

Malware Forensics Field Guide for Windows Systems

Digital Forensics Field Guides

Cameron H. Malin
Eoghan Casey

James M. Aquilina
Curtis W. Rose
Technical Editor

Acquiring Editor: Cris Katsaropoulos
Project Manager: Paul Gottehrer
Designer: Alisa Andreola

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely
on their own experience and knowledge in evaluating and using any information or methods described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-472-4

For information on all Syngress publications visit our website at http://store.elsevier.com

Printed in the United States of America
12 13 14 15 16 10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, Chennai, India

For our moms, who taught us determination, patience, creativity, and to live passionately.

Acknowledgments

Cameron would like to thank a number of people for their guidance, support, and ideas on this book
—without them it would not have happened. James and Eoghan I appreciate your willingness to keep
an open mind and embrace the format and structure of this book; it was a rewarding challenge. I’m
proud to work with you both.

 Thanks to the Syngress crew for your patience and understanding of our vision: Steve Elliot,
Angelina Ward, Laura Colantoni, Matthew Cater, Paul Gottehrer, Chris Katsaropoulos, and David
Bevans.

Not to be forgotten are the some terrific researchers, developers, and forensic practitioners who
assisted and supported this book: Mila Parkour (contagiodump.blogspot.com), Ero Carera and
Christian Blichmann (Zynamics), Matthew Shannon (F-Response), Maria Lucas (HBGary), Thorsten
Holz (Assistant Professor at Ruhr-University Bochum; http://honeyblog.org/), Tark (ccso.com), and
Danny Quist (offensivecomputing.net).

For your friendship, camaraderie, and day-to-day hi-jinks, “Team Cyber” of the Los Angeles
Cyber Division—you are a fantastic crew and I miss you. Jason, Ramyar, and Bryan—my friends and
confidants—thank you for everything, we had a good run.

My sister Alecia—your determination and focus are an inspiration to me. “No lying on the
couch!”

Finally, to my lovely wife Adrienne, I am so lucky to have you in my life—thanks for being a
“team” with me—I love you. Bentley and Barkley—thanks for being Daddy’s little “writing buddies.”

1

Special Thanks to the Technical Editor

Malware Forensics Field Guide for Windows Systems was reviewed by a digital forensic expert
who is a fantastic author in his own right. My sincerest thanks to Curtis W. Rose for your tenacity and
attention to detail—we’re lucky to work with you.

2

About the Authors

Cameron H. Malin is a Supervisory Special Agent with the Federal Bureau of Investigation assigned
to a Cyber Crime squad in Los Angeles, California, where he is responsible for the investigation of
computer intrusion and malicious code matters. In 2010, Mr. Malin was a recipient of the Attorney
General’s Award for Distinguished Service for his role as a Case Agent in Operation Phish Phry.

 Mr. Malin is the Chapter Lead for the Southern California Chapter of the Honeynet Project, an
international non-profit organization dedicated to improving the security of the Internet through
research, analysis, and information regarding computer and network security threats. Mr. Malin
currently sits on the Editorial Board of the International Journal of Digital Evidence (IJDE) and is
a Subject Matter Expert for the Information Assurance Technology Analysis Center (IATAC) and
Weapon Systems Technology and Information Analysis Center (WSTIAC).

Mr. Malin is a Certified Ethical Hacker (C|EH) and Certified Network Defense Architect
(C|NDA) as designated by the International Council of Electronic Commerce Consultants (EC-
Council) and a Certified Information Systems Security Professional (CISSP), as designated by the
International Information Systems Security Certification Consortium ((ISC)2®).

Prior to working for the FBI, Mr. Malin was an Assistant State Attorney (ASA) and Special
Assistant United States Attorney (SAUSA) in Miami, Florida, where he specialized in computer crime
prosecutions. During his tenure as an ASA, Mr. Malin was also an Assistant Professorial Lecturer in
the Computer Fraud Investigations Masters Program at George Washington University.

The techniques, tools, methods, views, and opinions explained by Cameron Malin are personal
to him, and do not represent those of the United States Department of Justice, the Federal Bureau of
Investigation, or the government of the United States of America. Neither the Federal government nor
any Federal agency endorses this book or its contents in any way.

Eoghan Casey is founding partner of cmdLabs, author of the foundational book Digital
Evidence and Computer Crime, and coauthor of Malware Forensics: Investigating and
Analyzing Malicious Code. For over a decade he has dedicated himself to advancing the practice of
incident handling and digital forensics. He helps client organizations handle security breaches and
analyzes digital evidence in a wide range of investigations, including network intrusions with
international scope. He works at the Department of Defense Cyber Crime Center (DC3) on research
and tool development. He has testified in civil and criminal cases, and has submitted expert reports
and prepared trial exhibits for computer forensic and cyber-crime cases.

As a Director of Digital Forensics and Investigations at Stroz Friedberg, he maintained an active
docket of cases and co-managed the firm’s technical operations in the areas of computer forensics,

3

cyber-crime response, incident handling, and electronic discovery. He also spearheaded Stroz
Friedberg’s external and in-house forensic training programs as Director of Training. Mr. Casey has
performed thousands of forensic acquisitions and examinations, including Windows and UNIX
systems, Enterprise servers, smart phones, cell phones, network logs, backup tapes, and database
systems. He also has extensive information security experience, as an Information Security Officer at
Yale University and in subsequent consulting work. He has performed vulnerability assessments;
deployed and maintained intrusion detection systems, firewalls, and public key infrastructures; and
developed policies, procedures, and educational programs for a variety of organizations.

Mr. Casey holds a B.S. in Mechanical Engineering from the University of California at Berkeley,
and an M.A. in Educational Communication and Technology from New York University. He
conducts research and teaches graduate students at Johns Hopkins University Information Security
Institute, and is Editor-in-Chief of Digital Investigation: The International Journal of Digital
Forensics and Incident Response.

James M. Aquilina, Executive Managing Director and Deputy General Counsel, contributes to
the management of Stroz Friedberg and the handling of its legal affairs, in addition to having overall
responsibility for the Los Angeles, San Francisco, and Seattle offices. He supervises numerous digital
forensic, Internet investigative, and electronic discovery assignments for government agencies, major
law firms, and corporate management and information systems departments in criminal, civil,
regulatory, and internal corporate matters, including matters involving data breach, e-forgery, wiping,
mass deletion and other forms of spoliation, leaks of confidential information, computer-enabled theft
of trade secrets, and illegal electronic surveillance. He has served as a neutral expert and has
supervised the court-appointed forensic examination of digital evidence. Mr. Aquilina also has led the
development of the firm’s online fraud and abuse practice, regularly consulting on the technical and
strategic aspects of initiatives to protect computer networks from spyware and other invasive
software, malware and malicious code, online fraud, and other forms of illicit Internet activity. His
deep knowledge of botnets, distributed denial of service attacks, and other automated cyber-
intrusions enables him to provide companies with advice and solutions to tackle incidents of computer
fraud and abuse and bolster their infrastructure protection.

Prior to joining Stroz Friedberg, Mr. Aquilina was an Assistant U.S. Attorney (AUSA) in the
Criminal Division of the U.S. Attorney’s Office for the Central District of California, where he most
recently served in the Cyber and Intellectual Property Crimes Section. He also served as a member of
the Los Angeles Electronic Crimes Task Force, and as chair of the Computer Intrusion Working
Group, an inter-agency cyber-crime response organization. As an AUSA, Mr. Aquilina conducted
and supervised investigations and prosecutions of computer intrusions, extortionate denial of service
attacks, computer and Internet fraud, criminal copyright infringement, theft of trade secrets, and other
abuses involving the theft and use of personal identity. Among his notable cyber cases, Mr. Aquilina

4

brought the first U.S. prosecution of malicious botnet activity against a prolific member of the
“botmaster underground” who sold his armies of infected computers for the purpose of launching
attacks and spamming and used his botnets to generate income from the surreptitious installation of
adware; tried to jury conviction the first criminal copyright infringement case involving the use of digital
camcording equipment; supervised the government’s continuing prosecution of Operation Cyberslam,
an international intrusion investigation involving the use of hired hackers to launch computer attacks
against online business competitors; and oversaw the collection and analysis of electronic evidence
relating to the prosecution of a local terrorist cell operating in Los Angeles.

During his tenure at the U.S. Attorney’s Office, Mr. Aquilina also served in the Major Frauds
and Terrorism/Organized Crime Sections, where he investigated and tried numerous complex cases,
including a major corruption trial against an IRS Revenue Officer and public accountants, a fraud
prosecution against the French bank Credit Lyonnais in connection with the rehabilitation and
liquidation of the now defunct insurer Executive Life, and an extortion and kidnapping trial against an
Armenian organized crime ring. In the wake of the September 11, 2001, attacks Mr. Aquilina helped
establish and run the Legal Section of the FBI’s Emergency Operations Center.

Before public service, Mr. Aquilina was an associate at the law firm Richards, Spears, Kibbe &
Orbe in New York, where he focused on white collar defense work in federal and state criminal and
regulatory matters.

He served as a law clerk to the Honorable Irma E. Gonzalez, U.S. District Judge, Southern
District of California. He received his B.A. magna cum laude from Georgetown University, and his
J.D. from the University of California, Berkeley School of Law, where he was a Richard Erskine
Academic Fellow and served as an Articles Editor and Executive Committee Member of the
California Law Review.

He currently serves as an Honorary Council Member on cyber-law issues for the EC-Council,
the organization that provides the C|EH and CHFI (Certified Hacking Forensic Investigator)
certifications to leading security industry professionals worldwide. Mr. Aquilina is a member of
Working Group 1 of the Sedona Conference, the International Association of Privacy Professionals,
the Southern California Honeynet Project, the Los Angeles Criminal Justice Inn of Court, and the Los
Angeles County Bar Association. He also serves on the Board of Directors of the Constitutional
Rights Foundation, a non-profit educational organization dedicated to providing young people with
access to and understanding of law and the legal process.

Mr. Aquilina is co-author of Malware Forensics: Investigating and Analyzing Malicious
Code.

5

About the Technical Editor

Curtis W. Rose is the President and founder of Curtis W. Rose & Associates LLC, a specialized
services company in Columbia, Maryland, which provides computer forensics, expert testimony,
litigation support, and computer intrusion response and training to commercial and government clients.
Mr. Rose is an industry-recognized expert with over 20 years of experience in investigations,
computer forensics, and technical and information security.

 Mr. Rose was a co-author of Real Digital Forensics: Computer Security and Incident
Response, and was a contributing author or technical editor for many popular information security
books including Handbook of Digital Forensics and Investigation; Malware Forensics:
Investigating and Analyzing Malicious Code; SQL Server Forensic Analysis; Anti-Hacker
Toolkit, 1st Edition; Network Security: The Complete Reference; and Incident Response and
Computer Forensics, 2nd Edition. He has also published whitepapers on advanced forensic
methods and techniques including “Windows Live Response Volatile Data Collection: Non-Disruptive
User and System Memory Forensic Acquisition” and “Forensic Data Acquisition and Processing
Utilizing the Linux Operating System.”

6

Introduction to Malware Forensics

Since the publication of Malware Forensics: Investigating and Analyzing Malicious Code in
2008,1 the number and complexity of programs developed for malicious and illegal purposes has
grown substantially. The 2011 Symantec Internet Security Threat Report announced that over 286
million new threats emerged in the past year.2 Other anti-virus vendors, including F-Secure, forecast
an increase in attacks against mobile devices and SCADA systems in 2011.3

 In the past, malicious code has been categorized neatly (e.g., viruses, worms, or Trojan horses)
based upon functionality and attack vector. Today, malware is often modular and multifaceted, more
of a “blended-threat,” with diverse functionality and means of propagation. Much of this malware has
been developed to support increasingly organized, professional computer criminals. Indeed, criminals
are making extensive use of malware to control computers and steal personal, confidential, or
otherwise proprietary information for profit. In Operation Trident Breach,4 hundreds of individuals
were arrested for their involvement in digital theft using malware such as ZeuS. A thriving gray market
ensures that today’s malware is professionally developed to avoid detection by current AntiVirus
programs, thereby remaining valuable and available to any cyber-savvy criminal group.

Of growing concern is the development of malware to disrupt power plants and other critical
infrastructure through computers, referred to by some as Cyber Warfare. The StuxNet malware that
emerged in 2010 is a powerful demonstration of the potential for such attacks.5 Stuxnet was a
sophisticated program that enabled the attackers to alter the operation of industrial systems, like those
in a nuclear reactor, by accessing programmable logic controllers connected to the target computers.
This type of attack could shut down a power plant or other components of a society’s critical
infrastructure, potentially causing significant harm to people in a targeted region.

Foreign governments are funding teams of highly skilled hackers to develop customized malware
to support industrial and military espionage.6 The intrusion into Google’s systems demonstrates the
advanced and persistent capabilities of such attackers.7 These types of well-organized attacks, known
as the “Advanced Persistent Threat (APT),” are designed to maintain long-term access to an
organization’s network in order to steal information/gather intelligence and are most commonly
associated with espionage. The increasing use of malware to commit espionage and crimes and launch
cyber attacks is compelling more digital investigators to make use of malware analysis techniques and
tools that were previously the domain of anti-virus vendors and security researchers.

This Field Guide was developed to provide practitioners with the core knowledge, skills, and
tools needed to combat this growing onslaught against computer systems.

7

How to Use this Book

 This book is intended to be used as a tactical reference while in the field.
 This Field Guide is designed to help digital investigators identify malware on a computer
system, examine malware to uncover its functionality and purpose, and determine malware’s impact
on a subject system. To further advance malware analysis as a forensic discipline, specific
methodologies are provided and legal considerations are discussed so that digital investigators can
perform this work in a reliable, repeatable, defensible, and thoroughly documented manner.

 Unlike Malware Forensics: Investigating and Analyzing Malicious Code , which uses
practical case scenarios throughout the text to demonstrate techniques and associated tools, this Field
Guide strives to be both tactical and practical, structured in a succinct outline format for use in the
field, but with cross-references signaled by distinct graphical icons to supplemental components and
online resources for the field and lab alike.

Supplemental Components

 The supplementary components used in this Field Guide include:

• Field Interview Questions: An organized and detailed interview question and answer form

that can be used while responding to a malicious code incident.
• Field Notes: A structured and detailed note-taking solution, serving as both guidance and a

reminder checklist while responding in the field or in the lab.
• Pitfalls to Avoid: A succinct list of commonly encountered mistakes and discussion of how to

avoid these mistakes.
• Tool Box : A resource for the digital investigator to learn about additional tools that are

relevant to the subject matter discussed in the corresponding substantive chapter section. The
Tool Box icon (—a wrench and hammer) is used to notify the reader that additional tool
information is available in the Tool Box appendix at the end of each chapter, and on the
book’s companion Web site, www.malwarefieldguide.com.

• Selected Readings: A list of relevant supplemental reading materials relating to topics
covered in the chapter.

8

9

Investigative Approach

When malware is discovered on a system, the importance of organized methodology,
sound analysis, steady documentation, and attention to evidence dynamics all outweigh the
severity of any time pressure to investigate.

Organized Methodology

 The Field Guide’s overall methodology for dealing with malware incidents breaks the investigation

into five phases:

Phase 1: Forensic preservation and examination of volatile data (Chapter 1)
Phase 2: Examination of memory (Chapter 2)
Phase 3: Forensic analysis: examination of hard drives (Chapter 3)
Phase 4: File profiling of an unknown file (Chapters 5)
Phase 5: Dynamic and static analysis of a malware specimen (Chapter 6)

 Within each of these phases, formalized methodologies and goals are emphasized to help

digital investigators reconstruct a vivid picture of events surrounding a malware infection and gain a
detailed understanding of the malware itself. The methodologies outlined in this book are not intended
as a checklist to be followed blindly; digital investigators always must apply critical thinking to what
they are observing and adjust accordingly.

 Whenever feasible, investigations involving malware should extend beyond a single
compromised computer, as malicious code is often placed on the computer via the network, and most
modern malware has network-related functionality. Discovering other sources of evidence, such as
servers the malware contacts to download components or instructions, can provide useful information
about how malware got on the computer and what it did once installed.

 In addition to systems containing artifacts of compromise, other network and data sources
may prove valuable to your investigation. Comparing available backup tapes of the compromised
system to the current state of the system, for example, may uncover additional behavioral attributes of
the malware, tools the attacker left behind, or recoverable files containing exfiltrated data. Also
consider checking centralized logs from anti-virus agents, reports from system integrity checking tools
like Tripwire, and network level logs.

10

 Network forensics can play a key role in malware incidents, but this extensive topic is beyond
the scope of our Field Guide. One of the author’s earlier works8 covers tools and techniques for
collecting and utilizing various sources of evidence on a network that can be useful when investigating
a malware incident, including Intrusion Detection Systems, NetFlow logs, and network traffic. These
logs can show use of specific exploits, malware connecting to external IP addresses, and the names of
files being stolen. Although potentially not available prior to discovery of a problem, logs from
network resources implemented during the investigation may capture meaningful evidence of ongoing
activities.

 Remember that well-interviewed network administrators, system owners, and computer users
often help develop the best picture of what actually occurred.

 Finally, as digital investigators are more frequently asked to conduct malware analysis for
investigative purposes that may lead to the victim’s pursuit of a civil or criminal remedy, ensuring the
reliability and validity of findings means compliance with an oft complicated legal and regulatory
landscape. Chapter 4, although no substitute for obtaining counsel and sound legal advice, explores
some of these concerns and discusses certain legal requirements or limitations that may govern the
preservation, collection, movement and analysis of data and digital artifacts uncovered during malware
forensic investigations.

Forensic Soundness

 The act of collecting data from a live system may cause changes that a digital investigator will need

to justify, given its impact on other digital evidence.

• For instance, running tools like Helix3 Pro9 from a removable media device will alter volatile
data when loaded into main memory and create or modify files and Registry entries on the
evidentiary system.

• Similarly, using remote forensic tools necessarily establishes a network connection, executes
instructions in memory, and makes other alterations on the evidentiary system.

 Purists argue that forensic acquisitions should not alter the original evidence source in any way.

However, traditional forensic disciplines like DNA analysis suggest that the measure of forensic
soundness does not require that an original be left unaltered. When samples of biological material are
collected, the process generally scrapes or smears the original evidence. Forensic analysis of the
evidentiary sample further alters the original evidence, as DNA tests are destructive. Despite changes
that occur during both preservation and processing, these methods are nonetheless considered

11

forensically sound and the evidence is regularly admitted in legal proceedings.
 Some courts consider volatile computer data discoverable, thereby requiring digital

investigators to preserve data on live systems. For example, in Columbia Pictures Industries v.
Bunnell,10 the court held that RAM on a Web server could contain relevant log data and was
therefore within the scope of discoverable information in the case.

Documentation

 One of the keys to forensic soundness is documentation.

• A solid case is built on supporting documentation that reports on where the evidence originated

and how it was handled.
• From a forensic standpoint, the acquisition process should change the original evidence as little

as possible, and any changes should be documented and assessed in the context of the final
analytical results.

• Provided both that the acquisition process preserves a complete and accurate representation of
the original data, and the authenticity and integrity of that representation can be validated, the
acquisition is generally considered forensically sound.

 Documenting the steps taken during an investigation, as well as the results, will enable others

to evaluate or repeat the analysis.

• Keep in mind that contemporaneous notes are often referred to years later to help digital
investigators recall what occurred, what work was conducted, and who was interviewed,
among other things.

• Common forms of documentation include screenshots, captured network traffic, output from
analysis tools, and notes.

• When preserving volatile data, document the date and time that data was preserved and which
tools were used, and calculate the MD5 of all output.

• Whenever dealing with computers, it is critical to note the date and time of the computer, and
compare it with a reliable time source to assess the accuracy of date-time stamp information
associated with the acquired data.

Evidence Dynamics
12

 Unfortunately, digital investigators rarely are presented with the perfect digital crime scene. Many

times the malware or attacker purposefully has destroyed evidence by deleting logs, overwriting files,
or encrypting incriminating data. Often the digital investigator is called to an incident only after the
victim has taken initial steps to remediate—and in the process, has either destroyed critical evidence,
or worse, compounded the damage to the system by invoking additional hostile programs.
 This phenomenon is not unique to digital forensics. Violent crime investigators regularly find
that offenders attempted to destroy evidence or EMT first responders disturbed the crime scene while
attempting to resuscitate the victim. These types of situations are sufficiently common to have earned a
name—evidence dynamics.

 Evidence dynamics is any influence that changes, relocates, obscures, or obliterates evidence
—regardless of intent—between the time evidence is transferred and the time the case is
adjudicated.11

• Evidence dynamics is a particular concern in malware incidents because there is often critical
evidence in memory that will be lost if not preserved quickly and properly.

• Digital investigators must live with the reality that they will rarely have an opportunity to
examine a digital crime scene in its original state and should therefore expect some anomalies.

• Evidence dynamics creates investigative and legal challenges, making it more difficult to
determine what occurred, and making it more difficult to prove that the evidence is authentic
and reliable.

• Any conclusions the digital investigator reaches without knowledge of how evidence was
changed may be incorrect, open to criticism in court, or misdirect the investigation.

• The methodologies and legal discussion provided in this Field Guide are designed to minimize
evidence dynamics while collecting volatile data from a live system using tools that can be
differentiated from similar utilities commonly used by intruders.

13

Forensic Analysis in Malware Investigations

Malware investigation often involves the preservation and examination of volatile data;
the recovery of deleted files; and other temporal, functional, and relational kinds of
computer forensic analysis.

Preservation and Examination of Volatile Data

 Investigations involving malicious code rely heavily on forensic preservation of volatile data.

Because operating a suspect computer usually changes the system, care must be taken to minimize the
changes made to the system; collect the most volatile data first (aka Order of Volatility, which is
described in detail in RFC 3227: Guidelines for Evidence Collection and Archiving);12 and
thoroughly document all actions taken.
 Technically, some of the information collected from a live system in response to a malware
incident is non-volatile. The following subcategories are provided to clarify the relative importance of
what is being collected from live systems.

• Tier 1 Volatile Data : Critical system details that provide the investigator with insight as to
how the system was compromised and the nature of the compromise. Examples include
logged-in users, active network connections, and the processes running on the system.

• Tier 2 Volatile Data : Ephemeral information, while beneficial to the investigation and further
illustrative of the nature and purpose of the compromise and infection, is not critical to
identification of system status and details. Examples of these data include scheduled tasks and
clipboard contents.

• Tier 1 Non-volatile Data: Reveals the status, settings, and configuration of the target system,
potentially providing clues as to the method of the compromise and infection of the system or
network. Examples include registry settings and audit policy.

• Tier 2 Non-volatile Data: Provides historical information and context, but is not critical to
system status, settings, or configuration analysis. Examples of these data include system event
logs and Web browser history.

 The current best practices and associated tools for preserving and examining volatile data on

Windows systems are covered in Chapter 1 (Malware Incident Response: Volatile Data Collection
14

and Examination on a Live Windows System) and Chapter 2 (Memory Forensics: Analyzing Physical
and Process Memory Dumps for Malware Artifacts).

Recovering Deleted Files

 Specialized forensic tools have been developed to recover deleted files that are still referenced in

the file system. It is also possible to salvage deleted executables from unallocated space that are no
longer referenced in the file system. One of the most effective tools for salvaging executables from
unallocated space is “foremost,” as shown in Figure I.1 using the “-t” option, which uses internal
carving logic rather than simply headers from the configuration file.

Figure I.1 Using foremost to carve executable files from unallocated disk space

 Other Tools to Consider

Data Carving Tools

DataLifter http://www.datalifter.com
Scalpel http://www.digitalforensicssolutions.com/Scalpel/
PhotoRec http://www.cgsecurity.org/wiki/PhotoRec

15

Temporal, Functional, and Relational Analysis

 One of the primary goals of forensic analysis is to reconstruct the events surrounding a crime. Three

common analysis techniques that are used in crime reconstruction are temporal, functional, and
relational analysis.
 The most common form of temporal analysis is the time line, but there is such an abundance
of temporal information on computers that the different approaches to analyzing this information are
limited only by our imagination and current tools.

 The goal of functional analysis is to understand what actions were possible within the
environment of the offense, and how the malware actually behaves within the environment (as
opposed to what it was capable of doing).

• One effective approach with respect to conducting a functional analysis to understand how a
particular piece of malware behaves on a compromised system is to load the forensic
duplicate into a virtual environment using a tool like Live View.13Figure I.2 shows Live View
being used to prepare and load a forensic image into a virtualized environment.

16

Figure I.2 Live View taking a forensic duplicate of a Windows XP system and launching it in
VMware

Relational analysis involves studying how components of malware interact, and how various
systems involved in a malware incident relate to each other.

• For instance, one component of malware may be easily identified as a downloader for other
more critical components, and may not require further in-depth analysis.

• Similarly, one compromised system may be the primary command and control point used by
the intruder to access other infected computers, and may contain the most useful evidence of
the intruder’s activities on the network as well as information about other compromised
systems.

 Specific applications of these forensic analysis techniques are covered in Chapter 3, Post-

Mortem Forensics: Discovering and Extracting Malware and Associated Artifacts from Windows
Systems.

17

Applying Forensics to Malware

Forensic analysis of malware requires an understanding of how an executable is
complied, the difference between static and dynamic linking, and how to distinguish class
from individuating characteristics of malware.

How an Executable File is Compiled

 Before delving into the tools and techniques used to dissect a malicious executable program, it is

important to understand how source code is compiled, linked, and becomes executable code. The
steps an attacker takes during the course of compiling malicious code are often items of evidentiary
significance uncovered during the examination of the code.
 Think of the compilation of source code into an executable file like the metamorphosis of
caterpillar to butterfly: the initial and final products manifest as two totally different entities, even
though they are really one in the same but in different form.

 As illustrated in Figure I.3, when a program is compiled, the program’s source code is run
through a compiler, a program that translates the programming statements written in a high-level
language into another form. Once processed through the compiler, the source code is converted into
a n object file or machine code, as it contains a series of instructions not intended for human
readability, but rather for execution by a computer processor.14

Figure I.3 Compiling source code into an object file
18

 After the source code is compiled into an object file, a linker assembles any required libraries

and object code together to produce an executable file that can be run on the host operating system,
as seen in Figure I.4.

Figure I.4 A linker creates an executable file by linking the required libraries and code to an object
file

 Often, during compilation, bits of information are added to the executable file that may be
relevant to the overall investigation. The amount of information present in the executable is contingent
upon how it was compiled by the attacker. Chapter 5 (File Identification and Profiling: Initial Analysis
of a Suspect File on a Windows System) covers tools and techniques for unearthing these useful clues
during the course of your analysis.

Static versus Dynamic Linking

 In addition to the information added to the executable during compilation, it is important to examine

the suspect program to determine whether it is a static or a dynamic executable, as this will
significantly impact the contents and size of the file, and in turn, the evidence you may discover.

19

• A static executable is compiled with all of the necessary libraries and code it needs to
successfully execute, making the program “self-contained.”

• Conversely, dynamically linked executables are dependent upon shared libraries to
successfully run. The required libraries and code needed by the dynamically linked executable
are referred to as dependencies.

• In Windows programs, dependencies are most often dynamic link libraries (DLLs; .dll
extension) that are imported from the host operating system during execution.

• File dependencies in Windows executables are identified in the Import Tables of the file
structure. By calling on the required libraries at runtime, rather than statically linking them to
the code, dynamically linked executables are smaller and consume less system memory,
among other things.

 We will discuss how to examine a suspect file to identify dependencies, and delve into

Important Table and file dependency analysis in greater detail in Chapter 5 (File Identification and
Profiling: Initial Analysis of a Suspect File on a Windows System) and Chapter 6 (Analysis of a
Malware Specimen).

20

Class versus Individuating Characteristics

 It is simply not possible to be familiar with every kind of malware in all of its various forms.

• Best investigative effort will include a comparison of unknown malware with known samples,

as well as conducting preliminary analysis designed not just to identify the specimen, but how
best to interpret it.

• Although libraries of malware samples currently exist in the form of anti-virus programs and
hash sets, these resources are far from comprehensive.

• Individual investigators instead must find known samples to compare with evidence samples
and focus on the characteristics of files found on the compromised computer to determine
what tools the intruder used. Further, deeper examination of taxonomic and phylogenetic
relationships between malware specimens may be relevant to classify a target specimen and
determine if it belongs to a particular malware “family.”

 Once an exemplar is found that resembles a given piece of digital evidence, it is possible to

classify the sample. John Thornton describes this process well in “The General Assumptions and
Rationale of Forensic Identification”:15

In the “identification” mode, the forensic scientist examines an item of evidence for
the presence or absence of specific characteristics that have been previously abstracted
from authenticated items. Identifications of this sort are legion, and are conducted in
forensic laboratories so frequently and in connection with so many different evidence
categories that the forensic scientist is often unaware of the specific steps that are taken
in the process. It is not necessary that those authenticated items be in hand, but it is
necessary that the forensic scientist have access to the abstracted information. For
example, an obscure 19th Century Hungarian revolver may be identified as an obscure
19th Century Hungarian revolver, even though the forensic scientist has never actually
seen one before and is unlikely ever to see one again. This is possible because the revolver
has been described adequately in the literature and the literature is accessible to the
scientist. Their validity rests on the application of established tests which have been
previously determined to be accurate by exhaustive testing of known standard materials.

In the “comparison” mode, the forensic scientist compares a questioned evidence item
with another item. This second item is a “known item.” The known item may be a

21

standard reference item which is maintained by the laboratory for this purpose (e.g. an
authenticated sample of cocaine), or it may be an exemplar sample which itself is a
portion of the evidence in a case (e.g., a sample of broken glass or paint from a crime
scene). This item must be in hand. Both questioned and known items are compared,
characteristic by characteristic, until the examiner is satisfied that the items are
sufficiently alike to conclude that they are related to one another in some manner.

In the comparison mode, the characteristics that are taken into account may or may
not have been previously established. Whether they have been previously established and
evaluated is determined primarily by (1) the experience of the examiner, and (2) how
often that type of evidence is encountered. The forensic scientist must determine the
characteristics to be before a conclusion can be reached. This is more easily said than
achieved, and may require de novo research in order to come to grips with the
significance of observed characteristics. For example, a forensic scientist compares a
shoe impression from a crime scene with the shoes of a suspect. Slight irregularities in the
tread design are noted, but the examiner is uncertain whether those features are truly
individual characteristics unique to this shoe, or a mold release mark common to
thousands of shoes produced by this manufacturer. Problems of this type are common in
the forensic sciences, and are anything but trivial.

 The source of a piece of malware is itself a unique characteristic that may differentiate one

specimen from another.

• Being able to show that a given sample of digital evidence originated on a suspect’s computer
could be enough to connect the suspect with the crime.

• The denial of service attack tools that were used to attack Yahoo! and other large Internet
sites, for example, contained information useful in locating those sources of attacks.

• As an example, IP addresses and other characteristics extracted from a distributed denial of
service attack tool are shown in Figure I.5.

22

Figure I.5 Individuating characteristics in suspect malware

• The sanitized IP addresses at the end indicated where the command and control servers used
by the malware were located on the Internet, and these command and control systems may
have useful digital evidence on them.

 Class characteristics may also establish a link between the intruder and the crime scene. For

instance, the “t0rn” installation file contained a username and port number selected by the intruder
shown in Figure I.6.

Figure I.6 Class characteristics in suspect malware

 If the same characteristics are found on other compromised hosts or on a suspect’s computer,
these may be correlated with other evidence to show that the same intruder was responsible for all of
the crimes and that the attacks were launched from the suspect’s computer. For instance, examining
the computer with IP address 192.168.0.7 used to break into 192.168.0.3 revealed the following
traces (Figure I.7) that help establish a link.

23

Figure I.7 Examining multiple victim systems for similar artifacts

 Be aware that malware developers continue to find new ways to undermine forensic analysis.
For instance, we have encountered the following anti-forensic techniques (although this list is by no
means exhaustive and will certainly develop with time):

• Multicomponent packing and encryption
• Detection of debuggers, disassemblers, and virtual environments
• Malware that halts when the PEB Debugging Flag is set
• Malware that sets the “Trap Flag” on one of its operating threads to hinder tracing analysis
• Malware that uses Structured Exception Handling (SEH) protection to block or misdirect

debuggers
• Malware that rewrites error handlers to force a floating point error to control how the program

behaves

 A variety of tools and techniques are available to digital investigators to overcome these anti-
forensic measures, many of which are detailed in this book. Note that advanced anti-forensic
techniques require knowledge and programming skills that are beyond the scope of this book. More
in-depth coverage of reverse engineering is available in The IDA Pro Book: The Unofficial Guide to
the World’s Most Popular Disassembler.16 A number of other texts provide details on programming
rootkits and other malware.17

24

From Malware Analysis to Malware Forensics

The blended malware threat has arrived; the need for in-depth, verifiable code analysis
and formalized documentation has arisen; a new forensic discipline has emerged.
 In the good old days, digital investigators could discover and analyze malicious code on
computer systems with relative ease. Trojan horse programs like Back Orifice and SubSeven and
UNIX rootkits like t0rnkit did little to undermine forensic analysis of the compromised system.
Because the majority of malware functionality was easily observable, there was little need for a digital
investigator to perform in-depth analysis of the code. In many cases, someone in the information
security community would perform a basic functional analysis of a piece of malware and publish it on
the Web.

 While the malware of yesteryear neatly fell into distinct categories based upon functionality and
attack vector (viruses, worms, Trojan horses), today’s malware specimens are often modular,
multifaceted, and known as blended-threats because of their diverse functionality and means of
propagation.18 And, as computer intruders become more cognizant of digital forensic techniques,
malicious code is increasingly designed to obstruct meaningful analysis.

 By employing techniques that thwart reverse engineering, encode and conceal network traffic,
and minimize the traces left on file systems, malicious code developers are making both discovery and
forensic analysis more difficult. This trend started with kernel loadable rootkits on UNIX and has
evolved into similar concealment methods on Windows systems.

 Today, various forms of malware are proliferating, automatically spreading (worm behavior),
providing remote control access (Trojan horse/backdoor behavior), and sometimes concealing their
activities on the compromised host (rootkit behavior). Furthermore, malware has evolved to
undermine security measures, disabling AntiVirus tools and bypassing firewalls by connecting from
within the network to external command and control servers.

 One of the primary reasons that developers of malicious code are taking such extraordinary
measures to protect their creations is that, once the functionality of malware has been decoded, digital
investigators know what traces and patterns to look for on the compromised host and in network
traffic. In fact, the wealth of information that can be extracted from malware has made it an integral
and indispensable part of computer intrusion, identity theft and counterintelligence cases. In many
cases, little evidence remains on the compromised host and the majority of useful investigative
information lies in the malware itself.

 The growing importance of malware analysis in digital investigations, and the increasing
sophistication of malicious code, has driven advances in tools and techniques for performing surgery

25

and autopsies on malware. As more investigations rely on understanding and counteracting malware,
the demand for formalization and supporting documentation has grown. The results of malware
analysis must be accurate and verifiable, to the point that they can be relied on as evidence in an
investigation or prosecution. As a result, malware analysis has become a forensic discipline—welcome
to the era of malware forensics.

1 http://www.syngress.com/digital-forensics/Malware-Forensics/.
2

http://www.symantec.com/connect/2011_Internet_Security_Threat_Report_Identifies_Risks_For_SMBs
3 http://www.f-secure.com/en_EMEA-Labs/news-info/threat-summaries/2011/2011_1.html.
4 http://krebsonsecurity.com/tag/operation-trident-breach/.
5 http://www.symantec.com/connect/blogs/stuxnet-introduces-first-known-rootkit-scada-

devices;http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
6 “The New E-spionage Threat,”

http://www.businessweek.com/magazine/content/08_16/b4080032218430.htm; “China
Accused of Hacking into Heart of Merkel Administration,”
http://www.timesonline.co.uk/tol/news/world/europe/article2332130.ece.

7 http://googleblog.blogspot.com/2010/01/new-approach-to-china.html.
8 Casey, E. (2011). Digital Evidence and Computer Crime, 3rd ed. London: Academic Press.
9 For more information about Helix3 Pro, go to http://www.e-fense.com/helix3pro.php.
10 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).
11 Chisum, W.J., and Turvey, B. (2000). Evidence Dynamics: Locard’s Exchange Principle and

Crime Reconstruction, Journal of Behavioral Profiling, Vol. 1, No. 1.
12 http://www.faqs.org/rfcs/rfc3227.html.
13 For more information about Live View, go to http://liveview.sourceforge.net.
14 For good discussions of the file compilation process and analysis of binary executable files,

see, Jones, K.J., Bejtlich, R., and Rose, C.W. (2005). Real Digital Forensics: Computer
Security and Incident Response. Reading, MA: Addison Wesley; Mandia, K., Prosise, C.,
and Pepe, M. (2003). Incident Response and Computer Forensics, 2nd ed. New York:
McGraw-Hill/Osborne; and Skoudis, E., and Zeltser, L. (2003). Malware: Fighting
Malicious Code. Upper Saddle River, NJ: Prentice Hall.

15 Thornton, JI. (1997). The General Assumptions and Rationale of Forensic Identification. In:
Faigman, D.L., Kaye, D.H., Saks, M.J., and Sanders, J., eds., Modern Scientific Evidence:
The Law and Science of Expert Testimony, Vol. 2. St. Paul, MN: West Publishing Co.

26

16 http://nostarch.com/idapro2.htm.
17 See, Hoglund, G., and Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Reading,

MA: Addison-Wesley; Bluden, B. (2009). The Rootkit Arsenal: Escape and Evasion in the
Dark Corners of the System. Burlington, MA: Jones & Bartlett Publishers; Metula, E.
(2010). Managed Code Rootkits: Hooking into Runtime Environments. Burlington, MA:
Syngress.

18 http://www.virusbtn.com/resources/glossary/blended_threat.xml.

27

Table of Contents
Title

Copyright

Dedication

Acknowledgments

About the Authors

About the Technical Editor

Introduction

Chapter 1. Malware Incident Response

Solutions in this chapter:

Volatile Data Collection and Analysis Tools

Non-Volatile Data Collection and Analysis Tools

Selected Readings

Jurisprudence/RFCS/Technical Specifications

Chapter 2. Memory Forensics

Solutions in this chapter:

Selected Readings

Chapter 3. Post-Mortem Forensics

Solutions in this chapter:

Selected Readings

28

Chapter 4. Legal Considerations

Solutions in this chapter:

Chapter 5. File Identification and Profiling

Solutions in this chapter:

Selected Readings

Chapter 6. Analysis of a Malware Specimen

Solutions in this chapter:

Introduction

Goals

Guidelines for Examining a Malicious File Specimen

Establishing the Environment Baseline

Pre-Execution Preparation: System and Network Monitoring

Execution Artifact Capture: Digital Impression and Trace Evidence

Executing the Malicious Code Specimen

Execution Trajectory Analysis: Observing Network, Process, Api, File System, and
Registry Activity

Automated Malware Analysis Frameworks

Online Malware Analysis Sandboxes

Defeating Obfuscation

Embedded Artifact Extraction Revisited

Interacting with and Manipulating the Malware Specimen: Exploring and Verifying

29

Functionality and Purpose

Event Reconstruction and Artifact Review: Post-Run Data Analysis

Digital Virology: Advanced Profiling Through Malware Taxonomy and Phylogeny

Conclusion

Pitfalls to Avoid

Selected Readings

Index

30

Chapter 1

Malware Incident Response

Volatile Data Collection and Examination on a Live Windows System

31

Solutions in this chapter:

• Volatile Data Collection Methodology
Local vs. Remote Collection
Preservation of Volatile Data
Physical Memory Acquisition
Collecting Subject System Details
Identifying Logged-in Users
Current and Recent Network Connections

• Collecting Process Information
• Correlate Open Ports with Running Processes and Programs
Identifying Services and Drivers
Determining Open Files
Collecting Command History
Identifying Shares
Determining Scheduled Tasks
Collecting Clipboard Contents

• Non-Volatile Data Collection from a Live Windows System
Forensic Duplication of Storage Media
Forensic Preservation of Select Data
Assessing Security Configuration
Assessing Trusted Host Relationships
Inspecting Prefetch Files
Inspect Auto-Starting Locations
Collecting Event Logs
Reviewing User Account and Group Policy Information
Examining the File System
Dumping and Parsing Registry Contents

• Examining Web Browsing Artifacts
• Malware Artifact Discovery and Extraction from a Live Windows System

 Tool Box Appendix and Web Site

32

The “ ” symbol references throughout this chapter demarcate that additional utilities pertaining to
the topic are discussed in the Tool Box appendix, appearing at the end of this chapter. Further tool
information and updates for this chapter can be found on the companion Malware Field Guides Web
site, at http://www.malwarefieldguide.com/Chapter1.html.

Introduction

This chapter demonstrates the value of preserving volatile and select non-volatile data, and how to do
so in a forensically sound manner. The value of volatile data is not limited to process memory
associated with malware, but can include passwords, Internet Protocol (IP) addresses, Security Event
Log entries, and other contextual details that together can provide a more complete understanding of
the malware and its use on a system.
 When powered on, a subject system contains critical ephemeral information that reveals the state
of the system. This volatile data is sometimes referred to as stateful information. Incident response
forensics, or live response, is the process of acquiring the stateful information from the subject
system while it remains powered on. As we discussed in the introductory chapter, the Order of
Volatility should be considered when collecting data from a live system to ensure that critical system
data is acquired before it is lost or the system is powered down. Further, because the scope of this
chapter pertains to live response through the lens of a malicious code incident, the preservation
techniques outlined in this section are not intended to be comprehensive or exhaustive; instead, they
are intended to provide a solid foundation relating to incident response involving malware on a live
system.

Often, malicious code live response is a dynamic process, with the facts and context of each
incident dictating the manner and means in which the investigator will proceed with his investigation.
Unlike other contexts in which simply acquiring a forensic duplicate of a subject system’s hard drive
would be sufficient, investigating a malicious code incident on a subject system very often requires
some degree of live response. This is because much of the information the investigator needs to
identify the nature and scope of the malware infection resides in stateful information that will be lost
when the computer is powered down.

This chapter provides an overall methodology for preserving volatile data on a Windows system
during a malware incident, and presumes that the digital investigator already has built his live response
toolkit of trusted tools, or is using a tool suite specifically designed to collect digital evidence in an
automated fashion from Windows systems during incident response. There are a variety of live
response tool suites available to the digital investigator—many of which are discussed in the Tool Box

33

section at the end of this chapter. Although automated collection of digital evidence is recommend as a
measure to avoid mistakes and inadvertent collection gaps, the aim of this chapter and associated
appendices is to provide the digital investigator with a granular walk-through of the live response
process and the digital evidence that should be collected.

 Analysis Tip

Field Interviews

Prior to conducting live response, gather as much information as possible about the malicious code
incident and subject system(s) from relevant witnesses. Refer to the Field Interview Questions
appendix at the end of this chapter for additional details.

Local versus Remote Collection

Choose the manner in which data will be collected from the subject system.

• Collecting results locally means storage media will be connected to the subject system and the
results will be saved onto the connected media.

• Remote collection means establishing a network connection from the subject system, typically
with a netcat or cryptcat listener, and transferring the acquired system data over the
network to a collection server. This method reduces system interaction, but relies on the
ability to traverse the subject network through ports established by the netcat listener.

Investigative Considerations

• In some instances, the subject network will have rigid firewall and/or proxy server
configurations, making it cumbersome or impractical to establish a remote collection
repository.

• Remotely acquiring certain data during live response—like imaging a subject system’s physical
memory—may be time and resource consuming and require several gigabytes of data to
traverse the network, depending on the amount of random access memory (RAM) in the

34

target system. The following pair of commands depicted in Figure 1.1 sends the output of a
live response utility acquiring data from a subject system to a remote IP address
(172.16.131.32) and saves the output in a file named “<toolname>20101020host1.txt” on
the collection system.

Figure 1.1 Netcat commands to establish a network listener to collect tool output remotely

• The netcat command must be executed on the collection system first so that it is ready and
waiting to receive data from the subject system.

• Local collection efforts can be protracted in instances where a victim system is older and
contains obsolete hardware, such as USB 1.1, which has a maximum transfer rate of 12
megabits per second (mbps).

• Always ensure that the media you are using to acquire live response data is pristine and do not
contain unrelated case data, malicious code specimens, or other artifacts from previous
investigations. Acquiring digital evidence on “dirty” or compromised media can taint and
undermine the forensic soundness of the acquired data.

Volatile Data Collection Methodology

 Data should be collected from a live system in the Order of Volatility. The following guidelines give

a clearer sense of the types of volatile data that can be preserved to better understand malware:

• On the compromised machine, run a trusted command shell from an Incident Response toolkit
• Document system date and time, and compare them to a reliable time source
• Acquire contents of physical memory
• Gather hostname, user, and operating system details
• Gather system status and environment details
• Identify users logged onto the system
• Inspect network connections and open ports

35

• Examine Domain Name Service (DNS) queries and connected hostnames
• Examine running processes
• Correlate open ports to associated processes and programs
• Examine services and drivers
• Inspect open files
• Examine command-line history
• Identify mapped drives and shares
• Check for unauthorized accounts, groups, shares, and other system resources and

configurations using Windows “net” commands
• Determine scheduled tasks
• Collect clipboard contents
• Determine audit policy

Preservation of Volatile Data

After obtaining the system date/time, acquire physical memory from the subject system
prior to preserving information using live response tools.

• Because each version of the Windows operating system has different ways of structuring data
in memory, existing tools for examining full memory captures may not be able to interpret
memory structures properly in every case.

• Therefore, after capturing the full contents of memory, use an Incident Response suite to
preserve information from the live system, such as lists of running processes, open files, and
network connections, among other volatile data. A number of commonly used Incident
Response tool suites are discussed in the Tool Box section at the end of this chapter.

• Some information in memory can be displayed by using Command-line Interface (CLI) utilities
on the system under examination. This same information may not be readily accessible or
easily displayed from the memory dump after it is loaded onto a forensic workstation for
examination.

Investigative Considerations

36

• It may be necessary in some cases to capture non-volatile data from the live subject system,
and perhaps even create a forensic duplicate of the entire disk. For all preserved data,
remember that the Message Digest 5 (MD5) and other attributes of the output from a live
examination must be documented independently by the digital investigator.

• To avoid missteps and omissions, collection of volatile data should be automated.

Physical Memory Acquisition on a Live Windows System

Before gathering volatile system data using the various tools in a live response toolkit,
first acquire a full memory dump from the subject system.

• Running incident response tools on the subject system will alter the contents of memory.
• To get the most digital evidence out of physical memory, perform a full memory capture prior

to running any other incident response processes.
• There are a myriad of tools that can be used to acquire physical memory, and many have

similar functionality. Often, choosing a tool comes down to familiarity and preference. Given
that every malware incident is unique, the right tool for the job may be driven not just by the
incident type but by the victim system typology.

Investigative Considerations

• Remember that some tools are limited to certain operating systems and capture only up to 4
gigabytes (GB) of RAM; others can acquire memory from many different operating system
versions, gather up to 64 GB of RAM, and capture the Windows pagefile. If possible,
determine subject system details and select appropriate forensic tools prior to beginning
incident response. Having numerous tool options available in your toolkit will avoid on-scene
frustration.

• In addition to assessing tool limitations based upon operating system and memory capacity,
also consider whether to use a command-line utility or a graphical user interface (GUI)-based
tool.

• This section will explore some of the ways to acquire physical memory contents, but consult
the Tool Box section at the end of this chapter for further tool discussion and comparison.

37

Acquiring Physical Memory Locally

Physical memory dumps can be acquired locally from a subject system using command-
line or GUI utilities.

Command-line Utilities

 A commonly used command-line tool for physical memory acquisition is HBGary’s FastDump.1

• FastDump Community2 version is a free version of FastDump that supports the acquisition of
memory from 32-bit systems with up to 4 GB of RAM.

• FastDump Community version does not support Vista, Windows 2003, Windows 2008, or
64-bit platforms.

• Using FastDump Community version, the following command captures the contents of memory
from a subject Windows system and saves it to a file on removable media (Figure 1.2):

Figure 1.2 Acquiring physical memory with FastDump

• FastDump Pro3 is the commercially supported version of FastDump, which supports all
versions of Window operating systems and service packs (2000, XP, 2003, Vista, 2008
Server).

FastDump Pro can capture memory from both 32-bit and 64-bit systems, including systems
with more than 4 GB of RAM (up to 64 GB of RAM), and supports acquisition of the

38

Windows pagefile with the memory dump.

• Using FastDump Pro, the following command captures the contents of both memory and the
pagefile from a subject Windows system and saves it to a file on removable media (Figure
1.3):

Figure 1.3 Acquiring physical memory with FastDump Pro

 Other Tools to Consider

Additional command-line utilities to capture physical memory, including Memoryze, Mantech DD and
Moonsols Memory Toolkit, are discussed in the Tool Box section at the end of this chapter and on
the companion Web site for the Malware Forensic Field Guide,
http://www.malwarefieldguide.com/Chapter1.html.

GUI-based Memory Dumping Tools

39

 Agile Risk Management’s Nigilant324 is a GUI-based incident response tool.

• Nigilant32 provides an intuitive interface and simplistic means of imaging a subject system’s
physical memory using a drop-down menu in the tool’s user console.

• To image memory from Nigilant32, select the “Image Physical Memory” option from the
“Tools” menu, as shown in Figure 1.4.

Figure 1.4 Imaging physical memory with Nigilant32

• At the prompt, select the location where the memory dump file will be saved; memory imaging
will start thereafter.

Remote Physical Memory Acquisition

Physical memory dumps can be remotely acquired from a subject system using F-
Response.
 F-Response is an incident response framework that implements the Microsoft iSCSI initiator
service5 to provide read-only access to the full physical disk(s) of a networked computer, as well as
to the physical memory of most Microsoft Windows systems.6

40

• There are four versions of F-Response (Field Kit, Consultant, Enterprise, and TACTICAL)
that vary in deployment method, but all provide access to a remote subject system drive as a
local mounted drive.

• F-Response is flexible and “vendor agnostic,” meaning that any tool can be used to acquire an
image of the subject system’s hard drive and physical memory once connected to it.

• F-Response Field Kit and TACTICAL are typically used in the context of live response,
particularly in scenarios where the subject systems are at a third-party location and F-
Response Consultant Edition or Enterprise Edition have not been deployed prior to the
incident.

• F-Response Field Kit requires a single USB key FOB dongle and the Field Kit executable (f-
response-fk.exe), both of which are initiated on subject system. Conversely, the examiner
system, which enables the digital investigator to leverage the results of F-Response, simply
requires the installation and invocation of the Microsoft iSCSI initiator service. F-Response
TACTICAL, which uses a distinguishable paired key FOB deployment, is discussed in the
Tool Box section at the end of this chapter.

• To access the physical memory of the remote subject system with an F-Response Field Kit,
connect the USB key FOB dongle to the subject system and execute F-Response. Enter the
proper subject system identifiers, and enable “Physical Memory,” using the radio button, as
shown in Figure 1.5.

Figure 1.5 Using F-Response to connect to a subject system

• On your local examiner system, invoke the iSCSI initiator service, select the “Discovery” tab,
and add the subject system as a target, as shown Figure 1.6.

41

Figure 1.6 Adding the subject system as a target through the iSCSI initiator service

• Choose the “Advanced” option and provide the same username and password credentials
used in the F-Response Remote Configuration (Figure 1.7).

Figure 1.7 Authenticating through the iSCSI initiator to acquire the target system

• After authenticating, the subject system will appear as a target. Select the subject system hard
drive and physical memory from the target list (requiring re-authentication) and connect to the
subject system; the connection status will be displayed in the target list (Figure 1.8).

42

Figure 1.8 Connecting to the subject system

• Once connected to the subject system through F-Response, the subject system’s hard drive
can be accessed locally on your examiner system, as shown in Figure 1.9.

Figure 1.9 Viewing the remote subject system hard drive through F-Response

• On your local examiner system, use the Disk Management snap-in to verify that the physical
memory is also “mounted.”

• As physical memory does not have a file system or partition table, the physical memory will not
be recognized as a drive, but rather as an unknown disk, as shown in Figure 1.10.

43

Figure 1.10 Identifying physical memory from a remote subject system

• In Figure 1.11, Helix3 Pro7 was used to acquire the memory image from the remote subject
system. The Helix3 Pro Live CD was initiated on the examiner system and identified the
subject system’s physical memory as a local drive (PhysicalDrive2); acquisition was
conducted by selecting PhysicalDrive2 as the item to image.

Figure 1.11 Acquiring physical memory from a remote subject system

 Other Tools to Consider

Commercial remote forensics tools such as ProDiscoverIR and OnlineDFS have been developed to
capture full memory contents from remote systems. These, and other remote forensics tools, are
discussed further in the Tool Box section at the end of this chapter and on the companion Web site,
http://www.malwarefieldguide.com/Chapter1.html.

Collecting Subject System Details

System details are helpful for providing context to the live response and post-mortem
forensic process, establishing an investigative time line, and identifying the subject system
in logs and other forensic artifacts.
 Obtain the following subject system details:

• System date and time
• System identifiers

44

• Network configuration
• Enabled protocols
• System uptime
• System environment

System Date and Time

 After acquiring an image of the physical memory from a subject system, the first and last items that

should be collected during the course of conducting a live response examination are the system date
and time. This information will serve both as the basis of your investigative time line—providing
context to your analysis of the system—as well as documentation of the examination.

• The most common method to collect system date and time is to issue the date /t and time /t
commands from a trusted command shell in your live response toolkit.

• After recording the date and time from the subject system, compare them to a reliable time
source to verify the accuracy of the information.

• Identify and document any discrepancies for comparison to the date and time stamps of other
artifacts you discover on the system.

System Identifiers

 In addition to collecting the system date and time, collect as much system identification and status

information from the subject host as possible prior to launching into live response examination,
including:

System Identifier Tool/Command

45

Host Name
Identify the name of the subject system by using a trusted version of the
hostname utility, which is native to Windows operating systems.

Current User Identify the current system user with the whoami8 command
Operating
System/Environment Collect system environment identifiers by issuing the ver9 command.

IP address and
related network
identifiers

The ipconfig/all command is used to display the IP address assigned to the
subject system, along with the system hostname, network subnet mask, DNS
servers, and related details.

Network Configuration

 When documenting the configuration of the subject system, keep an eye open for unusual items.

• Look for a Virtual Private Network (VPN) adapter configured on a system that does not

legitimately use a VPN.
• Determine whether a network card of the subject system is in promiscuous mode, which

generally indicates that a sniffer is running.
• Several tools are available to query a network configuration, including promiscdetect10 and

Microsoft’s promqry11 (which requires the .NET framework).

Enabled Protocols

 Document which protocols are enabled on the subject system to help identify potential vectors of

attack.

• Identify the protocols enabled on the subject system using the URLProtocolView utility from
NirSoft.12

System Uptime

46

 Determine how long the subject system has been running, or the system uptime.

• Knowing that the subject system has not been rebooted since malware was installed can be
important, motivating digital investigators to look more closely for deleted processes and other
information in memory that otherwise might have been destroyed.

• To determine system uptime, invoke the uptime13 utility from your trusted toolkit, as shown in
Figure 1.12.

Figure 1.12 Querying a system with the uptime command

System Environment

 Documenting general details about the subject system, including operating system version, patch

level, and hardware, is useful when conducting an investigation of a Windows system.

• System environment information may reveal that the system is outdated and therefore
susceptible to certain attacks.

• Knowing the version of Windows can be helpful when performing forensic examination of a
memory dump.

• A granular snapshot of a subject system’s environment and status can be obtained by querying
the system with psinfo,14 as shown in Figure 1.13 on the next page.

47

Figure 1.13 Collecting system information with psinfo

Identifying Users Logged into the System

After conducting initial reconnaissance of the subject system details, identify the users
logged onto the subject system both locally and remotely.
 Identifying logged on users serves a number of investigative purposes, such as to:

• Help discover any potential intruders logged into the compromised system.
• Identify additional compromised systems that report to the subject system as a result of the

malicious code incident.
• Provide insight into a malicious insider malware incident.
• Provide additional investigative context by being correlated with other artifacts discovered.
• Obtain the following information about identified users logged onto the subject system:

Username
48

Point of origin (remote or local)
Duration of the login session
Shares, files, or other resources accessed by the user
Processes associated with the user
Network activity attributable to the user

 There are a number of utilities that can be deployed during live response to identify users
logged onto a subject system, including PsLoggedOn,15quser,16netusers,17 and loggonsessions.18

Psloggedon is a CLI utility that is included in the PsTools suite that identifies users logged onto
a subject system both locally and remotely. In addition, PsLoggedOn reveals users that have accessed
a subject system from resource shares, such as shared drives.

Inspect Network Connections and Activity

Network connections and activity on the subject system can reveal vital information
about an attacker’s connection to the system, including the location of an attacker’s remote
data collection server and whether the subject system is beaconing to a command and
control structure, among other things.
 In surveying a potentially infected and compromised system, try to obtain the following
information about the network activity on the subject system:

• Active network connections
• DNS queries made from the subject system
• NetBIOS name table cache
• ARP cache
• Internal routing table

Investigative Considerations

• In addition to network activity analysis, conduct an in-depth inspection of open ports on the
subject system, including correlation of the ports to associated processes. Port inspection
analysis is discussed later in this chapter.

49

Active Network Connections

 An investigator should identify current and recent network connections to determine (1) whether an

attacker is currently connected to the subject system, and (2) if malware on the subject system is
causing the system to call out, or “phone home,” to the attacker, such as to join a botnet command
and control structure.

• Often, malicious code specimens such as bots, worms, and Trojans have instructions
embedded in them to call out to a location on the Internet, whether a domain name, Uniform
Resource Locator (URL), or IP address, or to connect to another Web resource to join a
collection of other compromised and “hijacked” systems and await further commands from
the attacker responsible for the infection.

• To examine current network connections, a common approach is to use a trusted version of
the netstat19 utility on the subject system. Netstat is a utility native to the various Windows
operating systems that displays information pertaining to established and “listening” network
socket connections on the subject system.

• For granularity of results, query with the netstat –ano command (available on Microsoft
Windows XP and subsequent versions; see Figure 1.14), which along with displaying the
nature of the connections on the subject system, reveals:

Whether the session is Transmission Control Protocol (TCP) or UDP protocol
The status of the connection
The address of connected foreign system(s)
The process ID number of the process initiating the network connection

50

Figure 1.14 Netstat –ano command

• Alternatively, the netstat –an command reveals the same information but without the process
ID associated with the connection.

DNS Queries from the Host System

 Many malware specimens have network connectivity capabilities, whether to gather further exploits

from a remote location, join a command and control structure, or await further commands from an
attacker. Many times, the malware is hard coded with connectivity instructions in the form of domain
names, which the program will attempt to query and resolve to identify the location of the network-
based resource to which it is intended to connect.

• To collect the DNS queries made from a subject system, issue the ipconfig/displaydns
command from your trusted toolkit.

NetBIOS Connections

 When native Windows networking is involved, additional details about active network connections

may be available that can be useful in an investigation. There may be volatile data showing which
computers were recently connected to the subject system and what files were transferred.

51

• Windows networking uses the NetBIOS protocol, which supports a variety of services, such

as file and printer sharing.
• Each computer that is configured with NetBIOS is assigned a unique name used to

communicate with others.
• The NetBIOS name cache on a subject system is a section in system memory that contains a

mapping of NetBIOS names and IP addresses of other computers with which the subject
system has had NetBIOS communication.20

• The NetBIOS name cache is volatile and is preserved for a limited period of time.
• Capture the NetBIOS name cache using a trusted version of the native Windows utility,

nbtstat with the –c option, which displays a list of cached remote machine names and their
corresponding IP addresses.21

• Identify current NetBIOS sessions by using the nbtstat –S option and the net sessions

command.
• Identify if any files were recently transferred over NetBIOS using the net file command.

ARP Cache

 The Address Resolution Protocol (ARP) resolves Media Access Control (MAC) addresses or

Ethernet addresses (residing at the Data Link Layer in the Open Systems Interconnect (OSI) model)
to IP addresses (residing at the Network Layer of the OSI model).22

• The mapping of these addresses is stored in a table in memory called the ARP cache or ARP

table.
• Examination of a subject system’s ARP cache will identify other systems that currently or

recently have established a connection to the subject system.
• To display the contents of the ARP cache, issue the arp –a command23 from your trusted

command shell, which will reveal the IP address assigned to the subject system, along with the
IP addresses and MAC addresses assigned to suspicious systems that are currently or have
recently had connections to the subject system.

Collecting Process Information
52

Collecting information relating to processes running on a subject system is essential in
malicious code live response forensics. Once executed, malware specimens, such as worms,
viruses, bots, key loggers, and Trojans, often manifest on the subject system as a process.
 During live response, collect certain information pertaining to each running process to gain
process context, or a full perspective about the process and how it relates to the system state and to
other artifacts collected from the system. To gain the broadest perspective, a number of tools gather
valuable details relating to processes running on a subject system. Although this chapter covers some
of these tools, refer to the Tool Box section at the end of this chapter and on the companion Web site,
http://www.malwarefieldguide.com/Chapter1.html, for additional tool options.

• Start by collecting basic process information, such as the process name and Process
Identification (PID), with subsequent queries to obtain the following details:

Process name and PID
Temporal context
Memory consumption
Process to executable program mapping
Process to user mapping
Child processes
Invoked libraries and dependencies
Command-line arguments used to invoke the process
Associated handles
Memory contents of the process
Relational context to system state and artifacts

Process Name and Process Identification

 The first step in gaining process context is identifying the running processes, typically by name and

associated PID.

• To collect a simple list of running processes and assigned PIDs from our subject system, use

53

tlist,24 a multifunctional process viewer utility for Windows distributed with Debugging
Tools for Windows.

Temporal Context

 To gain historical context about the process, determine the period of time the process has been

running.

• Obtain process activity times by using pslist in the PsTools suite.
• The pslist utility displays, among other details:

The names of running processes
Associated PIDs
The amount of time each process has been running on a system

Memory Usage

 Examine the amount of system resources that processes are consuming. Often, worms, bots, and

other network-centric malware specimens are “active” and can be noticeably resource-consuming,
particularly on a system with less than 2 GB of RAM.

• To get output identifying running processes, associated PIDs, and the respective memory usage
of the processes, use a trusted version of the tasklist utility with no switches.25

Process to Executable Program Mapping: Full System Path to Executable File

 Determine where the executable images associated with the respective processes reside on the

system. This effort will provide further contextual information, including whether an unknown or
suspicious program spawned the process, or if the associated program is embedded in an anomalous
location on the system, necessitating a deeper investigation of the program.

54

• To get an overview of the running processes and associated location of executable program

locations, use PRCView (pv.exe)26 with the -e switch, as shown in Figure 1.15.

Figure 1.15 Using PRCView to reveal the location of executables associated with running processes

Process to User Mapping

 During the course of identifying the executable program that initiated a process, determine the

owner of the process to gain user and security context relating to the process. Anomalous system
users or escalated user privileges associated with running processes are often indicative of a rogue
process.

• Using tasklist with the –V switch, identify the program name, PID, memory usage, program
status, and associated username.

Child Processes

55

 Often upon execution, malware spawns additional processes, or child processes. Upon identifying a

potentially hostile process during live response, analyze the running processes in such a way as to
identify the hierarchy of potential parent and child processes.

• Query the subject system with any of the following commands to obtain a structured and
hierarchical “tree” view of processes.

Tool Command
Pslist pslist –t

Tlist tlist –t

PRCViewpv –t

Command-line Parameters

 While inspecting running processes on a system, determine the command-line instructions, if any,

that were issued to initiate the running processes. Identifying command-line parameters is particularly
useful if a rogue process already has been identified, or if further information about how the program
operates is sought.

• The command-line arguments associated with target processes can be collected by querying a
subject system with any of the following commands.

56

Tool Command

Cmdline

Invoking cmdline with no switches displays the process ID number, the full system path,
and the executable file associated with each process running on the system. By issuing the
–pid argument and supplying the PID number of a specific process of interest, cmdline
will only display information relating to that process.

Tlist tlist –c

PRCViewpv –l

File Handles

 Another important aspect to examining running processes is to identify handles opened by the

respective processes. System resources like files, threads, or graphic images are data structures
commonly referred to as objects. Often, programs cannot directly access object data and must rely
upon an object handle to do so.

• Each handle has an entry in an internally maintained handle table containing the addresses of
the resources and the means to identify the resource type.

• To get additional context about the nature of running processes, obtain information about which
handles and associated resources the processes are accessing by using the handle27 utility.

• The handle utility has a number of switches that can be applied, but for the purpose of
revealing all handles related to the running processes, use the handle –a command.

Dependencies Loaded by Running Processes

 Dynamically linked executable programs are dependent upon shared libraries to successfully run. In

Windows programs, these dependencies are most often Dynamic Link Libraries (DLLs) that are
imported from the host operating system during execution. Identifying and understanding the DLLs
invoked by a suspicious process can potentially define the nature and purpose of the process.

• Many malicious code specimens, particularly rootkits, use a technique called “DLL injection,”
57

wherein malware “injects” code into the address space of a running process by forcing it to
load a dynamic link library.28

• A great utility for viewing the DLLs loaded by a running process is listdlls,29 which identifies
the modules invoked by a process and reveals the full path to the respective modules. Other
utilities to consider for this task include Procinterrogate,30 PRCView,31 and ListModules.32

Exported DLLs

 To discover the DLLs exported by an executable program that launched a process—that is,

identifying the functions or variables made usable by other executable programs—consider querying a
subject system with NirSoft’s DLLExportViewer.33

• DLLExport view provides the investigator with the exported function name, address, relative

address, file name, and full path of the module.

Capturing the Memory Contents of a Process on a Live Windows System

 During the course of examining running processes on a subject system, potentially rogue processes

may be identified. In addition to locating and documenting the potentially hostile executable programs,
capture the individual process memory contents of the specific processes for later analysis, as
described in Chapter 2.

Correlate Open Ports with Running Processes and Programs

In addition to identifying the open ports and running processes on a subject system,
determine the executable program that initiated a suspicious established connection or
listening port, and determine where that program resides on the system.
 Examining open ports apart from active network connections is often inextricably intertwined
with discoveries made during inspection of running processes on a subject system.

58

• When examining active ports on a subject system, gather the following information, if available:

Local IP address and port
Remote IP address and port
Remote host name
Protocol
State of connection
Process name and PID
Executable program associated with process
Executable program path
User name associated with process/program

• Process-to-port correlation can be conducted by querying a subject system with any of the

following commands. Further details regarding the tools referenced in this table can be found
in the Tool Box section at the end of the chapter and on the companion Web site,
http://www.malwarefieldguide.com/Chapter1.html.

Tool Command Information Gathered

Netstat

netstat -ano

netstat –anb [the
“b” option requires
escalation (i.e. Run
As Administrator)]

Displays protocol, status of connection, foreign address in
connection, PID of process initiating connection.
When investigating Windows XP (SP2) and newer Windows
operating systems, this command correlates open ports with
associated processes and displays the executable program and
related components sequentially involved in creating each connection

59

or listening port, as shown in Figure 1.16, below.

Openports -lines and -path
Provides a clear structured perspective of the active ports associated
process and executable programs along with the system path where
the respective programs reside.

