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Foreword

Tracking and sensor data fusion have a long tradition in the Fraunhofer Research
Institute for Communications, Information Systems, and Ergonomics (FKIE) and
its predecessor FFM (FGAN Research Institute for Radio Technology and
Mathematics). Established in 1963, mainly aspects of air traffic control have been
the driving factors for applied research in these pioneering years. Radar digiti-
zation, distributed radar systems, fusion with background information such as
flight plans or target tracking have been keywords describing the challenges at this
time. Under Günther van Keuk—a young physicist from the University of Ham-
burg, student of Harry Lehmann and Lothar Collatz, joining FFM in 1965—these
activities were related to distributed target tracking and data fusion in multiple
radar networks for the German Agency of Air Traffic Security (DFS).

Over many years, active sensor management, tracking, and data fusion for the
phased-array radar system ELRA (Elektronisches Radar, a dominating project over
a long time) was an important focal point. Günther van Keuk was among the first,
who proposed and realized a sequential track initiation scheme based on an
optimal criterion related to state estimates. In this context, he developed a per-
formance prediction model for phased-array radar, which has been called ‘‘Van-
Keuk-Equation’’ in the tracking literature.

In summer 1990, another young physicist, Wolfgang Koch, joined van Keuk’s
department. Educated at the RWTH Aachen and a student of Gert Roepstorff, he
began under van Keuk’s mentorship to apply his fundamental theoretical knowl-
edge to the application oriented world of sensor data fusion. He was a member of
the team which has done pioneering work in multiple emitter tracking within
networks of electromagnetic and acoustic sensors under the effect of hostile
measures in challenging Cold-War reconnaissance scenarios.

In the following years—since 2002 as the successor of van Keuk as the
department head of ‘‘Sensor Data and Information Fusion’’—he contributed
remarkable results to the field of sensor data fusion. He did it successfully and with
passionate enthusiasm. So he became a well-known member of the world wide
sensor data fusion community and the academic scene in Germany, especially at
the University of Bonn. Today, the research activities at FKIE cover a wide range
of topics in the area of sensor data fusion related to localization and navigation,
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wide-area surveillance, resource management, self protection, and threat recog-
nition for defence and security applications.

The reader of this book will get both, a fairly comprehensive overview of the
field of tracking and sensor data fusion and deeper insight in the specific scientific
results, reached in the last two decades. I am very proud to have had the oppor-
tunity to follow this development and to be able to support these activities as the
former director of FFM and FKIE, respectively, for almost 25 years. Enjoy reading
this book as I did.

Adendorf, September 2013 Jürgen Grosche
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Preface

Sensor Data Fusion is the process of combining incomplete and imperfect pieces
of mutually complementary sensor information in such a way that a better
understanding of an underlying real-world phenomenon is achieved. Typically,
this insight is either unobtainable otherwise or a fusion result exceeds what can be
produced from a single sensor output in accuracy, reliability, or cost. Appropriate
collection, registration, and alignment, stochastic filtering, logical analysis, space-
time integration, exploitation of redundancies, quantitative evaluation, and
appropriate display are part of Sensor Data Fusion as well as the integration of
related context information. The technical term ‘‘Sensor Data Fusion’’ was created
in George Orwell’s very year 1984 in the US defence domain, but the applications
and scientific topics in this area have much deeper roots. Today, Sensor Data
Fusion is evolving at a rapid pace and present in countless everyday systems and
civilian products.

Although a vast research literature with specialized journals and conference
proceedings, several handbooks, and scientific monographs deal with Sensor Data
Fusion, it often seems difficult to find access to the underlying general method-
ology and to apply the inventory of various fusion techniques to solving individual
application problems. To facilitate the transfer of notions and algorithms of Sensor
Data Fusion to problem solving in engineering and information systems design is
the main objective of this book. The idea of it has grown from both the author’s
lecturing on Sensor Data Fusion at Bonn University since 2002 and extensive
research work at Fraunhofer FKIE on improving defence- and security-related
surveillance and reconnaissance systems by Sensor Data Fusion. The inner
structure of the book directly follows from these considerations.

Sensor Data Fusion, as an information technology as well as a branch of
engineering science and informatics, is discussed in an introductory chapter, put
into a more general context, and related to information systems. Basic elements
and concepts are introduced.

Part I presents a coherent methodological framework of Sensor Data Fusion,
thus providing the prerequisites for discussing selected applications in Part II of
the book in four chapters. The presentation reflects the author’s views on the
subject and emphasizes his own contributions to the development of particular
aspects.

ix



Based on a more general notion of object states, probabilistic models of their
temporal evolution and the underlying sensors are discussed. Their proper com-
bination within a Bayesian framework provides iterative update formulae for
probability densities that represent the knowledge about objects of interest
extracted from imperfect sensor observations and context information. Various
data fusion algorithms appear as limiting cases and illustrate the more general
Bayesian approach. Particular emphasis is placed on fusing data produced at
different instants of times, i.e., on-time series of sensor data. The resulting multiple
sensor tracking problem is a key issue in Sensor Data Fusion. A discussion of track
initiation and fusion of locally preprocessed information, i.e., track-to-track fusion,
concludes Part I.

Progress in fusion research is based on precise and methodical work on rele-
vant, well-posed, but sufficiently specialized research questions. Besides answer-
ing them appropriately and evaluating the result in comparison to alternatives, the
identification of such questions in itself is an essential part of scientific work and
often far from trivial.

Following this observation, selected applications are discussed in Part II, where
specific problems of Sensor Data Fusion are highlighted. Their solutions are based
on the methods previously introduced, which are crucial for meeting challenging
user requirements. At the same time, the application examples illustrate the inner
structure and practical use of the underlying Bayesian formalism. The very success
of Bayesian Sensor Data Fusion may serve as retrospective justification of the
approach as well as a motivation to apply this formalism to an even broader field
of applications.

The discussed examples are chosen from the author’s own contributions to this
area and are grouped around the following over-all topics:

1. Integration of Advanced Sensor Properties
2. Integration of Advanced Object Properties
3. Integration of Topographical Information
4. Feedback to Acquisition: Sensor Management,

which define the four chapters of Part II. The material discussed in the indi-
vidual sections of these chapters is collected from journal publications and a
handbook chapter by the author. Although the presentation of the key points with
respect to specialized methodology and application aspects is self-contained on the
methodological basis provided by Part I, a related publication of the author is
displayed in each section, where more details and numerical results can be found.

The results of Part II are input for large ISR Systems (Intelligence, Surveil-
lance, and Reconnaissance). Since the examples have been selected from suffi-
ciently different, but mutually complementary areas in Sensor Data Fusion, the
detailed analysis of the specialized problems involved and their individual solu-
tions provide a fairly comprehensive overview of various aspects of Sensor Data
Fusion for situation picture production. This type of ‘‘example-driven’’ discussion
is perhaps better suited to stimulate research work and progress on analogous
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problems in different applications than a more abstract and generalizing presen-
tation might do.

With some delay, Sensor Data Fusion is likely to develop along lines similar to
the evolution of another modern key technology whose origin is rooted in the
military domain, the Internet. It is the author’s firm conviction that until now,
scientists and engineers have only scratched the surface of the vast range of
opportunities for research, engineering, and product development that still waits to
be explored: the Internet of the Sensors.

This text book would not have been possible without two eminent scientists,
who greatly formed the author’s mind and apprehension over many years. Günther
van Keuk, his teacher in tracking and Sensor Data Fusion and former department
head, who died far too early in 2003, introduced him into the exciting field of
Sensor Data Fusion and shaped his scientific habit. Jürgen Grosche generously
accompanied the author’s research as a Fraunhofer director with personal interest,
valuable advice, and clear directions. In particular, Jürgen Grosche mediated the
author’s lecturing activities on Sensor Data Fusion at Bonn University and
encouraged him to summarize his research results in this book.

Of course, the merits of many scientific colleagues should also be mentioned
here, who contributed greatly through countless scientific discussions and joint
work over the years, especially Klaus Becker, Richard Klemm, Martin Ulmke, and
Ulrich Nickel. Furthermore, the author is indebted to Jane Stannus and Diana
Dorau for their help in editorial and layout issues.

Since the inner strength for his professional life is given to the author by his
family, his beloved wife Dorothea and his children Maria, Veronika, Theresia,
Katharina, and Johannes, as well as by his parents and brothers, it might be
appropriate to express his deep gratitude to them here as well.

Rolandswerth, September 2013 Johann WolfgangKoch
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Chapter 1
Notion and Structure of Sensor Data Fusion

Sensor data fusion is an omnipresent phenomenon that existed prior to its
technological realization or the scientific reflection on it. In fact, all living creatures,
including human beings, by nature or intuitively perform sensor data fusion. Each in
their own way, they combine or “fuse” sensations provided by different and mutually
complementary sense organs with knowledge learned from previous experiences and
communications from other creatures. As a result, they produce a “mental picture”
of their individual environment, the basis of behaving appropriately in their struggle
to avoid harm or successfully reach a particular goal in a given situation.

1.1 Subject Matter

As a sophisticated technology with significant economic and defence implications
as well as a branch of engineering science and applied informatics, modern sensor
data fusion aims at automating this capability of combining complementary pieces of
information. Sensor data fusion thus produces a “situation picture,” a reconstruction
of an underlying “real situation,” which is made possible by efficiently implemented
mathematical algorithms exploiting even imperfect data and enhanced by new infor-
mation sources. Emphasis is not only placed on advanced sensor systems, technical
equivalents of sense organs, but also on spatially distributed networks of homoge-
neous or heterogeneous sensors on stationary or moving platforms and on the inte-
gration of data bases storing large amounts of quantitative context knowledge. The
suite of information sources to be fused is completed by the interaction with human
beings, which makes their own observations and particular expertise accessible.

The information to be fused may comprise a large variety of attributes, character-
ized, for example, by sensor ranges from less than a meter to hundreds of kilometers,
by time scales ranging from less than a second to a few days, by nearly stationary
or rapidly changing scenarios, by actors behaving cooperatively, in-cooperatively, or
even hostile, by high precision measurements or sensor data of poor quality.

W. Koch, Tracking and Sensor Data Fusion, 1
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_1,
© Springer Verlag Berlin Heidelberg 2014
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Sensor data fusion systems emerging from this branch of technology have in effect
the character of “cognitive tools”, which enhance the perceptive faculties of human
beings in the same way conventional tools enhance their physical strength. In this type
of interactive assistance system, the strengths of automated data processing (dealing
with mass data, fast calculation, large memory, precision, reliability, robustness etc.)
are put into service for the human beings involved. Automated sensor data fusion
actually enables them to bring their characteristically “human” strengths into play,
such as qualitatively correct over-all judgment, expert knowledge and experience,
intuition and creativity, i.e. their “natural intelligence” that cannot be substituted by
automated systems in the foreseeable future. The user requirements to be fulfilled in
a particular application have a strong impact on the actual fusion system design.

1.1.1 Origins of Modern Development

Sensor data fusion systems have been developed primarily for applications, where a
particular need for support systems of this type exists, for example in time-critical
situations or in situations with a high decision risk, where human deficiencies must
be complemented by automatically or interactively working data fusion techniques.
Examples are fusion tools for compensating decreasing attention in routine and mass
situations, for focusing attention on anomalous or rare events, or complementing lim-
ited memory, reaction, and combination capabilities of human beings. In addition to
the advantages of reducing the human workload in routine or mass tasks by exploiting
large data streams quickly, precisely, and comprehensively, fusion of mutually com-
plementary information sources typically produces qualitatively new and important
knowledge that otherwise would remain unrevealed.

The demands for developing such support systems are particularly pressing in
defence and security applications, such as surveillance, reconnaissance, threat eval-
uation, and even weapon control. The earliest examples of large sensor data fusion
projects were designed for air defence against missiles and low-flying bombers and
influenced the development of civilian air traffic control systems. The development
of modern sensor data fusion technology and the underlying branch of applied sci-
ence was stimulated by the advent of sufficiently powerful and compact computers
and high frequency devices, programmable digital signal processors, and last but
not least by the “Strategic Defence Initiative (SDI)” announced by US President
Ronald Reagan on March 23, 1983.

After a certain level of maturity has been reached, the Joint Directors of Lab-
oratories (JDL), an advisory board to the US Department of Defense, coined the
technical term “Sensor Data and Information Fusion” in George Orwell’s very year
1984 and undertook the first attempt of a scientific systematization of the new tech-
nology and the research areas related to it [1, Chap. 2, p. 24]. To the present day,
the scientific fusion community speaks of the “JDL Model of Information Fusion”
and its subsequent generalizations and adaptations [1, Chap. 3], [2]. The JDL model
provides a structured and integrated view on the complete functional chain from dis-
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Fig. 1.1 Overview of the JDL-Model of Sensor Data and Information Fusion [1, Chap. 3], which
provides a structured and integrated view on the complete functional chain from distributed sensors,
data bases, and human reports to the users and their options to act including various feed-back loops
at different levels

tributed sensors, data bases, and human reports to the users and their options to act
including various feed-back loops at different levels (Fig. 1.1). It seems to be valid
even in the upcoming large fields of civilian applications of sensor data fusion and
cyber security [3]. Obviously, the fundamental concepts of sensor data fusion have
been developed long before their full technical feasibility and robust realizability in
practical applications.

1.1.2 General Technological Prerequisites

The modern development of sensor data fusion systems was made possible by sub-
stantial progress in the following areas over the recent decades:

1. Advanced and robust sensor systems, technical equivalents of sense organs with
high sensitivity or coverage are made available that may open dimensions of
perception usually unaccessible to most living creatures.

2. Communication links with sufficient bandwidths, small latencies, stable connec-
tivity, and robustness against interference are the backbones of spatially distrib-
uted networks of homogeneous or heterogeneous sensors.
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3. Mature navigation systems are prerequisites of (semi-)autonomously operating
sensor platforms and common frames of reference for the sensor data based on
precise space–time registration including mutual alignment.

4. Information technology provides not only sufficient processing power for deal-
ing with large data streams, but also efficient data base technology and fast
algorithmic realizations of data exploitation methods.

5. Technical interoperability, the ability of two or more sub-systems or compo-
nents to interact and to exchange and to information mutually understood, is
inevitable to build distributed “systems of systems” for sensor exploration and
data exploitation [4].

6. Advanced and ergonomically efficient Human–Machine Interaction (HMI) tools
are an integral part of man-machine-systems presenting the results of sensor data
fusion systems to the users in an appropriate way [5].

The technological potential enabled by all these capabilities is much enhanced by
integrating them in an overall sensor data fusion system.

1.1.3 Relation to Information Systems

According to this technological infrastructure, human decision makers on all levels
of hierarchy, as well as automated decision making systems, have access to vast
amounts of data. In order to optimize use of this high degree of data availability
in various decision tasks, however, the data continuously streaming in must not
overwhelm the human beings, decision making machines, or actuators involved. On
the contrary, the data must be fused in such a way that at the right instant of time the
right piece of high-quality information relevant to a given situation is transmitted to
the right user or component and appropriately presented. Only if this is the case, the
data streams can support goal-oriented decisions and coordinated action planing in
practical situations and on all levels of decision hierarchy.

In civilian applications, management information or data warehouse systems
are designed in order to handle large information streams. Their equivalents in
the defence and security domain are called C4ISTAR Systems [4]. This acronym
denotes computer-assisted functions for C4 (Command, Control, Communications,
Computers), I (Intelligence), and STAR (Surveillance, Target Acquisition and Recon-
naissance) in order to enable the coordination of defence-related operations. While
management information or data warehouse systems are primarily used to obtain
competitive advantages in economic environments, C4ISTAR systems aim at infor-
mation dominance over potential military opponents. The observation that more or
less the same terminology is used in both areas for characterizing the struggle to
avoid harm or successfully reach goals, is an indication of far-reaching fundamental
commonalities of decision processes in defence command & control as well as in
product development and planing, in spite of different accentuations in particular
aspects.
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A basic component of C4ISTAR information systems, modular and flexibly
designed as “systems of systems,” is the combination of sensor systems and data
bases with appropriate sensor data and information fusion sub-systems. The objec-
tive at this level is the production of timely, consistent and, above all, sufficiently
complete and detailed “situation pictures,” which electronically represent a complex
and dynamically evolving overall scenario in the air, on the ground, at sea, or in
an urban environment. The concrete operational requirements and restrictions in a
given application define the particular information sources to be considered and data
fusion techniques to be used.

A Characteristic Example

A particularly mature example of an information system, where advanced sensor data
fusion technology is among its central pillars, is given by a distributed, coalition-
wide C4ISTAR system of systems for wide-area ground surveillance. It mirrors many
of the aspects previously addressed and has been carried out within the framework
of a multinational technology program called MAJIIC (Multi-Sensor Aerospace-
Ground Joint ISR Interoperability Coalition) [4, Chap. 20]. By collaboratively using
interoperable sensor and data exploitation systems in coalition operations, MAJIIC
has been designed to improve situational awareness of military commanders over
the various levels of the decision making hierarchy.

Based on appropriate concepts of deployment and the corresponding tactical pro-
cedures, technological tools for Collection, Coordination and Intelligence Require-
ments Management (CCIRM) are initiated by individual sensor service requests of
deployed action forces. The CCIRM tools produce mission plans according to super-
ordinate priorities, task sensor systems with appropriate data acquisition missions,
initiate data exploitation and fusion of the produced sensor data streams in order to
obtain high-quality reconnaissance information, and, last but not least, guarantee the
feedback of the right information to the requesting forces at the right instant of time.

Under the constraint of leaving existing C4ISTAR system components of the
nations participating in MAJIIC unchanged as far as possible, the following aspects
are addressed with particular emphasis:

1. The integration of advanced sensor technology for airborne and ground-based
wide-area surveillance is mainly based on Ground Moving Target Indicator
Radar (GMTI), Synthetic Aperture Radar (SAR), electro-optical and infrared
sensors (E/O, IR) producing freeze and motion imagery, Electronic Support
Measures (ESM), and artillery localization sensors (radar- or acoustics-based).

2. Another basic issue is the identification and implementation of common stan-
dards for distributing sensor data from heterogeneous sources including appro-
priate data and meta-data formats, agreements on system architectures as well
as the design and implementation of advanced information security concepts.

3. In addition to sensor data fusion technology itself, tools and procedures have
been developed and are continuously enhanced for co-registration of hetero-
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Fig. 1.2 MAJIIC system architecture emphasizing the deployed sensors, databases, and distributed
sensor data fusion systems (Interoperable ISR Exploitation Stations)

geneous sensors, cross-cueing between the individual sensors of a surveillance
system, the sensors of different systems, and between sensors and actuators, as
well as for exploitation product management, representation of the “Coalition
Ground Picture,” for coordinated mission planning, tasking, management, and
monitoring of the MAJIIC sub-systems.

4. MAJIIC-specific communications have been designed to be independent of
network-types and communication bandwidths, making it adaptable to varying
requirements. Commercially available and standardized internet- and crypto-
technology has been used in both the network design and the implementation
of interfaces and operational features. Important functionalities are provided
by collaboration tools enabling ad-hoc communication between operators and
exchange of structured information.

5. The central information distribution nodes of the MAJIIC C4ISTAR system
of systems are so-called Coalition Shared Data servers (CSD) making use of
modern database technology. Advanced Data Mining and Data Retrieval tools
are part of all MAJIIC data exploitation and fusion systems.

6. From an operational point of view, a continuous interaction between Concept
Development and Experimentation (CD&E process, [6]) by planning, running,
and analyzing simulated and live C4ISTAR experiments is an essential part of
the MAJIIC program, fostering the transfer of MAJIIC capabilities into national
and coalition systems.

Figure 1.2 provides an overview of the MAJIIC system architecture and the deployed
sensor systems.
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1.2 Characterization as a Branch of Applied Science

The object of knowledge in sensor data fusion as a branch of applied science is
sensor data fusion technology discussed previously. In other words, it aims at the
acquisition of knowledge required to build automated sensor data fusion systems,
often being part of larger information systems, by using appropriately developed
scientific methodologies. This includes the elicitation, collection, analysis, modeling,
and validation of this knowledge.

In order to reach this goal, scientific research in sensor data fusion is performed
in an interdisciplinary way by applying fundamental results gathered from other
sciences, such as natural sciences dealing with physical object properties perceptible
by sensors and the underlying sensing principles, engineering sciences, mainly sensor
engineering, metrology, automation, communications, and control theory, but also
applied mathematics and statistics, and, last but not least, applied informatics. Two
characteristic features of sensor data fusion can be identified.

1. The available sensor data and context knowledge to be fused typically provide
incomplete and imperfect pieces of information. These deficiencies have man-
ifold reasons and are unavoidable in real-world applications. For dealing with
imperfect sensor and context data, sophisticated mathematical methodologies
and reasoning formalisms are applied. Certain aspects of them are developed by
extending the underlying methodology, thus providing contributions to funda-
mental research. Reasoning with uncertain information by using probabilistic
or other formalisms is therefore a major scientific feature characterizing sensor
data fusion.

2. As a branch of applied science, sensor data fusion is closely related to the practi-
cal design of surveillance and reconnaissance components for information sys-
tems. In implementing fundamental theoretical concepts, a systematic way of
finding reasonable compromises between mathematical exactness and pragmatic
realization issues as well as suitable approximation methodologies are therefore
inevitable. System aspects such as robustness and reliability even in case of
unforeseeable nuisance phenomena, priority management, and graceful degra-
dation are of particular importance in view of practicability. This is equally true
for comprehensive evaluation and prediction of fusion system performance and
identification of relevant factors for system control and operation, based, for
example, on extensive Monte-Carlo-simulations and the analysis of theoretical
bounds [7].

1.2.1 Pioneers of Sensor Data Fusion

Since sensor data fusion can be considered as a branch of automation with respect
to imperfect sensor data and non-sensor information, a historical reflection on its
roots could identify numerous predecessors in automation engineering, cybernetics,
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and Bayesian statistics, who developed fundamental notions and concepts relevant to
sensor data fusion. Among many other pioneers, Carl Friedrich Gauss, Thomas

Bayes and the Bayesian statisticians, as well as Rudolf E. Kalman have created
the methodological and mathematical prerequisites of sensor data fusion that made
the modern development possible.

Carl Friedrich Gauß

Many achievements in science and technology that have altered today’s world can be
traced back to the great mathematician, astronomer, geodesist, and physicist Carl

Friedrich Gauss (1777–1855). This general tendency seems also to be true in
the case of sensor data fusion. After finishing his opus magnum on number theory,
Gauss re-oriented his scientific interests to astronomy. His motive was the discovery
of the planetoid Ceres by the Theatine monk Giuseppe Piazzi (1746–1826) on Jan
1, 1801, whose position was lost shortly after the first astronomical orbit measure-
ments. Gauss succeeded in estimating the orbit parameters of Ceres from a few
noisy measurements by using a recursively defined least-squares error compensation
algorithm [8], a methodology, which can be interpreted as a limiting case of Kalman
filtering, one of the most important backbone algorithms of modern target tracking
and sensor data fusion. Based on his results, Heinrich Olbers (1758–1840) was
able to rediscover Ceres on Jan 1, 1802. The discovery of three other planetoids
followed (Pallas 1802, Juno 1804, Vesta 1807). Although until then, Gauss was
well-known to mathematical experts only, this success made his name popular, lead-
ing to his appointment at Göttingen University in 1807 as a Professor of Astronomy
and Director of the Observatory. Gauss’ personal involvement in this new scientific
branch of reasoning with imprecise observation data is indicated by the fact that he
called his first borne child Joseph, after Father Guiseppe Piazzi [9, p. 15]. Three
others of his children were named after the discoverers of Pallas, Juno, and Vesta.

