence of disturbances and constraints must be 
overcome. 

This chapter presents an approach that benefits from the convenient mathe­
matical structure of certain types of rule-based fuzzy models to invert them. First, 
the problems related to the inversion of fuzzy models, and their use in control 
schemes are presented in Sec. 7.1. This section also considers an adaptive internal 
model control scheme, where the fuzzy model is adapted to deal with model-plant 
mismatch. In order to cope with constraints, this inversion can be used for con­
trol purposes, when combined with a predictive control structure. This scheme 
can prevent overshoots, and reduce rise and settling times. The combination of 
inverse model control with a predictive control structure is given in Section 7.5. 
A simulation example of a fermentor covering all the proposed control schemes 
is presented in Sec. 7.6. This example presents the application of inverse model 
control and its combination with predictive control to semi-realistic problems. In­
verse model control based on TS fuzzy models is applied in real-time control to an 
air-conditioning system presented in Chapter 12. Sometimes, model-based con­
trol techniques cannot eliminate steady-state errors due to model-plant mismatch, 
or due to disturbances, depending on the number of integrators in the process, the 
type of disturbances, e.g.offset or process disturbances, and the required reference 
tracking accuracy. Internal model-based control could be used to deal with this 
problem, but it may lead to sluggish response due to the linear filter in the scheme 
(see Appendix B). We present in Sec. 7.7 a fuzzy compensation scheme that can 
quickly eliminate the steady-state errors under certain circumstances. The chapter 
ends with concluding remarks in Sec. 7.8. 

7.1 Inversion of fuzzy models 

The simplest way to control a process, when an inverse model is available, is to 
use this inverse model in an open-loop configuration. Considering an ideal model 
M mapping the control actions u to the system's outputs y, the control actions 
are simply given by u = M _ 1 r , where r are the references to be followed (see 
Fig. 7.1). 

If an ideal model of the process is available, i.e., the model is equal to the 
process, and both model and controller (inverse model) are input-output stable, 
the control is perfect, and input-output stable (Economou et al. 1986). This situ-
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Fig. 7.1 Mapping and perfect inversion of a system. 

ation of perfect control is not possible to achieve, since an exact inversion of the 
process can only be found in special situations, and the model is never equal to 
the process, resulting in model-plant mismatches. Moreover, the variables of the 
process can be subjected to level and rate constraints. Furthermore, disturbances 
acting on the process are present and these are not taken into account in the con­
troller. Moreover, when the system has a delay of d steps, the inversion must be 
done for d steps ahead. All these problems must be overcome, in order to apply 
inverse model control in practice. The problems related to model-plant mismatch 
and disturbances are often dealt with the internal model control (IMC) scheme 
summarized in Appendix B. 

Fuzzy modeling is often used in the identification of the process dynamics in 
order to cope with nonlinear and complex systems, giving good approximations of 
nonlinear systems (see Chapter 5). Moreover, special types of fuzzy models can be 
analytically inverted, and used for control purposes. The definition of an inverse 
fuzzy model is discussed in Sec. 7.1.1. The most common methods of inverting 
fuzzy models are presented in Sec. 7.1.2. Fuzzy models with certain structures 
can be exactly inverted, and this inversion can be used for control purposes. This 
book considers two different fuzzy model structures for which the exact inversion 
of the model can be achieved. 

(1) Singleton fuzzy models, for which the inversion is presented in Sec. 7.2. This 
type of models belongs to a general class of function approximators (Fried­
man 1991), which is at least as accurate as a linguistic fuzzy model. 

(2) Takagi-Sugeno fuzzy models with affine inputs u(r) , whose inversion is de­
scribed in Sec. 7.3. Constraining the model to be affine on u(r) usually re­
duces the model accuracy. 

Both inversions are computationally very fast, and hence they can be used in sys­
tems with small sampling times. The system under control is sometimes time-
variant and changes in the process parameters can occur. Moreover, significant 
model-plant mismatches due to permanent or temporary changes in the operat­
ing conditions are frequent in industrial processes. For this type of systems, the 
model can be adapted on-line in order to cope with these phenomena. An adapta­
tion algorithm based on recursive least-squares is presented in Sec. 7.4, where the 
singleton fuzzy model is adapted. If the adaptation is done such that the invert-
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ibility of the model remains valid, this scheme can be used for control purposes. 

7.1.1 Problem definition 

Consider a global MIMO fuzzy model. For the structure presented in Sec. 5.1, 
any MIMO model can be decomposed in p MISO models without lack of gener­
ality. The MISO fuzzy system with n states given by Eq. (5.4) can be represented 
as in Fig. 7.2. Note that the state variables Xj in Eq. (5.4) are for input-output 
models, and they can generally be different inputs or outputs at delayed times of 
the process. 

Fuzzy 
model 

y 

Fig. 7.2 General MISO fuzzy model. 

There are two ways of inverting this fuzzy model. 

(1) Global inversion of the model, where all states become outputs of the inverted 
model, and the output of the original model becomes the state of the inverted 
model, as presented in Fig. 7.3a. Thus, this inversion computes all the state 
variables when the original output is given. The solution of this inversion is 
normally not unique, and it is given by a family of solutions. 

(2) Partial inversion of the model; only one of the states of the original model 
becomes an output of the inverted model and the other states together with 
the original output are the inputs of the inverted model (see the example in 
Fig. 7.3b). 

Inverse 
model 

-**X„ 

Inverse 
model 

fa) Global inversion. (b) Partial inversion. 

Fig. 7.3 Inversion of fuzzy models. 

The partial inversion usually has a unique solution, which is a big advantage com­
pared to the global inversion. For the partial inversion, the inverted state is called 
a controllable input, and it is one of the inputs u j, j G {!,..., m} of the original 
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system. Let this input be called u\ A xi A U, to simplify the notation. The other 
states that are not inverted are called non-controllable, even if they are inputs of 
the system that can be manipulated by the process operator. When several control 
actions are needed at the same time, this method cannot be directly applied, but 
it can give the several input actions independently, by applying the partial inver­
sion for each state that corresponds to an input of the system. The desired control 
action can be found by optimizing a given criterion, as for instance, in predictive 
control. The results obtained from the partial inversions can be given as initial 
values for the optimization algorithm to be applied. Only partial inversion is used 
in this book. For the sake of simplicity, partial inversion is often simply called 
inversion. 

Note that partial inversion can only be applied when the inverse of the consid­
ered fuzzy model exists. If this inversion is not unique, some additional criteria 
must be added to find the best solution. When the inverted model is used as a 
controller, these criteria must determine the best control action. A fuzzy model is 
invertible if the model is represented by a function 

y = f{u,x2,...,xn), (7.1) 

and the inverted function exists, such that 

u = f~1(y,x2,---,x„). (7.2) 

This statement implies that the function describing the original fuzzy model must 
be strictly monotone with respect to u. The translation of the invertibility condi­
tions for the singleton fuzzy model and for the affine TS fuzzy model are discussed 
in Sec. 7.2 and Sec. 7.3, respectively. 

7.1.2 Inversion methods 

Several methods can be applied to obtain the inverse model of a given process 
(Boullart et al. 1992, Hunt et al. 1992). The following two are used the most: 

(1) Identification of the inverse model from input-output data 
(2) Inversion of the original model 

The first method is perhaps the most intuitive approach to inverse modeling, and 
it tries to fit the data in an inverse function / _ 1 (Batur et al. 1993). Two ma­
jor approaches can be distinguished in this approach: direct inverse learning and 
specialized inverse learning (Fischer et al. 1998). 

In direct inverse learning, the process is excited with a training signal and the 
fuzzy system reconstructs the input signal of the process from the given output 
signal, see Fig. 7.4a. Different identification algorithms can be used to derive 
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(a) Direct inverse learning. (b) Specialized inverse learning. 

Fig. 7.4 Inverse learning. 

the inverse model, such as the one developed by Nelles (1998). Following Hunt 
et al. (1992), two major drawbacks can be found in direct inversion. First, the 
dynamics of the system can be a many-to-one mapping, and several values for u 
are possible for the same output of the process. If a least-squares approach is used, 
the identification algorithm maps y to the mean value of all the u, which can lead 
to a meaningless inverse model. Secondly, it is difficult to obtain an appropriate 
training signal for direct inverse learning, because the inverse model is supposed 
to work over a wide range of input amplitudes on y and for a large bandwidth. 
However, the excitation of the system is introduced as the activation of u, and a 
persistent excitation of y can not be guaranteed. 

Both drawbacks of direct inverse learning can be overcome by using special­
ized inverse learning, see e.g. Jordan and Rumelhart (1992). The inverse model is 
cascaded with the process, as in Fig. 7.4b, or with a forward plant model. The pa­
rameters of the inverse model M _ 1 are adapted in order to minimize the deviation 
between the reference r and the output y. Thus, the adaptation is a goal-oriented 
scheme, since the objective is the same as the general control goal, and the process 
is automatically excited with the right signal if a typical reference trajectory must 
be followed. Moreover, level and rate constraints can also be considered in the 
learning phase. 

Although specialized inverse learning overcomes the problems of excitation 
and possible non-invertibility, it is still difficult to use this inverse model in a con­
trol scheme, due to the model-plant mismatch and the influence of disturbances. 
A scheme as a disturbance observer developed by Fischer et al. (1998) can be im­
plemented, but this scheme needs some parameter tuning, and uses a linearization 
of the inverse model at a certain point. Therefore, an exact inversion of the non­
linear fuzzy model is not obtained. Another possibility is to invert a feedforward 
fuzzy model numerically, when it is invertible, i.e., when a unique mapping from 
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the output to the inputs of the process is possible to obtain. The inverted model 
can be obtained with a desired accuracy, depending on the chosen number of dis-
cretized points. However, even for a small number of points, the computational 
costs are too high, and this solution cannot be considered as a feasible one. There­
fore, the best solution seems to be to invert a fuzzy model exactly, by using some 
analytical method. If this inversion is possible, the computational operations can 
be done by using standard matrix operations and linear interpolations, apart from 
the computation of the degrees of fulfillment. Thus, the inversion is computation­
ally very fast, making it suitable for applications in real-time control. Another 
advantage is that both the model and its inversion are available, allowing their use 
in the nonlinear internal model control scheme presented in Sec. B.l. 

7.2 Inversion of a singleton fuzzy model 

The inversion of singleton fuzzy models was introduced in Babuska et al. (1995). 
A special structure of the singleton fuzzy model, which is presented in this section, 
is necessary to perform this inversion. 

7.2.1 Linguistic fuzzy models with singleton consequents 

Assume that a SISO singleton model of the process is available. Such a model can 
be constructed directly from process measurements. A general fuzzy rule R k has 
the following form. 

Rk : If 2/(r) is A\ and . . . and j/(r - py + 1) is Ak
y 

and U(T) is Bk and . . . and w(r — mu + 1) is B^ 

theny(T + l) = ck, k = l,2,...,K, (7.3) 

where Ak,..., Ak and Bk,..., B^ are fuzzy sets and ck are singletons. py and 
mu are the orders of the output and the input, respectively. To simplify the nota­
tion, the rule index and the subscript of the input and output orders will be omitted 
below. The considered fuzzy rule is then given by the following expression. 

If y(r) is Ai and y(r — 1) is A2 and . . . y(r - p + 1) is Ap 

and u(k) is B\ and u(r - 1) is Bi and . . . u(r - m + 1) is Bm 

then y(r + 1) i sc . (7.4) 

Let a state vector x(r) containing the m — 1 past inputs, the p — 1 past outputs 
and the current output, i.e., all the antecedent variables in Eq. (7.4) except U(T), 
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be denned as 

x(r) = [y(r),..., j/(r - p + 1), U(T - 1 ) , . . . , « ( T - m + 1)]T • (7.5) 

Multidimensional fuzzy sets for x(r) are defined on ^p+m~1
1 the Cartesian prod­

uct of the individual universes of discourse. When conjunctive aggregation is 
used, the multidimensional fuzzy set A is given by 

A = A1®---®Ap®B2®---®Bm, 

where © represents a t-norm. By introducing the formal substitution of B i by U 
for notational clarity, the fuzzy rule in Eq. (7.4) can be written as 

If X(T) is A and u(r) is U then y(r + 1) is c. (7.6) 

Note that the rule base of Eq. (7.4) is equivalent to the rule base of Eq. (7.6), 
since the order of the model dynamics is the same, taking into account that x(r) 
is a vector and A is a multidimensional fuzzy set. Let N denote the number of 
different fuzzy sets Ai defined for the state x(r) and M the number of different 
fuzzy sets Uj defined for the input u(r). If the rule base consists of all possible 
combinations of Ai and Uj (the rule base is complete), the total number of rules 
is K = N x M. The entire rule base can be represented as a table 

U(T) 

X(T) UJ U2 ••• UM 

A\ Cn C12 . . . CiM 

A2 C2l C22 ••• C2M ^ ' 

AN CJVI CJV2 . . • CJVM 

The logical and connective is assumed to be represented by the product i-norm 
operator, because this is a necessary condition to perform the inversion, and the 
degree of fulfillment of the rule antecedent /3^ (r) is calculated as 

/3 i j ( r )= /XA i (x ( r ) ) - / i t / j Kr)) , (7.8) 

where fiA{ (
x ( r ) ) is the membership degree of a particular state x(r) in the fuzzy 

set Ai and fiu (U(T)) is the membership degree of an input U(T) in the fuzzy set 

The predicted output y(r +1) of the model is computed by the fuzzy-mean de-
fuzzification, where an average of the consequents c ̂  is weighted by the degrees 
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of fulfillment /?--, so that 

y{r + i) 
EiliE^i^«(r) 

E i l l E ^ l VAj (x(r)) //[/. (M(T)) Cjj 

Ef=1Ef=1RWr))Wi(«W) 
(7.9) 

If this type of singleton fuzzy models also has triangular membership func-
N tions in the antecedents, and form a partition, i.e., E j= i / ^ ; ( x ) = 1> ^x> anc^ 

E ^ l i Mtfj (w) = 1» Vu<tne above singleton model provides piecewise linear in­
terpolation between the rule consequents. 

7.2.2 Inversion of the singleton model 

The rule-based model of Eq. (7.6) corresponds to a nonlinear regression model 

J/(T + 1 ) = / ( X ( T ) , U ( T ) ) , (7.10) 

shown schematically in Fig. 7.5a. The model inputs are the current state x(r) and 
the current input u(r) and the output is the system's predicted output at the next 
sampling instant y(r + 1). 

K(T) 

X(T) / 
$(T+1) 

r\T+l) 

x(t) 
' 

/ • ' 

K(T) 

(a) Model of the system. (b) Derived controller. 

Fig. 7.5 Fuzzy model and a controller based on the model inverse. 

Given the current system state x(r) and the desired system output (reference) 
at the next sampling time r(r +1), the objective of the control algorithm is to find 
U(T), such that the system output y(r + 1) is as close as possible to the desired 
output r(r + 1). This can be achieved by inverting the plant model, as indicated 
in Fig. 7.5b, substituting the reference r(r + 1) for y{r + 1) in the static function 

u(r) = / - 1 ( x ( r ) , r ( r + l)). (7.11) 

This technique has been proposed in (Babuska et al. 1998). The multivariate map­
ping of the fuzzy model in Eq. (7.10) can be reduced to the univariate mapping 
y(r + 1) = /x(w(r)) by making use of the model structure. The subscript x 
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denotes that / x is obtained for the particular state X(T). If the model is invert-
ible, the inverse mapping U(T) = / ~ 1 ( r ( r + 1)) can be obtained. The concept 
of invertibility and the respective conditions for the fuzzy model are related to the 
monotonicity of the model's input-output mapping. A fuzzy model / given by the 
rule base from Eq. (7.6) and the defuzzification method of Eq. (7.9) is invertible 
if Vx and Vy, a unique u exists such that y = / (x , it). In terms of the parameters 
of the model, the monotonicity is translated into the following conditions, 

card(core(i7j)) = 1, Vj = 1 , . . . , M, and (7.12a) 

core(Ui) < . . . < core(C/M) —> en < Ci2 < • • • < CiM, or 

core(J7i) < . . . < core(£/M) —> en > ca > ... > CiM, (7.12b) 

with 2 = 1 , . . . , TV. Here, card(-) denotes the cardinality of a set. 

Example 7.1 Figure 7.6 presents an example where both the above conditions 
are violated. Fuzzy set Uz does not meet the condition card(core(L^3)) = 1; and 
forcore(E/i) < core([/2) ->• c,i < ci2, while for core(U3) < core(U4) ->• ci3 > 

Cj4-

Fig. 7.6 Example where both conditions for the singleton model invertibility fail. 

The inverse of the singleton fuzzy model can be formulated in the following the-

Theorem 7.1 Inversion of the singleton fuzzy model. Let the process be rep­
resented by the singleton fuzzy model ofEq. (7.6) with the weighted-mean defuzzi­
fication method from Eq. (7.9). Further, let the antecedent membership functions 
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form a partition, i.e., let Y^i=i A*Ai(x) = 1. Vx, and S 7 = i ltUj(
u) = 1» Vu. ^ f 

a certain time r the system is at the state x(r), and the inverse of the singleton 
model is given by the fuzzy rules 

If r (T + 1) is CJ(T) then U(T) is Uj, j = l,...,M, (7.13) 

where Cj are fuzzy sets that form a partition as in Fig. 7.7. 
The cores Cj of the fuzzy sets Cj are given by 

N 
CJ = S »*(x(r))c*i> j = 1. • • • > Af. (7.14) 

The inference and defuzzification of the rules in Eq. (7.13) is accomplished by the 
fuzzy-mean method, i.e. 

M 

<T) = Y,Vc,(r(T + 1)) • core(t^). (7.15) 
3 = 1 

The open loop connecting the control action resulting from the inversion and the 

singleton fuzzy model gives an identity mapping (perfect control), 

y(r + 1) = / x ( « ( r ) ) = W^{r(r + 1)) = r(r + 1), (7.16) 

when U(T) exists, and thus r(r + 1) = / ( x ( r ) , U(T)). 

c,(T) c,(T) c3(T) ••• cMA(x) c„(x) 

Fig. 7.7 Partition of fuzzy sets Cj built using the cores Cj. 

Proof. As the product i-norm is used both for the and connective in the rule 
antecedent and for the Mamdani inference, the rule of Eq. (7.6) can be rewritten 
as 

If x(r) is At then (If U(T) is Uj then y(r + 1) is c^). (7.17) 



148 Fuzzy Decision Making in Modeling and Control 

The inversion is made for a given state x(r) . The degree of fulfillment for this 
state given in the proposition, 'x(r) is Ai', is denoted by / ^ W r ) ) . Then the 
TV consequents of the rules containing a particular Uj (columns in Eq. (7.7)) can 
be aggregated. This aggregated consequents CJ(T) are given by Eq. (7.14). As a 
result, the following set of M rules is obtained. 

If U{T) is Uj then y(r + 1) is CJ(T), j = 1 , . . . , M. (7.18) 

As the Mamdani inference is performed by using the product t-norm, which 
has the commutative property, the antecedent and the consequent can be ex­
changed, inverting each of above rules, resulting in 

If y(r + 1) is CJ(T) then u(r) is Uj, j = 1 , . . . , M. (7.19) 

As the consequents Cj (r) are singletons, an interpolation method must be applied 
to obtain U(T). This interpolation is accomplished by the fuzzy sets Cj defined as 
in Fig. 7.7. The serial connection of the inverse and the model gives an identity 
mapping if the desired reference r(r + 1) is in the range of the reached states 
from the actual state x(r) , i.e., c\ < r(r + 1) < CM- Figure 7.8 shows that the 
inversion of the reference r(r + 1) is given by one and only one point for the 
described conditions. Moreover, the direct model reaches y(r + 1) = r(r + 1) 
for the same state x(r) , if it receives u(r) as input. 

Fig. 7.8 Unique mapping between U(T) and r(r + 1) for the singleton fuzzy model considered. 

If the desired output cannot be reached from the current state in one time step, 
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i.e.,r(r+l) < c\ orr(T+l) > CM, the control action is still the mapping with the 
minimal error. In the case that r ( r + l ) > CM,ycM{r(T+l)) = 1, and the control 
input is U(T) = core(UM)- The degree of fulfillment for the control action is given 
by HUM (U(T)) = 1> which yields the model output y{r + 1) = CM- AS CM > Cj, 
1 < j < -M — 1, the difference \r(r + 1) — y(r + 1)| is the minimum possible. 
A similar situation occurs for r < c\, where the control action U(T) = core([/i) 
yields the output y(r + 1) = c\. This is the best control action, since ci < Cj, 
1<j<M. U 

A simple example of the inversion of a singleton model is presented in Ex­
ample 7.2. For fuzzy models with input delays y(r + 1) = / (x ( r ) , U(T — d)), 
the inversion cannot be applied directly since, in that case, the control law of 
Eq. (7.13) would compute a control action U(T — d) which is d steps delayed. To 
generate the appropriate control action U(T), the inverse model must be applied to 
a state x(r + d), d samples ahead, i.e., U(T) — f-1^^ + 1 + d), x(r + d)), with 

x(T + d) = [y(T + d),...,y(T-p+l + d),u(T-l),...,u(T-m + l)]. (7.20) 

The unknown values y(r + 1 ) , . . . ,y{r + d), are predicted by using the fuzzy 
model, i.e., y(r + j) = / ( x ( r + j - 1), U(T + j - 1 - d)), for j = 1 , . . . , d. 
Note that for large time delays, an accurate plant model is required for the d-steps 
ahead prediction, because predictions of unknown values of the state x are used 
in the subsequent steps. 

Example 7.2 Consider a model of the form y(r + 1) = f(y(r), U(T), U(T — 
1)) where two linguistic terms {Low, HIGH} are used for j/(r), and three terms 
{SMALL, MEDIUM, LARGE} for U(T) and U(T - 1). Therefore the model rule 
base consists of 2 x 3 x 3 = 1 8 rules, in total. 

If y(r) i sLowandu( r ) is SMALL and u ( r - l ) is SMALL then y(r+l) is en 
If y(r) is Low and u(r) is SMALL and u ( r - l ) is MEDIUM then j / ( r + l ) is c2i 

If 2/(T) is HIGH and U(T) is LARGE and u(r—1) is LARGE then y(r+l) is c63 

In this example, x(r) = [y(r),u(T — 1)], N = 6 and M = 3. The rule base 
can be represented by Table 7.1. For a given state x(r) = [y(r), U(T — 1)], the 
degree of fulfillment of the first antecedent proposition "X(T) is A", is calculated 
as/xJ4i(x(r)). Using Eq. (7.14), the consequents CJ(T) are given by 

^ ) = % ^ ^ , i = 1,2,3, (7.21) 
E i = i VAi (x(r)) 
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Table 7.1 Example rule base for a model with three an­
tecedents and 18 rules. 

x( r ) 

/ l i (Low& SMALL) 

A2(Low & MEDIUM) 
A3(Low & LARGE) 

A 4 ( H I G H & SMALL) 

A 5 ( H I G H & MEDIUM) 

A 6 ( H I G H & LARGE) 

SMALL 

C l l 

C21 

C31 
C41 

C51 

C61 

U{T) 

MEDIUM 

C12 

C22 

C32 

C 4 2 

C52 

C62 

LARGE 

C13 

C23 

C33 

C43 

C53 

C63 

resulting in the following three rules. 

If U{T) is U\ theny(r + 1) is ci(r) 

If U{T) is t72 then ?/(T + 1) is C2{T) 

If U(T) is C/3 then y(r + 1) is C3(T) 

An example of membership functions CJ(T), j — 1,2,3, of the fuzzy parti­
tion created by using the consequent singletons Ci(r), C2(r), C3(r) is shown in 
Fig. 7.9. Assuming that the fuzzy rule base is monotonic, the rules can be inverted 

C2(T) C3(X) 

c,(t) c2(x) c3(x) 

Fig. 7.9 Fuzzy partition created from ci(r) , 02(1") and cz(r). 

resulting in 

If r ( r + 1) is Ci(r) then u(r) is Ui 

If r ( r + 1) is C2(r) then u(r) is U2 

If r ( r + 1) is CZ{T) then w(r) is U3 

If the rule base is not invertible due to non-monotonicity, the inversion can still 
be performed for the P monotonous parts, with P > 2. For each of the P parts, a 
control action is found by inverting the singleton fuzzy model. The choice of one 
control action is made by using additional criteria, e.g.minimal control effort. This 
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solution is in general different from the solution obtained by predictive control, 
where more than one-step-ahead predictions are used, and the control effort is 
included in the objective function, see Sec. 7.5. Therefore, in these situations it 
is preferable to use the predictive control scheme as in Sec. 7.5, which gives an 
optimal control solution directly. The inversion of non-monotonous systems is not 
considered further. 

7.3 Inversion of an affine Takagi-Sugeno fuzzy model 

This section presents the inversion of a TS fuzzy model that is affine with respect 
to a control action. This method was introduced by Sousa et al. (1997). Let a 
MIMO fuzzy system be given as in Eq. (5.4). The global control problem is re­
duced to control one of the outputs, say y i, by manipulating one of the inputs, say, 
u\. The remaining inputs are considered constant values or represent measurable 
disturbances, which were defined as non-controllable inputs in Sec. 7.1.1. Denote 
j At / i andu A_ Ui for the ease of notation. Let the control action u(r) = Wi(r) 
not be considered in the state vector of Eq. (5.3), and thus the vector of states is 
now given by 

X ( T ) = \3)i{r),...,yi{T-pi + 1),... ,yp(r),... ,yp(r - pp + 1), 

UI(T - l ) , . . . , u i ( r - m i + 1 ) , U 2 ( T ) , . . . , U2(T - m2 + 1 ) , . . . , 

u m ( r ) , . . . , u m ( r - m r o + 1)]T. (7.22) 

This notation helps to describe the inversion as it will be seen in the following. 
The system under control is represented by a MISO model, 

y(T + l) = f(x(T),u(r)). (7.23) 

Note that only a MISO system is considered, because only one variable is under 
control. The parameters m i , . . . , mm and p\,..., pp are the orders of the inputs 
and outputs, as before in Eq. (5.3). The dimension of the state vector is now given 
by n = E^Li rrij + £ ? = 1 Pj-l-

7.3.1 TS fuzzy model 

The unknown function / in Eq. (7.23) is parameterized by the Takagi-Sugeno 
(TS) fuzzy model (Takagi and Sugeno 1985), which can approximate a large class 
of nonlinear systems, see Sec. 5.2.3. In this type of models, the rule consequents 
are crisp functions of the antecedent variables. The most common TS fuzzy model 
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utilizes an affine linear function as the consequent function. 

Rk: If 2/1 (r) is Ak and . . . j/i(r - pi + 1) is Ak
pi and 

2/2(r) is Afpi+1) and y2(T - p2 + 1) is 4f«+w) a n d 

yp(r) is Ak
{pi+...+Pp_1+1) and y„(r - p p + 1) is 4 p i + . . . + P p ) and 

ui (r) is Bj and . . . U(T - mi + 1) is B^ and . . . 

"mW>s5 (
f c

m i + . . .+ m m_1 + 1 )aiid . . . 

um(T - mm + 1) is Bk
mi+ +mm) then 

PI Pp 

y*(r + 1) = J 3 aiMT ~ 3 + l) + • • • + 5 3 < 2 / P ( ^ - J + l) + 

mi m m 

5 3 & U U l ( r - J + 1) + • • • + 1 3 &m^m(T - J + 1) + C*> 
J'=l J = l 

k = l,...,K, (7.24) 

where A*, B | are fuzzy sets, a* • , . . . , a^ , bk-,..., bk
m^ and cfc, are crisp con­

sequent parameters, and K denotes the number of rules in the rule base. The 
consequents can be written in a more compact form, 

v I vt \ 
I?*(r+1) = 5 3 5 3 a J i W ( r - j + l) + 

t=\ \j=i J 

m I mt \ 

E E 6 W T - J + 1) +c"- (7-25) 

The fuzzy rule base given in Eq. (7.24) can be expressed in a compact way by 
using the state vector x(r) and the control action U{T) as 

Rk: If [x(r), U(T)] is 4* then yk(r + 1) = (a fc)Tx(r) + bku{r) + ck, (7.26) 

where fc = 1 , . . . , K, and Ak is the antecedent multidimensional fuzzy set, de­
fined by its membership function 

^ ( x ( r ) , u ( r ) ) : ! R " - t - 1 ^ [ 0 ; l ] , (7.27) 

resulting from the conjunctive aggregation of all the Ak, for j = 
1,2,. . . , J2^=i Pi' m^ Bj> f° r i — 1) 2, • • •, YHi=i rnt- Thus, the antecedent 
fuzzy set Ak is defined as 

A* = A* ® . . . A*x ® . . . A{^+ . . .+ f t . , ® ,B* ® . . . S*,, ® . . . Sfrai+...+mw)I 

(7.28) 
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where ® denotes a t-norm operator. The consequent parameters of the fcth rule, 
ak £ E", and bk, ck G R are related to the consequents in Eq. (7.24) by 

d — L u l l i a 1 2 > • • • i u p p p > y 1 2 ! • • • J ° m m m J 

&* = &Ji, (7-29) 

c* = ck. 

The output of the model y (r + 1) is computed by 

y(r + 1) = Y, /3*(r)[(a*)rx(T) + &*«M + c*], (7.30) 
fe=i 

where j5fc (r) is the normalized degree of fulfillment of the kth rule's antecedent, 
and it is given by 

Pk(r)= ^{Hr),u{r)\) ( 7 3 1 ) 

Ei=iPAi([x(r),u(T)]) 

7.3.2 Inversion of the TS fuzzy model 

In order to invert the fuzzy model, i.e., to compute U{T) based on the current 
state x(r) and on the desired future output r(r + 1), the general fuzzy model of 
Eq. (7.26) can be described by the simplified affine fuzzy model of the form 

y(r + 1) = / i (x(r)) + / 2 ( X ( T ) ) U ( T ) . (7.32) 

If the term in u(r) is not considered in the input, i.e., the input of the fuzzy model 
is just given by the state vector x(r) , this model is parameterized by the Takagi-
Sugeno (TS) structure as 

Rk: If x(r) is Ak
{P] then yk{r + 1) = (a fc)Tx(r) + bku(r) + ck (7.33) 

with k = 1 , . . . , K. The fuzzy set Ak
p, represented by (iAk (x): Rn —> [0,1] is 

the projection of the antecedent fuzzy set Ak € E n + 1 onto the space of the state 
vector x(r) e l c l " . This projection can be obtained by using the Gustafson-
Kessel algorithm, presented in Algorithm 5.1. Thus, the projected membership 
functions are given by 

/xAfc (x(r)) = —j? T77—77! (7-34) 

with 

dkT = I F J f / ' f x M - v^)T (F^)- 1 (x(r) - v%). (7.35) 
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Here, vjji = [vu, • • • ,vnk]T denotes the projection of the cluster center k onto 
X, and each Fj£ = [fij], 1 < i, j < n is the submatrix of the covariance ma­
trix Fj;. Since the antecedent partition of Eq. (7.33) is different from the one in 
Eq. (7.26), the optimal consequent parameters a.k,bk and ck must be re-estimated 
utilizing the least squares algorithm, as presented in Sec. 5.4.2, by using Eq. (5.31) 
to Eq. (5.34), where the matrices Tk contain the membership degrees given by 
Eq. (7.34) and Eq. (7.35). The normalized degrees of fulfillment J3k

p] for the 
affine TS fuzzy model are defined as 

MAfp,(x(T)) 
Pk

[P]ir) = K
 1P1 • (7.36) 

E J = i ^ p ] ( x ( r ) ) 

The predicted output of the model y (r + 1) is recalculated by 

K 

y(r + l) = £ /3f P ] ( r ) [ (a f t fx(T) +bku(r) + ck]. (7.37) 
k=l 

As the antecedent of Eq. (7.33) does not include the input term U(T), the model 
output y(r + 1) is affine in the input U(T). Thus, Eq. (7.37) can be easily divided 
into two terms 

y(r + 1) = £ /?fP](T) [ (a*fx( r ) + ck] + £ $k
[P] (r) bk u(r). (7.38) 

This expression can be translated in the nonlinear affine form given in Eq. (7.32), 
with 

K 

/1(x(r)) = ^ / 3 f P ] ( r ) [ ( a f c ) T x ( r ) + c A ] 

K 

/2(x(T)) = £ /? f P ] ( r )6* . (7.39) 

If the goal is that the model at time step r + 1 equals the reference output, i.e., 
y(r + 1) = r{r + 1), the corresponding control input U(T) is computed by a 
simple algebraic manipulation on Eq. (7.32), 

In terms of Eq. (7.38) one obtains 

= r(T + l)-ZLJ?P](r)mTx(T)+ck] 

ZLJk
P](r)bk 
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Thus, similarly to a singleton fuzzy model, the TS fuzzy model affine on the 
control input, as in Eq. (7.33), can be exactly inverted, provided that the function 
/2(x(r)) is different from zero. The procedure to be followed for systems with 
input delays is identical to the one presented for the singleton fuzzy model in 
Sec. 7.2, where for d samples of delay, the inverse model must be applied d-
samples ahead. 

7.4 On-line adaptation of feedforward fuzzy models 

Many industrial processes are characterized by frequent changes in the operating 
conditions, such as the ones caused by varying quality of the raw materials, vary­
ing process throughput and changing product mix. In order to assure the desired 
product quality, the process control system must be able to cope with frequent 
changes in the process parameters and structure. One possible approach is to adapt 
the controller parameters based on a specified performance measure. In fuzzy con­
trol literature, several adaptive control structures have been presented, such as the 
classical self-organizing linguistic controller (Procyk and Mamdani n.d.), a neuro-
fuzzy controller with temporal backpropagation learning (Jang 1992) or a self-
learning fuzzy controller based on reinforcement learning (Berenji and Khedkar 
1992). The common feature of these approaches is that the controller is adapted 
directly without identifying the plant model. 

A different approach consists of adapting the fuzzy model, using the exact 
inversion to derive the control input (Sousa et al. 1995). The advantage of the pro­
posed scheme is that, apart from the controller design, the process model can be 
used for other purposes, such as monitoring, fault detection and prediction, when 
comparing different control scenarios. An extension to an adaptive fuzzy model 
predictive control scheme is then possible. Since the control actions are derived 
by inverting the fuzzy model on-line, the controller can be adapted automatically, 
if the invertibility conditions are fulfilled. 

Adaptation of fuzzy models can be distinguished in adapting the antecedent 
membership functions or the consequents. In many practical situations, the initial 
antecedent partition derived through off-line identification remains valid. There­
fore, only the adaptation of consequent parameters will be considered. In the ab­
sence of a reasonably accurate initial model, the antecedent membership functions 
can be adapted by using a nonlinear optimization technique. Various approaches 
have been suggested in literature, such as error backpropagation, nonlinear pro­
gramming or genetic algorithms (Jang 1992, Klawonn et al. 1994). Moreover, the 
identification of fuzzy models using product-space fuzzy clustering, as presented 
in Sec. 5.4, can be performed using new data from the system. 
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To cope with model-plant mismatch and disturbances, on-line adaptation of 
the fuzzy model is done in the IMC scheme shown in Fig. 7.10, where the conse­
quents of the fuzzy model are adapted. The adaptation of singleton fuzzy models 

"\ 1 nverse 
model 

i 

u 

| 

iiviLr r liter ' 

Plant 

\ 
Fuzzy 
model 

V 

ym ; 

*\. 

y 

b 

Fig. 7.10 Adaptive internal model control scheme. 

is done as follows. The predicted output for the singleton model, as in Eq. (7.3), 
is given by Eq. (7.9), which is linear in the consequent parameters. These fea­
tures allow for a straightforward application of standard recursive least-squares 
algorithms for estimating the consequent parameters from data, see, e.g., Ljung 
(1987). Although the TS fuzzy models given by Eq. (7.24) are also linear in 
the consequent parameters, the number of parameters to be tuned is very high 
(K x (n + 1)), and the adaptation of all the parameters to stable values is difficult 
to obtain. Therefore, only on-line adaptation of singleton fuzzy models is consid­
ered. The consequent parameters can be indexed by the rule number, and arranged 
in a column vector denoted c(r) = [c1^), C2(T), . . . , CK(T)]T, where K is the 
number of rules. Similarly, the normalized degrees of fulfillment of the rule an­
tecedents are arranged in a column vector J3(T) — [J31

 (T) , ft2
 (T) , . . . ,/3K(T)]. 

These normalized degrees of fulfillment are computed as 

Pk(r) Pk(r) 
Ef=iW 

(7.42) 

The consequent vector C(T) is updated recursively by using the standard least 
squares equation 

c(r) = c(r - 1) + 
R ( r - l)/?(r) 

A + / F ( T ) R ( T - 1 ) / 3 ( T ) 
V(T) » C ( T - 1) (7.43) 

where A is a constant (forgetting factor) and R ( T ) is a covariance matrix updated 
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with 

1 T R/V - 11 AM flT(T)U(T - 1)" 
(7.44) RW = 1 R ( T _ 1 } R ( T - 1 ) 0 ( T ) 0 T ( T ) R ( T - 1 ) 

A + f ( T ) R ( T - l ) / ? ( T ) 

The forgetting factor A influences the tracking capabilities of the adaptation al­
gorithm. The smaller the A, the faster the consequent parameters adapt, not only 
to the process changes but also to disturbances and noise. Therefore, the choice 
of A is problem-dependent. The initial covariance is usually set to R(0) = a • I, 
where I is a K x K identity matrix, and cr is a large positive constant. Another 
possibility is to calculate the initial covariance R(0) from part of the identification 
data (Ljung 1987). 

The presented model-based adaptation has several advantages over the more 
conventional model-free adaptive schemes. 

• Adaptation is based on a standard linear parameter estimation algorithm with 
well-understood numerical properties. 

• The model, the adaptation law and the controller are easily implemented using 
vector and matrix operations, allowing for an efficient in-line implementation 
even with high sampling rates. Most of the other adaptive control schemes 
have higher computational and memory requirements (self-organizing fuzzy 
control) and slower convergence (reinforcement and backpropagation based 
controllers). 

• Once a process model is available, it can be used for multiple purposes, 
such as monitoring, fault diagnosis or prediction. Extensions of the proposed 
scheme to adaptive model predictive control are possible. 

