
Matlab Workshop MFE 2006
Lecture 1

Haas School of Business, Berkeley, MFE 2006

Stefano Corradin

Peng Liu

http://faculty.haas.berkeley.edu/peliu/computing

Haas School of Business, Berkeley, MFE 2006

Introduction:
Peng Liu: peliu@haas.berkeley.edu (1)

Stefano Corradin: corradin@haas.berkeley.edu (2-4)

The MathWorks documentation page
http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Download Materials:

http://faculty.haas.berkeley.edu/peliu/

computing

mailto:peliu@haas.berkeley.edu
mailto:corradin@haas.berkeley.edu
http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Haas School of Business, Berkeley, MFE 2006

What is MatLab?
What is MATLAB ?

MATLAB is a computer program that combines computation and
visualization power that makes it particularly useful for engineers.
MATLAB is an executive program, and a script can be made with
a list of MATLAB commands like other programming language.

MATLAB Stands for MATrix LABoratory.
The system was designed to make matrix computation
particularly easy.

The MATLAB environment allows the user to:
manage variables
import and export data
perform calculations
generate plots
develop and manage files for use with MATLAB.

Haas School of Business, Berkeley, MFE 2006

To start MATLAB:
START PROGRAMS

PhD & MFE
Applications
MATLAB 7.1

MATLAB Environment

Haas School of Business, Berkeley, MFE 2006

Display Windows

Haas School of Business, Berkeley, MFE 2006

Display Windows (con’t…)
Graphic (Figure) Window

Displays plots and graphs
Created in response to graphics commands.

M-file editor/debugger window
Create and edit scripts of commands called M-
files.

Haas School of Business, Berkeley, MFE 2006

Getting Help
type one of following commands in the command
window:

help – lists all the help topic
help topic – provides help for the specified topic
help command – provides help for the specified command

help help – provides information on use of the help command
helpwin – opens a separate help window for navigation
lookfor keyword – Search all M-files for keyword

Google “MATLAB helpdesk”
Go to the online HelpDesk provided by www.mathworks.com

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Haas School of Business, Berkeley, MFE 2006

Basic Syntax

Variables
Vectors
Array Operations
Matrices
Solutions to Systems of Linear Equations.

Haas School of Business, Berkeley, MFE 2006

Variables
Variable names:

Must start with a letter
May contain only letters, digits, and the underscore “_”
Matlab is case sensitive, i.e. one & OnE are different variables.
Matlab only recognizes the first 31 characters in a variable name.

Assignment statement:
Variable = number;
Variable = expression;

Example:
>> A = 1234;
>> a = 1234
a =

1234

NOTE: when a semi-colon
”;” is placed at the end of
each command, the result
is not displayed.

Haas School of Business, Berkeley, MFE 2006

Variables (con’t…)
Special variables:

ans : default variable name for the result
pi: π = 3.1415926…………
eps: ∈ = 2.2204e-016, smallest amount by which 2 numbers can differ.

Inf or inf : ∞, infinity
NaN or nan: not-a-number

Commands involving variables:
who: lists the names of defined variables
whos: lists the names and sizes of defined variables
clear: clears all varialbes, reset the default values of special
variables.
clear name: clears the variable name
clc: clears the command window
clf: clears the current figure and the graph window.

Haas School of Business, Berkeley, MFE 2006

Vectors
A row vector in MATLAB can be created by an explicit list, starting with a left bracket, entering
the values separated by spaces (or commas) and closing the vector with a right bracket.
A column vector can be created the same way, and the rows are separated by semicolons.
To input a matrix, you basically define a variable. For a matrix the form is:
variable name = [#, #, #; #, #, #; #, #, #;…..]

Example:
>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]
x =

0 0.7854 1.5708 2.3562 3.1416
>> y = [0; 0.25*pi; 0.5*pi; 0.75*pi; pi]
y =

0
0.7854
1.5708
2.3562
3.1416

x is a row vector.

y is a column vector.

