

Security for Web Services and
Service-Oriented Architectures

Elisa Bertino · Lorenzo D. Martino · Federica Paci ·
Anna C. Squicciarini

Security for
Web Services and
Service-Oriented
Architectures

13

Elisa Bertino
Purdue University
CERIAS
Dept. Computer Sciences
West Lafayette IN 47906
USA
bertino@dico.unimi.it
bertino@cs.purdue.edu

Federica Paci
Università Milano-Bicocca
Dipto. Informatica e
Comunicazione
20135 Milano
Italy
paci@dico.unimi.it

Lorenzo D. Martino
Purdue University
Dept. Computer &
Information Technology (ICT)
Knoy Hall
West Lafayette IN 47907-1421
USA
lmartino@purdue.edu

Anna C. Squicciarini
Purdue University
CERIAS
Dept. Computer Sciences
West Lafayette IN 47906
USA
squiccia@cs.purdue.edu

ISBN 978-3-540-87741-7 e-ISBN 978-3-540-87742-4
DOI 10.1007/978-3-540-87742-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009936010

ACM Computing Classification (1998): D.4.6, D.2.11, K.6.5, H.3.5

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my parents, Stella and Mario, for their constant
encouragement. To my nephews Giordano, Jacopo, Luca, Marino

and Susanna in the hope that they will follow a career in
Computer Science.

E.B.
To my parents, Teresa and Antonio.

L.D.M.
To my beloved mother for her unconditional love and for her

teachings that I will treasure for the rest of my life.
F.M.P.

To my parents, Grazia and Vito, for their constant support.
A.C.S.

Preface

Web services technologies are advancing fast and being extensively deployed
in many different application environments. Web services based on the eXten-
sible Markup Language (XML), the Simple Object Access Protocol (SOAP),
and related standards, and deployed in Service-Oriented Architectures (SOAs)
are the key to Web-based interoperability for applications within and across
organizations. Furthermore, they are making it possible to deploy applica-
tions that can be directly used by people, and thus making the Web a rich
and powerful social interaction medium. The term Web 2.0 has been coined
to embrace all those new collaborative applications and to indicate a new,
“social” approach to generating and distributing Web content, characterized
by open communication, decentralization of authority, and freedom to share
and reuse.

For Web services technologies to hold their promise, it is crucial that se-
curity of services and their interactions with users be assured. Confidentiality,
integrity, availability, and digital identity management are all required. People
need to be assured that their interactions with services over the Web are kept
confidential and the privacy of their personal information is preserved. People
need to be sure that information they use for looking up and selecting ser-
vices is correct and its integrity is assured. People want services to be available
when needed. They also require interactions to be convenient and personal-
ized, in addition to being private. Addressing these requirements, especially
when dealing with open distributed applications, is a formidable challenge.
Many of the features that make Web services an attractive approach for dis-
tributed applications result in difficult security issues. Conventional security
approaches, namely those deployed for networks at the perimeter level, such
as firewalls and intrusion detection systems, are not able to protect Web ser-
vices and SOAs. Web services and SOAs are very dynamic in terms of their
interactions and compositions and moreover they are seldom constrained to
the physical boundaries of a single network. As SOA-based applications may
consist of a large number of components from different security administration
domains, each using different security techniques, security interoperability is

VIII Preface

a crucial issue. Data exchange applications built using Web services orga-
nized according to SOAs very often need to pass through intermediaries, and
therefore trust and strong protection of transmitted contents is essential.

In the context of such trends, this book aims at providing a comprehen-
sive guide to security for Web services and SOAs, with the twofold goal of
being a reference for relevant standards and of providing an overview of re-
cent research. As such the book covers in detail all standards that have been
recently developed to address the problem of Web service security, including
XML Encryption, XML Signature, WS-Security, and WS-SecureConversation.
With respect to research, the book discusses in detail research efforts and pro-
posals covering access control for simple and conversation-based Web services,
advanced digital identity management techniques, and access control for Web-
based workflows. The discussion on such research topics is complemented by
an outline of open research issues. The book also covers relevant open research
issues, such as the notion of security as a service as well as the privacy for
Web services, and introduces all relevant background concerning Web services
technologies and SOAs.

We trust that the contents of this book will be of interest to a diverse
audience, including practitioners and application developers, researchers, and
students.
Acknowledgments Part of the material presented in this book is based on
research that we have carried out on topics such as security as a service,
privacy-aware role-based access control (RBAC), trust negotiation systems,
secure publishing techniques, and digital identity management systems. We
would like to thank all our colleagues and students that have collaborated with
us on those topics: Abhilasha Bhargav-Spantzel, Barbara Carminati, Alexei
Czeskis, Elena Ferrari, Ninghui Li, Dan Lin, Jorge Lobo, Qun Ni, Prathima
Rao, and Alberto Trombetta.

Special thanks are due to Prof. Bhavani Thuraisingham of the University
of Texas at Dallas for the many discussions on security for Web services and
the semantic Web and for her constant encouragement of our work.

Our research work has been made possible because of the generous support
by several organizations, including IBM, the National Science Foundation, the
Air Force Office for Sponsored Research, the European Union through the
Sixth Framework Program, and the sponsors of CERIAS (Center for Educa-
tion and Research in Information Assurance and Security). We would like to
acknowledge not only the financial support, but also the research suggestions
and insights of their researchers and program directors.

West Lafayette (IN), Elisa Bertino
May 2008 Lorenzo Dario Martino

Federica Paci
Anna Cinzia Squicciarini

Contents

1 Introduction . 1
1.1 Security for Web Services and Security Goals 1
1.2 Privacy . 3
1.3 Goals and Scope of the Book and its Intended Audience 4
1.4 An Overview of the Book’s Content . 5

2 Web Service Technologies, Principles, Architectures, and
Standards . 9
2.1 SOA and Web Services Principles . 10
2.2 Web Services Architecture . 13
2.3 Web Services Technologies and Standards 13

2.3.1 SOAP . 15
2.3.2 Web Services Description Language (WSDL) 16
2.3.3 Service Discovery: Universal Description, Discovery

and Integration (UDDI) . 18
2.3.4 Considerations . 21

2.4 Web Services Infrastructure . 22

3 Web Services Threats, Vulnerabilities, and Countermeasures 25
3.1 Threats and Vulnerabilities Concept Definition 26
3.2 Threat Modeling . 28
3.3 Vulnerability Categorizations and Catalogs 36
3.4 Threat and Vulnerabilities Metrics . 40

4 Standards for Web Services Security . 45
4.1 The Concept of Standard . 47
4.2 Web Services Security Standards Framework 48
4.3 An Overview of Current Standards . 49

4.3.1 “Near the wire” security standards 49
4.3.2 XML Data Security . 51
4.3.3 Security Assertions Markup Language (SAML) 53

X Contents

4.3.4 SOAP Message Security . 56
4.3.5 Key and Trust Management standards 60
4.3.6 Standards for Policy Specification 64
4.3.7 Access Control Policy Standards . 67

4.4 Implementations of Web Services Security Standards 73
4.5 Standards-related Issues . 74

5 Digital Identity Management and Trust Negotiation 79
5.1 Overview of Digital Identity Management 80
5.2 Overview of Existing Proposals . 82

5.2.1 Liberty Alliance . 83
5.2.2 WS-Federation . 86
5.2.3 Comparison of Liberty Alliance and WS-Framework . . . 89
5.2.4 Other Digital Identity Management Initiatives 90

5.3 Discussion on Security of Identity Management Systems 93
5.4 Business Processes . 95

5.4.1 Deploying Multifactor Authentication for Business
Processes . 96

5.4.2 Architecture . 97
5.5 Digital Identity Management in Grid Systems 97
5.6 The Trust Negotiation Paradigm and its Deployment using

SOA . 100
5.7 Trust Negotiation and Digital Identity Management 101

5.7.1 Automated Trust Negotiation and Digital Identity
Management Systems: Differences and Similarities 102

5.8 Integrating Identity Management and Trust Negotiations 105
5.8.1 Architecture of a SP in FAMTN. 107
5.8.2 An Example of a Use Case: FSP in Liberty Web

Services Framework . 108
5.9 Negotiations in an FAMTN Federation . 109

5.9.1 Ticketing system in an FAMTN Federation 109
5.9.2 Implementing Trust Tickets Through Cookies 110
5.9.3 Negotiation in Identity Federated Systems 112

5.10 Bibliographic Notes . 113

6 Access Control for Web Services . 115
6.1 Approaches to Enforce Access Control for Web Services 116
6.2 WS-AC1: An Adaptive Access Control Model for Stateless

Web Services . 118
6.2.1 The WS-AC1 Model . 120
6.2.2 WS-AC1 Identity Attribute Negotiation 125
6.2.3 WS-AC1 Parameter Negotiation . 128

6.3 An Access Control Framework for Conversation-Based Web
services . 132
6.3.1 Conversation-Based Access Control 133

Contents XI

6.3.2 Access Control and Credentials . 134
6.3.3 k-Trust Levels and Policies . 135
6.3.4 Access Control Enforcement . 136
6.3.5 K-Trustworthiness Levels Computation 138
6.3.6 Architecture of the Enforcement System 145

7 Secure Publishing Techniques . 147
7.1 The Merkle Signatures . 148

7.1.1 Merkle Signatures for Trees . 148
7.1.2 Merkle Signatures for XML Documents 149
7.1.3 Merkle Hash Verification for Documents with Partially

Hidden Contents . 150
7.2 Application of the Merkle Signature to UDDI Registries 152

7.2.1 Merkle Signature Representation . 152
7.2.2 Merkle Hash Path Representation 153
7.2.3 A Comparison of Merkle Signatures with XML

Signatures . 154
7.3 Bibliographic Notes . 157

8 Access Control for Business Processes . 159
8.1 Access Control for Workflows and Business Processes 161
8.2 Web Services Business Process Execution Language

(WS-BPEL) . 164
8.3 RBAC-WS-BPEL: An Authorization Model for WS-BPEL

Business Processes . 166
8.4 RBAC XACML: Authorization Schema . 170
8.5 Business Process Constraint Language . 170
8.6 RBAC-WS-BPEL Authorization Specification 171
8.7 RBAC-WS-BPEL Enforcement . 172
8.8 RBAC-WS-BPEL System Architecture . 174
8.9 Handling <HumanActivity> activity Execution and

RBAC-WS-BPEL Enforcement . 176

9 Emerging Research Trends . 179
9.1 Security as a Service . 179

9.1.1 Motivations . 180
9.1.2 Reference Framework for Security Services 181
9.1.3 Authentication Service . 182

9.2 Privacy for Web Services . 186
9.2.1 P3P and the Privacy-Aware RBAC Model 187
9.2.2 Privacy-Preserving Data Management Techniques 192
9.2.3 W3C Privacy Requirements for Web Services and

Research Issues . 193
9.3 Semantic Web Security . 194
9.4 Concluding Remarks . 195

XII Contents

A Access Control . 197
A.1 Basic Notions . 197

A.1.1 The Protection Matrix Model . 198
A.1.2 Access Control Lists and Capability Lists 199
A.1.3 Negative Authorizations . 199

A.2 Role-Based Access Control . 200
A.3 Concluding Remarks . 204

References . 205

Index . 223

1

Introduction

Recent advances of Web service technology will have far-reaching effects on In-
ternet and enterprise networks. Web services based on the eXtensible Markup
Language (XML), Simple Object Access Protocol (SOAP), and related open
standards, and deployed in Service Oriented Architectures (SOAs), allow data
and applications to interact through dynamic and ad hoc connections. Web
services technology can be implemented in a wide variety of architectures, can
coexist with other technologies and software design approaches, and can be
adopted in an evolutionary manner without requiring major transformations
to legacy applications and databases. Despite the heterogeneity of the under-
lying platforms, Web services enhance interoperability and are thus able to
support business applications composed by chains of Web services. Interoper-
ability is a key promise of Web service technology and therefore notions such
as Web service composition and systems such as those for workflow manage-
ment are being investigated and developed. Such technology is also facilitating
a second generation of Web-based communities and hosted services, such as
social networking sites and wikis, which support collaboration and sharing be-
tween users. The term Web 2.0 has been coined to embrace all those new new
collaborative applications and also to indicate a new “social” approach to gen-
erating and distributing Web content, characterized by open communication,
decentralization of authority, and freedom to share and reuse. Web service
technology is thus emerging as the technology making the Web the “place”
where the majority of human and societal interactions are taking place.

1.1 Security for Web Services and Security Goals

Web services, stand-alone or composed, must provide strong security guar-
antees. Security is today a relevant requirement for any distributed appli-
cation, and in particular for those enabled by the Web, such as e-health,
e-commerce, e-learning, and social networks. Providing security guarantees in

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 1, c© Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

open dynamic environments characterized by heterogeneous platforms is how-
ever a major challenge. The very features that make Web services and SOA
attractive paradigms, such as greater and ubiquitous accessibility to data
and other resources, dynamic application configuration and reconfiguration
through workflows, and relative autonomy, conflict with conventional security
models and mechanisms. Web services and SOA security encompass several
requirements that can be described along the well-known security dimensions,
that is:

• Integrity, whereby a message1 must remain unaltered during transmission
across a possibly large number of intermediary services of different nature,
such as network devices and software components.

• Confidentiality, whereby the contents of a message cannot be viewed while
in transit, except by authorized services that need to see the message
contents in order to perform routing.

• Availability, whereby a message is promptly delivered to the intended re-
cipient, thus ensuring that legitimate users receive the services they are
entitled to.

Moreover, each Web service must protect its own resources against unau-
thorized access. Addressing such requirement in turn requires suitable means
for identification, whereby the recipient of a message identifies the sender; au-
thentication, whereby the recipient of a message verifies the claimed identity
of the sender; and authorization, whereby the recipient of the message applies
access control policies to determine whether the sender has the right to use
the required Web services and the protected resources.

In a Web service environment it is, however, not enough to protect the
service providers; it is also important to protect the parties requiring services.
Because a key component of the Web service architectures is represented by
the discovery of services, it is crucial to ensure that all information used by
parties for this purpose be authentic and correct. Also we need approaches
by which a service provider can prove its identity to the party requiring the
service in order for the latter to avoid attacks, such as phishing attacks.

The broad goal of securing Web services can thus be decomposed into
three subsidiary goals:

• Providing mechanisms and tools for securing the integrity and confiden-
tiality of messages.

• Ensuring that the service acts only on the requests that comply with the
policies associated with the service.

• Ensuring that all information required by a party in order to discover and
use services is correct and authentic.

Security must first of all be provided at network level because the interactions
between clients and Web services as well as among Web services are carried
1 Here we use the term ‘message’ with the broader meaning of information trans-

mitted across different entities in a system, logically and/or physically distributed.

1.2 Privacy 3

out by SOAP message exchanges. Network-level security addresses message
integrity and confidentiality as well as the guarantee of message delivery, that
is, reliability. However, network-level security is not enough. Web services
themselves must be protected against unauthorized access as well as against
denial of service attacks by which a malicious party makes a Web service un-
available to the authorized parties. Access control in turn requires verifying
identities and identity properties of parties involved in the interaction, which
thus requires the adoption of modern digital identity management technolo-
gies. Finally, techniques such as those for authentication of service directories
and for trust negotiation are used to protect the integrity and confidentiality
of all information required to discover and use the services.

1.2 Privacy

Privacy requirements are of high relevance today because of several factors.
In particular, privacy legislation, such as, in the US, the early Federal Act of
1974 [102] and the more recent Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA) [127] and the Childrens Online Privacy Protection
Act (COPPA) [80], require organizations to put in place adequate privacy-
preserving techniques for the management of data concerning individuals.
Compliance with such legal regulations has today become a primary moti-
vation for investment by companies in information security technology. Con-
sumers are also increasingly worried about privacy breaches in that these may
lead to identity thefts, under which a malicious party misuses the personal
data of other individuals.

It is important to note that, even though the term privacy is often used
as a synonym for confidentiality, the two are quite different. Techniques for
information confidentiality may be (and often are) used to implement privacy;
however, assuring privacy requires additional techniques, such as mechanisms
for obtaining and recording the consents of users and for enforcing obliga-
tions [203]. Supporting privacy preferences of individuals to whom the data
refer to is a key issue in privacy. Because different individuals may have differ-
ent requirements with respect to privacy, managing privacy preferences of a
large number of users can be quite a challenge. Obligations refer to actions that
must be executed before or after a data access is performed; relevant exam-
ples of obligations include requiring parental consent when collecting person-
ally identifiable information about minors or periodically notifying customers
about the intended use of their personal data. Also, confidentiality can be
achieved by withholding information from access, whereas privacy may have
to be enforced even after the information has been disclosed. For example,
privacy may require that the information be removed from the system after a
specified time interval. Also, as we mentioned, privacy is very often regulated
by laws. Recent work has shown that to support several privacy regulations
one may need simple condition languages governing access to the information,

4 1 Introduction

such as “parental consent = YES or NO” [201, 202]. Confidentiality, however,
especially for commercial purposes, is regulated by policies specified by the
organization owning the data. As such there could a much larger variety of
policies and one may need very complex policy languages, for example, policy
languages supporting spatial, temporal, and contextual conditions.

Because Web services are expected to manipulate a lot of information re-
lated to individuals and are also expected to support frequent interactions
with end users, privacy is a relevant requirement for Web service technol-
ogy. To date, significant research has been carried out on privacy techniques,
ranging from anonymization techniques [58, 59] to fine-grained access control
mechanisms specific for databases recording personally identifiable informa-
tion [271], to secure multi-party computation techniques [113]. However, un-
derstanding how to apply or modify such techniques for use in Web services
and SOA is an open research issue. An important challenge is represented by
compliance in the presence of potentially dynamic and fragmented application
environments implemented by Web services and SOA.

1.3 Goals and Scope of the Book and its Intended
Audience

The aim of the book is to provide a comprehensive view of security for Web
services and SOA; such a view must encompass efforts and initiatives in the
area of security standards for Web services as well as recent research proposals.
Standards are crucial when discussing Web service security in that a large
number of standards, addressing various security aspects, have been developed
and to date no comprehensive critical analysis of such standards exists. It is
also important to cover research proposals in that some interesting approaches
have been recently proposed addressing issues such as access control for Web
services and innovative digital identity management techniques.

The book intends to serve as a reference text to a broad and diversified
audience:

• Practitioners can find in the book a comprehensive, critical reference to
Web service standards. The exposition includes illustrative examples as
well as analysis of their critical issues.

• Researchers can find in the book a report on the latest research devel-
opments in Web service security. Chapters covering such developments
include discussions on innovative research directions.

• Students at both undergraduate and graduate levels can use the book as a
textbook on advanced topics in computer and system security, namely se-
curity for Web services, digital identity management, and trust negotiation
techniques and systems.

The book will not cover fundaments of computer and system security in
that several textbooks already exist covering such material. The bibliographic

1.4 An Overview of the Book’s Content 5

notes at the end of this chapter provide relevant references to such textbooks.
The book includes, however, an appendix compiling basic notions about access
control models; this important topic is often not covered in security textbooks
and yet today plays a crucial role in many innovative security solutions.

1.4 An Overview of the Book’s Content

Chapter 2, Service-Oriented Architecture and Web Service Technologies: Prin-
ciples, Architectures, and Standards, introduces the main concepts of SOA and
the key foundations of Web services technology that are needed for the presen-
tation in the subsequent chapters. It discusses the various notions of SOA as
well as of Web services and contrasts them with existing notions such as those
of distributed computing, client-service architectures, and event-oriented ar-
chitectures. It also discusses the relevant architectural elements involved in
the discover-find-use usage pattern of Web services, such as UDDI registries,
with reference to industrial implementations such as those of Microsoft .NET
(WSE Web services extension) and Java platforms. The last part of the chap-
ter provides an overview of the most relevant standards, such as XML, SOAP,
and WSDL; for some of these standards the overview will be very short since
they are well known and documented (e.g., XML and SOAP).

Chapter 3, Security Threats and Countermeasures, introduces the concept
of security incident life cycle and the related concepts of asset, threat, risk,
vulnerability, and attack. All together, these concepts provide a comprehensive
framework with respect to which the threat modeling process is performed.
A threat model typically describes the capabilities an attacker is assumed to
have to be able to carry an attack against a resource. Such a threat model is of
paramount importance in order to correctly identify the security mechanisms
needed to mitigate threats. The chapter overviews proposed threat models
and the related attack classification, along with the main security mechanisms
used as attack countermeasures.

Chapter 4, Standards for Web Service Security, covers mechanisms and
tools that address the well-known security requirements of integrity, confiden-
tiality, and privacy, applied both to the operations provided by Web services
and to data and messages exchanged between Web services over the network.
Different security mechanisms and tools have been developed and deployed
over time to this end. The overall goal of a Web services security standard is
to make different security infrastructures interoperable and to reduce the cost
of security management. To achieve this goal, Web services security standards
aim at providing a common framework, and common protocols, for the ex-
change of security information between Web services that, once implemented
and deployed:

• can accommodate existing heterogeneous mechanisms, that is, different
encryption algorithms, different access control mechanisms, and so forth;

6 1 Introduction

• can be extended to address new requirements and/or exploit new available
security technologies.

This chapter surveys some existing and proposed standards for Web services
security. The chapter first introduces the different notions of standards that
range from a public specification issued by a set of companies to a de jure
standard issued by a recognized standardization body. This classification gives
indications about the standardization process complexity and also about the
maturity, the stability, and the level of endorsement of a standard. Then
a framework for the security standards is presented. Such a framework is
used to provide a conceptual classification of Web services security standards
depending on the various aspects of Web services security they address, such as
XML security, SOAP message security, access control, policy frameworks, and
security and trust management. The chapter surveys the following standards,
describing their specific purpose, their main features, and their current status:

• XML Encryption and XML Signature;
• WS-Security, WS-SecureConversation, and WS-ReliableMessaging;
• Security Assertion Markup Language (SAML);
• eXtensible Access Control Markup Language (XACML) and XACML Pro-

file for Web-Services;
• WS-Policy, WS-PolicyAssertion, WS-Policy Attachment, and WS-Security

Policy;
• XML Key Management Standard (XKMS) and WS-Trust;
• Extensible rights Markup Language (XrML).

For each standard the related section also highlights the specific security
considerations and caveats that apply to it. The chapter then concludes with
considerations about organizational issues that influence, or are related to, the
adoption of standards. They include, among others, software manufacturers’
support of standards as well as the costs and potential risks incurred by the
users, such as the learning curve of standards and the risk of being locked into
proprietary implementation of standards not fully interoperable with other
manufactures’ implementations.

Chapter 5, Digital Identity Management and Trust Negotiation, addresses
how to securely manage digital identities, that is, the digital representation of
the information known about individuals and organizations, and how to use
such information when conducting interactions over the Web. The secure man-
agement of this information is crucial for interactions within any distributed
system and thus is crucial for SOA. This chapter covers all relevant notions
related to identity management and then discusses how this information can
be used by a party when negotiating with a service provider for using a service.
The chapter first provides an overview of the main concepts related to digital
identity management with a focus on recent federated approaches, namely
Shibboleth system, Liberty-Alliance initiative, WS-Federation, and Microsoft
Infocard. The chapter then discusses issues related to identity management
in the context of grid computing systems in that these systems represent a

1.4 An Overview of the Book’s Content 7

significant application context for SOA and digital identity management. The
chapter then introduces the trust negotiation paradigm, its main concepts,
and its protocols, and also discusses its possible applications in the context
of federated identity management systems. Finally, to show the advantages of
the digital identity management and trust negotiation approaches, the chap-
ter discusses a federated attribute management and trust negotiation solution,
which provides a truly distributed approach to the management of user iden-
tities and user attributes with negotiation capabilities.

Chapter 6, Access Control for Web Services, covers an important topic
that has not been much investigated for Web services, even though it has
been widely investigated in the context of a large variety of systems, such
as database systems and operating systems. The chapter focuses on some re-
cent research proposals, by first categorizing them according to access control
granularity. Then, two approaches are described in detail. The first approach
supports a negotiation-based attribute-based access control to Web services
with fine access granularity. The second approach is tailored to access control
for conversation-based Web services and composite services. In this approach,
a Web service is not considered as a set of independent operations and there-
fore access control must take such dependencies into account. During a Web
service’s invocation, a client interacts with the service, performing a sequence
of operations in a particular order called conversation.

Chapter 7, Secure Publishing Techniques, focuses on security issues for
third-party publishing techniques and their application to the integrity of
UDDI registries. These techniques are today receiving growing attention, be-
cause of their scalability and to their ability to manage a large number of
subjects and data objects. The chapter first describes the most well-known
technique developed to assure integrity of data structures, namely the Merkle
Hash Tree. Then it discusses a method, based on Merkle Hash Trees, which
does not require the party managing the UDDI to be trusted. Besides giving
all the details of the proposed solution, the chapter discusses its benefit with
respect to standard digital signature techniques.

Chapter 8, Security for Workflow and Business Processing, focuses on an
important component that makes it possible to build and manage complex
applications. In a Web-based environment, business processes or workflows
can be built by combining Web services through the use of a process speci-
fication language. Such languages basically allow one to specify which tasks
have to be executed and the order in which those tasks should be executed.
One such language is WS-BPEL, which provides a syntax for specifying busi-
ness processes based on Web services. A problem of particular relevance for
security is the development of access control techniques supporting the spec-
ification and enforcement of authorizations stating which users can execute
which tasks within a workflow, while also enforcing constraints such as separa-
tion of duty on the execution of those tasks. This chapter first introduces the
main approaches to access control for workflow systems, followed by a brief
introduction to WS-BPEL. The chapter then presents an authorization model

8 1 Introduction

for WS-BPEL that supports the specification of both authorization informa-
tion, necessary to state if a role or a user is allowed to execute the activities
composing the processes, and authorization constraints, placing restrictions
on roles and on users who can perform the activities in the business process.

Chapter 9, Emerging Research Trends, discusses other security aspects and
trends that have not been covered in previous chapters. The topics covered
here include the notion of “security as a service” as well semantic Web security
and privacy issues for Web services. Then it discusses open research directions.

Bibliographic Notes

Computer security is an extensively investigated topic which is also widely
covered in university courses both at undergraduate and graduate levels. Sev-
eral books covering security are thus available, some of which are general
textbooks suitable for a broad and comprehensive introduction to computer
security [47, 225, 115], whereas others focus on specialized topics, such as cryp-
tographic foundations [219], network security [242, 107], security testing [292],
and database and applications security [259]. A useful reference is represented
by the Internet Security Dictionary, which provides comprehensive coverage
of Internet security terms [220]. Several books address Web services security
and related standards from the software architects’ and developers’ points of
view. Web service security in the context of .NET is covered in [133]; secu-
rity for Web services in the Java (J2EE) environment is covered in [155] and
[244]. The latter also covers identity management standards and technologies
and presents several design best practices. A detailed presentation of most of
the standards related to Web services security is contained in [208].

2

Web Service Technologies, Principles,
Architectures, and Standards

The development and the adoption of Web services can, to a large extent,
traced back to the same driving factors that have led to the development
of the Service-oriented approach and Service- Oriented Architecture (SOA).
From an ICT point of view, the main vision has been to exploit methods,
tools and techniques enabling businesses to build complex and flexible busi-
ness processes. In order to achieve this vision, ICT supported business pro-
cesses should be able to adapt to the changing needs of business in a setting
characterized by the globalization of the markets, mergers and acquisitions,
cross-organization and even cross-boundary operations, and the extension of
the business boundaries due to the pervasiveness of the Internet. At the same
time, ICT should reduce implementation and ownership costs, achieve better
IT utilization and return on investment, by maximizing the reuse of existing
application systems and their integration. Integration of ICT systems at a
large scale raises several issues. When different business organizations merge
or need to interoperate, there is not a common data, business or process model.
Participating business organizations still retain at least a relative degree of
autonomy. Moreover, different business ICT systems are implemented using a
multitude of technologies and platforms. Finally, the business should be prop-
erly decoupled from the ICT layers, so as the changes and the evolution of
the ICT layers do not hamper the business.

SOA and Web services are not a radically new architecture or technology.
They can be considered, to a large extent, the point of convergence of the
evolution of several ICT technologies, such as communication and distributed
systems technologies, integration technologies for enterprise applications, to
mention just two of them, intertwined with an increasing adoption of stan-
dards.

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 2, c© Springer-Verlag Berlin Heidelberg 2010

10 2 Web Service Technologies, Principles, Architectures, and Standards

2.1 SOA and Web Services Principles

The term SOA is used in an increasing number of contexts and technol-
ogy implementations with different and sometimes conflicting understanding
of meanings. Web service definitions too may vary, ranging from from very
generic and all-inclusive ones to very specific and restrictive ones. We assume
here the definition of Web service given by the World Wide Web consortium
(W3C)[24]:

“A Web service is a software system identified by a URI [RFC
2396], whose public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by
Internet protocols”

The service-oriented approach, SOA architectures, and Web services are
centered on the central role of the service concept, both at the business level
and at the technological level, and share the same inspiring principles. At the
business level a service can be viewed as a repeatable business task, such as
opening a new account or checking a customer credit in retail banking, or
reserving a visit in a health care facility. At the technical level, the service
concept in SOA refers to a software artifact, and it conveys a set of different
meanings. First of all, a service offers functionality to the real world, and it
encapsulates reusable business functions. Second, a service has a owner, which
can be a person or an organization, which has the responsibility for the service.
Third, a service is realized by an agent, also called service provider and used by
other agents, also called service requesters or clients. Fourth, clients interact
with a service through messages and according to the specifications of the
service and the rules defined by the service provider. Fifth, the specification
of the service and the rules for its use constitute the contract. To invoke a
service, clients do not need any other information about the internal structure
of the service, such implementation language or database.

The different facets of the service concept are reflected on a set of com-
monly agreed principles about SOA, namely:

• A service is a logical representation of a repeatable real-world business
activity and it has a specific outcome.

• A service enables to access its capabilities using a prescribed interface.
• The business context and the services themselves have a description.
• A service is a kind of “black box” to consumers of the service, in that its

implementation is hidden from the service consumer.
• The implementation of a service is environment-specific, and it may depend

on the business context (i.e. business goal, rules, policies).
• In order for consumers, including other services, to interact with services,

the description of each service, including the terms of information exchange

2.1 SOA and Web Services Principles 11

has to be made publicly accessible. The service interface description can
be seen as a formal contract between the service and its clients.

• Eventual consumers of a service may be unknown to the service provider.
• A service may be composed of other services.
• A service is autonomous, in that it has control over the business logic that

implement. Hence, a service is managed independently of other services,
within the ownership boundary of the service provider’s organization.

• Services are loosely coupled. Loose coupling refers to an approach where
interfaces can be developed with minimal mutual assumptions between the
sending and the receiving parties, thus reducing the risk that a change in
an application/module will force a change in another application/module.

SOA and Web services share the principles mentioned above. While SOA
is purposely technology neutral, the Web service definition highlights the cen-
tral role of specific Web technologies, namely: the Uniform Resource Identifier,
and the Internet protocols, which provide, respectively, uniform identification
and communication mechanisms; and XML, which is used to define and de-
scribe the application interface as well as to encode the messages exchanged
between the Web service and its clients.

Of the principles described above, service autonomy, loose coupling, and
the need for a formal contract can be considered the core ones.

At the business level, each organization is autonomous in exerting an in-
dependent control over its own services, that is, defining, configuring, and
operating them. The autonomy of the business requires some degree of a cor-
responding autonomy in the Web services implementing the business services.
This means that i) a Web service should own its data; ii) different Web ser-
vices should not share their internal state information nor have a common
data store; iii) the communications between the services should be explicit
and according to their published contract (interface). Service autonomy at
the business level requires loose coupling at the technical level. This way the
dependencies between consumers and the service are limited to consumers’
conformance to the service contract.

The separation between the service interface and its implementation al-
lows services to interact without needing a common shared execution envi-
ronment. Hence SOA and Web services differ from previous approaches to
distributed applications which explicitly assumed a common type space, exe-
cution model, and procedure/object reference model. Moreover, the separation
of the service interface from its implementation leads to more flexible bind-
ing of services. Traditional procedural, component, and object models bind
components together through references (pointers) or names. In procedural or
object-oriented systems, a caller typically finds a server based on the types it
exports or a shared namespace. SOA and Web services support more dynamic

12 2 Web Service Technologies, Principles, Architectures, and Standards

discovery of service instances that provide the interface, semantics and service
assurances that the requestor expects.

The implementation details being private to a service, the message-
oriented interface that every service exposes insulates service clients from the
implementation choices made by a particular service developer. This opacity
is critical to service autonomy, since it allows service providers to freely choose
programming models and languages, host environments, and to substitute one
service implementation for another.

All aspects of a service that allow a potential service consumer to under-
stand and evaluate its capabilities should be described. The service capabil-
ities may consist of the service functions and technical requirements, related
constraints and policies, and mechanisms for access and response. All these
aspects contribute to the definition of the services’ formal contract, which is
shared between the users and the service itself. All the descriptions above
need to be in a form (or be transformable into a form) in which their syntax
and semantics are widely accessible and understandable.

Accordingly, SOA and Web services are based on the publish-discovery-
bind paradigm, where:

• Service providers publish the availability of their services.
• Service brokers register and categorize published services and provide

search services.
• Service requesters use broker services to find a needed service and then

employ that service.

Service descriptions in a standard machine-readable format (such as XML)
are associated with each service. These service descriptions are key to all
three roles in that they provide the information needed to categorize, choose,
and invoke an e-business service. It has to be emphasized that the focus of
SOA is different from that of service-based architectures which focus instead
on service-to-service message protocols, or on the details of how the various
servers communicate rather than on the description of what they say to each
other. Within a single corporate system, where the entire system is under the
control of one group of stakeholders, a service-based approach can be used to
break and re-organize rigid legacy systems into collaborating services that pro-
vide improvements in flexibility and maintainability. However, service-based
techniques alone do not scale beyond the span of control of the single cor-
porate environment that defines and manages the semantic definitions of the
services. The service-oriented view adds service’s functionality descriptions
to the service-based approach. In a service-oriented view, the interoperability
problem can be partitioned into two subproblems, namely, the definition of
standard mechanisms for describing service interfaces and the identification
of commonly agreed, standard protocol(s) that can be used to invoke a par-
ticular interface. Service-oriented interfaces provides for consistent resource
access across multiple heterogeneous platforms with local or remote location

2.3 Web Services Technologies and Standards 13

transparency, and enables mapping of multiple logical resource instances onto
the same physical resource.

2.2 Web Services Architecture

To facilitate the creation and assembly of interoperable Web services, the Web
Services Architecture Working Group at W3C devised the need of defining a
standard reference architecture for Web services [48]. Such architecture is a
conceptual one, and it aims at identifying the minimal common character-
istics of the global Web services network required to ensure interoperability
between Web services. In other words, it defines a model, and does not describe
or prescribe the specific functions that should support the model or how these
functions could be grouped in specific software modules. The W3C reference
architecture revolves around four models. The Message Oriented model fo-
cuses on the structure of messages, the relationship between message senders
and receivers, and how messages are transmitted. The Service Oriented Model
(SOM) is based on the concepts of services being realized by an agent and
used by another one, and services being mediated by means of the messages
exchanged between requester and provider agents. The Resource model intro-
duces the Web concept of a resource, that is, the concept of uniform resource
identification (URI), and the separation of resource identification from re-
source representation. The Policy Model focuses mainly on constraints on the
behavior of agents and services, but it extends to encompass resources such
as XML documents describing the services.

2.3 Web Services Technologies and Standards

As shown in Figure 2.1, the technological foundations of Web services largely
rely upon technologies implementing core standards for the World Wide Web.
The World Wide Web’s technological foundations are basically those allowing
for the identification of resources (Universal Resource Identifier, URI, [29, 32])
, the representation of their state, and the standard protocols that support the
interaction between agents and resources in the Web space, such as Hypertext
Transfer Protocol (HTTP). XML-based standards and technologies include
the eXtensible Markup Language itself [54], XML Schema [258], SOAP [120],
Web Services Description Language (WSDL) [67], and Universal Description,
Discovery, and Integration (UDDI)[72].

As pointed out by Berners-Lee [29], the URI, a compact string of charac-
ters used to identify or name a resource, is the most fundamental specification
of Web architecture. The URI specification transforms the Web into a uniform
space, making the properties of naming and addressing schemes independent

14 2 Web Service Technologies, Principles, Architectures, and Standards

URI Unicode

HTTP XML Namespaces

SOAP XML Schema

WSDL XPath

Fig. 2.1. Web services technological foundation

from the language using them.

Hypertext Transfer Protocol (HTTP) is a general, stateless communication
protocol for the transfer of information on the World Wide Web. One of the
most relevant feature of HTTP is its extensibility. An extension mechanism
explicitly and unambiguously identifies the capabilities of implementations.
Extensibility is a key requirement to provide interoperability, since interoper-
ability in turn requires backward compatibility with software implementations
of previous versions of the protocol.

XML [54], a W3C endorsed standard for document markup, is the “lin-
gua franca” for the Web. XML can be traced back to SGML, the Standard
Generalized Markup Language [112, 114]. XML is a metamarkup language de-
signed for the creation of languages. Simply stated, XML does not constrain
its users to a fixed set of tags and elements; rather it is inherently extensi-
ble, allowing developers to define new languages able to convey the semantics
needed by specific applications (called also XML applications) as they need
them. At the same time, the XML specification defines a strict grammar for
XML documents, which allows one to build XML parsers that can read any
XML document. Through the namespace mechanism, it is possible to extend
XML by mixing multiple vocabularies in a same document, yet managing the
names “meaning” in an unambiguous way [31], without incurring problems of
name collision and detection. The XML namespaces specification [53] defines
the constructs which allow a single XML document to contain XML elements
and attributes (markup vocabulary) defined and used by multiple software
modules.

The rules regarding the structure of an XML document, that is, the ele-
ments and attributes that can be part of an XML document and where they
can appear, can be documented in a schema . XML document instances can
be validated against the schema. A schema can be roughly equated with a
type definition in a programming language, and the XML document adhering
to the schema with an instance of a type. Several different schema languages
with different levels of expressivity have been proposed: RELAX [223, 68],
TREX [69], TREX, and SOX [86]. The most broadly supported schema lan-
guage for XML is the Document Type Definition (DTD) which is also the
only one defined by XML specification. Due to the syntax limitation of DTD,
W3C defined the W3C XML Schema Language [258], and published as a W3C

2.3 Web Services Technologies and Standards 15

recommendation in May 2001. It is worth noting that,due to the declarative
nature of schema languages, there are always some constraints that cannot be
expressed. This requires adding code to the program which reads and inter-
prets the XML document.

2.3.1 SOAP

Web services interactions, that is the requests sent by requesters to Web ser-
vices and the responses sent by the Web service, are based on the Simple
Object Access Protocol (SOAP) [120, 121, 187]. SOAP defines a standardized
XML-based framework for exchanging structured and typed information be-
tween services. The specification (submitted to W3C in 2000) was designed to
unify proprietary Remote procedure Call (RPC) communication, basically by
serializing into XML the parameter data transmitted between components,
transporting, and finally deserializing them back at the destination compo-
nent. SOAP is fundamentally a stateless, one-way message exchange paradigm
that enables applications to create more complex interaction patterns (e.g.,
request-response, request-multiple responses, etc.) by combining one-way ex-
changes with features provided by an underlying protocol and/or application-
specific information. At its core, a SOAP message has a very simple structure:
an XML element with two children elements, one containing the header and
the other the body. The header contents and body elements are also repre-
sented in XML. The header is an optional element that allows the sender to
transmit “control” information. Headers may be inspected, inserted, deleted,
or forwarded by SOAP nodes encountered along a SOAP message path. SOAP
also provides a full description of the rules that a SOAP node receiving a
SOAP message must follow. Such rules are called SOAP Processing Model .
The SOAP Processing Model defines how a SOAP node must process a sin-
gle SOAP message. Moreover, the SOAP Processing Model assumes that: a
SOAP message originates at an initial SOAP sender node and is sent to an
ultimate SOAP receiver via zero or more SOAP intermediaries; a SOAP node
does not maintain any state information; a SOAP node does not maintain any
correlation between SOAP messages. The behavior of a SOAP node is deter-
mined in accordance with the env:mustUnderstand attribute of the SOAP
header elements. If the attribute, env:mustUnderstand, has a value “true”,
the SOAP node must process the SOAP header block according to the speci-
fication of that block, or else generate a SOAP fault. Understanding a SOAP
header means that the node must be prepared to do whatever is described in
the specification of that block. The definition of a SOAP message structure is
independent of the underlying transport protocol that will be used to transmit
the SOAP message. SOAP messages may be exchanged using a variety of pro-
tocols, including other application layer protocols such as HTTP and Simple
Mail Transfer Protocol (SMTP). The SOAP binding construct specifies how
a SOAP message can be passed from one SOAP node to another using an un-
derlying protocol. In practice, a SOAP binding specifies how to serialize the

16 2 Web Service Technologies, Principles, Architectures, and Standards

SOAP envelope so that it can be reconstructed by the SOAP receiver without
loss of information. The only binding formally defined and in active use today
is HTTP. Moreover, the so-called SOAP binding feature allows one to specify
other features which might be needed by the application, such as the ability
to correlate a request with a response, or the need to use an encrypted trans-
mission, or the need to use a reliable channel. Some features can be provided
natively by the underlying protocol, such as a request-response correlation in
HTTP, or can be represented and implemented by one or more SOAP header
blocks. When using SOAP, a SOAP processor (or SOAP engine) is needed on
the requester side and on the Web service side to construct and decode SOAP
messages. SOAP provides for Remote Procedure Call (RPC) style interac-
tions, similar to remote function calls, and document-style communication,
with message contents based exclusively on XML Schema definitions. Invoca-
tion results may be optionally returned in the response message, or a Fault
may be raised, which is roughly equivalent to exceptions in traditional pro-
gramming languages. It is worth noting that the use of SOAP is not mandated
or implied by the W3C Web service definition and that SOAP protocol man-
agement certainly adds complexity . A Web service could be implemented by
a program, for example a Java servlet, that listens for XML-encoded messages
sent over HTTP, without using SOAP. Such a program could then route those
messages to a message processor component and then return the results to
the requestor. However, using SOAP to invoke a Web service API provides
for passing complex types across the network, better error handling, and for
automating much of the marshalling and unmarshalling of method parameters
and return values. As for security aspects, the SOAP protocol only defines the
communication framework, and it does not address any provision for securing
the message exchanges. SOAP messages must thus either be sent over secure
channels, or secured by using the protection mechanisms described in chapter
4.

2.3.2 Web Services Description Language (WSDL)

The Web Services Description Language Version 2.0 [67] allows one to de-
scribe the Web service interface, starting with the messages that are exchanged
between the requester and provider agents. The messages are described ab-
stractly and then bound to a concrete network protocol and message format.
Web service definitions can be mapped to any implementation language, plat-
form, object model, or messaging system. As shown in Figure 2.2, WSDL
separates the description of the abstract functionality offered by a service,
called abstract interface, from its implementation details, namely, how the
client and the Web service exchange messages; how the service is implemented
(Java, .NET); and where the service is offered.

Basically, an interface groups together a set of abstract operations. In turn,
each operation is defined as a sequence of input and output messages. A so-
called message exchange pattern can be associated to one or more messages. A

2.3 Web Services Technologies and Standards 17

Binding

Service

Endpoint

Concrete part
(service implement.)

Abstract part
(service interface)

Types

Messages

Operations

Port types

WSDL specification

Fig. 2.2. WSDL abstract and concrete parts

message exchange pattern identifies the sequence and cardinality of messages
sent and/or received by the service, as well as who they are logically sent
to and/or received from. At the abstract level, WSDL defines a service as a
collection of network endpoints or ports . The abstract definition of endpoints
and messages is separated from their concrete network deployments or data
format bindings. Such a separation allows one to reuse the abstract defini-
tions of messages and port types that represent collections of operations. The
concrete protocol and data format specifications for a particular port type
constitute a binding. A port is defined by associating a network address with
a binding. A collection of ports defines a service.

The concrete part of WSDL provides for the implementation details,
namely:

• A binding (see Figure 2.3) specifies transport and wire format details for
one or more interfaces.

• An endpoint associates a network address with a binding.
• A service groups together endpoints that implement a common interface.

The service element assigns a name to the service, associates it with the
abstract interface and describes where to access the service.

18 2 Web Service Technologies, Principles, Architectures, and Standards

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"

binding="tns:reservationSOAPBinding"

address ="http://greath.example.com/2004/reservation"/>

</service>

Fig. 2.3. An example of WSDL binding

Service
registry

Service
Requestor

Service
Provider

Bind

hsilbuPdniF

Fig. 2.4. Registries in the discover-find-use pattern

2.3.3 Service Discovery: Universal Description, Discovery and
Integration (UDDI)

Service discovery (see Figure 2.4) is the process by which service users can
find service providers and the description of the Web services they provide.

The discovery process encompasses two description levels, supporting two
related but distinct processes:

• The first is the description of the business itself. This description is useful
to prospective business client in order to limit the scope of their search to
specific industries and/or market sectors.

• The second encompasses the technical description (i.e., the WSDL descrip-
tion) of the Web services) provided by the business previously identified.

UDDI [139, 72] was mainly conceived to provide standardized descriptions
of a business and of the Web services it provides for recording them in some
catalog (registry) . Such a catalog can be queried by client to easily find the

2.3 Web Services Technologies and Standards 19

services they need. UDDI defines a set of standard services supporting the
description and discovery of (1) businesses, organizations, and other Web ser-
vices providers; (2) the Web services they make available; and (3) the technical
interfaces which are used to access those services. UDDI is based on a common
set of industry standards, including HTTP, XML, XML Schema, and SOAP.
UDDI, at its most basics, is a registry containing data and metadata about
Web services, including services’ location and information on how to invoke
registered Web services. A UDDI registry allows one to classify and catalog
such information so that Web services can be discovered (and consumed).

An UDDI registry supports the discovery-find-use pattern where (see Fig-
ure 2.5:

1. Businesses populate the registry with the descriptions of the services they
support;

2. Standard bodies and software companies populate the registry with de-
scriptions of different types of services

3. Customers, business applications, and search engines can query the reg-
istry to discover services at other companies. The information obtained
by a registry can be used by a business to facilitate the interaction with a
service and/or to dynamically compose a complex service out of a number
of simpler services.

Business
registrations

Service Type
registrations

Std bodies

SW companies

Business &
Services
descriptionsBusiness Business

Marketplace

Business apps

1

2
3

4

Discovery
(queries)

WSDL

Fig. 2.5. Registries in the discover-find-use pattern

UDDI Registry data are organized in White pages, Yellow pages, Green
pages, and Service Type registrations. White pages, like a phone book, contain
the name of the business, a textual description of the business, the contact
information (names, fax numbers, phone numbers, web sites URLs), and a list
of business identifiers in accordance with known identification schema such as

20 2 Web Service Technologies, Principles, Architectures, and Standards

Data Universal Numbering System (DUNS) [95, 281] and Thomas [72, Section
5.2.5].

The Yellow pages contain a set of business categories organized along
three standard taxonomies , namely Industry, according to the North Amer-
ican Industry Classification System (NAICS) [205] industry codes; Prod-
uct/Services, according to the Universal Standard Product and Service Clas-
sification (UN/SPSC) by ECMA [262]; and Geographic Location, according
to ISO 3166 [141] for country and region codes. Taxonomies are implemented
as name-value pairs so that a taxonomy identifier can be “attached” or refer-
enced by the business White Pages.

Through the Green pages, a business provides the data needed to conduct
electronic transactions with it, that is, the description of its business pro-
cesses, its services, and how to bind them. The description is provided at an
abstract level, which is independent of the programming language, platform,
and implementation.

A Service Type Registration contains the information needed by a pro-
grammer in order to use the service. It also contains the service publisher
identifier and the identifier of the Service Type Registration itself, which is
used by the Web sites that implement the service as a signature.

Figure 2.6 shows the entities comprising the UDDI model and their re-
lationships. Business and service providers (called publishers in UDDI) are
represented by the top-level businessEntity entity. The businessEntity entity
conveys descriptive information about a Business that provides Web services,
such as the business name, the contact information , and about the services
it offers. Each businessEntity entity can contain one or more businessService
entities. Each businessService entity describes a family of Web services pro-
vided by the business. Such an entity provides no technical information about
the service; it only contains descriptive information such as service names
and classification information that are useful to describe the purpose of each
Web service that it groups. A bindingTemplate entity provides the technical
information needed by applications to bind and interact with the Web service
being described, namely the access point of the Web service or a reference
to it. The Technical Models (tModels) entity references the technical descrip-
tion of the Web service, such as its WSDL description and possibly other
documents that describe the interface and the behavior of the Web service.
tModels are used in UDDI to represent metadata about transport and pro-
tocol definitions such as HTTP and SMTP, namespaces, and categorization
information. Moreover, they provide an extensibility mechanism: if a Business
needs some concept which does not already exists in UDDI, it can introduce
it by creating a tModel containing the URL of the relevant document.

Finally, the publisherAssertion entity is used to specify relationships
among multiple businesses described by different businessEntity entities. For
example, a corporate enterprise may have multiple related subsidiaries and
each of them may have registered as a businessEntity in the UDDI. UDDI de-

2.3 Web Services Technologies and Standards 21

businessEntity

businessEntity: info
about the pub isher tModel: descriptions

of service spec fications

businessService: info
About a family of tech
services

bindingTemplate:
tech info about service
implementation

1

+

1

+

References to tModel

Publisher
Assertion tModel

WSDL

Fig. 2.6. UDDI model entities

fines standard register interfaces that allow a business provider: i) to describe
the Business entity main characteristics, according to the UDDI model (i.e.,
the information contained in the White Pages); and ii) to abstractly describe
the behavior of the Web service that implements the service. Such a descrip-
tion is expressed trough the tModel entity provided by UDDI. It is worth
noting that the tModel itself does not contain the Web service description,
but it refers to an XML document containing it.

UDDI functionalities are made available to programs through sets of pre-
defined APIs: the Publisher API set, the Inquiry API set, the Port Type API
(in UDDI V3.0), and the Bindings API (in UDDI V3.0).

The Publisher APIs allow a publisher:

• to register a new (or to update existing) businessEntity, businessService,
tModel, and bindingTemplate.

• to delete existing businessEntity, businessService, tModel, and bindingTem-
plate.

• to obtain a list of business and tModels managed by a given publisher.
• to create, add, delete, and query publishers’ assertions.

The Inquiry API set allows one to locate and obtain details on entries
in a UDDI registry. The Inquiry API set provides three forms of queries,
which allow a user to browse, drill down, and use the information found in
the registry for the specific Web service being invoked.

2.3.4 Considerations

UDDI registries and services can be used in various scenarios. UDDI services,
deployed in a software manufacturing environment, aid the software design
process by storing, categorizing and making searchable the information related
to already developed Web services and their access points. UDDI services can
be used at run-time by applications needing to discover new and alternate
sources of information based on selected criteria.

22 2 Web Service Technologies, Principles, Architectures, and Standards

2.4 Web Services Infrastructure

Middleware plays a central role in Web services development, deployment,
and operations. Broadly speaking, middleware consists of the software ser-
vices that lie between the operating system and the applications on each host
of a distributed information system. The ultimate goal of middleware is to
shield application developers from the complexity of heterogeneous distributed
environments, and to support applications’ interoperability in distributed het-
erogeneous environments.

The notion of middleware originally encompassed database systems,
telecommunications software, transaction monitors, and messaging-and-
queuing software. It evolved to provide an enhanced support for Enterprise
Application Integration (EAI) through functionalities such as i) support for
synchronous and asynchronous transport protocols; ii) routing capabilities
both as addressability and content-based routing; iii) protocol translation,
data transformation and translation; iv) complex event processing capabili-
ties: event interpretation, correlation, pattern matching, publish/subscribe; v)
management capabilities including: monitoring, audit, logging, metering, vi)
Quality of Service (QoS) capabilities: security (encryption and digital sign-
ing), reliable delivery, transactions; vii) process orchestration capabilities and
business process definition.

Middleware supporting Web services includes Web servers, XML proces-
sors, and SOAP processors. A Web server is the software responsible for ac-
cepting HTTP requests from clients, and serving them HTTP responses. An
XML processor is a software module used to read XML documents and pro-
vide access to their content and structure. A SOAP processor processes a
SOAP message according to the formal set of conventions defined by SOAP.
It is responsible for enforcing the rules that govern the exchange of SOAP
messages and it accesses the services provided by the underlying protocols
through SOAP bindings. A SOAP processor is responsible for invoking lo-
cal SOAP Handlers and for providing the services of the SOAP layer to those
SOAP handlers. A SOAP processor aids both clients of Web services and their
providers to accomplish their task without having to worry about the intrica-
cies of SOAP message handling. As far as the client is concerned, it invokes an
operation in a similar way a remote procedure call is invoked. The Web service
provider needs to implement only the logic required by the business problem
it solves. The client’s SOAP processor converts the method invocation into
a SOAP message. This message is transmitted through a transport, such as
HTTP or SMTP, to the service provider’s SOAP processor, which parses the
message into a method invocation. The service provider then executes the ap-
propriate application logic and gives the result to its SOAP processor, which
parses the information into a SOAP response message. The message is trans-
mitted through a transport to the client. Finally, the client’s SOAP processor
parses the response message into a result object that it returns to the invoking
entity.

2.4 Web Services Infrastructure 23

Middleware supporting Web services is a distributed infrastructure and it
can be implemented either as a gateway that handles traffic for multiple Web
services or as agents co-resident on systems running a given Web service. The
presence of such infrastructure is often transparent to a given Web Service
and to any software invoking a service provided by it. Typically, the infras-
tructure addresses key areas such as security, system management and service
virtualization.

Bibliographic notes

The reader interested in an in depth comparison of the features of schema
languages can read the paper by Lee and Chu [160]. The book of Graham et
alii [118] introduces the basic concepts, technologies and standards of Web
services and also provides in depth “how to” information for Java developers.
The book by Alonso et alii [9] provides a critical analysis of what Web services
are and what is their foreseable future. The book by Kumar [155] is intended
for Java developers interested to the security aspects, including the use of
Web services security standards. The book by O’Neill et al. [208] contains a
thouroghly analysis of Web services security standards.

3

Web Services Threats, Vulnerabilities, and
Countermeasures

Securing a Web service requires us to protect, as far as possible, all of its basic
components, shown in Figure 3.1, and their interactions along with the Web
service life cycle, from the design to the operational phase. This is a complex
and difficult task, due to the vulnerabilities which each software component
may have, the large number of attacks that can eventually exploit the vul-
nerabilities of a specific component, and to the interactions between the com-
ponents themselves. It requires us to combine and enhance methods, tools,
and techniques for computers, networks, distributed systems, and application
security and adopt an engineered security process. Such an engineered process
consists of detailed plans and designs for security features and controls that
support the delivery of solutions satisfying not only functional requirements,
but also preventing misuse and malicious behavior. Core practices of an engi-
neered security process are security planning, security requirements analysis,
the design of a security architecture, secure coding, security testing, and se-
curity operations and maintenance. Each core practice encompasses specific
methods and tools, or even specific methodologies.

Threat modeling is a methodology used to ensure that a software com-
ponent’s security is duly analyzed and taken into account at design time.
Threat modeling is not a new concept, nor it is peculiar to Web services. At
its most basic, threat modeling assumes that a software component might
be subject to malicious attacks or inadvertent misuse and that these attacks
may lead to loss or compromise of some valuable asset. At the same time,
malicious attacks or inadvertent misuse arise by use of software components’
vulnerabilities. Hence, it is necessary to identify in a principled way the soft-
ware component vulnerabilities, which can derive from wrong design choices,
from implementation errors or from the lack of appropriate control, the ways
in which such vulnerabilities could be exploited by a malicious attacker and
finally the suitable countermeasures. W3C also postulated the need of devel-
oping a threat model specifically targeting Web services and suggested that
such a threat model should be an integral part of a Web services security
framework. It is worth noting that, as we will see in Chapter 4, Web service

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 3, c© Springer-Verlag Berlin Heidelberg 2010

26 3 Web Services Threats, Vulnerabilities, and Countermeasures

Fig. 3.1. Web service basic components

security standard specifications also recommend that standard specification
implementors perform a thoroughly threat analysis.

Threat modeling, however, has suffered a lack of commonly agreed con-
cepts and of a standardized language to define, categorize, and describe threats
and vulnerabilities. For this reason, this chapter starts by introducing firstly
the concepts of threat, vulnerability, attack and incident. Then the chap-
ter shortly describes the main phases of threat modeling as applied to Web
application development life cycle. Then the chapter presents the proposed
categorizations and the available catalogs of vulnerabilities and attacks. Such
catalogs can be used and useful not only during the design phase of a software
component, but also during the operation phase of a Web service. Finally the
chapter addresses how to rate vulnerabilities and how the underlying vul-
nerabilities metrics have to be tailored to the specific phase of the software
component life cycle.

3.1 Threats and Vulnerabilities Concept Definition

Before analyzing in more depth the threats and vulnerabilities of Web ser-
vices, it is worth to survey some relevant definitions of the basic concepts:

• Threat - According to the Glossary of Key Information Security Terms of
NIST [149] [186], a threat is defined as: “Any circumstance or event with
the potential to adversely impact organizational operations (including mis-
sion, functions, image, or reputation), organizational assets, or individuals
through an information system via unauthorized access, destruction, dis-
closure, modification of information, and/or denial of service. Also, the
potential for a threat-source to successfully exploit a particular informa-
tion system vulnerability.”

3.1 Threats and Vulnerabilities Concept Definition 27

• Vulnerability - A vulnerability can be defined as a “Weakness in an infor-
mation system, system security procedures, internal controls, or implemen-
tation that could be exploited or triggered by a threat source.”[199] [225].
A vulnerability is also commonly defined as a flaw in a software component
that can be exploited by an adversary, giving raise to a threat. The former
definition is more general, since it considers not only software components
vulnerabilities but also equally relevant organizational aspects. MITRE
[75] makes a further distinction between a vulnerability and an exposure.
The former is a software mistake that can be directly used by a hacker
to gain access to a system or network, while the latter is a configuration
issue or a software mistake that does not allow an attacker to directly
compromise a system or a resource, but that could be used as a primary
point of entry of a successful attack, and that violates a reasonable security
policy.

• Attack - An attack, referred to also as intrusion or exploit, can be de-
fined as an assault to a system that derives from an intentional use of a
vulnerability.

• Attack cost - The cost of an attack can be defined as a measure of the
effort to be expended by the attacker, expressed in terms of her expertise,
resources and motivation.

• Incident - An incident is the result of a successful attack.
• Countermeasure - A countermeasure can be thought as any organizational

action or tool able to mitigate a risk deriving from one or more attack
classes intended to exploit one or more classes of vulnerabilities.

Sofware components vulnerabilities can be broadly classified as:

1. Software defects. They can be further refined in:
• Design flaws , that is, design decisions made at the design time that

create an inherently insecure system. An example of architectural level
error for session-based systems, leading to a vulnerability, is the gen-
eration of easily guessable session identifiers (i.e. using a counter and
not a random number).

• Coding errors , that can be traced back to the lack of appropriate
controls in the code that may lead to a variety of errors including for
example buffer overflows or race conditions.

2. Configuration errors . They are becoming the major source of vulnerabili-
ties. This is not surprising, since software components are more and more
driven by configurations which are becoming quite complex to manage.
Configuration errors can be further classified in:
• Unnecessary (or dangerous) services. Since it is usually easier to install

a software component with its default configuration, systems are often
configured to bring up services and allow connections that are not
strictly required.