The presented scheme allows for local adaptation (learning) of the controller, as 
opposed to parameter tracking used in linear adaptive control. A drawback of 
linear methods is that a balance between the tracking speed and insensitivity to 
noise is difficult to achieve and the linear controller has no 'memory', i.e., for a 
nonlinear system it must continuously re-adapt the parameters as the process state 
changes. 

7.5 Predictive control using the inversion of a fuzzy model 

In the absence of any constraints and disturbances, and when the model and the 
system are identical (there is no model-plant mismatch), the inversion can be 
performed at each sampling instant, giving the optimal control action. However, 
one of the most serious problems of inverse control is the presence of constraints 
in some of the variables of the system. A system presents, at least, absolute 
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and rate constraints on the control actions u(r) due to physical or safety rea­
sons. Constraints in state variables are also often found. Model predictive control, 
presented in Appendix A, is a general control method which can deal with con­
straints of the system, allowing us to find the optimal sequence of control actions 
U(T) , . . . , u ( r + Hp — 1) over the prediction horizon Hp, for a given objective 
function, using a (nonlinear) model of the process. Even with the traditional cost 
function consisting of the sum squared error between a desired reference and the 
predicted output (see Eq. (A.2) for more details), the optimization problem re­
mains non-convex if a nonlinear model of the system is used. Therefore, as the 
inversion algorithms presented are computationally fast, it is advantageous to uti­
lize controllers based on inverse plant models combined with a predictive control 
scheme. 

For a system with constraints, if none of them are violated, one-step-ahead 
prediction is equivalent to inverse model control and also guarantees optimal per­
formance for first-order systems. On the other hand, when the constraints are ac­
tive, inverse model control results in sub-optimal or even unfeasible performance. 
This observation leads to the idea of combining the predictive control strategy with 
inverse control described in Sec. 7.1 (Sousa et al. 1997). Such a control scheme 
can circumvent the non-convex optimization problems, allowing the use of predic­
tive control in real-time for systems with relatively small sampling times. When 
a recursive application of the inverse model control law over the entire prediction 
horizon results in a violation of a constraint at any step, predictive control is used, 
since it will result in better performance. On the other hand, if no constraints are 
violated, the first control action computed by the inverse model is applied to the 
process. Algorithm 7.1 summarizes the described control strategy. 

Algorithm 7.1 Combination of predictive and inverse-model control. 

Step 1: Apply inverse-model control. Compute the control actions U(T), ... „ 
U(T + Hp — 1) over the prediction horizon and the predicted process outputs 
using the inverse fuzzy model to calculate the control output, and the fuzzy 
model to calculate the predicted outputs. 

Step 2: Check constraints. If some of the constraints are violated at any of the 
prediction steps, go to Step 3; otherwise apply the control action U(T) com­
puted in Step 1 to the process. 

Step 3: Use predictive control. By using a given objective function, a sub-
optimal solution for the control actions is found. Apply U(T) to the process. 

The optimization performed in Step 3 is usually non-convex. This can be a 
serious drawback if an iterative optimization is used. Methods such as sequen­
tial quadratic programming (Gill et al. 1981) can exhibit high computational costs 
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and converge frequently to local minima, hampering the application of the com­
bined control scheme described in Algorithm 7.1. Another possibility for the 
optimization problem is to transform the problem into a discrete space of control 
alternatives. Techniques from operational research and decision making, such as 
dynamic programming, genetic algorithms or the branch-and-bound method can 
be utilized. The application of branch-and-bound and genetic algorithms in model 
predictive control is described in Chapter 10. The control scheme proposed in Al­
gorithm 7.1 avoids the oscillations that usually occur, due to the discretization of 
the control space, see Sec. 10.1. With constant or slowly varying references, the 
constraints are typically not violated and the inversion can be applied, yielding a 
continuous (interpolated) control action. An example presented in the next section 
illustrates the control scheme proposed above, as well as the direct application of 
inverse fuzzy control. 

7.6 Pressure control of a fermentation tank 

This section describes an example regarding the application of the control methods 
that are discussed in this chapter. Inverse model control and the combination of 
inverse control with predictive control are applied to highly nonlinear pressure 
dynamics in a laboratory fermenter presented in Fig. 7.11 *. The volume of the 
fermenter tank is 40 1, and at normal working conditions it is filled with 25 1 of 
water. At the bottom of the tank, air is fed into the water at a specified flow rate, 
and kept constant by a local mass flow controller. The air pressure above the water 
level is controlled by an outlet valve at the top of the tank. With a constant input 
flow rate, the system has a single input, the valve position, and a single output, 
the air pressure. Because of the underlying physical mechanisms, and because 
of the nonlinear characteristic of the control valve, the process has a nonlinear 
steady-state characteristic, as well as a nonlinear dynamic behavior. In the control 
experiments presented here, the second process input, the air flow rate, is kept 
constant. Under the conditions specified above, the smallest time constant of the 
process is about 45 s, which allows for a sample time of Ts = 5 s. The following 
nonlinear differential equation is used as the simulation model which describes 
the pressure dynamics 

dP _ 1000 RqTv ^-•"WS1"^' (7.45) 
dt 22,4Vh 

The symbols represent the following quantities. 
* This application was made using data collected from the fermenter at the Kluyver Laboratory for 

Biotechnology, Delft University of Technology. 
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Fig. 7.11 Laboratory fermenter. 
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the gas constant (8.134 J m o l ^ K - 1 ) , 
temperature (305 K), 
gas volume (0.015 m3), 
gas flow-rate (3.75 x 10 " 4 n r V 1 ) , 
radius of the outlet pipe (0.0178 m), 
reference pressure (1.013 x 105 N m - 2 ) , 
outside air density (1.2 Kg m~3), 
pressure in the tank (N m - 2 ) , 
valve friction factor (J mol - 1) . 

The valve friction factor Kf is a nonlinear function of the valve position u 
and the flow rate <£ff. The maximum changes in the valve position are AU(T) = 
—AU(T) = 10% ofthe total range per sample, and the level constraints are u m m = 
0% and umax = 90% of the valve position. More detailed descriptions of the 
process can be found in van Can et al. (1995). 

7.6.1 Fuzzy modeling 

The inversion of singleton models presented in Sec. 7.2 and the inversion of a TS 
fuzzy model affine on the control action w(r) explained in Sec. 7.3, as well as the 
predictive control scheme based on the inversion of a fuzzy model, described in 
Sec. 7.5, are applied to the fermenter. In order to apply these control schemes, a 
singleton fuzzy model and an affine TS fuzzy model are developed for the pressure 
system. 
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7.6.1.1 Singleton fuzzy model 

First, a fuzzy model of the Takagi-Sugeno type (Takagi and Sugeno 1985) is con­
structed from the process input-output measurements by means of product-space 
fuzzy clustering presented in Sec. 5.4. The model consists of three rules with 
linear consequents, including the bias terms, to capture the different operating 
regimes. The current valve position is denoted U(T), the current pressure t/(r), 
and the pressure at the next sampling instant y(r + 1). The identified model is as 
follows. 

1. If y(r) is LOW and U(T) is OPEN 

then y(r + 1) = 0.67y(r) + 0.0007u(r) + 0.35 

2. If J/(T) is MEDIUM and U(T) is HALF CLOSED 

then y{j + 1) = 0.80j/(r) + 0.0028u(r) + 0.07 

3. If 2/(r) is HIGH and u(r) is CLOSED 

then y(r + 1) = 0.90y(r) + 0.0071u(r) - 0.39 . 

This rule base represents a nonlinear first-order regression model 

y ( r + l ) = / ( i / ( r ) ,u( r ) ) . (7.46) 

Figure 7.12a shows the membership functions for 'OPEN', 'HALF CLOSED' and 
'CLOSED' for the valve position, and Fig. 7.12b the membership functions found 
for the pressure, which are 'Low', 'MEDIUM' and 'HIGH' . 

High 

(a) valve position (% closed) (b) pressure (105 Pa) 

Fig. 7.12 Membership functions for the TS fuzzy model premise variables. 

This model gives certain insight into the nonlinear dynamics of the system, 
as it is represented as a set of local linear ARX models. The validity regions 
for these models are defined by the antecedent membership functions. It can be 
observed, for instance, that for low values of the pressure, the system has both 
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lower gain and slower dynamics than for high pressure, which agrees well with 
the prior knowledge about the system. 

Open Half open Almost closed Closed Low Medium High Very high 

(a) valve position (% closed) (b) pressure (105 Pa) 

Fig. 7.13 Membership functions for the inputs of the singleton fuzzy model. 

The singleton fuzzy model is derived from the TS fuzzy model by using the 
method described in (Babuska et al. 1998). The membership functions obtained 
for the inputs with this method are presented in Fig. 7.13. 

This singleton model consists of 16 rules containing all possible combina­
tions of the antecedents for the valve position and for the pressure. The single­
ton consequents are estimated by using the least-squares method. The rules ob­
tained are presented in Table 7.2. In this table, the first rule, e.g., reads 'If j/(r) is 
Low and U(T) is OPEN, then y(r + 1) = 1.06'. The model is validated using 
the nonlinear output error, where only the real input of the system is used, i.e., 
y{r +1) = / ( U ( T ) , y(r)). Figure 7.14 presents the validation made on a different 
data set from the one used for identification. 

Fig. 7.14 Validation of the singleton model (solid line - process, dash-dotted line - model). 
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Table 7.2 Singleton fuzzy model described by the individ­
ual rules. 

R# 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

y(T) 

LOW 

MEDIUM 

HIGH 

VERY HIGH 

Low 
MEDIUM 

HIGH 

VERY HIGH 

Low 
MEDIUM 

HIGH 

VERY HIGH 

Low 
MEDIUM 

HIGH 

VERY HIGH 

U(T) 

OPEN 

OPEN 

OPEN 

OPEN 

HALF OPEN 

HALF OPEN 

HALF OPEN 

HALF OPEN 

ALMOST CLOSED 

ALMOST CLOSED 

ALMOST CLOSED 

ALMOST CLOSED 

CLOSED 

CLOSED 

CLOSED 

CLOSED 

y(r + \) 

1.06 
1.13 
1.46 
1.84 
1.05 
1.19 
1.51 
2.03 
1.07 
1.23 
1.63 
2.12 
1.11 
1.33 
1.79 
2.34 

7.6.1.2 Affine Takagi-Sugeno model 

First, a second-order TS fuzzy model in U(T) is developed for the pressure system. 
This model is a straightforward extension of the model as in Eq. (7.46), and the 
process dynamics is represented by y(r + 1) = /{y(r), u(r), U(T — 1)). The 
additional term U(T — 1) in the model is important to derive the affine TS fuzzy 
model, as will be explained below. Figure 7.15a shows the membership functions 
fitted to the projection of the fuzzy partition onto the pressure antecedent variable. 
Figure 7.15b and Fig. 7.15c present membership functions built in the same way 
for the valve position and the one-step delayed valve position, respectively. By not 
considering the term on U(T) in the input, the TS fuzzy model remains affine in 
the input u(r), as shown in Sec. 7.3. The consequent parameters are re-estimated 
by using the least-squares technique, and the following three rules are obtained. 

1. If y(r) is Low and U(T - 1) is OPEN then 

y(r + 1) = 0.76y(r) + 2.4 • H T 3 U ( T ) + 2.7 • 1CT4U(T - 1) + 0.15 

2. If J/(T) is MEDIUM and U(T - 1) is HALF CLOSED then 

y(T + 1) = 0.75y(r) + 2.4 • K r 4 u ( r ) + 3.1 • 1CT4U(T - 1) + 0.27 

3. If y(r) is HIGH and U(T - 1) is CLOSED then 

y{r + 1) = 0.93y(r) + 8.2 • 10 - 3 M(T) + 9.2 • 10~4M(T - 1) - 0.45 

Figure 7.15d shows the validation of the model by simulation from the inputs 
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(a) Membership functions for pressure. (b) Membership functions foru{r). 

Valve petition |% cluscd) Time [s] 

(c) Membership functions for U(T — 1). (d) Model validation (solid - process, dash-
dotted - model). 

Fig. 7.15 Membership functions and model validation for the TS model. 

only, as it was done for the singleton fuzzy model. This model is slightly inferior 
to the singleton model presented in Fig. 7.14. Therefore, it is expected that the 
control based on this model also presents inferior performance. The next sections 
will apply both models in controlling the process. 

7.6.2 Predictive control based on the singleton fuzzy model 

The control algorithm based on inversion of the singleton fuzzy model, the pre­
dictive control scheme and the adaptive fuzzy control scheme are tested in simu­
lations of the pressure system. The first-principles model of the process given by 
the nonlinear differential equation Eq. (7.45) is used for simulation purposes. This 
simulation can be called realistic, since the model is highly nonlinear (as is the 
process itself), including the rate and level constraints on U(T). There is a signifi­
cant model-plant mismatch (in fact the fuzzy model approximates the real process 
better than the analytical model), and the process output is corrupted with sensor 
noise in the same range as in reality. The reference signal contains several steps 
of different amplitudes in different operating regions, in order to verify the con-
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Fig. 7.16 Fuzzy controller based on inverted fuzzy model. 

troller's capability to cope with the process nonlinearity. The predictive control 
is included in an IMC scheme in order to cope with model-plant mismatches and 
reduce the effect of noise disturbances. Figure 7.16 shows the simulation results 
with the controller based on the inverse model. The inverse model-based con­
trol cannot cope with the rate constraints. The inversion generates larger changes 
in the control actions than allowed, and the constraint imposed by the rate lim-
iter results in undesired overshoots. Figure 7.17 shows the results obtained using 
the combination of predictive and inverse model control. The prediction and the 
control horizons of 3 steps (15 s) were used. The branch-and-bound optimization 
algorithm is used in the predictive control scheme. The application of B&B to pre­
dictive control is presented in Sec. 10.1. A discretization of the possible control 
actions is necessary to apply this technique. Therefore, the change of the control 
input is discretized in three levels: Au(r) € { — 10,0,10}. Note that by using the 
combined control scheme the overshoots are eliminated. The sum squared error 
between the pressure output and the desired references is decreased by 69%, when 
compared to inverse control, due to the predictive means of control. 
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Fig. 7.17 Combination of predictive and inverse model control. 

7.6.3 Adaptive control 

The on-line adaptation mechanism presented in Sec. 7.4 is tested using an external 
disturbance. The flow-rate is increased from 3.75 x 10~4 to 5 x 10~4 [m3s_1] 
at time t = 400 s. Figure 7.18 compares the system outputs with controller adap­
tation (solid line) and without controller adaptation (dotted line). After a short 
period of adaptation (about 30 s) the adaptive controller again follows the ref­
erence (dashed-dotted line), while the fixed controller exhibits a constant offset. 
This figure shows that the adaptation of the plant model can cope with changes in 
the plant parameters. Let the consequent parameters of the rules presented in Ta­
ble 7.2 be denoted by ck(r), for the kth rule, k = 1 , . . . , 16. The evolution of these 
consequent parameters is shown in Fig. 7.19, and it illustrates the local nature of 
the model. In fact, some of the rule consequents have been adapted immediately 
after the disturbance at time t = 400 s and some others later, as the system dy­
namics evolving through the input-state space activates the corresponding rules. 
As shown in Fig. 7.19b, some parameters are adjusted only after a sudden step­
like change of the reference, which occurs at time t — 600 s. The forgetting factor 
is set to A = 0.98 and the covariance matrix is initialized at R = 100 • I, where 
I is the identity matrix. The covariance matrix R is automatically reset each 100 
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Fig. 7.18 Adaptive control of the pressure system. 

samples to guarantee permanent adaptation of the fuzzy model. 

7.6.4 Predictive control based on the affine TS fuzzy model 

The control algorithm based on the inversion of an affine TS fuzzy model and the 
predictive control scheme based on this type of models are also tested in simula­
tions of the pressure system. The simulation conditions are exactly the same as 
the ones used for the singleton fuzzy model presented in Sec. 7.6.2. The nonlin­
ear internal control scheme is again used to cope with model-plant mismatch and 
noise disturbances. Figure 7.20 shows the simulation results with the controller 
based on the inverse model. The behavior of the system is generally good, but 
an overshoot is found for low pressure values due to a bigger model-plant mis­
match at this region (see the validation of the model presented in Fig. 7.15d). The 
predictive control scheme based on inverted affine TS models uses the branch-and-
bound algorithm for optimization with A«(r) 6 {-10,0,10}, as it is done for the 
singleton fuzzy model. The results of this control scheme are shown in Fig. 7.21. 
The control horizon and the prediction horizon are chosen as H c = 2 and Hp = 4, 
respectively. Due to the relatively large model-plant mismatch referred to before, 
it is not possible to eliminate the overshoot with the predictive control scheme as 
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Fig. 7.19 Evolution of the fuzzy model consequents & ( r ) for the run shown in Fig. 7.18. 

it was when the inversion of the singleton model was combined with a predic­
tive control scheme (see Fig. 7.17). However, the sum squared error between the 
pressure output and the desired references is decreased again, this time by 68%, 
which is a very similar value to the one obtained using the singleton fuzzy model. 
The results obtained with the TS fuzzy model confirm the importance of having 
an accurate model to be used in the control scheme. 

7.7 Fuzzy compensation of steady-state errors 

One disadvantage of the IMC scheme is that the linear feedback used can de­
teriorate the closed loop dynamics in the presence of highly nonlinear systems. 
This section describes another method called fuzzy compensation, introduced in 
(Sousa, Babuska, Bruijn and Verbruggen 1996), that can be used to compensate 
for steady-state errors, based on the information contained in the model of the 
system. A fuzzy set for the steady-state error is defined for this purpose, and it 
determines the degree of activation of the fuzzy compensator. The introduction of 
this fuzzy set allows for the change of the compensation action, from an active to 
an inactive state, in a smooth way. In addition, fuzzy compensation also depends 
on the current system state. Taking the local derivative of the model with respect to 
the control action, it is possible to achieve compensation with only one parameter 
to be tuned (similar to the integral gain in a PID controller). Thus, fuzzy compen­
sation makes explicit use of a nonlinear model of the process. This section de­
scribes the method in detail, and an application example is presented afterwards. 
For the sake of simplicity, the method is presented for nonlinear discrete-time 
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Fig. 7.20 Fuzzy controller based on inverse fuzzy model. 

SISO systems, but it can be extended for MIMO systems. 

7.7.1 Derivation of fuzzy compensation 

In this section it is convenient to delay the model by one step for simplicity of 
notation. The discrete-time SISO regression model of the system under control is 
then given by 

y(r) = / ( x ( r - 1)) (7.47) 

where x(r — 1) = [y(r — 1) , . . . ,y(r — p),u(r — 1) , . . . ,U(T — m)] is the state 
containing the lagged model outputs and inputs given by y(r — 1 ) , . . . , y{r — p) 
and U{T — 1 ) , . . . , U(T — m), respectively. 

Fuzzy compensation uses a correction action called UC(T), which is added to 
the action derived from a (model-based) controller, u m ( r ) , as shown in Fig. 7.22. 
The total control signal applied to the process is thus given by, 

U(T) = u m ( r ) +UC(T). (7.48) 

The controller in Fig. 7.22 can be any controller that can control the system, such 
as a predictive controller. Taking into account the noise and a (small) offset 



170 Fuzzy Decision Making in Modeling and Control 

2 

1.8 

~d 1.6 

1.4 

1.2h 

*r> 

^ - L T H 
500 1000 

Time [s] 
1500 

1500 
Time [s] 

Fig. 7.21 Combination of predictive and inverse model control. 
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Fig. 7.22 Fuzzy model-based compensation scheme. 

error, a fuzzy set SS defines the region where the compensation is active, see 
Fig. 7.23. The error is defined as e(r) = r(r) - y(r), and the membership func­
tion ^ss(e(r)) is designed to allow for steady-state error compensation whenever 
the support of /J,ss{e(T)) is not zero. The value of b that determines the width of 
the core SS should be an upper limit of the absolute value of the possible steady-
state errors. Fuzzy compensation is fully active in the interval [—6, b]. The support 
°f Uss (e ( r)) should be chosen such that it allows for a smooth transition from en-
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abled to disabled compensation. This smoothness of SS induces smoothness on 
the fuzzy compensation action UC(T), and avoids abrupt changes in the control 
action U(T). 

The compensation action u c(r) at time T is given by 

UC(T) = M5s(e(r)) J2 ucU) + K° e W ful . (7-49) 

where /iss(e(r)) is the error membership degree at time r, Kc is a constant and 

df 
Ju — du(r - 1) (7.50) 

X(T-1 ) 

is the partial derivative of the function / in Eq. (7.47) with respect to the control 
action U(T - 1 ) , for the present state of the system x(r - 1 ) . Comparing Eq. (7.49) 
with a classical integral action, there are two new terms: fiss{e(T)), whose effect 
is already described, and the term in Eq. (7.50), which gives the sensitivity of the 
model for a variation in the control action. In linear systems, this term is constant 
and is incorporated in Kc, but for highly nonlinear systems, the compensation can 
be largely improved by taking this factor into account. As the partial derivative in 
Eq. (7.50) increases, the system becomes more sensitive to changes in the control 
actions, and a smaller compensation action is demanded. The contrary is also 
valid. Therefore, the inverse of Eq. (7.50) must be considered in the compensation 
action Eq. (7.49). For linear systems, the term in Eq. (7.50) is constant and the 
parameter Kc multiplied by the term f~l can be seen as the integral gain in a PID 
controller. The parameter Kc must be properly tuned. Its value should be chosen 
such that the steady-state error decreases as fast as possible without oscillations in 
the response of the system. These oscillations can occur if the fuzzy compensation 
action is too large, resulting in a new error e(r + 1) of opposite sign from the 
previous e(-r). 

When the model of the system / is available, the partial derivative in Eq. (7.50) 
can be easily computed, providing that the system is differentiable. However, 
some black-box modeling techniques derive global models which are a collection 
of piece-wise linear models. For these type of models, the derivative is not defined 
at the transients of the linear parts of the model. However, it is possible to define 
a pseudo-derivative for these points given by the mean value of the left and the 
right derivatives. These two derivatives exist because they are derived from linear 
function approximations of the nonlinear system. Thus, the derivative at these 
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Fig. 7.23 Definition of the fuzzy boundary SS where fuzzy compensation is active. 

points can be computed as, 

df 
9f 

9u(r-l) (x(r-l))-t + 
_9£_ 

du(r- l ) (x(r-l))-
a « ( 7 " - 1 ) J x ( r - l ) 

This approximation does not deteriorate the control performance significantly, as 
it can be seen from the simple example of a nonlinear system with dead-zone 
presented in the next section. 

7.7.2 Application to a system with dead-zone 

As a test case, fuzzy compensation is applied to a nonlinear system with a dead-
zone. Assume that the system can be approximated by a first-order discrete time 
dynamic model j/(r + 1) = / (y( r ) , u(r)). The model of the system is illustrated 
in Fig. 7.24. Two nonlinearities are present: a dead-zone for the control actions 
u between —0.4 and 0.2, and saturation levels. The disturbance d in Fig. 7.24 
is given by the sum of normal white noise with a random small constant value 
changing at each step in the reference, in order to simulate different model-plant 
mismatches. 

Fig. 7.24 Model of a system with dead-zone. 
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Table 7.3 Fuzzy model with singleton consequents. 

3/M 

-7 
3 

-1 

-7.01 
-6.20 

-0.401 

-5.60 
-5.59 

-0.399 

-5.40 
-5.10 

U{T) 

0.199 

-5.10 
0.90 

0.201 

1.80 
2.40 

0.5 

2.39 
2.60 

1 

2.90 
3.00 

The process is simulated to generate input-output data and a fuzzy model with 
singleton consequents, as described in Sec. 5.2.2, is derived for the system. The 
model of the process is described by the lookup table presented in Table 7.3. The 
values for the output y{r) and the control input U(T) represent the cores of fuzzy 
partitions using triangular membership functions. The values in the table are the 
fuzzy singleton consequents for the predicted model output y(r + 1). The range 
of the output of the system is y(r) € [—7,3], and the range of the control actions 
is U{T) G [—1,1]. Only two values are needed for the process output y (T) because 
the system is linear with respect to this variable, and thus, the linear interpolation 
between the points in the table completely describes the system. The cores of 
the input u(r) coincide with the nonlinearities of the process. The simulated sys­
tem uses a simple inverted model control technique, as presented in Sec. 7.2. To 
accomplish the inversion of the fuzzy model, the points, where the dead-zone non-
linearity occurs, are slightly changed. Hence, the control action —0.4 is divided 
in -0.399 and -0.401, and U(T) = 0.2 is divided in 0.199 and 0.201. 

In order to eliminate steady-state errors, standard nonlinear IMC and fuzzy 
compensation, using the control scheme shown in Fig. 7.22, are added to the con­
troller based on the fuzzy model. The parameter Kc is chosen equal to 5 and the 
membership function SS is given by 

Mss(e(r)) = < 

0 when |e(r)| > 1, 
1 when|e(Y)| < 0.5, 
2e(r) + 2 when - 1 < e(r) < -0 .5 , 
- 2 e(V) + 2 when 0.5 < e(r) < 1. 

The value of b is then 0.5 to define an interval [—b, b] which contains the possible 
regions where the system presents steady-state errors. The interval [—1,1] is cho­
sen for the support of SS, allowing for a smooth transition in the compensation 
control actions UC(T) as desired. The results obtained are shown in Fig. 7.25. 

The advantage of using fuzzy compensation is clearly seen at the region from 
350 s to 400 s, for instance, where the response is faster than the one resulting 
from the application of the IMC scheme. The sum square error and the sum of 
the absolute error between the reference and the output of the system improve 
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(a) Nonlinear IMC (b) Fuzzy model-based compensation 

Fig. 7.25 Compensation of steady-state error. 

both by about 10%. However, comparing the figures, it seems that sometimes the 
fuzzy compensation scheme is less robust with respect to noise. This assumption 
is confirmed when the parameter Kc is slightly increased. For this situation the 
system presents small oscillations in some regions, which means that this param­
eter should be carefully chosen, and proves the lack of robustness of the actual 
system in certain cases. 

7.8 Summary and concluding remarks 

Methods of deriving nonlinear controllers based on the inversion of fuzzy mod­
els have been presented. The methods benefit from the convenient mathematical 
structure of certain types of rule-base fuzzy models in order to invert them. Sec­
tion 7.2 presented the inversion of singleton fuzzy models and Sec. 7.3 described 
the inversion of Takagi-Sugeno fuzzy models affine in the control action U(T). 
Both inversions are exact in analytical terms and computationally very fast, al­
lowing for their use in systems with small sampling times, and for applications in 
real-time control. Note that the inversion of singleton fuzzy models can only be 
performed for SISO systems, which can constitute a significant drawback. As the 
TS fuzzy model must be constrained to be affine on u{r) in order to be invertible, 
the resultant model accuracy is usually reduced. 

The inverted fuzzy models obtained can be used in an open-loop configura­
tion. If an ideal model of the process is available and both model and controller 
(inverse model) are input-output stable, the control is perfect, and input-output 
stable. This 'ideal' control configuration cannot be directly applied in practice 
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because the model is never a perfect mapping of the system, resulting in model-
plant mismatches. Moreover, disturbances are usually present in the system, and 
some variables of the process (more often the control actions) can be subject to 
level and/or rate constraints. Model-plant mismatches and disturbances are re­
duced by using the nonlinear internal model control scheme. In the presence of 
significant model-plant mismatches due to permanent or temporary changes in 
the operating conditions, the model can be adapted on-line in order to cope with 
these phenomena. An adaptation algorithm based on recursive least-squares is 
presented in Sec. 7.4, where the singleton fuzzy model is adapted. The adaptation 
is performed such that the invertibility of the model remains valid, and the scheme 
can be used for control purposes. 

Level and rate constraints on the input variables of the model can be coped 
with by utilizing the inverse model in a predictive control scheme, as presented 
in Sec. 7.5. The resultant optimization problem is usually non-convex, and algo­
rithms to reduce the computational time by using discrete optimization techniques 
are proposed in Chapter 10. Compared to conventional fuzzy logic control, the 
controllers developed by using fuzzy models demand much less tuning effort, al­
though some experimentation and iterative tuning may be required in the modeling 
phase. However, once a fuzzy model of the process is available, it can be directly 
used in the control scheme. The application example presented in Sec. 7.6 demon­
strates the control performance and the computational aspects of the described al­
gorithms. It is shown that the predictive control scheme can prevent overshoots 
and reduce the sum squared error between the output of the system and the desired 
reference. 

One disadvantage of the IMC scheme is that it uses a linear filter for the 
model/plant error, which can slow down the response of the system, and introduce 
undesired overshoots. A different solution to dealing with model-plant mismatch 
is to use fuzzy compensation, which deals with steady-state errors resulting from 
model-plant mismatches and disturbances. However, fuzzy compensation can 
introduce undesired oscillations, although the problems concerning the speed of 
the response and overshoots are usually overcome. Experiments have shown that 
this control scheme is, in general, less robust then IMC, since the gain parameter 
requires careful tuning, due to the sensitivity of the method to this parameter. 
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Chapter 8 

Performance Criteria 

The specification of performance criteria for designing control systems is consid­
ered in this chapter. We assume, without loss of generality, that a general feedback 
control system is studied, as was discussed in Chapter 1 (see Fig. 1.1). In the de­
sign of control systems, design specifications usually represent a translation of the 
main goal in control design, i.e., the outputs y should be as close as possible to re­
spective pre-specified references r, suppressing the influence of the disturbances. 
This goal must be accomplished despite the fact that u or its change are limited 
due to some physical constraints present in the system. Several examples of con­
straints in control actions can be given, e.g. the flow rate has its maximum value 
when a valve is fully open, or the opening of a valve should be kept small to save 
energy. 

Design specifications fulfilling the design goals and objectives for the con­
troller design must be specified. For nonlinear systems, three main objectives are 
required. 

(1) Stability of the overall system. 
(2) Performance regarding the accuracy and the speed of the system's response. 
(3) Robustness to disturbances and dynamics that are not modeled. 

The design specifications are usually combined in an optimal control problem, 
where several design criteria can be aggregated using different approaches. De­
sign specifications are discussed in Sec. 8.1, where systematic approaches for de­
signing linear control systems are presented, and general procedures for deriving 
controllers in the presence of nonlinear systems are discussed. 

Particular attention is devoted to performance specifications, because they are 
directly related to the general control objectives. Classical performance specifi­
cations are presented in Sec. 8.2. Performance specifications are formalized in 
performance criteria. These performance criteria are expressed by the size of cer­
tain signals of interest. There are different ways of defining the size of a signal, 
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given by different norms or semi-norms for signals. An overview of the classical 
performance criteria using norms and semi-norms of signals and/or systems for 
defining the performance criteria is given in Sec. 8.3. 

Classical design specifications are specified by using performance criteria, 
which are based on norms or semi-norms. Sometimes, however, it is preferable to 
define informal design goals such as 'the step response from the reference signal to 
the output should not overshoot too much' or 'the sensor noise should not cause 
u to be too large', which may better describe the control goals. These types of 
control goals can be formally translated to performance criteria using fuzzy logic 
theory. Fuzzy performance criteria are presented in Sec. 8.4 before the concluding 
remarks in Sec. 8.5. 

8.1 Design specifications 

In general, the design goals also called design objectives for controller design 
are expressed by design specifications. These can have different forms, and are 
usually related to the architectures or configurations of the respective control sys­
tems. As an example, consider, for instance, an air-conditioning system, where 
the global design goal can be stated as obtaining and maintaining 'human com­
fort' . This goal must be translated in terms of temperature, humidity, ventilation 
and noise. Stating, for instance, that 'the temperature should be around 20 ° C is 
already a design specification, because the control goal is specified for a certain 
variable. The simplest example is to consider just one goal, such as the mini­
mization of the error between a given reference and the output(s) of the system. 
In this case, a single cost or objective function is optimized. Often, however, 
several goals are simultaneously considered and a multicriteria optimization ap­
proach must be applied, where the controller must perform well mutually on all 
these goals. Several criteria can be combined in a single cost function as in the 
optimal control paradigm. 

A clear distinction between design specification and design criterion is usu­
ally not utilized in control design, and especially for linear time-invariant systems 
both terms are used interchangeably. In this chapter the term design specifications 
is reserved for the imprecise design goals and objectives required by the control 
designer for the variables under control, and the term design criterion is used for 
the formal or mathematical description of the design specifications. The design 
specification stated as 'the overshoot must be small', for instance, is translated 
to the precise design criterion: 'the overshoot <f>0& must be smaller than 5%' (see 
the definition of overshoot in Eq. (8.7)). This section presents design specifica­
tions and criteria. The possible combination of design criteria for the design of 
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controllers is discussed. First, control design specifications for linear systems are 
presented. Second, a generalization for nonlinear systems is discussed. 

8.1.1 Design specifications for linear systems 

For linear systems, the design specifications can be translated to design criteria in a 
systematic way. The design criteria can be specified either in time or in frequency 
domain. Quantitative specifications of the closed loop system are established, and 
a controller meeting these specifications can be designed. The first problem posed 
is the feasibility problem, i.e., determining whether all design specifications can 
be simultaneously satisfied. 

A design specification is translated to a design criterion Jj, which is dependent 
on different variables of the system, such as the control actions u, the outputs of 
the system y, the states x and the disturbances d. When the design criteria are 
defined for different variables, all of them must be satisfied, i. e., the problem must 
be feasible. This approach is sometimes called multicriteria optimization (Boyd 
and Barret 1991). In this approach, a tradeoff between the separate parts of the 
criteria is made, in order to find the possible solutions. Note however, that there 
is no ordering or priority among the design criteria in this approach. Therefore, 
several solutions can be obtained. 

Another approach that is more often utilized is optimal control. In this ap­
proach all the design criteria Jj must be translated to functions of only one vari­
able, usually the control actions u. Moreover, an ordering of several criteria must 
be given, and a unique solution of the optimal problem is obtained. Let v G V be 
a general variable under optimization. Each design criterion is thus translated to a 
function of this variable represented by Jj (v). The combination of all the design 
criteria is given by the cost (objective) function 

^ ( v ) = / ( J i ( v ) ! . . . , J „ ( v ) ) , (8.1) 

where n is the number of criteria defined. In the following paragraph, the two 
most widely used methods of combining criteria are presented after a discussion 
of a formal definition of optimal control. 

8.1.1.1 Optimal control problem 

The general form of an optimization problem, usually known as nonlinear con-
Strained optimization problem is defined as 

min J(v) 
vev 

subject to ffi(v) < 0, i = 1,... ,1; (8.2) 
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where the objective function J(v) is defined as before, the constraint functions 
<7,(v) are real-valued scalar functions, v € V, and I is the number of constraints. 
The constraints in a system can be present for the control actions u, state vari­
ables x, outputs of the system y, or changes in these variables. Note that all the 
constraints must be expressed in the constraint functions g $ in the optimal control 
formulation, depending on the chosen variable under optimization v. 

As an example, let the variable under optimization be the control actions, i.e., 
v A u. Let the design criterion be given simply by the error between the desired 
reference and the predicted outputs using the model of the system: J(u) = r — y. 
Consider a regulation problem, where the reference is constant. Thus, in this case 
it is sufficient to have a function relating y to u, 

y = f (u) , (8.3) 

in order to solve the optimization problem. As this function is actually a part of the 
model of the system, this problem is quite trivial. Unfortunately, this formulation 
is not always so simple. 

The constraints considered in ffi(v) are usually known as 'hard' constraints, 
contrary to the 'soft' constraints. Each criterion Jj has an optimal value, if only 
that specific criterion is considered. Therefore, a trade-off between the several 
design criteria for a suitable design of a control system is 'searched'. Thus, 
the specification of J(v) determines the trade-off between the several criteria. 
This is generally done interactively, often by repeatedly adjusting the weights in 
a weighted-sum or weighted-max objective and evaluating the resulting optimal 
design. These two methods to combine design criteria are presented in the next 
paragraphs. 

8.1.1.2 Weighted-Sum Objective 

A common method of combining the individual goals translated in a design crite­
rion Jj is to add all of them, after they have been multiplied by the non-negative 
weights Xj 

J(v) = A1J1(v) + . . . + A n J n (v) . (8.4) 

The weights assign relative values among the functionals Jj. The objective func­
tion as in Eq. (8.4) is called a weighted-sum objective. A typical example of the 
application of the weighted-sum objective is in model-based predictive control, 
where the sum-squared error added to a term minimizing the control effort is of­
ten used as the cost function (see Appendix A). 
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8.1.1.3 Weighted-Max Objective 

Another approach, called minimax design, is to form the objective function as the 
maximum of the weighted functions, 

J(v) = max{AiJi (v) , . . . ,A n J r i (v)} , (8.5) 

where Xj are again non-negative weights. The weights are meant to express the 
designer's preference among the criteria, just as in the weighted-sum objective. 

The combination of the several criteria for both methods of constructing the 
objective function is usually chosen in such a way that they lead to closed-loop 
convex constraints. If J(v) is a convex function and the constraints are convex, 
the optimization is a convex programming problem (Gill et al. 1981), which is 
known to have efficient numerical solutions. Therefore, only convex problems are 
usually considered in the classical approach, even if the system under optimiza­
tion is nonlinear. As a final remark, note that even for linear systems it can be 
quite complex to define the required design specifications. Moreover, the transla­
tion of them to design criteria is usually difficult or sometimes even impossible. 
When this stage is possible to achieve, i.e., the design criteria are all defined, it is 
still necessary to choose a method to combine them, and to choose the respective 
weights for the different criteria. 

8.1.2 Design specifications for nonlinear systems 

The procedure for designing linear systems described in the previous section can 
be applied to nonlinear systems only in the time domain. In general, the response 
of a nonlinear system to a specific input signal does not reflect its response to 
a different input signal. Therefore, a description in the frequency domain is not 
adequate for this type of systems. 

In general, it is possible to look for some qualitative design specifications in 
the operating region of interest. For any type of system (linear or nonlinear) the 
design specifications can be divided into three main groups (Slotine and Li 1991). 

(1) Stability, for closed loop system under control, both in local and global sense. 
(2) Performance, which is described by the accuracy and speed of the time re­

sponses for some typical references, such as the step response. For this par­
ticular response, the three most used specifications are, 

• rise time, 
• overshoot, and 
• settling time. 

(3) Robustness to disturbances, measurement noise and model-plant mismatch, 
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where the system must still be able to satisfy the desired specifications when 
these effects are present. 