Fport
/p
/a
/i
/ap

Sort by port
Sort by process
Sort by PID
Sort by process path

CurrPorts /stext

Provides a detailed snapshot of the process name, PID, local and
remote port numbers and IP addresses, port state, protocol,
executable program path, and other detailed identifying information.

Figure 1.16 Results of the netstat –anb command on a subject system

Identifying Services and Drivers

Many malware specimens will manifest on a subject system as a service or surreptitiously
install driver files.

Examining Running Services

60

 Microsoft Windows services are long-running executable applications that run in their own

Windows sessions; they do not require user initiation or interaction.34 Services can be configured to
automatically start when a computer is booted up, paused, and restarted without showing up in any
user interface. Malware can manifest on a victim system as a service, silently running in the
background, unbeknownst to the user.

• As with the examination of running processes and ports, explore running services by first
gaining an overview and then applying tools to extract information about the services with
more particularity.

• While investigating running services, gather the following information:

Service name
Display name
Status
Startup configuration
Service description
Dependencies
Executable program associated with service
Process ID
Executable program path
User name associated with service

• Gain a good overview of the running services on a subject system by using a trusted version of

tasklist with the /svc switch, which displays services in each process.
• The output from this command provides a concise listing of the executable program name,

PID, and description of the service, if applicable.
• To gather greater detail about running services, refer to the Tool Box section at the end of this

chapter and on the companion Web site, http://www.malwarefieldguide.com/Chapter1.html.

Examining Installed Drivers

 In addition to determining the running services on a subject system, consider examining the installed

61

drivers on the system, including the nature and status of the drivers.35

• To explore installed system drivers, query the subject system with a trusted version of List

Loaded Driver (drivers.exe)36 and DriverView.37

• The output provided by List Loaded Drivers (drivers.exe) is verbose and granular. Compare
a thorough examination of any suspicious files acquired from the subject system against the
collected data to identify artifacts of value.

Determining Open Files

Open files may identify the nature of the malicious code that has infected a system by
revealing the services or resources that the specimen requires to effectively launch or
operate.

• Open files may reveal other correlating or identifying information about suspicious processes
identified during the course of live response.

• If malware has given the attacker access into the compromised system, the attacker, during the
course of intrusion, may have opened certain files.

• Identifying open files may explain the purpose of the attack, whether probing financial
databases, sensitive corporate information, or other unique resources on the system.

• Examine files opened locally and remotely.

Identifying Files Opened Locally

• To examine files opened locally, query the subject system with OpenFilesView.38

• OpenedFilesView displays a list of all opened files on a subject system and additional
information about the accessed files, such as:

The process that opened the file
The associated handle value
Read/write/delete access times; and

62

File location on the system

Identifying Files Opened Remotely

• A remote connection from an anomalous system or share accessing files on the subject system
are potentially indicia of compromise, so endeavor to identify files that are accessed remotely.

• Query the subject system with a trusted version of the native net file command or the psfile
utility.39

Collecting Command History

Keystrokes typed by an attacker (or nefarious insider) into a Windows command prompt
that remains open can be retrieved during live response.

• Display all of the commands that are stored in memory by issuing the doskey/history40

command from the toolkit’s trusted command prompt.
• The doskey/history command can be configured to hold a maximum of approximately 61,900

bytes of data.
• Command prompt history can provide valuable contextual evidentiary information, such as:

The names of files and folders accessed
Commands issued
Programs launched
Unique string names
Network identifiers such as domain names, IP addresses, shares, and resources

Identifying Shares

63

Although malicious code does not always exhibit the ability to propagate through
network shares, some specimens identify and affect shares on an infected system.41

• To query a subject system to identify available shares, use a trusted version of the native

Windows utility, net, as seen in Figure 1.17.

Figure 1.17 Identifying shares on a subject system

Determining Scheduled Tasks

Some malicious code variants are “event-driven,” meaning that until a certain date or
event triggers execution, the malware remains dormant.
 Event-driven malware is typically referred to as a logic bomb. Typically, most logic bomb
malware specimens are planted and secreted by a malicious insider, particularly by those users with
administrative access to systems.42 However, some external malicious code threats have displayed
logic bomb features.43 Thus, examine a subject system for scheduled tasks to ensure that a malicious
program is not hidden away waiting to execute.

• Reveal discovered scheduled tasks on a subject machine using a trusted version of the native
Windows utility at.44

• Confirm your findings by querying with schtasks,45 which is also native to Windows XP and
subsequent versions.

Collecting Clipboard Contents 64

Collecting Clipboard Contents

In the instance of a potentially compromised system wherein the infection vector is
unknown, the clipboard contents can potentially provide substantial clues into the nature
of an attack, particularly if the attacker is an insider “threat” and has copied bits of text to
paste into tools or attack strings.

• The clipboard contents may contain:

Domain names
IP addresses
E-mail addresses
Usernames and passwords
Hostnames
Instant messenger chat or e-mail content excerpts
Attack commands
Other valuable artifacts identifying the means or purpose of the attack

• Examine the contents of a subject system’s clipboard with pclip,46 which collects and displays

the contents of the clipboard, seen here in Figure 1.18.

Figure 1.18 Exploring the clipboard contents with pclip.exe

Non-Volatile Data Collection from a Live Windows System

65

Traditionally, forensic examiners do not access files on the hard drive of a live system because of the
potential risk of altering stored data. However, some situations require selective forensic preservation
and examination of data in files and within the registry of live systems. In some cases, the quantity of
non-volatile data on a computer’s system is so large that its preservation is not feasible.
 Expending resources to create a forensic duplicate of a server that contains terabytes of
documents and other data unrelated to the malware incident may not make sense. Instead, acquiring
only the information that is generally the most relevant and useful may be the better approach.
Similarly, in cases involving a large number of computers, forensic duplication of only critical systems
coupled with information gathering from the remaining machines may best support the victim’s needs
or ability to pursue legal or other remedies.

 Analysis Tip

Handle with Care

Whether to collect non-volatile data from a live system must be carefully considered. Operating a live
system inevitably makes changes, like updating last accessed dates of files. Whether such changes will
hinder the investigation or alternatively be deemed an acceptable loss of information for the benefit of
acquiring usable digital evidence is a judgment call. In certain cases, the only option may be to collect
non-volatile data from a live system. From a business interference standpoint, the system owner may
be unable to accept actions that would disrupt the system (i.e., transaction server processing
thousands of credit card transactions a minute). In such cases, obtain written confirmation of
authorization to perform actions that could result in a reboot, temporary loss of service, or other
perceived disruption. Once the decision is made to perform preservation processes on a live system,
take great care to minimize changes and thoroughly document actions taken to both distinguish them
from the effects of malware and defend them in court, if necessary.

Forensic Duplication of Storage Media on a Live Windows System

When dealing with high availability servers and other systems that cannot be shut down,
create a forensic duplicate of the entire system while the computer is still running.
 The same approaches to preserving physical memory on a live system can be used to acquire
a forensic duplicate of any storage media connected to the system.

• The following command takes the contents of an internal hard drive and saves it to a file on
66

removable media along with the MD5 hash (for integrity/validation purposes) and an audit log
that documents the collection process (Figure 1.19).

Figure 1.19 Forensic duplication of a hard drive using dd

Investigative Considerations

• Saving a forensic duplicate of the hard drive in a live system onto another computer on the
local area network is generally faster than saving to removable media, depending on the
throughput.

• Save the forensic duplicate on a remote computer either via an SMB share on the remote
system or using the netcat command. Remote forensic tools such as EnCase Enterprise,
OnlineDFS, and ProDiscoverIR also have the capability of acquiring a forensic duplicate of
the hard drive from a remote system.

Forensic Preservation of Select Data on a Live Windows System

Certain areas of a live Windows computer commonly contain information about the
installation and operation of malware.
 Methodical approaches to extracting evidence from these areas are presented in the following
list. These approaches are not intended to be comprehensive or exhaustive, but rather provide a solid
foundation for the discovery of evidence relating to malware resident on a live Windows computer.

• When more extensive forensic analysis is required, such as hash analysis and keyword
67

searching, work should be performed on a forensic image, as discussed in Chapter 3.
Although the tools covered in this section are designed to run on live Windows systems, some
also are useful in post-mortem analysis.

• The following non-volatile data analysis can aid in understanding the malware:

Assess security configuration
Acquire host files
Examine prefetch
Review auto-start
Examine logs
Review user accounts
Examine file system
Examine registry

Assess Security Configuration

Determining whether a system was well secured can help assess the risk level of the host
to misuse, vulnerabilities, and possible vectors of attack.

• Collect patch level and version information for a Windows system using the WinUpdatesList
utility.47

• Logging level and access control lists can be extracted using auditpol48 and dumpsec.49

• If security logging is not enabled, there will most likely be no log entries in the Security Event
Log.

• When a system is configured to record security events but the Security Event Log is empty,
ascertain whether the logs are stored elsewhere or were intentionally cleared.

Assess Trusted Host Relationships

Preserve the files in “%windir%\system32\drivers\etc\” that contain information about
68

trusted hosts and networks.
 These files are used for localized name resolution, without relying on DNS.

• The “hosts” file contains associations between IP addresses and hostnames.
• The “networks” file contains associations between ranges of IP addresses and network names,

which are generally assigned by network administrators.
• The “lmhosts” file contains associations between the IP address and NetBIOS names.

As shown in Figure 1.20, the contents of these files can be displayed without modification and

saved into individual log files using a trusted version of the Windows type command.

Figure 1.20 Collecting hosts, networks, and lmhosts from a subject system

Investigative Considerations

• Examine these logs for modifications. Some malware alters the contents of these files to block
access to major anti-virus and Microsoft sites, thus preventing a compromised host from
receiving security patches and anti-virus updates.

Inspect Prefetch Files

To improve efficiency when a program is executed, the Windows operating system
creates a “prefetch” file that enables speedier subsequent access to the program.
 Anomalous prefetch files are potential artifacts evidencing compromise of the subject system.

• Prefetch files are located in “%systemroot%\Prefetch” and, among other information, contain
69

the name of the program when it was executed.
• The creation date of a particular prefetch file generally shows when the associated program

was first executed on the system, and the last modified date indicates when it was most
recently executed.

• To document the creation and last modified dates of files in the prefetch directory, use a trusted
command shell (cmd.exe) to invoke the following commands (see Figure 1.21):

Figure 1.21 Listing prefetch files from a trusted command shell

Inspect Auto-starting Locations

When a system is rebooted, the number of places where Windows automatically starts
programs serve as persistence mechanisms for malware.
 These auto-starting locations exist in particular folders, registry keys, system files, and other
areas of the operating system.

• References to malware embed in these auto-starting locations to increase the malware’s
longevity on a computer.

• One of the most effective tools for viewing auto-start locations is AutoRuns,50 which has both
GUI and command-line versions (autorunsc).

• Query a subject system for all auto-starting entries using the autorunsc –a command.
• AutoRuns has a feature to ignore legitimate, signed Microsoft items, reducing the volume of

output.

Investigative Considerations

70

• Be aware that there will generally be a large number of legitimate third-party programs in auto-
start locations. Inspect most, or all, of these executables to best identify the extent of the
malware on the system (see Figure 1.22).

Figure 1.22 AutoRuns discovering a suspect program

Collect Event Logs

Many activities related to a malware incident can generate entries in the Event Logs on
a Windows system.
 Look for failed logon attempts recorded in the Security Event Log and anti-virus warning
messages recorded in the Application Event Log.

• These logs are stored in a proprietary Microsoft format; extract them in American Standard
Code for Information Interchange (ASCII) text form for examination using log analysis tools
that do not support the native Event Log format.

• Collecting these logs from the live system will extract the native message strings from that
system.

• These logs can be collected using eldump, a utility specifically designed to process Event Logs
from Windows systems. The same utility also can be used to read saved Event Log files.51

• As shown in Figure 1.23, to collect specific event logs from a subject system with eldump use
the –l switch and the name of the log (security, system, or application).

71

Figure 1.23 Collecting Event View Logs with eldump.exe

Logon and Logoff Events

 To obtain a list of logon and logoff events associated with associated users, use the NTlast utility.52

• This information may be particularly pertinent when a malicious insider is the suspected

wrongdoer, as opposed to an “outside” attacker.

Review User Account and Group Policy Information

A close inspection of user accounts local to the compromised system, or domain accounts
used to log in, can reveal how malware was placed on the computer.
 Look for the unauthorized creation of new accounts, accounts with no passwords, or existing
accounts added to Administrator groups.

• Check for user accounts that are not supposed to be in local or domain level administrator
groups.

• The net user command can be used to list all accounts on the local system.

Examine the File System

A quick review of certain types of files can reveal relevant information and provide

72

additional context to collected volatile data.
 Identify hidden files, alternate data streams, and files in the Recycle Bin.

• The HFind and SFind53 utilities in the Forensic Toolkit from Foundstone can be used to locate
alternate data streams and files that are hidden from the general user by the operating system
and can be listed using HFind.

• A list of files that have been placed in the Recycle Bin can be obtained by reading the INFO
file using a tool like Foundstone’s rifiuti.54

Investigative Considerations

• Also consider acquiring file system metadata relating to file time stamps for additional temporal
context.

When the time frame of the malware incident is known, metadata for all files created, modified,
or accessed during that period can be obtained using the macmatch.exe55 utility.
For instance, the following command (Figure 1.24) lists all files created between March 26
and 28 in 2010.

Figure 1.24 Using macmatch.exe

Dumping and Parsing Registry Contents

Although there are tools for examining Registry files in their native format, extracting
the contents in ASCII text form can facilitate examination and searching.
 There are several tools for extracting information from the Registry on a live system, such as
the native Windows utilities reg.exe and, regdump.exe,56 and the Systemtools.com dumpreg57 utility.

73

• In addition to dumping the entire Registry contents to a text file, particular areas of interest can
be processed individually.

• Details about the Universal Serial Bus (USB) devices that have been plugged into the system
can be extracted from the Registry with USBView.58 This information may be particularly
valuable in the instance of a malicious insider, wherein the infection vector was from a physical
access to a system, such as a USB device. Alternately, a user may have inadvertently used a
USB device infected with malware that exploits Windows autorun functionality.59

• Examination of the Registry is covered in more depth in Chapter 3 in the context of a full post-
mortem forensic examination of a compromised system.

Remote Registry Analysis

Registry contents can be acquired from a live subject system remotely with F-Response.
 As a discussed earlier in this chapter, F-Response provides read-only access to the full
physical disk(s) of a networked computer, as well as the physical memory of most Microsoft
Windows systems.

• To access the Registry of a remote subject system with an F-Response Field Kit, initiate F-
Response on the system, as shown in Figure 1.25.

Figure 1.25 Using F-Response to connect to a subject system
74

• On your examiner system, invoke the iSCSI initiator service and select the “Discovery” tab to

add the subject system as a target, as shown Figure 1.26.

Figure 1.26 Adding the subject system as a target through the iSCSI initiator service

• Choose the “Advanced” option and provide the same username and password credentials
used in the F-Response Remote Configuration (Figure 1.27).

Figure 1.27 Authenticating through the iSCSI initiator to acquire the target system

• After authenticating, the subject system will appear as a target. Select the subject system from
75

the target list (requiring re-authentication) and connect to the subject system; the connection
status will be displayed in the target list (Figure 1.28).

Figure 1.28 Connecting to the subject system

• Once connected to the subject system F-Response, the subject system’s hard drive can be
accessed locally on your examiner system, as shown in Figure 1.29.

Figure 1.29 Remote subject system hard drive through F-Response

• On your local analysis system, invoke RegRipper,60 a Windows Registry data extraction and
correlation tool created and maintained by Harlan Carvey. As F-Response has made the
subject system drive accessible locally, RegRipper can be pointed at the target NTUSER.dat
file of the subject system for data extraction (Figure 1.30).

76

Figure 1.30 Selecting the target NTUSER.dat from the subject system using RegRipper

• RegRipper is a Windows Registry data extraction and correlation tool written in Perl. Unlike
other Registry analysis tools, RegRipper is modular and uses plug-ins to access specific
Registry hive files, and in turn, to access and extract specific keys, values, and data.
RegRipper accomplishes this through bypassing the Win32API.

• RegRipper’s plug-in-based architecture allows users to develop custom plug-ins, many of
which are shared with the digital forensic community on the RegRipper Web site.61

• Examination of the Registry is covered in more depth in Chapter 3, in the context of a full post-
mortem forensic examination of a compromised system.

Examine Web Browsing Activities

With the increasing number of vulnerabilities in Web browsers and the potential for
unsafe browsing practices, an examination of Web browser artifacts may reveal how
malware was placed on a system.
 Client-side exploits have become more and more prevalent, particularly through “drive-by-
downloads.”

• Drive-by-downloads often occur when a user with an insecure or improperly configured Web
browser navigates to a compromised (or nefarious) Web site that is surreptitiously hosting

77

malware, allowing the malware to silently be downloaded onto the victim system.
• As a result, it is always advisable to examine the subject system Web history to gain insight into

whether a Web-based vector of attack caused the malicious code incident.
• Internet Explorer history files (index.dat) can be parsed with Pasco, a free multiplatform

command-line utility offered by Foundstone. The results processed by Pasco are output into a
field delimited text file, enabling the digital investigator to import into as spreadsheet to further
analyze these data.

• In addition to Pasco, there are numerous utilities available to parse Web history artifacts
associated with specific Web browsers, as described in detail in the Tool Box section of this
chapter.

Examine Cookie Files

 Similar to the correlative clues that can be gained through reviewing the Web browsing history on a

subject system, cookie files also can provide insight into how malware may have been placed on a
victim system.

• Information from cookie files can be acquired using Galleta62 for Internet Explorer and
MozillaCookiesView63 for Firefox.

Inspect Protected Storage

 If user accounts accessed from the subject system (such as e-mail accounts and password-

protected Web site logins) were discovered to be compromised after a malicious code incident, it is
possible that malware may have harvested the protected storage (also referred to as “pstore”) from
the subject system (or a key logger was installed).

• Protected storage may contain passwords stored by Internet Explorer and other programs,
providing the attacker with stored user credentials on the system.

• This information can be gathered with NirSoft’s GUI and CLI utility Protected Storage
PassView (pspv.exe).64

• Contents of the Firefox AutoComplete and Protected Storage areas can be extracted using the
78

DumpAutocomplete65 utility.

Malware Artifact Discovery and Extraction from a Live Windows System

After identifying suspicious files on a subject system, extract them for further analysis in
your malicious code laboratory. Additionally, consider browsing the system in a forensically
sound manner for additional artifacts of compromise.
 Extraction can be accomplished with a variety or tools, including Nigilant32, F-Response,
HBGary’s FGET,66 and Helix3 Pro, among others.

Extracting Suspicious Files

 As discussed previously in the Memory Acquisition section of this chapter, Agile Risk

Management’s Nigilant3267 is a GUI-based incident response tool useful for extracting and analyzing
suspicious files. Valuable information about these suspicious files can be obtained using the Nigilant32
File System Review functionality.

• To use this function, select the “Preview Disk” function within Nigilant32, accessible from the
user console.

• After selecting this option, select the partition of the subject hard drive to explore, as displayed
in Figure 1.31.

79

Figure 1.31 Previewing the hard drive of the subject system with Nigilant32

• The Preview Disk function uses code68 from Brian Carrier’s forensic analysis framework, the
Sleuth Kit,69 to examine the active file system and minimize any potential modifications caused
by the native Windows API.

• Use this feature on a subject computer to explore its file system, locate hidden files or folders
or recently deleted content, or extract files for additional analysis.

• Double click on a folder of interest, double click on a file of interest, and review the populated
file contents display panels located below the main display pane, as seen in Figure 1.32.

80

Figure 1.32 Examining file contents with Nigilant32

• Each display panel provides different information pertaining to the selected file.

The first panel displays the hexadecimal offset for each line in the file.
The second panel shows the contents of the file in hexadecimal format.
The third and final panel reveals the contents of the file in ASCII format, similar to using a
utility to display embedded strings.

• After discovering files of interest, you can extract the files to an external source, such as a USB

ThumbDrive or external hard drive, using the Nigitlant32 “Extract File” function shown in
Figure 1.33. Using this function, you can select the location and name of the suspect file you
want to extract, and in turn, the location where you want to save the extracted file specimen.

81

Figure 1.33 Extracting our suspect file using the Nigilant32 Extract File feature

Extracting Suspicious Files with F-Response

 Recall from the Memory Acquisition and Remote Registry Analysis sections of this chapter that, F-

Response is an incident response framework that implements the Microsoft iSCSI initiator service to
provide read-only access to the full physical disk(s) of a networked computer.

• Leveraging this functionality, you can locate and extract suspicious files and associated artifacts
from a suspect system drive that is mounted locally with F-Response.

• After initiating F-Response, the subject system drive can be “seen” locally on your examination
system, as shown in Figure 1.34.

82

Figure 1.34 Extracting suspect files using F-Response

• You can navigate the suspect drive locally to locate and extract files of interest, just as you
would your local hard drive.

Conclusions

• Live Windows systems contain a significant amount of volatile data that will be lost when the
system is shut down. These volatile data can provide critical details about malicious code on
the subject system, such as data that it has captured and network connections that it has
established. There are a wide variety of tools for preserving such data, many of which were
demonstrated in this chapter.

• Independent of the tools used and the operating system under examination, a preservation
methodology must be established to ensure that available volatile data are captured in a
manner that is as consistent and repeatable as possible. For forensic purposes, and to
maintain the integrity of the data, keep detailed documentation of the steps taken on the live
system.

• The methodology in this chapter provides a general robust foundation for the forensic
preservation of volatile data on a live Windows system. It may need to be altered for certain
situations. The approach is designed to capture volatile data as a source of evidence, enabling

83

an objective observer to evaluate the reliability and accuracy of the preservation process and
the acquired data.

• Collecting volatile data is a delicate process and great care must be taken to minimize the
changes made to the subject system during the preservation process. Therefore, extensive
examination and searching on a live system is strongly discouraged. If the system is that
interesting, take the time to create a forensic duplicate of the disk for examination, as covered
in Chapter 3.

• Do not trust the operating system of the subject system, because it may give incomplete or
false information. To mitigate this risk, seek corroborating sources of evidence, such as port
scans and network logs.

 Pitfalls to Avoid

Lacking familiarity with tools, techniques, and protocols prior to an incident

 Do not wait until an actual malicious code incident to become familiar with the forensic process,

techniques, and tools you are going to use to investigate a subject system.

Practice live response techniques by using your tools in a test environment to become and
remain proficient.

Attend relevant training when possible. Budget constraints, time constraints, and other factors
often make it difficult to attend formal training. If you cannot attend, improvise. Attend free
webinars; watch Web-based tutorials; self-study texts, whitepapers, and blogs; and attend
local information security group meetings.

Stay current with tools and techniques. Live response is a burgeoning area of digital
forensics; almost daily there are new tools or tool updates released, new research, and
techniques discussed. Keeping tabs on what is current will likely enhance the scope of your
live response knowledge base and skills.

Stay abreast of new threats. Similar to staying current with tools and techniques, the
84

converse is just as important—staying current on malicious code trends, vulnerabilities, and
vectors of attack.

Utilize online resources such as social networks and listservs. It is often difficult to find time
to attend training, read a book, or attend a local information security group meeting. A great
resource to stay abreast of live response tools and techniques is with social network media
such as Twitter and Facebook. Joining specific lists or groups on these media can provide
real-time updates on topics of interest.

Failing to test and validate your tools

 Do not deploy tools on a subject system without first having a clear understanding of what your

tools’ functionalities, limitations, and “footprint” on a system are.

Research tools that you intend to incorporate into your live response toolkit. Are they
generally accepted by the forensic community? Are there known “bugs” or limitations to be
aware of? Have you read all documentation for the tools?

Deploy the tools in a test environment to verify functionality and gain a clear understanding of
how each tool works and how it impacts the target system it is deployed on.

Document your findings—notes regarding your tools are not only a valuable reference, but
can come in handy for report writing.

Using improperly licensed commercial tools

 Do not use “cracked” or “bootlegged” tools.

Remember that your investigation may end up in a legal proceeding, whether criminal, civil,

or administrative. Having to explain that you used tools during the course of your investigation
that were illegally or unethically obtained can damage your credibility—and potentially your
investigation—despite how accurate and thorough your analysis and work product is.

85

Not conducting interviews prior to conducting live response

 Failing to conduct interviews of relevant parties prior to conducting live response may cause you to

miss important details.

Conducting interviews of relevant parties prior to conducting live response provides you with
information about the subject system, including the circumstances surrounding the incident, the
context of the subject system, and intricacies about the system or network that are salient to
your investigation.

Running non-trusted tools directly from the subject system

Do not run Live Response tools directly from the subject system.

The subject system is an unknown and untrustworthy environment in which the collection

of volatile data can be tainted as a result of the infected system. Running tools directly from a
subject system relies on the system’s operating system, which may be compromised by
malware, making the acquired data unreliable.

Make sure to use a run trusted command shell/tools from an Incident Response toolkit.

Not using forensically sound/clean acquisition media

 Do not contaminate your data by acquiring them on “dirty” media.

Always ensure that the media you are using to acquire live response data are pristine and do

not contain unrelated case data, malicious code specimens, and other artifacts from previous
investigations.

Always inspect your toolkit and acquisition media prior to deployment.

86

Be cognizant that USB devices are common malicious code vectors—the malware you are
investigating can propagate and infect your live response media by virtue of connecting to the
system.

Not following the order of volatility

 Losing critical evidence.

As discussed in the introduction to this book and Chapter 1, while powered on, a subject

system contains critical ephemeral information that reveals the state of the system.

The purpose of live response is to gather this volatile information in a forensically sound
manner so that it is not lost. Failing to follow the Order of Volatility and gathering less volatile
information impacts the state of volatile data on the system (e.g., memory contents) and
increases the risk of losing the data altogether. Network connections, process states, and data
caches can quickly change if not acquired in timely manner.

Failing to document the system date and time

 Forgetting to document the system date and time and compare them to a reliable time source at the

beginning of live response can prove problematic for your investigation.

The system date and time are essential details about the suspect system that will serve as the
baseline for temporal context in your investigation.

Make sure to document the system date and time in your investigative notes in addition to
acquiring the date and time through your live response toolkit.

Not acquiring the contents of physical memory at the beginning of the live response process

87

 Contaminating/impacting the evidence by leaving a “deep footprint” in it.

As demonstrated in this chapter, the contents of physical memory are impacted by running
live response tools on a subject system.

Acquire physical memory before conducting other live response processes in an effort to
keep the memory contents as pristine as possible when acquired.

Gathering incomplete system details

 Incomplete system details can potentially affect the context surrounding your subject system.

Make sure to gather as many details about the subject system as possible, giving you deep

context about and surrounding the system. For instance, vital details such as system date/time
and system uptime are foundational in establishing a time line surrounding the malicious code
incident.

Gathering the subject system’s hostname, IP address, and other network-based identifiers is
critical in examining the relational context with other systems on the network.

Failing to determine if the attacker is still logged into the subject system

 Do not let the attacker know you are investigating them.

Conducting live response while an attacker is on the subject system will most likely alert the

attacker to your investigation.

Alerting the attacker can potentially have devastating consequences to your investigation and
to the subject system (and other systems on the network), such as destruction of evidence,
escalation of attacks, or additional compromises to maintain inconspicuous, undiscoverable,
and continual access to the system.

88

Failing to conduct a holistic investigation

 Failing to obtain complete context about the suspect system and the malicious code event.

Conducting a “flat” or incomplete investigation into a subject system will limit your

understanding about the malicious code incident, the impact on the subject system, and the
nature and purpose of the attack.

Conduct a complete and thorough investigation, gathering multiple perspectives on the data
so that a complete analysis can be conducted. For example, in collecting information about
running processes from a subject system, simply gathering a list of running processes without
more provides the digital investigator with insufficient information about the processes and
their relational context to other evidence.

Incomplete or sloppy documentation

 Do not jeopardize your investigation by poorly documenting it.

As discussed in the introduction to this book, one of the keys to forensic soundness is

documentation.

A solid case is built on supporting documentation that reports where the evidence originated
and how it was handled.

From a forensic standpoint, the acquisition process should change the original evidence as
little as possible, and any changes should be documented and assessed in the context of the
final analytical results.

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

 Malware Forensic Tool Box

Live Response Tools for Investigating Windows Systems

In this chapter we discussesd a myriad of tools that can be used during the course of live response
investigation. Throughout the chapter, we deployed many tools to demonstrate their functionality and

105

output when used on an infected system; however, there are a number of tool alternatives that you
should be aware of and familiar with. In this section, we explore these tool alternatives. This section
can also simply be used as a “tool quick reference” or “cheat sheet,” as there will inevitably be times
during an investigation where having an additional tool that is useful for a particular function would be
beneficial, since you may have little time to conduct research for or regarding the tool(s) while
responding in the field. As the digital forensic tool landscape is constanly evolving, the companion
Web site for this Field Guide, www.malwarefieldguide.com, will strive to maintain a comprehensive,
dynamic, and up-to-date listing of tools. We welcome tool suggestions via the Web site
http://www.malwarefieldguide.com/Contact_Us.html.
 The tools in this section (and on the companion Web site) are identified by overall “tool type”—
deliniating the scope of how the respective tools can be incorporated in your malware forensic live
response toolkit. Further, each tool description includes a cross-reference to the page number in
Chapter 1 in which the relevant substantive discussion is provided, along with details about the tool
author/distributor, associated URL, description of the tool, and helpful command switches, when
applicable.

Incident Response Tool Suites

In Chapter 1 we examined the incident response process step by step, using certain tools to acquire
different aspects of stateful data from a subject system. There are a number of tool suites specifically
designed to collect digital evidence in an automated fashion from Windows systems during incident
response and generate supporting documentation of the preservation process.

• Some of these local incident response tool suites execute commands on the compromised
computer and rely on system libraries on the compromised system.

• Other programs, commonly known as “remote forensics tools,” address some of the limitations
of local incident response suites and use a servlet that enables remote evidence gathering while
trying to rely on the compromised operating system as little as possible (with varying degrees
of success).

• Using remote forensic tools, digital investigators can access many machines from a central
console, making your expertise more effective.

• Furthermore, using a remote forensics tool is more subtle than running various commands on
the system, and it is less likely to alert the subject of investigation.

• These tool options, including the strengths and weakness of these tools, are covered in this

106

section.

107

108

109

110

111

112

113

Remote Collection Tools

Recall that in some instances, to reduce system interaction, it is preferable to deploy live response
tools from your trusted toolkit locally on a subject system but collect the acquired data remotely. This
process requires establishing a network connection, typically with a netcat or cryptcat listener, and
transferring the acquired system data over the network to a collection server. Remember, although this
method reduces system interaction, it relies on the ability to traverse the subject network through the
ports established by the netcat listener.

114

115

116

117

118

Volatile Data Collection and Analysis Tools

Physical Memory Acquisition

Chapter 1 emphasized the importance of first acquiring a full memory dump from the subject system
prior to gathering data using the various tools in your live response toolkit. This is important,
particularly due to the fact that running incident response on the subject system will alter the contents
of memory. To get the most digital evidence out of physical memory, it is advisable to perform a full
memory capture prior to running any other incident response processes. There are a variety of tools to
accomplish this task, as described next.

119

120

121

122

123

Collecting Subject System Details

System details are a fundamental aspect of understanding a malicious code crime scene. In particular,
system details inevitably will be crucial in establishing an investigative time line and identifying the
subject system in logs and other forensic artifacts. In addition to the tools mentioned earlier in the
chapter, others tools to consider include the following.

Identifying Users Logged into the System

Remember, identifying users logged into the subject system serves a number of investigative purposes:
(1) to help discover any potential intruders logged into the compromised system; (2) to identify
additional compromised systems; and (3) to provide insight into a malicious insider malware incident,
and provide additional investigative context by being correlated with other artifacts. Some other tools
to consider for this task include the following.

124

Network Connections and Activity

Malware network connectivity is a critical factor for identifying a document; connectivity from a
subject system may be to communicate with an attacker’s command and control structure, to
download additional malicious files, or to exfiltrate data from the system, among other things. Trusted

125

versions of netstat, arp, and nbtstat are essential in the digital investigator’s toolkit for probing
internal and external network connections. In addition to these tools and others mentioned in this
chapter, tcpvcoan, described next, is another to consider. Further, for utilities specifically geared for
providing insight into port-to-process mapping, see the section of this chapter called Correlate Open
Ports with Running Processes and Programs appearing on page 22.

126

127

128

Process Analysis

As many malware specimens (such as worms, viruses, bots, key loggers, and Trojans) will often
manifest on the subject system as a process, collecting information relating to processes running on a
subject system is essential in malicious code live response forensics. Process analysis should be
approached holistically—examine all relevant aspects of a suspicious process, as outlined in the
chapter. Listed next are additional tools to consider for your live response toolkit.

129

Handles

Loaded DLLs

130

Correlate Open Ports with Running Processes and Programs

131

Command-line Arguments

132

Services

Malware can manifest on a victim system as a service, silently running in the background,
unbeknownst to the user. As with the examination of running processes and open ports, explore
running services by first gaining an overview, and then apply tools to extract information about the
services with more particularity. Some other service analysis tools include:

Drivers 133

Drivers

In addition to determining the running services on a subject system, consider examining the installed
drivers on the system, including the nature and status ofthe drivers. A reminder of the importance of
this step is the recent sophisticated malware variant, Stuxnet, which installs drivers used to inject code
into system processes and to conceal the malware. In addition to the tools discussed in Chapter 1,
another tool to consider is ListDrivers.

Opened Files

Open files on a subject system may provide clues about the nature and purpose of the malware
involved in an incident, as well as correlative artifacts for your investigation. In Chapter 1 we
examined the tool OpenFilesView; another tool to consider is openfiles.

134

Determining Scheduled Tasks

Recall that some malicious code variants are “event-driven,” meaning that until a certain date or event
triggers execution, the malware will remain dormant. In Chapter 1, we referenced the Microsoft utility
schtasks, which is described in further detail below.

Clipboard Contents

Remember that an attacker, whether remotely logged into a system or a nefarious insider, may cut and
paste information while on a subject system. This information may provide valuable investigative leads
and correlate other artifacts found on the system, in network traffic, or in the malicious code itself.

135

136

Non-Volatile Data Collection and Analysis Tools

System Security Configuration

Prefetch File Analysis

137

Auto-Start Locations

As was discussed in this chapter, malware often has a persistence mechanism to ensure longevity on a
computer. A frequent method used for this purpose is the creation of an auto-start location (also
referred to as an “autorun”) in the registry. In addition to the Microsoft Autoruns tool, another option
for discovering and analyzing autorun locations is StartupRun.

138

Event Logs

On Windows systems, many activities related to a malware incident can generate entries in the Event
Logs. Some other Event Log dumping tools to consider for your live response toolkit include:

139

Group Policies

Remember to closely inspect user accounts that are local to the subject system or domain accounts
that were used to log in—these can reveal how malware was placed on the computer. Below are
additional tools that assist in examining user and group policy details.

140

File System: Hidden Files and Alternate Data Streams

Malware and associated artifacts often manifest as hidden files. Similarly, certain malware specimens
abuse the NTFS Alternate Data Stream feature—which allows you to hide data in an existing file
name with the use of a stream name—to hide the malware or associated files. Consider adding tools
to your live response toolkit to discover these files.

141

142

Dumping and Parsing Registry Contents

Web History

Client-side exploits are becoming more and more prevalent, particularly through “drive-by-
downloads.” Drive-by-downloads often occur when a user with an insecure or improperly configured
Web browser navigates to a compromised (or nefarious) Web site that is surreptitiously hosting
malware, allowing the malware to silently be downloaded onto the victim system. As a result, it is

143

always advisable to examine the subject system Web history to gain insight into whether a Web-based
vector of attack caused the malicious code incident.

Malware Extraction

As discussed in this chapter, once a suspicious file is identified through live response, safely extracing
and preserving the files for further analysis is an essential aspect of malware forensics. Another tool to
consider for this process is HBGary’s FGET.

144

145

146

Selected Readings

Books

1. Carvey H. Windows Forensic Analysis DVD Toolkit Second edition. Burlington, MA:

Syngress; 2009.
2. Jones, K., Bejtlich, R., and Rose, C.W. (2005). Real Digital Forensics. Reading, MA:

Addison-Wesley. Prosise, C., Mandia, K., and Pepe, M. (2003). Incident Response and
Computer Forensics, Second edition. New York: McGraw-Hill/Osborne.

Papers

1. Kent K, et al. Guide to Integrating Forensic Techniques into Incident Response National

Institute of Standards and Technology, Special Publication 800–86 2006.
2. Mancini, S. (2006). RAPIER: A 1st Responders Information Acquisition Framework.

First Conference 2006.
3. Pär Österberg Medina, S. (2008). Detecting Intrusions: The Latest Forensics Tools and

Techniques to Identify Windows Malware Infections. First Conference 2008.
4. Waits C, et al. Computer Forensics: Results of Live Response Inquiry vs Memory Image

Analysis Carnegie Melon Software Engineering Institute 2008.

147

Jurisprudence/RFCS/Technical Specifications

1. Columbia Pictures Indus. v. Bunnell, 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19,

2007). RFC 3227—Guidelines for Evidence Collection and Archiving.

1 For more information about FastDump, go to https://www.hbgary.com/products-
services/fastdump/.

2 For more information about FastDump Community version, go to
https://www.hbgary.com/community/free-tools/#fastdump.

3 For more information about FastDumpPro, go to http://www.hbgary.com/wp-
content/themes/blackhat/images/fastdumppro-faq.pdf.

4 For more information about Nigilant32, go to
http://www.agileriskmanagement.com/publications_4.html.

5 For more information about the iSCSI initiator, go to
http://www.microsoft.com/downloads/en/details.aspx?familyid=12cb3c1a-15d6-4585-
b385-befd1319f825&displaylang=en.

6 For more information about F-Response, go to http://www.f-response.com/.
7 Helix3 Pro is a digital forensic tool suite CD that offers both a “live” and bootable forensic

environment. For more information about Helix3 Pro, go to http://www.e-
fense.com/helix3pro.php.

8 For more information about whoami, go to
http://www.microsoft.com/downloads/en/details.aspx?familyid=3E89879D-6C0B-4F92-
96C4-1016C187D429&displaylang=en.

9 For more information about ver, go to http://technet.microsoft.com/en-
us/library/bb491028.aspx.

10 For more information about promisdetect, go to
http://www.ntsecurity.nu/toolbox/promiscdetect/.

11 For more information about promqry, go to
http://www.microsoft.com/downloads/en/details.aspx?familyid=4df8eb90-83be-45aa-bb7d-
1327d06fe6f5&displaylang=en.

12 For more information about URLProtocolView, go to
http://www.nirsoft.net/utils/url_protocol_view.html.

13 For more information about uptime.exe, go to http://support.microsoft.com/kb/232243.
148

14 For more information about psinfo, go to http://technet.microsoft.com/en-
us/sysinternals/bb897550.aspx.

15 For more information about PsLoggedOn, go to http://technet.microsoft.com/en-
us/sysinternals/bb897545.aspx.

16 For more information about quser, go to http://technet.microsoft.com/en-
us/library/cc754583%28WS.10%29.aspx.

17 For more information about netusers, go to http://www.systemtools.com/cgi-
bin/download.pl?NetUsers.

18 For more information about loggonsessions, go to http://technet.microsoft.com/en-
us/sysinternals/bb896769.aspx.

19 For more information about netstat, go to http://technet.microsoft.com/en-
us/library/cc940097.aspx.

20 For more information about NetBIOS names, go to http://msdn.microsoft.com/en-
us/library/ms817948.aspx.

21 For more information about nbtstat, go to http://technet.microsoft.com/en-
us/library/cc940106.aspx.

22 For more information about ARP, go to http://technet.microsoft.com/en-
us/library/bb490864.aspx.

23 For more information about the arp command, go to
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/arp.mspx?mfr=true.

24 For more information about tlist.exe, go to
http://www.microsoft.com/downloads/en/details.aspx?familyid=C055060B-9553-4593-
B937-C84881BCA6A5&displaylang=en.

25 For more information about tasklist, go to http://technet.microsoft.com/en-
us/library/bb491010.aspx.

26 For more information about PRCView, go to http://www.teamcti.com/pview/prcview.htm.
27 For more information about handle.exe, go to

http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/Handle.mspx.
28 An example of malware that implements this technique is the Vanquish Rootkit, a DLL-

injection-based rootkit that hides files, folders, and registry entries and logs passwords. For
more information about Vanquish Rootkit, go to
https://www.rootkit.com/vault/xshadow/ReadMe.txt.

29 For more information about listdlls.exe, go to http://technet.microsoft.com/en-
149

us/sysinternals/bb896656.aspx.
30 For more information about Procinterrogate, go to

http://sourceforge.net/project/shownotes.php?release_id=122552&group_id=15870.
31 For more information about PRCView, go to http://www.teamcti.com/pview/prcview.htm.
32 For more information about ListModules, go to http://ntsecurity.nu/toolbox/listmodules/.
33 For more information about DLLExportViewer, go to

http://www.nirsoft.net/utils/dll_export_viewer.html.
34 For more information about Microsoft Windows services, go to

http://msdn.microsoft.com/en-us/library/ms685141.aspx.
35 In 2006, a printer driver distributed by Hewlett Packard was found to be infected with the

Funlove virus. Another piece of malicious code emerged in August 2007 named
Trojan.Peacomm.C infects a Windows device driver named “kbdclass.sys” to force the
system to load the virus each time the system is rebooted. Unfortunately, this Trojan also
employs rootkit techniques to hide its presence on the infected system, becoming invisible to
the operating system. In such cases, memory forensics can be employed to extract more
information about the malicious code. For more information, go to
http://www.symantec.com/enterprise/security_response/weblog/2007/08/the_new_peacomm_infection_tech.html

36 For more information about List Loaded Drivers, go to
http://support.microsoft.com/kb/927229 (available from the Windows 2000 Resource Kit
Tools) and http://download.microsoft.com/download/win2000platform/drivers/1.0/NT5/EN-
US/drivers.exe.

37 For more information about DriverView, go to http://www.nirsoft.net/utils/driverview.html.
38 For more information about OpenFilesView, go to

http://www.nirsoft.net/utils/opened_files_view.html.
39 For more information about psfile, go to http://technet.microsoft.com/en-

us/sysinternals/bb897552.aspx.
40 For more information about doskey, go to http://technet.microsoft.com/en-

us/library/bb490894.aspx?wt.slv=3D=.
41 For example, the polymorphic file infector named W32/Bacalid,

http://vil.nai.com/vil/Content/v_140566.htm.
42 For example, in early 2008, a system administrator was sentenced to 30 months in prison for

embedding malicious code designed to wipe out critical data stored on more than 70 servers
(http://newark.fbi.gov/dojpressrel/2007/nk091907.htm).

43 An example of such a specimen is WORM_SOHANAD.FM, which once downloaded by an

150

unsuspecting user from a malicious Web site, installs three additional malicious code files, and
uses the Windows Task Scheduler to create a scheduled task to execute the files at a later
time. For more information about WORM_SOHANAD.FM, go to
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?
VName=WORM%5FSOHANAD%2EFM&VSect=P.

44 For more information about the at command, go to http://support.microsoft.com/kb/313565.
45 For more information about schtasks.exe, go to

http://technet2.microsoft.com/windowsserver/en/library/1d284efa-9d11-46c2-a8ef-
87b297c68d171033.mspx?mfr=true.

46 For more information about pclip.exe, go to http://unxutils.sourceforge.net.
47 For information about WinUpdatesList, go to http://www.nirsoft.net/utils/wul.html.
48 For more information about auditpol, go to http://technet.microsoft.com/en-

us/library/cc731451%28WS.10%29.aspx.
49 For more information about dumpsec, go to

http://www.systemtools.com/download/dumpacl.zip.
50 For more information about AutoRuns, go to, http://technet.microsoft.com/en-

us/sysinternals/bb963902.aspx.
51 For more information about eldump, go to www.ibt.ku.dk/jesper/ELDump/default.htm.
52 For more information about NTlast, go to

http://www.foundstone.com/us/resources/proddesc/ntlast.htm.
53 For more information about SFind, go to

http://www.foundstone.com/us/resources/proddesc/forensictoolkit.htm.
54 For more information about rifiuti, go to

http://www.foundstone.com/us/resources/proddesc/rifiuti.htm.
55 For more information about macmatch.exe, go to

http://www.ntsecurity.nu/toolbox/macmatch/.
56 For more information about regdump, go to http://social.msdn.microsoft.com/Forums/en-

US/windowscompatibility/thread/c14b5017-40ec-4978-a82c-b3758f0808c1/.
57 For more information about dumpreg, go to

http://www.systemtools.com/download/dumpreg.zip.
58 For more information about USBView, go to

http://www.nirsoft.net/utils/usb_devices_view.html.
59 For instance, in 2008, some USB digital picture frames were infected with various pieces of

malware, and a number of Maxtor Basics Personal Storage 3200 hard drives produced by
151

Seagate in late 2007 contained the Win32.AutoRun.ah virus. A Windows system that was
configured to launch executables referenced in the “autorun.ini” configuration file stored on
the digital picture frame would have installed the virus that stole passwords and sent them to a
server on the Internet.

60 For more information about RegRipper, go to http://regripper.wordpress.com/.
61 For more information about RegRipper, go to http://regripper.wordpress.com/.
62 For more information about Galleta, go to

http://www.foundstone.com/us/resources/proddesc/galleta.htm.
63 For more information about MozillaCookiesView, go to

http://www.nirsoft.net/utils/mzcv.html.
64 For more information about Protected Storage PassView, go to

http://www.nirsoft.net/utils/pspv.html.
65 For more information about DumpAutoComplete, go to

http://www.foundstone.com/us/resources/proddesc/DumpAutoComplete.htm.
66 For more information about FGET, go to http://www.hbgary.com/free-tools.
67 For more information about Nigilant32, go to

http://www.agileriskmanagement.com/publications_4.html.
68 For more information about the code from the Sleuth Kit, go to

http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.html.
69 For more information about the Sleuth Kit, go to http://www.sleuthkit.org/index.php.

152

Chapter 2

Memory Forensics

Analyzing Physical and Process Memory Dumps for Malware Artifacts

153

Solutions in this chapter:

• Memory Forensics Overview
• Old School Memory Analysis
• How Windows Memory Forensic Tools Work
• Windows Memory Forensic Tools
• Dumping Windows Process Memory
• Dissecting Windows Process Memory

Introduction

The importance of memory forensics in malware investigations cannot be overstated. A complete
capture of memory on a compromised computer generally bypasses the methods that malware uses to
trick operating systems, providing digital investigators with a more comprehensive view of the
malware. In some cases, malware leaves little trace elsewhere on the compromised system and the
only clear indications of compromise are in memory. In short, memory forensics can be used to
recover information about malware that was not otherwise obtainable.
 Digital investigators often find useful information in memory dumps simply by reviewing readable
text and performing keyword searches. However, as the size of physical memory in modern
computers continues to increase, it is inefficient and ineffective to review an entire memory dump
manually. In addition, much more contextual information can be obtained using specialized knowledge
of data structures in memory and associated tools. Specialized forensic tools are evolving to extract
and interpret a growing amount of structured data in memory dumps, enabling digital investigators to
recover substantial evidence pertaining to malware incidents. Such digital evidence includes recovery
of deleted or hidden processes, including the executables and associated data in memory and the
pagefile. More sophisticated analysis techniques are being codified in memory forensic tools to help
digital investigators find malicious code in an automated manner.

Investigative Considerations

• There is still information available during the live response that cannot be extracted from
154

memory dumps, for instance, network configuration and enabled protocols, ARP cache, and
NetBIOS sessions. Therefore, it is important to implement the process described in Chapter 1
and not just acquire a physical memory dump.

With the increasing power and automation of memory forensic tools, it is becoming more

important for digital investigators to understand how the tools work in order to validate the results.
Without this knowledge, digital investigators will find themselves reaching incorrect conclusions based
on faulty tool output or missing important information entirely. In addition, digital investigators need to
know the strengths and weaknesses of various memory forensic tools in order to know when to use
them and when their results may not be entirely reliable.

Ultimately, digital investigators must have some knowledge of how malware can manipulate
memory and need to be familiar with a variety of memory forensic tools and how they interpret
underlying data structures. This chapter provides a comprehensive approach for analyzing malicious
code in memory dumps from a Windows system and covers associated techniques and tools. Details
about the underlying data structures are beyond the scope of this field guide and are discussed in the
text Malware Forensics: Investigating and Analyzing Malicious Code (hereinafter Malware
Forensics).1

Memory Forensics Overview

After memory is preserved in a forensically sound manner, employ a strategy and
associated methods to extract the maximum amount of information relating to the malware
incident.
 A memory dump can contain a wide variety of data, including malicious executables,
associated system-related data structures, and remnants of related user activities and malicious events.
Some of this information has associated date-time stamps. The purpose of memory forensics in
malware incidents is to find and extract data directly relating to malware and associated information
that can provide context, such as when certain events occurred and how malware came to be installed
on the system. Specifically, in the context of analyzing malicious code, the main aspects of memory
forensics include:

• Harvest available metadata including process details, network connections, and other
information associated with potential malware for analysis and comparison with volatile data
preserved from the live system.

155

• Perform keyword searches for any specific known details relating to a malware incident, and
look through strings for any suspicious items.

• Look for common indicators of malicious code including memory injection and hooking.
• For each process of interest, if feasible, recover the executable code from memory for further

analysis.
• For each process of interest, extract associated data from memory, including related

encryption keys and captured data such as usernames and passwords.
• Extract contextual details such as Event Logs, URLs, MFT entries, and Registry values

pertaining to the installation and activities associated with malicious code.
• Perform temporal and relational analysis of information extracted from memory, including a

time line of events and a process tree diagram.

 These processes are provided as a guideline and not as a checklist for performing memory
forensics. No single approach can address all situations, and some of these goals may not apply in
certain cases. In addition, the specific implementation will depend on the tools that are used and the
type of malware involved. Ultimately, the success of the investigation depends on the abilities of the
digital investigator to apply digital forensic techniques and adapt them to new challenges.

Investigative Considerations

• The completeness and accuracy of the above steps depend heavily on the tools used and your
familiarity with the data structures in memory. Some tools will only provide limited information
or may not work on memory acquired from certain versions of Windows.

• In one case, digital investigators ran a tool on a memory dump and extracted a limited list of IP
addresses that had communicated with the compromised system. Another digital investigator
looked at the same memory dump and used his knowledge of memory structures to recover
hundreds of additional connections that were relevant to the investigation.

• To avoid mistakes and missed opportunities, it is necessary to compare the results of multiple
tools and to verify important findings manually.

 Analysis Tip

Field Interviews

Most incidents have a defining moment when malicious activity was recognized. The more information

156

that digital investigators have about that moment, the more they can focus their forensic analysis and
increase the chances of solving the case. Simply knowing the rough time period of the incident and
knowing what evidence of malware was observed can help digital investigators develop a strategy for
scouring memory dumps for relevant digital evidence. Without any such background information,
forensic analysis can be like trying to find a needle in the haystack, which can result in wasted time and
lost opportunities (e.g., relevant network logs being overwritten). Therefore, prior to performing
forensic analysis of a memory dump, it is advisable to gather as much information as possible about
the malicious code incident and subject system from relevant witnesses. The Field Interview
Questions in Chapter 1 provide a solid foundation of context to support a strong forensic analysis of
malware in memory.

Old School Memory Analysis

In addition to using specialized memory forensic tools to interpret specific data
structures, look through the data in raw, uninterpreted form for information that is not
extracted automatically.
 Although the memory forensic tools covered in this chapter have advanced considerably over
the past few years, there is still a substantial amount of useful information in memory dumps that many
specialized tools do not extract automatically. Therefore, it is generally still productive to employ “old
school” memory analysis, which was essentially limited to a manual review of the memory dump,
keyword searching, file carving, and use of text extraction utilities such as the strings command (with
Unicode support). These old school techniques can uncover remnants of activities or data that may be
related to malicious code, including but not limited to the following:

• File fragments such as Web pages and Word documents no longer present on disk
• Commands run at the Windows command line
• Prefetch file names
• E-mail addresses and message contents
• URLs, including search engine queries
• Filenames and even full MFT entries of deleted files
• IP packets, including payload

Unexpected information can be found in memory dumps such as intruder’s commands and

communications that are not saved elsewhere on the computer, making a manual review necessary in

157

every case.
 For instance, in a case involving the ZeuS Trojan program, entire HTTP GETs and POSTs

are visible along with the entire encrypted data sections of the communications as shown in Figure 2.1,
a benefit particularly when network traffic was not previously captured.2

Figure 2.1 Encrypted packet contents associated with the ZeuS Trojan communications captured in
memory dump

Memory dumps can also capture command and control activities such as instructions
executed by the attacker and portions of network communications associated with an attack.
Figure 2.2 shows an example of an IP packet and payload captured in a target memory
dump.

Figure 2.2 IP packet in memory with source IP address 172.16.157.136 (ac 10 9d 88), destination
IP 172.16.157.1 (“AC 10 9D 01”) starting at offset 0x0263B01A and payload visible in ASCII

 It is often desirable to extract certain files from a memory dump for further analysis.
158

• One approach to extracting executables and other types of files for further analysis is to employ
file carving tools such as Foremost and Scalpel to run on the full memory dump or on
extracted memory regions relating to a specific process (Figure 2.3).

Figure 2.3 Carving memory with foremost

Figure 2.4 Volatility psscan option carving EPROCESS structures out of a memory dump

• The results of file carving can be more comprehensive than the more surgical file extraction
methods used by specialized memory forensic tools.

• However, current file carving tools only salvage contiguous data, whereas the contents of
physical memory may be fragmented. Therefore, the executables that are salvaged using this
method may be incomplete.

 Even when sophisticated memory forensic tools are available, digital investigators benefit from

spending some time looking through readable text in a memory dump or process memory dump.

159

• When clues such as IP addresses are available from other aspects of a digital investigation,
keyword searching is another efficient approach to locating specific information of interest.

• Given the widespread use of Unicode by the Windows operating system, it is critical to use a
tool that can extract Unicode strings, such as the strings utility available from Microsoft.

Investigative Considerations

• These old school approaches to extracting information from memory dumps do not provide
surrounding context. For instance, the time associated with a URL or IP packet will not be
displayed automatically, and may not be available at all. For this reason, it is important to
combine the results of old school analysis with those of specialized memory forensic tools to
obtain a more complete understanding of activities pertaining to a malware incident.

• Although memory forensic tools provide a mechanism to perform precise extraction of
executables by reconstructing memory structures, there can be a benefit to using file carving
tools such as Foremost and Scalpel. File carving generally extracts a variety of file fragments
that might include graphics files, reviewed document fragments showing an intruder’s
collection interest, and data that may have been stolen.

How Windows Memory Forensic Tools Work

 Understanding the underlying operations that memory forensic tools perform can help you select the

right tool for a specific task and assess the accuracy and completeness of results.

• Some tools will only list active processes, whereas others will scan for all executive process
(EPROCESS) structures.

• Some tools only extract certain areas of process memory, whereas others can extract related
information from the pagefile as well as the executable associated with a process.

• Some tools will detect memory injection and hooking correctly, whereas others will identify
such features incorrectly (false positive) or not at all (false negative).

• Additional details about how memory forensic tools work are provided in the Malware
Forensics text.

160

Investigative Considerations

• Although many memory forensic tools can be used without understanding the operations that
the tool uses to interpret data structures in memory, a lack of understanding will limit your
ability to analyze relevant information and will make it more difficult to assess the
completeness and accuracy of the information. Therefore, it is important for digital
investigators to become familiar with data structures in memory.

Windows Memory Forensic Tools

Choose the tool(s) that are most suitable for the type of memory analysis you are going to
perform. Whenever feasible, use multiple tools and compare their results for completeness
and accuracy.
 Different memory forensic tools have different features and may only support specific versions
of Windows. Therefore, it is necessary to be familiar with the strengths and weaknesses of multiple
memory forensic tools. The types of information that most memory forensic tools provide are
summarized in the following list.

• Processes and threads
• Modules and libraries
• Open files and sockets
• Various data structures

 Some tools provide additional functionality such as extracting executables and process

memory, detecting memory injection and hooking, recovering Registry values and MFT entries, and
extracting URLs and e-mail addresses. Commercial forensic tools such as FTK and EnCase have
adapted to include memory analysis capabilities. These and other malware forensic tools are
discussed further in the Tool Box section at the end of this chapter.

Investigative Considerations

161

• Memory forensic tools are in the early stages of development and may contain bugs and other
limitations that can result in missed information. To increase the chance that you will notice any
errors introduced by an analysis tool, whenever feasible, compare the output of a memory
forensic tool with that of another tool as well as volatile data collected from the live system.

Processes and Threads

Obtain as much information as possible relating to processes and associated threads,
including hidden and terminated processes, and analyze the details to determine which
processes relate to malware.
 When a system is running malware, information (what, where, when, how) about the
processes and threads is generally going to be significant in several ways.

• What processes are hidden or injected in memory may be of interest, and where they are
located in memory or on disk may be noteworthy.

• When they were executed can provide useful clues, and how they are being executed may be
relevant.

• Deleted processes may also be important in an investigation. To begin with, a comparison of
processes visible through the operating system with all EPROCESS structures that exist in
memory can reveal deleted and hidden processes.

Command-line Memory Analysis Utilities

• The Volatility psscan plug-in scans a memory dump for the signature of an EPROCESS data
structure to provide a list of active, exited, and hidden processes. The following output shows
the psscan option being used to carve EPROCESS structures out of a memory dump from
the FUTo rootkit scenario in Malware Forensics (Figure 2.4).3

• Comparing the output of the psscan output with a list of running processes (e.g., using Volatility
pslist option) can reveal discrepancies caused by malware, or may reveal anomalies that
relate to the behavior of malware.

• The psdiff Volatility plug-in automatically performs this comparison. In this example, two
processes, “skls.exe” and “skl.exe,” that were not displayed in the pslist output are visible in

162

the psscan output (shown in bold in Figure 2.4) with a process ID of zero that is generally
reserved for the Windows system Idle process.

• The setting of the process identifier (PID) to zero is an artifact of the FUTo rootkit, making it
difficult for digital forensic tools to reference the hidden processes by PID. To address this
challenge, tools such as Volatility have added the ability to run analysis on a process by the
location (offset) of the EPROCESS structure in the memory dump as shown here for the
hidden “skls.exe” process to list loaded DLLs associated with this hidden process (Figure
2.5).

Figure 2.5 Using the Volatility dlllist option

• Another approach to finding hidden processes is to extract process details from the Windows
“csrss” process as demonstrated by the csrpslist Volatility plug-in (Figure 2.6).4

Figure 2.6 Results of parsing a memory dump with the csrpslist plug-in
163

• The output of this plug-in is provided below for the FUTo rootkit example, with a zero in the

second column when a process was not present in the pslist output (e.g., skl.exe).
Unfortunately, this list does not show the “skls.exe” process found using psscan.

• Another free command-line tool is Memoryze from Mandiant. The command-line options for
this tool are summarized in the Tool Box section at the end of this chapter. A sample
command line is provided here that extracts processes and associated ports from a memory
dump (Figure 2.7).

Figure 2.7 Processing a memory dump file with Memoryze

• The output from Memoryze is in XML format and can be viewed in raw form or using any
XML viewer or using the AuditViewer program described next.5

 The threads associated with a given process identified can also be examined to provide

additional information about a malware incident.

• The thrdscan and thrdscan2 plug-ins in Volatility will carve and display all of the ETHREAD
structures it can find in a memory dump.

• Looking for threads that have a PID that was not displayed in the process list may uncover
hidden processes. The orphanthreads Volatility plug-in attempts to find such hidden
processes in memory dumps.

 Additional command-line utilities such as PTFinder to extract process and thread details

from physical memory dumps are discussed in the Tool Box section at the end of this chapter.

GUI-based Memory Analysis Tools

• A number of tools have been developed to facilitate forensic analysis of Windows memory.
These tools can be particularly useful for detecting artifacts of malware in memory such as
memory injection. Although Memoryze is a command-line utility, it can be configured and run,

164

and its output can be viewed using a GUI program named AuditViewer. Figure 2.8 shows
one of the configuration screens in AuditViewer used to configure Memoryze.

• Figure 2.9 shows processes and associated details viewed using AuditViewer, focusing on the
“skl.exe” process mentioned previously that was hidden using the FUTo rootkit.

• Tabs within AuditViewer provide easy access to the information that Memoryze extracts
associated with each process and driver including files, Registry keys, and open ports.

• In addition, certain features in a memory dump that commonly relate to malware such as
memory injection will be highlighted in red in the Memoryze results as detailed in the
Dissecting Windows Process Memory section toward the end of this chapter.

Figure 2.8 AuditViewer configuration options screenshot

165

Figure 2.9 AuditViewer showing output of Memoryze

 Another GUI tool for examining memory is HBGary Responder,6 as shown in Figure 2.10,
which lists processes and associated details.

166

Figure 2.10 HBGary Responder used to list processes and associated metadata

• This tool provides various details relating to processes and drivers, and can be used to perform
keyword searches within a memory dump.

• For an additional cost, advanced features are available as add-ons to this tool, such as
integrated debugging/disassembly and automated detection of features commonly found in
malware (called Digital DNA or DDNA).7

• This tool can also be used to associate ports with a particular process as shown in Figure 2.11
with the same “skl.exe” processes selected, revealing that it has port 1900 open.

Figure 2.11 HBGary used to list ports associated with a particular process

Relational Reconstruction
167

 When examining processes in Windows memory, it can also be fruitful to perform a relational

reconstruction, depicting the parent and child relationships between processes as shown in the
following section.

• For instance, malware will sometimes exploit a system vulnerability and cause a system process
to launch a command shell.

• The Metasploit penetration testing framework8 has an option to launch a remote command
shell after exploiting vulnerability in the Windows Local Security Authority Subsystem Service
(LSASS).

• Figure 2.12 shows how this looks in memory using the Hacker Defender scenario from the
Malware Forensics text,9 with the “lsass.exe” process launching Metasploit, which in turn
launched the program “UMGR32.exe” that turns out to be Back Orifice.

168

Figure 2.12 Graphical depiction of relationship between processes in the Hacker Defender rootkit
scenario

 Another anomaly to look for in this type of relational reconstruction is a user process that is
the parent of what resembles a system process.

• Because malware attempts to blend in with the legitimate processes on a system, digital
investigators might see the “cmd.exe” process spawning a process named “lsass.exe” to
resemble the legitimate Windows LSASS process.

• Conversely, suspicious activities can be found by looking for system processes spawning an
unknown process or executable that is usually only started by a user.

• For instance, the ZeuS Trojan program is commonly injected into the “svchost.exe” process
and, therefore, any remotely executed commands appear to be spawned by the “svchost.exe”
process.10

Investigative Considerations

• Some legitimate processes such as AntiVirus and other security tools can have characteristics
that are commonly associated with malware. Therefore, it is advisable to determine which
processes are authorized to run on the subject system. However, intruders may assign their
malware the same name as these legitimate processes to misdirect digital investigators.
Therefore, do not dismiss seemingly legitimate processes simply because they have a familiar
name. Take the time to examine the details of a seemingly legitimate process before excluding
it from further analysis.

 Analysis Tip

Temporal and Relational Analysis

Analysis techniques from other forensic disciplines can be applied to malware forensics to provide
insights into evidence and associated actions. In memory analysis the most common form of temporal
analysis is a time line and the most common form of relational analysis is a process tree diagram. A
time line and process tree diagram should be created in all cases to determine whether any processes

169

were started substantially later than standard system processes, or whether there are unusual
relationships between processes as previously discussed. The full path of an executable and any files
that a process has open may also provide clues that lead to malware. Digital investigators should look
for other creative ways to analyze date-time stamps and relationships found in memory not just for
processes but for all data structures.

Modules and Libraries

Extract details associated with modules (aka drivers) and libraries in memory, and
analyze them to determine which relate to malware.
 Malware may create drivers or load libraries to perform core functions such as concealment
and keylogging. Therefore, in addition to processes and threads, it is important to examine drivers and
libraries that are loaded on a Windows system.

Memory Analysis Utilities

• The Volatility modules and modscan2 plug-ins provide a list of modules running on a system,
and the driverscan plug-in searches memory for specific driver objects.

• For example, Figure 2.13 shows a list of loaded modules extracted from memory using the
Volatility modules option, with the module named “msdirectx.sys” associated with the FUTo
rootkit highlighted in bold.

170

Figure 2.13 A portion of Volatility output when used to list loaded modules (aka drivers)

• If there is a chance that a module is hidden or exited, the modscan2 option may be more
effective.

• Once a module of interest is identified, the executable contents can be extracted to a file for
further analysis using the moddump Volatility plug-in.11

• The dlllist option of Volatility can be used to list the dynamic link libraries (DLLs) for each
process.

• In the FUTo scenario of the Malware Forensics text, listing DLLs reveals that a component of
KeyLogger named “kls.dll” (shown in bold in Figure 2.14) is attached to two running
processes: “explorer.exe” and “helix.exe.”12

171

Figure 2.14 A portion of Volatility output when used to list dynamic link libraries

• The fact that KeyLogger was attached to the “helix.exe” process demonstrates the potential of
malware undermining incident response tools and the potential notification of the intruder if the
keylog is sent that the response has occurred. A specific DLL can be extracted from a
memory dump using the dlldump Volatility plug-in.

• Memoryze has an option to list all libraries associated with each process, and provides two
batch scripts named DriverSearch.bat and DriverWalkList.bat that can be used to list drivers.

• The results of running the DriverSearch.bat on the FUTo memory dump are in Figure 2.15,
providing details for the “msdirectx.sys” module used by the FUTo rootkit.

172

Figure 2.15 Mandiant’s AuditViewer used to list drivers including a rootkit module

• Similarly, HBGary Responder lists drivers and loaded libraries, enabling digital investigators to
drill down into a specific object to obtain more details as shown in Figure 2.16.

Figure 2.16 HBGary Responder used to list drivers and libraries

• Note that the example in Figure 2.16 does not have the DDNA feature enabled and does not
show the automated severity checks for each object in memory.

173

Investigative Considerations:

• In some cases, it is necessary to understand the function of a certain library to determine
whether it is normal or not. For example, knowing that “wsock32” provides network
connectivity (e.g., wsock32) functions should raise a red flag when it is being called by a
program that does not require network access.

Open Files and Sockets

Review open files and sockets in an effort to find items associated with malware such as
configuration logs, keystroke logs, and network connections.
 The files and sockets that are being accessed by each process can provide insight into their
operation on an infected system. A Trojan horse program or rootkit may have its configuration file
open, a keylogger may have a log file to store captured keystrokes, and a piece of malware designed
to search a disk for Personally Identifiable Information (PII) or Protected Health Information (PHI)
may have various files open that contain social security numbers, credit card numbers, and other
sensitive data.

Memory Analysis Utilities

• The files option in Volatility can be used to show the files that are being accessed by each
process. In Figure 2.17, the files that a particular process has open are listed and include files
with sensitive data that are relevant to the investigation (shown in bold).

174

Figure 2.17 Parsing a target memory dump with the Volatility files option

 In many cases it is desirable to associate processes running on a compromised system with
activities observed on the network.

• The most common approach to making this association is to determine which port(s) each
process is using and look for those ports in the associated network activities.