1st row 2nd row 3rd row

Haas School of Business, Berkeley, MFE 2006

Vectors (con’t…)
Vector Addressing – A vector element is addressed in MATLAB with an integer index
enclosed in parentheses.
Example:
>> x(3)
ans =

1.5708

1st to 3rd elements of vector x

The colon notation may be used to address a block of elements.
(start : increment : end)

start is the starting index, increment is the amount to add to each successive index, and end is the
ending index. A shortened format (start : end) may be used if increment is 1.

Example:
>> x(1:3)
ans =

0 0.7854 1.5708

NOTE: MATLAB index starts at 1.

3rd element of vector x

Haas School of Business, Berkeley, MFE 2006

Vectors (con’t…)
Some useful commands:

x = start:end create row vector x starting with start, counting by one,
ending at end

x = start:increment:end

linspace(start,end,number)

length(x)

y = x’

dot (x, y)

create row vector x starting with start, counting by
increment, ending at or before end

create row vector x starting with start, ending at end,
having number elements

returns the length of vector x

transpose of vector x

returns the scalar dot product of the vector x and y.

Haas School of Business, Berkeley, MFE 2006

Array Operations
Scalar-Array Mathematics

For addition, subtraction, multiplication, and division of an array by a
scalar simply apply the operations to all elements of the array.

Example:
>> f = [1 2; 3 4]
f =

1 2
3 4

>> g = 2*f – 1
g =

1 3
5 7

Each element in the array f is
multiplied by 2, then subtracted
by 1.

Haas School of Business, Berkeley, MFE 2006

Array Operations (con’t…)
Element-by-Element Array-Array Mathematics.

Operation Algebraic Form MATLAB

Addition a + b a + b

Subtraction a – b a – b

Multiplication a x b a .* b

Division a ÷ b a ./ b

Exponentiation ab a .^ b

Example:
>> x = [1 2 3];
>> y = [4 5 6];
>> z = x .* y
z =

4 10 18

Each element in x is multiplied by
the corresponding element in y.

Haas School of Business, Berkeley, MFE 2006

Matrices

A is an m x n matrix.

A Matrix array is two-dimensional, having both multiple rows and multiple columns,
similar to vector arrays:

it begins with [, and end with]
spaces or commas are used to separate elements in a row
semicolon or enter is used to separate rows.

•Example:
>> f = [1 2 3; 4 5 6]
f =

1 2 3
4 5 6

>> h = [2 4 6
1 3 5]
h =

2 4 6
1 3 5the main diagonal

Haas School of Business, Berkeley, MFE 2006

Matrices (con’t…)
Matrix Addressing:
-- matrixname(row, column)
-- colon may be used in place of a row or column reference to select the

entire row or column.

recall:
f =

1 2 3
4 5 6

h =
2 4 6
1 3 5

Example:

>> f(2,3)

ans =

6

>> h(:,1)

ans =

2

1

Haas School of Business, Berkeley, MFE 2006

Matrices (con’t…)

Some useful commands:

zeros(n)
zeros(m,n)

ones(n)
ones(m,n)

size (A)

length(A)

returns a n x n matrix of zeros
returns a m x n matrix of zeros

returns a n x n matrix of ones
returns a m x n matrix of ones

for a m x n matrix A, returns the row vector [m,n]
containing the number of rows and columns in
matrix.

returns the larger of the number of rows or
columns in A.

Haas School of Business, Berkeley, MFE 2006

Matrices (con’t…)

Transpose B = A’

Identity Matrix eye(n) returns an n x n identity matrix
eye(m,n) returns an m x n matrix with ones on the main
diagonal and zeros elsewhere.

Addition and subtraction C = A + B
C = A – B

Scalar Multiplication B = αA, where α is a scalar.
Matrix Multiplication C = A*B

Matrix Inverse B = inv(A), A must be a square matrix in this case.
rank (A) returns the rank of the matrix A.

Matrix Powers B = A.^2 squares each element in the matrix
C = A * A computes A*A, and A must be a square matrix.

Determinant det (A), and A must be a square matrix.

more commands

A, B, C are matrices, and m, n, α are scalars.