Bayesian Statisticians

In sensor data fusion, the notion of “Bayesian probability” is of fundamental impor-
tance. It interprets the concept of probability as “a measure of a state of knowledge”
(see [10], e.g.) and not as a relative frequency as in classical statistics. According to
this interpretation, the probability of a hypothesis given the sensor data is propor-
tional to the product of the likelihood function multiplied by the prior probability. The
likelihood function represents the incomplete and imperfect information provided by
the sensor data themselves as well as context information on the sensor performance
and the sensing environment, while the prior probability the belief in the hypothesis
before the sensor data were available (see Chap. 3 Bayesian Knowledge Propagation
of this book).

The term ‘Bayesian’ refers to Thomas Bayes (1702–1761), a British mathe-
matician and Presbyterian minister, who proved a special case of this proposition,

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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which is now called Bayes’ theorem (published posthumously by his friend Richard

Price (1723–1791) in 1763, [11]). The roots of ‘subjective probability’ can even be
traced back to the great Jewish philosopher Moses Maimonides (1135/38-1204)
and the medieval rabbinic literature [12, Chap. 10]. It was Pierre- Simon Laplace

(1749–1827), however, who introduced a more general version of Bayes’ theorem,
apparently unaware of Bayes’ work, and used it to approach problems in celes-
tial mechanics, medical statistics, reliability, and jurisprudence [13, Chap. 3]. In the
sequel, the foundations of Bayesian statistics were laid by many eminent statisticians.

Of particular importance is Abraham Wald (1902–1950, [14]), an Austro-
Hungarian mathematician, who immigrated to the USA in 1938, where he created
Sequential Analysis, a branch of applied statistical decision making, which is of
enormous importance for sensor data fusion, especially in track management and
consistency testing (see Chap. 4 Sequential Track Extraction of this book). In his
influential work on Statistical Decision Functions [15], he recognized the funda-
mental role of Bayesian methods and called his optimal decision methods ‘Bayes
strategies’.

Rudolf E. Kalman and his Predecessors

The beginning of modern sensor data fusion is inextricably bound up with the name
of Rudolf E. Kalman (*1930), a Hungarian-American system theorist, though
he had many predecessors. The Kalman filter is a particularly influential example
of a processing algorithm for inferring a time variable object state from uncertain
data assuming an uncertain object evolution, which can elegantly be derived from
Bayesian statistics. Among Kalman’s predecessors, Thorvald Nicolai Thiele

(1838–1910), a Danish astronomer, actuary and mathematician, derived a geomet-
ric construction of a fully developed Kalman filter in 1889 [16, Chap. 4]. Also
Ruslan L. Stratonovich (1930–1997), a Russian physicist, engineer, proba-
bilist, and Peter Swerling (1929–2000), one of the most influential RADAR the-
oreticians in the second half of the twentieth century [17, Appendix], developed
Kalman-type filtering algorithms earlier using different approaches.

Stanley F. Schmidt (*1926) is generally credited with developing the first
application of a Kalman filter to the problem of trajectory estimation for the NASA
Apollo Spaceflight Program in 1960, leading to its incorporation in the Apollo nav-
igation computer. The state-of-the-art until 1974 is summarized in the influential
book Applied Optimal Estimation, edited by Arthur Gelb [18].

Contemporary Researchers

Independently of each other, Günther van Keuk (1940–2003) and Singer first
applied Kalman filtering techniques to single air target tracking problems in multiple
radar data processing [19, 20]. The foundations of multiple hypothesis tracking
methods for dealing with data of uncertain origin related to multiple objects were

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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laid by Robert W. Sittler, who first posed the problem [21], while Donald

B. Reid published a method for solving it [22]. Van Keuk, Sam S. Blackman,
and Yaakov Bar- Shalom were among the first, who transformed Reid’s method
into practical algorithms (see [23, 24] for an overview of the development until 2004).

In the vast research literature published since then, however, it is impossible to
identify all important scientists and engineers. The following discussion of significant
contributions is therefore by no means complete, reflects the author’s personal point
of view, and is related to methodological framework presented in Part 1 of this book.

In particular due to their monographs on target tracking and sensor data fusion
issues, Yaakov Bar- Shalom [25], Sam S. Blackman [26], and Alfonso

Farina [27] are highly influential researchers and have inspired many developments.
Henk A. P. Blom introduced stochastic hybrid processes into data fusion [28],
which under the name of “Interacting Multiple Models” still define the state-of-the-
art in target dynamics modeling. He in particular applied Bayesian data fusion to large
air traffic control systems under severe reliability constraints. Countless realization
aspects in fusion systems design are covered by Oliver Drummond’s contributions.
Already in his PhD thesis [29], where he has addressed many important issues in mul-
tiple object tracking at a very early time. Larry Stone is a pioneer in Bayesian sonar
tracking and data fusion in complex propagation environments [30]. Neil Gordon

was among the first, who applied sequential random Monte-Carlo-techniques to non-
linear tracking problems, known under the name of “Particle Filtering”, and inspired
a rapid development in this area [31]. Numerous contributions to problems at the bor-
derline between advanced signal processing, distributed detection theory, and target
tracking were made by Peter K. Willett. Xiao- Rong Li provided important
solutions to radar data fusion. The integration of modern mathematical non-linear
filtering to practical radar implementation is among the merits of Fred Daum.
Numerous achievements in non-linear filtering, distributed sensing, and resources
management were provided by Uwe D. Hanebeck. Hugh Francis Durrant-

Whyte is generally credited with creating decentralized data fusion algorithms as
well as with simultaneous localization and navigation. The stormy development of
efficient multitarget tracking based on random set theory with Probabilistic Hypothe-
sis Density Filtering (PHD) as an efficient realization has been developed by Ronald

Mahler [32]. Finally, Roy Streit first introduced Expectation Maximization tech-
niques to solve efficiently the various data association problems in target tracking
and sensor data fusion and exploited the use of Poisson-point precesses in this area
[33].

A well readable introduction to sensor data fusion was published by
H. B. Mitchell [34]. The handbook “Advanced Signal Processing: Theory and
Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems”
[35] deals with many advanced sensor data fusion applications. Martin E. Lig-

gins, James Llinas, and David L. Hall edited the compendium “Handbook
of Multisensor Data Fusion: Theory and Practice” [1]. An excellent introduction to
more advanced techniques with emphasis on particle filtering is provided by Fredrik

Gustafsson [36].
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1.2.2 Organization of the Research Community

The interdisciplinary significance of sensor data fusion is illustrated by the fact that
numerous institutions with different profiles are working world-wide on particu-
lar aspects of it. For this reason, the “International Society of Information Fusion
(ISIF)” was founded in 1998 as a scientific framework organization. According to
its constitution, it is “an independent, non-profit organization dedicated to advanc-
ing the knowledge, theory and applications of information fusion” [37]. Since that
year, ISIF has been organizing the annual International Conferences on Informa-
tion Fusion, the main scientific conference of the international scientific information
fusion community.

1.2.3 Important Publication Platforms

To publish high-quality scientific papers on sensor data and information fusion, sev-
eral well-established scientific journals are available, such as the IEEE Transactions
on Aerospace and Electronic Systems and on Signal Processing, the most visible
publication platforms, the ISAF Journal of Advances in Information Fusion, or the
Elsevier Journal on Information Fusion. Besides the proceedings of the FUSION
conferences, the annual SPIE Conference Series Signal and Data Fusion of Small
Targets (SPIE SMT) organized by Oliver E. Drummond since 1989 in the USA,
numerous special sessions at radar and automated control conferences as well as
several national fusion workshops, such as the German IEEE ISIF Workshop Series
Sensor Data Fusion: Trends, Solutions, Applications (SDF) [41], provide forums,
where the latest advances and research results are presented and discussed among
researchers and application engineers.

1.3 From Imperfect Data to Situation Pictures

Sensor data fusion typically provides answers to questions related to objects of inter-
est such as: Do objects exist at all and how many of them are moving in the sensors’
fields of view? Where are they located at what time? Where will they be in the future
with what probability? How can their overall behavior be characterized? Are anom-
alies or hints to their possible intentions recognizable? What can be inferred about
the classes the objects belong to or even their identities? Are there clues for char-
acteristic interrelations between individual objects? In which regions do they have
their origin? What can be said about their possible destinations? Are there observ-
able over-all object flows? Where are sources or sinks of traffic? and many other
questions.
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Fig. 1.3 Sensor data and information fusion for situation pictures: overview of characteristic aspects
and their mutual interrelation

The answers to those questions are the constitutive elements, from which near
real-time situation pictures can be produced that electronically represent a complex
and dynamically evolving overall scenario in the air, on the ground, at sea, under
water, as well as in out- or in-door urban environments, and even more abstract spaces.
According to the previous discussion, these “situation elements” must be gained from
the currently received sensor data streams while taking into account all the available
context knowledge and pre-history. Since situation pictures are fundamental to any
type of computer-aided decision support, the requirements of a given application
define which particular information sources are to be fused.

The sensor data to be fused are usually inaccurate, incomplete, or ambiguous.
Closely spaced moving objects are often totally or partially irresolvable. The mea-
sured object parameters may be false or corrupted by hostile measures. The context
information is in many cases hard to formalize and even contradictory in certain
aspects. These deficiencies of the information to be fused are unavoidable in any
real-world application. Therefore, the extraction of ‘information elements’ for sit-
uation pictures is by no means trivial and requires a sophisticated mathematical
methodology for dealing with imperfect information. Besides a precise requirement
analysis, this is one of the major scientific features that characterizes and shapes
sensor data fusion as branch of applied science.
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1.3.1 Discussion of Characteristic Aspects

Figure 1.3 provides an overview of different aspects within this context and their
mutual interrelation, which should be emphasized:

1. The underlying sensor systems can be located in different ways (collocated,
distributed, mobile) producing measurements of the same or of different type.
A multisensor system potentially increases the coverage or data rate of the total
system and may help to resolve ambiguities.

2. Even by fusing homogeneous sensors, information can be obtained that is unac-
cessible to each sensor individually, such as in stereoscopic vision, where range
information is provided by fusing two camera images taken from different view-
points.

3. Fusion of heterogeneous sensor data is of particular importance, such as the
combination of kinematic measurements with measured attributes providing
information on the classes to which objects belongs to. Examples for measured
attributes are Signal Intelligence (SIGINT), Jet Engine Modulation (JEM), radial
or lateral object extension, chemical signatures, etc.

4. Especially for defense and security applications, the distinction between active
and passive sensing is important as passive sensors enable covert surveillance,
which does not reveal itself by actively emitting radiation.

5. Multi-functional sensor systems, such as phased-array radar, offer additional
operational modes, thus requiring more intelligent strategies of sensor manage-
ment that provide feedback to the process of information acquisition via appro-
priate control or correction commands. By this, the surveillance objectives can
often be reached much more efficiently.

6. Context information is given, for example, by available knowledge on sensor and
object properties, which is often quantitatively described by statistical models.
Context knowledge is also given by environmental information on roads or topo-
graphical occlusions and provided by Geographical Information Systems (GIS).
Seen from a different perspective, context information, such as road-maps, can
also be extracted from real-time sensor data directly.

7. Relevant context knowledge (e.g. doctrines, planning data, tactics) and human
observer reports (HUMINT: Human Intelligence) is also important information
in the fusion process. The exploitation of context information of this kind can
significantly improve the fusion system performance.

1.3.2 Remarks on the Methods Used

Situation elements for producing timely situation pictures are provided by integra-
tively and spatio-temporally processing various pieces of information that in them-
selves often may have only limited value for understanding the situation. Essentially,
logical cross-references, inherent complementarity, and redundancy are exploited.
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More concretely speaking, the methods used are characterized by a stochastic
approach (estimating relevant state quantities) and a more heuristically defined
knowledge-based approach (modeling actual human behavior when exploiting infor-
mation).

Among the data exploitation products of data fusion systems, object ‘tracks’ are
of particular importance. Tracking faces an omnipresent aspect in every real-world
application insofar as it is dealing with fusion of data produced at different instants of
time; i.e. tracking is important in all applications where particular emphasis is placed
on the fact that the sensor data to be exploited have the character of a time series.

Tracks thus represent currently available knowledge on relevant, time-varying
quantities characterizing the instantaneous “state” of individual targets or target
groups of interest, such as aircraft, ships, submarines, vehicles, or moving persons.
Quantitative measures that reliably describe the quality of this knowledge are an
integral part of a track. The information obtained by ‘tracking’ algorithms [25, 26,
42] also includes the history of the targets. If possible, a one-to-one association
between the target trajectories in the sensors’ field of view and the produced tracks
is to be established and has to be preserved as long as possible (track continuity).
The achievable track quality does not only depend on the performance of the sensors
used, but also on target properties and the operational conditions within the sce-
nario to be observed. If tracks ‘match’ with the underlying real situation within the
bounds defined by inherent quality measures being part of them, we speak of ‘track
consistency.”

Tracking algorithms, including Bayesian multiple hypothesis trackers as particu-
larly well-understood examples, are iterative updating schemes for conditional prob-
ability density functions representing all available knowledge on the kinematic state
of the objects to be tracked at discrete instants of time tl . The probability densities
are conditioned on both, the sensor data accumulated up to some time tk , typically
the current data acquisition time, as well as on available context information, such as
on sensor characteristics, the object dynamics, the environment, topographical maps,
or on certain rules governing the object behavior. Depending on the time instant tl at
which estimates for the state xl are required, the related estimation process is referred
to as prediction (tl > tk), filtering (tl = tk), or retrodiction (tl < tk) [43, 44].

1.3.3 A Generic Sensor Data Fusion System

Figure 1.4 shows a generic scheme of functional building blocks within a multiple
sensor tracking and data fusion system along with its relation to the underlying
sensors. In the case of multi-functional sensors, there is feedback from the tracking
system to the process of sensor data acquisition (sensor management). The following
aspects should be emphasized:
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Sensor System

Sensor Data to
Track Association

Track Processing:

-Track Cancellation     
-Object Classification / ID
-Track-to-Track Fusion
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-Object Environment
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Data
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Detection Process: 
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Fig. 1.4 Generic scheme of functional building blocks within a tracking/fusion system along with
its relation to the sensors (centralized configuration, type IV according to O. Drummond)

Sensor Systems

After passing a detection process, essentially working as a means of data rate reduc-
tion, the signal processing provides estimates of parameters characterizing the wave-
forms received at the sensors’ front ends (e.g. radar antennas). From these estimates
sensor reports are created, i.e. measured quantities possibly related to objects of
interest, which are the input for the tracking and sensor data fusion system. By using
multiple sensors instead of one single sensor, among other benefits, the reliability and
robustness of the entire system is usually increased, since malfunctions are recog-
nized easier and earlier and often can be compensated without risking a total system
breakdown.

Interoperability

A prerequisite of all further processing steps, which at first sight seems to be trivial,
is technical interoperability. It guarantees that all relevant sensor data are transmitted
properly, in a timely way, and completely including all necessary meta-data describ-
ing the sensor performance, the platform parameters, and environmental character-
istics. This type of meta-data is necessary to transform the sensor data into common
frames of reference, to identify identical pieces of data, and to merge similar pieces
of data into one single augmented piece of information. The process of combining
data from different sources and providing the user with a unified view of these data
is sometimes also referred to as data integration. Often interoperability acts as a
bottleneck in designing real-world data fusion systems of systems [4, Chap. 20].



16 1 Notion and Structure of Sensor Data Fusion

Fusion Process

All sensor data that can be associated to existing tracks are used for track main-
tenance (using, e.g., prediction, filtering, and retrodiction). The remaining data are
processed for initiating new tentative tracks (multiple frame track extraction). Asso-
ciation techniques thus play a key role in tracking/fusion applications. Context infor-
mation in terms of statistical models (sensor performance, object characteristics,
object environment) is a prerequisite for track maintenance and initiation. Track con-
firmation/termination, classification/identification, and fusion of tracks related to the
same objects or object groups are part of the track management functionalities.

Human–Machine Interface

The scheme is completed by a human–machine interface with display and interac-
tion functions. Context information can be updated or modified by direct human
interaction or by the track processor itself, for example as a consequence of object
classification or road-map extraction. For an introduction to the vast literature on the
related problems in human factors engineering and on practical systems solutions
see Ref. [5].

1.3.4 On Measuring Fusion Performance

In sensor data fusion, the underlying ‘real’ situation is typically unknown. Only in
expensive and time-consuming experiments certain aspects of a dynamically evolv-
ing situation are monitored, sometimes even with questionable accuracy. For this
reason, experiments are valuable for demonstrating the “proof of concept” as well
as to understand the underlying physical phenomena and operational problems, for
example. They are of limited use, however, in performance evaluation and predic-
tion. This underlines the role of comprehensive Monte-Carlo-simulations in fusion
system performance evaluation.

According to the previous discussion, sensor data fusion systems try to establish
one-to-one relations between objects in the sensors’ fields of view and identified
object tracks in the situation picture. Strictly speaking, this is only possible under ideal
conditions regarding the sensor performance and the underlying target scenario. It
seems thus reasonable to measure the performance of a given tracking/fusion system
by its characteristic deficiencies when compared to this ideal goal. In general, two
categories of deficiencies can be distinguished that are either caused by mismatch
regarding the input data or by non-optimal processing and unfavorable application
constraints.
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Selected Performance Measures

Selected performance measures or ‘measures of deficiency’ in the sense of the pre-
vious discussion, which have practical relevance in fusion systems design should be
emphasized in the following.

1. Usually a time delay is involved until a track has been extracted from the sensor
data. A corresponding performance measure is thus given by the ‘extraction
delay’ between the first detection of a target by a sensor and a confirmed track.

2. False tracks, i.e. tracks related to unreal or unwanted targets, are unavoid-
able in the case of a high density of false or unwanted data (e.g. by clutter,
jamming/deception). Corresponding ‘deficiencies’ are: mean number of falsely
extracted targets per time and mean life time of a false track before its deletion.

3. Targets should be represented by one and the same track until leaving the field
of view. Related performance measures are: mean life time of true target tracks,
probability of an ‘identity switch’, and probability of a target not being repre-
sented by a track.

4. The track inaccuracy (given by the error covariance matrix of a state estimate,
e.g.) should be as small as possible. Furthermore, the deviations between the esti-
mated and actual target characteristics should correspond with the error covari-
ance matrices produced (consistency). If this is not the case, ‘track loss’ usually
occurs.

In a given application it is by no means simple to achieve a reasonable compromise
between the various, competing performance measures and the user requirements.
Optimization with respect to one measure may easily degrade other performance
measures, finally deteriorating the entire system performance. This is especially true
under more challenging conditions.

1.3.5 Tracking-Derived Situation Elements

The primary objective of multiple sensor target tracking is to explore the underlying
target kinematics such as position, velocity, or acceleration. In other words, standard
target tracking applications gain information related to ‘Level 1 Fusion’ according to
the well-established terminology of the JDL model of information fusion (see e.g. [1,
Chap. 2] and the literature cited therein). Kinematic data of this type, however, are by
no means the only information to be derived from target tracks. In many cases, reliable
and quantitative higher level information according to the JDL terminology can be
obtained. To be more concrete, wide-area air and ground surveillance is considered
here as an important real-world example serving as a paradigm for other challenging
tracking and fusion applications.
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Inferences based on Retrodicted Tracks

The first type of higher JDL level information to be inferred from tracking data is
based on a closer analysis of the histories of the kinematic object states provided by
retrodiction techniques. The statements derived typically refer to object character-
istics that are either time invariant or change with time on a much larger scale than
kinematics quantities usually tend to do. This is the main reason why the gain in
accuracy achievable by retrodiction techniques can be exploited.

• Velocity History. The analysis of precisely retrodicted velocity histories enables
the distinction of objects belonging to different classes such as moving persons,
boats, vehicles, vessels, helicopters, or jet aircraft. If the object speed estimated
with sufficiently high accuracy has exceeded a certain threshold, certain object
classes can be reliably be excluded. As an example, uncertainty whether an object
is a helicopter or a wing aircraft can be resolved if in the track history a veloc-
ity vector ‘Zero’ exists. Depending on the context of the underlying application,
classifications of this type can be essential to generate an alert report.

• Acceleration History. Similar considerations are valid if acceleration histories are
taken into account. High normal accelerations, e.g., are a clear indication of a
fighter aircraft. Moreover, one can safely conclude that a fighter aircraft observed
with a normal acceleration > 6 g, for example, is not carrying a certain type of
weaponry (any more). In other words, conclusions on the threat level connected
with the objects observed can be drawn by analyzing kinematic tracks.

• Heading, Aspect Angle. Precise reconstructions of the targets’ heading vectors are
not only important input information for threat evaluation and weapon assignment
in themselves, but also enable estimates of the aspect angle of an object at a given
instant of time with respect to other sensors, such as those producing high range
or Doppler resolution spectra. Track-derived information of this type is basic for
fusing spectra distributed in time and can greatly improve object classification thus
providing higher-JDL-level information.

• Rare Event Detection. Analysis of JDL-level-1 tracks can be the key to detecting
rare or anomalous events by fusing kinematic tracks with other context informa-
tion such as annotated digital road-maps and general rules of behavior. A simple
example in the area of continuous-time, wide-area ground surveillance can be the
production of an alert message if a large freight vehicle is observed at an unusual
time on a dirt road in a forest region. There are analogous examples in the maritime
or air domain.

Inferences based on Multiple Target Tracking

A second type of higher JDL level information related to mutual object interrelations
can be inferred from JDL level 1 tracking data if emphasis is placed on the results
of multiple target tracking.
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• Common History. Multiple target tracking methods can identify whether a set of
targets belongs to the same collectively moving group, such as an aircraft forma-
tion or a vehicle convoy, whose spatial extension may be estimated and tracked.
If an aircraft formation has split off after a phase of penetration, e.g., the inter-
relation between the individual objects is to be preserved and provides valuable
higher-JDL-level information that is important, e.g., when a former group target is
classified as ‘hostile’ since this implies that all other targets originally belonging
to the same group are likely to be hostile as well.

• Object Sources and Sinks. The analysis of large amounts of target tracks further-
more enables the recognition of sources and sinks of moving targets. By this type
of reasoning, certain areas can be identified as air fields, for example, or an area of
concentration of military forces. In combination with available context informa-
tion, the analysis of multiple object tracks can also be used for target classification
by origin or destination. A classification as hostile or suspect directly leads to an
alert report.

• Split-off Events. By exploiting multiple target tracking techniques, certain split-
off events can be identified as launches of air-to-air or air-to-surface missiles. The
recognition of such an event from JDL-level-1 tracking information not only has
implications on classifying the original target as a fighter aircraft, but can also
establish a certain type of ‘book-keeping’, such as counting the number of missile
launches. This enables estimates of the residual combat strength of the object,
which has direct implications on countermeasures, e.g.

• Stopping Events. In the case of MTI radar (Moving Target Indicator), Doppler
blindness can be used to detect the event ‘A target under track has stopped’, pro-
vided this phenomenon is described by appropriate sensor models. If there is pre-
vious evidence for a missile launcher, e.g., missing data due to Doppler blindness
may indicate preparation for launch with implications on potential countermea-
sures. In combination with other tracks, a stopping event may also establish new
object interrelations, for example, when a target is waiting for another and then
moving with it.