• Access control misconfiguration. Complex systems might have elab-
orate access control policies based on groups and/or roles and per-

28 3 Web Services Threats, Vulnerabilities, and Countermeasures

missions. Properly configuring reference monitors, that is, the engines
enforcing access control decisions and enforcement, is a complex and
error-prone task.

3.2 Threat Modeling

Threat modeling is a methodology to identify, assess and document the
threats, attacks, vulnerabilities, and countermeasures in the context of a soft-
ware component life cycle. The overall goals of threat modeling are to reduce
security risks during design, development and operations and to help making
trade-offs in key engineering decisions. Threat modeling was initially proposed
by Microsoft [248] and has become an integral part of Microsoft’s Trustworthy
Computing Security Development Life cycle (SDL) [169] process illustrated in
Figure 3.2. In a Web service setting, threat modeling might be applied to any
software component of the Web service stack, from the HTTP processor to
the Web application. While the components that constitute the infrastrucure
of a Web service, such as the HTTP processor, the XML parser, the SOAP
processor, etc., benefit from being developed by large organizations which can
afford the costs of security, Web applications are mostly developed as a cus-
tom component. Web applications are one of the weakest components of the
Web service stack, since development teams often operate under tight time
and/or resource constraints that may also include the lack of security trained
personnel. The situations is worsened when security functions, such as autho-
rization, are implemented by the Web application itself.

Securing
Deployment

Penetration
Testing

Implementation
Analysis

Security
Requirements

Collection

Securing
Design

Operation
Security

Monitoring

Architecture
Review and

Threat model

Fig. 3.2. Security development lifecycle

However, applying threat modeling to Web application requires to provide
a structured framework for the security analysis. A first step in this direction is

3.2 Threat Modeling 29

to organize threats and vulnerabilities in a set of categories, corresponding to
security or security related functions . Such functions could be directly imple-
mented by the application, or could be implemented by the infrastructure and
used by the application. Depending on the application security requirements,
vulnerability categories can be used during the application design phase to
check which specific security functions must be implemented. At the same
time, vulnerability categories can provide indications about the threats that
could result from the exploitation of one or more vulnerabilities deriving from
having decided to not implement one or more security functions. An exam-
ple of a possible vulnerability categories framework is the one proposed by
Microsoft, described in Table 3.1 below, excerpted from [176].

Application
Vulnerability
Category

Description (controls and/or protection techniques that the ap-
plication should use)

Input validation Controls that the application should perform on its input: lex-
ical, syntactical and type checks; input integrity; input origin
(does it come from a valid user?)

Authentication Entity authentication checks: does the application properly au-
thenticate the sender of the input data; does the application
authenticate the users?

Authorization Does the application verify that the requesting users can legiti-
mately access/use the resource they are requesting?

Configuration
Management

Does the application run with the least needed privileges? Does
the application connect to the proper database? If the applica-
tion uses its own configuration data, are they stored and accessed
in a secure way?

Sensitive Data If the application manages sensitive data, does the application
use suitable techniques to protect confidentiality and integrity
of data in transit and of data at rest?

Session Manage-
ment

Does the application manage sessions? If so, are sessions prop-
erly protected?

Cryptography Does the application properly use cryptography to protect data
and messages confidentiality and integrity?

Exception man-
agement

Does the application fail securely? Does the application properly
manage error information reported to the user to avoid informa-
tion leakage?

Auditing and
Logging

Does the application keep a record of who did what?

Table 3.1. Application Vulnerabilities Categories

Threat modeling is an iterative process that starts during the early phase
of the design of the application and continues throughout the application life
cycle. The iterative nature of the threat modeling process stems from the
difficulty of identifying all possible threats in a single pass and from the need
to accommodate changes to the application over its lifetime.

30 3 Web Services Threats, Vulnerabilities, and Countermeasures

Building a threat model involves the following steps , that will be shortly
described afterward:

1. Identify the valuable assets.
2. Define the security objectives.
3. Create an architecture overview of the Web application (or of the software

component at hand).
4. Create a security profile of the Web application (or of the software com-

ponent at hand).
5. Identify threats and vulnerabilities.
6. Document threats and vulnerabilities.
7. Rate the threats.

The final output of threat modeling is a threat model document. A threat
model document consist of a definition of the architecture of the application
and of a list of threats for the application scenario. A threat model document
supports the various members of the project team in assessing the security
architecture of the system, and provides a basis for a penetration test plan
and for the code review activity.

The threat model constitutes the input for the identification and the eval-
uation of the suitable countermeasures, where the evaluation can encompass
not only the countermeasures’ technical aspects but also their cost/benefit
ratio.

Identifying the assets

The goal of this step is to identify the assets that must be protected from
attacks. It is worth noting that such assets could be resources directly managed
by the Web application, resources that could be someway indirectly accessed
through the application, as well assets related to the business, such as the
company reputation, which do not have a direct electronic embodiment.

Defining the security objectives

Security objectives are strictly related with the the definition of the level of
confidentiality, integrity and availability required for the valuable information
assets and for the information systems managing them. Defining security ob-
jectives, in turn, requires to categorize the relevant information types and in-
formation systems. As for this aspect, the U.S. Federal Information Processing
Standard 199 - Standards for Security Categorization of Federal Information
and Information Systems - [243] identifies three security categories, confiden-
tiality, integrity and availability, respectively. Security objectives derive from
the estimate of the impact of a security breach, that is, a confidentiality,
integrity and availability breach, on the valuable information assets.

3.2 Threat Modeling 31

Creating an architecture overview

The main goal of this step is to identify and document the functions of the
application, its architecture, its physical deployment configuration and the
subsystems that it uses.

Create a security profile of the Web application

In this step a security profile for the application is created, according to the
chosen vulnerability categorization as, for example, the previuosly described
one used by Microsoft. At its most basics, the Web application security profile
identifies and documents the design and implementation approaches chosen
for each of the security or security related functions that can be used to pre-
vent or mitigate a given vulnerability category and for the other areas where
applications are most susceptible to vulnerabilities. The security profile also
identifies applications’ entry points, trust boundaries, data flow, and privi-
leged code, as shown in Fig. 3.3.

Web

Application

Security profile

Input validation Session management

Authentication Cryptography

Authorization
Parameter
Manipulation

Exception
Management

Configuration
Management

Sensitive
Data

Auditing and
Logging

Entry points Data Flow

Trust boundaries Privileged code

Fig. 3.3. Decomposition and security profile

Crucial activities in this phase are the identification of the Web application
entry and exit points, which broadly represent the applications’ perimeter,
and, for each of them, the level of trust associated with the external software
entities which the input originates from or the applications’ output is directed
to. An entry points is a location where data or control is transferred between
the application being modeled and another subsystem. Trust level is basically
related to wheter the external subsystem is authenticated or not and to the
privileges it has. Trust levels are needed to identify data flows that are po-
tentially malicious, and thus need to be more thoroughly validated by the
application.

32 3 Web Services Threats, Vulnerabilities, and Countermeasures

Identify the threats

In this step, the security or security related functions implemented or used by
the application are analyzed in order to discover possible threats. According
to Microsoft guidelines, this activity should ideally be carried out by a team
consisting of application architects, security professionals, developers, testers,
and system administrators. The main output of this step is a threat profile,
which identifies the likely paths of attack. Attacks can be also analyzed, and
categorized, with respect to the objectives an attack may intend to achieve. For
example, Microsoft describes these objectives by using the STRIDE (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation
of privilege) categories [248]. Table 3.2, reproduced from [177] describes the
meaning of each threat category.

Threat Category Threat Definition

Spoofing The illegal access and use of a user’s iden-
titification or authentication information,
such as the user’s username and pass-
word.

Tampering (also called integrity threats) An unauthorized modification of data.
Examples include making unauthorized
changes to persistent data, such as that
held in a database, or altering data as
it flows between two computers over an
open network, such as the Internet.

Repudiation The ability of users (legitimate or other-
wise) to deny that they performed spe-
cific actions or transactions. An example
is a user performing an illegal operation
in a system that can’t trace the prohib-
ited operations.

Information disclosure The unwanted exposure of private data.

Denial of service The process of making a system or appli-
cation unavailable.

Elevation of privilege It occurs when a user with limited privi-
leges assumes the identity of a privileged
user to gain privileged access to an appli-
cation and thereby he/she has the ability
to compromise or destroy an entire sys-
tem.

Table 3.2. STRIDE Categories

For each threat category STRIDE provides guidelines as to the appropriate
countermeasures to adopt in order to reduce the risk. Most common known
threats can also be grouped based on the component which may be subject to

3.2 Threat Modeling 33

the threat, that is, the network, the host, and the application. Such categorized
threat lists can provide a more focused framework to conduct the security
analysis. Table 3.3, reproduced from [177], reports the threat list to be initially
considered for the application.

Vulnerability Category Threats

Input validation Buffer overflow; cross-site scripting; SQL injec-
tion; canonicalization

Authentication Network eavesdropping; brute force attacks; dic-
tionary attacks; cookie replay; credential theft

Authorization Elevation of privilege; disclosure of confidential
data; data tampering; luring attacks

Configuration management Unauthorized access to administration interfaces;
unauthorized access to configuration stores; re-
trieval of clear text configuration data; lack of
individual accountability; overprivileged process
and service accounts

Sensitive data Access sensitive data in storage; network eaves-
dropping; data tampering

Session management Session hijacking; session replay; man in the mid-
dle

Cryptography Poor key generation or key management; weak or
custom encryption

Parameter manipulation Query string manipulation; form field manipula-
tion; cookie manipulation; HTTP header manip-
ulation

Exception management Information disclosure; denial of service

Auditing and logging User denies performing an operation; attacker ex-
ploits an application without trace; attacker cov-
ers his or her tracks

Table 3.3. Application Vulnerability Categories

Categorized lists of known threats include common well known threats.
For each category, in order to identify other possible threats, other techniques
based on attack trees and attack patterns can be used. Attack trees [233, 234]
represent the possible paths followed by an attack as trees. The root node of
such a tree is the global goal of an attacker. Children of a node are refinements
of this goal, and leafs represent goals that can no longer be refined. Attack
trees provide a formal methodology for analyzing the security of systems and
subsystems, to capture and reuse expertise about security, and to respond to
changes in security requirements. Attack trees can become complex, especially
when dealing with specific attacks. A full attack tree may contain hundreds or
thousands of different paths all leading to completion of the attack. Although
the creation of an attack tree may require substantial security expertise and

34 3 Web Services Threats, Vulnerabilities, and Countermeasures

practice, attack trees, once organized in a library, can provide a reusable
knowledge base and so contribute to an engineered approach to security.

Attack patterns are a mechanism to capture and communicate the attack-
ers perspective. They describe common methods for exploiting software that
can occur in a variety of different contexts, and apply the problem-solution
paradigm of design patterns [111]. An attack pattern is based on the analysis
of observed attack exploitations, and usually contains the following informa-
tion:

• Pattern name and classification;
• Attack prerequisites;
• Attack Description;
• Targeted vulnerabilities or weaknesses;
• Method of attack;
• Attacker goal;
• Attacker skill level required;
• Resources required;
• Blocking solutions;
• Context description.

To promote the standardization of attack pattern description and their
use in the secure software development, attack patterns are being enumerated
and classified by the Common Attack Pattern Enumeration and Classification
(CAPEC) [63] initiative sponsored by the Department of Homeland Security
(DHS) and led by Cigital.

Altogether, the information provided by attack trees and attack patterns
about the methods of attacks, the required attacker skill level, and the re-
sources needed to conduct the attack represent one of the perspectives to be
taken into account when rating threats and vulnerabilities.

Rating threats

The final step of threat modeling is rating discovered threats based on the risk
they pose to the identified valuable assets, whose confidentiality, integrity, and
availability should be assured. Rating threats is not a simple task, because it
depends on multiple factors, such as the set of existing known vulnerabilities,
the estimate of the likelihood of attacks, the estimate of the potential im-
pact of an attack against valuable assets, to mention just a few. In principle,
each perspective requires to define possibly multiple metrics. As to Microsoft
guidelines, they suggest to evaluate the risk as the product of the probability
of the threat occurrence and the damage potential, which is an estimate of
the adverse effect of a threat occurrence on the valuable assets. Section 3.4,
Threats and Vulnerability Metrics, elaborates further this topic.

Countermeasures

Countermeasures are the controls and techniques to adopt in order to miti-
gate or prevent the exploitation of known and/or unknown vulnerabilities of

3.2 Threat Modeling 35

a specific software component. Countermeasures could encompass both orga-
nizational processes and technical tools. The adoption of a secure software
development methodology or security design guidelines is an example of an
organizational countermeasure. As for the identification of countermeasures in
the threat modeling process, the security profile of the Web application pro-
vides the input to identify the countermeasures to adopt against the identified
vulnerabilities and threats.

Microsoft guidelines define an initial list of countermeasures for each threat
category described by STRIDE, or for each vulnerability category of the cat-
egorized threat lists, respectively. Countermeasures mainly take the form of
security guidelines the application or the security subsystem should comply to
(for example, the authentication subsystem should not transmit the password
over the network). Countermeasures are further specialized depending on the
specific system component under analysis, namely the network, the host or
the application. The analysis of application level countermeasures is driven
by the Application Vulnerability Categories in Table 3.3.

As far as Web applications are concerned, we already observed that a
vulnerability category can be viewed as security or security-related functions
directly implemented by the application or used by the application and pro-
vided by the (security) infrastructure. In an ideal world, authentication, access
control, auditing and logging, cryptographic key generation and management
should be implemented as functions or services of a security infrastructure
provided as an integral part of the middleware. In such ideal scenario the ap-
plication should take care of implementing by itself only the security controls
and countermeasures strictly dependent from the the application semantics
which can not be fully implemented by the infrastructure, such as application
input validation, application configuration management, exception manage-
ment.

It is worth noting, however, that even though the security functions pro-
vided by the middleware are becoming more and more reach and complete,
providing a general purpose, customizable authorization mechanism as a se-
curity infrastructure service is still an open issue. As a consequence, Web
applications continue to implement by themeselves authorization functions,
relying upon authorization mechanisms provided by the Operating System or
by the DBMS, such as RBAC-based authorization mechanisms.

Countermeasures, both organizational and technical ones, can be also clas-
sified according to when they are used during the Web application life cycle,
namely:

• Development-time countermeasures. Examples of technical tools that can
be used in the development phase are code analyzers, penetration test tools
and vulnerability scanners. The first obviously requires the availability of
the source code of the application or of the software component at hand,
while the last can also be used for applications and or software components
acquired from third parties, and for which the source code is not available.

36 3 Web Services Threats, Vulnerabilities, and Countermeasures

• Deployment-time countermeasures. These countermeasures encompass the
activities and the related supporting tools that allow to ascertain the cor-
rect configuration of the Web application and of the diverse software com-
ponents of the Web service stack.

• Run-time countermeasures. Vulnerability analysis tools, including intru-
sion detection and prevention systems (IDS/IPS) and file integrity checkers
are examples of tools in this category.

3.3 Vulnerability Categorizations and Catalogs

This section discusses the various sources of information about security and
Web vulnerabilities, attacks, and the underlying vulnerability categorizations.
Vulnerability categorizations and related catalogs are part of the ongoing ef-
fort to develop and establish a standardized approach to identify Web secu-
rity issues. Vulnerability catalogs provide a knowledge base useful for security
training purposes, as well as useful input to the threat modeling process dur-
ing the design and the development phase of a Web service. On the other
hand, information about new attacks, related newly discovered vulnerabili-
ties and available hotfixes and security patches provides information vital for
maintaining the security level of the production systems.

US-CERT Vulnerability Notes

The United States Computer Emergency Readiness Team (US-CERT) is a
partnership established in 2003 between the Department of Homeland Secu-
rity and the public and private sectors. US-CERT publishes information on a
wide variety of vulnerabilities. Descriptions of these vulnerabilities are avail-
able in a searchable database, and are published as US-CERT Vulnerability
Notes [266]. The US-CERT Vulnerability Notes Database contains two types
of documents: Vulnerability Notes, which describe vulnerabilities independent
of a particular vendor, and Vendor Information documents, which provide in-
formation about a specific vendor’s solution to a problem. Vulnerability notes
include technical descriptions of the vulnerability, its impact, the solutions and
workarounds, and lists of affected vendors. The Vulnerability Notes Database
can be browsed or can be searched by several key fields. Database queries can
be customized to obtain specific information, such as the ten most recently
updated vulnerabilities or the twenty vulnerabilities with the highest severity
metric. In addition to the Vulnerability Notes, US-CERT publishes the Cyber
Security Bulletins , which summarize security issues and new vulnerabilities
and provide actions to help mitigate risks, and the Technical Cyber Security
Alerts, intended to timely informing about current security issues, vulnerabil-
ities, and exploits.

3.3 Vulnerability Categorizations and Catalogs 37

MITRE Common Vulnerabilities and Exposures (CVE)

Information about software components vulnerabilities and attacks grew over
time and it accumulated in a variety of databases. The lack of a uniform
terminology among such databases made it difficult to determine if different
databases referred to the same problem. In addition, different tools of different
vendors used different metrics to state the number of vulnerabilities or expo-
sures they detected, so that there was no standardized basis for evaluation
among the tools. To overcome these problems, MITRE launched in 1999 the
Common Vulnerabilities and Exposures (CVE) project [74]. CVE provides a
dictionary and a standard, unique name of all publicly known information se-
curity vulnerabilities (or exposures, as they are termed by CVE). Each CVE
Identifier includes: CVE Identifier number (i.e., “CVE-1999-0067”); indication
of “entry” or “candidate” status; a brief description of the security vulner-
ability or exposure; any pertinent references (i.e., vulnerability reports and
advisories or OVAL-ID1).

MITRE Common Weakness Enumeration (CWE)TM-

The Common Weakness Enumeration [76] is an initiative lead by MITRE
Corp. and sponsored by the National Cyber Security Division of the U.S. De-
partment of Homeland Security. Main goal of CWE is to provide a formal,
standard list of common security weaknesses, targeted to developers and secu-
rity practitioners. CWE aims to support and improve code security assessment
and also to accelerate the use and utility of software assurance capabilities for
organizations in reviewing the software systems they acquire or develop. CWE
is based in part on the CVE identifiers of the CVE List. Associated to the dic-
tionary, the Open Vulnerability and Assessment Language (OVALTM) [211]
provides a standard for describing vulnerability and configuration issues on
computer systems using community-developed XML schemas and definitions.
OVAL is a collection of XML schemas for representing system information,
expressing specific machine states (vulnerability, configuration, patch state,
etc.), and reporting the results of a security assessment. By standardizing the
transfer of this information across the different security tools and services,
OVAL aims to ease the integration of security applications and help orga-
nizations in developing security checks for highly-customized networks and
applications. An example of the use of OVAL for describing a vulnerablity
can be found in [19]. Moreover, efforts are ongoing to provide a set of OVAL-
based services in a SOA architecture [158].

National Vulnerability Database (NVD)

NVD Version 2.0 [200] is the U.S. government repository of standards based
vulnerability management data represented using the Security Content Au-
tomation Protocol (SCAP). This repository is aimed at the automation of
1 Open Vulnerability and Assessment Language - (see CWE below) -

38 3 Web Services Threats, Vulnerabilities, and Countermeasures

vulnerability management, security measurement, and compliance. NVD in-
cludes databases of security checklists, security related software flaws, mis-
configurations, product names, and impact metrics. At the time of this book
writing, NVD contains: 26886 CVE Vulnerabilities; 114 Checklists; 91 US-
CERT Alerts; 1997 US-CERT Vulnerability Notes; 2966 OVAL Queries; and
12458 Vulnerable Products.

NVD provides a Vulnerability Search Engine which allows one to search
vulnerabilities by product or vendor name, by CVE standard vulnerability
name and by a query expressed in the OVAL language. The Security Con-
tent Automation Protocol (SCAP) is a method for using specific standards to
enable automated vulnerability management, measurement, and policy com-
pliance evaluation. SCAP is part of the Information Security Automation
Program (ISAP) [250], a U.S. government multi-agency initiative to enable
automation and standardization of technical security operations.

SecurityFocus Vulnerability Database and BugTraq mail list

The SecurityFocus Vulnerability Database [236] provides a vulnerability
database that can be searched by vendor, product and product version or
by CVE identifier. General information is associated with each vulnerabil-
ity including the BugTraq Identifier, the vulnerability class, the vulnerability
publication and update dates, and the versions of the product that present
the vulnerability. BugTraq [56] is an electronic mailing list, moderated since
1995, dedicated to the discussion about vulnerabilities, vendor security-related
announcements, methods of exploitation, and vulnerability remediation. Bug-
traq adopted a policy of publishing vulnerabilities regardless of vendor re-
sponse, as part of the movement towards a full vulnerability disclosure.

Open Source Vulnerability Database - (OVSDB)

The Open Source Vulnerability Database is an independent and open source
database created to provide technical information on security vulnerabili-
ties. The database is available for download, can be cross-referenced by other
databases, and is available for integration into security products such as vul-
nerability scanners and intrusion detection and prevention systems. Vulner-
abilities listed in OSDVB can be referenced by their OSVDB ID, which is
a unique number assigned by OSVDB. OSVDB also maintains mappings to
other sources of vulnerabilities information, including Common Vulnerabili-
ties and Exposures (CVE). CVE identifiers can be used for searching OSVDB
entries. In order to provide the most comprehensive and timely information,
vulnerabilities are entered in the OVSDB even if they are only posted to
public mail lists and are not yet verified as true vulnerabilities. In order to
distinguish the ”status” of a vulnerability, OSVDB maintains the following
classification:

• Verified. The existence of the vulnerability has been verified to exist by a
OSVDB ”datamanglers”, which are OSVDB users that have contributed to

3.3 Vulnerability Categorizations and Catalogs 39

the content of the database and are responsible for updating vulnerability
entries to ensure accurate and complete information , or acknowledged by
the vendor.

• Myth/Fake. The vulnerability appears to be non-existent, a non-issue, or
disproved by others.

• Best Practice. The entry details a vulnerability that is considered a best
practice issue.

• Concern. The issue may be a concern, but it is not directly exploitable for
privilege escalation. It may lead to a more serious impact.

Each OSVDB vulnerability entry also contains a high-level description in
textual form, aimed at helping system administrators in understanding it; a
technical description providing a concise summary of technical details; manual
testing notes describing how to test for the vulnerability, for example, how to
check the presence of files, configuration options, and a test URL; a solution
description, that is, information about an available fix.

The Web Application Security Threat Classification

The Web Application Security Consortium [273] created the Web Security
Threat Classification [274]. It aims at clarifying and organizing the threats
to the security of a Web site, and at developing and promoting an industry
standard terminology for describing these issues. Specifically, this classifica-
tion aims at identifying all known Web application security attacks, describing
them in an organized way, and at agreeing on attack class nomenclature. An
attack class groups the different attack techniques that can be used against
security functions or against resources by exploiting a known security vulner-
ability. The top-level attack classes are: authentication; authorization; client-
side attacks; command execution; information disclosure; logical attacks.

Open Web Applications Security Project

The Open Web Applications Security Project (OWASP)[255] maintains a
commonly recognized classification of the most critical Web application vul-
nerabilities, Top Ten Most Critical Web Application Security Vulnerabilities
(Top 10) [269], which represents a broad consensus about the most critical
Web application security flaws and vulnerabilities. OWASP Top 10 Web Ap-
plication Vulnerabilities for 2007 [215] are derived by the MITRE Vulnerability
Type Distributions in CVE [77], and reorganized by OWASP to identify the
Top 10 web application security issues. Top 10 focuses only on vulnerabilities
and protection recommendations for the three most prevalent Web application
frameworks: Java EE, ASP.NET, and PHP.

Software vendor’s security bulletins and advisories

Users’ searchable information about vulnerabilities and related hotfixes and
patches is maintained by major software vendors and open software organi-
zations. This information is usually accessible through the specific product

40 3 Web Services Threats, Vulnerabilities, and Countermeasures

support link at the product Web site. For example, Mozilla Security Center
[192] provides the Mozilla Foundation Security Advisories [190] for all prod-
ucts and a list of the known security vulnerabilities [191] that affect particular
versions of Mozilla products, together with instructions on what users can do
to protect themselves. This page lists security vulnerabilities with direct im-
pact on users, that have been fixed prior to the most recent release. Technical
discussions of security-related bugs are maintained at the Bugzilla site [57].
As another example, Microsoft Security Bulletins [183] provide the following
information for each vulnerability:

• an executive summary which shortly describes the vulnerability.
• the vulnerability qualitative rating (important, etc.).
• the recommendation as to the installation of the related security update.
• the known issues about the security update itself (which refer to a Mi-

crosoft Knowledge Base article).
• the affected software and the CVE vulnerability number (see later).
• the maximum security impact and the aggregate severity rating.

The section Update Information of the vulnerability entry in the Bulletin
provides guidelines on how detect and deploy Microsoft tools that can identify
the Microsoft software needing to install the security update (security patch)
related to the vulnerability. The Microsoft Security Bulletins are searchable by
Product/Technology and Service Pack, Update Severity Ratings and Bulletin
Release Date.

Enterprise Vulnerability Description Language

Proposed by the OASIS Web Application Security TC, the Enterprise Vulner-
ability Description Language (EVDL) [99] is also based on OWASP classifica-
tion. However, it proposes a more detailed breakdown of the major vulnera-
bilities. EVDL was conceived to become a comprehensive application security
markup language whose primary goal is to facilitate communication about
specific application security vulnerabilities, techniques for discovering those
vulnerabilities, and measures to protect against those vulnerabilities.

3.4 Threat and Vulnerabilities Metrics

Once vulnerabilities are identified and classified, there is the need to determine
their severity and hence, indirectly, the security (or the insecurity!) of the spe-
cific system at hand. Rating vulnerabilities, that is, defining a vulnerability
metrics, is a difficult task. The severity of a given vulnerability depends upon
several factors. These factors are related to the amount of resources needed
by a potential attacker, including the skill that the attacker should have, and
hence to the attack cost, and to the estimated extent of the damage to the
organization’s valuable assets in case of an exploitation of the vulnerability.

3.4 Threat and Vulnerabilities Metrics 41

The latter factor highlights also the difficulty in building a metrics that can
be applied in different organizational settings, since assets may vary from or-
ganization to organization and the same asset might have a different value for
different organizations. Moreover, when dealing with known vulnerabilities,
different vendors may adopt different methods for rating software vulnerabil-
ities in their bulletins or advisories; the same situation also arises for different
vulnerability databases. The consequence is that IT system and application
managers, who are in charge of managing large and heterogeneous systems,
lack consistent indications to prioritize the vulnerability to be addressed. In
this section we give an overview of different proposals and efforts aimed at
the development of a set of possibly standardized and commonly agreed upon
vulnerability metrics.

Microsoft Security Response Center Security Bulletin Severity Rating System

The Microsoft Severity Rating [184] adopts a qualitative metric. Vulnerabili-
ties are classified into four categories, namely:

• Critical. A vulnerability whose exploitation could allow the propagation
of an Internet worm without user action.

• Important. A vulnerability whose exploitation could result in compromise
of the confidentiality, integrity, or availability of user data, or of the in-
tegrity or availability of processing resources.

• Moderate. Exploitability is mitigated to a significant degree by factors
such as default configuration, auditing, or difficulty of exploitation.

• Low. A vulnerability whose exploitation is extremely difficult, or whose
impact is minimal.

US-CERT Vulnerability Metric

US-CERT[267] uses a quantitative metric and scores the severity of a vulner-
ability by assigning to it a number between 0 and 180. This number results
from several factors reported by the users, including:

• the degree of diffusion of information or knowledge about the vulnerability.
• whether incidents reported to US-CERT were caused by the exploitation

of the vulnerability.
• the risk to the Internet infrastructure deriving from the vulnerability.
• the number of systems on the Internet at risk because of the vulnerability.
• the impact of exploiting the vulnerability.
• whether the vulnerability can be easily exploited.
• the preconditions required to exploit the vulnerability.

As described on the US-CERT Web page, the factors above are attributed
with approximate values that may differ significantly from one site to an-
other, and hence users are suggested not to rely solely upon this metric for
prioritizing vulnerabilities. However, the factors above are used by US-CERT

42 3 Web Services Threats, Vulnerabilities, and Countermeasures

for separating the very serious vulnerabilities from the large number of less
severe vulnerabilities described in its database. Typically, vulnerabilities with
a metric greater than 40 are candidates for US-CERT Technical Alerts. The
factors above described are not all equally weighted, and the resulting score
is not linear (a vulnerability with a metric of 40 is not twice as severe as one
with a metric of 20).

Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) [178] aims at providing
an open framework for measuring the impact of IT vulnerabilities. CVSS is
based on a quantitative model in order to ensure repeatable and consistent
measurement of the vulnerabilities’ impact. Two common uses of CVSS are
prioritization of vulnerability remediation activities and the calculation of the
severity of vulnerabilities discovered on a given system. CVSS is composed of
three metrics groups: base, temporal, and environmental, each consisting of a
set of metrics. The base metrics group represents characteristics of a vulnera-
bility that are constant over time and user environments. This group includes
six metrics. The first one, the access vector metric, reflects the type of access
(local/adjacent; network/network) which the attacker has to use in order to
exploit the vulnerability. The second one, the access complexity metric, mea-
sures the complexity of the attack required to exploit the vulnerability once
an attacker has gained access to the target system. The third one, the authen-
tication metric, measures the number of times an attacker must authenticate
to a target before exploiting a vulnerability. The fourth one, the confiden-
tiality impact metric, measures the impact on confidentiality of a successfully
exploited vulnerability. The fifth one, the integrity impact metric, measures
the impact to integrity of a successfully exploited vulnerability. The sixth
one, the availability impact metric, measures the impact to availability of a
successfully exploited vulnerability.

The temporal metrics group tries to capture the threat deriving from the
time-changing characteristics of a vulnerability. This metrics group encom-
passes three metrics, the exploitability, the remediation level, and the report
confidence metrics, respectively. The first one measures the current state of
exploit techniques or code availability, which may range from the exploit being
only theoretically possible, to the existence of publicly available details about
how to build code that performs the exploitation. The second one allows one
to take into account the existence of temporary fixes (workarounds or hot-
fixes) or of official patches or upgrades. The third one measures the degree
of confidence in the existence of the vulnerability and the credibility of the
known technical details. The metrics above are optional and do not concur to
the calculation of the overall score.

The environmental metric group captures the characteristics of a vulner-
ability that are relevant and unique to a particular user environment. These
metrics are optional and do not concur to the calculation of the overall score.

3.4 Threat and Vulnerabilities Metrics 43

This group is composed by the Collateral Damage Potential, the Target Dis-
tribution, and the Security Requirement metrics. The Collateral Damage Po-
tential metric measures the potential for loss of life or physical assets through
damage or theft of property or equipment and possibly the economic loss of
productivity or revenue. The Target Distribution metric measures the per-
centage of systems that could be affected by the vulnerability. The Security
Requirements metric allows one to re-weight the base security metrics (confi-
dentiality, integrity, availability), by taking into account the relevance of the
corresponding security requirement for the affected IT asset to a users orga-
nization.

The metrics described above require the involvement of different stakehold-
ers and organizations’ roles in the different phases of the application or system
life cycle. Generally, the base and temporal metrics should be specified by vul-
nerability bulletin analysts, security product vendors, or application vendors
because they typically have better information about the characteristics of
a vulnerability than users. The environmental metrics, however, should be
specified by users because they can more properly assess the potential impact
of a vulnerability within their own environment.

SANS Critical Vulnerabiliy Analysis Scale

SANS Critical Vulnerability Analysis Scale Ratings [230] ranks vulnerabilities
using several key factors and varying degrees of weight, as reported by the
users, such as:

• the diffusion of the affected product.
• whether the vulnerability affected a server or client system.
• whether the vulnerability is related to default configurations/installations.
• the IT assets affected (e.g. databases, e-commerce servers).
• the network infrastructure affected (DNS, routers, firewalls).
• the public availability of exploit code.
• the difficulty in exploiting the vulnerability.

Depending on the above factors, vulnerabilities are ranked as critical, high,
moderate, or low. Critical vulnerabilities typically affect default installations
of very widely deployed software, and result in root compromise of servers
or infrastructure devices. Moreover, the information required for exploiting
them (such as example exploit code) is widely available to attackers. Further,
exploitation is usually straightforward, in the sense that the attacker does not
need any special authentication credentials, or knowledge about individual
victims, and does not need to social engineer a target user into performing
any special functions. High vulnerabilities are typically those that have the po-
tential to become critical, but have one or a few mitigating factors that make
exploitation less attractive to attackers. For example, vulnerabilities that have
many critical characteristics but are difficult to exploit, that do not result in
elevated privileges, or that have a minimally sized victim pool are usually

44 3 Web Services Threats, Vulnerabilities, and Countermeasures

rated high. Note that high vulnerabilities where the mitigating factor arises
from a lack of technical exploit details will become critical if these details are
later made available. Moderate vulnerabilities are those where the scales are
slightly tipped in favor of the potential victim. Denial of service vulnerabili-
ties are typically rated moderate, since they do not result in compromise of a
target. Exploits that require an attacker to reside on the same local network
as a victim, only affect nonstandard configurations or custom applications,
require the attacker to social engineer individual victims, or where exploita-
tion only provides very limited access are likely to be rated moderate. Low
ranked vulnerabilities have little impact on an organization’s infrastructure.
These types of vulnerabilities usually require local or physical system access
or may often result in client side privacy or denial of service issues and infor-
mation leakage of organizational structure, system configuration and versions,
or network topology. Alternatively, a low ranking may be applied when there
is not enough information to fully assess the implications of a vulnerability.
For example, vendors often imply that exploitation of a buffer overflow will
only result in a denial of service.

Bibliographic notes

The book of Ross Anderson [15, 16] is recommended for the reader interested
in security engineering. The book highlights how a good understanding of
the potential threats to a system and the adoption of suitable organizational
and technological protective measures are key factors in building dependable
distributed systems. The concepts and goals for threat modeling methodology,
as well a treatment as how to use it, are presented in the book of Swiderski
and Snyder [248]. Attack trees are discussed in depth in Chapter 21 of the
Schneier’s book [234].

4

Standards for Web Services Security

Over time, different languages, mechanisms, and tools have been developed
on different software and hardware platforms for specifying and implementing
a variety of security mechanisms, such as encryption and access control. In a
Web service setting, security mechanisms protect the confidentiality and in-
tegrity of the so-called information in transit, that is, the data and messages
exchanged between a client and a Web service, and of the so-called information
at rest, that is, the information stored in a Web host. Furthermore, protec-
tion of the information must not only consider simple two-way client-server
interactions, but also extend to more complex interactions, as in the case of
business processes implemented through multiple Web services. The need for
providing end-to-end security through distributed and heterogeneous security
mechanisms called for the development of standards for Web services security,
with the ultimate goal of making interoperable different implementations of
the same security functions.

Web service security standards were developed as part of a comprehensive
framework [235], in accordance with the following underpinning criteria:

• Web services security standards have to be independent of specific under-
lying technologies.

• Web services security standards have to be composable.
• Web services standards have to be organized in layers, so that standards

at an upper level could use and extend standards at a lower level.
• Web services standards have to be extensible, to deal with new require-

ments and technologies.

This chapter surveys some existing and proposed standards for Web ser-
vices security. The chapter introduces first the various notions of standard,
and provides an overview of different standardization bodies and organiza-
tions. Then it discusses the original Web services security standards originally
foreseen by the IBM and Microsoft framework [235]. For each standard the
related section describes its purpose, its main features, and and the specific

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 4, c© Springer-Verlag Berlin Heidelberg 2010

46 4 Standards for Web Services Security

security considerations and caveats that apply to it. We do not delve into the
details needed by a developer when using the standard, or, more precisely, the
software that implements the standard. Readers needing such a level of detail
are referred to the books and articles reported in the bibliographic notes. The
standards are presented bottom-up, starting with standards closer to the com-
munication layer of the Internet stack and then moving up to the application
layer:

• ‘near the wire’ standards. We discuss Secure Socket Layer (SSL) and Trans-
port Layer Security (TLS), which provide a basic level of security at the
communication level.

• XML Encryption and XML Signature. They are the most fundamental
standards that specify how to represent encrypted and signed XML data.

• WS-Security. It specifies how to represent encrypted and signed parts of a
single SOAP message.

• WS-SecureConversation and WS-Reliability. The former specifies how to
represent information related to the exchange of multiple secured SOAP
messages, while the latter is focused on message delivery guarantee.

• Security Assertion Markup Language (SAML). SAML is an XML-based
framework for exchanging security information in the more general form
of security-related assertions about subjects.

• WS-Policy, WS-PolicyAssertion, WS-Policy Attachment, and WS-Security
Policy. The first standard provides a general framework for expressing dif-
ferent kinds of security policies. The second standard specifies generic secu-
rity assertions. The last two standards specify the protection requirements
for SOAP messages and how to represent them at SOAP message level.

• eXtensible Access Control Markup Language (XACML) and XACML Pro-
file for Web services. These standards provide a model and a language to
express access control policies that can be applied to Web services as well
as to other resources.

• Extensible rights Markup Language (XrML). This standard addresses how
to express and enforce access control and information dissemination poli-
cies.

• XML Key Management Standard (XKMS) and WS-Trust. The former
specifies standard services interfaces and protocols for the management of
cryptographic keys. The latter specifies services interfaces and protocols
for the management of so-called security tokens.

The chapter does not address identity management standards, namely
WS-Federation, Liberty Alliance, and Shibboleth. They are fully described in
Chapter 5.

It is worth noting that standards are specifications. They provide not only
normative indications about the structure for representing security informa-
tion but also normative indications about how an implementation of the stan-
dard should behave. Not surprisingly, standard specifications can be very com-
plex. Such a complexity might lead to non-interoperable implementations of

4.1 The Concept of Standard 47

the same standard specification. Thus, the need emerged of a further stan-
dardization effort in order to provide specific guidelines to guarantee, as far as
possible, the interoperability of different implementations of a given standard.
At the end of the overview of the above standards, the chapter discusses the
standardization activities carried out by the Web Services Interoperability or-
ganization (WS-I) [256] and the standards issued by it in order to mitigate
or solve this problem. The chapter concludes with considerations about tech-
nical, operational, and organizational issues related to Web service security
standards and their adoption.

4.1 The Concept of Standard

According to the Internet Engineering Task Force (IETF) [11] a standard

“describes a specification of a protocol, system behaviour or procedure
that has a unique identifier”

where the IETF has agreed that

“if you want to do this thing, this is the description of how to do it.”

The concept of standard however, also encompasses different notions,
which take into account the nature of the entity that defines a standard,
as well as the acceptance and use of a standard regardless of the nature of the
emitting entity. Accordingly, a standard is usually categorized as follows:

1. De facto standard: a technology that is used by a vast majority of the users
of a function. Such function may for example be provided in a product
from a single supplier that dominates the market; or it may be a patented
technology that is used in a range of products under license. A de facto
standard may be endorsed by a standardization initiative, and eventually
become a consortium recommendation, or a de jure standard. The relevant
characteristics are that it is widely used, meets the needs for functionality,
and supports interoperability.

2. De jure standard: a standard defined by an entity with a legal status
in international or national law such the International Organization for
Standardization (ISO), national standards bodies (e.g. the BSI British
Standards in the UK, the American National Standards Institute, ANSI,
in the US), or continental standards (e.g., European standards). Stan-
dards developed by these organizations are relevant in specific business
or application areas, such as healthcare and safety-related areas, business
quality measures and long-term IT areas.

3. Consortium recommendation: a technology agreed upon and recommended
by a group of companies in order to fulfill some functionality. Such con-
sortia may vary in size from groups of a few large manufacturers (e.g.,
Microsoft, IBM and BEA) to much larger groups or organizations such as

48 4 Standards for Web Services Security

W3C OASIS WS-I

Established 1994 1993 as the SGML
Open, 1998 as OASIS

2002

Overall goal To promote Web
evolution by pro-
viding fundamental
standards

To promote online
trade and commerce
by providing special-
ized Web services
standards

To foster interoper-
ability using Web
services standads

Main security
standards is-
sued

XML Encryption;
XML Signature

XACML; WS-
Security; WS-
SecurityPolicy

Basic Interoperabil-
ity Profile; Basic Se-
curity Profile

Table 4.1. Standards organizations

SOAP foundation

WS-Security

WS-SecureConversation WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

Fig. 4.1. Web services security standards framework

the Organization for the Advancement of Structured Information Stan-
dards (OASIS), the World Wide Web Consortium (W3C), and the IETF.

The definition of a standard and its issuance by a standardization body or
by a consortium is a long-lasting process, subject to formalized organizational
procedures. For example, W3C takes six months to establish a working group
on a technology, and then 18 months to three years to agree on a recommenda-
tion, which is only released if there are working interoperable implementations
of all functions in the technology, and enough of the members of W3C support
it. Table 4.1 lists the main standardization bodies relevant to Web services.

4.2 Web Services Security Standards Framework

The first structured framework for Web services security standards was pro-
posed in April 2002 by Microsoft and IBM in the white paper “Security in a
Web Services World: A Proposed Architecture and Roadmap” [235]. As shown
in Figure 4.1, the Web Services Security (WSS) framework encompassed dif-
ferent specifications, each of them addressing specific aspects of security.

According to this framework, WS-Security was intended to provide a mes-
sage security model and the specification of mechanisms to attach signature

4.3 An Overview of Current Standards 49

and encryption headers to SOAP messages. WS-Policy was intended to de-
scribe (1) the security policies, such as required security tokens and supported
encryption algorithms, as well as more general policies adopted by a Web ser-
vice; and (2) the mechanisms by which trusted SOAP message exchanges
could be built. WS-Trust was intended to define the model for establish-
ing both direct and brokered trust relationships, including third parties and
intermediaries, through the creation of security token issuance services. WS-
Privacy would have to define a model for embedding a privacy language into
WS-Policy and for associating privacy claims with a message in WS-Security.

On top of such standards, further follow-on specifications were envisaged.
WS-SecureConversation was introduced with the goal of extending the sin-
gle message security provided by WS-Security to a conversation consisting of
multiple message exchanges, whereas WS-Federation was introduced with the
goal of describing how to manage and broker trust relationships in a hetero-
geneous federated environment. Finally, the goal of WS-Authorization was to
provide support for the specification of authorization policies and for manag-
ing authorization data.

It is worth noting that the specifications for WS-Authorization and WS-
Privacy developed differently from the other standards of the roadmap. In
particular, WS-Authorization was replaced by the specification of XACML
(see section 4.3.7), whereas WS-Privacy does not seem to have received the
same level of effort; rather it was addressed by manufacturer proposals such
as the IBM Enterprise Privacy Authorization Language (EPAL) [221].

4.3 An Overview of Current Standards

4.3.1 “Near the wire” security standards

Secure Socket Layer (SSL) and Transport Layer Security (TLS)
The well known SSL [110] and TLS [93] are the de facto standards used
to ensure transport level security for Web applications. SSL was originally
developed by Netscape in 1996 and it served as the basis for IETF RFC 2246
Transport Layer Security (TLS) standard.

SSL/TLS is a protocol layer located between a reliable connection-oriented
network layer protocol (e.g., TCP) and the application protocol layer (e.g.,
HTTP) as shown in Figure 4.2.

SSL/TLS enables point-to-point secure sessions by providing server au-
thentication to the client, optional client authentication to the server, data
message authentication, data confidentiality, and data integrity. With respect
to SSL, TLS incorporates an optional session caching scheme to reduce the
number of connections that need to be established from scratch. Such opti-
mization is intended to reduce the computational load introduced by crypto-
graphic operations, in particular those using public keys. SSL/TLS provides
for:

50 4 Standards for Web Services Security

TCP

SSL /TLS

HTTP Application layer

IP

Fig. 4.2. SSL and TLS on the Internet stack

HTTP

SSL/TLS

HTTP

SSL/TLS

Application Application

HTTP

SSL/TLS

Application

Fig. 4.3. Transport layer only encryption

• confidentiality, by the use of symmetric cryptography for data encryption
(e.g., DES, RC4);

• data integrity, by the use of a Message Authentication Code (MAC) gen-
erated through a secure hash function (MD5);

• authentication, by the use of certificates and public keys.

While SSL/TLS is fairly secure for point-to-point communications, SSL/TLS
alone cannot provide the end-to-end communication protection that is needed
in a Web services setting. Actually, in such a setting a message transmitted by
a client, such as browser or an application, might be routed (and processed)
by a number of intermediary applications or services before reaching its final
recipient. SSL/TLS protects the message contents only while they are being
transmitted between pairwise endpoints. The message, once it is processed by
SSL/TLS at a receiving end, is delivered decrypted to the application layer,
as illustrated by Figure 4.3. An intermediary application or service might
then, inadvertently or maliciously, examine or even modify the message be-
fore transmitting it again to the next recipient.

The other inadequacy of SSL/TLS is that it does not allow one to selec-
tively encrypt parts of the data (payload) to be transmitted.

4.3 An Overview of Current Standards 51

4.3.2 XML Data Security

XML is the language of choice for representing data payload exchanged among
Web services. Securing XML data, that is, protecting their integrity and con-
fidentiality as well as their authenticity, is a key requirement. Integrity and
confidentiality are achieved by using encryption mechanisms, while authen-
ticity is achieved by using digital signatures. XML encryption [96] and XML
Signature [97] standards specify how to represent and how to convey en-
crypted data and digital signature in an XML document in a standard way.

XML Encryption

XML Encryption specification [96], which is a W3C Recommendation, is the
cornerstone of the Web services Security Framework. It defines a standard
model for encrypting both binary and textual data, as well as the means for
communicating the information needed by recipients to decrypt the contents
of received messages. While SSL/TLS provides confidentiality at the trans-
port layer only, XML Encryption (see Figure 4.4) provides confidentiality at
the application layer and thus assures end-to-end confidentiality of messages
traversing multiple Web services.

HTTP HTTP

XML Encryption

Application Application

Fig. 4.4. XML encryption

Basically, the XML Encryption specification describes how to use XML
to represent a digitally encrypted Web resource (including XML data). It
separates encryption information from encrypted data, specifies how to repre-
sent information about the encryption key and the encryption algorithm, and
supports referencing mechanisms for addressing encryption information from
encrypted data sections and viceversa.

However, it is well known that encryption does not guarantee by itself the
integrity of the encrypted data. If integrity is required, then signatures (repre-
sented according to the XML Signature standard) must be used. The combi-
nation of digital signatures and encryption over a common XML element may
introduce security vulnerabilities. In particular, encrypting digitally signed
data while leaving the digital signature in clear may make possible plaintext

52 4 Standards for Web Services Security

guessing attacks. Such a vulnerability can be mitigated by using secure hashes
and the nonces 1 in the text being processed. Moreover, denial of service at-
tacks are possible because of the recursive processing of XML Encryption. For
example, the following scenario is possible: EncryptedKey A requires Encrypt-
edKey B to be decrypted, which itself requires EncryptedKey A. An attacker
might also submit an EncryptedData element for decryption that references
network resources that are very large or continually redirected. Consequently,
XML Encryption implementations should be able to restrict arbitrary recur-
sion and the total amount of processing and networking resources a request
can consume.

XML Signature

XML Signature [97] is a specification produced jointly by W3C and IETF.
XML Signature specifies how to represent a digital signature as an XML ele-
ment and how to create and verify this XML element. Like XML Encryption,
it applies to both XML and non-XML data. The signed data items can be
entire XML documents, XML elements, or files containing any type of digital
data items. XML Signature allows one to sign multiple data with a single
signature. It is worth noting that before the issuance of XML Signature, it
was already possible to digitally sign an XML document, using the PKCS#7
Signature [147]. However PKCS#7 did not allow one to selectively sign parts
of an XML document, or to represent the signature in a standardized XML
format. As for the placement of the signature, XML-Signature allows different
“packaging” strategies, namely enveloping signature, enveloped signature, and
detached signature. When using an enveloping XML signature, the signed data
is contained within the XML signature structure itself. An enveloped XML
signature is contained within the signed document itself. A detached signature
is separate from the signed entity. The signed entity is referenced to by a URI
and can be, in principle, any digital content, as shown in Figure 4.5. When
processing a detached signature, if the URI cannot be dereferenced, then the
signature breaks. Hence, a detached signature could be used for guaranteeing
the integrity of online resources.

An XML signature, when it is used alone, assures data integrity. When
linked to the signer’s identity, it provides for non-repudiation of data content,
and may provide for the authentication of the signer.

The XML Signature standard does not address how encryption keys are
associated with individuals or institutions, nor the meaning of the data be-
ing referenced and signed. Thus, XML Signature by itself is not sufficient to
address all application security or trust concerns, particularly with respect
to using signed XML (or other data formats) as a basis of human-to-human
communication and agreement.

1 The term nonce stands for number used once. A nonce is often a random or
pseudo random number issued in an authentication protocol to ensure that old
messages cannot be reused in replay attacks.

4.3 An Overview of Current Standards 53

<Signature>

<SignedInfo>

<Reference URI=“…”>

<SignatureValue>

<KeyInfo>

Signed Data

Fig. 4.5. Detached XML signature

A subject (Alice)

alice@purdue.edu

purdue.edu domain

DNS

purdue.edu: 198.105.232.4

Has an identity
(E mail address)

Purdue Univ.
Security domain

Purdue
Security
Policy

Fig. 4.6. SAML subject identity

4.3.3 Security Assertions Markup Language (SAML)

Security assertions are one basic building block of standards related to the
security of SOAP messages, as well as of standards related to security poli-
cies, access control, and federated identity management. The Security As-
sertion Markup Language (SAML) V2.0 [222], which is an OASIS standard
specification approved on 15 March 2005, was conceived as a framework for
the exchange of security-related information, expressed as assertions, between
trusting parties.

In SAML, security information is expressed as assertions about subjects,
where a subject is an entity (either human or computer) that has an identity
in some security domain. A typical example of a subject is a person, identified
by his or her email address in a particular Internet DNS domain (see Figure
4.6).

Assertions can convey information about the attributes of subjects, about
authentications previously performed by subjects, and possibly about autho-
rization decisions as to whether subjects are allowed to access certain re-
sources. SAML supports three kinds of assertions: attribute, authentication,
and authorization decision assertions. An attribute assertion states that the
subject S is associated with a set of attributes Ai with values Bi (for example,
subject Alice is associated with attribute “University” with value “Purdue”).
An authentication assertion states that the subject S was authenticated by

54 4 Standards for Web Services Security

means M at a certain time. It is issued by the party that successfully authen-
ticated the subject. An example of SAML authentication assertion, stating
that “Alice was originally authenticated using a password mechanism at 2006-
04-02T19:05:17”, is shown in Figure 4.7. An authorization decision assertion
states which actions the subject S is entitled to execute on a resource R (for
example, that a user has been authorized to use a given service).

<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

MajorVersion="1" MinorVersion="1"

AssertionID="biuEZCGxcGiF4gIkL5PNltwU7duY1az"

Issuer="www.it-authority.org"

IssueInstant="2006-04-02T19:05:37">

<saml:Conditions

NotBefore="2006-04-02T19:00:37"

NotOnOrAfter="2006-04-02T19:10:37"/>

<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

AuthenticationInstant="2006-04-02T19:05:17">

<saml:Subject>

<saml:NameIdentifier

NameQualifier= www.it-authority.org

Format="http://www.customformat.com/">

uid=alice

</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact-01

</saml:ConfirmationMethod>

</saml:SubjectConfirmation>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

Fig. 4.7. An example of an SAML assertion

A single SAML assertion might contain several assertion statements about
authentication, authorization, and attributes. Assertions are issued by SAML
authorities, namely authentication authorities, attribute authorities, or pol-
icy decision points. SAML can be used to make assertions about credentials;
however, it does not provide mechanisms to check or revoke credentials. This
means that the party accepting a SAML assertion as true is trusting the
SAML authority that issued the assertion. A service provider may need also
to have detailed information about the type and strength of authentication
used by an identity provider when it authenticated the user; to carry this
information, SAML provides the authentication context, which is conveyed in

4.3 An Overview of Current Standards 55

(or referenced by) an assertion’s authentication statement. The framework
defined by SAML is intended to support many real-world business scenarios,
from those in which the client is a browser to more complex ones where mul-
tiple Web services are involved. In particular, SAML supports the following
scenarios:
Web single sign-on (SSO), where a user authenticates to one Web site and
then, without additional authentication, is able to access resources at another
site. SAML enables Web SSO through the communication of an authentica-
tion assertion from the first site to the second one, which, if confident of the
origin of the assertion, can decide to allow the user to log in as if he had
authenticated directly.
Attribute-based authorization. In this scenario, which is similar to the Web
SSO one, one Web site communicates identity information about a subject
to another Web site in support of some transaction. However, the identity
information needed by the receiving Web site may refer to some characteristic
of the subject (such as a person’s role in a B2B scenario) rather than, or in
addition to, information about when and how the subject was authenticated.
The attribute-based authorization model is used when the subject’s particular
identity either is not important or should not be shared (for privacy reasons),
or is insufficient on its own.
Securing SOAP messages. SAML assertions can be used within SOAP mes-
sages in order to carry security and identity information between actors in Web
service transactions. The SAML Token Profile of the OASIS WS-Security TC
specifies how SAML assertions should be used for this purpose. The Liberty
Alliance’s Identity Web Service Framework (ID-WSF) also uses SAML asser-
tions as the base security tokens for enabling secure and privacy respecting
access to Web services.

The SAML threat model [131] identifies the assumptions, the scope, and
the security techniques to adopt when deploying SAML-based solutions,
by considering the concerns arising during communications in the request-
response protocol, or during the use of SAML by a receiving party. The SAML
threat model makes the following assumptions:

• The endpoints involved in a SAML transaction are uncompromised, but
the attacker has complete control over the communications channel.

• It is possible for a valid participant in an SAML transaction to use the
information maliciously in another transaction.

• SAML allows one to make authentication and authorization statements,
but does not specify how authentications are executed or how authoriza-
tions are established. The consequence is that the security of a system
based on assertions as inputs depends on the security of the system used
to generate those assertions. When determining what issuers to trust, par-
ticularly in cases where the assertions will be used as inputs to authenti-
cation or authorization decisions, the risk of security compromises arising
from the consumption of false but validly issued assertions is a major one.

56 4 Standards for Web Services Security

Trust policies between asserting and relying parties should always be writ-
ten to include significant consideration of liability, and implementations
must provide an audit trail.

• An assertion, once issued, is out of the control of the issuer. This fact has
a number of consequences. For example, the issuer has no control over
how long the assertion will persist in the systems of the consumer; nor
does the issuer have control over the parties with whom the consumer
will share the assertion information. These concerns add to the concerns
about a malicious attacker who can see the contents of assertions that pass
unencrypted over the wire.

• SAML protocol is prone to Denial of Service (DOS) attacks. This risk can
be averted by requiring client authentication at a lower level, by requiring
signed requests from a client, or by restricting the ability to issue SAML
requests to a limited number of known parties.

4.3.4 SOAP Message Security

In a Web service setting, SOAP messages constitute the communication unit
whose integrity and confidentiality must be protected. SOAP messages might
be subject to various types of attacks, such as:

• the message could be modified or read by an attacker.
• an attacker could send to a Web service well-formed messages that lack

appropriate security claims to warrant processing.
• an attacker could alter a message sent to the Web service but the attacker

might preserve the message’s well formedness, causing the service to pro-
cess the request and to respond to the client for an incorrect request.

Moreover, SOAP messages can traverse multiple applications, that is, one
or more SOAP intermediaries, and multiple trust domains within and between
business entities, e.g. companies, divisions, and business units, as shown in
Figure 4.8. Hence, there is the need to provide an end-to-end protection over
multiple hops to assure SOAP message integrity and confidentiality, as well as
to verify the requester’s identity. These goals can be achieved by using XML
encryption and XML signatures. However, it is necessary to standardize the
representation of the additional security information within SOAP messages
themselves, so that the software component processing them, that is, the
SOAP processor, can properly manage the security information.

WS-Security

WS-Security [197] can be considered as a de facto standard for securing SOAP
messages in the Web. Work on WS-Security began in 2001. WS-Security was
then approved as an OASIS standard in June 2002. WS-Security specifies
extensions to SOAP that allow one to selectively encrypt or sign parts of SOAP
messages, such as encrypting different parts of a SOAP message for different

4.3 An Overview of Current Standards 57

Web service
WS1

Web service
WS2

Web service
WS3

2”poH“1”poH“

Trust domain 1

Host1

Trust domain 2 Trust domain 3

Host2 Host3

SOAP intermediary
node

SOAP ultimate
receiver node

Fig. 4.8. WS-Security: multi-hop message path

recipients. This is achieved by leveraging the XML Encryption standard to
protect the messages’ confidentiality, and the XML Signature standard to
protect message integrity. WS-Security applies to a single SOAP message.
In order to secure exchanges composed of multiple SOAP messages, further
extensions to it were defined in the WS-SecureConversation standard [277].

WS-Security supports multiple security token formats, multiple trust do-
mains, multiple signature formats, and multiple encryption technologies. A
security token represents a collection of declarations (also called claims) made
by an entity about some its own properties which are relevant for security
purposes. Examples of such properties are a name, an identity, a key, a priv-
ilege, and a capability. These security-related pieces of information can be
conveyed by X.509 certificates, Kerberos tickets and authenticators, mobile
device security tokens from SIM cards, username, SAML assertions and so
forth.

A security token can also be signed, that is, “endorsed” or certified, by
a specific third-party authority different from the entity the assertion (or
claim) refers to. An example is an X.509 certificate or a Kerberos ticket. A
signed security token is basically used as a means to authenticate the claim
made by the entity. The token formats and the semantics for using them are
defined in the associated profile documents. The SOAP extensions introduced
by WS-Security take the form of a SOAP Header elements (wsse, ws security
elements) which carry security-related data, as illustrated in Figure 4.9.

WS-Security specifies a general-purpose mechanism for referencing and/or
including so-called security tokens within SOAP messages.

WS-Security is neutral with respect to the type of security token used. Var-
ious security token formats have been specified for use with WS-Security, in-
cluding username/password, SAML assertions [62], XrML/REL tokens [280],
X.509 certificates [279], and Kerberos tickets [278]. For security tokens that
are not encoded in XML, such as X.509 certificates and Kerberos tickets, WS-
Security provides a mechanism for encoding binary security tokens. Due to the
variety of supported security token formats, WS-Security is enough flexible to
accommodate specific purposes and specific security architectures. Moreover,
it can be extended with profiles to support new security tokens.

58 4 Standards for Web Services Security

<SOAPEnvelope>

<SOAP Header>

<wsse: Timestamp>

<Body id=“bb”>

<wsse Security Header>

<BinarySecurityToken Id=“xx”>

<dsig:Signature>

<SignatureValue>

<SignedInfo>

<Reference URI=“#bb”>

<Reference URI=“#tt”>

<KeyInfo”>

<SecurityTokenreference”>

<Reference URI=“xx”>

<Created Id=“tt””>

Fig. 4.9. WS-Security: wsse elements layout

Message integrity is provided by using XML Signature in conjunction with
security tokens, which may contain or imply key data. WS-Security supports
multiple signatures, potentially by multiple parties, and it can be extended
to support additional signature formats. The signatures may reference, that
is, point to, a security token. WS-Security assures message confidentiality
by encrypting portions of the SOAP message according to XML Encryption
standard in conjunction with security tokens. The encryption mechanisms
are designed to support additional encryption technologies, processes, and
operations by multiple parties. The encryption may also reference a security
token.