• Information about open ports and the associated process can be extracted from a memory
dump using the Volatility commands seen in Figure 2.18.

Figure 2.18 Volatility commands to open ports and associated processes

• The sockets output lists active open ports whereas the sockscan output lists all recoverable
port information, including for those that have been closed.

• If there are any network connections in memory that were associated with a particular port of
interest, these can be extracted using the connections and connscan2 Volatility plug-ins.

• For instance, connections associated with the ZeuS Trojan activities were recovered from a
memory dump as shown in Figure 2.19, even after the network connections were closed and

175

did not appear in the active connections.

Figure 2.19 Using the connscan2 plug-in

 Memoryze can also be used to list open files with the handles option, as shown in Figure 2.20.

Figure 2.20 Parsing a target memory dump for open files with Memoryze

• The resulting list of open files can be viewed using AuditViewer as shown in Figure 2.21 with
open files lists on the right.

176

Figure 2.21 Open files associated with ZeuS malware extracted using Memoryze viewed with
AuditViewer

• This example shows the main ZeuS Trojan executable file “sdra64.exe” within the
winlogon.exe process, along with associated configuration files (user.ds and local.ds) and a
reference to “AVIRA,” which is common for this malware.

Various Data Structures

Interpret data structures in memory that have a known format such as Event logs,
Registry entries, MFT entries, command history, and other details that can provide
additional context relating to the installation and activities associated with malicious code.
 Malware can create impressions and leave trace evidence on computers, as described in
Chapter 6, which provide digital investigators with important clues for reconstructing associated
malicious activities.

• Such impressions and trace evidence created on a computer system by malicious code may be
found in memory even after the artifacts are concealed on or removed from the computer.

• For instance, an Event log entry, file name, or Registry entry relating to malware may remain in
memory along with associated metadata after the actual file is deleted or when it is hidden
from the operating system.

• Memory forensic tools are being developed to interpret an increasing number of such data
structures.

 Any data structure that exists on a computer system may be found in memory.

For instance, file system information is generally cached in memory, potentially providing digital
investigators with clues relating to malware and associated activities.

Event Logs

 It may be possible to recover Windows Event Log records in a target memory dump that shows

activities relating to malware, even after they have been deleted from the log file.
177

• Rather than interpreting this type of data structure manually, it is generally desirable to use an

automated approach to locate and interpret all such entries in a memory dump. File carving
techniques can be used for this purpose Murphey. R. (2007). Automated Windows event log
forensics in DFRWS2007 proceedings (Available online at
www.dfrws.org/2007/proceedings/p92-murphey.pdf).

Master File Table

Figure 2.22 illustrates an MFT entry in a target memory dump that shows all metadata associated

with a file that relates to an investigation into potentially unauthorized access to and theft of sensitive
data.

Figure 2.22 MFT Entry in memory dump viewed in X-Ways.13

• The NTFS FILE Record template within X-Ways (under the View — Template Manager
menu option) can be applied to an MFT entry found in memory to interpret all of the

178

attributes, including the area on disk that contains the file contents.
• Rather than interpreting this type of data structure manually, it is generally desirable to use an

automated approach to locate and interpret all such entries in a memory dump.

An EnScript was developed to enable EnCase to extract MFT entries from memory dumps
automatically.14

Services

 Volatility can be used to extract a list of services from memory using the svcscan plug-in, which can

be useful when malware is installed as a service. The following portion of svcscan output from the
FUTo rootkit example shows a keylogger program installed as a services (Figure 2.23; shown in
bold).

179

Figure 2.23 The Volatility svcscan plug-in

Registry Entries

 Registry entries can provide context for malware running on a computer, directing digital

180

investigators to important information such as encryption keys stored in the Registry and used by the
malware to obfuscate network traffic.

• The regobjkeys Volatility plug-in prints Registry keys that are stored in memory.
• By default, this plug-in may not recover all Registry keys, particularly when malware is involved

and is manipulating memory.
• For instance, the default regobjkeys output for the FUTo example does not include Registry

keys associated with the hidden processes. These keys can be extracted using the regobjkeys
plug-in by specifying the offset of the associated EPROCESS structure in memory as shown
in Figure 2.24 for the hidden skl.exe process.

Figure 2.24 The Volatility regobjkeys plug-in

• A more comprehensive view of Registry information in memory can be extracted by looking
for all Registry hives in a memory dump using the hivelist and hivescan Volatility plug-ins as
shown in Figure 2.25.

181

Figure 2.25 Using the hivelist plug-in to parse Registry artifacts from a memory dump

• A listing of the contents of a particular Registry hive with associated last written date-time
stamps can be extracted using the hivedump Volatility plug-in.

• For instance, part of the output for a target User hive, “kremember,” in the memory dump is
displayed in Figure 2.26.

182

Figure 2.26 Extracting a target User hive with the hivedump plug-in

• Information about a specific Registry can be extracted using the printkey plug-in, but to
extract the contents of Registry values in memory using Volatility it is necessary to use the
RegRipper plug-in.15 The offset in memory of each memory hive is shown in the hivelist
output in Figure 2.26 and is provided as input to RegRipper along with the memory dump as
shown in Figure 2.27.

183

Figure 2.27 Extracting a target User hive with the hivedump plug-in

• HBGary Responder also extracts Registry-related information from memory dumps as shown
in Figure 2.28.

184

Figure 2.28 Registry entries associated with a specific process displayed by HBGary Responder Pro

Investigative Considerations

• Data structures in memory may be incomplete and should be verified using other sources of
information. At the same time, even if there is only a partial data structure, it can contain leads
that direct digital investigators to useful information on the file system that might help support a
conclusion. For instance, if only a partial MFT entry is recoverable from a memory dump, it
may contain a partial file name and date-time stamps that help focus a forensic examination.

• Not all data structures in memory can be interpreted by memory forensic tools automatically.
Old school methods discussed at the beginning of this chapter may reveal additional details
that can provide context for malware. In addition, through experimentation and research it
may be possible to determine the format of a specific data structure located in a memory
dump.

 Analysis Tip

Exploring Data Structures

In addition to Windows operating system data structures such as Registry and MFT entries, any
application can have unique data structures in memory. Therefore, the variety of data structures in
memory is limited only by the programs that have been used on the system, including peer-to-peer
programs and instant messaging clients. Digital investigators need to keep this in mind when dealing

185

with applications and may need to conduct research to interpret data structures that are relevant to
their specific case. The most effective approach to learning how to interpret data structures is through
application of the scientific method, conducting controlled experiments as demonstrated in Casey and
Stevens (DFRWS, 2010).

Dumping Windows Process Memory

In many cases, when examining a specific process of interest, it will be possible to extract the
necessary information from a memory dump acquired as detailed in Chapter 1. However, in certain
situations it will be desirable to acquire memory related to a specific process running on a live system.
This section addresses both needs.

Extract malicious executable files and associated data in memory for further
analysis.

 When there is a specific process that you are interested in analyzing, there are two areas of
memory that are necessary to acquire: the executable and the area of memory used by the process to
store data. Both of these areas of memory can be extracted from a memory dump using memory
forensic tools.

Recovering Executable Files

 When a suspicious process has been identified on a subject system, it is often desirable to extract

the associated executable code from a memory dump for further analysis. As straightforward as this
might seem, it can be difficult to recover a complete executable file from a memory dump. To begin
with, an executable changes when it is running in memory, so it is generally not possible to recover the
executable file exactly as it would exist on disk. Pages associated with an executable can also be
swapped to disk, in which case those pages will not be present in the memory dump. Furthermore,
malware attempts to obfuscate itself, making it more difficult to obtain information about its structure
and contents. With these caveats in mind, the most basic process of recovering an executable is as
follows:

1 . Read process environment block (PEB) structure to determine the address where the
executable begins.

2. Go to the start of the executable and read the PE header.
186

3. Interpret the PE header to determine the location and size of the various sections of the
executable.

4. Extract the pages associated with each section referenced in the PE header, and combine
them into a single file.

The Malware Forensics text describes this process in detail.16 Fortunately, memory forensic

tools such as Volatility, Memoryze, and HBGary Responder automate this process and can save the
executable associated with a given process or module to a file. For instance, the procexedump option
of Volatility saves the executable associated with a process while the procmemdump extracts an
executable as a memory sample. Other memory forensic tools have a comparable capability.
Memoryze provides scripts named ProcessDD.bat and DriverDD.bat to facilitate the extraction of
executables and memory regions associated with processes and drivers.

 Analysis Tip

Running AntiVirus on Extracted Executables

Digital investigators can run multiple AntiVirus programs on executables extracted from memory
dumps to determine whether they contain known malware. Although this can result in false positives, it
provides a quick focus for further analysis.

Recovering Process Memory

 In addition to obtaining metadata and executable code associated with a malicious process, it is

generally desirable to extract all data in memory associated with that process. Conceptually, the
process of extracting all memory pages associated with a particular process is simple.

• Sequentially read the entries in the Page Directory and associated Page Tables, and extract the
data in each 4096-byte page.

• The memory of a particular process can be dumped using the memdmp option in Volatility
(formerly named usrdmp in earlier versions).

• However, some tools rely on a unique PID to reference processes and, therefore, cannot be
used to dump the memory associated with the “skl” and “skls” processes shown earlier, which
both have a PID of zero.

• Other memory forensic tools for dumping process memory rely on the physical location of the
EPROCESS block, and can extract the necessary information about the location of data in

187

order to extract the memory contents for a particular process. For instance, in Volatility,
version 1.3, all of the commands related to processes can have the process object specified
as a physical offset.

Investigative Considerations

• Shared memory areas may contain data relating to other processes. Therefore, it is advisable
to seek corroborating clues before concluding that certain data is related to the malware being
analyzed.

• Most memory forensic tools can include data stored in the pagefile, which may provide
additional information when extracting memory associated with a given process.

• In addition to acquiring and parsing the full memory contents of a running system to identify
artifacts of malicious code activity, it is also recommended that the digital investigator capture
the individual process memory of specific processes that are running on the system for later
analysis. Although it may seem redundant to collect information that is already preserved in a
full memory capture, having the process memory of a piece of malware in a separate file will
facilitate analysis, particularly if memory forensic tools have difficulty parsing the full memory
capture. Moreover, using multiple tools to extract and examine the same information can give
added assurance that the results are accurate, or can reveal discrepancies that highlight
malware functionality and weaknesses in a particular tool.

Extracting Process Memory on Live Systems

 In some cases it may be desirable to acquire the memory of a specific process on a live system.

This can apply to a computer that is the subject of an investigation, or to a test computer that is being
used to examine a piece of malicious code. In such cases, there are various utilities that can be run on
a live system to capture process memory, including pmdump,17 RAPIER,18 Process Dumper, and the
Microsoft User Mode Process Dumper (userdump),19 as shown in Figure 2.29.

188

Figure 2.29 Dumping suspicious process “tywv” with userdump

Dissecting Windows Process Memory

Delve into the specific arrangements of data in memory to find malicious code and to
recover specific details pertaining to the configuration and operation of malware on the
subject system.
 When there is a specific process that you are interested in analyzing, there are various things
you will want to look for, including:

• Command-line arguments
• IP addresses
• Hostnames
• Passphrases and encryption keys associated with malicious code

 Some of this information can be found by extracting strings or performing keyword searches.

Volatility can be used to extract strings from an entire memory dump or a specific process for further
analysis.

HBGary Responder can be used to perform keyword searches for both ASCII and Unicode,
presenting any search hits in the context of which process or module they were found. Figure 2.30
shows the results of a keyword search for “sploit” on a target memory dump file, revealing 8 keyword
hits in several processes.

189

Figure 2.30 Keyword search results for sploit using HBGary Responder

 Some tools look for specific keywords in memory automatically when initially processing a
memory dump in an effort to recover potentially useful information such as passwords. For instance,
Figure 2.31 shows the Keys and Passwords recovery feature of HBGary Responder displaying the
password from the Hacker Defender rootkit.

Figure 2.31 Keys and Passwords function of HBGary Responder showing password associated with
rootkit extracted from memory dump

190

 Some memory forensic tools can provide additional insights into memory that are specifically
designed for malware forensics.

• As more malware uses concealment techniques such as injection and hooking, memory
forensic tools are being developed to detect new concealment methods.

• Attempts to detect specific malware concealment techniques have been codified in tools such
as Memoryze, HBGary Responder, and Volatility plug-ins.

 Some Volatility plug-ins have been developed to look for concealment techniques commonly

used by malware.

• These plug-ins include apihooks, driverirp, ssdt_ex, and malfind.20

• A portion of output from the malfind plug-in relating to the ZeuS Trojan is provided in Figure
2.32, listing and extracting portions of memory that may be related to malware.

191

Figure 2.32 Parsing memory with the Volatility malfind plug-in

• The output of these Volatility plug-ins is not as focused or intuitive as memory forensic tools
such as Memoryze or HBGary Responder.

• Furthermore, these plug-ins and others that attempt to detect concealment techniques in
memory often result in many false positives.

Therefore, the output of these tools should be treated as a starting point for digital investigators

rather than a final answer relating to malware. Other tools and techniques should be employed to
validate the results of the plug-ins.

 Memoryze has several functions for detecting injected code and hooks in memory dumps, all
of which can be enabled using the AuditViewer program.

• Figure 2.33 shows a suspicious memory section highlighted by AuditViewer that is associated
192

with the Trojan horse program Back Orifice.

Figure 2.33 AuditViewer showing suspicious memory sections associated with the Back Orifice
Trojan horse program highlighted

• Memoryze (using the AuditViewer front end) has strong memory injection detection
capabilities as shown in Figure 2.34, identifying an injected memory section in the “Excel.exe”
process, highlighted.

Figure 2.34 Identifying memory injection with AuditViewer

• Although Memoryze is a powerful tool for detecting potential concealment techniques in
193

memory, the supporting documentation is careful to point out that not all concealment
techniques will be detected using the automated tool. This again demonstrates the importance
in malware forensics of utilizing multiple analysis tools and performing a comprehensive
reconstruction (temporal, relational, and functional, as discussed earlier in this chapter) to
ensure that a more complete understanding of the malware is obtained.

• Figure 2.35 shows HBGary Responder examining a system infected with the ZeuS Trojan,
which makes extensive use of process injection. Potentially malicious objects in memory are
highlighted and given a severity score in an effort to help digital investigators focus on areas of
greatest potential concern.

Figure 2.35 Processes with code injected by the ZeuS Trojan viewed using HBGary Responder

• Figure 2.36 provides additional details about a specific module that HBGary Responder has
rated as suspicious because of its ability to inject code into other processes.

194

Figure 2.36 Portions of HBGary Responder report of suspicious module injected into svchost.exe
process

• Tools such as HBGary DDNA automatically extract some characteristics of executable code
that can be useful for malware forensics.

• For instance, Figure 2.37 shows the traits extracted by DDNA for a malicious process.
However, this approach can result in a false positive and generally requires additional analysis
by a skilled digital investigator.

195

Figure 2.37 Traits of a malicious process automatically extracted using Digital DNA (DDNA)
module

 Analysis Tip

Finding the Hidden in Memory

Digital investigators should not be overly reliant on automated methods for detecting hidden
information and concealment techniques in memory. Free and commercial tools alike cannot detect
every concealment method. As such, automated detection methods are simply one aspect of the
overall process of examining volatile data in memory as described in Chapter 1, as well as the
comprehensive examination and reconstruction methods discussed earlier in this chapter.

Conclusions

• As memory forensics evolves, an increasing amount of information can be extracted from full
memory dumps, providing critical evidence and context related to malware on a system.

• The information that can be extracted from memory dumps includes hidden and terminated
processes, traces of memory injection, and hooking techniques used by malware, metadata,
and memory contents associated with specific processes, executables, and network
connections.

• In addition, impressions and trace evidence such as those discussed in Chapter 6 may be
present in memory dumps, waiting for digital investigators to find and interpret them.

• However, because memory forensics is in the early stage of development, it may not be able to
recover the desired information from a memory dump in all cases. Therefore, it is important to
take precautions to acquire the memory contents of individual processes of interest on the live
system.

• Even when memory forensic tools can be employed in a particular case, acquiring individual
process memory from the live system allows digital investigators to compare the two methods
to ensure they produce consistent results.

• Furthermore, because malware can manipulate memory, it is important to correlate critical
findings with other sources of data such as the file system, live response data, and external

196

sources such as logs from firewalls, routers, and Web proxies.

 Pitfalls to Avoid

Failing to Validate Your Findings

Do not rely on just one tool.

Learn the strengths and limitations of your tools through testing and research.

Keep in mind that tools may report false positives when attempting to detect suspicious
code.

Use more than one tool and compare the results to ensure that they are consistent.

Verify important findings manually by examining items as they exist in memory, and review
their surrounding context for additional information that may have been missed by the tools.

Failing to Understand Underlying Data Structures

Do not trust results of memory forensic tools without verification.

Learn the data structures that are being extracted and interpreted by memory forensic tools
in order to validate important findings.

When a tool fails to extract certain items of interest, interpret the data yourself.

Find additional information in memory that memory forensic tools are not currently
programmed to recover.

Memory Forensics: Field Notes
197

Note: This document is not intended as a checklist, but rather as a guide to increase consistency of
forensic examination of memory. When dealing with multiple memory dumps, it may be necessary to
tabulate the results of each individual examination into a single document or spreadsheet.

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

 Malware Forensic Tool Box

Memory Analysis Tools for Windows Systems

In this chapter we discussed approaches to interpreting data structures in memory. There are a
number of memory analysis tools that you should be aware of and familiar with. In this section, we
explore these tool alternatives, often demonstrating their functionality. This section can also simply be
used as a “tool quick reference” or “cheat sheet,” as there will inevitably be times during an
investigation where having an additional tool that is useful for a particular function would be beneficial,
since you may have little time to conduct research for or regarding the tool(s). It is important to
perform your own testing and validation of these tools to ensure that they work as expected in your
environment and for your specific needs.

223

224

225

226

227

228

229

Selected Readings

Books

1. Eagle C. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular

Disassembler San Francisco, CA: No Starch Press; 2008.
2. Ligh M, Adair S, Hartstein B, Richard M. Malware Analysis Cookbook: Tools and

Techniques for Fighting Malicious Code New York: Wiley; 2010.
3. Malin C, Casey E, Aquilina J. Malware Forensics: Investigating and Analyzing Malicious

Code Burlington, MA: Syngress; 2008.
4. Skoudis E, Zeltser L. Malware: Fighting Malicious Code Upper Saddle River, NJ: Prentice

Hall; 2003.
5. Szor P. The Art of Computer Virus Research and Defense Mountain View, CA: Symantec

Press; 2005.

Papers

1. Dolan-Gavitt B. The VAD Tree: A Process-Eye View of Physical Memory. Digital

Investigation. 2007;Vol. 4(Suppl. 1):62–64.
2. Dolan-Gavitt B. Forensic Analysis of the Windows Registry in Memory. Digital

Investigation. 2008;Vol. 5(Suppl. 1):S26–S32.
3. Hejazia SM, Talhia C, Debbabi M. Extraction of Forensically Sensitive Information from

Windows Physical Memory. Digital Investigation. 2009;Vol. 6(Suppl. 1):S121–S131.
4. Kang, M., Poosankam, P., and Yin, H. (2007). Renovo: A Hidden Code Extractor for

Packed Executables. WORM ’07, Proceedings of the 2007 ACM Workshop on Recurring
Malcode. New York: ACM.

5. Murphey R. Automated Windows event log forensics in DFRWS2007 proceedings.
http://www.dfrws.org/2007/proceedings/p92-murphey.pdf ; 2007; Available online at.

6. Petroni Jr NL, Walters A, Fraser T, Arbaugh WA. FATKit: A Framework for the Extraction
and Analysis of Digital Forensic Data from Volatile System Memory. Digital Investigation.
2006;Vol. 3(Issue 4):197–210.

7. Royal, P. (2006). PolyUnpack: Automating the Hidden-Code Extraction of Unpack-
230

Executing Malware. Annual Computer Security Applications Conference, Miami Beach,
FL, December 11–15.

8. Saur K, Grizzard JB. Locating ×86 Paging Structures in Memory Images. Digital
Investigation. 2010;Vol. 7(Issues 1–2):28–37.

9. Stevens RM, Casey E. Extracting Windows Command Line Details from Physical Memory.
Digital Investigation. 2010;Vol. 7(Suppl. 1):S57–S63.

10. Yegneswaran, V. et. al. (2008). Eureka: A Framework for Enabling Static Analysis on
Malware. Technical Report Number SRI-CSL-08-01, SRI Project 17382.

Jurisprudence/RFCs/Technical Specifications

1. Columbia Pictures Indus. v. Bunnell, 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19,

2007).
2. RFC 3227—Guidelines for Evidence Collection and Archiving.

13 For more information about X-Ways, go to http://www.x-ways.com/.
1 http://www.syngress.com/digital-forensics/Malware-Forensics/.
2 Cheval and Oxley (2011), Masters Thesis, Johns Hopkins University Information Security

Institute.
3 Malin, C., Casey, E., and Aquilina, J. (2008). Malware Forensics: Investigating and

Analyzing Malicious Code, Chap. 3, p. 147. Burlington, MA: Syngress.
4 http://code.google.com/p/volatility/wiki/Plugins.
5 For more information about AuditViewer, go to

http://www.mandiant.com/products/free_software/mandiant_audit_viewer/.
6 For more information about HBGary Responder, go to http://www.hbgary.com/responder-

field.
7 For more information about HBGary Responder Pro and Digital DNA, go to

http://www.hbgary.com/responder-pro-2/; http://www.hbgary.com/digital-dna.
8 For more information about the Metasploit penetration testing framework, go to

http://www.metasploit.com/.
9 Malin, C., Casey, E., and Aquilina, J. (2008). Malware Forensics: Investigating and

Analyzing Malicious Code, Chap. 3, pp. 130–131. Burlington, MA: Syngress.
10 Cheval and Oxley (2011), Masters Thesis, Johns Hopkins University Information Security

231

Institute.
11 http://code.google.com/p/volatility/source/browse/branches/Volatility-

1.4_rc1/contrib/plugins/moddump.py?r=540.
12 Malin, C., Casey, E., and Aquilina, J. (2008). Malware Forensics: Investigating and

Analyzing Malicious Code, Chap. 3, p. 143. Burlington, MA: Syngress.
14 For more information about X-Ways, go to http://www.x-ways.com/.

http://www.forensickb.com/2007/11/extract-mft-records-from-memory-dump.html.
15 http://code.google.com/p/volatility/wiki/Plugins.
16 Malin, C., Casey, E., and Aquilina, J. (2008). Malware Forensics: Investigating and

Analyzing Malicious Code, Chap. 3, pp. 144–146. Burlington, MA: Syngress.
17 For more information about pmdump, go to http://www.ntsecurity.nu/toolbox/pmdump/.
18 For more information about RAPIER, go to http://code.google.com/p/rapier/.
19 For more information about Microsoft User Mode Process Dumper, go to

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=E089CA41-6A87-40C8-
BF69-28AC08570B7E&displaylang=en.

20 http://code.google.com/p/volatility/wiki/Plugins.

232

Chapter 3

Post-Mortem Forensics

Discovering and Extracting Malware and Associated Artifacts from Windows Systems

233

Solutions in this chapter:

• Windows Forensic Analysis Overview
• Forensic Examination of Compromised Windows Systems
• Malware Discovery and Extraction from Windows Systems
• Examine Windows File System
• Examine Windows Registry
• Keyword Searching
• Forensic Reconstruction of Compromised Windows Systems
• Advanced Malware Discovery and Extraction from a Windows System

Introduction

If live system analysis can be considered surgery, forensic examination of Windows systems can be
considered an autopsy of a computer impacted by malware. Trace evidence relating to a particular
piece of malware may be found in various places on the hard drive of a compromised system,
including files, Registry entries, records in event logs, and associated date stamps. Such trace
evidence is an important part of analyzing malicious code by providing context and additional
information that help us understand the functionality and origin of malware.
 This chapter provides a repeatable approach to conducting forensic examinations in malware
incidents by increasing the consistency across multiple computers and enabling others to evaluate the
process and results. Employing this approach, with a measure of critical thinking on the part of a
digital investigator, can uncover information necessary to discover how malware was placed on the
system (aka the intrusion vector), to determine malware functionality and its primary purpose (e.g.,
password theft, data theft, remote control) and to detect other infected systems. This forensic
examination process can be applied to both a compromised host and a test system purposely infected
with malware in order to learn more about the behavior of the malicious code.

Investigative Considerations

• In the past, it was relatively straightforward to uncover traces of malware on the file system and
234

in the Registry of a compromised Windows computer. Recently, attackers have been
employing more anti-forensic techniques to conceal their activities. Modern malware is being
designed to leave limited traces on the compromised host and to misdirect forensic examiners.
A methodical approach to forensic examination, looking carefully at the system from all
perspectives, increases the chances of uncovering footprints that the intruder failed to hide.

Windows Forensic Analysis Overview

After a forensic duplicate of a compromised system has been acquired, employ a
consistent forensic examination approach to extract the maximum amount of information
relating to the malware incident.
 The hard drive of a Windows computer can contain traces of malware in various places and
forms, including malicious files, Registry entries, log files, Web browser history and remnants of
installation, and execution and manipulation such as Prefetch files and date-time tampering. Some of
this information has associated date-time stamps that can be useful for determining when the initial
compromise occurred and what happened subsequently. The following general approach is designed
to extract the maximum amount of information related to a malware incident:

• Search for known malware
• Survey installed programs
• Examine prefetch
• Inspect executables
• Review auto-start
• Review scheduled jobs
• Examine logs (system logs, AntiVirus logs, Web browser history, etc.)
• Review user accounts
• Examine file system
• Examine registry
• Restore points
• Perform keyword searches for any specific, known details relating to a malware incident.

Useful keywords may come from other forms of analysis, including memory forensics and
analysis of the malware.

• Harvest available metadata including file system date-time stamps, modification times of
235

Registry entries, e-mails, Prefetch file details and entries in Web browser history, and
Windows Event logs and other logs such those created by AntiVirus programs. Use this
information to determine when the malware incident occurred and what else was done to the
system around that time, ultimately generating a time line of potentially malicious events.

• Look for common indicators of anti-forensics including file system date-time stamp
manipulation and log deletion.

• Look for links to other systems that may be involved.

 These goals are provided as a guideline and not as a checklist for performing Windows
forensic analysis. No single approach can address all situations, and some of these goals may not
apply in certain cases. In addition, the specific implementation will depend on the tools that are used
and the type of malware involved. Some malware may leave traces in novel or unexpected places on
a Windows computer, including in the Master Boot Record (MBR) or within other files. Ultimately,
the success of the investigation depends on the abilities of the digital investigator to apply digital
forensic techniques and adapt them to new challenges.

 Analysis Tip

Correlating Key Findings

As noted in prior chapters, knowing the time period of the incident and knowing what evidence of
malware was observed can help digital investigators develop a strategy for scouring compromised
computers for relevant digital evidence. Therefore, prior to performing forensic analysis of a
compromised computer, it is advisable to review all information from the Field Interview Questions in
Chapter 1 to avoid wasted effort and missed opportunities. Findings from other data sources such as
memory dumps and network logs can also help focus the forensic analysis (i.e., the compromised
computer was sending packets to a Russian IP address, providing an IP address to search for in a
given time frame). Similarly, the results of static and dynamic analysis covered in later chapters can
help guide forensic analysis of a compromised computer. So, the analysis of one malware specimen
may lead to further forensic examination of the compromised host that uncovers additional malware
that requires further analysis; this cyclical analysis ultimately leads to a comprehensive reconstruction
of the incident. In addition, as new traces of malicious activity are uncovered through forensic
examination of a compromised system, it is important to document them in a manner that facilitates
forensic analysis. One effective approach is to insert new findings into a time line of events that
gradually expands as the forensic analysis proceeds. This is particularly useful when dealing with
multiple compromised computers. By generating a single time line for all systems, forensic analysts are
more likely to observe relationships and gaps that need to be filled with further analysis.

236

Investigative Considerations

• It is generally unrealistic to perform a blind review on certain structures that are too large or too
complex to analyze without some investigative leads. Therefore, it is important to use all of the
information available from other sources to direct a forensic analysis of the compromised
system, including interview notes, spearfishing e-mails, volatile data, memory dumps, and logs
from the system and network.

• Most file system forensic tools do not provide full metadata from an NTFS. When dealing with
malware that likely manipulated date-time stamps, it may be necessary to extract additional
attributes such as the FILETIME details for comparison with the standard attributes. Tools for
extracting attributes from MFT entries such as TSK and analyzeMFT are presented in the
Tool Box appendix.

• It is important to look in all areas of a Windows system where traces of malware might be
found, even if a quick look in a few common places reveals obvious signs of infection. There
may be multiple types of malware on a computer, with more obvious signs of infection
presenting a kind of smoke screen that may distract from more subtle signs of infection. Being
thorough reduces the risk that more subtle items will be overlooked.

• No one approach or tool can serve all needs in a forensic examination. To avoid mistakes and
missed opportunities, it is necessary to compare the results of multiple tools, to employ
different analysis techniques, and to verify important findings manually.

In addition to employing forensic tools, mount the forensic duplicate as a logical

volume to support additional analysis.
 Although forensic tools can support sophisticated analysis, they cannot solve every problem

relating to a malware incident. For instance, running AntiVirus software against files on the
compromised system is an important step in examining a compromised host. Figure 3.1 shows
MountImage Pro1 being used to mount a forensic duplicate so that it is accessible as a logical volume
on the forensic examination system without altering the original evidential data.

237

Figure 3.1 MountImage Pro used to mount a forensic duplicate

 Additional utilities such as FTK Imager, EnCase modules, and Daemon Tools (www.daemon-
tools.cc) for mounting a forensic duplicate are discussed in the Tool Box section at the end of this
chapter.

Malware Discovery and Extraction from Windows Systems

 Employing a methodical approach to examining areas of the compromised system that are most

likely to contain traces of malware installation and use increases the chances that all traces of a
compromise will be uncovered, especially when performed with feedback from the static and dynamic
analysis covered in Chapters 5 and 6.

Search for Known Malware

Use characteristics from known malware to scour the file system for the same or similar
238

items on the compromised computer.
 Many intruders will use easily recognizable programs such as known rootkits, keystroke-
monitoring programs, sniffers, and components from the PSTools package (e.g., psexec for starting a
service remotely). There are several approaches to locating known malware on a forensic duplicate of
a compromised computer.

• Hashes: Searching a forensic duplicate of a compromised system for hash values matching
known malware may identify other files with the same data but different names. The hash
value of the full file will only reveal exact matches (see Figure 3.2), but an alternate approach
involves searching for hash values of smaller parts of malware.
One tool that is specifically designed to detect known malware is Gargoyle Forensic Pro (see
Figure 3.3).2 This program contains a database of known malware that is regularly updated
and can be used to scan a forensic duplicate.

Figure 3.2 AFX Rootkit found using MD5 Hash

239

Figure 3.3 Scanning a target drive image with Gargoyle

• Piecewise Hashes: A piecewise hashing tool such as ssdeep3 may reveal malware files that
are largely similar with slight variations. Using the matching mode, with a list of fuzzy hashes of
known malware, may find specimens that are not detected with an exact hash match or by
current anti-virus definitions (e.g., when embedded IP addresses change).

• AntiVirus: Scanning files within a forensic duplicate of a compromised system using updated
AntiVirus programs may identify known malware. To increase the chances of detecting
malware, multiple AntiVirus programs can be used with any heuristic capabilities enabled.
Such scanning is commonly performed by mounting a forensic duplicate on the examination
system and configuring AntiVirus software to scan the mounted volume as shown in Figure
3.4 using Avira.4

240

Figure 3.4 Avira A/V software scanning a mounted forensic duplicate

• In addition to scanning logical files, it can be worthwhile to carve all executables out of
unallocated space and scan them using AntiVirus software as well, particularly when malware
has been deleted by the intruder (or by AntiVirus software that was running on the
compromised system).

 Analysis Tip

Existing AntiVirus Logs

Given the prevalence of AntiVirus software, it is advisable to review any logs that were created by
AntiVirus software that was running on the compromised system for indications of malware that was
detected and deleted as discussed in the “Examine Logs” section later in this chapter. Many AntiVirus
programs have Quarantine features that back up detected malware in a specially formatted file. Some
vendors provide utilities for decoding these quarantine backup files to enable recovery of the actual
malware for analysis.

• Keywords: Searching for IRC commands and other traits commonly seen in malware, and any
characteristics that have been uncovered during the digital investigation (e.g., IP addresses
observed in network-level logs) may uncover malicious files on the system.

Investigative Considerations 241

Investigative Considerations

• Some malware is specifically designed to avoid detection using hash values, AntiVirus
signatures, or other similarity characteristics. Therefore, the absence of evidence in an
AntiVirus scan or hash analysis should not be interpreted as evidence that no known malware
is on the system.

• Keyword searches for common characteristics in malware can also trigger AntiVirus definition
files, resulting in false positives.

Survey Installed Programs

Review the programs that are installed on the compromised system for potentially
malicious applications.
 Surveying the names and installation dates of programs that were installed on the
compromised computer may reveal ones that are suspicious, as well as legitimate programs that can
be used to gain remote access or to facilitate data theft.

• This process does not require in-depth analysis of each program. Instead look for items that
are unexpected, questionable, or were installed around the time of the incident.

• Folders under “Program Files” show only some of the programs that are installed on a
Windows system. Subfolders under each user profile can reveal applications installed under
specific user accounts. There are also locations in the Registry where digital investigators look
for traces of installed programs and applications that were installed but have since been
removed from the computer, as discussed in the section Examine Windows Registry later in
this chapter.

• A malicious program may be apparent from a folder in the file system (e.g., keyloggers,
WinRAR) or from a Registry entry. Figure 3.5 shows subfolders under Program Files on a
Windows system, which include a keylogger program.

242

Figure 3.5 Program Files contains SpyKeyLogger

• Legitimate programs installed on a computer can also play a role in malware incidents. For
instance, WinRAR or remote desktop programs (e.g., RDP, VNC) installed on a system may
be normal in certain environments, but their availability may have enabled intruders to use
them for malicious purposes such as packaging sensitive information before stealing it over the
network.5 Coordination with the victim organization can help determine if these are legitimate
typical business use applications. Even so, keep in mind that they could be abused/utilized by
the intruder and associated log review may be fruitful.

 Analysis Tip

Registry Remnants

The SOFTWARE Registry hive contains configuration information for installed applications and has a
key “Microsoft\Windows\CurrentVersion\App Paths” that contains a list of executable paths for
installed applications. The Windows Registry Database (WiReD) project being developed by NIST
NSRL is currently working on a library of Registry remnants left by common programs to help digital
investigators determine what programs were installed on a computer.

243

Examine Prefetch Files

Inspect the creation date and other attributes of Prefetch files on the compromised
system to determine whether they relate to execution of malware.
 When malware, or any executable for that matter, is launched on a Windows system it may
generate a Prefetch file. The creation date of a particular Prefetch file generally shows when the
associated program was first executed on the system, and the last modified date indicates when it was
most recently executed. Tools for parsing Prefetch files include Prefetch Parser6 and
WinPrefetchView.7

• In addition to providing temporal information, Prefetch files contain information about the
location of the associated executable on the file system as well as the number of times that the
executable was run as shown in Figure 3.6.

Figure 3.6 Example of Prefetch related to Poison Ivy malware viewed using WinPrefetch View

Investigative Considerations 244

Investigative Considerations

• Examining the NTOSBOOT-BOODFAAD.pf file can help identify what is being loaded at
boot time on a Windows system.

• A Prefetch file can remain on a compromised system long after the originating executable is
gone, and can be the only remaining indication that a particular executable existed on the
system.

• Keep in mind that not all actions on a Windows computer will result in a Prefetch file being
created, and that Prefetch files may be deleted. Therefore, the lack of a Prefetch file does not
mean that a particular program was not executed (absence of evidence is not evidence of
absence).

Inspect Executables

Determine whether any executables on the compromised system exhibit suspicious or
unusual characteristics that might be used to conceal their presence.
 Attackers commonly try to make malware more difficult to find and detect, so often digital
investigators can look for common concealment techniques by carefully inspecting executables. This
inspection can involve looking for misleading file extensions, packed executables, and alternate data
streams.

• Extension renaming: One of the simplest approaches used to conceal executables on a
Windows system is to change the extension to something else.

• Packing: Modern malware is often encoded (aka packed) to thwart detection and forensic
analysis.

• Alternate data streams: Look for executables in an ADS of other files or folders.

Investigative Considerations

• Reviewing every potential executable on a computer is a time-consuming process, and an
important file may be missed in the mass of information. Fortunately, in many cases, there are
known time periods of interest or other clues that focus forensic analysis and reduce the
number of files that need to be reviewed for suspicious characteristics.

245

• The increase in “spearfishing attacks” that employ social engineering to trick users to click on
e-mail attachments, combined with malware embedded in Microsoft Office documents and
Adobe PDFs as discussed in Chapter 5, means that digital investigators need to expand
searches for malware to include objects embedded in documents and e-mail attachments.

Inspect Services, Drivers, Auto-starting Locations, and Scheduled Jobs

Look for references to malware in the various startup routines on the compromised
system to determine how malware managed to remain running on a Windows system after
reboots.
 To remain running after reboots, malware is usually re-launched using some of the various
startup routines on a Windows system, including services, drivers, scheduled tasks, and other startup
locations.

• Schedule Tasks: Some modern malware uses the Task Scheduler to periodically execute and
maintain persistence on the system. Therefore, it is necessary to examine scheduled jobs that
are stored in the “Windows\Tasks” folder in data files with the name of the application and the
file extension .job.

• Services: It is extremely common for malware to entrench itself within a new, unauthorized
service or by inserting itself as the ImagePath or ServiceDll for an existing service.

• Drivers: Drivers are commonly used as rootkit components to malware packages, and may
be started via a variety of means.

• AutoRun locations: Locations that Windows uses to automatically launch an executable as
the system starts up may contain traces of malware. The AutoRuns tool can be used to
examine auto-start items as shown in Figure 3.7, directing it to analyze a mounted forensic
image via the File -> Analyze Offline System. Items displayed by AutoRuns that are missing
or are unsigned and do not have a publisher description may be of interest in malware
incident.

246

Figure 3.7 AutoRuns used to analyze an offline system

Investigative Considerations

• Be aware that not all methods used by malware to entrench itself on a Windows computer will
be detected by AutoRuns or similar tools. For instance, the order in which Windows searches
for dependencies may be used to execute malware. Therefore, even if nothing unusual is found
during this inspection of auto-start locations, there may still be persistent malware on the
system.

• It may not be a simple matter to distinguish between legitimate system processes and malware
in Windows auto-start locations. Therefore, it may be necessary to combine multiple tools and
analysis techniques. For example, inspecting all changes to the file system and Registry during
the period of interest can lead digital investigators to the pertinent file names and auto-start
entries used by malware. In addition, looking for unsigned executables referenced in a startup
routine may reveal unauthorized code.

Examine Logs

247

Look in all available log files on the compromised system for traces of malicious
execution and associated activities such as creation of a new service.
 Log files can provide some of the most useful historical detail relating to a malware incident,
giving visibility into past events, the sequence of activities related to an attack, and clues about what
the intruder did on the compromised system. The logs that are available on a Windows system will
depend on its configuration and installed programs. Some of the more common log files are
summarized here with examples of their usefulness.

• Windows Event Logs: Logon events recorded in the security event log, including logons via
the network, Remote Desktop, and Remote Authentication Services, can reveal that malware
or an intruder gained access to a compromised system via a given account at a specific time.
Other events around the time of a malware infection can be captured in Windows Event logs,
including the creation of a new service or new accounts around the time of an incident.
Windows Event logs can be examined using tools such as Log Parser8 and Event Log
Explorer9 as shown in Figure 3.8 with the ability to filter on specific types of events.
Additional information about Log Parser and its flexibility is available in Microsoft Log Parser
Toolkit from Syngress.10

Figure 3.8 Windows System Event log being examined using Event Log Explorer, filtering on errors
associated with services (Event IDs 7026 and 7030)

248

• Web browser history: The records of Web browsing history on a compromised computer

can reveal access to malicious Web sites and subsequent download of malware. In addition,
some malware leaves traces in the Web browser history when it spreads to other machines on
the network.

• Desktop firewall logs: Windows firewall and other desktop security programs may be
configured to record access attempts and other activities on the compromised system.

• AntiVirus logs: When a Windows system is compromised, AntiVirus software may detect
and even block malicious activities. Such events will be recorded in a proprietary log file with
associated date-time stamps, and any quarantined items may still be stored by the AntiVirus
software in a holding area.

• Dr. Watson : The Dr. Watson log, located in “Drwtsn32.log,” can contain information about
programs that crashed and produced debug information. When Dr. Watson traps a crashing
program, it can create a file named “User.dmp” containing memory contents from the crash,
which may provide additional information.

Investigative Considerations

• Log files can reveal connections from other systems that provide links to other systems on the
network that may be compromised.

• It is common to extract Windows event logs from a forensic duplicate for examination.
However, message details that were unique to the compromised system may not be available
when performing this type of analysis. Therefore, it may be necessary to reconstruct the event
details or review specific log entries of interest on a resuscitated clone of the compromised
system as discussed in the “Forensic Reconstruction of Compromised Windows Systems”
section later in this chapter.

• Windows event logs may be deleted in a malware incident, requiring a search of unallocated
space for important entries.

 Analysis Tip

Domain Controller Security Event Logs

In some enterprise environments domain controllers are relied on for security logging, so local security
event logging is disabled on the Windows computers that are part of the domain. In addition, DNS

249

logs from a domain controller can be extremely important when tracking beacons to DNS host names.
Given the volume of event logs on domain controllers, there may be a retention period of just a few
days and digital investigators must preserve those logs quickly or risk losing this information.

Review User Accounts and Logon Activities

Verify that all accounts used to access the system are legitimate accounts and determine
when these accounts were used to log onto the compromised system.
 Look for the unauthorized creation of new accounts on the compromised system, accounts
with no passwords, or existing accounts added to Administrator groups.

• Unauthorized account creation: This is identified by unusual names or accounts created in
close proximity to known unauthorized events.

• Administrator groups: It is advisable to check for user accounts that are not supposed to be
in local or domain level administrator groups.

• Weak passwords: In some situations it may be necessary to look for accounts with no
passwords or easily guessed passwords. A variety of tools are designed for this purpose,
including PRTK,11 John the Ripper,12 and Cain & Abel.13 Rainbow tables are created by
precomputing the hash representation of passwords and creating a lookup table to accelerate
the process of checking for weak passwords.

Investigative Considerations

• Failed logon attempts can be important when repeated efforts were made to guess the
passwords.

 Analysis Tip

Correlation with Logons

Combine a review of user accounts with a review of Windows Security Event Logs on the system to
determine logon times, dates of account creation, and other activities related to user account activity
on the compromised system. This can reveal unauthorized access, including logons via Remote

250

Desktop.

Examine Windows File System

Explore the file system for traces left by malware.
 File system data structures can provide substantial amounts of information related to a
malware incident, including the timing of events and the actual content of malware. However, malware
is increasingly being designed to thwart file system analysis. Some malware alters date-time stamps on
malicious files to make it more difficult to find them with time line analysis. Other malware is designed
to download modular components from the Internet and only store them in memory to minimize the
amount of data stored in the file system. To deal with such anti-forensic techniques, it is necessary to
pay careful attention to time line analysis of file system date-time stamps and to files stored in common
locations where malware might be found.14

• Search for file types that attackers commonly use to aggregate and exfiltrate information. For
example, if RAR files are not commonly used in the victim environment, searching for .RAR
file extensions and headers may reveal activities related to the intrusion.

• Time line analysis is one of the most powerful techniques for organizing and analyzing file
system information. Combining date-time stamps of malware-related files and system-related
files such as link files and Prefetch files can lead to an illuminating reconstruction of events
surrounding a malware incident, including the initial vector of attack and subsequent
entrenchment and data theft.

• Review the contents of the “%systemroot%\system32” folder for files with date-time stamps
around the time of the incident, or executables not associated with Windows or any known
application (hash analysis can assist in this type of review to exclude known files).

• When one piece of malware is found in a particular folder (e.g., C:\WINNT\Java, or a Temp
folder), an inspection of other files in that folder may reveal additional malware.

• Shadow Volumes on Windows Vista and 7 can contain copies of files that have since been
deleted from the file system.

Investigative Considerations

251

• Although it is becoming more common for Standard Information Attribute (SIA) date-time
stamps to be modified by malware, the File Name Attribute (FNA) is not typically updated.
Therefore, discrepancies between the SIA and FNA may indicate that date-time stamps have
been artificially manipulated.

• The NTFS journal ($LogFile) contains references to MFT records that can be found by
searching for the record header strings FILE0 or FILE* (case sensitive). Some forensic suites
such as EnCase have the ability to parse $LogFile entries.

• The increasing use of anti-forensic techniques in malware is making it more difficult to find
traces on the file system. To mitigate this challenge, use all of the information available from
other sources to direct a forensic analysis of the file system, including memory and logs.

• It is often possible to narrow down the time period when that malicious activity occurred on a
computer, in which case digital investigators can create a time line of events on the system to
identify malware and related components, such as keystroke capture logs.

Examine Windows Registry

Scour Registry hives for information related to malware and associated activities.
 Registry hives on a compromised system can contain information directly related to the
operation of malware (e.g., auto-start on boot, configuration parameters), and can contain traces of
activities related to malware.

• UserAssist: The UserAssist key contains a list of programs run by user accounts on a
compromised system that can provide details about malicious activities along with a date-time
stamp of most recent execution.

• Common locations: In addition to auto-start locations, Registry hives on a compromised
system can contain configuration information and other trace evidence created by malware.
For instance, names of files that were created or opened in relation to the malware may be
retained in most recently used (MRU) lists and Windows Explorer shell bags in the Registry.
RegRipper has standard templates that can be applied to common Registry hives to extract
information that is generally useful when investigating a malware incident as shown in Figure
3.9.

252

Figure 3.9 RegRipper used to extract items from a System Registry hive, noting errors in the process
that should be reviewed in the log file

• Temporal analysis : Search the Registry for items with LastWritten date-time stamps around
the time of the incident. The RegistryViewer from AccessData has a feature for finding all
alteration in a Registry hive within a specific date range as shown in Figure 3.10.

253

Figure 3.10 Registry Viewer used to search for all items in the Software Registry hive on a specific
date

Restore Points

 Some versions of Windows make routine backups of Registry hives that can contain information

that is no longer present in the current Registry. In addition to looking in backup Registry hives for the
same information as in the current hives as summarized earlier, there are unique types of analysis that
the Restore Point backups can support.

• Look back: Information from past states of the system that is captured in a Restore Point can
be useful in an intrusion and malware investigation.15

• Comparative analysis: Comparing the Registry from prior states of a compromised system
can uncover important changes.16

• Temporal analysis : The LastWritten date-time stamps within the backup Registry hives can
help develop the time line of malicious activities on a compromised system.

Keyword Searching 254

Keyword Searching

Search for distinctive keywords each time such an item is uncovered during forensic
analysis.
 Searching for keywords is effective when you know what you are looking for but do not know
where to find it on the compromised system. There are certain features of a malware incident that are
sufficiently distinctive to warrant a broad search of the system for related information. Such distinctive
items include:

• Command-line arguments: Looking for commands that malware uses to execute processes
on or obtain from other systems on the network (e.g., psexec, net use) or to exfiltrate data
can reveal additional information related to the intrusion.

• IP addresses: These may be stored in the human readable dot decimal format (e.g.,
172.16.157.136) in both ASCII and Unicode formats, and may be represented in hex (e.g.,
ac 10 9d 88) both in little and big endian formats. Therefore, it may be necessary to construct
multiple keywords for a single IP address.

• Computer hostnames: Used to establish remote connections with a compromised system,
these may be found in various locations, including Windows event logs.

• Passphrases and encryption keys: Searching for these when associated with malicious code
can uncover additional information related to malware.

• File extensions and headers of file types: These are commonly used to steal data (e.g.,
.RAR) and can find evidence of data theft.

 Analysis Tip

Search Smart

Significant time can be wasted searching for overly general or incorrectly encoded keywords.
Therefore, care must be taken to construct an effective keyword list that considers how data will be
represented on the system.

Forensic Reconstruction of Compromised Windows Systems

255

Performing a comprehensive forensic reconstruction can provide digital investigators
with a detailed understanding of the malware incident.
 Although it may seem counterintuitive to start creating a time line before beginning a forensic
examination, there is a strong rationale for this practice. Performing temporal analysis of available
information related to a malware incident should be treated as an analytical tool, not just a by-product
of a forensic examination. Even the simple act of developing a time line of events can reveal the
method of infection and subsequent malicious actions on the system. Therefore, as each trace of
malware is uncovered, any temporal information should be inserted into a time line until the analyst has
a comprehensive reconstruction of what occurred.

 Functional analysis of a compromised Windows system involves creating a bootable clone of
the system and examining it in action. One approach to creating a bootable clone is using LiveView,17

as shown in Figure 3.11. The snapshot feature in VMWare gives digital investigators a great degree of
latitude for dynamic analysis on the actual victim clone image. In this instance, malware was found in
the “C:\I386\SYSTEM32” folder and the digital investigator used a bootable clone of the
compromised system to observe the functionality of two associated utilities. The interaction in Figure
3.11 shows vgalist (renamed pslist) looking for a malicious process named skls, then help for vgautils
(rootkit named “fu”), and then using the rootkit to hide the skls process and confirm it is hidden by
checking again with vgautils (pslist).

Figure 3.11 Forensic duplicate loaded into VMWare using LiveView
256

• Another approach is to restore a forensic duplicate onto a hard drive and insert the restored
drive into a computer. This is necessary when malware detects that it is running in a virtualized
environment and takes evasive action to thwart forensic examination.

• In some situations, malware defense mechanisms may utilize characteristics of the hardware on
a compromised computer such as MAC address, in which case it may be necessary to use a
clone hard drive in the exact hardware of the compromised system that the forensic duplicate
was obtained from.

Advanced Malware Discovery and Extraction from a Windows System

Since the Malware Forensics textbook was published in 2008, more tools have been developed to
address the increasing problem of malware designed to circumvent information security best practices
and propagate within a network, enabling criminals to steal data from corporations despite intrusion
detection systems and firewalls.
 Some tools, such as the Microsoft Malware Removal Tool18 shown in Figure 3.12, can be used
to check every computer that is managed by an organization for certain malware and report the scan
results to a central location.

Figure 3.12 Microsoft Malware Removal Tool
257

Keep in mind that this approach is not targeted—it checks for a variety of different malware

rather than one specific malware. In some situations, this broader net can be advantageous by finding
malware that was not the focus of the investigation. Keep in mind also that this approach is designed
to remove malware from the system, which may not be desirable if the goal is to perform further
forensic analysis of the system.

Other COTS remote forensic tools such as FTK Enterprise, EnCase Enterprise, and F-
Response can be configured to examine files, memory, and Registry entries on remote systems for
characteristics related to specific malware (see Figure 3.13).

Figure 3.13 AccessData FTK Enterprise extracting information from remote systems

In addition, some consulting companies that specialize in intrusion investigation have developed
proprietary tools to examine remote systems for traces of malicious code.

Conclusions

If malware is present on a system, it can be found by applying the forensic examination approach
outlined in this chapter. Following such a methodical, documented approach will uncover the majority
of trace evidence relating to malware incidents and has the added benefit of being repeatable each
time a forensic examination is performed. By conducting each forensic examination in a consistent
manner, documenting each step along the way, digital investigators will be in a better position when

258

their work is evaluated by others in court.
 As more trace evidence is found on a compromised system, it can be combined to create a
temporal, functional, and relational reconstruct of the malware incident. In addition, information
recovered from compromised hosts can be correlated with network-level logs and memory, as well as
the malicious code itself, to obtain a full picture of the malware incident.

• Use characteristics extracted from one compromised host to search other systems on the
network for similar traces of compromise.

 Pitfalls to Avoid

Stepping in Evidence

 Don’t perform the steps outlined in this chapter on the original system.

Create a forensic duplicate of the hard drive from the original system and perform all analysis

on a working copy of this data. In this way, no alterations are made to the original evidence
during the forensic examination.

Make working copies of the forensic duplicate to ensure that any corruption or problems that
arise during a forensic examination do not ruin the only copy of the forensic duplicate.

Missed or Forgotten Evidence

 Do not skip a step in the forensic examination process for the sake of expediency.

Make an investigative plan, and then follow it. This will ensure that you include all necessary

procedures.

259

Be methodical, reviewing each area of the system that may contain trace evidence of
malware.

Document what you find as you perform your work so that it is not lost of forgotten later.
Waiting to complete documentation later generally leads to failure because details are missed
or forgotten in the fast pace of an investigation.

Failure to Incorporate Relevant Information from Other Sources

 Do not assume that you have full information about the incident or that a single person performed

the initial incident review and response.

Determine all of the people who performed field interviews, volatile data preservation, and
log analysis, and obtain any information they gathered.

Review documentation such as the Field Interview notes for information that can help focus
and direct the forensic examination. If a particular individual did not maintain documentation of
their work and findings, speak with them to obtain details.

Windows System Examination: Field Notes

Note: This document is not intended as a checklist, but rather as a guide to increase consistency of
forensic examination of compromised Windows systems. When dealing with multiple compromised
computer systems, it may be necessary to tabulate the results of each individual examination into a
single document or spreadsheet.

260

261

262

263

264

265

266

267

268

269

270

271

 Windows Analysis Tool Box

Forensic Analysis Tools for Windows Systems

In this chapter we discussed approaches to conducting a forensic examination of Windows systems
for malware and associated artifacts. There are a number of forensic analysis tools that you should be
aware of and familiar with. In this section, we explore these tool alternatives, often demonstrating their
functionality. This section can also simply be used as a “tool quick reference” or “cheat sheet,” as
there will inevitably be an instance during an investigation where having an additional tool that is useful
for a particular function would be beneficial, but while responding in the field you will have little time to

272

conduct research for or regarding the tool(s). It is important to perform your own testing and
validation of these tools to ensure that they work as expected in your environment and for your
specific needs.

Mounting Forensic Duplicates

273

274

275

Forensic Examination of Window Systems

276

277

278

279

280

Timeline Generation

281

282

Forensic Examination of Common Sources of Information on Windows
Systems

283

284

285

286

287

288

289

290

291

292

Selected Readings

Books

1. Altheide C, Carvey H. Digital Forensics with Open Source Tools Burlington, MA: Syngress;

2011.
2. Carrier B. File System Forensic Analysis Reading, MA: Addison-Wesley Professional; 2005.
3. Carvey H. Windows Registry Forensics: Advanced Digital Forensic Analysis of the Windows

Registry Burlington, MA: Syngress; 2011.
4. Carvey H. Windows Forensic Analysis DVD Toolkit Second Edition Burlington, MA:

Syngress; 2009.
5. Casey E. Digital Evidence and Computer Crime, Third Edition: Forensic Science, Computers,

and the Internet San Diego, CA: Academic Press; 2011.
6. Casey E. Handbook of Digital Forensics and Investigation San Diego, CA: Academic Press;

2009.
7. Jones K, Bejtlich R, Rose C. Real Digital Forensics: Computer Security and Incident

Response Reading, PA: Addison-Wesley Professional; 2005.

Papers

1. Bang J, Yoo B, Lee S. Analysis of Changes in File Time Attributes with File Manipulation.

Digital Investigation. 2011;7(3–4):135–144.
2. Fellows G. NTFS Volume Mounts, Directory Junctions and $Reparse. Digital

Investigation. 2007;4(3–4):116–118.
3. Fellows GH. The Joys of Complexity and the Deleted File. Digital Investigation.

2005;2(2):89–93.
4. Harms K. Forensic Analysis of System Restore Points in Microsoft Windows XP. Digital

Investigation. 2006;3(3):151–158.
5. Huebner E, Bem D, Kai Wee C. Data Hiding in the NTFS File System. Digital

Investigation. 2006;3(4):211–226.
6. Kent K, et alNational Institute of Standards and Technology. Guide to Integrating Forensic

Techniques into Incident Response. In: http://csrc.nist.gov/publications/nistpubs/800-
293

86/SP800-86.pdf ; 2006.
7. Mee V, Tryfonas T, Sutherland I. The Windows Registry as a Forensic Artefact: Illustrating

Evidence Collection for Internet Usage. Digital Investigation. 2006;Vol. 3(no. 3):166–173.
8. National Institute of Justice (NIJ). Forensic Examination of Digital Evidence: A Guide for Law

Enforcement. In: http://www.ncjrs.gov/pdffiles1/nij/199408.pdf ; 2004.
9. Nolan R, et alCarnegie Mellon Software Engineering InstituteComputer Emergency Response

Team (CERT). First Responders Guide to Computer Forensics. In:
www.cert.org/archive/pdf/FRGCF_v1.3.pdf ; 2005.

10. Nolan RCarnegie Mellon Software Engineering InstituteComputer Emergency Response
Team (CERT). First Responders Guide to Computer Forensics: Advanced Topics. In:
www.cert.org/archive/pdf/05hb003.pdf ; 2005.

11. Scientific Working Group on Digital Evidence (SWGDE). SWGDE Technical Notes on
Microsoft Windows 7. In: http://www.swgde.org/documents/current-
documents/SWGDE%20Technical%20Notes%20on%20Microsoft%20Windows%207.pdf
; 2010.

12. Scientific Working Group on Digital Evidence (SWGDE). SWGDE Technical Notes on
Microsoft Vista v1.0. In: http://www.swgde.org/documents/current-documents/2008-02-
08%20SWGDE%20Technical%20Notes%20on%20Windows%20Vista%20v1.0.pdf ;
2008.

13. Zhu Y, Gladyshev P, James J. Using ShellBag Information to Reconstruct User Activities
DFRWS2009. In: http://www.dfrws.org/2009/proceedings/p69-zhu.pdf ; 2009.

14. Zhu Y, James J, Gladyshev P. A Comparative Methodology for the Reconstruction of
Digital Events Using Windows Restore Points. Digital Investigation. 2009;Vol. 6(no. 1–
2):8–15.

1 http://www.mountimage.com.
2 http://wetstonetech.com/cgi-bin/shop.cgi?view,2.
3 http://ssdeep.sourceforge.net.
4 http://www.avira.com/.
5 Fellows, G. (2010). WinRAR Temporary Folder Artefacts, Digital Investigation, Vol. 7, no.

1–2, pp. 9–13.
6 http://redwolfcomputerforensics.com/downloads/parse_prefetch_info_v1.4.zip.
7 http://www.nirsoft.net/utils/win_prefetch_view.html.
8 http://www.microsoft.com/downloads/en/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-

f8d975cf8c07.
294

9 http://www.eventlogxp.com/.
10 http://www.syngress.com/information-security-and-system-administrators/Microsoft-Log-

Parser-Toolkit/.
11 http://accessdata.com/products/computer-forensics/decryption.
12 www.openwall.com/john/.
13 http://www.oxid.it/cain.html.
14 Pittman R., and Shaver D. (2009). Windows Forensic Analysis in Handbook of Digital

Forensics and Investigation (Casey, E, ed.) Burlington, MA: Elsevier.
15 Harms, K. (2006). Forensic Analysis of System Restore Points in Microsoft Windows XP,

Journal of Digital Investigation, Vol. 3, no. 3, pp. 107–184.
16 Zhu, Y., James, J., and Gladyshev, P. (2009). A Comparative Methodology for the

Reconstruction of Digital Events Using Windows Restore Points, Digital Investigation, Vol. 6,
no. 1–2, pp. 8–15.

17 http://liveview.sourceforge.net/.
18 http://www.microsoft.com/security/pc-security/malware-removal.aspx.

295

Chapter 4

Legal Considerations

296

Solutions in this chapter:

• Framing the Issues
• General Considerations
The Legal Landscape

• Sources of Investigative Authority
Jurisdictional Authority
Private Authority
Statutory/Public Authority

• Statutory Limits on Authority
Stored Data
Real-time Data
Protected Data

• Tools for Acquiring Data
Business Use
Investigative Use
Dual Use

• Acquiring Data Across Borders
Workplace Data in Private or Civil Inquiries
Workplace Data in Government or Criminal Inquiries

• Involving Law Enforcement
Victim Reluctance
Victim Misperception
The Law Enforcement Perspective
Walking the Line

• Improving Chances for Admissibility
Documentation
Preservation
Chain of Custody

 Legal Considerations Appendix and Web Site

The symbol references throughout this chapter denote the availability of additional related
297

materials appearing in the Legal Considerations appendix at the end of this chapter. Further updates
for this chapter can be found on the companion Malware Field Guides Web site, at
http://www.malwarefieldguide.com/Chapter4.html.

Framing The Issues

This chapter endeavors to explore the legal and regulatory landscape when conducting malware
analysis for investigative purposes, and to discuss some of the requirements or limitations that may
govern the access, preservation, collection, and movement of data and digital artifacts uncovered
during malware forensic investigations.
 This discussion, particularly as presented here in abbreviated Field Guide format, does not
constitute legal advice, permission, or authority, nor does this chapter or any of the book’s contents
confer any right or remedy. The goal and purpose instead is to offer assistance in critically thinking
about how best to gather malware forensic evidence in a way that is reliable, repeatable, and
ultimately admissible. Because the legal and regulatory landscape surround-ing sound methodologies
and best practices is admittedly complicated, evolving, and often unclear, do identify and consult with
appropriate legal counsel and obtain necessary legal advice before conducting any malware forensic
investigation.

General Considerations

Think early about the type of evidence you may encounter.

• Seek to identify, preserve, and collect affirmative evidence of responsibility or guilt that
attributes knowledge, motive, and intent to a suspect, whether an unlikely insider or an
external attacker from afar.

• Often as important is evidence that exculpates or excludes from the realm of possible liability
for the actions or behavior of a given subject or target.

• The lack of digital artifacts suggesting that an incident stemmed from a malfunction,
misconfiguration, or other non-human initiated systematic or automated process is often as
important to identify, preserve, and collect as affirmative evidence.

298

Be dynamic in your investigative approach.

• Frame and re-frame investigative objectives and goals early and often.
• Design a methodology ensuring that investigative steps will not alter, delete, or create evidence,

tip off a suspect, or otherwise compromise the investigation.
• Create and maintain at all times meticulous step-by-step analytical and chain of custody

documentation.
• Never lose control over the evidence.

The Legal Landscape

Navigate the legal landscape by understanding legal permissions or restrictions as they
relate to the investigator, the victim, the digital evidence, the investigatory tools, and the
investigatory findings.
 The Investigator

• The jurisdiction where investigation occurs may require special certification or licensing to
conduct digital forensic analysis.

• Authority to investigate must exist, and that authority is not without limit.
• The scope of the authorized investigation will likely be defined and must be well understood.

 The Victim

• Intruding on the privacy rights of relevant victim data custodians must be avoided.
• Other concerns raised by the victim might limit access to digital evidence stored on stand-alone

devices.
• With respect to network devices, collection, preservation, and analysis of user-generated

content (as compared to file or system metadata analysis) are typically handled pursuant to a
methodology defined or approved by the victim.

• It is important to work with the victim to best understand the circumstances under which live
network traffic or electronic communications can be monitored.

 The Data

299

• Encountered data, such as personal, payment card, health, financial, educational, insider, or
privileged information, may be protected by state or federal law in some way.

• Methods exist to obtain overseas evidence necessary to forensic analysis.
• In certain jurisdictions, restrictions may exist that prohibit the movement or transportation of

relevant data to another jurisdiction.

 The Tools

• In certain jurisdictions, limitations relating to the types of investigative tools available to conduct
relevant forensic analysis may exist.

• The functionality and nature of the use of investigative tools implicate these limitations.

 The Findings

• Understanding evidentiary requirements early on will improve chances for admissibility of
relevant findings down the road.

• Whether and when to involve law enforcement in the malware investigation is an important
determination.

Sources of Investigative Authority

Jurisdictional Authority

Because computer forensics, the discipline, its tools, and training, have grown
exponentially in recent years, legislation has emerged in the United States that often
requires digital investigators to obtain state-issued licensure before engaging in computer
forensic analysis within a state’s borders.

300

Figure 4.1 Sources of investigative authority

 When Private Investigation Includes Digital Forensics

• Approximately 45 states maintain private investigation laws that generally require the
investigator to submit an application, pay a fee, possess certain experience requirements, pass
an examination, and periodically renew the license once granted.1

• Many state laws generally define private investigation to broadly include the “business of
securing evidence to be used before investigating committees or boards of award or
arbitration or in the trial of civil or criminal cases and the preparation therefore.”2

• Although such laws do not appear to implicate digital forensics conducted for investigatory
purposes by internal network administrators or IT departments on data residing within a
corporate environment or domain,3 once the investigation expands beyond the enterprise
environment (to other networks or an Internet service provider, or involves the
preservation of evidence for the pursuit of some legal right or remedy), licensing
regulation appears to kick in within several state jurisdictions.

 Where Digital Forensics Requires PI Licensure

301

• Roughly 32 states’ statutes can be interpreted to include digital forensic investigators, like those
in force in Florida, Georgia, Michigan, New York, Nevada, Oregon, Pennsylvania, South
Carolina, Texas, Virginia, and Washington.

• On the other hand, some states exempt “technical experts”4 or “any expert hired by an
attorney at law for consultation or litigation purposes”5 from private investigation licensing
requirements. Indeed, at least one state, Delaware, has specifically excluded from regulation
“computer forensic specialists,” defined as “persons who interpret, evaluate, test, or analyze
pre-existing data from computers, computer systems, networks, or other electronic media,
provided to them by another person where that person owns, controls, or possesses said
computer, computer systems, networks, or electronic media.”6 A subcommittee of the
American Bar Association (ABA) has urged the same result.7

• Given that most state licensing requirements vary and may change on a fairly regular basis,
consult the appropriate state agency in the jurisdiction where you will perform digital forensic
analysis early and often. Navigate to http://www.crimetime.com/licensing.htm or
http://www.pimagazine.com/private_investigator_license_requirements.html to find relevant

links pertaining to your jurisdiction and obtain qualified legal advice to be sure.

 Potential Consequences of Unlicensed Digital Forensics

• Some legislation contains specific language creating a private right of action for licensing
violations.

• Indirect penalties may include equitable relief stemming from unlawful business practice in the
form of an injunction or restitution order, exclusion of any evidence gathered by the unlicensed
investigator, or a client’s declaration of breach of contract and refusal to pay for the
investigator’s services.

Private Authority

Authorization to conduct digital forensic analysis, and the limits of that authority,
depend not just on how and where the data to be analyzed lives, but also on the person
conducting the analysis. The digital investigator derives authority to investigate from
different sources with different constraints on the scope and methodology governing that
investigation.

302

 Company Employee

• Internal investigators assigned to work an investigative matter on behalf of their corporation
often derive authority to investigate from well-defined job descriptions tied to the
maintenance and security of the corporate computer network.

• Written incident response policies may similarly inform the way in which a network
administrator or corporate security department uses network permissions and other granted
resources to launch and carry out corporate investigative objectives.

• Chains of corporate command across information security, human resources, legal, and
management teams will inform key investigative decisions about containment of ongoing
network attacks, how best to correct damage to critical systems or data, whether and the
extent to which alteration of network status data for investigative purposes is appropriate, or
even the feasibility of shutting down critical network components or resources to facilitate the
preservation of evidence.