1.3.6 Selected Issues in Anomaly Detection

Anomaly detection can be regarded as a process of information fusion that combines
incomplete and imperfect pieces of mutually complementary sensor data and context
information in such a way that the attention of human decision makers or decision
making systems is focused on particular events that are “irregular” or may cause
harm and thus require special actions, such as exploiting more specialized sensors or
initiating appropriate activities by military or security personnel [45]. Fusion-based
anomaly detection thus improves situational awareness. What is actually meant by
“regular” or “irregular” events is higher-level information itself that depends on the
context of the underlying application. Here, it is either assumed to be a priori known
or to be learned from statistical long-time analysis of typical situations.
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Fig. 1.5 Illustration of sea lanes and strategic passages in Pacific Asia

In complex surveillance applications, we can often take advantage of context infor-
mation on the sensing environment insofar as it is the stationary or slowly changing
“stage” where a dynamic scenario evolves. Typical examples of such environmental
information are digital road or sea-/air-lane maps and related information, which can
essentially be regarded as spatial motion constraints (see Fig. 1.5 as an illustration). In
principle, this information is available by Geographical Information Systems (GIS).
Another category of context information is provided by visibility models and littoral
or weather maps indicating regions, where a high clutter background is to be taken
into account, for example. Moreover, rather detailed planning information is often
available. This category of information is not only important in mission planning
or in the deployment and management of sensor systems, but can be used to decide
whether an object is moving on a lane or leaving it, for example. In addition, ground-,
sea- or air-lane information information can be used to improve the track accuracy of
lane-moving vehicles and enhance track continuity. See Sect. 9.1 for a more detailed
discussion.

Integration of Planning Information

In certain applications, rather detailed planning information is available, which pro-
vides valuable context knowledge on the temporal evolution of the objects involved

http://dx.doi.org/10.1007/978-3-642-39271-9_9
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and can in principle be incorporated into the tracking formalism. Planning informa-
tion is often approximately described by space–time waypoints that have to be passed
by the individual objects during a preplanned operation, i.e. by a set of position vec-
tors to be reached at given instants of time and possibly via particular routes (roads,
lanes) between the waypoints. In addition, we assume that the acceptable tolerances
related to the arrival of the objects at the waypoints are characterized by known error
covariance matrices, possibly individually chosen for each waypoint and object, and
that the association between the waypoínts and the objects is predefined.

The impact of waypoints on the trajectory to be estimated from future sensor
data (under the assumption that the plan is actually kept) can simply be obtained
by processing the waypoints as additional artificial ‘measurements’ via the standard
Bayesian tracking paradigm, where the tolerance covariance matrices are taken into
account as the corresponding ‘measurement error covariances’. If this is done, the
processing of sensor measurements with a younger time stamp are to be treated
as “out-of sequence” measurements with respect to the artificial waypoint mea-
surements processed earlier. For dealing with out-of-sequence measurements see
Sect. 5.1. According to these considerations, planning information can well improve
both track accuracy and continuity as well as facilitate the sensor-data-to-track asso-
ciation problems involved, provided the plan is actually kept.

Detecting Regularity Pattern Violation

A practically important class of anomalies results from a violation of regularity
patterns such as those previously discussed (motion on ground-, sea-, or air-lanes or
following preplanned waypoints and routes). An anomaly detector thus has to decide
between two alternatives:

• The observed objects obey an underlying pattern.
• The pattern is not obeyed (e.g. off-lane, unplanned).

Decisions of this type are characterized by decision errors of first and second kind.
In most cases, it is desirable to make the decisions between both alternatives for
given decision errors to be accepted. A “sequential likelihood ratio” test fulfills this
requirement and has enormous practical importance. For a more detailed discussion
see Chap. 9.2. As soon as the test decided that the pattern is obeyed, the calculation
of the likelihood ratio can be restarted since it is more or less a by-product of track
maintenance. The output of subsequent sequential ratio tests can serve to re-confirm
“normality” or to detect a violation of the pattern at last. The most important theoret-
ical result on sequential likelihood ratio tests is the fact that the test has a minimum
decision length on average given predefined statistical decision errors of first and
second kind.

http://dx.doi.org/10.1007/978-3-642-39271-9_5
http://dx.doi.org/10.1007/978-3-642-39271-9_9
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Tracking-derived Regularity Patterns

We have discussed moving targets that obey certain space–time constraints that are
a priori known (roads/lanes, planned waypoints). A violation of these constraints
was quite naturally interpreted as an anomaly. Seen from a different perspective,
however, moving targets that are assumed to obey a priori unknown space–time
constraints and to be observed by wide-area sensors, such as vehicles on an unknown
road network, produce large data streams that can also be used for extracting the
underlying space–time constraint, e.g. a road-map. After a suitable post-processing,
the produced tracks of motion-constrained targets simply define the corresponding
constraints and can thus be extracted from tracking-based results. See Sect. 9.2 for a
more detailed discussion. Extracted road-maps can be highly up-to-date and precise.
A discussion where such ideas are used in wide-area maritime surveillance using
AIS data can be found in [46] (AIS: Automatic Identification System).

1.4 Future Perspectives of Sensor Data Fusion

Due to the increasing availability of inexpensive, but powerful sensor, communica-
tion, and information technology, its technical prerequisites, sensor data fusion, or
more general, information fusion, increasingly emancipates from its roots in defense
related applications. A commonplace example of this trend is the advent of naviga-
tion systems, which have developed a mass market by fusing military global naviga-
tion satellite system data with digital road-maps in combination with an appealing
graphical interface. We can therefore expect that information fusion will become
a key technology driver for developing numerous innovative products penetrating
everyone’s daily life and changing it profoundly. In this context, many new research
questions are expected to emerge that will foster the further evolution of information
fusion as an also economically eminent branch of applied informatics.

1.4.1 New Everyday Life Applications

Even now, intelligent filtering, analysis, evaluation, and graphical presentation of
multiple sensor information enable numerous products that make everyday life safer
or more secure. For example, in intelligent car-driver assistance systems, image and
video data from cameras and miniaturized automotive radar sensors are automati-
cally fused in order to perceive road obstacles and pedestrians or to exclude “ghost
objects.” At airport security checks, assistance systems can be used, which directly
take advantage of military surveillance technology. By fusing signatures of stand-off
chemical sensors and miniaturized gamma-spectrometers, for example, with person
trajectories, carry-on items contaminated with hazardous materials or explosives can
be detected. This may be a contribution to avert threats or avoid terrorist attacks.

http://dx.doi.org/10.1007/978-3-642-39271-9_9
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Other areas where information fusion based assistance systems will increasingly
be important are medical and health care, process control, logistics, industrial pro-
duction, precision agriculture, and traffic monitoring. A particularly stormy evolution
can currently be observed for assistance systems, where physical activities and the
health status of elderly or handicapped human beings can be monitored, allowing
them to live in their usual everyday environment much longer than now. In the vast
fields of fire, disaster, and pollution control, quick exploitation and fusion of com-
plex data streams can be essential for safety analysis and designing corresponding
concepts as well as for developing sophisticated emergency information and man-
agement systems.

Since sensor data fusion has actually evolved into a mature technology in major
fields and provides a coherent and powerful inventory of methodologies and algo-
rithms already proven in ambitious applications, the further realization of its inherent
application potential is much alleviated by the very fact that research and develop-
ment for new products can be done on a sound technology base that does not need
to be created in a time-consuming and expensive way. For this reason, the expected
development cycles for innovative products are short, while the development risks
involved are calculable. Due to its traditional strengths in high-tech industries, such
as system technology or software engineering, sensor or RFID technology, highly
industrialized and research-intensive countries like Germany can use their potential
especially in those branches where they are traditionally well-positioned—for exam-
ple in automotive technology, automation and aerospace industries, in security, safety
and medical technology, and last but not least, in information system technology in
general.

1.4.2 Discussion of Large-Scale Trends

More generally speaking, information fusion technology already provides mature
results with profitable market opportunities, especially in those areas where physical
or technical sensor data are to be fused with quantitative context information on the
basis of well-understood mathematical algorithms, often making use of Bayesian
reasoning.

Human Assistance Systems

Typically “human” fusion processes, however, characterized by associative reason-
ing, negotiating of reasonable compromises, or extrapolating incomplete information
creatively and in an intuitive way, seem to be still unfit for automation, perhaps fun-
damentally unfit. Nevertheless, technical data fusion systems can offer assistance
functionalities also here, by which specifically human competencies of judgment are
freed from routine or mass tasks, quite in the sense of a “cognitive tool” as discussed
earlier. Moreover, highly promising research areas are and will increasingly be those
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that aim at modeling and formalizing this specific human expert knowledge and
expertise of situation assessment and incorporate it into the process of automated
multiple sensor data.

Context Data Integration

Furthermore, a large-scale technology tend to be highlighted is given by the large
potential of quantitative non-sensor information available in comprehensive data-
bases, such as Geographical Information Systems (GIS), which is still waiting to be
integrated into multiple sensor data fusion systems. This is especially true in the vast
area of ground, air, sea, and underwater robotics, but has also strong implications in
guaranteeing high levels of air transportation security, even in the case of high traffic
densities, and in advanced logistics support systems, such as container monitoring
and tracking, topics with direct implications for global economy.

Network-centric Operations

A predominant trend in defence applications is given by the demand of support-
ing “Network-centric Operations”, which will still be in effect for the next decade.
Sensor data and information fusion technology is one of the major forces shaping
this process of transformation from more standard operational doctrines. Especially
for out-of-area operations and operations in an urban terrain, as well as for deal-
ing with “asymmetric” opponents, distributed high-performance reconnaissance is
inevitable. In particular, wide-area ground, sea, and underwater surveillance, belong
to this field, specially by making use of unmanned reconnaissance robots (unmanned
ground, aerial, or underwater vehicles). Moreover, intelligent security systems for
harbors, critical infrastructure, or camp protection are likely to raise many research
intensive data fusion problem.

Pervasive Passive Surveillance

A particularly exciting topic of recent research is advanced distributed signal and
data fusion for passive radar systems, where radio, TV, or mobile phone base sta-
tions are used as sources for illuminating targets of interest. Even in remote regions
of the world, each transmitter of electromagnetic radiation becomes a potential radar
transmitter station, which enables air surveillance by passively receiving reflections
of non-cooperatively emitted signals of opportunity. In this way, the reconnaissance
process remains covert and is not revealed by actively transmitting radiation. Anal-
ogous considerations are valid for sub-sea surveillance.
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Fusion-driven Communications

The communications sub-systems within a large sensor network are typically char-
acterized by many internal degrees of freedom, which can be controlled and adapted.
This opens the vast area of fusion-driven communications, where communications
and the distributed data fusion system architectures are closely tied and optimized
with respect to the particular surveillance goals to be reached [48]. In the focus
are multi-component system consisting of sensors, data bases, and communication
infrastructures that collectively behave as a single dynamically adaptive system.
Important aspects are network scalability given a limited communication bandwidth,
adaptive and optimal spectrum sharing protocols, sensor data against network objec-
tives, and in-network information. In addition, the growing use and ubiquitous nature
of sensor networks pose issues when networks deployed for multiple applications
need to be combined or need to exchange information at the network level.

‘Add-on’ Research Efforts

Since a stormy evolution of civilian information fusion applications is to be expected
in the near future, defence-related research and development on information fusion
technology will increasingly show the character of “add-on” research, which adapts
existing civilian problem solutions to specifically military requirements. This trend
is analogous to the evolution in advanced communication systems, a technology that
also had its roots in the military domain, before the civilian market opportunities
became the predominant force driving its technological and scientific progress.
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Part I
Sensor Data Fusion: Methodological

Framework



Chapter 2
Characterizing Objects and Sensors

In most cases, not all properties characterizing observed objects in a certain
application have the same importance for producing a situation picture or can be
inferred by the sensor systems involved. At the very beginning, we have to iden-
tify suitable object properties relevant to the underlying requirements, which are
called state quantities. In the context discussed here, state quantities are completely
described by numbers or appropriate collections of numbers and may be time-
dependent. All relevant properties characterizing an object of interest at a certain
instant of time tk , k ∈ N, are gathered in a collection Xk of state quantities, which
is called object state at time tk . Object states can also be composed of the individual
object states of an object group.

2.1 Examples of State Quantities

1. As a first example, consider a vehicle moving on a road approximately modeled
by a curve. If the vehicle’s position or speed on the road at a time tk only has
interest, the corresponding object state is composed by two real numbers: the
arc-length xk of a point on the curve, representing its position, and its temporal
derivative ẋk , representing its speed. The corresponding object state is thus given
by a two-dimensional vector: Xk = xk with xk = (xk, ẋk)

� ∈ R
2.

2. Another practically important example is the kinematic state Xk of an object
moving in the three-dimensional space at a given instant of time tk , which is
typically given by its position rk , velocity ṙk , and acceleration r̈k at this time. Xk

is thus represented by a 9-dimensional vector Xk =xk with xk = (r�k , ṙ�k , r̈�k )�
∈ R

9.
3. A natural generalization of this concept is the notion of the joint state of two or

more objects of interest that form an object group. If kinematic object charac-
teristics are of interest, the corresponding object state Xk is given by a possibly
high-dimensional vector Xk = xk with xk = (x1�

k , x2�
k , . . .)�.
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4. The notion of object states, however, is broader and includes other characteristic
state quantities. In certain applications, object attributes can be described by
positive real numbers xk ∈ R

+, related to the object’s backscattering properties,
for example, such as its characteristic mean radar cross section. In this case, a
relevant object state may be given by Xk = (xk, xk), where the individual state
quantities xk (e.g. kinematics) and xk (e.g. cross section) are taken from different
sets of numbers.

5. Stationary or moving objects may belong to distinct classes. Let the object prop-
erty “object belongs at time tk to class ik” be denoted by ik ∈ N. Moving objects,
for example, can be classified according to the dynamics mode currently in effect,
or according to certain characteristic features indicating, e.g., their chemical sig-
natures. Examples of object classes relevant to air surveillance are: bird, glider,
helicopter, sporting airplane, passenger jet, fighter aircraft, missile. In this case,
a characteristic object state is given by Xk = (xk, ik).

6. For describing spatially extended objects or collectively moving object clusters,
the kinematic state vector xk must be complemented by an additional state quan-
tity characterizing their spatial extension. For the sake of simplicity and to deal
with the extended object or cluster tracking problem as rigorously as possible, we
confine the discussion to the practically important case of ellipsoidal object or
cluster extensions. In this case, the current extension at time tk can be described
mathematically by a symmetric and positively definite matrix Xk . According to
this approach, the following object properties are covered:

• Size: volume of the extension ellipsoid
• Shape: ratio of the corresponding semi-axes
• Orientation: direction of the semi-axes.

The corresponding object state is thus given by Xk = (xk, Xk).

Since object states must be inferred from incomplete and imperfect information
sources, the collection of state quantities such as

Xk = (xk, xk, Xk, ik) (2.1)

or some of them are interpreted as a random variables. The application of other, more
general notions of uncertainty is possible (see [1], e.g.), but excluded here. According
to the Bayesian interpretation of probability theory, all available knowledge on the
objects of interest at time tk is mathematically precisely represented by probability
densities of their corresponding states p(Xk). If only one state quantity is of interest,
for example in xk , p(xk) is given by a marginal density:

p(xk) =
∑

ik

∫
dxkdXk p(xk, xk, Xk, ik). (2.2)

Methods to calculate the probability density functions related to object states with at
least approximate accuracy is the main goal in Bayesian sensor data fusion.
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2.2 Object Evolution Models

Object states usually change in time. Their temporal evolution, however, is imper-
fectly known in most cases. This fundamental ignorance can often be described by a
probability density function of the object state at time tk , which is conditioned on the
previous state Xk−1, called transition density p(Xk |Xk−1), i.e. . With an underlying
Markov assumption, knowledge about future object states can be predicted from
prior knowledge via the Chapman-Kolmogorov equation:

p(Xk) =
∫

dXk−1 p(Xk |Xk−1) p(Xk−1). (2.3)

The temporal evolution described by p(Xk |Xk−1) mirrors the real object evolution
insofar as it allows a Monte-Carlo-simulation of a subsequent state Xk by generating
random realizations of it according to the density p(Xk |Xk−1). It is thus reasonable to
call the conditional probability density p(Xk |Xk−1) the evolution model of an object.
In the sequel, the notion of an evolution model is illustrated by examples. A wide
variety of object evolution models for kinematic object states has been described in
the handbook [2, Chap. 1.5] and a series of survey papers [3–7], which are adapted
to the particular requirements of the underlying application.

2.2.1 Van-Keuk’s Evolution Model

An early and particularly intuitive example of state evolution models in the context
of tracking and sensor data fusion was proposed by Günther van Keuk in 1971 [8].
According to van Keuk, the motion of an object is described by a linear equation
with additive white Gaußian noise:

xk = Fk|kxk−1 +Gk|k−1vk, (2.4)

referring to kinematic object states given by xk = (r�k , ṙ�k , r̈�k )�. The Gaußian
random vector vk is described by a zero-mean, unit-covariance Gaußian probabil-
ity density p(uk) = N (uk; 0, 1). More generally, let a Gaußian be denoted by

N (x; E[x], C[x]) = |2πC[x]|− 1
2 exp{− 1

2 (x − E[x])�C[x]−1(x − E[x])} with an
expectation vector E[x] and a symmetric, positively definite covariance matrix C[x].
The matrix Fk|k−1 is called evolution matrix,

Fk|k−1 =
⎛

⎝
1 (tk − tk−1) 1 1

2 (tk − tk−1)
21

O 1 (tk − tk−1) 1
O O e−(tk−tk−1)/θt 1

⎞

⎠ (2.5)

with a modeling parameter θt , while the matrix Gk|k−1 is given by:
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Gk|k−1 = qt

√
1− e−2(tk−tk−1)/θt (O, O, 1)�, (2.6)

implying a second modeling parameter qt . According to this evolution model,
straightforward calculations show that the acceleration r̈k is described by an ergodic,
zero-mean Gauß-Markov process with an autocorrelation function given by:

E[r̈k r̈�l ] = q2
t exp[−(tk − t1)/θt ] 1, l ≤ k. (2.7)

This expression clearly defines the modeling parameters qt (acceleration bandwidth)
and θt (maneuver correlation time), which have characteristic values for different
classes of maneuvering objects. The corresponding Gauß-Markov transition density
is given by:

p(xk |xk−1) = N (
xk; Fk|k−1xk−1, Dk|k−1

)
(2.8)

where Dk|k−1 = Gk|k−1G�k|k−1 is called evolution covariance matrix.

2.2.2 Interacting Multiple Models

In practical applications, it might be uncertain which evolution model out of a set of
r possible alternatives is currently in effect. In the case of air targets, for example,
we can distinguish between different flight phases (no turn, slight maneuver, high-g,
turn etc.). According to the previous discussion, the maneuvering class 1 ≤ ik ≤ r ,
to which an object belongs at time tk , can be considered as a part of its state. In
general, Markovian evolution models for object states Xk = (xk, ik) are expressed
by:

p(xk, ik |xk−1, ik−1) = p(xk |ik, xk−1, ik−1) p(ik |xk−1, ik−1). (2.9)

A special case that implies additional assumptions is defined by:

p(xk, ik |xk−1, ik−1) = p(xk |ik, xk−1) p(ik |ik−1) (2.10)

= pik ik−1 N (
xk; Fik

k|k−1xk−1, Dik
k|k−1

)
(2.11)

and is called IMM evolution model (IMM: Interaction Multiple Models, see [7]
and the literature cited therein) and has been introduced by Henk Blom [9]. IMM
models are characterized by r purely kinematic transition densities p(xk |xk−1, ik), for
instance of the van Keuk type, and class transition probabilities pik ik−1 = p(ik |ik−1)

that must be specified and are part of the modeling assumptions. The transition
probabilities pik ik−1 define a stochastic matrix. According to

∑r
ik=1 p(ik |ik−1) = 1

the columns of such matrices must add up to one.
Note that Eq. 2.11 assumes that p(xk |xk−1, ik, ik−1) is independent of the past

maneuvering class ik−1 and p(ik |xk−1, ik−1) does not depend on the object’s kine-
matic state xk−1. While the first assumption seems to be quite natural, the second
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may be an oversimplification in certain cases. As an example, let us consider two
evolution models describing low and strong maneuvers, respectively. The probability
p(ik = 1|ik = 1, xk−1) that an object stays in the low maneuver model increases
as the object acceleration diminishes, while p(ik = 2|ik = 2, xk−1) increases as
the acceleration increases. If q is a measure of the maximum acceleration, state-
dependent transition matrices of the form

⎛

⎜⎝
p11e

− 1
2
|r̈k |2

q2 1− p22
(
1− e

− 1
2
|r̈k |2

q2
)

1− p11e
− 1

2
|r̈k |2

q2 p22
(
1− e

− 1
2
|r̈k |2

q2
)

⎞

⎟⎠ (2.12)

can model this type of object behavior [10]. For r = 1, the linear-Gauß-Markov
models result as a limiting case.

2.3 Sensor Likelihood Functions

Over time, one or several sensors produce sets of measurement data Zk that poten-
tially carry information on object states Xk characterizing one or more objects of
interest at time tk . This information is typically imprecise and corrupted by unavoid-
able measurement errors, e.g. In several applications, a sensor output Zk can refer
to individual properties of several neighboring objects of interest, but it is usually
unknown to which particular object. In addition, some or all sensor data can be false,
i.e. be originated by unwanted objects or unrelated to really existing objects. It is fur-
thermore not necessarily true that sensors always produce measurements of objects
of interest when an attempt is made. Moreover, several closely-spaced objects may
produce irresolved measurements originated by two or more objects.

At discrete instants of time tk , we consider the set Zk = {Z j
k }mk

j=1 of mk sensor
data. The accumulation of the sensor data Zl , 1 ≤ l ≤ k, up to and including the
time tk , typically the present, is an example of a time series recursively defined by
Zk = {Zk , mk , Zk−1}. The time series produced by the measurements of individual
sensors s involved are denoted by Zk

s = {Zs
l , ms

l }kl=1, 1 ≤ s ≤ S.
Within the framework of Bayesian reasoning, imperfect knowledge about what

measured sensor data Zk can actually say about the states of the objects involved
is modeled by interpreting Zk as a set of random variables. The statistical proper-
ties of Zk are characterized by a probability density function p(Zk |Xk), which is
conditioned on the corresponding object state Xk referring to the same time tk . The
probability densities p(Zk |Xk) are also called likelihood functions when considered
as functions of the random variable Xk for a given sensor output Zk . Typically,
likelihood functions need to be known only up to a factor independent of Xk ,

�(Xk; Zk) ∝ p(Zk |Xk), (2.13)
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as will become clear below. The sensor data Zk explicitly enter into the likelihood
function, while all sensor properties describing the sensors’ physical and technical
characteristics and their measurement performance are implicitly part of it and shape
its concrete functional form. In particular, all relevant sensor parameters, such as
measurement accuracy, detection probability, false alarm density, sensor resolution,
minimum detectable velocity, radar beam width, pulse repetition frequency etc.,
must be present in the likelihood function. A likelihood function thus describes what
information on an object state Xk is provided by the sensor data Zk at a given instant
of time tk . For physical reasons, often p(Zk |Xl , Y ) = p(Zk |Xk) holds for any other
random variable Y that is not part of the object state.