However, it is worth noting that WS-Security in itself defines a protocol,
and, as such, any implementation of it is vulnerable to a wide range of attacks.
The WS-Security specification provides a non-exhaustive list of security con-
cerns, such as replay attacks, man-in-the middle attacks, token substitution
attacks and so forth, that are to be considered in a more complete security
analysis of the protocol.

WS-SecureConversations

To complete a meaningful transaction, a client and a Web service often need
to exchange multiple SOAP messages. Thus, it is important to secure not
only a single SOAP message at time, but also multiple SOAP messages. WS-
SecureConversation [277] is an OASIS standard which basically allows the two

4.3 An Overview of Current Standards 59

communicating parties to establish and manage a session at the SOAP mes-
sage level. WS-Conversation defines extensions, based on WS-Security and
WS-Trust [196], aimed at providing such secure communication across mul-
tiple messages, and in particular, the authentication of multiple messages.
These extensions are based on the establishment and sharing of a so-called
security context between the communicating parties and on the derivation
of keys from the established security contexts. A security context is shared
among the communicating parties for the lifetime of a communication session.
A security context is represented by a security context token, which basically
conveys a secret or a key. This secret might be used for signing and/or encrypt-
ing SOAP messages, but the specification recommends the use of derived keys
for signing and encrypting messages associated only with the security context.

SOAP messages belonging to the same message exchange can reference
the same security context token. Such an approach achieves a more efficient
exchange of keys or of new key information, thereby increasing the overall
performance and security of the subsequent exchanges. A security context
needs to be created and shared by the communicating parties before being
used. WS-SecureConversation defines three different strategies for establishing
a security context among the parties of a secure communication:

• The context initiator can request an Security Token Service (STS), as
defined by WS-Trust, to create a security context token.

• A security context token can be created by one of the communicating
parties and propagated within a message; it should be noted that this
scenario requires that parties trust each other to share a secret key.

• A security context token can be created when needed through a negotiation
between the participants. This scenario applies when the message exchange
participants need to negotiate and agree on the contents of the security
context token, such as the shared secret.

WS-Reliability

Guaranteeing the integrity and confidentiality of the SOAP messages does not
prevent them from being lost, duplicated, or reordered. When an application-
level messaging protocol, such as SOAP, must also guarantee some level of
reliability in addition to security, HTTP is not sufficient.

Delivery guarantee is assured by several middleware components imple-
menting the “store & forward” paradigm, such as Microsoft Message Queuing
(MSMQ) [182], IBM Messaging and Queuing (WebSphere, MQ) [136], and
Sun Java System Message Queue[246].

WS-Reliability [143] defines a messaging protocol to manage the reliable
delivery of messages between exactly two parties, a source and a destination,
referred to as the Reliable Messaging (RM) Source and RM Destination, re-
spectively, despite failures affecting a software component, an entire system,
or the network. WS-Reliability does not make any assumption about the im-
plementation of the messaging processor service: such a component could be

60 4 Standards for Web Services Security

Producer
Application

Sender
Reliable Message

Processor

RM Source

Consumer
Application

Receiver
Reliable Message

Processor

RM Destination

Submit

Notify Deliver

Respond

QoS contract QoS contract

Fig. 4.10. WS-Reliability

an application, a queuing or logging system, a database, a SOAP node, or the
next handler in the message processing chain. For this aspect, WS-Reliability
addresses the interoperability of heterogeneous reliable messaging middleware.
WS-Reliability defines both a “wire” protocol, that is, specific message head-
ers and specific message choreographies between the sending application and
the receiving application, and a protocol to be used between the applica-
tion and the underlying message processor service (i.e., the reliable messaging
middleware), as shown in Figure 4.10. The latter implements a Quality of
Service (QoS) contract between the application and the underlying messaging
processor service.

Such a QoS contract consists of four operations (Submit, Deliver, Respond,
and Notify) and encompasses four basic delivery assurances:

• The AtMostOnce assurance guarantees that messages will be delivered at
most once without duplication or an error will be raised at at least one
endpoint. It is possible that some messages in a sequence may not be
delivered.

• The AtLeastOnce assurance guarantees that every message sent will be
delivered or an error will be raised at at least one endpoint. Some messages
may be delivered more than once.

• The ExactlyOnce assurance guarantees that every message sent will be
delivered without duplication or an error will be raised at at least one
endpoint.

• The InOrder assurance guarantees that messages will be delivered in the
order in which they were sent. Such a delivery assurance may be com-
bined with any of the above delivery assurances. It does not provide any
assurance about message duplications or omissions.

4.3.5 Key and Trust Management standards

Public keys are the basic building block for signatures and digital certifi-
cates. Public key management encompasses their creation, their safe storage,
their distribution, their use, and their cancellation. Public keys either can be

4.3 An Overview of Current Standards 61

created by a software package running on the platform of the customer appli-
cation and then registered to a Public Key Infrastructure (PKI) Certification
Authority (CA), or the customer application may request a CA participating
to a PKI infrastructure to issue them. When a party uses a public key, it
needs to ascertain its validity, that is, it needs to verify that the public key
has not expired or has been revoked. Public keys can be issued by different
CAs too, and a given party might have more than one public key associated
with it. However, the current PKIs, based on proprietary toolkits, makes the
interactions between the client applications and the PKI costly and difficult.
Furthermore, client applications have to implement by themselves the costly
operations of signature validation, chain validation, and revocation checking.
Hence, there is the need to simplify the task of the relying parties when us-
ing public keys, as well as to allow different CAs’, or even different PKIs,
to interoperate among them. Furthermore, public keys can be represented in
XML, and are the basis of XML Encryption and XML Signature. The issues
described above led to the definition of a standard for XML Key Management.

Moreover, while WS-Security defines the basic mechanisms for providing
secure messaging, a SOAP message protected by WS-Security presents three
possible issues with regard to security tokens: i) security token format incom-
patibility; ii) namespace differences; iii) the trustworthiness of the security
token. To overcome the above issues, there was the need to define standard
extensions to WS-Security in order to provide methods for issuing, renewing,
and validating security tokens, and to establish and assess the presence of,
and broker, trust relationships. These requirements led to the development of
the WS-Trust standard.

XML Key Management Standard (XKMS)

XML Key Management Standard (XKMS) [106] is a W3C note, made avail-
able by the W3C for discussion only, that defines standard Web-based inter-
faces and protocols for registering and distributing public keys. A key objective
of XKMS is to relieve the applications from the complexity and syntax of the
underlying Public Key Infrastructure (PKI) used to establish trust relation-
ships. The XKMS specification defines the interfaces to two services: the XML
Key Information Service (X-KISS). , and the XML Key Registration Service
(X-KRSS) .

As shown in Figure 4.11, an X-KISS service provides the client two func-
tions, which can be implemented by the X-KISS service itself or by an under-
lying PKI. For encryption purposes, the locate function allows a sender not
knowing the key bound to a recipient to obtain it. For example, if Alice wants
to send an encrypted email to Bob but does not know his encryption key,
Alice can use DNS to locate the XKMS service that provides a locate service
for keys bound to the domain of Bob (say example.com), and then send an
XKMS locate request to the discovered XKMS service for a key bound to
bob@example.com. The X-KISS service, however, does not make any asser-
tion concerning the validity of the binding between the data and the key. Alice

62 4 Standards for Web Services Security

XML Key Information
Service

XML Key Registration
Service

client

XKMS protocol

- locate a public key
- validate a public key

- register
- reissue
- revoke
- recover

Fig. 4.11. XKMS services

has to verify that the certificate obtained meets its trust criteria by validating
the certificate to a trusted root. The locate function also allows a recipient
of a signed document, who does not know the key used for the signature, to
obtain it.
As for the validation of a key, the information provided by the signer may
be insufficient for the receiver to perform the cryptographic verification and
decide whether to trust the signing key, or the information may not be in a
format the receiver can use. The validate function allows the client to obtain
from the X-KISS service an assertion specifying the status, that is, the valid-
ity, of the binding between the public key and other data, for example a name
or a set of extended attributes. Furthermore, the X-KISS service represents
that all the data elements are bound to the same public key.

X-KRSS defines a protocol for registration and subsequent management
of public key information. The X-KRSS service specification supports the
following operations:

• Register. Information is bound to a public key pair through a key binding.
The bound information may include a name, an identifier, or extended
attributes defined by the implementation.

• Reissue. A previously registered key binding is reissued.
• Revoke. A previously registered key binding is revoked.
• Recover. The private key associated with a key binding is recovered.

XKMS evolved further into XKMS 2.0 [125].
As described in [130], a simple client should be able to make use of so-

phisticated key management functionality, without being concerned with the
details of the infrastructure required to support the public key management.
Moreover, XML-based applications should be provided a public key manage-
ment support that is consistent with the public key management requirements
of XML Encryption [96], XML Signature [97], and with the Security Assertion
Markup Language standards [222].

4.3 An Overview of Current Standards 63

WS-Trust

The WS-Trust 1.3 Specification [196] is an OASIS standard. It defines ex-
tensions to WS-Security that provide a framework for requesting and issuing
security tokens, for assessing the presence of trust relationships, and for bro-
kering trust relationships.

In WS-Trust, trust relationships are conveyed by security tokens. A se-
curity token represents a collection of claims, where a claim is a statement
made about a client, service or other resource (e.g., name, identity, key, group,
privilege, capability). In particular, a signed security token is a security to-
ken that is cryptographically endorsed by a specific authority (e.g., an X.509
certificate or a Kerberos ticket). In WS-Trust, security tokens are issued by
a so-called Security Token Service (STS). The STS issues assertions based on
evidence that it trusts, to whoever trusts it or to specific recipients. An STS
can be implemented by a Kerberos Key Distribution Center (KDC) or by a
public key infrastructure. In such cases, the issuing authority is the STS.

WS-Trust assumes a Web service security model in which:

• A Web service can require that an incoming message proves a set of claims
such as name, key, permission, and capability.

• A Web service can indicate its required claims and related information in
its policy according to the WS-Policy and WS-PolicyAttachment specifi-
cations.

• A Web service is equipped with a trust engine that:
– verifies that the claims in the token are sufficient to comply with the

policy and that the message conforms to the policy.
– verifies that the attributes of the claimant are proved by the signatures.

In brokered trust models, the signature may not verify the identity of
the claimant. It may instead verify the identity of the intermediary,
who may simply assert the identity of the claimant.

– verifies that the issuers of the security tokens, including all related and
issuing security tokens, are trusted to issue the claims they have made.
The trust engine may need to externally verify or broker tokens, that
is, to send tokens to a STS in order to exchange them for other security
tokens that it can use directly in its evaluation.

An STS service provides several functions to the clients. It allows a client
to request the issuance of a new security token, or a set of security tokens.
The requester can optionally specify the type of the requested security token,
the desired valid time range of the security token, as well as the scope the
security token is required for, such as, for example, the services to which it
applies. The STS allows a client to renew an already issued security token
and to cancel a previously issued security token when the token is no longer
needed. A security token can be canceled also by an STS initiative. Finally, an
STS allows a client to validate a security token. The validation’s result may
consist in a status, a new token, or both.

64 4 Standards for Web Services Security

Applics

Fi
re

w
al

l

OS

Applics.

OS OS

Fi
re

w
al

l

DBMS

Web server
Host

Appl cation server
Host

Database server
Host

Iden ifica ion &
Authorization

policy

Identification,
Authentication &

Authorization
policy

Identif cation,
Authentication &

Authorizat on
pol cy

dentification,
Authentication &

Author zation
pol cy

Fig. 4.12. Policies in a Web service setting

4.3.6 Standards for Policy Specification

The policy concept encompasses several different meanings, from guiding prin-
ciples and procedures, to management policies represented according to the
Event-Condition-Action paradigm, to authorization policies. According to the
IETF [2], a policy can be defined as:

“A definite goal, course or method of action to guide and determine
present and future decisions.”

Moreover, a policy [2]:

“can be represented at different levels of abstraction, ranging from
business goals to device-specific configuration parameters. Transla-
tion between different levels of abstraction may require information
other than policy, such as network and host parameter configuration
and capabilities. Various documents and implementations may specify
explicit levels of abstraction.”

Figure 4.12, which represents a usual three-tier configuration for a Web
service in a Demilitarized Zone (DMZ), shows the variety of policies that
govern a Web service setting, from firewall policies, usually conveyed by con-
figurations, to access control policies at the operating system and database
system level, to policies which control the invocation of operations provided
by a Web application.

In a Web service setting, policies have to express requirements of different
types related to different aspects of a Web service such as message security, ac-
cess control to the service’s resources, quality of protection, quality of service,
and so forth. By representing and exposing policies in a standard, commonly
understood way, a Web service provider can specify the conditions under which
its Web services can be used, and the potential Web service clients can decide
whether to use the services or not.

4.3 An Overview of Current Standards 65

Web Services Policy Framework (WS-Policy)

The Web Services Policy Framework (WS-Policy) standard provides an ex-
tensible model and a single grammar that allows Web services to describe
their policies. The WS-Policy standard was conceived to provide a general
model, suitable for expressing all types of domain-specific policy models, from
transport-level security, to resource usage policy, QoS characteristics, and end-
to-end business-process-level policy. At the core of the model is the concept
of policy assertion, which specifies a behavior, that is, a requirement or a
capability, of a policy subject. The semantics of the assertions is domain-
specific (e.g., security, transactions). The approach adopted by WS-Policy is
to define domain-specific assertions in separate specifications. Policy asser-
tions can be defined in public specifications, like WS-SecurityPolicy [195] and
WS-PolicyAssertion [276], or by the entity owning the Web service. The asser-
tions of the first type are called standard assertions and they potentially can
be understood by any client. As an example of standard domain-specific as-
sertions, protection requirements for SOAP messages, that is, confidentiality
and integrity requirements, are defined as protection assertions in the WS-
SecurityPolicy standard specification [195]. A WS-SecurityPolicy integrity as-
sertion specifies which parts of a SOAP message, i.e. headers, body, and/or
specific elements, must be signed. It is worth noting that this assertion can
be satisfied by using SOAP Message Security mechanisms, that is, by using
WS-Security, or by using other mechanisms out of the scope of SOAP mes-
sage security, for example, by sending the message over a secure transport
protocol like HTTPS. The subject which the policy applies to is a Message
Policy subject (a SOAP message) and the WS-PolicyAttachment standard [1]
specifies to which WSDL entity or UDDI entity the policy applies to. Policy
assertions can be combined in policy alternatives, and at the highest level, a
policy is a collection of policy alternatives.

To convey policy in an interoperable form, WS-Policy adopts a normal
form schema shown in Figure 4.13. In this schema, which basically expresses
a policy as an (exclusive) ORed set of ANDed sets of statements, * indicates
zero or more occurrences of an item, while [] indicates that the contained
items must be treated as a group.

<wsp:Policy ... >

<wsp:ExactlyOne>

[<wsp:All> [<Assertion ...> ... </Assertion>]* </wsp:All>]*

</wsp:ExactlyOne>

</wsp:Policy>

Fig. 4.13. Normal form schema of a policy according to WS-Policy

An example of a policy that adheres to the WS-Policy specification is illus-
trated in Figure 4.14. This example, taken from the WS-Policy specification,

66 4 Standards for Web Services Security

shows two policy alternatives, each composed by a single policy assertion. The
policy has to be interpreted as follows: if the first alternative is selected, only
the Kerberos token type is supported; conversely, if the second alternative is
selected, only the X.509 token type is supported.

<wsp:Policy xml:base=http://dico.unimi.it wsu:Id=MyPolicy>

<wsp:ExactlyOne>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

/wsse:SecurityToken>

</wsp:All>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

Fig. 4.14. An example of a policy

WS-Policy does not provide any explicit language for representing the rules
used by a Web service provider to evaluate a request against its own policies.
However, WS-Policy defines the conditions under which a requester can sat-
isfy, respectively, the Web service’s policy assertions, policy alternatives, and
finally the whole policy, namely:

• a policy assertion is supported by a requester if and only if the requester
satisfies the requirement (or accommodates the capability) corresponding
to the assertion.

• a policy alternative is supported by a requester if and only if the requester
supports all the assertions in the alternative.

• a policy is supported by a requester if and only if the requester supports
at least one of the alternatives in the policy.

The Policy Framework is supplemented by three other standards. The first
one, WS-PolicyAssertions [276] , specifies the structure of a few generic policy
assertions. The second one, WS-Policy Attachment [1] , defines how to asso-
ciate a policy with a Web service, either by directly embedding it in the WSDL
definition or by indirectly associating it through UDDI. By attaching policies
to WSDL or UDDI, the service provider makes them publicly available to the
potential clients of the Web service when they try to discover services they are
potentially interested in. WS-PolicyAttachment also defines how to associate
implementation-specific policies with all or part of a WSDL portType when
exposed from a specific implementation. The third one, WS-SecurityPolicy

4.3 An Overview of Current Standards 67

[195] , specifies a set of standard security policy assertions corresponding to
SOAP message protection requirements, that is, message integrity assertion,
message confidentiality assertion, and message security token assertion. A
WS-Security policy exposed through WSDL or UDDI, allows requesters to
determine if WS-Security is optional or mandatory for a given Web service.
If it is mandatory, the requesters can determine the security token type the
Web service understands or prefers. Requesters can also determine whether
they need to sign the messages and which parts to sign. Finally, requesters
can determine whether to encrypt the message and, if so, what algorithm to
use.

4.3.7 Access Control Policy Standards

In a Web service setting, there is the need to define, deploy, and maintain
several access control policies (see also Appendix A) so that the access to a
given resource, be it a database, a Web service, or a Web service operation,
is granted to entitled users. In addition, there is the need to protect digital
information at rest, which constitutes one of the most valuable asset of an
enterprise. The two aspects mentioned above constitute the scope of “tradi-
tional” access control policies. However, the explosion of digital information
within business organizations called not only for protecting it against mishan-
dling and malicious use, but also for controlling its dissemination to proper
recipients, internally or externally to the enterprise boundary, by defining,
deploying and enforcing suitable information flow policies.

In this section we briefly discuss two standards, eXtensible Access Con-
trol Mark-up Language (XACML), and eXtensible Right Markup Language
(XrML), which address, respectively, access control and information flow poli-
cies.

eXtensible Access Control Markup Language (XACML)

Access control policies are complex and they must be enforced at many points.
In a distributed environment, such as a Web service setting, implementing ac-
cess control policies by configuring them at every point makes policy changes
expensive and unreliable. Moreover, access control policies are often expressed
through different and proprietary languages, preventing one to share them
among different applications. XACML [188] was conceived to solve these is-
sues, by providing a single, standard language to define access control policies.
XACML version 2.0 was approved as an OASIS standard in February of 2005,
along with six profiles of XACML: SAML 2.0, XML Digital Signature, Privacy
Policy, Hierarchical Resource, Multiple Resource, and Core and Hierarchical
Role-Based Access Control (RBAC). XACML was conceived as one compo-
nent of a distributed and interoperable authorization framework, with the
following underlying rationale:

68 4 Standards for Web Services Security

XACML
policies

Policy
Enforcement

Point
(PEP)

Policy
Decision

Point
(PDP)

Application
2) access request

6a) permit access
to resource

6b) deny access
to resource 3) request

Obligations
service

13) [obligation]

Context
handler

12) response

Policy
Administration

Point
(PAP)

1) policy

4) Request
notification

5) attribute
queries

10) attributes
11) response

context

Policy
Information

Point
(PAP)

6) attribute
query

8) attributes

subjects

environment

resource
9) Resource

content

7a) Subject
attributes

7b) environment
attributes

7c) Resource
attributes

Fig. 4.15. XACML data flow model

• first, access control policies do not have to be embedded or tightly linked
to the system they govern.

• second, XACML policies can be applied to different heterogeneous re-
sources such as XML documents, relational databases, application servers,
and Web services, and at different granularity levels.

• third, XACML policies should be able to take into account specific char-
acteristics of the environment determined at runtime, such as the system
load of the host running a Web service.

• fourth, a standard policy exchange format should be defined that allows
different resource managers, such as Web services, to exchange or share
authorization policies, as well as to deploy the same policy in heterogeneous
systems. If different organizations use internally native policy languages,
the standard policy exchange format can be translated into the native
policy language.

It is worth noting that XACML includes also a non-normative data flow
model ([188], Section 3.1, Data flow model) that describes the logical agents
involved in the processing of an access request. This model, represented in
Figure 4.15, can be considered as an evolution of the ISO 10181-3 model
[140]. However, ISO 10181-3 defines an architecture for access control, but
not a language. In ISO 10181-3 terms, XACML specifies an Access Control
Decision Function (ADF), and defines its interactions with an Access Control
Enforcement Point (AEF).

As shown in figure 4.15, the XACML Context Handler insulates the appli-
cation from the canonical representation for the inputs and outputs used by
the PDP. In practice, it is up to the Context Handler to translate application
access requests from their original format to the canonical format above. At

4.3 An Overview of Current Standards 69

its core, XACML defines the syntax for a policy language, the semantics for
processing those policies, and a request-response protocol between the PEP
and the PDP.

The basic building block of a XACML policy is a rule. The main compo-
nents of a rule are:

• a target. It defines the set of requests to which the rule is intended to
apply, in the form of a logical expression on attributes in the request. The
target, in turn, is a triple <subject, action, object>, which is the usual
conceptual representation of an access control policy.

• an effect. It indicates the rule writer’s intended consequence of a “True”
evaluation for the rule. Two values are allowed: “Permit” and “Deny”;

• an optional condition. It is a boolean expression that refines the applica-
bility of the rule beyond the predicates implied by its target.

By representing the target as an XML-based logical expression, the rule or
policy can be equated with a rule of a logic-based language of the form p(x)
-> Permit/Deny.

Multiple rules can be encapsulated in a policy, and multiple policies can
be contained in a PolicySet . This choice stems from the fact that a single
policy might consist of any number of decentralized, distributed rules, each
managed by a different organizational group, and that multiple policies might
need to be taken into account, each of them expressing the access control
requirements of a particular stakeholder. As an example of multiple policies,
in a personal privacy application the owner of the personal information may
specify certain aspects of a disclosure policy, whereas the enterprise that is the
custodian of the information may specify other aspects. When using a rule-
based approach, multiple rules (or even multiple policies), might be applicable
to an incoming request. Thus, there is the need for specifying the order in
which policy rules (or different applicable policies) are to be evaluated. To
this end, XACML defines a set of combining algorithms, which state how to
arrive at an authorization decision from multiple rules or policies. There are
a number of standard combining algorithms defined, namely first applicable,
only one applicable, deny overrides, permit overrides, as well as a standard
extension mechanism to define new algorithms.

In XACML it is thus possible to specify a policy like “MPEG movie for
adults cannot be accessed by users with age less than 18 years”. Referring to
this example, the subject is the user requesting an MPEG movie for down-
loading from a Web service. The subject can have associated an age attribute,
and a predicate “age > 18 years” can be defined on it. The movie is the re-
source to which access must be controlled. An attribute specifying the movie
category (for example ‘adult only’) is associated with the movie resource.

As for the request/response protocol between the PEP and the PDP, a
request consists of attributes associated with the requesting subjects, the
resource acted upon, the action being performed, and the environment. A
response contains one of four decisions: permit, deny, not applicable (no ap-

70 4 Standards for Web Services Security

plicable policies or rules could be found), or indeterminate (in case some error
occurred during processing). In the case of an error, optional information is
available to explain the error. Responses may also include obligations, which
are directives from the applicable policies for the PEP to execute.

As for the security aspects, it is worth remembering that the XACML
agents, that is PDP, PEP, and PIP, might reside at different hosts. Conse-
quently, XACML assumes that the adversary has access to the communication
channel between the XACML agents and is able to interpret, insert, delete,
and modify messages or parts of messages. Moreover, an agent may use in-
formation from a former message maliciously in subsequent transactions. The
main consequences are that rules and policies are only as reliable as the agents
that create and use them, and that it is the duty of each agent to establish
appropriate trust in the other agent it relies upon. Safeguard mechanisms such
as mutual authentication of PEP and PDP are recommended by the XACML
specification, as well the use of suitable access control mechanisms to protect
the XACML policy base and the use of signature mechanisms to protect the
integrity and the authenticity of an XACML policy when it is distributed
between organizations. Mechanisms for trust establishment are outside the
scope of the XACML specification.

OASIS XACML Profile for Web-Services [14], hereafter referred to as
XACML2, is a proposal to define how to use XACML in a standard way
in order to address authorization, access control, and privacy policy in a Web
service environment.

XACML2 specifies a standard XACML assertion type and two specific as-
sertions derived from it, namely an XACMLAuthzAssertion for authorization
policies, and an XACMLPrivacyAssertion for privacy policies. An XACML
assertion can be used to express policy requirements, policy capabilities, or
both. Policy requirements describe information or behaviors that an entity
requires from another party. Policy capabilities describe information or be-
haviors that an entity is willing and able to provide to another party. Hence,
a Web service provider can use a XACML assertion to express or publish its
own requirements or its capabilities for complying with requirements imposed
by a Web service consumer. Conversely, a Web service consumer can use a
XACML assertion to express or publish its own requirements or its capabili-
ties for complying with requirements imposed by a Web service provider. An
XACML assertion must have a scope, that is, a XACML policy, which must
be explicitly referred to by the assertion or identified in some other way.

Web consumers and Web service providers XACML assertions have to be
matched in order to determine whether they are compatible, that is, if what
the consumer requires can be provided by the Web service and viceversa.
Matching is done by computing the intersection of the requirements in each
XACML assertion with the capabilities in the other XACML assertion. For
each of the original XACML assertions, the result of the intersection is a new
XACML assertion containing in its requirements the intersection of the origi-
nal requirements with the original capabilities of the other XACML assertion,

4.3 An Overview of Current Standards 71

and containing in its capabilities the intersection of the original capabilities
with the original requirements of the other XACML assertion.

eXtensible Right Mark-up Language (XrML)

Techniques and tools used to provide perimeter-based security, such as fire-
walls which limit access to the network, and access control systems that re-
strict access to stored data, cannot enforce business rules that control how
people use and distribute the data outside the perimeter.

The control and the enforcement of digital information distribution and
use have been tackled by the so-called Digital Right Management (DRM). The
term is frequently referred by both copyright legislation and content owners
when seeking means to control use of their intellectual property. DRM sys-
tems and related standards originated from the music industry with the goal
of preventing users from illegally copying copyright-protected digital music
without compensation to publishers and content owners. Central to DRM is a
unified approach for specifying, interpreting, enforcing, and managing digital
rights throughout the entire life cycle of digital assets. DRM systems basically
accomplish two main functions. The first is a monitoring function, which al-
lows one to track what is actually being transferred over the network and to
which recipients. The second is an access and usage control function, control-
ling what users can or cannot do with digital contents transferred to their
own computer. The description of the actions allowed to users on a digital
content is conceptually similar to the description of the actions in an access
control policy. The access control policy is tied to the digital content itself
in a secure box [152], so that the digital content travels together with the
description of the access control policy that applies to it. The DRM approach
assumes that a DRM engine runs on the device (be it a PC, a mobile phone,
or a PDA) where the digital content is accessed by the user. The DRM engine
enforces the specific access and usage control policy associated with the digital
content. Exchange of information about access rights associated with digital
content is an integral part of DRM, and hence there was the need to stan-
dardize their description through a rights expression language (REL) so that
potentially diverse DRM engines running on heterogeneous platforms could
interpret and enforce them. The first development of a rights expression lan-
guage was started at Xerox’s Palo Alto Research Center (PARC) in 1994. The
result of such effort has been a computer-interpretable language, called the
Digital Property Rights Language (DPRL), for describing rights, conditions,
and fees for using digital work. The first version of DPRL, v1.0, originally
written in LISP, was released in March 1996, and the second version, v2.0,
defined using the XML DTD, in November 1998.

In 1999 DPRL was renamed as eXtensible Right Markup LanguageTM and
its first version, XrML, v1.0, was introduced in April 2000 by ContentGuard
Inc., an independent spin-off company of Xerox, which retains a trademark

72 4 Standards for Web Services Security

Principal

Condition

Resource

Right

Issuer

License

Grant

Fig. 4.16. XrML: License and Grant

on it. XrML v2.0 was released in November 2001. In November 2001, Con-
tentGuard Inc. submitted XrML 2.0 to the Moving Picture Experts Group
(MPEG) [193] working group (ISO/IEC) in response to their Call for Pro-
posals for a Rights Data Dictionary and Rights Description Language. XrML
was then selected as the basis for MPEG-21 REL [52].
XrML is a XML language which specifies how to describe rights, fees, and
conditions for using digital contents (or properties), with message integrity
and entity authentication. XrML was conceived to support commerce in dig-
ital contents, that is, publishing and selling electronic books, digital movies,
digital music, interactive games, computer software, and other creations dis-
tributed in digital form. It was intended to support specification of access and
use controls for secure digital objects also in cases where financial exchange
was not part of the terms of use.

The XrML model is based on the concept that a right is granted by an
issuer to a principal to use a resource under certain conditions, as shown in
Figure 4.16.

The principal entity represents the subject whom one or more rights on a
resource are granted. Each principal identifies only one subject. A principal
can prove her identity by different authentication mechanisms, including:

• The keyHolder mechanism. It indicates that the subject is identified as
possessing a secret key such as the private key of a public/private key
pair. KeyHolders are represented using the KeyInfo element from XML
Signature.

• The multiple credentials mechanism. In order to be authenticated the prin-
cipal must present multiple credentials that must be validated simultane-
ously.

4.4 Implementations of Web Services Security Standards 73

XrML Rights

File
Management

Rights

Transport
Rights

Declarative
Works
Rights

Render
Rights

Configuration
Rights

Fig. 4.17. XrML Rights

A right represents an action (or a set of actions) that a principal can
perform on the granted resource, as shown in Figure 4.17.

The XrML 2.0 Core specification [293] also defines a set of commonly used,
specific rights, notably rights relating to other rights, such as issue, revoke,
delegate, and obtain. Extensions to the XrML Core could define rights appro-
priate for using specific types of resources. For instance, the XrML content
extension defines rights appropriate for using digital works (for instance, play
and print rights). A resource entity represents the object over which a right
can be granted to a principal. A resource can be a digital work, such as an
audio or video file, or an image, a service, such as an email service, or even
a piece of information that can be owned by a principal, such as a name,
an email address, a role, or any other property or attribute. A resource can
also be a rights expression itself. A condition entity specifies the terms, the
conditions, and the obligations under which a principal can exercise her rights
on the resource. For example, a condition might specify a temporal interval,
the number of times that the resource can be accessed, and so on. An issuer
identifies a principal who issues rights. The issuer can also supply a digital sig-
nature signed by the principal to signify that the principal does indeed bestow
the rights issued, and to facilitate reliable establishment of trustworthiness of
the rights information by others. The license structure represents the issuance
of a grant by an issuer.

4.4 Implementations of Web Services Security Standards

In this section we give an overview of the available implementations of Web
services security standards provided by the most common platforms, i.e. Mi-
crosoft .NET, Java, by open software and finally by the so-called XML security
appliances. This overview is not aimed at precisely identifying if a given imple-
mentation is compliant with a specific standard version, but rather at giving
some indications about the adoption level of different Web service security
standards.

Microsoft .NET 2.0 platform [185] supports XML encryption and XML sig-
nature. Web Services Enhancements for Microsoft .NET (WSE) [275] provides
a .NET class library for building Web services which includes WS-Security,
WS-SecureConversation, WS-Trust, and WS-Addressing.

74 4 Standards for Web Services Security

As to the Java platform, Sun Microsystems and IBM have published the
final release of JSR 105, XML Digital Signature APIs, to the Java Community
Process (JCP) [78] and the JSR-000106 XML Digital Encryption APIs [79].
JSR 105 is available as part of the Java Web Services Developer Pack 1.6.

The Java Web Service Development Platform (WSDP) 1.5 defined the
XWS-Security framework which provides security functionalities for JAX-
RPC applications [171]. This framework supports the following security op-
tions:

• XML Digital Signature: The implementation uses Apache’s XML-DSig
implementation, which is based on the XML Signature specification.

• XML Encryption: The implementation uses Apache’s XML-Enc imple-
mentation, which is based on the XML Encryption specification.

• Username Token Profile and X.509 Certificate Token Profile support, based
on the OASIS WSS Username Token Profile 1.0 and the OASIS WSS X.509
Certificate Token Profile 1.0, respectively.

In June 2005, Sun launched Project GlassFish, with the goal of creating
an open-source Java EE 5 application server through a developer community.
The GlassFish community is developing Project Metro [181], an extensible
Web service stack which will include full support of the OASIS Web service
Security (WSS) 1.1 standard, and partial support of OASIS WSS Username-
Token Profile 1.1, OASIS WSS X509 Token Profile 1.1, OASIS WSS SAML
Token Profile 1.1, and OASIS WSS SOAP Messages with Attachments SWA
Profile 1.

4.5 Standards-related Issues

Web service security standards raise several interrelated technical and man-
agement issues. Technical issues concern specific security threats posed by the
Web service security standards themselves and their implementations and how
to address them during the Web service life cycle, the degree of interoperability
that can be really achieved by their adoption, and the performance overhead
incurred when deploying software solutions implementing the standards.

Management issues are over and above technical ones. They include, to
mention just some of them, the tradeoff between the organization interop-
erability requirements and the organization security requirement, the costs
incurred when deploying and using standard compliant features provided by
the development and deployment platform, the training needed to provide de-
velopers and operational management personnel the skills required to properly
learn and use standardized security functions in an effective way.

Security issues

As we saw in the previous sections, Web service security standards specifi-
cations describe, to different extents, the security concerns which standards’

4.5 Standards-related Issues 75

implementers or users should be aware of. These security concerns vary de-
pending on the purpose of the standard, and may affect the standards im-
plementers as well as the applications using the standards implementation.
As an example of the former, in XACML it is up to the implementers of the
standard to duly consider and embed in the standard implementation mech-
anisms for protecting the protocol used by the various XACML agents (PDP,
PEP, PIP, etc.). As an example of the latter, it is up to the applications us-
ing XML Encryption, and hence to the application developers, to be aware
of cryptographic vulnerabilities that may arise when combining digital signa-
tures and encryption over a common XML element [96, Section 6]. Similarly,
it is up to the applications using XML Signature [97, Section 8] to be aware of
the potential harm on an XML parser based on the Document Object Model
(DOM) that derive from XML transformations, such as character encoding
transformations [87], canonicalization instructions [97, Section 6.5], and XSLT
transformations [97, Section 6.6.5] [70]. Overall, while it can be assumed that
standards implementers have the competence and the knowledge needed to
achieve this end, the situation can be quite different with the application de-
velopers. Hence, the adoption of a Web service security standard requires us to
educate and train application developers not only on security fundamentals,
but also on how to use the standard itself.

Interoperability issues

Web service standards specifications can be very rich and complex, due to the
extensibility mechanisms they provide and their evolving nature. Moreover,
not all the features of a given standard specification need to be implemented
in order for the implementation to conform to the standards specification2. A
possible consequence is that different implementations of the same standard
specification might not be completely interoperable. To help solve these prob-
lems, the Web Services Interoperability organization (WS-I), an industry con-
sortium whose primary goal is to promote Web Services interoperability across
many technology substrates (platforms, OSs, languages, and so forth), was es-
tablished. The approach of WS-I is based on the use of profiles. A profile of a
single standards specification basically consists of an agreed-upon subset and
interpretation of the specification that provides guidelines to the standards
specification implementers and users to achieve an effective interoperability.
The profiles developed by WS-I apply to a specific group of non-proprietary
Web service specifications at specific version levels. The first one is WS-I Ba-
sic Profile 1.1, which covers aspects of SOAP, WSDL, UDDI, and HTTPS by
providing clarifications and amendments to those specifications that promote

2 In any specific standards specification, normative statements that conforming
implementations must adhere to are labeled MUST, while the implementation of
statements labeled as SHOULD or MAY is left to the discretion of the imple-
menter.

76 4 Standards for Web Services Security

interoperability. As for Web service standards related to security, interoper-
ability of different WS-Security implementations is crucial due to the roles
played by SOAP messages and by SOAP message security. To this end, WS-I
has defined the WS-I Basic Security Profile (WS-I BSP) [174], which cov-
ers transport layer security (HTTP over TLS) and SOAP message security.
WS-I BSP defines proper, interoperable usage of security tokens (specifically
username/password and X.509 certificates), timestamps, id references, secu-
rity processing order, SOAP actors, XML signature and XML encryption,
and security of SOAP attachments. In addition to the above mentioned pro-
files, WS-I provides testing tools used to determine whether the messages ex-
changed with a Web service conform to WS-I guidelines. These tools monitor
the messages and analyze the resulting log to identify any known interoper-
ability issues. In addition to testing tools, WS-I provides sample applications
as examples of applications that are compliant with WS-I guidelines.

Another interoperability issue derives from possible overlaps among differ-
ent standards specifications, and from a specification of a standard at a given
layer being sometimes developed by a standardization body different from the
one specifying the standard at another layer. Such a situation requires veri-
fication and alignment of the specifications, which involves further iterations
within each standardization body. Moreover, such an alignment might be fur-
ther constrained by the fact that one of the standards involved is more stable
and mature and is already implemented by some manufacturers.

Performance issues

Performance issues mainly stems from the characteristics of the XML lan-
guage itself, the increasing number of software layers needed to fully pro-
cess XML messages an payloads, and finally from encryption and decryption.
Processing XML-encoded messages can require a very large amount of band-
width with respect to traditional binary messaging protocols. The overhead
induced by XML has been addressed by the World Wide Web Consortium,
which recently released three W3C Recommendations to improve Web ser-
vices performance by standardizing the transmission of large binary data:
XML-binary Optimized Packaging (XOP) [122], SOAP Message Transmis-
sion Optimization Mechanism (MTOM) [123], and Resource Representation
SOAP Headers Block (RRSHB) [148]. These recommendations are intended
to provide ways to efficiently package and transmit binary data included or
referenced in a SOAP 1.2 message. Processing requirements of XML (for ex-
ample, XML parsing) can also induce a performance overhead on the software
implementing Web services security standards. As for security, it adds the
additional overhead due to the processing required by XML Encryption and
XML Signature.

XML appliances

In order to improve the performance of XML message processing and to ease
and reduce the cost of XML-related security functions, several manufacturers

4.5 Standards-related Issues 77

introduced in the market specialized products referred to as XML appliances.
XML appliances can be based on proprietary hardware and operating systems
or on standard operating systems and include the so-called XML accelerators
and XML firewalls. An XML accelerator appliance is a customized hardware
and software performing the XML/SOAP parsing, XML schema validation,
XPath processing, and XSLT transformation functions. XML firewalls, also
known as XML security gateways, are devices that, in addition to the func-
tions of an XML accelerator, support a range of security-related functions such
as content or metadata-based XML/SOAP filtering functions; XML message
encryption/decryption at the message or element level; XML signature verifi-
cation and XML message signing; authentication and authorization functions;
and auditing and accounting functions. XML firewalls implement XML mes-
sage encryption and signing according to the XML Encryption and XML
Signature standard. The advantage of using XML appliances is that they can
be deployed with other firewalls in the DMZ, serving as the first line of de-
fense. Another advantage is that they are optimized for XML handling so the
performance impact of the appliances is lower with respect to self-coded so-
lution. Disadvantages of hardware XML firewalls are the setup costs and the
increased maintenance complexity which comes from managing an additional
hardware type.

Bibliographic notes

An extensive analysis of extensibility issues and their relationships with ver-
sioning for XML-based languages can be found in the personal notes of Tim
Berners-Lee [30, 31] and in [213].

A detailed discussion of the WS-I Basic Interoperability Profile, together
with a worked out example of its application, is provided in [118, Chapter 13
Web Services Interoperability].

5

Digital Identity Management and Trust
Negotiation

As more and more activities and processes such as shopping, discussion, enter-
tainment and business collaboration are conducted in the cyber world, digital
identities, be them user names, passwords, digital certificates, or biometric
features and digital identity management have become fundamental to under-
pinning accountability in business relationships, controlling the customization
of the user experience, protecting privacy, and adhering to regulatory con-
trols. In its broadest sense, identity management revolves around the enter-
prise process of adding or removing (provisioning) digital identity information
and managing their authentication and associated access rights (policy) to in-
formation systems and applications (“access management”). Hence, digital
identity management is strictly intertwined with identification technologies,
such as biometrics, and authorization and access control technologies. More-
over, digital identity management requires us to consider at the same time
aspects and technologies related to usability and management. Digital iden-
tity is not a static information too. It may evolve over time, and hence digital
identity management requires us to consider and apply change management
techniques to digital identity representations.

Digital Identity management is an emerging research field which addresses
the aspects mentioned above. Moreover, the emergence of SOA and Web
services-based enterprise information systems requires us to consider not only
the technical aspects of distribution but also the impact of service autonomy
on identity management solutions.
This chapter covers all relevant notions related with identity management
and then discusses how digital identity management can be combined with
negotiation techniques to provide a more flexible but still privacy-preserving
solution.

The chapter first provides an overview of the main concepts related to
digital identity management, focusing on recent federated approaches, namely
Liberty-Alliance initiative [166], WS-Federation [170], the Shibboleth System
[138], and Microsoft CardSpace. Issues related to identity management in
the context of grid computing systems are discussed, in that these systems

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 5, c© Springer-Verlag Berlin Heidelberg 2010

80 5 Digital Identity Management and Trust Negotiation

represent a significant application context for SOA and digital identity man-
agement. The chapter also presents the trust negotiation paradigm, its main
concepts and protocols, and possible applications of it in the context of fed-
erated identity management systems. Finally, to show the advantages of the
digital identity management and trust negotiation approaches, the chapter
presents a federated attribute management and trust negotiation solution,
which provides a truly distributed approach to the management of user iden-
tities and user attributes with negotiation capabilities.

5.1 Overview of Digital Identity Management

Digital identity management is the set of processes, tools, social contracts,
and a supporting infrastructure for creating, maintaining, utilizing, and ter-
minating a digital identity. These tools allow administrators to manage large
populations of users, applications, and systems securely and efficiently. They
support selective assignment of roles and privileges that makes it easier to
comply with regulatory controls and contribute to privacy-sensitive access con-
trols. Identity management systems (IdM systems, from now on) have strong
links with the management of security, trust, and privacy in a given system.
Traditionally, identity management has been a core component of system se-
curity environments for the maintenance of account information to control
log in access to systems or to a limited set of applications. Additionally, the
identity of users has been the core of many authentication and authorization
systems.

Recently, however, the scope of identity management has expanded, with
its becoming a key enabler for electronic business. Identity management sys-
tems are now fundamental to underpinning accountability in business relation-
ships, controlling the customization of the user experience, protecting privacy,
and adhering to regulatory controls.

In this section we discuss the main concepts related to IdM systems. We
begin with a brief overview of the notion of digital identity and identifiers,
and then outline the most significant identity management frameworks.

Digital identity and identifiers

Digital identity can be defined as the digital representation of the information
known about a specific individual or organization. Such information can be
represented and conveyed in various ways, from log in names and passwords
to digital credentials and biometric features.

IdM systems, according to the typical representation in SOA architectures,
define identities by profiles of attributes associated with an individual. Identity
attributes are typically stored at ad hoc Identity Providers (or IdPs, for short)
which disclose identifiers as dictated by the authentication or authorization
protocols in place.

5.1 Overview of Digital Identity Management 81

Identity attributes, also referred to as identifiers, can encode demographic
information about an individual or attest that an individual belongs to a
particular group (such as military veterans or U.S. citizens).

Identifiers can be classified on the basis of their nature and uniqueness.
An important distinction in fact lies in the ability of an identifier to uniquely
represent an individual within a certain identity domain. Identifiers of this
type are typically known as strong identifiers. Weak identifiers are instead
associated with many individuals in a population. Whether an identifier is
strong or weak depends upon the size of the population and the uniqueness of
the identity attribute. The combination of multiple weak identifiers may lead
to a unique identification [247]. Examples of strong identifiers are a user’s
passport number or social security number. Weak identifiers are attributes
like age and gender.

Identity framework classification

In the past few years, several approaches to identity management have been
proposed. An interesting categorization, [8], distinguishes isolated, centralized,
and distributed identity management frameworks. The isolated model is based
on the independent and autonomous management of identities among service
providers (SPs for short) and is the oldest approach. Users have different iden-
tities at each SP, risking inconsistency, replication; and additionally, they have
to remember log in names and password for each site. The centralized model
assumes the existence of a single IdP and of a “circle of trust” among the IdPs
and a set of participating members or SPs. A “circle of trust”, according to the
Liberty Alliance [166] initiative, is a federation of SPs and identity providers
that have business relationships based on operational agreements, and with
whom users can transact business in a secure and apparently seamless envi-
ronment. The IdP has centralized control over the identity management task,
providing access to all SP domains with simplicity of management and con-
trol. The obvious drawback of this approach is that the IdP may represent a
bottleneck and a single point of failure that could result in enormous damage
if compromised.

The distributed federated identity management model is based on the no-
tion of federated IdPs, and on a distributed authentication process. The main
idea underlying such a model is that some identity information exists beyond
the corporate firewalls, and is therefore at least partially beyond any one cor-
poration’s individual control. In this model, every member of the federation
agrees to trust user identities vouched for by other members of the federa-
tion without needing to adopt the same security technologies or maintain a
shared, centralized system for managing identities. Such an approach results
in a protected environment through which members can provide integrated
and complete services to qualified groups of individuals across organizational
boundaries.

82 5 Digital Identity Management and Trust Negotiation

Federated Identity Management Systems

Federated Identity Management (FIM) Systems represent the most recent and
powerful model among the ones previously discussed, because of its ability
of capturing a rich notion of identity which can be shared among members
in a controlled fashion. At a higher level, FIM’s members are organizations
sharing identity profiles according to specific rules of sharing and contractual
agreements.

Technically, an FIM system consists of software components and protocols
that handle the identity of individuals. An FIM system involves three main
types of entities, namely users, IdPs, and SPs. Such entities may, and typically
are, implemented using SOA architectures. The IdPs manage and provide user
identities and may also issue user credentials. The SPs (also known as rely-
ing parties) are entities that provide services to users based on their identity
(attributes). A FIM system is characterized by a user having identity infor-
mation certified by one or more IdPs. An important aspect of FIM systems
is that the various management components are distributed amongst entities
adopting independently established authentication policies: a relying party
may accept identities according to its authentication policy, although such
an authentication policy may not be shared or agreed upon with the other
entities of the federation.

An important benefit of FIM systems is that they help in sharing personal
information in a protected way and in facilitating Single-Sign-On [227] (SSO),
based on the contractual and operational agreement existing among the FIM
members. SSO allows a user to sign on once at a SP site and then to be
seamlessly signed on when navigating to another site, without the need to
authenticate again.

Having a federation prevents the problem of a single point of failure, but
requires that a trusted IdP be chosen. Typically, the individual relies on an
online IdP to provide the required credentials, and hence these systems are
referred to as provider-centric. In some cases individuals have very limited
control over their credentials, and this is considered as one of the factors
hindering the widespread use of technologies for federated identities.

As a result, a currently emerging paradigm in federated IdM systems
is that of user centricity, where the idea is to provide the individual full
control of transactions involving his identity data. This paradigm, discussed
later, is embraced by multiple industry products and initiatives such as Mi-
crosoft CardSpace [282], SXIP [180], and the open source Higgins Trust Frame-
work [129].

5.2 Overview of Existing Proposals

Identity management is being investigated extensively in the corporate world
and several standardization initiatives for identity federation are being devel-
oped. Table 5.1 summarizes some of the most significant ongoing projects. In

5.2 Overview of Existing Proposals 83

SWITCHaai Federation [251] The SWITCHaai Federation is a group of or-
ganizations like universities, hospitals and libraries, that have agreed to cooperate
regarding inter-organizational authentication and authorization. They operate a
Shibboleth-based authentication and authorization infrastructure (AAI).

InCommon [137] By using Shibboleth authentication and au-
thorization technology, InCommon intends to make sharing of protected resources
easier, enabling privacy-preserving collaboration between InCommon participants.
Access decisions to protected resources are based on user attributes contributed
by the user’s home institution. InCommon became operational on 5 April 2005.

HAKA Federation Finland [100] The HAKA Federation in Finland entered
its production phase in late 2004. The Federation was set up in 2003, and it
currently includes 2 (of 20) universities and 1 (of 29) polytechnics as IdPs, and
4 SPs, including the National Library Portal (Nelli). In Finland, the libraries in
higher education traditionally co-operate widely in licensing electronic journals.
It is based on Shibboleth.

Liberty Alliance [166] The Liberty Alliance is a consortium of ap-
proximately 170 companies that develops specifications for federated identity man-
agement. It works on creating a single comprehensive federated identity specifi-
cation. In March 2003, it released a new blueprint that described three separate
specifications that can be used together or independently: the first one is the
Identity Federation Framework (ID-FF), which allows single sign-on and account
linking between partners with established trust relationships. The second one is
the Identity Web Services Framework (ID-WSF), which specifies how groups of
trusted partners can link to other groups, and how users can control the sharing
of their information. The third one, the Identity Services Interface Specifications
(ID-SIS) aims to define a set of interoperable services built on top of the ID-WSF.

Table 5.1. Federation initiatives

this section we analyze and compare two emerging standards from the cor-
porate world, Liberty Alliance [166] (LA) and WS-Federation [170]. Then we
provide an overview of other relevant approaches, namely, Shibboleth [138]
and Microsoft CardSpace.

5.2.1 Liberty Alliance

The Liberty Alliance [166, 167] was formed in December 2001 to serve as
an open standard organization for federated network identity management
and identity-based services. The main aim of Liberty Alliance is to provide
the specification of a federated identity infrastructure in which individuals
and businesses can more easily interact with one another, while respecting
the privacy and security of shared identity information [166]. The framework
for such an infrastructure is based on the circle of trust concept. A circle of
trust is constituted by mutually trusting SPs and Identity SPs (IdPs). SPs
are organizations offering Web-based services to users. IdPs are SPs offering
business incentives so that other SPs will affiliate with them.

84 5 Digital Identity Management and Trust Negotiation

Objectives

Liberty Alliance objectives are twofold. The first objective is to establish
a standardized, multi-vendor, Web-based single sign-on based on federated
identities. The second one, which raises a number of interesting technical
challenges, is to enable businesses to maintain and manage their customer
relationships without third-party participation.

Requirements

Liberty Alliance outlined a number of requirements that an identity solution
must satisfy. In the following we summarize the most relevant ones:

• IdPs must support identity federation by giving the user a notice upon
federation (sharing with other federation members) or de-federation (stop-
ping to share with other federation members) of his identity. Both SPs and
IdP must notify each other about identity de-federation. Each IdP should
notify the appropriate SPs of user account terminations at the identity
provider. Each SP and/or IdP should give each of its users a list of the
user’s federated identities at the identity provider or SP.

• Authentication between IdPs and SPs on the part of the user, that is,
how the user navigates from SP A to SP B (including click-through, using
favorites or using bookmarks, URL address bar, etc.) must be supported.
Confidentiality, integrity, and authenticity of information exchanged be-
tween IdPs, SPs, and user agents, must be guaranteed. Additionally, mu-
tual authentication of the identities of the IdPs and SPs during the au-
thentication and single sign-on processes must be supported.

• A range of authentication methods must be supported, as well as extensible
identifying authentication methods; also coalescing authentication meth-
ods into authentication classes and citing and exchanging authentication
classes must be supported. The following minimum set of authentication
information with regard to a user must be exchanged: authentication sta-
tus, instant, method, and pseudonym. SPs must have the capability of
causing the identity provider to re-authenticate the user using the same
or a different authentication class.

• The use of pseudonyms must be supported, which must be unique on a
per identity federation basis across all IdPs and SPs.

• Global logout must be supported, by handling the notification of SPs when
a user logs out at the identity provider.

Technical Specification

The Liberty Alliance’s specifications build on OASIS’s Open Standard Secu-
rity Assertion Markup Language [222], an XML-based security standard that
provides a way of exchanging user authentication information. We refer the
interested reader to Chapter 4 for a detailed presentation of SAML.

5.2 Overview of Existing Proposals 85

Fig. 5.1. Liberty Alliance architecture

Architecture

As reported in figure 5.1, Liberty Alliance architecture is organized around
three building blocks: (1) the Federation Framework (ID-FF); (2) the Iden-
tity Web Services Framework (ID-WSF); (3) the Identity Services Interface
Specifications (ID-SIS). ID-FF enables identity federation and management,
and it supports, among others, a simplified SSO and anonymity. In the ID-FF
framework, users’ accounts are distributed and maintained at each site. In
order to federate these accounts while respecting user privacy, the IdPs and
SPs establish a pseudorandom identifier that is associated with a real name
identifier at each site. The process of federating two local identities for a user
between SPs and IdPs is triggered by the users with the consent of the SPs, so
to map the established pseudonyms into their local account identifiers [166].
When the authentication of a user is requested by an SP, the IdP authenti-
cates him and then issues an authentication assertion. If the IdP has already
authenticated the user, then it can just issue an assertion without necessar-
ily requiring the user to present his credentials again. Each SP validates the
assertion issued from the IdP, and determines whether or not it should be
accepted. As the IdP can issue multiple assertions to different SPs based on
a single authentication action by the user, the user is able to sign on to these
other service sites without needing to be re-authenticated at each site. ID-FF
defines how data must be exchanged between IdPs and SPs.

The ID-WSF (IdentityWeb Services Framework) defines a framework for
Web services that allows SPs to share users’ identities and attributes according
to permissions, and to create, discover, and request identity services. It also
supports discovery of services and security mechanisms to transmit messages.
ID-WSF operates on open protocol standards.

ID-SIS (Identity Service Interface Specifications) defines service interfaces
for each identity-based Web service so that SPs can exchange different aspects
of identity (i.e., a user’s profile) in an interoperable manner [166]. ID-SIS serves
to build security services of higher level (application services) based on the
ID-WSF framework. Examples of ID-SIS services include personal information
request, geo location services, and directory services.

86 5 Digital Identity Management and Trust Negotiation

5.2.2 WS-Federation

WS-Federation is a collaborative effort of BEA Systems, BMC Software, CA,
IBM, Layer 7 Technologies, Microsoft, Novell, and VeriSign. It is elegantly in-
tegrated into a series of other Web service specifications such as WS-Trust[13]
and WS-Security[170].

WS-Federation [170] describes how to manage and broker the trust re-
lationships in a heterogeneous federated environment, including support for
federated identities, sharing of attributes, and management of pseudonyms.

The WS-Federation approach to a federation framework is based on the
consideration that a federation framework must be capable of integrating
existing infrastructures into the federation without requiring major new in-
frastructure investments. As a consequence, the framework should allow us
to manage different types of security tokens and infrastructures, as well as
different attribute stores and discovery mechanisms. Additionally, the trust
topologies, relationships, and mechanisms can also vary, requiring the federa-
tion framework to support the resource’s approach to trust rather than forcing
the resource to change.

In WS-Federation, users obtain security tokens from their IdPs and can
pass them to SPs in order to get access to resources. WS-Federation, in addi-
tion, defines a request-response protocol which can be used by SPs to acquire
security tokens containing the attributes they actually need. WS-Federation
specifies mechanisms that can be used by Web service (SOAP) requesters as
well as by Web browser requesters. The Web service requesters are assumed to
understand the WS-Security and WS-Trust mechanisms and be capable of in-
teracting directly with Web SPs. The Web browser mechanisms describe how
the WS-* messages (e.g., WS-Trust messages) are encoded in HTTP messages
such that they can be passed between resources and Identity Provider (IP)
and Security Token Service (STS) parties by way of a Web browser client.

The defined Web browser mechanisms support the full richness of WS-
Trust, WS-Policy, and other WS-* mechanisms to be leveraged in Web browser
environments. The WS-Federation framework also leverages the WS-* spec-
ifications to create an evolutionary federation path allowing services to use
only what they need and leverage existing infrastructures and investments.
It also has the advantage of allowing identities and attributes to be brokered
from identity and security token issuers to services and other relying parties
without requiring user intervention. In addition, it provides authenticity and
secure channel establishment in a realistic trust scenario.

Objectives

WS-Federation has been created with the goal of standardizing the way com-
panies share user and machine identities among disparate authentication and
authorization systems spread across corporate boundaries. Such a goal trans-
lates into mechanisms and a specification to enable federation of identity,

5.2 Overview of Existing Proposals 87

attribute, authentication, and authorization information, but it does not in-
clude the definition of message security or trust establishment or verification
protocols and/or specification of new security token formats or new attribute
store interfaces.

Requirements

The requirements for WS-Federation, described in the specification, are sum-
marized as follows:

• Enable appropriate sharing of identity, authentication, and authorization
data using different or like mechanisms.

• Allow federations using different types of security tokens, trust topologies,
and security infrastructures.

• Facilitate brokering of trust and security token exchange for both Sim-
ple Object Access Protocol (SOAP) requesters and Web browsers using
common underlying mechanisms and semantics.

• Express federation metadata to facilitate communication and interoper-
ability between federation participants.

• Allow identity mapping to occur at a requester, target service, or any IdP
or Security Token Service (STS).

• Provide identity mapping support if target services choose to maintain
optional local identities, but do not require local identities.

• Allow for different levels of privacy for identity information and attributes
(e.g., different forms and uniqueness of digital identities).

WS-Federation Model

The WS-Federation framework builds on the WS-Security, WS-Trust, and
WS-SecurityPolicy family of specifications, providing a rich extensible mech-
anism for federation. The WS-Security and WS-Trust specifications allow for
different types of security tokens, infrastructures, and trust topologies. WS-
Federation defines additional federation mechanisms that extend these speci-
fications and leverage other WS-* specifications.

WS-Federation assumes the existence of Attribute Services (ASs), Secu-
rity Token Services (STSs), Authorization Services, and Validation Services
(VSs). An AS is a Web service that maintains information (attributes) about
principals within a trust realm or federation. An STS is a Web service that
provides issuance and management of security tokens. A security token is a
collection of security assertions (or claims) and can be signed by the STS.
Security assertions are based on the receipt of evidence that the STS can di-
rectly verify, or on security tokens from authorities that it trusts. An AS is
a specialized type of Security Token Service (STS) that makes authorization
decisions. A VA is a specialized form of a Security Token Service that uses the
WS-Trust mechanisms to validate the tokens provided and assess their level
of trust.

88 5 Digital Identity Management and Trust Negotiation

In WS-Federation, an IdP, typically an extension of a Security Token Ser-
vice, is an entity that acts as an entity authentication service to end requesters
and as a data origin authentication service to SPs. IdPs are trusted parties
which need to be trusted by both the requester and the SP.

The goal of a federation is to securely share principal’s identity informa-
tion across trust boundaries, by making it brokered from IdP and STS issuers
to services and other relying parties without requiring user intervention. This
process involves the sharing of federation metadata which describes informa-
tion about the federated services, and the policies describing common com-
munication requirements, and the brokering of trust and tokens via security
token exchanges (issuances, validations, etc.).

WS-Federation considers the possibility of dynamically establishing a fed-
erated context, which is a group of realms to which a principal has presented
Security Tokens and obtained session credentials. The federated context lasts
when the principal performs a sign-out action.