 Retained Expert

• Internal considerations also indirectly source the authority of the external investigator hired
by corporate security or in-house counsel or outside counsel on behalf of the victim
corporation.

• More directly, the terms and conditions set forth in engagement letters, service agreements,
o r statements of work often specifically authorize and govern the external investigator’s
access to and analysis of relevant digital evidence.

• Non-disclosure provisions with respect to confidential or proprietary corporate information
may not only obligate the digital investigator to certain confidentiality requirements, but also
may proscribe the way in which relevant data can be permissibly transported (i.e., hand-
carried not couriered or shipped) or stored for analysis (i.e., on a private network with no
externally facing connectivity).

• Service contracts may require special treatment of personal, payment card, health, insider,
and other protected data that may be relevant to forensic investigation (a topic addressed later
in the “Protected Data” section of this chapter).

• A victim corporation’s obligations to users of the corporate network may further limit grants
of authority to both the internal and external digital investigator.

An employee’s claims of a reasonable expectation of privacy to data subject to digital forensic
analysis may be defeated if the employer—through an employment manual, policy, or
contract, a banner displayed at user login, or some other means—has provided notice to

303

the employee otherwise.8
Whether analysis may be conducted of a suspect file residing on a workstation dedicated for
onsite use by the company’s third party auditors will depend on the written terms of a third-
party service or user agreement.

• Sanctions ranging from personnel or administrative actions, to civil breach of contract or

privacy actions, to criminal penalties can be imposed against investigators who exceed
appropriate authority.

Statutory/Public Authority

Law enforcement conducted digital forensic investigations are authorized from public
sources.
 The Special Case of Law Enforcement

• Federal and state statutes authorize law enforcement to conduct malware forensic
investigations with certain limitations.9

• Public authority for digital investigators in law enforcement comes with legal process, most
often in the form of grand jury subpoenas, search warrants, or court orders.

• The type of process often dictates the scope of authorized investigation, both in terms of
what, where, and the circumstances under which electronic data may be obtained and
analyzed.

• Attention to investigating within the scope of what has been authorized is particularly critical in
law enforcement matters where evidence may be suppressed and charges dismissed
otherwise.10

 Acting in Concert with Law Enforcement

• Retained experts may be deemed to be acting in concert with law enforcement—and therefore
similarly limited to the scope of the authorized investigation—if the retained expert’s
investigation is conducted at the direction of, or with substantial input from, law enforcement.

• For more information, refer to the discussion of whether, when, and how to involve law
enforcement in conducting malware forensic investigations, appearing later in the “Involving
Law Enforcement” section of this chapter.

304

Statutory Limits on Authority

In addition to sources and limits of authority tied to the person conducting the analysis, authority also
comes from regulations that consider aspects of the relevant data itself; namely the type of data, the
quality of the data, the location of the data, when the data will be used, and how the data will be
shared.

Stored Data

Stored data relevant to a malware-related investigation may not be available under some
circumstances, depending on the type of data, the type of network, and to whom disclosure
of the data is ultimately made. Authorization to access stored data depends on whether the
data is stored by a private or public provider, and if by a public provider, whether the data
sought to be accessed constitutes content or non-content information.11

 Private Provider

• Authorized access to stored e-mail data on a private network that does not provide mail
service to the public generally would not implicate Electronics Communications Privacy Act
(ECPA) prohibitions against access and voluntary disclosure, even to law enforcement.12

• E-mail content, transactional data relating to e-mail transmission, and information about the
relevant user on the network can be accessed and voluntarily disclosed to anyone at will.

 Public Provider—Non-Content

• If the network is a public provider of e-mail service, like AOL or Yahoo! for example, content
of its subscribers’ e-mail, or even non-content subscriber or transactional data relating to
such e-mails in certain circumstances, cannot be disclosed, unless certain exceptions apply.

• A public provider can voluntarily disclose non-content customer subscriber and transactional
information relating to a customer’s use of the public provider’s mail service:

1. To anyone other than law enforcement
2. To law enforcement:

305

a. With the customer’s lawful consent; or
b. When necessary to protect the public provider’s own rights and property; or
c. If the public provider reasonably believes an emergency involving immediate danger of death

or serious bodily injury requires disclosure.13

 Public Provider—Content

• With respect to the content of a customer subscriber’s e-mail, a public provider can voluntarily
disclose to law enforcement:

a. With the customer’s lawful consent; or
b. When necessary to protect the public provider’s own rights and property; or
c . If the public provider inadvertently obtains content and learns that it pertains to the

commission of a crime; or
d. If the public provider reasonably believes an emergency involving immediate danger of death

or serious bodily injury requires disclosure.14

• Of course, if the public provider is served with a grand jury subpoena or other legal process

compelling disclosure, that is a different story.
• Otherwise, through the distinctions between content and non-content and disclosure to a

person and disclosure to law enforcement, ECPA endeavors to balance private privacy with
public safety.

Real-time Data

For digital investigators who need to real-time monitor the content of Internet
communications as they are happening, it is important to understand the requirements of
and exceptions to the federal Wiretap Act, the model for most state statutes on interception
as well.
 Content

• The Wiretap Act, often referred to as “Title III,” protects the privacy of electronic
communications by prohibiting any person from intentionally intercepting, or attempting to

306

intercept, their contents by use of a device.15

• In most jurisdictions, electronic communications are “intercepted” within the meaning of the
Wiretap Act only when such communications are acquired contemporaneously with their
transmission, as opposed to stored after transmittal.16

• There are three exceptions to the Wiretap Act relevant to the digital investigator: the provider
exception; consent of a party; and the computer trespasser exception.

 Content—The Provider Exception

• The provider exception affords victim corporations and their retained digital investigators
investigating the unauthorized use of the corporate network fairly broad authority to monitor
and disclose to others (including law enforcement) evidence of unauthorized access and use,
so long as that effort is tailored to both minimize interception and avoid disclosure of
private communications unrelated to the investigation.17

• In practical terms, while the installation of a sniffer to record the intruder’s communication with
the victim network in an effort to combat ongoing fraudulent, harmful, or invasive activity
affecting the victim entity’s rights or property may not violate the Wiretap Act, the
provider exception does not authorize the more aggressive effort to “hack back” or otherwise
intrude on an intruder by gaining unauthorized access to the attacking system (likely an
innocent compromised machine anyway).

• Do not design an investigative plan to capture all traffic to the victimized network; instead avoid
intercepting traffic communications known to be innocuous.

 Content—The Consent Exception

• The consent exception authorizes interception of electronic communications where one of the
parties to the communication18 gives explicit consent or is deemed upon actual notice to
have given implied consent to the interception.19

• Guidance from the Department of Justice recommends that “organizations should consider
deploying written warnings, or “banners,” on the ports through which an intruder is likely to
access the organization’s system and on which the organization may attempt to monitor an
intruder’s communications and traffic.

• If a banner is already in place, it should be reviewed periodically to ensure that it is
appropriate for the type of potential monitoring that could be used in response to a cyber
attack.20

• If banners are not in place at the victim company, consider whether the obvious notice of such

307

banners would make monitoring of the ongoing activities of the intruder more difficult (and
unnecessarily so where the provider exception remains available) before consulting with
counsel to tailor banner content best suited to the type of monitoring proposed.

• Solid warnings often advise users that their access to the system is being monitored, that
monitoring data may be disclosed to law enforcement, and that use of the system constitutes
consent to surveillance.

• Keep in mind that while the more common network ports are bannerable, the less common
(the choice of the nimble hacker) often are not.

 Content—The Computer Trespasser Exception—Acting in Concert with Law Enforcement

• The computer trespasser exception gives law enforcement the ability with the victim provider’s
consent to intercept communications exclusively between the provider and an intruder who
has gained unauthorized access to the provider’s network.21

• This exception is not available to digital investigators retained by the provider, but only to those
acting in concert with law enforcement.

• Do not forget the interplay of other limits of authority discussed elsewhere in this chapter,
bearing in mind that such limitations may trump exceptions otherwise available under the
Wiretap Act to digital investigators planning to conduct network surveillance on a victim’s
network.

 Non-Content

• For digital investigators who need only collect real-time the non-content portion of Internet
communications—the source and destination IP address associated with a network user’s
activity, the header and “hop” information associated with an e-mail sent to or received by
a network user, the port that handled the network user’s communication a network user uses
to communicate—be mindful that an exception to the federal Pen Registers and Trap and
Trace Devices statute22nonetheless must apply for the collection to be legal.

• Although the statute generally prohibits the real-time capture of traffic data relating to electronic
communications, provider and consent exceptions similar and broader to those found in the
Wiretap Act are available.

• Specifically, corporate network administrators and the digital investigators they retain to assist
have fairly broad authority to use a pen/trap device on the corporate network without court
order so long as the collection of non-content:

Relates to the operation, maintenance, and testing of the network
308

Protects the rights or property of the network provider
Protects network users from abuse of or unlawful use of service
Is based on consent

• Remember that surveillance of the content of any communication would implicate the separate

provisions and exceptions of the Wiretap Act.

Protected Data

For the digital investigator tasked with performing forensic analysis on malicious code
designed to access, copy, or otherwise remove valuable sensitive, confidential, or proprietary
information, understanding the nature of federal and state protections of this data will help
inform necessary investigative and evidentiary determinations along the way.
 Federal Protection of Financial Information

• Responding to an incident at a financial institution that compromises customer accounts may
implicate the provisions of the Gramm Leach Bliley Act, also known as the Financial Services
Modernization Act of 1999, which protects the privacy and security of consumer financial
information that financial institutions collect, hold, and process.23

• The Act generally defines a “financial institution” as any institution that is significantly
engaged in financial activities.”24

• The regulation only protects consumers who obtain financial products and services primarily for
person, family, or household purposes.

• The regulation:

Requires a financial institution in specified circumstances to provide notice to customers about
its privacy policies and practices;
Describes the conditions under which a financial institution may disclose non-public personal
information about consumers to non-affiliated third parties; and
Provides a method for consumers to prevent a financial institution from disclosing that
information to most non-affiliated third parties by “opting out” of that disclosure, subject to
certain limited exceptions.

• In addition to these requirements, the regulations set forth standards for how financial

309

institutions must maintain information security programs to protect the security, confidentiality,
and integrity of customer information. Specifically, financial institutions must maintain adequate
administrative, technical, and physical safeguards reasonably designed to:

Ensure the security and confidentiality of customer information;
Protect against any anticipated threats or hazards to the security or integrity of such
information; and
Protect against unauthorized access to or use of such information that could result in substantial
harm or inconvenience to any customer.

• Be careful when working with financial institution data to obtain and document the scope of

authorization to access, transport, or disclose such data to others.25

 Federal Protection of Health Information

• The Health Insurance Portability and Accountability Act (HIPAA) 26 applies generally to
covered entities (health plans, health-care clearinghouses, and health-care providers who
transmit any health information in electronic form),27 and provides rules designed to ensure the
privacy and security of individually identifiable health information (“protected health
information”), including such information transmitted or maintained in electronic media
(“electronic protected health information”).

• HIPAA specifically sets forth security standards for the protection of electronic protected
health information.

The regulation describes the circumstances in which protected health information may be used
and/or disclosed, as well as the circumstances in which such information must be used
and/or disclosed.
The regulation also requires covered entities to establish and maintain administrative, physical,
and technical safeguards to:

Ensure the confidentiality, integrity, and availability of all electronic protected health information
the covered entity creates, receives, maintains, or transmits;

Protect against any reasonably anticipated threats or hazards to the security or integrity of such
information;

Protect against any reasonably anticipated uses or disclosures of such information that are not
otherwise permitted or required by the regulation; and

Ensure compliance with the regulation by the covered entity’s workforce.
310

• In February 2009, the American Recovery and Reinvestment Act (ARRA) became law,
subjecting business associates—vendors, professional service providers, and others that
perform functions or activities involving protected health information for or on behalf of
covered entities—to many of the health information protection obligations that HIPAA
imposes on covered entities.28

• Given these stringent requirements, investigative steps involving the need to access, review,
analyze, or otherwise handle electronic protected health information should be thoroughly
vetted with counsel to ensure compliance with the HIPAA and ARRA security rules and
obligations.29

 Federal Protection of Public Company Information

• The Sarbanes-Oxley Act (SOX)30 broadly requires public companies to institute corporate
governance policies designed to facilitate the prevention, detection, and handling of fraudulent
acts or other instances of corporate malfeasance committed by insiders.

• Other provisions of SOX were clearly designed to deter and punish the intentional destruction
of corporate records.

• In the wake of SOX, many public companies overhauled all kinds of corporate policies that
may also implicate more robust mechanisms for the way in which financial and other digital
corporate data is handled and stored.

• During the early assessment of the scope and limits of authority to conduct any internal
investigation at a public company, be mindful that a SOX-compliant policy may dictate or limit
investigative steps.

 Other Federally Protected Information

• Information About Children: The Child Online Privacy Protection Act (COPPA) 31 prohibits
unfair or deceptive acts or practices in connection with the collection, use, and/or disclosure
of personal information from and about children on the Internet. The Juvenile Justice and
Delinquency Prevention Act,32 governing both the criminal prosecution and the delinquent
adjudication of minors in federal court, protects the juvenile defendant’s identity from public
disclosure.33 If digital investigation leads to a child, consult counsel for guidance on the
restrictions imposed by these federal laws.

• Child Pornography: 18 U.S.C. § 1466A proscribes among other things the possession of
obscene visual representations of the sexual abuse of children. Consider including in any digital

311

forensic services contract language that reserves the right to report as contraband to
appropriate authorities any digital evidence encountered that may constitute child
pornography.

• Student Educational Records: The Family Education Rights and Privacy Act34 prevents
certain educational institutions from disclosing a student’s “personally identifiable education
information,” including grades and student loan information, without the student’s written
permission. Again, authority to access and disclose this type of information should be properly
vetted with the covered educational institution or its counsel.

• Payment Card Information: The Payment Card Industry Data Security Standards (PCI
DSS) established common industry security standards for storing, transmitting, and using
credit card data, as well as managing computer systems, network devices, and the software
used to store, process, and transmit credit card data. According to these established
guidelines, merchants who store, process, or transmit credit card information, in the event of a
security incident, must take immediate action to investigate the incident, limit the exposure of
cardholder data, make certain disclosures, and report investigation findings. When handling
PCI data during the course of digital investigation, be sure to understand these heightened
security standards and requirements for disclosure and reporting.

• Privileged Information: Data relevant to the digital investigator’s analysis may constitute or
be commingled with information that is protected by the attorney–client privilege or the
attorney work product doctrine. Digital investigator access to or disclosing of that data, if not
performed at the direction of counsel, may be alleged to constitute a waiver of these special
protections.

 State Law Protections

• Forty-four states have passed a data breach notification law requiring owners of computerized
data that include consumer personal information to notify any affected consumer following a
data breach that compromises the security, confidentiality, or integrity of that personal
information.

• The statutes generally share the same key elements, but vary in how those elements are
defined, including the definitions of “personal information,” the entities covered by the statute,
the kind of breach triggering notification obligations, and the notification procedures
required.35

• Personal information has been defined across these statutes to include some or all of the
following:

Social Security, Alien Registration, tribal, and other federal and state government issued
312

identification numbers
Drivers’ license and non-operating license identification numbers
Date of birth
Individuals’ mothers’ maiden names
Passport number
Credit card and debit card numbers
Financial account numbers (checking, savings, other demand deposit accounts)
Account passwords or personal identification numbers (PINs)
Routing codes, unique identifiers, and any other number or information that can be used to
access financial resources
Medical information or health insurance information
Insurance policy numbers
Individual taxpayer identification numbers (TINs), employer taxpayer identification number
(EINs), or other tax information
Biometric data (fingerprints, voice print, retina or iris image)
Individual DNA profile data
Digital signature or other electronic signature
Employee identification number
Voter identification numbers
Work-related evaluations

• Most statutes exempt reporting if the compromised information is “encrypted,” although the

statues do not always set forth the standards for such encryption. Some states exempt
reporting if, under all circumstances, there is no reasonable likelihood of harm, injury, or fraud
to customers. At least one state requires a “reasonable investigation” before concluding no
reasonable likelihood of harm.

• Notification to the affected customers are ordinarily made in writing, electronically,
telephonically, or, in the case of large-scale breaches, through publication. Under most state
statutes, Illinois being an exception, notification can be delayed if it is determined that the
disclosure will impede or compromise a criminal investigation.

• Understanding the breach notification requirements of the state jurisdiction in which the
investigation is conducted is important to the integrity of the digital examiner’s work, as the
scope and extent of permissible authority to handle relevant personal information may be
different than expected. Consult counsel for clear guidance on how to navigate determinations
of encryption exemption and assess whether applicable notice requirements will alter the
course of what otherwise would have been a more covert operation designed to avoid tipping

313

the subject or target.

Tools for Acquiring Data

The digital investigator’s selection of a particular tool often has legal implications. Nascent judicial
precedent in matters involving digital evidence has yielded no requirement that a particular tool be
used for a particular purpose. Instead, reliability, a theme interwoven throughout this chapter and this
entire Field Guide, often informs whether and the extent to which the digital investigator’s findings are
considered.

Business Use

Output from tools used during the ordinary course of business is commonly admitted as
evidence absent some showing of alteration or inaccuracy.
 Ordinary Course

• Intrusion detection systems
• Firewalls, routers, VPN appliances
• Web, mail, and file servers

 Business Purpose

• Output from ordinary course systems, devices, and servers constitutes a record generated for a
business—a class of evidence for which there exists recognized indicia of reliability.

• Documentation and custodial testimony will support admissibility of such output.

Investigative Use

Output from tools deployed for an investigatory purpose is evaluated differently. Which
tool was deployed, whether the tool was deployed properly, and how and across what media

314

the tool was deployed are important considerations to determinations of reliability.
 Tool

• Simple traceroutes
• WHOIS lookups
• Other network-based tools

 Deployment

• Inside the victim network

Was deployment in furtherance of maintaining the integrity and safety of the victim network
environment?
Was deployment consistent with documented internal policies and procedures?

• Outside the victim network

Did deployment avoid the possibility of unauthorized access or damage to other systems?
Did deployment avoid violating other limits of authority discussed earlier in this chapter?

 Findings

• Repeatable
• Supported by meticulous note taking
• Investigative steps were taken consistent with corporate policy and personal, customary, and

best practice.
• Investigative use of tools was consistent without sound legal advice.

Dual Use

Hacker tools and tools to affect security or conduct necessary investigation are often one
in the same. The proliferation of readily downloadable “hacker tools” packaged for wide
dispersion has resulted in legal precedent in some jurisdictions that inadequately addresses
this “dual use,” causing public confusion about where the line is between the two and what

315

the liabilities are when that line is crossed.
 Multiple Countries—Council of Europe Convention of Cybercrime36

• What It Is:

Legally binding multilateral instrument that addresses computer-related crime.
Forty-three countries have signed or ratified it, including the United States.37

Each participating country agrees to ensure that its domestic laws criminalize several categories
of computer-related conduct.
One such category, titled “Misuse of Devices,” intends to criminalize the intentional possession
of or trafficking in “hacker tools” designed to facilitate the commission of a crime.

• The Problem:

Software providers, research and security analysts, and digital investigators might get
unintentionally but nonetheless technically swept up in less than carefully worded national laws
implemented by participating countries.
The official Commentary on the substantive provisions of the Convention that include Article 6
provides little further illumination,38 but it does seem to exclude application to tools that might
have both legitimate and illegitimate purposes.

 United Kingdom—Computer Misuse Act/Police and Justice Act

• What It Is:

Proposed amendments to the Computer Misuse Act of 1990 to be implemented through the
Police and Justice Act of 2006.39

Designed to criminalize the distribution of hacker tools.

• The Problem:

No dual-use exclusion.
Simple sharing of common security tools with someone other than a known and trusted
colleague could violate the law.
“Believed likely to be misused” standard of liability is vague.
Prosecution guidance40 is similarly vague.

316

 Germany—Amendments to Section 202c

• What It Is

Amendments to the German Code41 broadly prohibiting unauthorized users from disabling or
circumventing computer security measures in order to access secure data.
The amendments also proscribe the manufacturing, programming, installing, or spreading of
software that has the primary goal of circumventing security measures.

• The Problem

Security analysts throughout the globe have criticized the law as vague, overbroad, and
impossible to comply with.
German security researchers have pulled code and other tools offline for fear of prosecution.

 United States—Computer Fraud and Abuse Act

• The Issue

Despite the United States’ participation in the Council of Europe Convention on Cybercrime,
Congress has not amended the Computer Fraud and Abuse Act (CFAA) to include
“devices.”
The CFAA does create misdemeanor criminal liability for “knowingly and with intent to
defraud traffic[king] in any password or similar information through which a computer may be
accessed without authorization.”42

• The Problem

What does “similar information” mean? Does it include the software and tools commonly used
by digital investigators to respond to a security incident? Is the statute really no different than
the British and German statutes?
Here is the party line, appearing in a document titled “Frequently Asked Questions about the
Council of Europe Convention on Cybercrime,”43 released by the U.S. Department of Justice
when ratification of the Convention was announced:

317

Figure 4.2 U.S. Department of Justice, “Frequently asked questions about the Council of Europe
Convention on Cybercrime”

The Lesson

• Pay close attention to the emerging laws on misuse of devices, particularly when conducting
forensic analysis in the 43 countries that have committed to implement the Convention and its
provisions.

• When in doubt, obtain appropriate legal advice.

Acquiring Data across Borders

In the United States, subject to the sources and limitations of authority discussed earlier in this
chapter, digital investigators are often tasked early in the course of internal investigations to thoroughly
preserve, collect, and analyze electronic data residing across corporate networks. At times, however,
discovery and other data preservation obligations reach outside domestic borders to, for example, a
foreign subsidiary’s corporate network, and may conflict with foreign data protection laws that treat
employee data residing on company computers, servers, and equipment as the personal property of

318

the individual employee and not the corporation.

Workplace Data in Private or Civil Inquiries

Handling of workplace data depends on the context of the inquiry. Although more
formal mechanisms exist for the collection of digital evidence pursuant to government or
criminal inquiries, country-specific data privacy laws will govern private or civil inquiries.
 Europe

• Although inapplicable to data efforts made in the context of criminal law enforcement or
government security matters, the 1995 European Union Data Protection Directive,44 a starting
point for the enactment of country-specific privacy laws within the 27 member countries that
subscribe to it,45 sets forth 8 general restrictions on the handling of workplace data46:

Limited Purpose: Data should be processed for a specific purpose and subsequently used or
communicated only in ways consistent with that purpose.
Integrity: Data should be kept accurate, up to date, and no longer than necessary for the
purposes for which collected.
Notice: Data subjects should be informed of the purpose of any data processing and the
identity of the person or entity determining the purposes and means of processing the data.
Access/Consent: Data subjects have the right to obtain copies of personal data related to
them, rectify inaccurate data, and potentially object to the processing.
Security: Appropriate measures to protect the data must be taken.
Onward Transfer: Data may not be sent to countries that do not afford “adequate” levels of
protection for personal data.
Sensitive Data: Additional protections must be applied to special categories of data revealing
the data subject’s racial or ethnic origin, political opinions, religious or philosophical beliefs,
trade union membership, health, or sex life.
Enforcement: Data subjects must have a remedy to redress violations.

• With respect to the restriction on onward transfer, no definition of “adequate” privacy

protection is provided in the European (EU) Directive. Absent unambiguous consent obtained
from former or current employee data subjects that affords the digital investigator the ability to
transport the data back to the lab,47 none of the other exceptions to the “onward transfer”

319

prohibition in the EU Directive appear to apply to internal investigations voluntarily conducted
by a victim corporation responding to an incident of computer fraud or abuse. As such, the
inability to establish the legal necessity for data transfers for fact finding in an internal inquiry
may require the digital investigator to preserve, collect, and analyze relevant data in the
European country where it is found.

 Data Transfers from Europe to the United States

• When the EU questioned whether “adequate” legal protection for personal data potentially
blocked all data transfers from Europe to the United States, the U.S. Department of
Commerce responded by setting up a Safe Harbor framework imposing safeguards on the
handling of personal data by certified individuals and entities.48

• In 2000, the EU approved the Safe Harbor framework as “adequate” legal protection for
personal data, approval that binds all the member states to the Directive.49

• A Safe Harbor certification by the certified entity amounts to a representation to European
regulators and individuals working in the EU that “adequate” privacy protection exists to
permit the transfer of personal data to that U.S. entity.50

• Safe Harbor certification may nonetheless conflict with the onward transfer restrictions of
member state legislation implemented under the Directive, as well as “blocking statutes,” such
as the one in France that prohibits French companies and their employees, agents, or officers
from disclosing to foreign litigants or public authorities information of an “economic,
commercial, industrial, financial, or technical nature.”51

Workplace Data in Government or Criminal Inquiries

Other formal and informal mechanisms to obtain overseas digital evidence may be useful
in the context of an internal investigation, to comply with U.S. regulatory requirements, or
when a victim company makes a criminal referral to law enforcement.
 Mutual Legal Assistance Request (MLAT)

• Parties to a bilateral treaty that places an unambiguous obligation on each signatory to provide
assistance in connection with criminal and in some instances regulatory matters may make
requests between central authorities for the preservation and collection of computer media
and digital evidence residing in their respective countries.52

320

• The requesting authority screens and forwards requests from its own local, state, or national
law enforcement entities, and the receiving authority then has the ability to delegate execution
of the request to one of its entities.

• For foreign authorities seeking to gather evidence in the United States, the U.S. Department of
Justice is the central authority, working through its Office of International Affairs.

• The central authority at the receiving end of an MLAT request may be very reluctant to
exercise any discretion to comply. That being said, most central authorities are incentivized to
fulfill MLAT requests so that similar accommodation will accompany requests in the other
direction.

 Letter Rogatory

• A less reliable, more time-consuming mechanism of the MLAT is the letter rogatory or “letter
of request,” which is a formal request from a court in one country to “the appropriate judicial
authorities” in another country requesting the production of relevant digital evidence.53

• The country receiving the request, however, has no obligation to assist.
• The process can take a year or more.

 Informal Assistance

• In addition to the widely known Council of Europe and G8, a number of international
organizations are attempting to address the difficulties digital investigators face in conducting
network investigations that so often involve the need to preserve and analyze overseas
evidence.

• Informal assistance and support through the following organizations may prove helpful in
understanding a complicated international landscape:

Council of Europe Convention of Cybercrime
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?
NT=185&CM=1&CL=ENG (and more generally)
http://www.coe.int/t/dc/files/themes/cybercrime/default_EN.asp?
G8 High-Tech Crime Subgroup
(Data Preservation Checklists)
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contact/24%208%20DataPreservationChecklists_en.pdf
Interpol
Information Technology Crime—Regional Working Parties
http://www.interpol.int/public/TechnologyCrime/Default.asp

321

European Network of Forensic Science Institutes
(Memorandum signed for International Cooperation in Forensic Science)
http://www.enfsi.eu/page.php?uid=1&nom=153
Asia-Pacific Economic Cooperation
Electronic Commerce Steering Group
http://www.apec.org/apec/apec_groups/committee_on_trade/electronic_commerce.html
Organization for Economic Cooperation & Development
Working Party on Information Security & Privacy
(APEC-OECD Workshop on Malware—Summary Record—April 2007)
http://www.oecd.org/dataoecd/37/60/38738890.pdf
Organization of American States
Inter-American Cooperation Portal on Cyber-Crime
http://www.oas.org/juridico/english/cyber.htm

Involving Law Enforcement

Whether a victim company chooses to do nothing, pursue civil remedies, or report an incident to law
enforcement affects the scope and nature of the work of the digital investigator. Analysis of identified
malware might become purely academic once the intrusion is contained and the network secured.
Malware functionality might be the subject of written or oral testimony presented in a civil action when
the victim company seeks to obtain monetary relief for the damage done. The possibility of criminal
referral adjusts the investigative landscape as well. Understanding the process victim corporations go
through to decide about whether and when to involve law enforcement will help realize relevant
consequences for the digital investigator.

Victim Reluctance

Victim companies are often reluctant to report incidents of computer crime.54

• The threat of public attention and embarrassment, particularly to shareholders, often casts its

cloud over management.

322

• Nervous network administrators, fearful of losing their jobs, perceive themselves as having
failed to adequately protect and monitor relevant systems and instead focus on post-
containment and prevention.

• Legal departments, having determined that little or no breach notification to corporate
customers was required in the jurisdictions where the business operates, would rather not
rock the boat.

• Audit committees and boards often would rather pay the cyber extortionist’s ransom demand
in exchange for a “promise” to destroy the stolen sensitive data, however unlikely, and even
when counseled otherwise, rather than involve law enforcement.

Victim Misperception

Many companies misperceive that involving law enforcement is simply not worth it.

• Victims are confused about which federal, state, or local agency to contact.
• Victims are concerned about law enforcement agent technical inexperience, agency inattention,

delay, business interference, and damage to network equipment and data.
• Victims fear the need to dedicate personnel resources to support the referral.
• Victims exaggerate the unlikelihood that a hacker kid living in a foreign country will ever see the

inside of a courtroom.

The Law Enforcement Perspective

Cybercrime prosecution and enforcement have never been of higher priority among
federal, state, and local government.

• Because the present proliferation of computer fraud and abuse is unparalleled,55 domestic and
foreign governments alike have invested significant resources in the development and training
of technical officers, agents, and prosecutors to combat cybercrime in a nascent legal
environment.

• Law enforcement understands that internal and external digital investigators are the first line of
323

defense and in the best positions to detect, initially investigate, and neatly package some of the
best evidence necessary for law enforcement to successfully seek and obtain real deterrence
in the form of jail time, fines, and restitution.

• Evidence collected by internal and external digital investigators is only enhanced by the legal
process (grand jury subpoena, search warrants) and data preservation authority (pen
registers, trap and traces, wiretaps) available to law enforcement and not available to any
private party.

• International cooperation among law enforcement in the fight against cybercrime has never
been better, as even juveniles are being hauled into federal court for their cyber misdeeds.56

Walking the Line

Often the investigative goals of the victim company and law enforcement diverge,
leaving the digital investigator at times in the middle. Stay out of it.

• The victim company may be more interested in protecting its network or securing its
information than, for example, avoiding containment to allow law enforcement to obtain
necessary legal process to real-time monitor future network events caused by the intruder.

• Despite misimpressions to the contrary, victim companies rarely lose control over the
investigation once a referral is made; rather, law enforcement often requires early face time
and continued cooperation with the administrators and investigators who are most intimate
with and knowledgeable of the affected systems and relevant discovered data. Constant
consultation is the norm.

• Although law enforcement will be careful not to direct any future actions by the digital
investigator, thereby creating the possibility that a future court deems and suppresses the
investigator’s work as the work of the government conducted in violation of the heightened
legal standards of process required of law enforcement, the digital investigator may be
required to testify before a grand jury impaneled to determine if probable cause that a crime
was committed exists, or even to testify before a trial jury on returned and filed charges.

• Remember the scope and limitations of authority that apply, and let the victim company and
law enforcement reach a resolution that is mutually beneficial.

• Staying apprised of the direction of the investigation, whether it stays private, becomes public,
or proceeds on parallel tracks (an option less favored by law enforcement once involved), will
help the digital investigator focus on what matters most—repeatable, reliable, and admissible

324

findings under any circumstance.

Improving Chances for Admissibility

Thorough and meticulous recordkeeping, an impeccably supportable and uninterrupted chain of
custody, and a fundamental understanding of basic notions governing the reliability and integrity of
evidence will secure best consideration of the work of the digital investigator in any context, in any
forum, before any audience. Urgency tied to pulling off a quick, efficient response to an emerging
attack often makes seem less important at the outset of any investigation the implementation of these
guiding principles. However, waiting until the attack is under control and until the potentially exposed
systems are secured often makes it too difficult to recreate events from memory with the same
assurance of integrity and reliability as an ongoing written record of every step taken.

Documentation

Concerns that recordkeeping creates potentially discoverable work product,
impeachment material, or preliminary statements that may prove inconsistent with ultimate
findings are far outweighed by the future utility to be in the best position to well evidence
the objectivity, completeness, reasonableness of those opinions.

• Document in sufficient technical detail each early effort to identify and confirm the nature and
scope of the incident.

• Keep, for example, a list of the specific systems affected, the users logged on, the number of
live connections, and the processes running.

• Note when, how, and the substance of observations made about the origin of attack; the
number of files or logs that were created, deleted, last accessed, modified, or written to; user
accounts or permissions that have been added or altered; machines to which data may have
been sent; and the identity of other potential victims.

• Record observations about the lack of evidence—ones that may be inconsistent with what was
expected to be found based on similar incident handling experiences.

• Keep a record of the methodology employed to avoid altering, deleting, or modifying existing
data on the network.

325

• Track measures taken to block harmful access to, or stop continuing damage on the affected
network, including filtered or isolated areas.

• Remember early on to begin identifying and recording the extent of damage to systems and the
remediative costs incurred—running notations that will make future recovery from responsible
parties and for any subsequent criminal investigation that much easier.

Preservation

Careful preservation of digital evidence further promotes repeatable, defensible, and
reliable findings.

• At the outset, create forensically sound redundant hashed images of original media, store one
with the original evidence, and use the remaining image as a working copy for analysis. Do not
simply logically copy data, even server level data, when avoidable.

• Immediately preserve backup files and relevant logs.
• When preserving data, hash, hash, hash. Hash early to correct potentially flawed evidence

handling later.
• During analysis, hash to find or exclude from examination known files.
• Consider using Camatasia or other screen capture software to preserve live observations of

illicit activity before containment. This is a way to supplement evidence obtained from enabled
and extended network logging.

• If legal counsel has approved the use of a “sniffer” or other monitoring device to record
communications between the intruder and any server that is under attack, be careful to
preserve and document relevant information about those recordings.

• The key is to use available forensic tools to enhance the integrity, reliability, and repeatability of
the work.

Chain of Custody

Meticulous chain of custody practices can make or break the success of a digital forensic
investigation.

326

• Although chain of custody goes to the weight not the admissibility of the evidence in most court
proceedings, the concept remains nonetheless crucial, particularly where evidence may be
presented before grand juries, arbitrators, or in similar alternative settings where evidentiary
rules are relaxed, and as such, inexplicable interruptions in the chain may leave the evidence
more susceptible to simply being overlooked or ignored.

• The ability to establish that data and the investigative records generated during the process are
free from contamination, misidentification, or alteration between the time collected or
generated and when offered as evidence goes not just to the integrity of evidence but its very
relevance—no one will care about an item that cannot be established as being what it is
characterized to be, or a record that cannot be placed in time or attributed to some specific

action.
• For data, the chain of custody form need not be a treatise; simply record unique identifying

information about the item (serial number), note the date and description of each action taken
with respect to the item (placed in storage, removed from storage, mounted for examination,
returned to storage), and identify the actor at each step (presumably a limited universe of
those with access).

• A single actor responsible for generated records and armed with a proper chain of custody
form for data can lay sufficient evidentiary foundation without having to present every actor in
the chain before the finder of fact.

 State Private Investigator and Breach Notification Statutes

327

328

329

330

State PI Licensing Statute State Breach Notification Statute
Alabama N/A N/A
Alaska N/A ALASKA STAT. § 45.48.010

Arizona ARIZ. REV. STAT. § 32-
2401 ARIZ. REV. STAT. § 44-7501

Arkansas ARK. CODE § 17-40-350 ARK. CODE §§ 4-110-103-108

California CAL. BUS. & PROF.
CODE § 7520 CAL. CIV. CODE §§ 1798.82

Colorado N/A COLO. REV. STAT. § 6-1-716

Connecticut CONN. GEN. STAT. § 29-
154 CONN. GEN. STAT. § 36a-701b

Delaware 24 DEL. C. § 1303 6 DEL. C. § 12B-101
District of
Columbia 17 DCMR § 2000.7 D.C. CODE § 28-3851–§28-3853

Florida FLA. STAT. § 493.6100 FLA. STAT. § 817.5681
Georgia GA. CODE § 43-38-6 GA. CODE § 10-1-912
Hawaii HRS § 463-5 HRS § 487N-2
Idaho N/A I.C. § 28-51-105
Illinois 225 ILCS § 447/10-5 815 ILCS § 530/10
Indiana IC § 25-30-1-3 IC § 24-4.9-3-1
Iowa I.C.A § 80A.3 I.C.A. § 715C.2
Kansas K.S.A. § 75-7b02 K.S.A. § 50-7a02
Kentucky KRS § 329A.015 N/A
Louisiana LSA-R.S. § 37:3501 LSA-R.S. § 51.3074
Maine 32 M.R.S.A § 8104 10 M.R.S.A § 1348

Maryland MD BUS OCCUP & PROF
§ 13-301 MD COML §14-3504

Massachusetts M.G.L.A. 147 § 23 M.G.L.A 93H § 3
331

Michigan M.C.L.A § 338.823 M.C.L.A § 445.72
Minnesota M.S.A. § 326.3381 M.S.A. § 325E.61
Mississippi N/A MS ST § 75-24-29
Missouri MO ST § 324.1104 MO ST § 407.1500
Montana MCA § 37-60-301 MCA § 30-14-1704

Nebraska NEB. REV. STAT. § 71-
3202 NEB. REV. STAT. §§ 87-801

Nevada NEV. REV. STAT. §
648.060 NEV. REV. STAT. § 603A.220

New
Hampshire

N.H. REV. STAT. § 106-
F:5 N.H. REV. STAT. § 359-C:19

New Jersey N.J. STAT. § 45:19-10 N.J. STAT. § 56:8-163
New Mexico 16.48.1.10 NMAC N/A

New York N.Y. GEN. BUS. LAW §
70.2 N.Y. GEN. BUS. LAW § 899-aa

North
Carolina N.C. GEN. STAT. § 74C-2 N.C. GEN. STAT. § 75-65

North Dakota N.D. ADMIN. R. 93-02-01 N.D. CENT. CODE §§ 51-30-01 et seq

Ohio OHIO REV. CODE §
4749.13 OHIO REV. CODE § 1349.19

Oklahoma 59 OKLA. STAT. § 1750.4 74 OKLA. STAT. § 3113.1

Oregon OR. REV. STAT. §
703.405

OR. REV. STAT. §§ 646A.600, 646A.602,
646A.604, 646A.624, and 646A.626

Pennsylvania 22 PA. STAT. § 13 73 PA. STAT. §§ 2301–2308, 2329
Rhode Island R.I. GEN. LAWS § 5-5-21 R.I. GEN. LAWS §§ 11-49.2-1–11-49.2-7
South
Carolina S.C. CODE § 40-18-70 S.C. CODE § 39-1-90

South Dakota N/A N/A

Tennessee 62 TENN. CODE § 1175-
04-.06 (2) TENN. CODE § 47-18-2107

Texas TEX. OCC. CODE
§1702.101 TEX. BUS. & COM. CODE § 521.053

Utah UTAH CODE §§ 53-9-107 UTAH CODE §§ 13-44-101, 13-44-201, 13-44-202,

332

2 (a) (i) and (ii) and 13-44-301Vermont 26 V.S.A. § 3179 9 V.S.A. § 2430 and 9 V.S.A. § 2435
Virginia VA CODE § 9.1-139 C VA CODE § 18.2-186.6

Washington WASH. REV. CODE §
18.165.150 WASH. REV. CODE § 19.255.010

West Virginia W. VA. CODE § 30-18-8 W. VA. CODE § 46A-2A-101–105
Wisconsin WIS. RL § 31.01 (2) WIS. STAT. § 134.98

Wyoming Regulated by local
jurisdictions WYO. STAT. §§ 40-12-501 and 40-12-502

 International Resources

Cross-Border Investigations

Treaties in Force: A List of Treaties and Other International Agreements of the United
States in Force

http://www.state.gov/documents/organization/89668.pdf
Preparation of Letters Rogatory
http://travel.state.gov/law/judicial/judicial_683.html
Organization of American States
Inter-American Cooperation Portal on Cyber-Crime
http://www.oas.org/juridico/english/cyber.htm
Council of Europe Convention of Cybercrime
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185&CM=1&CL=ENG

(and more generally) http://www.coe.int/t/dc/files/themes/cybercrime/default_EN.asp?
European Commission 2010 Directive On Attacks Against Information Systems
http://ec.europa.eu/home-affairs/policies/crime/1_EN_ACT_part1_v101.pdf
European Network of Forensic Science Institutes
(Memorandum signed for International Cooperation in Forensic Science)
http://www.enfsi.eu/page.php?uid=1&nom=153
G8 High-Tech Crime Subgroup
(Data Preservation Checklists)

333

http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contact/24%208%20DataPreservationChecklists_en.pdf
Interpol
Information Technology Crime—Regional Working Parties
http://www.interpol.int/public/TechnologyCrime/Default.asp
Asia-Pacific Economic Cooperation
Electronic Commerce Steering Group
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Electronic-Commerce-

Steering-Group.aspx
Organization for Economic Cooperation & Development
Working Party on Information Security & Privacy
(APEC-OECD Workshop on Malware—Summary Record—April 2007)
http://www.oecd.org/dataoecd/37/60/38738890.pdf
The Organisation for Economic Co-operation and Development (OECD) Guidelines on

the Protection of Privacy and Transborder Flows of Personal Data
http://www.oecd.org/document/18/0,3746,en_2649_34255_1815186_1_1_1_1,00.html
The International Cyber Security Protection Alliance (ICSPA) Cyber-Security News

Feed
https://www.icspa.org/nc/media/cyber-security-news-feed/
Maurushat, A. (2010). Australia’s Accession to the Cybercrime Convention: Is the

Convention Still Relevant in Combating Cybercrime in the Era of Botnets and
Obfuscation Crime Tools?, University of New South Wales Law Journal, Vol. 33(2),
pp. 431–473.

Available at http://www.austlii.edu.au/au/journals/UNSWLRS/2011/20.txt/cgi-
bin/download.cgi/download/au/journals/UNSWLRS/2011/20.rtf.

 The Federal Rules: Evidence for Digital Investigators

Relevance

All relevant evidence is admissible.
 “Relevant evidence” means evidence having any tendency to make the existence of any fact that
is of consequence to the determination of the action more probable or less probable than it would be

334

without the evidence.
Although relevant, evidence may be excluded if its probative value is substantially outweighed by

the danger of unfair prejudice, confusion of the issues, misleading the jury, or by considerations of
undue delay, waste of time, or needless presentation of cumulative evidence.

Authentication

The requirement of authentication or identification as a condition precedent to admissibility is satisfied
by evidence sufficient to support a finding that the matter in question is what its proponent claims.

Best Evidence

A duplicate is admissible to the same extent as an original unless (1) a genuine question is raised as to
the authenticity of the original or (2) in the circumstances it would be unfair to admit the duplicate in
lieu of the original.

Expert Testimony

If scientific, technical, or other specialized knowledge will assist the trier of fact to understand the
evidence or to determine a fact in issue, a witness qualified as an expert by knowledge, skill,
experience, training, or education may testify thereto in the form of an opinion or otherwise, if (1) the
testimony is based upon sufficient facts or data, (2) the testimony is the product of reliable principles
and methods, and (3) the witness has applied the principles and methods reliably to the facts of the
case.
 The expert may testify in terms of opinion or inference and give reasons therefore without first
testifying to the underlying facts or data, unless the court requires otherwise. The expert may in any
event be required to disclose the underlying facts or data on cross-examination.

Limitations on Waiver of the Attorney—Client Privilege

Disclosure of attorney—client privilege or work product does not operate as a waiver in a Federal or
State proceeding if the:

335

1. Disclosure is inadvertent;
2. Holder of the privilege or protection took reasonable steps to prevent disclosure; and
3. Holder promptly took reasonable steps to rectify the error.

1 See, e.g., California’s “Private Investigator Act,” codified at Cal. Bus. & Prof. Code § 7521 et
seq.

2 See, e.g., Arizona Revised Statutes 32-2401-16. See also Cal. Bus. & Prof. Code 7521(e);
Nev.Rev. Stat. Ann. § 648.012.

3 See, e.g., Michigan’s “Private Detective License Act,” MCLS 338.24(a) (specifically
excluding a “person employed exclusively and regularly by an employer in connection with
the affairs of the employer only and there exists a bona fide employer–employee relationship
for which the employee is reimbursed on a salary basis”); Cal. Bus. & Prof. Code § 7522
(same).

4 See Louisiana’s “Private Investigators Law,” LA.R.S. 37:3503(8)(a)(iv). See also Kennard v.
Rosenberg, 127 Cal.App.3d 340, 345-46 (1954) (interpreting California’s Private
Investigator Act) (“it was the intent of the Legislature to require those who engage in business
as private investigators and detectives to first procure a license so to do; that the statute was
enacted to regulate and control this business in the public interest; that it was not intended to
apply to persons who, as experts, were employed as here, to make tests, conduct
experiments and act as consultants in a case requiring the use of technical knowledge”).

5 Ohio Revised Code § 4749.01(H)(2).
6 See Delaware’s “Private Investigators and Private Security Agencies Act,” codified at 24 Del.

Code §§ 1301 et seq.
7 See American Bar Association, Section of Science & Technology Law, Resolution 301

(August 11–12, 2008), available at
www.americanbar.org/content/dam/aba/migrated/scitech/301.doc (“RESOLVED, That the
American Bar Association urges State, local and territorial legislatures, State regulatory
agencies, and other relevant government agencies or entities, to refrain from requiring private
investigator licenses for persons engaged in: computer or digital forensic services or in the
acquisition, review, or analysis of digital or computer-based information, whether for
purposes of obtaining or furnishing information for evidentiary or other purposes, or for
providing expert testimony before a court; or network or system vulnerability testing,
including network scans and risk assessment and analysis of computers connected to a

336

network”).
8 See, e.g., TBG Insurance Services Corp. v. Superior Court, Cal.App.4th 443 (2002)

(employee’s explicit consent to written corporate monitoring policy governing company home
computer used for personal purposes defeated reasonable expectation of privacy claim).

9 See. e.g.. 18 U.S.C. § 2703.
10 See, e.g., United States v. Carey, 172 F.3d 1268 (10th Cir. 1999) (law enforcement may

not expand the scope of a computer search beyond its original justification by opening files
believed would constitute evidence beyond the scope of the warrant).

11 See Electronic Communications Privacy Act (“ECPA”), codified at 18 U.S.C. §§ 2701 et
seq.

12 See 18 U.S.C. § 2701.
13 See 18 U.S.C. § 2702(c).
14 See 18 U.S.C. § 2702(b).
15 See 18 U.S.C. § 2511; in re Pharmatrak, Inc. Privacy Litigation, 329 F.3d 9, 18 (1st Cir.

2003).
16 Interception involving the acquisition of information stored in computer memory has in at least

one jurisdiction been found to violate the Wiretap Act. See United States v. Councilman,
418 F.3d 67 (1st Cir. 2005) (en banc).

17 See 2511(2)(a)(i).
18 Note that some state surveillance statutes, like California’s, require two-party consent.
19 18 U.S.C. § 2511(2)(d); United States v. Amen, 831 F.2d 373, 378 (2d Cir. 1987)

(consent may be explicit or implied); United States v. Workman, 80 F.3d 688, 693 (2d
Cir. 1996) (proof that the consenting party received actual notice of monitoring but used the
monitored system anyway established implied consent).

20 Appendix C, “Best Practices for Victim Response and Reporting,” to “Prosecuting Computer
Crimes,” U.S. Department of Justice Computer Crime & Intellectual Property Section
(February 2007), available at http://www.cybercrime.gov/ccmanual/appxc.html.

21 18 U.S.C. § 2511(2)(i).
22 18 U.S.C. §§ 3121–3127.
23 Public Law 106-12, 15 U.S.C. § 6801 et seq., hereinafter sometimes referred to as “GLB”

or “the Act.” The names in the popular GLB title of this statute refer to three members of
Congress who were its instrumental sponsors, Senator Phil Gramm (R-TX), Chairman of the
Senate Banking Committee; Representative Jim Leach (R-IA), Chairman of the House
Banking Committee; and Representative Thomas Bliley (R-VA), Chairman of the House

337

Commerce Committee.
24 16 CFR § 313(k)(1). For a list of common examples, see 16 CFR § 313(k)(2) of the Act,

available at http://edocket.access.gpo.gov/cfr_2003/16cfr313.3.htm.
25 In addition to GLB, the Fair Credit Reporting Act, the Internal Revenue Code, and a variety

of state laws and regulations provide consumers with protection in the handling of their credit
report and tax return information by financial service providers. Pay particular attention to the
handling of this type of financial data. For a terrific summary of the consumer protection laws
that apply to financial institutions, see http://www.dfi.wa.gov/cu/summary.htm.

26 42 USC §§ 1302, 1320d, 1395; 45 CFR §§ 160, 162, 154.
27 Retail pharmacies are another perhaps less obvious example of a “covered entity” required to

comply with HIPAA requirements. Pharmacies regularly collect, handle, and store
individually identifiable health information during the ordinary course of business.

28 Public Law 111–5 (February 2009), codified at 2 CFR § 176, available at
http://www.gpo.gov/fdsys/pkg/PLAW-111publ5/content-detail.html.

29 An excellent summary of the detailed provisions of HIPAA is available at
http://www.omh.state.ny.us/omhweb/hipaa/phi_protection.html. A thorough discussion of the
ARRA extensions of HIPAA is available at
http://www.cerner.com/uploadedFiles/Assessment_of_OCR_Proposed_HIPAA_Security_and_Privacy_ARRA_HITECH_Updates.pdf

30 17 CFR §§ 210, 228-29, 240, 249, 270.
31 16 CFR § 312.
32 18 U.S.C. §§ 5031 to 5042.
33 See 18 U.S.C. § 5038 (provisions concerning sealing and safeguarding of records generated

and maintained in juvenile proceedings).
34 20 U.S.C. § 1232g.
35 A helpful chart updated as of July 1, 2009, that summarizes existing state breach notification

laws is available at http://www.digestiblelaw.com/files/upload/securitybreach.pdf.
36 The complete text of the Convention is available at

http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm.
37 For a complete list of the party and signatory countries to the Convention, see the map

available at http://www.coe.int/t/dc/files/themes/cybercrime/worldmap_en.pdf.
38 The complete text of the Convention Commentary is available at

http://conventions.coe.int/Treaty/en/Reports/Html/185.htm.
39 The prospective version of the Police and Justice Act of 2006 is available at

http://www.statutelaw.gov.uk/content.aspx?
338

LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocId=2954404&filesize=24073
40 That guidance is available at

http://www.cps.gov.uk/legal/a_to_c/computer_misuse_act_1990/index.html.
41 The relevant provisions of the German Code can be found (in German) at

http://www.bmj.bund.de/files/-/1317/RegE%20Computerkriminalit%C3%A4t.pdf.
42 See 18 U.S.C. §§ 1030(a)(6), (c)(2)(A).
43 See http://www.justice.gov/criminal/cybercrime/COEFAQs.htm#topicE.
44 Directive 95/46EC of the European Parliament and of the Council of 24 October 1995 on the

Protection of Individuals with Regard to the Processing of Personal Data and on the Free
Movement of Such Data, available at
http://europa.eu/legislation_summaries/information_society/data_protection/l14012_en.htm.

45 The following 27 countries of the EU are required to implement legislation under the Directive:
Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United
Kingdom. In addition, a number of other countries have data protection statutes that regulate
access to employees’ data and cross-border data transfers, with ramifications for the conduct
of internal investigations by U.S.-based digital investigators. For example, Iceland,
Liechtenstein, and Norway (together comprising the European Economic Area); Albania,
Andorra, Bosnia and Herzegovina, Croatia, Macedonia, and Switzerland (European Union
neighboring countries); and the Russian Federation have laws similar to the EU Data
Protection Directive. See Wugmeister, M., Retzer, K., and Rich, C. (2007). Global Solution
for Cross-Border Data Transfers: Making the Case for Corporate Privacy Rules, Geo. J.
Intl L., 449, 455.

46 Boyd, V. (2006). Financial Privacy in the United States and the European Union: A Path to
Transatlantic Regulatory Harmonization, Berkeley J. Intl L., 939, 958–959.

47 Directive, Art. 26(1) (a) (transfer “may take place on condition that: (a) the data subject has
given his consent unambiguously to the proposed transfer”).

48 The Safe Harbor framework is comprised of a collection of documents negotiated between
the U.S. Department of Commerce and the EU, including 7 privacy principles
http://export.gov/safeharbor/eu/eg_main_018475.asp and 15 FAQs
http://export.gov/safeharbor/eu/eg_main_018493.asp.

49 See http://www.export.gov/static/SH_EU_Decision.pdf.
50 Over 1300 U.S. companies from over 100 industry sectors have registered and been certified

under the Safe Harbor framework. See
339

http://web.ita.doc.gov/safeharbor/SHList.nsf/WebPages/Search+by+Industry+ Sector.
51 See, e.g., Law No. 80-538 of July 16, 1980, Journal Officiel de la Republique Francaise.

The United Kingdom, Canada, Australia, Sweden, the Netherlands, and Japan have less
restrictive blocking statutes as well.

52 For a list of bilateral mutual legal assistance treaties in force, see
http://travel.state.gov/law/info/judicial/judicial_690.html.

53 The U.S. State Department offers guidance on the procedural requirements for a letter
rogatory at http://travel.state.gov/law/judicial/judicial_683.html.

54 Magee, B. (2008). Firms Fear Stigma of Reporting Cybercrime. business.scotsman.com
(April 13, 2008), available at http://business.scotsman.com/ebusiness/Firms-fear-stigma-of-
reporting.3976469.jp.

55 The “2007 Internet Crime Complaint Report,” available at
www.ic3.gov/media/annualreports.aspx, suggests a $40 million year-end increase in reported
losses from the 206,884 complaints of crimes perpetrated over the Internet reported to the
FBI’s Internet Crime Complaint Center during 2007.

56 See United States Attorney’s Office for the Central District of California, Press Release No.
08-013, February 11, 2008, “Young ‘Botherder’ Pleads Guilty to Infecting Military
Computers and Fraudulently Installing Adware,” available at
http://www.usdoj.gov/usao/cac/pressroom/pr2008/013.html. For added color, see Goodin,
D. (2008). “I Was A Teenage Bot Master: The Confessions of SoBe Owns,” The Register
(May 8, 2008), available at
http://www.theregister.co.uk/2008/05/08/downfall_of_botnet_master_sobe_owns/.

340

Chapter 5

File Identification and Profiling

Initial Analysis of a Suspect File on a Windows System

341

Solutions in this chapter:

• Overview of the File Profiling Process
• Profiling a Suspicious File
• File Similarity Indexing
• File Visualization
• File Signature Identification and Classification
• Embedded Artifact Extraction
• Symbolic and Debug Information
• Embedded File Metadata
• File Obfuscation: Packing and Encryption Identification
• Embedded Artifact Extraction Revisited
• Profiling Suspect Document Files
• Profiling Suspect Portable Document Format (PDF) Files
• Profiling Suspect Microsoft (MS) Office Files
• Profiling Suspect Compiled HTML Help Files

Introduction

This chapter addresses the methodology, techniques, and tools for conducting an initial analysis of a
suspect file. Some of the techniques covered in this and other chapters may constitute “reverse
engineering” and thus fall within the proscriptions of certain international, federal, state, or local laws.
Similarly, some of the referenced tools are considered “hacking tools” in some jurisdictions, and are
subject to similar legal regulation or use restriction. Some of these legal limitations are set forth in
Chapter 4. In addition to careful review of these considerations, consultation with appropriate legal
counsel prior to implementing any of the techniques and tools discussed in these and subsequent
chapters is strongly advised and encouraged.

 Analysis Tip

Safety First

Forensic analysis of a potentially dangerous file specimen requires a safe and secure lab environment.

342

After extracting a suspicious file from a system, place the file on an isolated or “sandboxed” system or
network to ensure that the code is contained and unable to connect to, or otherwise affect, any
production system. Even though only a cursory static analysis of the code is contemplated at this point
of the investigation, executable files nonetheless can be accidentally executed fairly easily, potentially
resulting in the contamination of, or damage to, production systems.

Overview of the File Profiling Process

File profiling is essentially malware analysis reconnaissance, an effort necessary to gain
enough information about the file specimen to render an informed and intelligent decision
about what the file is, how it should be categorized or analyzed, and, in turn, how to
proceed with the larger investigation. Take detailed notes during the process, not only
about the suspicious file but also about each investigative step taken.
 A suspicious file may be fairly characterized as:

• Of unknown origin
• Unfamiliar
• Seemingly familiar, but located in an unusual place on the system
• Unusually named and located in an unusual folder on the system (e.g., C:\Documents and

Settings\[USER]\TEMP\a\xx.exe)
• Similarly named to a known or familiar file, but misspelled or otherwise slightly varied (a

technique known as file camouflaging)
• File contents are hidden by obfuscation code
• Determined during the course of a system investigation to conduct network connectivity or an

other anomalous activity

 After extracting the suspicious file from the system, determining its purpose and functionality is
often a good starting place. This process, called file profiling, should answer the following questions:

• What type of file is it?
• What is the intended purpose of the file?
• What is the functionality and capability of the file?
• What does the file suggest about the sophistication level of the attacker?

343

• What is the target of the file—is it customized to the victim system/network or a general
attack?

• What affect does this file have on the system?
• What is the extent of the infection or compromise on the system or network?
• What remediation steps are necessary because the file exists on the system?

 The file profiling process entails an initial or cursory static analysis of the suspect code

(Figure 5.1) . Static analysis is the process of analyzing executable binary code without actually
executing the file. A general approach to file profiling involves the following steps:

• Detail: Identify and document system details pertaining to the system from which the suspect
file was obtained.

• Hash: Obtain a cryptographic hash value or “digital fingerprint” of the suspect file.
• Compare: Conduct file similarity indexing of the file against known samples.
• Classify: Identify and classify the type of file (including the file format and the target

architecture/platform), the high-level language used to author the code, and the compiler used
to compile it.

• Visualize: Examine and compare suspect files in graphical representation, revealing visual
distribution of the file contents.

• Scan: Scan the suspect file with anti-virus and anti-spyware software to determine if the file
has a known malicious code signature.

• Examine: Examine the file with executable file analysis tools to ascertain whether the file has
malware properties.

• Extract and Analyze: Conduct entity extraction and analysis on the suspect file by reviewing
any embedded American Standard Code for Information Interchange (ASCII) or Unicode
strings contained within the file, and by identifying and reviewing any file metadata and
symbolic information.

• Reveal: Identify any code obfuscation or armoring techniques protecting the file from
examination, including packers, wrappers, or encryption.

• Correlate: Determine whether the file is dynamically or statically linked, and identify whether
the file has dependencies.

• Research: Conduct online research relating to the information you gathered from the suspect
file and determine whether the file has already been identified and analyzed by security
consultants, or conversely, whether the file information is referenced on hacker or other
nefarious Web sites, forums, or blogs.

344

Figure 5.1 The file profiling process

 Although all of these steps are valuable ways to learn more about the suspect file, they may be
executed in varying order or in modified form, depending upon the preexisting information or
circumstances surrounding the code.

• Be thorough and flexible.
• Familiarity with a wide variety of both command-line interface (CLI) and Graphical User

Interface (GUI) tools will further broaden the scope of investigative options.
• Familiarity and comfort with a particular tool, or the extent to which the reliability or efficacy of

a tool is perceived as superior, often dictate whether the tool is incorporated into any given
investigative arsenal.

• Further tool discussion and comparison can be found in the Tool Box section at the end of this
chapter.

Profiling a Suspicious File

345

This section presumes a basic understanding of how Windows Portable Executable (PE)
files are compiled. A detailed discussion of this process can be found in the Introductory
Chapter.

System Details

 If the suspicious file was extracted or copied from a victim system, be certain to document the

details obtained through the live response techniques mentioned in Chapter 1, including information
about:

• The system’s operating system, version, service pack, and patch level
• The file system
• The full system path where the file resided prior to discovery
• Associated file system metadata, such as created, modified, and accessed dates/times
• Details pertaining to any security software, including personal firewall, anti-virus, or anti-

spyware programs

 Collectively, this information provides necessary file context, as malware often manifests
differently depending on the permutations of the operating system and patch and software installation.

File Name

Acquire and document the full file name
 Identifying and documenting the suspicious file name is a foundational step in file profiling. The
file name, along with the respective file hash value, will be the main identifier for the file specimen.

• Be mindful to disable the Windows Folder View Option “Hide extensions for known file types”
on your analysis system so that the file extension associated with the file is visible and can be
documented.

• Attackers often try to conceal their malicious programs by using pseudo file extensions in an
effort to trick victims into executing the malicious program.

• Miss Identify (missidentify.exe)1 is a utility for finding Win32 executable programs,
regardless of file extension, allowing the digital investigator to detect misnamed executable files

346

or hidden extensions.
• In Figure 5.2, Miss Identify is used to reveal two executable files that appear to be image files

as a result of hidden file extensions and icons embedded into the PE Resources (discussed
later in this chapter and in Chapter 6).

Figure 5.2 Using Miss Identify to uncover misnamed executable files

Investigative Considerations

• Although the full file path in which a suspect file was discovered on the victim system is not a
part of the file name per se, it is a valuable detail that can provide further depth and context to
a file profile. The full file path should be noted during live response and post-mortem forensic
analysis, as discussed in Chapters 1 and 3, respectively.

File Size

Acquire and document the specimen’s file size
 File size is a unique file variable that should be identified and noted for each suspect file.

• Although file size in no way can predict the contents or functionality of a file specimen, it can be
used as a gauge as to determine payload. For instance, a malware specimen that contains its
own SMTP engine or server function will likely be larger than other specimens that are
modular and will likely connect to a remote server to download additional files.

347

File Appearance

Note or screenshot a suspect file’s appearance as an identifier for your report and
catalog it for reference with other samples.
 Attackers often manipulate the icon associated with a file to give a malicious file a harmless
and recognizable appearance, tricking users into executing the file.

• Documenting the file appearance is useful for reports and for comparison and correlation with
other malware samples.

• An intuitive and flexible tool to assist in obtaining screen captures of files is MWSnap (Figure
5.3).2

Figure 5.3 MWSnap capturing the appearance of a suspicious file

Hash Values

Generate a cryptographic hash value for the suspect file to both serve as a unique
identifier or digital “fingerprint” for the file throughout the course of analysis, and to share
with other digital investigators who already may have encountered and analyzed the same
specimen.
 The Message-Digest 5 (MD5)3 algorithm generates a 128-bit hash value based upon the file

348

contents and typically is expressed in 32 hexadecimal characters.

• MD5 is widely considered the de facto standard for generating hash values for malicious
executable identification.

• Other algorithms, such as Secure Hash Algorithm Version 1.0 (SHA1) 4 can be used for the
same purpose.

Investigative Considerations

• Generating an MD5 hash of the malware specimen is particularly helpful for subsequent
dynamic analysis of the code. Whether the file copies itself to a new location, extracts files
from the original file, updates itself from a remote Web site, or simply camouflages itself
through renaming, comparison of MD5 values for each sample will enable determination of
whether the samples are the same or new specimens that require independent analysis.

Command-Line Interface MD5 Tools

 CLI hashing tools provide a simple and effective way to collect hash values from suspicious files,

the results of which can be saved to a log file for later analysis.

• md5deep is a powerful MD5 hashing and analysis tool suite written by Jesse Kornblum that
gives the user granular control over the hashing options, including piecewise and recursive
modes (Figure 5.4).5

• In addition to the MD5 algorithm, the md5deep suite provides for alter-native algorithms by
providing additional utilities such as sha1deep, tigerdeep, sha256deep, and whirlpooldeep,
all of which come included in the md5deep suite download.

349

Figure 5.4 Hashing a suspicious file with md5deep

GUI MD5 Tools

 Despite the power and flexibility offered by these CLI MD5 tools, many digital investigators prefer

to use GUI-based tools during analysis, because they provide drag-and-drop functionality and easy-
to-read output. Similarly, tools that enable a Windows Explorer shell extension, or “right-click”
hashing, provide a simple and efficient way to generate hash values during analysis. A useful utility that
offers a variety of scanning options to acquire both MD5 and SHA1 hash values for suspect files is
Nirsoft’s HashMyFiles,6 depicted in Figure 5.5.

Figure 5.5 Using HashMyFiles to recursively scan a directory for hash values

 Other Tools to Consider

CLI Hashing Tools

Microsoft File Checksum Integrity Verifier
(FCIV)—http://www.microsoft.com/downloads/en/details.aspx?FamilyID=B3C93558-
31B7-47E2-A663-7365C1686C08&displaylang=en

GNU Core Utilities—http://gnuwin32.sourceforge.net/packages/coreutils.htm
350

GUI Hashing Tools

Hash Quick—http://www.lindseysystems.com/contact.php
WinMD5—http://www.blisstonia.com/software/WinMD5/
MD5Summer—http://www.md5summer.org/
HashonClick—http://www.2brightsparks.com/onclick/hoc.html
Graphical MD5sum—http://www.toast442.org/md5/
Malcode Analyst

Pack—http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack
Visual MD5—http://www.tucows.com/preview/505450 (previously available from

http://www.protect-folder.com/)
SSDeepFE—http://sourceforge.net/project/showfiles.php?

group_id=215906&package_id=267714

Further tool discussion and comparison can be found in the Tool Box section at the end of this
chapter and on the companion Web site, http://www.malwarefieldguide.com/Chapter5.html.

File Similarity Indexing

Comparing the suspect file to other malware specimens collected or maintained in a
private or public repository is an important part of the file identification process.
 An effective way to compare files for similarity is through a process known as fuzzy hashing
or Context Triggered Piecewise Hashing (CTPH), which computes a series of randomly sized
checksums for a file, allowing file association between files that are similar in file content but not
identical.

• Use ssdeep,7 a file hashing tool that utilizes CTPH to identify homologous files, to query
suspicious file specimens.

• Ssdeep can be used to generate a unique hash value for a file, or compare an unknown file
against a known file or list of file hashes.

• In the vast arsenal of ssdeep’s file comparison modes exists a “pretty matching mode,”
wherein a file is compared against another file and scored based upon similarity (a score of

351

100 constituting an identical match).
• In Figure 5.6, a file that has been changed by one byte and saved to a new file is scanned in

conjunction with the original file with ssdeep in “pretty matching mode.” Although the one byte
modification changes the MD5 hash values of the respective files, ssdeep detects the files as
nearly identical.

• Through these and other similar tools employing the CTPH functionality, valuable information
about a suspect file may be gathered during the file identification process to associate the
suspect file with a particular specimen of malware, a “family” of code, or a particular attack or
set of attacks. Further discussion regarding malware “families,” or phylogeny, can be found in
Chapter 6.

Figure 5.6 ssdeep “pretty matching mode”

 Online Resources

Hash Repositories

Online hash repositories serve as a valuable resource for querying hash values of suspect files. The
hash values and associated files maintained by the operators of these resources are acquired through a
variety of sources and methods, including online file submission portals. Keep in mind that by
submitting a file or a search term to a third-party Web site, you are no longer in control of that file or
the data associated with that file.