Likelihood functions p(Zk |Xk) model the real sensor output (and thus the physics
of the underlying measurement process and its interaction with the object environ-
ment). For this reason, they provide the basis for Monte-Carlo-simulations of the sen-
sor measurements by generating random realizations of Zk according to p(Zk |Xk).
For this reason, likelihood functions are simply called “sensor models” in direct anal-
ogy to “evolution models” given by p(Xk |Xk−1). Obviously, a sensor model is more
correct, the more it provides simulated measurements that correspond on average to
the real sensor output.

In the sequel, the notion of a likelihood function is illustrated by selected examples.

2.3.1 Gaußian Likelihood Functions

For well-separated objects, perfect detection, and in absence of false sensor data, let
us consider measurements zk related to the kinematic state vector xk = (r�k , ṙ�k , r̈�k )�
of an object at time tk . In constructing a sensor model p(zk |xk), two questions must
be answered:

1. The first question aims at what aspect of the state vector is currently in the focus
of the sensor, i.e. at the identification of a measurement function,

hk : xk �→ hk(xk), (2.14)

describing what is actually measured. Sensors characterized by the same mea-
surement function hk are called homogeneous sensors, in contrast to heteroge-
neous sensors, where this is not the case.

2. The second question asks for the quality of such a measurement. In many appli-
cations, additive measurement errors uk can be considered, given by bias-free
and Gaußian distributed random variables characterized by a measurement error
covariance matrix Rk . The measurement errors produced at different times or
by different sensors can usually be considered as independent of each other.

In this case, the measurement process can be described by a measurement equation
zk = hk(xk)+ vk , which is equivalent to a Gaußian likelihood function:



2.3 Sensor Likelihood Functions 37

�(xk; zk) = N (zk; hk(xk), Rk). (2.15)

Range-Azimuth Measurements

In a two-dimensional plane, we may, for example, consider measurements of an
object’s range rk and azimuth angle ϕk with respect to the sensor position in a given
Cartesian coordinate system. Let the range and azimuth measurements be indepen-
dent of each other with Gaußian measurement errors described by the standard devi-
ations σr , σϕ . Hence, in polar coordinates, the measurement error covariance matrix
is diagonal: diag[σ 2

r , σ 2
ϕ ]. A transformation of the original measurements into the

Cartesian coordinate system, where the state vectors xk are formulated, is provided
by the transform t(rk, ϕk) = rk(cos ϕk, sin ϕk)

�. A well-known result on affine
transforms of Gaußian random variables (see Appendix A.3) is applicable, if the
non-linear function t(rk, ϕk) is expanded in a Taylor series up to the first order. The
corresponding Jacobian can be written as the product of a rotation matrix Dϕk by ϕk

and a dilation matrix Srk defined by rk :

Tk = ∂t(rk, ϕk)

∂(rk, ϕk)
(2.16)

=
(

cos ϕk − sin ϕk

sin ϕk cos ϕk

)

︸ ︷︷ ︸
rotation Dϕk

(
1 0
0 rk

)

︸ ︷︷ ︸
dilation Srk

. (2.17)

The transformed measurements zk = t(rk, ϕk) can thus be approximately character-
ized as Gaußian random variables with measurement error covariance matrices Rk

given by:

Rk = Dϕk

(
σ 2

r 0
0 r2

k σ 2
ϕ

)
D�ϕk

. (2.18)

according to Eq. A.20. Obviously, the measurement error covariance matrix Rk

depends on the underlying sensor-to-object geometry, i.e. differently located sensors
with the same parameters σr , σϕ produce measurements of the same object that
are characterized by differently oriented measurement error ellipses as illustrated in
Fig. 2.1. The cross-range semi-axis of the measurement error ellipses increases with
increasing range, while the other semi-axis remains constant. The orientation of the
measurement ellipse depends on the object’s azimuth angle ϕk . With a matrix Hk =
(1, O, O) that projects the position vector from the object state vector, Hkxk = rk ,
the resulting likelihood function is thus given by:

�(xk; zk) ∝ N (
zk; Hkxk, Rk

)
. (2.19)

For a discussion of problems and improvements, e.g. “Unbiased Converted Measure-
ments”, see [2, Chap. 1.7]. In many other applications, we are analogously looking for
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Fig. 2.1 Schematic repre-
sentation of the approximate
measurement error ellipses
of three sensors located at
s1, s2, s3 measuring range
and azimuth of an object at *
and the impact of the sensor-
to-object geometry on their
mutual orientation, basic for
the geometric fusion gain

s1 s2

s3

formulations where a non-linear measurement function hk is linearly approximated
by a measurement matrix Hk , possibly depending on time.

Doppler Measurements

By exploiting the Doppler effect, sensors that receive electromagnetic or acoustic
wave forms reflected or emitted by objects of interest, such as radar, sonar, or ultra-
sonic devices, can measure the radial component ṙk of an object’s relative velocity
ṙk − ṗk with respect to the sensor, where ṗk denotes the velocity vector of the sen-
sor platform (see Fig. 2.2). Such frequency-based measurements are often highly
precise and important in certain applications such as threat evaluation. The measure-
ment triple (rk, ϕk, ṙk), however, cannot be transformed into Cartesian coordinates
in analogy to the previous considerations. With (rk − pk)/|rk − pk |, the unit vector
pointing from the sensor platform at the position pk to the object located at rk , the
measurement function for range-rate measurements rk is non-linear and given by:

h : xk �→ h(xk;pk, ṗk) =
(ṙk − ṗk)

�(rk − pk)

|(ṙk − ṗk)
�(rk − pk)|

. (2.20)

Note that in a practical realization sufficiently accurate navigation systems are
required to estimate the platform state vector. As mentioned before, an expression
following Eq. 2.19 can be obtained by a first-order Taylor expansion of the measure-
ment function.
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Fig. 2.2 Transformation of
underlying Cartesian coor-
dinates into a measurement-
adapted system by a transla-
tion and rotation defined by
the object’s azimuth. Note that
the x̃-axis points towards the
object: rk is thus a measure-
ment of x̃
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This type of non-linear measurement functions, however, can be handled alter-
natively. Consider a transformation of the underlying coordinates into a Cartesian
system, where the origin is at the sensor location, while one of the axes points in a
direction defined by the angular measurements (Fig. 2.2). Obviously, this transfor-
mation is simply a translation followed by a rotation. In the new coordinate system,
the range-rate measurement can be interpreted as a measurement of one of the Carte-
sian components of the relative velocity vector of the object [11]. This means that
the likelihood has a form as in Eq. 2.19 with a linear measurement equation. If a
processing scheme is to be applied that requires likelihood functions of this form, a
coordinate transform is therefore necessary at each processing step. In this context,
Eq. A.20 is relevant, stating that a Gaußian density remains a Gaußian after this
transformation. Similar considerations apply if measurements of the radial or lateral
object extension is considered [12].

Evaluations with real data show that this type of dealing with range-rate mea-
surements is significantly more robust than approaches based on Taylor expansions.
The example leads to the more general observation that the appropriate formulation
of sensor models requires a careful study of the individual physical quantity to be
measured, quantitative performance evaluations, and comparisons with alternatives
in order to achieve efficient and robust sensor models, the basic elements of sensor
data fusion systems.

TDoA and FDoA Measurements

In a plane, let the kinematic state of an object emitting electromagnetic signals at
time tk be given by xk = (r�k , ṙ�k )�. The emitter is observed by S = 2 sensors
on possibly moving platforms with known state vectors (ps�

k , ṗs�
k )�, s = 1, 2 that

passively receive the emitted radiation. The Time of Arrival (ToA), the time interval
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from transmitting a signal at the emitter position rk and receiving it at a sensor
position ps

k , is equal to the time the signal needs to travel from the emitter to the
sensor. Since we know the propagation speed of the signal (speed of light c), ToA
is given by |rk − ps

k |/c. A sensor model for Time Difference of Arrival (TDoA)
measurements zt

k directly follows:

�t (xk; zt
k) = N (

zt
kc; ht (xk), σt/c

)
(2.21)

with a measurement function ht given by:

ht (xk;p1
k, p2

k) = |rk − p1
k | − |rk − p2

k |, (2.22)

where σt denotes the standard deviation of the corresponding TDoA measurement
errors. The locations of the sensor platforms enter as parameters. The sign of an indi-
vidual measurement indicates which of the sensors is closer to the emitter. Without
loss of generality, we can thus limit the discussion to one of these cases. The solid
line in Fig. 2.3, a hyperbola, shows all potential emitter positions producing the same
TDoA measurements, i.e. having the same distance difference from the sensors.

The Doppler shift in frequency is proportional to the radial velocity component
of an emitter moving with respect to a Cartesian sensor coordinate system. The
inverse wave length λ of the emitted radiation is the proportionality constant. Let
(rk − ps

k)/|rk − ps
k | denote the unit vector pointing from the sensor position ps

k
at time tk to the emitter located at rk , moving with the velocity ṙk . As before, the
radial component of the relative velocity of the emitter with respect to the sensor s is
given by (ṙk − ṗs

k)
�(rk − ps

k)/|rk − ps
k |. The measurement function for Frequency

Difference of Arrival (FDoA) measurements is thus given by:

Fig. 2.3 Localization of an
emitter using TDoA and
FDoA measurements by two
moving sensors: constant
TDoA/FDoA emitter location
curve
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h f (xk) = (ṙk − ṗ1
k)
�(rk − p1

k)

|rk − p1
k |

− (ṙk − ṗ2
k)
�(rk − p2

k)

|rk − p2
k |

. (2.23)

A constant FDoA curve for a non-moving emitter is shown by the dashed curve in
Fig. 2.3, where the arrows indicate the direction of the platform velocities. In this
example, TDoA and FDoA are complementary in that TDoA takes the (approxi-
mate) role of bearings measurement, and FDoA, the (approximate) role of distance
measurement. TDoA and FDoA measurements may be obtained simultaneously by
calculating the Complex Ambiguity Function (CAF, [13]), which cross-correlates
the signals received by the sensors. The likelihood functions that result from the
measurement functions ht and h f are shown in Fig. 2.4. Techniques discussed in
[14] and applied to emitter localization and tracking, make it possible to approximate
the likelihood functions by sums of appropriately chosen individual Gaußians with
a linear approximation of the measurement function according to Eq. 2.19.

2.3.2 Multiple Sensor Likelihood

Assume S homogeneous sensors are located at different positions that measure, at
the same instant of time tk , the same linear function Hkxk of an individual kinematic
object state xk . Under conditions as considered before, let the individual likelihood
functions of the sensors be given by:

�s(xk; zs
k) ∝ N (

zs
k; Hkxk, Rs

k

)
, s = 1, . . . , S. (2.24)

Since independently working sensors were assumed, the over-all likelihood func-
tion describing the information on an object state, which is provided by all sensors
at time tk , can be written as a product of the individual likelihood functions:

�(xk; z1
k, . . . , zS

k ) ∝
S∏

s=1

N (
zs

k; Hkxk, Rs
k

)
. (2.25)

In Appendix A.5, a product formula for Gaußians is proven, which is well-suited
for simplification of the product representation of the over-all likelihood function.
An induction argument directly yields that �(xk; z1

k, . . . , zS
k ) can be represented by

a single Gaußian,
�(xk; z1

k, . . . , zS
k ) ∝ N (

zk; Hkxk, Rk
)

(2.26)

with an effective measurement zk and a corresponding effective measurement error
covariance Rk defined by:
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Fig. 2.4 Likelihood func-
tions for TDoA and FDoA
measurements. Idea: approxi-
mate the likelihood functions
by a sum of appropriately
chosen Gaußians with a linear
approximation of the measure-
ment function. a Likelihood
of TDoA and FDoA measure-
ments. b Likelihood of FDoA
measurements.

km
 in

 n
or

th
 d

ire
ct

io
n

km in east direction

km
 in

 n
or

th
 d

ire
ct

io
n

km in east direction

(a)

(b)

Rk =
( S∑

s=1

Rs −1
k

)−1
(2.27)

zk = Rk

S∑

s=1

Rs −1
k zs

k . (2.28)

The effective measurement is thus represented by a weighted arithmetic mean of the
measurements zs

k provided by the individual sensors involved, where the correspond-
ing matrix-valued weighting factors are given by the inverses of the corresponding
measurement error covariance matrices Rs −1

k . Obviously, “poor” measurements,
characterized by large measurement errors, provide smaller contributions to the effec-
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tive measurement zk than “good” ones. Dealing with data from multiple sensors in
this way is an example of centralized or distributed measurement fusion as opposed
to track-to-track fusion (see the discussion in Sect. 3.1.1). Figure 2.1 illustrates the
geometric fusion gain Rk according to Eq. 2.27.

Geometric Fusion Gain

From these considerations several conclusions can be drawn:

1. If all individual measurement covariance matrices are identical, Rs
k = R′k ,

s = 1, . . . , S, the effective measurement is the simple arithmetic mean of the
individual measurements: zk = 1

S

∑
s zs

k . For the effective measurement error
covariance, we obtain the ‘square-root’ law: Rk = 1

S R′k .
2. If all measurement error ellipses involved differ significantly in their geomet-

rical orientation relative to each other, a much greater effect can be observed
(geometrical fusion gain).

3. The ‘intersection’ of error ellipses is obtained by calculating the harmonic mean
of the related error covariance matrices. The harmonic mean of error covariances
quantitatively describes the gain by fusing sensor data from several sources and
has been referred to as the Fusion Equation.

4. In the limiting case of very narrow measurement error ellipses, such as those char-
acterized by σr 	 rkσϕ , the triangulation of an object’s position from bearings
only is obtained. Analogously, range-only measurements can be used (trilatera-
tion).

These considerations are also valid in three spatial dimensions as well as in more
sophisticated sensor data, such as bistatic range or range-rate measurements (see for
example [15, 16]).

If there is more than one object in the common field of view of bearing-only
sensors, not every intersection of two bearings actually corresponds to a real object
position. Figure 2.5 illustrates this situation as well as the appearance of ghosts that do
not correspond to real objects. Of course, in the case of inaccurate, false, missing, or
even irresolved bearings, the de-ghosting is by no means trivial. For more details and
possible solutions of de-ghosting problems in certain applications, see for example
[17] (bearing-only tracking) or [18] (passive radar).

Cumulative Detection

In applications with relatively large data innovation intervals between successive
data collections, such as in air-to-ground wide-area surveillance, sensor data fusion
is particularly important for enhancing the data rate. Assuming measurement fusion
as before, we consider the mean cumulative data innovation intervals 	Tc [19]
resulting from the individual innovation intervals 	Ts , s = 1, . . . , S of S sensors,
which is defined by:

1

	Tc
=

S∑

s=1

1

	Ts
. (2.29)

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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Fig. 2.5 Two objects
observed by two bearings-only
sensors s1, s2. Not all intersec-
tions of bearing correspond
to real objects. Typically, the
number of “ghosts” is much
higher than the number of
objects involved

The cumulative detection probability is given by P S
D = 1 −∏S

s=1(1 − Ps
D), where

Ps
D denotes the individual detection probability of sensor s, possibly depending on

the corresponding sensor-to-object geometry (see the discussion in Sect. 3.1.2). It is
appropriate to introduce the notion of the mean cumulative detection probability Pc

D ,
referring to 	Tc and defined by:

Pc
D = 1−

S∏

s=1

(1− Ps
D)

	Tc
	Ts . (2.30)

The data innovation intervals 	Ts also enter into this formula, which describes the
mean improvement of the overall detection performance to be expected by sensor
data fusion. The larger 	Ts , the smaller is the effect of sensor s on the overall
performance, even if the corresponding individual detection probability Ps

D is large.

2.3.3 Likelihood for Ambiguous Data

A sensor output at time tk , consisting of mk measurements collected in the set Zk ,
can be ambiguous, i.e. the origin of the sensor data has to be explained by a set of
data interpretations, which are assumed to be exhaustive and mutually exclusive.
As an example, let us consider measurements Zk = {z j

k }mk
j=1 possibly related to

the kinematic state xk of well-separated objects. ‘Well-separated’ here means that
measurements potentially originated by one object could not have been originated
by another. Even in this simplified situation, ambiguity can arise from imperfect

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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detection, false measurements, often referred to as clutter, or measurements from
unwanted objects.

Illustration

As a schematic illustration of a more general case, let us consider six measurements
produced by two closely-spaced objects (see Fig. 2.6). Among other data interpreta-
tions, the black dots indicate two measurements assumed as real, while all other data
are assumed to be false (Fig. 2.6a). The asterisks denote predicted measurements pro-
vided by the tracking system. Under assumptions discussed in (Sect. 3.2.2), object
measurements are Gaußian distributed about the predicted measurements with a
covariance matrix Sk|k−1 determined by the ignorance on the object state as well as
by the sensor and the evolution model. The difference vector νk|k−1 between an actual
and a predicted measurement is called innovation. As will become clear below, the
statistical properties of the innovation related to a particular interpretation hypothesis
are essential to evaluating its statistical weight. Gating means that only those sensor
data are considered whose innovations are smaller than a certain predefined thresh-
old in the sense of a Mahalanobis norm: ν�k|k−1S−1

k|k−1νk|k−1 < χ2(Pc). Expectation
gates thus contain the measurements with a given (high) correlation probability Pc.
Obviously, the ambiguities involved with the situation in Fig. 2.6 are not completely
resolved by gating.

More feasible hypotheses, however, compete with the data interpretation previ-
ously discussed. For instance, the targets could have produced a single irresolved
measurement as indicated in Fig. 2.6b, all other data being false. Alternatively, one
of the objects may not have been detected or no detection may have occurred at all.
The expectation gates and therefore the ambiguity of the received sensor data grow
larger according to an increasing number of false measurements and missed detec-
tions as well as to large measurement errors, data innovation intervals, or expected
object maneuvers.

Well-separated Objects

Let jk = 0 denote the data interpretation hypothesis that the object has not been
detected at all by the sensor at time tk , i.e. all sensor data have to be considered as
false measurements, while 1 ≤ jk ≤ mk represents the hypothesis that the object
has been detected, z jk

k ∈ Zk being the corresponding measurement of the object
properties, the remaining sensor data being false. Obviously, {0, . . . , mk} denotes a
set of mutually exclusive and exhaustive data interpretations.

Due to the total probability theorem and with D or ¬D denoting that the object
has or has not been detected, the conditional probability density p(Zk, mk |xk) can
be written as a weighted sum of conditional likelihood functions:

p(Zk,mk |xk) = p(Zk, mk,¬D|xk)+ p(Zk, mk, D|xk) (2.31)

= p(Zk, mk |¬D, xk) p(¬D|xk)+ p(Zk, mk |D, xk) p(D|xk). (2.32)

The sensor model p(Zk, mk |xk) can be traced back to intuitively understandable
physical/technical phenomena and related sensor parameters. As a first consequence,

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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νk
1

νk
2

expectation gates

true measurement
false measurement

(a)

expectation gates

unresolved measurement
false measurement(b)

Fig. 2.6 Sensor measurements produced by two closely-spaced objects: competing data inter-
pretations due to uncertain origin of the the sensor data including hypotheses assuming possibly
irresolved measurements. a Two resolved targets. b Two irresolved targets

the probability of detection, p(D|xk) =: PD , and non-detection, p(¬D|xk) = 1−PD

enter into the likelihood as a characteristic parameter related to the detection process
performed within a sensor system. For the sake of simplicity, we do not express by
our notation here that detection probabilities may depend on the object state vectors
xk . State-dependent detection probabilities, however, become relevant in several real-
world applications (see the discussion in Sect. 3.1.2).

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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1. The conditional likelihood p(Zk, mk |¬D, xk) in Eq. 2.32 can be rewritten as:

p(Zk, mk |¬D, xk) = p(Zk |mk,¬D, xk) p(mk |¬Dk, xk) (2.33)

= pF (mk) |FoV|−mk . (2.34)

Here, the probability of having received mk false measurements given the object
was not detected, p(mk |¬Dk, xk), is provided by a further modeling assumption,
which relates the fluctuating number of false measurements to a mean spatial
clutter density ρF characteristic of the sensor’s detection process and the sens-
ing environment. According to modeling assumptions, which are well-proven
in many practical applications, let the probability of the number of false data
involved p(mk |¬Dk, xk) be given by a Poisson distribution

pF (mk) = (m̄mk
F /mk !) e−m̄ F (2.35)

with a mean number of false measurements m̄ F , which is related to the volume
of the sensor’s field of view |FoV| and ρF via m̄ F = ρF |FoV|. ρF may vary
on a larger scale than the direct object neighborhood. Values for ρF can either
be taken from so-called ‘clutter maps’, i.e. from related context information, or
adaptively be estimated on-line [20–22]. Since false measurements are assumed
to be independent from each other and equally distributed in the sensor’s field of
view (FoV), we have p(Zk |mk,¬D, xk) =∏mk

j=1 p(z j
k |¬D, xk) = |FoV|−mk .

2. For the conditional likelihood p(Zk, mk |D, xk) in Eq. 2.32, we obtain analo-
gously:

p(Zk |mk, D, xk) =
mk∑

jk=1

p(Zk, mk, jk |D, xk) (2.36)

=
mk∑

jk=1

p(Zk |mk, jk, D, xk) p(mk | jk, D, xk) p( jk |D, xk) (2.37)

= pF (mk−1)

mk |FoV|mk−1

mk∑

jk=1

N (
z jk

k ; Hkxk, R jk
k

)
. (2.38)

Under the assumption jk , we assume a Gaußian likelihood function for describing
z j

k according to Eq. 2.19, the other mk−1 measurements being treated as equally
distributed in the sensor field of view:

p(Zk |mk, jk, D, xk) = |FoV|−(mk−1) N (
z j

k ; Hkxk, R j
k

)
. (2.39)

p(mk | jk, D, xk) is given by pF (mk − 1), while a priori the mk data association
hypotheses jk are assumed to equally distributed, p( jk |D, xk) = m−1

k .
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By exploiting the definition of the Poisson distribution and re-arranging the terms, a
likelihood function for ambiguous data is proportional to a weighted sum of Gaußians
and a constant (ρF > 0):

�(xk; Zk, mk) ∝ (1− PD)ρF + PD

mk∑

jk=0

N (
z jk ; Hkxk, Rk

)
. (2.40)

In the special case of ρF = 0 (no false measurements to be expected), Kronecker
symbols can are be used to find an expression for the likelihood (δi j = 1 for i = j ,
δi j = 0 otherwise):

�(xk; Zk, mk) ∝ (1− PD) δ0mk + PD N (
zk; Hkxk, Rk

)
δ1mk . (2.41)

Possibly Irresolved Measurements

Similar considerations can be applied to formulate appropriate likelihood functions
in multiple object situations described by joint object states xk = (x1�

k , x2�
k , . . .)�,

where possibly irresolved measurements are to be taken into account (see Fig. 2.6b).
Among other sensor properties, in such situations the limited capability of physical

sensors to resolve closely-spaced objects must be part of the sensor model. The link
from from physical resolution phenomena to the likelihood functions is provided by
considering the probability Pu of two objects being irresolved. Pu certainly depends
on the relative distance vector dk in proper coordinates between the objects at a certain
time tk : Pu = Pu(dk). We qualitatively expect that Pu will be close to One for small
values of |dk |, while Pu = 0 for distances significantly larger than certain resolution
parameters, such as the beam-width, band-width, or coherence length of a radar. We
expect a narrow transient region. In a generic model of the sensor resolution, we may
describe Pu by a Gaußian-type function of dk with a ‘covariance matrix’ serving as a
quantitative measure of the sensor resolution capability, which in particular reflects
the extension and spatial orientation of ellipsoidal resolution cells depending on the
underlying sensor-to-object geometry.