Haas School of Business, Berkeley, MFE 2006

Solutions to Systems of Linear Equations
Example: a system of 3 linear equations with 3 unknowns (x1, x2, x3):

3x1 + 2x2 – x3 = 10
-x1 + 3x2 + 2x3 = 5
x1 – x2 – x3 = -1

Then, the system can be described as:

Ax = b

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
=

111
231
123

A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

x
x
x

x
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

1
5

10
b

Let :

Haas School of Business, Berkeley, MFE 2006

Solutions to Systems of Linear Equations (con’t…)
Solution by Matrix Inverse:
Ax = b
A-1Ax = A-1b
x = A-1b
MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -

1];
>> b = [10; 5; -1];
>> x = inv(A)*b
x =

-2.0000
5.0000
-6.0000

Answer:
x1 = -2, x2 = 5, x3 = -6

Solution by Matrix Division:
The solution to the equation

Ax = b
can be computed using left division.

Answer:
x1 = -2, x2 = 5, x3 = -6

NOTE:
left division: A\b b ÷ A right division: x/y x ÷ y

MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];
>> b = [10; 5; -1];
>> x = A\b
x =

-2.0000
5.0000
-6.0000

Haas School of Business, Berkeley, MFE 2006

Plotting in Matlab
Goal: plot y = sin(x)
Matlab code
xplot = (0 : 0.01 : 2)*pi;

yplot = sin(xplot);

plot(xplot, yplot)

Haas School of Business, Berkeley, MFE 2006

Plotting in Matlab (cont.)

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Haas School of Business, Berkeley, MFE 2006

Plotting points
xpts = (0 : 0.1 : 2)*pi; % 21 evenly spaced points
ypts = sin(xpts);
plot(xpts, ypts, '+')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Type help plot to see
point specification options
in addition to '+'

Haas School of Business, Berkeley, MFE 2006

Plotting more than one thing
Option 1: inside one plot command

plot(xplot, yplot, xpts, ypts, 'o')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Haas School of Business, Berkeley, MFE 2006

Plotting more than one thing
Option 2: using hold on, hold off

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

yplot2 = cos(2*xplot);
hold on
plot(xplot, yplot)
plot(xpts, ypts, 'o')
plot(xplot, yplot2)
hold off

Add plot of y = cos(2x)

Haas School of Business, Berkeley, MFE 2006

Adding color to plots
clf
xplot = (0 : 0.01 : 2)*pi;
yplot = sin(xplot);

xpts = (0 : 0.1 : 2)*pi;
ypts = sin(xpts);

yplot2 = cos(2 * xplot);

hold on
plot(xplot, yplot, 'r') % y = sin(x), red line
plot(xpts, ypts, 'ko') % y = sin(x), black circles
plot(xplot, yplot2, 'g') % y = cos(2x), green line
hold off

Type help plot to see color options

Haas School of Business, Berkeley, MFE 2006

Plotting (con’t…)
Plotting Curves:

plot (x,y) – generates a linear plot of the values of x (horizontal axis) and y (vertical axis).
semilogx (x,y) – generate a plot of the values of x and y using a logarithmic scale for x and a

linear scale for y
semilogy (x,y) – generate a plot of the values of x and y using a linear scale for x and a logarithmic

scale for y.
loglog(x,y) – generate a plot of the values of x and y using logarithmic scales for both x and y

Multiple Curves:
plot (x, y, w, z) – multiple curves can be plotted on the same graph by using multiple arguments in a plot command.
The variables x, y, w, and z are vectors. Two curves will be plotted: y vs. x, and z vs. w.
legend (‘string1’, ‘string2’,…) – used to distinguish between plots on the same graph

exercise: type help legend to learn more on this command.
Multiple Figures:

figure (n) – used in creation of multiple plot windows. place this command before the plot() command, and the
corresponding figure will be labeled as “Figure n”
close – closes the figure n window.
close all – closes all the figure windows.