Team Cymru Malware Hash Registry—http://www.team-cymru.org/Services/MHR/
Zeus Tracker—https://zeustracker.abuse.ch/monitor.php
viCheck.ca Malware Hash Query—https://www.vicheck.ca/md5query.php
VirusTotal Hash Search—http://www.virustotal.com/search.html

352

File Visualization

Visualize file data in an effort to identify potential anomalies and to quickly correlate
like files.
 Visualizing file data, particularly through byte-usage-histograms, provides the digital
investigator with a quick reference about the data distribution in a file.

• Inspect suspect files with bytehist, a GUI-based tool for generating byte-usage-histograms.8
• Bytehist makes histograms for all file types, but is geared toward PE files, in that it makes

separate sub-histograms for each section of the executable file.
• Histogram visualization of executables can assist in identifying file obfuscation techniques such

as packers and cryptors (discussed in the “File Obfuscation: Packing and Encryption
Identification” section later in this chapter).

• Byte distribution in files concealed with additional obfuscation code or with encrypted content
will typically manifest visually distinguishable from unobfuscated versions of the same file, as
shown in Figure 5.7, below, which displays histogram visualization of the same file in both a
packed and unpacked condition with bytehist.

• Comparing histogram patterns of multiple suspect files can also be used as a quick triage
method to identify potential like files based upon visualization of data distribution.

• To further examine a suspicious binary file through multiple visualization schemes, probe the file
with BinVis, a framework for visualizing binary file structures.9 BinVis is discussed in greater
detail in Chapter 6.

Figure 5.7 Visualizing files with bytehist

353

File Signature Identification and Classification

After gathering system details, acquiring a digital fingerprint, and conducting a file
index similarity inquiry, additional profiling to identify and classify the suspect file will
prove an important part of any preliminary static analysis.
 This step in the file identification process often produces a clearer idea about the nature and
purpose of the malware, and in turn, the type of damage the attack was intended to cause the victim
system.

• Identifying the file type is determining the nature of the file from its file format or signature
based upon available data contained within the file.

• File type analysis, coupled with file classification, or a determination of the native operating
system and the architecture for which the code was intended, are fundamental aspects of
malware analysis that often dictate how and the direction in which your analytical and
investigative methodology will unfold.

File Types

 The suspect file’s extension cannot serve as the sole indicator of its contents; instead examination of

the file’s signature is paramount.

• A file signature is a unique sequence of identifying bytes written to a file’s header. On a
Windows system, a file signature is normally contained within the first 20 bytes of the file.

• Different file types have different file signatures; for example, a Windows Bitmap image file
(.bmp extension) begins with the hexadecimal characters 42 4D in the first two bytes of the
file, characters that translate to the letters “BM.”

• Most Windows-based malware specimens are executable files, often ending in the extensions
.exe, .dll, .com, .pif, .drv, .qtx, .qts, .ocx, or .sys. The file signature for these files is “MZ” or
the hexadecimal characters 4D 5A, found in the first two bytes of the file.

• Generally, there are two ways to identify a file’s signature.

First, query the file with a file identification tool.
Second, open and inspect the file in a hexadecimal viewer or editor. Hexidecimal (or hex, as it

354

is commonly referred) is a numeral system with a base of 16, written with the letters A–F and
numbers 0–9 to represent the decimal values 0–15. In computing, hexadecimal is used to
represent a byte as 2 hexadecimal characters (one character for each 4-bit nibble), translating
binary code into a more human-readable format.

• By viewing a file in a hex editor, every byte of the file is visible, assuming its contents are not

obfuscated by packing, encryption, or compression.
• MiniDumper by Marco Pontello10 is a convenient tool for examining a file in hexadecimal

format, as it displays a dump of the file header only, as illustrated in Figure 5.8.
• Other hexadecimal viewers for Windows provide additional functionality to achieve a more

granular analysis of a file, including strings identification, hash value computation, multiple file
comparison, and templates for parsing the structures of specific file types.

Figure 5.8 Examining a file header in MiniDumper

 Other Tools to Consider

Hex Editors

RevEnge—http://www.sandersonforensics.com/content.asp?page=325
010 Editor—http://www.sweetscape.com/010editor/
McAffee FileInsight—http://www.mcafee.com/us/downloads/free-tools/fileinsight.aspx
Hex Workshop Hex Editor—http://www.hexworkshop.com/
FlexHex—http://www.flexhex.com/

355

WinHex—http://www.x-ways.net/winhex/index-m.html
HHD Hex Editor Neo—http://www.hhdsoftware.com/free-hex-editor

Further discussion and comparison of hex editors can be found in the Tool Box section at the

end of this chapter, and on the companion Web site,
http://www.malwarefieldguide.com/Chapter5.html.

File Signature Identification and Classification Tools

 Unlike distributions of the Linux operating system that come with the utility file preinstalled (which

classifies a queried file specimen based on the data contained in the file as compared against a
comprehensive list—or, magic file of known file headers), Microsoft Windows operating systems
have no inherent equivalent command. Despite this apparent void in this genre of analytical tools, there
are a number of CLI and GUI tools that have been developed to address file identification and
analysis for Windows systems.

CLI File Identification Tools

• Perhaps the closest tool to the Linux version of file is File Identifier (version 0.6.1),
developed by Optima SC.11 Similar to file, File Identifier compares a queried file against a
magic-like database file.12

• In addition to conducting file identification through signature matching, File Identifier also
extracts file metadata, as illustrated in Figure 5.9.

• In addition to providing a variety of different file scanning modes, including a recursive mode
for applying the tool against directories and subdirectories of files, File Identifier also offers
Hypertext Markup Language (HTML) and CVS report generation.

• As an alternative, TrID, a CLI file identifier written by Marco Pontello,13 does not limit the
classification of an unknown file to one possible file type based on the file’s signature, unlike
other tools. Rather, it compares the unknown file against a file signature database and
provides a series of possible results, ranked by order or probability, as depicted in the
analysis of the suspect file in Figure 5.10.

• The TrID file database consists of approximately 4,000 different file signatures,14 and is
constantly expanding, due in part to Pontello’s distribution of TrIDScan, a TrID counterpart

356

tool that offers the ability to easily create new file signatures that can be incorporated into the
TrID file signature database.15

Figure 5.9 Scanning a suspect file with File Identifier

Figure 5.10 Scanning a suspect file with TrID

GUI File Identification Tools

• There are a number of GUI-based file identification and classification programs for use in the
357

Windows environment; many are intuitive to use and convenient for an initial static analysis of
any suspect file.

• TrIDNet,16 a GUI version of TrID, provides for quick and convenient drag-and-drop
functionality and an intuitive interface, as shown in Figure 5.11.

• Like the CLI version, TrIDNet compares the suspect file against a file database of nearly
4,000 file signatures, scores the queried file based upon its characteristics, and reveals a
probability-based identification of the file.

Figure 5.11 A suspect file classified with TrIDNet

 Other Tools to Consider

CLI File Identification Tools

Exetype—http://www.microsoft.com/resources/documentation/windowsnt/4/server/reskit/en-
us/reskt4u4/rku4list.mspx?mfr=true

FileType—http://gnuwin32.sourceforge.net/packages/filetype.htm
358

Infoexe v. 1.32—http://www.exetools.com/file-analyzers.htm
Peace v. 1.00—http://www.exetools.com/file-analyzers.htm
Fileinfo v. 2.43—http://www.exetools.com/file-analyzers.htm

GUI File Identification Tools

Digital Record Object Identifier (DROID)—http://droid.sourceforge.net/
FileAlyzer—http://www.safer-networking.org/en/filealyzer/index.html
WhatFile—http://www.sinnercomputing.com/dl.php?prog=WhatFile

Further tool discussion and comparison can be found in the Tool Box section at the end of this

chapter and on the companion Web site, http://www.malwarefieldguide.com/Chapter5.html.

Anti-virus Signatures

 After identifying and classifying a suspect file, the next step in the file profiling process is to query

the file against anti-virus engines to see if it is detected as malicious code.

• Approach this phase of the analysis in two separate steps:

First, manually scan the file with a number of anti-virus programs locally installed on the
malware analysis test system to determine whether any alerts are generated for the file. This
manual step affords control over the configuration of each program, ensures that the signature
database is up to date, and allows access to the additional features of locally installed anti-
virus tools (like links to the vendor Web site), which may provide more complete technical
details about a detected specimen.
Second, submit the specimen to a number of free online malware scanning services for a more
comprehensive view of any signatures associated with the file.

Local Malware Scanning

 To scan malware locally, implement anti-virus software that can be configured to scan on demand,

359

as opposed to every time a file is placed on the test system.

• Make sure that the AV program affords choice in resolving malicious code detected by the
anti-virus program; many automatically delete, “repair,” or quarantine the malware upon
detection.

• Some examples of freeware anti-virus software for installation on your local examiner system
include:

Avast17

AVG18

Avira AntiVir Personal19

ClamWin20

F-Prot21

BitDefender22

Panda23

Investigative Considerations

• The fact that installed anti-virus software does not identify the suspect file as malicious code is
not dispositive. Rather, it may mean simply that a signature for the suspect file has not been
generated by the vendor of the anti-virus product, or that the attacker is “armoring” or
otherwise implanting a file protecting mechanism to thwart detection.

• Although an anti-virus signature does not necessarily dictate the nature and capability of
identified malicious code, it does shed potential insight into the purpose of the program.

• Given that when a malicious code specimen is obtained and when a signature is developed for
it may vary between anti-virus companies, scanning a suspect file with multiple anti-virus
engines is recommended. Implementing this redundant approach helps ensure that a malware
specimen is identified by an existing virus signature and provides a broader, more thorough
inspection of the file.

Web-based Malware Scanning Services

360

 After running a suspect file through local anti-virus program engines, consider submitting the
malware specimen to an online malware scanning service.

• Unlike vendor-specific malware specimen submission Web sites, online malware scanning
services will scan submitted specimens against numerous anti-virus engines to identify whether
the submitted specimen is detected as hostile code.

Web Service Features

VirusTotal: http://www.virustotal.com

• Scans submitted file against 43 different anti-virus engines
• “First seen” and “last seen” submission dates provided for
each specimen
• File size, MD5, SHA1, SHA256, and ssdeep values generated
for each submitted file
• File type identified with file and TrID
• PE file structure parsed
• Relevant Prevx, ThreatExpert, and Symantec reports cross-
referenced and hyperlinked.
• URL link scanning
• Robust search function, allowing the digital investigator to
search the VirusTotal (VT) database
• VT Community discussion function
• Python submission scripts available for batch submission:
http://jon.oberheide.org/blog/2008/11/20/virustotal-python-
submission-script/
http://www.bryceboe.com/2010/09/01/submitting-binaries-to-
virustotal/

VirScan: http://virscan.org/
• Scans submitted file against 36 different anti-virus engines
• File size, MD5, and SHA1 values generated for each submitted
file

361

Jotti Online Malware Scanner:
http://virusscan.jotti.org/en

• Scans submitted file against 19 different anti-virus engines
• File size, MD5, and SHA1 values generated for each submitted
file
• File type identified with file magic file
• Packing identification

Metascan Online www.metascan-
online.com

• Scans submitted file with 19 different anti-virus engines
• File size, MD5, and SHA1 values generated for each submitted
file
• File type identification
• Packing identification
• “Last scanned” dates

• During the course of inspecting the file, the scan results for the respective anti-virus engines are

presented in real time on the Web page.
• These Web sites are distinct from online malware analysis sandboxes that execute and

process the malware in an emulated Internet, or “sandboxed,” network. The use of online
malware analysis sandboxes will be discussed in Chapter 6.

• Remember that submission of any specimen containing personal, sensitive, proprietary, or
otherwise confidential information may violate the victim company’s corporate policies or
otherwise offend the ownership, privacy, or other corporate or individual rights associated
with that information. Be careful to seek the appropriate legal guidance in this regard, before
releasing any such specimen for third-party examination.

• Do not submit a suspicious file that is the crux of a sensitive investigation (i.e., circumstances in
which disclosure of an investigation could cause irreparable harm to a case) to online analysis
resources, such as anti-virus scanning services, in an effort not to alert the attacker. The
results relating to a submitted file to an online malware analysis service are publicly available
and easily discoverable—many portals even have a search function. Thus, as a result of
submitting a suspect file, the attacker may discover that his malware and nefarious actions
have been discovered, resulting in the destruction of evidence, and potentially damaging your
investigation.

• Assuming you have determined it is appropriate to do so, submit the suspect file by uploading
the file through the Web site submission portal.

• Upon submission, the anti-virus engines will run against the suspect file. As each engine passes
over the submitted specimen, the file may be identified, as manifested by a signature
identification alert similar to that depicted in Figure 5.12.

• If the file is not identified by any anti-virus engine, the field next to the respective anti-virus

362

software company will either remain blank (in the case of VirusTotal and VirScan), or state
that no malicious code was detected (in the case of Jotti Online Malware Scanner and
Metascan Online).

• The signature names attributed to the file provide an excellent way to gain additional
information about what the file is and what it is capable of. By visiting the respective anti-virus
vendor Web sites and searching for the signature or the offending file name, more often than
not a technical summary of the malware specimen can be located.

• Alternatively, through search engine queries of the anti-virus signature, hash value, or file name,
information security-related Web site descriptions or blogs describing a researcher’s analysis
of the hostile program also may be encountered. Such information may contribute to the
discovery of additional investigative leads and potentially reduce time spent analyzing the
specimen.

• Conversely, there is no better way to get a sense of your malicious code specimen than
thoroughly analyzing it yourself; relying entirely on third-party analysis to resolve a malicious
code incident often has practical and real-world limitations.

Figure 5.12 A suspect file submitted and scanned on VirusTotal
363

Embedded Artifact Extraction: Strings, Symbolic Information, and File Metadata

In addition to identifying the file type and scanning the file with anti-virus scanners to
ascertain known hostile code signatures, many other potentially important facts can be
gathered from the file itself.
 Information about the expected behavior and function of the file can be gleaned from entities
within the file, like strings, symbolic information, and file metadata.

• Although symbolic references and metadata may be identified while parsing the strings of a file,
these items are treated separately and distinctly from one another during the examination of a
suspect file.

• Embedded artifacts—evidence contained within the code or data of the suspect program—
are best inspected separately to promote organization and clearer file context. Each inspection
may shape or otherwise frame the future course of investigation.

Strings

 Some of the most valuable clues about the identifiers, functionality, and commands associated with

a suspect file can be found within the embedded strings of the file. Strings are plain-text ACSII and
Unicode (contiguous) characters embedded within a file. Although strings do not typically provide a
complete picture of the purpose and capability of a file, they can help identify program functionality,
file names, nicknames, Uniform Resource Locators (URLs), e-mail addresses, and error messages,
among other things. Sifting through embedded strings may yield the following information:

• Program Functionality: Often, the strings in a program will reveal calls made by the program
to a particular .dll or function call. To help evaluate the significance of such strings, the
Windows API Reference Web site 24 and the Microsoft Advanced Search engine25 are solid
references.

• File Names: The strings in a malicious executable often reference the file name the malicious
file will manifest as on a victim system, or perhaps more interestingly, the name the hacker
bestowed on the malware. Further, many malicious executables will reference or make calls

364

for additional files that are pulled down through a network connection to a remote server.
• Moniker Identification (“greetz” and “shoutz”): Although not as prevalent recently, some

malicious programs actually contain the attacker’s moniker hard-coded within it. Similarly,
attackers occasionally reference, or give credit to, another hacker or hacking crew in this way
—references known as “greetz” or “shoutz.” Like self-recognition references inside code,
however, greetz and shoutz are less frequent.26

• URL and Domain Name References: A malicious program may require or call on
additional files to update. Alternatively, the program may use remote servers as drop sites for
tools or stolen victim data. As a result, the malware may contain strings referencing the URLs
or domain names utilized by the code.

• Registry Information: Some malware specimens reference registry keys or values that will
be added or modified upon installation. Often, as discussed in other chapters, hostile
programs create a persistence mechanism through a registry autorun subkey, causing the
program to start up each time the system is rebooted.

• IP Addresses: Similar to URLs and domain names, Internet Protocol (IP) addresses often are
hard-coded into malicious programs and serve as “phone home” instructions, or in other
instances, the direction of the attack.

• E-mail Addresses: Some specimens of malicious code e-mail the attacker information
extracted from the victim machine. For example, many of the Trojan horse variants install a
keylogger on the victim computers to collect usernames and passwords and other sensitive
information, then transmit the information to a drop-site e-mail address that serves as a central
receptacle for the stolen data. An attacker’s e-mail address is obviously a significant
evidentiary clue that can develop further investigative leads.

• IRC Channels: Often the channel server and name of the Internet Relay Chat (IRC)
command and control server used to herd armies of compromised computers or botnets are
hard-coded into the malware that infects the zombie machines. Indeed, suspect files may even
reference multiple IRC channels for redundancy purposes should one channel be lost or
closed and another channel comes online.

• Program Commands or Options: More often than not, an attacker needs to interact with the
malware he or she is spreading, usually to promote the efficacy of the spreading method.
Some older bot variants use instant messenger (IM) programs as an attack vector, and as
such, the command to invoke IM spreading can be located within the program’s strings.
Similarly, command-line options and/or embedded help/usage menu information can
potentially reveal capabilities of a target specimen.

• Error and Confirmation Messages: Confirmation and error messages found in malware
specimens (such as “Exploit FTPD is running on port: %i, at thread number: %i, total

365

sends: %i”) often become significant investigative leads and provide good insight into the
malware specimen’s capabilities.

 Analysis Tip

False Leads: “Planted” Strings

Despite the potential value embedded strings may have in the analysis of a suspect program, be
aware that hackers and malware authors often “plant” strings in their code to throw digital
investigators off track. Instances of false nicknames, e-mail addresses, and domain names are fairly
common. When examining any given malware specimen and evaluating the meaningfulness of its
embedded strings, remember to consider the entire context of the file and the digital crime scene.

Tools for Analyzing Embedded Strings

 Unlike Linux and UNIX distributions, which typically come preloaded with the strings utility,

Windows operating systems do not have a native tool to analyze strings. Thankfully, there are a
number of strings extracting utilities, both CLI and GUI, available for use on Windows systems.

• A version of strings, named “strings.exe” has been ported to Windows by Mark
Russinovich of Microsoft (formerly of Sysinternals).27

• Like the UNIX/Linux version of strings, Russinovich’s ported version can query for both
ASCII and Unicode strings and by default searches for three or more printable characters.
Strings.exe can also recursively scan subdirectories.

• BinText28 is an intuitive and powerful GUI-based strings extraction program that displays
ASCII, Unicode, and resource strings, each identified by a distinct letter and color on the left-
hand side of the GUI (ASCII strings are identified by a green “A,” Unicode Strings by a Red
“U,” and resource strings by a blue “R”), as displayed in Figure 5.13.

• BinText identifies the file offset and memory address of the discoverable strings in unique fields
in the GUI. Further, the tool provides drag-and-drop functionality and a useful search feature,
allowing the digital investigator to query for particular strings within the output.

366

Figure 5.13 Examining a suspect file in BinText

 Other Tools to Consider

GUI Strings Analysis Tools

AnalogX
TextScan—http://www.analogx.com/contents/download/Programming/textscan/Freeware.htm

TextExtract—previously hosted on http://www.ultima-thule.co.uk/downloads/textextract.zip
String Extractor (Strex)—http://www.zexersoft.com/products.html
iDefense Malcode Analyst Pack (MAP) Strings Shell

Extension—http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack

Further tool discussion and comparison can be found in the Tool Box section at the end of this
chapter, and on the companion Web site, http://www.malwarefieldguide.com/Chapter5.html.

Inspecting File Dependencies: Dynamic or Static Linking

 During initial analysis of a suspect program, simply identifying whether the file is a static or

367

dynamically linked executable will provide early guidance about the program’s functionality and what
to anticipate during later dynamic analysis of library and system calls made during its execution.

• A number of tools can help quickly assess whether a suspect binary is statically or dynamically
linked.

• DUMPBIN,29 a command-line utility provided with Microsoft Visual C++ in Microsoft Visual
Studio,30 combines the functionality of the Microsoft development tools LINK, LIB, and
EXEHDR. Thus, DUMPBIN can parse a suspect binary to provide valuable information about the
file format and structure, embedded symbolic information, as well as the library files required
by the program.

• To identify an unknown binary file’s dependencies, query the target file with DUMPBIN, using the
/DEPENDENTS argument, as shown in Figure 5.14.

• To obtain a better picture of the suspect file’s capabilities based upon the dependencies it
requires, research each dependency separately, eliminating those that appear benign or
commonplace, and focus more on those that seem more anomalous. Some of the better Web
sites on which to perform such research are listed in the textbox Online Resources: Reference
Pages.

Figure 5.14 DUMPBIN query of a suspect file

 Online Resources

368

Reference Pages

It is handy during the inspection of embedded entities like strings, dependencies, and API function call
references to have reference Web sites available for quick perusal. Consider adding these Web sites
to your browser toolbar for quick and easy reference.

Windows API Reference—http://msdn.microsoft.com/en-
us/library/aa383749%28v=vs.85%29.aspx

Process and Thread Functions Reference—http://msdn.microsoft.com/en-
us/library/ms684847.aspx

Microsoft DLL Help Database—Retired by Microsoft in February 2010, but archived on
http://web.archive.org/web/20090615190853/http://support.microsoft.com/dllhelp/

Microsoft Advanced Search Engine—http://search.microsoft.com/advancedsearch.aspx?
mkt=en-US&setlang=en-US

Microsoft TechNet—http://technet.microsoft.com/en-us/
Microsoft Standard .Exe Files and Associated .DLLs—http://technet.microsoft.com/en-

us/library/cc768380.aspx

• If the feel of a GUI tool to inspect file dependencies is preferred, Tim Zabor has developed
dumpbinGUI,31 a sleek front-end for DUMPBIN, which includes dumpbinCHM, a shell context
menu that allows for a right-click on the target file and a selection of the DUMPBIN argument to
be applied against a target file.

• To gain a more granular perspective of a target file’s dependencies, a useful command-line and
GUI utility is Dependency Walker, 32 which builds a hierarchical tree diagram of all dependent
modules in the binary executable—allowing drill-down identification of the files that the
dependencies require and invoke, as shown in Figure 5.15.

369

Figure 5.15 Examining a suspect file with Dependency Walker

Symbolic and Debug Information

The way in which an executable file is compiled and linked by an attacker often leaves
significant clues about the nature and capabilities of a suspect program.
 If an attacker does not strip an executable file of program variable and function names known
as symbols, which reside in a structure within Windows executable files called the symbol table, the
program’s capabilities may be readily detected.

• To check for symbols in a binary, turn to the utility nm, which is preinstalled in most
distributions of the Linux operating system. The nm command identifies symbolic and debug
information embedded in executable/object files specimen.

• Although Windows systems do not have an inherent equivalent of this utility, there are several
other tools that nicely extract the same symbol information.

• As with file dependencies, DUMPBIN can be used with the /SYMBOLS argument to display the
symbols present in a Windows executable file’s symbol table.

• As previously discussed, there is a GUI alternative to the DUMPBIN console program called
dumpbinGUI, which also can be used to query target files for symbolic information.
DumpbinGUI is particularly helpful in that it offers a shell context menu, allowing for a file to
be right-clicked and run through the program.

Embedded File Metadata
370

In addition to embedded strings and symbolic information, an executable file may
contain valuable clues within its file metadata.
 The term metadata refers to information about data. In a forensic context, discussions
pertaining to metadata typically center on information that can be extracted from document files, like
those created with Microsoft Office applications. Metadata may reveal the author of a document, the
number of revisions, and other private information about a file that normally would not be displayed.

• Metadata also resides in executable files, and often these data can provide valuable insight as
to the compilation date/time, origin, purpose, or functionality of the file.

• Metadata in the context of an executable file does not reveal technical information related to file
content, but rather contains information about the origin, ownership, and history of the file. In
executable files, metadata can be identified in a number of ways.

To create a binary executable file, a high-level programming language must be compiled into
an object file, and in turn, be linked with any required libraries and additional object code.
From this process alone, numerous potential metadata footprints are left in the binary, including
the high-level language in which the program was written, the type and version of the compiler
and linker used to compile the code, and the date and time of compilation.

• In addition to these pieces of information, other file metadata may be present in a suspect

program, including information relating to the following:

371

Metadata Artifacts
Program author Publisher Warnings
Program version Author/Creator Location
Operating system or platform in which the executable
was compiled

Created by
software Format

Intended operating system and processor of the
program

Modified by
software Resource Identifier

Console or GUI program Contributor
information Character Set

Company or organization Copyright
information

Spoken or Written
Language

Disclaimers License Subject

Comments Previous File
Name Hash Values

Creation Date Modified Date Access Date

• These metadata artifacts are references from various parts of the executable file structure. The
goal of the metadata harvesting process is to extract historical and identifying clues before
examining the actual executable file structure.

• Later in this chapter (in the “Windows Portable Executable Format” section), as well as in
Chapter 6, we will be taking a detailed look at the format and structure of the PE file, and
specifically where metadata artifacts reside within it.

• Most of the metadata artifacts listed in the previous table manifest in the strings embedded in
the program; thus, the strings parsing tools discussed earlier in this chapter certainly can be
used to discover them. However, for a more methodical and concise exploration of an
unknown, suspect program, the tasks of examining the strings of the file and harvesting file

372

metadata are better separated.
• To gather an overview of file metadata as a contextual baseline, scan a suspect file with

exiftool.33 A number of GUI front-ends have been developed for exiftool that provide for
drag-and-drop functionality and recursive scanning.

• Exiftool will provide the digital investigator with temporal context, operating system, and
target environment identifiers, along with other helpful clues such as linker version, as
displayed in Figure 5.16. However, further probing is often required to gather additional
metadata artifacts of value from a suspect executable file.

• After gaining an overview of the file metadata, review or “peel” the file for specific metadata
artifacts in chronological order of the compilation process—from high-level source code to
compiled executable. Initial clues to look for include:

Identify the high-level language used to create the suspect program
Determine the compiler (and linker version) used to create the program
Ascertain the file compilation time and date
Identify the Regional Settings (Language Code and Character Set) embedded within the
binary during the time of compilation
File version information

• Often, metadata items of interest are obfuscated by the attacker through packing or encrypting

the file (discussed in the “File Obfuscation: Packing and Encryption Identification” section,
later in this chapter). If the file is not obfuscated, the high-level programming language can be
quickly identified by GT2, a file format detection utility with a shell context menu that allows for
a right-click on the target file.34

• Although GT2 can identify and parse many file formats, it is particularly geared toward
extracting data from PE files. Figure 5.17 displays the output of GT2 extracting file version
information and identifying the high-level programming language of a target file (Visual C++
6.0).

• There are a number of other utilities that may be useful for identifying the compiler used to
create a binary executable. Among them is PEid,35 a power utility for examining PE files,
including compiler and packing identification. Another is Babak Farrokhi’s Language 2000
tool,36 an older compiler detection utility, which identifies the compiler used to create a
program and extracts the program version information embedded in the file.

• PE file metadata can also provide temporal context surrounding an incident and contribute
toward building an investigative time line in conjunction with live response and post-mortem

373

forensic artifacts acquired from a victim system.
• In particular, the date and time stamp when the executable was compiled can be extracted

from the IMAGE_FILE_HEADER structure of a PE file. A detailed discussion of the
IMAGE_FILE_HEADER and other PE file structures can be found in the section “Windows
Portable Executable File Format,” later in this chapter.

The compilation date and time can be quickly extracted using Nick Harbour’s pestat
command line utility.37

For digital investigators who prefer a graphical utility, as depicted in Figure 5.18, MiTeC’s
EXE Explorer38 intuitively extracts and displays the time stamp data (in GMT).

• Looking back at the output in Figure 5.17, extensive file version information was extracted,

most likely obtained from the executables Resource section (a topic covered in depth in
Chapter 6). Although this information is not dispositive, these are substantial leads that can be
further pursued through online research.

• To gain further insight about the attacker, examine the Language Code and Character Set
identifiers embedded within the IMAGE_RESOURCE_DIRECTORY structure of the binary
during the time of compilation. These settings provide information about the native attacker
system environment or settings selected by the attacker during compilation.

For example, looking at the data extracted in Figures 5.16 and 5.17, we learn that the regional
settings in the suspect executable include a Language Identifier Code 041904E3 (Russian)39

and a Character Set (Cyrillic).40

A granular examination of the Language and Character codes can be conducted by parsing the
Resource section of a target file with a PE Analysis tool such as HeavenTools’ PE Explorer, 41

as depicted below in Figure 5.19.

374

Figure 5.16 Gathering metadata from a PE file with exiftool

375

Figure 5.17 PE metadata extracted with GT2

376

Figure 5.18 PE compilation date and time extracted with EXE Explorer

Figure 5.19 Examining language and character codes with PE Explorer

 Online Resources

Locale Identifiers

Consider adding these Web sites to your browser toolbar for quick and easy reference of Locale
Identifiers.

Locale IDs Assigned by Microsoft—http://msdn.microsoft.com/en-us/goglobal/bb964664
Locale IDs, Inout Locales, and Language Collections for Windows XP and Windows

Server 2003—http://msdn.microsoft.com/en-us/goglobal/bb895996

Investigative Consideration:

377

• A word of caution: As with embedded strings, file metadata can be modified by an attacker.
Time and date stamps, file version information, and other seemingly helpful metadata are often
the target of alteration by attackers who are looking to thwart the efforts of researchers and
investigators from tracking their attack. File metadata must be reviewed and considered in
context with all of the digital and network-based evidence collected from the incident scene.

File Obfuscation: Packing and Encryption Identification

Thus far this chapter has focused on methods of reviewing and analyzing data in and
about a suspect file. All too often, malware “in the wild” presents itself as armored or
obfuscated, primarily to circumvent network security protection mechanisms like anti-virus
software and intrusion detection systems.
 Obfuscation is also used to protect the executable’s innards from the prying eyes of virus
researchers, malware analysts, and other information security professionals interested in reverse-
engineering and studying the code.

• Moreover, in today’s underground hacker economy, file obfuscation is no longer used to just
block the “good guys,” but also to prevent other attackers from examining the code. Savvy
and opportunistic cyber criminals can analyze the code, determine where the attacker is
controlling his infected computers or storing valuable harvested information (like keylogger
contents or credit card information), and then “hijack” those resources away to build their
own botnet armies or enhance their own illicit profits from phishing, spamming, click fraud, or
other forms of fraudulent online conduct.

• Given these “pitfalls,” attackers use a variety of utilities to obscure and protect their file
contents; it is not uncommon to see more than one layer, or a combination, of file obfuscation
applied to hostile code to ensure it remains undetectable.

• Some of the more predominant file obfuscation mechanisms used by attackers to disguise their
malware include packers, encryption programs (known in hacker circles as cryptors), and
binders, joiners, and wrappers, as graphically portrayed in Figure 5.20. Let’s take a look at
how these utilities work and how to spot them.

378

Figure 5.20 Obfuscating code

Packers

 The terms packer, compressor, and packing are used in the information security and hacker

communities alike to refer generally to file obfuscation programs.

• Packers are programs that allow the user to compress, and in some instances encrypt, the
contents of an executable file.

• Packing programs work by compressing an original executable binary, and in turn, obfuscating
its contents within the structure of a “new” executable file. The packing program writes a
decompression algorithm stub, often at the end of the file, and modifies the executable file’s
entry point to the location of the stub.42

• As illustrated in Figure 5.21, upon execution of the packed program, the decompression
routine extracts the original binary executable into memory during runtime and then triggers its
execution.

• In addition to unpacking programs that were created to foil specific packers, there are
numerous generic unpackers and file dumping utilities that can be implemented during runtime
analysis of a packed executable malware specimen. These tools will be discussed in greater
detail in Chapter 6.

379

Figure 5.21 Execution of a packed malware specimen

380

Cryptors

 Executable file encryption programs or encryptors, better known by their colloquial “underground”

names cryptors (or crypters) or protectors, serve the same purpose for attackers as packing
programs. They are designed to conceal the contents of the executable program, render it
undetectable by anti-virus and IDS, and resist any reverse engineering or hijacking efforts.

• Unlike packing programs, cryptors accomplish this goal by applying an encryption algorithm
upon an executable file, causing the target file’s contents to be scrambled and undecipherable.

• Like file packers, cryptors write a stub containing a decryption routine to the encrypted target
executable, thus causing the entry point in the original binary to be altered. Upon execution,
the cryptor program runs the decryption routine and extracts the original executable
dynamically at runtime, as shown in Figure 5.22.

Figure 5.22 Execution of a cryptor protected executable file

Packer and Cryptor Detection Tools

 PEiD43 is the packer and cryptor freeware detection tool most predominantly used by digital
381

investigators, both because of its high detection rates (more than 600 different signatures) and its
easy-to-use GUI interface that allows multiple file and directory scanning with heuristic scanning
options.

• PEiD allows drag-and-drop functionality to quickly identify obfuscation signatures, as
demonstrated in Figure 5.23.

• PEiD contains a plug-in interface44 and a myriad of plug-ins that afford additional detection
functionality. Plug-ins are listed and described in the Tool Box section at the end of this
chapter.

• Entropy calculation—or the measurement of disorder in a block of data45—and PE Entry
Point (EP) anomaly detection in a suspect file can be calculated with PEiD using the “Extra
Information” feature invoked by clicking the double append button located at the bottom right
corner of the PEiD GUI. High entropy levels are typically indicia that an obfuscation scheme
has been applied to a suspect file.

• In addition to PEiD, there are a number of other GUI-based obfuscation detection tools that
offer slightly different features and plug-ins, including Mandiant’s Red Curtain,46 NTCore’s
PE Detective,47 and RDG.48 Refer to the Tool Box section at the end of this chapter and on
the companion Web site, http://www.malwarefieldguide.com/Chapter5.html, for additional
tool options.

Figure 5.23 Analyzing a suspect file with PEiD

CLI Packing and Cryptor Detection Tools

382

• In addition to these GUI-based tools, there are a few handy python-based tools, making them
extensible and command-line operated.

• Pefile,49 developed by Ero Carrera, is a robust PE file parsing utility as well as a packing
identification tool. In particular, some of its functionality includes the ability to inspect the PE
header and sections, obtain warnings for suspicious and malformed values in the PE image,
detect file obfuscation with PEiD’s signatures, and generate new PEiD signatures.

• Jim Clausing, a SANS Internet Storm Center Incident Handler, wrote a similar python script
for PE packer identification based upon pefile, called packerid.py.50 Like pefile,
packerid.py is extensible and can be run in both the Windows and Linux environments,
convenient for many Linux purists who prefer to conduct malware analysis in a Linux
environment. Further, like pefile, packerid.py can be configured to compare queried files
against various PE obfuscation signature databases, including those used by PEiD51 and
others created by Panda Security.52 The output of packerid.py as applied against a suspect
binary can be seen in Figure 5.24.

• Another very helpful CLI-based packer detection utility is SigBuster, written by Toni Koivunen
of teamfurry.com. SigBuster has a myriad of different scan options and capabilities, and is
written in Java, making it useful on Linux and UNIX systems (Figure 5.25). Currently,
SigBuster is not publicly available, but is available to anti-virus researchers and law
enforcement. However, SigBuster is implemented in the Anubis online malware analysis
sandbox where the public can submit specimens for analysis.53

Figure 5.24 Inspecting a suspect file with packer.py on a Linux system

383

Figure 5.25 Inspecting a suspect file with SigBuster on a Linux system

Binders, Joiners, and Wrappers

Binders (also known as joiners or wrappers) in the Windows environment simply take Windows

PE files and roll them into a single executable.

• The binder author can determine which file will execute and whether the state will be normal or
hidden. The copy location of the file can be specified in the Windows, system, or temp
directories, and the action can be specified to either open/execute or copy only.

• From the underground perspective, binders allow attackers to combine their malicious code
executable together with a benign one, with the latter serving as an effective delivery vehicle
for the malicious code’s distribution.

• There are many different binders available on the Internet; a simple and most fully featured one
is known as YAB or “Yet Another Binder.”54

384

Embedded Artifact Extraction Revisited

After de-obfuscating a target specimen, conduct a file profile of the unobscured file.
 After successfully pulling malicious code from its armor through the static and behavioral
analysis techniques discussed in Chapter 6, re-examine the unobscured program for strings, symbolic
information, file metadata, and PE structural details. In this way, a comparison of the “before” and
“after” file will reveal more clearly the most important thing about the structure, contents, and
capabilities of the program.

Windows Portable Executable File Format

A robust understanding of the file format of a suspect executable program that has
targeted a Windows system will best facilitate effective evaluation of the nature and purpose
of the file.
 This section will cover the basic structure and contents of the Windows PE file format. In
Chapter 6 deeper analysis of PE files will be conducted.

• The PE file format is derivative of the older Common Object File Format (COFF) and shares
with it some structural commonalities.

• The PE file format not only applies to executable image files, but also to DLLs and kernel-
mode drivers. Microsoft dubbed the newer executable format “Portable Executable” with
aspirations of making it universal for all Windows platforms, an endeavor that has proven
successful.

• The PE file format is defined in the winnt.h header file in the Microsoft Platform Software
Development Kit (SDK). Microsoft has documented the PE file specification,55 and
researchers have written whitepapers focusing on its intricacies.56

• Despite these resources, PE file analysis is often tricky and cumbersome.57 The difficultly lies in
the fact that a PE file is not a single, large continuous structure, but rather a series of different
structures and sub-components that describe, point to, and contain data or code, as illustrated
graphically in Figure 5.26.

• To gain a clear and intuitive perspective of the entire PE file format, run the suspect binary
through a CLI tool, like Matt Pietrek’s pedump utility,58 or pefile.py, so that each structure

385

and sub-component can be studied and analyzed in a comprehensive view. Alternatively, for a
general graphical overview of the PE structure, load the suspect file into a GUI-based PE
analysis tool, such as PEView,59 AnyWherePEViewer, 60 and CFF Explorer61 (see Figure
5.27), among others.

• After reviewing the entirety of the PE file output, which can often be rather extensive, consider
“peeling” the data slowly by reviewing each structure and sub-component individually; that is,
begin your analysis at the start of the PE module and work your way through all of the
structures and sections, taking careful note of the data that are present, and perhaps just as
important, the data that are not.

Figure 5.26 The Portable Executable (PE) file format

386

Figure 5.27 Parsing a suspect PE file with CFF Explorer

MS-DOS Header

 The IMAGE_DOS_HEADER structure, or MS-DOS header, is the file structure that every PE file

begins with. For investigative purposes, the MS-DOS header contains two important pieces of
information.

• First, the e_magic field contains the DOS executable file signature, previously identified as
“MZ” or the hexadecimal characters 4D 5A, found in the first two bytes of the file. Similarly,
Borland Delphi executables have a “P” in the file signature, following the MZ.

• Second, as shown in Figure 5.28, the e_lfanew field points to the offset in the file where the PE
header begins, known as the IMAGE_NT_HEADERS structure.

387

Figure 5.28 The e_magic and e_lfanew fields in IMAGE_DOS_HEADER

MS-DOS Stub

 The IMAGE_DOS_HEADER is followed by the MS-DOS stub program, which serves primarily

as a compatibility notification method.

• In particular, when the PE file format was first introduced, many users operated in DOS and
not within the Windows GUI environment. If a PE file is mistakenly executed in DOS, the
MS-DOS stub prints out the message “This program cannot be run in DOS mode.”

388

• The stub program is not essential for the successful execution of a PE file, and many times
attackers will modify, delete, or otherwise obfuscate it (see Figure 5.29).

Figure 5.29 The MS-DOS Stub Program

PE Header

389

 Below the MS-DOS stub, at the offset address designated by the e_lfanew field, resides the
IMAGE_NT_HEADERS structure, also known simply as the PE Header.62

• As depicted in Figure 5.30, the PE Header is actually comprised of the PE signature and two

other data structures: the IMAGE_FILE _HEADER structure and the
IMAGE_OPTIONAL_HEADER structure, which contains its own substructure, the Data
Directory.

Figure 5.30 The PE Header and its contents

• A PE file is identified by the 4-byte (or DWORD) signature “PE” followed by two null values
(ASCII characters “PE” with the hexadecimal translation of 50 45 00 00). The signature
appears in the file after the MS-DOS stub, but need not be located at a particular offset.

• The first sub-structure in the IMAGE_NT_HEADERS structure is the
IMAGE_FILE_HEADER, also known as the COFF File header.63

• From an investigative perspective, this structure is potentially comprised of informative data
about the target file, including, among other things (Figure 5.31)64:

Time and date the file was compiled/created
Target platform/processor
Number of sections in the Section Table

390

File characteristics, such as whether the file is executable
Whether symbols have been stripped from the file
Whether debugging information has been stripped from the file

Figure 5.31 The IMAGE_FILE_HEADER structure

• To parse the IMAGE_FILE_HEADER for these details, query the suspect file in PEView, a
GUI-based tool that provides an intuitive interface for navigating headers, descriptors, and
values for each field in the PE structure, as shown in Figure 5.32.

Figure 5.32 Examining the Image_File_Header with PEView

• Following the IMAGE_FILE_HEADER structure is the IMAGE_OPTIONAL_HEADER,
391

better known simply as the Optional Header, which is ironically not optional as the executable
will fail to load without it.65 (See Figure 5.33.)

Figure 5.33 The IMAGE-OPTIONAL_HEADER structure

• The Optional Header is dense with a number of fields containing items of interest to digital
investigators that can be extracted from this structure, including66:

Linker version used to compile the executable file
DLL characteristics
Pointer to address of entry point
Operating system version

Data Directory

 In addition, the Optional Header also contains the IMAGE_DATA_DIRECTORY structures,

392

commonly referred to as Data Directories. The IMAGE_DATA_DIRECTORY, shown in Figure
5.34, contains 16 directories that identify values and map the locations of other structures and sections
within the PE file.

Figure 5.34 The IMAGE_DATA_DIRECTORY structure

• Not all PE files have entries in all 16 Data Directories, so when assessing a suspect executable,
make note of which directories are present.

Section Table

393

 The last structure in the PE file is the IMAGE_SECTION_HEADER, or Section Table, which

follows immediately after the IMAGE_DATA_DIRECTORY.

• The Section Table consists of individual entries, or section headers, each 40 bytes in size and
containing the name, size, and description of the respective section.

• The IMAGE_FILE_HEADER (COFF header) structure contains a “NumberOfSections”
field, which identifies the number of entries in the Section Table. The Section Table entries are
arranged in ascending order, starting from the number one (see Figure 5.35).

394

Figure 5.35 Section Table

 Online Resources

Exe Dump Utility

To get a feel for how pefile works, submit an executable file to the Exe Dump Utility portal at
http://utilitymill.com/utility/Exe_Dump_Utility and receive a text or HTML report containing the results
of the file being processed through pefile.

Profiling Suspect Document Files

During the course of profiling a suspect file, the digital investigator may determine that a file specimen
is not an executable file, but rather a document file, requiring distinct examination tools and techniques.

Malicious document files have become a burgeoning threat and increasingly
popular vector of attack by malicious code adversaries.

 Malicious documents crafted by attackers to exploit vulnerabilities in document processing and
rendering software such as Adobe (Reader/Acrobat) and Microsoft Office (Word, PowerPoint,
Excel) are becoming increasingly more common.

• As document files are commonly exchanged in both business and personal contexts, attackers
frequently use social engineering techniques to infect victims through this vector—such as
attaching a malicious document to an e-mail seemingly sent from a recognizable or trusted
party.

• Typically, malicious documents contain a malicious scripting “trigger mechanism” that exploits
an application vulnerability and invokes embedded shellcode; in some instances, an embedded
executable file is invoked or a network request is made to a remote resource for additional
malicious files.

• Malicious document analysis proposes the additional challenges of navigating and
understanding numerous file formats and structures, as well as obfuscation techniques to
stymie the digital investigator’s efforts.

 In this section we will examine the overall methodology for examining malicious documents. As

the facts and context of each malicious code incident dictates the manner and means in which the
395

digital investigator will proceed with his investigation, the techniques outlined in this section are not
intended to be comprehensive or exhaustive, but rather to provide a solid foundation relating to
malicious document analysis.

• Malicious Document Analysis Methodology

Identify the suspicious file as a document file through file identification tools
Scan the file to identify indicators of malice
Examine the file to discover relevant metadata
Examine the file structure to locate suspect embedded artifacts, such as scripts, shellcode, or
executable files
Extract suspect scripts/code/files
If required, decompress or de-obfuscate the suspect scripts/code/files
Examine the suspect scripts/code/files
Identify correlative malicious code, file system, or network artifacts previously discovered
during live response and post-mortem forensics
Determine relational context within the totality of the infection process

Profiling Adobe Portable Document Format (PDF) Files

A solid understanding of the PDF file structure is helpful to effectively analyze a
malicious PDF file.

PDF File Format

 A PDF document is a data structure comprised of a series of elements Figure 5.37)67:

• File Header: The first line of a PDF file contains a header, which contains 5 characters; the
first three characters are always “PDF,” and the remaining two characters define the version
number, for example, “%PDF-1.6” (PDF versions range from 1.0 to 1.7).

• Body: The PDF file body contains a series of objects that represent the contents of the
document.

396

• Objects: The objects in the PDF file body represent contents such as fonts, text, pages, and
images.

Objects may reference other objects. These indirect objects are labeled with two unique
identifiers collectively known as the object identifier: (1) an object number and (2) a
generation number.
After the object identifier is the definition (Figure 5.36) of the indirect object, which is
contained in between the keywords “obj” and “endobj.” For example:
Indirect objects may be referred to from other locations in the file by an indirect reference, or
“references,” which contains the object identifier and the keyword “R,” for example: 11 0 R.
Objects that contain a large amount of data (such as images, audio, fonts, movies, page
descriptions, and JavaScript) are represented as stream objects or “streams.”68 Streams are
identified by the keywords stream and endstream, with any data contained in between the
words manifesting as the stream. Although a stream may be of unlimited length, streams are
typically compressed to save space, making analysis challenging. Careful attention should be
paid to streams during analysis, as attackers frequently take advantage of their large data
capacity and embed malicious scripting within a stream inside of an object.

• Cross Reference (XREF) Table : The XREF table serves as a file index and contains an

entry for each object. The entry contains the byte offset of the respective object within the
body of the file. The XREF Table is the only element within a PDF file with a fixed format,
enabling entries within the table to be accessed randomly.69

• Trailer: The end of a PDF file contains a trailer, which identifies the offset location of the
XREF table and certain special objects within the file body.70

Figure 5.36 Object definition
397

Figure 5.37 The Portable Document File format

 In addition to the structural elements of a PDF, there are embedded entities for investigative
consideration, such as dictionaries, action type keywords, and identifiable compression schemes as
described in the next chart.71

398

Keyword Relevance

/AA Indicia of an additional-actions dictionary that defined actions that will occur in
response to various trigger events affecting the document as a whole.

/Acroform Interactive form dictionary; indicia that an automated action will occur upon the
opening of the document.

/OpenAction A value specifying a destination that will be displayed, or an action that will occur
when the document is opened.

/URI Indicia that a URI (uniform resource identifier) will be resolved, such as a remote
resource containing additional malicious files.

/Encrypt Indicia that encryption has been applied to the contents of strings and streams in the
document to protect its contents.

/Named Indicia that a predefined action will be executed.
/JavaScript Indicia that the PDF contains JavaScript.
FlateDecode Indicia of a compression scheme encoded with the zlib/deflate compression method.
/JBIG2Decode Indicia of a compression scheme encoded with the JBIG2 compression method.
/JS Indicia that the PDF contains JavaScript.
/EmbeddedFiles Indicia of embedded file streams.
/Launch Indicia that an application will be launched or a file will be opened.
/Objstm Indicia of an object stream inside the body of the PDF document.
/Pages An indicator that interactive forms will be invoked.
/RichMedia Indicia that the PDF contains JavaScript.

399

Pdf Profiling Process: CLI Tools

 The following steps can be taken to examine a suspect PDF document:

Triage: Scan for Indicators of Malice

• Inspect the suspect file for indicators of malice—clues within the file that suggest the file has
nefarious functionality—using Didier Stevens’ python utility, pdfid.py.

• Pdfid.py scans the document for keywords and provides the digital investigator with a tally of
identified keywords that are potentially indicative of a threat, such as those previously
described (Figure 5.38).

Figure 5.38 Scanning a suspect PDF file with pdfid.py

• An alternative to pdfid.py for triaging a suspect PDF is the pdfscan.rb script in Origami, a
Ruby framework for parsing and analyzing PDF documents.72

• Further, the python utility pdf-parser.py (discussed in greater detail later), when used with the
--stats switch, can be used to collect statistics about the objects present in a target PDF file

400

specimen.

Discover relevant metadata

• Meaningful metadata can provide temporal context, authorship, and original document creation
details about a suspect file.

• Temporal metadata from the suspect file can be gathered with pdfid.py using the --extra
switch (Figure 5.39).

Figure 5.39 Metadata gathered from a suspect PDF with the pdfid.py --extra command switch
(left) and the Origami framework printmetadata.rb script (right).

• Deeper metadata extraction, such as author, original document name, and original document
creation application, among other details, can be acquired by querying the suspect file with the
Origami framework printmetadata.rb script.

Examine the file structure and contents

• After conducting an initial assessment of the file, use Didier Stevens’ pdf-parser.py tool to
examine the specimen’s file structure and contents to locate suspect embedded artifacts, such
as anomalous objects and streams, as well as hostile scripting or shellcode. The following
commands are useful in probing the PDF file specimen:

401

Command Switch Purpose
--stats Displays statistics for the target PDF file
--search String to search in indirect objects (except streams)

--filter
Pass stream object through filters (FlateDecode ASCIIHexDecode and
ASCII85Decode only)

--object=<object> ID of indirect object to select (version independent)
--reference=
<reference> ID of indirect object being referenced (version independent)
--elements=<elements> Type of elements to select (cxtsi)
--raw Raw output for data and filters
--type=<type> Type of indirect object to select
--verbose Displays malformed PDF elements
--extract=<file to
extract> Filename to extract to

402

--hash Displays hash of objects
--dump Dump unfiltered content of a stream
--disarm Disarms the target PDF file

• An alternative to pdf-parser.py is the pdfscan.rb script from the Origami framework.
• Use the information collected with pdfid.py as a guide for examining the suspect file with pdf-

parser.py. For instance, the pdfid.py results in Figure 5.38 revealed the presence of
JavaScript in the suspect file. Pdf-parser.py can be used to dig deeper into the specimen,
such as locating and extracting this script.

Locating suspect scripts and shellcode

• To locate instances of JavaScript keywords in the suspect file, use the --search switch and the
string javascript, as shown in Figure 5.40. The results of the query will identify the relevant
objects and references in the file.

Figure 5.40 Searching the suspect file for embedded JavaScript with pdf-parser.py

• The relevant object can be further examined using the --object= <object number> switch. In
this instance, the output reveals that the object contains a stream that is compressed (Figure
5.41).

403

Figure 5.41 Parsing a specific object with pdf-parser.py

Decompress suspect stream objects and reveal scripts

• Use the --filter and --raw switches to decompress the contents of the stream object and
reveal the scripting as shown in Figure 5.42.

404

405

Figure 5.42 Decompressing the suspect stream object with pdf-parser.py (Cont’d)

Extract suspect JavaScript for further analysis

• The suspicious JavaScript can be extracted by redirecting the output in Figure 5.42 to a new
file, such as output.js, as shown in Figure 5.43.

Figure 5.43 Extracting suspicious JavaScript using pdf-parser.py

• Other methods that can be used to extract the JavaScript include:

Processing the target file with the jsunpack-n script, pdf.py.73

Processing the target file with the Origami framework script, extractjs.rb.74

Examine extracted JavaScript

• JavaScript extracted from a suspect PDF specimen can be examined through a JavaScript
engine such as Mozilla Foundation’s SpiderMonkey.75

• A modified version of SpiderMonkey geared toward malware analysis has been adapted by
406

Didier Stevens.76

Extract shellcode from JavaScript

• Attackers commonly exploit application vulnerabilities in Adobe Reader and Acrobat with
malicious PDF files containing JavaScript embedded with shellcode (typically obfuscated in an
unescape() function), as shown in Figure 5.42.77

• Often, the shellcode payload is injected into memory through performing a heap spray,78 and
in turn, invoking the execution of a PE file embedded (and frequently encrypted) in the suspect
PDF file.79

• The shellcode can be extracted from the JavaScript for further analysis.

After copying the shellcode out of JavaScript, compile it into a binary file for deeper analysis,
such as examination of strings, disassembling, or debugging. Prior to compilation, be certain
that the target shellcode has been “unescaped”—or deciphered from the unescape
encoding—and placed into binary format.

Shellcode can be compiled into a Windows executable file with the python script
shellcode2exe.py,80 the convertshellcode.exe utility,81 and MalHostSetup (included
with OfficeMalScanner; discussed later in this chapter in the “MS Office Dcoument
Profiling Process” section). Similarly, a shellcode2exe Web portal exists for online
conversion.82

 Other Tools to Consider

CLI-based PDF Analysis Tools

PDF Scanner—http://blogs.paretologic.com/malwarediaries/index.php/pdf-scanner/
Origami—http://code.google.com/p/origami-framework/; http://esec-

lab.sogeti.com/dotclear/index.php?pages/Origami
Open PDF Analysis Framework (OPAF) —http://opaf.googlecode.com;

http://feliam.wordpress.com/2010/08/23/opaf/
PDF Miner—http://www.unixuser.org/~euske/python/pdfminer/index.html
PDF Tool Kit—http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
Malpdfobj—http://blog.9bplus.com/releasing-the-malpdfobj-tool-beta

407

PDF Profiling Process: GUI Tools

 GUI-based tools can be used to parse and analyze suspect PDF files to gather additional data and

context.

• Zynamics’ PDF Dissector83 provides an intuitive and feature-rich environment allowing the
digital investigator to quickly identify elements in the PDF and navigate the file structure.

• Anomalous strings can be queried through the tool’s text search function, and suspect objects
and streams can be identified through a multifaceted viewing pane, as shown in Figure 5.44,
below.

Figure 5.44 Navigating the structure of a suspect PDF file with PDF Dissector (Figure 5.45)

408

Figure 5.45 Executing JavaScript with the PDF Dissector JavaScript interpreter

• The contents of a suspicious object can be further examined by using the content tree feature of
PDF Dissector.

Once a target object or stream is selected, the contents are displayed in a separate viewing
pane.
Compressed streams are automatically filtered through FlateDecode and decoded—the
contents of which can be examined in the tool’s built-in text or hexadecimal viewers.
The contents of a suspicious stream object (raw or decoded) can be saved to a new file for
further analysis.

• PDF Dissector offers a variety of tools to decode, execute, and analyze JavaScript, as well as

extract embedded shellcode.
• Identified JavaScript can be executed within the tool’s built-in JavaScript interpreter.
• Embedded shellcode that is invoked by the JavaScript can be identified in the Variables panel.

Right-clicking on the suspect shellcode allows the digital investigator to copy the shellcode to
the clipboard, inspect it within a hexadecimal viewer, or save it to a file for further analysis, as

409

depicted in Figure 5.46.

Figure 5.46 Inspecting and saving shellcode extracted from a suspect file

• Extracted shellcode can be examined in other GUI-based PDF analysis tools, such as PDF
Stream Dumper,84 PDFubar,85 and Malzilla,86 which are described in further detail in the
Tool Box section at the end of this chapter.

• The Adobe Reader Emulator feature in PDF Dissector allows the digital investigator to
examine the suspect file within the context of a document rendered by Adobe Reader, which
may use certain API functions not available in a JavaScript interpreter.

• Adobe Reader Emulator also parses the rendered structure and reports known exploits in a
PDF file specimen by Common Vulnerabilities and Exposures (CVE) number and description,
as shown in Figure 5.47.

410

Figure 5.47 Examining a suspect PDF file through the Adobe Reader Emulator

 Online Resources

A number of online resources exist to scan suspicious PDF and MS Office document files, scan URLs
hosting PDF files, or run suspicious document files in a sandboxed environment. Many of these Web
portals also serve as great research aids, providing database search features to mine the results of
previous submissions.

JSunpack—a JavaScript unpacker and analysis portal, http://jsunpack.jeek.org/dec/go.
ViCheck.ca—Malicious code analysis portal; numerous tools and searchable database,

https://www.vicheck.ca/.
MalOffice—Malicious document analysis system, http://mwanalysis.org/?site=7&page=home.
WePawet—A service for detecting and analyzing Web-based malware (Flash, JavaScript, and

PDF files), http://wepawet.iseclab.org/.
Shellcode2exe—Web portal that converts shellcode to a Portable Executable file,

411

http://sandsprite.com/shellcode_2_exe.php.

Profiling Microsoft (MS) Office Files

Malicious MS Office documents are an increasingly popular vector of attack against
individuals and organizations due to the commonality and prevalence of Microsoft Office
software and MS Office documents.

Microsoft Office Documents: Word, PowerPoint, Excel

 MS Office documents such as Word documents, PowerPoint presentations, and Excel

spreadsheets are commonly exchanged in both business and personal contexts. Although security
protocols, e-mail attachment filters, and other security practices typically address executable file
threats, MS Office files are often regarded as innocuous and are trustingly opened by recipients.
Attackers frequently use social engineering techniques to infect victims through this vector, such as
tricking a user to open an MS Office document attached to an e-mail seemingly sent from a
recognizable or trusted party.

MS Office Documents: File Format

 There are two distinct MS Office document file formats87:

• Binary File Format: Legacy versions of MS Office (1997–2003) documents are binary
format (.doc, .ppt, .xls).88 These compound binary files are also referred to as Object
Linking and Embedding (OLE) compound files or OLE Structured Storage files.89 They
are a hierarchical collection of structures known as storages (analogous to a directory) and
streams (analogous to files within a directory). Further, each application within the MS Office
suite has application-specific file format nuances, as described in further detail next. Malicious
MS Office documents used by attackers are typically binary format, likely due to the
continued prevalence of these files and the complexity in navigating the file structures.

412

Microsoft Word90(.doc)—Binary Word documents consist of:

WordDocument Stream/Main Stream—This stream contains the bulk of a Word document’s
binary data. Although this stream has no predefined structure, it must contain a Word file
header, known as the File Information Block (FIB), located at offset 0.91 The FIB contains
information about the document and specifies the file pointers to various elements that
comprise the document and information about the length of the file.92

Summary Information Streams—The summary information for a binary Word document is
stored in two storage streams: Summary Information and DocumentSummaryInformation.93

Table Stream (0Table or 1Table)—The Table Stream contains data that is referenced from
the FIB and other parts of the file and stores various plex of character positions (PLCs)
and tables that describe a document’s structure. Unless the file is encrypted, this stream has
no predefined structure.

Data Stream—An optional stream with no predefined structure, this contains data referenced
from the FIB in the main stream or other parts of the file.

Object Streams—These contain binary data for OLE 2.0 objects embedded within the .doc
file.

Custom XML Storage (added in Word 2007).

Microsoft PowerPoint94(.ppt)—Binary PowerPoint presentation files consist of:

Current User Stream—This maintains the CurrentUserAtom record, which identifies the name
of the last user to open/modify a target presentation and where the most recent user edit is
located.

PowerPoint Document Stream—This maintains information about the layout and contents of
the presentation.

Pictures Stream—(Optional) This contains information about image files (JPG, PNG, etc.)
embedded within the presentation.

Summary Information Streams—(Optional) The summary information for a binary
PowerPoint presentation is stored in two storage streams: Summary Information and
DocumentSummaryInformation.

Microsoft Excel95(.xls)—Microsoft Office Excel workbooks are compound files saved in
Binary Interchange File Format (BIFF) which contain storages, numerous streams
(including the main workbook stream), and substreams. Further, Excel workbook data
consists of records, a foundational data structure used to store information about features in

413

each workbook. Records are comprised of three components: (1) a record type, (2) a record
size, and (3) record data.

• Office Open XML format: MS Office 2007 (and newer versions of MS Office) use the

Office Open XML file format (.docx, .pptx, and .xlsx), which provides an extended XML
vocabulary for word processing, presentation, and workbook files.96

Unlike the binary file format, which requires particularized tools to parse the file structure and
contents, due to their container structure, XML-based Office documents can be dissected
using archive management programs such as WinRar, 97 Unzip,98 or 7-Zip,99 by simply
renaming the target file specimen with an archive file extension (.zip, .rar, or .7z), for example,
specimen.docx to specimen.rar.
XML-based Office documents are less vulnerable than their binary predecessors, and as a
result, attackers have not significantly leveraged Office Open XML format files as a vector of
attack. Accordingly, this section will focus on examining binary format Office documents.

MS Office Documents: Vulnerabilities and Exploits

 Attackers typically leverage MS Office documents as a vector of attack by crafting documents that

exploit a vulnerability in an MS Office suite application.

• These attacks generally rely upon a social engineering triggering event—such as a spear
phishing e-mail—which causes the victim recipient to open the document, executing the
malicious code.

• Conversely, in lieu of targeting a particular application vulnerability, an attacker can manipulate
an MS Office file to include a malicious Visual Basic for Applications (VBA, or often simply
referred to as VB) macro, the execution of which can cause infection.

• By profiling a suspicious MS Office file, further insight as to the nature and purpose of the file
can be obtained; if the file is determined to be malicious, clues regarding the infection
mechanism can be extracted for further investigation.

MS Office Document Profiling Process

414

 The following steps can be taken to examine a suspect MS Office document:

Triage: Scan for Indicators of Malice

• As shown in Figure 5.48, query the suspect file with Sourcefire’s officecat, a utility that
processes Microsoft Office files for the presence of exploit conditions.100

Figure 5.48 Scanning a suspect Word document file with officecat

• Officecat scans the suspect file and compares it against a predefined set of signatures and
reports whether the suspect file is vulnerable. A list of the vulnerabilities checked by
officecat can be obtained by using the –list switch.

• In addition, officecat output:

Identifies the suspect file type
Lists the applicable Microsoft Security Bulletin (MSB) number
Lists the CVE identifier
Provides the unique officecat identification number (OCID)

• You can further examine the suspect file for indicators of malice with the Microsoft Office

Visualization Tool (OffVis).101

• OffVis is a GUI-based tool that parses binary formatted MS Office files, allowing the digital
investigator to traverse the structure and contents of a target file through a triple-paned
graphical viewer, which displays:

A view of the raw file contents in a hexadecimal format
415

A hierarchical content tree view of the parsing results
A Parsing Notes section, which identifies anomalies in the file

• When loading a target file into OffVis, select the corresponding application-specific parser

from the parser drop-down menu, as shown in Figure 5.49. OffVis uses unique binary format
detection logic in each application-specific parser to identify 16 different CVE enumerated
vulnerabilities; if a vulnerability is discovered in the target file, the Parsing Notes identify the file
as Definitely Malicious, as shown in Figure 5.49, below.

Figure 5.49 Selecting a parser and examining a suspect MS PowerPoint document with OffVis

• By double-clicking on the Definitely Malicious Parsing Note, the raw content of the target file
containing the vulnerability is populated in the hexadecimal viewing pane.

Discover Relevant Metadata

• Meaningful metadata can provide temporal context, authorship, and original document creation
416

details about a suspect file. Insight into this information may provide clues as to the origin and
purpose of the attack.

• To extract metadata details from the file specimen, query the file with exiftool,102 as shown in
Figure 5.50. Examining the metadata contents, a number of valuable contextual details are
quickly elucidated, such as the Windows code page language (Windows Simplified

Chinese), the purported company name in which the license of Word was registered to that it
generated the document (VRHEIKER), as well as the file creation, access, and modification
dates.

Figure 5.50 Querying a suspect MS Word file with exiftool (Cont’d)

• There are a number of others tools that can effectively probe an MS Office document for
417

metadata. However, be mindful that some of these tools cause the target file to open during
the course of being processed, potentially executing embedded malicious code. Be certain to
understand how your metadata extraction tool works prior to implementing it during an
examination.

Deeper Profiling with OfficeMalScanner

 OfficeMalScanner is a malicious document forensic analysis suite developed by Frank Boldewin

that allows the digital investigator to probe the structures and contents of a binary format MS Office
file for malicious artifacts—allowing for a more complete profile of a suspect file.103

• The OfficeMalScanner suite of tools includes:

OfficeMalScanner (malicious MS Office file analysis tool);
DisView (a lightweight disassembler);
MalHost-Setup (extracts shellcode and embeds it into a host Portable Executable file); and
ScanDir (python script to scan an entire directory of malicious documents)

Each tool will be examined in greater detail in this section.

• OfficeMalScanner has five different scanning options that can be used to extract specific data
from a suspect file104:

418

Scanning
Option Purpose

Info
Parses and displays the OLE structures in the file and saves located VB macrocode to
disk.

Scan

Scans the a target file for generic shellcode patterns using the following methods:

GetEIP
(Four methods) Scans for instances of instructions to locate the EIP
(instruction pointer register, or program counter), indicating the presence of
embedded shellcode.

Find
Kernel32
base

(Three methods) Scans for the presence of instructions to identify the base
address of where the kernel32.dll image is located in memory, a technique
used by shellcode to resolve addresses of dependencies.

API
Hashing

Scans for the presence of instructions to locate hash values of API function
names in memory, indicative of executable code.

Indirect
Function
calls

Searches for instructions that generate calls to functions that are defined in
other files.

Suspicious
Strings

Scans for Windows function name strings that are commonly found in
malware.

Decryption
sequences Scan searches for indicia of decryption routines.

Embedded
OLE Data

Scans for unencrypted OLE compound file signature. Identified OLE data is
dumped to disk (OfficeMalScanner directory).

419

Function
prolog

Searches for code instructions relating to the beginning of a function.

PE-File
Signature

Scans for unencrypted PE file signature. Identified PE files are dumped to disk
(OfficeMalScanner directory).

brute

Scans for files encrypted with XOR and ADD with one-byte key values of 0x00 through 0xFF.
Each time a buffer is decrypted, the scanner tries to identify PE files or OLE data; if
identified it is dumped to disk (OfficeMalScanner directory).

debug

Scan in which located shellcode is disassembled and displayed in textual disassembly view;
located embedded strings, OLE data and PE files are displayed in a textual hexadecimal
viewer.

inflate
Decompresses and extracts the contents of Office Open XML formatted MS Office files
(Office 2007–Present) and places them into the examination system’s /Temp directory.

• In addition to the information collected with the scanning options, OfficeMalScanner rates

scanned files on a malicious index, scoring files based on four variables and associated
weighted values; the higher the malware index score, the greater the number of malicious
attributes discovered in the file. As a result, the index rating can be used as a triage mechanism
for identifying files with certain threshold values.105

Index Scoring
Executables 20
Code 10
Strings 2
OLE 1

Examine the file structure

420

• The structure of the suspect file can be quickly parsed with OfficeMalScanner using the info
switch (Figure 5.51). In addition to displaying the storages and streams, the info switch will
extract any VB macro code discovered in the file.

Figure 5.51 Parsing the structure of a suspect Word document file with OfficeMalScanner

Locating and Extracting Embedded Executables

• After gaining an understanding of the suspect file’s structure, examine the suspect file specimen
for indicia of shellcode and/or embedded executable files using the scan command.

• If unencrypted shellcode, OLE or embedded executable artifacts are discovered in the file, the
contents are automatically extracted and saved to disk. In the example shown in Figure 5.52,
an embedded OLE artifact is discovered, extracted, and saved to disk.

421

Figure 5.52 Using the OfficeMalScanner scan command

• Scan the newly extracted file with the scan and info commands in an effort to gather any
further information about the file.