According to these considerations, the notion of a resolution probability is cru-
cial if suitable sensor models for object groups are to be designed. The underlying
Gaußian structure significantly simplifies the mathematical reasoning involved and
finally leads to a representation of the likelihood function by a weighted sum of
Gaußians and a constant, i.e. we have to deal with the same mathematical struc-
ture as before in the case of well-separated objects. For details see the discussion in
Sect. 3.1.1.

2.3.4 Incorporating Signal Strength

The strength zk of an received object signal at time tk carries information on the
corresponding object strength xk , which is in a radar application, for example, directly

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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related to the object’s characteristic mean radar cross section via the radar equation
[23]. An individual sensor measurement related to an object state Xk = (xk, xk) is
thus given by Z j

k = (z j
k , z j

k ). With this notation, the previous discussion can directly
be generalized:

p(Zk, mk |Xk) =p(Zk, mk |¬D, Xk) p(¬D|Xk)

+
mk∑

jk=1

p(Zk |mk, jk, D, Xk) p(mk | jk, D, Xk) p( jk |D, Xk).

(2.42)

We only have to consider the following conditional likelihood functions:

p(Zk, mk |¬D, Xk) = |FoV|−mk

mk∏

j=1

p(z j
k |¬D, Xk) =:  (2.43)

p(Zk |mk, jk, D, Xk) = N (
z jk

k ; Hkxk,
1
zk

R jk
k

)  p(z jk
k |D, Xk)

|FoV|−1 p(z jk
k |¬D, xk)

. (2.44)

We here additionally assumed a measurement error covariance matrix 1
zk

Rk depend-
ing on the received signal strength zk . This can be justified by radar signal process-
ing theory [23] and reflects the empirical phenomenon that the weaker the signals
received are the less accurate the resulting measurements.

For the sake of simplicity, we furthermore assume that p(zk |¬D, Xk) and
p(zk |D, Xk) do not depend on the kinematic state vector, although the received signal
strength may in principle depend on the sensor-to-object geometry. The often highly
complex dependency on the aspect angle is instead described by so-called Swer-
ling models of radar cross section fluctuations [24]. According to the practically
important Swerling-I-model, the received signal strengths zk are random variables,
characterized by p(zk |xk) = e−zk/(1+xk )/(1+ xk), i.e. simple exponential densities.
Let us furthermore assume that a detector decides on “detection”, denoted by ‘D’, if
zk exceeds a certain threshold: zk >λ. If there is actually an object present that has
been detected, PD = p(‘D’|D) is thus given by:

PD = 1

1+ xk

∫ ∞

λ

dzk e−zk/(1+xk ) = e−λ/(1+xk ). (2.45)

The corresponding false alarm probability PF = p(‘D’| ¬D) is given by PF =∫∞
λ

dzke−zk = e−λ. Here xk = 0 is assumed for a noise-type target. This result
directly leads to the famous Swerling formula, which relates the detection probability
PD to the object strength xk and the false alarm probability PF characterizing the
detector:

PD(xk, PF ) = P
1

1+xk
F . (2.46)
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A detected signal not belonging to a real object of interest is a clutter signal with
a clutter strength ck , a parameter characterizing context information on the sensing
environment. After detection and according to Bayes Theorem, a received signal
strength zk is either distributed according to:

p(zk |xk, D) =
{

e(λ−zk )/(1+xk )

1+xk
for zk > λ

0 else
(2.47)

or to:

p(zk |xk,¬D) =
{

e(λ−zk )/(1+ck )

1+ck
for zk > λ

0 else.
(2.48)

By inserting these densities in Eqs. 2.43 and 2.44, we directly obtain the modified
likelihood function for ambiguous sensor data that include signal strength informa-
tion:

�(xk, xk; Zk, mk) ∝ (1− e
− λ

1+xk )ρF

+
mk∑

j=1

(
e(λ−z

j
k )/(1+ck )

1+ck

)−1
e−z

j
k /(1+xk )

1+xk
N (

z j
k ; Hkxk,

1
z j

k

R j
k

)
. (2.49)

Note that this likelihood function depends on the sensor parameters Rk and λ, char-
acterizing the measurement and the detection process, as well as the environmental
parameters ρF and ck . These parameters represent context information, which is a
necessary input for the likelihood function besides the sensor data themselves.

2.3.5 Extended Object Likelihood

According to the discussion in Sect. 2.1, spatially extended objects or collectively
moving object clusters, are characterized by an object state Xk = (xk, Xk), which
consists of an kinematic state vector xk and a symmetric, positively definite matrix Xk .
For the sake of simplicity, let us exclude false or unwanted measurements at present.
In a first approximation, the number mk of measurements in Zk is assumed to be
independent of the object state Xk ,; i.e. p(mk |xk, Xk) is assumed to be a constant.

In the case of extended or group targets, the significance of a single measure-
ment is evidently dominated by the underlying object extension. The sensor-specific
measurement error describing the precision by which a given scattering center is
currently measured is the more unimportant, the larger the actual extension of the
object is compared to the measurement error. The individual measurements must
therefore rather be interpreted as measurements of the centroid of the extended or
collective object, since it is unimportant, which of the varying scattering centers was
actually responsible for the measurement.
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We thus interpret each individual measurement produced by an extended object
as a measurement of the object centroid with a corresponding ‘measurement error’
being proportional to the object extension Xk to be estimated. By means of this
‘measurement error’, however, the object extension Xk becomes explicitly part of the
likelihood function p(Zk, mk |xk, Xk), which describes what the measured quantities
Zk , mk can say about the state variables xk and Xk . Elementary calculations, similar
to those used in Sect. 2.3.2, yield the following factorization (see Appendix A.10 for
details):

p(Zk, mk |xk, Xk) ∝
mk∏

j=1

N (
z j

k ; Hkxk, Xk
)

(2.50)

∝ N (
zk; Hkxk,

1

mk
Xk

) LW(
Zk; mk−1, Xk

)
(2.51)

up to a multiplicative constant independent of the state variables. In Eq. 2.51, the
centroid measurement zk and the corresponding scattering matrix Zk are given by:

zk = 1

mk

mk∑

j=1

z j
k (2.52)

Zk =
mk∑

j=1

(z j
k − zk)(z

j
k − zk)

�, (2.53)

while LW(
Zk; mk−1, Xk

)
is proportional to a Wishart density with mk−1 degrees

of freedom, a matrix-variate probability density function describing the properties
of the random variable Zk (see Appendix A.11 for details):

LW(
Zk; mk − 1, Xk

) = |Xk |−
mk−1

2 etr
(− 1

2 (ZkX−1
k )

)
. (2.54)
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Chapter 3
Bayesian Knowledge Propagation

Within the general framework of Bayesian reasoning and based on object
evolution models and sensor likelihood functions, such as those previously discussed,
we proceed along the following lines.

1. Basis. In the course of time, one or several sensors produce measurements of
one or more objects of interest. The accumulated sensor data are an example of
a time series. Each object is characterized by its current state.

2. Objective. Learn as much as possible about the object states Xl at each time of
interest tl by exploiting the sensor data collected in the times series Zk , i.e. for
past (l < k), present (l = k), or future (l > k) states.

3. Problem. The sensor information is usually imperfect, i.e. imprecise, of uncertain
origin, false or corrupted, possibly unresolved, ambiguous etc. Moreover, the
objects’ temporal evolution is usually not well-known.

4. Approach. Interpret sensor measurements and object states as random variables
and describe what is known about them by using conditional probability densities
functions. In particular, information on an object state at time tl obtained from
the sensor data Zk is represented by p(Xl |Zk).

5. Solution. Based on Bayes’ Theorem, derive iteration formulae for calculating the
probability density functions p(Xl |Zk) and develop a mechanism for initiating
the iteration process. Derive state estimates from the probability densities along
with appropriate quality measures for the estimates.

3.1 Bayesian Tracking Paradigm

A Bayesian tracking algorithm is an iterative updating scheme for calculating
conditional probability density functions p(Xl |Zk) that represent all available knowl-
edge on the object states Xl at discrete instants of time tl . The densities are explicitly
conditioned on the sensor data Zk accumulated up to some time tk , typically the
present time. Implicitly, however, they are also determined by all available context
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knowledge on the sensor characteristics, the dynamical object properties, the envi-
ronment of the objects, topographical maps, or tactical rules governing the objects’
overall behavior.

With respect to the instant of time tl at which estimates of the object states Xl are
required, the related density iteration process is referred to as prediction (tl > tk),
filtering (tl = tk), or retrodiction (tl < tk). The propagation of the probability
densities involved is given by three basic update equations, which will be derived
and discussed and illustrated by examples.

Prediction

The prediction density p(Xk |Zk−1) is obtained by combining the evolution model
p(Xk |Xk−1) with the previous filtering density p(Xk−1|Zk−1):

p(Xk−1|Zk−1)
evolution model−−−−−−−−−→

constraints
p(Xk |Zk−1) (3.1)

p(Xk |Zk−1) =
∫

dXk−1 p(Xk |Xk−1)︸ ︷︷ ︸
evolution model

p(Xk−1|Zk−1)︸ ︷︷ ︸
previous filtering

. (3.2)

Filtering

The filtering density p(Xk |Zk) is obtained by combining the sensor model p(Zk , mk |
Xk) with the prediction density p(Xk |Zk−1) according to:

p(Xk |Zk−1)
current sensor data−−−−−−−−−−→

sensor model
p(Xk |Zk) (3.3)

p(Xk |Zk) = p(Zk, mk |Xk) p(Xk |Zk−1)
∫

dXk p(Zk, mk |Xk)︸ ︷︷ ︸
sensor model

p(Xk |Zk−1)︸ ︷︷ ︸
prediction

. (3.4)

Retrodiction

The retrodiction density p(Xl |Zk) is obtained by combining the previous retrodiction
density p(Xl+1|Zk) with the object evolution model p(Xl+1|Xl) and the previous
prediction and filtering densities p(Xl+1|Zl), p(Xl |Zl) according to:

p(Xl−1|Zk)
filtering, prediction←−−−−−−−−−−

evolution model
p(Xl |Zk) (3.5)

p(Xl |Zk) =
∫

dXl+1

evolution︷ ︸︸ ︷
p(Xl+1|Xl)

prev. filtering︷ ︸︸ ︷
p(Xl |Zl)

p(Xl+1|Zl)︸ ︷︷ ︸
prev. prediction

p(Xl+1|Zk)︸ ︷︷ ︸
prev. retrodiction

. (3.6)
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The natural antonym of “prediction”, the technical term “retrodiction” was introduced
by Oliver Drummond in a series of papers [1–3]. According to his definition,
“The process of computing estimates of states, probability densities, or discrete
probabilities for a prior time (or over a period of time) based on data up to and
including some subsequent time, typically, the current time.” [1, p. 255], this term
comprises not only standard smoothing, but also the concept of a retrodicted discrete
probability that is analogous to a smoothed estimate in usual Kalman filtering. For
this reason, the notion of “retrodiction” is general enough as well as adequate for
the type of algorithms proposed above. Adopting the classical standard terminology
[4], we could speak of fixed-interval retrodiction.

The Notion of a Track

According to this paradigm, an object track represents all relevant knowledge on a
time-varying object state of interest, including its history and measures that describe
the quality of this knowledge. As a technical term, ‘track’ is therefore either a syn-
onym for the collection of densities p(Xl |Zk), l = 1, . . . , k, . . ., or of suitably
chosen parameters characterizing them, such as estimates related to appropriate risk
functions and the corresponding estimation error covariance matrices.

If possible, a one-to-one association between the objects in the sensors’ field of
view and the produced tracks is to be established and has to be preserved as long
as possible (track continuity). In many applications, track continuity is even more
important than track accuracy. Obviously, the achievable track quality does not only
depend on the performance of the underlying sensors, but also on the object properties
and the operational conditions within the scenario to be observed.

In this context, the notion of track consistency is important. It describes the degree
of compliance between the inherent measures of track quality provided by the fusion
process itself and the “real” tracking errors involved. Track consistency can be veri-
fied in experiments with an established ground truth or in Monte-Carlo-simulations
(see the discussion on fusion performance measures in Sect. 1.3.3).

Graphical Illustration

In Fig. 3.1a the conditional probability densities p(xk−1|Zk−1), p(xk |Zk), and
p(xk+1|Zk+1) resulting from filtering at time instants tk−1, tk , and tk+1 are displayed
along with the predicted density p(xk+2|Zk+1). While at time tk−1 one sensor mea-
surement has been processed, no measurement could be associated to it at time tk .
Hence, a missing detection is assumed. Due to the missing sensor information, the
density p(xk |Zk) is broadened, since object maneuvers may have occurred. This in
particular implies an increased region, where data at the subsequent time tk+1 are
expected (gates). According to this effect, at time tk+1 three correlating sensor mea-
surements are to be processed, leading to a multi-modal probability density function.
The multiple modes reflect the ambiguity of the origin of the sensor data and also
characterize the predicted density p(xk+2|Zk+1). By this, the data-driven adaptivity
of the Bayesian updating scheme is indicated.

In Fig. 3.1b, the density p(xk+2|Zk+2), resulting from processing a single cor-
relating sensor measurement at time tk+2, along with the retrodicted densities

http://dx.doi.org/10.1007/978-3-642-39271-9_1
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Fig. 3.1 Scheme of Bayesian
density iteration: conditional
probability density functions
resulting from the prediction,
filtering, and retrodiction
steps at different instants of
times. a Forward iteration.
b Backward iteration
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missing plots
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filtering: tk-1

filtering: tk

filtering: tk+1

prediction: tk+2

(a) Forward Iteration.
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(b) Backward Iteration.

p(xk+1|Zk+2), p(xk |Zk+2), and p(xk−1|Zk+2) are shown. Obviously, available
sensor data at the present time can significantly improve the estimates of the object
states in the past.

3.1.1 Characteristic Aspects

The sensor data fusion process, i.e. the iterative calculation of conditional probability
densities p(Xl |Zk) from multiple sensor data and context information on sensors,
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objects, and the environment, can be characterized by several aspects. The emphasis,
which is given to a particular aspect in a concrete application, has a strong impact on
the design and architecture of a sensor data fusion system and on the requirements
related to the underlying infrastructure, such as the bandwidth and reliability of
communication links or navigation systems for sensor registration and alignment.

• In optimal data fusion, the conditional probability density functions involved are
correctly calculated.
• In centralized fusion, only one fusion center exists, where the sensor data or object

tracks are fused.
• In distributed fusion, the sensor data or object tracks are distributed and fused at

several fusion centers.
• In measurement fusion, the sensor data and all relevant likelihood parameters are

communicated to the fusion center(s).
• In track-to-track fusion, the local state estimates and covariances are communi-

cated to the fusion center(s).
• In full communication rate fusion, all local sensor data or tracks are communicated

to the fusion centers.
• In reduced-rate communication fusion, only selected sensor measurements or local

tracks are communicated.

The likelihood function discussed in Sect. 2.3.2 is a typical example of centralized
or distributed measurement fusion, while the fusion algorithms discussed in Sect. 6
can be characterized as distributed, full or reduced-rate track-to-track fusion. In
general, measurement fusion architectures provide better approximations of optimal
fusion. The choice of a fusion strategy depends on the particular requirements of a
given application. See [5] for more a detailed discussion on benefits and problems
of alternative fusion system architectures.

3.1.2 Remarks on Approximations

Under more realistic conditions, the probability densities involved typically have
the structure of finite mixtures, i.e. they can be represented by weighted sums of
individual probability densities that assume particular data interpretations or model
hypotheses to be true. This general structure is a direct consequence of the uncertain
origin of the sensor data and/or of the uncertainty related to the underlying object
evolution. In concrete implementations, however, it is always necessary to apply
certain approximations to handle such mixtures efficiently. Provided the densities
p(Xl |Zk) are calculated at least approximately correctly, “good” estimators can be
derived related to various risk functions adapted to the applications. What “good”
means depends on the application considered and must often be verified by extensive
Monte-Carlo-simulations and experiments.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_6
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Gaußian Mixtures

At least approximately correct closed-formula solutions for the Bayesian tracking
paradigm can be derived if the prediction, filtering, and retrodiction densities as well
as the sensor and evolution models belong to certain families of probability densities,
so-called mutually conjugate densities. A wide and mathematically comfortable fam-
ily of conjugate densities for random vectors x is provided by Gaußian mixtures [6],
i.e. by weighted sums of Gaußian probability densities, p(x) =∑

i pi N (
x; xi , Pi

)

with mixture coefficients pi ∈ R that sum up to One,
∑

i pi = 1, but need not nec-
essarily be positive. A Gaußian mixture density is thus completely represented by
a relatively small number of parameters {pi , xi , Pi }i . As an early example see [7].
Other examples of families, which lead to at least approximately correct update for-
mulae and are relevant to the work considered here, are Wishart and inverted Wishart
mixtures or Gamma and inverted Gamma mixtures (see Appendix A.11).

For many real-world applications, it has been shown that even more sophisticated
functional relationships describing the physics of the measurement process within a
sensor system can be modeled by likelihood functions of the Gaußian mixture type.
Of course, the accuracy of the sensor model, i.e. the number of mixture components
that are actually to be taken into account to approximately describe the underlying
phenomena, depends on the requirements of the underlying application. The same
arguments are valid if the incorporation of context information, such as road-maps, is
to be considered. They are also valid in the case of more complex dynamics models,
such as those with a state dependent model transition matrix given by Eq. 2.12. Many
examples of this type are discussed in Chap. 3.

It is the author’s conviction that a large variety of relevant problems still exists
in real-world applications of sensor data fusion and sensor management, which can
efficiently be solved by using appropriately defined Gaußian mixtures. A particu-
larly interesting indication of this general tendency seems to be the very fact that
even in recent approaches, such as in Probability Hypothesis Density filtering (PHD,
[8]), Gaußian mixture realizations provide the state-of-the-art solutions (GM-CPHD:
Gaußian Mixture Cardinalized PHD). In view of practicality, these realizations are
preferable compared to alternative approximation schemes, such as particle filtering.
Moreover, explicit calculations in exploiting realistic sensor and evolution models
are possible when using Gaußian mixture techniques, which provide a better under-
standing of the underlying physical and technical phenomena.

Particle Filtering

For implementing the Bayesian tracking paradigm, alternative approximation
schemes are applicable that deal with the probability densities involved numerically.
The most prominent method among these, particle filtering, was first introduced for
tracking applications by Neil Gordon [9], who initiated and inspired a stormy devel-
opment in this field (see [10] and the literature cited therein). Another early example
of using particle filtering in a position estimation application for mobile robots is the
work of D. Fox, W. Burgard, F. Dellaert, and S. Thrun [11].

Particle filtering techniques numerically represent probability density functions
by random samples (called “particles”) drawn from them by using random number

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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generators. The method is thus closely related to the random Monte-Carlo techniques,
developed for problems in quantum field theory, for instance (see the discussion in
[12]). For this reason, particle filtering techniques are computationally intensive.
Their main advantage is the fact that they, in principle, provide “numerically exact”
solutions at the cost of long computation times. These solutions can serve as bench-
marks to test alternatives, such as Gaußian mixture realizations, which are often
much less computation time consuming. In the context of the work presented here,
performance comparisons using particle filters were done for “road-map assisted
tracking” [13].

Particle filtering is a valuable approximation scheme for probability densities
especially in applications, where the likelihood function �(Xk; Zk) can only be cal-
culated pointwisely by an algorithm and no functional closed-formula expression is
available. In the context of the work presented here, emitter localization and tracking
in an urban environment is discussed (see [14] and the discussion in Sect. 3.2.3).
Since this scenario is dominated by propagation phenomena, the key to the solution
of this tracking problem lies in dealing with multipath phenomena appropriately.
This can be done by using ray tracing algorithms for evaluating the most likely prop-
agation channels for randomly chosen candidate emitter positions. Similar exam-
ples can be found wherever sophisticated propagation models can be exploited for
localization and tracking (ionospheric propagation such as in communications or
over-the-horizon radar, shallow-water sonar, indoor navigation) [15].

For advanced approximation techniques beyond classical particle filtering, which
combines elements of Gaußian mixture reasoning with intelligent non-random sam-
pling techniques, see the work of Uwe Hanebeck and his group (see [16], for example,
and the literature cited herein).

3.1.3 On Track-to-Track Fusion

In certain applications, track-to-track fusion (see e.g. [17–20]) has considerable
advantages:

• The communication channels are less overloaded with false tracks, provided these
can be suppressed by local data processing.
• We may profit from reduced sensibility to sensor registration errors as local track-

ing is inherently robust regarding these effects. In this case, the problem is trans-
fered to track-to-track fusion, but on this level its solution profits from efficient
track-to-track correlation algorithms in situations that are not too dense.
• Disturbances of individual sensor sites and their corresponding local processors

do not lead to the loss of the total system function.

Disadvantages result from suboptimal performance with respect to reaction time,
track quality, lacking profit from redundancy, and the lower data rate for sensor
individual tracking, which particularly affects track initiation, e.g. Moreover, track-
to-track fusion is problematic if data collected by active and passive sensors have
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to be fused (e.g. position data and bearings), since the production of local, sensor
individual tracks may be difficult in non-trivial situations.

We speak of optimal track-to-track fusion in a Bayesian sense if the conditional
probability density functions p(Xk |Zk) = p(Xk |{Zk

s }Ss=1), conditioned on all mea-
surements of all sensors, can be correctly reconstructed from the locally produced
tracks p(Xk |Zk

s ), obtained by processing the data of the sensors s = 1, . . . , S indi-
vidually:

{p(xl |Zl
s)}S,k

s,l=1
track-to-track−−−−−−−→

fusion
p(xk |{Zk

s }Ss=1). (3.7)

In Sect. 6 selected aspects of track-to-track fusion are discussed and exact update
formulae for certain special cases are derived.

3.1.4 A First Look at Initiation

At time t0, the probability density p(X0|Z0) describes the initial knowledge of the
object state. As an example let us consider state vectors xk = (r�k , ṙ�k )�, consisting
of the object position and velocity, and a first position measurement z0 with a mea-
surement error covariance matrices R0. Based on z0 and the context information on
the maximum object speed vmax to be expected, a reasonable initiation is given by
p(x0|z0) = N (

x0; x0|0, P0|0
)

with:

x0|0 = (z�0 , 0�)�, P0|0 = diag[R0, v
2
max1]. (3.8)

In the case of an IMM evolution model, we consider the probability density
p(x0, i0|Z0) = pi0

0|0 N (
x0; xi0

0|0, Pi0
0|0

)
with pi0

0|0 = 1
r . For a numerically robust

and quick initiation scheme even from incomplete measurements see [21, 22] and
the literature cited therein.