Some remarks should be made at this point. Note that stability for nonlinear sys­
tems is usually defined in a way that does not cope with persistent disturbances 
(Slotine and Li 1991). The reason for this is that the stability of nonlinear sys­
tems is defined with respect to initial conditions, and only temporary disturbances 
can be translated to initial conditions. Therefore, robustness is used to cope with 
persistent disturbances. The three most important design specifications, i.e., ro­
bustness, performance and stability, may conflict to some extent, and a trade-off 
between them is usually required to obtain a good control system. 

This book does not explicitly address stability and robustness specifications, 
i.e., no design specifications are specified concerning these features by them­
selves. These issues are, however, implicitly considered in some control struc­
tures, such as internal model control, presented in Sec. B.l. Hence, only per­
formance specifications are explicitly treated in this book. It should be stressed, 
however, that although stability and robustness are not considered, they can be 
implicitly present in some performance specifications. This is maybe one of the 
reasons why rule-basedFLC, in the Mamdani's sense (Mamdani 1974), are widely 
applied in industry and performing so well. Note finally that performance spec­
ifications defined for nonlinear systems can be translated to performance criteria 
and combined into an optimal control problem using the weighted-sum or the 
weighted-max objective, as is usually done for linear systems. The next section 
presents classical, i.e., non-fuzzy, performance specifications for linear and non­
linear systems. 

8.2 Classical performance specifications 

One of the most important steps in the design of a control system is the choice 
of the performance specifications, which influences the type of controller to be 
used. Performance specifications, like design specifications, can also be contra­
dictory by themselves. Hence, when performance specifications are translated to 
performance criteria, a trade-off between the different criteria must also be made, 
in order to find a suitable controller. Usually, the performance specifications are 
divided into the following groups: 

(1) input/output (I/O) specifications, related to the effect of the control actions u 
on the system's outputs y, 

(2) regulation specifications, measuring the effect of the disturbances d and d m 

on y, and 
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(3) actuator effort of the control actions u. 

Sometimes, the combined effect of disturbances and control actions on the output 
is also considered. The following sections describe each of these three groups of 
performance specifications in more detail. 

8.2.1 I/O specifications 

It is usual to express specifications on the system outputs y in terms of a given 
input response. Some of the most used specifications for linear systems are made 
in terms of the step response of the process P . Step responses give a good indi­
cation of the performance of the controlled variable to command inputs that are 
constant for long periods of time and occasionally change quickly to a new value 
(new set-point). Let h(r) denote the unit step response of the SISO mapping de­
scribing a process P . A SISO system is considered for the sake of simplicity, 
but the next definitions are also valid for MIMO systems. Note that for nonlinear 
systems, different steps of the system present different behaviors. Thus, several 
working points of the system must be considered and the specifications described 
in the following must be done for all these working points. In linear systems this 
procedure is simplified and only the unit step response needs to be considered. 
The performance specifications defined in the following must thus be applied for 
the several working points when a nonlinear system is considered. Note that the 
following specifications are defined for discrete or discretized systems. 

A common specification for step responses is to assure asymptotic tracking, 
i.e., a zero steady-state error for the system, which can be translated as 

(patiP, AP) A \im Aph(r) = AP , (8.6) 
r—>oo 

where Ap G R is the amplitude of the step. 
Both the overshoot and the undershoot are defined as functions of P . The 

overshoot is defined as 

0os(P, A) A sup AP(h(T) - 1), (8.7) 
r>0 

and the undershoot as, 

^us(P, Ap) A sup( -Aph(r) ) . (8.8) 
T>0 

The rise time and settling time can be defined in different ways. In general, 
the rise time is defined as 

</>rise(P) A inf{r* | Aph(r) > aPAP, T>T*}, (8.9) 
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where a common value for the parameter is ap = 0.8. The settling time is given 
by 

Pset IP) A inf{r* | \APh(T) - AP\ < c, r > r*} , (8.10) 

where the parameter e is usually set to 0.05 or 0.02. Figure 8.1 presents an ex­
ample of a step with amplitude AP = 1, where the overshoot, the undershoot, 
the rise time with ap = 0.8, and the settling time with e = 0.05 are illustrated. 
Other specifications normally used for the step response of linear systems are the 
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Fig. 8.1 Example of several I/O specifications. 

general step response envelope specification, the general response-time functional 
or the step response interaction. The readers interested in these specifications are 
referred to Boyd and Barret (1991). 

Step response specifications are suitable for systems where the references to 
be followed are constant for long periods and change abruptly to new values after 
those periods. However, typical command signals can be more diverse, changing 
frequently in a way that is not completely predictable. For these systems, the goal 
is to have some system variables that follow or track a (continuously) changing 
reference. Usually, the outputs y should track the respective references r with 
small errors, ideally zero. The errors are thus defined as the difference between 
the references to be followed and the outputs of the system under control as 

e(r) = r(r) - y(r) (8.11) 
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Some norms of these error signals, as their root-mean square values, the average-
absolute norm or the oo-norm (peak), are commonly used as performance criteria 
for control purposes. The definitions of these performance criteria are given in 
Sec. 8.3. 

8.2.2 Regulation specifications 

This type of specifications considers the effect of the disturbances d and d m in 
the outputs of the system, assuming that the control signals u are equal to zero 
or constant. This formulation is useful for linear systems, where the effects of 
different inputs can be studied separately and summed up afterwards, due to the 
superposition principle. Ideally, the effect of the disturbances on the output should 
be as small as possible. 

For linear systems, some typical performance specifications are usually con­
sidered. The simplest case is to consider the disturbances constant, and to require 
that the disturbances should be asymptotically rejected, i.e., the effect of the dis­
turbances should converge to zero. When the disturbances can be described by a 
stochastic process, it is usual to require that the root-mean square (see the defini­
tion in Sec. 8.3.1) of the obtained outputs is smaller than a certain constant value. 
Another common regulation specification in the frequency domain is the classical 
minimum regulation bandwidth, which is defined as the largest frequency below 
which the disturbance is largely damped. A detailed description of regulation 
specifications for linear systems can be found in Boyd and Barret (1991). 

For nonlinear systems, the effects of the disturbances cannot be studied sepa­
rately from the control inputs, because the superposition principle is not valid for 
these type of systems. Therefore, the specifications dealing with disturbances are 
in the group of robustness specifications. 

8.2.3 Actuator effort 

The size of the actuator signals is usually limited. Performance specifications must 
define the proper limits in the control signals or in their variations. The limitations 
of the actuators can have different reasons, such as the following. 

• Actuator heating. Excessive heating of an actuator can be caused by large or 
fluctuating actuator signals, damaging or causing wear to the system. Such 
constraints can be expressed in terms of a root-mean square norm of u, pos­
sibly with weights. 

• Saturation. The limits of actuator signals should not be exceeded, because the 
actuators may be damaged. These specifications can be expressed in terms of 
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criteria defined as a scaled or weighted oo-norm of u. 
• Power or resource use. Large and high frequent actuator signals are usu­

ally associated with excessive power consumption or resource use. A scaled 
average-absolute semi-norm of u is often used to express the criteria fulfilling 
these specifications. 

• Mechanical or other wear. Frequent rapid changes in the actuator signal may 
cause undesirable stresses or excessive wear. These constraints may be ex­
pressed in terms of slew rate or acceleration norms of u. 

A brief survey of the different performance specifications defined for a given sys­
tem has been presented in this section. Performance criteria are the translation of 
performance specifications to a formal description. This translation can be made 
in classical or fuzzy terms. The next section describes classical performance cri­
teria, while fuzzy performance criteria are presented in Sec. 8.4. 

8.3 Classical performance criteria 

Usually, the control goals can be expressed in terms of the size of certain signals 
of interest. For example, tracking error signals, given by the difference between 
the references r and the system's outputs y must be 'small', while actuator signals 
u should, normally, not be 'too large'. The criterion describing the performance 
of the tracking system can be measured, e.g., by the size of the error signal. The 
size of a signal can be precisely defined using norms presented in the next section, 
which generalize the concept of the Euclidean length of a vector (Boyd and Barret 
1991). 

8.3.1 Norms and semi-norms of signals 

Different norms for signals are described in this section. First, the concept of 
norm is defined as follows. Let v(t) denote a time signal in a vector space V. A 
norm of v, represented by ||u|| maps the space V to E and has the following four 
properties. 

(1) ||u|| > 0 (Nonnegativity), 
(2) \\v\\ = 0 <=>• n = 0, (Positive definiteness), 
(3) ||cru|| = HH^H, Va € E (Homogeneity), 
(4) ||ui +U2II < ||fi|| + ||w2|| (Triangleinequality). 

for any v\, V2 6 V. If all the properties except the positive definiteness hold, then 
a semi-norm is defined. Several norms of signals are presented in the next para­
graphs in both the time and frequency domains, and the physical meaning of each 
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one is described. Note that the signals of interest in a system are usually obtained 
in a discrete or discretized way. Hence, discrete-to-continuous transformation of 
these signals using, e.g., a zero-order-hold or a first-order-hold must be applied, 
so that a certain norm or semi-norm of the signals can be computed. 

The most common norms are the 1-norm, the 2-norm and the oo-norm. These 
norms can be derived as special cases of a p-norm defined as 

J™ \v(t)\><kj 
I/P 

H | p A ( / \v(t)\pdt) , p>l. (8.12) 

8.3.1.1 1-norm 

This norm is the integral of the absolute value of a signal v(t), 

/ • O O 

IMIi A / \v(t)\dt, (8.13) 
Jo 

and can be seen as a measure of the total fuel or resource consumption. 

8.3.1.2 2-norm 

The 2-norm of a signal gives the square root of the total energy, and is given by 

/ roo \ 1/2 
||v||2 A / \v{t)\2dt) . (8.14) 

If the system under control is linear, the 2-norm can be computed in the frequency 
domain using Parseval's theorem, see e.g., Zhou et al. (1996). Note that the 1-
norm and the 2-norm are appropriate for transient signals, which decay to zero 
as time progresses. The same happens for the integral of time multiplied by the 
absolute error (ITAE) norm defined below. The rest of the norms defined in this 
section are used for measuring the size of persistent signals. 

8.3.1.3 oo-norm 

One simple interpretation of 'the signal v is small' is that it is small at all times, 
or equivalently, its maximum or peak absolute value is small. The oo-norm of v 
is thus the least upper bound (supreme) of the absolute value of a signal, given by 

IHloo A sup|t;(t)|. (8.15) 
t>0 
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The oo-norm of a signal depends entirely on the extreme or large values the signal 
takes on. As the oo-norm depends on occasionally large values of the signal, it is 
a worst case norm. 

8.3.1.4 ITAEnorm 

Sometimes it is useful to introduce a time dependent weight in the norm, given 
a certain function of time w(t). The most simple example is the integral of time 
multiplied by the absolute error (ITAE) norm, where w(t) — t. The ITAE-norm 
is defined as 

MIlTAE * / 
Jo 

t\v(t)\dt. (8.16) 

This norm is given by the 1-norm of v weighted by the time. This weight empha­
sizes the importance of the signal v as time evolves, and de-emphasizes the signal 
at the beginning of the response. Thus, for this norm the steady-state behavior of 
the signal is more important than the transient behavior. 

8.3.1.5 Root-Mean-Square 

For signals with finite steady-state power (non-transient signals) it is useful to 
define a measure that reflects its average size, which is given by the root-mean-
square (RMS) value, defined by 

flinns A lim - v(tYdt , (8.17) 

provided that the limit exists. This semi-norm is a classical notion of the size of 
a signal, and it is widely used in many areas of engineering. Signals with small 
RMS norms can still present occasional large peaks, if they are not too frequent 
and do not contain too much energy. The ||i>||rms is thus an average measure of 
a signal. Hence, a signal with small RMS value can still be very large for some 
time period. 

8.3.1.6 Average-Absolute Value 

The average-absolute value is a measure that puts even less emphasis on large 
values of a signal than the RMS norm, and it is defined by 

IHIaa A lim — / \v(t)\dt, (8.18) 
t*-KX> t* J0 
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supposing that the limit in Eq. (8.18) exists. The ||u||aa semi-norm is useful to 
measure the average resource used (like fuel), when the resource consumption is 
proportional to |u(i)|. 

The comparison of the three (semi-)norms: oo-norm, ||u||rms and IMIaa. 
shows that they simply put different emphasis on large and small signal values. 
The oo-norm puts all its emphasis on large values, the RMS semi-norm puts less 
emphasis on signal amplitudes, and the average-absolute semi-norm puts uniform 
emphasis on all signal amplitudes. 

Other (semi)-norms of signals can be defined, but the seven presented are 
probably the most commonly utilized to measure different characteristics of a sig­
nal. The notion of norm of a signal can also be extended to the norm of a system, 
as explained below. 

8.3.2 Norms of systems 

Let H be a mapping from a given input u to an output y as in Fig. 8.2. The input 
can be, e.g., a control action or a disturbance. Note that H can be a subsystem of 
the total considered system P . 

u 
H \ 

Fig. 8.2 Input-output mapping of a subsystem. 

The notion of norm can be used for the mapping H as an extension of the 
induced norms usually defined for linear time-invariant (LTI) systems (Zhou et al. 
1996). Thus, the inducedp-norm of a mapping H is defined as 

||H||ip A max 1 % , (8.19) 
p - |M|P«x> ||u||p 

using the definition of p-norm as in Eq. (8.12). A norm for a particular mapping 
is used when an input signal, e.g.a. step, sinusoidal or impulse signal, is applied 
to the system, and the output y is measured. Note that if the system is nonlinear, 
dividing the system in subsystems does not simplify the analysis because the su­
perposition principle is not valid. Hence, in general it is not possible to measure 
the effect of a particular control action or disturbance, without taking into account 
the influence of the remaining inputs (control actions or disturbances). Moreover, 
different input signals of the same type, e.g.different steps or impulses, have in 
general different responses. Thus, the norms of nonlinear systems have little prac­
tical value, except for systems described by first principles, or systems for which 
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some prior knowledge about its behavior is readily available. 
A completely different situation occurs when the system under control is lin­

ear. The norms defined in Sec. 8.3.1 can be applied, and the discussion presented 
for each norm can be extended for systems. For linear systems, when many input 
signals are applied with a probability distribution, the average size of the response 
can be measured using the expectation with respect to the distribution of the input 
signals. Another possibility for measuring the size of a linear system when several 
inputs are considered, is to take the worst case or the largest norm of the response 
of H to the given input signals. 

Classical performance criteria pretend to translate the performance specifica­
tions in formal terms such that the behavior of the system is as close as possible 
to the desired behavior. Performance specifications are sometimes contradictory, 
and a compromise between them is then necessary. This is also the case in de­
cision making problems, in which a compromise between competing criteria and 
requirements should also be obtained. For this type of problems it is useful to 
fuzzify the criteria and requirements, usually leading to better decisions. Consid­
ering the difficulty in translating the performance specifications to performance 
criteria in order to fulfill the designer requirements, even in the presence of lin­
ear systems, it seems reasonable to describe the performance specifications using 
fuzzy performance criteria. 

The definition of fuzzy performance criteria can be easier than classical per­
formance criteria due to the inherent fuzziness present in the performance specifi­
cations and the flexibility introduced in the definition of the performance criteria 
(Sousa et al. 1999). Moreover, the combination of different criteria can be made 
using different and more general operators than the ones presented in Sec. 8.1.1, 
by using decision functions to combine the several criteria. 

8.4 Fuzzy performance criteria 

Classical performance criteria can only be defined using norms or semi-norms. 
However, sometimes informal design goals better translate the designer's inten­
tions than the precise classical design criteria. In a non-classical approach, the 
design specifications can be seen as (fuzzy) objectives and (fuzzy) constraints. 
Some examples are 'the error between the reference and the output should be very 
small' or 'the control signal should not change too much'. The linguistic terms 
used in the design specifications such as 'small' and 'not change too much' can 
be defined by using fuzzy sets. With the introduction of fuzzy sets for defining 
the goals of a control system, it is possible to use criteria that do not constitute a 
norm or semi-norm, which generalizes the concept of design goals as used in the 



Performance Criteria 191 

classical control theory. This type of goals can, however, be easily combined with 
norms in a fuzzy decision making environment. 

Fuzzy performance criteria must be aggregated in order to find the optimal 
control actions for a given control system. An approach that transparently trans­
lates the objectives and constraints derived from the control design goals of a given 
system to performance criteria is fuzzy multicriteria decision making. The concept 
of multicriteria decision making in a fuzzy environment is originally defined as a 
confluence of decision goals and constraints (Bellman and Zadeh 1970). Both the 
goals and the constraints are represented by membership functions, which facili­
tates their aggregation. As goals and constraints are both represented by member­
ship functions in a similar manner, they are usually called fuzzy decision criteria 
in the fuzzy decision making environment. 

The use of fuzzy performance criteria in control is presented in more detail 
in Chapter 9. Each performance criterion is described by a membership function. 
As an example, let each error in Eq. (8.11) be defined by a triangular membership 
function, as depicted in Fig. 8.3. Note that this definition is for a certain time step 
r , and a confluence of the different errors for all the responses should be made. 
This procedure is, however, time consuming, and normally not necessary, because 

Fig. 8.3 Example of a performance criteria defined for an error, as defined in Eq. (8.11). 

it is enough to consider the number of steps necessary to guarantee a good measure 
of the defined error. For step responses, for instance, this number of steps is equal 
to the settling time, as defined in Eq. (8.10). In fact, the I/O specifications defined 
in Sec. 8.2.1 can almost be used straightforwardly as fuzzy performance criteria. 
Regulation effort and actuator effort are usually seen as fuzzy constraints, and 
fuzzy sets can be defined for these specifications. Classical performance criteria 
cannot be directly used as fuzzy performance criteria, but the physical meaning 
behind their definition is of great interest. In fact, instead of using the norms 
and semi-norms defined in Sec. 8.3 directly, they can be used as an indication on 
how to aggregate the different fuzzy sets defining the fuzzy criteria, and also to 
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define the fuzzy sets translating the different criteria. A system that is required to 
avoid peak errors, for instance, should aggregate the errors over the time horizon 
penalizing each large error, similar to the peak or oo-norm as in Eq. (8.15). On 
the other hand, if only the average of errors is important, and an eventual peak is 
allowed, the aggregation of criteria must make a sort of average, using a procedure 
similar to the 1-norm or the 2-norm, see Eq. (8.13) and Eq. (8.14). 

The formulation of the control problem as a confluence of (fuzzy) goals and 
(fuzzy) constraints, can be seen as a generalization of the cost function usually 
utilized in model-based predictive control. The application of fuzzy performance 
criteria in MBPC is presented in Sec. 9.2, showing the advantages of generalizing 
the objective function, usually at the cost of increasing computational time, to 
derive the optimal control actions. 

8.5 Summary and concluding remarks 

In classical control theory, design specifications are rigorously defined for linear 
systems, resulting directly in performance criteria. These specifications are given 
by several cost functions. The best control actions can be determined by solv­
ing an optimal control problem, where design specifications are combined using, 
e.g.the weighted-sum or the weighted max type of functions. Design specifica­
tions cope with stability, performance and robustness of the system under control. 
The characteristics of the model of the system to assure stability and robustness 
are usually too strict, restricting the type of system for which they can be applied. 
Therefore, this book does not consider these characteristics explicitly in the de­
sign of the developed control systems. However, performance specifications can 
be defined in such a way that stability and robustness are implicitly considered. 
This feature is considered when performance criteria are defined for a controlled 
system. 

Classical performance specifications are usually divided into I/O specifica­
tions, regulation specifications and actuator effort. The I/O specifications are de­
fined by some measures on a transient response. For a step response, for instance, 
overshoot, rise time or settling time can be considered. Regulation specifications 
are defined for disturbances d and d m , in order to diminish their effects on the 
system. Control signals are usually limited by rate or level constraints, which 
must be considered in the control design. 

Performance specifications are defined by performance criteria, in the classi­
cal approach, they are usually built by using different norms or semi-norms of the 
signals of interest. Several norms, such as 1-norm, 2-norm, or oo-norm are used 
to measure the size of different signals in the transient regime. The norms most 



Performance Criteria 193 

widely used for non transient signals are the root-mean-square and the average-
absolute value. The norms of signals can be extended to the norms of systems. 
However, norms of systems are only normally used in the control design if the 
system under control is linear. Note that the design goals given by the perfor­
mance specifications are usually contradictory, and a trade-off between them must 
be made in order to choose the desired performance criteria. 

A different approach is to use fuzzy sets to define the imprecise control design 
goals. Control objectives defined as fuzzy goals and fuzzy constraints can be 
combined in the fuzzy decision making environment. This approach translates 
the objectives and constraints derived from the control design goals of a given 
system in a transparent way. As in the classical approach, the decision goals and 
the constraints are defined on relevant system variables. 

The formulation of the control problem as a confluence of (fuzzy) goals and 
(fuzzy) constraints can be seen as a generalization of the cost function usually 
used in model-based predictive control. Various classical and fuzzy criteria can 
be used in MBPC, as shown in the next chapter. 
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Chapter 9 

Model-Based Control with Fuzzy Decision 
Functions 

Human operators can control complex, nonlinear and partially unknown systems 
across a wide range of operating conditions, while the conventional linear control 
techniques often fail or can only be applied locally. Fuzzy logic control, as defined 
in Sec. 4.2, is one of the most popular techniques for translating human knowledge 
to control, and has been successfully applied to a large number of consumer prod­
ucts and industrial processes (Terano et al. 1994, Yen et al. 1995, Jamshidi et al. 
1997). However, most of these applications of fuzzy control use a descriptive ap­
proach introduced in the seventies by Mamdani (Mamdani 1974). The operator's 
knowledge is verbalized as a collection of If-Then control rules that are directly 
translated into a control algorithm. 

Besides direct fuzzy control, in which the control law is explicitly described 
by If-Then rules, human expertise can be used to define the design specifications. 
These specifications can be translated to performance criteria by using fuzzy sets, 
by defining the (fuzzy) goals and the (fuzzy) constraints for the system under 
control. This procedure is a special approach to fuzzy model-based control, fol­
lowing closely the classical model predictive control design approach, but making 
use of the fuzzy set theory on a higher level than usually made in FLC, where the 
fuzzy rules to control the system are given directly from expert knowledge. When 
fuzzy sets are used to represent the performance criteria, the appropriate control 
actions are obtained by means of a multistage fuzzy decision making algorithm, 
as introduced by Bellman and Zadeh (1970). A mixture of conventional fuzzy 
control with fuzzy representations of design specifications is one the first appli­
cations in fuzzy predictive control: automatic train operation using a linguistic 
description of the system (Yasunobu and Miyamoto 1985). A different approach 
called fuzzy multiobjective optimal control is presented by Jia and Zhang (1993), 
but it is quite complex and difficult to implement in real-time. More recently, 
satisficing decisions have also been used in a similar setting to design controllers 
(Goodrich et al. 1998). A good survey on model-based approach to fuzzy control 
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and decision making is presented by Kacprzyk (1997). However, the last refer­
ence considers only open-loop control applications. In fact, the approach reported 
is generally computationally intensive, which hampers its application in real-time 
control. The generalization of fuzzy predictive control as model predictive con­
trol with fuzzy decision functions, using the fuzzy decision making approach to 
select proper control actions, has been introduced by Sousa and Kaymak (2001). 
This method can be applied to real-time problems with relatively small sampling 
times. This chapter begins by describing the relation of fuzzy decision making to 
model-based predictive control in Sec. 9.1. Fuzzy model-based predictive control 
is explained in Sec. 9.2. Fuzzy goals and fuzzy constraints in a control setting are 
presented, and an approach to solving the optimization problem for fuzzy criteria 
defined in different sets is proposed. Note that FDM applied to control considers 
multistage fuzzy decision making. Section 9.3 presents possible types of fuzzy 
objective functions for predictive control, briefly discussing the operators to ag­
gregate fuzzy criteria. Two illustrative examples are presented in Sec. 9.4, where 
the main features of fuzzy decision functions applied to MBPC are shown. Sec­
tion 9.5 discusses the selection of a decision function from a description of an 
expert's control strategy. Simulation of a gantry container crane is used as an ex­
ample, and the fuzzy set theory is used to translate a human operator's control 
strategy into a mathematical objective function that can be used for optimization. 
This section also illustrates the use of weighted aggregation operators for aggre­
gation in fuzzy decision making. Concluding remarks are given in Sec. 9.6. 

9.1 Fuzzy decision making in predictive control 

Although distinct, it is common to present multistage decision making and FDM 
in control as synonymous. In fact, the control problem is more general, and mul­
tistage decision making can also be applied to other fields. This chapter considers 
multistage decision making applied to control, similar to the approach taken be­
fore by several authors (Bellman and Zadeh 1970, Kacprzyk 1997). The relation 
between a decision making problem and a control problem has been discussed in 
Sec. 4.1. Recall that when multistage decision making is translated to the control 
environment, the set of alternatives constitutes the different control actions and 
the system under control is a relationship between inputs and outputs. The map­
ping relating the inputs to the outputs of the system under control is referred to as 
the model. Moreover, fuzzy constraints are defined for several variables present 
in the system, which can be 'hard' or 'soft' constraints, and the decision criteria 
(fuzzy goals and constraints) are the translation of the control performance criteria 
defined in Chapter 8 to the decision making setting. 
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The systems and models considered for FDM applications follow the defini­
tions presented in Sec. 5.1, Eq. (5.2). However, in the general case, the systems 
can be time-variant, and not only time-invariant as in Eq. (5.2). Moreover, the 
system considered in Eq. (5.2) is a deterministic one, while in general the system 
can be of other types, such as stochastic systems. 

An important issue in FDM applied to control is the termination time, which is 
a generalization of the prediction horizon Hp defined for predictive control in Ap­
pendix A. The termination time is assumed to be fixed and specified beforehand, 
as the prediction horizon in MBPC. However, other types of termination times 
are possible. A short summary of the different termination times, and possible 
solutions found in the literature for these problems is presented in the following. 

• Fixed and determined specification time — a solution of this type of termina­
tion time for deterministic systems using dynamic programming is given in 
(Bellman and Zadeh 1970). Different techniques have been proposed to solve 
this problem, such as, e.g., branch-and-bound(Kacprzyk 1978, Esogbueet al. 
1992), a genetic algorithm (Kacprzyk 1995), or a neural network (Francelin 
and Gomide 1993). For stochastic systems, two different formulations are 
usually employed. In Bellman and Zadeh (1970) the optimal control actions 
are found by maximizing the probability of satisfying fuzzy goals and fuzzy 
constraints. A different approach is presented by Kacprzyk and Staniewsky 
(1980), where the optimal control actions are found by maximizing the ex­
pected value of the fuzzy decision. Finally, for fuzzy systems, solutions using 
dynamic programming (Baldwin and Pilsworth 1982), branch-and-bound, in-
terpolative reasoning and a genetic algorithm (Kacprzyk 1997) are proposed. 

• Implicitly specified termination time - in these systems the process terminates 
when the outputs reach some pre-specified value. An iterative solution for 
deterministic systems is introduced by Bellman and Zadeh (1970). A graph-
theoretic analysis has also been used to tackle the same problem, but a simpler 
solution can be derived by using the branch-and-bound approach (Kacprzyk 
1978). 

• Fuzzy termination time - it is sometimes useful to consider a 'softer' defini­
tion of the termination time, by allowing its formulation as a fuzzy set, as it 
was first proposed by Fung and Fu (1977). For deterministic and stochastic 
systems, solutions using dynamic programming (Stein 1980) or branch-and-
bound are possible. These solutions and an extension of the methods referred 
to for fuzzy systems is presented in Kacprzyk (1997). 

• Infinite termination time - this type of termination time is used for processes 
that vary little over a very long time range. Optimal control is sought for 
this type of processes. The work of Howard (1971) introduces a policy iter-
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ation technique, and solves infinite termination time problems using a finite 
sequence of iterations. A solution for deterministic, stochastic and fuzzy sys­
tems can be found in Kacprzyk et al. (1981). 

Note that all the solutions proposed are obtained for open-loop control, which 
hampers the application of the proposed solutions so far for low and medium 
levels of control in real-time. Kacprzyk (1997) states the following. 

"We consider (...) open-loop control. Unfortunately, not much is known 
about closed-loop (feedback) control in a fuzzy environment in the optimal 
control-type Bellman andZadeh (1970) setting (...)•" 

This book addresses this issue, and it studies multistage decision making (control) 
in a fuzzy environment by considering any type of model in closed-loop control. 
It assumes that the termination time is fixed and is specified beforehand. As the 
formulation is done in an MBPC environment, this termination time is the predic­
tion horizon, which is shifted when time evolves. This condition is necessary to 
allow the application of multistage FDM to MBPC in real-time. 

Some applications of fuzzy decision making to close-loop control can be 
found in the literature. This approach was first developed by Yasunobu and 
Miyamoto (1985). They included fuzzy control criteria such as safety, comfort, 
energy consumption and stopping accuracy in a linguistic fuzzy model derived 
from expert knowledge, and implemented it in a predictive control scheme. This 
control system has the disadvantages related to using linguistic models derived 
from expert rules, i.e., it requires the trial-and-error tuning of the rules. How­
ever, the predictive fuzzy controller has been used on the Sendai city subway in 
Japan, and has shown better performance than the previously used controllers. Jia 
and Zhang (1993) presented a different approach for MIMO systems, but their 
approach is quite complex and computationally demanding, hampering its appli­
cation in real-time. Others papers presented by the same and other authors (Chang 
et al. 1996) confirm these disadvantages. To our best knowledge, and excluding 
the references where the authors of this book are included, no other applications 
have been reported. 

Only deterministic systems are considered in this book. In fact, most of the 
physical systems are still modeled using deterministic, time-invariant reasoning. 
Moreover, nonlinear systems are modeled by using nonlinear modeling tech­
niques. In this book, fuzzy modeling is used to derive nonlinear models, see 
Sec. 5.2. However, other-modeling techniques, such as standard nonlinear regres­
sion (Seber and Wild 1989) or neural networks (Hunt et al. 1992), can also be 
used to derive a model of the system. Fuzzy decision making applied in closed-
loop control systems can be extended for time-variant, stochastic and/or fuzzy 
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systems. The application of FDM in control to fuzzy systems is usually quite 
difficult, because the fuzziness tends to increase for a multistage FDM problem. 
An interesting fuzzy system using fuzzy arithmetic based interpolative reasoning 
(FAIR) is presented by Setnes, van Nauta Lemke and Kaymak (1998). For these 
systems, linguistic fuzzy rules of the Mamdani type with fuzzy numbers as conse­
quents are used in an inference mechanism similar to the Takagi-Sugeno model. 
Further, both fuzzy and crisp inputs and outputs can be used, and chaining of 
rule bases is supported without increasing the fuzziness at each step. This type of 
fuzzy systems can model uncertain processes, for which no present-day modeling 
paradigm can be used, allowing the generalization of FDM in control for fuzzy 
systems. 

9.2 Fuzzy model-based predictive control 

Despite the one-to-one relation between the decision problems and the control 
problems, the way a control problem is formulated is often different from the way 
a decision problem is formulated. In decision problems, the alternatives are often 
evaluated explicitly in terms of the criteria, and the information is aggregated us­
ing relatively complicated aggregation operations that are suitable for the nature 
of the decision problem. When human beings are involved, the decision process 
may take several iterations, where additional information is asked in each itera­
tion, refining the problem and its solution further and further. In control systems, 
however, the available time for computations is limited and often not sufficient 
for complicated calculations. Therefore, the control systems are designed as a 
static mapping, which maps its inputs directly to its outputs, often with simple 
computations in between. Much of control engineering is concerned with the 
specification and the determination of mappings that lead to control results which 
satisfy die control goals. The optimization which leads to the design of an (op­
timal) controller then occurs off-line. With the advent of modern computer tech­
nology, however, more complex algorithms and more complicated computations 
have come within the reach of control systems. Consequently, control algorithms 
that use the additional available computation power have been proposed. One of 
these methods is the model-based predictive control approach, where a mathemat­
ical model of the controlled system is used to predict the future response of the 
system, and then optimize the control actions accordingly. The optimization can 
be achieved with a decision making approach, and hence the relation to decision 
making is apparent in model-based predictive control. In this section, fuzzy deci­
sion making is combined with a model-based predictive control scheme to obtain 
a fuzzy model-based predictive controller. 
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In the following, Sec. 9.2.1 presents the definition of fuzzy goals and con­
straints in the control environment. The aggregation of the different criteria for 
control applications is presented in Sec. 9.2.2, where the set of possible alterna­
tives is discretized in order to find the optimal control actions. The application of 
FDM to predictive control is presented in Sec. 9.2.3. 

9.2.1 Fuzzy goals and constraints in the control environment 

The fuzzy goals G and the fuzzy constraints C can be defined for the control, out­
put or state spaces, or in any other convenient space. Note that usually fuzzy con­
straints are defined in the control space, and fuzzy goals in state space (Bellman 
and Zadeh 1970, Kacprzyk 1997). The approach is initially applied to systems 
with discrete states and a finite number of possible transitions between the states, 
and has subsequently been extended to systems with continuous states (Gluss 
1973). The application of fuzzy decision making in control allows for the gen­
eralization of goals and constraints to different spaces. The confluence of fuzzy 
goals and fuzzy constraints in multistage decision making is similar to the one 
presented in Sec. 2.3 for fuzzy goals and constraints in different spaces. 

A fuzzy set in the appropriate space characterizes both the fuzzy goals and 
the fuzzy constraints. The goals and constraints are defined on relevant system 
variables. For example, a common control goal is the minimization of the output 
errors. The satisfaction of this goal is represented by a membership function, 
which is defined on the space (universe of discourse) of the output errors. An 
example is the fuzzy goal 'small output error', defined for a SISO system and 
shown in Fig. 9.1a. Fuzzy constraints can be defined on the universe of discourse 
of the control variables u. An example in a SISO system is the 'soft' constraint 'w 
should not be substantially larger than 0.8', whose degree of satisfaction can be 
represented by a membership function as shown in Fig. 9. lb. Note that the 'hard' 
constraints 0 < u < 1 are also included in the given membership function. 

In control problems, the constraints are usually defined on U, the universe of 
discourse for the control actions, whereas the goals are usually defined on X, the 
universe of discourse for the system states. The constraints are often related to 
physical quantities that cannot be violated, while the goals are often related to 
targeted or desired values of quantities. As such, it may be more advantageous to 
treat the goals and the constraints differently, contrary to the symmetric approach 
of Bellman and Zadeh (1970), discussed in Chapter 2. The qualitative distinction 
between goals and constraints can be captured in two ways. 

(1) The definition of membership functions. 
(2) The aggregation method. 
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A fuzzy goal can be defined in such a way that the membership grade is never 
zero, unless this is strictly necessary (which would imply that it is a 'hard' con­
straint). Therefore, the example in Fig. 9.1a uses a membership function of the 
exponential type, which never becomes zero even if the error is quite large. On 
the other hand, fuzzy constraints must include the 'hard' constraints, if they are 
present in the system. For instance, the constraint in Fig. 9.1b does not allow that 
the control action is outside the range [0,1], which can be a very useful concept 
for many real systems. Suppose that the variable u in Fig. 9.1b is a valve open­
ing, where 1 stands for completely open and 0 for completely closed. Hence, the 
definition of the fuzzy constraint, as is given in Fig. 9.1b, takes these physical 
limitations into account. In this case, the support of a. fuzzy constraint represents 
the 'hard' constraints present in the system. A. fuzzy goal should be defined so 
that the membership function can be very low, but never becomes zero, indicating 
the allowable but not desirable states of the system. This procedure distinguishes 
goals and constraints in the form of the defined membership functions, but clearly 
does not affect the confluence of criteria. 

l 

membership grade 

0.8 1 
Control action 

(a) Goal: 'small output error'. (b) Constraint: 'u not substantially larger than 
0.8'. 

Fig. 9.1 Example of a fuzzy goal and a fuzzy constraint for FDM in control. Reproduced from (Sousa 
and Kaymak 2001), ©2001 IEEE. 

The asymmetry between the goals and the constraints can also manifest itself 
in the operators selected for the confluence of the two types of criteria. 

Assuming that one considers ng goals G\,... ,GUg and nc constraints C\, 
..., Cnc, each fuzzy goal G and each fuzzy constraint C constitute a decision 
criterion (e, £ = 1 , . . . , m, where m = ng + nc is the total number of goals and 
constraints. Each criterion is defined in the space $^, I — 1 , . . . , m, which can be 

Output error 
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any of the various domains used in control. 
The confluence of goals and constraints could be obtained by using the hi­

erarchical aggregation scheme from Sec. 3.4. In order to solve the optimization 
problem in reasonably low time, it is defined in a discrete control space with a 
finite number of control alternatives. This limitation to digital control is however 
not too severe, and this methodology can still be applied to a large number of con­
trol problems. Therefore, the confluence of goals and constraints is defined for 
discrete alternatives, in the following. The resulting optimization problem is also 
addressed. 

9.2.2 Aggregation of criteria in the control environment 

Assume that a policy -K is defined as a sequence of control actions for the entire 
prediction horizon Hp in MBPC, 

n = u(T),...,n(T + Hp-l)eil, (9.1) 

where the control actions belong to the set of alternatives Cl. In the general case, 
all the criteria must be applied at each time step j , with j = 1,...,HP. Thus 
a criterion (j( denotes that the criterion t is considered at time step T + j , with 
£ = 1 , . . . , m and j = 1 , . . . , Hp. Further, let ^H denote the membership value 
that represents the satisfaction of the decision criterion after applying the control 
actions U(T + j). The total number of decision criteria in the problem is thus 
given by M = m x Hp. The confluence of goals and constraints can be done 
by aggregating the membership values Hc,t. The membership value ji^ for the 
control sequence TV is obtained by using the aggregation operators ©, 0 and 0 C 

to combine the decision criteria, 

/** = (^ii®3---©aMCin9)©(MCi(„9 + 1)®c---©c/ iCin,)© 

(MC21 ®fl • • • ®fl MC2„3 ) ©(^C2(„ s + l ) ® C • • • ©C ^2m ) © 

(MCHPI ®fl • • • © P MCHP„9 ) ®(M<Hp(„g+1) ®c---®c MCHP J • (9.2) 

In Eq. (9.2), 0 denotes an aggregation operator for combining the goals, 0 c 

denotes an aggregation operator for combining the constraints, and 0 denotes an 
aggregation operator to combine the aggregated goals and constraints. In general, 
it is not necessary to use the same aggregation operator for all goals and for all 
constraints. However, using a single aggregation operator reduces complexity, 
making the confluence of criteria simpler. 