Subplots:
subplot (m, n, p) – m by n grid of windows, with p specifying the current plot as the pth window

Haas School of Business, Berkeley, MFE 2006

Plotting (con’t…)
Example: (polynomial function)
plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, & log/log scale:

y = 2x2 + 7x + 9
% Generate the polynomial:
x = linspace (0, 10, 100);
y = 2*x.^2 + 7*x + 9;

% plotting the polynomial:
figure (1);
subplot (2,2,1), plot (x,y);
title ('Polynomial, linear/linear scale');
ylabel ('y'), grid;
subplot (2,2,2), semilogx (x,y);
title ('Polynomial, log/linear scale');
ylabel ('y'), grid;
subplot (2,2,3), semilogy (x,y);
title ('Polynomial, linear/log scale');
xlabel('x'), ylabel ('y'), grid;
subplot (2,2,4), loglog (x,y);
title ('Polynomial, log/log scale');
xlabel('x'), ylabel ('y'), grid;

Haas School of Business, Berkeley, MFE 2006

Plotting (con’t…)

Haas School of Business, Berkeley, MFE 2006

Plotting (con’t…)
Adding new curves to the existing graph:
Use the hold command to add lines/points to an existing plot.

hold on – retain existing axes, add new curves to current axes. Axes are rescaled
when necessary.
hold off – release the current figure window for new plots

Grids and Labels:

Command Description

grid on Adds dashed grids lines at the tick marks

grid off removes grid lines (default)

grid toggles grid status (off to on, or on to off)

title (‘text’) labels top of plot with text in quotes

xlabel (‘text’) labels horizontal (x) axis with text is quotes

ylabel (‘text’) labels vertical (y) axis with text is quotes

text (x,y,’text’) Adds text in quotes to location (x,y) on the current axes, where (x,y) is in units from the
current plot.

Haas School of Business, Berkeley, MFE 2006

Additional commands for plotting

Symbol Color

y yellow

m magenta

c cyan

r red

g green

b blue

w white

k black

Symbol Marker

. •

o °

x ×

+ +

* ∗

s □

d ◊

v ∇

^ Δ

h hexagram

color of the point or curve Marker of the data points Plot line styles

Symbol Line Style

– solid line

: dotted line

–. dash-dot line

– – dashed line

Haas School of Business, Berkeley, MFE 2006

Flow control - selection
The if-elseif-else construction
if <logical expression>

<commands>
elseif <logical expression>

<commands>
else

<commands>
end

Haas School of Business, Berkeley, MFE 2006

Logical expressions (try help)
Relational operators (compare arrays of same sizes)
== (equal to) ~= (not equal)
< (less than) <= (less than or equal to)
> (greater than) >= (greater than or equal to)

Logical operators (combinations of relational operators)
& (and)
| (or)
~ (not)

Logical functions
xor
isempty
any
all

Haas School of Business, Berkeley, MFE 2006

M-Files

The M-file is a text file that consists a group of
MATLAB commands.
MATLAB can open and execute the commands
exactly as if they were entered at the MATLAB
command window.
To run the M-files, just type the file name in the
command window. (make sure the current working
directory is set correctly)

So far, we have executed the commands in the command window.
But a more practical way is to create a M-file.

Haas School of Business, Berkeley, MFE 2006

Scripts or function: when use what?
Functions

Take inputs, generate outputs, have internal
variables
Solve general problem for arbitrary parameters

Scripts
Operate on global workspace
Document work, design experiment or test
Solve a very specific problem once

Haas School of Business, Berkeley, MFE 2006

User-Defined Function
Add the following command in the beginning of your m-file:

function [output variables] = function_name (input variables);

NOTE: the function_name should
be the same as your file name to
avoid confusion.

calling your function:
-- a user-defined function is called by the name of the m-file, not
the name given in the function definition.
-- type in the m-file name like other pre-defined commands.

Comments:
-- The first few lines should be comments, as they will be
displayed if help is requested for the function name. the first
comment line is reference by the lookfor command.

Haas School of Business, Berkeley, MFE 2006

Branching-IF ELSEIF (example)

),(txf
dt
dx

=

Type a=2, if a>1,b=1,else b=0,end
Or make a m-file (script) named aa.m
a=11
if a>10

b=2
elseif a>1

b=1
else b=0
end

Give a stock price S=125; enter type in command
window

% example of branching for type of options
K=105
if S==K

disp('At the Money Option')
elseif S > K

disp('In the Money Option')
else

disp('Out the Money Option')
end

% example of branching for type of options
K=105
if S==K

disp('At the Money Option')
elseif S > K

disp('In the Money Option')
else

disp('Out the Money Option')
end

type.mtype.m

Haas School of Business, Berkeley, MFE 2006

Flow control - repetition
Repeats a code segment a fixed number of times
for index=<vector>