• Many times, shellcode, OLE data, and PE files embedded in malicious MS Office files are
encrypted. In an effort to locate these artifacts and defeat this technique, use the
OfficeMalScanner scan brute command to scan the suspect file specimen with common
decryption algorithms. If files are detected with this method, they are automatically extracted
and saved to disk, as shown in Figure 5.53.

422

Figure 5.53 OfficeMalScanner scan brute mode detecting and extracting a PE embedded file

• Examine the extracted executable files through the file profiling process and additional malware
forensic techniques discussed in Chapter 6 to gain further insight about the nature, purpose,
and functionality of the program.

Examine Extracted Code

• To confirm your findings use the scan brute debug command combination to display a textual
hexadecimal view output of the discovered and decrypted portable executable file, as shown
in Figure 5.54, below.

423

Figure 5.54 Examining an embedded PE file using OfficeMalScanner

• The scan debug command can be used to examine discovered (unencrypted) shellcode, PE,
and OLE files in greater detail.

Identified shellcode artifacts can be cursorily disassembled and displayed in a textual
disassembly view.

Identified PE and OLE file artifacts are displayed in a textual hexadecimal view.

• Debug mode is helpful for identifying the offset of embedded shellcode in a suspect MS Office
file and gaining further insight into the functionality of the code, as depicted in Figure 5.55.

424

Figure 5.55 Examining a malicious Word document file using OfficeMalScanner in debug mode
(Cont’d)

Locating and Extracting Shellcode with DisView and MalHost-Setup

425

• If deeper probing of the shellcode is necessary, the DisView (DisView.exe) utility—a
lightweight disassembler included with the OfficeMalScanner suite—can further disassemble
the target code.

• To use DisView, invoke the command against the target file name and relevant memory offset.
In Figure 5.56, the offset 0x64cf was selected as it was previously identified by the scan
debug command as an offset with a shellcode pattern (“Find kernel32 base” pattern).
Identifying the correct memory offset may require some exploratory probing of different
offsets.

Figure 5.56 Examining a suspect file with DisView

• Once the relevant offset is located, the shellcode can be extracted and embedded into a host
executable file generated by MalHost-Setup (MalHost-Setup.exe).

• To use MalHost-Setup, invoke the command against the target file, provide the name of the
newly generated executable file, and identify the relevant memory offset as shown in Figure
5.57.

426

Figure 5.57 MalHost-Setup

• After the executable has been generated, it can be further examined with using static and
dynamic analysis tools and techniques.

Profiling Microsoft Compiled HTML Help Files (CHM)

Although not as prevalent as PDF or Microsoft Office document malware, Microsoft
Compiled HTML Help Files (CHM) can be used as a vector of attack, particularly as a
vehicle for Trojan Horse malware.
 CHM files have a proprietary Microsoft file format. The files typically consist of a series of
HTML pages and associated hyperlinks, compressed with LZX file compression.

• Attackers use malicious scripting to automatically invoke a malicious file upon rendering of the
help file contents.

• The malicious scripting often invokes a malicious binary, such as a Windows executable or
ActiveX control file, that is surreptitiously embedded into the CHM file by the attacker.

• In many instances the malicious scripting will be hexadecimal encoded cipher text, adding an
additional layer of analysis.

• In addition to invoking a locally embedded binary, scripting can also query an encoded URL to
retrieve additional malicious files.

CHM Profiling Process

427

The following steps can be taken to examine a suspect CHM document:

Triage: Identify Indicators of Malice.

• Query the suspect CHM file for anomalous strings, such as references to Windows Portable
Executable files, ActiveX control files, or other executable file types. Often, these embedded
artifacts are discoverable in plaintext strings.

Discover Relevant Metadata

• Unlike other document types, the CHM file structure does not store a vast amount of
metadata. However, meaningful metadata providing temporal and situational context about the
suspect CHM file can be acquired.

• Metadata can be extracted with exiftool,106 NLNZ Metadata Extractor,107 and other utilities
(Figure 5.58).

Figure 5.58 Querying a suspicious CHM file with exiftool

Examine the File Structure and Contents

• Decompile a suspect CHM file to look deeper into its file structure and contents.
• CHM Decoder,108 a GUI-based utility, can be used to decompile a suspect file—resulting in

the extraction and separation of file elements into individual files for closer examination.
• To use CHM Decoder, select a target file, identify the location where the output should be

saved, and process the file, as shown in Figure 5.59.

428

Figure 5.59 Decompiling a suspicious CHM file with CHM Decoder

• Closer inspection of the extracted file content reveals a suspicious executable file,
“winhelp.exe,” which was embedded within the CHM file specimen. File identification and
profiling can be conducted on this executable file to gain further insight into its nature and
purpose. Further, if the file is indeed malicious, deeper dynamic and static analysis should be
conducted to determine the scope of its functionality.

Locating Suspect Scripts

• Malicious executables concealed inside of CHM files are typically triggered as a linked or an
embedded resource through HTML scripting. Be sure to examine HTML files extracted as a
result of decompiling a CHM file.

• In examining the extracted file, AOC2007.html, depicted in Figure 5.60, the triggering
mechanism of the winhelp.exe file is discovered:

429

Figure 5.60 Executable file triggering mechanism within HTML

Identifying and Decoding Obfuscated Scripts

• It is not uncommon for attackers to conceal the triggering method by obfuscating the HTML
scripting responsible for invoking the embedded executable file. Often, in malicious CHM
files, the obfuscation method is hexadecimal cipher text encoded in JavaScript unescape or
escape functions.

• This obfuscation method is also used to conceal malicious VBScript embedded within HTML,
which invokes requests for malicious files hosted on remote URLs.

• In Figure 5.61, the contents of a decompiled suspect CHM file reveal a suspicious ActiveX
control file, “xpreload.ocx,” and the triggering mechanism (in clear text) within the page.html
file. The decrypted hexadecimal cipher text reveals a call for the download of additional
malware from a remote URL.

430

Figure 5.61 Obfuscated scripting within HTML

Conclusion

• Preliminary static analysis in a Windows environment of a suspect file can yield a wealth of
valuable information that will shape the direction of future dynamic and more complete static
analysis of the file.

• Through a logical, step-by-step file identification and profiling process, and using a variety of
different tools and approaches, a meaningful file profile can be ascertained. There are a wide
variety of tools for conducting a file profile, many of which were demonstrated in this chapter.

• Independent of the tools used and the specific suspect file examined, there is a need for a file
profiling methodology to ensure that data are acquired in as consistent and repeatable a
manner as possible. For forensic purposes, it is also necessary to maintain detailed
documentation of the steps taken on a suspect file. Refer to the Field Notes at the end of this
chapter for documentation guidance.

431

• The methodology in this chapter provides a robust foundation for the forensic identification and
profiling of a target file. This methodology is not intended as a checklist and may need to be
altered for certain situations, but it does increase the chances that much of the relevant data
will be obtained to build a file profile. Furthermore, this methodology and the supporting
documentation will strengthen malware forensics as a source of evidence, enabling an
objective observer to evaluate the reliability and accuracy of the file profiling process and
acquired data.

 Pitfalls to Avoid

Submitting sensitive files to online anti-virus scanning services or analysis sandboxes

 Do not submit a suspicious file that is the crux of a sensitive investigation (i.e., circumstances in

which disclosure of an investigation could cause irreparable harm to a case) to online analysis
resources such as anti-virus scanning services or sandboxes in an effort not to alert the attacker.

By submitting a file to a third-party Web site, you are no longer in control of that file or the
data associated with that file. Savvy attackers often conduct extensive open source research
and search engine queries to determine if their malware has been detected.

The results relating to a submitted file to an online malware analysis service are publicly
available and easily discoverable—many portals even have a search function. Thus, as a result
of submitting a suspect file, the attacker may discover that his malware and nefarious actions
have been discovered, resulting in the destruction of evidence and potentially damaging your
investigation.

Conducting an incomplete file profile

 An investigative course of action should not be based upon an incomplete file profile.

432

Fully examine a suspect file in an effort to render an informed and intelligent decision about

what the file is, how it should be categorized or analyzed, and in turn, how to proceed with the
larger investigation.

Take detailed notes during the process, not only about the suspicious file but also about each
investigative step taken. Consult the Field Notes located in the Appendices in this chapter for
additional guidance and a structured note taking format.

Relying upon file icons and extensions without further context or deeper examination

 Neither the file icon nor file extension associated with a suspect file should be presumed to be

accurate.

In conducting digital investigations, never presume that a file extension is an accurate
representation. File camouflaging, or a technique that obfuscates the true nature of a file by
changing and hiding file extensions in locations with similar real file types, is a trick commonly
used by hackers and bot herders to avoid detection of malicious code distribution.

Similarly, the file icon associated with a file can easily be modified by an attacker to appear
like a contextually appropriate or innocuous file. The file icon associated with a Windows
Portable Executable file can be inserted or modified in the file Resources section.

Solely relying upon anti-virus signatures or third-party analysis of a “similar” file specimen

 Although anti-virus signatures can provide insight into the nature of identified malicious code, they

should not be solely relied upon to reveal the purpose and functionality of a suspect program.
Conversely, the fact that a suspect file is not identified by anti-virus programs does not mean that it is
innocuous.
 Third-party analysis of a “similar” file specimen can be helpful guidance; it should not be
considered dispositive in all circumstances.

433

Anti-virus signatures are typically generated based upon specific data contents or patterns
identified in malicious code. Signatures differ from heuristics—identifiable malicious behavior
or attributes that are non-specific to a particular specimen (commonly used to detect zero-day
threats that have yet to be formally identified with a signature).

Anti-virus signatures for a particular identified threat vary between anti-virus vendors,109 but
many times, certain nomenclature, such as a malware classification descriptor, is common
across the signatures (e.g., the words “Trojan,” “Dropper,” and “Backdoor” may be used in
many of the vendor signatures). These classification descriptors may be a good starting point
or corroborate your findings, but should not be considered dispositive; rather, they should be
taken into consideration toward the totality of the file profile.

Conversely, if there are no anti-virus signatures associated with a suspect file, it may mean
simply that a signature for the file has not been generated by the vendor of the anti-virus
product, or that the attacker has successfully (albeit likely temporarily) obfuscated the
malware to thwart detection.

Third-party analysis of a similar malware specimen by a reliable source can be an incredibly
valuable resource, and may even provide predictors of what will be discovered in your
particular specimen. Although this correlative information should be considered in the totality
of your investigation, it should not replace thorough independent analysis.

Examining a suspect file in a forensically unsound laboratory environment

 Suspect files should never be examined in a production environment or on a system that has not

been forensically baselined to ensure that it is free of misleading artifacts.

Forensic analysis of potentially damaging code requires a safe and secure lab environment.
After extracting a suspicious file from a victim system, place the file on an isolated or
“sandboxed” system or network, to ensure that the code is contained and unable to connect
to or otherwise affect any production system.

Even though only a cursory static analysis of the code is contemplated at this point of the
investigation, executable files nonetheless can be accidentally executed fairly easily, potentially
resulting in the contamination of or damage to production systems.

434

It is strongly encouraged to examine malicious code specimens in a predesigned and
designated malicious code laboratory, which can even be a field deployable laptop computer.
The lab system should be revertible, that is, using a virtualization or host-based software
solution that allows the digital investigator to restore the state of the system to a designated
baseline configuration.

The baseline configuration in which specimens are examined should be thoroughly
documented and free from artifacts associated with other specimens, resulting in forensic
unsoundness, false positives, and mistaken analytical conclusions.

Basing conclusions upon a file profile without additional context or correlation

 Do not make investigative conclusions without considering the totality of the evidence.

A file profile must be reviewed and considered in context with all of the digital and network-

based evidence collected from the incident scene.

Navigating to malicious URLS and IP addresses

 Exercise caution and discretion in visiting URLs and IP addresses embedded in, or associated

with, a target malware specimen.

These resources might be an early warning and indicator capability employed by the attacker
to notify him/her that the malware is being examined.

Logs from the servers hosting these resources are of great investigative value (i.e., other
compromised sites, visits from the attacker[s], etc.) to law enforcement, Computer
Emergency Response Teams (CERTs), and other professionals seeking to remediate the
malicious activity and identify the attacker(s). Visits by those independently researching the
malware will leave network impression evidence in the logs.

435

Selected Readings

Papers

1. Blonce A, Filiol E. Portable Document File (PDF) Security Analysis and Malware

Threats 2008;In: http://www.blackhat.com/presentations/bh-europe-
08/Filiol/Presentation/bh-eu-08-filiol.pdf ; 2008.

2. Boldewin F. Analyzing MS Office Malware with OfficeMalScanner 2009;In:
http://www.reconstructer.org/papers/Analyzing%20MSOffice%20malware%20with%20OfficeMalScanner.zip
; 2009.

3. Boldewin F. New Advances in MS Office Malware Analysis 2008;In:
http://www.reconstructer.org/papers/New%20advances%20in%20Ms%20Office%20malware%20analysis.pdf
; 2008.

4. Dan B. Methods for Understanding and Analyzing Targeted Attacks with Office
Documents 2008;In: http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-
Dang/BlackHat-Japan-08-Dang-Office-Attacks.pdf ; 2008.

5. Raynal F, Delugré G, Aumaitre D. Malicious PDF Origamis Strike Back 2010;In:
www.security-labs.org/fred/docs/hack.lu09-origamis-strike-back.pdf ; 2010.

6. Raynal F, Delugré G. Malicious Origami in PDF 00E9;, 2008;In: www.security-
labs.org/fred/docs/pacsec08/pacsec08-fr-gd-full.pdf ; 00E9;, 2008.

7. Stevens D. Malicious PDF Documents Explained. IEEE Security & Privacy Magazine.
2011;Vol. 9.

8. Stevens, D. (2010). Malicious PDF Analysis E-book. In the Proceedings of BruCON, 2010,
http://didierstevens.com/files/data/malicious-pdf-analysis-ebook.zip.

9. Stevens D. Malicious PDF Documents. ISSA Journal 2010;In:
https://www.issa.org/Library/Journals/2010/July/Stevens-
Malicious%20PDF%20Documents.pdf ; 2010.

10. Stevens D. Stepping Through a Malicious PDF Document. HITB Magazine 2010;In:
http://magazine.hitb.org/issues/HITB-Ezine-Issue-004.pdf ; 2010.

11. Stevens D. Anatomy of Malicious PDF Documents. HAKIN9 IT Security Magazine 2009.
12. Tzermias Z, et al. Combining Static and Dynamic Analysis for the Detection of

Malicious Documents 2011.

436

Online Resources

1. Holz T. Analyzing Malicious PDF Files 2009;In: http://honeyblog.org/archives/12-

Analyzing-Malicious-PDF-Files.html ; 2009.
2. Selvaraj K, Gutierres NF. The Rise of PDF Malware 2010;In:

http://www.symantec.com/connect/blogs/rise-pdf-malware ; 2010;In:
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf
; 2010.

3. Zdrnja B. Sophisticated, Targeted Malicious PDF Documents Exploiting CVE-2009-
4324 2010;In: http://isc.sans.edu/diary.html?storyid=7867 ; 2010.

4. Zeltser L. Analyzing Malicious Documents Cheat Sheet 2010;In:
http://zeltser.com/reverse-malware/analyzing-malicious-documents.html ; 2010;In:
http://zeltser.com/reverse-malware/analyzing-malicious-document-files.pdf ; 2010.

Technical Specifications

Microsoft Office File Formats:
http://msdn.microsoft.com/en-us/library/cc313118.aspx
Microsoft Office File Format Documents:
http://msdn.microsoft.com/en-us/library/cc313105.aspx
Microsoft Office Binary (doc, xls, ppt) File Formats:
http://www.microsoft.com/interop/docs/officebinaryformats.mspx
Microsoft Compound Binary File Format:
http://msdn.microsoft.com/en-us/library/dd942138%28PROT.13%29.aspx
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-

a657e5900cd3/%5BMS-CFB%5D.pdf
Microsoft Word (.doc) Binary File Format:
http://msdn.microsoft.com/en-us/library/cc313153.aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-

C7B2C1D997DB/%5BMS-DOC%5D.pdf
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-

B0F93629DDC6/Word97-2007BinaryFileFormat(doc)Specification.pdf
Microsoft PowerPoint (.ppt) Binary File Format:
http://msdn.microsoft.com/en-us/library/cc313106.aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-

C7B2C1D997DB/%5BMS-PPT%5D.pdf
437

http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-
B0F93629DDC6/PowerPoint97-2007BinaryFileFormat(ppt)Specification.pdf

Microsoft Excel (.xls) Binary File Format:
http://msdn.microsoft.com/en-us/library/cc313154.aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-

C7B2C1D997DB/%5BMS-XLS%5D.pdf
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-

B0F93629DDC6/Excel97-2007BinaryFileFormat(xls)Specification.pdf
Portable Document Format (PDF):
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1 For more information about Miss Identify, go to http://missidentify.sourceforge.net/.
2 For more information about MWSnap, go to

http://www.mirekw.com/winfreeware/mwsnap.html.
3 For more information on the MD5 algorithm, go to http://www.faqs.org/rfcs/rfc1321.html.
4 For more information on the SHA1 algorithm, go to http://www.faqs.org/rfcs/rfc3174.html.
5 For more information about md5deep, go to http://md5deep.sourceforge.net.
6 For more information about HashMyFiles, go to

http://www.nirsoft.net/utils/hash_my_files.html.
7 For more information about ssdeep, go to http://ssdeep.sourceforge.net.
8 For more information about bytehist, go to

http://www.cert.at/downloads/software/bytehist_en.html.
9 For more information about BinVis, go to http://code.google.com/p/binvis/.

491

10 For more information about MiniDumper, go to http://mark0.net/soft-minidumper-e.html.
11 For more information about the File Identifier tool, go to

http://www.optimasc.com/products/fileid/index.html.
12 For more information about the Optima SC magic file, go to

http://www.optimasc.com/products/fileid/magic-format.pdf and www.magicdb.org.
13 For more information about TrID, go to http://mark0.net/soft-trid-e.html.
14 For a list of the file signatures and definitions, go to http://mark0.net/soft-trid-deflist.html.
15 For more information about TrIdScan, go to http://mark0.net/soft-tridscan-e.html.
16 For more information about TrIDNet, go to http://mark0.net/soft-tridnet-e.html.
17 For more information about Avast, go to http://www.avast.com/free-antivirus-download.
18 For more information about AGV, go to http://free.avg.com/us-en/company-profile.
19 For more information Avira AntiVir Personal, go to http://www.free-av.com/.
20 For more information about ClamWin, go to http://www.clamwin.com.
21 For more information about F-Prot, go to http://www.f-prot.com/products/home_use/linux/.
22 For more information about BitDefender, go to http://www.bitdefender.com/PRODUCT-14-

en--BitDefender-Free-Edition.html.
23 For more information about Panda, go to http://research.pandasecurity.com/free-

commandline-scanner/.
24 http://msdn.microsoft.com/microsoft.com/en-us/library/aa383749.aspx.
25 http://search.microsoft.com/AdvancedSearch.aspx?mkt=en-US&qsc0=0&FORM=BAFF.
26 One example of a greetz can be found inside the Zotob worm code, in the phrase “Greetz to

good friend Coder” (http://www.f-secure.com/weblog/archives/archive-082005.html).
27 For more information about strings.exe, go to http://technet.microsoft.com/en-

us/sysinternals/bb897439.
28 For more information about BinText, go to http://www.mcafee.com/us/downloads/free-

tools/bintext.aspx.
29 For more information about DUMPBIN, go to http://support.microsoft.com/kb/177429.
30 For more information about Visual Studio, go to

http://www.microsoft.com/express/Downloads/#http://www.microsoft.com/express/Downloads/#
(Visual Studio Express version) and http://www.microsoft.com/visualstudio/en-
us/products/2010-editions/professional/overview (Visual Studio Professional).

31 For more information about dumpbinGUI, go to
http://www.cheztabor.com/dumpbinGUI/index.htm.

492

32 For more information about Dependency Walker, go to http://www.dependencywalker.com/.
33 For more information about exiftool, go to http://www.sno.phy.queensu.ca/~phil/exiftool/.
34 For more information about GT2, go to http://philip.helger.com/gt/index.php.
35 For more information about PEiD, go to http://www.peid.info.
36 For more information about Language 2000, go to http://farrokhi.net/language/language.zip.
37 For more information about pestat, go to http://www.rnicrosoft.net/.
38 For more information about EXE Explorer, go to http://www.mitec.cz/exe.html.
39 For a list of Language Identifier Codes, go to http://msdn.microsoft.com/en-

us/library/aa912040.aspx.
40 For a list of Character Codes, go to http://msdn.microsoft.com/en-us/library/cc195051.aspx.
41 For more information about PE Explorer, go to http://www.heaventools.com/overview.htm.
42 For a good discussion on file packing programs and obfuscation code analysis, see Lenny

Zeltser’s SANS Forensics 610, Reverse-Engineering Malware: Malware Analysis Tools
and Techniques, 2010.

43 For more information about PEiD, go to http://peid.info/.
44 For more information on PEiD plug-ins, go to http://www.peid.info/plugins/.
45 Lyda, R., and Hamrock, J. (2007). Using entropy analysis to find encrypted and packed

malware, IEEE Security and Privacy (S&P).
46 For more information about Mandiant Red Curtain, go to

http://www.mandiant.com/products/free_software/red_curtain/.
47 For more information about PE Detective, go to http://www.ntcore.com/pedetective.php.
48 For more information about RDG, go to http://www.rdgsoft.8k.com/.
49 For more information about pefile, go to http://code.google.com/p/pefile/.
50 To obtain a copy of packerid.py, go to http://handlers.dshield.org/jclausing/packerid.py.
51 http://www.peid.info/BobSoft/Downloads.html.
52 http://research.pandasecurity.com/blogs/images/userdb.txt.
53 For more information about Anubis, go to http://anubis.iseclab.org/.
54 For more information about Yet Another Binder, go to http://gsa.ca.com/pest/pest.aspx?

ID=453073945.
55 http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx.
56 Some of the foundational whitepapers on the subject are authored by Matt Pietrek, including:

Peering Inside the PE: A Tour of the Win32 Portable Executable File Format
(http://msdn.microsoft.com/en-us/library/ms809762.aspx) and An In-Depth Look into the

493

Win32 Portable Executable File Format (http://technet.microsoft.com/en-
us/library/bb985992.aspx).

57 http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf.
58 http://www.wheaty.net/pedump.zip.
59 For more information about PEView, go to http://www.magma.ca/~wjr/.
60 For more information about Anywhere PE Viewer, go to

http://www.ucware.com/apev/index.htm.
61 For more information about CFF Explorer, go to http://www.ntcore.com/exsuite.php.
62 For more information about the IMAGE_NT_HEADERS structure, go to

http://msdn.microsoft.com/en-us/library/ms680336%28v=vs.85%29.aspx.
63 For more information about the IMAGE_FILE_HEADER structure, go

http://msdn.microsoft.com/en-us/library/ms680313%28v=vs.85%29.aspx.
64 Microsoft Portable Executable and Common Object File Format Specification, Section 2.3,

Revision 8.2—September 21, 2010.
65 For more information about the IMAGE_OPTIONAL_HEADER structure, go to

http://msdn.microsoft.com/en-us/library/ms680339%28v=vs.85%29.aspx.
66 Microsoft Portable Executable and Common Object File Format Specification, Section 2.4,

Revision 8.2—September 21, 2010.
67 For detailed information about the Portable Document Format, see the Adobe Portable

Document File Specification (International Standard ISO 32000-1:2008),
http://www.adobe.com/devnet/pdf/pdf_reference.html.

68 Portable Document Format Specification (International Standard ISO 32000-1:2008),
Section 7.3.8.1.

69 Portable Document Format Specification (International Standard ISO 32000-1:2008),
Section 7.5.4, Note 1.

70 Portable Document Format Specification (International Standard ISO 32000-1:2008),
Section 7.5.5.

71 Further detail can be found in the PDF specification documentation: Portable Document
Format Specification (International Standard ISO 32000-1:2008); International Organization
for Standardization (ISO) 2008; Adobe Extensions to ISO 32000-1:2008, Level 5; Adobe
Supplement to the ISO 32000-1:2008, Exension Level 3.

72 For more information about Origami, go to http://code.google.com/p/origami-pdf/.
73 For more information about jsunpack-n, go to https://code.google.com/p/jsunpack-n/.
74 For more information about Origami, go to https://code.google.com/p/origami-pdf/.

494

75 For more information about SpiderMonkey, go to http://www.mozilla.org/js/spidermonkey/.
76 For more information about Didier Stevens’ version of SpiderMonkey, go to

http://blog.didierstevens.com/programs/spidermonkey/.
77 For an example of this paradigm, see “PDF file loader to extract and analyze shellcode,”

http://www.hexblog.com/?p=110.
78 Heap spraying works by allocating multiple objects containing the attacker’s exploit code in

the program’s heap—or the area of memory dynamically allocated for the program during
runtime. Ratanaworabhan, P., Livshits, B., and Zorn, B. (2008), NOZZLE: A Defense
Against Heap-spraying Code Injection Attacks, SSYM’09 Proceedings of the 18th
conference on USENIX security symposium.

79 For an example of this infection paradigm, see “Explore the CVE-2010-3654 matryoshka,”
http://www.computersecurityarticles.info/antivirus/explore-the-cve-2010-3654-matryoshka/.

80 For more information about shellcode2exe, including its implementation in other tools, see
http://winappdbg.sourceforge.net/blog/shellcode2exe.py;
http://breakingcode.wordpress.com/2010/01/18/quickpost-converting-shellcode-to-
executable-files-using-inlineegg/; (as implemented in PDF Stream Dumper,
http://sandsprite.com/blogs/index.php?uid=7&pid=57); and (as implemented in the Malcode
Analysts Pack,
http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack).

81 http://zeltser.com/reverse-malware/ConvertShellcode.zip.
82 http://sandsprite.com/shellcode_2_exe.php.
83 For more information about PDF Dissector, go to http://www.zynamics.com/dissector.html.
84 For more information about PDF Stream Dumper, go to

http://sandsprite.com/blogs/index.php?uid=7&pid=57.
85 For more information about PDFubar, go to http://code.google.com/p/pdfubar/.
86 For more information about Malzilla, go to http://malzilla.sourceforge.net/.
87 http://msdn.microsoft.com/en-us/library/cc313105%28v=office.12%29.aspx.
88 http://www.microsoft.com/interop/docs/officebinaryformats.mspx;

http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-
C7B2C1D997DB/OfficeFileFormatsProtocols.zip.

89 http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-
4342ED7AD886/WindowsCompoundBinaryFileFormatSpecification.pdf.

90 The Microsoft Word Binary File Format specifications can be found at
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-

495

C7B2C1D997DB/%5BMS-DOC%5D.pdf and at
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-
B0F93629DDC6/Word97-2007BinaryFileFormat(doc)Specification.pdf.

91 http://msdn.microsoft.com/en-us/library/dd926131%28office.12%29.aspx.
92 http://msdn.microsoft.com/en-us/library/dd949344%28v=office.12%29.aspx.
93 http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-

C7B2C1D997DB/%5BMS-OSHARED%5D.pdf.
94 The Microsoft PowerPoint Binary File Format specifications can be found at

http://msdn.microsoft.com/en-us/library/cc313106%28v=office.12%29.aspx;
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-
C7B2C1D997DB/%5BMS-PPT%5D.pdf; and
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-
B0F93629DDC6/PowerPoint97-2007BinaryFileFormat(ppt)Specification.pdf.

95 The Microsoft Excel Binary File Format specification can be found at
http://msdn.microsoft.com/en-us/library/cc313133%28v=office.12%29.aspx;
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-
C7B2C1D997DB/%5BMS-XLSB%5D.pdf.

96 The Office Open XML file format specification documents can be found at
http://msdn.microsoft.com/en-us/library/aa338205%28office.12%29.aspx.

97 For more information about WinRaR, go to http://www.rarlab.com/.
98 For more information about Unzip, go to http://www.info-zip.org/.
99 For more information about 7-Zip, go to http://www.7-zip.org/.
100 For more information about officecat, go to http://www.snort.org/vrt/vrt-

resources/officecat.
101 For more information about OffVis, go to

http://blogs.technet.com/b/srd/archive/2009/09/14/offvis-updated-office-file-format-training-
video-created.aspx; http://go.microsoft.com/fwlink/?LinkId=158791.

102 For more information about exiftool, go to http://www.sno.phy.queensu.ca/~phil/exiftool/.
103 For more information about OfficeMalScanner, go to

http://www.reconstructer.org/code.html.
104 Boldewin, F. (2009). Analyzing MS Office Malware with OfficeMalScanner,

http://www.reconstructer.org/papers/Analyzing%20MSOffice%20malware%20with%20OfficeMalScanner.zip
and Boldewin, F. (2009). New Advances in MS Office Malware Analysis,
http://www.reconstructer.org/papers/New%20advances%20in%20Ms%20Office%20malware%20analysis.pdf

496

105 Boldewin, F., 2009, Analyzing MS Office Malware with OfficeMalScanner, p. 8.
106 For more information about exiftool, go to http://www.sno.phy.queensu.ca/~phil/exiftool/.
107 For more information about the National Library of New Zealand (NLNZ) Metadata

Extractor, go to http://meta-extractor.sourceforge.net/.
108 For more information about CHM Decoder, go to http://www.gridinsoft.com/chm.php.
109 The wide variety of anti-virus signature names for certain threats caused the Mitre

Corporation to create the Common Malware Enumeration project “[t]o provide single,
common identifiers to new virus threats and to the most prevalent virus threats in the wild to
reduce public confusion during malware incidents.” See http://cme.mitre.org/index.html.

497

Chapter 6

Analysis of a Malware Specimen

498

Solutions in this chapter:

• Goals
• Guidelines for Examining a Malicious File Specimen
• Establishing the Environment Baseline
• Pre-execution Preparation: System and Network Monitoring
• Execution Artifact Capture: Digital Impression and Trace Evidence
• Executing the Malware Specimen
• Execution Trajectory Analysis: Observing Network, Process, API, File System, and Registry

Activity
• Automated Malware Analysis Frameworks
• Online Malware Analysis Sandboxes
• Defeating Obfuscation
• Embedded Artifacts Revisited
• Interacting with and Manipulating the Malware Specimen: Exploring and Verifying Specimen

Functionality and Purpose
• Event Reconstruction and Artifact Review: Post-run Data Analysis
• Digital Virology: Advanced Profiling through Malware Taxonomy and Phylogeny
• Conclusion

499

Introduction

Through the file profiling methodology, tools, and techniques discussed in Chapter 5, substantial
insight into the dependencies, strings, anti-virus signatures, and metadata associated with a suspect file
can be gained, and then used to shape a predictive assessment as to the specimen’s nature and
functionality. Building on that information, this chapter will further explore the nature, purpose, and
functionality of a suspect program by conducting a dynamic and static analysis of the binary. Recall
that dynamic or behavioral analysis involves executing the code and monitoring its behavior,
interaction, and effect on the host system, whereas static analysis is the process of analyzing
executable binary code without actually executing the file. During the course of examining suspect
programs in this chapter, we will demonstrate the importance and inextricability of using both dynamic
and static analysis techniques to gain a better understanding of a malicious code specimen. As the
specimens examined in this chapter are pieces of actual malicious code “from the wild,” certain
references such as domain names, IP addresses, company names, and other sensitive identifiers are
obfuscated for privacy and security purposes.

500

Goals

 While analyzing a suspect program, consider the following:

• What is the nature and purpose of the program?
• How does the program accomplish its purpose?
• How does the program interact with the host system?
• How does the program interact with the network?
• How does the attacker interact (command/control/etc.) with the program?
• What does the program suggest about the sophistication level of the attacker?
• Is there an identifiable vector of attack the program uses to infect a host?
• What is the extent of the infection or compromise on the system or network?

 Though difficult to answer all of these questions—as many times key pieces to the puzzle such

as additional files or network-based resources required by the program are no longer available to the
digital investigator—the methodology often paves the way for an overall better understanding about
the suspect program.

 When working through this material, remember that “reverse-engineering” and some of the
techniques discussed in this chapter fall within the proscriptions of certain international, federal, state,
or local laws. Similarly, remember also that some of the referenced tools may be considered “hacking
tools” in certain jurisdictions, and are subject to similar legal regulation or use restriction. Please refer
to Chapter 4 for more details, and consult with counsel prior to implementing any of the techniques
and tools discussed in these and subsequent chapters.

Analysis Tip

Safety First

Forensic analysis of potentially damaging code requires a safe and secure lab environment. After
extracting a suspicious file from a system, place the file on an isolated or “sandboxed” system or
network to ensure that the code is contained and unable to connect to or otherwise affect any
production system. Similarly, ensure that the sandboxed laboratory environment is not connected to
the Internet, local area networks (LANs), or other non-laboratory systems, as the execution of
malicious programs can potentially result in the contamination of, or damage to, other systems.

501

Guidelines for Examining a Malicious File Specimen

This chapter endeavors to establish a general guideline of the tools and techniques that can be used to
examine malicious document files and executable binaries in a Windows environment. However, given
the seemingly endless number of malicious code specimens now generated by attackers, often with
varying functions and purposes, flexibility and adjustment of the methodology to meet the needs of
each individual case is most certainly necessary. Some of the basic precepts we will explore include:

• Establishing the environment baseline
• Pre-execution preparation
• Executing the malicious code specimen
• System and network monitoring
• Environment emulation and adjustment
• Process spying
• Defeating obfuscation
• Disassembling
• Advanced PE analysis
• Interacting with and manipulating the malware specimen
• Exploring and verifying specimen functionality and purpose
• Event reconstruction and artifact review
• Digital virology: Advanced profiling through malware classification and phylogeny

502

Establishing the Environment Baseline

There are a variety of malware laboratory configuration options. In many instances, a
specimen can dictate the parameters of the lab environment, particularly if the code
requires numerous servers to fully function, or more nefariously, employs anti-virtualization
code to stymie the digital investigator’s efforts to observe the code in a virtualized host
system.
 Use of virtualization is particularly helpful during the behavioral analysis of a malicious code
specimen, as the analysis often requires frequent stops and starts of the malicious program in order to
observe the nuances of the program’s behavior.

• A common and practical malware lab model will utilize VMware (or another virtualization of
preference, such as VirtualBox)1 hosts to establish an emulated “infected” system (typically
Windows XP).2

• A “server” system (typically Linux) is used to supply any hosts or services needed by the
malware, such as Web server, mail server, or IRC server.

• And if needed, a “monitoring” system (typically Linux) that has network monitoring software
available to intercept network traffic to and from the victim system is used.

Investigative Considerations

• Prior to taking a system “snapshot” (discussed in the following section), install and configure all
of the utilities on the system that will likely be used during the course of analysis. By applying
this methodology, the created baseline system environment can be repeatedly reused as a
“template.”

• Ideally, the infected system can be monitored locally, to reduce the digital investigator’s need
to monitor multiple systems during an analysis session. However, many malware specimens
are “security conscious” and use anti-forensic techniques, such as scanning the names of
running processes to identify and terminate known security tools, including network sniffers,
firewalls, anti-virus software, and other applications.3

System “Snapshots” 503

System “Snapshots”

 Before beginning an examination of the malicious code specimen, take a snapshot of the system that

will be used as the “victim” host on which the malicious code specimen will be executed.

• Implement a utility that allows comparison of the state of the system after the code is executed
to the pristine or original snapshot of the system state.

• In the Windows environment, there are two kinds of utilities that we can implement that
provide for this functionality: host integrity monitors and installation monitors.

Host Integrity Monitors

 Host Integrity or File Integrity monitoring tools create a system snapshot in which subsequent

changes to objects residing on the system will be captured and compared to the snapshot. These tools
typically monitor changes made to the file system, Registry, and .ini files. Some commonly used host
integrity system tools for Windows include Winalysis,4WinPooch,5 RegShot (Figure 6.1),6 FingerPrint
v2.1.3,7 and ESET SysInspector,8 which are discussed in greater detail in the Tool Box section at the
end of the chapter and on the companion Web site.9

504

Figure 6.1 Configuring a snapshot with Regshot

Installation Monitors

 Another utility commonly used by digital investigators to identify changes made to a system as a

result of executing an unknown binary specimen is installation monitors (also known as installation
managers). Unlike host integrity systems, which are intended to generally monitor all system changes,
installation monitoring tools serve as an executing or loading mechanism for a target suspect program
and track all of the changes resulting from the execution or installation of the target program—typically
file system, Registry, and .ini file changes. Some examples of installation monitors include
InstallWatch,10 InCrtl5,11 InstallSpy,12 and SysAnalyzer (Figure 6.2).13

505

Figure 6.2 SysAnalyzer

 The first objective in establishing the baseline system environment is to create a system
snapshot so that subsequent changes to the system will be recorded.

• During this process, the host integrity monitor scans the Registry and file system, creating a
snapshot of the system in its normal (pristine) system state.

• The resulting snapshot will serve as the baseline system “template” to compare against
subsequent system changes resulting from the execution of a suspect program on the host
system (see Figure 6.3).

506

Figure 6.3 Creating a system snapshot with InstallSpy

• After creating a system snapshot, the digital investigator can invoke the host integrity monitoring
software to scan the file system and Registry for changes that have manifested on the system
as a result of executing the suspect program.

• Although the detail and structure of reports differ, each of the above referenced monitoring
utilities compile and generate a report of the results after identifying the changes.

507

Pre-Execution Preparation: System and Network
Monitoring

A valuable way to learn how a malicious code specimen interacts with a victim system,
and identify risks that the malware poses to the system, is to monitor certain aspects of the
system during the runtime of the specimen.
 Tools that monitor the host system and network activity should be deployed prior to execution
of a subject specimen and during the course of the specimen’s runtime. In this way, the tools will
capture the activity of the specimen from the moment it is executed. On a Windows system, there are
five areas to monitor during the dynamic analysis of malicious code specimen:

• Processes
• The file system
• The Registry
• Network activity
• API calls

 To effectively monitor these aspects of an infected malware lab system, use both passive and

active monitoring techniques (see Figure 6.4).

508

Figure 6.4 Implementation of passive and active monitoring techniques

 Analysis Tip

Document your “Digital Footprints”

The digital investigator should interact with the victim malware lab system to the smallest degree
practicable in an effort to minimize “digital footprints” in collected data. Similarly, the digital
investigator should document any action taken that could result in data that will manifest in the
monitoring process, particularly if another investigator or party will be reviewing the monitoring output.
For example, if, during the course of monitoring, the digital investigator launches calc.exe to check a
hexadecimal value, it should be noted. Documenting investigative steps minimizes perceived anomalies
and distracting data that could complicate analysis.

Passive System and Network Monitoring

Passive system monitoring involves the deployment of a host integrity or installation
monitoring utility. These utilities run in the background during the runtime of a malicious
code specimen, collecting information related to the changes manifesting on the host system
attributable to the specimen.
 After the specimen is run, a system integrity check is performed by the implemented host
integrity or installation monitoring utility, which compares the system state before and after execution
of the specimen.

Active System and Network Monitoring

Active system monitoring involves running certain utilities to gather real-time data
relating to both the behavior of the malicious code specimen and the resulting impact on
the infected host. The tools deployed will capture process information, file system activity,
API calls, Registry, and network activity.

509

Processes Monitoring

 After executing the suspect program, examine the properties of the resulting process and other

processes running on the infected system. To obtain context about the newly created suspect process,
pay close attention to:

• The resulting process name and process identification number (PID)
• The system path of the executable program responsible for creating the process
• Any child processes related to the suspect process
• Modules loaded by the suspect program
• Associated handles
• Interplay and relational context to other system state activity, such as network traffic and

Registry changes

 A valuable tool for gathering process information in a clean, easy to navigate GUI is Process
Explorer.14 As shown in Figure 6.5, during the analysis of a malicious PDF file, spawned processes
are identified with Process Explorer; by right-clicking on a target process and selecting “Properties,”
deeper analysis into the process can be conducted.

Figure 6.5 Monitoring process activity with Process Explorer
510

• Other utilities that similarly can gather these details include CurrProcess,15

ProcessActivityView,16 Explorer Suite/Task Explorer,17 Process Hacker,18 PrcView,19 and
MiTec Process Viewer.20

File System Monitoring

 In addition to examining process information, it is important to also examine real-time file system

activity on an infected system during dynamic analysis.

• The de facto tool used by many digital investigators is Process Monitor (ProcMon),21 an
advanced monitoring tool for Windows offered by Microsoft. Process Monitor combines the
features of two legacy Microsoft tools, FileMon22 (File Monitor) and RegMon23 (Registry
Monitor), along with process, thread, and network port monitoring functionality into one
comprehensive tool.24

• To provide continuity, the Process Monitor user interface incorporates the RegMon and
FileMon icons, which serve as switches that allow the user to filter captured content by event
type; since Process Monitor v2.94 events can also be filtered by process activity, network
port activity, and profiling events.

• The FileMon feature of Process Monitor reveals the system path of the activity, files, and .dlls
opened, read, or deleted by each running process, as well as a status column, which advises
of the failure or success of the monitored activity.

• For example, in Figure 6.6, the file system activity resulting from the execution of a malicious
PDF file is captured in granularity with Process Monitor, allowing the digital investigator to
trace the trajectory of the malicious PDF as it executes.

511

Figure 6.6 Monitoring file system activity during the execution of a malicious PDF file with Process
Monitor

• Having an “umbrella” tool such as Process Monitor, which gathers information relating to all
system aspects, is particularly helpful because its use limits the number of tools that the digital
investigator needs to toggle between to ensure that all of the pertinent real-time activity relating
to the suspect program is observed.

• Unlike the legacy tools FileMon and RegMon, Process Monitor enables the digital investigator
to save the monitoring session in native Process Monitor Format (PML), allowing the session
to be loaded back into Process Monitor for later analysis.

 Other Tools to Consider

File and Directory Monitoring

There are a number of utilities that help keep tabs on system behavior during the course of dynamic
malware analysis. Many of these tools serve as “tripwires,” alerting the digital investigator to potential
issues that warrant deeper investigation.

ProcessActivityView: Allows the digital investigator to monitor the file system activity
(file/folders opened, closed, read/write) associated with a target process
(http://www.nirsoft.net/utils/process_activity_view.html).

Tiny Watcher: Runs in the background and monitors key changes on the subject system, such
as when an application is installed or changed, modifications in specific system folders, and
changes to important areas of the Registry (http://kubicle.dcmembers.com/watcher/).

512

DirMon: File system change monitoring utility for Windows NT/2000/XP. The utility can be run
either observable to the digital investigator, or silently in the background, and it generates the
HTML log of file system changes (http://www.gibinsoft.net/).

Further tool discussion and comparison can be found in the Tool Box section at the end of this

chapter and on the companion Web site, http://www.malwarefieldguide.com/Chapter6.html.

Registry Monitoring

 Just as the FileMon feature of Process Monitor is a staple investigative tool for file system activity

analysis, the RegMon feature is commonly used in tandem and actively reveals which processes are
accessing the host system’s Registry, keys, and the Registry data that is being read or written.

• Process Monitor includes a Registry Summary feature that provides an overview of Registry
paths accessed during active monitoring, with additional filtering based upon event type.

• Unlike static Registry analysis tools, the advantage of using Process Monitor with the RegMon
feature during dynamic analysis of a malicious code specimen is that it provides the digital
investigator with the ability to trace how programs are interacting with the Registry in real time.

• Figure 6.7 displays the RegMon feature of Process Monitor capturing real-time Registry
activity of a malicious process creating an autorun entry for a newly spawned child process.

Figure 6.7 Monitoring Registry activity with Process Monitor using the RegMon feature
513

 Analysis Tip

Auto-starting Artifacts

Another aspect of Registry monitoring the digital investigator should consider is “auto-starting”
artifacts. When a system is rebooted, there are a number of places that the Windows operating
system uses to automatically start programs. These auto-starting locations exist in particular folders,
Registry keys, system files, and other areas of the operating system. References to malware may be
found in these auto-starting locations as a persistence mechanism, increasing the longevity of a hostile
program on an infected computer. The number and variety of auto-start locations on the Windows
operating system have led to the development of tools for automatically displaying programs that are
configured to start automatically when the computer boots. Some of the more commonly used tools
for discovering these artifacts include:

Autoruns: http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx.
WhatInStartup: http://www.nirsoft.net/utils/what_run_in_startup.html (supersedes currently

available but obsolete tool, StartupRun (Strun), http://www.nirsoft.net/utils/strun.html).
Autostart Explorer: http://www.misec.net/products/autostartexplorer/.
Autostart and Process Viewer: http://www.konradp.com/products/autostart-and-process-

viewer/.

Network Activity

 In addition to monitoring the activity on the infected host system, monitoring the live network traffic

to and from the system during the course of running a suspect program is also important. Monitoring
and capturing the network serves a number of investigative purposes.

• First, the collected traffic helps to identify the network capabilities of the specimen. For
instance, if the specimen calls out for a Web server, the specimen relies upon network
connectivity to some degree, and perhaps more important, the program’s interaction with the
Web server may potentially relate to the program’s vector of attack, additional malicious
payloads, or a command and control structure associated with the program.

514

• Further, monitoring the network traffic associated with the victim host will allow the digital
investigator to further explore the requirements of the specimen. If the network traffic reveals
that the hostile program is requesting a Web server, the digital investigator will know to adjust
the laboratory environment to include a Web server, to in effect “feed” the specimen’s needs
to further determine the purpose of the request.

• Windows systems are not natively equipped with a network monitoring utility; however, a
number of them are readily available, ranging from lightweight to robust and multifunctional, as
shown in the box “Other Tools to Consider: Network Monitoring Tools.” Windump, the
Windows functional equivalent of tcpdump, is a powerful command-line-based network
capture tool that can be configured to scroll real-time network traffic to a command console in
a human readable format. However, for the purpose of collecting real-time network traffic
during dynamic analysis of a suspect program, it is advantageous to use a tool that provides an
intuitive graphical interface.

• Perhaps one of the most widely used GUI-based network traffic analyzing utilities is
Wireshark.25 Wireshark is a multi-platform, robust, live capture, and offline analysis packet
capture utility that provides the user with powerful filtering options and the ability to read and
write numerous capture file formats.

 Other Tools to Consider

Network Monitoring Tools

Capsa: Robust GUI-based network forensic tool for monitoring and analyzing network traffic
(http://www.colasoft.com/capsa/).

IP Sniffer: Free packet sniffer and protocol analyzer developed by Erwan’s Lab
(http://erwan.l.free.fr).

Network Miner Network Forensic Analysis Tool (NFAT) : (http://www.netresec.com/?
page=NetworkMiner; http://sourceforge.net/projects/networkminer/).

Network Probe: Highly configurable commercial network monitoring utility
(http://www.objectplanet.com/probe/).

PacketMon: Free GUI-based packet capture tool and protocol analyzer
(http://www.analogx.com/CONTENTS/download/network/pmon.htm).

SmartSniff: Free lightweight GUI-based packet capture tool and protocol analyzer, with handy
dual-pane user interface (http://www.nirsoft.net/utils/smsniff.html).

Sniff_hit: Lightweight network monitoring utility that is included in the Malcode Analyst Pack
and SysAnalyzer tool suites offered by iDefense Labs (Verisign)

515

(http://labs.idefense.com/software/malcode.php).
Visual Sniffer: Free GUI-based packet capture tool and protocol analyzer

(http://www.biovisualtech.com/vindex.htm).

Further tool discussion and comparison can be found in the Tool Box section at the end of this
chapter.

 Before running Wireshark for the purpose of capturing and scrolling real-time network traffic
emanating to and from a host system, consider the deployment and configuration options.

• The first option is to deploy Wireshark locally on the host victim system. This makes it easier
for the digital investigator to monitor the victim system and make necessary environment
adjustments. Recall, however, that this is not always possible, because some malicious code
specimens terminate certain “nosey” security and monitoring tools, including packet-analyzing
utilities.

• As a result, an alternative is to deploy Wireshark from the malware lab “monitoring” host to
collect all network traffic. The downside to this approach is that it requires the investigator to
frequently bounce between virtual hosts in an effort to monitor the victim host system.

• Once the decision is made as to how the tool will be deployed, Wireshark needs to be
configured to capture and display real-time traffic in the tool display pane.

• In the Wireshark Capture Options, as shown in Figure 6.8, select the applicable network
interface from the top toggle field, and enable packet capture in promiscuous mode by
clicking the box next to the option. Further, in the Display Options, select “Update list of
packets in live capture” and “Automatic scrolling in live capture.”

516

Figure 6.8 Wireshark Capture Options

• At this point, no filters should be enabled on the traffic. Later, during the course of
investigation, applying specific filters based upon identified or known network artifacts may be
appropriate.

Port Activity

 In addition to monitoring the network traffic, examine real-time open port activity on the infected

system, and the port numbers of the remote systems that are requested by the infected system.

• With this information, a quick picture of the network capabilities of the specimen may be
revealed. For instance, if the specimen calls out to connect to a remote system on port 25
(default port for Simple Mail Transfer Protocol, SMTP), there is a strong possibility that the
suspect program is trying to connect to a mail server.

517

• The observable port activity serves as a road map for what to look for in the captured network
traffic. When examining active ports on the infected system, the digital investigator can
observe the following information, if available:

Local Internet Protocol (IP) address and port
Remote IP address and port
Remote host name
Protocol
State of connection
Process name and PID
Executable program associated with process
Executable program path

 There are a number of free GUI-based utilities that can be used to acquire this information.
Some of the more popular tools include:

• TCPView26 (Microsoft), which provides color-based alerts for port activity (green for opening
ports, yellow for TIME_WAIT status, and red for closing ports)

• DeviceLock’s Active Ports utility27

• CurrPorts (Nirsoft),28 a robust and configurable tool that provides the digital investigator with a
number of filter options and helpful HTML report features (see Figure 6.9)

Figure 6.9 Port activity captured in CurrPorts

518

API Calls

 Another active monitoring task to perform when conducting dynamic analysis of a malicious code

specimen is to intercept API calls from the program to the operating system.

• The Microsoft Windows API provides services used by all Windows-based programs and
enables programs to communicate with the operating system29; these communications are
referred to as API calls.

• API calls made by a suspect program can provide significant insight as to the nature and
purpose of the program, such as file, network, and memory access.

• Thus, by monitoring the API calls, the digital investigator can observe the executed program’s
interaction with the operating system. The intercepted information serves as a great road map
for the investigator, often pointing to correlative clues regarding system or network activity.

• A powerful and feature-rich tool for intercepting API calls is TracePlus/Win32, 30 which can
trace 34 categories of API functions (comprising nearly 1,500 API calls).

• There are a variety of other utilities available for intercepting API calls, some of which are more
reliable and robust than others. Many of these tools accomplish the task of intercepting API
calls by implementing .dll injection—injecting a .dll into the address space of the target
process.

• Some of the more popular API call-monitoring utilities include API Monitor, 31APISpy32,32

Microsoft Detours,33 APILogger (included with Malcode Analyst Pack and SysAnalyzer),34

Kerberos,35 AutoDebug,36 WinAPIOverride,37 and Kakeeware’s Application Monitor.38

• As a rule of thumb, the more robust the list of API functions and calls accurately recognized by
the tool, the better. Similarly, for the purpose of malicious code analysis, it is essential to have
a utility that allows the user to isolate the interception of API calls to a specific target program.
Otherwise, searching for the calls made by your suspect program through “API noise” from
other applications will prove difficult.

• Further, it is very valuable to have a tool that enables the digital investigator to isolate or “spy”
only on certain functions, as shown in Figure 6.10. We will explore the purpose of that
functionality later in the chapter, using the Spy Studio utility.

519

Figure 6.10 Kakeeware API Monitor API Function Selection Menu

520

Execution Artifact Capture: Digital Impression and Trace
Evidence

Similar to real-world crime scenes, digital crime scenes contain valuable impression and
trace evidence that can help identify suspect malware, effects of the infection on the victim
system, and potentially the suspect(s) who deployed the malware. Collection of digital
impression and trace evidence is not a separate monitoring technique; rather, it
encompasses the totality of artifacts collected through both active and passive system
monitoring.

Impression Evidence

 In the traditional forensic science and crime scene analysis contexts, impression evidence is resulting

marks, patterns, and characteristics that have been pressed into a surface at the crime scene, such as
tire treads, footwear, and tool marks.

• Impression evidence is valuable evidence, because it can be a unique identifier relating to the
suspect or it can reveal how certain events or aspects of the crime occurred.

• Impression evidence is collected and preserved for comparison with other evidence,
impressions, exemplars, or known specimens.

• Traditionally, the manner in which investigators gather impression evidence is through an
impression cast, using a material such as a plaster compound, silicone, or powder to create a
duplicate of the impression.

• Collected impressions can have individual or class characteristics. Individual characteristics
are those that are unique to one entity or person. Conversely, class characteristics are those
that are common to a group.

Trace Evidence

Trace evidence in traditional crime scene analysis includes hair, fibers, soils, particles, residues, and

521

other material that is introduced into the crime scene as a result of contact with the suspect, or
conversely, resulting from victim interaction and contact away from the crime scene, which
introduces the trace evidence into the crime scene. This transfer of trace evidence through contact is
known as Locard’s Exchange Principle—“every contact leaves a trace.”

Digital Impression Evidence

 In the context of malware forensics, digital impression evidence is the imprints and artifacts left in

the physical memory, file system, and Registry of the victim system resulting from the execution and
manifestation of suspect malicious code.

• Digital impression evidence can be a unique identifier relating to a particular malicious code, or
it can reveal how certain events occurred while the suspect malware executed and manifested.

• Digital impression evidence can be collected and preserved for correlation and comparison
with other evidence or known malicious code infection patterns and artifacts. For instance,
newly created files on the victim file system should be collected and analyzed.

• Similar to real-world crime scene forensics, collected digital impressions can have individual or
class characteristics.

Digital Trace Evidence

Digital trace evidence in the context of malware forensics are files and other artifacts introduced

into the victim system/digital crime scene as a result of the suspect malware’s execution and
manifestation, or conversely, resulting from victim online activity, which introduces the digital trace
evidence into the crime scene.
 The collection of digital impression and trace evidence involves digital casting —or passively
logging and collecting the digital impression and trace evidence as the malware executes—and
augmenting real-time monitoring and analysis during dynamic analysis of a suspect program. The
resulting “digital cast” supplements evidence collected through host integrity and installation monitors,
which reveal the resulting system changes compared to a pristine system snapshot, but not the totality
of the execution trajectory and how the impression and trace evidence manifested.

• A tool that is helpful to implement on the local system during dynamic analysis to obtain digital
522

impression and trace evidence is Capture BAT (Behavioral Analysis Tool).39

• Developed by the New Zealand Honeynet Project for the purpose of monitoring the state of a
system during the execution of applications and the processing of documents, Capture BAT
provides the digital investigator with significant insight into how a suspect executable operates
and interacts with a host system, gathering the resulting digital impression and trace evidence.

• Capture BAT monitors state changes on a low kernel level, but provides a powerful filtration
mechanism to exclude “event noise” that typically occurs on an idle system or when using a
specific application.

• This granular filtration mechanism enables the investigator to intuitively identify processes that
cause the various state changes, such as file and Registry writes, modifications, and deletions.
For instance, as shown in Figure 6.11, upon executing a malicious PDF file, Capture BAT
identifies and logs the creation of processes and the resulting File system and Registry activity.

523

Figure 6.11 Use of CaptureBat to obtain digital impression and trace evidence

 As discussed in Chapter 2, memory forensics is an integral part of malware forensics. Recall
that physical memory can contain a wide variety of digital impression and trace evidence, including
malicious executables, associated system-related data structures, and remnants of related user
activities and malicious events.

• The purpose of memory forensics in the scope of analyzing a malware specimen in a laboratory
environment is to preserve physical memory during the runtime of the malware, and in turn,
find and extract data directly relating to malware (and associated information) that can provide
additional context.

524

• Using the tools and techniques discussed in Chapter 2, the digital investigator can harvest
available metadata including process details, network connections, and other information
associated with the malware for analysis and comparison with volatile data preserved from the
live victim system in which the malware was collected.

 In addition to these tools and techniques, digital casting of physical memory can be augmented

by identifying digital impression and trace evidence using FlyPaper40 and RECon.41

 FlyPaper is a utility that loads a device driver causing process artifacts to “stick” or reside in
memory.

• FlyPaper is optimally used in a VMWare Workstation environment as it is intended to be used
in conjunction with the VMWare snapshot function—preserving the memory state of the guest
system once it is infected by the malware specimen.

• Once a snapshot of the infected system state is taken, the .vmem file associated with the
infected guest system can be parsed in HBGary Responder, Mandiant
Memoryze/AuditViewer/Redline, and Volatility (see Chapter 2 for a detailed discussion of
these tools).

• A VMWare .vmem file is a virtual machine’s paging file and contains the memory of the virtual
machine (also known as the guest); it is saved on the digital investigator’s analysis system
(also known as the host).42

• To use FlyPaper, launch it within the malware laboratory guest system prior to executing the
target malware specimen, as shown in Figure 6.12.

525

Figure 6.12 FlyPaper

• Execute the target malware specimen and allow it to run for a few moments to ensure
execution trajectory. During the course of runtime, FlyPaper generates a log file (by default,
C:\flypaper.log) detailing the behavior of the malware and the resulting digital impression
evidence left on the infected guest system.

• Preserve the infected system state of the VMware guest by taking a snapshot. Save the
associated .vmem file for the guest system for analysis in HBGary Responder, or other
memory forensic tool of choice.

 REcon is a dynamic analysis utility included with Responder Pro that records and graphs a

suspect program’s behavior during runtime.43 The resulting “recording,” in conjunction with physical
memory, can be examined in the scope of temporal and relational contexts with Responder Pro using
the Timeline and Graph features. REcon is typically deployed in a virtual environment, such as a
VMWare Workstation guest system, wherein the infected .vmem file can easily be collected for
analysis and to ensure that the system can be reverted to a pristine state after being potentially infected
by a suspect program.

• To use REcon, simply invoke the program and click the “Start” button, as shown in Figure
6.13. Select “Launch New” and select the target executable specimen for analysis.

526

Figure 6.13 REcon

• Let the specimen run for a reasonable period of time to ensure full execution trajectory and
manifestation of potential digital impression and trace evidence in memory.

• Take a snapshot of the infected virtual guest system; after the snapshot has completed stop
REcon.

• Collect the resulting REcon Forensic Binary Journal (.fbj) session file (by default residing in
the root of C:\) and the .vmem file associated with the infected VMWare guest. These files will
be processed concurrently in Responder Pro.

• HBGary Responder 2 also offers a “Live Recon Session” project option, which largely
automates this process.

527

Executing the Malicious Code Specimen

After taking a snapshot of the original system state and preparing the environment for
monitoring, you are ready to execute your malicious code specimen.

• As mentioned earlier, the process of dynamically monitoring a malicious code specimen often
requires plenty of pauses, review of the data collected in the monitoring tools, reversion of
virtual hosts (if you choose to use virtualization), and re-execution of the specimen to ensure
that no behavior is missed during the course of analysis.

• In this process, there are a number of ways in which the malware specimen can be executed;
often this choice is contingent upon the passive and active monitoring tools the digital
investigator chooses to implement.

• Execution of a target specimen also is contingent upon file profile. Unlike Portable Executable
(PE) files that can be invoked through other tools, as described below, malicious document
files such as PDFs, MS Office files, and MS Compiled Help (CHM) files typically require the
digital investigator to manually open and execute a target file by double-clicking on it. It is
through this opening and rendering process that the infection trajectory of the specimen is
invoked.

Simple Execution: The first method is to simply execute the program and begin monitoring
the behavior of the program and the related effects on the victim system. Although this method
certainly is a viable option, it does not provide a window into the program’s interaction with
the host operating system. As described previously, this method is often used for the
execution of malicious document files.
Installation Monitor: As discussed earlier, a common approach is to load the suspect binary
into an installation monitoring utility such as InCtrl5 or InstallWatch and execute the binary
through the utility in an effort to capture the changes that the program caused to the host
system because it was executed.
API Monitor: In an effort to spy on the program’s behavior upon execution, the suspect
program can be launched through an API monitoring utility, which in turn traces the calls and
requests made by the program to the operating system.

• No matter which execution method is chosen, it is important to begin actively monitoring the

host system and network prior to the execution of the suspect program to ensure that all of
the program behavior and activity is captured.

528

Analysis Tip

“Rehashing”

After the suspect program has been executed, obtain the hash value for the program. Although this
information was collected during the file profiling process, recall that executing malicious code often
causes it to remove itself from the location of execution and hide itself in a new, often non-standard,
location on the system. When this occurs, the malware may change file names and file properties,
making it difficult to detect and locate without a corresponding hash. Comparing the original hash
value gathered during the file profiling process against the hash value collected from the “new” file will
allow for positive identification of the file.

529

Execution Trajectory Analysis: Observing Network,
Process, Api, File System, and Registry Activity

Malware execution can be viewed similarly to traditional forensic disciplines, such as
ballistics, that examine trajectory—the path or progression of an entity. In the digital crime
scene reconstruction context, “execution trajectory” is the behavior and interaction of the
malicious code specimen with the victim system and external network resources from the
point of execution through the life cycle of the infection.
 Critical aspects of execution trajectory analysis include:

• Network activity
• Process activity
• API function calls
• File system activity
• Registry activity

Network Activity: Network Trajectory, Impression, and Trace Evidence

 After executing a target malware specimen, observe immediate requests made by the program,

including:

• Attempted Domain Name queries
• Attempted TCP/IP connections
• Attempted UDP packet transmissions
• Unusual traffic (e.g., ICMP for attempted covert communications, command/control, etc.)

 A convenient and efficient way to capture the network requests attributable to a malware

specimen during execution trajectory is to deploy a software firewall program in the lab
environment—particularly a firewall that offers network and program rules acting as a “tripwire” when
activity is triggered by the program.

• Some examples of free firewall software available for installation on your malware lab system
530

include:

Zone Alarm44

Online Armor45

Comodo46

PC Tools47

Ashampoo48

• The real-time network traffic captured in Wireshark can be used to correlate firewall activity

(see Figure 6.14). This layering of information collection is also advantageous in instances
where a malware specimen has countersurveillance capabilities, such as terminating
processes associated with anti-virus, firewall, and other security software.

Figure 6.14 The subject specimen requesting to resolve a domain name

 Often, in the beginning phase of execution trajectory, the purpose or significance of a network
request made by a malware specimen is unknown.

• To enable a suspect program to fully execute and behave as it would “in the wild,” the digital
investigator will need to adjust the laboratory environment to accommodate the specimen’s
request to resolve a network resource, and in turn, facilitate the natural execution trajectory.

• Environment adjustment in the laboratory is an essential process in behavioral analysis of a
531

suspect program. A common adjustment, particularly for modular malicious code (such as
banking Trojans, crimeware kits, and bots), is to emulate DNS to resolve domain names
hard-coded into the target specimen.

Environment Emulation and Adjustment: Network Trajectory
Reconstruction

 Through adjusting the malware lab environment and providing the resources that the specimen

needs, the digital investigator can conduct network trajectory reconstruction or re-enact the manner
and path the specimen takes to successfully complete the life cycle of infection.
 There are a number of ways to adjust the lab environment to resolve a domain name.

• The first method would be to set up a DNS server, in which the lookup records would resolve
the domain name to an IP address of another system on the laboratory network (typically the
suggested Linux server host). A great program to facilitate this method is Simple DNS Plus, a
lightweight and intuitive DNS program for Windows systems.49

• An alternative to establishing a full-blown DNS server would be to use a utility such as
FakeDNS, which comes as a part of the Malcode Analyst Pack tool suite made available
from iDefense.50 FakeDNS can be configured to redirect all DNS queries to a local host or
to an IP address designated by the user (typically the Linux server host). As shown in Figure
6.15, once launched, FakeDNS listens for DNS traffic on UDP port 53 (the default port for
DNS), and in this instance, will redirect all DNS queries to the host supplied by the user (in
this instance, 192.168.186.139).

532

Figure 6.15 Resolving DNS queries with FakeDNS

• Another more simplistic solution is to modify the system hosts file—the table on the host
system that associates IP addresses with host names as a means for resolving host names. On
Windows 2000, the hosts file resides in the C:\WINNT\system32\drivers\etc directory and
on XP/Vista/Windows 7 systems, the hosts file resides in the
C:\WINDOWS\system32\drivers\etc directory.

To modify the entries in the hosts file, navigate to the \etc directory and open the hosts file in
notepad or another text editor.
Add the relevant domain name entry by first entering the IP address that you want the domain
name to resolve to (typically the IP address of the virtual Linux server system in your malware
laboratory), followed by a space, and the target domain name to resolve. Example entries are
provided in the hosts file as guidance.

Network Trajectory Reconstruction: Chaining

 After adjusting the environment to resolve a domain name for the specimen, and pointing the

533

domain to resolve to the IP address of a virtual Linux server host on malware lab network, monitor
the specimen’s reaction and impact upon the victim system.

• Keep close watch on the network traffic, as adding the new domain entry and resolving the
domain name may cause the specimen to exhibit new network behavior. For instance, the
suspect program may reveal what it was trying to “call out” or “phone” home to, such as a
Web server, FTP server, IRC server, or other remote resource, as depicted in Figure 6.16.

Figure 6.16 A suspect program attempting to retrieve a file from a Web server after a domain name
is resolved

 Perpetuating the infection life cycle and adjusting the laboratory environment to fulfill the
network trajectory is a process known as trajectory chaining; be certain to document each step of the
trajectory and the associated chaining steps.

• To facilitate trajectory chaining, accommodate the sequential requests made by the suspect
program.

• For instance, to chain the request made by the malware depicted in Figure 6.16, the digital
investigator should start a Web server on the virtual Linux host where the domain name is
pointed; done this way, the requested connections are captured in the Web server log (see
Figure 6.17).

534

Figure 6.17 Capturing the requests of a malware specimen in a Web server

• The data collected through network trajectory reconstruction, such as that shown in Figure
6.17, may not be immediately decipherable and will require investigation of the resulting
network impression and trace evidence.

Network Impression and Trace Evidence

Network impression evidence includes the imprints and artifacts in network traffic attributable to a

suspect program. Similarly, network trace evidence are files and other artifacts introduced into
network traffic, and in turn, onto the victim system, as a result of the suspect malware’s execution and
manifestation, or conversely, resulting from victim online activity. The following items of investigative
significance can be gleaned from network impression and trace evidence:

• The purpose of resolving a domain name. For example, in Figure 6.17, the Web server log
reveals that the suspect program needed to resolve a domain name in order to phone home to
a Web server and download additional files (msn_messenge.jpg and descompact_msn.jpg).

• Identifiers of modular malicious code likely introduced as trace evidence onto the victim
system. The nature and purpose of the requested files is unknown, but both have .jpg file
extensions, giving the initial impression that they are image files. To emulate how the malware
specimen would fully execute as it would have in the wild, if possible, discreetly retrieve and
analyze the requested files and host them internally on your malware lab server to perpetuate
the execution trajectory of the specimen.