Note that the aggregation operator to combine a goal and a constraint between 
time steps, i.e., the last 0 in each row, is the same as the aggregation operator 
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to combine goals and constraints within a time step, i.e., the (*) operator in the 
middle of the rows. For the purpose of this book, the aggregation as in Eq. (9.2) 
is sufficiently general. However, some systems can demand different aggregation 
operators for combining goals and constraints at different time steps, or even be­
tween goals or between constraints at the same time step. For these cases, general 
aggregation operators (*),,£ = 1 , . . . , M - 1 can be used for each aggregation. 
This possibility is, however, not practical, because the degree of complexity be­
comes too high, and the effects of each different aggregation operator would be 
hardly predictable. Various types of aggregation operations can be used as deci­
sion functions for expressing different decision strategies by using the well-known 
properties of these operators (see Chapter 3). In fact, aggregation operators and 
membership functions translate a linguistic description of the control goals into a 
decision function. In this way, various forms of aggregation can be chosen, giving 
greater flexibility for expressing the control goals. A discussion on the influence 
of aggregation operators in FDM applied to control is given in Sec. 9.3.1. 

In the following, the combination of criteria in different domains is done for 
a set of discrete alternatives, which corresponds to different policies n that can be 
applied to find the optimal control policy. The decision criteria in Eq. (9.2) should 
be satisfied as much as possible, which corresponds to the maximal value of the 
overall decision. Thus, the optimal sequence of control actions TT * is found by the 
maximization of fin 

TT* = arg max fin. (9.3) 
U ( T ) , . . . , U ( T + H P - I ) 

Because the membership functions for the fuzzy criteria can have an arbitrary 
shape, and because of the nonlinearity of the decision function, the optimization 
problem of Eq. (9.3) is usually non-convex. To deal with the increasing complex­
ity of the optimization problem, different methods can be utilized. One possibility 
is to consider only a few criteria in Eq. (9.2), removing the ones not considered 
from the equation. This approach, however, can result in sub-optimal control ac­
tions. A better method is to choose a proper optimization algorithm, or to formu­
late the problem in a way that leads to convex optimization. One set of conditions 
that leads to a convex optimization problem is discussed in Sec. 11.1. Elsewhere, 
several methods to deal with non-convex optimization problems have been used, 
such as sequential quadratic programming (Gill et al. 1981), the simplex method 
(Nelder and Mead 1965), genetic algorithms (Onnen et al. 1997) or branch-and-
bound (Sousa et al. 1997, Sousa 2000). Problems concerning optimization are 
discussed in Chapter 10 and Chapter 11. 
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9.2.3 Fuzzy criteria in model-based predictive control 

The definition of fuzzy goals and constraints must be given by a design engineer. 
Therefore, when FDM in control is considered, human knowledge is involved in 
specifying the control objectives and constraints, rather than the control protocol 
itself (Goodrich et al. 1999). Using a process model, a fuzzy decision making 
algorithm selects the control actions that best meet the specifications (see Fig. 9.2). 
Hence, a control strategy can be obtained that is able to push the process closer 
to the constraints, and that is able to force the process to a better performance 
based on the goals and the constraints set by the system operator together with the 
known conditions provided by the system's designers. 

Controller 

Model 

ti 
L'linMr.nnN 

I 
Decision making 

algorithm 

, / 
; " V 

u 

Human \ 

Process y. 

Fig. 9.2 Controller based on objective evaluation and fuzzy decision making. Reproduced from 
(Sousa and Kaymak 2001), ©2001 IEEE. 

This approach is closely related to model-based predictive control, presented 
in Appendix A. The formulation of the control problem as a confluence of fuzzy 
goals and fuzzy constraints leads to a generalization of the objective function used 
in MBPC (Sousa and Kaymak 2001). 

For practical reasons, it is desirable to have direct control over the influence of 
the individual components of the objective function on the controller performance. 
Thus, it is advantageous that the degree of compensation among the different 
goals and constraints can be specified by the designer. This additional freedom 
can be achieved by choosing a different representation of the objective function, 
given by the combination of fuzzy goals and fuzzy constraints, as in the FDM 
approach. In the MBPC environment, a policy n with the possible control actions 
U(T), . . . , u ( r + Hp — 1) can be defined as in Eq. (9.1). The objective function 
using fuzzy criteria is defined in Eq. (9.2). The closed-loop control configura­
tion is now discussed in more detail, in aspects concerning the criteria and the 
aggregation operator(s) that are used to combine them. 



Model-Based Control with Fuzzy Decision Functions 205 

9.3 Fuzzy criteria for decision making in control 

Fuzzy criteria play a main role in fuzzy decision making. When FDM is applied 
to control, the fuzzy goals and the fuzzy constraints must be a translation of the 
(fuzzy) performance criteria defined for the system. The definition of performance 
criteria in the time domain has shown to be quite powerful, especially for nonlin­
ear systems (Slotine and Li 1991) and in the model predictive control framework 
(Camacho and Bordons 1995). This section investigates the use of fuzzy perfor­
mance criteria in predictive control and compares the results to those obtained 
from conventional model predictive control. First, the aspects concerning the ag­
gregation operator(s) combining the criteria are presented in Sec. 9.3.1. Next, 
control criteria and decision functions are discussed in Sec. 9.3.2, where classical 
objective functions and a proposed fuzzy objective function are presented. The 
proposed approach is demonstrated on two simulated systems: 

• a non-minimum phase, unstable linear plant, and 
• an air-conditioning system with nonlinear dynamics, 

presented in Sec. 9.4. 

9.3.1 Aggregation operators for FDM in control 

This section presents a discussion on the possible use of different aggregation 
operators in fuzzy decision making, and the advantages and the disadvantages of 
their use in predictive control. 

In general, the choice of the operator is application dependent. The first opera­
tor proposed to aggregate goals and constraints is the minimum operator (Bellman 
and Zadeh 1970). In this approach, the operators @, @ g and ® c are all substi­
tuted by the minimum operator in Eq. (9.2), leading to 

Mvr = min (/zCll, ^ C l 2 , . . . , p(Hpm J . (9.4) 

Although this operator is still largely used in FDM, it does not allow for any 
tradeoff or compensation between the criteria (Fung and Fu 1977), because it 
always chooses the smallest of the aggregated M values as the decision. For this 
reason, this operator is usually known as a safety-first or pessimistic operator. 
This disadvantage can be overcome by the use of another i-norm, which should 
still translate the aggregation as a simultaneous satisfaction of the fuzzy criteria, 
but allow for some interaction amongst the criteria. The most used aggregation 
operator after the minimum operator is possibly the product i-norm, 

MTT = MCn ' ^ 1 2 • • • • • MCHP 
(9.5) 
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This operator allows some interaction between the criteria, but keeps the charac­
teristics of t-norms (i. e., any low degree of membership for one criteria ( ji implies 
that the degree of membership fiw is also low). When the number of criteria in­
creases, [in tends to decrease. This fact is quite realistic because the larger the 
number of goals and constraints, the more difficult it is to satisfy them all. A 
similar conclusion can also be drawn for many other t-norms, because by defi­
nition they are always smaller than or equal to the min operator. The presented 
aggregation operators assume that the importance of different criteria is equal. 

The attribution of different weights for different criteria can be made by using 
the weighted-sum in a similar way as it is usually done for classical criteria in pre­
dictive control, as will be presented in Eq. (9.9). Another possibility is to use the 
approach presented by Yager (1992), where each criterion has a different weight 
Wjt £ [0,1], reflecting a different importance in the global criterion Eq. (9.2). 
Other weighted aggregation methods discussed in Chapter 3 can also be used. 

A different approach can be followed by using parametric i-norms, which can 
generalize a large number of i-norms, and control the degree of compensation 
between the different goals and constraints. Usually, parametric i-norms depend 
only on one parameter, which makes them much easier to tune compared to the 
tuning of weight factors in weighted i-norms. However, they are not as general as 
the weighted approaches. For the examples presented in this section, parametric 
t-norms revealed good control performances. Several parametric i-norms can be 
considered, such as the ones introduced by Hamacher (1978) (see Eq. (3.7)) , 
Yager (1980) (see Eq. (3.6)) and Weber (1983). In the notation of this chapter, for 
instance, the Yager t-norm is given by 

/x„ = max M" E D 1 " ^ ) 1 |. 7>0. (9.6) 

Equation (9.6) corresponds to a multioperand formulation of the Yager t-norm. 
This operator covers the entire range of i-norms, i.e., it goes from the drastic 
intersection to the minimum operator. 

The fuzzy decisions discussed so far are made under the assumption that 'G 
must be accomplished and C must be satisfied.' However, sometimes it is more 
appropriate to formulate the FDM problem as follows: 

G must be accomplished or C must be satisfied. (9.7) 

This type of situation is found when an agreement between different opinions must 
be achieved. In these cases, the fuzzy decision is given by the union of the fuzzy 
sets, generally described by an s-norm (i-conorm). When the maximum operator 
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is used, no interaction between criteria is allowed, similarly to the minimum oper­
ator for the aggregation of criteria. In fact, an alternative is selected based only on 
the best criteria, regardless that all the others are poorly fulfilled. This feature is 
sometimes referred to as full compensation, as discussed in Chapter 3. In general, 
the t-conorms are not suitable for most control purposes, as they consider only 
the best satisfied criteria. Hence, they are not used further in this book for control 
purposes. 

There is a large range of fuzzy operators between the t-norms and s-norms 
that can sometimes be suitable for the confluence of fuzzy criteria for control ap­
plications. Examples are the compensatory aggregation operator introduced by 
Zimmermann and Zysno (1980) (see Eq. (3.41)), or the generalized mean (Kay-
mak and van Nauta Lemke 1993). In the notation of this chapter, this last operator 
is given by 

As discussed before, Eq. (9.8) reduces to the harmonic, geometric, arithmetic and 
quadratic mean when the parameter is 7 = —1, 7 —> 0, 7 = 1 and 7 = 2, 
respectively. Moreover, when 7 -> —00 the generalized mean approaches the 
minimum operator, and when 7 -¥ +00 it approaches the maximum operator. 

When a large number of criteria is present and some tradeoff between the 
different criteria is allowed, Eq. (9.8) can have some advantages over aggregation 
operators described by i-norms. It should be emphasized, however, that the use of 
this operator may lead to the violation of 'hard' constraints, when they are defined 
as in Sec. 9.2.1. Therefore, when this operator is used, the optimal alternative 
found should be checked afterwards in order to assure that no hard constraints are 
violated. However, this procedure can cost precious optimization time. A solution 
is to use the generalized mean only for the general confluence operator 0 and a t-
norm for the remaining 0 and 0 C . This choice ensures that the 'hard' constraints 
are not violated, but it can hamper the advantages of using the generalized mean. 

Some general rules to choose the appropriate aggregation operators are pre­
sented in Yager and Filev (1994), Dubois and Prade (1980), and in Zimmermann 
(1996). Following Zimmermann (1996), the general guidelines deal with ax­
iomatic strength, adaptability, numerical efficiency, degree of compensation, ag­
gregating behavior and required scale level of membership functions. This book 
uses parameterized operators, and their choice is strongly recommended because 
they allow for different degrees of compensation between criteria. Moreover, the 
change of a single parameter results in the use of different operators, simplify­
ing the tuning phase, always present in predictive control. Section 9.4.2 presents 
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a simple, though illustrative example, showing the application of three different 
aggregation operators. 

9.3.2 Control criteria and decision functions 

When a control system is designed, performance criteria must be specified. In 
the time domain, these criteria are usually defined in terms of a desired steady-
state error between the reference and the output, rise time, overshoot, settling 
time, and so on (see Sec. 8.3), representing the goals of the control system. In 
MBPC, these goals must be translated into an objective function. This function is 
maximized (or minimized) over the prediction horizon, given the desired control 
actions. The translation of the (fuzzy) goals into an objective function can be done 
in two different ways. 

• The control goals are explicitly expressed in the objective function. This 
method usually leads to long term predictions of the behavior of the system, 
using a large prediction horizon Hp. From these predictions, quantities such 
as the overshoot or the rise time can be determined. In order to have accurate 
predictions, this method requires a highly accurate process model, which may 
not be available, and a lot of computation. 

• Only short-term predictions (a few steps ahead) are used in the objective func­
tion. This method is usually applied in predictive control when the available 
model of the system is not very accurate, and cannot predict outputs for a 
large number of steps ahead. Despite this inaccuracy of the model, it still can 
lead to high performance control, provided that the overall control goals can 
be translated into the short-term goals, which are then represented in the ob­
jective function. This translation is, however, not unique, and it is application 
dependent. Therefore, tuning of some parameters in the objective function 
is usually required. This method is especially suitable for nonlinear systems, 
where a compromise between computational time to derive the control ac­
tions and accuracy of the predictions must be made, except for special cases, 
as when input-output feedback linearization is utilized (Henson and Seborg 
1990). When using fuzzy criteria, the task of defining the goals becomes eas­
ier, as will be shown in this section. 

9.3.2.1 Classical objective functions 

Conventional MBPC mainly utilizes sum-quadratic functions, given by Eq. (A.2), 
as the objective function (Soeterboek 1992, Clarke and Mohtadi 1989). The main 
motivation for its use is that such an objective function has an analytical solution 
for linear systems without constraints. In the presence of crisp and convex con-
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straints, the optimization problem remains convex for linear systems, and can still 
be solved in polynomial time. However, the presence of non-convex constraints 
and/or the presence of non-linearities in the system often leads to non-convex op­
timization problems. In these cases, the sum-quadratic objective function does not 
have any advantages over other more complex objective functions that can pos­
sibly better describe the (fuzzy) performance criteria for a broad class of control 
problems. 

Let the overall control goals for the time domain be stated as achieving a fast 
system response while reducing the overshoot and the control effort. These goals 
are represented in the objective function Eq. (A.2). An extension of this objective 
function is used in this section by including the changes in the outputs, resulting 
in the following objective function for SISO systems, 

Jc= £ wij(e(T + J)f+ £ w2 j(Au(r + i - l ) ) 2 + 
j=nn j=ri2i 

n3u 

J2 w3j (Ay(r + j))2, (9.9) 
j=n3i 

where e(r + j) denotes the predicted errors given by the difference between the 
reference r and the output of the system y,i.e., 

e(T + j)=r(r+j)-y{T+j). (9.10) 

The change of the predicted output Ay is defined as 

Ay(T + j) = y(r + j) - y(r + j - 1), (9.11) 

and is equal to the change in the errors Ae(r + j), when the reference to be 
followed is constant. The change in the control actions is defined in a similar way 
as 

Au(r+j) =U(T + J) -U(T + J - 1). (9.12) 

The parameters wij, w2j and w3j are weighting terms that are application depen­
dent. The parameters riu, n\u, n2i, n2u, n^i and nsu must be selected appropri­
ately depending on the application, and they must satisfy 1 < n u < niu < Hp, 
i G {1,2,3}. Usually, Tin, ri2i, and nzi are chosen equal to 1, n\u and n,3U equal 
to Hp, and n2u equal to Hc. Note that the weighting terms w-^j, w2j and w^j must 
account for the difference of magnitude between the different inputs and/or out­
puts of the system at various time instants. If this is not the case, and the weights 
are chosen all equal, for instance, the optimization automatically weighs different 
variables, which is not desirable, and it leads to poor control performance. 
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The objective function of Eq. (9.9) can be interpreted as follows. The term 
containing the predicted errors indicates that these should be minimized, while 
the term containing the change in the control actions indicates that the control 
effort should be reduced. Finally, the term containing the change in the outputs 
indicates that the system's output should not suffer sudden changes, and thus it 
helps to improve the smoothness of the response. For step references, the change 
of the output is also equal to the change in the respective output errors, except for 
the discontinuities in the reference signal. Hence, minimizing the output errors 
and the change of output errors can be regarded as forcing the system to the origin 
(steady-state solution) in the e x Ae phase space. The parameters containing the 
weights, wij, W2j and W3 j can be changed so that the objective function is mod­
ified in order to lead to a desired system response. Notice that these parameters 
have two functions: they normalize the different outputs and inputs of the system, 
and they vary the importance of the three different terms in the objective function 
of Eq. (9.9) over the time steps. 

9.3.2.2 Fuzzy objective functions 

When fuzzy multicriteria decision making is applied to determine the objective 
function, additional flexibility is introduced. Each criterion £jt is described by a 
fuzzy set, where j = 1,...,HP, stands for the time step r + j , and I = 1 , . . . , m 
are the different criteria defined for the considered variables at the same time step. 
Fuzzy criteria can be described in different ways. The most straightforward and 
easy way is just to adapt the criteria defined for classical objective functions. A 
SISO system with a control action u(r) and an output y(r) is considered. Fig­
ure 9.3 shows examples of general membership functions that can be used for 
the error e(r + j) = r(r + j) — y{r + j), for the change in the predicted out­
put Ay(r + j), and for the change in the control action AU(T + j — 1), with 
i = \,...,Hp. 
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Fig. 9.3 Membership functions that represent the satisfaction of decision criteria for the error, change 
in output and change in the control action. Reproduced from (Sousa and Kaymak 2001),©2001 IEEE. 
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In this example, the minimization of the output error fj,e{e(T + j)) is repre­
sented by an exponential membership function, given by 

ve = { ) , * ; , , , < / N (9.13) 

This well-known function has the nice property of being tangent to the triangular 
membership function denned using the parameters K~ and .KT+, see Fig. 9.3. 
Another interesting feature of this exponential membership function is that it never 
reaches the value zero, and the membership value is still quite considerable, 0.37, 
for an error of K ~ or K+ magnitude. Therefore, this criterion is considered to be 
a fuzzy goal, as explained in Sec. 9.2.1. This definition of membership function 
allows for the comparison of the error parameters, K~ and Kf, to the parameters 
defined for other fuzzy criteria such as the change in output and the change in 
control actions. 

The change in the output can be represented, for example, by a trapezoidal 
membership function fiy(Ay(T + j)), as shown in Fig. 9.3. The system can vary 
with no limitations in the interval [S~,S*]. Outside this interval, physical limi­
tations can be defined such that the change in the output cannot go below K~ or 
above K+ . This fuzzy constraint can be seen as a fuzzy goal if no physical lim­
itations are present in the system, and it is not compulsory that the membership 
value is zero outside a given interval. Note that if this is the case, K~ and K+ 
can play the same role as K~ and K+ in the membership function defined for the 
error in Eq. (9.13). Thus, outside the interval [Sy , S+] exponential membership 
functions such as the one defined for the error e(r + j) can also be used. 

The control effort fiu(Au(r + j — 1)) is, in this case, represented by a triangu­
lar membership function around zero, which is considered a fuzzy constraint. The 
crisp rate constraints on Aw representing the maximum and the minimum allowed 
in the system are given by H~ and iJ+, respectively. These constraints are re­
lated to physical limitations of the system. The membership degree should be zero 
outside the interval [H~, H+]. The parameters defining the range of the triangu­
lar membership function are K~ and K+. Note that the membership function 
HU(AU(T + j — 1)) does not have to be symmetrical. Sometimes it is convenient 
to make K~ = H~ and K+ — H+, but other systems may require bigger mem­
bership values for the points in the interval [H~, H+], as in Fig. 9.3. Further, \iu 

can be defined as a trapezoidal membership function in a similar way to the one 
defined for the change in output. 

In principle, different criteria can be defined at each time instant r + j , j = 
1 , . . . , Hp. This example has m = 3 decision criteria (for e, Au and Ay), and the 
total number of criteria in a fuzzy MBPC problem is thus given by 3 • Hp. 
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Beyond the possibility of defining different criteria for different time steps, it 
is possible to skip some criteria at certain steps. An example of different criteria at 
different time steps can be the spread of the membership function defined for the 
error, which can be narrowed as the time approaches Hp, i.e., it is more important 
to achieve the goal of small error close to the prediction horizon. This corresponds 
to a decreasing value of Ke in Fig. 9.3. Sometimes it is also advantageous to 
consider some criteria just at a particular time step. One example is the variation of 
the control action, which can be quite small for steady-states, but it should change 
quite significantly for different situations, as, e.g., when a step response must 
be followed. The designer should thus carefully choose the criteria at each time 
step, regarding the desired performance criteria of the system under control. In 
general, all the parameters of the different membership functions are application 
dependent. However, it is possible to derive some tuning guidelines, as will be 
described in Sec. 9.4. 

The membership values /Z£.t quantify how much the system satisfies the crite­
ria given a particular control sequence, bringing various quantities into an unified 
domain. The use of the membership functions introduces additional flexibility 
for expressing the control goals, and it leads to increased transparency as it be­
comes possible to specify explicitly what type of system response is desired. For 
instance, it becomes easier to penalize errors that are larger than a specified thresh­
old more severely. Note that there is no need to scale several parameters, such as 
w\j, W2j and w^j in Eq. (9.9), when fuzzy objective functions are used, because 
the use of membership functions introduce directly the normalization required. 
This feature reduces the effort of designing a model-based predictive controller 
with fuzzy objective functions compared to the use of classical objective func­
tions. 

After the membership functions have been defined, they are combined by us­
ing a decision function, such as a parametric aggregation operator from the fuzzy 
sets theory (see Sec. 9.3.1). Usually, the additional parameter of the decision 
function influences the optimization results in a way that cannot be expressed by 
weight factors. In this way, the objective function can be tuned with a single 
parameter. 

9.4 Application examples 

This section presents two simulation examples showing the influence of the con­
ventional and the fuzzy objective functions in predictive control. After the de­
scription of the systems, the choice of aggregation operators is discussed for one 
of the systems. Next, classical and fuzzy objective functions are applied to the 
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systems, and a discussion about the results obtained is given. 

9.4.1 Description of the simulated systems 

The influence of conventional and fuzzy objective functions in predictive control 
has been studied by using two different systems. 

(1) A simulated non-minimum phase, open-loop unstable linear system. 
(2) A simplified nonlinear model of an air-conditioning system, which is derived 

from real data of a test cell by using fuzzy modeling techniques. 

The following sections describe these systems in more detail. In order to concen­
trate on differences between the two control schemes, model-plant mismatch and 
the implementational aspects are not considered in this chapter. However, these 
aspects are considered for the real-time implementation of the air conditioning 
system presented in Chapter 12. 

9.4.1.1 Linear system 

A linear system has been selected for the first set of experiments in order to be 
able to compare the control results when classical and fuzzy criteria are applied. 
The selected system is described by the transfer function 

G ^ = 3 ̂ V o , 1 ^ o - (9-14) 
s* + sl + s + 2 

This is a non-minimum phase system and it has two complex poles in the right-
half plane (unstable in open-loop). The poles and zero placement are given in 
Fig. 9.4. The system, preceded by a zero-order-hold circuit, has been discretized 
with a sample time of 1 s. 

9.4.1.2 Air conditioning system 

A Heating, Ventilating and Air Conditioning (HVAC) system consists of a num­
ber of heat exchangers, pipes or dampers, which supply hot water, steam or chilled 
water to a heating or cooling unit responsible for the conditioning of a space. Fig­
ure 9.5a shows the HVAC system that is used in this study. Hot water at 65 °C 
is supplied to a coil which exchanges the heat between the hot water and the sur­
rounding air. A valve controls the amount of hot water that flows through the coil. 
A fan is responsible for the ventilation and it supplies the hot air coming from the 
coil to the test-cell (room). The global control goal is to keep the room at a refer­
ence temperature while assuring sufficient ventilation. The fan can be set to three 
different velocities: low, medium, and high. A return damper controls the amount 
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Fig. 9.4 Position of the poles and zeros of the linear system given by Eq. (9.14). Reproduced from 
(Sousa and Kaymak 2001), ©2001 IEEE. 

of recycled air from the room, while an outside damper controls the amount of 
fresh air coming from outdoors. The supply temperature T s , which is measured 
after the coil, is controlled with the heating valve. A SISO model of the system 
is determined from input-output measurements made with a sampling period of 
30 s. The temperature can be described as a nonlinear, first-order dynamic system 
T S ( T + 1) = / ( T S ( T ) , W ( T ) ) , where U(T) e [0.4,1] is the valve opening and 
T s(r) £ [30,60] is the temperature in °C at time instant r. A Mamdani fuzzy 
model with singleton consequents is obtained using the identification method de­
scribed in Chapter 5. Figure 9.6 shows the triangular membership functions that 
are determined for the temperature T s ( r ) and the valve opening U(T). Note that 
the universe of discourse for the valve opening is the interval [0.4,1] because the 
valve shows a dead-zone behavior between 0 and 0.4, when the system is consid­
ered to be a SISO system. The fuzzy rule base that describes the model is given in 
Table 9.1. An example of a rule for this singleton model, as, e.g., the first rule, is 
'If U(T) is Small and T s ( r ) is Low then f S(T + 1) = 30.3'. Figure 9.5b depicts 
the piece-wise linear mapping that is described by the fuzzy model. The fuzzy 
model is used to simulate the system and develop predictive controllers. 

9.4.2 Application of aggregation operators to the linear system 

In this section, several issues, such as interaction amongst criteria, the influence 
of the types of decision functions and their parameters, are studied using the sim­
ulated linear system given in Eq. (9.14). The membership functions for the fuzzy 
goals and the constraints are assumed to be given. Remember that this system 

1 

0.5 

0.5 

-1 
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(a) Air conditioning system. (b) Piecewise linear model of the air conditioning system. 

Fig. 9.5 Air conditioning system: schematic representation and derived model. Reproduced from 
(Sousa and Kaymak 2001), ©2001 IEEE. 

Table 9.1 Rule base for the fuzzy model of the HVAC process. 
Reproduced from (Sousa and Kaymak 2001), ©2001 IEEE. 

Valve Opening 

Small 
Medium small 
Medium high 
High 

Low 

30.3 
30.0 
32.8 
35.5 

Temperature 
Medium 

43.9 
43.8 
47.4 
47.3 

Medium high 

52.6 
54.2 
55.6 
55.1 

High 

56.4 
57.6 
59.7 
60.3 

is non-minimum phase and has two complex poles in the right-half plane (unsta­
ble in open loop). Only the minimization of the predicted output error is used as 
an optimization criterion in order to keep the optimization problem transparent 
and to clearly understand the influence of the decision function on the solution. 
The optimization criterion is represented by a symmetric exponential membership 
function which is defined around zero output error as 

/ \e(r + j)\\ 
Me=exp(^ — ) , 

with e ( r + j ) = r(r+ j) — y{r +j), where r is the reference and y is the predicted 
model output. This function is a particular case of Eq. (9.13) for K + = — K~ = 
30. A crisp constraint | Au| = 0.5 is imposed on the rate of the control action, and 
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(a) Membership functions foru(r). (b) Membership functions for Ts ( r ) . 

Fig. 9.6 Membership functions for the antecedent variables of the fuzzy HVAC model. Reproduced 
from (Sousa and Kaymak 2001), ©2001 IEEE. 

it is represented by a membership function that is denned on Aw. 
Step responses of the system have been studied. The controller is implemented 

in the incremental form and the optimization is performed in the discretized Au 
space. This control space is divided into 11 discrete levels and an enumerative 
search scheme has been used to determine the best control action. The control 
horizon Hc is chosen as small as possible to keep the search space small. A 
value of 2 is found to be satisfactory. Similarly, the prediction horizon Hp is kept 
relatively small to a value of 6. The response of the controller is studied for three 
different aggregation operators, namely the minimum operator in Eq. (9.15), the 
generalized mean in Eq. (9.16), and the Yager i-norm in Eq. (9.17). 

fin = . min (Mi(e(r+j))) 
J = l Hp 

1/7 

* = <^5>,-(e(r + j ) r | .7G 
j = i 

H„ 
1/7N 

^ = m a x | 0 , l - - j ^ ( ^ ( e ( r + i ) ) 7 ) | , 7 > 0 

(9.15) 

(9.16) 

(9.17) 

where /2j(e(r + j)) = 1 — /ij(e(r + j)), i.e., Zadeh's fuzzy complement. The 
responses with the parametric decision functions have been calculated for several 
values of the parameters. 

Minimum operator. It is known that the minimum operator does not allow 
interaction amongst criteria. It optimizes the worst action in the control sequence 
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and makes sure that it is as good as possible. However, because the system has 
non-minimum phase behavior, the minimum operator cannot be used for optimiza­
tion because every control action except for zero will result in an (initial) increase 
of the error, decreasing the value of /uT. Hence, the 'best' control action will be 
zero, and the controller will not select another control action. For this reason, a 
decision function that allows for interaction amongst criteria is required for this 
type of system. 

Generalized mean. For the generalized averaging operator as in Eq. (9.16), 
when 7 is chosen very large, the system tries to reach the reference value as soon 
as possible and shows an overshoot. The system slows down for small values of 
7. A fast response without an overshoot is obtained for 7 equal to 1 (arithmetic 
mean). Figure 9.7 shows the response of the controlled system for several values 
of the parameter 7. 

Generalized mean 
1.5 

1 

0.5-

0-

-0.5 

- • • 
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Fig. 9.7 Response of a fuzzy predictive controller using the generalized mean as the decision func­
tion. Dashed: 7 = — 1, solid: 7 = 1, dash-dotted: 7 = 3. Reproduced from (Sousa and Kaymak 
2001), ©2001 IEEE. 

Yager t-norm. Unlike the generalized mean, the system shows fast response 
for small values of the parameter 7, when the Yager i-norm is used. Being a t-
norm, this operator tries to achieve a simultaneous satisfaction of all the criteria. 
The parameter 7 should not be chosen very small as the simultaneous satisfaction 
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Fig. 9.8 Response of a fuzzy predictive controller using the Yager t-norm as the decision function. 
Dashed: 7 = 2, solid: 7 = 2.8, dash-dotted: 7 = 4. Reproduced from (Sousa and Kaymak 2001), 
©2001 IEEE. 

of the criteria may then be unfeasible. When 7 is around 2.8, the controlled system 
shows a very fast response without overshoot. The step response is even faster than 
the response that is obtained with the arithmetic mean as the decision operator. 
Figure 9.8 shows the step response for several values of 7. 

The parameter 7 can be interpreted as a speed indicator for the response. For 
the generalized mean operator, small values of 7 favor small control actions and 
the system response slows down. Large values of 7 favor a faster decrease of the 
error and thus larger control actions are favored. Thus, the system response can 
be tuned by using the parameter of the decision functions as an extra degree of 
freedom. Additional objectives such as the rising time and the overshoot could 
also be controlled with this single parameter. 

9.4.3 Fuzzy vs. conventional objective functions 

In this section, model-based predictive controllers are designed both for the linear 
system and for the HVAC system by using fuzzy objective functions as well as 
conventional objective functions. The performance of the controllers based on the 
two types of objective functions is compared. 
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Model predictive controllers have been designed for the systems described in 
Sec. 9.4.1 by using both the conventional objective function of Eq. (9.9) and a 
fuzzy objective function. A t-norm is used for the aggregation, since the decision 
goal is formulated as the simultaneous satisfaction of all the decision criteria. The 
aggregation operators ©, 0 C and 0 9 in Eq. (9.2) are taken as the Yager i-norm, 
which combines the control criteria presented in Fig. 9.3. The overall aggregation 
is then given by 

/V = £ (fle(e(r + JW+ £ (fiy(Ay(T + JW 
j=nn j=n2i 

+ x>u(A«(r+j-i))r 
j=n3i 

/ i w =max(0 , l - /4 ( 7 ) , 7 > 0 , (9.18) 

where the parameters nu and mu, i € {1,2,3} are defined as in Eq. (9.9), and 
Zadeh's complement is defined as in Eq. (9.17). The parameter 7 allows for the 
choice of different t-norms (see Sec. 9.3.1). 

The response of the controllers is studied using simulations of the systems. 
Given Eq. (9.18) as an aggregation operator, the membership functions and the 
parameters of the objective functions have been chosen in such a way that they 
lead to fast response while avoiding excessive oscillations and overshoot within 
the working range of the controller. The prediction horizon is kept as small as 
possible, since in practice the model-plant mismatch hampers the use of long 
horizons. 

In this study, the control space is discretized and the optimal control sequence 
is determined by an enumerative search. The control horizon is chosen equal to 
two in order to keep the computational load low. To further reduce the computa­
tional load, a two-step optimization approach is used, where a rough solution is 
found by using a coarse discretization of the control space, followed by the calcu­
lation of a finer solution around the rough solution. Other optimization techniques 
for non-convex problems, such as the branch-and-bound or genetic algorithms can 
also be used as discussed in Chapter 10. 

9.4.3.1 Linear system 

The predictive control scheme is applied to the linear system given by Eq. (9.14) 
without any constraints on the system. In this case, both the conventional criteria 
and the fuzzy criteria are able to control the system with a fast step response and 
no overshoot. However, when a rate constraint of | Au| < 0.5 is imposed on the 
system, the influence of the fuzzy criteria on the control problem becomes more 
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dominant. For these experiments, Hc — 2 and Hp — 6. It is required that the 
controller can bring the system to any level in the interval [-3,3]. Using the out­
put error and the change in the output with n n = 713; = 1 and n\u = n3u = Hp 

was found to be sufficient for controlling the system. The following parameters 
are used for the conventional objective function: w ij = 1, W2j — 0 and wzj — 5, 
j = 1,...,HP. These values are chosen following the general guidelines pre­
sented in (Soeterboek 1992, Camacho and Bordons 1995), and by trial and error 
until a good response of the system is found. The parameter w 3j is a compromise 
between fast response (for smaller values) and small or no overshoot (for bigger 
values). For the fuzzy criteria, the following membership function parameters are 
found by tuning K+ = -K~ = 1, K+ = -K~ = 1,5+ = -S~ = 0.5, and 
7 = 2 for the Yager t-norra. The way to tune the Yager parameter has been dis­
cussed in Sec. 9.3.1. The membership functions for the error and change in error 
are chosen to have equal magnitude by choosing Kf = Ky = 1, and by taking 
K~ and K~ symmetrical to K+ and Ky , respectively. Note that the choice of 
these four parameters requires only the tuning of one of them, because they are all 
related. Finally, the parameters 5 + and S~ are chosen such that the system can 
move freely to a certain degree, and is penalized outside these limits. The criterion 
on the change of the control action is not considered because it does not introduce 
any improvement in the control performance of this system. The responses of the 
system for several steps using classical and fuzzy criteria are shown in Fig. 9.9 
and Fig. 9.10, respectively. It is clear that the predictive controller with fuzzy 
criteria can improve the speed of the response considerably, while avoiding over­
shoots. The response of the controller with conventional criteria can be made 
faster by changing the values of W3J, but this occurs at the expense of amplifying 
the oscillations due to the non-minimum phase behavior. Another solution can 
be found by extending the prediction horizon. However, a considerable increase 
of the prediction horizon is required, and this is in general undesirable. Hence, 
this system clearly benefits from the additional flexibility introduced by the fuzzy 
criteria. Moreover, the prediction horizon can be reduced when fuzzy objective 
functions are used, without deteriorating the control performance, when proper 
fuzzy objectives are designed. 

9.4.3.2 Air-conditioning system 

The air-conditioning system is simulated and a rate constraint of |Au| < 0.1 is 
imposed on the system in these experiments. In this system Hc is chosen equal to 
2, and Hp is chosen equal to 3. These horizons were revealed to be sufficient for 
controlling the system. It is required that the controller can bring the system to any 
level in the interval [30 °C, 60 °C], which is the interval where the temperatures 
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Fig. 9.9 Step responses for the linear system using the conventional objective function. Reproduced 
from (Sousa and Kaymak 2001), ©2001 IEEE. 

usually range for this system. The output error with nu — n\u = 3, the change in 
the control action with n,2i = riiu = 2, and the change in the output with n^i — 
IT-3U — 3 are used to specify the objective function. The second change in the 
control action, chosen by n-ii = n^u = 2, can be considered as a gradual transition 
between the control horizon and the prediction horizon. The first element in the 
control horizon is allowed to change freely within the crisp constraint on Aw, 
while the change is zero outside the control horizon. Including the second term 
in the objective function imposes a soft constraint on the change of the second 
control action, which reduces the oscillations of the control signal without slowing 
down the response of the system. The output error and the change in output are 
just considered for the final step r + Hp, because it requires less control effort 
in the system. Moreover, the use of the two first steps deteriorates the control 
performance due to the severe non-minimum phase behavior detected at some 
regions of the system's response. 

The following parameters are used for the conventional objective function: 
wi3 = 1, W22 = 500 and w33 = 50. The rest of the parameters are zero. The 
parameters W22 and W33 are chosen to make a trade-off between several criteria, 
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Fig. 9.10 Step responses for the linear system using the fuzzy objective function. Reproduced from 
(Sousa and Kaymak 2001), ©2001 IEEE. 

and to scale different terms, namely the error, the change in control action and the 
change in the output. Note that the fuzzy objective function does not require this 
scaling due to the normalization introduced by the fuzzy sets. For the fuzzy crite­
ria, the following membership function parameters are used: K+ = —K~ — 30, 
K+ = -K- = 3, S+ = -S- = 1, K+ = -K- = 0.6, and 7 = 2. Although 
nine parameters are present, only five must be tuned because the others are re­
lated to them. The parameter Kf is chosen as the maximum error allowed for the 
system. K+ is the maximum change allowed in the output. 5+ must be smaller 
than K+, and this is the region where the temperature can change without being 
penalized. The parameter K+ is chosen such that the valve can change almost 
freely (the total range is the interval [0,1]), because the valve in the real system 
can change in this way, and the constraint in this valve is made for energy saving 
and stability reasons. Finally, the parameter for the Yager i-norm, 7 = 2, allows 
for a good compromise between fast response and small overshoot, see Sec. 9.3.1. 
The responses of the air-conditioning system for several steps using classical and 
fuzzy criteria are shown in Fig. 9.11 and Fig. 9.12, respectively. The controller 
with the fuzzy criteria is more able to use the full range of control actions, and the 
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Fig. 9.11 Step responses for the air-conditioning system using the conventional objective function. 
Reproduced from (Sousa and Kaymak 2001), ©2001 IEEE. 

response of this controller is in general faster, especially for references close to 
the limits of the range within which they can vary. Furthermore, some overshoots 
that are noticeable with the conventional criteria are reduced. 