<statements>
end
The <statements> are executed repeatedly.
At each iteration, the variable index is assigned
a new value from <vector>.
Example: CRR Binomial Model

Haas School of Business, Berkeley, MFE 2006

Flow control – conditional repetition
while-loops
while <logical expression>

<statements>
End
<statements> are executed repeatedly as long as
the <logical expression> evaluates to true

Haas School of Business, Berkeley, MFE 2006

Flow control – conditional repetition
Solutions to nonlinear equations

can be found using Newton’s method

Task: write a function that finds a solution to

Given , iterate maxit times or until

Haas School of Business, Berkeley, MFE 2006

Flow control – conditional repetition

function [x,n] = newton(x0,tol,maxit)
% NEWTON – Newton’s method for solving equations
% [x,n] = NEWTON(x0,tol,maxit)
x = x0; n = 0; done=0;
while ~done,
n = n + 1;
x_new = x - (exp(-x)-sin(x))/(-exp(-x)-cos(x));
done=(n>=maxit) | (abs(x_new-x)<tol);
x=x_new;

end

function [x,n] = newton(x0,tol,maxit)
% NEWTON – Newton’s method for solving equations
% [x,n] = NEWTON(x0,tol,maxit)
x = x0; n = 0; done=0;
while ~done,
n = n + 1;
x_new = x - (exp(-x)-sin(x))/(-exp(-x)-cos(x));
done=(n>=maxit) | (abs(x_new-x)<tol);
x=x_new;

end

newton.mnewton.m

>> [x,n]=newton(0,eps,10)

Haas School of Business, Berkeley, MFE 2006

Black Vol using Newton Method
Result:
x =

0.5885
n =

6

Question: code a function that produce Black-
Scholes Volatility from Option prices!!

Haas School of Business, Berkeley, MFE 2006

Function functions
Do we need to re-write newton.m for every new
function?
No! General purpose functions take other m-files as
input.

>> help feval

>> [f,f_prime]=feval(’myfun’,0);

function [f,f_prime] = myfun(x)
% MYFUN– Evaluate f(x) = exp(x)-sin(x)
% and its first derivative
% [f,f_prime] = myfun(x)

f=exp(-x)-sin(x);
f_prime=-exp(-x)-cos(x);

function [f,f_prime] = myfun(x)
% MYFUN– Evaluate f(x) = exp(x)-sin(x)
% and its first derivative
% [f,f_prime] = myfun(x)

f=exp(-x)-sin(x);
f_prime=-exp(-x)-cos(x);

myfun.mmyfun.m

Haas School of Business, Berkeley, MFE 2006

Function functions

),(txf
dt
dx

=

Can update newton.m

>> [x,n]=newtonf(’myfun’,0,1e-3,10)

function [x,n] = newtonf(fname,x0,tol,maxit)
% NEWTON – Newton’s method for solving equations
% [x,n] = NEWTON(fname,x0,tol,maxit)
x = x0; n = 0; done=0;
while ~done,
n = n + 1;
[f,f_prime]=feval(fname,x);
x_new = x – f/f_prime;
done=(n>maxit) | (abs(x_new-x)<tol);
x=x_new;

end

function [x,n] = newtonf(fname,x0,tol,maxit)
% NEWTON – Newton’s method for solving equations
% [x,n] = NEWTON(fname,x0,tol,maxit)
x = x0; n = 0; done=0;
while ~done,
n = n + 1;
[f,f_prime]=feval(fname,x);
x_new = x – f/f_prime;
done=(n>maxit) | (abs(x_new-x)<tol);
x=x_new;

end

newtonf.mnewtonf.m

Haas School of Business, Berkeley, MFE 2006

Example: Pricing options in CRR Binomial
Open P:\PodiumPC\2006MFE
Double Click CRR.m
It will open an editor window beginning with

function [] = CRR(CallPut, AssetP, Strike, RiskFree, Div, Time, Vol, nSteps)
% Computes the Cox, Ross & Rubinstein (1979) Binomial Tree for European
%Call/Put Option Values based on the following inputs:
% CallPut = Call = 1, Put = 0
% AssetP = Underlying Asset Price
% Strike = Strike Price of Option
% RiskFree = Risk Free rate of interest annualized eg. 0.05
% Div = Dividend Yield of Underlying
% Time = Time to Maturity in years
% Vol = Volatility of the Underlying
% nSteps = Number of Time Steps for Binomial Tree to take