Hence, the federation context is related to the (dynamic) principal request.
To establish a federation context for a principal, WS-Federation provides two
possibilities. In the first one the principal’s identity is universally accepted.
The second one requires that the principal’s identity be brokered into a trusted
identity relevant to each trust realm within the federation context.

This approach requires identity mapping that consists of the conversion of
a digital identity from one realm to a digital identity valid in another realm
by a party that trusts the starting realm and has the rights to speak for
the ending realm or make assertions that the ending realm trusts. Identity
mapping, that is, brokering, is typically implemented by an IdP or STS when
initially obtaining tokens for a service or when exchanging tokens by the IdPs
or STS. A principal’s digital identity can be represented in different forms
requiring different types of mappings. For example, if a digital identity is
fixed, it may only need to be mapped if a local identity is needed. Fixed
identities make service tracking (e.g,. personalization) easy, but this can also
be a privacy concern. This concern is lessened if the principal has multiple
identities and chooses which one to apply to which service, although collusion
is still possible.

Another approach to identity mapping is pairwise mapping, where a unique
digital identity is used for each principal at each target service. This approach
simplifies service tracking, since the service is given a unique ID for each re-
quester, and prevents possible collusion issues (if the mapping is performed by
a trusted service). While addressing collusion, the use of pairwise mapping re-
quires the principal’s IdP or STS to drive identity mapping. A third approach
is to require the service to be responsible for the identity mapping. That is,
the service is given an opaque handle which it must then have mapped to
an identity it understands, assuming it cannot directly process the opaque
handle. More specifically, the requester’s IdP/STS generates a digital identity
that cannot be reliably used by the target service as a key for local iden-
tity mapping. The target service then uses the requester’s mapping service,

5.2 Overview of Existing Proposals 89

referred to as pseudonym service, to map the possibly random digital iden-
tity to a constant service-specific digital identity which it has registered with
the requesters mapping service. This approach addresses the collusion issue.
However, it shifts the mapping burden onto the service. The WS-* specifica-
tions are used and extended to create a federation framework to support these
concepts.

5.2.3 Comparison of Liberty Alliance and WS-Framework

Liberty Alliance and WS-Framework are two of the most significant initiatives
that have recognized the value and the importance of identity in the digital
era. The common objectives of these initiatives have been primarily to reduce
the number user-business interactions and exchange of information and ensure
that critical private information is only used by appropriate parties. However,
the analysis of how to manage and represent digital identities was conducted
from very different perspectives. Liberty Alliance is a commercially funded
and oriented project. Its research has been aimed at specific commercial goals
related to identity management and federation, in contrast to the more tech-
nical motivation of much of the WS work. Liberty Alliance has made far more
progress in defining how to manage and exchange personal information across
Liberty Alliance networks. These different views have led to the specification
of separate comprehensive frameworks for digital identity management.

However, a number of similarities among these two initiatives exist. High-
lighting some common factors is important to fully understand the future
trend in the area of digital identity, and help foresee how the next generation
solutions will be more likely developed.

Common advantages

• Both Liberty Alliance and WS-Federation make user identity information
available to the SPs on demand, online, and with low delay. Thus, user
data is more up-to-date and consistent compared to the case where each
user has to maintain her data in multiple places.

• Both frameworks enable fewer and stronger authentication events, so as
to help in minimizing the risk of ID theft and hence increasing system
security.

• Both frameworks reduce costs and redundancy because organizations do
not have to acquire, store, and maintain authorization information about
all their partners’ users anymore.

• Both frameworks satisfy the minimal disclosure information security re-
quirement, in that only data required to use a service has to be transmitted
to a business partner.

90 5 Digital Identity Management and Trust Negotiation

Common shortcomings

• Both approaches enable inter organizational Web SSO, but neither of them
can be applied to services which are not yet or cannot be fully Web-
enabled, e.g., e-mail and file storage. Although Web interfaces exist for
both frameworks, access through conventional protocols, such as FTP for
accessing files, is much more popular and cannot be given up. As there is
no support for such legacy protocols, conventional user registration and
system provisioning would be required [134].

• Although an SP can request arbitrary attribute information from a user’s
identity provider while the service is being used, neither approach offers
the means to notify the SP about changes in this data later on.

• The only security issue considered in both LA and WS-Federation is com-
munication security. Although a PKI-based solution is feasible in theory,
it is not trivial to realize. In practice building a common single-purpose
PKI for a lot of federation partners, e.g., in supply chain management,
would require enormous resources for both setup and maintenance. Fur-
thermore, neither a holistic security view nor methods for the correlation of
security-related events across organizational boundaries exist yet in both
frameworks.

• As for privacy, the users must be able to regulate what information about
them is allowed to be sent to which providers. However, there are yet
no concrete definitions of such attribute release policies (ARPs) in the
specifications.

• Both frameworks support the exchange of arbitrary attributes, i.e., pairs
of keys and values. But they do not provide mechanisms to help find a
common data scheme which should be used within an identity federation,
including the definition of syntax and semantics. In the real world, finding
a common data scheme for inter organizational cooperation is not trivial:
each organization internally uses slightly different terms and changes are
not easy because of organizational and financial costs. Neither standard
supports the process of finding a federation-wide data scheme; nor does
it offer methods to deal with provider-specific semantics. So far, Liberty
Alliance has attempted to define a common set of user attributes within
ID-SIS. But employing such a common set of attributes likely require sub-
stantial application and federation specific extensions, which does not seem
to be straightforward.

5.2.4 Other Digital Identity Management Initiatives

Shibboleth [138] is a project run by the Internet2 consortium in the USA. It is
a standards-based, open source middleware architecture providing both intra-
domain and inter-domain SSO capability. Shibboleth implements the SAML
standard specification, and is currently interoperable with Microsoft’s Active
Directory Federation Services (ADFS).

5.2 Overview of Existing Proposals 91

A Shibboleth Federation is an agreement between resource (service)
providers and institutions wishing to access those resources or services. For
sharing to occur, all parties need to agree on a common set of acceptable
authorization attributes for their users and a schema to describe them.

User attributes are stored at the IdPs of the user home institution. At-
tributes can be encoded in Java or pulled from directories and databases.
Standard X.520 attributes are most commonly used, but new attributes can
be arbitrarily defined as long as they are understood and interpreted simi-
larly by the Identity Provider (IdP) and SP in a transaction. Origin sites are
responsible for authenticating their users through IdPs. Figure 5.2 shows the

Fig. 5.2. Typical Shibboleth flow of messages

message flow of a typical Shibboleth-enabled transaction, with the browser
user arriving at the SP site without an existing session, and without any
information about the user’s home institution being known by the SP.

1. The user attempts to access a Shibboleth-protected resource on the SP
site.

2. The user is redirected to the federation WAYF. WAYF (acronym for
‘Where Are You From’) is a service guiding a user to his IdP.

3. The user selects his home institution (the IdP) from the list presented by
the WAYF.

4. The IdP ensures that the user is authenticated using the internal authen-
tication method.

5. After successful authentication, a one-time handle (session identifier) is
generated for this user session and sent to the SP.

92 5 Digital Identity Management and Trust Negotiation

6. The SP uses the handle to request the user’s attribute information from
the IdP. The required attributes are needed to ensure that the user can
be authorized to access the requested resource.

7. The IdP allows or denies attribute information to be made available to
the SP.

8. Based on the attribute information available to it, the SP allows or refuses
the user access to the resource.

There are many variations on this flow, most of them simpler. In addition,
later versions of Shibboleth are able to operate in other ways.

A key aspect of Shibboleth is the emphasis on users’ privacy. At step 7, the
SP releases user attributes on the basis of the users’ specified ARPs. ARPs
dictate the conditions according to which attributes can be released. As such,
the target SP only knows the attributes and information necessary to perform
an access control decision, protecting users’ anonymity in cases where their
identity is not necessarily important. This approach gives users a large amount
of control and flexibility about how their attributes are released and known
and enables simple and anonymous access control.

CardSpace [282] is part of Microsoft’s implementation of an identity meta-
system based on standard protocols and composes seamlessly with the WS-
* security protocol family (including WS-Security, WS-Secure Conversation,
WS-SecurityPolicy, WS-MetadataExchange, and WS-Trust). CardSpace func-
tions as a sort of “digital wallet” that stores authentication information for a
number of different Web sites and Web services. More specifically, it securely
stores pointers to digital identities of an individual, and provides a unified
interface for choosing the identity for a particular transaction, such as logging
in to a Web site or accessing some Web service. A use case of CardSpace is
described as follows:

1. A CardSpace-enabled user first enrolls with one or more IdPs of his choice.
That could be for instance, an ISP, a bank, a site like eBay or Slashdot.
This process is entirely outside of CardSpace, but of course the IdPs must
support their portion of the CardSpace protocol.

2. The user visits a CardSpace-enabled relying Web site, such as a CardSpace-
enabled Bestbuy, that requires certain identity information from the user,
say, a shipping address. The website sends the client a web page which
contains an HTML OBJECT tag, which triggers a DLL that invokes the
CardSpace system at the client.

3. The CardSpace system determines what personal information is requested
by the Web site, and matches it to the identities (i.e., Information Cards)
that are in possession of the user. It then displays to the user the applicable
cards, such as: driver’s license (if the government is a CardSpace-enabled
identity provider) or a credit card from BankOne. The CardSpace selector
runs on the user’s computer and is not downloaded.

4. The CardSpace user interface enables users to create personal cards (aka
self-issued cards) associated with a limited set of identity data. As a result

5.3 Discussion on Security of Identity Management Systems 93

of the selection, the CardSpace process contacts the selected IdP and
obtains essentially a digitally signed XML document that contains the
requested identity information. The signature is of the IDP.

5. The CardSpace client then forwards the obtained document to the relying
party (the Web site).

Note that the key difference with other identity management systems, such
as Shibboleth, is that identity information is not recorded at a server owned
by Microsoft. Additionally, while other initiatives have been mostly designed
with the goal of enabling interoperability of identities among different admin-
istrative domains (e.g., Liberty Alliance) and to protect individual’s privacy
(e. g., Shibboleth), CardSpace’s main effort is to alleviate some of the usability
problems that individuals face today in terms of online identity abuse. To this
extent, the designers of CardSpace focused on an approach that reduces the
reliance on username/password authentication with cryptographically strong
claims-based authentication. The goal is to mitigate the risks of the most com-
monly deployed identity attacks, such as compromised accounts and stolen
passwords, and to reduce the likelihood of personal information being lost via
phishing schemes.

5.3 Discussion on Security of Identity Management
Systems

Identity managements systems’ main resources are represented by identity
attributes, thus security of such resources should always be assured. Security
includes a comprehensive set of properties, dealing with integrity, confiden-
tiality, revocability, and unlinkability of identity attributes. Integrity requires
data not to be altered in an unauthorized way. To preserve the integrity of
an individual’s identity attributes the IdPs should collaborate with one an-
other for efficient updates and deploy appropriate mechanisms for maintain-
ing a consistent view of the individual’s identity. Confidentiality is also an
important requirement for the secure management of identities. Specifically,
confidentiality deals with the protection of sensitive identity information from
unauthorized disclosure. Identity information should only be accessible by the
intended recipients. If an attacker can retrieve someone’s information, then the
user loses control (at least partially) on her attributes’ release and usage. It is
therefore essential that mechanisms for confidential release of the individual’s
attributes be provided and identity information be protected accordingly at all
times. Revocability is also essential, to ensure that no longer valid information
is recognized as such, and not used for identification purposes. Finally, un-
linkability of two or more identities or transactions—or, generally, of items of
interest—means that the attacker after having observed transactions, should
not be able to infer sensitive information based on observed information.

Despite the growing interest in solutions to digital identities, in today’s
Internet environment, many developers still fail to see and understand the

94 5 Digital Identity Management and Trust Negotiation

central place of identity in the applications. Mostly, the current initiatives,
such as Shibboleth and WS-Framework, are primarily an attempt to improve
in flexibility and interoperability of users identities and profiles. As a result,
despite their potential, they still have significant shortcomings.

First, most approaches do not provide information about the verification of
the identity data of the individuals enrolled and stored at the IdPs. If an IdP
has such information, then the SPs are in a position to make a more accurate
judgment concerning the trustworthiness of such identity information.

The second major drawback is that no specific techniques are provided to
protect against the misuse of identity attributes stored at the IdPs and SPs.
Even the notion of misuse of such attributes has not been thoroughly inves-
tigated yet. Dishonest individuals can register fake attributes or impersonate
other individuals of the federation, leading to identity theft. Digital identity
theft occurs when attackers impersonate other identities without their con-
sent or knowledge. These attacks are launched to obtain fraudulent credit or
to commit crimes like accessing classified records without the proper autho-
rizations. Digital identity theft in cyberspace is especially hard to prevent
because digital information can be copied, and hence stolen unnoticed. Ad-
ditionally, it is difficult to find or prosecute the Internet thieves. The most
common identity theft attacks are perpetrated through passwords cracking,
pharming, phishing, and database attacks. The intuitive solution of main-
taining confidentiality through cryptographic techniques is inadequate or not
sufficient when dealing with identity. Identifiers often have to be released to
third parties and validated each time authentication is required or an access
control policy needs to be enforced.

To mitigate this threat, strong authentication is an upcoming trend.
Strong authentication refers to systems that require multiple factors, pos-
sibly issued by different sources, to identify users when they access services
and applications. However, current approaches to strong authentication (de-
ployed by banks, enterprises, and governmental institutions) are neither flexi-
ble nor fine-grained. In many cases, strong authentication simply requires two
forms of identity tokens, for example a password, and a biometric. By hav-
ing prior knowledge of these token requirements, an adversary can steal the
required identity information to compromise such authentication. Moreover
if the same tokens are repeatedly used for strong authentication at various
SPs, then the chances of these tokens being compromised increase. Thus, as
of today, the strong authentication implemented does not meet the stronger
protection requirements of identities in a federation. Individuals should be
able to choose any combination of identity attributes to perform strong au-
thentication, provided that the authentication policies defined by the verifying
party are satisfied.

An additional limitation is represented by the difficulty for individuals
to monitor whether their privacy requirements are in fact satisfied, and to
fully control their identity information. Additionally, existing approaches for
federated identities do not support biometric data; in that digital identities

5.4 Business Processes 95

are defined by digital attributes and certificates. The use of biometrics as an
integral part of individual identity is, however, gaining importance. At the
same time, because of the nature of the biometric data, it is not trivial to use
this data as digital attributes.

Finally, a potential security breach in current federated IdM systems is
caused by the lack of practical and effective revocation mechanisms. To enable
consistency and maintain correctness of an individuals identity information,
revocation should be feasible. Revocation in IdP-centric systems, where the
issuer is providing the required credential to the user each time, is relatively
simple to support. Such credentials are typically short term, and cannot be
used without consulting the issuer again. If, however, the credentials are in-
deed stored with the user, such as a long-term credential issued by the appro-
priate authority, then building a revocation system becomes more challenging
and critical.

5.4 Business Processes

Business processes are built from composable services (component services),
that may belong to different domains. Each of the services is deployed us-
ing SOA architectures. Precisely, processes are typically specified using WS-
BPEL[5] business processes language. Business processes represent an example
of SOA applications where flexible multi-domain identity management solu-
tions are crucial for increased security and user-convenience. In particular, it is
important that during the execution of a business process the component ser-
vices be able to verify(at least partially) the identity of the client to check that
it has the required permissions for accessing the services. Clients identity con-
sists of data, referred to as identity attributes, that encode relevant-security
properties of the clients.

Managing and verifying clients identity in business processes raise a num-
ber of challenging issues. A first issue is related to how the clients identity
attribute have to be managed within the business process. The client of a
business process is not aware that the business process that implements the
required service invokes some component services. The client thus trusts the
composite service but not the component services. Therefore, every time the
component services have to verify the clients identity, the composite service
has to act as an intermediary between the component services and the client.
Moreover, since the clients identity attributes may contain sensitive infor-
mation and clients usually do not trust the component services, the clients
identity attributes should be protected from potential misuse by component
services. Another issue is related to how the identity verification process is per-
formed. Because component services belong to different domains, each with
its own identity verification policies, the sets of identity attributes required to
verify clients identity may partially or totally overlap. Therefore, the client has
to prove several times the knowledge of the same subset of identity attributes.

96 5 Digital Identity Management and Trust Negotiation

It is thus important to take advantage of previous client identity verification
processes that other component services have performed. finally, another issue
is the lack of interoperability because of naming heterogeneity. Naming het-
erogeneity occurs when component services define their identity verification
policies according to a vocabulary different from the one adopted by clients.
Therefore, component services and clients are not able to have meaningful
interactions because they do not understand each other. Thus, it is also nec-
essary that client identity verification process supports an approach to match
identity attribute names of component services and clients vocabularies.

5.4.1 Deploying Multifactor Authentication for Business Processes

In this section we provide a solution that provides multifactor authentication
for SOA architecture, focusing on the business process domain. To enable
multi-factor identity attribute verification, clients have to register their iden-
tity attributes to a trusted server, namely the registrar. The registrar stores
and manages information related to identity attributes. For each client’s iden-
tity attribute, the registrar records an identity tuple. Each identity tuple con-
sists of tag, an attribute descriptor, and a commitment m computed using
zero knowledge proof protocols. Weak identifiers are used to denote identity
attributes that can be aggregated together to perform multi-factor authen-
tication. The identity tuples of each registered client can be retrieved from
the registrar by the component services or the registrar can release to the
client a certificate containing its identity record. Each component services de-
fines its identity verification policies by specifying a set of identity attribute
names that have to be required from the client. Because of naming hetero-
geneity, clients may not understand component services identity verification
policies. The type of variations that can occur in clients and component ser-
vices identity attribute names can be classified in: syntactic, terminological
and semantic variations. Each of these variations can be addressed using dif-
ferent techniques: for syntactic variations, that arise because of the use of
different character combinations to denote the same term, look up tables can
be used. In detecting terminological variations, dictionaries or thesaurus such
as WordNet[288] can be exploited. Finally, semantic variations can be deter-
mined by using ontology matching techniques. The identity matching protocol
is executed at component service in a privacy-preserving fashion, so that the
values of the identity attributes of the client cannot be learned, and therefore
there is no incentive to lie about the verified identity attributes.

The matching process consists of two main phases. The goal of the first
phase is to match the identity attributes that have syntactical and termino-
logical variations, using ontologies or look-up dictionaries. During the second
phase the client sends the set of its proof-of-identity certificates to the com-
posite service that forwards them to the component service. Thus, in the
second phase of the matching process the component service tries to match
the concepts corresponding to the identity attributes the client is not able to

5.5 Digital Identity Management in Grid Systems 97

provide with concepts from the ontologies of the services which have issued
the proof-of-identity certificates. Only matches that have a confidence score
greater than a predefined threshold are selected. The acceptance threshold
is set up by the component service to assess the matches validity. Once the
client receives the set of matched identity attributes from the composite ser-
vice, it retrieves from the registrar the commitments satisfying the matches
and the corresponding signatures and combine them together for verification
using aggregate zero-knowledge proof protocols.

5.4.2 Architecture

In order to provide a concrete representation of how the discussed approach
can be effectively deployed using SOA architecture, we provide a brief descrip-
tion of a representative architecture supporting this type of solutions. Figure
5.3, reports a graphical representation of the system’s most important compo-
nents. As illustrated, the main components of the architecture are: the BPEL
engine, the Identity Attribute Requester module, the Client, the Registrar,
the Identity Verification Handler module, and the component Web services.
The WS-BPEL engine is responsible for scheduling and synchronizing the
various activities within the business process according to the specified activ-
ity dependencies, and for invoking Web services operations associated with
activities. The Identity Attribute Requester module extends the WS-BPEL
engines functions by carrying on the communication with the client asking
for new identity attributes whenever necessary. The Identity Attribute Re-
quester keeps in a local repository the mapping certificate associated with
previous clients identity verifications. The Client supports the functions to
trigger the execution of the WS-BPEL business process, to select the identity
attributes matching the ones requested by the component services, and to gen-
erate the aggregate ZKP of the matched attributes. The Registrar component
provides functions for storing the clients identity records and retrieving the
public parameters required in the aggregate zero-knowledge proof protocol.
The Identity Verification Handler intercepts the components services invoca-
tion messages and provides functions for matching client identity attribute
names and performing the aggregate ZKP verification. finally, the component
Web service supports the operations that are orchestrated by the business
process. The Identity Attribute Requester, the Identity Verification Handler
modules, and the component Web service can be implemented in JAVA.

5.5 Digital Identity Management in Grid Systems

The problem of digital identity management is particularly compelling in some
specific domains, for example, grid systems. By their nature, grids span multi-
ple institutional administration boundaries and aim to provide support for the

98 5 Digital Identity Management and Trust Negotiation

Fig. 5.3. Business Process Architecture.

sharing of applications, data, and computational resources in a collaborative
environment.

The grid introduces additional challenges to the problem of identity man-
agement since it aims to facilitate the sharing of resources in a collabora-
tive environment across boundaries. A grid environment has thus to facilitate
user’s access to resources at disparate institutions, while enforcing authenti-
cation and authorization policies set forth by the different institutions.

Traditional access control mechanisms for the grid were designed for sce-
narios in which a strong trust relationship exists between users and resource
providers. In such scenarios, resource providers control the identities of all
their users ahead of time to allow access based on authentication of the indi-
vidual user.

Since grid environments are gaining visibility and interest of researchers
and scholars, the number of individuals joining the grid is growing higher1. Be-
cause of the large size of Grid’s population managing users, and creating and
managing their grid identities, become very challenging to support. Also, it is
not trivial to support authentication such that grid services can be accessed
securely. In this context, it is not desirable nor tractable to have a centralized
identity management system. It is unpractical to require that each shared
service or group of services in the grid maintain separate identity manage-
ment and authentication mechanisms. Therefore, grid-enabled infrastructures
are needed to facilitate the federation of institutional identities. Another im-
portant issues the grid needs to face is that of mapping identities with local
accounts at servers and resource providers while still being able to maintain
a unique federated identity.

1 In the presence of about a hundred institutions, the number of users can be in
the order of ten thousands

5.5 Digital Identity Management in Grid Systems 99

Shibboleth, as discussed in Section 5.2.4, provides the infrastructure for
federation of identities across boundaries, and thus it can be employed for
managing identities. However, Shibboleth cannot be plugged in as it is, since
it does not provide any specific authentication mechanism, lacks some security
features and was primarily designed for Web applications. As a result, several
projects developing technologies for leveraging Shibboleth to support grids
[124, 263, 261] have been undertaken.

As a representative example, we briefly overview the well-known GridShib
[124] project. The GridShib project’s goals [124] include ease of access for
users, improved scalability (resulting in improved security), reduced cost and
overhead for providers, and better integrating of a national-scale cyberinfras-
tructure with campus cyberinfrastructure, further reducing the administrative
overhead faced by campus users in accessing national resources. More specifi-
cally, Gridshib’s objective is to integrate Public Key Infrastructures [279] with
Shibboleth, in order to achieve large-scale multi-domain PKIs for access con-
trol. The protocol is very similar to the original Shibboleth, in that it involves
both SPs and IdPs. However, in GridShib the grid client and the grid SP each
possess an X.509 credential. The grid client has an account with a Shibboleth
IdP. The IdP is able to map the grid client’s X.509 Subject Distinguished
Name (DN) to one and only one user in its security domain. The IdP and the
Grid SP each have been assigned a globally unique identifier.

When the user tries to access a resource the Grid Client authenticates
using his X.509 credentials to the Grid SP. The Grid SP authenticates the
request and extracts the clients DN from the credentials. It then contacts the
user IdP to obtain attribute assertions necessary to authorize the user.

The IdP authenticates the attribute request, maps the DN to a local prin-
cipal name, retrieves the requested attributes for the user (suitably filtered
by normal Shibboleth attribute release policies), formulates an attribute as-
sertion, and sends the assertion to the Grid SP. Finally, the Grid SP parses
the attribute assertion, caches the attributes, makes an access control deci-
sion, processes the client request (assuming access is granted), and returns a
response to the grid client.

GridShib is an ongoing project which has the potential to radically change
the way access control and authentication are performed in grid systems. Cou-
pling PKI based systems with attribute based access control methods has great
benefits for both users’ and site administrators, in that it supports fine-grained
access protocols not purely based on cryptographic keys. There are, however,
several scalability issues to address before actual deployment in large-scale
settings can be achieved. An important issue to address is that there are cur-
rently no unified standards for attribute transfer from the attribute authority
to the relying services and no policies regarding the attributes; thus, different
IdPs use different name forms and name values to identify the same user. The
GridShib team had to overcome this incompatibility issue by introducing the
DN mapping plug-in for the Shibboleth, which significantly constrained the
scalability of the project and is still a major issue that needs to be resolved.

100 5 Digital Identity Management and Trust Negotiation

To be successfully deployed, GridShib needs to be integrated with current
systems used for authentication services, such as MyProxy. The integration
requires overcoming the problem of naming schema, in that multiple schemas
are employed at different sites. Finally, an important issue is represented by
the recent usage of gateways of portals available to users for access to the grid.
Compatibility with such type of Web based protocols is still being tested, and
requires extensions to existing portals.

In addition to Gridshib, two similar projects are the U.K.-based Shibboleth
Enabled Bridge to Access the National Grid Service (SHEBANGS) project
[263] and the ShibGrid project [261]. Both of these projects are developing
prototypes for access to the UK National Grid Services via Shibboleth, which
is being heavily deployed in the UK SHEBANGS uses a trusted intermediary
service, known as the Credential Translation Service (CTS), to create an X.509
credential for the user in MyProxy, while ShibGrid is developing support for
processing Shibboleth authentication in MyProxy itself. SHEBANGS requires
less modification to other software, but requires the user to be more aware of
the process since it must use a username: password: server triplet from the
CTS to authenticate him to the application portal.

5.6 The Trust Negotiation Paradigm and its Deployment
using SOA

Integrity and confidentiality of identity attributes are two key requirements of
digital identity management systems. Users should have the maximum control
possible over the release of their identity attributes and should state under
what conditions these attributes can be disclosed. Moreover, users should dis-
close only the identity attributes that are actually required for the transactions
at hand.

One approach to achieve such a level of flexibility and fine-grained access in
identity management systems is to enhance IdM technology with automated
trust negotiation (ATN) techniques [38, 238]. Trust negotiation is an access
control approach for establishing trust in open systems like the Internet. The
idea of trust negotiation is to establish trust on-line between (generally) two
negotiating parties through bilateral credential disclosure. Digital credentials
are assertions stating one or more properties about a given subject, referred
to as the “owner”, certified by trusted third parties. The goal of such a negoti-
ation is to establish a sufficient level of trust so that sensitive resources, which
may be either data or services, can be safely released. A key aspect of trust
negotiation is that sensitive credentials may be protected by disclosure policies
specified by credential holders. Disclosure policies state the conditions under
which a resource can be released during a negotiation. Conditions are usually
expressed as constraints against the credentials possessed by the interacting
parties and their properties.

5.7 Trust Negotiation and Digital Identity Management 101

To carry out a trust negotiation, parties usually adopt a strategy, which is
implemented by an algorithm defining what credentials to disclose, when to
disclose them and whether to pass or fail the negotiation. There are a number
of strategies for negotiating trust [239], each with different properties with
respect to the speed of the negotiations and the necessary caution in releasing
credentials and policies.

Trust negotiations represent an important example of an emerging re-
search field which builds upon SOA. The decentralized and expressive nature
of trust negotiation makes it a natural fit for Web services computing envi-
ronments. To date, some initial trust negotiation architectures were deployed
using client-service architectures. However, this architecture did not well rep-
resent the trust negotiation paradigm, and required one of the two parties
(implemented as a server) to control the negotiation, in contrast with the
peer-to-peer nature of the trust negotiation paradigm. Additionally, client-
server architectures were demanding in terms of resource consumption, and
very inefficient. Currently, the most well-known and successful ATN systems
are now deployed using Web services. Each Web service offers the services
required to carry on a negotiation. Additionally, recently Lee et al [161] have
investigated how to fully integrate ATN with the WS-stack, and support pol-
icy specification using WS-Policy and credentials encoded as SAML certifi-
cates. In particular, [161] showed that after defining a rudimentary claims
dialect which is fully-compliant with the WS-Trust standard the WS-Policy
and WS-SecurityPolicy standards can be used to define a range of expres-
sive trust negotiation policies. They also show that WS- Trusts negotiation
and challenge framework can be extended to act as a standards-compliant
transport mechanism within which trust negotiation sessions can occur. Fur-
thermore, Lee and colleagues examined the systems aspects of this process
and showed that trust negotiation policies specified using the WS-Policy and
WS-SecurityPolicy standards can be complied into a format that is suitable
for analysis by CLOUSEAU, an efficient policy compliance checker for trust
negotiation systems. This not only eases the development of trust negotiation
solutions for the Web services domain, but shows that it is possible to design
a single compliance checker namely CLOUSEAU that is capable of analyz-
ing Datalog-style policy languages, as well as other industry standard policy
languages.

5.7 Trust Negotiation and Digital Identity Management

As digital identity management systems and trust negotiation systems are two
technologies with many common goals, it is important to clearly assess their
differences and their similarities in order to better understand the potential
advantages deriving from their integration. In the rest of the chapter we de-
velop such a comparison according to a number of relevant criteria. Based
on our analysis we discuss our solution to integrate federated IdM with trust
negotiation techniques, such as those provided as part of the Trust-χ [38]

102 5 Digital Identity Management and Trust Negotiation

system. More specifically, we discuss a framework, referred to as FAMTN2

[44], supporting trust negotiation between federated SPs (FSP) in a federa-
tion, and between users and SPs. Users’ interacting with FSPs can be of two
types. A user who is affiliated with an organization within the Identity Man-
agement federation is a member user of the federation. In contrast, a users
not affiliated with any FSP is a non-member. A key aspect of the FAMTN
framework is that the user does not have to disclose a federated attribute3

more than once to a given federation. Member users are able to perform ne-
gotiations by exploiting their SSO id without having to repeat any identity
verification process. Further, an FAMTN system supports temporary SSO, so
that non-member users can perform different negotiations with the federation
by taking advantages of the federated framework to reduce the amount of
identity information they need to provide during their interactions with the
federation.

The FAMTN approach relies on the use of special-purpose tickets, that is,
signed assertions that are released by the federation members to users upon
successful negotiation. Two different types of ticket are supported. The first
type, referred to as trust ticket, encodes the list of federation SPs with which
a user not part of the federation has successfully negotiated. The second type,
referred to as session ticket, is used by member users to speed up negotiations.
FAMTN takes advantage of the fact that most attributes do not change in a
short period of time; thus, if a user recently received a service, she is most
likely eligible for the service again.

5.7.1 Automated Trust Negotiation and Digital Identity
Management Systems: Differences and Similarities

The automated trust negotiation (ATN, for short) paradigm has several sim-
ilarities with federated identity management. It has been argued that the two
models might substitute for each other as they both aim at better handling
user-sensitive information. However, the two paradigms have been designed
for addressing specific and different goals: the goal of trust negotiation systems
is to handle introductions between strangers, while the intent of identity man-
agement systems is to manage and protect identities of known users, within
closed environments. The underlying goals being so distinct, it is easy to iden-
tify several architectural and design differences, which we summarize in what
follows.

1. Open vs. closed environment. ATN techniques [128] have been devel-
oped for use in open systems and aim at providing protocols for stranger
introduction to each other. This is in contrast to identity management
frameworks which are typically in closed systems. ATN work suggests

2 Federated Attribute Management and Trust Negotiation.
3 Attributes the user is willing to share in a federation are called federated at-

tributes.

5.7 Trust Negotiation and Digital Identity Management 103

Criteria ATN Systems IdM Systems

Environment Open environment Closed Environment

Credential management User centric Poly centric

Attributes used Certified attributes or cre-
dentials

Certified and uncertified at-
tributes

Attribute Encoding X.509 certificates, XML cer-
tificates

username, SAML assertions,
X.509 certificates, Kerberos
tickets

Architecture P2P Client server

Policies Privacy policies, Access con-
trol Policies

Privacy policies, authoriza-
tion policies

Policy language X-TNL, RT, PROTUNE
etc.

XACML

Trust Model Pairwise Trust (some bro-
kered trust)

Pairwise Trust, Brokered
Trust, Community Trust

Unique identification Optional SSO required

Credential discovery Credential chain manage-
ment protocols

Discovery service protocols

Table 5.2. Comparison of ATN and IdM systems

that the techniques may be interesting for the initial trust establishment
process between users and IdPs or to automatically manage introductions
between different federation groups.

2. Credential and identity attribute management. In a typical ATN
system the IdPs issuing identity attributes are certification authorities
(CAs). Such credentials are stored and provided by a client on behalf of
a user with the help of negotiation. Although there has been recent work
on storing user credentials with SPs using anonymous credentials [60], the
majority of ATN systems assume that users directly manage their own
credentials. In IdM systems, on the other hand, the IdPs save the user
profiles for future use in the federation according to the privacy prefer-
ences of the owner of the profile which is the user herself. Even the user
centric IdM systems discussed earlier in the chapter that emphasize the
role of the user during identity disclosure or attributes sharing do not man-
date identities to be locally stored at the user end. Regarding attribute
certification, ATN’s typically negotiate certified attributes or credentials.
In IdM systems, uncertified attributes are widely used, along with cer-
tified attributes. IdM systems most used encoding assertions’ language
is SAML, whereas in ATN systems attributes are encoded in digital at-
tribute certificates represented according to the X.509 certificate format
or similar.

3. Architectural differences. An ATN system is typically used in peer-to-
peer systems. As such, the basic architecture of clients and SPs is identical.
Any entity playing the role of provider in a trust negotiation can act as
a client in different negotiations, if needed. In this respect, ATN systems

104 5 Digital Identity Management and Trust Negotiation

differ to a great extent with respect to IdM frameworks in which IdPs, SPs
and clients all have different architectural components depending on the
functionality of the entity. Due to the peer-to-peer nature of ATN systems,
the integration of an ATN architectural component becomes simpler with
the existing IdM systems.

4. Policies. In both IdM and ATN systems one of the goals is to satisfy user
privacy preferences for their personal data and to make sure that access
control policies are stated and enforced. Therefore, both types of system
support privacy and access control policies. However, in ATN systems
access control policies play a key role in the trust negotiation processes,
whereas so far they have been considered as a marginal aspect in IdM
systems. As such, ATN policies provide various alternative ways of ex-
pressing the requirements for access to a given resource or for different
usage conditions. This approach ensures soundness for any transaction,
meaning that if user preferences and the SPs requirements are compat-
ible, then the transaction will certainly succeed. Soundness is not guar-
anteed in current IdM systems because of the lack of formal negotiation
procedures and corresponding expressive policy languages. IdM systems,
however, provide mechanisms for policy verification which could be used
by additional negotiation modules to provide ATN functions.

5. User identity. Both ATN and IdM systems require users to be identified.
Such a requirement is particularly relevant in IdM systems, which actually
aim at uniquely identifying users within federations. In contrast, unique
identification of users is usually a secondary aspect in ATN systems as
authentication is mainly based on properties of the user rather than on a
unique identifier. However, real case scenarios show that authentication is
often a first class requirement in specific negotiations, such as in business
transactions or negotiations of individuals’ data. Another aspect to high-
light is that IdM systems that rely on SSO to identify users do not need
to certify user identities in other ways. In ATN systems, instead, identi-
fication is obtained by credential combinations, although SSO might be
employed in specific contexts. There is no need to link multiple negotia-
tions to the same identity as identification is (if required) executed on the
fly, while the negotiation process is taking place.

6. Trust model. There are three main types of trust models in a typical
IdM system [168], namely pairwise, brokered, and community trust mod-
els. The pairwise model is related to the case where two entities have
direct business agreements with each other. The brokered trust model is
related to the case of two entities that do not have a direct agreement with
each other, but have some agreements with one or more intermediaries so
as to enable a business trust path to be constructed between them. fi-
nally, community trust model supports the cases where multiple entities
have common business agreements within the community or federation.
Although all three trust models can use ATN systems, the brokered trust
model integrated with ATN is particularly interesting, since it provides a

5.8 Integrating Identity Management and Trust Negotiations 105

unique feature to existing IdM systems, in that it supports interactions
also among unknown entities and is the one model which requires fewer
assumptions on pre existing agreements.

Despite the differences discussed above, there are many common aspects
between IdM and ATN systems. For instance, a relevant aspect is related to
credential discovery, which is required in both the environments, although in a
different manner. Using the discovery service mentioned earlier, the IdMs col-
laborate in order to be able to make assertions about a user from a local IdP to
a remote IdP. Similarly, in ATN systems, credential discovery is extensively
used to retrieve remote credentials not available at the negotiating parties.
Another common aspect is delegation. Although not a main issue in trust
negotiations, delegation is achieved through ad-hoc protocols and credentials,
enabling entities to negotiate on behalf of third parties. In IdM systems the
brokered trust model can be used to delegate the responsibility for attribute
assertion to another IdP which the user may trust more. Table 5.2 summa-
rizes the discussion. It is, however, important to note that such analysis is
based on the pure IdM and TN models, as originally designed. Variations to
both approaches have been proposed in the last few years, which make the
evaluation results slightly different.

5.8 Integrating Identity Management and Trust
Negotiations

Fig. 5.4. External user negotiating with two SPs of a federation. A user who has
already provided attributes to any SP in the federation might not need to provide
them again when another SP in the federation requires them.

To combine the advantages of the IDM and ATN approaches, a Feder-
ated Attribute Management and Trust Negotiation (FAMTN) solution, which
provides a truly distributed approach to the management of user identities

106 5 Digital Identity Management and Trust Negotiation

and user attributes with negotiation capabilities [44] has been proposed. A
FAMTN federation essentially involves two type of entities: FAMTN FSPs
and users. FSP’s support identity and attributes provisioning, as detailed
later in this section.

The FAMTN supports two types of negotiation. The first type is between
an FSP and the user, and the second is between two FSPs in the same fed-
eration. The protocol for negotiations between FSPs and users depends on
the interacting user’s type. The distinction is based on the user’s member-
ship in the federation. Member users do not have to provide their identity
attributes multiple times. The federation is more likely to have information
about a member user even if the member has not accessed any of its services.
The information known to the federation changes also according to the pol-
icy of the member organization that defines which of the user attributes are
federated. The member will be identified among the federation with an SSO
user identification.

In contrast, non-member users have to provide all required attributes dur-
ing their first negotiations. The first negotiation between a non-member user
and an FSP includes identity provisioning, since the provider issues a tempo-
rary user-id to be used within the federation. The use of a time-limited SSO
id for non-members ensures identity linkability.4 Of course, users might have
multiple identities and choose which one to adopt for requesting access to a
service. We do not elaborate on multiple identity issues since they go beyond
the scope of this discussion. By interacting further with the federation, the
amount of information about users they disclosed to the federation increases.
This information can be linked to the user (who is then called repeated non-
member user) and thus reused in the subsequent negotiations. As a result,
faster negotiations with fewer exchanges of user’s attributes are executed. An
example is given in the figure 5.4. User U requests service from SP SP1. SP1
requires user attributes (a,b) to satisfy its service policy. U provides (a,b) and
gets the service. Suppose that U , at the end of this successful negotiation,
opts for sharing attribute (a,b) within the federation, and suppose that then
U requires a service from another provider SP2 in the same federation. Sup-
pose that the attribute requirements there are (a,c). In this case, U only has
to provide the attribute c to receive the service.

At the end of a successful negotiation, users receive one of two types of
ticket. The first, referred to as trust ticket, is issued to non-member users
to provide information about the previous services and FSPs the user has
accessed. The other type of ticket, referred to as session ticket, is issued to
non-member users. We show a detailed negotiation process using the described
user cases in Section 5.9.3.

4 We can reasonably assume that the time interval duration is defined by the fed-
eration policy.

5.8 Integrating Identity Management and Trust Negotiations 107

Fig. 5.5. Architecture for FAMTN SP.

The second type of negotiation occurs between two FSPs. Such a type of
negotiation is useful when a user successfully negotiates a service from one
FSP, and automatically becomes eligible to receive service from another FSP.
As such, when the user asks for a service the FSP providing it can directly
negotiate user-related attributes with the FSP holding such attributes from
previous negotiations. Also, negotiations among FSP’s might be required for
verifying external user identities. As FAMTN does not rely on a single IdP,
an IdP might not be aware of the last registered users. When a request from
a locally unknown user Id is received, an FSP can directly interact with the
FSP that has issued the claimed user Id to double check its validity.5

5.8.1 Architecture of a SP in FAMTN

An FAMTN framework is composed of FSP that contains the necessary com-
ponents required to execute: 1) trust negotiation among users and FSP’s; and
2) federation of user attributes. The architecture of FSP is sketched in fig-
ure 5.5. FSP is equipped with components deriving from the two underlying
frameworks of automated trust negotiations and federated identity manage-
ment. Each FSP can perform the functionality of an IdP and SP.

The FSPs main components are:

• the Web services component, which enables secure communication within
the federation and with the users;

• the user negotiation component, which contains the modules executing the
negotiation, depending on whether the user is a member or nonmember
(this component is directly related to the trust ticket management layer).

5 For simplicity we assume user Id contains an FSP information to easily identify
the issuer.

108 5 Digital Identity Management and Trust Negotiation

Fig. 5.6. Liberty Alliance ID-WSF and FSP Example: Three websites and system
modules

Other parts of the FSP include the trust ticket management layer which
manages the trust tickets and the session tickets required for the negotiation.
The policy base in the policy management component stores the authenti-
cation and access control policies. The credential management system is in
charge of managing and validating certificates and user tickets by verifying
the FSP’s signatures. It is also responsible for revocation when required.

The attribute negotiation system consists of the main components required
for negotiation, including the tree manager, storing the state of the nego-
tiation; the sequence prediction module, caching and managing user profile
information; and the compliance checker, policy compliance testing and de-
termining request replies during a negotiation.

5.8.2 An Example of a Use Case: FSP in Liberty Web Services
Framework

Figure 5.6 gives an example scenario of the Liberty Alliance Web Services
Framework (WSF) [167] with additional FSP components. For details about
the original Liberty-ID WSF example we refer the reader to Section 6.1 of
[167]. We now discuss how ATN comes into play in a typical identity frame-
work.

1. User Joe attempts access to SP1 using SSO.
2. Using redirection and IdM system protocols, IDP transmits to SP1 an

SAML assertion authenticating Joe.
3. SP1 requires a certificate from Joe to verify that he is older than 21 and

his address for delivery.
4. Joe does not trust SP1 and therefore he is not willing to reveal to SP1

his certified credential. He therefore negotiates with IDP, and reveals his
credential to IDP instead.

5.9 Negotiations in an FAMTN Federation 109

5. SP1 now negotiates with IDP which finally sends an SAML assertion
stating whether Joe satisfies SP1’s age criteria or not. Joe does not thus
have to reveal the actual credential to SP1, ensuring that the credential
is only stored with a party he trusts.

6. Joe also registers his address with SP1 for delivery but requires that his
address be released to a member of the federation only when the address
is required for a purchased product delivery and if the member is certified
by Better Business Bureau (BBB).

7. Joe subsequently attempts access to SP2 to rent a movie. Due to SSO he
gets seamless access.

8. SP2 asks Joe for his address. Joe6 replies to SP2 to retrieve his profile from
other sites in the federation. Using the discovery service, SP2 contacts
SP1, who first negotiates with SP2 to verify that the conditions for Joe’s
attribute release are met. If they are, SP2 receives the required information
and can make the appropriate delivery.

The example demonstrates how additional privacy and flexible policies can
be implemented with ATN. Also not all components of the FSP are required
in a typical IdM system. An FSP can benefit from modules that are part of
the Liberty Alliance Framework or other IdM systems, such as the DS, PP,
policy, and credential management systems. In figure 5.5, the striped color
components denote the ATN-specific parts used for ATN in the Liberty WSF
framework.

5.9 Negotiations in an FAMTN Federation

In this section we elaborate on the approach for negotiating trust in FAMTN.
We first introduce the notion of trust tickets and session tickets, as they are the
main building blocks in the FAMTN trust negotiation protocols. A possible
implementation of trust tickets through cookies is then proposed.

5.9.1 Ticketing system in an FAMTN Federation

The two types of tickets supported by the FAMTN framework have a fixed
lifetime. Loosely synchronized clocks in the federation are assumed. The SSO
ID is given by the user ID in the tickets. The structure and functions of the
tickets are discussed in what follows.

Session ticket
A session ticket ensures that if the negotiation ends successfully and the

6 Note that in this case, it is actually an agent operating at the client on behalf
of Joe that actually suggests request re-directions. We use Joe to simplify the
presentation of the example.

110 5 Digital Identity Management and Trust Negotiation

same user requests the same SP for the same service in a subsequent ses-
sion, the service can be granted immediately without unnecessarily having
to repeat the trust establishment process. A session ticket therefore con-
tains the following fields:

SignedSP < τ(sreq),u, T, R>

where τ(sreq) denotes the service requested, u is the user ID, and T is the
ticket time stamp. R denotes the result of the negotiation. R can be either
a simple statement or a structured object. The use of structured objects
is particularly interesting for tracing intermediate results of negotiations
of aggregated services. A session ticket is signed by the SP, which authen-
ticates it by giving it a receipt of the trust establishment. Since session
tickets are encrypted with the SP’s private key, they are tamper- proof
and can be verified. The timeout mechanism depends on the type of user
attributes required for the service and the security level of the service.

Trust ticket
The purpose of the trust ticket is to determine the previous services ex-
ternal users have accessed. Assuming that all the SPs are members of
the same federation, the signature of a member provider can be veri-
fied by any other member provider. Such a ticket has the following form:
SignedSPlast

< list{τ(s), FSP, T},u,T -I >

Every 3-tuple in the list contains the type of service, the corresponding
SP, and the timeout. u corresponds to the temporary user identification,
and T -I is the expiration date for this ID. The ticket is signed by the
last SP with which the user had a successful transaction. At the end of a
successful transaction, the SP takes the current user trust ticket, removes
all timed out entries, appends its information, signs the ticket and sends
it to the user.

5.9.2 Implementing Trust Tickets Through Cookies

Cookies may be used with many IdM systems to make information about the
users available to servers. State information is stored at the client and is sent
to the server the next time the user accesses the server. Like the tickets de-
scribed in the previous section, cookies can be valid only for the session for
which they have been issued or can persist beyond the end of the session. A
persistent cookie is typically written to a file on the browser’s hard drive if its
lifetime has not elapsed when the browser is shut down, and therefore can be
used for a longer period of time. In a truly distributed federation if there is
more than one IdPs, an SP needs a mechanism to determine which IdP has
the user information. This problem is known as the “Introduction Problem” in
the Liberty Alliance approach. The current approach is to rely on cookies for

5.9 Negotiations in an FAMTN Federation 111

redirecting IdPs. There are several advantages of using cookies. Implement-
ing them is efficient, as there is no requirement of new software installation
for their use, and they can be used independently from any authentication
mechanism. They also provide dynamic state information, helpful to prevent
several security threats. One such threat is an impersonation attack, which
arises because when a user has successfully logged into one SP, the SPs in
the federation do not re-authenticate her. Thus, if the authentication is no
longer valid because of attacks or other failure there is no straightforward
way to detect it. Cookies help in checking whether the authentication ticket is
associated with the user identity as well as in checking the validity of the IdP
session of that user. Alternatives to the use of cookies for the “Introduction
Problem” are based either on interactions with the user actively or on the
use of a statically hand-configured list of the possible IdPs. Such approaches
inhibit the seamless SSO process and are not as efficient.

Cookies, however, have some security problems [227]. Firstly, they are
usually in clear text. Their headers are generally unprotected, and even the
encrypted cookies are vulnerable to replay attacks. Second, since the cookies
are stored on the local machines, they can be easily read by anyone using the
machines. Thirdly, there is a need to control where cookies are sent, because
it is not desirable to send a user cookie to an untrusted SP. For example,
several spyware applications exploit user cookies, and therefore better control
on the destination of cookies is needed. As a consequence, cookies should not
store any personal identifiers or any sensitive information. In real applications,
however, a cookie typically stores the SSO user ID, or other tracking record
which may leak information about the user. Most of these security vulnerabil-
ities can be addressed by better storage and usage protocols and mechanisms.
An approach has been suggested in [44] for implementing trust tickets using
cookies in IdM systems, in order to exploit the advantages and prevent sev-
eral of the vulnerabilities. Indeed, the timeouts and signed information given
by the session and trust tickets give reliable and dynamic state information.
To further increase the security of cookie usage in a federation, mechanisms
enabling selective download of cookies should be employed. Browsers typically
give users limited choice about how to handle cookies. There is only coarse
grained control on cookies: either no cookies are to be downloaded or all
cookies have to be accepted. The case where a user can choose cookies from a
Web site that uses a single domain rather than multiple domains may cause
problems in a federation which is typically a multiple domain environment.
Building server filters is currently complicated and they are not usable by
average users. As with privacy preferences, a user should be able to set pref-
erences for the cookies, specifying more fine-grained conditions. The following
are examples of selective use of cookies:

1. Accept only signed cookies from a given federation SP.
2. Accept cookies from members certified by BBB by negotiating servers’

attributes.

112 5 Digital Identity Management and Trust Negotiation

3. Send the cookie which does not contain personally identifying information.
4. Send the cookie to an SP which is not in a class with a conflict of interest

with the SP which set this cookie.

Algorithm 1: FAMTN negotiation process

Input: userID, userAuthenticationInfo
Output: IsRegistered(userID)
(1) userRequest ⇐ getRequest(userID)
(2) if userRequest /∈ ServicesF SP

(3) return Abort-Negotiation
(4) *Comment: For Members*
(5) if isV alidMember(userID) = true
(6) sessionTicket ⇐ getSessionTicket(userID)
(7) if sessionTicket �= NULL ∧ sessionTicket.time < timeout
(8) return OK
(9) MF SP = getMemberFSP (userID)
(10) remAttrList1 ⇐ NEGOTIATEF SP (CurrF SP , MF SP

(11) userID, userRequest)
(12) if remAttrList1 �= NULL
(13) remAttrList2 ⇐ NEGOTIATEUser(CurrF SP ,
(14) userID, CurrPolicyF SP)
(15) else
(16) send(SessionTicket) ⇒ userID
(17) return OK
(18) if remAttrList2 �= NULL
(19) return Abort-Negotiation
(20) else
(21) send(SessionTicket) ⇒ userID
(22) return OK
(23) *Comment: For Non-Members*
(24) FSPlist ⇐ getTrustT icket(userID)
(25) while FSPlist �= EmptyList
(26) Mi = rmHeadOfList(FSPlist)
(27) remAttrList3 ⇐ NEGOTIATEF SP (CurrF SP , Mi

(28) userID, userRequest)
(29) if remAttrList3 = NULL
(30) send(TrustT icket) ⇒ userID
(31) return OK
(32) if remAttrList3 �= NULL
(33) remAttrList4 ⇐ NEGOTIATEUser(CurrF SP ,
(34) userID, CurrPolicyF SP)
(35) if remAttrList4 �= NULL
(36) return Abort-Negotiation
(37) else
(38) send(TrustT icket) ⇒ userID
(39) return OK

5.9.3 Negotiation in Identity Federated Systems

The negotiation process for trust establishment depends on the type of user
involved and the history of her interaction with the federation members. Al-
gorithm 1 reports the complete negotiation process developed for FAMTN,
which includes all user cases, assuming one federation is in place. Multiple
federations with non empty intersection are outside the scope of FAMTN.
The two main types of negotiations are between the user and the FSPs, and

5.10 Bibliographic Notes 113

between the FSPs. The four different user cases give the basis for the design
and analysis of the user-FSP negotiation process.

Intuitively, a recent user should obtain service access faster than a new
user. This is achieved with the help of the short-term session tickets. Sim-
ilarly, a repeat user, who has already received services from different FSPs
of the federation, should get service access faster than a new external user.
The reason is that the new external user directly negotiates all the required
attributes with the FSP, whereas for a repeat user some of the attributes
can be retrieved from the other FSPs she has visited before. The information
about the previously visited FSP’s is given in the list of trust tickets which
are retrieved iteratively until the user attribute requirements are satisfied.
At each iteration, the FSP requiring the user attributes to satisfy its service
disclosure policy negotiates with the FSP indicated in the trust ticket. If the
retrieved attributes do not suffice, the FSP negotiates with the user herself. fi-
nally, a member user, internal to the federation and thus more trusted, should
have advantage in the negotiation process compared to a new external (non-
member) user. Indeed, member user attributes are directly retrieved from the
organizations in the federation within which users are affiliated with each
other. This provides an efficient mechanism for retrieval of users attributes,
as it avoids iterated negotiations between all the SPs a user has interacted
with. Here we assume that all of the member users’ attributes are stored and
possibly certified by organizations they are affiliated with. Member users can
also use the session tickets just like the external users.

5.10 Bibliographic Notes

Digital identity management is being investigated in both the corporate world
and academia. In [126], readers can find an interesting reading presentation of
guidelines and advices for identity management system designers looking to
build privacy-protective systems. Biometric technologies have been suggested
as a natural tool in identity management systems for enhancing privacy and
assuring a one-to-one correspondence between people and records. An inter-
esting discussion on challenges and drawbacks appear in [272]. Additional in-
formation related to the Liberty Alliance Initiative is found online at http://
www.projectliberty.org, where white papers and technical specifications are
available. Regarding WS-Federation, technical specifications are available on-
line at http://www.ibm.com/developerworks/library/specification/ws-fed/.

Trust negotiation is acknowledged as a relevant and challenging research
topic in the wider field of trust management. Interested readers can find a well-
written introduction in [37], where a high level discussion of the main concepts
related to trust negotiation is presented. In [232], an interesting analysis of the
main requirements for trust negotiation systems is presented. More technical
and detailed presentation of trust negotiation system prototypes can be found
in [159, 161, 38].

114 5 Digital Identity Management and Trust Negotiation

A large body of work on trust negotiation has focused on the issue of
policy sensitivity, that is, on how to make sure that the disclosure policies
driving the negotiation do not intentionally leak any sensitive information.
We suggest [283] for a presentation of ad hoc logic based system, and [165]
for one trust negotiation system in which protection is based on a wide array
of crypto-based techniques.

6

Access Control for Web Services

An access control model restricts the set of service requestors that can invoke
Web service’s operations. While access control has been widely investigated,
especially in database systems [42], only recently work on security for Web
services emerged as an important part of the Web service saga [285, 237, 41].
However, most approaches assume that the Web services are stateless.

Access control enforcement approaches for stateless and stateful Web ser-
vices have similarities. Since in SOA the relation between Web service re-
questor and Web service provider is much more loosely coupled than in tra-
ditional client-server applications, the enforcement is based on the definition
of access control policies that are expressed based on relevant characteristics
of service requestors, known as attributes, that service requestors provide to
the Web service. Access control policies can be defined at different levels of
granularity: the object of an access control policy can be a class of Web ser-
vices managed by the same service provider, a single Web service, a single
operation, or operation’s parameters. The main difference in access control
enforcement for stateless and stateful Web services is in the way access con-
trol decisions are made. With respect to stateless Web services, the decision
to grant or not grant the execution of an operation to a service requestor is
based on the access control policy that applies to the operation; if the ser-
vice requestor’s attributes satisfy the conditions in the policy, the operation
is invoked and the result is returned to the service requestor. In contrast,
for stateful Web services the decision about whether a service requestor can
invoke an operation or not is made not only on the basis of access control
policy fulfillment but also of the state of the interaction between the service
requestor and the Web service.

Other issues related to access control enforcement arise when Web ser-
vices (called component services) are composed together to build a new Web
service (referred to as composite service) to satisfy a user request. As single
Web services, a composite Web service has an interface that provides a set of
operations. The fact that the Web service is composite is totally transparent
to its service requestors. A first issue with a composite Web service is related

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 6, c© Springer-Verlag Berlin Heidelberg 2010

116 6 Access Control for Web Services

to the management of service requestors’ identity attributes. The credential
ownership can be verified by the composite service or its verification can be
delegated to the component services. In the second case there is the problem
of assuring that a service requestor’s credentials are used in ways that he in-
tends. In fact, a service requestor may trust the composite service, but not
the component Web services of which it is not aware. Another issue concerns
access control policy definition and enforcement. The component Web services
have their own access control policies to protect their operations from unau-
thorized use. These policies may represent conflicting requirements. Therefore,
a mechanism is needed to combine the component Web services’ policies to
derive a policy to be enforced at the level of the composite service. Another
approach is to define new access control policies for the composite service that
may or may not take into account the policies of the component services. Fi-
nally, the enforcement can be centralized or decentralized. In the centralized
approach, when a service requestor invokes an operation, the composite Web
service makes the decision about the service invocation on the basis of a pol-
icy resulting from the combination of component Web services’ access control
policies or on the basis of a newly defined policy for the composite service.
Such an approach limits unnecessary invocations ending in rollback operations
if particular permissions for invoked component Web service operations are
missing. In contrast, in the decentralized approach it is the component Web
service providing the invoked operation that decides about the invocation on
the basis of its own local policies.

6.1 Approaches to Enforce Access Control for Web
Services

In this section, the main approaches to access control for Web services are
categorized according to the following parameters: a) whether the focus is on
enhanced policy specification features or on enforcement; b) the basic mech-
anism for access control (role-based vs. attribute-based); c) applicability to
single or composite Web services; d) stateless vs. stateful Web service interac-
tions. Among all the proposals for access control enforcement for Web services,
the most relevant ones are the following one:

• Gun et al. [237] propose an approach for specifying and enforcing security
policies based on the temporal logics-based WebGuard language. They
propose an enforcement engine that processes the security policies and
generates platform specific code to enforce them. The enforcement code is
integrated in the Web service code and is executed when a Web service’s
invocation starts and ends.

• Feng et al. [103] present a context-aware service-oriented role-based access
control model. In this model, access control decisions are taken by captur-
ing security relevant environmental contexts, such as time, location, oper-
ation state, or other environmental information. As in traditional RBAC,

6.1 Approaches to Enforce Access Control for Web Services 117

access control policies are defined as a set of permissions to execute Web
service operations. Service requestors are assigned to roles that in turn are
associated with a set of permissions. The assignment of service requestor
to roles is based on their identity and on the context’s parameters. Also,
an architecture similar to the one proposed in the XACML standard is
presented.

• Emig et al. [98] present an access control model that is a combination of
traditional hierarchical role-based (RBAC) and attribute-based (ABAC)
access control models. From ABAC it inherits the way service requestors
are authenticated: a requestor is identified by a set of attributes. From
RBAC it adopts the definition of role hierarchy and of policies as a set
of permissions. An access control policy is a combination of permissions
combining an object (an operation or the whole Web service), and a set
of attributes that the requestor has to provide, with constraints on the
environmental state (like date, time or any other attribute that is not re-
lated to the service requestor or object). Unlike in RBAC, the permissions
are not associated with a role but with a set of the service requestor’s
attributes. Moreover, a role identifies not a business role but a set of the
service requestor’s attributes. Emig et al. extend the model to composite
Web services; the composite Web service enforces a policy that is the re-
sult of the conjunction of the policies protecting the operations that are
invoked in the composition.

• Wonohoesodo et al. [285] propose two RBAC (Role-Based Access Control)
models, SWS-RBAC, for single Web services, and CWS-RBAC, for com-
posite Web services. Permissions are defined at both service and service
parameter levels. A role is associated with a list of services that service re-
questors, assigned to that role, have permission to execute. Therefore, the
proposed model enforces access control at both the service level and the
parameter level to ensure that service requestors that have permission to
call a service, also have appropriate access to its parameters to successfully
execute it. In the CWS-RBAC model, the role to which a service requestor
is assigned for accessing a composite service must be a global role, which
is mapped onto local roles of the service providers of the component Web
services.