In summary, for the studied systems, the use of fuzzy criteria improves the 
response of the predictive controller when the parameters of the objective func­
tions are tuned in order to obtain fast system response without overshoot. Despite 
the additional number of parameters, tuning the fuzzy criteria is not more tedious 
than tuning the conventional objective function because of a better understanding 
of the influence of the various parameters. The main disadvantage of the model 
predictive control with fuzzy criteria is that the optimization problem often be­
comes non-convex, which increases the computational load. Optimization issues 
for fuzzy model-based control are discussed in Chapter 10 and Chapter 11. 

9.5 Design of decision functions from expert knowledge 

One of the properties of fuzzy predictive control is that it provides a means to 
translate transparently the linguistic goals and preferences of the control engineer 
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Fig. 9.12 Step responses for the air-conditioning system using the fuzzy objective function. Repro­
duced from (Sousa and Kaymak 2001), ©2001 IEEE. 

into an objective function that can be used for optimization. Often, human experi­
ence and knowledge is available for controlling a process. Especially for systems 
which are difficult to control, the heuristic used by humans may provide good 
control response. A disadvantage of the model-based predictive control paradigm, 
however, is that the control strategy of a human cannot often be translated into a 
simple objective function that the predictive controller can use. Fuzzy predictive 
control provides a means for this translation by the use of many types of deci­
sion functions from fuzzy decision making. Humans use a variety of methods to 
achieve the control goals whereby the goals set for the controller as well as the 
controller parameters can be made time and state dependent. Therefore, the trans­
lation of a human's control strategy into a decision function involves dealing with 
time-varying goals and the adaptation of the parameter values. In this section, 
the design of a decision function that mimics the control strategy of an experi­
enced crane driver is discussed for a simulated gantry crane, as first presented in 
(Kaymak and Sousa 1997). 
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9.5.1 System description 

A container gantry crane consists of a bridge girder on portal legs from which 
a trolley system is suspended. The trolley can travel along the bridge girder that 
stretches over the container ship and part of the quay for loading and unloading the 
ship. A hoisting mechanism consisting of a spreader suspended from the trolley 
by means of hoisting cables is used for grabbing and hoisting the container. The 
control goal is to position the trolley at a desired horizontal location x while the 
swing 8 of the load is damped so that the container can be positioned accurately 
(see Fig. 9.13). Moreover, the transport of the container must be done as fast as 
possible. Two motors, one for the trolley motion and one for hoisting, generate 
the torque Tl and T2 required to move the container and the load. 

Fig. 9.13 Schematic representation of a container gantry crane. 

To study a crane system, a simulation model is implemented using the La-
grangian of the system (Sakawa and Shindo 1982). The model is extended with 
the models of electric motors. The parameters of the models have been chosen 
from a real crane that is in use. Certain parasitic effects such as viscous friction 
have also been modeled. The trolley can reach a maximum velocity of 3.2 ms _ 1 

for a maximum load of 53 tons. The crane construction is assumed to be stiff, but 
the largest acceleration is bounded in order to avoid overloading the mechanical 
construction. This also limits the rate of change of the input voltage and current. 
The vertical motion of the load is not considered in this study, and it is assumed 
that the cable length is constant during the load transport. 
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9.5.2 Expert control 

An experienced crane driver tries to reduce the load swing during transport as 
well as on arrival at the desired position. Since the trolley would not move if the 
swing is zero at all times, the crane driver accelerates first, making sure that the 
load swing is small at the end of the acceleration period. This means that the load 
lags behind initially and then catches up with the trolley. Ideally, the trolley must 
have reached its maximal speed at this time. Afterwards, the crane driver starts 
braking. The load swings in the travel direction and comes to rest with the trolley 
aligned on top of it. If there is a small error in the trolley position, it is corrected by 
'creeping' the trolley to the desired location. However, this is avoided as creeping 
takes a lot of time. Figure 9.14 shows the trajectory for the load swing when the 
crane is controlled according to a crane driver's strategy. 

60 

c 
zx_ 

time 
constant 

^acceleration , . deceleration 
velocity 

Fig. 9.14 Trajectory for the load swing when the crane is controlled according to a crane driver's 
strategy. 

9.5.3 Design of objective function 

In this section, an objective function is derived such that the resulting predictive 
controller mimics the control strategy of an experienced crane driver. The control 
strategy of a crane driver consists of two consecutive parts. 

(1) Minimize load swing on achieving the maximal trolley speed. 
(2) Minimize load swing on bringing the trolley to rest. 

Minimizing the load swing can be described by 'small swing angle' and 'small 
swing angle speed', which are represented by triangular membership functions as 
shown in Fig. 9.15a and Fig. 9.15b. These goals do not change during the trans­
port. There are two different goals concerning the trolley speed, each of which 
becomes dominant at different stages of the transport. Initially, the trolley speed 
must be large, which can be represented by a trapezoidal membership function 
(Fig. 9.15c). The trolley must stop at the desired position and thus the final goal 
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becomes to attain a small trolley speed represented by a triangular membership 
function (Fig. 9.15d). Hence, at the beginning of the transport the former (large 
trolley speed) is the goal concerning the trolley speed and at a certain time (to 
be discussed later) the goal changes to the latter (small trolley speed). Note that 
it is not realistic to expect to satisfy all these goals at all sample instants within 
the prediction horizon, because the swing angle can only be reduced after it be­
comes large initially. For that reason, the three goals concerning the swing angle, 
swing angle speed and trolley speed need not be satisfied during the initial sam­
ples within the prediction horizon. Note also that the minimization of the transport 
time is implicit in the defined criteria. The optimization algorithm tries to max­
imize the velocity at all samples within the prediction horizon, which implicitly 
minimizes the transport time. 

(a) (b) 

0 0 
swing angle swing angle speed 

(c) (d) 

trolley speed trolley speed 

Fig. 9.15 Membership functions representing the goals for the predictive controller: (a) small swing 
angle; (b) small swing angle speed; (c) large trolley speed; (d) small trolley speed. 

The criteria must be satisfied simultaneously in order to achieve the control 
goals. For that reason they are combined using a t-norm. Since the states trolley 
speed, swing angle and swing angle speed are closely related and influence each 
other, some interaction amongst the criteria is required. The minimum operator 
is not a suitable decision function, as it does not allow interaction amongst the 
criteria. Note that the objective function does not consider information concerning 
the trolley position. Because of that, the time at which the goal changes from 
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large trolley speed to small trolley speed is important for the steady-state error in 
trolley position. Switching too soon means that the trolley starts to brake too early 
and the final position is not obtained, while switching too late implies that the 
trolley overshoots in position. The steady-state error can be reduced by switching 
to another control strategy (e.g.PI control) when the trolley comes to near stop. 
However, this results in creeping the trolley and should be avoided as much as 
possible. For that reason, a weight factor approach is followed in the following. 
In this approach, different criteria are weighted differently. The weight factors are 
adapted dynamically during the transport according to the distance of the trolley 
from the desired position. Initially, the weight factors for reducing swing angle 
are small, and they are increased in size gradually as the trolley is displaced. A 
fourth membership function regarding the position error of the trolley is added 
on approaching the desired position, and its weight is increased as the trolley 
approaches the desired position. These measures lead to improved steady-state 
error and the removal of oscillations during the transient phase. Hence, the weight 
factors implicitly determine the time period for the gradual passage from the first 
set of goals to the second set of goals. 

9.5.4 Simulation experiments 

This section shows the results of a simulation run obtained for the horizontal trans­
port of the load when the crane is controlled by a fuzzy predictive controller. The 
criteria for the objective function and the corresponding membership functions 
have already been described in Sec. 9.5.3. Yager t-norm (Yager 1980) with a pa­
rameter value of 7 = 2.5 has been used to combine the criteria. The prediction 
horizon is equal to 5, and the control horizon is equal to 2. The total decision is 
obtained using the aggregation function 

IH = max 0,1 - I f > , ( l - HV I > 7 > 0. (9.19) 

where M is the total number of decision criteria. 
Figure 9.16 shows an example response of the system for a horizontal dis­

placement of 60m with a sample rate of 0.75 s and a cable length of 30m from 
the suspension point to the container. The model-plant mismatch is not consid­
ered. No explicit reference trajectory is specified for the controller, which is an 
advantage of this method. The mass that is transported is 33 tons. As it can be 
seen from the trajectory for the swing angle, the controller approximates the con­
trol strategy of an experienced crane driver. This is achieved by implementing an 
adaptive objective function used by the optimization routine of the model-based 
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predictive controller. 
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Fig. 9.16 Step response for ahorizontal displacement of 60m. 

9.6 Summary and concluding remarks 

The application of fuzzy decision making to predictive control in closed-loop con­
trol systems is considered in this chapter. Fuzzy decision making applied to real­
time control is based on multistage decision making. In this chapter multistage 
FDM is formulated for a control environment. A discussion on the types of sys­
tems, and the termination time defined for the multistage approach has been given 
in Sec. 9.1, presenting some references for the different solutions found in the 
past. Fuzzy goals and constraints defined for the control environment, and their 
respective aggregation are considered in Sec. 9.2. The use of fuzzy criteria in 
model-based predictive control is also addressed in this section. 

FDM in control has two main design problems, which are the choice of the 
aggregation operators and the choice of fuzzy criteria. Fuzzy criteria for FDM in 
control is presented in Sec. 9.3. First, a discussion on the choice of the aggrega­
tion operators is presented in Sec. 9.3.1. The use of parameterized aggregation 
operators has some advantages, because these parameters can influence several 
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criteria at the same time. The relation amongst various performance criteria, such 
as the rise time, the settling time or the overshoot, can then be adapted with only 
one parameter. 

The possible types of fuzzy criteria used for FDM in model predictive control 
are discussed in Sec. 9.3. The choice of the prediction horizon is discussed, and 
the generalization of classical objective functions to fuzzy objective functions in 
MBPC is presented. Contrary to the symmetric formulation of fuzzy decision 
making, we make here a clear distinction between the representation of goals and 
the representation of constraints in control problems. Consequently, exponential 
curves can be used to represent fuzzy goals, while membership functions with 
bounded support are used to represent fuzzy constraints. The advantage of this 
approach is that the hard constraints of the control problem are guaranteed to be 
satisfied, provided that the aggregation of constraints is conjunctive. The choice 
of the prediction horizon is addressed, and the generalization of classical objective 
functions to fuzzy objective functions in MBPC is presented. This generalization 
brings additional flexibility to the definition of the objective functions. 

Two examples are presented in Sec. 9.4. The examples show the improve­
ments of the controller response by using fuzzy objective functions in MBPC. 
However, the optimization problem is non-convex with the known disadvantages. 
The computational time grows exponentially with the control horizon and the 
number of variables. These problems are discussed in Chapter 10 and Chapter 11. 

Fuzzy aggregation operators introduce additional flexibility in designing an 
objective function to achieve control goals. The design of an objective function 
from expert knowledge has been demonstrated by using a simulated gantry crane 
as an example. This is achieved by using weighted fuzzy aggregation operators 
from Chapter 3, whose weights are adapted dynamically to account for the chang­
ing goals in the human expert's control strategy. 



Chapter 10 

Derivative-Free Optimization 

Model-based control usually demands the optimization of an objective function. 
This is always the case in model predictive control. Sometimes, the optimization 
problem in MBPC has an analytical solution, provided that (see also Sec. A.3): 

(1) a linear model of the system is used, 
(2) the objective function is described by 

Hp 

J(u) = J2 w^i ( r(T + 3) ~ KT + J)? + W2J(AU(T +j- l ) ) 2 , (10.1) 

or a similar quadratic equation, and 
(3) no constraints are active. 

When some constraints are violated, a general analytical solution is not available. 
However, the optimization problem is still a quadratic problem, provided that the 
constraints are linear in the optimization variables. This problem is convex, and it 
can be solved by using quadratic programming with a guaranteed global optimum. 
However, in the most general, case both nonlinear models and constraints are 
present, and the optimization problem results in a non-convex problem. 

Classical techniques used to solve non-convex optimization problems are the 
sequential quadratic programming method, see, e.g., (Gill et al. 1981) and the 
simplex method introduced by Nelder and Mead (1965), which are both iterative 
optimization techniques. These iterative methods have generally high computa­
tional costs, and the solution may converge to local minima. When the solution 
space is discretized, alternative optimization methods for non-convex optimiza­
tion problems, such as dynamic programming, branch-and-bound or genetic algo­
rithms, can also be applied. 

Amongst the discrete optimization techniques, dynamic programming (DP) is 
one of the most utilized. This technique is based on the principle of optimality 

231 



232 Fuzzy Decision Making in Modeling and Control 

introduced by Bellman (1957). The computation of the solution usually proceeds 
'backwards', i. e., from step r + Hp to step r + 1 . The principle of optimality is not 
changed when 'forward' dynamic programming, i.e., computing from step r + 1 
to step r + Hp, is utilized. In predictive control, on-line implementation does not 
allow heavy computational effort, which is usually the case when dynamic pro­
gramming is utilized. Furthermore, DP requires the discretization of the control 
inputs, outputs and states, contrary to branch-and-bound and genetic algorithms, 
where only the control actions must be discretized if a continuous model of the 
system under control is available. This fact allows for more accuracy in the com­
putation of the optimal control actions. Therefore, branch-and-bound and genetic 
algorithms are considered for discrete optimization problems in this book. 

This chapter is divided into two main parts. The first part presents a branch-
and-bound algorithm for solving non-convex optimization problems encountered 
in predictive control using nonlinear models. This is discussed in Sec. 10.1 for 
conventional objective functions. Section 10.2 proposes a branch-and-bound al­
gorithm for predictive control with fuzzy decision functions. The performance of 
the branch-and-bound algorithm for fuzzy decision functions is illustrated with an 
example in Sec. 10.3. The second part considers a different optimization method, 
where a genetic algorithm is used in Sec. 10.4. Section 10.5 illustrates this method 
with an example, before the concluding remarks of the chapter in Sec. 10.6. 

10.1 Branch-and-bound optimization for predictive control 

A widely used technique to solve difficult (usually non-convex) optimization prob­
lems is the branch-and-bound method (Mitten 1970). Branch-and-bound algo­
rithms (B&B) solve optimization problems by partitioning the solution space. In 
this method, the set of solutions is subsequently partitioned into increasingly re­
fined parts (branching) over which lower and upper bounds for the optimal value 
of the objective function can be determined (bounding). Usually a minimization 
problem is considered, and the optimization is performed by finding a feasible 
solution with minimal value. Branch-and-bound methods have been applied to 
the solution of various constrained optimization problems, such as integer lin­
ear programming, nonlinear programming, the traveling salesman problem or the 
quadratic assignment problem (Horowitz and Sahni 1978). This book utilizes 
branch-and-bound to solve non-convex optimization problems in predictive con­
trol. Therefore, this section presents the branch-and-bound algorithm developed 
for classical predictive control (Sousa et al. 1997), and Sec. 10.2 presents a branch-
and-bound algorithm for optimization in predictive control with fuzzy decision 
functions introduced by Sousa (2000). 
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A branch-and-bound algorithm can be characterized by the following three 
rules. 

(1) Branching rule - defines how to divide a problem into sub-problems. 
(2) Bounding rule - establishes lower and upper bounds in the optimal solution of 

a sub-problem. These bounds allow for the elimination of sub-problems that 
do not constitute an optimal solution. 

(3) Selection rule - defines the next sub-problem to branch from. 

Usually, these three basic rules are applied recursively in B&B methods. Some 
B&B algorithms apply search heuristics for the selection rule, and for guiding 
the memory storage of the already explored sub-problems, thereby improving the 
efficiency of the method significantly (Chen and Bushnell 1996). 

10.1.1 B&B in predictive control 

When the control actions are discretized, the branch-and-bound method can be 
applied to predictive control. The general MIMO model is given in Sec. 5.1 by 
Eq. (5.4). For the sake of simplicity, the B&B algorithm is presented here for 
SISO systems, but it can be generalized for MIMO systems (Roubos et al. 1999). 
Some remarks on the necessary procedures for this generalization are made during 
the description that follows. In order to make the description more clear, the state 
vector does not include the actual control action u(r) , and is given by 

x(r) = [y(r),...,y(r - py + 1 ) , . . . , U{T - 1 ) , . . . , U{T - mu + 1)]T, (10.2) 

where mu is the order of the input and py is the order of the output. With this 
state vector, the model of the system under control predicts the future outputs of 
the system y(r + 1 ) , . . . , j/(r + Hp), and is given by 

y(r + j) = f(x(T + j-l),u(T + j-l)), j = l,...,Hp, (10.3) 

where / is a function describing the system. The output values y(r + j), j = 
1 , . . . , Hp, are calculated based on the state vector at time instant r + j — 1 and 
on the future control signal U(T + j — 1), which are determined by optimizing a 
given objective function. Note that the state vector at time step r + j — 1 contains 
predicted and real input and output values. Let the possible inputs of the system be 
discretized in rid possible control actions. Also, let the discretized control actions 
be denoted Wj. Thus, at each step, the control actions U(T + j — 1) € Q are given 
by 

Sl = {wi\i = l,2,...,nd}. (10.4) 
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Note that this set can be seen as the set of possible alternatives in a multidimen­
sional fuzzy decision making problem. Thus, the problem considered here is just a 
particular case of fuzzy decision making in control (which is presented in Sec. 9.1) 
and where the classical objective function of Eq. (10.1) is used. Branch-and-

y(x+l) XT+2) y(t+Hc) y{x+Hp) 

x T+l x+2 ••• i+Hc . . . x+Hp 

Fig. 10.1 Branch-and-bound optimization applied to predictive control. 

bound methods can be visualized by a search tree, see Fig. 10.1. In this figure, 
the subsequent steps are depicted, and each point indicates a possible value for the 
predicted outputs y(r + j), j = 1 , . . . , Hp. In predictive control, the problem to 
be solved is normally represented by the objective function in Eq. (10.1) 

H„ Hc 
J = Y1 wii(e(r + j))2 + Y^ W2J(AU{T + j - l))2, 

3=1 3=1 

where e(r-l-j) is the predicted output error given by e(r-f-j) = r(T+j)-y(r+j). 
Other objective functions can also be considered, such as the one presented in 
Eq. (9.9). The optimization problem is successively decomposed by the branching 
rule into smaller sub-problems. 

A sub-problem in the middle of the tree can be defined as follows. At time 
instant r + j the cumulative cost of a certain path followed so far, leading to the 
state x(r + j) and output y(r + j), is given by 

JW) = Y, [mi (r(r + 1) - y(r + I))2 + W21(AU(T + I - l))5 

( = i 

(10.5) 
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where j — 1,...,HP, denotes the level corresponding to the time step r + j (see 
Fig. 10.2). A particular branch i at level j is created if the cumulative cost J ^ (u) 
plus a lower bound on the cost from the level j to the terminal level Hp for the 
branch i, denoted JjJi, is lower than an upper bound of the total cost, denoted Ju, 

i.e., 

JU) + JLi < Ju. (10.6) 

Let the total number of branches satisfying this rule at level j be given by N. 
Figure 10.2 illustrates the sub-problem at level j , where a particular state and 
output are considered. In order to increase the efficiency of the B&B method, it 
is required that the number TV should be as low as possible, i.e., N <C n j . Note 
that in the worst case N = rid, and all the possible branches are generated for the 
different alternatives IOJ, j = 1 , . . . , rid- The lower bound can be expressed as a 

leyelj 

levelj+1 

Fig. 10.2 One step of the branch-and-bound algorithm used in MBPC. 

sum of two terms, 

TU) 

JL,=jlJ\oJi) + JL(j + 2). (10.7) 

The first term, J\ ' (tj;), is the cost associated with the transition y(r + j + 1) = 
/ ( x ( r + j ) , uii), which is computed by evaluating the respective element in the cost 
function in Eq. (10.5). The second term is an estimated lower bound of the cost 
over the remaining steps j + 2,..., Hp, denoted JL(J + 2), which is generally not 
known and must be estimated. Note that no branching takes place for j > Hc — 1 
(beyond the control horizon), i.e., the last control action u{j + Hc — 1) is applied 
successively to the model, until Hp is reached. 

In order to achieve N -C n^, the upper bound should be as low as possible 
(close to the optimal solution of the entire problem), and the lower bound as large 
as possible, so that the number N of new branches is decreased. 

Note that until now only the branching rule and the bounding rule have been 
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defined. The selection rule, which determines the way of searching for the best 
solution, must be selected from various possibilities. A particular heuristic search 
is proposed here, which applies depth first, breadth first and best-bound search 
in different stages of the optimization process (Ibaraki 1976). The concept of 
heuristic search provides a framework to compare different types of searches, 
e.g.depth first, breadth first, or best-bound search. The heuristic must govern the 
order in which the sub-problems are branched from, such that the branching is 
done from the sub-problem with the smallest heuristic value. The heuristic search 
applied in the branch-and-bound method for predictive control is described in the 
following. 

First, an initial upper bound Ju — J^H^ must be estimated. The cost J^H^ 
is derived by branching na times (for all possible control actions) at each level j , 
starting at level 0. The smallest j \ 3 ' (u>») is chosen at each level j . At this stage, 
the remaining nodes created at level Hc can already be eliminated because they 
do not constitute an optimal solution. With this initial upper bound, the algorithm 
goes back one level (to level Hc - 1 ) , and chooses the second best branch found so 
far. This branch is expanded by applying the branch condition in Eq. (10.6). The 
lower bound of the cost over the remaining steps JL (HC) must then be estimated. 
The cost associated with the transition to y(r + Hc) is estimated. The remaining 
cost JL {HC +1) is also estimated. If no better estimate is possible, it is set to zero: 
JL{HC + 1) = 0. The number of branches generated, JV, is the one that fulfills 
the branch condition in Eq. (10.6). The new nodes are at level H c, and must 
be compared to the best solution found so far (given by Ju)- If a new optimal 
solution is found, Ju is replaced by this new j(Hp\ and the best solution found so 
far is updated to this new value. As the upper bound is now smaller, the number 
of branches which are generated tends to be smaller, and the general optimization 
faster. After this branch is fully explored, the best of the remaining branches 
that still fulfill the branch conditions at level Hc — 1 is tested. This procedure is 
repeated until only one branch remains at level Hc — 1. Then, the algorithm goes 
back one level, to Hc — 2, and starts the branch-and-bounding procedure again as 
described for the level Hc — 1. The algorithm stops when there are no branches 
left to be explored, and then each level has only one node. This path is the optimal 
solution. This branch-and-bound method applied to predictive control is described 
in Algorithm 10.1. 

Algorithm 10.1 Branch-and-bound algorithm applied to MBPC. 
Choose the control and prediction horizons, Hc and Hp, respectively. Choose 

the number of discrete control actions Ui,i = 1 , . . . , n^-

Step 1: Initialize algorithm. At each level j (time r + j), starting from level 
0, the smallest Js- (w;) is chosen, and branching is made for all possible 
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discrete control actions n<j. The best cost at step Hp, J^Hp"> is chosen as the 
initial upper bound: 

The remaining na — 1 nodes created at level Hc are eliminated because they 
do not constitute an optimal solution. The algorithm goes back one level to 

ffc-l. 
Step 2: Estimate lower bound. The algorithm is at level j . The branch i with the 

best cost function J^ found so far, and that is not fully explored, is chosen. 
This means that if the best cost function at level j has already branches to 
level j + 1, the second best value for J^ must be chosen. The lower bound 
JT,{ is estimated by 

JLi= jV){u>i) + JL{j + 2), 

with j\3){ui) = Wlj (r(r + j + 1) - y(r + j + l))2 + w 2 j K - u{r + j))2, 
and y(r + j + 1) = / ( x ( r + j),ut). The lower bound on the cost over the 
remaining steps must be estimated. If no estimate is available, it is simply set 
to zero, i.e., JL{J + 2) = 0. 

Step 3: Apply branch condition. The branching condition 

J{3) + JLi < Ju , 

is applied to the considered branch at level j for alH, i = 1 , . . . , n a discretized 
control actions WJ. This procedure generates ./V branches. If no branch is 
generated, go to step 6. 

If j + 1 = Hc, 

Step 4: Compute a new optimal solution. Compute the outputs from Hc to Hp 

and the respective costs. Compare the optimal cost found so far, Ju, with 
the N new costs. If a new optimal solution is found, Ju is replaced by the 
new j(Hr\ Update the best solution found so far. Eliminate the nodes with 
non-optimal solutions. 

Else 

Step 5: Branch from the best generated node. Choose the smallest cost 
j( J) (uii) and go to the next level (j ->• j + 1). Go to Step 2. 

Step 6: Go up in the tree. Go up in the levels of the tree until a non-totally-
explored branch is found and afterwards go to Step 2. If all the branches are 
fully explored, the optimal solution is the optimal solution found so far, and 
the algorithm stops. 
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10.1.2 Application of the B&B method to nonlinear control 

In this section, the advantages of the B&B method are illustrated by an exam­
ple that compares the performances of the branch-and-bound algorithm and the 
sequential quadratic programming (SQP) algorithm, see, e.g., Gill et al. (1981). 
The TS fuzzy model derived for an air-conditioning system, and presented in 
Sec. 12.3.1 is used as an example. This model is used both as model and sys­
tem in the predictive control scheme, avoiding model-plant mismatches and dis­
turbances, and allowing for a proper comparison between the two algorithms. 
Figure 10.3 gives the sum of squared errors (SSE) as a performance measure, 
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Fig. 10.3 Sum squared error and FLOPS for the optimization methods. Solid line - B&B optimiza­
tion; dashed line - sequential quadratic programming. 

and the number of floating-point operations (FLOPS) as a measure of the compu­
tational costs of the two algorithms. The computational requirements and the SSE 
of the B&B method for Hc = 1 are normalized to 1 (or 100%). The comparison is 
made for control horizons from 1 up to 9 steps. One can see that for the SQP opti­
mization method, the error is always bigger than the error obtained when the B&B 
method is utilized, because the SQP method often converges to local minima. The 
computational costs of SQP are higher until Hc — 8, and are lower afterwards. 
However, the control horizon is usually kept much smaller (approximately 2 to 6), 
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where the branch-and-bound method gives better computational efficiency. On the 
basis of this comparison, it can be concluded that the B&B optimization method 
is superior to SQP with respect to the performance achieved, and also with respect 
to the computational costs when the control horizon is kept small. 

This example shows that for large control horizons, another optimization 
method is necessary to find the optimal control actions in predictive control. It 
is clear that the same happens for large numbers of control alternatives and for 
MIMO systems, with several control inputs. In fact, for these systems the compu­
tational effort grows exponentially, limiting the use of the B&B algorithm. How­
ever, Roubos et al. (1999) have recently proposed a modified B&B algorithm able 
to deal with relatively slow MIMO systems. Another non-convex optimization 
method is presented in Sec. 10.4, where genetic algorithms are used for optimiza­
tion in predictive control. 

10.1.3 Evaluation of the B&B method applied to MBPC 

The results obtained using the proposed B&B algorithm have been compared to 
other optimization techniques, such as Sequential Quadratic Programming (SQP). 
The experience shows that the B&B algorithm, even with a rough lower bound es­
timate, JL(J + 2), is in general faster and more accurate than enumerative search, 
which explores the complete search space. It is also faster and more accurate 
than the SQP method, which tends to converge to local minima for nonlinear sys­
tems. However, the computational time increases exponentially with the control 
horizon, demanding that this be kept low. A factor of extreme importance is the 
number of control alternatives n j . This number should be as small as possible for 
computational reasons. However, if n<2 is too small, the coarse discretization of 
the control signal results in poor control performance. Therefore, a good compro­
mise between the computational effort and the size of n a must be made for each 
control problem. 

Three major advantages of the B&B algorithm applied to predictive control 
over other non-convex optimization methods are the following. 

(1) The global discrete minimum containing the optimal solution is always found, 
guaranteeing good control performance. 

(2) The algorithm does not need an initial guess, and hence its performance can­
not be negatively influenced by a poor initialization, as in the case of iterative 
optimization methods. 

(3) The B&B method implicitly deals with constraints. Moreover, the constraints 
improve the efficiency of bounding, restricting the search space by eliminating 
non-feasible sub-problems. Most optimization algorithms such as SQP, have 
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difficulties in dealing with constraints, which is reflected in their performance. 

Two serious drawbacks of B&B are the exponential increase of the computational 
time with the control horizon and the number of alternatives, and the discretization 
of the possible control actions. This discretization can cause oscillations of the 
outputs around the reference trajectory. A possible solution for this last problem is 
described in Sec. 7.5, where a predictive control strategy is combined with inverse 
control. Section 11.3 presents another solution to cope with the same problem by 
using fuzzy predictive filters. 

10.2 Branch-and-bound optimization for fuzzy predictive control 

In fuzzy predictive control, the membership functions for the fuzzy criteria can 
have an arbitrary shape and the decision function is usually nonlinear, which of­
ten results in a non-convex optimization problem. Hence, convex optimization 
algorithms (e.g. such as the ones presented in Sec. 11.1) cannot be used. How­
ever, the decision problem can be formulated as a discrete choice problem where 
a selection is made out of a set of possible alternatives. For formulating the dis­
crete choice problem, the control space is discretized and the problem is reduced 
to searching the best control action in the discretized control space. Due to this 
discretization an approximate solution is obtained. The search for a solution can 
be performed by using the branch-and-bound (B&B) method. Previously, a B&B 
algorithm for classical model-based predictive control applications was presented 
in Sec. 10.1. This section discuss the application of the B&B algorithm to model 
predictive control with fuzzy decision criteria in the objective function. More 
details can be found in Sousa (2000). 

Remember that the branch-and-bound method (Horowitz and Sahni 1978) is a 
structured search technique belonging to a general class of enumerative schemes. 
When the control actions are discretized, branch-and-bound can be utilized as 
the optimization method in predictive control. The model predicting the future 
outputs of the system y(r + 1) , . . .,y(r + Hp) is already given in Eq. (10.3), and 
it is noted here for the sake of clarity: 

y{r + j) = / ( X ( T + j - 1), u(r + j - 1)), j = l,...,Hp. 

The considerations made in Sec. 10.1 about this model remain valid here. The 
control actions u ( r ) , . . . ,U(T+HC — 1) are discretized in na possible input values, 
as in Sec. 10.1, i.e., 

Q — {uji\i = 1,2,.. .,nd} . 
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The tree represented in Fig. 10.1 remains also valid, and at each time step (level 
of the tree shown in Fig. 10.1), n^ control alternatives are considered, yielding 
N <rid branches. 

In fuzzy predictive control, the objective function is denned as the aggregation 
of fuzzy goals and constraints (fuzzy criteria). The symbol £^ denotes criterion 
I considered at time step r + j , with j = 1 , . . . , Hp and 1= 1 , . . . , m, where m 
is the total number of fuzzy criteria. These definitions are presented in Sec. 9.2.1. 
The aggregation of the different criteria is given by Eq. (9.2). In order to apply the 
branch-and-bound method to fuzzy predictive control, the aggregation operators 
®g > ©c a nd ® m u s t be t-norms. These norms guarantee that the membership 
degree of the policy fi„ decreases with the time, and the corresponding cost func­
tions increase, which is a necessary condition to apply the B&B algorithm. 

Let j = 0 , 1 , . . . , Hp denote the jth level of the tree (j = 0 at the initial node) 
and let i denote the branch corresponding to the control alternative w j . The partial 
optimization problem for a branch i at level j is defined by the maximization of 
the criteria at this point. Defining it in a recursive way, one obtains 

^ ' ) ( W i ) = r ( / i ^ 1 ) , M c . 1 ( u ; i ) , . . . , / x 0 m ( ^ ) ) • (10.8) 

The operator T represents an arbitrary triangular norm, and thus, /j,y' is a decreas­
ing function with respect to j . The membership value / A ' for the cost level zero 
is set to 1 because this is the neutral element for t-norm operators. The optimiza­
tion problem can be converted from a maximization into a minimization by taking 
the fuzzy complements of the membership values for the considered criteria. This 
transformation allows for the formulation of the optimization problem in a similar 
way to the classical B&B algorithm, where a new branch is generated if the cost 
at a certain point added to a lower bound of the remaining cost is smaller than an 
upper bound of the total cost. In order to transform the maximization in a mini­
mization problem let fij (tOi) be the fuzzy complement of the membership degree 
representing the confluence of decision criteria, i.e., 

Hlj\wi)=rf?), (10.9) 

where '• stands for the fuzzy complement. This value can be seen as a cost 
because it increases with j ; actually, it is the complement of a decreasing func­
tion. In formal terms, the partial optimization problem for a branch i at level j is 
formulated as 

min/iVVi). (10.10) 
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Note that no 'hard' constraints are explicitly represented, because they are im­
plied by the supports of the membership functions defining the satisfaction of 
the decision criteria, see Sec. 9.2.1. Moreover, constraints on the control actions 
are directly applied when the rid discrete control actions are chosen. Application 
of the branching alone would result in the search of the entire tree (enumerative 
search), i.e., {rid)Hc possibilities, which is computationally prohibitive, except for 
very small control horizons. In order to reduce the number of alternatives, bound­
ing is applied. At level j , the degree of satisfaction for the decision criteria is 
known and is given by /J.9' , as in Eq. (10.8). Let /A^ ' "' "' be an upper bound 
of the remaining degree of satisfaction for the levels j + 1 , . . . , Hp. Similar to the 
cost fij (ui) for branch i at level j , the membership value of a lower bound for 
the remaining cost can be given by the complement of fi^+ ' " ' , 

/S=/&+ 1-- f f ' ) . (io.il) 

Let \xjv be an upper bound for the total cost, that is given by the complement of 
the membership degree representing a lower bound on fi\ . This lower bound 
is the confluence of decision criteria when an entire path has been followed. A 
particular branch i at level j is followed if the cost at level j aggregated with the 
lower bound on the remaining cost /x j is smaller than fijv ,i.e., if 

= s(rf),tf)
L)<tiJu, (10.12) 

where S is the t-conorm that is the dual of the t-norm used in Eq. (10.8). For the 
sake of clarity, the dependency on Wj is not explicitly shown in Eq. (10.12). The 
transition between level j and level j + 1 is depicted in Fig. 10.4. The efficiency 
of the bounding mechanism depends on the quality of the bound estimates. The 
upper bound \ijv should be as close as possible to the optimum and the lower 
bound Hj as large as possible, in order to decrease the number of new branches 
to be created by the branch-and-bound algorithm. The availability of these esti­
mates depends on the particular problem. The algorithm for the branch-and-bound 
method applied to fuzzy predictive control is presented in Algorithm 10.2. 

Algorithm 10.2 Branch-and-bound algorithm for fuzzy predictive control. 
Choose the control and prediction horizons, Hc and Hp, respectively. Choose 

the number of discrete control actions uj{, i — 1 , . . . , rid-

Step 1: Initialize algorithm. At each level j (time r -I- j), starting from level 
0, the smallest fij(ui) is chosen, and branching is made for all possible 

http://io.il
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nf(col) = r(^ , , ,^ ' i(co l) , . . . ,^>,)> 

branch if 

levelj 

^ K d ) = r (^ ' \^K) , . ,M ? > d ) ) 

\ branch if 

^(t+Z+l) = fWT+/),CO,) • • • X(T+/+1) = f(x(T+/),COi) y»,(i:+7+l) = f(x(x+y),co.) level j+1 

Fig. 10.4 Branch-and-bound optimization in fuzzy predictive control. Reprinted from (Sousa 2000) 
by permission of John Wiley and Sons, Inc., ©2000 John Wiley & Sons, Inc. 

(M \ 

discrete control actions n^. The best cost at step Hp, fij p> is chosen as the 
initial lower bound, 

fJ-Jv 
(HP) 

The remaining n^ — 1 nodes created at level Hc are eliminated because they 
do not constitute an optimal solution. The algorithm goes to the level H c — 1. 

Step 2: Estimate lower bound. The algorithm is at level j . The branch i with the 
(i) best cost function fij' found so far, and that is not fully explored, is chosen. 

The lower bound fij is estimated by 

If no information over uy '""' r' is available, this lower bound is set to 

zero, i.e., iij — 0. 
Step 3: Apply branch condition. The branching condition 

is applied to the considered branch at level j for alH, i = 1 , . . . , n d discretized 
control actions w,. This procedure generates N branches. If no branch is 
generated go to step 6. 

If j + 1 = Hc, 

Step 4: Compute a new optimal solution. Compute the outputs from Hc to Hp 

and the respective costs. Compare the optimal cost found so far, fj, j v , with 
this N new costs. If a new optimal solution is found, JJL JV is replaced by the 

( ff \ 

new fij • Update the best solution found so far. Eliminate the nodes with 
non-optimal solutions. 
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Else 

Step 5: Branch from the best generated node. Choose the smallest cost 
nj (tOi) and go to the next level (J -» j + 1). Go to Step 2. 

Step 6: Go up in the tree. Go up in the levels of the tree until a non-totally-
explored branch is found and go to Step 2. If all the branches are explored, 
the optimal solution is the optimal solution found so far, and the algorithm 
stops. 

Although the bound estimates can reduce the number of nodes generated in the 
tree, the computational complexity of the algorithm remains exponential which 
makes it prohibitively expensive for large control horizons and too many discrete 
control alternatives in Eq. (10.4). The B&B optimization technique applied to 
fuzzy predictive control always finds the global discrete optimum. However, the 
time to compute the optimum may vary. If the time to compute the global optimum 
is bigger than the sampling time of the system, the algorithm can be stopped and 
the last control sequence found so far can be used. Note that this local optimum 
may be the global optimum for some cases. The main drawbacks of this method 
are thus the computational complexity for large problems, and the restriction of 
the possible control actions to a set of discrete alternatives. On one hand, the 
number rid of discrete control actions should be small, as the computing time of 
the branch-and-bound algorithm increases drastically with an increasing number 
of control alternatives. On the other hand, n<j should be large since a too coarse 
discretization may result in a rough control policy, inferior to those obtained with 
a finer discretization. In general, the discretization should be chosen such that 
oscillations of the outputs around the reference trajectory are sufficiently small. 
Fuzzy predictive filters presented in Sec. 11.3 can also be applied to solve this 
problem. 

10.3 Application example for fuzzy branch-and-bound 

In this section, the fuzzy branch-and-bound algorithm is applied to a test case con­
sisting of the simulation of the air-conditioning system, as described previously 
in Sec. 9.4.1. The description of the system and the simulation conditions consid­
ered in that section are the same as the ones considered here. The model is again a 
SISO model, where the output, i.e., the supply temperature T s ( r + 1), is modeled 
by T s ( r + 1) = / ( T s ( r ) , u(r)), and where U(T) € [0.4,1] is the valve opening. 