Haas School of Business, Berkeley, MFE 2006

Pricing options in CRR Binomial (cont.)
dt = Time / nSteps;

if CallPut
b = 1;

end
if ~CallPut

b = -1;
end

RR = exp(RiskFree * dt);
Up = exp(Vol * sqrt(dt));
Down = 1 / Up;
Q_up = (exp((RiskFree - Div) * dt) - Down) / (Up - Down);
Q_down = 1 - Q_up;
Df = exp(-RiskFree * dt); %Df: Discount Factor

Haas School of Business, Berkeley, MFE 2006

Example: Pricing options in CRR Binomial
%Populate all possible stock prices and option values on the end notes of the tree

for i = 0:nSteps
state = i + 1;
St = AssetP * Up ^ i * Down ^ (nSteps - i);
Value(state) = max(0, b * (St - Strike));

End

%Since value on the end nodes are known by above,
% we start from nSteps-1 working backwards
% double for loop: outter-every steps; innter-every nodes on each step

for k = nSteps - 1 : -1 : 0
for i = 0:k

state = i + 1;
Value(state) = (Q_up * Value(state + 1) + Q_down * Value(state)) * Df;

end
end

Binomial = Value(1)

Haas School of Business, Berkeley, MFE 2006

Results

Haas School of Business, Berkeley, MFE 2006

Results

Set the current directory to where you
saved your “.m” file.

Haas School of Business, Berkeley, MFE 2006

Results

All your variables. You can edit them
here too.

Haas School of Business, Berkeley, MFE 2006

Results

Type the program name (without the
“.m”).

Haas School of Business, Berkeley, MFE 2006

Example: Pricing options in CRR Binomial
>> CRR(1,100,105,0.05,0,2,0.4,100)
Binomial =

24.3440
>> CRR(0,100,105,0.05,0,2,0.4,100)
Binomial =

19.3520

Haas School of Business, Berkeley, MFE 2006

Results

Check your results!

Haas School of Business, Berkeley, MFE 2006

How to Leave Matlab?
The answer to the most popular question
concerning any program is this: leave a
Matlab session
Leave Matlab by typing
quit
or by typing
exit

To the Matlab prompt.

	Matlab Workshop MFE 2006�Lecture 1
	Introduction:
	What is MatLab?
	MATLAB Environment
	Display Windows
	Display Windows (con’t…)
	Getting Help
	Basic Syntax
	Variables
	Variables (con’t…)
	Vectors
	Vectors (con’t…)
	Vectors (con’t…)
	Array Operations
	Array Operations (con’t…)
	Matrices
	Matrices (con’t…)
	Matrices (con’t…)
	Matrices (con’t…)
	Solutions to Systems of Linear Equations
	Solutions to Systems of Linear Equations (con’t…)
	Plotting in Matlab
	Plotting in Matlab (cont.)
	Plotting points
	Plotting more than one thing
	Plotting more than one thing
	Adding color to plots
	Plotting (con’t…)
	Plotting (con’t…)
	Plotting (con’t…)
	Plotting (con’t…)
	Additional commands for plotting
	Flow control - selection
	Logical expressions (try help)
	M-Files
	Scripts or function: when use what?
	User-Defined Function
	Branching-IF ELSEIF (example)
	Flow control - repetition
	Flow control – conditional repetition
	Flow control – conditional repetition
	Flow control – conditional repetition
	Black Vol using Newton Method
	Function functions
	Function functions
	Example: Pricing options in CRR Binomial
	Pricing options in CRR Binomial (cont.)
	Example: Pricing options in CRR Binomial
	Results
	Results
	Results
	Results
	Example: Pricing options in CRR Binomial
	Results
	How to Leave Matlab?