• Srivatsa et al. [241] propose an RBAC access control model for Web ser-
vice compositions. Access control rules express constraints like separation
of duty constraints and constraints based on the past histories of service
invocations. They can also be dependent on one or more parameters as-
sociated with a Web service invocation. A pure-past linear temporal logic
language (PPLTL) is used to represent access control rules. Access con-
trol is enforced through role translation. Each organization involved in
the composition defines these role translations in the form of a table that
maps the roles in the organization to some roles in the other organizations.
When an operation of the composite Web service is invoked by a user un-
der a certain role, the enforcement system performs the role translation

118 6 Access Control for Web Services

and creates a composite role. A composite role consists of a temporally
ordered sequence of roles and services that are involved in the invocation.
The decision to grant the invocation is a model-checking problem: if the
composite role is a logical consequence of the access control rules applied
to the request, the operation invocation is granted.

All the access control proposals are concerned with access control policy
specification and enforcement. Gun et al. [237] propose attribute-based access
control models, while Feng et al., Wonohoesodo et al., and Srivatsa et al. [103,
285, 241] propose role-based access control models. Emig et al. [98] propose
a model that inherits features from both ABAC and RBAC access control
models. Finally, the proposals of Gun et al. and Feng et al. [237, 103] are
applied only to simple Web services, while the approaches by Wonohoesodo
et al., Srivatsa et al., and Emig et al. [285, 241, 98] deal with both simple and
composite Web services.

Other proposals about access control for Web services are related to Se-
mantic Web services. The focus is on richer formalisms and specification lan-
guages for policies, based on specific ontologies for “security” [91], in order to
be able to match service and service requestor requirements [146, 3] during
the Web services discovery phase. Finally, another interesting proposal about
access control policy specification and enforcement for Web services comes
from the OASIS XACML Technical Committee which has proposed a Web
Service Profile of XACML (WS-XACML) [14]. WS-XACML specifies how
to use XACML in a Web services environment. WS-XACML introduces two
new types of policy assertion to allow Web service providers and consumers
to specify their authorization, access control, and privacy requirements and
capabilities regarding Web service interactions. Moreover, WS-XACML pro-
poses a way to verify whether a Web service consumer’s capabilities and a Web
SP’s requirements match and viceversa. We provide an overview of XACML
and WS-XACML in section 4.3.7 about access control policy standards.

All these proposals for access control for Web services assume that the
interactions with a Web service are stateless. Moreover, the access control en-
forcement mechanism is not flexible; service requestors either unconditionally
disclose their information, or do not get access to the service at all.

In this chapter, we focus on the description of an access control model
for stateless Web services, referred to as WS-AC1, characterized by a flexible
access control enforcement approach based on a negotiation process and on
the only access control model for stateful Web services.

6.2 WS-AC1: An Adaptive Access Control Model for
Stateless Web Services

WS-AC1 is an implementation-independent, attribute-based access control
model for Web services, providing mechanisms for negotiation of service pa-
rameters. In WS-AC1, the service requestors are entities (human beings or

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 119

software agents) the requests by which have to be evaluated and to which
authorizations (permissions or denials) can be granted. Service requestors are
identified by means of identity attributes qualifying them, such as name, birth
date, credit card number, and passport number. Identity attributes are dis-
closed within access requests by invoking the desired service. Access requests
to a Web service are evaluated with respect to access control policies. Note
that, for the sake of simplicity, the model does not distinguish between the
Web service and the different operations it provides; that is, a Web service
provides a single operation. The proposed access model can be applied to the
various operations provided by a Web service without any extension. Access
control policies are defined in terms of the identity attributes of the service
requestor and the set of allowed service parameter values. Both identity at-
tributes and service parameters are further differentiated into mandatory and
optional ones. For privacy and security purposes, access control policies are
not published with the service description, but are internal to the WS-AC1

system. WS-AC1 also allows one to specify multiple policies at different levels
of granularity. It is possible to associate fine-grained policies with a specific
service as well with several services. To this end, it is possible to group differ-
ent services in one or more classes and specify policies referring to a specific
service class, thus reducing the number of policies that need to be specified
by a policy administrator. A policy for a class of services is then applied to
all the services of that class, unless policies associated with specific services
are defined.

The following sections present the conditions under which services can be
grouped into classes, and the criteria used by WS-AC1 to select the policies to
use upon a service request. Moreover, to adapt the provision of the service to
dynamically changing conditions, the WS-AC1 policy language allows one to
specify constraints, dynamically evaluated, over a set of environmental vari-
ables, referred to as context, as well as over service parameters. The context
is associated with a specific service implementation, and it might consist of
monitored system variables, such as the system load.

As illustrated in Figure 6.1, the access control process of the WS-AC1 sys-
tem is organized into two main sequential phases. The first phase deals with
identification of the subject requesting the service. The second phase, executed
only if identification succeeds, verifies the service parameters specified by the
service requestor against the authorized service parameters. The identification
phase is adaptive, in that the access control system might eventually require
the requestor to submit additional identity attributes in addition to those
originally submitted. Such an approach allows the SP to adapt the service
provisioning to dynamic situations. For example, after a security attack, the
SP might require additional identity attributes from the service requestors.
In addition, to enhance the flexibility of access control, the service parame-
ter verification phase can trigger a negotiation process. The purpose of this
process is to drive the requestors toward the specification of an access request
compliant with the service specification and policies. The negotiation consists

120 6 Access Control for Web Services

Access
request

Subject
Identified?

Parameters
verification

Any fu ly
Compliant And param.

Matching Policies?

Subject request
is now fully
acceptable?no

Additional identity
Attributes

submission
fa lure

Subject
Ident fied?

Service
denied

failure

failure

success

Service
granted

success

success

Service
granted

yes

Subject
identification

Parameter
negotiat on

Fig. 6.1. Conceptual Organization of access control in WS-AC1

in an exchange of messages between the two negotiating entities to limit, fix
or propose the authorized parameters the service requestor may use. The ne-
gotiation of service parameters allows the SP to tailor the service provisioning
to the service requestor preferences or, at the opposite, to “enforce” its own
preferred service provisioning conditions.

6.2.1 The WS-AC1 Model

This section introduces the main notions underlying the WS-AC1 access con-
trol model. A Web service, called BookStore, supplying books and magazines
to general customers and to supermarkets is used as running example. First
the notion of service description is presented; it specifies the information nec-
essary to invoke a service. Then, the notion of Web service context, access
request and access control policy are introduced.

A service description serves the following main purposes:

1. It allows the potential service requestors to obtain the description of
both the identity attributes (AuthAttrs) and the service parameters
(Parameters) needed to submit a request to the service. Identity at-
tributes are properties, such as name, birth date, credit card and passport,
qualifying a service requestor. Service parameters represent information
the service requestor has to provide to activate the operation supported by
the service, and also information related to the level of quality of service
required by the service requestor.

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 121

2. It conveys to potential service requestors which identity attributes are
mandatory and optional and which service parameters are mandatory and
optional.

A service description of a Web service s is formally represented as a tu-
ple of the form Serv-descr = <s; Parameters; AuthAttrs>. Parameters
= [Pspec1,..,Pspecn] is the set of the Web service’s parameter. Pspeci, i =
1, .., n, is a triple of the form (Pi, DomainPi

, ParamTypePi
) where Pi is a pa-

rameter name; DomainPi
denotes the set of values the parameter can assume;

ParamTypePi
∈ {mand, opt} specifies whether the parameter is manda-

tory or optional. AuthAttrs = [(A1, AttrTypeA1), (A2, AttrTypeA2),..,(Ak,
AttrTypeAk

)] is the set of identity attributes. (Ai, AttrTypeAi
), i = 1, .., k,

represents an identity attribute where Ai is the name of the attribute, and
AttrTypeAi

indicates whether the attribute is mandatory or optional.
Given a description of a service s, in the following MandAtt represents the

set of mandatory attributes in AuthAttrs, and MandPar represents the set
of mandatory parameters in Parameters. Further, PN is the set of parameter
names in Serv-descr.

While mandatory identity attributes and service parameters must be as-
signed a value by the service requestor as part of the initial request for the
service, the optional ones do not have such a requirement. However, depend-
ing on their values, submission of the mandatory attributes by the service
requestor may not be enough for gaining access to the service. As such, values
for the optional identity attributes may be required by the SP during the
subsequent negotiation process. The following section further elaborates on
service requestor authentication. Accesses in WS-AC1 are either granted or
denied on the basis of access conditions referring to the identity attributes
of the service requestor and in terms of the parameters characterizing the
service.

Example 6.1. Consider the BookStore service. Such a service is described by
the tuple < BookStore; ((Title, string, mand) (Authors, string, opt), (Price,
Lowest, Medium, High, mand), (Quantity,{}, mand)); (CustomerId, mand)
> where:

• BookStore is the service identifier.
• Title, Authors, Price, and Quantity are the service parameters necessary

to invoke the BookStore service. Title is a mandatory parameter and
indicates the title of the book or magazine the customer wants to order.
Authors specifies the author names of the book or magazine the customer
wants to purchase, Price represents customer preference about the book
or magazine Price, and Quantity is the number of the book or magazine
items required by the customer.

• CustomerId is the attribute used by the WS-AC1 system to identify the
service requester. CustomerId can be the name of a final user or the name
of a supermarket chain’s dealer.

122 6 Access Control for Web Services

The WS-AC1 system associates with a service a context, composed of a set
of variables that can influence service provisioning. The context is evaluated
by the WS-AC1 system to enforce access control to the service as explained
later in this section. The WS-AC1 system updates the context variables each
time an access request is received or the context changes. In what follows, the
set of context variable names for a service s is abbreviated with CV N .

Example 6.2. An example of context that can be associated with the BookStore
service is

serv contextBookStore = [UsersConnected : 1000]

where UsersConnected records the number of users connected to the service
during a given time period.

The invocation of a service is formalized as an access request in which
the service requestor has to provide the information specified in the service
description, that is, its qualifying attributes, the parameters of the Web service
and the Web service identifier. An access request for a Web service s can be
represented as a tuple (a, s, p) where a = [A1 : a1, A2 : a2, ..., Am : am]
represents the service requestor identity’s attributes where Ai is an identity
attribute name and ai is the associated value, i = 1, ...,m; s is a service
identifier; and p = [P1 : p1, P2 : p2, ..., Pk : pk] is the set of service parameters
where Pi is a parameter name and pi is the associated value, i = 1, ..., k.

Example 6.3. Referring to the service description introduced in Example 6.1,
the access request must contain the identity attribute CustomerId and the
service parameters Title, Price, and Quantity. An example of such an ac-
cess request is ([CustomerId: Wallmart of New York]; BookStore; [Title:
Cosmopolitan, Price:Medium; Quantity:20000]).

The WS-AC1 system evaluates access requests with respect to the access
control policies protecting the required service. The same service may be pro-
tected by several access control policies. Informally, an access control policy is
expressed by means of three components: a component to denote the requester,
a component for specifying the parameters to which the policy applies, and
a component for specifying the parameter values allowed by the service. Sub-
jects are denoted in policies by attribute conditions specifying the conditions
that each identity attribute of the service requestor has to satisfy in order to
access the service. To enhance flexibility, the model allows one to specify for
each service the set of legal parameter values that the service parameters can
be assigned. Legal parameter values are defined by ad hoc rules, referred to
as constraints, defined over the set of the service parameters and/or the set of
the service context variables. A constraint is represented by a logic rule of the
form H ← L1, L2,, Ln, notF1, notF2,notFm. H is the head of the
rule and is an expression of the form ArgName op V alues where ArgName is
an element of PN , op is a comparison operator or the ∈ operator, and V alues
is either a set of values defined through enumeration or a range expression

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 123

[vbegin, vend], or a single value. L1,L2,..,Ln, notF1, notF2, ..., notFm is the body
of the rule; each Li, i = 1, .., n, or Fk, k = 1, ..,m, in the body of the rule can
be an expression of the form ArgName op V alues, where ArgName is an
element of either PN or CV N . The body of a rule is empty to denote always
true rules. Constraints are evaluated dynamically. It is thus possible to adapt
the access control policies to dynamically varying conditions.

A constraint restricts the set of values associated with a parameter on the
basis of the current values of the context variables and/or the values assumed
by other services’ parameters. In the following, given a constraint Constrk,
Legal V aluesConstrk

(Pi) denotes the set of values assigned to the parameter
Pi in the head of Constrk, and TargetConstrk

denotes the service parameter
name Pi in H.

Example 6.4. With respect to the Web service presented in Example 6.1, the
following constraints can be specified:

• Quantity = 10 ← Title = The Times; Price = Low
• Price = High ← StockLevel < 100, Title = Glamour

The first constraint states that if the service requestor wants to purchase “The
Times” magazine, it can order only ten items. The second constraint specifies
that when the stock level of the requested magazine is less than 100, and the
user wants to order “Glamour” magazine, she can only place the order by
paying a high Price for it.

As already mentioned, access control policies in WS-AC1 can be specified
at different granularity levels. A policy can govern access to either a single
service (corresponding to a Web service description) or a class of services.
Services can be clustered in classes and be referred to as a whole in a policy.
In the following, a class of services is represented as a set of service identifiers
WSClass = s1, .., sk, where si, i = 1, .., k, denotes a service identifier.

Example 6.5. The BookStore service introduced in Example 6.1 is an element
of the WSClass BuyOnline. BuyOnline is composed of three Web services:
BookStore, FoodStore, and OnlineStore. FoodStore is a Web service allow-
ing one to buy food online. OnlineStore is a Web service that allows one to
buy different kinds of products belonging to different categories, like Music
and Electronics. BookStore, FoodStore, and OnlineStore are characterized
by the same mandatory identity attribute CustomerId and by the mandatory
parameters Price and Quantity.

A service access control policy for a Web service s is defined as a tuple <
st; C; ParamConstr; ParamSet>. C is a list of the form CA1, CA2, .., CAn,
n ≥ 1, where CAi, i = 1, .., n, is either an attribute condition or an attribute
name; ParamConstr = {Constr1, Constr2, .., Constrk}, k ≥ 1, is a (pos-
sibly) empty set of constraints defined over parameters in ParamSet such
that for each Constri, Constrj , i �= j, Targetconstri

�= Targetconstrj
; and

ParamSet is a set of parameter names referring to the description of s, such

124 6 Access Control for Web Services

that ParamSet ⊆ Parameters. The above definition shows that the proposed
access control model allows one to specify fine-grained access control policies
in that one can associate a policy with a single service and even specify with
which input parameters the service has to be invoked under a given policy.
However, to simplify access control administration as much as possible, it is
also important to support access control policies with coarse granularities.
Such a requirement is addressed in the model by associating access control
policies with classes of services. In other words, a single policy can be specified
for all services belonging to a given class of services. However, to be regulated
by a single policy, a service class has to include Web services satisfying the
condition that the set of mandatory parameters and the set of mandatory
attributes for all the services in the class be the same. In the following, the
dot notation is used to refer to a component of a tuple, that is, R.a denotes
the component a of tuple R.

Given a class of services WSClass = s1, .., sk where each si, i = 1, .., k,
is a service identifier in WSClass and serv-descri = < si; Parameters;
AuthAttrs> is the service description of si, a class access control policy
specified for WSClass is defined as a tuple < WSClass; C; ParamConstr;
ParamSet >. C is a list of the form CA1, .., CAn, and each CAi, i = 1, .., n,
is either an attribute condition or an attribute name. Each attribute name
is a mandatory attribute for every service si ∈ WSClass; Paramset is
a set of parameter names. For each si in WSClass and for each p in
Paramset, p ∈ si.Parameters and si.p.ParamType = mand; ParamConstr
= Constr1, Constr2, .., Constrk is a (possibly) empty set of constraints de-
fined over parameters in ParamSet such that for each Constri, Constrj ,
i �= j, Targetconstri

�= Targetconstrj
.

Policies specified at the class level apply to any service in the class. The
advantage of supporting class policies for service providers managing a large
number of services is obvious. Service providers have the ability of clustering
as many services as they wish and specifying a unique policy while being able
to refine policies for particular services, if required.

Example 6.6. With reference to the BookStore Web service introduced in Ex-
ample 6.1, consider the following access control policies:

• pol1 = < BookStore; {CustomerId ∈ {Ann Meeker, John Smith}, Target-
CustomerCardId ∈ {AS128456, AX3455643}; {Title, PriceFare, Quantity
}; Quantity = 10 ← Title = The Times; Price = Low >

• pol2= < BookStore; {CustomerId = Wallmart of New York, Wallmart-
DealerId = 123451}; { Title, Price, Quantity }; { } >

• pol3 = < BookStore; {CustomerId = Wallmart of New York}; { Title,
Price}; Price = High ← StockLevel < 100, Title = Glamour >.

Policy pol1 states that users Ann Meeker and John Smith having a Target
CustomerCardId equal to either AS128456 or AX3455643 can invoke the
service. Specifically, the policy constraints limit the Quantity that can be

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 125

ordered to ten items. Policy pol2 states that the Wallmart’s dealer “123451” of
New York can access the service. The policy does not impose any restriction on
the values the service parameters can assume. Finally, policy pol3 requires that
any Wallmart supermarket of New York only can get “Glamour” magazines
at a high Price if the user has submitted the request when the stock level of
the magazine is less than ten.

6.2.2 WS-AC1 Identity Attribute Negotiation

WS-AC1 evaluates access requests with respect to the access control policies
protecting the corresponding services or if no ad-hoc policies are specified for
the required services, the service classes. Each access request is first evaluated
with respect to the submitted identifying attributes. An access request in WS-
AC1 can be either totally or partially compliant with a (single or class) access
control policy. An access request is totally compliant with an access control
policy if all the attribute conditions specified in the policy are evaluated to true
according to the attribute values specified in the access request. If no access
control policy exists for which the access request is totally compliant, the
request is not rejected. WS-AC1 gives the requester the ability of providing
additional attributes to fully comply with an access control policy. To this
end, the concept of partial compliance of an access request is introduced. An
access request for a specified service is said to be partially compliant with an
access control policy if a subset of the attribute names of the policy appears in
the access request, or if some attribute of the access request appears in some
condition of the policy and the condition evaluates to true according to the
attribute s submitted in the access request. In the case of partial compliance of
the attributes, WS-AC1 asks the service requestor to disclose the attributes
not provided in the submitted request, but specified in the access control
policies the access request partially complies with.

Moreover, an access request may be totally compliant with respect to a
policy, but may specify parameter values not allowed by the service. In this
case also, the access request cannot be accepted as it is. Therefore, it is neces-
sary to introduce another form of partial compliance with respect to a policy.
An access request is parameter matching if each parameter value requested
is acceptable; that is, it either satisfies a policy constraint (if applicable) or
falls in the corresponding parameter domain. In the end, access to a Web ser-
vice can only be granted if an access request fully satisfies an access control
policy. This requires both the successful identification of the service requestor
and an agreement on the parameter values for invoking the service. The next
section details the service requestor identification process through attribute
negotiation.

Example 6.7. Consider the access request introduced in Example 6.3 and the
access control policies specified in Example 6.5. Acc totally complies with pol3,
and partially complies with pol2. In fact, the attribute condition CustomerId
= Wallmart of New York is evaluated to true according the CustomerId

126 6 Access Control for Web Services

attribute value specified in the access request. Hence, the WS-AC1 system
asks the service requester for attribute rfa = WallmartDealerId where
WallmartDealerId is the attribute name specified in pol2, not provided in
the access request.

The Negotiation Process

As mentioned in the previous discussion, upon receiving an access request,
the system determines whether any access control policy exists for the re-
quired service or for the class the service belongs to with which the access
request is totally compliant for the identity attributes. If such a policy is
found, the pending request is further evaluated for parameter matching, to
check if the access can be granted. If no policy with which the access request
is totally compliant is found, instead of rejecting the request, the WS-AC1

system checks if the access request is partially compliant with any of the
enforced policies. If this is the case, the system asks the service requestor
to provide additional attributes. In particular, the service requestor has to
submit the attributes not provided in the request but specified in the access
control policies the access request partially complies with. Such attributes are
requested by the server from the service requestor with an ad hoc message, re-
ferred to as request for attributes or rfa. Given an access request acc = (a, s, p)
and PartialCompliantPolSet = (pol1, .., polk), the set of access control poli-
cies acc partially complies with rfa is a disjunction of attribute sets rfa =
AttrSet1 ∨AttrSet2 ∨∨AttrSetk, where each AttrSeti = (A1, A2, .., Am),
i = 1, .., k, is the set of attribute names specified in poli.C but not contained
in acc.a.

If more than one access control policy is found, WS-AC1 selects from
these policies the ones the access request parameter matches with. If the
result of the selection is not empty, the rfa contains an attribute set for each
selected access control policy. Otherwise, rfa contains an attribute set for each
access control policy the access request partially complies with. The service
requestor, thus, has the freedom to decide which set of attributes to reveal.
The message used by the service requestor to reply to an rfa sent by the server
is referred to as response for attributes or rsfa. Given a request for attributes
rfa = AttrSet1∨AttrSet2∨∨AttrSetk, a response for attributes is a tuple
rsfa = [Attr1 : a1, Attr2 : a2, ..., Attrm : am] where each Attri ∈ AttrSeti,
i = 1, ..., n, is one of the attributes specified in the corresponding rfa, and ai

is the associated value.
After receiving the rsfa message, the WS-AC1 system verifies if the access

request updated with the attributes just submitted is now totally compliant
with one of the access control policies the original access request was partially
compliant with. If the access request now provides all attributes required by
one of the access control policies, the system evaluates whether the service
requestor can access the service on the basis of the parameters values speci-
fied. It is important to note that the identification process is not iterative: it

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 127

lasts two rounds in the worst case, one round for sending the attribute request
and another for the reply. In case no fully compliant policy can be found, the
request is rejected without possibility of further negotiation.

Algorithm 2: Identity Attribute Negotiation

Input:
acc: access requesta, s, p)∨
rfsa: response for attribute [Attr1 : a1, Attr2 : a2, ..., Attrm : am]

Output: rfa: request for attribute AttrSet1V AttrSet2V....V AttrSetk∨

(1) var PartialCompliantPolSet: SetOfAccessControlPolicy;
(2) var SelectedPolSet: SetOfAccessControlPolicy;
(3) var msg Type: Boolean;
(4) if input msg is an acc
(5) msg Type:=false;
(6) else
(7) if input msg is an rfa
(8) acc:=Update-acc(acc, rsfa);
(9) msg Type:=true;
(10) TotalCompliantPolSet:={Set of Access Control Policies, acc to-

tally complies with};
(11) if TotalCompliantPolSet == ∅
(12) if msg Type==false
(13) PartialCompliantPolSet:={Set of Access Control Poli-

cies, acc partially complies with};
(14) if PartialCompliantPolSet == ∅
(15) AccessDenied:=true;
(16) return AccessDenied;
(17) else
(18) foreach poli ∈ PartialCompliantPolSet
(19) if acc is parameter matching with poli
(20) SelectedPolSet:=SelectedPolSet ∪ poli;
(21) if SelectedPolSet �= ∅
(22) rfa:=Generate-RFA(SelectedPolSet, acc);
(23) else
(24) rfa:=Generate-

RFA(PartialCompliantPolSet,acc);
(25) return rfa;
(26) else
(27) AccessDenied:=true;
(28) return AccessDenied;
(29) else
(30) return TotalCompliantPolSet;

Algorithm 1 describes the negotiation process for identity attributes sub-
mitted by a service requestor. The algorithm accepts as input two different
types of messages: an access request acc and a response for attributes rsfa. If
the input message is an access request, the algorithm builds TotalCompliant-
PolSet, that is, the set of access control policies the request acc totally complies
with (line 10). If the set is empty, the algorithm builds a so-called PartialCom-
pliantPolSet, that is, the set of access control policies the request acc partially
complies with (line 13). If there are no policies, the access to the service is de-
nied to the user (lines 15 and 16). Otherwise, the request for attribute message
rfa is created by invoking function Generate-RFA() (lines 17 through 25).

128 6 Access Control for Web Services

To generate the request for an attribute message, the algorithm can adopt two
strategies. First, it checks whether acc is parameter matching with some of the
policies in the set PartialCompliantPolSet. If this is the case, the algorithm
builds the set SelectedPol, a subset of PartialCompliantPolSet containing
the policies with which acc is parameter matching (lines 18 through 20). If
SelectedPol is not an empty set, the function Generate-RFA() is activated
and generates a response for an attribute message containing an attributes set
for each policy in SelectedPol: the set of attributes specified in rfa contains
the attributes specified in the policy, not provided by the user in acc (lines 21
and 22). Instead, if SelectedPol is empty, Generate-RFA() is activated and
generates a request for attribute message containing an attribute set for each
policy in PartialCompliantPolSet (line 25). If set TotalCompliantPolSet
is not empty, the algorithm returns this set, as it represents the input for
the service parameter negotiation process (line 30). If the input message is
a response for attributes, the algorithm first updates the access request acc
previously received, invoking Update-acc(). Update-acc() adds to acc the at-
tributes the service requester has specified in the request for attributes. Then,
it builds the set of access control policies the updated acc totally complies
with (line 10), referred to as TotalCompliantPolSet. If such a set is empty,
the algorithm ends by denying the service access (lines 26 through 28).

6.2.3 WS-AC1 Parameter Negotiation

The other relevant negotiation process of WS-AC1 is the parameter negotia-
tion. In what follows, we first present the formal definition of request accep-
tance. Then, the conditions triggering a negotiation process and formalizing
the type of messages and the protocol to follow are described.

Access Request Acceptance

Given a set of policies totally compliant with the service requestor’s request,
the WS-AC1 system checks whether an access control policy exists that makes
the access request fully acceptable. An access request is fully acceptable if it
is totally compliant and parameter matching. If the access request is fully
acceptable, the SP grants the service requestor access to the service. An access
request is not fully acceptable and can be negotiated if it is totally compliant
with a policy but is not parameter matching. Precisely, one of the following
conditions occurs:

• The access request is specified using all the parameters appearing in one
or more access control policies, and contains parameter values that are not
legal under these policies.

• The access request is specified using a subset of the parameters provided
by the policies enforced for the required service. Therefore, the service
requestor has to provide the missing parameters.

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 129

The service requestor, thus, is given the possibility of negotiating the incorrect
parameters.

Example 6.8. With respect to the running example, consider the following
policies:

• pol1 = < BookStore; {CustomerId = Wallmart of New York, Wallmart-
DealerId}; {Quantity}; {Quantity ∈ [1, 5000] ←} >

• pol2 = < BookStore; {CustomerId = Wallmart of New York}; {Quantity};
{Quantity ∈ [1, 1000] ←} >

Consider now the access request ([CustomerId: Wallmart of New York];
BookStore; [Title: Cosmopolitan, Price:High; Quantity:2500]). The access
request is partially compliant and parameter matching with policy pol1 and
totally compliant with policy pol2. The service requestor can then opt for ne-
gotiating parameters and purchase the drugs in the Quantity allowed, or it
can also disclose its WallmartDealerId and obtain authorization to buy up
to 2,500 items.

The Negotiation Process for Parameters

The process of parameter negotiation consists of message exchanges between
the two parties. The SP starts the negotiation by sending to the service re-
questor a message denoted negotiation access proposal (NAP). The NAP con-
tains a combination of admitted values for the parameters. Given a totally
compliant access request acc and an access control policy, a NAP is a tuple
of the form nap = < NegId; ap, end > where:

• NegId is the negotiation identifier denoting the current negotiation.
• ap = P1 : p1, ..., Pn : pn is a list of pairs where Pi is a parameter name

belonging to ParamSet and pi is the corresponding value, i = 1, ..., n.
• end ∈ {yes, no} is a flag denoting whether or not the NAP is the last one

in the negotiation process.

The parameters included in a NAP depend on the misplaced values in the
submitted access request. If the access request is specified using non-admitted
parameter values, the generated NAP will suggest legal values for the in-
correct parameter values. The current version of WS-AC1 does not provide
any inference engine for checking conflicts among the enforced access control
policies. Therefore, policies may overlap or subsume one another. Hence, the
same access request may be negotiated against several policies. If this is the
case, the requestor will receive as many NAPs as there policies, with all the
parameter name p appearing in both ParamSet and the p component of the
access request. Of course, although this approach maximizes the chances of
success of the negotiation process, it has the drawback that in the case of a
large number of fully compliant policies, the service requestor will be flooded
by alternative NAPs. If the required service parameters are not specified at

130 6 Access Control for Web Services

all in the access request, the policies to be considered are the access control
policies having at least one parameter name in common with the received ac-
cess request. Here, the NAP will be composed by the parameter values chosen
by the requesting agent whenever possible, and the parameter values set by
the system for the remaining parameters.

Algorithm 3: Parameter Negotiation

Input:
Output: acc: access request(a,s,p) ∨
nap: negotiation access proposal nap = < NegId; ap, end >

NapList: NapList{nap1, ...,nap2} ∨
AccessDenied: Boolean

(1) var s: WebServiceIdentifier;
(2) var WSClass: WebServiceClass;
(3) var PolSet: SetOfAccessControlPolicy;
(4) var msg Type: Boolean;
(5) if input msg is an acc
(6) if ¬∃pols.tacc.s == pol.s
(7) WSClass:= class service s belongs to;
(8) PolSet:={pol1, .., polk class policies of WSClass};
(9) else
(10) PolSet:={pol1, .., polk policies such that acc.s == pol.s};
(11) accPNames:={set of parameter names in acc.p};
(12) foreach poli ∈ PolSet s.t. poli.ParName==accPNames
(13) Case1:=Case1 ∪ poli;
(14) i:=1;
(15) repeat
(16) if acc.p.pi ∈ poli.ParName s.t acc.p.pi /∈

Legal values(pz)
(17) Case1:=Case1 − poli;
(18) Case2:=Case2 ∪ poli;
(19) exit:=true;
(20) else
(21) i:=i + 1;
(22) until i==|accPNames| ∨ exit==true
(23)
(24) if Case1 �= ∅
(25) polk:= randomly chosen policy ∈ Case1;
(26) AccessDenied:=alse;
(27) return AccessDenied;
(28) else
(29) if Case2 �= ∅
(30) CreateProposal(PolSet, acc);
(31) foreach poli ∈ PolSet s.t. poli.ParName ∩

accPNames �= ∅
(32) if ∃acc.p.pi ∈ Legal values(pz)
(33) Case3:=Case3 ∪ poli;
(34) CreateProposal();
(35) if Case3 �= ∅
(36) AccessDenied:=alse;
(37) return AccessDenied;

6.2 WS-AC1: An Adaptive Access Control Model for Stateless Web Services 131

Type of acc Compliance
to pol

Num pol Action

acc is TC with pol 0 Verify if exists some pol s.t. acc PC pol holds

≥ 1 For each pol, verify if acc PM pol holds

acc is PC with pol 0 Deny access

≥ 1 Request missing attributes for all PC pols;
then verify if acc PM pol holds

acc is PM with pol 0 Negotiate parameters

1 Grant access, if acc is TC too

> 1 Negotiate by sending NAPS for each of
the parameters matching policies

acc is FA by pol 0 Deny access

1 Grant access

≥ 1 Grant access randomly selecting a policy

Fig. 6.2. Action to be taken to enforce access control

As in the previous case, only policies having a parameter p appearing in
both ParamSet and the component of the access requests are selected. Note
that the criteria adopted for defining parameter values in an NAP are based
on a “user-oriented” criterion. Therefore, given an access request which is not
fully acceptable, the fewest number of modifications necessary on the original
access request are applied. In other words, all the acceptable parameter values
are kept, while the non-acceptable ones are replaced with legal values. The
replacement might be executed according to different approaches. A straight-
forward solution consists of specifying constant default parameter values to
be used for filling the missing or wrong ones. A more sophisticated approach
is to determine such values on the fly while the proposal is generated. A pos-
sible solution in this sense is to make use of scripts, as proposed by Bertino
et al. [40]. Basically, the idea is to represent parameter values and context
variables in a relational form and query them with ad hoc scripts. Scripts, in
turn, may or may not be parametric. Parameters might also be dynamically
determined by invoking ad hoc procedures having names as input parameter
and returning legal values for those names. How these procedures are actually
encoded depends, however, on the specific Web service implementation. The
negotiation algorithm is reported in Algorithm 4. The process is iterative and
the NAP exchanges are carried on until the service requestor, based on the
received NAP, submits a fully acceptable request or the process is interrupted
by one of the parties. The wish to end the negotiation is explicitly notified to
the counterpart, and it is represented in the algorithm by setting the flag end
in the NAP message to yes.

132 6 Access Control for Web Services

6.3 An Access Control Framework for
Conversation-Based Web services

This section presents the only approach [175] that investigates the problem
of how to enforce access control for conversational Web services. While many
approaches consider Web services as a set of independent single operations,
in many applications interactions with a Web service often require a sequence
of invocations of several of its operations, referred to as conversation. A sim-
ple example is a travel agent Web service; booking a trip involves generally
searching for the trip, browsing the details and rules about possible options
for this trip, booking a specific trip, checking out, paying, and so forth. Thus,
service requestors interact with Web services through a conversation process
where each step consists of invoking a specific operation offered by the Web
service. The potential operations that can be invoked depend on the state of
the current conversation between the callee and the Web service.

Conversations allow one to capture an important aspect of Web services,
namely their “behavioral semantics”. In most cases, the representation of the
potential conversations that can take place between the Web service and its
service requestors is based on the use of transition systems.

It is important to observe that Web service operations represent a coarse-
grained process that takes place in the application supporting the Web service
and usually involves the consumption of several resources. Therefore, it is
important for the Web service to maximize the chance that a service requestor
reaches a final state in order to avoid wasting resources. However, this should
be balanced with the need to retain some control on the disclosure of access
policies.

The access control model for conversation-based Web services, which is
described in this section, enables service providers to retain some control on
the disclosure of their access control policies while giving service requestors
some guarantees on the termination of their interactions, that is, on their
reaching some final state. First, in line with current approaches, all possible
conversations are modeled as finite transition systems (aka finite state ma-
chines) [245, 28], in which final states represent those in which the interaction
with the service requestor can be, but is not necessarily, ended. Furthermore,
this access control model attempts to maximize the likelihood that a service
requestor reaches a final state without necessarily having to be made aware
of all access control policies. The model is based on the novel concept of k-
trustworthiness (k-trust in the following for simplicity) where k can be seen
as the level of trust that a Web service has with a service requestor at any
point during their interaction. The greater the level of trust associated with a
service requestor, the greater the amount of information about access control
policies that can be disclosed to it. A level of trust k represents the length of
a conversation such that from the current state of the interactions leads to a
final state and a service requestor is requested to provide the credentials to
invoke any operation composing the conversation. Thus, the service requestor

6.3 An Access Control Framework for Conversation-Based Web services 133

is assured that its conversation can eventually terminate. Based on this simple
notion of k-trust, this access control model is a flexible model with limited
policy disclosure for conversation-based Web services.

6.3.1 Conversation-Based Access Control

This section introduces the basic concepts for Web service conversations, ac-
cess control, and credentials.

Conversation Model for Web Services

The behavioral semantics of a Web service is represented as the set of opera-
tions it exports and constraints on the possible conversations it can execute.
For a large class of Web service, as discussed by Benatallah et al. [27], all
such aspects can be compactly represented as a finite transition system (the
WSMO choreography concept). This semantics is usually expressed accord-
ing to a given OWL, OWL-S, WSMO ontology. Thus, a service is generally
characterized by two facets: (i) static semantics, dealing with messages, opera-
tions, and parameters exchanged and their types, and (ii) dynamic semantics,
dealing with the correct sequencing of operations that represents the external
workflow offered by the service.

The transition system of a Web service WS is represented as a tuple
T S = (Σ,S, s0, δ, F) where Σ is the alphabet of operations offered by the
service, S is a finite set of states, s0 ∈ S is the single initial state, δ : S×Σ → S
is the transition function, and F ⊆ S is the set of final states. These are states
in which a conversation may end, but does not necessarily have to.

The relation δ(si, a) = sj is represented as si
a−→ sj , and where a is the

label of the transition. The transition function can be extended to finite length
sequences of operations or conversations, defined as traces by Stirling et al.
[245]. Given a conversation conv : a1 · a2 · . . . an and two states s0 and sn,
s0

conv=⇒ sn iff ∃ s′ such that s0
a1−→ s′ and s′

a2·...an=⇒ sn.

Example 6.9. Figure 6.3 represents the transition system of a simple online
travel agent Web service eTravel. The different labels represent the opera-
tions that a service requestor can invoke from any given state and are self-
explanatory. Final states are represented by gray circles. A service requestor
can be involved in different conversations with the service. The service re-
questor can search for trips (searchTrips), refine the search results several
times (refineResults), and then select a specific trip (selectTrip). After
this operation, the service requestor can decide to either book the trip and
complete the booking (bookTrip and completeBooking operations) or hold
the selected trip (holdReservation) and end the interaction.

134 6 Access Control for Web Services

k-levels for S2 are {1,2}

completeBooking

selectTrip

bookTripholdReservation

S1S1

S2S2

S3S3 S4S4

S0S0

searchTrips

Some Conversations from S0:
- searchTrip selectTrip holdReservation

- searchTrip refineResults selectTrip bookTrip
completeBooking

The k-levels for S0 are {3,4,5}

refineResults

Fig. 6.3. eTravel service’s transition system

6.3.2 Access Control and Credentials

Access control is enforced through the use of credentials. Credentials are the
means to establish trust between a service requestor and the SP. They are
assertions about a given service requestor, referred to as the owner, issued by
trusted third parties called Certification Authorities (CAs). They are digitally
signed using the private key of the issuer CA and can be verified using the
issuer’s public key. Credentials are usually implemented through the use of
X.509 certificates [279] or SAML assertions [61]. Each credential contains a
set of attributes characterizing the owner specified by means of (name, value)
pairs. Conditions on credential attributes specify the security requirements
of the SP. An operation access control policy specifies such conditions for a
given operation, i.e., iff a client has credentials satisfying such conditions, it
can then execute the operation [146].

A conversation access control policy represents all access control policies
of a given conversation. For a conversation conv = a1 · . . . ak where a1, . . . ak

are operations of the Web service and each operation ai has its corresponding
operation access control policy poli, the conversation access control policy
for conv is the conjunction of pol1, . . . , polk. This formalization captures the
intuition that a service requestor, owning credentials satisfying a conversation
access control policy, is granted access to all the operations in the conversation.
If the conversation is such that it reaches a final state, then the satisfaction of
the policy assures that the service requestor will be authorized up to reaching
its own goal. The SP will not be forced to deny access to some operations in
the middle of the conversation due to lack of authorization.

Example 6.10. 6.9 Examples of access control policies for operations
selectTrip and holdReservation are respectively:

pol1 : selectTrip ← CreditCard Holder(Type = MasterCard or V isa)

6.3 An Access Control Framework for Conversation-Based Web services 135

pol2 : holdReservation ← Gold Member

Policy pol1 states that only the service requestors having a MasterCard or
Visa credit card can perform operation selectTrip, while policy pol2 autho-
rizes the gold member service requestors to execute holdReservation. The
conversation access control policy for the conversation conv: selectTrip ·
holdReservation is:

conv ← CreditCard Holder(Type = MasterCard or V isa), Gold Member.

6.3.3 k-Trust Levels and Policies

The main idea of this approach is that service requestors, as they interact with
the Web service, will be assigned to k-trust level. Such level represents how
much trust the Web service has of the service requestor. A trustworthiness
level is defined as the length of a conversation that from a given state s in the
transition system leads to a final state. More than one trustworthiness level
can be associated with a state s because there might be different conversations
of different lengths that lead from s to a final state. To assign one of these
k-trust levels to a service requestor, the concept of k-trust policy has been
introduced. A k-trust policy specifies the conditions on the credentials of a
service requestor that must hold in order for it to be assigned a trustworthiness
level ks in state s.

The concept of trustworthiness level (k-trust in the following for simplic-
ity) is also used to limit the disclosure of a service provider’s access control
policies. Therefore, when a service requestor is assigned the level k on the
basis of an appropriate k-trust policy, the enforcement system asks only for
the credentials needed to satisfy all the conversation access control policies
associated with the conversations from the current state to the final states
and having length less than or equal to k. The actual value of k does not have
to be known by the service requestor. The service requestor is more interested
in knowing which credentials to provide.

Example 6.11. 6.9 Consider the start state (labeled with S0) in Figure 6.3.
The potential conversations that lead to a final state and that must be con-
sidered in order to compute the k-trust levels are

(1) searchTrips · selectTrip · holdReservation;
(2) searchTrips · refineResults · selectTrip · hold-Reservation;
(3) searchTrips · selectTrip · bookTrip · completeBooking;
(4) searchTrips · refineResults · selectTrip · bookTrip ·
completeBooking.

Adding more conversations will be useless from the access control perspective
since the same conversations will be repeated. Although there are four differ-
ent conversations, they imply only three different k-trust levels: {3, 4, 5}. For

136 6 Access Control for Web Services

instance, the {ks0 = 3}-trust policy to assign a service requestor to trustwor-
thiness level 3 is of the form {ks0 = 3} ← PictureID(Age > 18); it means
that service requestors older than eighteen are entrusted with trustworthiness
level 3. Such a service requestor has to fulfill the access control policies as-
sociated with the conversations having length less than or equal to 3. These
conversations include the following operations: searchTrips, selectTrip,
and holdReservation.

6.3.4 Access Control Enforcement

Client Web Service

Bind

Invoke
operation op

Execute
Operation

bind()

invoke(op)

return result

requireCreden ials ()

submitCredentials ()

Calculate Required
Credentials

Evaluate Credentials
Against Policies
Evaluate Credentials
Against Policies

Assign (new) K-level

Access
Denied

Policies Not Satisfied

Policies Satisfied

On the basis of previously
provided credentials
I may be “sigle operation”
k-level

Submit

Submit

requireCredentials ()

submitCredentials ()

The k-level is assigned on
the basis of credentials
proactively presented with
the bind. It may be “sigle
operation” k-level

No
Yes

Is op already authorized (op belongs to conversations of k) ?

Fig. 6.4. Access control enforcement process

This section describes how a specific k-trust level is assigned to a service
requestor in a given state of the interaction with the Web service and how
access control is enforced on the basis of the assigned k-trust level for both
simple and composite Web services.

Enforcement Process

The access control enforcement process has two phases. The first phase asso-
ciates with the service requestor a k-trust level that determines the conversa-
tions the service requestor can have with the Web service. The second phase

6.3 An Access Control Framework for Conversation-Based Web services 137

verifies whether the service requestor owns the credentials to be authorized
to execute any of the conversations corresponding to the specific k-trust level
assigned to it.

The enforcement process is represented in Figure 6.4. It starts when a
service requestor contacts the Web service for the first time and submits an
initial set of credentials, e.g., with the IP address of the service requestor’s
machine (line 1). The enforcement system assigns an initial k-trust level k0,
from amongst the possible ones in the initial state, based on the credentials
provided by the service requestor and the Web service’s k-trust policies. If the
initial credentials are not compliant with the policies, the service requestor is
assigned a default value ⊥ corresponding to “single operation” access control
enforcement. Once the service requestor is assigned a trustworthiness level k0,
the access control enforcement system determines the access control policies
protecting the operations of the conversations associated with k0. These are
all the conversations that from the current state lead to a final state and have
length less than or equal to k0. Then, the service requestor is requested to
provide all the credentials specified in the operation access control policies.
If the service requestor can provide all the required credentials, the service
requestor is authorized to invoke all operations of the conversations associated
with k0. If the k0 assigned is ⊥, this request for credentials is skipped and will
take place when an operation is effectively invoked.

Whenever the service requestor requests an operation, the enforcement
system first checks if the operation is included in the set of authorized con-
versations. If this is the case, the operation is executed and the result is sent
to the service requestor. Otherwise, the enforcement system associates with
the service requestor a new k-trust level which on the basis of the credentials
submitted so far (again may be ⊥). Then the enforcement system requests
from the service requestor all the credentials specified in the operation ac-
cess control policies of those conversations. If k assigned is ⊥, then only the
credentials corresponding to the single operation just invoked are requested.
If the service requestor can provide all the requested credentials, the service
requestor is authorized to invoke all operations of the conversations associated
with the new k. If during the service requestor-Web service interaction some
of the service requestor’s previously submitted credentials are no longer valid,
the access control enforcement system requests them again from the service
requestor. In Figure 6.4 the initial binding of the service requestor to the Web
service is represented, along with the generic operation invocation. The invo-
cation of an operation by the service requestor is continuously repeated until
the service requestor reaches its own goal; and it is graphically represented by
surrounding all the steps with a dashed box and marking such a box with a
loop symbol.

138 6 Access Control for Web Services

6.3.5 K-Trustworthiness Levels Computation

To support k-trust-based access control, it is necessary to determine at each
state of the transition system all the possible trustworthiness levels that can
be assigned to the service requestor on the basis of the k-trust policies. The
k-trust levels determine the set of conversations service requestors can have
with a Web service; service requestors can execute only the conversations
having length less than or equal to k if the credentials they provide satisfy
the conversation access control policies.

This section shows how such a computation can be executed off-line, that
is, before initiating the interaction with the service requestors. The compu-
tation is straightforward if Web service transition systems are acyclic, but
becomes tricky if, as may often happen, the transition systems have loops.

Preliminary Observations

Before presenting the different algorithms, it is useful to make the following
observations:

1. For an acyclic transition system, the set of potential paths leading from
any state to any final state is finite. This set can be easily calculated by
a simple traversal of the transition system.

2. If from a given state a conversation involves a cycle, there is an infinite
number of paths reaching a final state.

3. If the access control policy of an operation a has been checked against
a service requestor, it is not necessary to check it again if the service
requestor invokes the operation a more than once.

The main difficulties in traversing the transition system and determining
the potential conversations arise because of cycles.

Strongly Connected Components

The algorithm proposed to compute all the possible k-levels for each state of
a Web service transition system is based on the concept of strongly connected
component (scc for short). A strongly connected component is the maximal
subgraph of a directed graph such that for every pair of vertices (u, v) in the
subgraph, there is a directed path from u to v and a directed path from v to
u [252]. The transition system of a Web service can be regarded as a directed
graph where a transition between two states is a directed edge without the
labeling.

Based on the above concept, a new acyclic graph can be generated in
which nodes represent the different strongly connected components of the ini-
tial graph. This graph is called the directed graph of the strongly connected
components and is denoted by Gscc. More formally, given a transition system

6.3 An Access Control Framework for Conversation-Based Web services 139

T S = (Σ,S, s0, δ, F), the directed graph of the strongly connected compo-
nents Gscc = 〈Nscc, Escc〉 is the graph with nodes Nscc and oriented edges
Escc in which (i) Nscc = {c | c is a strongly connected component in T S},
and (ii) Escc = {〈c1, c2〉 | c1 �= c2 and ∃ a ∈ δ, s1 ∈ c1, s2 ∈ c2 | s1

a−→ s2}.
Given a state s ∈ T S, the node of Gscc represents the strongly connected

component to which s belongs as c(s); c(s) is the image of s. Gscc can be
efficiently computed through the classical Tarjan’s algorithm [252] or more
recent optimizations [206].

This new graph has some interesting properties: (i) if the initial Web
service transition system T S is acyclic then Gscc = 〈Nscc, Escc〉 is the graph
with nodes Nscc and oriented edges Escc in which (a) Nscc = {c | c is a state
∈ S ∪ F ∪s0 in T S}, and (b) Escc = {〈c1, c2〉 | c1 �= c2 and ∃a ∈ δ, s1 ≡ c1,
s2 ≡ c2 such that s1

a−→ s2} [94]; (ii) the nodes that are not involved in cycles
will remain unchanged in the new graph; and (iii) cycles are “collapsed” into
strongly connected components and need to be dealt with in an appropriate
way (according to the specific aim Gscc is considered for).

Special nodes

Given an scc, an in-going node is any node with an edge/transition com-
ing from outside the scc, and an out-going node is any node with an
edge/transition going outside the scc.

Cardinality

For each node/scc of Gscc, the number of different operations that label the
transitions between the corresponding states of T S is known. More specifi-
cally, for each scc c, the set Oc = {a | s1

a−→ s2 and c(s1) = c(s2) = c } can
be easily determined. The cardinality of Oc is referred to as card(c). If the
connected component c is the image of a single state of T S, then card(c) = 0.

Coverage

For each node/scc of Gscc, the shortest path is considered that (i) starts
from an in-going node finishes in an out-going node, and (ii) comprises all
the different operations in Oc. More specifically, for each scc c, a sequence
of operations str is said to be covering iff str goes from the in-going node
e to the out-going node o of c (c(e) = c(o) = c) and str.set()1 = Oc.
The notation ˜str refers to a traversing sequence of operations 2. For each
scc c, a set Cc is defined: Cc = { ˜stri | (˜stri.length() �= 0) and (∀˜strk

with oi = ok, ˜strk.length() ≥ ˜stri.length()) }. coverage(c) is the length of
min(˜stri ∈ Cc).

1 str.set() denotes the set of the operations in str
2 A traversing sequence is not necessarily an Eulerian path of c, whereas each

Eulerian path, if it exists, is a traversing sequence.

140 6 Access Control for Web Services

The coverage of an scc can be computed by enumerating all the paths from
any in-going node to an out-going one. A global array of boolean variables,
with dimension equal to the number of distinct out-going nodes, is used to
record whether the out-going node has been reached, and another global array
of integer variables maintains the length of the path that evolves from the in-
going node to the out-going one. As soon as all the boolean variables in the
first vector are set to true, meaning that all the paths from any in-going node
to any outgoing one have been found, the minimum among the values in the
other array is determined.

Rank

For each node/scc of Gscc, the rank is defined as follows:

rank(c) =

⎧

⎪

⎨

⎪

⎩

coverage(c) if c is the root of Gscc

1 + coverage(c) + max(rank(m)) where the m are all the possible

predecessors of c

As Gscc is acyclic, the rank of each node can be computed in three steps
(by using two stacks as auxiliary data structures):

(i) A preliminary depth-first search algorithm visits Gscc and pushes on a
stack, for each visited node, a record containing the predecessor node;
such a node is labeled with the given node. Note that during a depth-first
search visit of the graph, each node has one predecessor node.

(ii) The stack is then traversed, and for each encountered record, all the
records labeled with the same node are removed from the stack; during
this step, the predecessor node of the removed one is recorded, and for
each of these the formula for calculating the rank is pushed on a second
different stack.

(iii) Finally, the second stack is traversed by calculating the rank for each
removed record. Before executing step (iii), the formulas to compute the
rank are pushed in the order in which they have to be calculated; each
removed record gives the values to be used in the following records.

Table 6.1 reports all the notations used in the rest of this section.

Computing the k-trustworthiness Levels

The overall idea of the main algorithm that computes all potential k-trust
levels for any state is as follows: for a given state, determine all subsequent
strongly connected components, including the one to which the current state
belongs; then traverse the transition system from that state and record all
conversations leading to a final state. By computing all possible conversations
of all strongly connected components, and based on observation (3) of Section
6.3.5, finite conversations are obtained even in the case of cycles.

6.3 An Access Control Framework for Conversation-Based Web services 141

Notation Meaning Available operators

Type Used for indicating any object type –

object Used for indicating object instances –

op(param list) → return type Used for specifying an
operator/method of an object type

–

SetOf<element> Set of <element>, in which <element>

can be any object type. The
elements are without repetitions
and without any order

• = → boolean (for comparing
two homogeneous sets for
equality)

• add(<element> e) → void (for
adding a new element)

• | | → int (for calculating the
number of elements)

OrderedSetOf<element> Ordered set of <element>s As above

Sequence Sequence of symbols, used for
representing sequences of
operations (i.e., conversations) • length() → int (returns the

length of the sequence)
• set() → SetOfOperation (returns

the set of all the distinct
operations)

As an example, if seq = acg is a
sequence, and seq’ = acgcgcg is
another sequence, then seq.set() =
{a, c, g} = seq′.set()

GraphSCC Represents a graph of strongly
connected components

• projection(Node c) → GraphSCC

(takes as input a node c and
returns a new subgraph
obtained by considering c and
all nodes reachable by it, i.e.,
it is the subgraph obtained by
visiting depth-first the graph
starting from c)

• card(Node c) → int (takes as
input a node c and returns its
cardinality)

• coverage(Node c) → int (takes as
input a node c and returns its
coverage)

• rank(Node c) → int (takes as
input a node c and returns its
rank)

Table 6.1. Notation used in the algorithms. A pseudo-programming language syn-
tax is used, and the common programming languages’ basic types are assumed

The computation of the possible k-trust levels and the corresponding con-
versations is achieved using Algorithms 1 through 4. These algorithms assume
the following global variables that can be accessed by all instances of the re-
cursion:

• the transition system T S of type TS, representing the behavior of the Web
service;

• the Gscc of type GraphSCC, representing the graph of the strongly con-
nected components obtained from T S;

• the C Bag of type SetOfSequence, representing the set of conversations
defining the k-trust levels. It is built during the execution of the algorithms.

The main algorithm computeOverallConversations&KLevelsBags() builds,
for each state s of the Web service transition system, the k-trust levels
K Bag[s] and the set of sets of corresponding conversations C Bag[s].

142 6 Access Control for Web Services

The buildConversations&KLevelsBags() algorithm computes for the
given state s of the transition system the set C Bag of all possible conver-
sations that reach a final state from s and the set K Bag of corresponding
k-trust levels, representing the lengths of the conversations in C Bag.

Algorithm 4: computeOverallConversations&KLevelsBags()

Input: T S: Transition System
Output:

C Bag Set: Array of SetOfSequence; K Bag Set: Array of SetOfInteger

(1) var C Bag Set: Array of SetOfSequence;
(2) var K Bag Set: Array of SetOfInteger;
(3)
(4) foreach s ∈ T S.S
(5) { C Bag Set[s], K Bag[s] } :=

buildConversations&KLevelsBags(s);

Algorithm 5: buildConversations&KLevelsBags()

Input: s: State
Output: C Bag: SetOfSequence; K Bag: SetOfInteger
(1) var C Bag : SetOfSequence;
(2) var K Bag : SetOfInteger;
(3) var K Ord Bag : OrderedSetOfInteger;
(4) var Op Set 1 : SetOfOperation;
(5) var Op Set 2 : SetOfOperation;
(6) var K Prune Set : SetOfInteger;
(7) var conv set[] : Array of SetOfSequence;
(8) C Bag := ∅;
(9) K Bag := ∅;
(10) build(s,ε); /* ε is the empty Sequence */
(11) foreach str ∈ C Bag
(12) K Bag.add(str.length());
(13) K Ord Bag := (K Bag, ≤);
(14) foreach k ∈ K Ord Bag
(15) conv set[k] := {str ∈ C Bag : str.length() ≤ k};
(16) foreach h ∈ K Ord Bag
(17) Op Set 1 :=

⋃

conv set[kt].set() where kt ∈ {k′ ∈
K Ord Bag|k′ ≤ h};

(18) Op Set 2 :=
⋃

conv set[kz].set() where kz ∈ {k′ ∈
K Ord Bag|k′ ≤ h.next() };

(19) if Op Set 2 = Op Set 1
(20) K Prune Set.add(h.next());
(21) K Bag:= K Bag \ K Prune Set;
(22) return C Bag, K Bag;

First, build() (detailed in the following) returns C Bag, the set contain-
ing all the conversations that from input state s lead to a final state (line
10). Then, K Bag, the set of k-trust levels associated with s, is generated
based on the length of the conversations in C Bag (lines 11 and 12). For

6.3 An Access Control Framework for Conversation-Based Web services 143

each k-trust level in K Bag, the set of conversations in C Bag having length
less than or equal to k is computed (lines 13 and 14). After that, the set
K Ord Bag is created, by ordering the k-trust levels in K Bag from the min-
imum to the maximum (line 15). At this point, the k-trust levels that are
redundant from an access control point of view are removed since the set of
operations associated with them is equal to the one of the lower k-trust levels.
To identify whether a k-trust level kh has to be removed, two sets are created,
Op Set 1 and Op Set 2 (lines 16 through 18): Op Set 1 contains all the oper-
ations associated with kh and the levels lower than kh; Op Set 2 contains all
the operations associated with kh+1 and the levels lower than kh+1. If the two
sets contains the same operations, kh+1 level is redundant and can be safely
removed from K Bag (lines 19 through 21).

As an example, the lines 10-12 in the example in Figure 6.3 would add a
k-level equal to 7 for the initial state, which is eliminated by the lines 13-21.

Algorithm 6: build()

Input: s: State; str: Sequence
Output: – (directly operates on the global variable C Bag)
(1) if s has no out-going transition (i.e., is a leaf)
(2) if str.isNewString()
(3) C Bag.add(str);
(4) return ();
(5) else
(6) if | str.length()| > Gscc.rank(c(s))
(7) return ();
(8) else
(9) if s ∈ T S.F (i.e., s is final) and str.isNewString()
(10) C Bag.add(str);

(11) foreach s
a−→ t

(12) build(t, str · a);

The build() algorithm computes for the given state s of the transition
system the set of all the possible conversations that from s lead to a final state.
To avoid possible infinite recursion (due to the infinite paths in presence of
loops), the concept of rank of a strongly connected component is used, as it
characterizes the length of conversations over which it is not necessary (due
to observation (3) of Section 6.3.5) to add more operations.

Algorithm 7: isNewString()

Input: – (operates on the object on which it is invoked)
Output: b: Boolean
(1) foreach x ∈ C Bag
(2) if this.set() = x.set()
(3) if this.length()>= x.length()
(4) return (false);
(5) return (true);

144 6 Access Control for Web Services

The isNewString() algorithm checks whether the conversation on which
it is invoked is already in C Bag, the set of all the possible conversations that
from the given state s reach a final state in the transition system.

The complexity of computing the k-trust levels is linear in time in the sum
of the number of states and transitions of the Web service transition system;
this stems from the computation of the strongly connected components, of
the rank, and of the Algorithms 1 through 4 being linear as well. Moreover,
the computation of the k-trust levels is conducted off-line with respect to
the access control enforcement (during the deployment of the Web service);
therefore its complexity is not critical.

S5

addTrip

holdCarRentals

refine
Results

addTrip

S2

S4

S1
addCarRental

S0

detailCarRental

S3

holdTrip

search
Trip

S7

S6

completeBooking

bookTrips

bookCars

(3, 3)

c1

C0

c3

c2 (0, 0)

(0, 0)

(4, 7)

(3, 3)

c1

C0

c3

c2 (0, 0)

(0, 0)

(4, 7)

(a) (b)

Fig. 6.5. A transition system (a) with its Gscc (b)

Example 6.12. Figure 6.5(a) represents the transition system of some Web ser-
vice (which represents a more complex behavior than the one presented in Fig-
ure 6.3). This transition system can be reduced to the graph in Figure 6.5(b),
containing four strongly connected components. The different states, repre-
senting each a strongly connected component, are labeled with pairs (x, y)
representing the number of symbols (operations) and the coverage of that
strongly connected component, respectively. These numbers are then used to
calculate all the k-trust levels for all states in the transition system. For ex-
ample, the k-trust levels assigned to S1 are 2 (searchTrip · holdTrip), 4
(searchTrip · refineResults · searchTrip · holdTrip), 5 (searchTrip ·
holdTrip · addTrip · searchTrip · holdTrip), and 7 (by adding the opera-

6.3 An Access Control Framework for Conversation-Based Web services 145

tions bookTrips and completeBooking to the conversation representative of
level 5).