Model-based predictive controllers are designed for the air-conditioning sys­
tem by using a fuzzy objective function. A criterion consisting of the minimization 
of the output predicted error e(r + j) = r(r + j) — y(r + j) is chosen, where 
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r ( r + J) a r e the future references. This criterion is represented by the triangular 
membership function /Je(e(r + j)), as given in Fig. 10.5. 

M * 1 

0 
-30 0 30 

e(T+j) 

Fig. 10.5 Membership function corresponding to the minimization of the prediction error. 

The degrees of satisfaction of the criterion for the Hp steps is combined using 
Yager's parameterized family of t-norms given in Eq. (9.17). Since it is known 
that it leads to good control results, the parameter 7 is set equal to 2. The lower 
bound is chosen as JUJL = 0, Vj. A rate constraint of |Au| < 0.5 is imposed on 
the system in these experiments. The incremental form of the controller is used 
in the simulations and the interval [—0.5,0.5] is discretized successively into 11, 
21 and 51 equally spaced levels. Hence, Aw(r + j — 1), with j — 1,..., Hp, can 
take a value only from these discretized control actions. 

The branch-and-bound algorithm is compared to the enumerative search for 
different control horizons. In order to concentrate on the performance of the two 
optimization schemes, model-plant mismatch and the real-time aspects are not 
considered in this example. Table 10.1 gives the computational costs in two dif­
ferent metrics, 

(i) the computational time (CT), and 
(ii) the number of floating-point operations (FLOPS), 

for 11 possible control actions at each step. The computational requirements for 
the B&B method for Hc = 1 are taken as 1 (100%). The comparison is made 
for control horizons from 1 to 4 steps. As Table 10.1 shows, the computational 
costs of enumerative search are considerably higher than those of B&B. Therefore, 
branch-and-bound can still be used for larger control horizons, depending on the 
sampling time of the system under study. Table 10.2 presents the increase of the 
computational cost with the number of discretizations used for the control actions 
U(T + j — 1), and for Hc = 2 using the same normalized scale. 

The number of control actions hampers the application of enumerative search 



Fuzzy Decision Making in Modeling and Control 

Table 10.1 Comparison of branch-and-bound and enu-
merative search for different prediction horizons. The 
numbers are normalized to B&B with Hc = 1. Reprinted 
from (Sousa 2000) by permission of John Wiley and 
Sons, Inc., ©2000 John Wiley & Sons, Inc. 

Control horizon 

Hc = l 
Hc = 2 
Hc = 3 
HC=A 

CT 

1 
2.87 
7.77 
22.4 

B&B 
FLOPS 

1 
2.95 
7.80 
21.8 

Enum 
CT 

0.98 
6.53 
54.6 
445 

. Search 
FLOPS 

0.89 
12.5 

134.8 
1400 

Table 10.2 Comparison of branch-and-bound and enu-
merative search for several numbers of discretizations. 
The numbers are normalized to B&B with Hc = 1, as 
in Table 10.1. Reprinted from (Sousa 2000) by permis­
sion of John Wiley and Sons, Inc., ©2000 John Wiley 
& Sons, Inc. 

Number of 
discretizations 

11 
21 
51 

CT 

2.87 
6.10 
20.5 

B&B 
FLOPS 

2.95 
6.71 
25.1 

Enum 
CT 

6.53 
24.7 
147 

, Search 
FLOPS 

12.5 
47.7 
292 

for a large number of discretizations, while B&B keeps the computational costs at 
reasonable levels. As the time spent in calculations is dependent on the machine 
used to control the system, the application of the proposed approach in real-time 
problems can not be stated as general. However, the application of branch-and-
bound clearly allows the application of fuzzy predictive control to systems with 
smaller sampling times than the use of enumerative search. Figure 10.6 presents 
the response of the system for Hc = 2, Hp = 2 and 51 points of discretization for 
U(T + j — 1), and for a reference with various steps. 

10.4 Genetic algorithms for optimization in predictive control 

When nonlinearity and constraints are present in MBPC, a non-convex optimiza­
tion problem must usually be solved at each sampling period. The control hori­
zon directly determines the dimension of the optimization problem, which may 
thus become very complex. Different algorithms, such as sequential quadratic 
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Hc=2, Hp=2, N Disc = 51 

0 500 1000 1500 2000 2500 3000 
Time [s] 

0 500 1000 1500 2000 2500 3000 
Time [s] 

Fig. 10.6 Step responses for the air-conditioning system. Reprinted from (Sousa 2000) by permission 
of John Wiley and Sons, Inc., ©2000 John Wiley & Sons, Inc. 

programming (SQP) or branch-and-bound, can be used to circumvent this prob­
lem, as discussed in previous sections. However, SQP usually converges to local 
minima giving poor solutions, and branch-and-bound, a method that requires a 
discretization of the control space, requires significant computing power, growing 
exponentially with the number of possible control actions and with the control 
horizon. Another possibility is to use a genetic algorithm. 

One of the techniques that has proved to be especially suitable for constrained, 
non-convex optimization problems is evolutionary computing, to which genetic 
algorithms (GA) belong. Genetic algorithms are optimization methods inspired 
by the mechanisms of the natural selection and genetics that play a role in the 
natural evolution of biological organisms. GA have been successfully applied in 
a variety of fields where optimization in the presence of complicated objective 
functions and constraints is required (Zurada et al. 1994). The application of GA 
to model-based predictive control has been addressed by Onnen et al. (1997). Due 
to the numerical complexity of the GA, they are mostly suitable for processes 
with slow dynamics, for the time being. However, GA are becoming promising 
tools for the design of model-based predictive controllers, especially for nonlinear 
systems, due to their ability to search efficiently in nonlinear, constrained and 
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non-convex optimization problems. 
This section investigates the application of GA to the determination of an opti­

mal control sequence in MPBC. A genetic algorithm only unfolds its full capabili­
ties if it is designed properly for a particular application. Therefore, a specific GA 
must be designed to fulfill the requirements demanded by predictive control, as de­
scribed in the following. Attention is focused on the application of the proposed 
method to nonlinear systems with constraints on the process inputs. Advanced 
genetic operators and other new features are introduced to increase the efficiency 
of the genetic search. In order to deal with real-time constraints, termination con­
ditions are proposed to abort the evolution, once a defined level of optimality is 
reached. 

10.4.1 Genetic algorithms 

Genetic algorithms are randomized search algorithms that are based on the me­
chanics of natural selection and genetics (Goldberg 1989). They combine the 
principles of natural selection based on 'the survival of the fittest' with a random­
ized information exchange in order to form a search and optimization algorithm. 
Although genetic algorithms can be used for a variety of purposes, their most im­
portant application is in the field of optimization, because of their ability to search 
efficiently in large search spaces, which makes them more suitable with respect 
to the complexity of the optimization problem compared to more conventional 
optimization techniques. 

Since Holland (1975) first proposed the idea of genetic algorithms, many re­
searchers have suggested extensions and variations to the basic genetic algorithm. 
With the advent of artificial intelligence techniques, many applications of the ge­
netic algorithms have been reported (Davidor 1991), especially in combination 
with other computational intelligence techniques such as neural networks and 
fuzzy systems. The importance of genetic algorithms in the field of control is 
increasing (Linkens and Nyongesa 1995). 

10.4.2 Basic elements of genetic algorithms 

Genetic algorithms code the candidate solutions of an optimization algorithm as 
a string of characters which are usually binary digits. According to the terminol­
ogy that is borrowed from the field of genetics, this bit string is usually named 
a chromosome. The solution, which is represented by its chromosome, is called 
an individual. The genetic algorithm considers a number of individuals, which 
together form a population. It modifies and updates the individuals in a popula­
tion iteratively, searching for good solutions of the optimization problem. Each 
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iteration step is called a generation. 
The genetic algorithm evaluates the individuals in the population by using a 

fitness function. This function indicates how good a candidate solution is. It can 
be compared to an objective function in classical optimization. Inspired by the 
'survival of the fittest' idea, the genetic algorithms maximize the fitness value, 
in contrast to classical optimization, where one usually minimizes the objective 
function. The specification of the fitness function is a very important aspect of the 
design of genetic algorithms, as the solution of the optimization problem and the 
performance of the algorithm both depend on this function. 

A genetic algorithm evaluates a number of solutions (values) and then gen­
erates new solutions for the next step of the iteration, depending on the previous 
information. The genetic algorithms are distinguished from other numerical opti­
mization methods by the way in which they generate new solutions. Figure 10.7 
depicts a schematic representation of a genetic algorithm. The terms in this figure 
are explained in the sequel. 

(Define Initial Population) (Fitness Function) 

(increment Generation) 

; 
/ 

(Jjhildren, 

\ 
(Mutation) 

Genetic A] 

(Assess Fitness) 

J 
(Reproduction) 

(Crossover) 

gorithm 
' 

(Best Individuals) 

Fig. 10.7 Artificial evolution in genetic algorithms. 

The algorithm starts with the generation of an initial population. This popu-
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lation contains individuals which represent initial estimates for the optimization 
problem. It should be noted that GA evaluate a set of solutions in the population 
at each iteration step, in contrast to methods like gradient descent, which evaluate 
a single solution at each iteration step. The fitness of the individuals within the 
population is assessed, and new individuals (children) are generated for the next 
generation. The generation is then incremented and children are transformed into 
parents. A number of genetic operators are available to generate die new individ­
uals. 

• The reproduction or selector operator chooses chromosomes according to 
their fitness for mating, i.e., for producing offspring. Fitter individuals get a 
higher probability of mating, and their genetic material is exploited. 

• Crossover exchanges genetic material in the form of short allele strings (a 
part of a chromosome) between the parent chromosomes. This reordering or 
recombination includes the effects of both exploration and exploitation. 

• Mutation introduces new genetic material by random changes to explore the 
search space. 

It has been observed that genetic algorithms are valuable optimization tools, es­
pecially for non-convex optimization in the presence of constraints. A theoretical 
understanding of the GA's working principle is provided by the building block 
hypothesis (Goldberg 1989, Michalewicz 1994). Basically, it can be said that a 
good individual is built up of building blocks of various sizes. The crossover and 
mutation operators shuffle the elements of the building blocks, searching for even 
better ones. Since individuals with high fitness can reproduce more, the success­
ful building blocks will have a higher chance of survival across the generations. 
Thus, the evolution will exploit the available genetic material to explore the search 
space and accumulate successful genetic material as it continues. As each chro­
mosome includes several building blocks, many more blocks than individuals are 
processed simultaneously during the evolution. This is one reason for the GA's 
efficiency in searching complex spaces. 

The practical implementation of genetic algorithms requires the selection of a 
number of operators, as well as the values of various parameters from these op­
erators. The operators that are used most often in the literature are roulette-wheel 
reproduction, fitness ranking, probabilistic and deterministic tournament selec­
tion and steady-state reproduction for the reproduction; multipoint crossover and 
uniform crossover for the crossover; and uniform mutation and dynamic mutation 
for the mutation (Goldberg 1989). The convergence of a genetic algorithm is not 
uniquely defined, and the evolution can, in principle, continue indefinitely. There­
fore, some termination conditions are required to stop the evolution. Usually, it 
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is desired to stop the evolution after a fixed number of generations. Other termi­
nation conditions can be used as well, such as the number of generations during 
which the best individual in the population does not change, or the number of 
generations during which the highest fitness that is achieved does not change. 

10.4.3 Implementation of constraints 

Most optimization problems are constrained problems, where the set of possible 
solutions must satisfy various conditions. In addition to the 'hard' constraints 
that one needs to satisfy, there may be also 'soft' constraints which allow for 
tradeoffs between constraints. The soft constraints can usually be violated to a 
degree, provided that this violation leads to improvement in some other part of 
the optimization goal. Genetic algorithms can handle both types of constraints 
in a unified manner. Three methods for implementing constraints in a genetic 
algorithm are 

(1) the penalty function method, 
(2) the behavioral memory method, and 
(3) the domain-specific GA method. 

In the penalty function method, the constraints are incorporated in the fitness func­
tion, usually as a penalty term. An individual that violates a constraint is thus 
penalized by reproducing less or not reproducing at all. The behavioral memory 
method considers a number of constraints in a multiple-step process. Each con­
straint is considered separately in consecutive evolutions, using a penalty term in 
the fitness function. The final population of each step, in which a single constraint 
is considered, is used as the initial population for the next step of the evolution. In 
this way, the genetic material that proves to be successful when considering a par­
ticular constraint in the preceding steps is passed on to the succeeding steps. The 
domain-specific GA is a genetic algorithm that is designed with a particular ap­
plication in mind, so that one takes advantage of the additional knowledge about 
the constraints involved in the problem. Beside the fitness function, the coding 
method and the genetic operators can be designed specifically for the problem that 
is being investigated. The domain-specific GA is the most successful way of deal­
ing with constraints in a particular problem, provided that such a GA can indeed 
be designed. The other two approaches waste genetic material, as the evolution 
process can lead to many individuals that do not satisfy the constraints. Since 
these individuals cannot reproduce, the successful building blocks that may be 
present in their chromosomes disappear from the population. For this reason, this 
section uses a domain-specific GA for dealing with the constraints. The choice of 
various design parameters is discussed in the following paragraphs. 
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10.4.4 Fitness function 

The first task in the design of GA is to specify the principles for the fitness evalua­
tion. In the approach presented here, the objective function to be minimized is the 
objective function usually applied in predictive control, given by Eq. (10.1). Only 
SISO systems are considered for the sake of simplicity. However, this approach 
can be extended to MIMO systems in a simple way. The objective function for 
this type of systems is thus given by 

J = J ^ ^ r + i) - y(r + j))2 + $ > 2 ; ( A U ( T + j - l))2, (10.13) 
3=1 J = l 

which accounts for minimizing the variance of the process output from the ref­
erence, also minimizing the energy at the same time. The compromise between 
the two goals is given by the choices of W\j and w<iy As the GA operators are 
designed to maximize the fitness function, the above minimization problem has to 
be transformed into a maximization one. This can be done, for instance, by using 
the transformation 

f = ih- (1(U4) 

This transformation ensures that the fitness values are always positive. Moreover, 
it scales the fitness values into the interval [0,1], which can be used to specify 
conditions for terminating the genetic search prematurely. 

10.4.5 Encoding control variables and implementing constraints 

The next step necessary to apply GA to predictive control is to derive a feasible 
coding principle that is able to cope with constraints and with the specific charac­
teristics of the variables used in predictive control. 

A straightforward coding principle is to represent each change AM in the con­
trol action by one gene, where the sequence of the genes (chromosome) corre­
sponds to the prediction steps. This encoding method automatically implements 
the rate constraints. This type of constraint is usually applied in industrial pro­
cesses to avoid sudden changes in the control action, ensuring safety and energy 
saving. For single-input systems, the number of genes, Ng, is equal to the control 
horizon Hc. At each step r , the first gene in a chromosome encodes the change 
in the control action AU(T) to be added to u(j - 1). Simple unsigned binary 
coding has been applied to encode the information. Let L g denote the number of 
bits per gene, which is related to the number of digits in a real value. Then, the 
chromosome length L c is equal to Lc = Ng • Lg. 
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The encoded values in the form of bit strings have to be decoded to extract the 
control actions. The strings 00 . . . 0 and 1 1 . . . 1 correspond to the maximum 
negative and positive changes in the control action at each step, respectively. The 
absolute control action is derived by integrating over the time steps. However, this 
encoding method does not take account of the absolute constraints on the control 
actions. A commonly used solution to this problem is the use of penalty terms 
in the objective function. This principle, however, diminishes the efficiency of 
GA because of the waste of genetic material due to the unfeasible solutions in the 
population. Another approach is proposed here, which implements both the rate 
and level constraints in the coding mechanism. 

u(x+j-\) 
A«(T+/-1) 

Fig. 10.8 Genes encoding relative change values with the possible values for u(r + j). 

Let um a x
 a nd «min denote the level constraints, i.e., the maximum and mini­

mum allowed control actions. Similarly, let Au+ and Au_ denote the rate con­
straints, i.e., the maximum positive and negative changes in the control action, 
respectively. For a certain control action at time step r + j — 1, with 1 < j < Hc 

(corresponding to gene j), the maximum negative and positive changes from the 
previous control action u(r + j - 2) are given by 

AC/supC/) = min[Au+,umax - U(T + j - 2)], 
AUinf(j) - min[Aw_,u(r + j - 2) - wm i n] . 

(10.15) 

Figure 10.8 illustrates the principles of this constraint implementation. The max­
imum positive and negative changes AU-mf(j) and Af/Sup(j) are now discretized 
in rid values each. The set of possible changes in the control action, AU(j) is 
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given by 

C- = { -AUintU) 

C+ = { AUsup(j) 

nd 

nd - i 

0 , 1 , . . .,nd - 1 }• 
i - 0 , 1 , . . . , nd - 1 }• nd 

Au(T + j-l)e{C-,0,C+} . (10.16) 

These values are coded such that the string 00 . . . 0 corresponds to AU(T + j — 
1) = -Af/inf (j) and 1 1 . . . 1 corresponds to AUsup(j). Note that the genes are 
encoded sequentially, from the first one corresponding to A«(r) to the last one 
corresponding to Au(r + Hc — 1). This procedure assures that all chromosomes 
encode valid control sequences, avoiding the waste of genetic material. 

10.4.6 Genetic operators 

Genetic operators cannot be optimized independently of each other, and have to 
be considered as sets of parameters. The set of genetic operators that are used 
must usually be tailored for the given application. Operators from the literature 
(Goldberg 1989, Potts et al. 1994) can serve as a reasonable initial setting. 

For the application of GA to predictive control, the following operators are 
used. The reproduction operator is a combination of the deterministic tournament 
selection and the steady-state reproduction. A pair of individuals is randomly 
chosen to compete for mating, and the fitter individuals stay in the population. 
Steady-state reproduction preserves Mss best individuals, and re-introduces them 
into the population of the next generation. Therefore, the partly optimized chro­
mosomes will not get lost due to disruption of building blocks during crossover. 
For control applications, a steady-state size of Mss — 2 individuals is found to be 
suitable. 

Uniform crossover is used as the crossover operator. It randomly generates a 
crossover mask to specify which bits are taken from parent 1 (represented by a 1 
in the mask) and which are taken from parent 2 (represented by a 0 in the mask) 
to form the children. Two different offsprings are produced by using the mask and 
its inverse, as shown in Fig. 10.9. The uniform crossover probability is Pu = 0.5, 
which means that there is an equal probability of having a 1 or a 0 in the crossover 
mask. 

Finally, the uniform mutation operator is used for mutation. This operator 
inverts each bit of the chromosome with probability Pm (Pm — 0.01 in this appli­
cation), introducing new genetic material into the population. 
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crossover mask 11100100 inverted mask 00011011 

Parent 1 10100101 

Offspring 1 10101111 

T? ft 
Parent 2 01101011 

Parent 1 10100101 

Offspring 2 01100001 

Parent 2 01101011 

Fig. 10.9 The uniform crossover. 

10.4.7 Population structure 

Usually, the population consists of a constant number of individuals throughout 
the entire evolution. However, the choice of the population size and of the initial 
population influences the success of GA. First, the size of the population must be 
chosen. The size of the population should be related to the size of the search space, 
ensuring a sufficient number of initial search points for the genetic search. The 
number of individuals (chromosomes) per population Np, depends on the number 
of possible control actions 2n d +1, the control horizon Hc (equal to the number of 
genes per chromosome Ng), the gene length Lg and a constant Kp to be properly 
chosen 

Np = Kp • (Ng + Lg). (10.17) 

Various tests have been made for the presented application, and Kp = 8 is found 
to be a suitable setting. As an example, if the control horizon is Hc = 5 and 
the gene length is Lg = 5, the number of chromosomes per population is thus 
Np = 8 • (5 + 5) = 80. In general Np is a tradeoff between a large number of 
individuals in the population, ensuring sufficient exploration of the search space, 
and low computational effort. 

Secondly, a suitable initial population must be chosen. When no additional 
information is available, a random initialization is often used. This method guar­
antees a high genetic diversity, and it is widely used in many research works in­
volving GA. However, with a random initial population, the convergence may be 
slower than if some initial knowledge about the possible solutions is available, 
as in the case of MBPC. Predictive control uses the receding horizon principle, 
which implies that an evolution has to be calculated at each time step. On the one 
hand, this feature imposes a real-time constraint, but, on the other hand, the past 
evolutions give important information that can be used to improve the initial pop-
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ulation of the current evolution. Two possibilities of using the information from 
the past evolutions are introduced: the inter-evolution steady-state principle and a 
learning initial population. 

a highly fit chromosome of the population 

time step x: Gene 1 Gene 2 Gene 3 GeneH, 

gene 1 is lost shifting gene H îs kept constant 

time step x+1: Gene 2 Gene 3 GeneH, GeneH, 

Fig. 10.10 Shift operation with the inter-evolution steady-state principle. 

The inter-evolution steady-state principle (ISS) preserves optimal solutions of 
the previous evolution for reintroduction into the initial population of the next evo­
lution. This method keeps the Miss best individuals for the next evolution. The re­
maining part of the population is randomly initialized. Because genes correspond 
to time steps, a modification by shifting the genes of the preserved chromosome is 
applied before reintroducing this chromosome to the next initial population. Thus, 
at time T, the genes from r -I- 2 to r + Hc are shifted one position, and the last gene 
takes the same value as at r 4- Hc, as can be seen in Fig. 10.10. The use of this 
technique enhances the quality of the population in the first generation because the 
evolution is likely to start with a highly fit solution, known from the optimization 
at the previous time step. 

It is possible to improve the initial set of solutions by including a learning ini­
tial population, where 'learning' denotes the existence of a memory for success­
ful solutions. This type of population includes information about already solved 
problems or repeated situations, containing in memory the most successful in­
dividuals of a number of previous evolutions (and not just the best individuals 
of the last evolution as in the inter-evolution steady-state case). Therefore, the 
initial population contains a new part where these individuals are stored. In or-



Derivative-Free Optimization 257 

increased population size 

randomly initialized population part 

memory start memory end 

i memory size 1 ISS size 

population individuals 
newest individual oldest individual 

Fig. 10.11 Population structure for improved initial populations. 

der to keep genetic diversity, identical solutions are only stored once. At each 
evolution, a newly learnt individual replaces the oldest one, following the FIFO 
(first-in, first-out) buffer principle. This memory is copied from one evolution to 
another, otherwise the stored information would be modified during the genetic 
operations. The application of this method must be confined to systems where the 
reference signal includes repeated situations, as in periodic signals. For this type 
of signal the memory size should be greater than the number of steps to fulfill one 
period. Figure 10.11 shows the described population structure, also including the 
principle of inter-evolution steady state. 

The use of the techniques described can save up to 20% of the number of 
generations needed to calculate an acceptable solution, when compared to the 
situation where only a random initial population is used (Onnen et al. 1997). 

10.4.8 Termination conditions 

Fixing the number of generations per evolution may restrict the genetic algo­
rithm's efficiency. This setting implies that the duration of the genetic search 
is fixed, regardless of the search success. Moreover, it is difficult to determine 
beforehand the number of generations needed to find (near)-optimal solutions. 
Thus, an assessment of the quality level of the genetic algorithm should be made 
on-line. Three different approaches have been investigated to provide the condi­
tions to abort the evolution. 

Absolute fitness limit - the genetic search stops when the highest fitness in 
the population reaches a predefined value. This method can only be used if 
the possible maximum fitness or a desired fitness is exactly known, which is 
the case when using Eq. (10.14). 
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• Convergence rate - uses a condition on the rate of convergence of the maxi­
mum fitness over the entire evolution process to abort the search. If the maxi­
mum fitness is unchanged for a given number of generations AT w, the evolution 
stops. 

• Convergence rate of the first gene - this condition is quite similar to the 
previous one. The genetic search stops once the first gene is unchanged for 
Nfw generations. Note that the first gene represents the current control input 
U(T). 

Here, the convergence rate of the first gene is used. Experimental results show that 
in 90% of the test runs the first gene stops changing earlier than the other genes 
of a chromosome. Note that the rest of the optimized control sequence does not 
affect the control quality. 

In summary, the genetic algorithm designed to cope with the specific require­
ments of predictive control has the following characteristics. 

• Termination conditions to abort the evolution are proposed in order to cope 
with the real-time requirements of MB PC, after a specified level of optimality 
is achieved. 

• A coding scheme is developed to implement level and rate constraints on the 
controlled process inputs. This scheme also provides a way to efficiently en­
code optimization variables by not wasting genetic material. 

• A method of initializing the population is suggested, which introduces a spec­
ified number of best solutions from the previous time step to the new pop­
ulation. Following the receding horizon principle, the genes of the previous 
solution are shifted by one step. 

• A learning feature is introduced, that stores successful individuals over a given 
time period, in order to cope more effectively with periodic reference signals. 

10.5 Application example with genetic algorithms 

This section considers the pressure dynamics of a simulated batch fermenter as an 
example of the application of genetic algorithms in MB PC. The simulation results 
with GA are compared to those obtained with the branch-and-bound method, in 
terms of the achieved control accuracy and the computational costs. 

The predictive control scheme based on GA optimization is applied in the 
simulation of pressure control in a laboratory fermenter. This system is described 
in Sec. 7.6. The nonlinear differential equation given by Eq. (7.45), and reminded 
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here, is used for the simulation model of the system. 

dP_ _ lOOO.flr 
dt ~ 22,4.yft ••-("""W^s' 

The symbols and respective values are described in Sec. 7.6. The maximum 
changes in the valve position are Au+ = Au_ — 10% of the total range per 
sample and the level constraints are um\n = 0% and umax = 100% of the valve 
position. The control and prediction horizons are chosen equal, Hp = Hc. The 
discretization rid of the control universe is set to 2, thus providing 5 possible 
changes in the control action. For the sake of simplicity, only the error criterion 
is considered in Eq. (10.13), and thus w\j = 1 and w2j = 0, for j = 1 , . . . , Hp. 
Figure 10.12 shows an example of a typical simulation experiment. 
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Fig. 10.12 Example of time responses for a given reference with Hp = 4 (solid line: reference, 
dashed-dashed line: GA, and dashed-dotted line: branch-and-bound. 

The performance of the GA is compared to a branch-and-bound method from 
Sec. 10.2. The branch-and-bound uses five equal discretization intervals, contrary 
to the GA discretization method, which uses different discretization intervals, see 
Sec. 10.4. Three comparison criteria are considered. 
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(1) CPU time (in seconds). 
(2) FLOPS (floating-point operations). 
(3) Control accuracy (sum-squared error). 

Figure 10.13 shows that the computational effort as a function of H c increases 
much faster for the branch-and-bound technique than for the GA. For the appli­
cation presented, the GA outperforms the branch-and-bound method for H c > 6. 
For shorter horizons, the GA needs more computational effort. 

Control horizon 

Fig. 10.13 Comparison of the computational costs in terms of CPU time (- -) and FLOPS (—) for 
the GA (o) and the B&B method (x). 

Figure 10.14 compares the two optimization methods in terms of sum-squared 
error (SSE). The control accuracy is similar, except for the control horizon of 2 
steps, where the GA performs considerably worse. 

These experimental results thus show that GA outperforms the branch-and-
bound method for longer control horizons (above 6, with the process considered 
here) in terms of computational costs. The control accuracy achieved is compa­
rable to the global optimum found by the branch-and-bound method. Therefore, 
GA optimization for MBPC can best be applied to processes with relatively slow 
dynamics and long control horizons. Note that the computational costs for MIMO 
systems increase linearly for GA, while they increase exponentially for the B&B 
method. Therefore, it is expected that GAs will outperform B&B for multivariable 
systems. 



Derivative-Free Optimization 261 

0.5 -- -

0.45 

0.4 

0.35 

I 
•S 0.3 

s 
3 

|0.25 
s 

0.2 

0.15 

0.1 

0.05 

1 2 3 4 5 6 7 
Control horizon 

Fig. 10.14 Comparison of the sum-squared error calculated over the complete reference: for the GA 
(o) and the B&B method (x). 

10.6 Summary and concluding remarks 

Different optimization algorithms to be applied in fuzzy predictive control have 
been considered in this chapter. Two optimization techniques 

(i) branch-and-bound method, 
(ii) genetic algorithms, 

that can be used to deal with the problems in predictive control, using classical 
objective functions, when the model of the process is nonlinear, are presented 
and compared. The branch-and-bound technique has been extended to predictive 
control with fuzzy objective functions. 

The branch-and-bound algorithm is applied to MBPC. This algorithm is faster 
and more accurate than enumerative search and the SQP method. However, the 
computational effort increases exponentially with the control horizon and the 
number of discrete control alternatives. Therefore, these two parameters must 
be chosen such that they constitute a good compromise between computational 
time and desired accuracy. Another important advantage of branch-and-bound is 
that it implicitly deals with constraints. Moreover, the presence of constraints im­
proves the efficiency of the method by eliminating nodes that do not contain the 
optimal solution. 

An extension of the branch-and-bound algorithm for predictive control with 
fuzzy objective functions, which is derived from the B&B algorithm for classi-
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cal MBPC is considered. In order to apply this B&B algorithm, the fuzzy goals 
and the fuzzy constraints must be combined by using a t-norm. The computa­
tional costs are reduced considerably in comparison to a full enumerative search. 
Therefore, this approach can be applied in real-time for processes with relatively 
large sampling periods. A real-time application of this B&B algorithm to an air-
conditioning system is presented in Sec. 12.4.4. 

Genetic algorithms can also be applied when a non-convex optimization prob­
lem must be solved in the presence of constraints. GA have been applied to model-
based predictive control. Some special characteristics for the GA required for this 
application are considered. Termination conditions, a coding scheme to imple­
ment level and rate constraints, a method for initializing the population, and the 
introduction of a learning feature are proposed to cope with the optimization in 
MBPC. The performance of the designed GA has been compared to the branch-
and-bound method. GA outperforms the branch-and-bound method for long con­
trol horizons in terms of computational costs. The control accuracy achieved is 
comparable to the branch-and-bound method. 



Chapter 11 

Advanced Optimization Issues 

When the optimization problem in MBPC is non-convex, general search methods 
can be used to find the solution to the optimization problem at every time step, 
as discussed in Chapter 10. These general search methods are very demanding 
computationally, but they are unavoidable when the optimization problem to be 
solved is complex and non-convex. Unfortunately, the optimization problem in 
fuzzy MBPC is in general non-convex. However, under specific circumstances, 
the optimization can be formulated as a convex problem. In that case, efficient 
optimization methods, such as interior point methods, can be used to solve the 
convex optimization problem in polynomial time. It is thus important to determine 
under which circumstances the optimization in fuzzy MBPC remains convex, so 
that time consuming general search methods can be replaced by fast convex opti­
mization methods for those cases. Some specific circumstances under which the 
optimization problem in fuzzy predictive control remains convex are discussed in 
this chapter. 

One of the problems encountered when discrete search methods are used to 
solve the optimization problem (because it is non-convex due to non-convex con­
straint set and/or complicated objective functions) is that the computational com­
plexity increases exponentially with the number of discrete control alternatives. 
The discretization of the control space should be such that the control accuracy is 
sufficiently high, while the computational complexity is low. One solution to this 
problem is to use fuzzy predictive filters that adapt the discretization of the control 
space in order to avoid limit cycles in steady-state, while keeping the number of 
discrete control alternatives, i.e., the number of discrete control actions, small. 

The outline of the chapter is as follows. Convex optimization in fuzzy predic­
tive control is discussed in Sec. 11.1. Some particular conditions under which the 
optimization problem remains convex are discussed. An example of convex opti­
mization in fuzzy predictive control is given in Sec. 11.2. The trade-off between 
the accuracy and the computational complexity in discrete search methods is con-

263 
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sidered in Sec. 11.3. The concept of fuzzy predictive filters to solve the problems 
introduced by the discretization of the control space in branch-and-bound or ge­
netic algorithms is discussed in this section. The concept of a fuzzy predictive 
filter is illustrated in Sec. 11.4 with an example, before the concluding remarks in 
Sec. 11.5. 

11.1 Convex optimization in fuzzy predictive control 

In model predictive control with fuzzy objective functions, various forms of ag­
gregation for the several criteria can be chosen giving greater flexibility for ex­
pressing the control goals. However, usually these aggregation operators result 
in a non-convex optimization which is computationally not tractable with conven­
tional optimization techniques. As it is often not possible to find a global optimum 
in non-convex optimization, and as it requires large computational effort, usually 
fuzzy predictive control can only be applied to systems with slow dynamics, where 
the sampling time is long enough to perform the complicated optimization step. 
It is desirable to have a convex optimization problem for finding the global opti­
mum in relatively short time, so that the method can be applied to a large class 
of systems. This section shows that under certain conditions the optimization in 
fuzzy predictive control is convex. This work was introduced in (Sousa, Kaymak, 
Verhaegen and Verbruggen 1996). The fuzzy predictive control scheme with the 
convex optimization problem is applied in Sec. 11.2 to the control of a simulated 
non-minimum phase, unstable linear system to illustrate the applicability of the 
scheme. 

Fuzzy predictive control should find the best control actions maximizing the 
membership function fi„ as described in Sec. 9.2.2. Transforming the maximiza­
tion into a minimization problem defines the optimization problem in a more clas­
sical way. Using this transformation, particular membership functions and the 
Yager t-norm, fuzzy criteria can be aggregated in a way that leads to a convex 
optimization problem. 

The general form of a nonlinear constrained optimization problem is defined 
in Eq. (8.2). The fuzzy multicriteria decision making problem is defined as an 
unconstrained problem for the formulation presented in Eq. (8.2), because the 
general goal function is defined as a confluence of fuzzy goals and fuzzy con­
straints. Therefore, the necessary and sufficient conditions for the fuzzy optimiza­
tion problem, described by the optimal policy of Eq. (9.3) in Sec. 9.2.2 to be a 
convex programming problem, is that the function J(v) in Eq. (8.2) is a convex 
function. For convex programming problems, any local minimum v * is the global 
minimum, considerably reducing the computational effort. As the optimization 
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in fuzzy predictive control must be done on-line, it is important to determine the 
conditions under which the selection of the fuzzy decision parameters results in a 
convex optimization. 

Assume that the system under control is a linear SISO system, and is described 
by the auto-regressive linear model 

Py m „ 

y(r + 1) = J2 aJ V(T ~ 3 + 1) + Y, bi M(T - 3 + 1). (U-1) 
j = l 3=1 

where y(r),..., y(T-py +1) and U(T), ..., U(T - mu +1) are the shifted model 
outputs and inputs, respectively, and py, mu are the integers related to the model 
order. 

The minimization of the predicted output error between the reference and the 
predicted model output over the entire prediction horizon is the only goal con­
sidered. This goal is represented by a membership function at each time step. 
Thus, the optimization criterion is represented at each time step by a symmetric 
triangular membership function, which is defined around zero output error, i. e., 

M r ( r + J ) - y ( r + i ) ) = max ( l - ' r ( T + ^ T + ^ ' , o ) , (11.2) 

where r(r + j) is the reference, y(r + j) is the predicted model output, j — 
1,...,HP, and Ke is the spread of the membership function, as discussed in 
Sec. 9.3.2. This spread depends on the problem and it should be selected such 
that the intersection of fuzzy goals over the prediction horizon is not empty. In 
practical terms, this means that fj,n should not be zero over the whole optimization 
space. This can be achieved by selecting a particular range within which the vari­
ables may vary and then by choosing the spread accordingly so that /x n does not 
become zero (assuming that a feasible solution exists within the constrained set). 
For the system of Eq. (11.1) under study, any value that does not lead to an empty 
intersection of fuzzy goals defined for each time step in the prediction horizon can 
be chosen, because the global optimum remains the same. 

Note that in addition to the goal of minimizing the error, it is also possible to 
define crisp constraints in the optimization space U(T) X • • • X U(T + Hc — 1), 
provided that they form a convex set. These (convex) constraints can be repre­
sented by membership functions for crisp sets that are defined on the appropriate 
universe of discourse. Fuzzy constraints on the optimization space are not con­
sidered here, although it can be expected that the results can be generalized to the 
case with fuzzy constraints by using the resolution principle of fuzzy sets (Klir 
and Yuan 1995). The Yager t-norm, given, e.g.in Eq. (9.6), is used as the decision 
function for combining the decision criteria over the prediction horizon. Under 
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these conditions, the following theorem can be formulated. 

Theorem 11.1 Convex optimization in fuzzy predictive control. Let the sys­

tem to be controlled be described by Eq. (11.1), i.e.the system is linear, and let 

the goal of the optimization be the minimization of the prediction error over the 

prediction horizon, where the membership functions for the fuzzy goals at each 

step are given by Eq. (11.2). Further, let the constraints on the optimization space 

U(T) x • • • x U(T + Hc — 1) be crisp (not fuzzy) and convex, and finally let the 

Yager t-norm in Eq. (9.6) be used for the aggregation of the criteria. Under these 

conditions, the optimization problem at each step of fuzzy predictive control is 

convex, provided that a feasible solution exists in the optimization space. 

Proof. Equation (11.1) can be rewritten as an affine function of u for the pre­

dicted outputs and for a particular point j in the prediction horizon 

5 
y(T + j)=yQ + y^aiu(T + l-l) (11.3) 

i=i 

with j = 1 , . . . , Hp. The variable yo (constant at time r for a particular value of 
j) depends on the parameters a,j, bj, on the output values y(r),..., y(r — py + 1) 
and on the control actions u(k),..., u(k - mu + 1). The values for a; are related 
to the parameters of the impulse response and can be derived from a j and bj. The 
error is given by e(r + j) = r(r + j) — y(r + j) and it can be written also as an 
affine function of u, 

j 

e(r + j) = e0 + ^ > W ( r + / - 1) (11.4) 

with eo = r(r + j) — yo and a[ = —on. Considering that the error remains inside 
the universe of discourse defined, the membership function for the error defined 
in Eq. (11.2) can be described by 

Me(r + j)) = l - | g ( r ^ j ) l . (11.5) 

Substituting Eq. (11.4) in Eq. (11.5) one obtains 

Ke(r + j)) = l - l e 0 + EUfe
iT + l - 1 ) l . (11-6) 

Depending on whether the error is positive or negative, Eq. (11.6) can be written 
in an affine form, 

3 

/i(e(r + j)) =e'0 + Y,&U(T + * - 1). (H-7) 
l=i 
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where for e(r + j) > 0, e'0 — 1 — j£- and /?; = — a\, and for e(r + j) < 0, 
e|, = H - ^ a n d / 3 / = a;. 