3.2 Object State Prediction

The probability density function p(Xk |Zk−1) describes the predicted knowledge of
the object state Xk referring to the instant of time tk based on all the measurements
received in the past up to and including the time tk−1. According to the Chapman-
Kolmogorov Equation, the prediction density can be calculated by combining the
available knowledge on the object state at the past time tk−1, given by p(Xk−1|Zk−1)

with the available knowledge on the object evolution, given by the evolution model
p(Xk |Xk−1). Marginalization and the Markov assumption directly yield:

http://dx.doi.org/10.1007/978-3-642-39271-9_6
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p(Xk |Zk−1) =
∫

dXk−1 p(Xk, Xk−1|Zk−1) (3.9)

=
∫

dXk−1 p(Xk |Xk−1) p(Xk−1|Zk−1). (3.10)

3.2.1 Kalman Prediction

Let us consider a Gauß-Markov evolution model, such as provided by van Keuk’s
model (Eq. 2.8), where its deterministic part is characterized by the evolution matrix
Fk|k−1 and the stochastic part by the evolution covariance matrix Dk|k−1, and a
Gaußian previous filtering density, given by p(xk−1|Zk−1) = N (xk−1; xk−1|k−1,

Pk−1|k−1). Then the prediction density is also provided by a Gaußian:

p(xk |Zk−1) =
∫

dxk−1 N (
xk; Fk|k−1xk−1, Dk|k−1

)

× N (
xk−1; xk−1|k−1, Pk−1|k−1

)
(3.11)

=N (
xk; xk|k−1, Pk|k−1

)
(3.12)

with an expectation vector xk|k−1 and a covariance matrix Pk|k−1 given by the Kalman
prediction update equations:

xk|k−1 = Fk|k−1xk−1|k−1 (3.13)

Pk|k−1 = Fk|k−1Pk−1|k−1F�k|k−1 + Dk|k−1. (3.14)

This directly results from a product formula for Gaußians stated and proven in
Appendix A.5, Eq. A.28. Note that after applying this formula, the integration vari-
able xk−1 in Eq. 3.11 is no longer contained in the first Gaußian of the product and
can be drawn in front of the integral. The integration thus becomes trivial since
probability densities are normalized by definition.

3.2.2 Expectation Gates

As a by-product of the prediction process, the statistical properties of object mea-
surements Zk that are expected at time tk can be calculated on the basis of previously
obtained measurements Zk−1:

p(Zk |Zk−1) =
∫

dXk p(Zk, Xk |Zk−1) (3.15)

=
∫

dXk p(Zk |Xk) p(Xk |Zk−1). (3.16)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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In the special case of Kalman prediction and with a Gaußian likelihood function, we
obtain:

p(zk |Zk−1) =
∫

dxk N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

)
(3.17)

= N (
zk; Hkxk|k−1, Sk|k−1

)
. (3.18)

Via the product formula (Eq. A.28), the matrix Sk|k−1 results from the previous
filtering covariance matrix Pk−1|k−1 exploiting both the evolution and the sensor
model:

Sk|k−1 = HkPk|k−1H�k + Rk . (3.19)

This means in particular that the innovation vector νk|k−1 = zk − Hkxk|k−1 is a
normally distributed zero mean random variable characterized by the covariance
matrix Sk|k−1, which is thus called innovation covariance matrix. For this reason,
the quadratic form

|νk|k−1|2Sk|k−1
= (zk −Hkxk|k−1)

�S−1
k|k−1(zk −Hkxk|k−1), (3.20)

called innovation square or Mahalanobis distance between predicted and actually
produced measurements, is a χ2

n -distributed random variable with n degrees of free-
dom where n is the dimension of the measurement vector zk . The ellipsoid defined
by:

|νk|k−1|2Sk|k−1
≤ χ2

n (1− Pc) (3.21)

thus contains the expected measurement with a correlation probability Pc. The con-
crete value of χ2

n (1 − Pc) can be looked up in a χ2-table. Such expectation gates
are useful to exclude measurements from the fusion process that are very unlikely to
belong to a given object. Figure 3.2 schematically illustrates the use of expectation
gates in an object tracking example.

Fig. 3.2 Schematic illustra-
tion of expectation gates as a
means of excluding measure-
ments belonging to an object
with a low probability 1− Pc

tt t

t
t

k

k−3
k−2

k−1 k+1
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3.2.3 IMM Prediction

According to the discussion in the Sects. 2.1 and 2.2.2, let the filtering density
p(Xk−1|Zk−1) at time tk−1 be given by

p(Xk−1|Zk−1) = p(xk−1, ik−1|Zk−1) (3.22)

= p(xk−1|ik−1, Zk−1) p(ik−1|Zk−1) (3.23)

= pik−1
k−1|k−1 N (

xk−1; xik−1
k−1|k−1, Pik−1

k−1|k−1

)
, (3.24)

i.e. by a weighted Gaußian. In this case, the prediction update according to Eq. 3.10
and the product formula for Gaußians (Eq. A.28) yield:

p(xk, ik |Zk−1) =
∑

ik−1

∫
dxk−1 p(xk, ik, xk−1, ik−1|Zk−1) (3.25)

=
∑

ik−1

∫
dxk−1 p(xk, ik |xk−1, ik−1) p(xk−1, ik−1|Zk−1) (3.26)

=
∑

ik−1

pik ik−1
k|k−1 N (

xk; xik ik−1
k|k−1, Pik ik−1

k|k−1

)
, (3.27)

where the parameters pik ik−1
k|k−1 , xik ik−1

k|k−1, Pik ik−1
k|k−1 of the density are given by:

pik ik−1
k|k−1 = pik ik−1 pik−1

k−1|k−1 (3.28)

xik ik−1
k|k−1 = Fik

k|k−1xik−1
k−1|k−1 (3.29)

Pik ik−1
k|k−1 = Fik

k|k−1Pik−1
k−1|k−1Fik�

k|k−1 + Dik
k|k−1. (3.30)

In standard IMM applications, p(xk, ik |Zk−1) is approximated via moment matching
(see [23, p. 56 ff] and the discussion in Appendix A.6) yielding

p(xk, ik |Zk−1) ≈ pik
k|k−1 N (

xk; xik
k|k−1, Pik

k|k−1

)
(3.31)

with parameters pik
k|k−1, xik

k|k−1 and Pik
k|k−1 given by:

pik
k|k−1 =

r∑

ik−1=1

pik ik−1
k|k−1 (3.32)

xik
k|k−1 =

1

pik
k|k−1

r∑

ik−1=1

pik ik−1
k|k−1 xik ik−1

k|k−1 (3.33)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Pik
k|k−1 =

1

pik
k|k−1

r∑

ik−1=1

pik ik−1
k|k−1

(
Pik ik−1

k|k−1 (3.34)

+ (xik ik−1
k|k−1 − xik

k|k−1)(x
ik ik−1
k|k−1 − xik

k|k−1)
�)

. (3.35)

If the predictions of the kinematic state variables xk are the only objects of interest,
p(xk |Zk−1) is a direct result from marginalization and is given by a Gaußian sum
with r mixture components:

p(xk |Zk−1) =
r∑

ik=1

pik
k|k−1 N (

xk; xik
k|k−1, Pik

k|k−1

)
. (3.36)

3.3 Data Update: Filtering

The filtering update equation for the conditional probability density function
p(Xk |Zk) that represents our knowledge of the present object state given all available
information can be represented according to Bayes’ Theorem by:

p(Xk |Zk) = p(Xk |Zk, mk, Zk−1) (3.37)

= p(Zk, mk |Xk) p(Xk |Zk−1)∫
dXk p(Zk, mk |Xk) p(Xk |Zk−1)

. (3.38)

This equation states how p(Xk |Zk) is obtained by combining the prediction density
p(Xk |Zk−1) with the sensor model p(Zk, mk |Xk). As the sensor model appears both
in the denominator and the numerator, the conditional densities p(Zk, mk |Xk) need
to be known up to a factor independent of the object state Xk only. Each function
�(Xk; Zk, mk) ∝ p(Zk, mk |Xk) provides the same result. This observation is the
reason for introducing the term “likelihood function” for denoting functions that are
proportional to the conditional probability density p(Zk, mk |Xk).

3.3.1 Kalman Filtering

Let us consider kinematic object states only, Xk = xk , and sensors that produce mea-
surements related to them. Under conditions where the data-to-object associations
are unambiguous, e.g. for well-separated objects without false sensor data (ρF = 0),
and in the case of a Gauß-Markov evolution model, such as given by Eq. 2.8, and
a Gaußian sensor model (Eq. 2.19), the Bayesian approach leads to the well-known
Kalman filter update equations. Kalman filtering can thus be considered as a sim-
ple straight-forward realization of the more general Bayesian filtering paradigm.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Equation 3.38 yields according to the product formula for Gaußians (Eq. A.28):

p(xk |Zk) = N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

)
∫

dxk N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

) (3.39)

= N (
zk; Hkxk|k−1, Sk|k−1

) N (
xk; xk|k, Pk|k

)
∫

dxk N (
zk; Hkxk|k−1, Sk|k−1

) N (
xk; xk|k, Pk|k

) (3.40)

= N (
xk; xk|k, Pk|k

)
, (3.41)

where the parameters xk|k , Pk|k of the resulting Gaußian are alternatively given by:

xk|k =
{

xk|k−1 +Wk|k−1(zk −Hkxk|k−1)

Pk|k(P−1
k|k−1xk|k−1 +H�k R−1

k zk)
(3.42)

Pk|k =
{

Pk|k−1 −Wk|k−1Sk|k−1W�k|k−1

(P−1
k|k−1 +H�k R−1

k Hk)
−1 . (3.43)

Note that there are equivalent formulations of the Kalman update formulae according
to various versions of the product formula (Eq. A.28). The innovation covariance
matrix Sk|k−1 has already appeared earlier in our considerations (see Eq. 3.19), while
the Kalman Gain matrix is given by:

Wk|k−1 = Pk|k−1H�k|k−1S−1
k|k−1. (3.44)

In Eq. 3.41, the factor N (
zk; Hkxk|k−1, Sk

)
does not depend on the integration

variable xk and can be drawn in front of the integral, thus canceling the corresponding
quantity in the numerator. Note that the matrix Sk|k−1 to be inverted when calculating
the Kalman gain matrix has the same dimension as the measurement vector zk , i.e.
Sk|k−1 is a low-dimensional matrix in general.

3.3.2 IMM Filtering

This update philosophy can easily be generalized to apply to situations where IMM
evolution models are used, i.e. if the object state is given by Xk = (xk, ik). We
immediately obtain:

p(xk, ik |Zk)

= pik
k|k−1 N (

zk; Hkxk, Rk
) N (

xk; xik
k|k−1, Pik

k|k−1

)

∑
ik

pik
k|k−1

∫
dxk N (

zk; Hkxk, Rk
) N (

xk; xik
k|k−1, Pik

k|k−1

) (3.45)
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= pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) N (
xk; xik

k|k, Pik
k|k

)

∑
ik

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) ∫
dxk N (

xk; xik
k|k, Pik

k|k
) (3.46)

= pik
k|k N (

xk; xik
k|k, Pik

k|k
)
, (3.47)

where the parameters xik
k|k , Pik

k|k are given by a Kalman filtering update based on

xik
k|k−1, Pik

k|k−1 and Sik
k|k−1 = HkPik

k|k−1H�k + Rk , while the weighting factors pik
k|k

depend on the sensor data zk and are given by:

pik
k|k =

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

)

∑
ik

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) . (3.48)

If only the kinematic state variables xk are of interest, p(xk |Zk) is given by a
Gaußian sum with r mixture components via marginalization:

p(xk |Zk) =
∑

ik

pik
k|k N (

xk; xik
k|k, Pik

k|k
)
. (3.49)

An Alternative

So-called ‘Generalized Pseudo-Bayesian’ realizations of the IMM filtering problem
(GPB, [24, 25]) fit well into this framework. The difference between GPB and stan-
dard IMM filtering is simply characterized by the instant of time when the moment-
matching step is performed. While in standard IMM this is done after the prediction
step and before the new sensor data are processed, GPB filtering approximates the
probability density

p(xk, ik |Zk) ∝ N (
zk; Hkxk, Rk

) ∑

ik−1

pik ik−1
k|k−1 N (

xk; xik ik−1
k|k−1, Pik ik−1

k|k−1

)

=
∑

ik−1

pik ik−1
k|k−1 N (

zk; Hkxik ik−1
k|k−1, Sik ik−1

k|k−1

) N (
xk; xik ik−1

k|k , Pik ik−1
k|k

)

≈ p′ik
k|k N (

xk; x′ik
k|k, P′ik

k|k
)

with appropriately defined mixture parameters that are directly given by the product
formula A.28. Since the moment matching is done with the updated weighting factors,
GPB methods show a better reaction to abrupt maneuvers. For a more rigorous
discussion of these topics see [26].

3.3.3 MHT Filtering

In the case of ambiguous sensor data, likelihood functions such as in Eq. 2.40
are essentially characterized by taking different data interpretation hypotheses into

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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account. They are the basis for Multiple Hypothesis Tracking techniques (MHT,
[27, 28]). In such situations, the origin of a time series Zk = {Zk, mk, Zk−1} of sen-
sor data accumulated up to the time tk can be interpreted by interpretation histories
jk = ( jk, . . . , j1), 0 ≤ jk ≤ mk that assume a certain data interpretation jl to be true
at each data collection time tl , 1 ≤ l ≤ k.

Via marginalization, for kinematic object states Xk−1 = xk−1, the previous filter-
ing density p(xk−1|Zk−1) can be written as a mixture over the interpretation histories
jk−1. Let us furthermore assume that its components are given by Gaußians:

p(xk−1|Zk−1) =
∑

jk−1

p(xk−1|jk−1, Zk−1) p(jk−1|Zk−1) (3.50)

=
∑

jk−1

pjk−1 N (
xk−1; x

jk−1
k−1|k−1, P

jk−1
k−1|k−1

)
. (3.51)

With a Gauß-Markov evolution model such as in Eq. 2.8, the prediction densities
obey a similar representation:

p(xk |Zk−1) =
∑

jk−1

pjk−1 N (
xk; x

jk−1
k|k−1, P

jk−1
k|k−1

)
, (3.52)

where x
jk−1
k|k−1, P

jk−1
k|k−1 result from the Eqs. 3.13 and 3.14. By making use of the likeli-

hood function for uncertain data discussed earlier (Eq. 2.40) and according to Bayes’
Theorem, we obtain:

p(xk |Zk) =
∑

jk ,jk−1
� jk (xk) pjk−1 N (

xk; x
jk−1
k|k−1, P

jk−1
k|k−1

)

∑
jk ,jk−1

∫
dxk � jk (xk) pjk−1 N (

xk; x
jk−1
k|k−1, P

jk−1
k|k−1

) (3.53)

=
∑

jk

pjk
N (

xk; xjk
k|k, Pjk

k|k
)

(3.54)

by using the product formula for Gaußians. The weighting factors pjk
are given by:

pjk
=

p∗jk∑
jk

p∗jk

(3.55)

with the unnormalized weighting update:

p∗jk
= pjk−1

{
(1− PD)ρF for jk = 0

PD N (
z jk

k ; Hkx
jk−1
k|k−1, S

jk−1
k|k−1

)
for jk �= 0

, (3.56)

while xjk
k|k and Pjk

k|k result from:

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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xjk
k|k =

{
x

jk−1
k|k−1 for jk = 0

x
jk−1
k|k−1 +Wjk

k|k−1(z
jk
k −Hkx

jk−1
k|k−1) for jk �= 0

(3.57)

Pjk
k|k =

{
P

jk−1
k|k−1 for jk = 0

P
jk−1
k|k−1 −Wjk

k|k−1Sjk
k|k−1Wjk�

k|k−1 for jk �= 0
(3.58)

with the corresponding innovation covariance and Kalman gain matrices

Sjk
k|k−1 = HkP

jk−1
k|k−1H�k + R jk

k (3.59)

Wjk
k|k−1 = P

jk−1
k|k−1H�k|k−1

(
Sjk

k|k−1

)−1
, (3.60)

which are defined in analogy to the expressions in Eqs. 3.19 and 3.44. This filtering
update philosophy can directly be generalized to IMM-MHT-type techniques [29].

According to the previous discussion, each mixture component

p
jk
k|k p(xk |jk, Zk)

of the resulting densities p(xk |Zk) represents a track hypothesis. The structure of a
Gaußian mixture for p(xk |Zk) also occurs if an IMM prediction p(xk |Zk−1) (see
previous subsection) is updated by using a Gaußian likelihood according to Eq. 3.49,
where p(ik |Zk) p(xk |ik, Zk) can be considered as a model hypothesis. IMM filtering
may thus be considered as a multiple hypothesis tracking method as well. See [30, 31]
for an alternative treatment of the multiple hypothesis tracking problem by exploiting
expectation maximization techniques.

Figure 3.3 provides a schematic illustration of MHT filtering. A mixture compo-
nent pi of the filtering density at time tk is predicted to time tk+1. Due to uncertainty
in the object evolution, the predicted component is broadened (dashed line). Let us
assume that three measurements are in the expectation gate, which can be inter-
preted by four data interpretation hypotheses. The likelihood function is thus a sum
of three Gaußians and a constant. The subsequent filtering thus spawns the predicted
component into four filtering components with different weights depending on the
innovation square of the sensor measurement belonging to each component.

Approximations

In case of a more severe clutter background or in a multiple object tracking task with
expectation gates overlapping for a longer time, Bayesian tracking filters inevitably
lead to mixture densities p(xk |Zk) with an exponentially growing number of mixture
components involved. In contrast to the rigorous Bayesian reasoning, the choice of a
prudent approximation scheme is in some sense an “art” depending on the particular
application considered.

Practical experience in many real-world applications (see [32–34], for example)
shows, however, that the densities are usually characterized by several distinct modes.
By using
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Fig. 3.3 Simplified schematic illustration of the MHT filtering process with 4 measurements to be
processed at time tk+1

• individual gating for each track hypothesis,
• local combining of similar components via moment matching, and
• pruning of irrelevant mixture components,

memory explosions can be avoided without destroying the multi-modal structure of
the densities p(xk |Zk). Provided this is carefully done with data-driven adaptivity,
all statistically relevant information can be preserved, while keeping the number of
mixture components under control, i.e. the number of mixture components involved
may be fluctuating and even large in critical situations, but does not grow explosively
[35–38]. This strategy was first applied by van Keuk et al. [39] and is illustrated in
Fig. 3.4.

PDA-type filtering according to Bar Shalom, where all mixture components are
combined via moment matching, is a limiting case of such techniques [23]. As the
phenomenon of distinct modes is inherent in the uncertain origin of the received
data, however, relevant statistical information would get lost if global combining
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Fig. 3.4 Schematic illustra-
tion: local combining of sim-
ilar components via moment
matching and pruning of irrel-
evant mixture components.
a Local combining. b Pruning
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were applied to such cases. The use of PDA-type filtering is thus confined to a
relatively restricted area in parameter space (defined by ρF , PD , for instance).

3.4 Object State Retrodiction

For making statements about past object states Xl at time instants tl with l < k, given
that sensor information Zk is available up to the present time tk , the probability
density functions p(Xl |Zk), i.e. the retrodiction densities, must be calculated. As
before in filtering, Bayes Theorem is the key to an iterative calculation scheme,
which starts with the knowledge on the object p(Xk |Zk) available at the present
time tk and is directed towards the past. In deriving a retrodiction update formula,
which relates p(Xl |Zk) to the previously obtained retrodiction density p(Xl+1|Zk)

calculated for time tl+1, the object state Xl+1 at this very time is brought into play
via marginalization,
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p(Xl |Zk) =
∫

dXl+1 p(Xl , Xl+1|Zk) (3.61)

=
∫

dXl+1 p(Xl |Xl+1, Zk) p(Xl+1|Zk). (3.62)

Since in this equation p(Xl+1|Zk) is assumed to be available, it remains to understand
the meaning of the density p(Xl |Xl+1, Zk) in the integrand of the previous equation.
It seems to be intuitively clear that the knowledge on the object state Xl at time tl
does not depend on the sensor data produced at tl+1, . . . , tk , i.e. p(Xl |Xl+1, Zk) =
p(Xl |Xl+1). In Appendix A.7, a more formal argumentation is given. A subsequent
use of Bayes’ Theorem yields:

p(Xl |Xl+1, Zk) = p(Xl |Xl+1, Zl) (3.63)

= p(Xl+1|Xl) p(Xl |Zl)∫
dXl p(Xl+1|Xl) p(Xl |Zl)

. (3.64)

The retrodiction update equation for p(Xl |Zk) is thus given by:

p(Xl |Zk) =
∫

dXl+1
p(Xl+1|Xl) p(Xl |Zl)

p(Xl+1|Zl)
p(Xl+1|Zk) (3.65)

and combines the previously obtained retrodiction, filtering, and prediction densities
as well as the object evolution model.

We assemble several characteristic features of retrodiction techniques:

1. In the given formulation, retrodiction applies to single as well as multiple objects,
to well-separated objects, object formations, and objects characterized by a more
general state.

2. The retrodicted density for time l is completely determined by the filtering density
at time l and the following instants of time up to the present (l ≤ k). Retrodiction
is thus decoupled from filtering and prediction and may be switched off without
affecting the tracking filter performance (e.g. in overload situations).

3. Accurate filtering and prediction is prerequisite to accurate retrodiction. Provided
these processing steps were performed approximately optimally, the retrodiction
loop provides an approximately optimal description of the past object states.

4. Besides making use of the underlying evolution model of the objects, retrodiction
refers to no other modeling assumption. In particular, the sensor data are not
reprocessed by retrodiction.

5. Retrodiction can provide highly precise reconstructions on object trajectory,
including their velocity and acceleration histories that may contribute to object
classification (see Sect. 1.3.5).

6. The classification of an air target as a helicopter, for example, could be based on
precisely retrodicted velocity estimates equal to Zero. Since such retrodiction-
based classifications have impact on the evolution model chosen for the future,

http://dx.doi.org/10.1007/978-3-642-39271-9_1
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the example illustrates in which way retrodiction results may improve available
knowledge even on present and future object states.

3.4.1 Fixed Interval Smoothing

Let us consider kinematic object states only, Xl = xl , and conditions where Kalman
filtering is applicable. Under these conditions and using the product formula for
Gaußians, Eq. 3.64 can be written as:

p(Xl |Xl+1, Zl) = N (
xl+1; Fl+1|lxl , Dl+1|l

) N (
xl; xl|l , Pl|l

)

N (
xl+1; xl+1|l , Pl+1|l

) (3.66)

= N (
xl; hl|l+1(xl+1), Rl|l+1

)
(3.67)

with the abbreviations:

hl|l+1(xl+1) = xl|l +Wl|l+1(xl+1 − xl+1|l) (3.68)

Rl|l+1 = Pl|l −Wl|l+1Pl+1|lW�l|l+1 (3.69)

and a “retrodiction gain” matrix

Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l . (3.70)

Note that N (
xl; hl|l+1(xl+1), Rl|l+1

)
can be interpreted in analogy to a Gaußian

likelihood function with a linear measurement function hl|l+1(xl+1). For this reason,
a second use of the product finally yields:

p(xl |Zk) =
∫

dxl+1 p(xl |xl+1, Zk) N (
xl+1; xl+1|k, Pl+1|k

)
(3.71)

= N (
xl; xl|k, Pl|k

)
, (3.72)

where the parameters of the retrodicted density p(xl |Zk) are given the Rauch-Tung-
Striebel [4] retrodiction update equations:

xl|k = xl|l +Wl|l+1
(
xl+1|k − xl+1|l

)
(3.73)

Pl|k = Pl|l +Wl|l+1
(
Pl+1|k − Pl+1|l

)
W�l|l+1. (3.74)

The retrodicted state estimates xl|k do not depend on the corresponding error covari-
ance matrices Pl|k . Their computation may thus be omitted in case of limited
resources.
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3.4.2 Continuous Time Retrodiction

In certain applications, there is a need to produce suitable interpolations between
two retrodicted densities p(Xl |Zk) and p(Xl+1|Zk) at two subsequent data collec-
tion times tl and tl+1 by taking full advantage of the available knowledge of the
objects’ evolution model [40]. For this reason, let us consider probability densi-
ties p(Xl+θ |Zk) with 0 < θ < 1, which represent the available knowledge about
the object state at an intermediate instant of time tl < tl+θ < tl+1. In analogy to the
previous reasoning, we obtain:

p(Xl+θ |Zk) =
∫

dXl+1 p(Xl+θ |Xl+1, Zk) p(Xl+1|Zk) (3.75)

with a modified version of the density in Eq. 3.64:

p(Xl+θ |Xl+1, Zk) = p(Xl+1|Xl+θ ) p(Xl+θ |Zl)

p(Xl+1|Zl)
. (3.76)

Note that the prediction densities p(Xl+θ |Zl), p(Xl+1|Zl) are available according
to Eq. 3.10.