6.3.6 Architecture of the Enforcement System

1 Access Request
(Operation /Credentials)

PEP

PAP

WEB SERVICE INFRASTRUCTURE

ACCESS

POL C ES

K TRUST

POLICIES

PDP
6 K Trust

Policies

9 Access
Policies

5 Request

8 Request

K Trustworthiness
Level Assignment

Module

Policy

Selection

Module

7 K Trust Level+
Conversations

11 Request for Credentials

12 Credentials

10 Policies+
K Trust Level13 Access Granted/Denied

EXECUTION CONTROLLER SYSTEM

Table of K Trustworthiness
Levels + ConversationsTransition System (TS)

3 Status +
Table

4 Credentials+
K Trust Levels+
Conversations

2 Request State+
Op requested

Fig. 6.6. System Architecture for a Simple Web service

This section describes how the proposed access control model for
conversation-based Web services is implemented in a Web service environ-
ment. The system architecture for a simple Web service is shown in Figure
6.6. To be compliant with the XACML standard[188], the access control en-
forcement system is composed of a Policy Enforcement Point (PEP), a Policy
Decision Point (PDP), and a Policy Administration Point (PAP). With re-
spect to the XACML architecture, a component called Execution Controller
System (ECS) has been added. The ECS maintains a copy of the transition
system of conversations to keep track of the state of the interaction between
the service requestor and the service. Further, before the enforcement pro-
cess is executed, the ECS generates a data structure reporting for each state
in the transition system all the possible k-trust levels that can be assigned
to a service requestor and the associated conversations. Basically, ECS exe-
cutes Algorithms 1 through 4 and returns the results in an appropriate data
structure.

The PEP Module is the interface between the Web service’s service re-
questors and the ECS. According to the enforcement process described in
Section 6.3.4, when the service requestor contacts the Web service for the
first time, it sends a message with a set of initial credentials. Once the PEP
receives the information to update the state of the interaction, it forwards it
to the ECS. The ECS returns to the PEP the current state of the interaction

146 6 Access Control for Web Services

and the precomputed data structure containing all the possible k-trust levels
and conversations (lines 2 and 3). Then, the PEP sends to the PDP the service
requestor’s credentials, all the possible k-trust levels that can be assigned to
the service requestor in that state of the interaction, and the related set of
conversations (line 4). The PDP’s k-Trustworthiness Level Assignment (TLA)
Module interacts with the PAP, which manages the policies, to retrieve the
k-trust policies associated with the received k-trust levels (lines 5 and 6). It
evaluates whether the service requestor’s credentials satisfy the policies. If
they do, the service requestor is assigned to the k-trust level ki associated
with the ki-trust policy the service requestor is compliant with. The TLA
sends ki to the PDP’s Policy Selection (PS) Module, together with the con-
versations of length less than or equal to ki (line 7). The PS module asks the
PAP for the access control policies related to the operations composing the
conversations received from the TLA module (lines 8 and 9). The PS module
combines the selected policies to obtain the corresponding conversation ac-
cess control policy. It returns the policies to the PEP with ki (line 10). At this
point, the PEP asks the service requestor to provide the credentials required
by the policies and evaluates them against the policies (lines 11 and 12). If
the check is positive, the service requestor can perform any operation in the
conversations related to ki.

Bibliographic notes

The book of Matt Bishop [47] is recommended for the readers interested in
access control.

For an interesting discussion about stateless and stateful Web services we
refer the reader to [108, 83, 109].

7

Secure Publishing Techniques

Integrity is a key security requirement. It deals with assuring that information
is not tampered with and is only modified by properly authorized subjects. In
the Web service world, integrity is crucial from at least two different perspec-
tives. The first is related to integrity of information transmitted across the
network. Integrity in such context is assured by the use of digital signatures,
for which an XML standard has been specified (see Chapter 4). The second,
more important issue is related to the integrity of UDDI registries [139]. Be-
cause such registries provide structured and standard descriptions of Web
services, as well as searching facilities for finding the service providers that
better fit client requirements, their integrity is crucial. To address such issue,
UDDI specifications include signatures for registry elements, according to the
W3C XML Signature syntax.

A major issue, not covered by any standard, is the integrity and authen-
ticity of UDDI registries managed in the context of third-party architectures.
In such an architecture, the owner of the services, which we refer to as service
provider (SP), is different from the parties, referred to as discovery agencies
(DAs), which manage (a portion of) the UDDI registries related to the services
and answer queries by clients, also referred to as service requestors. Such archi-
tectures are today becoming increasingly popular because of their scalability
and ability of efficiently managing a large number of clients and large volumes
of data. The main problem in such an architecture is how the SP can assure
the integrity of data about its services when the data are managed by third
parties, that is, the DAs. The first obvious solution is to require the DA to be
trusted with respect to integrity. However, a major drawback of such a solu-
tion is that it is not feasible to verify large Web-based systems like DAs and,
moreover, these systems can be easily penetrated. An alternative approach
is based on the use of digital signature techniques. Such techniques, however,
cannot be directly applied because service requestors typically require only se-
lected portions of the UDDI registries through possibly fine-grained queries.
Because the possible queries are not known in advance, the SP would have to
sign elements at a very small granularity. Such an approach, however, would

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 7, c© Springer-Verlag Berlin Heidelberg 2010

148 7 Secure Publishing Techniques

not make it possible to detect if the DA has on purpose removed some portion
of the reply. An alternative solution has been proposed by Bertino et al. [35]
based on the use of secure publishing techniques. Such techniques, based on
the well-known Merkle hash tree technique [179], had been initially developed
for addressing integrity in the context of XML data publishing in third-party
architectures [36] and were later extended to address the problem of UDDI
registry integrity [35].

In this chapter we first review basic notions of the Merkle Hash tree tech-
nique and discuss its application to the signature of XML documents. We
then discuss in detail its application to the problem of signing UDDI reg-
istries, based on the approach by Bertino et al. [35], and contrast its use with
that of conventional signature techniques.

7.1 The Merkle Signatures

The technique proposed by Ralph Merkle is a well-known mechanism for au-
thenticating hierarchical data structures such as trees. It has been widely
applied in a number of different contexts, such as for the authentication of
data structures recording information about the validity of certificates [198];
for micropayments, in order to minimize the number of public key signatures
needed in issuing or authenticating a sequence of certificates for payments [66];
and for completeness and authenticity of queries in relational databases [92].
Bertino et al. have also used the Merkle hash tree for enforcing integrity and
authenticity of queries against XML documents in the context of third-party
publishing [36]. In what follows we first introduce the notion of the Merkle
tree and describe its application to XML documents.

7.1.1 Merkle Signatures for Trees

Merkle initially proposed the use of binary trees to address the problem of
authenticating a large number of public keys with a single value, that is, the
root of the tree. In such a binary tree each node is associated with a hash value,
referred to as the Merkle hash of the node. In particular, the Merkle hash for
a leaf node is computed by applying a hash function h to the content of the
node. The Merkle hash for an interior node is computed by applying h to the
concatenation of the Merkle hash of its left child node and the Merkle hash of
its right child node. More specifically, let h be a one-way hash function. Let
T be a tree and n be a node in T ; the Merkle hash of n, denoted as MH(n),
is defined as follows:

• MH(n) = h(n) if n is a leaf node;
• MH(n) = h(MH(nl)) ‖ MH(nr)) if n is an interior node; in this expres-

sion, ‖ denotes the concatenation operation, and nl and nr denote the left
and right chilren of n, respectively.

7.1 The Merkle Signatures 149

The Merkle hashes are computed for all the nodes in the tree, starting from
the leaf nodes. The Merkle hash of the root computed according to the above
definition is the Merkle hash of the entire tree. The Merkle hash of the root
is then signed. Such a signature is thus the signature of the entire tree. Note
that such an approach is very efficient since signing a tree requires signing
a single hash value. The verification of the tree signature requires the hash
value of the tree to be recomputed according to the same procedure as that
followed for the generation of such a value.

The Merkle hash technique can be easily extended to the case of non-
binary trees, as we show in the following subsection, by considering the case
of XML documents that are typically organized as non binary trees.

7.1.2 Merkle Signatures for XML Documents

Because the organization of an XML document is in essence based on the
tree structure, the Merkle signature for trees can be directly applied to the
signature of XML documents. The application of such a technique allows one
to generate a unique digital signature for an entire XML document, to assure
the integrity of an entire document as well as of any portion of it, that is, of
one or more elements and attributes.

Before describing the approach for computing the Merkle hash values for
XML documents, we need to introduce some notation. Let e be an XML ele-
ment; then, e.contents and e.tagname denote the data contents and tagname
of e, respectively. Let a be an XML attribute; then a.value and a.name denote
the value and name of a, respectively. We use the term node to refer to an
attribute or an element.

Let d be an XML document, and let n be a node of d. The Merkle hash
value associated with d, denoted as MHd(n), is computed as follows:

• MHd(n) = h(h(n.value)) ‖ h(n.name)) if n is an attribute;
• MHd(n) = h(h(n.contents ‖ h(n.tagname) ‖ MHd(child(1,n) ‖ . . . ‖ MHd

(child(Ncn, n))) if n is an element.

In the above expressions, ‖ denotes the concatenation operator; function
child(i,n) returns the i-th child of node n; and Ncn denotes the number of
children nodes of node n.

According to the above expressions, the Merkle hash value of an attribute
is the value returned by the application of the hash function to the concatena-
tion of the hashed attribute value and the hashed attribute name. The Merkle
hash value of an element is obtained by applying the hash function to the con-
catenation of the hashed element content, the hashed element tagname, and
the Merkle hash values associated with its children nodes, both attributes and
elements. As with binary trees, the Merkle hash value of the tree is the hash
value of the root node computed by recursively applying the above expres-
sions. The Merkle hash value is then signed; the resulting signature is referred
to as the Merkle signature of the document.

150 7 Secure Publishing Techniques

A relevant property of such an approach is that if the correct Merkle hash
value of a node n is known to a client, a malicious party cannot forge the values
of the children of n or the contents and tagname of n. A malicious party can
neither remove nor modify any element or attribute from the document. Thus,
a client only needs to have available the Merkle hash value of the root node
of a document in order to be able to verify the entire tree. The verification
process follows the same approach as that we outlined for the verification of
binary trees.

7.1.3 Merkle Hash Verification for Documents with Partially
Hidden Contents

An important requirement to address when dealing with third-party publish-
ing is the support of integrity verification in the case in which portions of an
XML document are pruned by the publishing party before being sent to the
requiring party. Portions of the document may be pruned as a result of the
query issued by the client or for confidentiality reasons. Confidentiality has
to be assured whenever the receiving party is not authorized to see the entire
document content. Whenever the document is pruned, a traditional approach
to digital signatures is not applicable, since its correctness is based on the as-
sumption that the signing and verification processes are performed on exactly
the same bits. In contrast, if the Merkle signature is applied, the client is still
able to validate the signature provided that it receives from the third party
a set of additional hash values, referring to the missing document portions.
Such an approach makes the client able to locally perform the computation of
the summary signature and compare it with the received one. Such additional
information, referred to as the Merkle hash path, consists of the hash values of
those nodes pruned away and needed by the client for computing the Merkle
hash value of the document.

Let d be an XML document, and let n and m be nodes in d such that
n ∈ Path(m), where Path(m) denotes the set of nodes connecting m to the
root of d. The Merkle hash path between m and n, denoted as MhPath(m,n), is
the set of hash values, having the Merkle hash value of m, needed to compute
the Merkle hash value of n. Thus, the Merkle hash path between m and n
consists of the hash values of the tagnames and the contents of all nodes in
the path from m to n (apart from m) and of all the Merkle hash values of the
siblings of the nodes belonging to the path from m to n (apart from n).

Figure 7.1 shows various examples of Merkle hash paths. In the graphical
representation, the triangle denotes the document portion returned to the
client, whereas black circles represent the nodes for which the Merkle hash
values are returned together with the document portion, that is, the Merkle
hash paths.

Consider the first example from the left reported in Figure 7.1. The Merkle
hash path between nodes 4 and 1 consists of the Merkle hash values of nodes
5 and 3, plus the hash values of the tagnames and contents of nodes 2 and

7.1 The Merkle Signatures 151

4

m

2

10

8

11

7

1312

9

16 17

6

MhPath(4,1)

1n

14 15

1n

2

5

10

8

11

7

12 13

6

MhPath(5,1)

m

14 15 14 15

1n

4 5

10

8

11

3

7

12 13

MhPath(7,1)

m

14 15 14 15

6

9

Fig. 7.1. Examples of Markle hash paths

1. By using node m, the Merkle hash value of node 5, and the hash value of
the tagname and contents of node 2, the Merkle hash value of node 2 can be
computed. Then, by using the Merkle hash values of nodes 2 and 3, and the
hash values of the tagname and contents of node 1, the Merkle hash value
of node 1 can be computed. Consider now the second example in Figure 7.1;
the returned document portion consists of a non-leaf node. In such a case,
MhPath(7, 1) contains also the Merkle hash value of the child of node 7, that
is, node 9. Thus, by using the Merkle hash values of nodes 9 and 7, the Merkle
hash value of node 7 can be computed. Then, by using this value, the Merkle
hash value of node 6 and the hash values of the tagname and content of node
3, the Merkle hash value of node 3 can be obtained. Finally, by using the
Merkle hash values of nodes 3 and 2, and the hash values of the tagname
and contents of node 1, the Merkle hash value of node 1 can be generated. In
contrast, in the third example the returned document portion consists of the
entire subtree rooted at node 5. In such a case, MhPath(5, 1) does not contain
the hash values of the children of node 5. Since the entire subtree rooted at 5 is
available, it is possible to compute the Merkle hash value of node 5 without the
need for further information. Then, as in the previous examples, by using the
Merkle hash values of nodes 5 and 4, and the hash values of the tagname and
contents of node 2 supplied by MhPath(5, 1), the Merkle hash value of node 2
can be computed. Finally, by using the Merkle hash values of nodes 2 and 3,
and the hash values of the tagname and contents of node 1, the Merkle hash
value of node 1 can be computed. Note that if the returned document portion
consists of an entire subtree, the only necessary Merkle hash values are those

152 7 Secure Publishing Techniques

associated with the siblings of the nodes belonging to the path connecting the
subtree root to the document root.

7.2 Application of the Merkle Signature to UDDI
Registries

The use of Merkle signature techniques in the context of security for UDDI
registries is important when the integrity of UDDI has to be verified by the
clients that do not have access to entire contents of the registries. Under the
approach by Bertino et al. [35], the SP first generates the Merkle signature of
the businessEntity element, and then publishes it, together with the related
data structures, in the UDDI registry. Then, when a client queries the UDDI,
the Merkle signature and the set of needed hash values (i.e., the Merkle hash
paths) are returned by the UDDI publisher to the client together with the
results of the query.

Such an approach requires us to determine how to include the Merkle sig-
nature and the Merkle hash paths in the businessEntity element and the
query result, respectively. To address such an issue, the solution by Bertino
et al. [35] makes use of the dsig:Signature element introduced in version 3
of the UDDI specification [72]. The specification includes an additional op-
tion element, referred to as dsig:Signature, that allows an SP to sign the
UDDI entry related to the service. The element can be included in any of
the following UDDI registry elements: businessEntity, businessService,
bindingTemplate, publisherAssertion, and tModel. Thus, according to the
XML Signature syntax, an SP can sign the entire element to which the signa-
ture element refers, as well as can exclude selected portions from the signature.
Such a solution is thus compliant with current standards. In what follows we
provide more details on how the elements of the solution are represented in
XML.

7.2.1 Merkle Signature Representation

A first required extension is to include the information that the signature
of the signed XML document has been computed on the Merkle hash value
of the document, which, as discussed in the previous section, is the Merkle
hash value of the root node of the document. This information can be directly
included by using the Transform Algorithm element, which is part of the
XML Signature standard. The element specifies which transformations have
to be executed on the document before signing it. Multiple transformations
can be applied, each specified by a corresponding Transform Algorithm ele-
ment. The order in which they are applied is given by the order in which the
corresponding elements are given in the signature. As such, in the approach
by Bertino et al. [35], the XML signature standard has been extended by
adding the value “Merkle” to the set of possible values for the Transform

7.2 Application of the Merkle Signature to UDDI Registries 153

Algorithm element. Figure 7.2 shows a dsig:Signature element that in-
cludes the Merkle signature. Note that the URI attribute of the Reference
element is empty, denoting that the signed XML document is the one that
contains the Signature, that is, the businessEntity element. In addition to
the required enveloped signature and scheme-centric canonicalization trans-
formations, the dsig:Signature element specifies also a Merkle transforma-
tion through a Transform element whose Algorithm attribute is equal to
“Merkle”. Such a transformation indicates to the client and UDDI registries
that the SP has computed the Merkle signature on the businessEntity ele-
ment.

<dsig:Signature>

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

<Reference URI="">

<Transforms>

<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>

<Transform

Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

<Transform Algorithm="Merkle"/>

</Transforms>

<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>1fR07/Z/XFW375JG22bNGmFblMY=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ

</SignatureValue>

</ dsig:Signature>

Fig. 7.2. An example of a Signature element storing the Merkle signature

7.2.2 Merkle Hash Path Representation

In order to make it possible for the client to verify integrity when only a
portion of the UDDI registries is returned, the dsig:Signature element, re-
turned with the inquiry answer, has to include the Merkle hash paths. A
subelement of such an element in which the paths can be recorded is the

154 7 Secure Publishing Techniques

dsig:SignatureProperties element, which records additional information
useful for the signature validation process. Figure 7.3 shows an example of
the dsig:Signature element containing the dsig:SignatureProperties el-
ement, which is inserted as a direct child of an Object element. It is im-
portant to note that, according to the XML Signature generation process,
the only portion of the dsig:Signature element that is digitally signed is
the SignedInfo element. Thus, by inserting the Object element outside the
SignedInfo element, the UDDI registry does not invalidate the signature.
Such an organization allows the UDDI to complement the dsig:Signature el-
ement representing the Merkle signature of the businessEntity element with
the dsig:SignatureProperties element containing the appropriate Merkle
hash paths, and then to insert the former element into the inquiry answer.
More precisely, during the Merkle signature validation, the client must be
able to recompute the Merkle hash value of the businessEntity element,
and to compare it with the Merkle signature. In order to do that, the client
must know the Merkle hash value of each subelement of the businessEntity
element not included into the inquiry answer (that is, the Merkle hash path).
To make the validation simpler, the Merkle hash paths are organized into
an empty businessEntity element (see Figure 7.3), whose children con-
tain a particular attribute, called hash, storing the Merkle hash value of
the corresponding element. The businessEntity element is inserted into the
dsig:SignatureProperties element.

7.2.3 A Comparison of Merkle Signatures with XML Signatures

Before discussing the differences between the approach based on the Merkle
signature and the approach based on the XML signature standard, it is im-
portant to note that the latter approach, like the former one, allows one to
generate a different hash value for each different node in the XML document,
and then to generate a unique signature of all these values. To support such a
feature, the XML Signature standard provides the Manifest element. This
element consists of a list of Reference elements, one for each hashed node.
However, the approach does not take into account the structure of the XML
document, and therefore it is not able to assure the integrity of the relation-
ships among document nodes. In contrast, the approach based on the Merkle
signature is able to assure the integrity of node relationships. In what follows,
we discuss the possible UDDI enquiries that a client can submit and discuss
how integrity is assured.

• get xxx inquiries. Such an enquiry allows one to retrieve up-to-date and
complete registered details when actual keys to instances of specific struc-
tures (for example, businessEntity, businessService, bindingTemplate,
and tModel) are known. According to the UDDI specification, the SP can
complement all the data structures returned by a get xxx API call with
a dsig:Signature element. However, to ensure the integrity of all the

7.2 Application of the Merkle Signature to UDDI Registries 155

<dsig:Signature>

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

<Reference URI="">

<Transforms>

<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

<Transform

Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

<Transform Algorithm="Merkle"/>

</Transforms>

<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>

1fR07/Z/XFW375JG22bNGmFblMY=

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ

</SignatureValue>

<Object>

<SignatureProperties>

<SignatureProperty Target="MerkleHashPath">

<businessEntity

autorizhedName="value"

operator="juddi.org"

hash="sldghoghor....">

<discoveryURLs hash="fdsgbdsl...." />

<identifierBag hash="57438tgfkv...." />

<categoryBag hash="57438tgfkv...." />

<businessServices>

<businessService>

<description hash="gherogh..." />

<bindingTemplates hash="hgkvdlsfv...." />

<categoryBag hash="hdsbghfdlb..." />

</businessService>

<businessService>

<description hash="gherogh..." />

<bindingTemplates hash="hgkvdlsfv...." />

<categoryBag hash="hdsbghfdlb..." />

</businessService>

</businessServices>

</businessEntity>

</SignatureProperty>

</SignatureProperties>

</Object>

</dsig:Signature>

Fig. 7.3. An example of a Signature element storing the Merkle signature

156 7 Secure Publishing Techniques

data structures the SP must compute five different XML signatures (one
for each element). In contrast, by using the Merkle signature approach
the SP generates only one signature, that is, the Merkle signature of the
businessEntity element. Thus, the first benefit of the Merkle signature
approach is that by its generating only a unique signature it is possible
to ensure the integrity of all the data structures. When a client submits a
get xxx inquiry, the UDDI returns to it the entire requested data struc-
ture, where the enclosed dsig:Signature element contains the Merkle
signature generated by the SP, together with the Merkle hash path be-
tween the root of the returned data structure and the businessEntity
element.

• find xxx inquiries. Such an enquiry returns overview information about
the registered data. Consider, for instance, the inquiry API find business
that returns a structure containing information about each matching busi-
ness, including a summary of its business services. This information is
a subset of the information contained in the businessEntity and the
businessService elements. For these kinds of inquiries, the UDDI speci-
fication states that if a client wants to verify the integrity of the informa-
tion contained in the returned data structure, the client must retrieve the
corresponding dsig:Signature element by using the get xxx API call.
This means that if a client wishes to verify the answer of a find business
inquiry, the client must retrieve the whole businessEntity element, to-
gether with the corresponding dsig:Signature element, as well as each
businessService element, together with its dsig:Signature element.
In contrast, if the same API call is performed by using the Merkle signature
approach, to make the client able to verify the integrity of the inquiry re-
sult it is not necessary to return to the client the whole businessEntity
element and the businessService elements, together with their signa-
tures. Only the Merkle hash values of the missing portions are required,
that is, of the portions not returned by the inquiry. These Merkle hash
values can be easily stored by the UDDI in the dsig:Signature element
(more specifically in the dsig:SignatureProperties subelement) of the
businessEntity element.
The main issue in applying the Merkle signature to the find xxx inquiries
is that the expected answers, defined by the UDDI specification, do not
include the dsig:Signature element. Thus, in order to support the use
of the Merkle signature for supporting the integrity verification of the
replies to the find xxx inquiries, the data structure returned by the UDDI
must be modified by inserting one or more dsig:Signature elements. One
possible approach to address this issue is to add one such element to each of
the elements in the xxxList element. xxxList is the list of results returned
by the enquiry. An algorithm specifying how to complement the reply to a
find xxx inquiry with the Merkle signature, and a prototype supporting
such enhanced UDDI registries, has been developed by Bertino et al., and
we refer the reader to [35] for additional details.

7.3 Bibliographic Notes 157

7.3 Bibliographic Notes

The approach by Bertino et al. [36] for integrity verification of XML doc-
uments in third-party publishing environments has been further extended
by other researchers. Some notable extensions include support for dynamic
data [163] and confidentiality [64]. The latter extension is particularly signifi-
cant in that it has resulted in a technique supporting both integrity and con-
fidentiality through encryption; as such the third party does not even have to
have access to data in clear. To date, this approach is the only one supporting
both confidentiality and integrity in third-party publishing. The Merkle hash
signature technique has also been applied to the integrity verification of many
different types of data structures, such as indexes [172] and directories [117],
and to streaming data [164]. Recently, however, Kundu and Bertino [156], have
shown that Merkle hash signatures suffer from information leakage. As such
they are not suitable for applications requiring both integrity and confiden-
tiality. To address this problem, Kundu and Bertino have proposed another
approach to integrity verification for tree-structured data based on random-
ized postordering, preordering and in-order tree traversal; this approach does
not suffer from information leakage and is more efficient than the Merkle
hash signature approach with respect to the operation of signature verifica-
tion. Third-party publishing architectures have also been widely investigated
in the context of data management outsourcing. In this context, in addition to
data integrity, data confidentiality is crucial and thus approaches have been
proposed supporting query processing, including complex operations like joins,
on top of encrypted data data [142]. Secure data management outsourcing is
crucial in Web services and SOA when services deal with data management
and information dissemination. Approaches developed to deal with these spe-
cialized services are based on the same architectural approach proposed by
Bertino et al. [36]; their focus is mainly on the assurance of query reply cor-
rectness [290] through the use of authentication data structures, often defined
as extension of the Merkle Hash Tree.

8

Access Control for Business Processes

Todays business environment is undergoing dramatic change. Competitive
pressure from traditional and non-traditional sources, the rapid emergence
and growth of new channels, increasing pressure to outsource selected business
processes, and demands for compliance with a plethora of new regulatory and
legal requirements are all contributing to an ever growing demand for change.
Traditionally, many organizations have struggled to manage change. In order
to survive and prosper in the coming years, these organizations will need to
develop a capability to sustain a state of change and evolution. The ability
of an organizations IT systems to cope with this level of change will be a
significant factor in the organizations success in adapting to this increasingly
dynamic business environment. Organizations are addressing this by adopting
service-oriented architecture (SOA) principles. Service orientation (and SOA
in general) is increasingly being viewed as a means to better align business and
IT objectives and to better support the levels of flexibility and change required
by the business. Business processes or workflows can be built by combining
Web services through the use of a process specification language. Such lan-
guages basically allow one to specify which tasks have to be executed and the
order in which they should be executed. Because of their importance, process
specification languages have been widely investigated and a number of lan-
guages have been developed. One such language is WS-BPEL (Web services
Business Process Execution Language), which has became the de facto stan-
dard to implement business processes based on Web services [10]. WS-BPEL
resulted from the combination of two different workflow languages, WSFL
[162] and XLANG [253], and adopts the best features of these language. WS-
BPEL is layered on top of several XML standards, including WSDL 1.1[67],
XML Schema 1.0 [258], and XPath 1.0 [71], but of these, WSDL has had the
most influence on WS-BPEL. Despite significant progress toward the devel-
opment of an expressive language for business processes, significant challenges
still need to be addressed before business processes management systems can
be widely used in distributed computer systems and Web services. Even if
WS-BPEL has been developed to specify automated business processes that

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 8, c© Springer-Verlag Berlin Heidelberg 2010

160 8 Access Control for Business Processes

orchestrate activities of multiple Web services, there are cases in which people
must be considered as additional participants who can influence the execu-
tion of a process. Recently, a WS-BPEL extension to handle person-to-person
processes has been proposed called BPEL4People [5]. In BPEL4People, users
who have to perform the activities of a WS-BPEL business process are directly
specified in the process by user identifiers or by groups of people names. No
assumption is made on how the assignment is done or on how it is possible to
enforce constraints like separation of duties.

WS-BPEL does not provide any support for the specification of autho-
rization policies or of authorization constraints on the execution of activities
composing a business process. We believe, however, that it is important to ex-
tend WS-BPEL to include the specification of human activities and an access
control model able to support the specification and enforcement of authoriza-
tions to users for the execution of human tasks within a business process while
enforcing constraints, such as separation of duty, on the execution of those
tasks [43, 81, 65, 270].

This chapter presents RBAC-WS-BPEL [216], an authorization model for
WS-BPEL business processes that also supports the specification of a large
number of different types of constraints. Role-based access control (RBAC)
(see Appendix A) is a natural paradigm for the specification and enforcement
of authorization in workflow systems because of the correspondence between
tasks and permissions. In recent years, several extensions to RBAC have been
proposed with the goal of supporting access control for workflow systems
[7, 43, 270]. However, a role-based model alone is not sufficient to meet all
the authorization requirements of workflow systems, such as separation of
duty constraints, and binding of duty constraints. Separation of duty exists
to prevent conflicts of interest and to make fraudulent acts more difficult to
commit. A simple example of a separation of duty constraint is to require
two different signatures on a check. Binding of duty constraints require that
if a certain user executes a particular task, then this user must also execute a
second task in the workflow. This chapter introduces BPCL (Business Process
Constraint Language), which can be used to specify authorization constraints
for business processes.

The chapter is organized as follow. The next section presents the main
proposals about access control for workflow and business process systems.
Then, Section 8.2 introduces WS-BPEL and a loan approval business process
that will be used throughout the chapter to illustrate the discussion. Sec-
tion 8.3 defines the components of RBAC-WS-BPEL, including authorization
policies and authorization constraints. Section 8.4 discusses how authoriza-
tion information can be represented in RBAC-XACML. Section 8.5 describes
the BPCL language and how it implements the authorization constraints de-
scribed in Section 8.3. Section 8.6 describes how WS-BPEL can be extended
to support the specification of human activities and authorizations and autho-
rization constraints. Section 8.7 introduces an algorithm to evaluate whether a
request by a user to execute an activity in a WS-BPEL process can be granted.

8.1 Access Control for Workflows and Business Processes 161

Section 8.8 overviews RBAC-WS-BPEL system architecture. Section 8.9 de-
scribes a prototypal implementation of RBAC-WS-BPEL architecture on top
of an existing WS-BPEL engine.

8.1 Access Control for Workflows and Business Processes

The problem of associating an authorization model with a workflow has been
widely investigated. Atluri et al. [23] have proposed a workflow authoriza-
tion model (WTA) that supports the specification of authorizations in such
a way that subjects gain access to required objects only during the execu-
tion of a task, thus synchronizing the authorization flow with the workflow.
To achieve such synchronization, their approach associates an authorization
template (AT) with each task in the workflow, which allows appropriate au-
thorizations to be granted only when the task starts and to be revoked when
the task finishes. They have proposed an implementation of WAT using Petri
nets in order to be able to perform a safety analysis because the safety problem
in WAT is equivalent to the reachability problem in Petri nets.

Arguably, the most sophisticated approach to the problem of authoriz-
ing users to execute tasks within a workflow while enforcing constraints is
the one by Bertino et al. [43]. According to this approach a workflow is a
list of task-role specifications. A task-role specification identifies a task and
specifies the roles authorized to perform the task and the maximum num-
ber of activations of the task permitted in an instance of the workflow. The
model, however, supports only sequential task execution. As part of such an
approach, a language has been developed for defining constraints on role as-
signment and user assignment to tasks in a workflow. The constraint language
supports, among other functions, both static and dynamic separation of duty
constraints. The authors also have shown how such constraints can be formally
expressed as clauses in a logic program; such a reduction makes it possible
to exploit results from logic programming and deductive databases. A further
contribution of this approach is the development of algorithms for planning
role and user assignments to the various tasks. The goal of these algorithms
is to pre compute all the possible role-task and user-task assignments, so that
all constraints stated as part of the authorization specification are satisfied. A
drawback of this approach is that the algorithms for role and user assignments
to tasks run in time exponential in the number of tasks in the workflow.

Another interesting approach is by Crampton [81]. He has proposed an ex-
pressive method for specifying authorization constraints in workflow systems.
In particular, his model allows one to specify separation of duty constraints,
weak separation of duty constraints, binding of duty constraints, constraints
on the relative seniority of users who perform different tasks, and constraints
determined by contextual user-based information. All the constraints are ex-
pressed as binary relations on the set of users. The model has the advantage

162 8 Access Control for Business Processes

of being independent from any computational model or access control mech-
anism. As part of such an approach, an algorithm has been proposed for the
assignment of authorized users to tasks in a workflow that guarantees that
the workflow instance completes. The algorithm runs in a time polynomial in
the number of users and tasks, unlike the equivalent procedure in the model
by Bertino et al.

Casati et al. [65] have proposed an authorization framework for the as-
signment of tasks to roles, organizational levels, and agents. Roles and orga-
nizational levels are structured into hierarchies to facilitate the assignment of
tasks to agents. Authorizations for agents to play roles and levels and for roles
and levels to execute tasks can be specified for all instances of a given work-
flow process, independently of time and workflow execution history. Then, the
framework enables the definition of instance-dependent, time-dependent, and
history-dependent authorizations in the form of constraints: authorizations
can be modified depending on the state or history of a workflow instance, on
the time, or on the content of process data. Authorization constraints are en-
forced as Event-Condition-Action (ECA) rules, where the event part denotes
when an authorization may need to be modified, the condition part verifies
that the occurred event actually requires modifications of authorizations, and
determines the involved agents, roles, tasks, and processes, and the action
part enforces authorizations and prohibitions. Active rules are also exploited
for managing authorization inheritance along the role and level hierarchies of
the framework. Active database technology has been adopted for the imple-
mentation of the framework; it has been used, in particular, to support the
definition and execution of ECA rules. Finally, Casati et al. have implemented
the authorization framework within the WIDE workflow management system.

With the widespread adoption of Web services to implement complex busi-
ness processes and of WS-BPEL as the standard language to specify business
processes based on Web services, the problem of how to associate authorized
users with the activities of a WS-BPEL process is gaining attention. The
RBAC-WS-BPEL authorization model that will be introduced in this chapter
is one of the few approaches that address this problem. Another similar ap-
proach is by Konshutanski et al. [153]. They propose an authorization model
for business processes based on Web services. In this approach, the autho-
rization logic is decoupled from the application logic of the business process.
Access control enforcement is based on two types of policies: access control
policies and release policies. Both types of policy are expressed as logic rules
specifying conditions on the credentials a user must submit to invoke business
process activities. Access control policies are used to decide if a user request
can be granted or not. A request is granted if it is a logical consequence of an
access control policy and of the credentials submitted by the user with the re-
quest. Release policies are used when a user request is denied to determine the
additional credentials that a user has to provide for the request to be granted.
The enforcement process involves different components. A Policy Evaluator
is associated with each Web services its activities are orchestrated in a busi-

8.1 Access Control for Workflows and Business Processes 163

ness process: it makes local authorization decisions. A Policy Orchestrator
defines an authorization business process that orchestrates the authorization
processes performed by the Policy Evaluators of the Web services invoked
to fulfill a user’s request. The authorization business process is executed by
a third component called Authorization Server that returns the result of
the execution to the user. If the user request is denied, the user receives a
business process that defines further actions that he has to execute in order
to see this request accepted.

Another interesting proposal is BPEL4People, recently proposed by IBM
and SAP. BPEL4People supports some extensions that are required by WS-
BPEL to support user interactions. BPEL4People is comprised of the two
following specifications:

• WS-BPEL Extension for People [5] layers features on top of WS-BPEL to
describe human tasks as activities that may be incorporated as first class
components in WS-BPEL process definitions.

• Web services Human Task (WS-HumanTask) [4] introduces the definition
of standalone human tasks, including their properties, their behavior, and
the operations used to manipulate them. Capabilities provided by WS-
HumanTask may be utilized by Web service-based applications beyond
WS-BPEL processes.

WS-BPEL Extension for People introduces a new basic WS-BPEL activity
called <people activity> which uses human tasks as an implementation,
and allows one to specify tasks local to a process or use tasks defined outside
the process definition. The definition of standalone human tasks is given in
the WS-HumanTask specification. A local task can be a) an inline task de-
clared within the people activity, b) an inline task declared within either the
scope containing the <people activity> or the process scope; or c) a stan-
dalone task identified using a QName. The element <task> is used to define
an inline task within a <people activity>. The elements <localtask> and
<remotetask> are used to specify, respectively, standalone tasks that do not
offer a callable Web service interface and those that offer a callable Web service
interface. The users entitled to perform a <people activity> are specified
by a <peopleAssignment> element that associates with the activity a query
on an organizational directory.

The WS-HumanTask specification introduces the definition of human
<tasks>. It specifies the roles a person or a group of people resulting from
a people query can play with tasks. WS-HumanTask describes how to de-
termine who is responsible for acting on a human task in a certain generic
human role. Descriptions of the operations and of an application interface to
manipulate human tasks are also given. Finally, WS-HumanTask introduces a
coordination protocol that supports interactions with human tasks according
to a service-oriented strategy and at the same time enhances task autonomy.

164 8 Access Control for Business Processes

8.2 Web Services Business Process Execution Language
(WS-BPEL)

WS-BPEL is an XML-based language to specify business processes. The top-
level element in the specification is <process>. It has a number of attributes,
which specify the process name, the namespaces being referred to, and whether
the process is an abstract process or an executable process. An executable pro-
cess describes the internal implementation of the process, while an abstract
process specifies the external behavior of a process. The <partnerLinks> el-
ement is used to identify the external Web services invoked from within the
process. The <variables> element defines the data that flows within the pro-
cess. The <correlationSets> element is used to bind a set of operations to a
service instance. The <faultHandlers> element is used to handle exceptions.
The <compensationHandlers> element is used to implement specified actions
to be taken in the case of a transaction rollback. The <eventHandlers> are
used to specify actions in response to external events. The actual business
logic is represented as a group of activities, which are executed in a struc-
tured way. Activities are executed by invoking Web services. The business
logic includes basic control structures: the <sequence> activity contains one
or more activities that are performed sequentially; the <if> activity is used
to specify conditional branching execution; the <while> activity supports it-
erative execution of an activity; the <pick> activity is used to trigger an
activity following a specified event; the <repeatUntil> activity provides for
repeated execution of a contained activity; the <forEach> activity iterates
the execution of an enclosed <scope> activity a fixed number of times; the
<flow> activity is used to specify one or more activities to be performed con-
currently. <links> elements can be used within a <flow> activity to define
explicit control dependencies between nested child activities; <link> speci-
fies that the activity that includes its <source> element must be executed
before the one that includes its <target> element. These activities, in turn,
may contain basic activities, which are specified using one of the following
elements: the <invoke> element, which allows the business process to invoke
a one-way or request-response operation on a communication channel offered
by a partner; the <receive> element, which allows the business process to
wait in a blocking mode for a matching message to arrive, and the <reply>
element, which allows the business process to send a message in reply to a
message that was received via a <receive> activity. The <scope> activity
defines a subprocess with its own variables, partner links, message exchanges,
correlation sets, event handlers, fault handlers, a compensation handler, and
a termination handler.

The creation of a business process instance in WS-BPEL is always implicit;
activities that receive messages, that is, <receive> activities and <pick> ac-
tivities, can be annotated to indicate that the occurrence of an activity results
in a new instance of the business process to be created.When a message is re-
ceived by such an activity, an instance of the business process is created if it

8.2 Web Services Business Process Execution Language (WS-BPEL) 165

does not already exist. A business process instance is terminated when one of
the following conditions holds: the last activity in the process terminates; a
fault occurs, and it is not handled appropriately; or a process is terminated
explicitly by a terminate activity.

Receive
Loan

Request

Invoke
CheckRisk

Invoke
ApproveLoan

Reply
Loan

Request

Loan Amount >= $10000Loan Amount < $10000

High Risk

Low Risk

Fig. 8.1. A loan approval process specification

Example 8.1. To provide concrete examples of the proposed extensions to the
WS-BPEL language, a loan approval process is introduced as a running exam-
ple. Customers of the service send loan requests, including personal informa-
tion and the amount being requested. Using this information, the loan service
executes a simple process resulting in either a “loan approved” message or a
“loan rejected” message. The decision is based on the amount requested and
the risk associated with the customer. For low amounts of less than $10, 000,
a streamlined process is used. In the streamlined process, low-risk customers
are approved automatically. For higher amounts, or medium- and high-risk
customers, credit requests require further processing. For processing each re-
quest, the loan service uses two other services. In the streamlined process,
used for low-amount loans, a risk assessment service is used to obtain a quick
evaluation of the risk associated with the customer. A full loan approval ser-
vice (possibly requiring direct involvement of a loan expert) is used to obtain
assessments when the streamlined approval process is not applicable. Four
main activities are involved in the process:

• Receive Loan Request allows a client to submit a loan request to the
bank

166 8 Access Control for Business Processes

• Invoke Check Risk invokes the operation Check Risk (provided by the
risk assessment Web service) that computes the risk associated with the
loan request

• Invoke Approve Loan invokes the operation Approve Loan (provided by
the loan approval Web service) that states whether the loan request should
be approved or rejected

• Reply Loan Request sends to the client the result of the loan request
evaluation process

Figure 8.1 reports an informal specification of the process. Activities are rep-
resented by rectangular nodes while rhomboid nodes represent a conditional
choice. An arc from one activity to another means that the first activity must
be executed before the other.

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Authorization
Constraints

BPCL

RBAC XACML
Role

<PolicySet>

Role-Permission
Assignament

RBAC XACML
Permission Assignament

<PolicySet>

RolesUsers

Activities

Business Process

Users Assignament

WS-BPEL

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Authorization
Constraints

BPCL

RBAC XACML
Role

<PolicySet>

Role-Permission
Assignament

RBAC XACML
Permission Assignament

<PolicySet>

RolesUsers

Activities

Business Process

Users Assignament

WS-BPEL

Fig. 8.2. RBAC-WS-BPEL component representation

8.3 RBAC-WS-BPEL: An Authorization Model for
WS-BPEL Business Processes

A WS-BPEL process is a representation of an organizational or business pro-
cess and is typically specified as a set of activities and a set of dependencies
between the activities. The dependencies fall into two broad categories: those
determined by the application logics of the process, such as the order of exe-
cution of the activities [226], and those determined by security requirements.
WS-BPEL addresses the first category only.

This chapter deals with the second category and it focuses on developing
authorization extensions to WS-BPEL. The proposed extensions include the

8.3 RBAC-WS-BPEL 167

specification of authorization information and authorization constraints. Au-
thorization information associates activities with authorized users and enables
a reference monitor to reach a decision about the legitimacy of a user request
to execute an activity. Authorization constraints include separation of duty
requirements, where two different users must execute two different activities,
and binding of duty constraints, in which the same user is required to perform
two different activities. In what follows, the main components of the RBAC-
WS-BPEL model are presented (see Figure 8.2). These components support
the specification of a business process and the specification and enforcement
of an RBAC authorization policy for the activities composing the business
process.

Roles Attribute Conditions

Bank Director {Employment = Bank Director, Bank = Chase}
Branch Director {Employment = Branch Director, Bank = Chase,

City = New York}
Risk Loan Manager {Employment = Branch Director, Bank = Chase,

City = New York, Branch = 2345}
Line Manager {Employment = Manager, Bank = Chase }
Clerk {Employment = Clerk, Bank = Chase }

(a) Roles

Bank Director

Branch Director

Risk Loan ManagerLine Manager

Clerk

(b) The role hierarchy

Fig. 8.3. RBAC-WS-BPEL role hierarchy for the loan approval process

The model, referred to as RBAC-WS-BPEL, inherits all the components
of traditional RBAC models: users, roles, permissions, role hierarchies, user-
role assignment and role-permission assignment relations. Users are assigned
to roles and roles are assigned to permissions. The main difference with re-
spect to traditional RBAC models is that WS-BPEL business processes co-
ordinate the operations of Web services provided by different organizations.
Therefore, roles do not represent job functions within a single organization
as in traditional RBAC models, and potential users of the business process
are not the employees of an organization performing job functions identi-
fied by roles. Then, business process’ users may not be known a priori and
there is the need of a mechanism to identify users and assign them to roles.

168 8 Access Control for Business Processes

In RBAC-WS-BPEL, users are identified by means of digital credentials. A
credential contains a set of attributes characterizing the owner specified via
(name, value) pairs. An RBAC-WS-BPEL role is identified by a set of con-
ditions on users’ attributes. RBAC-WS-BPEL roles are structured in a role
hierarchy that reflects the different responsibilities associated with a business
process and defines a permissions inheritance relation among the roles. A user
is assigned to a role if the user’s credentials match the user’s attribute con-
ditions associated with the role. The RBAC-WS-BPEL user-role assignment
relation is represented as a set of tuples (u, r) where u represents a user and
r the role to which it is assigned. A user acquires the permission to execute
a business process’ activity only if he is assigned to a role that has the per-
mission to perform that activity. An RBAC-WS-BPEL permission represents
the ability to execute an activity of a WS-BPEL business process. It is repre-
sented as a tuple (Ai, Action) where Ai is the identifier of an activity in BP
and Action identifies the type of action that can be performed on activity Ai.
The association among permissions and roles is given by the RBAC-WS-BPEL
role-permissions assignment relation.

The RBAC-WS-BPEL authorization schema associate with a WS-BPEL
business process encompasses all the previous components. It is represented as
a tuple (R,P,RA,UA) where R is a partially ordered set of roles, P is the set
of permissions defined for the activities in the business process, RA ⊆ R × P
is a role-permission assignment relation, and UA is the user-role assignment
relation.

P1 (Receive Loan Request,execute)

P2 (Invoke Check Risk,execute)

P3 (Invoke Approve Loan,execute)

P4 (Reply Loan Request,execute)

(a) Permissions

Clerk P1

Clerk P4

Clerk P2

Risk Loan Manager P3

Branch Director P3

Line Manager P2

(b) Role-permission as-
signment

Fig. 8.4. RBAC-WS-BPEL permissions and role-permission assignment relation
for the loan approval process

Example 8.2. Figures 8.3 and 8.4 illustrate the various components of an
RBAC-WS-BPEL authorization schema for the loan approval process exam-
ple. Figure 8.3 (a) illustrates the role hierarchy and defines five different roles.
The most senior role is Bank Director, which dominates the role Branch
Director, which in turn dominates the roles Line Manager and Risk Loan
Manager; Line Manager and Risk Loan Manager dominate the role Clerk.
Figure 8.3 (b) represents, for each role in the role hierarchy, the attribute con-

8.3 RBAC-WS-BPEL 169

ditions that a user has to satisfy to be assigned to the role. The set of permis-
sions comprises the ability to execute each of the activities in the loan approval
process (see Figure 8.4(a)). Figure 8.4(b) illustrates a typical permission-role
assignment relation. Note that no permissions are explicitly assigned to the
Bank Director role, although the role does implicitly have the rights to ex-
ecute all activities in the process. Similarly, the Risk Loan Manager role has
the permission to execute the Invoke Approve Loan activity.

The above authorization model is complemented by the specification of au-
thorization constraints. In particular, RBAC-WS-BPEL allows one to specify
two different types of authorization constraints: role authorization constraints
and user authorization constraints. Both types of constraint are represented
as a tuple (D, (A1, A2), ρ); D is the domain of the constraint and is a subset
of the set of roles R or of the set of users U ; ρ is a relation on the set U or on
the set R. An authorization constraint places some restrictions on the users
and roles that can perform A2 (the consequent activity) given that the user
u ∈ D or the role r ∈ D has executed A1 (the antecedent activity). Using
this formalization for representing authorization constraints, (D, (A1, A2), �=)
defines a separation of duty constraint and (D, (A1, A2),=) defines a bind-
ing of duty constraint. Moreover, we can specify constraints that restrict the
execution of two activities by users or roles, where that restriction can be
expressed as a binary relation on the set of users or roles. Such relations could
include “belongs-to-same-branch-as” or “is-bank-director-of”.

(U, Receive Loan Request,Reply Loan Request, =)

(U, Invoke Check Risk,Invoke Approve Loan, �=)

(R, Invoke Approve Loan,Reply Loan Request,<)

Fig. 8.5. RBAC-WS-BPEL authorization constraints for the loan approval process

Example 8.3. Figure 8.5 shows the authorization constraints associated with
the loan approval process. (U,ReceiveLoanRequest,ReplyLoanRequest,=)
is a binding of duty constraint, requiring that the same user who receives
the loan request communicates to the client whether the request is approved
or not. (U, InvokeCheckRisk, InvokeApproveLoan, �=) is separation of duty
constraints. This constraint imposes that the user who performs Invoke
Check Risk Activity must be different from the user who executes Invoke
Approve Loan. Finally, the last constraint is a seniority constraint that states
that the role that executes Invoke Approve Loan be more senior than the
role that replies to the client.

Finally, the notion of RBAC-WS-BPEL authorization specification combines
all the previous notions. An RBAC-WS-BPEL authorization specification is
a tuple (BP,AS,AC) where BP is a WS-BPEL business process, AS is the

170 8 Access Control for Business Processes

authorization schema defined for BP , and AC is the set of authorization
constraints that apply to the activities in BP .

8.4 RBAC XACML: Authorization Schema

The first extension to the WS-BPEL language is the specification of the
RBAC-WS-BPEL authorization schema associated with a WS-BPEL busi-
ness process. This component of the language is specified using the RBAC
XACML policy language [82] proposed as an alternative to the RBAC profile
for XACML [12].

The authorization policy uses three different kinds of XACML policies,
each represented by a <PolicySet> element. The set P of permissions as-
sociated with a WS-BPEL business process is represented by a Permission
<PolicySet> containing a Permission <Policy> element for each permis-
sion in P . The RA role-permission assignment relation is represented by
a PermissionAssignment <PolicySet> element: it includes a <PolicySet>
subelement for each role to which the relation RA assigns a permission. Each
<PolicySet> subelement contains a <PolicySetIdReference> child node for
each permission assigned to the role. <PolicySetIdReference> refers to the
Permission <Policy> element that represents the permission. Finally, a Role
<PolicySet> element represents a role in the hierarchy. The <Target> subele-
ment limits the applicability of the Role <PolicySet> to users satisfying the
specified attribute conditions. The <Target> subelement of Role <PolicySet>
has <Subject> subelements that specify the attributes’ conditions that a users
has to satisfy to be assigned to the role. <PolicySetIdReference> subele-
ments are used to refer to the PermissionAssignment <PolicySet> element
containing the set of permissions associated with the role. In addition, they
are used to represent the role hierarchy, by referencing immediate junior roles.

8.5 Business Process Constraint Language

This section introduces the second extension to WS-BPEL, that is, an XML-
based language for the specification of authorization constraints such as sep-
aration of duty and binding of duty. This language is called BPCL (Business
Process Constraint Language). BPCL provides an XML Schema template for
specifying authorization constraints. According to the proposed XML Schema,
an <AuthorizationConstraints> element contains all the authorization con-
straints that apply to the activities in a WS-BPEL business process. Each con-
straint C ≡ (D, (A1, A2), ρ) is represented by a <Constraint> element having
an Id attribute by which it is referenced. The <Constraint> element has three
subelements: <Domain>, <Activities>, and <Predicate>. The <Domain> el-
ement represents the domain D of the constraint C. It has two subelements,

8.6 RBAC-WS-BPEL Authorization Specification 171

<Type> and <Subject>. The <Type> data content specifies the type of the con-
straint C; it contains the value “role” if C is a role authorization constraint,
and the value “user” if C is a user authorization constraint. The content of
the <Subject> element is a set of roles or a set of users and depends on
the content of the <Type> element. The <Activities> element specifies the
two activities A1 and A2 to which the constraint C is applied. In particular,
<Activities> has two child nodes, <AntecedentActivityReference> and
<ConsequentActivityReference>, containing, respectively, an XLink refer-
ence to the XML element representing activities A1 and A2 in the WS-BPEL
specification.

Finally, the <Predicate> element data content identifies the relation ρ in
C: for example, the string “equal” identifies the relation =, while the string
“not equal” identifies the relation �=.

8.6 RBAC-WS-BPEL Authorization Specification

This section describes how the proposed extensions are incorporated into the
loan approval process specification introduced in Section 8.2. WS-BPEL has
been designed to be extensible. Extensions to WS-BPEL could include any-
thing ranging from new attributes to new elements, to extended assign op-
erations and activities, to restrictions or extensions of runtime behavior, and
so on. The <process> element contains an <extensions> element having
an <extension> child element that is used to declare namespaces of WS-
BPEL extension attributes, and elements and indicate whether they carry
semantics that must be understood by a WS-BPEL processor. WS-BPEL al-
lows, also, the definition of new types of activities by placing them inside the
<extensionActivity> element. The contents of an <extensionActivity>
element must be a single element qualified with a namespace different from
the WS-BPEL namespace. WS-BPEL extension rules specify which activ-
ities require interaction with users and the authorization information and
constraints that apply to these activities. First, an <extension> element
has been included into the process specification specifying the namespace
“http://www.example.org/rbac-ws-bpel” that identifies the proposed exten-
sions. Then, a new type of WS-BPEL activity called <HumanActivity> has
been introduced to specify the activities that must be performed by hu-
mans: a <HumanActivity> contains the activity that to be performed re-
quires interaction with a user. Finally, two new child elements have been
added to the <process> element: the <authorization schema> element
and the <authorization constraints> element. These elements include the
references to the authorization information necessary to state which roles
or users are allowed to execute the business process’ activities, and the
authorization constraints that apply to the activities in the process. The
<authorization schema> and the <authorization constraints> elements
have a “ref” attribute of type URI pointing, respectively, to the XML docu-

172 8 Access Control for Business Processes

ment defining the RBAC policy and the BPCL representation of the autho-
rization constraints.

The RBAC-WS-BPEL specification shows many interesting features of the
approach based on associating authorization information and authorization
constraints with a business process’ human activities. First, the specification
of authorization information and authorization constraints in the WS-BPEL
specification does not require a significant modification to the syntax of the
language. It simply requires the inclusion of two new XML elements in the
WS-BPEL syntax, which refer to the authorization information and the au-
thorization constraints. Hence, the specification of a WS-BPEL business pro-
cess that includes authorization information and authorization constraints is
modular. Furthermore, with this approach it is easy to modify the authoriza-
tion information and authorization constraints associated with the business
process since only the references to them need to be modified. Second, the
authorization constraint language is very expressive. It supports the specifi-
cation of binding of duty constraints, separation of duty constraints and any
constraint, which can be expressed as a binary relation on the set of users and
roles.

8.7 RBAC-WS-BPEL Enforcement

The previous sections have presented the main components of RBAC-WS-
BPEL, the access control model tailored for WS-BPEL. This section describes
the algorithm to determine whether a user request to execute an activity
Ai in a WS-BPEL process can be satisfied or not. When a user u sends a
request to perform an activity Ai of a WS-BPEL process, the enforcement
system evaluates the identity of the requester and checks the permissions
he has. Further, it has to verify that the execution of the activity Ai by u
does not violate any authorization constraints and does not prevent some
other subsequent activities from completing because certain constraints are
violated. Hence, for a given instance of a WS-BPEL process, upon receiving
a request to perform an activity Ai by a user u, the enforcement system has
to verify that:

• u is authorized to perform Ai;
• all the constraints in which Ai is the consequent activity are satisfied;
• the WS-BPEL process instance can complete if u performs Ai.

In what follows, an algorithm is introduced to evaluate whether a request
to execute an activity by a user can be granted or not. The algorithm veri-
fies that the WS-BPEL process instance will complete and no authorization
constraints will be violated. The algorithm is performed before executing any
request (u, r, i, Ak) to check whether the execution of the request prevents
the WS-BPEL process instance from completing. To guarantee the complete-
ness, before granting a request, the authorization schema associated with the

8.7 RBAC-WS-BPEL Enforcement 173

WS-BPEL process is updated with the fact that the user u under role r has
executed activity Ak. Then, the algorithm computes for each activity in the
WS-BPEL process the set of roles and users entitled to perform them. If one
of these sets is empty, the request cannot be granted. After each request is
granted, the authorization schema AS is updated with the information that
the user u under role r has executed activity Ak, to ensure that the fact that
a particular user and role have executed a particular activity is considered in
enforcing constraints that apply to subsequent activities.

In what follows, we denote with ((Ai, Aj), ρ), both role and user autho-
rization constraints. The algorithm receives as input an RBAC-WS-BPEL
authorization specification (BP,AS,AC), an instance i of the WS-BPEL pro-
cess BP , and a request (u, r, i, Ak) by a user u to execute activity Ak in BP
under the role r. When the request (u, r, i, Ak) is received, the algorithm first
adds to the authorization schema the fact that the role r of user u is executing
the activity Ak. To represent this, a function IR is added: it associates with
each activity Ai in BP the role that has executed Ai. This step is important
to guarantee the completeness of the instance i (line 1). Then, for each pair
of activities Ai and Aj , the algorithm builds VR(Ai, Aj), the set of roles that
can execute Ai and Aj (in that order) given the authorization schema AS
and the role authorization constraints in AC. The basic strategy to compute
VR(Ai, Aj) is to initialize each VR(Ai) to the set of roles that are authorized
to perform Ai (line 3) and to apply all possible role constraints defined for
each pair of activities, including those derived from authorization information
(lines 5/6). If for some Ai and Aj , VR(Ai, Aj) is empty, then the algorithm
terminates (line 7), since no pair of authorized roles exists that complies with
the role authorization constraints, and therefore no valid execution assignment
exists for the instance i. Otherwise, for each task activity Ai, the algorithm
re-computes the set of roles that can perform Ai (lines 10/11). The same steps
(lines 12/22) are repeated to compute for each activity Ai the set VU (Ai) of
users authorized to perform Ai. If the role r played by u belongs to VR(Ak),
the set of roles authorized to execute the activity Ak and u belongs to VU (Ak),
the set of users that are authorized to perform Ak, then the request (u, r, i, Ak)
can be granted.

174 8 Access Control for Business Processes

Algorithm 8: Enforcement()
Input:
(BP, AS, AC): A RBAC-WS-BPEL authorization specification
i: instance of the business process BP
(u, r, i, Ak): a request by a user u to execute activity Ak in BP under
the role r

Output:
Request granted: boolean
(1) AS:=AS ∩ IR(Ak);
(2) foreach Ai ∈ BP
(3) VR(Ai):={ri ∈ R:(ri, PAi

) ∈ RA };
(4) foreach (Ai, Aj) ∈ BP
(5) if ((Ai, Aj), ρ) ∈ AC
(6) VR(Ai, Aj):=(VR(Ai) × VR(Aj) ∩ ρ;
(7) if VR(Ai, Aj) = ∅
(8) Request granted:=false;
(9) else
(10) VR(Ai):={set of roles in first position of VR(Ai, Aj)};
(11) VR(Aj):={set of roles in second position of

VR(Ai, Aj)};
(12) AS:=AS ∩ Iu(Ak);
(13) foreach Ai ∈ BP
(14) Vu(Ai):={set of users authorized to perform Ai };
(15) foreach (Ai, Aj) ∈ BP
(16) if ((Ai, Aj), ρ) ∈ AC
(17) Vu(Ai, Aj):=(Vu(Ai) × Vu(Aj) ∩ ρ;
(18) if Vu(Ai, Aj) = ∅
(19) Request granted:=false;
(20) else
(21) Vu(Ai):={set of roles in first position of

Vu(Ai, Aj)};
(22) Vu(Aj):={set of roles in second position of

Vu(Ai, Aj)};
(23) if (r ∈ VR(Ak) ∧ u ∈ Vu(Ak))
(24) Request granted:=true;
(25) return (Request granted);

8.8 RBAC-WS-BPEL System Architecture

This section presents an architecture that implements the enforcement pro-
cess described in the previous section (see Figure 8.6). The main components
are a WS-BPEL engine, a Web service called RBAC-WS-BPEL Enforcement
Service, which is the core of the architecture, and three repositories, namely,
the XACML Policy Store, the BPCL constraints Store, and the History Store.
The WS-BPEL engine is responsible for scheduling and synchronizing the var-
ious activities within the business process according to the specified activity
dependencies, and for invoking Web service operations associated with activ-
ities. The RBAC-WS-BPEL Enforcement Service carries out two tasks. First,
it manages the execution of a business process’s <HumanActivity> activity.
Note that the Enforcement Service is able to manage the execution without
requiring any extensions to legacy WS-BPEL engines. Second, it acts as a
reference monitor: when a user claims a <HumanActivity> activity, it veri-

8.8 RBAC-WS-BPEL System Architecture 175

WSDL Interface

To the WS -BPEL

Engine

WSDL Interface

To Users

WS-BPEL engine

RBAC-WS-BPEL
Enforcement

Service

XACML
Policy
Store

BPCL
Constraints

Store

receive

invoke

receive

initiateActivity

OnActivityResult

listActivity

claimActivity

User

History
Store

WS-BPEL
process

WSDL Interface

To the WS -BPEL

Engine

WSDL Interface

To Users

WS-BPEL engine

RBAC-WS-BPEL
Enforcement

Service

XACML
Policy
Store

XACML
Policy
Store

BPCL
Constraints

Store

BPCL
Constraints

Store

receive

invoke

receive

initiateActivity

OnActivityResult

listActivity

claimActivity

User

History
Store

History
Store

WS-BPEL
process

Fig. 8.6. RBAC-WS-BPEL Architecture

fies that the user is authorized to perform it according to the authorization
schema and authorization constraints.