Since the optimal policy is found by a maximization in fuzzy decision making, 
the term 

Hp } 1 / 7 

JT{l-N(e(T+Jw\ (11.8) 

should be minimized. This is a 7-norm of 1 — fij(e(r + j)). Since 

l-M,-(e(r + i)) = J ^ l 

is an affine function of u according to Eq. (11.6), Eq. (11.8) is a 7-norm of an 
affine function. It is known that the minimization of the norm of an affine function 
with convex constraints on the optimization space results in a convex optimization 
problem (Boyd and Barret 1991). Thus, the maximization of the Yager t-norm 
with the given membership functions and the possible convex crisp constraints 
results in convex optimization. • 

The controller design problem stated above is a convex programming prob­
lem, where any local minimum a;* is the global minimum, and therefore it can 
be efficiently solved. Effective algorithms exist for solving a convex optimization 
problem, where the growth of computational effort with the number of variables 
and criteria has been observed to be quite moderate. The descent methods form a 
large family of algorithms usually applied in convex optimization. They produce 
solutions that have decreasing objective values in successive iterations. Usually, 
these methods require the computation of a descent direction for the function at 
a point, that can be a difficult task in itself. Another possibility is to use cutting-
plane or ellipsoid methods. These methods are described, e.g.by Boyd and Barret 
(1991). They have simple stopping criteria guaranteeing that the optimum has 
been found to a given accuracy. However, for smooth problems (like the prob­
lem under study, as can be seen in the example given in Sec. 11.2), many of the 
descent methods present faster convergence. From the methods that use gradi­
ent information, the most favored are the quasi-Newton methods. These methods 
build up curvature information at each iteration to formulate a quadratic model 
problem. The main difference between various quasi-Newton methods consists of 
the different ways of computing the update of the Hessian matrix in the quadratic 
formulation. 
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11.2 Application example with convex fuzzy optimization 

Convex fuzzy optimization that is described in Sec. 11.1 is applied to the control 
of the simulated non-minimum phase, open-loop unstable linear system, presented 
previously in Sec. 9.4.1. This system is described by Eq. (9.14), which is repeated 
here as a reminder, 

G(a) = 
s - 1 

s3 + s2 + s + 2 

The sampling time is 1 s. The prediction horizon Hp is chosen as 6 (related to 
the settling time) and the control horizon Hc as 2. Both of these are values that 
give good step responses for this system. A crisp constraint on the rate of the 
control action is defined as |Au| < 0.5. In order to have a convex optimization 
problem, the function defining this constraint must be convex. It is assumed that 
for this simple example the process model is equal to the plant. Step responses 
with several values of the Yager parameter 7 have been studied. The results are 
shown in Fig. 11.1. 
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Fig. 11.1 Response of a fuzzy predictive controller using Yager t-norm as the decision function. 
Dashed: 7 = 1.9, solid: 7 — 2.8, dash-dotted: 7 — 4. Reproduced from (Sousa, Kaymak, Verhaegen 
and Verbruggen 1996), ©1996 IEEE. 

A convex programming technique is used for the optimization at each step for 
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u1 

Fig. 11.2 Example of the cost function defined in Eq. (11.8) at time step r = 7 (t = 7s) with 
7 = 2.8 for the control actions u l = U(T + 1) and «2 = U(T + 2). Reproduced from (Sousa, 
Kaymak, Verhaegen and Verbruggen 1996), ©1996 IEEE. 

several values of 7. In this example, a gradient descent method is utilized, provid­
ing fast convergence as required. The gradient-based method using the updating 
method of the Hessian matrix as described in Fletcher (1970) is applied in this 
example. An example of a surface resulting from the optimization of Eq. (11.8) is 
plotted in Fig. 11.2 for the time step r = 7 and for 7 = 2.8. This figure represents 
the resulting surface as a function of the first two control actions U(T + 1) and 
U(T + 2) (the control horizon in this example). Notice that it is a convex surface 
as expected. Lines of constant cost (contour lines) are also plotted in the same 
figure in order to demonstrate the convex nature of the optimization problem. 

Hence, the optimization problem in fuzzy predictive control is convex when 
the controlled system is linear, the goal is the minimization of the predicted er­
ror over the prediction horizon, and the decision criteria are combined using the 
Yager t-norm as the decision function. This means that efficient convex opti­
mization techniques can be used for fuzzy predictive control of linear systems. 
Processes with relatively fast dynamics can also be controlled since the convex 
optimization techniques demand less computational effort than the non-convex 
optimization techniques that have been used for fuzzy predictive control in Chap­
ter 10. Therefore, the advantages of fuzzy predictive control can, in particular 
cases, be combined with the advantages of convex optimization, for which effi-
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cient computational algorithms are available. 

11.3 Fuzzy predictive filters 

When the optimization problem in MBPC is non-convex, it can be addressed by 
discrete search techniques, such as branch-and-bound or genetic algorithms, as 
described in Chapter 10. The discretization of the control space, however, intro­
duces a trade-off between the accuracy, related to the number of discrete alter­
natives (search space), and the computational complexity. Additional problems 
introduced by the discretization are oscillations around non varying references 
(chattering) and slow step responses. Fuzzy predictive filters have been intro­
duced to help this problem (Sousa and Setnes 1999), and it has been applied in 
real-time to a robotic manipulator (Baptista et al. 2001). In these systems, a fuzzy 
filter scales the gain of an adaptive set of possible control actions by using simple 
fuzzy criteria considering the current state of the system and the predicted error. 
Note that besides the name, the proposed filter is different from other fuzzy adap­
tive filters reported in literature (Wang and Mendel 1993, Plataniotis et al. 1996), 
as it is used to derive a set of feasible alternatives for the discrete optimization 
algorithm. In the proposed approach, the search space for the optimization is kept 
limited, while the performance of the controller is increased. 

11.3.1 Basic principles 

A fuzzy predictive filter is composed of an adaptive set of incremental control 
alternatives and a rule base of simple fuzzy prediction rules for scaling these alter­
natives. The predictive rules consider the error between the system's output and 
the desired reference in order to infer a scaling factor, or gain, 7(1-) 6 [0,1] for 
the discrete incremental control actions. Basically, the gain is decreased when the 
system is close to a steady state situation, i.e., the error and the change in error 
are both small, and increased if the error is big or the output moves away from 
the reference. As a result of this, when the system is close to a steady-state oper­
ation, the gain is small and the possible control actions are all close to each other, 
diminishing to a great extent the variation of the output (chattering). On the other 
hand, when the reference contains sudden changes, the gain is increased and the 
control actions can vary much more, allowing for a fast response of the system un­
der control. The fuzzy predictive filter reduces the accuracy problem introduced 
by the discretization of the control actions, while at the same time the number of 
necessary control alternatives is kept low, thereby speeding up the optimization. 
An illustration of the fuzzy predictive filter is given in Fig. 11.3. The design con-
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sist of two parts: the choice of the adaptive discrete control alternatives, and the 
construction of the fuzzy rules for the gain filter. 

Fuzzy Predictive Filter 

state variables _ Adaptive 
discrete 
actions 
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Fig. 11.3 Fuzzy predictive filter, where the state variables are the current control action, the predicted 
error and the change in error. Reproduced from (Sousa and Setnes 1999),©1999 IEEE. 

11.3.2 Adaptive control alternatives 

Instead of using a fixed set of incremental control alternatives, ft = {uii\i = 
1,2,.. . , nd}, as shown in Eq. (10.4), the fuzzy predictive filter makes use of an 
adaptive set of control alternatives. Let u(r — 1) € U represent the control action 
at time instance r - 1, where U — [U~,U+] is the domain of the manipulated 
variable. The upper and lower bounds of the possible change in the control signal 
at time r, uf and u~, respectively, are given by 

u+ = U+ - U{T - 1), 

u~ = U~ - U(T - 1). (11.9) 

The values u+and u~ are thus the maximum changes allowed for the control 
action when it is increased or decreased, respectively. The adaptive set of incre­
mental control alternatives are now defined as 

n; = {o,\lUt ,\iU; \i = 1,2,..., N} , (n.io) 

where the designer has to choose the distribution A/ instead of choosing fixed 
alternatives as in Eq. (10.4). The choice of A; sets the maximum change allowed 
at each time instant by scaling the maximum variations u+ and u~, and the I 
parameter determines the number of possible control actions. The values of A; can 
be such that the control alternatives are, e.g. linear or logarithmically distributed. 
For example, A/ can be selected such that 

A/ = T7rr> / = 1,2,3. (11.11) 
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Hence, the following seven changes in the control actions can be applied, in this 
case, at each sampling period 

FromEq. (11.10) it follows that the cardinality of 0 T, i.e., the number of discrete 
control alternatives, is given by n<j = 21 + 1 including the zero element. For fast 
processes, i.e., processes with small sampling periods, / must be small. In drastic 
cases it can be reduced to one, and only three changes in the control actions are 
allowed: reduce, maintain or increase the current control. 

The variation of the control action given by il* in Eq. (11.10) may for some 
situations be too drastic, and may yield an undesirable behavior of the system, 
such as overshoots or oscillations. The proper choice of the maximum changes 
and the values A; are process dependent. However, the use of the predictive gain 
filter makes these choices far less critical than in the case of fixed alternatives, as it 
scales the gain of these actions depending on the predicted deviation of the output 
from the reference signal. 

11.3.3 Gainfilter 

The fuzzy predictive filter applies a scaling factor, or gain, 7(7-) G [0,1], to the 
adaptive set of control actions 0* in order to obtain a scaled version Q, T that is 
presented to the optimization routine, 

fiT = 7 ( r ) . f i ; . (11.13) 

The scaling factor 7(7-) can be defined in different ways. When the system under 
control is at steady state, the fuzzy predictive filter should scale down the control 
alternatives to enable convergence to the (non-discrete) optimal value and elimi­
nate the chattering effect. On the other hand, when big changes are predicted, the 
gain should be high to enable a fast response. Thus, the factor 7(7-) must be cho­
sen based on at least the predicted error between the reference and the system's 
output. The predicted error is defined as 

e(T + Hp)=r(r + Hp)-y(T + Hp), (11.14) 

where r(r + Hp) is the reference to be followed at time T + Hp. Further, the 
change in the error gives an indication on the evolution of the system, and this 
information should also be considered in the derivation of 7(7-). The change in 
error is defined as 

Ae(r) = e(r) - e(r - 1). (11.15) 
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Note that the difference operator can amplify high frequency noise if present. 
When the error signal e(r) is corrupted by significant noise, it should be filtered 
before the change in error is computed, i.e., Ae(r) = e / ( r ) — ey(r — 1), where 
e/ denotes the filtered error. 

Considering the predicted error and the change in the error, simple heuris­
tic rules can be constructed for the gain. When both e(r + Hp) and Ae(r) are 
small, the system is close to a steady state situation. The set of control alterna­
tives should then be scaled down to allow finer control actions, i.e., 7(7") —• 0, in 
order to approach zero steady state error without introducing oscillations around 
the set-point. When the predicted error and the change in error are both high, 
bigger corrective steps should be taken, i.e., 7(7-) —>• 1. The two fuzzy criteria, 
'small predicted error' and 'small change in error', are defined by the membership 
functions fie(e(T + Hp)) and fi&e(Ae(T)), respectively. These two criteria can 
be aggregated by means of a conjunction that can be represented by the minimum 
operator. The aggregation of these criteria is then given by 

/i7(e(r + i?p), Ae(r)) = min(//e,//Ae) • (11.16) 

Note that 7 is the complement of the aggregated membership fi 7 . Thus, the scaling 
factor 7(7-) can be easily derived by taking the fuzzy complement of /i 7 as 

7(7-) =7*7 = l - / i 7 . (11-17) 

From the definition of/i7 in Eq. (11.16) and the definition of 7(7-) in Eq. (11.17) 
it follows that when one of the two variables, error or change in error, is not small 
the gain 7(7-) is increased. Only when both conditions are fulfilled, i.e., both error 
and change in error are small, the gain is decreased. This property is given by the 
complement of the minimum of the two membership functions in Eq. (11.16). 

- I U 2 
„ ,. . , Change of error 
Predicted error e 

Fig. 11.4 Two-dimensional membership function/ty = min(/ie,/iAe)- Reproduced from (Sousa 
and Setnes 1999), ©1999 IEEE. 
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In summary, Eq. (11.10) represents an adaptive set fi * of incremental control 
actions at time instance r. These are determined by the available control space at 
time r, as denned in Eq. (11.9). The actions are scaled by the gain 7(7-) £ [0,1] to 
create a set of alternatives fiT that are passed on to the optimization routine. The 
value of 7(7-) is determined by simple fuzzy criteria regarding the error state of 
the system. The proposed fuzzy predictive filter has only a few design parameters; 
namely A;, and the membership functions fj,e and JUAC, all of which are not really 
critical, and thus allows for the use of some heuristics to cope with uncertainties 
in their definitions. Possible constraints on the control signal concerning, e.g.the 
range and rate of change of the control variable can be implemented by properly 
selecting the parameters A;. 

11.4 Application example for fuzzy predictive filters 

A HVAC system (see Sec. 9.4 and Sec. 12.2) is used as an example to test the fuzzy 
predictive filter proposed in Sec. 11.3. The system consists of a fan-coil unit inside 
a test cell (room) under control. The system should keep the temperature of the 
room at a certain reference value, ensuring that enough ventilation and renovated 
air are supplied to the room. 

A simplified Takagi-Sugeno fuzzy model is constructed from process mea­
surements using 800 samples with a sampling period of 30 s. The model predicts 
the supply air temperature Ts based on its present value, the mixed air temperature 
Tm, and the heating valve position u, thus 

x(r) = [TS(T),U(T - l ) ,T m ( r ) ] T . (11.18) 

The rules have the following form, 

Rk : If TS(T) is Ak and U(T - 1) is A\ and Tm(T) is Ak 

ThenT.(r + l ) = y * , * = 1, . . . ,10, 

where yk = 6%[x(r)Tl]T. The final model is shown in Table 11.1, and it is sim­
plified by using model simplification techniques presented by Setnes, Babuska, 
Kaymak and van Nauta Lemke (1998). The antecedent membership functions 
of the model are shown in Fig. 11.5, together with the validation in a free-run 
simulation using unseen data. 

The model is implemented in the internal model control scheme (see Sec. B.2) 
as depicted in Fig. 11.6, and applied to the control of the fan-coil unit with a 
step-like reference. Both the error signal e m ( r ) and the mixed air temperature 
measurement Tm(r) are passed through first-order low-pass digital Butterworth 
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Table 11.1 Fuzzy model of a HVAC system. Reproduced from (Sousa and Semes 1999), 
©1999 IEEE. 

TS(T) U ( T - 1 ) Tm{r) Ts(r + 1) 

A2 

c2 

c3 

c4 

Di 

-0 .48T s ( r ) + 0.42Tm(r) - 0 . 0 9 U ( T - 1 ) + 71.4 
0.90Ts(r) + 0.53Tm(r) + 1 2 . 2 U ( T - 1 ) - 16.4 
0 . 7 3 T S ( T ) + 0.18Tm(r) - 1 5 . 6 U ( T - 1 ) + 9.06 

1.99Ta(r) - 0 . 2 8 T m ( r ) + 2 8 . 2 u ( r - l ) - 6 5 . 1 

0.5 1 
Heating valve u(k-l) 

200 

(a) Fuzzy sets in the model (b) Recursive simulation of the fuzzy model 

Fig. 11.5 Fuzzy sets used in the model (a). Prediction (dashed line) of unseen validation data in a 
recursive simulation (b). Reproduced from (Sousa and Setnes 1999), ©1999 IEEE. 

filters, JF\ and F 2 , respectively. The filter parameters are empirically chosen in 
order to reliably filter the measurement noise and to provide fast responses *. 

Simulations experiments have been performed, where the model-plant mis­
match is simulated by using a different model to represent the plant. Predictive 
control as presented in Sec. A.l is applied to the system, where the prediction and 
control horizons are set to Hp = 4 and Hc = 2, respectively, and the weight pa­
rameters in Eq. (10.1) are set to w\j — 1 and W2j = 500. The branch-and-bound 
method for predictive control as described in Sec. 10.1 is applied with the lower 

•The filtered error emf(r) is given by e m / ( r ) = 6 i e m ( r ) + b2em{T - 1) - a2ernf(T - 1) , 
with 61 = 62 = 0.086, a2 = —0.83. The filtered mixed air temperature is given by 7^(7- ) = 
diTm{T) + d2Tm(T - 1) - c2Tmf(T - 1) , with di = d2 = 0.245, c2 = - 0 . 5 1 . 
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Fig. 11.6 Implementation of MPC in the system using an IMC structure. The controller uses the 
fuzzy predictive filter. Reproduced from (Sousa and Setnes 1999),©1999 IEEE. 

bound Jii = 0, Vi. The applied set of possible incremental control actions is 

ft = {-0.05, -0.02, -0.01,0,0.01,0.02,0.05}. (11.19) 

Finally, the fuzzy predictive filter was applied. The scaling factor 7(7-) is com­
puted as in Eq. (11.17), with / J 7 ( T ) given by Eq. (11.16). Figure 11.4 depicts the 
aggregated membership function fj,7, where the definition of the two fuzzy criteria 
He and HAe for the HVAC system are also shown. The parameters A; have been 
selected as in Eq. (11.11) and Eq. (11.12) with / = 3. 

Simulation results obtained both with the fixed alternatives and with the fuzzy 
predictive filter are presented in Fig. 11.7 and Fig. 11.8. From the results it is seen 
that both schemes present good control performance. However, the fuzzy predic­
tive filter allows, at the same time, for more vigorous and also for finer control 
actions. For a non-varying reference, the filtered control actions are practically 
constant, while the fixed actions in Eq. (11.19) introduce small oscillations in the 
control. While this has no fatal consequences for the system under study, it is 
undesirable in general as it increases the control effort and can provoke undesired 
oscillations. The sum square error decreases 25% using the fuzzy predictive filter. 
The computational time, however, increases about 20%. Simulations with only 
three control alternatives have also been performed. The fuzzy predictive filter 
achieves similar performance in terms of the error, while the computational time 
is decreased (30%). For the B&B optimization with three fixed alternatives, the 
computational time decreases considerably (50%), but the sum squared error for 
the best case increases by at least 40%. Moreover, the chattering effect is quite 
large, and the control performance is not acceptable. The simulation results are 
summarized in Table 11.2, relative to the approach with seven fixed alternatives. 
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Fig. 11.7 Simulation responses of the HVAC system without filtering the control actions. Repro­
duced from (Sousa and Setnes 1999), ©1999 IEEE. 

Table 11.2 Summary of simulation results normalized to the 
case with 7 fixed control actions. Reproduced from (Sousa and 
Setoes 1999), ©1999 IEEE. 

Performance fixed 7 scaled 7 fixed 3 scaled 3 

error 
computations 
chattering 

1 
1 

moderate 

0.75 
1.2 

none 

1.4 
0.5 
big 

0.75 
0.7 

none 

11.5 Summary and concluding remarks 

A couple of issues regarding improvements to the performance of optimization in 
MBPC have been considered. First, special conditions, under which model-based 
predictive control with fuzzy objective functions remains convex, have been stud­
ied. Second, a technique to deal with the problem of reduced accuracy, resulting 
from the discretization of the control space by generalized search methods, has 
been described. 

When the optimization problem in fuzzy predictive control is convex, efficient 
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Fig. 11.8 Simulation responses of the HVAC system using fuzzy predictive filters. Reproduced from 
(Sousa and Setnes 1999), ©1999 IEEE. 

optimization methods can be used to solve the problem with polynomial time 
algorithms. This implies that MBPC with fuzzy objective functions can be used 
in these cases, even for systems with small sampling times. A set of conditions, 
under which the convexity of optimization in MBPC can be guaranteed, is given 
by 

(1) the system under control is linear, 
(2) only one fuzzy goal at each time step within the prediction horizon is denned, 

and it strives for the minimization of the prediction error, 
(3) the decision criteria are combined by the Yager t-norm, and 
(4) the conventional (crisp) constraints on the optimization problem are convex. 

Under these conditions, the advantages of fuzzy objective functions in predictive 
control can be combined with the advantages of convex optimization. 

Non-convex optimization problems in model predictive control can be solved 
using discrete search techniques, such as branch-and-boundor genetic algorithms. 
The discretization leads, however, to an approximate solution that can generate 
oscillations around non-varying references and slow step responses. Fuzzy pre­
dictive filters can help these problems, keeping at the same time the search space 
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limited, obtaining at each time instance a suitable set of control actions. 
The control actions are determined based on simple fuzzy criteria regarding 

the current and the predicted error. The use of fuzzy predictive filters in control 
can lead to faster closed-loop response with smaller oscillations in the steady-
state. This makes it possible to decrease the number of discrete control alternatives 
needed. 
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Chapter 12 

Application Example 

The application of fuzzy decision making methods to control engineering has 
been demonstrated mainly by simulation examples in the previous chapters. In 
this chapter, an actual control application is considered, and some of the control 
methodologies that are discussed in this book are applied to temperature control 
of an air-conditioning system. In the last decades, the number of air-conditioning 
systems and heating and ventilating systems installed in buildings has been in­
creasing continuously. By controlling the indoor climate, human comfort can be 
significantly increased. An increasing number of air-conditioning units installed 
ask for better control of indoor temperatures, which can combine the increase 
of comfort with energy saving. Future air-conditioning systems are systems de­
manding sophisticated control. The combination of several goals, such as energy 
saving and human comfort, is highly desirable. These goals can be described in a 
hierarchical structure for intelligent building system control (Shoureshi and Rah-
mani 1992). This hierarchy consists of a supervisor, a coordinator and a local 
level control system. An expert control of an air-conditioning plant using a fuzzy 
rule-based supervisor is presented by Ling and Dexter (1994). Note that these 
two approaches use linguistic rules based on expert knowledge, always requiring 
some trial-and-error method to tune the parameters of the controller. The control 
using hierarchical levels presented by Shoureshi and Rahmani (1992) is an inter­
esting approach, but quite complex. However, using fuzzy goals and constraints, 
it is possible to simplify the control scheme by concatenating the three levels, su­
pervision, coordination and local controllers, into only one. Moreover, different 
goals can be used for different control situations. The first step for implementing 
this approach is presented in this chapter, where predictive controllers with fuzzy 
objective functions, as presented in Sec. 9.3, are applied to an air-conditioning 
system. 

The air-conditioning system, described in Sec. 12.2, is a good pilot system to 
demonstrate the method studied, because different control strategies can be tested. 

281 
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The process has reasonably slow dynamics, which implies that it is feasible to im­
plement control techniques requiring non-convex optimization. In this pilot plant, 
the working conditions are very close to real air-conditioning systems. Nonlinear 
fuzzy models are developed for the air-conditioning system. After a general dis­
cussion in Sec. 12.1 on air-conditioning systems, the pilot system (the test room) 
considered in this chapter is described in Sec. 12.2. Section 12.3 presents several 
models developed for this system. Section 12.4 presents the controllers applied to 
the system and their respective results, before the concluding remarks in Sec. 12.5. 

12.1 Air-conditioning systems 

A heating, ventilating and air conditioning (HVAC) system consists of a primary 
system of heat exchangers, pipes or dampers, supplying a medium such as hot 
water, steam or chilled water to the terminal system, which is any heating or cool­
ing unit responsible for the conditioning of a room or building (Levenhagen and 
Spethmann 1993). Several types of air-conditioning systems are manufactured. In 
general they are classified into 

(1) all-air systems, 
(2) air-and-water systems, and 
(3) refrigerant-based systems. 

Often, air-conditioning systems are designed based on the assumption that the in­
door air is well-mixed and only one temperature is assigned to it. However, this 
is clearly an over-simplification of reality, because the indoor temperature distri­
butions and air flows can not be neglected. The temperature in the room thus 
changes from place to place, and the control system must consider these factors. 
Otherwise, the performance of the control is usually poor. The modeling of dy­
namic indoor temperatures and air flows can be derived by using computational 
fluid dynamics. This theory, however, is too complex to be considered for con­
trol applications, because a huge number of equations based on finite air volumes 
must be solved iteratively. A possible solution for this problem is to simplify 
these equations by linearizing them in a state-space model, which can be used 
for control purposes. This approach is based on the fact that detailed tempera­
ture distributions are not necessary, because most people are insensitive to small 
temperature differences inside a room. 

Normally, only one temperature is measured in the control of indoor thermal 
conditions. Other temperatures in the room must be estimated using a model. 
Traditional systems used in air-conditioning systems assume that the measured 
variable is the controlled variable. For most of the air-conditioning systems, the 
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temperature sensor is mounted to measure the temperature of the returned air or 
the supplied air. The temperature of the working zone is not measured, due to 
the inconvenience of placing a sensor in a zone where it can be easily damaged. 
These factors are taken into account for selecting the measured temperatures used 
for the particular air-conditioning system under control, which is described in the 
next section. 

12.2 Fan-coil systems 

One common type of air-conditioning system that uses air and water is the fan-
coil unit system. In this type of HVAC systems, the conditioned air is supplied 
to the unit at medium or high pressure. Such a system (depicted in Fig. 12.1) 
is considered in this chapter. Hot water at 65 °C is supplied to the coil which 
exchanges the heat between the hot water and the surrounding air. In the fan-coil 
unit, the air coming from outside (primary air) is mixed with the return air from the 
room (recirculated or secondary air). The flows of primary and secondary air are 
controlled by the outside and return dampers, and by the velocity of the fan, which 
forces the air to pass through the coil, heating or cooling the air. The global control 

\ *-<M 

-return damper/ 
-outside damper,../ 

•j/ primary air' \ ~ 

• - . , . 

'"'/ 
^ > 
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i f i N T w o r k ^ 
J- return air 

Fig. 12.1 Air conditioning system. 

goal for this system is to keep the temperature of the working area in the test cell, 
Twork. at a prescribed reference value, while ensuring that enough ventilation and 
renovated air is supplied to the room. Three different control actions can be used 
for this purpose. 

(1) Velocity of the fan. The fan has three different velocities: low, medium and 
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high. 
(2) Position of the dampers (outside and return). The dampers can be set in a 

number of discrete positions, controlling the amounts of air coming from out­
doors and returned from the test cell. 

(3) Position of the heating valve. The amount of water entering the heat ex­
changer is controlled by the heating valve, which operates in the range from 
completely open to completely closed. If this valve is completely open, the 
quantity of supplied hot water is maximal, and if it is closed, no hot water is 
supplied to the coil. 

In order to control the system, some assumptions are usually made. The fan is kept 
at low speed in order to maintain human comfort by minimizing the noise level. 
However, this speed is enough to assure the refreshment of the air in the room. 
Both dampers are half open, allowing ventilation from the outside, and the return 
of some air from the test cell to the fan-coil. Thus, in the experiments carried 
out, only the heating valve is used as a control input. As shown in Fig. 12.1, 
temperatures can be measured at different locations in the test cell. 

The main goal of an air-conditioning system is to control the temperature of 
the working area Twork, assuring that enough renovated air is supplied to the sys­
tem. Most of the air-conditioning systems control the supply temperature T s or 
the return air temperature T r , assuming that this is the temperature of the working 
area Twork, see Fig. 12.1. This procedure usually leads to poor control perfor­
mance. A different approach is to build a model relating the measured temperature 
to the temperature in the working zone. However, the control of the supply tem­
perature in a fan-coil unit is not an easy task, since the model relating the heating 
valve to this temperature is nonlinear. Moreover, it is strongly influenced by the 
temperature T m of the mixed-air before the fan, which should be considered in 
the model. Therefore, a well controlled supply temperature is necessary to con­
trol the temperature in the working area. In this book, the supply temperature is 
controlled over a wide range of temperatures. The control of the working zone 
can be obtained directly by applying linear state-space models. Note that the con­
trol tests performed in this chapter are made for the fan-coil unit in normal and 
extreme conditions of functioning. The results are a first step for controlling the 
air-conditioning system. 

The temperature under control, i.e., the supply temperature T s changes quite 
quickly compared to all the other temperatures considered, and it is subjected to 
a large number of disturbances, because the measuring point is very close to the 
area where the air passing the coil is supplied to the room. The relation between 
this temperature and the position of the heating valve is nonlinear, and no linear 
modeling techniques can be applied over the range of all possible temperatures. 
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12.3 Fuzzy models of the air-conditioning system 

The considered air-conditioning system has one input — the opening of the heat­
ing valve, and one controlled variable — the supply temperature. The simplest 
way of modeling the system would be to consider it as a SISO system. However, 
this model turns out to be quite poor, because it considers neither the buffer effect 
present in the room nor the disturbance introduced by the outside temperature. 
In order to consider both these effects, the mixed-air temperature before the fan, 
Tm in Fig. 12.1, is also considered as an output of the model. This temperature 
is measured at an ideal point because it contains both the effects of the outside 
temperature and of the temperature inside the room. Moreover, it can be included 
in any industrial air-conditioning system because it is positioned in a safe place 
(far from the working zone). Besides these considerations based on physical un­
derstanding of the process, correlation analysis carried out for other measured 
temperatures confirms that this temperature is the most relevant to be considered 
as an output. To summarize, the developed (fuzzy) models have the opening of 
the heating valve as input (u(r) G [0,1], with 0 standing for the valve completely 
closed) and have two outputs: supply temperature T s and mixed-air temperature 
T m . Delayed values of these three variables are also used for the modeling. 

Two fuzzy models are derived in order to apply fuzzy model-based control as 
described in Chapter 7 and Chapter 9 to the air-conditioning system. 

(1) A Takagi-Sugeno fuzzy model obtained by using product-space clustering 
techniques, as described in Chapter 5. 

(2) A Takagi-Sugeno fuzzy model, which is affine in the input u(r) , such that the 
model is invertible. 

The following sections describe the identification procedures and present the 
fuzzy models derived. 

12.3.1 TS fuzzy model of the air-conditioning system 

This model is constructed from process measurements. The antecedent member­
ship functions and the consequent parameters are estimated from a set of input-
output measurements by fuzzy clustering and least-squares methods, as presented 
in Sec. 5.4.2. After several tests, the sampling period of 30 s was found to be 
sufficient in order to describe the dynamics of the system. The identification data 
set contains Nd = 800 samples, collected in two different day periods (morning 
and afternoon), using the input signal data shown in Fig. 12.2a. The excitation 
signal u consists of a multisinusoidal signal with five different frequencies and 
amplitudes and of pulses with random amplitude and width. This signal is chosen 
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Table 12.1 Model parameters. 

output K pi,P2 niu 

T m 

[ 1, 1] 
[ 1, 1] 

[ 2 
[ 1 

to cover the entire range of the control valve positions and to excite the important 
frequencies in the expected range of process dynamics. The mean value of this 
excitation signal is decreased in order to avoid overheating of the test cell, see 
Fig. 12.2a. Figure 12.2 presents all the data used to identify the fuzzy models. 

50 100 150 
Time [min] 

(a) Valve opening u. (b) Mixed-air temperature T m . 

50 100 150 200 
Time [min] 

(c) Supply temperature T s 

Fig. 12.2 Identification data. 
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The global model can be divided into two models, one for each of the outputs 
Ts and Tm . All the variables u, T s and T m are considered in the premises, making 
these two sub-models MISO models. Note that a MIMO model can always be 
decomposed into several MISO models, as discussed in Sec. 5.1. The parameters 
concerning the number of clusters (rules) K, the orders of the two outputs in 
each model pi and p 2 , the order of the input mu, and the considered delays are 
presented in Table 12.1. For simplicity of notation, let 2/1 = Ts and let 2/2 = Tm 

in the following. The number of clusters is initialized to 10 and is reduced using 
the compatible cluster merging technique from Chapter 6. The final number of 
clusters is found to be 5. The orders of the inputs and outputs are chosen off-line 
by comparing several candidate structures of first-order and second-order models 
in terms of the prediction error criterion. The two MISO models obtained are 
depicted in Fig. 12.3. 

y,(v , 
*C0 , 

«C0 > 

H(-C-I) 

Ts model 
J,(X+1) 

(a) MISO model for the supply tern- (b) MISO model for the mixed-air 
perature T s . temperature T m . 

Fig. 12.3 Structure of MISO TS fuzzy models. 

First, the nonlinear MISO model for the supply temperature is considered. 
This model is described by the nonlinear function 

y i ( r - f l ) = / I ( 2 / I ( T ) , 2 / 2 ( T ) , U ( T ) , U ( T - 1 ) ) . (12.1) 

where f\ is a nonlinear mapping. The nonlinear MISO model for mixed-air supply 
temperature is described by the nonlinear function 

2/2(r + l) = / 2G/ I (T) ,2 / 2 (T ) ,U(T) ) (12.2) 

where / 2 is again a nonlinear mapping. 
The complete MIMO model consisting of the two models is validated by using 

a separate data set, which is measured on another day. Figure 12.4 compares the 
supply temperature and the mixed-air temperature of the measured and recursively 
predicted model outputs in a 'free-run' test. 



288 Fuzzy Decision Making in Modeling and Control 

20 40 80 100 120 140 160 180 200 
Time [min] 

20 40 60 80 100 120 140 160 180 200 
Time [min] 

Fig. 12.4 Model validation. Solid line - measured output, dashed line - model output. 

Note that both sub-models can follow the real data reasonably well. A widely 
used measure to test the validity of a model is the Variance Accounted For (VAF). 
Let the real output be y and the predicted output by the model be given by y. 
Denoting 'var' as the variance, the VAF is given by 

VAF = 100 
yar(y - y) 

var(y) 
x 100%. (12.3) 

For VAF = 100%, the model explains all the variability in the real outputs. The 
VAF's of the two sub-models for the considered temperatures are given in Ta­
ble 12.2. From these values it can be concluded that the sub-model for the mixed-
air temperature is very good, and the sub-model for the supply temperature is a 
little worse, but still good. 

12.3.2 Affine TS model of the air-conditioning system 

Inverse control, as presented in Sec. 7.3, can only be applied if the TS model de­
rived for the system under control is affine in the control input w(r). The model 
presented in Sec. 12.3.1 can be made affine by suppressing U(T) from the an­
tecedents, and re-identifying the consequent parameters. In doing so, however, the 
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Table 12.2 VAF 
values for the valida­
tion of the model. 

output VAF 

T s 97.21 
T m 99.58 

model revealed a non-minimum phase behavior, which hampers the application of 
inverse control. Thus, a new model where the non-minimum phase behavior is 
not present must be identified. Comparing several alternatives, the best affine TS 
model found for the system is presented in the following. 

The identified TS fuzzy model should have the affine structure of Eq. (7.33). 
By denoting again y\ = Ts and yi = Tm , the MISO model for the supply tem­
perature is given by 

Vi(T + 1) = /i(j/i(r),j/i(T - l),i/2(r),!/2(r - l ) , u ( r ) ) . (12.4) 

The orders of the inputs and outputs are chosen by comparing several candidate 
structures of first-order and second-order models in terms of the prediction error 
criterion, while keeping several local linear models with a minimum phase struc­
ture. The premises in this model do not contain the membership functions for 
U(T), and the fuzzy model can be inverted, as explained in Sec. 7.3. 

The affine TS fuzzy model is validated by a different data set. Figure 12.5 
compares the measured supply temperature to the supply temperature that is re­
cursively predicted by the model in a free-run test. When comparing Fig. 12.5 
with Fig. 12.4 it is clear that this model is substantially inferior to the non-affine 
one presented in Sec. 12.3.1. The VAF of this model has the value of VAF = 89.7, 
which confirms the results observed in Fig. 12.5. 

12.4 Controllers applied to the air-conditioning system 

In order to compare some of the control approaches presented in this book, four 
different controllers are applied to the air-conditioning system. 

(1) PID control. 
(2) Inverse control based on an affine TS fuzzy model. 
(3) Predictive control based on classical cost functions. 
(4) Predictive control based on fuzzy cost functions. 
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Fig. 12.5 Model validation. Solid line - measured output, dashed line - model output. 

Except for the PID controller, the controllers are model-based controllers and im­
plemented inside an IMC scheme in order to cope with model-plant mismatch 
and disturbances. This IMC scheme is depicted in Fig. 12.6. 

The inputs of the controllers are the reference r, the predicted supply temper­
ature j/i, and the filtered mixed-air temperature j/2f- The error signal, em(r) = 
V\ ( r) _ 2/i(r)> is passed through a first-order low-pass digital Butterworth filter 

y* 

*?z Controller System 

Fuzzy 
Model 

y. 

y, * 

Fig. 12.6 Implementation of the several controllers in the air-conditioning system, using an IMC 
structure. 
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F\. The filtered error emf (r) is given by 

emf(T) = &iem(r) + &2em(T - 1) - a2emi{r - 1), (12.5) 

where &i = 62 = 0.086, and 02 = -0.83. Another first-order low-pass digital 
Butterworth filter F2 is designed for y2, 

j/2f(r) = dij/2(T) + d2y2(r - 1) - c2y2((r - 1), (12.6) 

withdi = d2 = 0.245, and c2 = -0 .51. Note that the filter parameters are chosen 
based on simulations, in order to reliably filter measurement noises, and to provide 
fast responses. The mixed-air temperature is fed back directly to the controller, 
because the sub-model for this temperature is very good (see Table 12.2), and 
the use of the filter F2 is enough to guarantee a good control performance. In 
general, the feedback of the process is not directly used by the controller, because 
this procedure can cause instability in the closed-loop system. The four different 
controllers and their respective results are presented in the following sections. 

12.4.1 PID control of the air-conditioning system 

The well-known proportional+integral+derivative (PID) controller is applied to 
the system (Astrom and Hagglund 1995). The parameters of the PID are the 
following: KP — 0.03, KD = 0.06 and Kj = 0.003. These parameters are 
tuned in order to obtain a fast response avoiding oscillations. Figure 12.7 depicts 
the response of the supply temperature to several steps in the reference. It is clear 
that for some temperatures the response is good, but for other temperatures the 
response is too fast and causes undesirable oscillations. It is possible to eliminate 
the oscillations, at the cost of very slow responses for low temperatures, which 
is highly undesirable. Therefore, a PID controller cannot be used to control the 
system over the whole range of temperatures, unless the parameters are chosen in 
such a way that the system becomes too slow at certain regions, leading to poor 
control performance. The poor response of the PID controller confirms the highly 
nonlinear character of this system. 