• Functionality interpretation. The functionality displayed by the specimen in the Web server
535

log is commonly referred to as a Trojan downloader , which is a Trojan program that
attempts to connect to other online resources, such as Web or File Transfer Protocol (FTP)
servers and stealthy download additional files. Typically, the downloaded files are additional
malware, such as backdoor or other Trojan programs.51

• Metadata. Significant network impression evidence embedded in the captured Web traffic is
the user-agent string. A user-agent string identifies a client Web browser and provides certain
system details to the Web server visited by the browser. In the instance of Figure 6.17, the
user-agent string is “(compatible; MSIE 6.0; Windows NT 5.1; SV1; EmbeddedWB 14,52
from:http://www.bsalsa.com/Embedded Web Browser from:http://bsalsa.com/).” The digital
investigator should research and document findings relating to user-agent strings; this metadata
may provide further insight into the attacker or malware functionality and purpose. For
instance, the bsalsa embedded Web browser in Figure 6.17 is a freeware package of Borland
Delphi components used to create customized Web browsing applications and to add data
downloading capabilities to applications, among other things.52

Using a Netcat Listener

 An alternative method that can be used to intercept the contents of Web requests and other

network connections is to establish a netcat listener on a different host in the laboratory network.

• Recall from Chapter 1 that netcat is a powerful networking utility that reads and writes data
across network connections over TCP/IP or User Datagram Protocol (UDP).53

• This is particularly helpful for establishing a network listener on random TCP and UDP ports
that a suspect program uses to connect. Netcat is a favorite tool among many digital
investigators due to its flexibility and diversity of use, and because it is often natively installed
on many Linux distributions. There is also a Windows port available for download.54

• Upon learning on which remote port the suspect program is requesting to connect, the digital
investigator can utilize netcat by establishing a netcat listener on the target port of the Linux
server host in the malware laboratory.

• Using the example in Figure 6.17, the suspect program is requesting to download files from a
Web server over port 80. To establish a netcat listener on port 80 of the Linux server, use
the nc command with the –v (verbose) –l (listen) –p (port) switches and identify the target
port number. (The –v switch is not required and simply provides more verbose output, as
shown in Figure 6.18.)

536

Figure 6.18 Establishing a netcat listener for the purpose of collecting network impression evidence

Examining Process Activity

 During dynamic analysis of a suspect program, the digital investigator will want to gain process

context, or a full perspective about a spawned process and how it relates to the system state and to
other behavioral artifacts resulting from the execution of the program.

• Using Process Explorer (or a similar process analysis tool), collect basic process information,
such as the process name and PID. With subsequent queries, seek further, particularly for the

537

purpose of obtaining these process details:

Process name and PID
Temporal context
Memory consumption
Process to executable program mapping
Process to user mapping
Child processes
Threads
Invoked libraries and dependencies
Command-line arguments used to invoke the process
Associated handles
Memory contents of the process
Relational context to system state and artifacts

• Further, by right-clicking on a suspect process in the Process Explorer main viewing pane, the

digital investigator will be presented with a variety of other features that can be used to probe
the process further, such as the strings in memory, threads, and associated TCP/IP
connections, as shown in Figure 6.19.

538

Figure 6.19 Analyzing a suspect process with Process Explorer

Process Spying: Monitoring API Calls

 Recall that API calls are communications made by user-mode programs to the operating system.

Gaining a solid understanding of the API calls made by a malware specimen will greatly assist in static
examination of the specimen in a disassembler.

• In examining the API calls made by a suspect program, be mindful of queries relating to:

Creation or termination of a process;
Calls to anomalous files or resources;
Socket creation;
Network connectivity;
Information gathering about open Internet Explorer Windows and
Registry modification, among other anomalous or nefarious API calls.

• Figure 6.20, which will be used for demonstrative purposes in this section, depicts a sample of

API calls made by a Banking Trojan.

539

Figure 6.20 Analyzing the API calls being made by a Banking Trojan

• The captured API calls reveal that the specimen is monitoring user Internet Explorer browser
activity. By correlating the various API calls and gaining an understanding of the relational
context between the calls, the digital investigator can better determine the nature and purpose
of the specimen.

• Further examining the API calls, it is discernable that the Banking Trojan uses Dynamic Data
Exchange (DDE) commands,55 which enable Windows applications to share data. Internet
Explorer supports DDE commands, and in this instance, the suspect program leverages this
by issuing the www_GetWindowInfo command, which returns the Uniform Resource Locator
(URL) and Window text currently displayed in an open Internet Explorer browser window.

• Immediately after querying to identify the URL being navigated to in the open browser, the
Trojan uses the FindWindowA function56 to locate window names that match specified strings.

• In addition to identifying and comparing the names of the open browser windows, the Trojan
searches in the WINDOWS\Help directory for specific file names using the FindFirstFileA
function.

Investigative Considerations
540

• For full execution context, the digital investigator should examine API calls in conjunction with
file system activity, and associated artifacts, such as suspicious files, that are requested or
invoked by a suspect program.

“Peeping Tom”: Window Spying

 In addition to intercepting API calls, another useful technique for gaining insight into execution

trajectory is examining window messages related to a suspect program.

• A tool that we can use to quickly acquire this information is NirSoft’s WinLister utility.57

• With WinLister, the digital investigator can identify numerous hidden windows relating to the
malicious code specimen.

• Items of investigative interest that can be uncovered in this process include:

Title
Handle of the window
Location
Size
Class name
Associated process number
Name of the program that created the window

• In the example in Figure 6.21, the nature of the windows associated with a suspect program

reveals numerous references to Tforms (“forms”), which are objects used in the creation of
Delphi applications. This is a good clue that we are analyzing a malicious code specimen
written in Delphi.

541

Figure 6.21 Displaying hidden program windows with WinLister

Examining File System Activity

 During the dynamic analysis of a suspect program, gain full perspective about file system activity

that occurs on the victim system and the relational context to other artifacts manifesting during
execution trajectory. Some of these considerations include:

• Correlate the information gathered through the interception of API calls with artifacts
discovered in file system activity.

• Correlate file system activity with process activity and digital trace evidence such as dropped
executables, driver modules, hidden files, and anomalous text or binary files. Monitoring
common locations where malware manifests to blend into the system, such as
“%systemroot%\system32,” may reveal anomalous items. In addition to such traditional
malware file artifacts, consider functional context, including processes running from suspicious
locations in the file system, such as newly created directories, or anomalous directories such
as C:\Documents and Settings\<user>\Local Settings\Temp, among others.

542

• Correlate file system activity with Registry activity.
• Perform relational analysis, including correlation of network impression and trace evidence with

execution trajectory on the file system, such as modification of the hosts or lmhosts file.

Examining Registry Activity

 During the runtime of the suspect program, gather correlative information relating to the malware

specimen’s interaction with the Registry of the host system, including:

• Registry keys created during the execution life cycle of the malware specimen, which may
reveal where malware is configured to auto-start

• Registry keys modified during the time period the malware specimen was executed
• Registry keys deleted during the time period that the malware specimen was executed
• Registry artifacts that provide clues about additional components of the malware

 Another interesting aspect about monitoring Registry activity is that good clues are not

necessarily those values or keys created, modified, or queried by the suspect program; rather, they
are values or keys queried for, but not in existence, on the host system. For instance, a suspect
program may attempt to query for Registry keys related to a particular program or development
environment, not present on a host system, which is a great supporting clue that the program may
require additional components to be fully functional and successfully complete its execution life cycle.

543

Automated Malware Analysis Frameworks

A helpful solution for efficiently triaging and processing malicious code specimens in an
effort to gain quick intelligence about the specimens is automating the behavioral analysis
process.
 Over the last few years, a number of researchers have developed automated malware analysis
frameworks that combine and automate a myriad of processes and tools to collectively monitor and
report on the runtime behavior of a target malicious code specimen. These analysis frameworks
provide an effective and efficient means of processing a suspect program to quickly gain actionable
intelligence about the specimen. Some examples of automated malware analysis frameworks include:

• Buster Sandbox Analyzer (Buster)58: A flexible and configurable sandbox platform based
upon Sandboxie,59 a utility that creates an isolated abstraction area (sandbox) on a host
system preventing changes from being made to the system. Buster monitors and analyzes the
execution trajectory and behavior of malicious code specimens, including PE files, PDF files,
and Microsoft Office Documents, among others. Unlike many automated solutions, Buster
allows the digital investigator to interact with the specimen when required (such as clicking on
a dialog box button or supplying missing libraries where needed).

• ZeroWine60 and ZeroWine Tryouts 61: Developed by Jean Koret, both ZeroWine and
ZeroWine Tryouts (an offshoot of the original ZeroWine project) are open source malicious
code behavioral analysis platforms built on Debian Linux in QEMU virtual machines that
emulate Windows systems using WINE. Intuitive to use, both systems provide the digital
investigator with Web-based upload and reporting consoles. Although both systems can
dynamically analyze Windows executable files, ZeroWine Tryouts can also conduct
automated static analysis of PDF files, as shown in Figure 6.22.

544

Figure 6.22 Analyzing an executable malware specimen in ZeroWine and a malicious PDF file
specimen in ZeroWine Tryouts

• Minibis62: Developed by the Austrian Computer Emergency Response Team (CERT.at),
Minibis is a malicious code behavioral analysis framework based on Oracle VirtualBox
virtualization and scripting of third-party malicious code monitoring utilities, such as those
referenced in the Active System and Network Monitoring section of this chapter.

• The Reusable Unknown Malware Analysis Net (TRUMAN)63: A native hardware-based
solution developed by malware expert Joe Stewart of SecureWorks, TRUMAN operates on
a client-server model with a custom Linux boot image to restore a fresh Windows victim
system image after each malware specimen is processed. At the core of TRUMAN is a series
of scripts to emulate servers (DNS, Web, SMTP, IRC, SQL, etc.) and pmodump, a perl-
based tool that parses physical memory for malicious process artifacts. Although TRUMAN
is no longer supported, in 2009 Jim Clausing of the SANS Institute developed and published
enhancements for the platform.64

• Cuckoo Sandbox65: An open source malicious code behavioral analysis platform developed
by Claudio Guarnieri that uses a Linux controller system (core component), virtual machines
(installed on VirtualBox), Samba shares (to facilitate communication between the controller
and virtual machines), and analysis packages (scripts that define automated operations that

545

Windows should conduct during the analysis of a target specimen).66

 Other Tools to Consider

Commercial Malware Sandboxes

GFI Sandbox (formerly Sunbelt CWSandbox): Designed for Windows platforms, the GFI
Sandbox system monitors and analyzes malicious code specimens during runtime. Capable of
analyzing Windows executable files and Microsoft Office Documents, among other files types,
GFI Sandbox reports on system changes and network activity attributable to a target
specimen, along with proprietary Digital Behavior Traits (DBT) for interpreting malware
actions (http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-
CWSandbox/).

Norman Sandbox Malware Analyzer: Built upon a Windows Clone operating system,
Norman Sandbox executes and analyzes Windows executable files in an emulated host and
network environment, monitoring and reporting on the target specimen’s behavior and impact
upon the system (http://www.norman.com/business/sandbox_analyzer/).

546

Online Malware Analysis Sandboxes

A helpful analytical option to either quickly obtain a behavioral analysis overview of
suspect program or to use as a correlative investigative tool is to submit a malware specimen
to an online malware analysis sandbox.
 These services are distinct from vendor-specific malware specimen submission Web sites or
online virus scanners such as VirusTotal, Jotti Online Malware Scanner, and VirScan, as discussed in
Chapter 5.

• Online malware scanners execute and process the malware in an emulated Internet, or
“sandboxed,” network and generally provide the submitting party a comprehensive report
detailing the system and network activity captured in the sandboxed system and network.

• As we discussed with the submission of samples to virus scanning Web sites, submission of any
specimen containing personal, sensitive, proprietary, or otherwise confidential information may
violate a victim company’s corporate policies or otherwise offend the ownership, privacy, or
other corporate or individual rights associated with that information. Seek the appropriate
legal guidance in this regard before releasing any such specimen for third-party examination.

• Similarly, remember that by submitting a file to a third-party Web site you are no longer in
control of that file or the data associated with that file. Savvy attackers often conduct
extensive open source research and search engine queries to determine if their malware has
been detected. The results relating to a file submitted to an online malware analysis service are
publicly available and easily discoverable—many portals even have a search function. Thus,
as a result of submitting a suspect file, the attacker may discover that his malware and
nefarious actions have been discovered, resulting in the destruction of evidence and potentially
damaging your investigation.

• The following table is a comparative listing of currently available online malware analysis
sandboxes and their respective features:

547

Web Service Features

GFI Sandbox (formerly Sunbelt Sandbox)
http://www.sunbeltsecurity.com/sandbox/

• Conducts cursory file profiling,
including file name and MD5 and SHA1
hash values.
• Conducts behavioral analysis of
Windows portable executable files;
monitors and reports on process, file
system, Registry, and network activity.
• Provides report via e-mail address
supplied by user.

CWSandbox (academic)http://www.mwanalysis.org/

• Conducts cursory file profiling,
including file name and MD5 and SHA1
hash values.
• Conducts behavioral analysis of
Windows portable executable files;
monitors and reports on process, file
system, Registry, and network activity.
• Conducts cursory file profiling,
including file name, MD5 hash value, time
last submitted (if previously received),
and a description of the suspect file’s
identified behavioral characteristics.

548

Anubis http://anubis.iseclab.org/index.php • Conducts behavioral analysis of
Windows portable executable files;
monitors and reports on process, file
system, Registry, and network activity.
• Malicious URL Scanner.

ThreatExpert http://www.threatexpert.com

• Conducts cursory file profiling,
including file size, MD5 and SHA1 hash
values, submission details, duration of
processing, identified anti-virus
signatures, and a threat categorization
based upon the suspect file’s identified
behavioral characteristics.
• Conducts behavioral analysis of
Windows portable executable files;
monitors and reports on process, file
system, Registry, and network activity.

Norman Sandbox Analyzer
http://www.norman.com/security_center/security_tools/

• Conducts cursory file profiling,
including file size, MD5 and SHA1 hash
values, packing detection, and identified
anti-virus signatures.
• Conducts cursory behavioral analysis of
Windows portable executable files;
monitors and reports on file system,
Registry, and network activity.
• Provides basic text report via e-mail
address supplied by user.

Joe Sandbox Web (formerly Joebox)
http://www.joesecurity.org/service.php

• Commercial online sandbox service.
• Conducts extensive file profiling,
including file size, MD5 and SHA1 hash
values, packing detection, PE file
analysis, and metadata extraction.
• Conducts robust behavioral analysis of
Windows executable files (exe, dll, sys)
Microsoft Office Document, and PDF
files; monitors and reports on memory,
process, file system, Registry, and

549

network activity.
• Provides HTML report and session
screenshot and session pcap file via e-
mail address supplied by user.

NSI Malware Analysis Sandbox
http://www.netscty.com/malware-tool

• Sandbox based upon TRUMAN
automated malware analysis framework.
• Link to analytical report is provided via
e-mail address supplied by user.

Eureka http://eureka.cyber-ta.org/

• Conducts behavioral and static analysis
of Windows portable executable files;
provides assembly code analysis of
unpacked specimen, strings, control flow
exploration, API calls, capabilities graph,
and DNS queries.
• Unpacked executable specimen is
made available for download.

Comodo http://camas.comodo.com/ (Automated Analysis
System) http://valkyrie.comodo.com/ (“File Verdict
Service”)

• Conducts cursory file profiling,
including file size and MD5, SHA1, and
SHA256 hash values.
• Conducts behavioral analysis of
Windows portable executable files;
monitors and reports on process, file
system, Registry, and network activity.

BitBlaze http://bitblaze.cs.berkeley.edu/

• Conducts behavioral and static analysis
of Windows portable executable files;
provides assembly code analysis of
unpacked specimen, strings, and API
calls.

Malfease https://malfease.oarci.net/

• Conducts extensive file profiling,
including file size, MD5 and SHA1 hash
values, identified file signatures, packing
detection, PE file analysis, byte frequency
analysis, and metadata extraction.
• User portal.
• Processes PE files, document files

550

ViCheck.ca https://www.vicheck.ca/

(PDF, MS Office, CHM), images, and
archive file, among others.
• Queries a submitted file against
viCheck malware database, as well as
Virustotal.com, ThreatExpert.com, and
Team-Cymru malware hash databases.
• Conducts file profile of target specimen,
including file format identification, file
size, and MD5/SHA1/SSDEEP hash
values. Provides a hexdump for
submitted PE files.
• Processes target file in Sandbox.
• Link to analytical report is provided via
e-mail address supplied by user.
• Tool portal that allows users to search
the malware database for
MD5/SHA1/SHA256 hash values,
Master Decoder, IP header processing,
and IP/Domain Whois.

551

Defeating Obfuscation

As described inChapter 5 , malware is often protected with obfuscation code preventing
the digital investigator from harvesting valuable information from the contents of the file
during initial cursory review, which would potentially provide valuable insight into the
nature and purpose of the malware.
 To gain meaningful clues that will assist in the continued analysis of a malicious code specimen,
the digital investigator will need to remove the obfuscation.

• In order to fully explore a suspect program, including reviewing the embedded artifacts or
examining the program in a disassembler, it is necessary to extract the original program from
its “armor.”

• Although there are many obfuscation programs available, very few, such as UPX,67 have a
native unpacking feature or utility. There are a number of methods to defeat file obfuscation,
each with its own advantages and limitations. Some of these methods include:

Custom unpacking tools
Dumping a suspect process from memory
Locating the Original Entry Point (OEP) with a debugger and extracting the PE file

Custom Unpacking Tools

 Using the tools and techniques described in Chapter 5, detect and identify any obfuscation code

concealing a target file specimen. If a packing program is identified, conduct Internet research about
the program and you are bound to find an “unpacker” program specifically created to defeat the
packing program.

• Some examples of this are UnFSG,68 UnMew,69 AspackDie,70 UnPECompact,71 and
DeShrink.72

• These tools work with varying degrees of success, and many are written by hackers referred to
by a single name. Unfortunately, as many of these tools are “underground utilities,” there is

552

also a possibility that an unscrupulous coder has built malicious features into the tool that may
infect the user system or render it vulnerable.

• Further, as these tools are not typically considered forensic utilities, they may not be the best
choice for investigations that have the potential for litigation in court or other proceedings in
which findings need to be validated. Use due care in selecting and implementing these utilities.

 In Figure 6.23, the unpacking utility AspackDie (which unpacks executables obfuscated with

ASPack) is demonstrated.

Figure 6.23 Using AspackDie to unpack a protected executable

• AspackDie is very simple to use. After executing the program the user will be prompted to
select a target file to unpack.

• After choosing the target file, AspackDie does its “magic” and provides the user with a
message box revealing whether the file was successfully unpacked, the version of ASPack
identified, and the path of the output file where the new, unpacked version of the target
executable was written to disk (this is normally the same directory where the target program
resides).

Dumping a Suspect Process from Memory
553

 Another method of defeating obfuscation is to “dump” the unpacked program from memory once

the decompression or decryption routine of the obfuscation is completed. This is a simple and
common method used by many digital investigators, but there are a few shortcomings that are
examined in detail later in this section.

• There are a number of tools that can assist in dumping, all of which are PE editing tools as well.
Some of the staple utilities include LordPE,73 ProcDump,74 and PE Tools (Xmas Edition).75

• Although these tools are used quite often by digital investigators, they are considered by many
in the industry to be underground tools (i.e., PE Tools is available from http://www.uinc.ru/—
the “Underground Information Center”).

• In addition to these tools, a number of process monitoring utilities have been released that also
provide a process dumping feature, including Process Explorer,76 CurrProcess,77 Task
Explorer,78 ProcessAnalyzer,79 Sysinternals ProcDump,80 and Dumper.81

 To dump a suspect program from memory with LordPE (the same procedure applies with

ProcDump and PE Tools), first execute the program in a lab environment.

• Once the program has executed, locate the process in the upper pane of the tool, right-click on
the process, and choose “dump full” (see Figure 6.24). The digital investigator will then need
to name the newly dumped file and the location to write the file to disk.

554

Figure 6.24 Using LordPE to dump a process from memory

 Although using this method can be helpful for dumping an obfuscation-free version of the
program, for the purpose of searching for strings or examining the file in a disassembler, the resulting
file typically cannot be executed because the PE import table is often corrupted in the process of
being dumped. (The import table provides the Windows loader with the imported .dll names and
functions needed for the executable to properly load.)

Investigative Considerations

• Another shortcoming of dumping a running program from memory is that it does not work for
all forms of obfuscation code. Savvy attackers have learned that dumping is a part of the
malware analyst’s arsenal for peering into their programs. As a result, some attackers use
packers that have anti-dumping countermeasures, which stymie the digital investigator’s ability
to dump an unpacked program from memory.

• In such instances, static analysis techniques, such as debugging, will be required to extract the
specimen from obfuscation code.

 Other Tools to Consider

Automated Unpackers

• Polyunpack: Developed by researchers at Georgia Tech, Polyunpack identifies and extracts
hidden code during the runtime of the target executable;
http://polyunpack.cc.gt.atl.ga.us/polyunpack.zip; http://www.acsac.org/2006/papers/122.pdf.

• Ether: Developed by researchers at Georgia Tech, Ether is a malware analysis framework
based upon virtual hardware extensions to remain transparent/undetectable to a target
executable during the course of execution; http://ether.gtisc.gatech.edu/;
http://ether.gtisc.gatech.edu/web_unpack/ (Online Ether unpacking Portal).

• R eversing Labs Tools : Reversing engineering tools (TitanEngine, TitanCore, TitanMist,
NyxEngine) to identify and deobfuscate malware; http://www.reversinglabs.com/.

Locating the OEP and Extracting with OllyDump555

Locating the OEP and Extracting with OllyDump

 Another method of defeating obfuscation is to run the protected suspect program through a

debugger, locate the OEP of the original program as it is unpacked into memory, and then extract the
program.

• Because each packing and cryptor obfuscates the OEP of the protected program in a different
way, it requires step-by-step tracing of a suspect program during execution through a
debugger. A debugger is a program that enables software developers, and conversely,
reverse engineers, to conduct a controlled execution of a program, allowing the user to trace
the program as it executes.

• In particular, a debugger allows the user to set breakpoints during the execution of a target
program, which pause the execution, allowing for examination of the program at the respective
breakpoint.

 A debugger used by many malware analysts is Oleh Yuschuk’s powerful and free 32-bit

debugger, OllyDbg.82

• OllyDbg has a user-friendly GUI and a variety of configuration options. The main OllyDbg
interface or “CPU window” provides the analyst with five re-sizeable viewing panes,
including, among other things, a disassembler view, a register window (which displays and
interprets the contents of CPU registers), and a dump window (which reveals the contents of
memory or file).

• One of the many benefits of OllyDbg is the ability to add functionality to the program through
the use of plug-ins and scripting, in which there is a rather sizeable contributing community. A
great resource for OllyDbg Plug-ins is the Open Reverse Code Engineering (OpenRCE) Web
site founded by Pedram Amini.83

Analysis Tip

Anti-debugging

Be aware that in some instances attackers attempt to protect their malicious programs by
implementing anti-debugging mechanisms, which are used to detect if the program is being run through
a debugger. These techniques are used to stymie analysis and reverse-engineering. A good article on
Windows anti-debugging titled the “Windows Anti-Debugging Reference” can be found online at

556

http://www.securityfocus.com/infocus/1893.

 A useful plug-in to assist in extracting our suspect program from its packing is OllyDump,84

which enables the digital investigator to dump an active process to a PE file. The nuances of this
process will vary with different types of obfuscation code, but the general methodology is similar. In
the following example, a malicious code specimen obfuscated with ASPack85 (a common packing
program) will be examined to demonstrate the use of OllyDbg and OllyDump.

• To use OllyDump, a suspect program must first be loaded into OllyDbg.
• Upon loading the obfuscated target specimen, a message box will advise that the entry point

for the program is “outside the code” (see Figure 6.25). This is a common error to receive
when attempting to debug a specimen that is obfuscated with a packing or cryptor program.

Figure 6.25 OllyDbg entry point alert

• After clicking through the warning, the digital investigator will be greeted with another helpful
message box. This time OllyDbg will advise that based upon entropy analysis, the loaded
specimen appears to be compressed or encrypted (see Figure 6.26).

Figure 6.26 OllyDbg Compressed Code Detection Warning

• After clicking through the warning, the suspect program is presented in the OllyDbg
environment. To identify the OEP of the specimen, execute the malicious code specimen in
OllyDbg (allowing the ASPack decompression routine to occur) and in turn, have the suspect
program loaded into memory where it is no longer protected (see Figure 6.27).

557

Figure 6.27 A suspect program loaded into OllyDbg

• Once the specimen is loaded into OllyDbg, execute it using the F9 key.
• When the execution pauses, identify a PUSH instruction for the suspect program. At this offset

use the “follow in dump” feature, which can be invoked by right-clicking within the CPU
window (see Figure 6.28). In addition, set a hardware breakpoint so that when the code is
stepped over with the F8 key the OEP address of the suspect program will be reached (see
Figure 6.29).

558

Figure 6.28 “Following the dump” in OllyDbg

559

Figure 6.29 Finding the OEP of a suspect program

 Once the OEP is located, the debugged process can be dumped with the OllyDump plug-in,
which can be invoked by either right-clicking in the CPU pane or by selecting the plug-in from the
Plug-ins Menu as shown in Figure 6.30.

Figure 6.30 Dumping with OllyDump

 In selecting to dump the debugged process, OllyDbg presents the user with an interface
revealing the OEP address of the extracted binary, DC044, as shown in Figure 6.31. By selecting to
dump debugged process, the “new” unpacked binary will need to be saved to disk.

560

Figure 6.31 Acquiring the OEP of a dumped suspect program

 At this point, the dumped suspect program is unpacked, but the Import Table and Import
Address Table (“Imports”) are most likely corrupted (this can be tested by attempting to execute the
program in the sandboxed environment). Refer to Chapter 5 for a discussion about the Import Table
and the Portable Executable file structure.

• OllyDump has a feature to rebuild the Imports as do PE Tools (Xmas Edition) and LordPE.
• An alternative, discussed in the next section, is to rebuild the Imports while the suspect

program is still loaded in OllyDbg and running in memory.

Reconstructing the Imports

 As we discussed in Chapter 5, dynamically linked executable programs require certain dynamic link

libraries (.dlls) to successfully execute.

• When a dynamically linked program is executed, the Windows loader reads the Import Table
and Import Address Table of the PE structure, identifies and loads the .dlls (and associated
functions) required by the program, and maps them into process address space. Thus, if the

561

Imports are corrupted, the program will not be able to successfully execute and load into
memory.

• The Imports can be reconstructed using Import Reconstructor (ImpREC).86 While the suspect
process is still running after having been executed with OllyDbg, attach to the suspect process
by selecting it from the ImpREC active process drop-down menu (Figure 6.32).

Figure 6.32 Selecting a dumped process with ImpREC

• After attaching to the process, supply the OEP of the suspect program obtained during the
dump program in OllyDbg (DC044) in the ImpRec IAT Autosearch feature window.

• By supplying the OEP and selecting IAT Autosearch, ImpREC attempts to recover the original
Import Address Table of the dumped executable. ImpREC provides the user with a message
box if the address of the original IAT is discovered, as displayed in Figure 6.33.

Figure 6.33 ImpREC

• By selecting the Get Imports function, ImpREC rebuilds the Imports of the target executable.
Each recovered import is demarcated as to whether it is valid or invalid. Further, the user can
query ImpREC using the “Show Invalid” or “Show Suspect” functions to identify functions
that may not have been properly recovered.

• Once the Imports of the target executable have been recovered and validated, the newly
“refurbished” dumped executable can be saved to disk using the “Fix Dump” function (see

562

Figure 6.34).

Figure 6.34 Reconstructing the dumped binary in ImpREC

 After saving the newly dumped and reconstructed binary, re-scan it with a packing
identification utility such as PEiD, to verify that the obfuscation has been removed.

• Many of the packing detection utilities we discussed in Chapter 5 also detect the signatures of
compilers and high-level programming languages.

• The digital investigator can further verify the functionality of the binary by executing it—
confirming that the program executes and exhibits the same behavior as the previous
obfuscated version.

563

Embedded Artifact Extraction Revisited

After successfully pulling an executable malicious code specimen from its obfuscation
code, re-examine the specimen for embedded artifacts and conduct deeper static analysis of
the specimen.
 Re-profile the newly deobfuscated executable file using the tools, techniques, and protocol
described in Chapter 5.

• Pay particular attention to strings, symbolic information, and file metadata that may reveal clues
relating to the purpose and capabilities of the program.

• Disassemble the target executable in an effort to determine the function and interrelationships of
embedded artifacts, and in turn, how the totality of these relationships shape the functionality
of the specimen, including:

Triggering events
Relational context of API function calls
Anticipated digital impression and trace evidence on a target system

 Analysis Tip

Investigative Parallels

The digital investigator could think of dynamic analysis to some degree as surveillance of a suspect.
During the course of surveillance, the investigator seeks to learn “what does the suspect do, where
does he go, who does he talk to,” etc. This initial evidence collection helps provide a basic overview
of the suspect’s activity, but often additional investigation is required. A detailed interrogation (in the
parallel of malware forensics, disassembly) of the suspect (code) can help identify the remaining items
of potential interest.

Examining the Suspect Program in a Disassembler

 During the course of dynamic analysis of a malicious code specimen, active system monitoring will

564

likely yield certain clues into the functionality of the specimen. In particular, API calls made by the
specimen during execution trajectory provide substantial insight into the manner in which the specimen
operates and the digital impression and trace evidence that will be left on the affected system.

• Examine the specimen in IDA Pro, a powerful disassembler and debugger offered by Hex-
rays.com.87 A disassembler allows the digital investigator to explore the assembly language
of a target binary file, or the instructions that will be executed by the processor of the host
system.

• IDA Pro is feature-rich, multi-processor capable, and programmable, and has long been
considered the de facto disassembler for malicious code analysis and research. Although it is
beyond the scope of this book to go into great detail about all of the capabilities IDA Pro has
to offer, there is a great reference guide called The IDA Pro Book by Chris Eagle.88

 By spying on the API calls made by a suspect program during dynamic analysis, a helpful list

of functions can be identified for exploration within IDA Pro. The following examples demonstrate
leveraging the intelligence gathered during API monitoring and using IDA Pro to parse a suspect
malware specimen. In particular, IDA Pro can be used to identify: (1) triggering events; (2) relational
context of API function calls; and (3) anticipated network trajectory, digital impression, and trace
evidence.

Triggering Events

• Triggering events are environmental or functional context variables that cause a malicious
specimen to perform a certain function. In Figure 6.35, IDA Pro was used to locate the
strings a specimen uses to compare against open browser windows. The code of the malware
reveals numerous URLs for various financial institutions, which the specimen monitors with the
FindWindow function.

565

Figure 6.35 Using IDA Pro to discover a triggering event

Relational Context of API Function Calls

• In addition to identifying triggering events, IDA Pro can be used to identify the inextricability of
certain function calls, further revealing how a malware specimen accomplishes its infection life
cycle and intended purpose.

• Looking further into the code of a target specimen from Figure 6.36, the malware also uses the
GetForegroundWindow and GetWindowTextA functions in tandem to identify the window that is
currently in use and obtain the text from the window.

Figure 6.36 Examining relational context between functions with IDA Pro
566

• Deeper examination of the function with IDA Pro reveals that the specimen uses the

SendMessageA function to relay back the discovered window titles. This method allows the
malware to selectively monitor the infected user’s browser activity, targeting URLs that relate
to the specified financial institutions.

Anticipated Network Trajectory, Digital Impression, and Trace Evidence

• In addition to determining the manner in which a malware specimen performs a nefarious
function, IDA Pro should be used in an effort to identify digital trace evidence potentially
introduced onto a victim system.

• In particular, using IDA Pro, locate functions and references to files a malware specimen tries
to download and execute. For example, in Figure 6.37, the malware makes a call to
download a file. After acquiring the file, the malware executes the newly acquired binary
through the WinExec function.

Figure 6.37 Identifying potential digital impression and trace evidence with IDA Pro

• This information reveals the likely network trajectory of the malware, in addition to digital
impression and trace evidence likely introduced on a victim system affected by the malware.

• Intelligence gathered through this process should be correlated with live response and post-
567

mortem forensic findings in an effort to identify remediation considerations.

 Other Tools to Consider

Visualizing Disassembly

• BinNavi: http://www.zynamics.com/binnavi.html
• HBGary Responder: http://www.hbgary.com/responder-pro-2

Advanced PE Analysis: Examining PE Resources and Dependencies

In addition to examining the suspect program for embedded entities and inspecting the
assembly instructions in IDA Pro, re-examine certain PE structures in the suspect program
to gain further insight into the nature and purpose of the program.

PE Resource Examination

 The Resource Section (.rsrc) of the PE file contains information pertaining to the names and types

of Resources embedded in the file.89

• Described in the Microsoft winnt.h header file,90 the Resource Section is a hierarchical

structure consisting of the header pointing to an array of Resource entries. In a PE file, this
structure is collectively known as the IMAGE_RESOURCE_DIRECTORY, depicted in Figure 6.38.

568

Figure 6.38 Image_resource_directory

• Standard Resource types include icon, cursor, bitmap, menu, dialog box, enhanced metafile,
font, HTML, accelerator table, message table entry, string table entry, and version
information, among others. (A comprehensive listing of the predefined Resource types can be
found in the winuser.h header file).91

• If references in the strings of a malware specimen connote indicia of image files, the Resource
Section should be thoroughly examined.

• Resource information gives the digital investigator a window into the intentions of the attacker.
For instance:

Did the attacker make the icon associated with a malware specimen appear to be innocuous
to give the victim a sense of comfort to click on it?
Are there embedded images in the Resources that reveal how the code will behave once

569

executed?
Do dialog boxes reveal the purpose and/or capabilities of the malware or the language likely to
be spoken by the intended victim?
Was version information (described next) modified to make the specimen appear to be
trustworthy?

• As discussed in Chapter 5, certain metadata can be extracted from Windows PE files. This

information includes version information from the Resource Section, which is unique textual
data that describes and identifies an executable file.

• Version information is typically supplied by the user who compiled the executable during the
course of compilation. Version information includes:

File version
Product version
Target OS
Language
Company name
File description
Internal name
Legal copyright
Legal trademarks
Original file name
Product name

 A number of different PE analysis tools and Resource editing tools can be effectively used to
parse and extract the contents of a target executable’s resources, including PE Explorer, Resource
Hacker,92 CFF Explorer,93 and XN Resource Editor.94 Unlike many PE Resource analysis tools
that simply identify that the binary contains picture data and displays American Standard Code for
Information Interchange (ASCII) encoding of binary data, PE Explorer enables the digital investigator
to probe the Resources and display actual embedded images, if available.

• Loading a suspect program into a PE Resource analysis tool, the digital investigator will be
presented with a listing of the various Resources in the binary. Most tools provide for a
hierarchical “drill down” navigation capability, similar to that of Windows Explorer. In
exploring Resources, start in ascending order and slowly “peel” through the available

570

Resources. (See Figure 6.39.)

Figure 6.39 Navigating PE Resources

• In Figure 6.40, a dialog box Resource reveals that the target malware, a Wemon Trojan
specimen, contains a “GETPASSWORD1” dialog box with Cyrillic characters; the dialog box
requests a password to be entered. A Resource such as this is a good clue, suggesting not
only that the malware has a password nexus, but that the attacker and/or intended recipient
can read Russian.

571

Figure 6.40 Examining the resources of a suspect executable with XN Resource Editor

• Similarly, in the example shown in Figure 6.41, the target specimen contains a RCDATA
Resource with an embedded image of a virtual keyboard and Portuguese text requesting a
debit card password.

Figure 6.41 Extracting an embedded resource image with PE Explorer

• RCDATA Resources are raw data Resources for an application that permit the inclusion of
binary data directly into an executable file.95 Delphi executables typically contain RCDATA
Resources, which include Tforms. For a discussion regarding the nuances of Delphi
specimens, see the Delphi Executables text box, below.

 An alternative to manually exploring PE Resources is using a Resource extraction tool, such as

NirSoft’s ResourceExract,96 which allows the digital investigator to select a target binary and copy
certain Resources, such as icons, bitmap images, and cursor entries, into a destination folder.

• This approach is certainly quicker, but a downside is that it is not as methodical and thorough,
and valuable Resources such as RCDATA and version information can be missed. (See
Figure 6.42.)

572

Figure 6.42 Extracting Resources from a suspect executable with Resource Extract

 Analysis Tip

Delphi Executables

In the field, the digital investigator will likely encounter malware written in Delphi (a development
environment for Microsoft Windows), such as Banking Trojans and Rogue AntiVirus variants. Delphi
executables often contain artifacts resulting from development and compilation in the Delphi
environment. These artifacts, such as form files (TForms), contain valuable clues into a target
specimen. Delphi form artifacts typically reside in the RCDATA resources of a target executable. In
addition to exploring these artifacts in PE Resource viewer, the following tools and techniques allow
the digital investigator to dig further into a Delphi executable specimen:

Decompiling a Delphi Executable Specimen

A very powerful tool for analyzing Delphi executables is DeDe, which allows the investigator to
decompile a target Delphi executable, reverting the binary into a native project directory, including
.pas (source) files, .dfm (Delphi form files), and .dpr (Delphi) project files. After extracting the
components of the executable, DeDe provides for an intuitive navigation window, allowing the digital
investigator to parse the contents of the program. Individual components can be viewed for further
information by selecting the respective component, such as a form

573

(http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml).

Viewing Delphi Forms

DeDe also comes with a DFM (Delphi Form) Inspector, allowing the digital investigator to examine
the form files associated with the target executable file. However, for viewing form information, we
find that a better suited tool is DFM Editor, which is available for Windows 95/98/ME/NT
4.x/2000/XP/2003/Vista (http://www.mitec.cz/dfm.html). DFM Editor is a form editor for Borland
Delphi forms in both text and binary format. A particular helpful feature of DFM editor is its ability to
extract forms from compiled executables and .dlls through its extraction tool. Upon loading a suspect
executable, DFM Editor provides the digital investigator with “Resources” and “Info” tabs. The
information contained in the Resources table reveals the form Resources identified and extracted from
the target executable, whereas the “Info” tab reveals the components that the suspect executable
contains, similar to the navigation window offered in DeDe. Upon selecting a target form, the DFM
Editor provides for an object tree view navigation pane, enabling the digital investigator to drill down
through objects on a granular level.

Dependency Re-exploration

 In addition to exploring the Resource section of a suspect program, the file dependencies of a

suspect program should be re-examined to identify modules that the specimen invokes to support its
functionality.

• For instance, during the course of parsing the assembly instructions of a binary in IDA Pro, the
digital investigator may learn that the suspect program relies on certain functions. By re-
examining the target executable’s file dependencies, it is possible to identify which imported
libraries support the necessary functions.

• As discussed in Chapter 5, a helpful tool for gaining a granular view of file dependencies is
Dependency Walker.97

• Using the collective results of API monitoring, file system monitoring, and static binary analysis
with IDA Pro, identify the .dll files that are invoked by a target malware specimen to support
required functionality.

• In Figure 6.43, the Banking Trojan examined earlier in this chapter invokes user32.dll to
support its required DDE functionality, as well as the FindWindow and SendMessage functions.
Further, the specimen loads kernel32.dll to support the FindFirstFile function, which is

574

required for querying the text files the program searches for during runtime.

Figure 6.43 Examining the dependencies of a target executable with Dependency Walker

• After identifying the modules and associated functions invoked by a suspect program, the
digital investigator can spy on the program’s behavior in a more aggressive manner, such as
API hooking, as described below in the following section.

575

Interacting with and Manipulating the Malware Specimen:
Exploring and Verifying Functionality and Purpose

After identifying the manner and means in which a target malware specimen functions,
manipulate the specimen or the lab environment in an effort to interact with the specimen
and verify its functionality.
 Unlike other phases of analysis that involve monitoring, data analysis, and extraction to
understand the functionality of a target malware specimen, this phase of analysis focuses on thinking
like the attacker. In particular, the focal point is how is the malware specimen used and how its
functionality is invoked.

• To accomplish this task, the digital investigator can manipulate a target malware specimen in
the following ways:

API hooking
Prompting trigger events
Using client applications

API Hooking

 A technique that can be used to isolate and spy on specific functions of a suspect program, and in

turn, confirm our findings regarding a program’s functionality, is API hooking, or intercepting specific
API calls.

• A useful tool that can be used to accomplish this task is SpyStudio, which is developed by
Nektra.98

• Unlike the .dll injection technique discussed earlier, SpyStudio uses a proprietary API
framework called the Deviare API to intercept function calls, allowing the digital investigator
to monitor and hook applications in real time.

• Recall from previous examples where we examined a suspect Banking Trojan’s dependencies,
which revealed that the functions invoked by the specimen were primarily provided by the

576

imports user32.dll and kernel32.dll. Further, from our inspection of the specimen’s assembly
instructions and our previous API monitoring sessions, we learned that the program
accomplishes its nefarious purpose by using the FindWindowA and SendMessageA functions and
DDE commands, among others. With this information SpyStudio can be configured to insert a
hook to monitor required functions.

• As shown in Figure 6.44, a hook is inserted into the DDECreateString HandleA command
through user32.dll. Immediately after placing the hook, the output interface of SpyStudio
scrolled with the WWW_GetWindowInfo request.

Figure 6.44 Intercepting the WWW_GetWindowInfo function with SpyStudio

• The same method can be used to confirm the suspect program’s use of the FindWindowA,
SendMessageA, GetWindowTextA.

• For example, in Figure 6.45, the output resulting from the interception of calls for the
FindWindowA function identifies numerous financial institution Web sites that are being
monitored vigilantly by the specimen.

577

Figure 6.45 Intercepting the FindWindowA function with SpyStudio

• SpyStudio enables the digital investigator to monitor several hooked functions simultaneously,
intercepting and revealing the relational context and interplay between the functions.

Prompting Trigger Events

 Recall from earlier in the chapter that execution trajectory is the behavior and interaction of the

malicious code specimen with the victim system and external network resources from the point of
execution through the life cycle of the infection. As a part of the trajectory, triggering events are
those events that invoke behavior or functionality from a specimen.

• Trigger events may be caused by victim behavior on the infected system (such as typing on the
keyboard—invoking a keylogging feature) or through the introduction of digital trace evidence
from a remote resource (such as the download of additional malicious files that provide
instructions to the specimen).

• Armed with information gathered through dynamic and static analysis, the digital investigator
can engineer the laboratory environment in an effort to replicate the particular triggering events

578

used by a target specimen. Although triggering events are specific relative to a target
specimen, some examples include:

Opening and using a particular targeted client application
Checking for the existence of specific files on the victim system
Replicating victim interaction with the system such as opening browser windows
Typing information into a Web form
Navigation to certain URLs
Setting up additional network resources sought by the specimen

• To emulate a malware specimen’s interaction with the target URLs, one approach would be to

copy the content of the target Web sites using utilities like HTTrack 99 (Windows and Linux)
or wget (Linux) and host the content on a Web server in your malicious code laboratory—in
essence, allowing the specimen to interact with the Web site offline and locally.100

• An alternative approach is to resolve the predefined domains and URLs to a Web server
running in the laboratory network. Although the content of the Web sites will not be similar, at
a minimum the URLs will resolve, which may be enough to trigger a response from the
specimen.

Investigative Considerations

• Triggering events that relate to specific files on the victim system emphasize the need for a
holistic investigative approach. In particular, where possible, the digital investigator should
examine the physical memory and hard drives of the victim system to corroborate trigger
events and recover relevant associated artifacts.

Client Applications

 Certain types of malware are controlled by the attacker with a client application or command and

control interface. Thus, to fully replicate the functionality and use of these specimens, the digital
investigator will need to use these control mechanisms.

579

• Unfortunately, as these are typically “underground” applications, they may not be easy to

acquire. Furthermore, even when client applications are available for download from
underground forums, they are often modified by attackers to have additional backdoors and
malicious features in an effort to infect the system of the individual who downloaded the
program. Use extreme caution when conducting this kind of research.

• If a “clean” and “reliable” version of client software can be obtained through a malicious code
research Web site,101 install it for use on a separate laboratory system in an effort to replicate
the remote attacker.

• Once the client application has been configured for adaptation in the laboratory environment,
execute the malware specimen in the victim laboratory system in an effort to trigger the
specimen to connect to the remote client.

• Explore the nature and capabilities of the program by delving deeper and assuming control
over the victim system through the malicious code specimen. Further, in gaining control over
the victim system execute available commands and features from the “attacker” system in an
effort to evaluate the attack capabilities of the specimen and client (see Figure 6.46).

Figure 6.46 Interacting with a victim laboratory system using the Poison Ivy client application

580

Event Reconstruction and Artifact Review: Post-Run Data
Analysis

After analyzing a suspect malware specimen, and gaining a clearer sense of the
program’s functionality and shortcomings, reconstruct the totality of the forensic artifacts
relating to the malicious code specimen. Examine network and system impression evidence
to determine the impact the specimen made on the system as a result of being executed and
utilized.
 Correlate related artifacts and try to reconstruct how the specimen interacted with the host
system and network. In particular, examine digital impression and trace evidence collected through
both passive and active monitoring tools during the course of execution trajectory, including:

• Passive monitoring artifacts

File system
Registry
Processes

• Active monitoring artifacts

Processes
File system
Registry
API calls
Network activity

• Physical memory artifacts

Example Event Reconstruction Case Scenario

 To gain a clearer understanding of the Event Reconstruction process, an example case scenario will
be used for demonstrative purposes. In particular, the investigative steps and artifacts examined will
be through the lens of analyzing the impact that a Trojan crimeware specimen made on an infected
victim system. The basic facts of the scenario include:

581

• During dynamic and static analysis of the target specimen, you determined it to be modular

malicious code — malware that has limited functionality requiring the download of other files
for additional functionality. Your analysis reveals that the malware tries to connect to remote
resources for additional files.

• You learn that the execution trajectory on the victim system created numerous new files and
processes. Further, the specimen required substantial environment adjustment and emulation
to complete trajectory and its infection life cycle.

• To conduct your analysis, the sample Trojan crimeware specimen was executed on an
emulated victim laboratory system (Windows XP SP2 VMware Guest), and a server system
(Ubuntu 10.10 VMware Guest) was established to facilitate environment emulation and
trajectory chaining.

• Using the facts of this example case scenario as the basis, the totality of the forensic artifacts
relating to the malicious code specimen can be reconstructed following the guidelines in this
section.

Passive Monitoring Artifacts

 After executing and interacting with a malicious code specimen on an infected victim system, assess

the impact that the specimen made on the system. In particular, compare the post-execution system
state to the state of the system prior to launching the program (the “pristine” system state).

• Recall that the first step prior to executing a malicious code specimen is to establish a baseline
system environment by taking a snapshot of the system state using a host integrity or
installation monitoring program.

• Once the dynamic analysis of the malware specimen is completed, examine the post-runtime
system state by comparing it against the pre-run snapshot taken with a host integrity or
installation monitoring tool.

• For example, after running the Trojan crimeware specimen presented in the example scenario
and comparing system snapshots, the installation monitoring utility InstallWatch captured the
creation of directories, executable files, and prefetch files on the victim system (Figure 6.47).

582

Figure 6.47 File system changes captured with InstallSpy

• Correlate host integrity or installation monitoring results with other digital impression and trace
evidence collection methods. For instance, referenced earlier in the Execution Artifact
Capture: Digital Impression and Trace Evidence section, CaptureBat collects granular details
regarding a malware specimen’s behavior and the associated digital impression evidence left
on the file system and in the Registry of the affected system.

• A review of the CaptureBat log resulting from the execution of the Trojan crimeware specimen
(Figure 6.48) details execution trajectory resulting in a newly created malicious process,
qeise.exe, and relational context with explorer.exe, which suggests possible process
injection.

Figure 6.48 CaptureBAT log

Active Monitoring Artifacts

583

 For holistic context, compare data collected through active monitoring with passive monitoring data.

• Track process creation, file system, and Registry changes.
• Confirm digital impression and trace evidence on the affected system.
• Identify any inconsistencies or anomalies between the data sets.

Figure 6.49 reveals the file system and Registry activity of malicious processes spawned by the

Trojan crimeware specimen, as captured by Process Monitor. Later in the execution trajectory
(Figure 6.50), the malicious process qeise.exe injects explorer.exe.

Figure 6.49 File system and Registry activity captured during active monitoring in Process Monitor

584

Figure 6.50 Active monitoring capturing process injection

Analyzing Captured Network Traffic

 As a general principle, in examining the post-run network data there are five objectives:

1. Get an overview of the captured network traffic contents to get a thumbnail sketch of the

network activity and where to probe deeper.
2. Replay and trace relevant or unusual traffic events.
3. Gain insight into network trajectory and associated network impression and trace evidence.
4. Conduct a granular inspection of specific packets and traffic sequences if necessary.
5. Search the network traffic for particular trends or entities if needed.

 There are a number of network analysis and packet decoding tools for Windows that enable

the investigator to accomplish these tasks. Some of the more commonly used tools for this analysis
include:

• Wireshark (discussed earlier in the chapter)
• RUMINT (a network forensic visualization tool)102

• Network Miner (a network forensic analysis tool)103

 Trace and compare network trajectory evidence with resulting digital impression and trace

evidence on the victim system. This is particularly important when analyzing modular malicious code
585

that retrieves additional files from remote resources.

• For example, during the examination of the sample Trojan crimeware specimen, environment
emulation was conducted to facilitate the needs of the specimen. In particular, a configuration
file needed by the specimen was hosted on the malware laboratory Linux server, enabling the
Trojan to download it and accomplish the execution trajectory and infection life cycle. This
sequence is a good example of digital trace evidence introduced onto the victim system.

• After downloading the configuration file, substantial digital impression evidence manifested on
the victim system, including the creation of new files. Further, the network trajectory shifted,
yet again, in an effort to report to Web-based command and control structure.

• To gain an overview of network trajectory in relation to the totality of system events and
resulting digital impression evidence, use a network forensic visualization solution such as
RUMINT.

RUMINT provides the digital investigator with the ability to view network traffic through a
myriad of different visualization schemas, providing alternative context. This is particularly
useful when a series of environment adjustments are made on the victim system.
Visualization schemas can be used in tandem, as shown in Figure 6.51. The Text Rainfall
view reveals reconstructed network traffic, including domain name queries and a GET request
for the configuration file hosted on the Linux server. The Byte Frequency view provides the
digital investigator with a high-level view of protocol activity and data transmission, which is
helpful for identifying data network traffic patterns.

586

Figure 6.51 Using RUMINT to visualize network traffic

 Other Tools to Consider

Network Forensics

• Dice: http://www.ngthomas.co.uk/dice.html
• Chaosreader: http://chaosreader.sourceforge.net/
• Packetyzer: http://www.paglo.com/opensource/packetyzer
• Xplico: http://www.xplico.org/

Analyzing API Calls

587

 Another post-execution event reconstruction task is collective review of the API calls made by a

suspect program, and how the calls relate to the other artifacts discovered during the course of
analysis or during Event Reconstruction. Tools such as TracePlus provide an API call capture
summary, which is a great overview for identifying the ratio and types of calls made by a malware
specimen during runtime.

Physical Memory Artifacts

 Physical memory can contain a wide variety of digital impression and trace evidence, including

malicious executables, associated system-related data structures, and remnants of malicious events.
Within the scope of Event Reconstruction, the goals of memory analysis include:

• Harvest available metadata including process details, network connections, and other
information associated with the malware specimen for analysis and comparison with other
digital impression and trace evidence identified on the infected laboratory system.

• Perform keyword searches for any specific, known details relating to the malware specimen
that was examined.

• Look for common indicators of malicious code including memory injection and hooking (see
Figure 6.52, depicting the detection of process injection into explorer.exe during the runtime
of the Trojan crimeware specimen).

Figure 6.52 Process injection detected with the Responder Professional Digital DNA feature

• For each process of interest, recover the executable code from memory for further analysis.
• For each process of interest, extract associated data from memory, including related

encryption keys and captured data such as usernames and passwords.

588

• Extract contextual details such as URLs, MFT entries, and Registry values pertaining to the
installation and activities associated with malicious code.

• Perform temporal and relational analysis of information extracted from memory, including a
time line of events and a process tree diagram.

589

Digital Virology: Advanced Profiling Through Malware
Taxonomy and Phylogeny

After gaining a clearer picture about the nature, purpose, and capabilities of a malicious
code specimen through dynamic and static analysis, catalog and classify the specimen with
the aim of identifying phylogenetic relationships to other specimens.
 Creating and maintaining a malware repository of cataloged and classified specimens is a
valuable and recommended feature in the digital investigator’s malware laboratory. Carefully classified
malware in the repository provides a powerful resource for comparing and correlating new specimens.

 A repository of cataloged and classified specimens supports several benefits in a digital
investigator’s malware laboratory.

• Formalizes the information captured and reported for each specimen of malware, increasing the
consistency of analysis and reporting.

• Knowledge reuse when analysis has already been performed can be applied to a new
specimen, saving time and effort on malware analysis, particularly when encryption and other
challenging features are involved.

• Exchanges details about malware with other digital investigators in a format that is intelligible
and immediately useful for their analysis.

• Reveals trends in malware infections that may be useful for protecting against future attacks.
• Finds relationships between related malware that may provide insight into their origin,

composition, and development. Such linkage may also reveal that a single group of attackers
is responsible for multiple incidents.

Malware taxonomy or cataloging and classifying a malware specimen means correlating the

information gathered about the specimen through file profiling, behavioral and static analysis, and, in
turn, identifying the nature, purpose, and capabilities of a specimen. This enables the digital
investigator to group the specimen into a category of like specimens. Malware taxonomy borrows
from traditional biological taxonomy, or the science of classifying organisms.

• In some instances, going beyond classification and endeavoring to identify the evolution,
similarity in features, and structure of a particular malware specimen—or relationships to
other specimens—is needed. For example, during the course of an investigation you may learn
that a victim has been under attack over the course of several months, and the attacker’s

590

malware has become more sophisticated as a result of countermeasures attempted by the
victim. Examining phylogenetic relationships between all of the specimens may identify
important interrelationships and indicia of evolution in the malware.

• In biology, phylogenetics is the study of evolutionary relation among various groups of
organisms.104 Applied to malware, phylogeny is an estimation of the evolutionary relationships
between a set of malware specimens.105 There have been a number of studies on malware
phylogeny modeling, as detailed in the following table.

Researcher(s) Research Model
Hayes, Walenstein, and
Lakhotia

Evaluation of Malware Phylogeny Modeling
Systems Using Automated Variant Generation106

Automated variant
generation

Classification of Malware Using Structured Structured control
591

Cesare and Xiang Control Flow107 flow
Wagener, State, and
Dulaunoy Malware Behavior Analysis108 Behavioral analysis

Carrera and Erdélyi Digital Genome Mapping-Advanced Binary
Malware Analysis109

Graph
similarity/clustering

Rieck, Holz, Willems, Dussel,
and Laskov

Learning and Classification of Malware
Behavior110

Machine learning
techniques

Ye, Chen, Li, and Jiang Automatic Malware Classification Using Cluster
Ensemble111

Hybrid hierarchical
clustering (HHC)

Walenstein, Venable, Hayes,
Thompson, and Lahkhotia

Exploiting Similarity Between Variants to Defeat
Malware112 “Vilo” method

Karim, Walenstein, and
Lakhotia Malware Phylogeny using Maximal Π Patterns113 Π patterns in string

contents
Gupta, Kuppili, Akella, and
Barford An Empirical Study of Malware Evolution114 Text mining and

pruning

 On a practical level there are many investigative steps that can be taken to comparatively
analyze the contents and functionality of malicious code specimens. These steps include:

• Context Triggered Piecewise Hashing (CTPH)
• Identifying textual and binary indicators of likeness
• Comparing function flowgraphs
• Process memory trajectory comparison
• Visualization
• Behavioral profiling and classification

Context Triggered Piecewise Hashing

 Recall from Chapter 5 that CTPH computes a series of randomly sized checksums for a file,

allowing file association between files that are similar in file content but not identical.

• In the context of malware taxonomy and phylogeny, sdeep, a file-hashing tool that utilizes
CTPH, can be used to query suspicious file specimens in an effort to identify homologous

592

files.115

• One scanning option, as demonstrated in Figure 6.53, is to use the recursive (-r), bare (-b),
and “pretty matching mode” (-p) switches against a directory of malware specimens; the
output cleanly displays matches between files.

Figure 6.53 Comparing a directory of files with ssdeep

Textual and Binary Indicators of Likeness

 Another method the digital investigator can use to conduct taxonomic and phylogenetic analysis of

malware specimens is through identifying similar embedded artifacts—textual or binary information—
in files. Two tools that can be used to assist in this endeavor are YARA 116 and HBGary’s
FingerPrint.117

 YARA is a flexible malware identification and classification tool developed by Victor Manuel
Álvarez of Hispasec Systems. Using YARA, the digital investigator can create rules that describe
target malware families based upon textual or binary information contained within specimens in those
families.118

593

• YARA can be invoked from the command line as a stand-alone executable or the functionality
can be integrated into the digital investigator’s own Python scripts through the yara-python
extension.119

• The YARA rule syntax consists of the following components:

Rule identifier: The rule “name” that typically describes what the rule relates to. The rule
identifier is case sensitive and can contain any alphanumeric character (including the
underscore character), but cannot start with a digit, and the identifier cannot exceed 128
characters.120

String definition: Although not required for a rule, the string definition is the section of the rule
in which unique textual or hexadecimal entities particular to a specimen are defined. The string
definition acts as a Boolean variable for the rule condition.121

Condition: The rule condition is the logic of the rule; if files queried with the rule meet the
variables in the condition, the files will be identified as matches.

• Rules can be written in a text editor of choice and saved as “.yara” files.
• YARA rules can range from simple to very complex; it is highly recommended that the digital

investigator familiarize himself with the YARA User’s Manual (currently version 1.6) to gain a
full understanding of YARA’s functionality and limitations.122

• I n Figure 6.54, a rule was created in an effort to identify and classify Wemon Trojan
specimens.123 Recall from the section Advanced PE Analysis Examining PE Resources and
Dependencies that the Wemon Trojan contains unique PE resource artifacts. Further,
extracted strings reference a PE file (svchost.exe) and various dynamic link libraries, when
taken in totality, are unique to the Wemon malware family.

Figure 6.54 A YARA rule to detect the Wemon Trojan

594

• After creating the rule and saving it as “wemon.yara,” a directory of numerous malware

specimens was queried with YARA, applying the rule. The results of the query are shown in
Figure 6.55; seven different specimens were identified and classified.

Figure 6.55 Results of scanning a directory with a YARA rule

 Other Tools to Consider

Textual and Binary Indicators of Likeness

Scout Sniper (scoutsniper) is a command-line wrapper program for YARA and ssdeep that can be
used to scan target directories on local and remote systems
(http://www.cutawaysecurity.com/blog/scout-sniper).
 Further tool discussion and comparison can be found in the Tool Box section at the end of this
chapter.

 The digital investigator can further probe malware specimens for indicia of phylogenetic
relationships, such as string and byte patterns by using HBGary’s FingerPrint.124

• Written in C#, FingerPrint is a framework (command-line utility and XML database) for
scanning portable executable files and extracting attributive embedded artifacts such as strings
and metadata. Figure 6.56 displays the information extracted and cataloged for each target
file.

595

Figure 6.56 Probing a malicious code specimen with FingerPrint

• Results of the each scan are saved in a database named “scan_history.xml,” which can be
used to further query and compare new specimens against previous specimens.

• FingerPrint can be used to scan single or multiple files in a variety of ways either against other
specimens or the scan history database. A command reference is provided in the following
table.

Switch Function

596

fp [file or
directory]

Acquire a dump of FingerPrint data
fp -c [file 1] [file
2] Compare two files

fp -c [directory]
Scan a directory and compare it to the scan history, showing a summary of
results

fp -r [directory] Recursively scan a directory
fp -db [file 1] Compare a file to the scan history, only showing > 80% matches
fp -dball [file 1] Compare a file to the scan history, showing all comparisons

• The FingerPrint comparison scanning options are very valuable toward identifying possible
phylogenetic relationships between targeted specimens. Figure 6.57 displays an example
comparison of two different Wemon Trojan specimens using the –c option.

597

Figure 6.57 Comparing malicious code specimens with FingerPrint

• The resulting output provides a detailed report of matched and unmatched variables between
the two specimens; the matches and mismatches are calculated and weighted and a final
match percentage is rendered.

• In addition to the native scanning capabilities, FingerPrint is extendable through user-generated
plug-ins called “FingerPrints.” Details regarding how to create a FingerPrint are included in the
“readme” file packaged with FingerPrint.

Function Flowgraphs 598

Function Flowgraphs

 Using ssdeep, YARA and FingerPrint, malicious code specimens can be triaged, classified, and

cataloged based upon file content. Deeper comparison and exploration of similar malware specimens
can be accomplished by conducting a diff (short for difference) of the specimens.
 By diffing files, the digital investigator can identify common features and functions between
specimens, and conversely (and perhaps more important) identify distinctions. In particular, through
this process, evolutionary factors such as feature accretion125—or added features and capabilities in
malware—can be identified and considered toward establishing phylogenetic relationships. Using
BinDiff,126 an IDA Pro plug-in, the digital investigator can diff two target executable file specimens.

• One of the most powerful features of BinDiff is the Graph GUI, which displays side-by-side
comparative flowgraphs of target code contents.

• BinDiff assigns a signature for each function in a target executable based upon the number of
codeblocks, number of edges between codeblocks, and number of calls to subfunctions.127

• Once the signatures are generated for the two target executables, matches are created through
a myriad of Function Matching and Basicblock Matching algorithms.128

• BinDiff renders Similarity and Confidence values for each matched function (shown in Figure
6.58) as well as for the whole executable file.129

Figure 6.58 BinDiff plug-in interface in IDA Pro

599

Pre-processing

• Prior to invoking BinDiff, load the respective target executable specimens into IDA Pro. Save
the IDA Database file (.idb) associated with the target executables.

• In IDA Pro, open the IDA Database file for the first target executable specimen.
• Using Figure 6.59 as a visual reference, BinDiff can be invoked through the following steps:

1. Go to the Edit option in the IDA toolbar.
2. Select the Plugins menu.
3. Select the “Zynamics Bindiff” plug-in.
4. By virtue of selecting the BinDiff plug-in, the Diff Menu box will appear. Click on the “Diff

Database” box in the menu; this will open Windows Explorer.
5. Select a second IDA Database file for comparison.

Figure 6.59 Selecting target files for comparison in BinDiff

600

• Upon loading the second target IDA Database file, four additional tabs are presented in IDA:
Matched Functions, Statistics, Primary Unmatched, and Secondary Unmatched.

Displaying Flowgraphs in the BinDiff Graph GUI

• Upon identifying a function of interest, right-click on the function and select “Visual Diff,” as
shown in Figure 6.60. This invokes the BinDiff Graph GUI.

Figure 6.60 Invoking the BinDiff Graph GUI

 The BinDiff Graph GUI displays the function flowgraphs for the respective target executable
files in an intuitive dual-paned interface, enabling the digital investigator to navigate the target
flowgraphs contemporaneously, as shown in Figure 6.61.

601

Figure 6.61 BinDiff Graph GUI

• Using the mouse wheel, the flowgraphs can be zoomed in or out.
• By “zooming out,” a high-level visualization of the function flows is displayed, which is useful

for visually comparing the likenesses or contrasts in data. Similarly, a flowgraph overview
“map” for the respective target executables is provided.

• By “zooming in,” the disassembled code is displayed in detail.
• The graphical manifestation of the flowgraph can be viewed in three distinct layouts to provide

slightly different context of the graphs: hierarchic, orthogonal, and circular.

Process Memory Trajectory Analysis

 As discussed in Chapter 5, malware in the wild often presents itself as armored or obfuscated,

primarily to circumvent network security protection mechanisms like anti-virus software and intrusion
detection systems. Even if a specimen could be linked to a certain family of malware based upon its
content and similar functions, obfuscation code such as packing may limit the digital investigator’s

602

ability to extract any meaningful data without first deobfuscating the file.

• A technique that allows the digital investigator to compare the contents and trajectory of
deobfuscated malicious code in memory during runtime is process memory trajectory
analysis, or the acquisition and comparison of the process memory space associated with
target malware specimens while executed and resident in memory. This technique is most
effective when the respective specimens manifest as distinct new processes rather than
injection into pre-existing processes.

• After executing the target specimen, locate the newly spawned process in a process analysis
tool that offers process dumping functionality, and dump the process to disk.

• For example, in Figure 6.62, using LordPE, the target process is identified and selected in the
tool’s process viewer. The process dumping menu is invoked by right-clicking on the target
process; select “dump full” and save the newly dumped process to disk.

Figure 6.62 Dumping process memory with LordPE

• Conduct the same process memory collection method for each specimen of interest; determine
the file size and hash values associated with the process memory dump files. As shown in
Figure 6.63, the processes dumped with LordPE have an identical file size but distinct MD5
hash values.

603

Figure 6.63 MD5 hash values of suspect process memory

• Query the respective process memory files with ssdeep in an effort to determine similarity.130

As shown in Figure 6.64, applying ssdeep with the recursive (-r), bare (-b), and pretty
matching mode (-p) options against the target specimen files prior to execution, the files were
scored as 96 (out of 100) in similarity.

Figure 6.64 Querying target specimens and resulting process memory dumps with ssdeep.

Conversely, in querying the respective process memory files associated with the target
malware specimens, the files were scored 100 in similarity, revealing that the specimens are
the same once executed.

Visualization

 As discussed in Chapter 5, visualization of binary file contents provide the digital investigator with a

quick reference about the data distribution in a file. In addition to identifying obfuscation, comparing
data patterns of multiple suspect files can also be used as a method of identifying potential like files
based upon visualization of data distribution.

• Target malware executable files can be viewed through a variety of visualization schemas using
BinVis.131

• To select an executable file for analysis, use the BinVis toolbar, and select “File” “Open.”
• Once the executable is loaded into BinVis, choose a data visualization schema in which to view

the file using the “View” toolbar option.
604

• BinVis has seven different data visualization schemas in addition to a hexadecimal viewer and a
strings viewer.

1. Byte Plot: Maps each byte in the file to a pixel in the display window.
2. RBG Plot: Similar to Byte Plot but uses Red, Green, and Blue pixels (3 bytes per pixel).
3. Bit Plot: Maps each bit in the file to a pixel in the display window.
4. Attractor Plot: Visual plot display based upon chaos theory.
5. Dot Plot: Displays detected sequences of repeated bytes contained within a file.
6 . Byte Presence: A condensed version of Byte Plot causing data patterns to be more

pronounced.
7. ByteCloud: Visual cloud of bytes generate from file contents.

• A powerful feature of BinVis is coordinated windows—the interplay between the various data

display windows; clicking on a target data region in one viewing pane causes the data in the
other open viewing panes to adjust and transition to the same region.

• Another novel aspect of BinVis is the navigator feature. Based upon a “VCR motif,” this
interface allows the digital investigator to navigate forward or backward through the visualized
data.

• In the example displayed in Figure 6.65, three malicious code specimens were examined—two
of which were helpfile.exe and winsrv.exe. Visualizing the executables through the BinVis
Byte Presence view, the two similar specimens are quickly discernable from the third,
dissimilar specimen.