The RBAC-WS-BPEL Enforcement Service offers two WSDL interfaces:
the first interface makes available the operations to start and complete the
execution of a human activity. This interface provides two operations, “ini-
tiateActivity” and “onActivityResult”. “initiateActivity” is a one-way op-
eration invoked within a WS-BPEL process to start the execution of a
<HumanActivity> activity. The invocation message of “initiateActivity” con-
tains a set of information about the activity, the business process, and ref-
erences to authorization schema and authorization constraints. The message
received by the WS-BPEL process contains the business process variables
modified by the <HumanActivity> activity.

The second interface of the RBAC-WS-BPEL Enforcement service allows
users to display the activities they can claim, and to claim and execute them.
This interface makes available two operations, “listActivity” and “claimActiv-
ity”. The “listActivity” operation returns the list of the activities a user can
claim. To claim an activity in the list, a user invokes the “claimActivity” oper-
ation. When this activity is executed, the RBAC-WS-BPEL Enforcement Ser-
vice selects all possible BCPL constraints and the information in the XACML
authorization schema, and runs Algorithm 1 to determine whether the user
request can be granted or not. If the user is authorized, the WSDL opera-
tion providing the interface of the <HumanActivity> activity specified in the
invocation message of the “initiateActivity” operation is invoked.

The XACML Policy Store contains the RBAC-WS-BPEL authorization
schema associated with the business process, while the BPCL constraint Store

176 8 Access Control for Business Processes

stores the authorization constraints. The History Store is used to record in-
formation about past executions of each humanactivity, that is, the user who
has performed it and whether the execution of the activity was successful or
not. The history information is used to enforce authorization constraints.

8.9 Handling <HumanActivity> activity Execution and
RBAC-WS-BPEL Enforcement

A prototype of the architecture which supports the execution of
<HumanActivity> activities has been implemented choosing ODE as WS-
BPEL engine and Oracle 10g to store for RBAC-WS-BPEL authorizations and
authorization constraints. The Enforcement Service has been implemented as
a JAVA Web service which has to be included to the <partnerLinks> list in
the WS-BPEL process specification.

The main challenge in implementing such architecture is how to associate
an interface to a <HumanActivity> activity to enable the interaction with
a user and the enforcement of RBAC-WS-BPEL authorizations and autho-
rization constraint on such activity. First, it is necessary to configure the
Enforcement Service to work with a specific instance of the WS-BPEL pro-
cess which requires the execution of <HumanActivity> activities. Through a
configuration wizard, the WS-BPEL process administrator has to specify the
name of the WS-BPEL process, the URL of the process, the variables in the
process that represent the correlation set used to identify an instance of the
process, and the order on which the activities are executed. Moreover, for
each <HumanActivity> activity, the WS-BPEL process administrator has to
specify the name of the activity, the Web service operation that is associated
with the execution of the actvity, the operation portType, the template of
the SOAP input message for the operation, and a jsp that is the interface for
the user who has to perform the <HumanActivity> activity. The execution
of a <HumanActivity> activity starts when the WS-BPEL process invokes
the “initiateActivity” operation of the Enforcement Service. The process then
waits to be called back by the RBAC-WS-BPEL Enforcement Service. The
RBAC-WS-BPEL Enforcement Service adds the name of the activity con-
tained in the invocation message to the list of <HumanActivity> activities
that can be claimed. When a user requests the <HumanActivity> activity by
invoking the “claimActivity” operation it includes in the invocation message
a set of digital credentials that are encoded as SAML assertions. Then, the
RBAC-WS-BPEL Enforcement Service queries the XACML Policy store to
determine the roles that are authorized to perform the activity and verifies
whether the user’s credentials match the attribute conditions of one of these
roles. If the user can be assigned to an authorized role, the RBAC-WS-BPEL
Enforcement Service executes Algorithm 1 to verify that the user is authorized
to perform the activity without preventing the end of the business process

8.9 Handling <HumanActivity> activity Execution 177

execution. If the user can perform the activity, the RBAC-WS-BPEL En-
forcement Service removes the activity from the list of the <HumanActivity>
activities that can be claimed, and then RBAC-WS-BPEL Enforcement Ser-
vice instantiates a JAVA class Action. Such class retrieves the information
for the <HumanActivity> activity set up by the WS-BPEL process adminis-
trator during the configuration of the RBAC-WS-BPEL Enforcement Service,
and prompts the jsp interface to the user. Once the user has input the data
necessary to perform the <HumanActivity> activity, the RBAC-WS-BPEL
Enforcement Service populates the SOAP invocation message of the opera-
tion associated with the execution of the <HumanActivity> activity, with the
data inserted by the user and then invokes the operation. If the execution of
the operation completes successfully, the RBAC-WS-BPEL Enforcement Ser-
vice calls back the WS-BPEL process performing passing the output message
of the operation. Finally, the RBAC-WS-BPEL Enforcement Service updates
the History Store recording, the name of the user who performs the activity
and whether the execution was successfully or not.

9

Emerging Research Trends

The final chapter in this book covers some additional topics that, despite
being very relevant for Web services and SOA, have not yet been investigated
much. The chapter first discusses how Web services and the SOA approach
can be leveraged on to architect and deploy security functions. The chapter
then discusses issues related to privacy. Privacy techniques and tools, such as
P3P, are briefly surveyed; privacy requirements specific to Web services are
then discussed. The chapter is concluded by a short overview of security for
the Semantic Web and a discussion on open research issues.

9.1 Security as a Service

“Security as a service” is a buzz that we increasingly hear about as a promising
approach to address the increasingly complex security requirements of orga-
nizations and applications. A closer look at possible meanings of “security as
a service” reveals two interpretations. The first interpretation refers to the
outsourcing of security management. There are today companies advertising
such services. Typical services that these companies offer are, however, limited
to low-level services such as deploying and managing firewalls and antiviruses.
Higher-level services, such as access control or identity management, are not
typically provided. The second interpretation deals with organizing security
functions as services that can be shared by several applications. While some
types of security measures should still be implemented as a part of applica-
tions, for other shared, common security services it makes more sense to deploy
them in a single location, especially when the environments are organized as
SOAs. For example, preventing buffer overflow attacks and verifying the va-
lidity of application input data should be a responsibility of the application,
as these measures are specific to the application. In contrast, the control of
any access made to a certain resource is typically common to all applications
using that resource, and therefore could be supported by a shared service. In
what follows we elaborate on the second perspective. However, it is important

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4 9, c© Springer-Verlag Berlin Heidelberg 2010

180 9 Emerging Research Trends

to note that understanding how to organize complex security tasks in terms
of services would make it in turn possible to outsource many more of such
tasks. In such a sense, the two perspectives are very much related.

9.1.1 Motivations

Different models and mechanisms to deal with identity management, authenti-
cation, access control, and privacy have emerged and evolved over time, driven
by a large variety of factors, from technological advances such as biometric
devices to increasing requirements for security and privacy. Operating sys-
tems provide basic mechanisms for identification, authentication, and access
control, the latter mostly based on the discretionary access control model.
DBMSs also support the more sophisticated RBAC mechanisms [228]. The
mechanisms provided by operating systems and DBMSs are, however, not
extensible; thus, whenever an application environment requires more sophisti-
cated authentication or access controls, the application programs must include
logics for such controls. Such an approach, however, leads to duplication of ef-
fort and increased cost in application development and maintenance. Because
of these reasons, models and mechanisms to separate access control from the
applications, such as XACML, have emerged.

At the same time, the need to drive the behavior of an access control system
or an authentication system through clearly stated and machine-processable
policies has fostered the development of various policy models and policy man-
agement mechanisms. The use of a policy-based approach enhances flexibility,
reduces application development costs, and simplifies security management.
Changes to security requirements simply entail modifying the policies, without
requiring changes to the applications and the access control and authentica-
tion mechanisms. It is thus clear that an important approach to the problem
of security is represented by the development of policy-based security services
providing all functions for security management relevant to applications. Such
an approach is particularly promising when applications are organized accord-
ing to the SOA paradigm.

An important issue that has to be addressed when devising SOA-based
approaches to security is how to achieve coordination among multiple secu-
rity services. Security is a complex task that cannot be achieved by a single
service; several services need to coordinate among each other. A possible ap-
proach to address this issue is the use of the so-called event-based model.
The event-based, or notification-based, model is a commonly used pattern for
inter-object communications. Examples can be found in many domains, as for
example in publish/subscribe systems provided by message-oriented middle-
ware vendors, or in system and device management domains. This notification
pattern is increasingly being used in the context of Web services [204, 207].
The event-based approach is well suited for distributed environments without
central control to construct component-oriented systems and to support appli-

9.1 Security as a Service 181

cations that must monitor or react to changes in the environment, information
interest, or in process status.

Despite its relevance, the notion of security services based on SOA and
the event-based model has not been investigated, and even the issues in the
development of these services need to be understood. In what follows we dis-
cuss open issues for security services by starting with a reference architec-
tural framework. Then, to provide an example, we describe the organization
and policy language of an authentication service currently under implemen-
tation [240].

9.1.2 Reference Framework for Security Services

The overall process leading to the authorization or denial of a request sent on
behalf of a subject to access a protected resource can be described as a “se-
curity pipeline,” that is, identification followed by authentication followed by
authorization. Such a pipeline leads to the reference architectural framework
shown in Figure 9.1.

Fig. 9.1. Reference architectural framework for security as a service

First, according to SOA principles, each component of the security pipeline
is a service. Moreover, by exploiting the XACML reference architecture (see
Chapter 4), each security service is logically architected by distinguishing a
Logical Decision Point, driven by the related policy, and one (or more) En-
forcement Points. Second, in order to maintain a coherent state of the relevant
security information, a notification service is included in the framework. Se-
curity services can register and subscribe to the notification service in order
to be notified of relevant events. Consider a healthcare application scenario;
in such a scenario an example of an identity event is the fact that a physician,
employed by a given hospital resigns. The identity service produces such an

Notification service

Po icy Pol cy Po icy

Decision
Point

Decision
Point

Decision
Point

Enforcement
Point

Enforcement
Point

Enforcement
Point

Identi ication
Se vice

Authen ication
Service

Access Control
Service

Context Service

x x

182 9 Emerging Research Trends

event, which the authentication and the access control services subscribe to.
Relevant events, once delivered to the proper security service, can trigger fur-
ther action. It is worth noting that the same notification mechanism can be
used to propagate relevant policy changes to the policy managers of the other
services (for simplicity, policy managers are not shown in Figure 9.1).

As for the decision points, an important issue is to determine the situations
in which a security service decision point may need to interact with another
security service decision point in order to reach a security decision. A related
issue is how these interactions should be architected, that is, whether they
must be designed as direct interactions, through well defined protocols, or
whether they can be carried out through a “mediator” service. Another issue
is related to the management of shared contextual information during the
execution of the security pipeline. While such contextual information could be,
in principle, “propagated” through the security pipeline execution, this may
lead to more complex service interfaces. Finally, a critical issue is related to
the security of the event management. Confidentiality, for example is crucial in
that events may often convey sensitive information, as in the case of identity
management events. A solution to this issue is the adoption of an access
control mechanism assuring the selective sharing of events among authorized
subscribers by adopting recent access control approaches developed in the area
of content distribution networks [151].

9.1.3 Authentication Service

Authentication is a fundamental security mechanism by which systems may
verify identity claims of their users. It determines who the user is and whether
his or her claim of a particular identity is true; authenticated identities are
then the basis for applying other security mechanisms, such as access control.

Once the identity of a user has been verified, the system resources are
made available to the user, possibly under the constraints specified by the
access control policies, until the user exits the system. Such an approach may
be appropriate for low-security environments or for environments in which
the same strength of authentication is required for all resources. However, it
is not appropriate in cases in which the same system may have resources with
different requirements of authentication strengths for the subjects wishing to
access them. A straightforward solution to authentication for resources with
such heterogeneous requirements is based on a conservative approach, and
maximizes authentication checks each time a user connects to the system.
However, such a solution may result in computationally intensive authen-
tication tasks and may also be very expensive and complex to deploy. For
example, adopting one time passwords for all users of an organization, inde-
pendently of the tasks they have to perform and the resources they have to
access, may be very expensive; ideally, one would like to require such type of
authentication only for users who need to access sensitive resources, and to
use conventional passwords for the other users. If an application environment

9.1 Security as a Service 183

needs to apply authentication of different strengths or use different authen-
tication mechanisms, depending on the resource to be accessed, the solution
commonly applied is to implement authentication logics at the application
program level. Such a solution has a lot of drawbacks, including the fact that
it makes the management of authentication very difficult and error prone.

An approach to address the above issues is to organize authentication
as a service able to support a variety of authentication mechanisms and to
combine these mechanisms through the authentication policies [240]. In such
an approach, authentication policies are specified through an authentication
policy language. By using such a language, one can specify how many au-
thentication factors are required, and of which type, for accessing specified
resources, or impose constraints on the authorities by which credentials used
for authentication have to be provided, thus supporting quality-based authen-
tication. It is important to notice that the goals of such an authentication
policy language are different from the goals of the SAML (Security Assertion
Markup Language) standard [61]. SAML is a standard for encoding authenti-
cation statements; such statements typically specify that a given subject has
been authenticated under a certain modality by a given entity at a given time.
SAML thus does not deal with taking authentication decisions; it only deals
with encoding and transmitting such decisions. The goal of the authentication
policy language is to specify policies driving authentication decisions; policies
expressed in this language may also take into account previous authentication
decisions, taken, for example, by other sites in a distributed system, together
with other information in order to reach an authentication decision.

A Reference Architecture

The reference architecture of the authentication service, referred to as the
Auth-SL system, is represented in Figure 9.2. It consists of two major sub-
systems, the authoring subsystem and the enforcement subsystem, each cor-
responding to a major function in the management of policy-based authenti-
cation.

Authentication
assertion

UDDI
Registry

Authentication
Policy Manager

Authentication
Policy
Base

Authentication

Enforcement
Point

Authentication
Event
Log

Library of
Authentication

Modules

Authentication
request

Context Data
Log

Fig. 9.2. Reference architecture for the authentication service

184 9 Emerging Research Trends

The authoring subsystem supports the specification and the management
of the authentication policies. A key feature of this subsystem is that it sup-
ports the specification of which authentication mechanism to use through the
specification of conditions on the features of the available mechanisms. The
support of such a specification relies on the use of two components: a library
of authentication modules, very much like a set of Pluggable Authentication
Modules (PAMs); and a specialized UDDI Registry recording all features of
the authentication modules that are relevant for the specification of the au-
thentication policies. In addition, the registry contains attestation information
used to detect unauthorized changes to the authentication module’s config-
uration. The UDDI registry is made available only to selected parties and
therefore is protected by access control policies. Each module in the library
supports a specific type of authentication. Such an approach enhances ex-
tensibility in that system administrators can easily add new authentication
methods by simply plugging in new modules. Such modules can then be dy-
namically invoked and used according to the specific authentication policies.
The information required about the authentication modules in order to author
authentication policies is as follows:

1. Module’ authentication characteristics. These data describe the settings
for the specific mechanism. For example, in password-based authentica-
tion, a characteristic would be the maximum number of tries allowed, or
the minimum length of the password. For token-based authentication, a
characteristic would be the authentication method (e.g., SSO, Basic-Auth
credentials), the credentials (username, password, domain), X.509 client
certificates, and the software used (e.g., IBM Tivoli Client RSA).

2. Implementation’ data. These parameters qualify the specific implementa-
tion of a mechanism, and can refer to the storage of the secret token, the
cryptographic technique used to transmit it, the audit trails, and so forth.

The authentication policies that can be expressed thus depend on the avail-
able authentication modules and on the characteristics of these modules. Such
data are to be considered as part of the knowledge needed to specify adequate
authentication policies. For example, if a security administrator knows that a
given authentication module is weak due to implementation limits or module
vulnerabilities, he or she will apply stronger authentication policies. Authored
authentication policies are stored in a repository, referred to as authentication
policy base, which provides querying capabilities to properly authorized users,
such as system administrators and auditors.

The enforcement subsystem is in charge of processing authentication re-
quests. It thus evaluates the applicable authentication policies and, based on
these, makes authentication decisions. The evaluation is executed by the au-
thentication enforcement point, which first retrieves a proper authentication
policy. Policy evaluation may also take into account previous authentication
events concerning the subject being authenticated. To express fine-grained
constraints over past authentications, information on these authentications is

9.1 Security as a Service 185

collected in two different logs serving different purposes: to track user actions
related to authentication and to store the conditions under which successful
authentication is executed. The first log, referred to as authentication event
log, records authentication events (events, for short) related to the subjects in
the systems. An authentication event is basically an authentication executed
by a subject. Such a log tracks in the chronological order all the events related
to the authentication of users performed during a single working session. Once
the policy is evaluated, a new event is generated and stored in the log in order
to keep track of this authentication step. The second log, referred to as context
data log, tracks specific data related to the previous authentications executed
by the user in the same session. The context is crucial when a user performs
several operations as part of the same session in that the information recorded
by the context can be used, depending on the specific authentication policies,
to avoid the execution of unnecessary authentication operations. An example
is when the same type of authentication is required for two different resources
accessed by a user in the same session. In such a case, once the authentica-
tion has been executed for one of the resources, it can be “reused” when the
user requires access to the second resource, provided that the authentication
verifies the “freshness conditions” specified in the authentication policies as-
sociated with the second resource. The output of the enforcement subsystem
is an authentication assertion which can be either returned to the end user or
transmitted to some other system or application.

The Authentication Policy Language

Authentication policies are the key elements to drive authentication decisions.
The specification of authentication policies relies on the notion of authentica-
tion factor. Authentication factors define the features of a specific authenti-
cation, where by authentication we mean the execution of one authentication
protocol using a single mechanism (that is, the “factor”). Authentication fac-
tors are specified in terms one or more descriptors. A descriptor is basically a
predicate, expressing a property required by the authentication factor. An ex-
ample of an authentication factor specified by two descriptors is {Mechanism
= Biometrics, Feature = Fingerprint}. The first descriptor requires that the
authentication be based on the use of a biometric authentication mechanism,
whereas the second descriptor specifies that the feature used in the biometric
authentication be the fingerprint. All the properties characterizing an authen-
tication module are recorded in the UDDI registry, and they can be referenced
in descriptors. Additional types of descriptors are related to contextual infor-
mation, such as space and time, and to the issuers and verifiers of authentica-
tion tokens. Temporal descriptors are used in particular to specify “freshness
conditions” concerning authentication; these conditions specify how recent an
authentication action must be.

The authentication factors, as defined above, are stand-alone in that the
specification of any one single factor is not related to the other factors. How-

186 9 Emerging Research Trends

ever, this is not adequate for the specification of complex and multifactor au-
thentication policies. To correlate different factors and their characteristics,
constraints can be specified; we refer to these constraints as factor constraints.
Factor constraints can be simply specified as logic formulae in which the oc-
curring variables are the factor identifiers. Consider an authentication policy
requiring a subject to be identified by two credentials; an example of a factor
constraint is to require that the issuers of these two credentials be different.

The previous elements, that is, authentication factors and factor con-
straints, are combined in the notion of authentication policy. Such a policy
is composed by five elements: (i) a protected object O and a set S of oper-
ations defined on O; (ii) a list of authentication factors [f1, . . . , fk]; (iii) an
order flag; (iv) a threshold value; and (v) a set of factor constraints. As can
be noticed, a policy is associated with an object and one or more operations
defined on the object; this means that the authentication specified by the pol-
icy must be executed whenever one such operation is executed on the object.
The specification of multiple authentication factors expresses multifactor au-
thentication policies. The listed factors may or may not all be mandatory, as
specified by the threshold value; for example, a policy may specify a list of five
authentication factors, of which only three must be verified by the subject be-
ing authenticated. Additionally, the execution order of various authentication
factors may or may not have relevance. If the order in which factors should be
evaluated is significant, then the order flag is set to yes. The listed factors are
to be evaluated accordingly. If order is set to no, the factor evaluation order
is not mandated.

The specification of the ordering and the mandatory number of factors
enhances the flexibility and the expressive power of the policy language. The
order can be specified according to the relevance of the factors, or their sen-
sitivity, or the cost for their verification. Thus, it can help in optimizing the
usage of system resources. Similarly, the specification of the threshold en-
hances the flexibility of authentication by establishing the sufficient demands
needed to authenticate the user.

9.2 Privacy for Web Services

Privacy is today an important concern for citizens, organizations and com-
panies. We see an increasing number of organizations that collect data, very
often concerning individuals, and use them for various purposes, ranging from
scientific research, as in the case of medical data, to demographic trend analy-
sis and marketing. Organizations may also give access to the data they own or
even release such data to third parties. The number of increased data sets that
are thus available poses serious threats to the privacy of individuals and orga-
nizations. To address such concerns, several privacy techniques have been de-
veloped. They range from anonymity techniques for network systems, such the
Onion routing protocol [116] and the ZAP protocols [291], to privacy preserv-

9.2 Privacy for Web Services 187

ing data management techniques, such as the k−anonymization [247, 58], and
from privacy-preserving location-based services [85] to languages for the spec-
ification and enforcement [201] of privacy policies. Some of those approaches
are surveyed in what follows. It has also been recognized that comprehensive
solutions to privacy require combining many different techniques, languages,
and methodologies and also taking into account legal, social, and organiza-
tional issues [18].

Despite such a large body of work, privacy issues specific to Web services
have not been yet investigated. A very preliminary effort is represented by
the identification of privacy requirements, as part a larger set of Web Ser-
vices Architecture Requirements, by a working group of the World Wide Web
Consortium [289]. These privacy requirements are briefly surveyed in what
follows, together with a discussion of additional new requirements and open
research issues concerning Web service privacy.

9.2.1 P3P and the Privacy-Aware RBAC Model

Any solution to privacy should support two important functions that are
complementary and very crucial: how to communicate the privacy policies of
an organization to interested parties, such as the individuals whose data are
being collected by the organization; and how to enforce such privacy policies
within the organization.

The most well-known approach to the communication of privacy policies is
the W3C’s Platform for Privacy Preferences Project (P3P) [286]. P3P enables
Web sites to encode their data collection and data use practices in a machine-
readable XML format, known as P3P policies. W3C has also designed APPEL
(A P3P Preference Exchange Language) [157], which allows users to specify
their privacy preferences. Ideally, through the use of P3P and APPEL, a user’s
agent should be able to check a Website’s privacy policy against the user’s
privacy preferences, and automatically determine when the user’s private in-
formation can be disclosed. In short, P3P and APPEL are designed to enable
users to play an active role in controlling their private information [34].

Each P3P policy is specified by one POLICY element that includes the
following major elements:

• One ENTITY element: it identifies the legal entity making the representation
of privacy practices contained in the policy.

• One ACCESS element: it indicates whether the site allows users to access
the various kind of information collected about them.

• DISPUTES-GROUP element: it contains one or more DISPUTES elements that
describe dispute resolution procedures to be followed when disputes arise
about a service’s privacy practices.

• Zero or more EXTENSION elements: they contain a Web site’s self-defined
extensions to the P3P specification.

188 9 Emerging Research Trends

• One or more STATEMENT elements: they describe data collection, use, and
storage. A STATEMENT element specifies the data (e.g. user’s name) and
the data categories (e.g. user’s demographic data) being collected by the
site, as well as the purposes, recipients, and retention period of that data.

In more detail each P3P statement contains the following elements:

• One PURPOSE element, which describes for which purpose(s) the informa-
tion will be used. It contains one or more predefined values such as current,
admin, individual-analysis, and historical. A purpose value can have an op-
tional attribute ‘required’, which takes one of the following values: opt-in,
opt-out, and always. The value ‘opt-in’ means that data may be used for
the purpose only when the user requests this. The value ‘opt-out’ means
that data may be used for the purpose unless the user requests otherwise.
The value ‘always’ means that users cannot opt-in or opt-out of this use
of their data. Therefore, in terms of strength of data usage, ‘always’ >
‘opt-out’ > ‘opt-in’.

• One RECIPIENT element, which describes with whom the collected infor-
mation will be shared. It contains one or more predefined values such as
ours, delivery, and public. A recipient value can have an optional attribute
‘required’, which is similar to that of a PURPOSE element.

• One RETENTION element, which describes for how long the collected infor-
mation will be kept. It contains exactly one of the following predefined val-
ues: ‘no-retention’, ‘stated-purpose’, ‘legal-requirement’, ‘business-practices’
and ‘indefinitely’.

• One or more DATA-GROUP elements, which specify what information will be
collected and used. Each DATA-GROUP element contains one or more DATA
elements. Each DATA element has two attributes. The mandatory attribute
‘ref’ identifies the data being collected. The ‘optional’ attribute indicates
whether or not the data collection is optional. A DATA element may also
contain a CATEGORIES element, which describes the kind of information
this data item is, e.g., financial, demographic, health.

• Zero or one CONSEQUENCE element, which contains human-readable con-
tents that can be shown to users to explain the data usage practices ram-
ifications and why the usage is useful.

Consider the following P3P Statement:

<STATEMENT>
<PURPOSE> <admin required="opt-in"/ > < /PURPOSE>
<RECIPIENT> <public / > < /RECIPIENT>
<RETENTION> <indefinitely / > < /RETENTION>
<DATA-GROUP>
<DATA ref="user.home-info.postal"> < /DATA>
<DATA-GROUP>
<STATEMENT>

9.2 Privacy for Web Services 189

This statement specifies that the postal address will be collected only if
the user consents to the collection. Once collected, the data will be kept for
an indefinite length of time and may be made publicly available.

Since its proposal, P3P has received broad attention from the industry
and the research community. However, its adoption by organizations raises
several issues, some of which originate from the lack of a formal semantics of
P3P. Such a lack may result in inconsistent P3P policies. We refer the reader
to [34] for a detailed discussion on such issues.

As mentioned before, the second key component of a privacy solution is
represented by mechanisms to enforce the stated privacy policies, possibly ex-
pressed according to P3P, inside the organization. An important mechanism
in this respect is represented by the access control mechanisms, governing the
accesses to the data by the subjects and parties inside the organization. How-
ever, as pointed by Fischer-Hubner [105], traditional security models (e.g. Bell
LaPadula Model, Lattice Model, Biba Model, Clark Wilson Model, Chinese
Wall Model, Role-Based Access Control (RBAC) Model, Workflow Authoriza-
tion Model (WAM), Object-Oriented Security Models, etc.) are in general not
appropriate for enforcing basic privacy requirements, such as purpose binding
(i.e., data collected for one purpose should not used for another purpose with-
out user consent). Therefore, a new model, known as privacy-aware role-based
access control (P-RBAC) model, has been recently proposed with the goal of
addressing some of the privacy requirements. According to the definition of
conventional RBAC, P-RBAC is defined as a family of models meeting various
demands in expressiveness and enforceability. The relationships between such
models are shown in Figure 9.3.

Fig. 9.3. The P-RBAC family of models

Core P-RBAC, the base model, is at the bottom, indicating that it is
the minimal requirement for any system which supports P-RBAC. The bot-
tom line of Core P-RBAC is sufficient expressiveness for public privacy poli-
cies, privacy statements and privacy notices, and privacy related acts, e.g.,
HIPAA [264], COPPA [80], and GLBA [265] in the US.

A preliminary definition of the Core P-RBAC model is illustrated in Fig-
ure 9.4. There are seven sets of entities, Users (U), Roles (R), Data (D),
Actions (A), Purposes (Pu), Conditions (C), and Obligations(O). The user in
such a model is a human being, and a role represents a job function or job

Core P-RBAC0

Hierarchical P-RBAC1 Conditional P-RBAC2 Behavioral P-RBAC3

Universal P-RBAC

190 9 Emerging Research Trends

Fig. 9.4. Core P-RBAC model

title within the organization, with some associated semantics regarding the
authority and responsibility conferred on a member of the role. Data means
any information relating to an identified or identifiable individual. An action
is an executable image of a program, which upon invocation executes some
function for the user. The types of actions and data objects that P-RBAC
controls depend on the type of application domain in which the access control
service has to be deployed. For example, for a database management system,
actions on data include SELECT or UPDATE.

The rationale for introducing Purposes, Conditions, and Obligations in
Core P-RBAC comes from the OECD Guidelines on the Protection of Pri-
vacy and Transborder Flows of Personal Data [214], current privacy laws in
the United States, and from public privacy policies of some well-known orga-
nizations. The OECD guidelines are a well-known set of private information
protection principles, on which many other guidelines, data-protection laws,
and public privacy policies are based. Purposes which are bound to actions
on data in the Core P-RBAC model directly reflect the OECD Data Quality
Principle, the Purpose Specification Principle, and the Use Limitation Prin-
ciple. Purposes are widely used for specifying privacy rules in both acts and
real public policies. HIPPA rules clearly state the purposes.

Obligations, that is, actions to be performed after an action has been exe-
cuted on data objects, are necessary for some cases. For example, the OECD
Accountability Principle requires that “A data controller should be account-
able for complying with measures which give effect to the principles stated
above.” A common approach to implement this principle in an operating sys-
tem or a DBMS is by logging each data access as an event. Performing a log
action could be an obligation for the majority of privacy policies. For internal
privacy policies, it is important that when some sensitive privacy information,
such as a patient’s record, is being accessed, related administrators, such as a
chief doctor, be notified.

Conditions, that is, prerequisites to be met before any action can be ex-
ecuted, are critical for some cases. Seeking consent from a data subject (the
owner of personal information) represents the essence of privacy protection
and is required by the OECD Collection Limitation Principle: “There should

Privacy Data Perm ss ons

Purposes

Purpose Binding

Users
UA

Roles
PA

Data Conditions Obligations

Perm ss on Constraints

Actions

Data Permissions

9.2 Privacy for Web Services 191

be limits to the collection of personal data and any such data should be ob-
tained by lawful and fair means and, where appropriate, with the knowledge
or consent of the data subject.” As in P3P, there are two different ways to
seek consent from a data subject: “opt in” and “opt out.” “Opt in” means
providing the individual with the opportunity to give positive consent, that is,
an individual’s personal data can only be disclosed to a third party when the
individual has indicated that he or she agrees to that type of disclosure; with-
out that indication the individual’s personal data should not be disclosed to
third parties. “Opt out” means providing the individual with the opportunity
to object to the data collection. This means that an individual may receive
information such as promotional or advertising information unless or until he
or she has indicated that he or she does not wish to receive such material. It
may also mean that his or her personal data may be disclosed to third parties
unless or until he or she has indicated his or her objection to that disclosure.

The Core P-RBAC model is thus composed by the following components
and mappings among them:

• The set U of users, the set R of roles, the set D of data, the set Pu
of purposes, the set A of actions, the set O of obligations, and a basic
language LC0 to express conditions. The notation cj | LC0 denotes a legal
expression of language LC0.

• The set of Data Permissions DP = {(a, d) | a ∈ A, d ∈ D}.
• The set of Privacy-sensitive Data Permission PDP = {(dp, pu, o, c) | dp ∈

DP, pu ∈ Pu, o ∈ P (O), cj | LC0}.
• User Assignment UA ⊆ U×R, a many− to− many mapping user− to−

role assignment relation.
• Privacy-sensitive Data Permission Assignment PDPA ⊆ R× PDP (pri-

vacy data permission assignment), a many− to− many mapping privacy-
sensitive data-permission− to− role assignment relation.

The basic language LC0 is able to express simple conditions relevant to
privacy, such as whether the owner of the data has given consent to the use
of the data. The reason for the simplicity of the language is to achieve an
efficient implementation. In P-RBAC, as in classical RBAC, permissions are
assigned to roles, and users obtain such permissions by being assigned to
roles. The distinctive feature of Core P-RBAC lies in the complex structure
of privacy permissions, which reflects the highly structured ways of expressing
privacy rules to represent the essence of the OECD principles and privacy acts.
Therefore, aside from the data and the action to be performed on it, privacy
permissions explicitly state the intended purpose along with the conditions
under which the permission can be given and the obligations that are to be
finally performed.

The other models in the P-RBAC family include Hierarchical P-RBAC,
with functions for managing Role Hierarchy (RH), Data Hierarchy (DH), and
Purpose Hierarchy (PH); Conditional P-RBAC, characterized by Attributes,
Context Variables, and Boolean Expressions, thus supporting a condition lan-

192 9 Emerging Research Trends

guage richer than LC0; and Behavioral P-RBAC, with support for the speci-
fication of input, output, and flow equations to define actions and to control
the flow of information. We refer the reader to [201] and [202] for more details.

9.2.2 Privacy-Preserving Data Management Techniques

A first important class of techniques deals with privacy preservation when
data are to be released to third parties. In this case, data, once released, are
not any longer under the control of the organizations owning them. Therefore,
the owners of the data are not able to control the way their data are used.
The most common approach to address the privacy of released data is to
modify the data by removing all information that can directly link data items
to individuals; such a process is referred to as data anonymization [247]. It is
important to note that simply removing identity information, such as names
or social security numbers, from the released data may not be enough to
anonymize the data. There are many examples showing that even when such
information is removed from the released data, the remaining data combined
with other information sources may still link the information to the individuals
it refers to. To overcome this problem, approaches based on generalization
techniques have been proposed, the most well-known of which is based on
the notion of k-anonymity [247]. Some recent extensions to such techniques
include anonymization techniques for dynamically modified data [58] and the
use of clustering [59].

A second class of techniques deals specifically with privacy preservation in
the context of data mining. Data mining techniques are today very effective.
Thus, even though a database is sanitized by removing private information,
the use of data mining techniques may allow one to recover the removed in-
formation. Several approaches have been proposed, some of which are special-
ized for specific data mining techniques, for example, tools for association rule
mining or classification systems, while others are independent of the specific
data mining techniques. In general, all approaches are based on modifying or
perturbing the data in some way; for example, techniques specialized for the
privacy-preserving mining of association rules modify the data so as to reduce
the confidence of sensitive association rules. A problem common to most of
these techniques is represented by the quality of the resulting database; if the
data undergo too many modifications, they may not be any longer useful. To
address this problem, techniques have been developed to estimate the errors
introduced by the modifications [209]; such an estimate can be used to drive
the data modification process. A different technique in this context is based
on data sampling [73]. The idea is to release a subset of the data, chosen in
such a way that any inference that is made from the data has a low degree
of confidence. Finally, still in the area of data mining, techniques have been
developed, mainly based on commutative encryption techniques, whose goal
is to support distributed data mining processes on encrypted data [268]. In
particular, the addressed problem deals with situations where the data to be

9.2 Privacy for Web Services 193

mined is stored at multiple sites, but the sites are unable to release the data.
The solutions involve algorithms that share some information to calculate cor-
rect results, where the shared information can be shown not to disclose private
data.

Finally, some preliminary efforts have been reported dealing with database
systems specifically tailored to support privacy policies, such as the policies
that can be expressed using the P3P standard [286]. In particular, Agrawal
et al. [6] have introduced the concept of Hippocratic databases, incorporat-
ing privacy protection in relational database systems. In their paper, Agrawal
et al. introduce the fundamental principles underlying Hippocratic databases
and then propose a reference architecture. An important feature of such an ar-
chitecture is that it uses some privacy metadata, consisting of privacy policies
and privacy authorizations stored in privacy tables and privacy authorization
tables respectively. The privacy policy defines the intended use, the external
recipients, and the retention period for each attribute of a table, while the
privacy authorization defines the authorized users. The proposed architecture
also adds a special attribute, “purpose,” to each table, which encodes the
set of purposes with which the individuals, to whom the data are referred,
agree during the data collection process. The Hippocratic database performs
privacy checking during query processing. Every query is submitted to the
database with its intended purpose. The system first checks whether the user
who issued the query is present in the set of authorized users for that purpose
in the privacy authorization table. Next, the system ensures that the query
accesses only the fields that are explicitly listed for the query purpose in the
privacy authorization table. If the query is allowed to run, the system ensures
that only records whose purpose attribute includes the query purpose are vis-
ible to the query during the execution. Agrawal et al. also discuss various
technical challenges and problems in designing Hippocratic databases, such
as efficiency, disclosure, retention, and safety.

9.2.3 W3C Privacy Requirements for Web Services and Research
Issues

An initial effort to identify privacy issues that are specific to Web services has
been undertaken by W3C, which has specified four privacy Web Service Archi-
tecture (WSA) requirements for enabling privacy protection for the consumers
of Web services, possibly across multiple domains:

• The WSA must enable privacy policy statements to be expressed about
Web services.

• The advertised Web service privacy policies must be expressed in P3P.
• The WSA must enable delegation and propagation of privacy policies.
• Web services must not be precluded from supporting interactions where

one or more parties of the interaction are anonymous.

194 9 Emerging Research Trends

This above set of requirements represents a good starting point for reasoning
about privacy for Web services. However, two important additional require-
ments should be included. The first requirement deals with auditing, that is,
with a set of functions for acquiring and analyzing the record of events that
may have some privacy significance. Auditing is an important component of
any security solution. However, it is crucial in the context of privacy; an or-
ganization should be always able to trace the flow of data across Web services
and administrative domains should a privacy breach occur, and be able to pro-
vide the individuals to whom the data are related with a full account of the
use of this data. It is equally important that an organization be able to prove
that it has complied with privacy promises and with other legal requirements;
as such, the compliance requirement is also relevant.

Addressing the four requirements stated by W3C, and the additional re-
quirements of auditing and compliance is a challenging task and requires
comprehensive solutions. Elements of such solutions include comparing pri-
vacy policies of different Web services in order to determine whether data
can flow between services; verifying Web services’ internal organization and
implementation to check whether they comply with the advertised privacy
policies; understanding how Web services characterized by different privacy
policies can interoperate; supporting dynamic changes in privacy policies and
user preferences; organizing auditing functions as services and instrumenting
Web services so that auditing can be efficiently supported; developing method-
ologies that exploit the modular architecture of SOA, to support the complex
task of compliance checking; and supporting the use of anonymity techniques,
such as private information retrieval and anonymous credentials, in composite
Web services and workflows.

9.3 Semantic Web Security

The notion of Semantic Web represents an evolution of the World Wide Web
in which Web content can be expressed not only in natural language but also
in a format that can be read and used by software agents. A key goal of
the Semantic Web is to provide semantic-rich descriptions of Web content in
order to better support information discovery, sharing, and integration. In this
respect the Semantic Web is following the same path that database technology
took with the definition of first the relational model and then the semantic
models. The development of such models has shown that providing a high-level
description of data semantics is key to effective data usage. Several formalisms
and semantic models have been proposed for the description of Web content in
the Semantic Web, such as the Resource Description Framework (RDF) and
the Web Ontology Language (OWL). All those formalisms and models are
intended to provide a formal description of concepts, terms, and relationships
within a given knowledge domain. As such they are very much similar to
semantic models developed more than two decades ago in the database field.

9.4 Concluding Remarks 195

In addition to formalisms and semantic models, the Semantic Web relies
on a variety of enabling technologies, including XML and Web services. This is
an important point to make, because it means that security for the Semantic
Web can leverage on security techniques for XML and Web services. As such
advances in Web service security, such as the ones discussed in this book,
represent important steps towards the broader goal of Semantic Web security.

Additional important security issues are related to the protection of se-
mantic information, such as those encoded in RDF and OWL, and to the
problem of protection from inference. In an information protection context,
the problem of inference refers to the derivation of sensitive information from
non sensitive data. Such a problem is difficult to address because it entails
protecting not only sensitive data, but also making sure that sensitive infor-
mation cannot be disclosed from data that are not sensitive and therefore not
protected. Because of the semantic-rich information and the powerful inference
engines today available, inferences may pose a serious threat to information
protection in the Semantic Web. Even though the problem of inference protec-
tion has been investigated in the past in the context of databases, and several
foundational results have been developed (see Thuraisingham et al. [260]),
to date no comprehensive approach has been reported for dealing with this
problem in the context of the Semantic Web.

9.4 Concluding Remarks

Web service security represents a key requirement for today’s distributed in-
terconnected digital world and for the new Web generations, such as Web
2.0 and the Semantic Web. To date, the problem of security has been in-
vestigated very much in the context of standardization efforts; these efforts,
however, have dealt mainly with adapting existing security techniques, such
as encryption, for use in Web services. The standards have also focused on
addressing the problem of security interoperability through the development
of standard formats for security assertions, tokens, and credentials. Interoper-
ability is certainly an important issue for Web services in that easy and flexible
service composition requires that security-relevant information be seamlessly
transmitted across different services.

However, several key issues have not yet been addressed, some of which
have been pointed out in the previous chapters and sections. Other issues
that have not been mentioned but which are crucial include revisiting secu-
rity techniques in the presence of highly fragmented service systems; metrics
and methodologies to assess the security provided by an application or sys-
tem organized according to the SOA paradigm; understanding the impact of
security and privacy on service composition; and identifying security and pri-
vacy requirements for novel collaborative environments and social networks
enabled by the Web and devising solutions to address these requirements.

A

Access Control

This appendix reviews basic concepts concerning access control and then
briefly describes the role-based access control (RBAC) model, a model widely
deployed in commercial systems and for which a standard has also been devel-
oped. As part of the RBAC model, some relevant extensions are also surveyed,
which are relevant in today’s distributed systems.

The material presented in this appendix is based on a paper by Bertino
and Crampton [39], to which we refer the reader for additional details.

A.1 Basic Notions

Access control is a key component in any security solution, in that it deter-
mines which subject can perform which action under which circumstances on
the protected resources. Whenever a subject tries to access a resource, the
access control service checks the rights of the subject against a set of autho-
rizations, usually stated by some security administrator. Authorizations thus
encode the access control policies of a given organization. Any computer sys-
tem that offers any level of protection will ensure that the access control service
intercepts all requests by subjects to access resources in order to ensure that
all these requests are properly authorized before the subject gains access to
the requested resource. Most access control policies directly or indirectly spec-
ify the set of authorized requests. An access control model provides a method
for encoding an access control policy and states the conditions that must be
satisfied for an access request to be granted. The conditions that determine
whether a request is authorized may be expressed as security properties. An
access control service is thus characterized by a specific access control model.

Figure A.1 illustrates a generic architecture for an access control service.
The reference monitor intercepts each access request to the protected resource
in order to decide whether it can be authorized. The reference monitor typi-
cally requires different types of information to make such a decision. It needs

E. Bertino et al., Security for Web Services and Service-Oriented Architectures,
DOI 10.1007/978-3-540-87742-4, c© Springer-Verlag Berlin Heidelberg 2010

198 A Access Control

Subject Access
request

Reference
monitor

Resource

Authorizations
Access Control

Policies

Fig. A.1. Architecture of an access control service

to know who is requesting access to what. Generally the “who” question is an-
swered by authenticating each user of the system and associating each process,
or application, that the user runs with the user’s identity. Therefore when-
ever a process or application tries to access a protected resource, the identity
used to check the process authorization is derived from the user’s identity 1.
The “what” question is answered by consulting information maintained by the
resource manager, for example, the operating system or the database manage-
ment system (DBMS), about the protected resources. Generally, the reference
monitor also needs to know how the subject wishes to interact with the object.
The more common interactions between subjects and protected resources in-
clude read, write, and execute. The exact operational meaning of these generic
interactions depends on the type of resource and other contextual informa-
tion. In advanced access control models, such as the ones supporting spatial
and temporal information [33], the reference monitor uses additional informa-
tion, such as time, location, or the history of past accesses to the protected
resources, to make access control decisions.

A.1.1 The Protection Matrix Model

A protection matrix is an abstract representation of an access control policy in
that it represents the access requests authorized by the system. A protection
matrix is arranged as a two-dimensional array, with each row labeled by a
subject and each column labeled by a protected resource. A matrix entry in
the row labeled s and column labeled r determines the authorized actions for
s with respect to r. For example, assume r to be a file; then, if the matrix
entry for s and r contains read, a request from s to read object file r is
authorized. In other words, the protection matrix encodes triples of the form
<subject-object-action>. The protection matrix has proved to be a powerful
abstraction for the design of protection mechanisms in operating systems,
DBMSs, and applications. Many access control services, such as the security
reference monitor in Windows 2000, are based on the concept of the protection
matrix.

1 Note that in the discussion we use the term subject instead of user because very
often accesses are by entities other than users. Examples of such entities are
processes and applications.

A.1 Basic Notions 199

A.1.2 Access Control Lists and Capability Lists

Despite its conceptual simplicity, the protection matrix can rarely be used by
an actual access control service. The reason is that in a large system with many
subjects and resources, the memory requirements for such a data structure
would be prohibitively large. Moreover, many entries in the matrix may be
empty, meaning that large amounts of memory allocated for the storage of
the protection matrix would remain unused.

Different structures have thus been proposed for implementing the access
control matrix, the most well known of which are the access control list and the
capability list. Such structures only store the relevant matrix entries, whereas
empty matrix entries are ignored. An access control list is associated with
a protected resource and consists of a number of entries defining the rights
assigned to each subject for that resource.

In contrast, a capability list is associated with a subject. Conceptually, a
capability list is a list of permissions, each permission identifying a resource
and the rights that have been assigned to the subject for that resource. In
other words, each permission in a capability list for a subject specifies how
that subject may interact with the resource specified in the permission.

A.1.3 Negative Authorizations

In recent years, access control models have been proposed supporting negative
authorizations, that is, authorizations explicitly prohibiting certain actions.
Such authorizations are particularly useful for enforcing exceptions to a more
general policy. For example, suppose that one may wish to grant access to
a particular set of resources to many different subjects. Clearly, the most
convenient way of doing this is to create a group for those subjects and then
authorize the group to access those resources. However, if there is one member
s of the group g who should not be allowed access to one particular resource
r, it is rather cumbersome to enforce this requirement without negative au-
thorizations. The only option in this case is to remove s from g and then grant
s access to all the resources to which members of g have access, except r. A
simpler approach to address this requirement is to keep s in the group and
simply prohibit access by s to r. Windows 2000 permits the inclusion of neg-
ative access control entries in access control lists. XACML, the standard for
XML-based authorization policy specification and enforcement, also supports
negative authorizations (see Chapter 4).

Negative authorizations, however, introduce the problem of conflicts. That
is, a positive and negative authorization may exist for the same request. In
the example given in the previous paragraph, s will have a positive authoriza-
tion to access r from its membership of g, but also a negative authorization
explicitly denying s access to r. The intention in this case is that access should
be denied; however, in other cases different conflict resolution policies may be
required. Therefore, access control models supporting negative authorizations

200 A Access Control

Fig. A.2. Core RBAC [228]

often provide some policy conflict resolution mechanisms. The most obvious
and widely used mechanism is to insist that a negative authorization always
takes precedence over a positive one. This is known, naturally, as the “deny-
overrides” algorithm in XACML (see Chapter 4). There are other possibilities,
such as “permit-overrides” and “first-applicable”; the latter assumes that au-
thorizations are processed in a particular order and that the first relevant au-
thorization is to be used. Windows 2000 has a hybrid approach, which groups
access control entries in a particular order and implements what might be
called a “deny-overrides-if-first-applicable” algorithm. This ordering of access
control entries is first determined by the creator of the access control entry,
with entries created by the creator of the resource (rather than those inherited
from the resources container) taking precedence. Within each such group of
entries, negative entries precede positive entries.

A.2 Role-Based Access Control

A crucial problem in the deployment of access control services is the ad-
ministrative costs for the maintenance of access control lists or other similar
access control data structures. In a system with 1,000 users, 100,000 pro-
tected resources, and ten access rights (a relatively small system by today’s
standards), there are 1, 000 × 100, 000 = 109 possible authorization triples.
Role-based access control (RBAC) is a relatively recent attempt to reduce
such administrative costs. It is based on the concept of a role, which acts an
intermediary between users and permissions. The idea is that there will be
far fewer roles than either users or permissions. Typically roles are associated
with job descriptions, although this is not the only possibility.

The basic concepts of RBAC are illustrated in Figure A.2. The ANSI
RBAC standard was released in 2004 [229], based on earlier work by Ravi
Sandhu et al. [228]. RBAC includes two main components: the core compo-
nent, which does not include role hierarchies, and the hierarchical component,
which does.

A.2 Role-Based Access Control 201

The RBAC model is based on a set of users U , a set of permissions P ,
and a set of roles R. A permission is usually assumed to be a resource-action
pair, where an action is synonymous with an access right. Users are associated
with roles using a user-role assignment relation UA. This relation is a set of
pairs of the form (u, r), meaning that user u is assigned to role R. Permissions
are similarly associated with roles using a permission-role assignment relation
PA. Users interact with an RBAC system by activating a session. Typically,
the user authenticates himself to the system and chooses to act in one or more
of the roles to which he is assigned.

RBAC further reduces the administration costs by introducing the idea
of a role hierarchy, which is modeled as a directed acyclic graph in which
the roles are nodes. In other words, the role hierarchy is represented as a
binary relation RH on R. The transitive, reflexive closure of this relation
defines a partial ordering on the set of roles. The basic idea is that a role
in the hierarchy will inherit the permissions of the lower roles, without their
having to be explicitly assigned to those permissions. Clearly, this significantly
reduces the number of permissions that need to be assigned to more senior
roles, reducing the administrative overheads in an RBAC system.

RBAC is now widely supported in commercial systems such as Oracle,
Sybase, Windows 2003, and Solaris. An RBAC profile exists for XACML and
it is widely used in workflow management systems. The interested reader is
directed to the book by Ferraiolo et al., which provides an excellent overview
of RBAC and its applications [104].

Multi-domain RBAC

The Web has made possible a large variety of collaborative applications in
areas such as e-learning, healthcare, and e-government. Most of these appli-
cations require different organizations, or even different units within the same
organization, to be able to establish dynamic coalitions in which users of one
domain can seamlessly access resources from other domains. Approaches in
which users are explicitly and directly given access to all resources they need
to access across the coalition domains are not practical and do not scale.
Moreover, they make authorization revocation cumbersome and error prone.
Different approaches are required to keep the administration costs at a rea-
sonable level and support a manageable authorization revocation.

One such approach has been recently proposed based on the X-GTRBAC
model [45], an XML-based RBAC model supporting a large variety of temporal
constraints on the use of roles by users. The key idea underlying such an
approach is to associate with each role a set of preconditions for the use of
roles. Each user verifying such preconditions is given permission to use the
role; there is no need to grant these users explicit permission for the role, thus
simplifying the management of the UA relation (see Figure A.2).

In X-GTRBAC preconditions are expressed against user credentials, which
are encoded in SAML. In particular, by using the precondition language sup-

202 A Access Control

ported by X-GTRBAC, it is possible to condition the use of a role in a domain,
referred to as the target domain, for the authorization of using the same role,
or even another role, in another domain, referred to as the source domain. A
user authorized to use a role r in the source domain can thus use a role r′ in
the target domain, provided that the authorization to use r is a precondition
for the use of r′, Assertions concerning the fact that a user can use a role r in
a given domain are encoded by the source domain using SAML. In addition
to accepting SAML assertions as input, X-GTRBAC also generates SAML
assertions as a result of access control; therefore, whenever the X-GTRBAC
instance in the target domain determines that a user can access a role, it
generates a SAML assertion stating this fact. This assertion can then be used
for accessing a role in another domain.

Such a type of role interoperability enhances decentralization and auton-
omy. Each domain can independently determine the preconditions that the
users of another domain need to verify for gaining access to its local roles.
Such pre-conditions can be different for users from different domains. Revok-
ing the authorizations of remote users to use a local role is very easy, in that
one only has to drop the preconditions concerning such users. Even though X-
GTRBAC represents an important approach to the problem of multi-domain
access control, several issues still need to be investigated, including anonymous
access and delegation.

GEO-RBAC

The widespread deployment of location-based services and mobile applica-
tions, as well as the increased concern for the management and sharing of
geographical information in strategic applications like environmental protec-
tion and homeland security, have resulted in a strong demand for spatially
aware access control systems. These application domains impose interesting
requirements on access control systems. In particular, the permissions assigned
to users depend on their position in a reference space; users often belong to
well-defined categories; objects to which permissions must be granted are lo-
cated in that space; and access control policies must grant permissions based
on object locations and user positions.

As an example, consider a mobile application for the personnel and pa-
tients of a health care organization. Individuals are given a location-aware
terminal with which they can request information services provided by an ap-
plication server. The organization consists of individuals who have different
functional roles, e.g. nurse, doctor, and patient. We note that, depending on
the organizational context, the services available to users may differ based
on the functional roles of users. For example, the services available to nurses
may be different from those available to doctors, not simply because of the
individual preferences, but mainly because of organizational and functional
reasons. Further, the availability of the services may depend on the position
of the requester. For example, a nurse may be allowed to request the record

A.2 Role-Based Access Control 203

of a patient only when the patient is located in the department to which she
has been assigned.

To deal with the requirements listed above, an access control model with
spatial capabilities is needed. Since in location-aware applications users are of-
ten grouped in distinct categories, such as nurse and doctor, RBAC represents
a reasonable choice for the underlying access control framework. However, con-
ventional RBAC does not suffice to support such applications, and needs to
be extended with suitable location constraints, that is, constraints concerning
the locations in which a given role can be accessed by a user. It is important to
notice that locations can be physical, that is, expressed as coordinates in the
reference space, or logical, that is, expressed in terms of spatial objects (such
as the city of Milan or the West Valley Hospital) that have a semantics rel-
evant to the specific application domains. When dealing with location-based
applications, it is also important to take into account relevant standards for
the representation of spatial objects; one such standard is by the OGC [210].

GEO-RBAC is a recently developed model that directly supports such
location constraints [84]. It is based on the notion of a spatial role, that is,
a geographically bounded organizational function. The boundary of a role is
defined as a geographical feature, such as a road, a city, or a hospital, and
specifies the spatial range in which the user has to be located in order to use
the role. Besides being assigned a physical position, obtained from a given mo-
bile terminal such as a GPS-based vehicle-tracking device or a cellular phone,
users are also assigned a logical and device-independent position, representing
the feature in which the user is located. Logical positions can be computed
from real positions by using specific mapping functions, and can be repre-
sented at different granularities depending on the spatial role played by the
user. If the user is located inside the spatial boundary of the role that has
been selected (activated) during the session, the role is said to be enabled. To
specify the type of the spatial boundary of the role and the granularity of
the logical position, GEO-RBAC has introduced the concept of spatial role
schema. Spatial roles are thus specified as instances of role schemas.

Like RBAC, GEO-RBAC encompasses a family of models:

• Core GEO-RBAC includes the basic concepts of the model, and thus the
notions of spatial role, role schema, real or logical position, and activated
or enabled role.

• Hierarchical GEO-RBAC extends the conventional hierarchical RBAC by
introducing two distinct hierarchies, one over role schemas and one over
role instances.

• Constrained GEO-RBAC supports the specification of separation of duty
(SoD) constraints for spatial roles and role schemas. Since exclusive role
constraints are important to support the definition and maintenance of
access control policies in mobile contexts, SoD constraints are extended to
account for different granularities (schema or instance level), dimensions
(spatial or nonspatial), and verification times (static, dynamic at acti-

204 A Access Control

vation, dynamic at enabling). The resulting set of constraints developed
for GEO-RBAC represents the first comprehensive class of constraints for
spatially aware applications.

A.3 Concluding Remarks

In this appendix we have discussed the main notions and models for access
control. It is important to emphasize that in addition to what has been pre-
sented here, research is very active in the area of access control, and many
relevant directions are being investigated. A relevant direction is represented
by access control for grid computing systems and virtualized environments.
Those systems and environments are quite challenging because of the very
large number of users and the distributed administration of resources. In par-
ticular, they are characterized by the fact that there is no single authority
controlling all resources that may be required by a user to perform certain
tasks. In such cases, the user must be able to obtain multiple authorizations
from independent administrative authorities; this risks, however, conflicting
authorizations.

References

1. AA. VV.: Web Services Policy 1.2 Attachment (WS-PolicyAttachment)
W3C Member Submission, 25 April 2006. Online at: http://www.w3.org/
Submission/WS-PolicyAttachment/

2. AA. VV.: Terminology for Policy-Based Management (IETF RFC 3198),
November 2001, Online at: http://www.ietf.org/rfc/rfc3198.txt

3. Agarwal, S., Sprick, B., and Wortmann, S.: Credential based access con-
trol for semantic Web services. In Proceedings of Semantic Web Services
AAAI 2004 Spring Symposium, Palo Alto, CA, USA, March 2004. Online at:
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/Papers.html.

4. Agrawal, A., et al.: Web Services Human Task (WS-HumanTask), Ver-
sion 1.0., June 2007. Online at: http://www.adobe.com/devnet/livecycle/
pdfs/ws humantask spec.pdf.

5. Agrawal, A. et al.: WS-BPEL Extension for People (BPEL4People), Ver-
sion 1.0, June 2007. Online at: http://www.adobe.com/devnet/livecycle/
pdfs/bpel4people spec.pdf.

6. Agrawal, A., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In Pro-
ceedings of 28th International Conference on Very Large Data Bases, August
20-23, 2002, Hong Kong, China. Morgan Kaufmann.

7. Ahn, G. J., Kang, M. H., Park, J. S, Sandhu, R.: Injecting RBAC to se-
cure a Web-based workflow system. In Proceedings of 5th ACM Workshop on
Role-Based Access Control, Berlin, Germany, July 2000, pp.1-10. Online at:
http://portal.acm.org/citation.cfm?doid=344287.344295.

8. Ahn, G. J., Lam, J.: Managing privacy preferences for federated identity man-
agement. In Proceedings of DIM ’05: Workshop on Digital identity manage-
ment, pp.28-36, New York, NY, USA, 2005. ACM Press.

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts,
Architectures and Applications. Springer-Verlag 2004.

10. Alves. A. et al.: Web Services Business Process Execution Language,
Version 2.0, OASIS Standard, April 2007. Online at: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

11. Alvestrand, H.: A Mission Statement for the IETF. (IETF RFC 3935, October
2004). Online at: http://www.ietf.org/rfc/rfc3935.txt

12. Anderson, A.: Core and Hierarchical Role Based Access Control (RBAC)
Profile of XACML, Version 2.0, OASIS Standard, 2005. Online at:

206 References

http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-
spec-os.pdf.

13. Anderson, A. Web Services Trust Language (WS-Trust). February 2005. On-
line at: http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
trust/ws-trust.pdf.