12.4.2 Inverse control based on affine TS fuzzy model 

The model presented in Sec. 12.3.2 can be inverted using the inversion method 
for affine TS fuzzy models, presented in Sec. 7.3. This inverted model is used as 
the controller, in the control scheme shown in Fig. 12.6. The control structure is 
applied in real-time control, and the results are depicted in Fig. 12.8. Note that a 
slowly varying reference must be chosen. In fact, faster changes in the reference 
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Fig. 12.7 Real-time response of a PID controller. The solid line is the measured output, the dashed 
line is the reference. 

cause oscillations in the supply temperature, due to the severe model-plant mis­
match at some temperatures. This phenomenon disappears when predictive con­
trol is applied, even for small control and prediction horizons (see Sec. 12.4.3). 
The fact that the affine TS fuzzy model used is considerably worse than the other 
models developed for this system (see Sec. 12.3.2 and Sec. 12.3.1) explains the 
compulsory slow behavior of this control system. Note that when the reference is 
chosen as in Sec. 12.4.1, the results using this controller are similar to the ones 
obtained using the PID controller. 

12.4.3 Predictive control based on classical cost functions 

Given the results obtained when using inverse control and PID control, predictive 
control is applied to the air-conditioning system in order to overcome some of 
the problems described previously. The TS fuzzy model presented in Sec. 12.3.2 
revealed good VAF values for both modeled temperatures. This model is thus 
suitable to be used in a predictive control scheme. Note that this TS fuzzy model 
is nonlinear, requiring a non-convex optimization technique to find the best con­
trol action, which is applied to the system at each sampling instant. The results 
presented in Sec. 10.1.2 strongly suggest the use of the branch-and-bound algo-
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Fig. 12.8 Real-time response using inverse control based on affine TS fuzzy models. The solid line 
is the measured output, the dashed line is the reference. 

rithm applied to predictive control, as described in Sec. 10.1. The main problem 
is the discretization of the control actions w(r), because the B&B method requires 
a finite, and preferably small, number of possible control actions. Another dis­
advantage is that predictive control is directly applied without using the control 
scheme combining inverse control and predictive control as presented in Sec. 7.5. 
Therefore, the discretization must be carefully chosen in order to avoid the possi­
ble chattering effect due to the rough discretization. Note that the control action 
(heating valve) ranges from completely closed (0) to completely open (1), i.e., the 
control action is in the interval [0,1]. The possible changes in the control actions 
are chosen, considering the discussed points, as the following at each time step 
r+j,j = 1,...,HC, 

n = [-0.05 -0 .02 - 0 . 0 1 0 0.01 0.02 0.05]. (12.7) 

This choice introduces a rate constraint of Au(r + j) < 0.05, which does not sig­
nificantly alter the performance of the system, but it smoothes the control actions, 
avoiding undesirable oscillations in the closed-loop system. Further, reasonably 
small changes of 0.01 are also considered, avoiding the effect of chattering. The 
parameters chosen for the controller are presented in Table 12.3, and are chosen 
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Table 12.3 Parameters of the clas­
sical predictive controller. 

Hc 

2 

Hp 

4 

Oii 

1 

Pi 

500 

li 

50 

according to the general guidelines given in Sec. 9.3.2 in the paragraph describing 
classical objective functions. 

The control horizon is chosen as Hc = 2 in order to cope with the second 
order dynamics of the model with respect to the control action U(T). A predic­
tion horizon of Hp = 4 is shown to be sufficient for this system. Increasing the 
prediction horizon does not introduce significant improvement in the control re­
sults. The calculation time of the control action is about 1 s, which is more than 
sufficient for the real-time application (note that the sampling period is 30 s). The 
objective function of this controller is a particular case of Eq. (9.9), and is stated 
as 

4 2 4 

J = ^ ( e ( r + i ) ) 2 + ^ 5 0 0 ( A U ( r 4 - j - l ) ) 2 + ^ 5 0 ( A y ( T + i ) ) 2 . (12.8) 
j=3 j=2 j=3 

The parameters w\j, W2j and w^j, as well as the parameters tin, niu, n^i, n,2u, 
n$i, n^u in Eq. (9.9), are chosen based on the scaling between the several vari­
ables, and on simulations of the closed-loop system. Only the second change of 
the control action AM is considered in Eq. (12.8), which introduces a smooth con­
straint in this variable at time step r + 1. Then, the first change in control action 
Au(r) can vary freely in the interval of discretized control actions Q considered. 
By just using the error e and the change in the output Ay from Hc + 1 to Hp, the 
control system allows for an increase of freedom in changing the control actions 
in the first steps. Simulations have shown that this procedure allows for smoother 
control actions and faster responses, with no overshoot. Real-time results for this 
predictive controller are presented in Fig. 12.9. The overshoots in the real-time 
results are caused by the linear filter in the IMC scheme. In fact, the IMC scheme 
controls the simulated output j / i , and not the output yi itself. Thus, when the 
system is stabilized at a certain temperature, the error between the output of the 
model and the real output is also stabilized at a certain value. As the model is 
nonlinear, in the presence of a step in the reference, the local model describing 
the system changes, and the error em also changes. If the filter F\ is not included 
in the IMC scheme, this problem is solved in one step. However, this procedure 
introduces undesired oscillations in the system. Thus, before the error e m stabi­
lizes at its new value (in a new steady-state), these (possibly severe) changes in 
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the error em can generate overshoots, unless the change in the reference is smooth 
enough to avoid them. 
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Fig. 12.9 Real-time response with classical predictive control using a TS fuzzy model. The solid line 
is the measured output, the dashed line is the reference. 

In order to eliminate overshoots, the trajectory to be followed is shaped by 
introducing a filtered reference. A first-order low-pass digital Butterworth filter 
for the reference is designed for this purpose, which is given by 

rf(T) = 0.086 r(r) + 0.086r{r - 1) - 0.83 rt{r - 1). (12.9) 

The design of this filter follows the guidelines presented for the other linear filters 
previously in this chapter. The results obtained using the shaped reference are 
presented in Fig. 12.10. Note that both overshoots for times t — 15 min and t = 
45 min are reduced from 34% and 50% to residual overshoots of about 1%. This is 
obtained at the cost of significantly increasing the rise time and the settling time. 
Let us consider the step at time t = 15 min. For this step, the rise time as defined in 

Eq. (8.9), and for A = 0.8 has the value of < rise lmin for the controller without 
the shaped reference, while the controller with the shaped reference has the rise 
time of i 

'rise 
= 14min; it is thus 14 times slower. The settling time as defined 

in Eq. (8.10) with e = 0.05 is <f>set = 15min for the controller with the shaped 
reference, and </>set = 4min for the controller without the filtered reference. Also 
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Fig. 12.10 Real-time response with classical predictive control using a TS fuzzy model, using a 
shaped reference. The solid line is the measured output, the dashed line is the reference. 

here, the result is much better, and the controller achieves the steady-state much 
faster. A compromise between small overshoot and reasonably fast response can 
be obtained by a proper shape of the reference. 

Note that although overshoots can be highly undesirable for many systems, 
this is not a big issue in air-conditioning systems, and sometimes it can be desir­
able even to increase human comfort. Imagine that a person enters a very cold 
room. Comfort is given by increasing the temperature as fast as possible, disre­
garding the fact that this action results in an overshoot. The same happens if the 
room is too hot, and the air-conditioning system is cooling down the room. In this 
system, the overshoot in the supply temperature is not felt in the temperature of the 
working area, and the overshoot can remain with no problems. Although HVAC 
systems can usually have overshoots, the shaped reference is still introduced in 
order to generalize the results to other types of systems. 

12.4.4 Predictive control based onfuTzy cost functions 

The results obtained in the previous section revealed good control performance. 
The major problems are the overshoots, that can be eliminated by shaping the ref­
erence, and a slow response when the reference changes from 40 °C to 35°C, as 
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Table 12.4 Parameters for the fuzzy predictive controller. 
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shown in Fig. 12.9. The overshoot is due to the introduction of the filter Fx in the 
IMC control scheme presented in Fig. 12.6. Predictive control using fuzzy objec­
tive functions is applied in this section. Fuzzy criteria as described in Sec. 9.3 are 
used. The branch-and-bound method for predictive control with fuzzy decision 
functions introduced in Sec. 10.2 is applied in order to find the discrete optimal 
control actions. The changes in control actions fi, necessary to perform the opti­
mization, are the same as the ones in Eq. (12.7), allowing for the comparison of the 
control results. The control and prediction horizons are the same as in Sec. 12.4.3, 
i.e., Hc — 2 and Hp = 4. These values turned out to be suitable for controlling 
the system, and allow for a proper comparison of the fuzzy objective function with 
the classical one. 

My \ht A 
-30 0 30 

e(T+j) 
-1.5 -0.3 0 0.3 1.5 

Ay(T+j) 
-1 -0.05 0 0.05 1 

Aw(T+/-l) 

Fig. 12.11 Membership functions of the error, change in output and change in the control action for 
the air-conditioning system. 

The membership functions for the error, change in output and change in the 
control action, /xe /iu and fxy respectively, are given in Fig. 12.11. Note that these 
membership functions are the same as in Fig. 9.3, which are defined for a general 
system. The values of the parameters K+, K~, K+, K~,S+,S~, K+, K~, H+ 
and H~, described in Sec. 9.3.2 are given in Table 12.4. These values are chosen 
based on the considerations made for general systems presented in Sec. 9.3. The 
discussion presented in Sec. 9.4.3 for the paragraph on the air-conditioning system 
is generally valid here. However, small adjustments for some parameters of the 
air-conditioning system are required in this section. 

The fuzzy goals are combined using the Yager t-norm, 

4 2 

^ = ] > > e ( e ( T + j)))-r + £ ( / 2 u ( A W ( r +j - 1)))^ + 
j = 3 j=2 
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3=3 

fj,n = max(0,1 - fJ1^), 7 > 0. (12.10) 

The parameter for this t-norm is chosen as 7y = 2, which allows for a good 
balance between fast response and small overshoots, as discussed in Sec. 9.3.1. 
The results obtained with this controller are presented in Fig. 12.12. 
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Fig. 12.12 Real-time response using predictive control with fuzzy objective functions. The solid line 
is the measured output, the dashed line is the reference. 

Comparing the response of the system to the one presented in Fig. 12.9, one 
sees that they are similar. However, the predictive controller with fuzzy objec­
tive functions can reduce the overshoot at time t = 15 min, from a value of 34% 
to 20%. The other significant overshoot for time t = 45 min remains the same 
(around 50%). Therefore, there is a slight improvement in the performance of the 
system. The values for rise and settling times are very similar. Thus, both pre­
dictive controllers, classical and fuzzy, present good control performances, and 
the fuzzy predictive controller can reduce overshoots at some regions. In terms of 
computational time required, they are similar for both controllers, because both 
require a non-convex optimization technique. The reference shaping can be ap-
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plied to reduce (eliminate) overshoots when fuzzy predictive control is applied. 
The results obtained using fuzzy objective functions are very similar to the ones 
using classical objective functions (shown in Fig. 12.10). The reduction of these 
overshoots can be obtained by using a different scheme than IMC to cope with 
model-plant mismatches and disturbances. The use of fuzzy compensation as 
presented in Sec. 7.7 was revealed to be able to cope with this problem, but it 
introduces undesirable oscillations. 

12.5 Summary and concluding remarks 

Air-conditioning systems are widely used in different spaces like buildings and 
vehicles. These systems require improved controllers, demanding human comfort 
and energy saving. Furthermore, these systems have quite general and fuzzy goals, 
which can be translated to predictive control using fuzzy decision functions. 

This chapter presented real time control results from the application of various 
fuzzy control methods, discussed in this book, to an air-conditioning system. Four 
controllers are applied to the system. 

(1) PID controller 
(2) Inverse controller based on an affine TS fuzzy model 
(3) Predictive controller based on classical objective functions 
(4) Predictive controller based on fuzzy decision functions 

The first two are able to control the system when the reference changes very 
slowly. In general, both predictive controllers can cope with rapidly changing 
references, and they have good control performance. However, overshoots occur 
when the reference is not shaped, sometimes due to the use of the IMC scheme. 
The introduction of fuzzy criteria in the objective function can reduce this phe­
nomenon at certain regions of the system. The shape of the reference can also 
help to suppress these overshoots. 
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Chapter 13 

Future Developments 

The relation between fuzzy decision making, fuzzy modeling and fuzzy control 
has been considered in this book. Starting from a normative formulation of fuzzy 
decision making, fuzzy modeling and fuzzy control have been investigated from a 
fuzzy decision making point-of-view. Several combinations of the fuzzy decision 
making theory and the fuzzy control theory have been explored, leading to some 
new and novel fuzzy control schemes. The research into these new schemes is not 
yet complete. Furthermore, the combination of fuzzy decision making and control 
opens new directions for research into specific applications. This chapter provides 
some directions for future research that the authors assess to be promising. Only 
time will tell, however, how correct this assessment will turn out to be. 

13.1 Theoretical analysis of FAME controllers 

Fuzzy aggregated membership (FAME) controllers from Chapter 4 are designed 
by direct application of fuzzy aggregation in controllers. In contrast to conven­
tional fuzzy controllers, where several interacting factors, some of which cannot 
be controlled explicitly, contribute to the nonlinearity of the controller, FAME 
controllers' nonlinearity can be specified explicitly. The nonlinear behavior of 
FAME controllers can be analyzed in a more explicit fashion because of this prop­
erty. The explicit specification of nonlinearity in FAME controllers simplifies the 
theoretical analysis for such controllers. At the moment, the theoretical properties 
of the FAME controllers are not fully explored, and hence more research can be 
expected in this direction. 

301 
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13.2 Decision support for fuzzy modeling 

In Chapter 6, various ways in which the decision making formulation of a prob­
lem can help extend the methods used for fuzzy modeling have been considered 
to provide decision support for certain steps in fuzzy modeling. One example has 
been the determination of the optimal number of rules in a fuzzy model, when it is 
obtained by fuzzy product-space clustering. Fuzzy decision making can be used to 
support other decisions at various stages of fuzzy modeling, such as feature selec­
tion, deciding on the trade-off between model accuracy and model transparency, 
and data filtering {e.g.selection of relevant data). In recent years, the trade-off 
between model accuracy and model transparency has been drawing additional at­
tention (Roubos and Setnes 2001, Guillaume 2001). 

13.3 Cooperative control systems 

More and more control systems are being implemented in multiple interacting 
loops. Complex control systems are implemented, where each controller operates 
in a local context, but many decentralized control systems must operate coop­
eratively in order to achieve the overall system's design goals. Multiple agent 
approaches have made their way into control engineering. In these distributed 
systems, individual goals of controllers must be harmonized with overall system 
goals. Usually, a hierarchy of levels with different goals is established, which im­
plies that the goals at one level of the hierarchy need to be translated to goals at 
another level of the hierarchy. Multiactor, multistage decision making is expected 
to become important for such systems. Since many goals will need to be approx­
imate, and a trade-off between various goals are needed, fuzzy decision making 
methods can be used. More research into fuzzy decision making in distributed co­
operative control systems is expected to clarify the conditions under which fuzzy 
decision making methods can benefit the controller design for such systems. 

13.4 Control with approximate models 

One of the promising ideas of fuzzy sets theory has been to investigate and deal 
with the subjective uncertainty conveyed in the way human beings represent and 
use information about their environment. The development of fuzzy sets theory in 
the past years, however, has seen an increased interest in the use of fuzzy systems 
as nonlinear mappings from their crisp inputs to their crisp (defuzzified) outputs. 
Many applications of fuzzy modeling and fuzzy control are based on the speci­
fication of such mappings. Due to this development, the interest for the original 
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premises of fuzzy sets theory seems to have declined, at least in the field of con­
trol engineering. An important reason for this development is that modern control 
methods based on system models cannot deal with the fuzzy outputs of fuzzy 
models to design a controller. The extension of control methods to deal with such 
systems will then bring many systems that fall outside the scope of control theory 
into its scope. 

When the computations of the system and the possible optimization are for­
mulated as a fuzzy decision making problem, there is not a fundamental difference 
in the way a model with crisp outputs and a model with fuzzy outputs are treated. 
In addition to the ways discussed in Chapter 9, fuzzy predictive control is also in­
teresting for control engineering in such a setting, as it can deal with approximate 
models of systems that could not have been dealt with by means of conventional 
control techniques. Model-based control requires a fairly accurate process model 
with crisp inputs and crisp outputs. When fuzzy models are used in model based 
control, their outputs are defuzzified, which reduces the models to nonlinear crisp 
mappings from their inputs to their outputs. Many systems, however, are known 
only partially, which implies that the system outputs will be known only approx­
imately. These models, where the inputs can be fuzzy and the outputs are fuzzy, 
are called here approximate models. Approximate models are characterized by 
fuzzy outputs determined from the system inputs and partial (approximate but not 
inaccurate) information about the system. In many systems, detailed information 
for predicting precise system outputs are not available. However, the approxi­
mate behavior of the system can be described, for instance, as a set of fuzzy rules. 
Consider the container crane example discussed in Sec. 9.5. Although the sys­
tem can be modeled as a coupled set of differential equations, its approximate 
behavior can also be described by a set of fuzzy rules, which relate the degree 
of swinging with the velocity or the acceleration of the trolley. The model then 
becomes less complex, although the prediction becomes less precise. Similarly, it 
becomes possible by using the approximate models to study many economic sys­
tems (where the outputs can only be estimated approximately) using techniques 
from control engineering. Therefore, the application of fuzzy decision making 
methods for control with approximate models is an important research topic. This 
also paves the way for model-based predictive control where the system models 
are comprised of approximate mathematical models. 

Several authors have started considering the formulation of approximate mod­
els from measured data. For example, Setnes, van Nauta Lemke and Kaymak 
(1998) consider identification of approximate models with a Takagi-Sugeno in­
ference structure from approximate measurements of a system. These models 
can be applied to model-based predictive control within the fuzzy decision mak-
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ing paradigm. The consequence of different alternatives can be evaluated, and 
once the evaluation is made, they need to be compared to find the best alternative. 
Hence, fuzzy predictive control opens new possibilities for analyzing systems us­
ing all the available information (precise information as well as approximate in­
formation). 

13.5 Relation to robust control 

The use of approximate models in fuzzy control can also be used to study the 
effect of uncertainty in the model parameters, on the controller parameters. The 
methods from the robust control theory and the fuzzy set theory can now be com­
bined by using the resolution principle (Klir and Yuan 1995) for the fuzzy sets. 
By using methods from robust control theory, controllers can be built with guar­
anteed stability (Palm et al. 1997). The influence of fuzzy model parameters on 
the controller parameters can be studied in this way, which establishes a relation 
between fuzzy control and robust control theory. 

13.6 Hierarchical fuzzy goals in control applications 

In this book, fuzzy goals and fuzzy constraints have often been defined at the same 
level, without assuming a hierarchy. However, sometimes it is clear that some 
goals are more important than others, due to e.g.safety or economical reasons. The 
framework of fuzzy decision making in control allows for the definition of hierar­
chies between the different goals, by defining, for instance, different weights for 
different goals. It should be mentioned that weight factors can also be used when 
a hierarchical structure between the different criteria is clearly present. Therefore, 
this extension will permit the application of model-based predictive control using 
fuzzy objective functions to more complex processes. Beyond the use of weights, 
other possible solutions to combine hierarchical fuzzy goals can also be tested. 
One possibility is to divide general fuzzy goals into sets of fuzzy sub-goals. The 
problem can be tackled at different levels of the hierarchy, depending on the focus 
of the control system at a particular moment. 

13.7 B&B for MIMO systems 

The branch-and-bound algorithms presented in this book are for SISO systems. 
Their extension to MIMO systems is highly desirable. However, this extension 
is not straightforward as for the case of genetic algorithms, due to the exponen-
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tial increase of the computational time. One possible solution is to use fuzzy 
predictive filters as presented in Sec. 11.3, which must be extended for the mul-
tivariable case. Another possibility is to follow a two-step approach, where one 
uses a smaller number of discretizations, finds a suboptimal solution, and then 
uses this solution as an initialization of a finer discretization afterwards (Roubos 
et al. 1999). This method does not guarantee that the solution found is the global 
optimum, but it may often be a good (satisficing) solution. Note that the finer 
discretization can be used several times. More research is needed on the possible 
number of discretizations to be used, and the possible number of times that the 
finer discretization must be computed. The system performance under the differ­
ent situations also needs to be tested. 
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Appendix A 

Model-Based Predictive Control 

The concept of predictive control was first introduced by Richalet et al. (1978) and 
Cutler and Ramaker (1980) almost simultaneously, describing Dynamic Matrix 
Control and the Model Algorithmic Control methods, respectively. Since then, a 
large number of publications have been written on the subject, where Clarke and 
Mohtadi (1989), who describe Generalized Predictive Control, and Soeterboek 
(1992), who defines Unified Predictive Control, are two of the most relevant ones. 

Model-based predictive control (MBPC) consists of a broad range of control 
methods having one common feature; the controller is based on the prediction 
of the future system behavior by using a process model. The basic concepts ap­
pearing in all the predictive control approaches are the following (Camacho and 
Bordons 1995). 

• Use of an available (nonlinear) model to predict the process outputs at future 
discrete time instances over a prediction horizon. 

• Computation of a sequence of future control actions using the model of the 
system by minimizing a certain objective function, which requires that the 
predicted outputs errors are as close as possible to the desired reference tra­
jectories, under given operation constraints. 

• Receding horizon principle, so that at each sampling instant the optimization 
process is repeated with new measurements, and the first control action ob­
tained is applied to the process. 

Because of the explicit use of a process model and the optimization approach, 
MBPC can be applied to complex processes, e.g.multivariable, non-minimum 
phase, open-loop unstable, nonlinear process or processes with a long time de­
lay. It can also deal with constraints efficiently. Moreover, MBPC has been well 
received both by the academic world and by the industry. There are a large num­
ber of industrial applications for different processes, such as distillation towers 
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and follow-up servos (Richalet 1993), or clinical anesthesia (Linkens and Mah-
fouf 1994). 

Section A.l describes the basic principles usually found in classical MBPC. 
Three main problems found in MBPC are discussed afterwards. The modeling 
of a process is the first step to be performed in order to apply predictive control, 
and it is described in Sec. A.2. When the model is nonlinear and constraints are 
present, the optimization problem becomes more complex. Possible solutions for 
this problem are presented in Sec. A.3. Section A.4 addresses problems related to 
output errors caused by model-plant mismatch or disturbances. 

A.l Basic definitions 

A.l.l Control and prediction horizons 

The future plant outputs for a determined prediction horizon Hp are predicted at 
each time instant r by using a model of the process. The predicted output values 
y ( r + j), j = 1 , . . . , Hp depend on the states of process at the current time r 
(given, for instance, by the past input and outputs) and on the future control signals 
u ( r + j), j = 1 , . . . , Hc, where Hc is the control horizon. The control signals 
change only inside the control horizon, and they remain constant afterwards, i.e., 

u( r + j ) = u ( r + F c - l ) , j = Hc,..., Hp - 1. (A.l) 

The basic principle of model predictive control is depicted in Fig. A. 1. The con­
trol horizon is usually chosen to be equal to the order of the model. For optimiza­
tion reasons, or when fuzzy objective functions are utilized (see Chapter 9), this 
number can be slightly reduced, thereby decreasing the computational costs. The 
prediction horizon is usually related to the response time of the process for the 
reference considered. For nonlinear systems, the response time may change, and 
an estimate of this time must be found. In the presence of fuzzy objective func­
tions, the response time can be slightly reduced due to the flexibility introduced 
by the fuzzy goals (see Sec. 9.3). 

A.1.2 Objective function 

The sequence of future control signals is obtained by the optimization of a given 
objective function, which describes the control goal. In classical MBPC, objective 
functions are usually given by the quadratic form, 

J(u) = J2 wij(r(T + j) - y( r + j))2 + W2J(AU(T + j - l ))2 , (A.2) 
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Fig. A.l Basic principle of predictive control. 

or some small modifications of it, where y are the predicted process outputs, r is 

the reference trajectory, and A u is the change in the control signal, weighted by 

the parameters u>2j • Sometimes, a shaped reference trajectory w is used instead 

of the reference trajectory r, since the controlled system cannot be expected to 

be arbitrarily fast. The first term in Eq. (A.2) accounts for the minimization of 

the output errors, and the second term represents the minimization of the control 

effort. The term considering the control effort can be given directly by the control 

actions u , which usually minimize the energy cost. However, the direct weighting 

of the controller outputs can result in steady-state errors when the process does not 

contain one or more integrators. This effect is avoided by weighting the change 

in the control action as in Eq. (A.2). The parameters u>ij and w2 j determine 

the weighting between the two terms in the global criterion. Tuning rules for this 

parameter can be found, e.g., in (Soeterboek 1992). A discussion of a general form 

of classical objective functions in predictive control is presented in Sec. 9.3.2. 

Other terms, commonly called 'soft constraints', can also be considered in the 

classical objective function of Eq. (A.2). Note that for systems with input time 

delays, only outputs from the time instant r plus the considered delay until Hp 

must be considered in Eq. (A.2), because only these outputs can be influenced by 

the actual control actions u ( r ) . For non-minimum phase systems, the first steps 

including the non-minimum phase behavior are also not included in the classical 

MBPC objective function. However, when using fuzzy objective functions, these 
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first steps may be included in the criteria, still leading to controllers with good 
performance. An example of a linear non-minimum phase system using fuzzy 
criteria is presented in Sec. 9.3, which compares classical objective functions and 
fuzzy objective functions using different fuzzy aggregation operators. Note that 
when fuzzy criteria are used, the objective function can combine different terms 
in different ways, rather than just by the sum of the terms shown in Eq. (A.2). 

A.1.3 Reference trajectory 

Predictive controllers know the desired reference a priori, and the system can react 
before the change has effectively been made. The delay effects can thus be avoided 
in a model predictive control scheme. In the optimization of the objective function 
as in Eq. (A.2), the reference used is sometimes different from the real reference 
r (r + j). Normally, a smooth approximation from the actual value of the outputs 
towards the known reference is considered. This shaped reference w(r + j) is 
usually approximated by means of a first order system. 

W(T) = y(r) 

w ( r + j ) = A w ( r + i - l ) + ( l - A ) r ( r + j ) , j = l,...,Hp. (A.3) 

The parameter A is in the interval [0,1]. When it is close to one, the shaped 
reference is smoother, and it influences the dynamic response of the system. Other 
forms of shaping the reference can also be used (Clarke and Mohtadi 1989). This 
shaped reference avoids sudden changes in the control actions and local instability 
of the system, at the cost of slower responses. 

A.1.4 Receding horizon principle 

When the (nonlinear) model of the process predicts the process output exactly 
and the system is not subjected to disturbances, the errors between the predicted 
and the measured outputs are zero, i.e., there is no model-plant mismatch. This 
control structure is thus a simple feedforward controller. This situation is ideal, 
and usually the predicted outputs y(r + 1) are different from the process outputs 
y(r +1) . For this reason, only the control signals u(r) are applied to the process. 
The control signals at the next sampling instances u ( r + 1 ) , . . . , u ( r + Hp — 1) 
are discarded, because at the next sampling instant the process outputs y(r + 1) 
are known and the optimization can be repeated using the updated data. The new 
u( r + 1) that are calculated using this strategy are usually different from the ones 
obtained previously, due to the new information available. This technique intends 
to reduce errors due to model-plant mismatches and disturbances, but another 
control scheme can still be needed to cope with this problem (see Sec. A.4). 
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A.1.5 Classical MBPC scheme 

As the process outputs are fed back to the optimization algorithm in order to re­
compute the optimal control actions at each sampling instant, the MBPC scheme 
is a combination of open-loop (prediction part) and feedback (optimization at ev­
ery time instant). This control structure is called an 'open-loop' feedback control 
structure, and is presented in Fig. A.2. Note that with this control scheme, the 
model is used depending on the updated values of the process. The controller 
contains the model of the system, the objective function, an optimizer and the 
reference generator. The optimizer calculates the optimal solution for the given 
objective function using the model of the system and the given reference. 

Control Algorithm 

Model 

... . 

r 
1 

—» Keloivnce >| Optimizer I-
I—*• (ieiiL'raii>r ' 

Fig. A.2 Classical model predictive control scheme. 

The process inputs and outputs, as well as state variables, can be subjected to 
constraints, which are incorporated in the optimization problem as 'hard' or 'soft' 
constraints. Commonly, magnitude (or level) and rate constraints are considered 
for the control actions, and level constraints are considered for the outputs. For 
objective functions using fuzzy criteria, the distinction between hard and soft con­
straints often disappears. Fuzzy sets describing the several criteria include both 
constraint types a priori. A detailed explanation on the use of fuzzy criteria for the 
objective function in MBPC is given in Sec. 9.1. 

A.2 Modeling in MBPC 

The performance of MBPC depends largely on the accuracy of the process model. 
If the accuracy of the model decreases, the performance of the controller also 
decreases. Hence, a large part of the classical MBPC design effort is related to 
modeling and identification (Richalet 1993), where 'classical MBPC means that 
fuzzy models are not utilized, and cost functions are as in Eq. (A.2). 

The model of the process must be able to predict the future process output, 

Process y 
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must be simple to implement in the control algorithm, must perform fast simula­
tions, and, preferably, have a physical background, such that it can be understood 
by an operator or designer. Conventional modeling approaches based on physical 
modeling or linear system identification cannot derive reliable models for complex 
or partly known systems. For these types of problems, fuzzy models, as presented 
in Sec. 5.2, can be used advantageously. For this reason, several examples in this 
book use this type of modeling techniques to derive nonlinear models. We have 
also given examples with linear models sometimes, such as in Sec. 9.4.1, in order 
to emphasize the advantages of MBPC with fuzzy objective functions, even when 
a linear system is considered. 

A.3 Optimization problems 

If a linear model of the system is used in the control algorithm, the objective func­
tion is described by a quadratic functon as in Eq. (A.2), and no constraints are 
active, the optimization problem has an analytical solution. However, different 
parameters in Eq. (A.2), such as control and prediction horizons Hc and Hp, and 
the weight factors W\j and w2j, must still be tuned. When a convex constraint is 
present, the optimization problem becomes a quadratic programming (QP) prob­
lem to be solved at each time instant (Camacho and Bordons 1995). This nonlin­
ear optimization problem is convex and can be solved by using gradient-descent 
methods with a guaranteed global solution. 

However, both nonlinear models and constraints are present in the most gen­
eral case. Then, the optimization problem is non-convex. The most relevant 
techniques used in this case are the Sequential Quadratic Programming (SQP) 
method, see, e.g.Gill et al. (1981) and the simplex method introduced by Nelder 
and Mead (1965), which are both iterative optimization techniques. These meth­
ods usually hamper the application of MBPC to fast systems, because being itera­
tive methods, they generally have high computational costs, which make them not 
suitable to be used in systems with short sampling times. Moreover, the conver­
gence can result in local minima, which usually results in poor performance of the 
MBPC scheme. Alternative optimization methods for non-convex optimization 
problems can be used when the solution space is discretized. By discretizing the 
solution space, the problem is transformed into a discrete optimization problem, 
where techniques such as branch-and-boundor genetic algorithms can be applied. 
Chapter 10 and Chapter 11 discuss implementation issues regarding classical and 
fuzzy MBPC. 
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A.4 Compensation of model-plant mismatch and disturbances 

The MBPC scheme as presented in Fig. A.2 must deal with model-plant mismatch 
and the influence of disturbances due to the open-loop feedback control strategy. 
Sometimes, shaping the reference is enough to reduce this problem. Moreover, 
some MBPC schemes contain a model of the disturbances, e.g. generalized pre­
dictive control (Clarke and Mohtadi 1989), which can reduce their influence sig­
nificantly. However, this strategy is difficult to apply in the presence of nonlinear 
systems, where the modeling of the disturbances is often quite difficult. Therefore, 
a different and preferably robust control scheme is desired. When models for the 
disturbances are difficult to identify, it is preferable to incorporate MBPC in a 
control scheme that can eliminate the effect of the disturbances and model errors. 
The internal model control (IMC) scheme is able to deal with these phenomena. 
This technique is explained briefly in Sec. B.l. Fuzzy compensation introduced 
in Chapter 7 is another scheme to tackle the problem of model-plant mismatch. 
This technique can have advantages over IMC because additional information of 
the model is used in the system. 
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Appendix B 

Nonlinear Internal Model Control 

Control techniques based on a nonlinear process model can effectively cope with 
the dynamics of nonlinear systems. Some model-based control techniques, such 
as MBPC, however, can induce steady-state errors due to model-plant mismatch 
or disturbances, depending on the number of integrators in the process, the type 
of disturbances, e.g.offset or process disturbances, and the required reference fol­
lowing accuracy. Beyond shaping the reference that can cope with this problem to 
some extent, a scheme is needed to compensate for these errors. One example of 
such a scheme is the Internal Model Control (IMC) explained below. 

B.l Classical internal model control 

A classical approach to reject steady-state errors and disturbances is the use of an 
integral control action. The integral action can be implemented using, for instance, 
an additional outer-loop integral controller to eliminate the steady-state error be­
tween the outputs of the system and the references. If the integral action is applied 
to nonlinear systems, the integral gain must be different for different regions of the 
system outputs. If the parameter is too large it provokes undesirable oscillations, 
and if it is too small the system converges slowly to the set-point. To cope with 
this situation, it is possible to have a supervisory controller that tunes the integral 
parameter for the different regions. A major drawback of this method is that this 
solution requires tuning rules which are mostly based on trial-and-error. Another, 
more robust solution to eliminate steady-state errors is the use of the IMC scheme 
presented in this section. An unifying overview of internal model control empha­
sizing the robust characteristics of this control concept is presented by Garcia and 
Morari (1982). Internal model control (IMC) consists generally of three parts. 

(1) A model to predict the effect of the control action on the system. 
(2) A controller based on an inverse of the process model. 

315 



316 Fuzzy Decision Making in Modeling and Control 

(3) A filter to increase robustness. 

A general IMC scheme for SISO systems is depicted in Fig. B.l, where P denotes 
the process, M is a model of process, C represents the controller and F is a filter. 
Note that this scheme can be generalized for MIMO systems. 

*9 C 

1 

M 

d„ 

k^-

yjn^x 

Fig. B.l General internal model control scheme. 

The disturbances are separated in process disturbances d and the measurement 
(additive) disturbances dm. The output is simply given by y = Pu . Supposing 
that there is no filter (F = 1) the following relationships can be derived from 
Fig. B.l: 

e = r - y + ym 

ym = MCe 

em = ( P - M ) C e 

(B.la) 

(B.lb) 

(B.lc) 

Note that all the mappings P, C and M can be nonlinear, and the effect of the 
disturbance d is considered in P. The following properties of nonlinear IMC can 
be stated from the three equations in Eq. (B.l) (Economou et al. 1986). 

Proposition B.l (Stability) If P and C are input-output stable, and if a perfect 
model of the plant is available, i.e., M = P, then the closed-loop system is input-
output stable, too. 

Proposition B.2 (Perfect control) If the right inverse of the model operator 
M r exists, C = Mr, and the closed-loop system is input-output stable with this 
controller, then the control is perfect, i.e., y = r. 
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Proposition B.3 (Zero offset) If the right inverse of the steady-state model op­
erator M -̂, exists, C = M^j, and the closed-loop system is stable with this con­
troller, then for asymptotically constant inputs offset-free control is achieved. 

Proposition B.l can easily be proven, since the feedback loop has no influence 
when M = P, em = 0, and the system is in open loop. As both controller and 
process are open loop stable, the global system is also stable. Proposition B.2 is a 
direct consequence of Eq. (B.la) and Eq. (B.lb), when C = Mr. Finally, Propo­
sition B.3 is also a result from the direct application of Eq. (B.la) andEq. (B.lb), 
by using the limit as t -> oo. 

Some remarks concerning the practical significance of the above properties 
can be given (Economou et al. 1986). General guidelines for the design of a feed­
back controller are not available, if a nonlinear system is considered. This is even 
more difficult if some desired performance specifications are desired. The IMC 
scheme reduces the design problems for systems that are input-output stable or 
that can be stabilized by output feedback. For systems with these characteristics, 
and when a good model of the plant is available, Proposition B.2 defines the struc­
ture and parameters of the controller resulting in perfect control. Thus, in this sim­
ple case, IMC transforms the controller design in a feedforward control problem, 
which can be solved for nonlinear systems also. Moreover, IMC still preserves 
the advantages of feedback control, especially the elimination of unknown plant 
disturbances, as suggested by Proposition B.2 and Proposition B.3. 

The filter F in Fig. B.l is introduced to increase the robustness of the control 
system, when the system is subjected to model-plant mismatches, and process 
or measurement disturbances. The filter can also project the error signal e in the 
appropriate space, such that the input space of the controller is in the range of the 
operator M and of the system P, by reducing the loop gain. Finally, the filter can 
smooth out noisy or rapidly changing signals, reducing the transient response of 
the IMC controller. For nonlinear systems the filter must be designed for the part 
of the system where the dynamics is faster. If this is not the case, the system can 
show undesirable overshoots or even oscillations. 

B.2 MBPC in an internal model control scheme 

The model predictive controller can be incorporated in the internal model control 
scheme, as presented in Fig. B.2. Note that the filter is included in the feedback 
loop, filtering the noise, stabilizing the loop by decreasing the gain, and providing 
more robustness to the loop. The use of predictive control in an IMC structure 
allows for the reduction of model errors and disturbance effects, in an effective 
way. IMC has first been used for inverse control, as in Sec. B.l, but note that 
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predictive control can be regarded as a generalization of inverse control. In fact, 
when Hc = Hp = 1, wij = 1, w2j = 0 in Eq. (A.2), and a control command 
exists such that y( r + 1) = r ( r + 1), a global optimum of the objective function 
in Eq. (A.2) results in J = 0. Thus, without constraints and without penalizing 
the control action, this can be obtained by the inversion of the model, which can 
be computed numerically by means of a function minimization, as discussed in 
Sec. A.3. This situation is of course ideal and normally unrealistic. The extension 
of the control and prediction horizons, the generalization of the objective function 
and the inclusion of constraints is a generalization of inverse control, and thus the 
IMC scheme can be applied advantageously to MBPC. 
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Fig. B.2 MBPC in an internal model control scheme. 
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