Under conditions, where Kalman filtering is applicable, the Markov transition
density p(Xl+1|Xl+θ ) is given by the Gaußian:

p(xl+1|xl+θ ) = N (
xl+1; Fl+1|l+θxl+θ , Dl+1|l+θ

)
, (3.77)

yielding as a special case of Eq. 3.67:

p(xl+θ |xl+1, Zk) = N (
xl+θ ; hl+θ |l+1(xl+1), Rl+θ |l+1

)
, (3.78)

with the abbreviations:

hl+θ |l+1(xl+1) = xl+θ |l +Wl+θ |l+1(xl+1 − xl+1|l) (3.79)

Rl+θ |l+1 = Pl+θ |l −Wl+θ |l+1Pl+1|lW�l+θ |l+1 (3.80)

Wl+θ |l+1 = Pl+θ |lF�l+1|l+θP−1
l+1|l+θ . (3.81)

p(xl+θ |xl+1, Zk) directly provides an expression for the continuous time retrodiction
density p(xl−θ |Zk) according to the product formula:

p(xl−θ |Zk) = p(xl+1|xl+θ ) p(xl+θ |Zl)

p(xl+1|Zl)
(3.82)

= N (xl−θ ; xl−θ |k, Pl−θ |k) (3.83)

with parameters given by modified Rauch-Tung-Striebel update formulae:
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xl−θ |k = xl−θ |l−1 +Wl|l−θ (xl|k − xl|l−1) (3.84)

Pl−θ |k = Pl−θ |l−1 +Wl|l−θ (Pl|k − Pl|l−1)W�l|l−θ (3.85)

Wl|l−θ = Pl−θ |l−1F�l|l−θP−1
l|l−1. (3.86)

3.4.3 IMM Retrodiction

With an underlying IMM evolution model, we obtain the following expression for
the retrodiction density:

p(xl , il |Zk) =
∑

il+1

∫
dxl+1 p(xl , il |xl+1, il+1, Zk) p(xl+1, il+1|Zk), (3.87)

where we assume that the previous retrodiction density is in analogy to IMM filtering
given by a weighted Gaußian:

p(xl+1, il+1|Zk) = pil+1
l+1|k N (

xl+1; xil+1
l+1|k, Pil+1

l+1|k
)
, (3.88)

while the remaining factor in the integral results from:

p(xl , il |xl+1, il+1, Zk) = p(xl+1, il+1|xl , il) p(xl , il |Zl)∑
il

∫
dxl p(xl+1, il+1|xl , il) p(xl , il |Zl)

. (3.89)

With p(xl , il |Zl) approximately given by Eq. 3.48 and the IMM evolution model in
Eq. 2.11, the product formula yields in analogy to Eq. 3.67:

p(xl , il |xl+1, il+1, Zk) = cil
l|l+1(xl+1) N (

xl; hil+1,il
l|l+1 (xl+1), Ril+1,il

l|l+1

)
(3.90)

with abbreviations hil+1,il
l|l+1 (xl+1) and Ril+1,il

l|l+1 given by:

hil+1,il
l|l+1 (xl+1) = xil

l|l +Wil+1,il
l|l+1 (xl+1 − Fil+1

l+1|lx
il
l|l) (3.91)

Ril+1,il
l|l+1 = Pil

l|l −Wil+1,il
l|l+1 Sil+1,il

l|l+1 Wil+1,il�
l|l+1 , (3.92)

where we used:

Sil+1,il
l|l+1 = Fil+1

l+1|l Pil
l| jl Fil+1�

l+1|l + Dil+1
l+1|l (3.93)

Wil+1,il
l|l+1 = Pil

l| jl Fil+1�
l+1|l

(
Sil+1,il

l|l+1

)−1 (3.94)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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and factors cil
l| jl (xl+1), which can be interpreted as normalized weighting factors

depending on the object state xl+1:

cil
l|l+1(xl+1) =

pil+1il pil
l+1|l N (

xl+1; Fil+1
l+1|l xil

l+1|l , Sil+1il
l|l+1

)

∑
il pil+1il pil

l+1|l N (
xl+1; Fil+1

l+1|l xil
l+1|l , Sil+1il

l|l+1

) . (3.95)

According to these considerations, p(xl , il |xl+1, il+1, Zk) can no longer be inter-
preted in analogy to a Gaußian likelihood and be evaluated by exploiting the product
formula. The problems are caused by the weighting factors cil

l|l+1(xl+1|k), which
explicitly depend on the kinematic object state at time tl+1 in a rather compli-
cated way. The product formula would be directly applicable only if they were
constant. The best knowledge on xl+1 available at time tk , however, is given by the
expectation xl+1|k calculated in the previous retrodiction step. We thus consider the
approximation:

cil
l|l+1(xl+1) ≈ cil

l|l+1(xl+1|k), (3.96)

which leads to an approximate expression for the retrodicted density:

p(xl , il |Zk) ≈
∑

il+1

∫
dxl+1 cil

l|l+1 pil+1
l+1|k N (

xl; hil+1,il
l|l+1 (xl+1), Ril+1,il

l|l+1

)

× N (
xl+1; xil+1

l+1|k, Pil+1
l+1|k

)
(3.97)

=
∑

il+1

pil+1il
l|k N (

xl; xil+1il
l|k , Pil+1il

l|k
)

(3.98)

with pil+1il
l|k = cil

l|l+1 pil+1
l+1|k , while the parameters xil+1il

l|k and Pil+1il
l|k are obtained

by the Rauch-Tung-Striebel formulae 3.73, 3.74. As in standard IMM prediction,
p(xk, ik |Zk−1) is approximated via moment matching ([23, p. 56 ff], Appendix A.6)
yielding

p(xl , il |Zk) ≈ pil
l|k N (

xl; xil
l|k, Pil

l|k
)

(3.99)

with parameters pil
l|k , xil

l|k , and Pil
l|k given by:

pil
l|k =

r∑

il+1=1

pil+1il
l|k

xil
l|k =

1

pil
l|k

r∑

il+1=1

pil+1ik
l|k xil+1il

l|k (3.100)

Pil
l|k =

1

pil
l|k

r∑

il+1=1

pil+1il
l|k

(
Pik ik−1

k|k−1 + (xil+1il
l|k − xil

l|k)(x
il+1il
l|k − xil

l|k)
�)

.
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If only the retrodictions of the kinematic state variables xl are of interest, p(xl |Zk)

is given by a Gaußian sum with r mixture components:

p(xl |Zk) =
r∑

il=1

p(xl , il |Zk) (3.101)

≈
r∑

il=1

pil
l|k N (

xl; xil
l|k, Pil

l|k
)
. (3.102)

3.4.4 MHT Retrodiction

As discussed before in the case of MHT filtering, data interpretation histories jk pro-
vide possible explanations of the origin of a time series Zk consisting of ambiguous
sensor data. The notion of retrodiction can also be applied to those situations. Due
to the total probability theorem and under the conditions discussed in Sect. 2.3.3, the
retrodiction p(xl |Zk) may be represented by a mixture:

p(xl |Zk) =
∑

jk

p(xl , jk |Zk) (3.103)

=
∑

jk

pjk
N (

xl; xjk
l|k, Pjk

l|k
)
. (3.104)

Since for any given data interpretation history jk the conditional probability densities

p(xl |jk, Zk) are unambiguous, the parameters xjk
l|k , Pjk

l|k of the retrodiction density

p(xl |Zk) directly result from the Rauch-Tung-Striebel formulae, while the weighting
factors pjk

are those obtained in the filtering step. In other words, the retrodiction
process proceeds along the branches of the data interpretation hypotheses tree.

In the following, we assemble several aspects of MHT retrodiction.

1. For well-separated objects and a single evolution model under ideal operational
conditions, i.e. without false measurements and assuming perfect detection, the
approach comes down to the Rauch-Tung-Striebel fixed-interval smoothing as
a limiting case. Hence, the Rauch-Tung-Striebel formulae play a role in MHT
retrodiction that is completely analogous to the Kalman update formulae in MHT
filtering.

2. MHT retrodiction can be combined with IMM evolution models. Under ideal
conditions with well-separated objects, we obtain a hierarchy of approximations
to the original retrodiction problem. Adopting the standard terminology [4], the
Fraser-Potter-type algorithms in [41, 42] are approximations to optimal retro-
diction in the two-filter form insofar as the results of backward and forward
filters are combined. In our view, however, the Rauch-Tung-Striebel-type formu-
lation of approximate IMM-smoothing offers advantages over Fraser-Potter-type

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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algorithms insofar as computational effort is concerned (e.g. matrix inversions
involved). In addition, Rauch-Tung-Striebel-type algorithms are initialized by
the filtering results (no diffuse prior density).

3. In order to avoid memory explosions such as mentioned in Sect. 3.3.3, those
mixture components in the filtering process are neglected (pjk

→ 0) that are
either statistically irrelevant or can be combined with other mixture components.
This has useful consequences: If all hypotheses with the same prehistory jk−1
are canceled, jk−1 is irrelevant itself (pjk−1 → 0). This scheme may be applied
repeatedly to all subsequent prehistories jl , l < k − 1, finally leading to a unique
track. This process is called reconstruction of histories [28, 29, 32]. The work
reported in [43] also points in that direction. As observed in [28, 32], we assemble
the following facts.

(a) The history is correctly reconstructed with high probability.
(b) The number of relevant hypotheses to be stored can be drastically reduced.
(c) The number of missed detections in a reconstructed history provides on-

line estimations of the detection probability that are otherwise not easily
obtainable.

4. Oliver Drummond’s Retrodiction of Probabilities [2, 3] is an approximation of
the retrodiction density p(xk |Zk) that omits the Rauch-Tung-Striebel update of
the retrodicted expectation vector and the corresponding covariance matrix. In
other words, we assume:

N (
xl; xjk

l|k, Pjl
l|k

) ≈ N (
xl; xjk

l|l , Pjl
l|l

)
. (3.105)

As a direct consequence, we yield approximations to the density functions

p(xl |Zk) ≈
∑

jl

p∗jl
N (

xl; xjl
l|l , Pjl

l|l
)

(3.106)

with mixture coefficients p∗jl
that are recursively defined by

p∗jl
=

{
pjk

for l = k∑
jl+1∈Jjl+1|jl

p∗jl+1
for l < k,

(3.107)

where the sum is taken over all histories jl+1 with the same prehistory jl . True
hypotheses that incidentally have had a small weight in at the time, when they
were originally created, may well increase in weight incrementally during this
procedure as time goes by. Retrodiction of discrete probabilities is computation-
ally cheap since only weighting factors are to be re-processed, leaving the state
estimates and their error covariance matrices unchanged.

5. In principle, retrodiction methods do not affect the description of the current
object states provided the filtering was done correctly. As previously discussed
(Sect. 3.3.3), however, in any practical realization approximations must be applied
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Fig. 3.5 Schematic overview
of retrodiction within a multi-
ple hypothesis framework tk

t k−2
t k−1

tk+2
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to avoid memory explosions. In this context, retrodiction-based pruning offers the
potential of improved approximations to optimal filtering. The scheme generalizes
the strategy in [1, 3] in that, as each set of sensor data becomes available, the
modification of earlier track hypotheses has impact on subsequent tracks (Multiple
Frame Data Association).

(a) In retrodiction-based cut-off, we first permit hypotheses with even very small
weights at present. By retrodiction of probabilities, retrospectively some past
hypotheses increase in weight, while others decrease. Then, starting at a
certain time in the past, hypotheses with insignificant weights are neglected.
This has impact up to the present scan since all descending track hypotheses
vanish themselves, while the remaining weighting factors are renormalized.
This scheme may be applied repeatedly over several data collection times.

(b) In close analogy to retrodiction-based cut-off, we might also delay the deci-
sion if two hypotheses are to be combined, thus leading to retrodiction-based
local combining.

Retrodiction-based pruning seems to be particularly useful in track initiation/
extraction [44], an issue addressed below (Sect. 4).

Figure 3.5 provides a schematic overview of retrodiction within a multiple hypothesis
framework.

3.4.5 Discussion of an Example

The following aspects are illustrated by an example with real radar data:

1. Data association conflicts arise even for well-separated objects if a high false
return background is to be taken into account, which cannot completely be sup-
pressed by clutter filtering at the signal processing level.

2. Even in the absence of unwanted sensor reports, ambiguous correlations between
newly received sensor data and existing tracks are an inherent problem for objects

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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Fig. 3.6 An example taken from wide-area ground-based air surveillance: two pairs of highly
maneuvering aircraft in a training situation (high residual clutter background)
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moving closely-spaced for some time. Furthermore, resolution phenomena make
the data association task even harder.

3. Additional problems arise from poor quality sensor data, due to large measure-
ment errors, low signal-to-noise ratios, or fading phenomena (i.e. successively
missing plots). Besides that, the scan rates may be low (especially in long-range
surveillance applications).

Figure 3.6 shows a radar data set accumulated over about 240 and 290 scans,
respectively. As well as many false alarms, the data of two pairs of highly maneu-
vering aircraft in a training situation were recorded. The detection probability is
between 40 and 60 %. The data were collected from a rotating S-band long-range
radar measuring target range and azimuth (scan period: 10 s, range accuracy: 350 ft,
bearing accuracy: 0.22 ◦, range resolution: 1,600 ft, bearing resolution: 2.4 ◦). Infor-
mation on the real object position is crucial for evaluating tracking filters. Here a
secondary radar was used. The verified primary plots are indicated by and+ in the
figures right to the raw data along with the final tracking result (i.e. tracking output
according to multiple data association hypotheses and subsequent retrodiction until
no further improvement is obtained).

The 2nd and 4th row in 3.6 show for both scenarios the MMSE-estimates of
the objects’ positions are displayed for a retrodiction delay of zero, 2, 4, 6, and
12 scans. The estimates with no delay are simply obtained by MHT-type filtering.
The resulting trajectories seem to be of small value for assessing the air situation.
The related variances (very large) are not indicated. The high inaccuracy observed
reflects the complex hypothesis tree resulting from ambiguous data interpretations.
Multiple dynamics model filtering (IMM) does outperform single model filtering in
some particular situations that are characterized by fewer data association conflicts
and at least one non-maneuvering target. Aside from those situations, however, the
overall impression of the pure filtering result is similar for both cases.

By using MHT-retrodiction, even a delay of two frames significantly improves
the filtering output. We displayed the MMSE estimates derived from p(xl |Zk) for
l = 2, 4, 6, 12. A delay of 6 frames (i.e. 1 min) provides easily interpretable trajec-
tories, while the maximum gain by retrodiction is obtained after 12 frames delay.
Evidently the final retrodiction results fit the verified primary plots very well. If
IMM-retrodiction is used, we essentially obtain the same final trajectory. However,
in certain flight phases (not too many false returns, no maneuvers) it is obtained by
a shorter delay (about 1–3 frames less). i.e. Under certain circumstances, accurate
speed and heading information is available earlier than in case of a single dynamics
model.
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Chapter 4
Sequential Track Extraction

Iterative tracking algorithms must be initiated appropriately. Under simple condi-
tions, this is not a difficult task, as has been shown above (Eq. 3.8). For low observ-
able objects, i.e. objects embedded in a high clutter background [1–5] or in case of
incomplete measurements [6, 7], more than a single set of observations at particular
data collection times are usually necessary for detecting all objects of interest mov-
ing in the sensors’ fields of view. Only then, the probability density iteration can be
initiated based on ‘extracted’ object tracks, i.e. by tentative tracks, whose existence
is ‘detected’ by a detection process working on a higher level of abstraction. This
process makes use of a time series of accumulated sensor data Zk = {Zi }ki=1.

4.1 Well-Separated Objects

Assuming at first that the objects are well-separated, for the sake of simplicity, we thus
have to decide between two alternatives before a tracking process can be initiated:

• h1: Besides false data, Zk also contains real object measurements.
• h0: There is no object in the FoV; all sensor data in Zk are false.

As a special case of the more general theory of statistical decision processes, the
performance of a track extraction algorithm is characterized by two probabilities
related to the decision errors of first and second kind:

1. P1 = P(accept h1|h1), i.e. the conditional probability that h1 is accepted given
h1 is actually true (corresponding to the detection probability PD of a sensor
discussed in Sect. 2.3.4).

2. P0 = P(accept h1|h0): the conditional probability that h1 is accepted given it is
actually false (corresponding to the false alarm probability PF of a sensor).
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4.1.1 Sequential Likelihood Ratio Test

In typical tracking applications, the decisions between the alternatives must be made
as quickly as possible on average for given decision probabilities P0, P1. The decision
algorithm discussed below fulfills this requirement and is of enormous practical
importance. It is called Sequential Likelihood Ratio Test and was first proposed by
Abraham Wald [2–4, 8, 9].

The starting point for sequential decision-making in the context of track extraction
is the ratio of the conditional probabilities p(h1|Zk) of h1 being true given all data
have been processed appropriately and p(h0|Zk) of h0 being true given the sensor
data. If p(h1|Zk) is close to One and p(h0|Zk) close to Zero, the ratio is large, while
it is small if p(h1|Zk) is close to Zero and p(h0|Zk) close to One. If both hypotheses
are more or less equally probable, the ratio is of an intermediate size. According to
Bayes’ Theorem, we obtain:

p(h1|Zk)

p(h0|Zk)
= p(Zk |h1)

p(Zk |h0)

p(h1)

p(h0)
. (4.1)

Since the a priori probabilities p(h1) and p(h0) are in most applications assumed to
be equal, this defines a test function, which is called likelihood ratio:

LR(k) = p(Zk |h1)

p(Zk |h0)
(4.2)

and can be calculated iteratively by exploiting the underlying object evolution and
sensor models p(Xk |Xk−1) and p(Zk |Xk).

An intuitively plausible sequential test procedure starts with a time window of
length k = 1 and iteratively calculates the test function LR(k) until a decision can
be made. At each step of this iteration the likelihood ratio is compared with two
thresholds A and B:

LR(k) < A, accept the hypothesis h0 (i.e. no object existent)
for LR(k) > B, accept the hypothesis h1 (i.e. an object exists)
A < LR(k) < B, expect new data Zk+1, repeat the test with LR(k + 1).

4.1.2 Properties Relevant to Tracking

Note that the iterative calculation of likelihood ratios has a meaning, which is
completely different from the iterative calculation of probability density functions,
although similar formulae and calculations are implied, as will become clear below.
By iteratively calculated likelihood ratios we wish to decide, whether an iterative
tacking process should be initiated or not.

1. The most important theoretical result on sequential likelihood ratio tests is the fact
that the test has a minimum decision length on average given predefined statistical
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decision errors of first and second kind, which have to be specified according the
the requirements in a given application.

2. Furthermore, the thresholds A, B can be expressed as functions of the decision
probabilities P0, P1, i.e. they can be expressed as functions of the statistical deci-
sion errors of first and second kind and are thus not independent test parameters
to be chosen appropriately. A useful approximation in many applications is given
by:

A ≈ 1− P1

1− P0
, B ≈ P1

P0
. (4.3)

4.1.3 Relation to MHT Tracking

Likelihood ratios LR(k) can be calculated iteratively as a by-product of the standard
Bayesian tracking methodology previously discussed, provided we look upon it from
a different perspective. This can be seen directly:

LR(k) = p(Zk |h1)

p(Zk |h0)
(4.4)

=
∫

dxk p(Zk, mk, xk, Zk−1|h1)

p(Zk, mk, Zk−1, h0)
(4.5)

=
∫

dxk

likelihood︷ ︸︸ ︷
p(Zk, mk |xk, h1)

prediction︷ ︸︸ ︷
p(xk |Zk−1, h1)

|FoV|−mk pF (mk)︸ ︷︷ ︸
clutter model

LR(k − 1). (4.6)

According to these considerations, the likelihood ratio is in general a sum of a
temporally increasing number of individual likelihood ratios,

LR(k) =
∑

i

λi
k . (4.7)

In order to avoid memory explosion in calculating the likelihood ratio, the same
type of mixture approximation techniques as discussed in Sect. 3.3.3 can be applied
(merging of similar, pruning of summandsλi

k that are too small). Figure 4.1 provides a
schematic illustration of the hypothesis tree structure, which is created by sequentially
calculating the likelihood ratio test function. As soon as a decision in favor of object
existence is made, e.g. at time tk , the normalized individual likelihood ratios can be
used for initializing the tracking process:

p(xk |Zk) =
∑

i

λi
k∑

j λ
j
k

N (xk; xi
k|k, Pi

k|k), (4.8)
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Fig. 4.1 Schematic
illustration of the hypothe-
sis tree structure created by
sequentially calculating the
likelihood ratio test function
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where xi
k|k and Pi

k|k are by-products of the calculation of λi
k . As soon as the track

has been initiated, the calculation of the likelihood ratio can be restarted as it is a
by-product of track maintenance. The output of these subsequent sequential ratio
tests can serve to re-confirm track existence or track deletion, depending on the test
output. See [1, 2] for details. So far, the problem of multiple well-separated object
track extraction, track maintenance, and track deletion, i.e. the full life cycle of a
track, is solved in principle. See [5] for an alternative calculation of LR(k) by using
PMHT techniques and [10] for a proof that for well-separated objects, this scheme
is identical with Gaußian Mixture Cardinalized PHD filtering (GM-CPHD). Careful
quantitative performance evaluations can be found in [11].

4.2 Object Clusters

Sequential likelihood testing can be extended to the problem of extracting object
clusters with an unknown number of objects involved. To this end let us assume
that the number n of objects involved is limited by N (not too large). The discussed
method is confined to N being less than around 10. This means that it can be applied
to aircraft formations and convoys of ground moving objects, which are practically
relevant examples of object clusters. It is not applicable to larger object clouds or
swarms.

4.2.1 Generalized Likelihood Ratio

The ratio of the probability p(h1 ∨ h2 ∨ . . .∨ hN |Zk) that a cluster consisting of at
least one and at most N objects exists versus the probability of having false returns
only can be written as:
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p(h1 ∨ . . . ∨ hN |Zk)

p(h0|Zk)
=

∑N
n=1 p(hn|Zk)

p(h0|Zk)
(4.9)

=
N∑

n=1

p(Zk |hn)

p(Zk |h0)

p(hn)

p(h0)
. (4.10)

We thus very naturally obtain a generalized test function

LR(k) = 1

N

N∑

n=1

LRn(k) with LRn(k) = p(Zk |hn)

p(Zk |h0)
(4.11)

to be calculated in analogy to the case n = 1. In practical applications the finite
resolution capabilities of the sensors involved have to be taken into account (see
section IV.A). For the sake of simplicity this has been omitted here.