14. Anderson, A., ed.: Web Services Profile of XACML (WS-XACML)
Version 1.0. Working Draft 10 (OASIS, 10 August 2007). Online
at: http://www.oasis-open.org/committees/download.php/24951/xacml-3.0-
profile-webservices-spec-v1-wd-10-en.pdf

15. Anderson, R. J.: Security Engineering: A Guide to Building Dependable Dis-
tributed Systems (First edition, Wiley, ISBN: 978-0-471-38922-4, 2001). Online
at: http://www.cl.cam.ac.uk/r̃ja14/Papers/

16. Anderson, R. J.: Security Engineering: A Guide to Building Dependable Dis-
tributed Systems (Second edition, Wiley, ISBN-10: 0470068523, 2008).

17. Andrieux, A., Czajkowski, K., Dan, A., T.: Web Services Agreement Spec-
ification (WS-Agreement), World Wide Web Consortium (W3C). Online
at: http://www.w3. org/XML, http://www.gridforum.org/Meetings/GGF11/
Documents/draft-ggf-graap-agreement.pdf.

18. Anton, A. I., Bertino, E., Li, N., Yu, T.: A roadmap for comprehensive online
privacy policy management, Communications of ACM, 50(7):109-116, 2007.

19. Apache mod status XSS Vulnerability Description. Online at:
http://httpd.apache.org/security/vulnerabilities-oval.xml

20. Ardagna, C., Damiani, E., De Capitani di Vimercati, S., Samarati, P.:
A Web Wervice architecture for enforcing access control policies. In Pro-
ceedings of 1st International Workshop on Views on Designing Com-
plex Architectures, Bertinoro, Italy, September 2004, 47-62. Online at:
http://dx.doi.org/10.1016/j.entcs.2004.09.044

21. Ashri, R., Denker, G., Marvin, D., Payne, T., Surridge, M.: Semantic web ser-
vice interaction protocols: An ontological approach. In Proceedings of Interna-
tional Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November
2004, 304-319, Springer Verlag, LNCS 3298.

22. Ashri, R., Marvin, D., Payne, T., Surridge, M., and Taylor, S.: Towards a
semantic web security infrastructure. In Proceedings Semantic Web Services
(AAAI 2004) Spring Symposium Series, Palo Alto, CA, USA, March 2004.
Online at: http://www.daml.ecs.soton.ac.uk/SSS-SWS04/Papers.html.

23. Atluri, V., Huang, W.: An authorization model for workflows. In Proceedings
of 4th European Symposium on Research in Computer Security, Rome, Italy,
September 1996, 44-64, Lecture Notes in Computer Science 1146, Springer.

24. Austin, D., Barbir, A., Ferris, C., Garg, S., eds: Web Services Architecture
Requirements (W3C Working Group Note, 11 February 2004). Online at:
http://www.w3.org/TR/wsa-reqs/#id2604831

25. Banerji, A., et al.: Web Services Conversation Language (WSCL) 1.0,
World-Wide-Web Consortium (W3C) Note, March 2002. Online at:
http://www.w3.org/TR/wscl10)

26. Benatallah, B., Casati, F., and Toumani, F.: Web service conversation mod-
eling: A cornerstone for e-business automation. IEEE Internet Computing,
8(1):46-54, 2004.

27. Benatallah, B., Casati, F., Hamadi, R., Toumani, F.: Conceptual modeling of
Web service conversations. In Proceedings of 15th International Conference on

References 207

Advanced Information Systems Engineering (CAiSE 2003), Klagenfurt, Aus-
tria, June 2003, 449-467, Springer Verlag, LNCS 2681.

28. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Au-
tomatic service composition based on behavioral descriptions. International
Journal of Cooperative Information Systems, 14(4):333-376, 2005.

29. Berners-Lee, T.: Universal Resource Identifiers in WWW A Unifying Syn-
tax for the Expression of Names and Addresses of Objects on the Network
as used in the World-Wide Web (IETF RFC 1630, June 1994). Online at:
http://www.w3.org/Addressing/rfc1630.txt

30. Berners-Lee, T.: Axioms of Web Architecture - Mandatory Extensions.
2000/02/01. Online at: http://www.w3.org/DesignIssues/Mandatory.html

31. Berners-Lee, T., Connolly, D.: Web Architecture: Extensible Languages. 10 Feb
1998. Online at: http://www.w3.org/DesignIssues/Extensible.html

32. Berners-Lee, T., Fielding, R., Irvine, U. C., Masinter L.: Uniform Resource
Identifiers (URI): Generic Syntax (IETF RFC 2396, August 1998). Online at:
http://www.ietf.org/rfc/rfc2396.txt

33. Bertino, E., Bonatti, P., Ferrari, E.: TRBAC: A temporal role-based access con-
trol model. ACM Transactions on Information and System Security, 4(3):191-
233, 2001.

34. Bertino, E., Byun, J. W., Li, N.: Privacy-preserving database systems. Foun-
dations of Security Analysis and Design III, FOSAD 2004/2005, Tutorial Lec-
tures. Lecture Notes in Computer Science 3655, Springer, 2005.

35. Bertino, E, Carminati, B, Ferrari, E.: Merkle tree authentication in UDDI
registries. International Journal on Web Service Research, 1(2): 37-57, 2004.

36. Bertino, E., Carminati, B, Ferrari, E., Thuraisingham, B., Gupta, A.: Selective
and authentic third-party distribution of XML documents. IEEE Transacations
on Knowledge and Data Engineering, 16(10): 1263-1278, 2004.

37. Bertino, E., Ferrari, E., Squicciarini, A. C.: Trust negotiations: concepts, sys-
tems and languages. IEEE Computing in Science Engineering, 6(4): 27-34,
2004.

38. Bertino, E., Ferrari, E., Squicciarini A. C.: Trust-χ: A peer-to-peer framework
for trust establishment. IEEE Transactions on Knowledge and Data Engineer-
ing, 16(7):827-842, 2004.

39. Bertino, E., Crampton, J.: Security for Distributed Systems: Foundations of
Access Control. In Information Assurance: Survivability and Security in Net-
worked Systems, Tipper, D., Krishnamurthy, P., Qian, Y., and Joshi, J., eds.
Morgan Kaufmann Publishers, January 2008.

40. Bertino, E., Martino, L., Paloscia, I., Squicciarini, A. C.: Ws-AC A fine grained
access control system for Web services. World Wide Web, 9(2):143-171, 2006.

41. Bertino, E., Martino, L., Paci, F., and Squicciarini, A. C.: An adaptive access
control model for Web services. International Journal of Web Services Research
(JWSR), 3(3):27-60, 2006.

42. Bertino, E., Sandhu, R.: Database security - concepts, approaches and chal-
lenges. IEEE Transactions on Dependable and Secure Computing, 2(1):2-19,
2005.

43. Bertino, E., Atluri, V., Ferrari, E.: The specification and enforcement of au-
thorization constraints in workflow management systems. ACM Transactions
on Information and System Security, 2(1):65-104, 1999.

208 References

44. Bhargav-Spantzel, A., Squicciarini, A., Bertino, E.: Integrating federated dig-
ital identity management and trust negotiation issues and solutions. Security
& Privacy Magazine, IEEE, 5(2):55-64, 2007.

45. Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J.: X-GTRBAC: an XML-based pol-
icy specification framework and architeture for enterprise-wide access control.
ACM Transactions on Information and System Security 8(2):187-227, 2005.

46. V. Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes, W3C Recommen-
dation, October 2004. Online at: http://www.w3.org/TR/xmlschema-2.

47. Bishop, M.: Computer Security Art and Science, Addison-Wesley, 2003.
48. Booth, D., et al., eds.: Web Services Architecture. (W3C Working Group Note,

11 February 2004). Online at: http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211.

49. Booth, D. et al. eds: Web Services Architecture. (W3C Working Group Note
11 February 2004). Online at: http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/#wsstechno

50. Botha, R. A. , Eloff, J. H. P.: Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal, 40(3):666-682, 2001.

51. Boyer, J.: Canonical XML Version 1.0 (W3C Recommendation 15 March 2001),
Online at: http://www.w3.org/TR/xml-c14n

52. Bormans, J., Hill, K., eds.: MPEG-21 Overview v.5 (ISO/IEC
JTC1/SC29/WG11/N5231, October 2002), Online at: http://www.
chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm

53. Bray, T., Hollander, D., Layman, A., Tobin, R., eds.: Namespaces in XML 1.0
(Second Edition) (W3C Recommendation, 16 August 2006). Online at: http://
www.w3.org/TR/REC-xml-names/

54. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.:
XML Specification. (W3C Recommendation, August 2006). Online at:
http://www.w3.org/TR/REC-xml/

55. Buecker, A., et al.: Understanding SOA Security Design and Implementation
(IBM Redbooks SG24-7310-00, published 13 February 2007, last updated 20
February 2007).

56. BUGTRAQ. http://www.securityfocus.com/archive/1
57. Bugzilla. http://www.bugzilla.org/
58. Byun, J.W., Sohn, Y., Bertino, E., Li, N.: Secure anonmyzation for incremental

datasets. In Proceedings of Secure Data Management, 2006.
59. Byun, J. W., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization us-

ing clustering techniques. In Proceedings 12th International Conference on
Database Systems for Advanced Applications, DASFAA 2007, 2007.

60. Camenisch, J., Herreweghen, E. V.:Design and implementation of the idemix
anonymous credential system. In Proceedings of CCS ’02: 9th ACM Conference
on Computer and Communications Security, pages 21–30, New York, NY, USA,
2002. ACM Press.

61. Cantor, S.: Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0. OASIS Standard, March 2005. Online at:
http://docs.oasis-open.org/security/saml/v2.0/.

62. Cantor S., Kemp, J., Philpott, R., Maler, E., eds.: Assertions and
Protocol for the OASIS Security Assertion Markup Language (SAML)
V2.0. (OASIS Standard, 15 March 2005). Online at: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

References 209

63. CAPEC Common Attack Pattern Enumeration and Classification. Online at:
http://capec.mitre.org/

64. Carminati, B., Ferrari, E., Bertino, E.: Securing XML data in third-party dis-
tribution systems. In Proceedings of Conference on Information and Knowledge
Management (CIKM), 2005.

65. Casati, F., Castano, S., Fugini, M.: Managing workflow authorization con-
straints through active database technology, Information Systems Frontiers,
3(3):319-338, 2001.

66. Charanjit, S., and Yung, M.:. Paytree: amortized signature for flexible micro-
payments. In Proceedings of the 2nd USENIX Workshop on Electronic Com-
merce, 1996.

67. Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S.: Web Ser-
vices Description Language (WSDL) Version 1.1 (W3C Note). Online at:
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

68. Clark, J.: The Design of RELAX NG. Online at: http://www.thaiopensource.
com/relaxng/design.html

69. Clark, J.: TREX Tree Regular Expressions for XML. Online at: http://www.
thaiopensource.com/trex/

70. Clark, J.: XSL Transforms (XSLT) Version 1.0. (W3C Recommenda-
tion, November 1999). Online at: http://www.w3.org/TR/1999/REC-xslt-
19991116.html

71. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, W3C Rec-
ommendation, November 1999. Online at: http://www.w3.org/TR/1999/REC-
xpath-19991116

72. Clement, L., Hately, A., von Riegen, C., Rogers, T., eds.: UDDI Ver-
sion 3.0.2 UDDI Spec Technical Committee Draft (OASIS). Online at:
http://www.uddi.org/pubs/uddi v3.htm

73. Clifton, C.: Using sample size to limit exposure to data mining. Journal of
Computer Security, 8(4), 2000.

74. Common Vulnerabilities and Exposures (CVE). Online at: http://www.cve.
mitre.org/about/

75. Common Vulnerabilities and Exposures Terminology. Online at:
http://cve.mitre.org/ about/terminology.html

76. Common Weakness Enumeration. Online at: http://cwe.mitre.org/
77. Common Weakness Enumeration Vulnerability Type Distributions in CVE.

Online at: http://cwe.mitre.org/documents/vuln-trends/index.html
78. Community Development of Java Technology Specification. JSR-

000105 XML Digital Signature APIs (Final Release). Online at:
http://jcp.org/aboutJava/communityprocess/final/jsr105/index.html

79. Community Development of Java Technology Specification. JSR-000106 XML
Digital Encryption APIs (Close of Public Review, 11 January 2006) Online at:
http://jcp.org/aboutJava/communityprocess/pr/jsr106/index.html

80. COPPA: Children’s Online Privacy Protection Act of 1998, October 1988. On-
line at: www.cdt.org/legislation/105th/privacy/coppa.html.

81. Crampton, J.: A reference monitor for workflow systems with constrained task
execution. In Proceedings of the 10th ACM Symposium on Access Control
Models and Technologies, Stockholm, Sweden, June 2005, 38-47. Online at:
http://portal.acm.org/citation.cfm?doid=1063979.1063986

210 References

82. Crampton, J.: XACML and role-based access control, Presentation at DIMACS
Workshop on Security of Web Services and e-Commerce, DIMACS Center,
CoRE Building, Rutgers University, Piscataway, NJ, May 2005.

83. Czajkowski, K., et al.: From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring and Evolution. IBM White paper,
May 2004. Online at: http://www.ibm.com/developerworks/webservices/
library/specification/ws-resource/gr-ogsitowsrf.html.

84. Damiani, M. L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A spatially
aware RBAC. ACM Transactions on Information and System Security 10(1):1-
42, 2007.

85. Damiani, K.L., Silvestri, C., Bertino, E.: Hierarchical domains for decentralized
administration of spatially-aware RBAC systems. In Proceedings of the Third
International Conference on Availability, Reliability and Security, ARES 2008,
March 4-7, 2008, Technical University of Catalonia, Barcelona , Spain, IEEE
Computer Society 2008.

86. Davidson, A., Fuchs, M., Hedin, M., et al.: Schema for Object-Oriented XML
2.0 (W3C, July 1999). Online at: http://www.w3.org/TR/NOTE-SOX

87. Davis, M., Durst, M.: Unicode Normalization Forms Revision 18.0 (Uni-
code Technical Report #15, 1999-11-11). Online at: http://www.unicode.org/
unicode/reports/tr15/tr15-18.html

88. De Capitani di Vimercati, S., Samarati, P.: Access control: policies, models
and mechanisms. In Foundations of Security Analysis and Design - Tutorial
Lectures, R. Focardi and F. Guerrieri, Eds. (2001). Springer Verlag 20-30 LNCS
2171.

89. de Lahitte, H.: WS-I BSP 1.0 Sample Application. Hernan de Lahitte’s blog.
Online at: http://weblogs.asp.net/hernandl/archive/2005/ 05/21/wsibspsam-
pleapp.aspx.

90. Della-Libera, G., Gudgin, M., et al.: Web Services Security Policy Language
(WS-SecurityPolicy). Version 1.1, July 2005

91. Denker, G., Finin, T., Kagal, L., Paolucci, M., Sycara, K.: Security for DAML
Web services: annotation and matchmaking. In Proceedings of 2nd Interna-
tional Semantic Web Conference (ISWC 2003), Sanibel Island, FL, USA, Oc-
tober 2003, 335-350, Springer Verlag, LNCS 2870.

92. Devanbu, P., Gertz, M., Martel, C., and Stubblebine, S. G.: Authentic Third-
party Data Publication. In Proceedings of the 14th Annual IFIP WG 11.3
Working Conference on Database Security, Schoorl, The Netherlands, August
2000.

93. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.1 (IETF RFC 4346, April 2006). Online at: http://tools.ietf.org/html/rfc4346

94. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisim-
ulation equivalence. Theoretical Computer Science, 311(1-3):221-256, 2004.

95. Dun & Bradstreet Data Universal Numbering System. Online at:
http://www.dnb.com/us/duns update/index.html

96. Eastlake, D., Reagle, J., eds.: XML Encryption Syntax and Processing. W3C
Recommendation, 10 December 2002. Online at http://www.w3.org/TR/
xmlenc-core/

97. Eastlake, D., Reagle, J., Solo, D., eds: XML-Signature Syntax and Processing
W3C Recommendation, 12 February 2002. Online at: http://www.w3.org/TR/
xmldsig-core/

References 211

98. Emig, C., Abeck, S., Biermann, J., Brandt, F., Klarl, H.: An access control
metamodel for Web service-oriented architecture. In Proceedings of the 2nd
International Conference on Systems and Networks Communications (CSNC
2007), Cap Esterel, French Riviera, France, August 2007.

99. Enterprise Vulnerability Description Language v0.1 OASIS Draft (OASIS,
February 2005). Online at: http://www.evdl.net/latest/doc/

100. Finnish IT Center for Science. The Haka Federation. Online at:
http://www.csc.fi/english/institutions/haka.

101. Federal Trade Commission. Children’s online privacy protection act of 1998.
Online at: http://www.cdt.org/legislation/105th/privacy/coppa.html.

102. Federal Trade Commission: FTC Announces Settlement with Bankrupt Web-
site, Toysmart.com, Regarding Alleged Privacy Policy Violations, 21 July 2000.
Online at: www.ftc.gov/opa/2000/07/toysmart2.htm.

103. Feng, X., Hao, H., Jun, X., Li, X.: Context-aware role-based access control
model for Web services. In Proceedings of GCC 2004 International Workshops,
IGKG, SGT, GISS, AAC-GEVO, and VVS, Wuhan, China, October 2004,
430-436.

104. Ferraiolo, D., Chandramouli, R., Kuhn, R.: Role-Based Access Control, Second
edition. Artech House, 2003.

105. Fischer-Hubner, S.: IT-security and privacy: design and use of privacy-
enhancing security mechanisms. In IT-Security and Privacy: Design and Use of
Privacy-Enhancing Security Mechanisms, Lecture Notes in Computer Science,
Vol. 1958/2001.

106. Ford, W. et al..: XML Key Management Specification (XKMS) (W3C Note,
30 March 2001). Online at: http://www.w3.org/TR/xkms/

107. Forouzan, B.: Cryptography & Network Security. McGraw-Hill, 2007.
108. Foster, I., et al.: Modeling Stateful Resources with Web Services. IBM White

paper, May 2004. Online at: http://www.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf

109. Foster, I., Kesselman, C., Nick, J., Tuecke, S., : The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Globus
Project, 2002. Online at: http://www.globus.org/research/papers/ogsa.pdf.

110. Freier, A. O., Karlton, P., Kocher, P. C.: The SSL Protocol Version 3.0.
Internet Draft, November 18, 1996. Online at: http://wp.netscape.com/
eng/ssl3/draft302.txt

111. Gamma, E., Helm, R., Johnson, R., & Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. (Addison-Wesley, 1995).

112. Goldfarb, C.H.: Design Considerations for Integrated Text Processing Systems.
(IBM Cambridge Scientific Center Technical Report No. 320-2094 May 1973).
Online at: http://www.sgmlsource.com/history/G320-2094/G320-2094.htm

113. Goldreich, O.: Secure Multi-party Computation. Working Draft, Version 1.4,
2002.

114. Goldfarb, C. H.: The SGML History Niche. Online at: http://www.sgmlsource.
com/history/index.htm

115. Gollmann, D.: Computer Security. John Wiley & Sons, 2006.
116. Goldschlag, D. M., Reed, M. G, Syverson, P. F. : Onion routing. Communica-

tions of ACM, 42(2): 39-41, 2004.
117. Goodrich, M. T., Shin, M., Tamassia, R., Winsborough, W. H.:: Authenticated

dictionaries for fresh attribute credentials. In Proceedsings of iTrust Confer-
ence, 2003.

212 References

118. Graham, S., et al.: Building Web Services with Java. 2nd edn, Sams Publishing,
2005.

119. Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin, I: Web
Services Resource Framework v 1.2, OASIS Standard, 1 April 2006. Online at:
http://docs.oasis-open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf.

120. Gudgin, M., et al.: SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition) (W3C Recommendation, 27 April 2007). Online at:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

121. Gudgin, M., et al.: SOAP Version 1.2 Part 2: Adjuncts (Second Edi-
tion) (W3C Recommendation, 27 April 2007). Online at: http://www.
w3.org/TR/2007/REC-soap12-part2-20070427/

122. Gudgin, M., Mendelsohn, N., Nottingham, M., Ruellan, H., eds: W3C XML-
Binary Optimized Packaging (W3C Recommendation, 25 January 2005). On-
line at: http://www.w3.org/TR/2005/REC-xop10-20050125/

123. Gudgin, M., Mendelsohn, N., Nottingham, M., Ruellan, H., eds: W3C SOAP
Message Transmission Optimization Mechanism (W3C Recommendation, 25
January 2005). Online at: http://www.w3.org/TR/2005/REC-soap12-mtom-
20050125/

124. The Gridshib Project. Online at: http://gridshib.globus.org/.
125. Hallam-Baker, P., Mysore, S. H., eds.: XML Key Management Specification

(XKMS 2.0) Version 2.0 (W3C Recommendation, 28 June 2005). Online at:
http://www.w3.org/TR/2005/REC-xkms2-20050628/.

126. Hansen, M., Schwartz, A., Cooper, A.: Privacy and identity management. IEEE
Security and Privacy, 6(2):38-45, March/April 2008.

127. HIPAA: Health Insurance Portability and Accountability Act of 1996. Online
at: http://www.hep-c-alert.org/links/hipaa.html, 1996.

128. Hess, A., Holt, J., Jacobson, J., Seamons, K.: Content-triggered trust negoti-
ation. ACM Transactions on Information and System Security, 7(3):428–456,
2004.

129. Higgins Trust Framework, 2006. Online at: http://www.eclipse.org/higgins/.
130. Hirsch, F., Just, M., eds.: XML Key Management (XKMS) 2.0 Requirements.

(W3C Note, 05 May 2003). Online at: http://www.w3.org/TR/xkms2-req
131. Hirsch, F., Philpott, R., Maler E., eds.: Security and Privacy Consid-

erations for the OASIS Security Assertion Markup Language (SAML)
V2.0 (OASIS Standard, 15 March 2005). Online at: http://docs.oasis-
open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf

132. Hodges, J., et al.: Glossary for the OASIS security assertion markup lan-
guage (SAML) v.2.0. OASIS standard, 2005. Online at: http://www.oasis-
open.org/committees/security/#documents.

133. Hogg, J., et al.: Web Service Security: Scenarios, Patterns, and Implementation
Guidance for Web Services Enhancements (WSE) 3. 0, Microsoft Press, 2006.

134. Hommel W., Reiser, H.: Federated identity management: shortcomings of ex-
isting standards. In Proceedings of IM ’05: 9th IFIP/IEEE International Sym-
posium on Integrated Network Management, 2005.

135. Housley, R.: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile (rfc 2459), 1999. Online at: http://www.ietf.org/rfc/rfc2459.txt

136. IBM WebSphere R© MQ V6 Fundamentals. 2005. Online at: http://
www.redbooks.ibm.com/redbooks/SG247128/wwhelp/wwhimpl/js/html/
wwhelp.htm

References 213

137. In Common Federation. Online at: http://www.incommonfederation.org/.
138. Internet2. Shibboleth. Online at: http://shibboleth.internet2.edu.
139. Introduction to UDDI: Important Features and Functional Concepts (OASIS,

October 2004). Online at: http://uddi.org/pubs/uddi-tech-wp.pdf
140. ISO 10181-3 Access Control Framework. 1996
141. ISO 3166 International Standard for Country Codes. Online at:

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
142. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A framework for

efficient storage security in RDBMS. In Proceedings of 9th International Con-
ference on Extending Database Technology (EDBT 2004), Heraklion, Crete,
Greece, March 14-18, 2004, Proceedings. Lecture Notes in Computer Science
2992 Springer 2004

143. Iwasa, K., ed.: Web Services Reliable Messaging TC WS-Reliability
1.1 (OASIS Standard, 15 November 2004). Online at: http://docs.oasis-
open.org/wsrm/ws-reliability/v1.1/wsrm-ws reliability-1.1-spec-os.pdf

144. JSR-000105 XML Digital Signature APIs (Final Release). Online at:
http://jcp.org/aboutJava/communityprocess/final/jsr105/

145. JSR-000106 XML Digital Encryption APIs (Close of Public Review, 11 January
2006). Online at: http://jcp.org/aboutJava/communityprocess/pr/jsr106/

146. Kagal, L., Denker, G., Finin, T., Paolucci, M., Srinivasan, N., Sycara, K.: Au-
thorization and privacy for semantic Web services. IEEE Intelligent Systems,
19(4):50-56, 2004.

147. Kaliski, B.: PKCS #7: Cryptographic Message Syntax Standard Version 1.5.
(IETF RFC 2315, March 1998). Online at: http://www.ietf.org/rfc/rfc2315.txt

148. Karmarkar, A., Gudgin, M., Lafon, Y., eds.: W3C Resource Representation
SOAP Header Block (W3C Recommendation 25 January 2005). Online at:
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/

149. Kissel, R. ed.: Glossary of Key Information Security Terms NIST IR 7298,
April 25 2006. Online at: http://csrc.nist.gov/publications/nistir/NISTIR-
7298 Glossary Key Infor Security Terms.pdf

150. Knorr, K., Stormer, H.: Modeling and analyzing separation of duties in work-
flow environments. In Proceedings of IFIP TC11 16th Annual Working Con-
ference on Information Security: Trusted Information: The New Decade Chal-
lenge, June 2001, 199-212.

151. Koglin, Y., Yao, D., Bertino, E.: Efficient and secure content processing and
distribution by cooperative intermediaries. IEEE Transactions on Parallel and
Distributed Systems, 19(5):615-626, 2008.

152. Kohl, U., Lotspiech J., Kaplan M. A.: Safeguarding digital library con-
tents and users protecting documents rather than channels. (D-Lib Mag-
azine, September 1997). Online at: http://www.dlib.org/dlib/september97/
ibm/09lotspiech.html

153. Koshutanski, H. and Massacci, F.: Interactive credential negotiation for state-
ful business processes. In Proceedings of 3rd International Conference on
Trust Management (iTrust 2005), Rocquencourt, France, May 2005, 256-272,
Springer Verlag, LNCS 3477.

154. Kostutanski, H., Massacci, F.: An access control framework for business pro-
cesses for Web services. In Proceedings of ACM Workshop on XML Security,
George W. Johnson Center at George Mason University, Fairfax, VA, USA,
October 2003, 15-24.

214 References

155. Kumar, P.: J2EE Security for Servlets, EJBs, and Web Services. (Prentice Hall
Press, 2003).

156. Kundu, A., Bertino, E.: Structural signatures for tree data structures. CERIAS
Technical Report, 2008.

157. Langheinrich, M.: A P3P preference exchange language 1.0 (APPEL1.0). W3C
Working Draft, April 2002.

158. Lassesen, K., Bandiera, L.: Oval 5.x Services Oriented Architecture: In-
terpreter Services Proposal (Patchlink Corporation, 1997-2005). Online at:
http://oval.mitre.org/oval/documents/docs-06/soa.pdf

159. Lee, A. J., Winslett, M., Basney, J., and Welch V.: The Traust authorization
service. ACM Trans. Inf. Syst. Secur., 11(1), 2008.

160. Lee, D., Chu, Wesley W.: Comparative analysis of six XML schema languages.
In ACM SIGMOD Record, 29(3):76-87, 2000.

161. Adam J. Lee and Marianne Winslett, “Towards Standards-Compliant Trust
Negotiation for Web Services,” in Proceedings of the Joint iTrust and PST
Conferences on Privacy, Trust Management, and Security (IFIPTM 2008), June
2008

162. Leymann, F.: Web services flow language (WSFL 1.0), IBM Software Group,
2001. Online at: http://www-306.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf.

163. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated
index structures for outsourced databases. In Proceedings of SIGMOD Confer-
ence, 2006.

164. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: enabling
authentication of sliding window queries on streams. In Proceedings of VLDB
Conference, 2007.

165. Li, J., Li, N., Winsborough, W. H.: Automated trust negotiation using cryp-
tographic credentials. In Proceedings of ACM Conference on Computer and
Communications Security, pages 46-57. ACM, 2005.

166. Liberty Alliance Project. Online at: http://www.projectliberty.org.
167. Liberty ID-WSF implementation guidelines. Online at: https://www.

projectliberty.org/specs/liberty-idwsf-overview v1.1.pdf.
168. Liberty trust model guidelines. Online at: https://www.

projectliberty.org/specs/liberty-trust-models-guidelines v1.0.pdf.
169. Lipner, S., Howard, M.: The Trustworthy Computing Security De-

velopment Lifecycle (Microsoft Corporation, March 2005). Online at:
http://msdn.microsoft.com/en-us/library/ms995349.aspx

170. Lockhart, H., et al.: Web Services Federation Language (WS-
Federation), Version 1.1. December 2006. Online at: http://download.
boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/

171. Mahmoud, Q. H.: Securing Web Services and the Java WSDP 1.5 XWS-
Security Framework. March 2005. Online at: http://java.sun.com/developer/
technicalArticles/WebServices/security/index.html

172. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.:
A general model for authenticated data structures. Algorithmica, 39(1):21-41,
2004.

173. Martin, D., et al.: OWL-S: Semantic Markup for Web Services. Online at:
http://www.daml.org/services/owl-s/1.1/overview/.

References 215

174. McIntosh M., Gudgin, M., Scott Morrison K., Barbir, A., eds.: Basic Se-
curity Profile Version 1.0 Final Material (WS-I, 2007-03-30). Online at:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

175. Mecella, Bertino, E., Ouzzani, M., Paci, F.: Access control enforcement for
conversation-based web services. In Proceedings of 15th International World
Wide Web Conference (WWW 2006), Edinburgh, Scotland, UK, May 2006,
257-266.

176. Meier, J. D., Mackman, A., Vasireddy, S., Dunner, M., Escamilla, R., Mu-
rukan, A.: Improving Web Application Security Threats and Countermeasures
(Microsoft Corporation, 2003). Online at: http://msdn.microsoft.com/en-
us/library/ms994921.aspx

177. Meier, J. D., Mackman, A., Wastell, B.: Threat Modeling Web Ap-
plications (Microsoft Corporation, May 2005). Online at: http://msdn2.
microsoft.com/en-us/library/ms978516.aspx

178. Mell, P., Scarfone, K., Romanosky, S: A Complete Guide to the
Common Vulnerability Scoring System Version 2.0. Online at:
http://www.first.org/cvss/cvss-guide.html

179. Merkle, R. C.: A certified digital signature. In Proceedings of Advances in
Cryptology (CRYPTO), 1989.

180. Merrels, J.. Sxip Identity. DIX: Digital Identity Exchange Protocol, March
2006. Internet Draft.

181. Metro Web Service Stack Overview Implementation Version: 1.2 FCS. Online
at: https://metro.dev.java.net/discover/

182. Microsoft Message Queuing MSMQ 3.0 Feature List. March 28, 2003. Online
at: http://www.microsoft.com/windowsserver2003/technologies/msmq/
whatsnew.mspx

183. Microsoft Security Bulletin. Online at: http://www.microsoft.com/technet/
security/current.aspx

184. Microsoft Security Response Center Security Bulletin Sever-
ity Rating System (Revised, November 2002). Online at:
http://www.microsoft.com/technet/security/bulletin/rating.mspx

185. Microsoft .NET Framework Developer’s Guide What’s New in the
.NET Framework Version 2.0. Online at: http://msdn2.microsoft.com/en-
us/library/t357fb32.aspx.

186. Minimum Security Requirements for Federal Information and Information Sys-
tems. (Federal Information Processing Standards Publication FIPS PUB 200,
March 2006). Online at: http://csrc.nist.gov/publications/fips/fips200/FIPS-
200-final-march.pdf

187. Mitra, N., Lafon, I.: SOAP Version 1.2 Part 0: Primer (Sec-
ond Edition) (W3C Recommendation, 27 April 2007). Online at:
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

188. Moses, T.: Extensible Access Control Markup Language (XACML),
Version 2.0 (OASIS Standard, 2005). Online at: http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf.

189. Motahari Nezhad, H. R., Benatallah, B., and Saint Paul, R.: Proto-
col discovery from imperfect service interaction data. In Proceedings of
VLDB 2006 Ph.D. Workshop, Seoul, Korea, September 2006, CEUR-
WS (ISSN 1613-0073), vol. 170. Online at: http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS//Vol-170/.

216 References

190. Mozilla Foundation Security Advisories. Online at: http://www.mozilla.
org/security/announce/

191. Mozilla Known Vulnerabilities in Mozilla Products. Online at: http://www.
mozilla.org/projects/security/known-vulnerabilities.html

192. Mozilla Security Center. Online at: http://www.mozilla.org/security/
193. Moving Picture Experts Group home page. Online at: http://www.chiariglione.

org/mpeg/
194. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.,

eds.: WS-SecureConversation 1.3 (OASIS Standard, 1 March 2007). On-
line at: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.html

195. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H., eds.:
WS-SecurityPolicy 1.2 OASIS Standard (OASIS, 1 July 2007). On-
line at: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html

196. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H., eds.:
WS-Trust 1.3 OASIS Standard (OASIS, 19 March 2007). Online at:
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

197. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R., eds.: Web Services Secu-
rity: SOAP Message Security 1.0 (WS-Security, 2004) (OASIS Standard, March
2004). Online at: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf

198. Naor, M., and Nissim, K.: Certificate Revocation and Certificate Update. In
Proceedings of the 7th USENIX Security Symposium, 1998.

199. National Information Assurance Glossary. Committee on National Secu-
rity Systems, May 2003, revised June 2006. Online at: http://www.cnss.
gov/Assets/pdf/cnssi 4009.pdf

200. National Vulnerability Database Version 2.0. National Institute of Standards
and Technology (NIST). Online at: http://nvd.nist.gov/

201. Ni, Q., Bertino, E., Lobo, J., Trombetta, A.: Privacy-aware role based access
control. In Proceedings of SACMAT 2007: 12th ACM Symposium on Access
Control Models and Technologies, edited by Lotz, V., and Thuraisingham, B.,
Sophia Antipolis, France, June 2007 (ACM, New York 2007), 41-50.

202. Ni, Q., Bertino, E., Lin, D., Lobo, J.: Conditional privacy-aware role based
access control. In Proceedings of ESORICS 2007: 12th European Symposium On
Research In Computer Security, edited by Biskup, J., and Lopez, J., Dresden,
Germany, September 2007 (Springer, Berlin Heidelberg New York 2007).

203. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control
policies and privacy policies. In Proceedings of SACMAT 2008: 13th ACM
Symposium on Access Control Models and Technologies, edited by Ray, I., and
Li, N., Estes Park, CO, USA, June 2008 (ACM, New York 2008), 133-142.

204. Niblett, P., Graham, S.: Events and service-oriented architecture: The OASIS
Web Services Notification specifications. IBM System Journal Vol. 44, No. 4,
2005.

205. North American Industry Classification System (NAICS). Online at:
http://www.census.gov/epcd/www/naics.html

206. Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected compo-
nents in a directed graph. Information Processing Letters, 49(1):9-14,1994.

207. OASIS. Web Services Base Notification 1.3 (WS-BaseNotification) OASIS
Standard, 1 October 2006.

References 217

208. O’Neill, M.: Web Services Security. (McGraw-Hill/Osborne 2003).
209. Oliveira, S. R. M., and Zaiane, O. R.: Privacy preserving frequent itemset

mining. In Proceedings of IEEE ICDM Workshop on Privacy, Security and
Data Mining, 2002.

210. Open GIS Consortium: Open GIS Simple Features Specification for SQL. Re-
vision 1.1, 1999.

211. Open Vulnerability and Assessment Language. Online at: http://oval.
mitre.org/

212. Oracle Inc. BPEL Tutorial 6: Working with the TaskManager service, 2006. On-
line at: http://www.oracle.com/technology/products/ias/bpel/pdf/orabpel-
Tutorial6-TaskManagerServiceTutorial.pdf.

213. Orchard, N.: Extensibility, XML Vocabularies, and XML Schema. Online at:
http://www.xml.com/pub/a/2004/10/27/extend.html

214. Organisation for Economic Co-operation and Development. OECD guidelines
on the protection of privacy and transborder flows of personal data of 1980.
Online at http://www.oecd.org/.

215. OWASP Top 10 Methodology. Online at: http://www.owasp.org/index.php/
Top 10 2007-Methodology

216. Paci, F., Bertino, E., and Crampton, J.: An access control framework for WS-
BPEL. International Journal of Web services Research,5(3):20-43, 2008.

217. Parastatidis, S., Rischbeck, T., Watson, P., Webber, J.: A Grid Application
Framework Based on Web Services Specifications and Practices, Technical Re-
port, North East Regional e-Science Centre, University of Newcastle.

218. Paurobally, S., Jennings, N. R.: Protocol engineering for Web services con-
versations. International Journal of Engineering Applications of Artificial
Intelligence,18(2):237-254, 2005.

219. Pieprzyk, J., Hardjono, T., Seberrry, J.: Fundamentals of Computer Security.
Springer, 2003.

220. Poha, V. V.: Internet Security Dictionary. Springer, 2002.
221. Powers, C., Schunter, M., eds.: The Enterprise Privacy Authorization Language

(EPAL 1.2) IBM Research Report. Online at: http://www.zurich.ibm.com/
security/enterprise-privacy/epal/Specification/ index.html

222. Ragouzis, N., Hughes, J., Philpott, R., Maler, E., eds.: Security As-
sertion Markup Language (SAML) 2.0 Technical Overview Working
Draft 03 (OASIS, 20 February 2005). Online at http://www.oasis-
open.org/committees/download.php/20645/sstc-saml-tech-overview-2%200-
draft-10.pdf

223. RELAX NG home page. Online at http://relaxng.org/
224. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M.,

Polleres, A., Feier, C., Bussler, C., Fensel, D.,: Web service modeling ontol-
ogy, Applied Ontology, 1(1): 77-106, 2005.

225. Ross, R., Katzke, S., Johnson, A., Swanson, M., Stoneburner, G., Rogers,
G., Lee, A.: Recommended Security Controls for Federal Information
Systems (NIST Special Publication 800-53, February 2005). Online at:
http://csrc.nist.gov/publications/nistpubs/800-53/SP800-53.pdf

226. Rusinkiewicz, M., Sheth, A. P.: Specification and execution of transactional
workflows. In Modern Database Systems: The Object Model, Interoperability,
and Beyond, 592-620, Addison-Wesley, 1995.

218 References

227. Samar, V.: Single Sign-on using cookies for Web Applications. In WETICE ’99:
Proceedings of the 8th Workshop on Enabling Technologies on Infrastructure for
Collaborative Enterprises, pages 158-163, Washington, DC, USA, 1999. IEEE
Computer Society.

228. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer, 29(2):38-47, 1996.

229. Sandhu, R., Ferraiolo, D., Kuhn, R.: American National Standard for Informa-
tion Technoloby Role Based Access Control, ANSI INCITS 359-2004, February
3, 2004.

230. SANS Critical Vulnerability Analysis Scale Ratings. Online at:
http://www.sans.org/newsletters/cva/?portal=49d3578c03d98ed5f5934311fd3
38282#atrisk

231. Seamons, K. E., Winslett, M., and Yu, T.: Limiting the disclosure of ac-
cess control policies during automated trust negotiation. In Proceedings
of Network and Distributed System Security Symposium, San Diego, CA,
USA, February 2001, Internet Society (ISBN 1-891562-10-X). Online at:
http://www.isoc.org/isoc/conferences/ndss/01/2001/INDEX.HTM.

232. Seamons, K. E., Winslett, M., and Yu, T., Smith, B., Child, E., Jacobson, J.,
Mills H., and Lina Yu, L.: Requirements for policy languages for trust negotia-
tion. In Proceedings of 3rd International Workshop on Policies for Distributed
Systems and Networks, 68-79, 2002.

233. Schneier B.: Attack trees: Modeling security threats. Dr. Dobb’s Journal, De-
cember 1999

234. Schneier B.: Secrets & Lies: Digital Security in a Networked World. Wiley,
January 2004.

235. Security in a Web Services World: A Proposed Architecture and Roadmap
A joint security white paper from IBM Corporation and Microsoft
Corporation, April 7, 2002, Version 1.0. Online at: http://download.
boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf

236. SecurityFocus Vulnerability Database. Online at: http://www.securityfocus.
com/about

237. Sirer, E. G., Wang, K.: An access control language for Web services. In Pro-
ceedings of 7th ACM Symposium on Access Control Models and Technologies
(SACMAT 2002), Monterey, CA, USA, June 2002, 23-30, ACM Press.

238. Skogsrud, H., Benatallah, B., Casati, F.: Trust-serv: Model-driven lifecycle
management of trust negotiation policies for Web services. In Proceedings of
13th International World Wide Web Conference (WWW 2004), New York,
NY, USA, May 2004, 53-62, ACM Press.

239. Squicciarini, A. C., Bertino, E., Ferrari, E., Paci, F., Thuraisingham, B.: PP-
Trust-X: a system for privacy preserving trust negotiations. ACM Transactions
on Information Systems and Security, 827-842, July 2007.

240. Squicciarini, A. C., Czeskis, A., Bhargav-Spantzel, A., Bertino, E.: Auth-SL -
a system for the specification and enforcement of quality-based authentication
policies. In Proceedings of 9th International Conference on Information and
Communication Security (ICICS 2007), Zhengzhou, China, December 12-15,
2007, Lecture Notes in Computer Science 4861 Springer 2008.

241. Srivatsa, M., Iyengar, A., Mikalsenz, T., Rouvellouz, I., Yin, J.: An Access
Control System for Web Service Compositions. In Proceedings of IEEE Inter-
national Conference on Web Services (ICWS 2007), Marriott Salt Lake City
Downtown, Salt Lake City, Utah, USA, July 2007.

References 219

242. Stallings, W.: Cryptography and Network Security (4th Edition), Prentice Hall,
2005.

243. Standards for Security Categorization of Federal Information and In-
formation Systems. (Federal Information Processing Standards Publica-
tion FIPS PUB 199, December 2003). Online at: http://csrc.nist.gov/
publications/fips/fips199/FIPS-PUB-199-final.pdf

244. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity Management. Prentice Hall
Professional Technical Reference, 2005.

245. Stirling, C.: Modal and temporal logics for processes. In Proceedings Logics for
Concurrency: Structure versus Automata (8th Banff Higher Order Workshop),
F. Moller and G. M. Birtwistle, eds., LNCS vol. 1043 (1996), Springer Verlag.

246. Sun Java System Message Queue 4.1 Technical Overview (Sun Mi-
crosystems Inc., 2007). Online at: http://docs.sun.com/app/docs/doc/819-
7759/6n9mco7el?a=view

247. Sweeney, L.: Achieving k-anonymity privacy protection using generaliza-
tion and suppression. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):571-588, 2002.

248. Swidersky, F., Snyder W.: Threat Modeling. Microsoft Press, 2004.
249. Sycara, K., Berardi, D., Bussler, C., Cabral, L., Cimpian, E., Domingue, J.,

Moran, M., Mecella, M., Paolucci, M., Stollberg, M., Zaremba, M.: Semantic
Web services tutorial. In Proceedings of 2nd European Semantic Web Confer-
ence (ESWC 2005), Heraklion, Greece, May 2005.

250. The Information Security Automation Program and The Security Content Au-
tomation Protocol (National Institute of Standards and Technology (NIST)).
Online at: http://nvd.nist.gov/scap.cfm

251. The Swiss Education & Research Network. Switchaai Authentication and Au-
thorization Infrastructure (AAI). Online at: http://www.switch.ch/aai/.

252. Tarjan, R. E.: Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146-160, 1972.

253. Thatte, S.: XLANG Web Services for Business Process Design. Mi-
crosoft Corporation, 2001. Online at: http://www.gotdotnet.com/team/
xml wsspecs/xlang-c/default.htm.

254. The Open Source Vulnerability Database. Online at: http://osvdb.org/
255. The Open Web Application Security Project (OWASP). Online at:

http://www.owasp.org/index.php/Main Page
256. The Web Services Interoperability Organization. http://www.ws-i.org/
257. Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema

Part 1: Structures (W3C Recommendation, October 2004). Online at:
http://www.w3.org/TR/xmlschema-1/

258. Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema
Part 1: Structures (W3C Recommendation, October 2004). Online at:
http://www.w3.org/TR/xmlschema-1/

259. Thuraisingham, B. M.: Database and Applications Security Integrating Infor-
mation Security and Data Management. Auerbach Pubblications, 2005.

260. Thuraisingham, M. B., Ford, W., Collins, M., O’Keeffe, J.: Design and imple-
mentation of a database inference controller. Data & Knowledge Engineering
11(3): 271-289, 1993.

261. UK Oxford University. Shibgrid. Online at: http://www.oesc.ox.ac.
uk/activities/projects/index.xml?ID=ShibGrid.

220 References

262. United Nations Standard Products and Services Code System (UNSPSC).
263. University of Manchester. Shibboleth Enabled Bridge to Access the National

Grid. Online at: http://www.mc.manchester.ac.uk/research/shebangs.
264. United States Department of Health: Health Insurance Portability and Ac-

countability Act of 1996. Online at http://www.hhs.gov/ocr/hipaa/.
265. United States Senate Committee on Banking, Housing, and Urban Af-

fairs. Information regarding the Gramm-Leach-Biley act of 1999. Online at
http://banking.senate.gov/conf/.

266. US-CERT Vulnerability Notes Database. Online at: http://www.kb.cert.
org/vuls/

267. US-CERT Vulnerability Notes Database - Field Descriptions. Online at:
http://www.kb.cert.org/vuls/html/fieldhelp#metric

268. Vaidya, J., and Clifton, C.: Privacy-preserving association rule mining in ver-
tically partitioned data. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, July 23-26, 2002,
Edmonton, Alberta.

269. van der Stock A., Williams J.: OWASP Top 10. The Ten Most Criti-
cal Web Application Security Vulnerabilities, 2007 UPDATE. Online at:
http://www.owasp.org/images/e/e8/OWASP Top 10 2007.pdf

270. Wainer, J., Barthelmess, P. and Kumar, A.:W-RBAC − A workflow security
model incorporating controlled overriding of constraints. International Journal
of Cooperative Information Systems,12(4):455-486, 2003.

271. Wang, Q., Yu, T, Li, N., Lobo, J., Bertino, E., Irwin, K., Byun, J. W.: On
the correctness criteria of fine-grained access control in relational databases.
In Proceedings of VLDB 2007: 33rd International Conference on Very Large
Data Bases, Vienna, Austria, September 2007, 555-566.

272. Wayman, J.: Biometrics in identity management Systems,IEEE Security and
Privacy, 6(2):30-37, March/April, 2008.

273. Web Application Security Consortium. Online at: http://www.webappsec.org/
274. Web Application Security Consortium. Threat Classification. Online at:

http://www.webappsec.org/projects/threat/v1/WASC-TC-v1 0.pdf
275. Web Services Enhancements 3.0 (Web service specifications supported

by WSE), Microsoft. Online at: http://msdn.microsoft.com/en-us/ li-
brary/aa529362.aspx

276. Web Services Policy Assertions Language (WS-PolicyAssertions) Version
1.0, December 18, 2002. Online at: http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-polas/ws-polas.pdf

277. Web Services Secure Conversation Language (WS-SecureConversation)
February 2005. Online at: http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-secon/ws-secureconversation.pdf

278. Web Services Security Kerberos Token Profile 1.1 (OASIS Stan-
dard Specification, 1 February 2006). Online at: http://www.oasis-
open.org/committees/download.php/16788/wss-v1.1-spec-os-
KerberosTokenProfile.pdf

279. Web Services Security X.509 Certificate Token Profile (OASIS, January
2004). Online at: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0.pdf

280. Web Services Security XrML-Based Rights Expression Token Profile
(Working Draft 03, 30 January 2003). Online at: http://www.oasis-
open.org/committees/wss/documents/WSS-XrML-03-changes.pdf

References 221

281. Wikipedia: Data Universal Numbering System. Online at: http://en.wikipedia.
org/wiki/D-U-N-S

282. Windows CardSpace. Online at: http://cardspace.netfx3.com/.
283. Winsborough W. H., Li, N.: Safety in automated trust negotiation. ACM

Transactions on Information System Security, 9(3):352-390, 2006.
284. Winslett, M., Yu, T., Seamons, K. E.: Supporting structured credentials and

sensitive policies through interoperable strategies for automated trust negoti-
ation. ACM Transactions on Information System Security, 6(1):1-42, 2003.

285. Wonohoesodo, R., Tari, Z.: A Role based access control for Web services. In
Proceedings of IEEE International Conference on Services Computing (SCC
2004), Shangai, China, September 2004, 49-56, IEEE Computer Society. Online
at: http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/.

286. W3C. Platform for Privacy Preferences (P3P). http://www.w3.org/P3P/
287. Woodruff, D., and Staddon, J.: Private inference control. In CCS ’04: Proceed-

ings of the 11th ACM conference on Computer and communications security,
pages 188-197, New York, NY, USA, 2004. ACM Press.

288. Wordnet. Princeton University. Available at http://wordnet.princeton.edu/
289. WS-Privacy. Online at: http://www.serviceoriented.org/ws-privacy.html
290. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join pro-

cessing in outsourced databases. To appear in Proceedings of the ACM Con-
ference on the Management of Data (SIGMOD), Providence, RI, USA, June
29th - July 2, 2009.

291. Wu, X., Bertino, E.: An analysis study on zone-based anonymous communica-
tion in mobile ad hoc networks. IEEE Transactions on Secure and Dependable
Computing, in print.

292. Wysopal, C., Dustin, E., Nelson, L., Zovi, D. D.: The Art of Software Security
Testing. Addison-Wesley, 2006.

293. XrML 2.0 Technical Overview Version 1.0 (Contentguard, March 8, 2002).
Online at: http://www.xrml.org/Reference/XrMLTechnicalOverviewV1.pdf

Index

access control, 197
access control model, 197
access control policy, 197
access request, 122
anonymity techniques, 186
anonymous credentials, 194
APPEL, 187
Attack, 27

cost, 27
Attack pattern, 33, 34
Attack tree, 33
attribute based access control,

ABAC, 117
auditing, 194
authentication, 182
authentication as a service, 183
authentication factor, 185
authentication policy, 183
authorization, 197
authorization conflict, 199
authorization constraints, 160
authorization exception, 199
authorization schema, 168

CardSpace, 92
Coding errors, 27
component services, 115
composite service, 115
Configuration errors, 27
contextual information, 182
conversation, 133
Core P-RBAC, 189
Countermeasure, 27, 34

classification, 35

data anonymization, 192
data sampling, 192
Denial of service, 32
Design flaws, 27
Digital Right Management - DRM -,

71
digital signature, 147
discovery agency, 147

Elevation of privilege, 32
event-based model, 180

finite transition system, 133

gridSystems, 97

Hierarchical P-RBAC, 191
Hippocratic database, 193
human activities, 160

Incident, 27
inference, 195
Information disclosure, 32
integrity, 147

k-anonymity, 192

Manifest element, 154
Merkle hash path, 150
Merkle hash tree, 148
Merkle hash value, 148
MITRE, 37

Common Vulnerabilities and
Exposures, 37

Common Weakness Enumeration,
37

224 Index

notification pattern, 180

OASIS, 48
obligation, 190
OECD Collection Limitation

Principle, 191
Open Source Vulnerability Database

- OVSDB-, 38
Open Web Applications Security

Project - OWASP -, 39
OWL, 194

P3P policy, 187
P3P policy element, 187
P3P statement, 188
permissions, 167
Policy, 64
policy conflict resolution, 199
privacy compliance, 194
privacy metadata, 193
privacy policy, 187
privacy-aware RBAC, 189
privacy-preserving data mining, 192
private information retrieval, 194
protection matrix entry, 198

quality-based authentication, 183

RBAC, 180, 200
RBAC permission, 201
RDF, 194
reference monitor, 197
Repudiation, 32
role, 200
role hierarchy, 168, 201
role precondition, 201

SAML, 53
assertion, 53
attribute assertion, 53
authentication assertion, 53
authorization decision assertion, 53
threat model, 55

secure publishing, 148
Secure Socket Layer, 49
security outsourcing, 179
security pipeline, 181
security policy, 180
separation of duty, 160

service description, 121
Service discovery, 18
SOA

principles, 10
SOAP, 15

Processing Model, 15
binding, 15
mustUnderstand attribute, 15
Remote Procedure Call, 16

SOAP message, 15
spatial role, 203
Spoofing, 32
Standard

Consortium recommendation, 47
De facto standard, 47
De jure standard, 47

stateful Web services, 115
stateless Web services, 115
STRIDE, 32

Tampering, 32
temporal RBAC, 201
third-party architecture, 147
Threat, 26
Threat modelling

architecture overview, 31
asset identification, 30
security objectives definition, 30
security profile, 31
steps, 30
threats identification, 32

Threat rating, 34
tree signature, 149
Trust Negotiation

Cookies, 110
TrustNegotiation, 100

UDDI
Business Category taxonomy, 20
Green pages, 19
Inquiry API, 21
Model, 20

bindingTemplate, 20
businessEntity entity, 20
publisherAssertion, 20
tModel, 20

Publisher API, 21
Register interfaces, 21
registry, 18

Index 225

Service Type Registration, 20
White pages, 19
Yellow pages, 19, 20

UDDI registries, 147
UDDI standard specification, 152
Universal Description, Discovery and

Integration - UDDI -, 18
Universal Resource Identifier -URI-,

13
US-CERT, 36

Cyber Security Bulletins, 36
Vulnerability Notes, 36

Vulnerability, 27
Application Vulnerability Cate-

gories, 35
BugTraq mail list, 38
categories, 29
Enterprise Vulnerability Descrip-

tion Language - EVDL -,
40

metrics, 42
environmental metrics, 42
temporal metrics, 42

National Vulnerability Database -
NVD -, 37

Open Vulnerability and Assess-
ment Language - OVAL -,
37

rating
Common Vulnerability Scoring

System - CVSS -, 42
Microsoft Severity Rating, 41
SANS Critical Vulnerabiliy

Analysis Scale, 43
US-CERT Vulnerability Metric,

41
Web Security Threat Classification,

39
Vulnerability catalogs, 36

W3C, 48
Web service

W3C definition, 10
W3C reference architecture, 13

Web Services Architecture Require-
ments, 187

Web Services Description Language
(WSDL), 16

Web Services Infrastructure, 22
Web services security standards

framework, 48
WS* standards implementations, 73

GlassFish project, 74
Java Web Service Development

Platform, 74
Microsoft .NET 2.0, 73

WS-I, 48
WS-Policy, 65

policy assertion, 65
policy normal form schema, 65

WS-Policy Attachment, 66
WS-PolicyAssertions, 66
WS-Reliability, 59
WS-SecureConversations, 58
WS-Security, 56
WS-SecurityPolicy, 67
WS-Trust, 63

security model, 63
security token, 63
Security Token Service (STS), 63

WSDL, 16
abstract interface, 16
binding, 17
Message Exchange Pattern, 16
port, 17

X-GTRBAC model, 201
X.509 certificates, 134
XACML, 199

combining algorithm, 69
Context handler, 68
non-normative data flow model, 68
PolicySet, 69
rule, 69
threat model, 70

XACML Profile for Web-Services , 70
XKMS, 61

XML Key Information Service
(X-KISS), 61

XML Key Registration Service
(X-KRSS), 61

XML, 14
Document Type Definition -DTD-,

14
Schema language

RELAX, 14
XML Encryption, 51

226 Index

XML Key Management standard, 61
XML schema, 14
XML Signature, 52
XrML, 72

model, 72

condition, 73

issuer, 73

resource, 73

right, 72

	354087741X
	Security for Web Services and Service-Oriented Architectures
	Preface
	Contents
	1 Introduction
	Security for Web Services and Security Goals
	Privacy
	Goals and Scope of the Book and its Intended Audience
	An Overview of the Book's Content

	2 Web Service Technologies, Principles, Architectures, and Standards
	SOA and Web Services Principles
	Web Services Architecture
	Web Services Technologies and Standards
	SOAP
	Web Services Description Language (WSDL)
	Service Discovery: Universal Description, Discovery and Integration (UDDI)
	Considerations

	Web Services Infrastructure

	3 Web Services Threats, Vulnerabilities, and Countermeasures
	Threats and Vulnerabilities Concept Definition
	Threat Modeling
	Vulnerability Categorizations and Catalogs
	Threat and Vulnerabilities Metrics

	4 Standards for Web Services Security
	The Concept of Standard
	Web Services Security Standards Framework
	An Overview of Current Standards
	``Near the wire'' security standards
	XML Data Security
	Security Assertions Markup Language (SAML)
	SOAP Message Security
	Key and Trust Management standards
	Standards for Policy Specification
	Access Control Policy Standards

	Implementations of Web Services Security Standards
	Standards-related Issues

	5 Digital Identity Management and Trust Negotiation
	Overview of Digital Identity Management
	Overview of Existing Proposals
	Liberty Alliance
	WS-Federation
	Comparison of Liberty Alliance and WS-Framework
	Other Digital Identity Management Initiatives

	Discussion on Security of Identity Management Systems
	Business Processes
	Deploying Multifactor Authentication for Business Processes
	Architecture

	Digital Identity Management in Grid Systems
	The Trust Negotiation Paradigm and its Deployment using SOA
	Trust Negotiation and Digital Identity Management
	Automated Trust Negotiation and Digital Identity Management Systems: Differences and Similarities

	Integrating Identity Management and Trust Negotiations
	Architecture of a SP in FAMTN
	An Example of a Use Case: FSP in Liberty Web Services Framework

	Negotiations in an FAMTN Federation
	Ticketing system in an FAMTN Federation
	Implementing Trust Tickets Through Cookies
	 Negotiation in Identity Federated Systems

	Bibliographic Notes

	6 Access Control for Web Services
	Approaches to Enforce Access Control for Web Services
	WS-AC1: An Adaptive Access Control Model for Stateless Web Services
	The WS-AC1 Model
	WS-AC1 Identity Attribute Negotiation
	WS-AC1 Parameter Negotiation

	An Access Control Framework for Conversation-Based Web services
	Conversation-Based Access Control
	Access Control and Credentials
	k-Trust Levels and Policies
	Access Control Enforcement
	K-Trustworthiness Levels Computation
	Architecture of the Enforcement System

	7 Secure Publishing Techniques
	The Merkle Signatures
	Merkle Signatures for Trees
	Merkle Signatures for XML Documents
	Merkle Hash Verification for Documents with Partially Hidden Contents

	Application of the Merkle Signature to UDDI Registries
	Merkle Signature Representation
	Merkle Hash Path Representation
	A Comparison of Merkle Signatures with XML Signatures

	Bibliographic Notes

	8 Access Control for Business Processes
	Access Control for Workflows and Business Processes
	Web Services Business Process Execution Language (WS-BPEL)
	RBAC-WS-BPEL: An Authorization Model for WS-BPEL Business Processes
	RBAC XACML: Authorization Schema
	Business Process Constraint Language
	RBAC-WS-BPEL Authorization Specification
	RBAC-WS-BPEL Enforcement
	RBAC-WS-BPEL System Architecture
	Handling <HumanActivity> activity Execution and RBAC-WS-BPEL Enforcement

	9 Emerging Research Trends
	Security as a Service
	Motivations
	Reference Framework for Security Services
	Authentication Service

	Privacy for Web Services
	P3P and the Privacy-Aware RBAC Model
	Privacy-Preserving Data Management Techniques
	W3C Privacy Requirements for Web Services and Research Issues

	Semantic Web Security
	Concluding Remarks

	Access Control
	Basic Notions
	The Protection Matrix Model
	Access Control Lists and Capability Lists
	Negative Authorizations

	Role-Based Access Control
	Concluding Remarks

	References
	Index