605

Figure 6.65 Using BinVis to visually identify similar files

 Visualization is also useful for examining the execution of a malware specimen. As mentioned
in the “Other Tools to Consider: Automated Unpackers” text box earlier in the chapter, Ether is a set
of patches and applications that have been customized for the Xen hardware virtualization framework
to transparently monitor malware during runtime; the results of the monitoring are saved as a trace file.

 Danny Quist of Offensive Computing developed the Visualization of Executables for Reversing
and Analysis (VERA) architecture as a means to interpret Ether sessions and visually represent the
execution and flow of target executable specimens.132 VERA can be used to visually compare the
runtime trajectory of malicious executable specimens toward the effort of identifying phylogenetic
relationships between specimens.

• To process and visualize the Ether trace of a target malicious executable, load the resulting
Ether trace file into VERA, and, in turn, provide the original executable file.

• Upon processing the trace file, VERA generates two graph files (.gml) called “All Addresses”
(renders all addresses in the executing specimen) and “Basic Block” (renders the beginnings
and ends of basic blocks).

• Upon selecting the graph file, VERA visually displays the execution and flow of the target
executable in the main viewing pane. VERA provides the digital investigator a series of mouse
functions to “zoom in,” “zoom out,” and navigate the results.

• As displayed in Figure 6.66, two similar Trojan horse specimens are compared in distinct
VERA sessions, revealing very similar execution and runtime behavior. This is valuable
information toward cataloging and qualifying phylogenetic relationships between specimens.
Further, a close-up of addresses within the specimen’s runtime flow can be seen in the callout
box.

606

Figure 6.66 Using VERA to visualize execution traces

Behavioral Profiling and Classification

 In addition to comparing the visualized runtime trajectory of target executables, the runtime

behavioral profile of executables can also be used as a method of identifying similar specimens.

• Malware behavioral profiles can be classified with Malheur,133 a framework for automatic
analysis of malware behavior. Malheur is a command-line tool that can be compiled on Linux,
Macintosh OS X, and OpenBSD platforms using the standard compilation procedure for
GNU software.134

• Malheur processes data sets —reports of malware behavior recorded and compiled from the
CWSandbox/GFI SandBox.135 malware analysis sandbox and into Malware Instruction Set
(MIST) format.136 MIST format is not intended for human readability; rather, it is a
generalization of observed malware behavior specialized for machine learning and data mining.

• Data sets can be submitted into Malheur as a directory or a compressed archive (tar.gz, .zip,
.pax, .cpio) containing the textual reports for analysis.

Custom data sets can be created by the digital investigator by converting reports from
CWSandbox using the cws2mist.py and mist2malheur.py Python scripts associated with the

607

project.137

A repository of data sets is maintained by the University of Mannheim, Laboratory for
Dependable Distributed Systems, on their Mwanalysis Web site.138

• Malheur conducts four basic types of analysis:

Extraction of prototypes: Identifies and extracts a subset of prototypes, or reports that are
typical for a group of homogenous behavior and represent the totality of the larger reports
corpus.139

Clustering of behavior: Identifies groups (clusters) of reports containing similar behavior,
allowing for the discovery of unique classes of malware.140

Classification of behavior: Previously processed report clusters can be further analyzed
through classification, or assigning unknown behavior to known groups of malware. Through
this method, Malheur can identify and categorize unique malware variants.141

Incremental analysis: Malheur can be calibrated to process (cluster and classify) reports in
“chunks,” reducing system resource requirements. This mode of analysis is particularly
beneficial for long-term implementation of Malheur, such as automated application of Malheur
against regular malware feeds from honeypot sensors.142

• A data set can be input into Malheur and processed using the following steps:

1. Invoke malheur.
2. Use the –o (output) switch and identify the name of the analysis output file (e.g., in Figure

6.67, the output file is named out.txt).

608

Figure 6.67 Performing a clustering of a data set with Malheur

3. Select the action to be conducted. An action is the type of analysis applied to the target data
set. Actions include:

Action Result
distance Computes a distance matrix of the data set
prototype Determines a set of prototypes representing the target data set
cluster Clusters the data set
classify Classifies a data set
increment Performs incremental analysis of data set reports
protodist Computes a distance matrix for prototypes

4. Incrementally apply analytical actions. For instance, clustering of a data set must be conducted
prior to classification. Similarly, when clustering, Malheur automatically extracts prototypes
prior to conducting cluster analysis, as shown in Figure 6.67.

5. Generated analytical results are saved as text files in the Malheur home directory, which by
default is ~/.malheur (located in the user’s home directory).

6 . The textual results can be visualized with custom Python scripts
(dynamic_threadgraph.png.py; dynamic_treemap.png.py; static_threadgraph.png.py; and
static_treemap.png.py), which were developed for Malheur and associated research
projects.143

609

Conclusion

• Carefully consider and plan the malware laboratory environment to ensure success during the
various phases of analysis. Establish a flexible, adjustable, and revertible environment to
capture the totality of a target specimen’s execution trajectory and infection life cycle.

• To gain a holistic understanding of a target malware specimen, dynamic and static analysis
techniques are often used inextricably. Deobfuscation, extracting embedded artifacts,
identifying trigger events, and understanding execution and network trajectory may require
repeated and alternating uses of dynamic and static techniques. Maintain detailed
documentation of the steps taken during the course of analysis. Refer to the Field Notes at the
end of this chapter for documentation guidance.

• During the course of dynamic analysis, use passive and active monitoring tools and other
techniques to collect digital impression and trace evidence. Such evidence, when collectively
examined along with results of dynamic and static analysis, will elucidate the nature, purpose,
and functionality of a suspect program.

• Catalog and classify malicious code specimens in the repository to compare, correlate, and
identify relationships between malware. Phylogenetic relationships between specimens may
provide insight into their origin, composition, and development. Correlative analysis of
archived specimens may also reveal trends in malware infections that may be useful for
protecting against future attacks.

610

Pitfalls to Avoid

Failure to establish an environment baseline prior to examining a
malware specimen

Analysis of a post-runtime system state without comparison to a system baseline makes
identifying system changes challenging.

Before beginning an examination of the malicious code specimen, establish a baseline
environment by taking a “snapshot” of the system that will be used as the “victim” host on
which the malicious code specimen will be executed.

Implement a utility that allows comparison of the state of the system after the code is
executed to the pristine or original snapshot of the system state. In this way, changes made to
the baseline (original) system state can be quickly and accurately identified.

Incomplete evidence reconstruction

Limited or incomplete evidence reconstruction prevents a holistic understanding of the nature,
purpose, and capabilities of a malicious code specimen. Further, without fully reconstructing
the artifacts and events associated with the dynamic analysis of a malicious code specimen,
the digital investigator will have limited insight into the impact the specimen makes on a victim
system.

Fully examine and correlate data collected through active and passive monitoring techniques
to gain a complete understanding about the malicious code specimen’s capabilities and its
effect on a victim system.

611

Take detailed notes, not only for specific monitoring processes and results, but for the totality
of the evidence and how each evidentiary item interrelates (or does not relate). Consult the
Field Notes located at the end of this chapter for additional guidance and a structured note-
taking format.

Incorrect execution of a malware specimen

Ineffectively executing a target malware specimen can adversely impact all dynamic analysis
investigative findings.

Execution of a target specimen is often contingent upon file profile. Unlike Portable
Executable (PE) files that can be invoked through other tools, such as installation monitors or
API monitors, malicious document files such as PDFs, MS Office files, and MS Compiled
Help (CHM) files typically require the digital investigator to manually open and execute a
target file by double-clicking on it.

Similarly, some malware specimens require user interaction, such as mouse clicks through
dialog boxes to fully execute. A common example of this is rogue (fake) anti-virus or
scareware. Thus, statically executing such a specimen through an installation monitor will not
fully capture the specimen’s execution trajectory, behavior, and functionality.

Solely relying upon automated frameworks or online sandbox analysis of
a malware specimen

Although automated malware analysis frameworks can provide insight into the nature of
identified malicious code, they should not be solely relied upon to reveal the purpose and
functionality of a suspect program. Conversely, the fact that automated analysis of a malware
specimen does not reveal indicia of infection does not mean that it is innocuous.
Online malware sandbox analysis of a target or “similar” malware specimen can be helpful

612

guidance, but it should not be considered dispositive in all circumstances.

Third-party analysis of a similar malware specimen by a reliable source can be an incredibly
valuable resource, and may even provide predictors of what will be discovered in your
particular specimen.

This correlative information should be considered in the totality of your investigation, but it
should not replace thorough independent analysis.

Submitting sensitive files to online analysis sandboxes

Do not submit a malware specimen that is the crux of a sensitive investigation (i.e.,
circumstances in which disclosure of an investigation could cause irreparable harm to a case)
to online analysis sandboxes in an effort not to alert the attacker.

By submitting a malware specimen to a third-party Web site, you are no longer in control of
that specimen or the data associated with that specimen. Savvy attackers often conduct
extensive open source research and search engine queries to determine if their malware has
been detected.

The results relating to a submitted specimen to an online malware analysis service are publicly
available and easily discoverable. Many portals even have a search function. Thus, as a result
of submitting a target malware specimen, the attacker may discover that his malware and
nefarious actions have been discovered, resulting in the destruction of evidence and potentially
damaging your investigation.

Failure to adjust the laboratory environment to ensure full execution
trajectory

The behavior and interaction of the malicious code specimen with the victim system and
613

external network resources will likely not be revealed if the digital investigator does not adjust
the laboratory environment based upon the specimen’s trajectory requirements.

Through adjusting the malware lab environment and providing the resources that the
specimen needs, the digital investigator can conduct trajectory reconstruction and re-enact the
manner and path the specimen takes to successfully complete the life cycle of infection.

Perpetuating the infection life cycle and adjusting the laboratory environment to fulfill
trajectory is a process known as trajectory chaining; be certain to document each step of
the trajectory and the associated chaining steps.

To facilitate trajectory chaining, accommodate the sequential requests made by the suspect
program.

Failure to examine evidence dynamics during and after the execution of a
malware specimen

Do not make investigative conclusions without considering the totality of evidence dynamics.

One of the primary goals of forensic analysis is to reconstruct the events surrounding crime.
Three common analysis techniques that are used in crime reconstruction are temporal,
functional, and relational analysis.

The most common known form of temporal analysis is the time line.

The goal of functional analysis is to understand what actions were possible within the
environment of the malware incident, and how the malware actually behaves within the
environment (as opposed to what it was capable of doing).

Relational analysis involves studying how components of malware interact, and how various
systems involved in a malware incident relate to each other.

Insight into the evidence dynamics created by a target malware specimen can be acquired
during active monitoring as well as post-run evidence reconstruction, such as the examination
of passive monitoring data and collected digital impression and trace evidence.

614

Failure to examine the embedded artifacts of a target malware specimen
after it is extracted from obfuscation code

Critical clues embedded in a target malware specimen can be missed if the specimen is not
deeply examined after it is extracted from obfuscation code. Failure to gather this information
can adversely affect investigative findings and how to proceed with the larger investigation.

After removing a malware specimen from its obfuscation code, harvest valuable information
from the contents of the file which would potentially provide valuable insight into the nature
and purpose of the malware, such as strings, symbols, file metadata, file dependencies, PE
structure, and contents.

To gather additional meaningful clues that will assist in the continued analysis of a malicious
code specimen, consider conducting a full file profile (including digital virology processes) of
the deobfuscated specimen.

615

Selected Readings

Books

1. Eagle C. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular

Disassembler San Francisco, CA: No Starch Press; 2008.
2. Ligh M, et al. Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting

Malicious Code New York: Wiley; 2010.
3. Malin C, Casey E, Aquilina J. Malware Forensics: Investigating and Analyzing Malicious

Code Burlington, MA: Syngress; 2008.
4. Skoudis E, Zelster L. Malware: Fighting Malicious Code Upper Saddle River, NJ: Prentice

Hall; 2003.
5. Szor P. The Art of Computer Virus Research and Defense Mountain View, CA: Symantec

Press; 2005.

Paper

1. Bayer U, Kirda E, Kruegel C. Improving the Efficiency of Dynamic Malware Analysis

2010.
2. Beuacamps P, Gnaedig I, Marion J. Behavior Abstraction in Malware Analysis 2010.
3. Bilar D. Statistical Structures: Fingerprinting Malware for Classification and Analysis

2008.
4. Brand M. Forensics Analysis Avoidance Techniques of Malware 2007.
5. Hu X, Chiueh T, Shin K. Large-Scale Malware Indexing Using Function-Call Graphs

2009.
6. Islam R, et al. Classification of Malware Based on String and Function Feature

Selection 2010.
7. Kang M, Poosankam P, Yin H. Renovo: A Hidden Code Extractor for Packed

Executables In WORM ’07 2007.
8. Kinable J, Kostakis O. Malware Classification Based on Call Graph Clustering. Journal in

Computer Virology. 2011;Volume 7.
9. Leder F, Steinbock B, Martini P. Classification and Detection of Metamorphic Malware

616

Using Value Set Analysis 2009.
10. Park Y. Fast Malware Classification by Automated Behavioral Graph Matching 2010.
11. Royal P, et al. PolyUnpack: Automating the Hidden-Code Extraction of Unpack-

Executing Malware 2006.
12. Sathyanarayan V, Kohli P, Bruhadeshwar B. Signature Generation and Detection of

Malware Families 2008.
13. Yegneswaran, V. et al. (2008) Eureka: A Framework for Enabling Static Analysis on

Malware. Technical Report Number SRI-CSL-08-01, SRI Project 17382.
14. Zhao H, et al. Malicious Executable Classification Based on Behavioral Factor

Analysis 2010.

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

1 For more information about VirtualBox, go to http://www.virtualbox.org/.
2 Unless an examination or experiment is specific to Vista or Windows 7, Windows XP is

typically used as a baseline victim platform by malicious code researchers simply because it is
still currently the predominant OS deployed on workstations. See
http://blogs.techrepublic.com.com/it-numbers/?p=122.

3 For more information, go to http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml.
4 Unfortunately, the Web site that offered Winalysis is no longer operational, but with a little

searching on the Internet, the program can be found on many software review sites, such as
http://www.tucows.com/preview/195902.

5 For more information about WinPooch, go to http://sourceforge.net/projects/winpooch/.
6 For more information about RegShot, go to http://sourceforge.net/projects/regshot.
7 For more information about FingerPrint 2.1.3, go to

http://www.2brightsparks.com/assets/software/FingerPrint_Setup.zip.
8 For more information about ESET SysInspector, go to

http://www.eset.com/us/download/free-antivirus-utilities.
9 http://www.malwarefieldguide.com/Chapter6.html.
10 For more information about InstallWatch, go to the archive version of the Epsilon Squared

Web site, http://web.archive.org/web/20090216115519/http://epsilonsquared.com/, and
download URL,
http://web.archive.org/web/20090216115249/http://www.epsilonsquared.com/anonymous/InstallWatchPro25.exe

11 For more information about InCtrl5, go to
http://www.pcmag.com/article2/0,1759,9882,00.asp.

12 For more information about InstallSpy, go to
http://www.2brightsparks.com/assets/software/InstallSpy_Setup.zip.

13 For more information about SysAnalyzer, go to
http://labs.idefense.com/software/malcode.php.

14 For more information about Process Explorer, go to http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx.

15 For more information about CurrProcess, go to http://www.nirsoft.net/utils/cprocess.html.
16 For more information about ProcessActivityView, go to

http://www.nirsoft.net/utils/process_activity_view.html.
17 For more information about Explorer Suite/Task Explorer, go to

http://ntcore.com/exsuite.php.
18 For more information about Process Hacker, go to http://processhacker.sourceforge.net/.

685

19 For more information about PrcVeiw, go to http://www.teamcti.com/pview/prcview.htm.
20 For more information about MiTec Process Viewer, go to

http://www.mitec.cz/Downloads/PV.zip.
21 For more information about Process Monitor, go to http://technet.microsoft.com/en-

us/sysinternals/bb896645.aspx.
22 For more information about FileMon, go to http://technet.microsoft.com/en-

us/sysinternals/bb896642.aspx.
23 For more information about RegMon, go to http://technet.microsoft.com/en-

us/sysinternals/bb896652.aspx.
24 Process Monitor runs on Windows 2000 SP4 with Update Rollup 1, Windows XP SP2,

Windows Server 2003 SP1, and Windows Vista, as well as ×64 versions of Windows XP,
Windows Server 2003 SP1, and Windows Vista.

25 For more information about Wireshark, go to http://www.wireshark.org/.
26 For more information about TCPView, go to http://technet.microsoft.com/en-

us/sysinternals/bb897437.aspx.
27 For more information about Active Ports, go to http://www.devicelock.com/freeware.html.
28 For more information about CurrPorts, go to http://www.nirsoft.net/utils/cports.html.
29 http://msdn.microsoft.com/en-us/library/aa383723(VS.85).aspx.
30 For more information about TracePlus/Win32, go to http://www.sstinc.com/windows.html.
31 For more information about API Monitor, go to http://www.rohitab.com/apimonitor/.
32 For more information about APISpy32, go to http://www.internals.com.
33 For more information about Microsoft Detours, go to http://research.microsoft.com/en-

us/projects/detours/.
34 For more information about APILogger, go to http://labs.idefense.com/software/malcode.php.
35 For more information about Kerberos, go to http://www.wasm.ru/baixado.php?

mode=tool&id=313.
36 For more information about AutoDebug, go to http://www.autodebug.com/.
37 For more information about WinAPIOverRide, go to

http://jacquelin.potier.free.fr/winapioverride32/.
38 For more information about Application Monitor, go to

http://www.kakeeware.com/i_kam.php.
39 For more information about Capture BAT, go to https://www.honeynet.org/node/315 and

http://www.nz-honeynet.org/cbatabout.html.
686

40 For more information about FlyPaper, go to http://www.hbgary.com/free-tools#flypaper.
41 For more information about REcon, go to http://www.hbgary.com/recon.
42 On Windows 2000, Windows XP, and Windows Server 2003 systems the default system

path for the .vmem file of a respective virtual machine is C:\Documents and Settings\
<username>\My Documents\My Virtual Machines\<virtual machine>. On Vista and
Windows 7 systems, the default path is C:\Users\<username>\Documents\Virtual
Machines\<virtual machine>\.

43 For more information about REcon, go to http://www.hbgary.com/recon.
44 http://www.zonealarm.com/security/en-us/zonealarm-pc-security-free-firewall.htm.
45 http://www.online-armor.com/downloads.php.
46 http://personalfirewall.comodo.com/.
47 http://www.pctools.com/firewall/.
48 http://www.ashampoo.com/en/usd/pin/0050/Security_Software/Ashampoo-FireWall-FREE.
49 For more information about Simple DNS Plus, go to http://www.simpledns.com/.
50 For more information about FakeDNS, go to http://labs.idefense.com/software/malcode.php.
51 For more information about Trojan Downloaders, go to http://www.f-secure.com/en_EMEA-

Labs/virus-encyclopedia/encyclopedia/trojan-downloader.html.
52 http://www.bsalsa.com.
53 For more information about netcat, go to http://netcat.sourceforge.net/.
54 For more information, go to http://joncraton.org/files/nc111nt.zip.
55 For more information about DDE, go to http://support.microsoft.com/kb/160957.
56 http://msdn.microsoft.com/en-us/library/ms633499(VS.85).aspx.
57 For more information about Winlister, go to http://www.nirsoft.net/utils/winlister.html.
58 For more information about Buster Sandbox Analyzer, go to http://bsa.isoftware.nl/.
59 For more information about Sandboxie, go to http://www.sandboxie.com/.
60 For more information about ZeroWine, go to http://zerowine.sourceforge.net/.
61 For more information about ZeroWine Tryouts, go to http://zerowine-tryout.sourceforge.net/.
62 http://cert.at/downloads/software/minibis_en.html;

http://cert.at/static/downloads/papers/cert.at-mass_malware_analysis_1.0.pdf.
63 For more information about TRUMAN, go to

http://www.secureworks.com/research/tools/truman.html.
64 http://www.sans.org/reading_room/whitepapers/tools/building-automated-behavioral-

malware-analysis-environment-open-source-software_33129.
687

65 For more information about Cuckoo Sandbox, go to http://www.cuckoobox.org/.
66 http://cuckoobox.org/doc/0.1/setup.html.
67 For more information about UPX, go to http://upx.sourceforge.net/.
68 For more information about UnFSG, go to http://www.zerorev.net/reversing/index.php?

path=Unpackers%2C+Dumpers+and+Decrypters%2FUnFSG+2.0/.
69 For more information about UnMew, go to http://www.zerorev.net/reversing/index.php?

path=Unpackers%2C+Dumpers+and+Decrypters%2FUNMew+10-11/.
70 For more information about AspackDie, go to

http://www.woodmann.com/crackz/Packers.htm.
71 For more information about UnPECompact, go to

http://www.zerorev.net/reversing/index.php?
path=Unpackers%2C+Dumpers+and+Decrypters%2FUnPECompact+1.32/.

72 For more information about DeShrink, go to
http://www.woodmann.com/crackz/Packers.htm.

73 For more information about LordPE, go to
http://www.woodmann.net/collaborative/tools/index.php/LordPE.

74 For more information about ProcDump, go to
http://www.fortunecity.com/millenium/firemansam/962/html/procdump.html.

75 For more information about PETools, go to http://www.uinc.ru/files/neox/PE_Tools.shtml;
http://www.petools.org.ru/.

76 For more information about Process Explorer, go to http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx.

77 For more information about CurrProcess, go to http://www.nirsoft.net/utils/cprocess.html.
78 For more information about Task Explorer, go to http://www.ntcore.com/exsuite.php.
79 ProcessAnalyzer comes with SysAnalyzer, which is available from

http://labs.idefense.com/software/malcode.php.
80 For more information about ProcDump, go to http://technet.microsoft.com/en-

us/sysinternals/dd996900.
81 Dumper comes with WinAPIOveride32, which is available from

http://jacquelin.potier.free.fr/winapioverride32.
82 For more information about OllyDbg, go to http://www.ollydbg.de/.
83 http://www.openrce.org/downloads/browse/OllyDbg_Plugins.
84 For more information about OllyDump, go to

688

http://www.openrce.org/downloads/details/108/OllyDump.
85 For more information about ASPack, go to http://www.aspack.com/.
86 For more information about ImpREC, go to

http://www.woodmann.com/collaborative/tools/index.php/ImpREC.
87 For more information about IDA Pro, go to http://www.hex-rays.com/idapro/. Although the

tool sells for approximately $600.00, there is a freeware version (with slightly less
functionality, features, and support) for non-commercial use available for download
(http://www.hex-rays.com/idapro/idadownfreeware.htm).

88 http://www.amazon.com/IDA-Pro-Book-Unofficial-Disassembler/dp/1593271786.
89 http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx;

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx.
90 Winnt.h file, line 7691.
91 Winuser.h file, line 160.
92 For more information about Resource Hacker, go to http://www.angusj.com/resourcehacker/.
93 For more information about CFF Explorer, go to http://www.ntcore.com/exsuite.php.
94 For more information about XN Resource Editor, go to

http://www.wilsonc.demon.co.uk/d10resourceeditor.htm.
95 http://msdn.microsoft.com/en-us/library/aa381039(v=vs.85).aspx.
96 For more information about ResourceExtract, go to

http://www.nirsoft.net/utils/resources_extract.html.
97 For more information about Dependency Walker, go to http://www.dependencywalker.com/.
98 For more information about SpyStudio, go to http://www.nektra.com/products/spystudio/.
99 For more information about HTTrack, go to http://www.httrack.com/.
100 There are some legal and ethical considerations with this method. First, the content of the

Web site may be copyright protected or otherwise categorized as intellectual property and
fall within the proscriptions of certain international, federal, state, or local laws, making it a
violation of civil or criminal law to copy it without permission. Similarly, as the tools are used
to acquire the contents of a Web site by recursively copying directories, HTML, images, and
other files hosted on the target Web site, they may be considered “hacking tools” in some
jurisdictions. Also, the act of recursively copying the content of a site may also be considered
an aggressive or hostile computing activity and potentially viewed as unethical or illegal in
some jurisdictions. Consultation with appropriate legal counsel prior to implementing these
tools and techniques is strongly advised and encouraged.

101 Some of the more popular malicious code repository Web sites for digital investigators and
689

researchers include Offensive Computing (www.offensivecomputing.net) and VX Heavens
(http://vx.netlux.org/).

102 For more information about RUMINT, go to http://rumint.org/.
103 For more information about Network Miner, go to http://networkminer.sourceforge.net/.
104 Edwards, A.W.F., Cavalli-Sforza, L.L., Systematics Assoc. Publ. No. 6: Phenetic and

Phylogenetic Classification ed. Reconstruction of Evolutionary Trees. pp. 67–76.
105 Hayes, M., Walnstein, A., and Lakhotia, A. (2009). Evaluation of Malware Phylogeny

Modelling Systems Using Automated Variant Generation, Journal in Computer Virology,
Vol. 5, no. 4, pp. 335–343.

106 Journal in Computer Virology, 2009, Vol. 5, no. 4, pp. 335–343.
107 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), 2010.
108 Journal in Computer Virology, Vol. 4, no. 4, pp. 279–287.
109 Proceedings of the 14th Virus Bulletin Conference 2004, pp. 187–197.
110 Detection of Intrusions and Malware, and Vulnerability Assessment Lecture Notes,

Computer Science, 2008, Vol. 5137/2008, pp. 108–125.
111 Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining.
112 Proceedings of BlackHat DC 2007.
113 Proceedings of EICAR 2005 Conference.
114 Proceedings of the First International Conference on Communication Systems and

NETworks, 2009.
115 For more information about ssdeep, go to http://ssdeep.sourceforge.net.
116 For more information about YARA, go to http://code.google.com/p/yara-project/.
117 For more information about HBGary Fingerprint, go to http://www.hbgary.com/free-

tools#fingerprint.
118 YARA User’s Manual Version 1.5.
119 YARA User’s Manual Version 1.5, p. 22.
120 YARA User’s Manual Version 1.5, pp. 3–4.
121 YARA User’s Manual Version 1.5, p. 4.
122 http://code.google.com/p/yara-project/downloads/detail?

name=YARA%20User%27s%20Manual%201.6.pdf.
123 http://malwareresearchgroup.com/2010/10/detection-of-the-latest-variant-of-wemon-trojan/;

http://www.threatexpert.com/report.aspx?md5=43cd9f8b3330468721b8b123a6b22126.
690

124 For more information about HBGary FingerPrint, go to http://www.hbgary.com/free-
tools#fingerprint.

125 Hayes, M., Walenstein, A., and, Lakhotia, A. (2009). Evaluation of Malware Phylogeny
Modeling Systems Using Automated Variant Generation, Journal in Computer Virology, Vol.
5, no. 4, pp. 335–343.

126 For more information about BinDiff, go to http://www.zynamics.com/bindiff.html.
127 Zynamics BinDiff 3.2 Manual, pp. 6–7.
128 For details on the BinDiff Matching Strategy and process, refer to the BinDiff 3.2 Manual.
129 Zynamics BinDiff 3.2 Manual, pp. 11–12.
130 For a detailed discussion of ssdeep, refer to Chapter 5.
131 For more information about BinVis, go to http://code.google.com/p/binvis/.
132 For more information about VERA, go to http://www.offensivecomputing.net/?

q=node/1689, http://csr.lanl.gov/vera/vera-manual.pdf, and
http://www.offensivecomputing.net/vizsec09/dquist-vizsec09.pdf.

133 For more information about Malheur, go to http://www.mlsec.org/malheur/, http://honeyblog
.org/junkyard/paper/malheur-TR-2009.pdf (Rieck, K., Trinius, P., Willems, C., and Holz, T.
(2011). Automatic Analysis of Malware Behavior using Machine Learning, Journal of
Computer Security, 19(3).

134 http://www.mlsec.org/malheur/install.html.
135 http://www.sunbeltsecurity.com/sandbox/.
136 Phillip, T., Carsten, W., Thorsten H., and Konrad R. (2009). A Malware Instruction Set

for Behavioral-Based Analysis. Technical Report TR-2009-07, University of Mannheim
(www.mlsec.org/malheur/docs/mist-tr.pdf).

137 The Python scripts can be found on http://mwanalysis.org/inmas/maschinellesLernen/mist/.
138 http://pi1.informatik.uni-mannheim.de/malheur/.
139 Automatic Analysis of Malware Behavior Using Machine Learning, p. 8; Rieck, K.

(2011). Malheur Version 0.5.0, User Manual, p. 2.
140 Rieck, K. (2011). Malheur Version 0.5.0, User Manual, p. 2.
141 Rieck, K. (2011). Malheur Version 0.5.0, User Manual, p. 2.
142 Rieck, K. (2011). Malheur Version 0.5.0, User Manual, p. 2.
143 The Python scripts can be found on https://mwanalysis.org/inmas/backend/visualisierung/.

691

Index

Page numbers followed by f indicates a figure and t indicates a table.

A

ABA, See American Bar Association (ABA)

AccessData FTK Enterprise, 175f

Active monitoring artifacts, 429, 429f

Active network connections, 15–16

Active system monitoring, 371–379
CurrProcess, 372
DirMon, 373
Explorer Suite/Task Explorer, 372
File Monitor, 372
file system monitoring, 372–373, 373f
MiTec Process Viewer, 372
process activity monitoring, 371f
Process Hacker, 372
ProcessActivityView, 372, 373
registry monitoring, 372, 374, 374f
Tiny Watcher, 373

Address Resolution Protocol (ARP), 17
ARP cache, 17

American Bar Association (ABA), 207

American Recovery and Reinvestment Act (ARRA), 215

American Standard Code for Information Interchange (ASCII), 32, 418

AnalogX TextScan, 258

692

Anti-debugging mechanisms, 407

Antivirus, 160
freeware, 252
logs, 161, 167
signatures, 251, 252

Anubis, 401t

API call
analysis, 431
interception, 378–379, 379f
monitoring, 386, 394–395

API hooking, 422–424

ARP, see Address Resolution Protocol (ARP)

ARRA, see American Recovery and Reinvestment Act (ARRA)

ASCII, see American Standard Code for Information Interchange (ASCII)

AspackDie, 403, 404f

AuditViewer, 102
configuration options screenshot, 102f
in listing drivers, 108f
memory injection detection, 124f
Memoryze output, 103f
open file, viewing, 111f
suspicious memory sections, 123f
tabs, 102

Austrian Computer Emergency Response Team (CERT.at), 398

Auto starting artifacts, 375

Autorun locations, 165

693

Autostart and Process Viewer, 375

Autostart Explorer, 375

Auto-starting locations inspection, 31–32

Avira A/V software, 161f

B

Banking Trojan, 394f

Behavioral profiling and classification, 446–448

BIFF, see Binary Interchange File Format (BIFF)

Binary Interchange File Format (BIFF), 297

Binders, 272

BinDiff, 440, 440f–442f

BinNavi, 415

BinText, 258, 258f

Biometric data, 218

BitBlaze, 402t

Breach notification statutes, 233t

Buster, see Buster Sandbox Analyzer (Buster)

Buster Sandbox Analyzer (Buster), 397

Byte Frequency view, 431

C

694

Capsa, 376

Capture BAT, see Capture Behavioral Analysis Tool (Capture BAT)

Capture Behavioral Analysis Tool (Capture BAT), 381
log, 428f
use of, 382f

CERT.at, see Austrian Computer Emergency Response Team (CERT.at)

CFAA, see Computer Fraud Abuse and Act (CFAA)

Chain of custody, 230

Child Online Privacy Protection Act (COPPA), 216

CLI, see Command line Interface (CLI)

Client applications, 425, 425–426

Clipboard contents, 27, 28f

COFF, see Common Object File Format (COFF)

COFF File header, see IMAGE_FILE_HEADER

Command history collection, 26

Command line Interface (CLI), 5, 240
file identification tools, 249–250
MD5 tools, 243–244
packing and cryptor detection tools, 270–272
PDF analysis tools, 291

Command-line
memory analysis utilities, 99–102
parameters, 20
utilities, 6

695

Common Object File Format (COFF), 272

Common Vulnerabilities and Exposures (CVE), 294

Comodo, 402t

Compressor, see File obfuscation

Computer forensic specialists, 207

Computer Fraud Abuse and Act (CFAA), 221

Concealment techniques, 122

Connscan2 plug-in, 111f

Contextual Piecewise Hashing (CTPH), 434, 435

Cookie files examination, 38

COPPA, see Child Online Privacy Protection Act (COPPA)

COTS, 175

Cross Reference (XREF), 283

Cross-border investigation resources, 233–234

Cryptors, 269–281

csrpslist plug-in, 101, 101f

CTPH, see Contextual Piecewise Hashing (CTPH)

Cuckoo Sandbox, 399

CurrProcess, 372, 405

CVE, see Common Vulnerabilities and Exposures (CVE)

696

CWSandbox, 400t

Cybercrime prosecution, 227

D

Data, across borders, 222–226
data transfers, 224
informal assistance, 225
letter of request, 225
MLAT, 225
Safe Harbor certification, 224
workplace data, 222–226

Data, authority over
federal protection of health information, 215
federal protection of public company information, 216
information about children, 216
PCI DSS, 217
privileged information, 217
protected data, 213–218
real-time data, 211–213
state law protections, 217
stored data, 210–211
student educational records, 216

Data acquiring tools, 218–222
business purpose, 219
dual use, 220–222
hacker tools, 220
investigative use, 219
network security and diagnostic tools legitimacy, 222f
ordinary course, 219

Data directory, 279

Data sources, 126, 157

697

Data structures, 112–117
event logs, 112
investigative considerations, 116–117
master file table, 112–113, 113f
registry entries, 113–116
services, 113
windows operating system, 118, see also Memory forensics

DBT, see Digital Behavior Traits (DBT)

DDE, see Dynamic Data Exchange (DDE)

DDNA, see Digital DNA (DDNA)

Decompiling CHM file, 310f

Delphi executables, 420

DeShrink, 403

Deviare API, 423

Digital Behavior Traits (DBT), 399

Digital casting, 381

Digital crime scenes, 380

Digital DNA (DDNA), 104
malicious process extracted using, 125f

Digital evidence, 93
preservation, 229–230

Digital footprints documentation, 370

Digital forensics, 207
consequences of unlicensed, 207
law enforcement, 209, see also Legal considerations

698

Digital impression evidence, 380–381

Digital investigator, 208
computer trespasser exception, 213
consent exception, 212
non-content portion, 213
protected data, 213–218
provider exception, 211
real-time monitor, 211, see also Legal considerations

Digital trace evidence, 381–385

Digital virology, 432–448
malware cataloging, 433
malware phylogeny, 432, 434t, see also Investigative steps on malicious code

DirMon, 373

DLL injection, 21

dlllist option, 100f, 107

DLLs, see Dynamic Link Libraries (DLLs)

DNS, see Domain Name Service (DNS)

Domain controller security event logs, 168

Domain name, resolving, 391

Domain Name Service (DNS), 4
DNS queries, 16

Dr. Watson log, 167

DriverSearch.bat, 108

DUMPBIN, 259, 259f

699

Dumper, 405

Dumping suspecious process, 120f, 404–405, 410f

Dynamic Data Exchange (DDE), 395

Dynamic Link Libraries (DLLs), 21, 107, 411
DLL injection, 21
exported, 22
listing, 108f

E

ECPA, see Electronics Communications Privacy Act (ECPA)

EINs, see Employer taxpayer identification number (EINs)

Electronics Communications Privacy Act (ECPA), 210

Embedded artifact extraction, 255–261, 272, 412–426
anticipated network trajectory, 415
BinNavi, 415
Delphi executables, 420
dependency re-exploration, 421, 422f
file dependency, 259–261
HBGary Responder, 415
IDA Pro, 413, 415f
Image_resource_directory, 416f
investigative parallels, 413
PE resource examination, 416–420
relational context of api function calls, 414–415
Resource Extract, 419, 421f
strings, 255–257
suspect program examination, 413–415
tools for analyzing embedded strings, 257–259
triggering events, 414

Embedded entities, 284
700

Embedded file metadata, 261–267

Embedded string analysis tool, 257–259

Employer taxpayer identification number (EINs), 218

EnCase, 170

Entry Point (EP), 270

EP, see Entry Point (EP)

EPROCESS, see Executive process (EPROCESS)

Ether, 406

EU, see European Union (EU)

Eureka, 401t

Event Log, 112, 168
collection, 32, 33f
Explorer, 167f
logon and logoff, 33, see also Data structures

Event-driven malware, 27

Evidence
Federal rules on, 234–235

Executables, 164–165
file recovery, 118–119
mapping process, 19

Execution trajectory, 424

Execution trajectory analysis, 386–397
API Call monitoring, 394–395
aspects of, 386

701

Banking Trojan, 394f
capturing requests of malware, 390f
FakeDNS, 388
File System Activity examination, 396
investigative considerations, 395
netcat listener, 391–397, 392f
network activity, 386–388
network impression evidence, 390–391
network trajectory reconstruction, 388–390
process activity examination, 393
Process Explorer, 393, 393f
registry activity examination, 397
Resolving DNS Queries, 389f
Simple DNS Plus, 388
suspect program attempting to retrieve file, 390f
window spying, 395
WinLister, 395, 396f

Executive process (EPROCESS), 98

ExeDump Utility, 281

Expert testimony, 235

Explorer Suite/Task Explorer, 372

F

FakeDNS, 388

Family Education Rights and Privacy Act, 216

FastDump Community version, 6

FastDump Pro, 6

FCIV, see File Checksum Integrity Verifier (FCIV)

Federal protection
702

of health information, 215
of public company information, 216

File
appearance record, 242, 242f
carving tools, 97, 98
content examination, 40f
dependency inspection, 259–261
name acquisition, 241–242
profiling safety tip, 238
similarity indexing, 245–246
size acquisition, 242
structure and contents examination, 286, 309
structure examination, 303
System Activity examination, 396
system examination, 33–34
system monitoring, 372–373, 373f
types, 247–248
visualization, 246–261, 246f, 247–248

File Checksum Integrity Verifier (FCIV), 244

File Monitor, 372

File Name Attribute (FNA), 170

File obfuscation, 267, 268f

File profiling, 238, 239f
anti-virus signatures, 251, 252
binders, 272
CLI packing and cryptor detection tools, 270–272
command-line interface MD5 tools, 243–244
cryptors, 269–281
data directory, 279
embedded artifact extraction, 255–261, 272
embedded file metadata, 261–267
ExeDump Utility, 281

703

file dependency inspection, 259–261
file obfuscation, 267, 268f
file similarity indexing, 245–246
file types, 247–248
file visualization, 246–261, 246f
hash repositories, 245
IMAGE_FILE_HEADER, 276, 277, 277f, 278f, 280
IMAGE-OPTIONAL_HEADER, 278, 278f
malware scanning, 251–252, 252–255
MS-DOS header, 274, 275f
MS-DOS stub, 274–275, 276f
packed malware specimen, 268f
Packer and Cryptor Detection Tools, 269–270
packers, 267–268
parsing suspect PE file, 274f
PE Header, 275–279, 277f
regional settings identification, 264
section table, 280–281, 280f
steps in, 239
Strings, 255–257
symbolic and debug information, 261–281
Windows PE file format, 272–274, 273f, see also File visualization Profiling suspicious file

File signature identification and classification, 247
anti-virus signatures, 251, 252
CLI file identification tools, 249–250
GUI file identification tools, 250–251
malware scanning, 251–255
TrID, 249, 250f

File Transfer Protocol (FTP), 391

File visualization, 246–261, 246f
file types, 247–248, see also File signature identification and classification

Filterbit, 253

704

Financial account numbers, 218

Financial Services Modernization Act of 1999, see Gramm Leach Bliley Act, 214

FingerPrint, 437, 438f, 438t, 439f

Firewall logs, 167

FlyPaper, 383, 383f

FNA, see File Name Attribute (FNA)

Forensic analysis, 29, 157

Forensic duplication
Avira A/V software scanning, 161f
of hard drive, 29f
loaded into VMWare, 173f
locating malware on, 159
mounting, 158, 158f
of storage media, 29, see also Malware detection

Forensic examination, 155

Forensic reconstruction, 173–174

Forensic tools, 158
commercial, 99

Forensic tools, memory, 97, 98, 119
additional functionality, 99
for dumping process memory, 119
HBGary Responder, 103, 103f, 104f
information provided by, 98
investigative considerations, 99, 120
malware concealment technique detection, 122
Memoryze, 101, 101f, 102

Forensic tools, remote, 11, 29
705

AccessData FTK Enterprise, 175f
COTS, 175

F-Response, 8, 35
iSCSI initiator service, 9f, 35f, 36f
physical memory identification, 10f
remote subject system hard drive, 10f, 36f
subject system connection, 9f, 10f, 35f, 36f
suspicious files extraction, 41–42, see also Physical memory acquisition

FTP, see File Transfer Protocol (FTP)

Function flowgraphs, 439–442

G

Gargoyle Forensic Pro, 160, 160f

GB, see Gigabytes (GB)

GFI Sandbox, 399, 400t

Gigabytes (GB), 5

GNU Core Utilities, 244

Gramm Leach Bliley Act, 214

Graphical MD5sum, 244

Graphical user interface (GUI), 5, 240
AuditViewer, 102
file identification tools, 250–251
HBGary Responder, 103
MD5 tools, 243–244
memory analysis tools, 102–104
memory dumping tools, 7
Nigilant32, 7
tools, 292–294, see also Volatile data collection methodology

706

GT2, 264

GUI, see Graphical user interface (GUI)

H

Hacker Defender Rootkit, 105f

Hacker tools, 220

Hash Quick, 244

Hashes, 159
piecewise, 160
repositories, 245
values, 242–243, see also Malware

HashonClick, 244

HBGary Responder, 103, 103f, 104f, 116, 415
add-ons, 104
examining system infected with ZeuS Trojan, 124, 124f
keys and passwords function, 122f
keyword searches, 121, 121f
in listing drivers, 109, 109f
registry entries, 116
report of suspicious module, 125, 125f, see also Forensic tools, memory

Health Insurance Portability & Accountability Act (HIPAA), 215
covered entities, 215

Hex Editors, 248

HIPAA, see Health Insurance Portability & Accountability Act (HIPAA)

hivedump plug-in, 116f, 117f

hivelist plug-in, 115f

707

Host integrity monitors, 366, 366–367

HTML, see Hypertext Markup Language (HTML)

HTTrack, 425

Hypertext Markup Language (HTML), 249

I

IDA Pro, 413, 415f, see also BinDiff

iDefense, 258

IM, see Instant messenger (IM)

IMAGE_FILE_HEADER, 276, 277, 277f, 278f, 280

Image_resource_directory, 416f

IMAGE-OPTIONAL_HEADER, 278, 278f

Import Reconstructor (ImpREC), 411, 411f

ImpREC, see Import Reconstructor (ImpREC)

Impression evidence, 380

Incident response forensics, 2
field interviews, 3
malicious code live response, 2

Information extraction, 156

Injected code detection, 122

Installation managers, see Installation monitors

Installation monitors, 366, 367–369

708

Installed drivers examination, 24–25

InstallSpy, system snapshot, 369f

Instant messenger (IM), 257

Internet communication non-content portion, 213

Internet Protocol (IP), 2, 377
IP Sniffer, 376

Intrusion vector, 155

Investigative steps on malicious code, 434
behavioral profiling and classification, 446–448
CTPH, 434, 435
function flowgraphs, 439–442
process memory trajectory analysis, 442–444, 443f
textual and binary indicators of likeness, 435–438
visualization, 444–446

IP, see Internet Protocol (IP)

iSCSI initiator service, 9f, 35f, 36f

J

Javascript extraction, 290

Joe Sandbox Web, 401t

Joiners, see Binders

Jotti Online Malware Scanner, 253

K

Keys and passwords function, 122f

Keywords, 160
709

searches, 121, 121f, 172

L

LANs, see Local area networks (LANs)

Legal considerations, 204, 204–205
breach notification statutes, 233t
chain of custody, 230
company employee, 208
cross-border investigation resources, 233–234
data, 205
digital forensics, 207
diverged goals of victim and, 228
documentation, 229
evidence type, 204
federal rules on evidence, 234–235
findings, 205
framing issues, 204
improving chances for admissibility, 229–230
investigative approach, 204
investigative authority sources, 205–209
investigator, 205
jurisdictional authority, 205–207
law enforcement, 209
legal landscape, 204–205
limitations on waiver, 235
perspective of, 227–228
preservation of digital evidence, 229–230
private authority, 208–209
private investigation, 206
private provider, 210
protected data, 213–218
public provider, 210, 211
real-time data, 211–213
retained expert, 208
statutory limits on authority, 210–218

710

statutory/public authority, 209
stored data, 210–211
tools, 205
victim misperception, 227
victim reluctance, 226–227, see also Data, across borders Data, authority over Data acquiring
tools Digital forensics Digital investigator Protected data

Letter of request, 225

Live response, see Incident response forensics

Loaded modules listing, 107f

Local area networks (LANs), 364

Local Security Authority Subsystem Service (LSASS), 104

Locating OEP and extracting, 406–410, 409f, 410f

Log files, 166
AntiVirus logs, 167
desktop firewall logs, 167
domain controller security event logs, 168
Dr. Watson log, 167
web browsing history, 167
windows event logs, 166

LordPE, 404, 405f

LSASS, see Local Security Authority Subsystem Service (LSASS)

M

MAC, see Media Access Control (MAC)

macmatch.exe, 34f

Malcode Analyst Pack (MAP), 244, 258

711

Malfease, 402t

malfind plug-in, 123f

Malheur, 446
analysis, 447
clustering of a data set, 448f

Malicious code
API monitor, 386
execution, 385–386, 386
identifiers, 391
installation monitor, 385
live response, 2
rehashing, 386
simple execution, 385
specimens, 15

Malpdfobj, 291

Malware, 112
artifact discovery and extraction, 39
cataloging, 433
concealment technique detection, 122, 123
concealment techniques, 122
discovery and extraction, 159–169, 174–175
forensic analysis, 157
hard drive, 156
information extraction, 156
keyword, 172
modern, 156
phylogeny modeling, 434t
scanning, 251–255, 400
search for known, 159–161, see also Malicious code

Malware analysis
environment for, 365–366
guidelines for, 365–369

712

investigative considerations, 366
safety tip, 364
security conscious malware, 366
suspect program analysis factors, 364
SysAnalyzer, 368f
system snapshots, 366, 367f, 369f
virtualization, 365, see also Post-run data analysis System monitoring

Malware analysis frameworks, 397–399
Cuckoo Sandbox, 399
GFI Sandbox, 399, 400t
Minibis, 398
Norman Sandbox Malware Analyzer, 399
TRUMAN, 399
ZeroWine, 398
ZeroWine Tryouts, 398

Malware analysis sandboxes, 400–412, 402t
defeating obfuscation code, 402–412
GFI Sandbox, 399, 400t
malware scanners, 400
virus scanners, 400, see also Obfuscation code

Malware detection
AntiVirus, 160
autorun locations, 165
correlation with logons, 169
drivers, 165
executables, 164–165
Gargoyle Forensic Pro, 160, 160f
hashes, 159
installed program, 161–162
investigative considerations, 161, 164
keywords, 160
legitimate programs, 162
log files, 166–168
prefetch files, 163–164

713

registry remnants, 163
schedule, 165
services, 165
user accounts and logon activities, 168–169

Malware incident response, 2–4
forensics, 2
non-volatile data collection, 28–42
volatile data collection methodology, 2, 4–18
web browsing artifacts examination, 37–38

Malware Instruction Set format (MIST format), 447

Malware manipulation, 422
API hooking, 422–424
client applications, 425–426
Deviare API, 423
HTTrack, 425
intercepting with SpyStudio, 423f, 424f
investigative considerations, 425
Poison Ivy client application, 426f
prompting trigger events, 424–425
SpyStudio, 422, 423, 423f, 424, 424f

MAP, see Malcode Analyst Pack (MAP)

Master Boot Record (MBR), 157

Master file table (MFT), 112–113, 113f, see also Data structures

mbps, see Megabits per second (mbps)

MBR, see Master Boot Record (MBR)

MD5, see Message Digest 5 (MD5)

MD5Summer, 244

Media Access Control (MAC), 17
714

Megabits per second (mbps), 4

Memory analysis utilities, 106–109, 110–112

Memory dump, 94
carving memory, 97f
connscan2 plug-in, 111f
csrpslist plug-in, 101f
DriverSearch.bat, 108
file extraction, 97
information found in, 96, 96f
IP packet in, 97, 97f
memory forensic tools for, 119
Memoryze, 101, 101f
MFT Entry in, 113f
open port information extraction, 110, 110f
orphanthreads volatility plug-in, 102
volatility dlllist option, 100f
volatility files option, 110, 110f
volatility psscan plug-in, 99, 100f, see also Memory forensics

Memory forensics, 93–94, 382
command-line memory analysis utilities, 99–102
data structures, 112–117
digital evidence, 93
FlyPaper, 383, 383f
GUI-based memory analysis tools, 102–104
Hacker Defender Rootkit, 105f
investigative considerations, 94, 95
legitimate processes, 106
loaded modules, 107, 107f
main aspects, 94
in malware investigations, 93
memory analysis utilities, 106–109, 110–112
modules and libraries, 106–109
old school memory analysis, 96–97
open files and sockets, 109–112

715

overview, 94–98
processes and thread, 99–106
RECon, 383, 384, 384f
relational analysis, 106
relational reconstruction, 104
temporal analysis, 106
VMWare, 383, 384
windows memory forensics tools, 98, 98–118
windows process memory, 118–120, 121–125, see also Memory dump

Memory injection detection, 123, 124f

Memoryze, 101, 101f, 102
batch scripts, 108
injected code detection, 122
in listing open files, 111, 111f
malware concealment technique detection, 123
memory injection detection, 123
open file extraction, 111f
output from, 101
scripts, 119, see also Forensic tools, memory

Message Digest 5 (MD5), 5, 242

Metadata, 261
artifacts, 262, 262
discovery, 285, 309
Gathering with exiftool, 263f
GT2, 264

Metasploit penetration testing framework, 104

MFT, see Master file table (MFT)

Microsoft
Malware Removal Tool, 174

Minibis, 398
716

MiniDumper, 248, 248f

MIST format, see Malware Instruction Set format (MIST format)

MiTec Process Viewer, 372

MLAT, see Mutual Legal Assistance Request (MLAT)

Most recently used (MRU), 170

MountImage Pro, 158

MRU, see Most recently used (MRU)

MS-DOS
header, 274, 275f
stub, 274–275, 276f

Mutual Legal Assistance Request (MLAT), 225

MWSnap, 242, 242f

N

NetBIOS connections, 16–17

Netcat commands, 3, 3f

netcat listener, 391–397, 392f

Netstat, 15

Netstat-ano command, 16, 16f
on subject system, 23f

Network
configuration, 12
connections and activity, 15
probe, 376
security and diagnostic tools legitimacy, 222f

717

trajectory reconstruction, 388–390

Network activity monitoring, 374–377
API calls interception, 378–379, 379f
auto starting artifacts, 375
Capsa, 376
IP Sniffer, 376
Network Probe, 376
NFAT, 376
PacketMon, 376
port activity monitoring, 377–378
SmartSniff, 376
Sniff_hit, 376
TCPView, 378
tools, 376
traffic monitoring, 375
Visual Sniffer, 376
Wireshark, 375, 376, 377f

Network Miner Network Forensic Analysis Tool (NFAT), 376

NFAT, see Network Miner Network Forensic Analysis Tool (NFAT)

Nigilant32, 7
file content examination, 40f
physical memory imaging with, 8f
Preview Disk function, 39, 39f
suspicious files extraction, 41f

Non-volatile data collection, 28–42
auto-starting locations inspection, 31–32
event logs collection, 32, 33f
file system examination, 33–34
forensic duplication of storage media, 29, 29f
logon and logoff events, 33
macmatch.exe, 34f
prefetch files inspection, 31

718

registry contents, 34
remote registry analysis, 35–37
security configuration, 30
select data forensic preservation, 29–30
target NTUSER.dat selection, 37f
trusted host relationship, 30–31
user account and group policy information review, 33, see also Malware incident response

Norman Sandbox Analyzer, 399, 401t

NSI Malware Analysis Sandbox, 401t

NTFS journal, 170

O

Obfuscation code removal, 402
anti-debugging mechanisms, 407
CurrProcess, 405
Dumper, 405
dumping suspect process, 404–405, 410f
locating OEP and extracting, 406–410, 409f, 410f
LordPE, 404, 405f
OllyDbg, 406, 407, 408f
PE Tools, 404
ProcDump, 404, 405
Process Explorer, 405
ProcessAnalyzer, 405
reconstructing imports, 411–412
script identification and decoding, 310, 311f
Task Explorer, 405
UPX, 403, see also Unpacker program

OEP, see Original Entry Point (OEP)

OfficeMalScanner, 301, 301–308

OllyDbg, 406, 407, 408f
719

OllyDump, 407, 410, 410f

OPAF, see Open PDF Analysis Framework (OPAF)

Open files, 25
files opened locally, 25
files opened remotely, 25–26, see also Volatile data collection methodology

Open PDF Analysis Framework (OPAF), 291

Open port information extraction, 110, 110f

Open Systems Interconnect (OSI), 17

Origami, 291

Original Entry Point (OEP), 403

orphanthreads volatility plug-in, 102

OSI, see Open Systems Interconnect (OSI)

P

Packed malware specimen execution, 268f

Packers, 267–268
and cryptor detection tools, 269–270, see also File obfuscation

PacketMon, 376

Packing, see File obfuscation

Parsing
suspect PE file, 274f
tools, 163

Pasco, 38

Passive monitoring artifacts, 427–428
720

Payment Card Industry Data Security Standards (PCI DSS), 217

PCI DSS, see Payment Card Industry Data Security Standards (PCI DSS)

PDF, see Portable document format (PDF)

PE files, see Portable Executable files (PE files)

PEB, see Process environment block (PEB)

Personal identification numbers (PINs), 218

Personal information, 217

Personally Identifiable Information (PII), 110

PHI, see Protected Health Information (PHI)

Physical memory
artifacts, 432
identification, 10f

Physical memory acquisition, 5, 6
command-line utilities, 6
with FastDump, 6f
with FastDump Pro, 7f
investigative considerations, 5
on live windows system, 5
remote, 8–11
remote forensics tools, 11
from remote subject system, 11f
tools for, 7, see also Volatile data collection methodology

PID, see Process Identification (PID)

PII, see Personally Identifiable Information (PII)

PINs, see Personal identification numbers (PINs)

721

PML, see Process Monitor Format (PML)

Poison Ivy client application, 426f

Polyunpack, 406

Port activity monitoring, 377–378

Portable document format (PDF), 237
document elements, 282
file format, 282–284
miner, 291
scanner, 291
tool kit, 291

Portable Executable files (PE files), 385
PE Header, 275–279, 277f
PE Tools, 404
resource examination, 416–420

Post-mortem forensics, 155–156
file system examination, 169–170
forensic analysis, 156–159
forensic reconstruction, 173–174
keyword searching, 172
malware discovery and extraction, 159–169, 174–175
registry examination, 170–172, see also Windows file system examination

Post-run data analysis, 426–432, 426, 427
active monitoring artifacts, 429, 429f
API call analysis, 431
Byte Frequency view, 431
CaptureBAT log, 428f
captured file system and registry, 428f, 429f
captured network traffic analysis, 430–431
detected Process Injection, 432f
passive monitoring artifacts, 427–428
physical memory artifacts, 432

722

RUMINT, 430, 431f
Text Rainfall view, 431
Visualization schemas, 431

PrcView, 372

Pre-execution Preparation: System and Network Monitoring

Prefetch files, 31, 163–164
inspection, 31
related to Poison Ivy malware, 163f
tools for parsing, 163

Preview Disk function, 39, 39f

Private investigation, 206

Privileged information, 217

ProcDump, 404, 405

Process activity
examination, 393
monitoring, 371f

Process environment block (PEB), 118

Process Explorer, 393, 393f, 405

Process Hacker, 372

Process Identification (PID), 18, 100, 371

Process information collection, 18–22
child processes, 20–21
command-line parameters, 20
dependencies loaded by running processes, 21–22
executable program mapping process, 19
exported DLLs, 22

723

file handles, 21
memory usage, 19
process memory content capture, 22
process name and process identification, 18–19
temporal context, 18–19
user mapping process, 20, see also Volatile data collection methodology

Process Injection, detected, 432f

Process memory
content capture, 22
trajectory analysis, 442–444, 443f

Process Monitor, 372, 373, 373f

Process Monitor Format (PML), 373

ProcessActivityView, 372, 373

ProcessAnalyzer, 405

procexedump option, 119

Profiling Compiled HTML help files, 308
decompiling CHM file, 310f
file structure and content examination, 309
locating suspect scripts, 309
malice indicators, 308
metadata discovery, 309
obfuscated script identification and decoding, 310, 311f

Profiling Microsoft Office files, 295, 298–301
extracted code examination, 305
file format, 295–298
file structure examination, 303
locating and extracting embedded executables, 304
locating and extracting shellcode, 307
malice indicators, 298

724

metadata discovery, 299
OfficeMalScanner, 301, 301–308
vulnerabilities and exploits, 298

Profiling suspect PDF files, 281–284
embedded entities, 284
file format, 282–284, 283f
file structure and contents examination, 286
GUI tools, 292–294
javascript extraction, 290
locating suspect scripts and shellcode, 287
malice indicators, 285
metadata discovery, 285
online resources, 295
parsing specific object, 288f
shellcode extraction, 291
suspect object decompression, 287, 288f
Trailer, 283
XREF, 283

Profiling suspicious file, 240–243
file appearance record, 242, 242f
file name acquisition, 241–242
file size acquisition, 242
hash values, 242–243, 243
investigative considerations, 241
system details, 240, see also File profiling ; Profiling Compiled HTML help files ; Profiling
Microsoft Office files ; Profiling suspect PDF files

Protected data, 213–218
child pornography, 216
children information, 216
financial information, 214
health information, 215
payment card information, 217
privileged information, 217
public company information, 216

725

state law protections, 217
student educational records, 216, see also Legal considerations

Protected Health Information (PHI), 110

Protected storage (pstore), 38

psdiff plug-in, 100

Psloggedon, 15, see also Command line Interface (CLI)

psscan plug-in, 99, 100f

pstore, see Protected storage (pstore)

R

RAM, see Random access memory (RAM)

Random access memory (RAM), 3

RECon, 383, 384, 384f

Registry
activity examination, 397
contents, 34
Monitor, 372
remnants, 163
remote analysis, 35–37
Viewer, 171f

Registry entries, 113–116
HBGary Responder, 116
hivedump plug-in, 116f, 117f
hivelist plug-in, 115f
regobjkeys plug-in, 115f, see also Data structures

Registry monitoring, 374, 374f
auto starting artifacts, 375

726

Autostart and Process Viewer, 375
Autostart Explorer, 375
RegMon, 374f
WhatInStartup, 375

RegMon, 374f

regobjkeys plug-in, 115f

RegRipper, 37, 170
item extraction, 171f

Rehashing, 386

Remote forensics tools, 11

Resource Extract, 419, 421f

Restore points, 171–172

Reusable Unknown Malware Analysis Net, the (TRUMAN), 399

Reversing Labs Tools, 406

RUMINT, 430, 431f

S

Safe Harbor certification, 224

Safety tip, 238, 364

Sandboxie, 397

Sarbanes-Oxley Act (SOX), 216

Scheduled tasks determination, 27

Scout Sniper, 437

727

SDK, see Software Development Kit (SDK)

Section table, 280–281, 280f

Secure Hash Algorithm Version 1.0 (SHA1), 243

Security
configuration, 30
conscious malware, 366

Services and drivers identification, 23, 113
installed drivers examination, 24–25
running services examination, 24, see also Data structures ; Volatile data collection methodology

SHA1, see Secure Hash Algorithm Version 1.0 (SHA1)

Shellcode extraction, 291

SIA, see Standard Information Attribute (SIA)

Simple DNS Plus, 388

Simple Mail Transfer Protocol (SMTP), 377

SmartSniff, 376

SMTP, see Simple Mail Transfer Protocol (SMTP)

Sniff_hit, 376

Software Development Kit (SDK), 272

SOX, see Sarbanes-Oxley Act (SOX)

SpyStudio, 422, 423, 423f, 424, 424f

ssdeep, 160, 246f, 435, 435f

SSDeepFE, 244

728

Standard Information Attribute (SIA), 170

Stateful information, 2, see also Volatile data

Strex, see String Extractor (Strex)

String Extractor (Strex), 258

Strings, 255–257

Student educational records, 216

Subject system detail collection, 11–13
enabled protocols, 13
network configuration, 12
with psinfo, 14f
system date and time, 11–12
system environment, 13
system identifiers, 12
system uptime, 13
uptime command, 13f, see also Volatile data collection methodology

Sunbelt Sandbox, see GFI Sandbox

Suspect program examination, 413–415

Suspicious file, 238
extraction, 39–40, 41–42, 41f

svcscan plug-in, 114f

SysAnalyzer, 368f

System
environment, 13
files, 169
identifiers, 12
resources, 21

729

System monitoring, 369–380
digital footprints documentation, 370
monitoring technique implementation, 370f
passive system monitoring, 370
on Windows system, 369, see also Active system monitoring ; Network activity monitoring

T

Target NTUSER.dat selection, 37f

Task Explorer, 405

Taxpayer identification numbers (TINs), 218

TCP, see Transmission Control Protocol (TCP)

TCPView, 378

Text Rainfall view, 431

TextExtract, 258

Textual and binary indicators of likeness, 435–438

ThreatExpert, 401t

TINs, see Taxpayer identification numbers (TINs)

Tiny Watcher, 373

Title III, see Wiretap Act

Trace evidence, 380

Traffic monitoring, 375

Trailer, 283

Transmission Control Protocol (TCP), 16

730

TrID, 249, 250f

Triggering events, 414, 424

Trojan horse program, 109

TRUMAN, see Reusable Unknown Malware Analysis Net, the (TRUMAN)

U

UDP, see User Datagram Protocol (UDP)

UnFSG, 403

Uniform Resource Locator (URL), 15, 255, 395

Universal Serial Bus (USB), 4, 34

UnMew, 403

Unpacker program, 403
AspackDie, 403, 404f
DeShrink, 403
Ether, 406
Polyunpack, 406
Reversing Labs Tools, 406
UnFSG, 403
UnMew, 403

UnPECompact, 403

uptime command, 13f

UPX, 403

URL, see Uniform Resource Locator (URL)

USB, see Universal Serial Bus (USB)

User account
731

and group policy information review, 33
and logon activities, 168–169

User Datagram Protocol (UDP), 391

User mapping process, 20

UserAssist, 170

V

VERA, 446, 446f

Verifying Specimen Functionality and Purpose

ViCheck.ca, 402t

VirScan, 253

Virtual Private Network (VPN), 12

Virtualization, 365

Virus scanners, 400

VirusTotal, 253, 254f

Visual MD5, 244

Visual Sniffer, 376

Visualization, 431, 444–446

VMWare, 383, 384

Volatile data, 2
preservation, 4–5

Volatile data collection methodology, 2, 4–18
active network connections, 15–16

732

ARP cache, 17
clipboard contents, 27, 28f
command history collection, 26
DNS queries, 16
GUI-based memory dumping tools, 7
local vs. remote collection, 3–4
logged in user identification, 13–17
NetBIOS connections, 16–17
netcat commands, 3f
Netstat-ano command, 16, 16f
network connections and activity, 15
open files determination, 25
open ports correlation, 22–27
physical memory acquisition, 5, 6
process information collection, 18–22
scheduled tasks determination, 27
services and drivers identification, 23
shares identification, 26, 26f
subject system detail collection, 11–13
volatile data preservation, 4–5, 5, see also Malware incident response

Volatility, 121
commands to open ports, 110f
csrpslist plug-in, 101, 101f
dlllist option, 100f, 107
dynamic link libraries listing, 108f
files option in, 110, 110f
loaded modules listing, 107f
malfind plug-in, 123f
malware concealment technique detection, 122
procexedump option, 119
psdiff plug-in, 100
psscan plug-in, 99, 100f
regobjkeys plug-in, 115f
service extraction, 113
svcscan plug-in, 114f
version 1.3, 119, see also Forensic tools, memory

733

VPN, see Virtual Private Network (VPN)

W

Web browsing artifacts examination, 37–38
cookie files examination, 38
malware artifact discovery and extraction, 39
protected storage, 38
suspicious files extraction, 39–40, 41–42, see also Malware incident response

Web browsing history, 167

WhatInStartup, 375

Window spying, 395

Windows, 118
event logs, 166
memory forensics tools, 98, 98–118

Windows file system examination
examination, 169–170
file system data structures, 169
forensic examination, 155
forensic reconstruction, 173–174
functional analysis, 173
malware discovery and extraction, 159–169, 174–175, see also Malware ; Post-mortem
forensics

Windows forensic analysis, 156–159, 157
investigative considerations, 157–159

Windows process memory, 118–120, 121–125
analysis, 121–125
dumping, 118–120, 120f
executable file recovery, 118–119
extraction, 120
recovery, 119–120

734

running AntiVirus, 119, see also Memory forensics

Windows Registry Database (WiReD), 163

Windows registry examination, 170–172
locations, 170
Registry Viewer, 171f
restore points, 171–172
temporal analysis, 170
UserAssist, 170, see also Malware ; Post-mortem forensics

Windump, 375

WinLister, 395, 396f

WinMD5, 244

WiReD, see Windows Registry Database (WiReD)

Wireshark, 375, 376, 377f

Wiretap Act, 211

Wrappers, see Binders

X

XREF, see Cross Reference (XREF)

Y

YAB, see Yet Another Binder (YAB)

YARA, 435, 436f, 437f

Yet Another Binder (YAB), 272

Z

ZeroWine, 398
735

ZeroWine Tryouts, 398

736

	Title
	Copyright
	Dedication
	Acknowledgments
	About the Authors
	About the Technical Editor
	Introduction
	Chapter 1. Malware Incident Response
	Solutions in this chapter:
	Volatile Data Collection and Analysis Tools
	Non-Volatile Data Collection and Analysis Tools
	Selected Readings
	Jurisprudence/RFCS/Technical Specifications
	Chapter 2. Memory Forensics
	Solutions in this chapter:
	Selected Readings
	Chapter 3. Post-Mortem Forensics
	Solutions in this chapter:
	Selected Readings
	Chapter 4. Legal Considerations
	Solutions in this chapter:
	Chapter 5. File Identification and Profiling
	Solutions in this chapter:
	Selected Readings
	Chapter 6. Analysis of a Malware Specimen
	Solutions in this chapter:
	Introduction
	Goals
	Guidelines for Examining a Malicious File Specimen
	Establishing the Environment Baseline
	Pre-Execution Preparation: System and Network Monitoring
	Execution Artifact Capture: Digital Impression and Trace Evidence
	Executing the Malicious Code Specimen
	Execution Trajectory Analysis: Observing Network, Process, Api, File System, and Registry Activity
	Automated Malware Analysis Frameworks
	Online Malware Analysis Sandboxes
	Defeating Obfuscation
	Embedded Artifact Extraction Revisited
	Interacting with and Manipulating the Malware Specimen: Exploring and Verifying Functionality and Purpose
	Event Reconstruction and Artifact Review: Post-Run Data Analysis
	Digital Virology: Advanced Profiling Through Malware Taxonomy and Phylogeny
	Conclusion
	Pitfalls to Avoid
	Selected Readings
	Index