4.2.2 On Cluster Cardinality

It seems to be reasonable to interpret the normalized individual likelihood ratios as
a ‘cardinality’, i.e. as a measure of the probability of having n objects in the cluster.

ck(n) = LRn(k)
∑N

n=1 LRn(k)
. (4.12)

An estimator for the number of objects within the cluster is thus given by

n̄ =
N∑

i=1

n ck(n). (4.13)

See [2, 3] for a more detailed description of the iterative calculation of the likelihood
ratios, practical implementation issues and quantitative results.
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Chapter 5
On Recursive Batch Processing

Most target tracking algorithms aim at calculating the conditional probability den-
sities p(Xl |Zk) of target states Xl , which describe the available knowledge on the
target properties at a certain instant of time tl , given a time series Zk of imperfect
sensor data accumulated to time tk . In certain applications, however, the kinematic
target states xk, . . . , xn , n ≤ k, accumulated over a certain time window from a past
instant of time tn up to the present time tk are of interest. The statistical properties
the accumulated state vectors are completely described the joint probability den-
sity function of them, given the time series Zk , p(xk, . . . , xn|Zk). These densities
may be called Accumulated State Densities (ASD). By marginalization, the standard
filtering and retrodiction densities directly result. In addition, ASDs fully describe
the correlations between the state estimates produced for different instants of time.
For this reason ADSs are useful in recursive batch processing, e.g. in case of out-of
sequence measurements or when Expectation Maximization methods are used for
solving data association problems.

5.1 Accumulated Object State Densities

ASDs are particularly useful in tracking applications, where out-of-sequence (OoS)
measurements are to be processed in a centralized measurement fusion architecture,
i.e. when the sensor data do not arrive in the temporal order, in which they have
been produced. The OoS problem is unavoidable in any real-world multiple sensor
tracking application. To the author’s knowledge, Yaakov Bar-Shalom was the first,
who picked up the problem and provided an exact solution in the case of Kalman
filtering [1]. For the subsequent development and generalizations see [2–6]. To avoid
storing and reprocessing of the entire time series of sensor data as well as to avoid the
temporal delay related to it, OoS measurement have to be inserted into the ongoing
tracking process.
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All information on the object states accumulated over a time window tk, tk−1,
. . . , tn of length n + 1,

Xk:n = (Xk, . . . , Xn), (5.1)

that can be extracted from the time series of accumulated sensor data Zk up
to and including time tk is contained in the joint density function p(Xk:n|Zk),
which may be called Accumulated State Density (ASD). Via marginalization over
Xk, . . . , Xl+1, Xl−1, . . . , Xn ,

p(Xl |Zk) =
∫

dXk, . . . , dXl+1, dXl−1, . . . , dXn p(Xk, . . . , Xn|Zk), (5.2)

we obtain from the accumulated state density the filtering density p(Xk |Zk) for
l = k and the retrodiction densities p(Xl |Zk) for l < k. In addition, the accumulated
state density contains all mutual correlations between the individual object state
estimates. Bayes’ Theorem and a Markovian object evolution model directly provides
a recursion formula for calculating it:

p(Xk:n|Zk) = p(Zk, mk |Xk) p(Xk |Xk−1) p(Xk−1:n|Zk−1)∫
dXk−1 p(Zk, mk |Xk) p(Xk |Xk−1) p(Xk−1:n|Zk−1)

. (5.3)

The sensor data Zk explicitly appear in this representation. A little formalistically
speaking, “sensor data processing” means nothing else than to achieve by certain
reformulations that the sensor data are no longer be explicitly present in the resulting
expressions.

In practical applications, we expect that the index n describing the length of
the accumulated state Xk:n will not be large. For a more detailed discussion of the
material in this section see [7, 8].

5.1.1 Closed-Form Representations

Under conditions, where Kalman filtering is applicable (perfect data sensor-
data-to-track association, linear Gaußian sensor and evolution model), a closed-form
representation of p(Xk:n|Zk) can be derived, with Xk:n = xk:n , i.e. kinematic state
vectors are considered. In this case, let the likelihood function be given by:

p(Zk, mk |Xk) = N (
zk; Hkxk, Rk

)
, (5.4)

where Zk = zk denotes the vector of sensor measurements at time tk , Xk = xk

the kinematic state vector of the object, Hk the measurement matrix, and Rk the
measurement error covariance matrix, while the evolution model of the target is
represented by:
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p(Xk |Xk−1) = N (
xk; Fk|k−1xk−1, Dk|k−1

)
, (5.5)

where Fk|k−1 denotes the evolution matrix and Dk|k−1 the evolution covariance matrix
according to the previous discussion.

A repeated use of the product formula for Gaußians (see Appendix, Eq. A.28)
directly yields a product representation of the augmented state density:

p(xk:n|Zk) = N (
xk; xk|k, Pk|k

) k−1∏

l=n

N (
xl; hl|l+1(xl+1), Rl|l+1

)
, (5.6)

where the auxiliary quantities hl|l+1, Rl|l+1, l ≤ k, are defined by:

hl|l+1(xl+1) = xl|l +Wl|l+1(xl+1 − xl+1|l) (5.7)

Rl|l+1 = Pl|l −Wl|l+1Pl|l+1W�l|l+1 (5.8)

and a “retrodiction gain” matrix

Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l . (5.9)

Note that N (
xl; hl|l+1(xl+1), Rl|l+1

)
can be interpreted in analogy to a Gaußian

likelihood function with a linear measurement function hl|l+1(xl+1). These quanti-
ties are defined by the parameters of the filtering density p(xl |Zl)= N (xl; xl|l , Pl|l)
and given by Eqs. 3.42 and 3.43. Note that there exist equivalent formulations
of the Kalman update formulae according to the various versions of the product
formula (Eq. A.28). Also the parameters of the prediction density p(xl+1|Zl) =
N (xl+1; xl+1|l , Pl+1|l), given by Eqs. 3.13 and 3.14, enter into the product repre-
sentation in Eq. 5.6.

With xl|k , Pl|k , Wl|l+1 known from the Rauch-Tung-Striebel recursion (Eqs. 3.73
and 3.74), we can rewrite p(xk:n|Zk) by the following product:

p(xk:n|Zk) = N (
xk; xk|k, Pk|k

)

×
k−1∏

l=n

N (
xl −Wl|l+1xl+1; xl|k −Wl|l+1xl+1|k, Ql|k

)
, (5.10)

where the matrix Ql|k is defined by:

Ql|k = Pl|k −Wl|l+1Pl+1|kW�l|l+1 (5.11)

= (
P−1

l|k + P−1
l|k Wl|l+1(P

−1
l+1|k −W�l|l+1P−1

l|k Wl|l+1)
−1W�l|l+1P−1

l|k
)−1

. (5.12)

With projectors Πl defined by:

http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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Πlxk:n =
{

(1, O, . . . , O)xk:n, l = k

(O, . . . ,−Wl|l+1, 1, . . . , O) xk:n, n ≤ l < k

=
{

xk, l = k

xl −Wl|l+1xl+1, n ≤ l < k.
(5.13)

the accumulated state density p(xk:n|Zk) can be rewritten:

p(xk:n|Zk) =
k∏

l=n

N (
xk:n; xk

k:n, (Π�l Q−1
l|k Πl)

−1) (5.14)

= N (
xk:n; xk

k:n, Pk
k:n

)
(5.15)

with an accumulated expectation vector xk
k:n defined by:

xk
k:n = (x�k|k, x�k−1|k, . . . , x�n+1|k, x�n|k)�, (5.16)

and a covariance matrix Pk
k:n , which is given by an harmonic mean according to the

product formula for Gaußians:

Pk
k:n =

( k∑

l=n

Π�l Q−1
l|k Πl

)−1
. (5.17)

With the auxiliary matrices Tl|k , n ≤ l ≤ k defined by:

Tl|k =

⎧
⎪⎨

⎪⎩

Q−1
n|k for l = n

P−1
k|k +W�l−1|lQ

−1
l−1|kWl−1|l for l = k

Q−1
l|k +W�l−1|lQ

−1
l−1|kWl−1|l else,

(5.18)

we obtain:

Pk
k:n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tk|k −W�k−1|kQ−1
k−1|k O · · · O

−Q−1
k−1|kWk−1|k Tk−1|k ∗ ∗

.

.

.

O −Q−1
k−2|kWk−2|k−1 ∗ ∗ O

.

.

. ∗ ∗ Tn+1|k −W�n|n+1Qn|k
O · · · O −Qn|kWn|n+1 Tn|k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

(5.19)
i.e. Pk

k:n is given by the inverse of a tridiagonal block matrix. This structure is a
consequence of the Markov property of the underlying evolution model. This repre-
sentation of Pk −1

k:n is useful in practical calculations.
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In appendix A.8 it is shown that the inverse of this tridiagonal block matrix can
be calculated and is given by:

Pk
k:n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pk|k Pk|kW�k−1|k · · · Pk|kW�n+1|k Pk|kW�n|k
Wk−1|kPk|k Pk−1|k

. . .
... Pk−1|kW�n|k−1

Wk−2|kPk|k Wk−2|k−1Pk−1|k
. . . Pn+1|kW�n+1|n+2

...

...
...

. . . Pn+1|k Pn+1|kW�n|n+1
Wn|kPk|k Wn|k−1Pk−1|k · · · Wn|n+1Pn+1|k Pn|k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.20)
with the auxiliary matrices Wl|l ′+1, n ≤ l, l ′ ≤ k − 1, l < l ′, defined by:

Wl|l ′+1 =
l ′−1∏

λ=l

Wλ|λ+1 =
l ′−1∏

λ=l

Pλ|λF�λ+1|λP−1
λ+1|λ, (5.21)

The densities {N (xl; xl|k, Pl|k)}kl=m are directly obtained via marginalization, since
the covariance matrices Pl|k , m ≤ l ≤ k, appear on the diagonal of this block matrix.
Note that the ASD is completely defined by the results of prediction, filtering, and
retrodiction obtained for the time window tk, . . . , tn , i.e. it is a by-product of Kalman
filtering and Rauch-Tung-Striebel smoothing.

5.1.2 Discussion of Generalizations

These considerations can directly be generalized to the case of ambiguity with respect
to the origin of the sensor data or with respect to the evolution model currently being
in effect, i.e. to Multiple Hypothesis Tracking (MHT) and Interacting Multiple Model
filters (IMM).

ASDs for MHT Filtering

As previously discussed, a sensor output at time tk , consisting of mk measurements
collected in the set Zk , can be ambiguous, i.e. the origin of the sensor data has to
be explained by a set of data interpretations, which are assumed to be exhaustive
and mutually exclusive. As an example, let us consider likelihood functions such as
those defined by Eq. 2.40:

p(Zk, mk |xk) =
mk∑

jk=0

p(Zk, mk | jk, xk) p( jk). (5.22)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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According to the previous discussion on MHT tracking, the marginalization using
the data interpretation histories jk yields for the accumulated state density:

p(xk, . . . , xn|Zk) =
∑

jk

p(xk, . . . , xn, jk |Zk) (5.23)

=
∑

jk

p(jk |Zk) p(xk:n|jk, Zk) (5.24)

=
∑

jk

p
jk
k|k N (

xk:n; xjk
k:n, Pjk

k:n
)
, (5.25)

i.e. the ASD for MHT applications is simply a weighted sum of individual ASDs,
which are completely defined by the results of prediction, filtering, and retrodiction
along a certain branch of the hypothesis tree defined by a particular interpretation
history jk . The corresponding weighting factor is given by the probability of jk being

true at time tk given the data: p(jk |Zk) = p
jk
k|k . The ASD for MHT application is

thus a by-product of MHT tracking and retrodiction.

ASDs for IMM Filtering

In applications where it is uncertain, which evolution model out of a set of r possible
alternatives is currently being in effect, Markovian IMM evolution models should be
used (see Sect. 2.2.2):

p(xk, ik |xk−1, ik−1) = pik ik−1 N (
xk; Fik

k|k−1xk−1, Dik
k|k−1

)
, (5.26)

which are characterized r by kinematic linear Gaußian transition densities
p(xk |xk−1, ik) and class transition probabilities pik ik−1 = p(ik |ik−1).

By making use of marginalization, also the IMM approach can easily be com-
bined with Kalman or MHT filtering. Let us denote the dynamics histories “m scans
back” by ik , an m-tuple of indices. According to these considerations and for the
same reasons as before, the accumulated IMM-MHT state density is as mixture of
individual ASDs for each data interpretation and model history:

p(xk:n|Zk) =
∑

ik jk

p
ik jk
k|k N (

xk:n; xik jk
k:n , Pik jk

k:n
)
. (5.27)

Each ASD component is defined by the results of prediction, filtering, and retrodiction
given these histories. The corresponding weighting factor results from the filtering
step. In the case of standard IMM filtering with r evolution models, the ASD consists
of r components.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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5.1.3 Out-of-Sequence Measurements

In any real-world application of sensor data fusion, we have to be aware of out-
of-sequence measurements. Due to latencies in the underlying communication
infrastructure, for example, such measurements arrive at a processing node in a
distributed data fusion system “too late”, i.e. after sensor data with a time stamp
newer than the time stamp of an out-of-sequence measurement have already been
processed. Accumulated object state densities are useful for dealing with this type
of sensor data, which may provide valuable information on an object state of interest
in spite of their latency, especially if the sensor involved is of high quality.

Under conditions, where Kalman filtering is applicable, let us consider a mea-
surement zm produced at time tm with n ≤ m < k, i.e. before the ‘present’ time
tk , where the time series Zk is available and has been exploited. We wish to under-
stand the impact this new but delayed sensor information has on the present and the
past object states xl , l ≤ k, i.e. on the accumulated object state xk:n . Let zm be a
measurement of the object state xm at time tm characterized by a Gaußian likeli-
hood function, which is defined by a measurement matrix Hm and a corresponding
measurement error covariance matrix Rm according to Eq. 2.19. We furthermore
introduce a projection matrix Πm , defined by Πmxk:n = xm , which extracts the
object state xm from the accumulated state vector xk:n . The likelihood function of the
out-of-sequence measurement with respect to the accumulated object state is thus
given by:

p(zm |xk:n) = N (
zm; HmΠmxk:n, Rm

)
. (5.28)

Standard Bayesian reasoning and the product formula directly yields for the accu-
mulated state density:

p(xk:n|zm, Zk) = p(zm |xk) p(xk:n|Zk)∫
dxk p(zm |xk) p(xk:n|Zk)

(5.29)

= N (
xk:n; xk

k:m:n, Pk
k:m:n

)
(5.30)

with parameters obtained by a version of the Kalman update equations:

xk
k:m:n = xk

k:n +Wk:m:n(zm −Hmxm|k) (5.31)

Pk
k:m:n = (1−Wk:m:nH)Pk

k:n, (5.32)

where the corresponding Kalman gain and innovation matrices are given by:

Sm|k = HmΠmPk
k:nΠ�mH�m + Rm (5.33)

= HmPm|kH�m + Rm (5.34)

Wk:m:n = Pk
k:nΠ�mH�mS−1

m|k (5.35)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pk|kW�m|k
Pk−1|kW�m|k−1

...

Pm|k
Wm−1|mPm|k

...

Wn|mPm|k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H�mS−1
m|k (5.36)

Note that the matrix Sm|k to be inverted when calculating the Kalman gain matrix
has the same dimension as the measurement vector zm , i.e. it is a low-dimensional
matrix, just as in standard Kalman filtering. Nevertheless, the processing of an out-
of-sequence measurement zm has impact on all state estimates and the related error
covariance matrices in the time window considered. The strongest impact is observed
for the time tm , where the measurement has actually been produced, while it declines
the further we proceed to the present time tk > tm or deeper into the past. Accu-
mulated state densities are therefore well suited to quantitatively discuss phenomena
related to what is sometimes called “information aging” related to the decreasing rel-
evancy of a piece of information. If we are interested in the updated state estimates
for the time tl , 1 ≤ l ≤ k, we simply have to consider the density:

p(xl |zm, Zk) = N (
xl; Πlxk

k:m:n, ΠlPk
k:m:nΠ�l

)
(5.37)

applying the projection matrix Πl previously introduced. In a practical application,
we will usually be interested in the effect of out-of-sequence measurements, which
were produced not too long ago, on the present time and the most recent past. It is
therefore sufficient to consider accumulated state densities p(xk:n|Zk) characterized
by lower dimensional parameters xk

k:n , Pk
k:n .

By using the accumulated state density given by Eq. 5.25, these considerations
can directly be generalized to the case of ambiguous sensor data.

5.1.4 Discussion of an Example

Figure 5.1 shows a simulated trajectory of a maneuvering air target defined by
x(t) = v2

q sin(
q
2v

t), y(t) = 2x(t), v = 300 m
s , q = 4 g. It is observed by two

typical mid-range radars located at (−50, 0) km and (0, 50) km (scan period: T =
5 s, measurement error standard deviations: σr = 20 m (range), σϕ = 0.2◦ (azimuth).
Let us consider measurement fusion as discussed in Sect. 2.3.2. The fusion center is
receiving measurements from sensor one without communication delay, while the
measurements are arriving “out-of-sequence”, i.e. with a temporal delay of zero, one,
two, and five scan periods.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Fig. 5.1 Simulated trajectory of a highly maneuvering object

Figure 5.2 shows numerical results based on 1000 Monte-Carlo-runs (mean error
of the expectation vector in position of the filtering steps and the mean trace of
corresponding filtering error covariances matrix). For no communication delay and
in each sub-figure, the black lines and the region shaded in black represent the mean
filtering error in position and the corresponding variance, respectively. The gray lines
and the regions shaded in gray show these quantities for different delays as a function
of the tracking time. In the right sub-figure in the second row no measurements of
sensor 2 are processed at all. Obviously, out-of-sequence measurements produced by
sensor 2, which arrive at the fusion center with a delay of five scan periods or more,
are nearly useless and do not significantly improve the filtering result at the present
time. There may be a significant improvement for retrodicted estimates at the time
at which this OoS measurement has actually been produced.
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Fig. 5.2 Mean error of the expectation vector in position of the filtering steps and the mean trace
of corresponding filtering error covariances matrix for various communication delays

5.2 Solving Tracking Problems by EM

In discussing the data association conflicts in track maintenance, we already dealt
with ambiguities in the origin of the sensor data that are caused by unwanted targets
and false returns. In this case, an exhaustive and mutually exclusive enumeration of
association hypotheses results in MHT- and PDA-type approaches to target tracking
as previously discussed. For data association conflicts in a multiple target scenario,
these techniques can in principle be applied as well. See the discussion of a multiple
target likelihood function in Sect. 2.3.3 and its use in Sect. 7.1.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_7
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Tracking in the presence of data association conflicts, however, can also be con-
sidered as an “incomplete data problem” [9], which can be solved by the Expectation
Maximization methodology (EM). Roy Streit and Tod Ludinbuhl have been the first
who applied this approach to target tracking applications [10–12].

5.2.1 Data Augmentation Methods

More generally speaking and in full accordance to the Bayesian approach previously
discussed, data augmentation methods, such as Expectation Maximization (EM),
intend to make statements about a quantity X given that measurements Z of X
are available. Due to missing information, for example, lacking knowledge of the
correct measurement-to-target associations, the calculation of the related conditional
probability density p(X |Z) may be difficult. If additional information A were known,
however, e.g. the data associations, the augmented density p(X |A, Z), could more
easily be calculated.

According to this strategy, data augmentation algorithms use the augmented con-
ditional probability density p(X |A, Z) in order to calculate at least certain char-
acteristics of the original probability density p(X |Z). This concept is guided by
the general observation that p(X |Z) can be expressed by probability densities
involving the additional information A as a direct consequence of p(A|X, Z) =
p(X |A, Z) p(A|Z)/p(X |Z), i.e. of Bayes rule:

p(X |Z) = p(X |A, Z) p(A|Z)

p(A|X, Z)
. (5.38)

The EM algorithm is a particular realization of this more general concept. Let us
assume that Xi is a certain preliminary estimate of X . By exploiting the augmented
density p(X |A, Z), we wish to calculate a “better” estimate Xi+1 in the sense that

p(Xi+1|Z) > p(Xi |Z). (5.39)

In other words, we are looking for an iterative algorithm to localize the “posterior
mode” of the conditional density p(X |Z). Assuming that p(A|Xi , Z) is available as
well, we are looking for an X for which the following is true:

log p(X |Z) > log p(Xi |Z) ⇔ (5.40)
∫

dA log p(X |Z) p(A|Xi , Z) >

∫
dA log p(Xi |Z) p(A|Xi , Z). (5.41)

Using as an abbreviation a function Q defined by:

Q(X; Xi ) =
∫

dA log p(X |A, Z) p(A|Xi , Z), (5.42)
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we obtain from Eq. 5.40 by exploiting Eq. 5.38 and Jensen’s inequality:

Q(X; Xi )− Q(Xi ; Xi ) >

∫
dA log

p(A|X, Z)

p(A|Xi , Z)
p(A|Xi , Z) (5.43)

≥ log
∫

dA
p(A|X, Z)

p(A|Xi , Z)
p(A|Xi , Z) (5.44)

= 0. (5.45)

According to these considerations, an EM algorithm essentially consists of two con-
secutive steps:

1. Expectation: With Xi denoting the current estimate according to p(X |Z) (initial-
ization required!), compute the function Q(X; Xi ) defined above.

2. Maximization: Find the next update by maximizing Q(X; Xi ),

Xi+1 = argmaxX Q(X; Xi ), (5.46)

and repeat the EM-step until the condition |Q(Xi+1; Xi )− Q(Xi ; Xi )| < ε holds.
A theorem guarantees convergence [9].

In multiple target tracking, auxiliary information on which measurement has been
originated by which target is particularly useful. Let

a
j→s j
l , l = k, . . . , n, j = 1, . . . , ml , s j = 1, . . . , S, (5.47)

denote the hypothesis that at time tl the measurement z j
l is to be associated with a

target indexed by s j . Let a set of all feasible associations that map the measurements in
the time window tk:n to each target be denoted by ak:n . According to the more general
discussion, the function Q is in this case obtained by calculating an expectation over
data association probabilities. By using the notion of accumulated state vectors as in
the previous section, Q is given by:

Q(xk:n; xi
k:n) =

∑

ak:n
log

(
p(xk:n|ak:n, Zk)

)
p(ak:n|xi

k:n, Zk). (5.48)

As will be shown below, under linear Gaußian assumptions regarding the sensor like-
lihood functions and the transition densities describing the targets’ evolution, these
functions prove to be given by Gaußian Accumulated State densities as discussed in
the previous section (up to a constant irrelevant to maximization). The maximiza-
tion step in the EM loop is thus trivial and given by the corresponding accumulated
vector of expectation vectors obtained by Kalman filtering and retrodiction while
processing suitably chosen “synthetic” data.
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5.2.2 Expectation and Maximization Steps

By applying Bayes’ rule to the argument of the logarithm in the previous function
Q,

p(xk:n|ak:n, Zk) ∝ p(Zk:n|ak:n, xk:n) p(xk:n|Zn−1), (5.49)

we obtain for Q an expression, which is given up to a constant independent of the
state variables by:

Q(xk:n; xi
k:n) = log p(xk:n|Zn−1)

+
∑

ak:n
log

(
p(Zk:n|ak:n, xk:n)

)
p(ak:n|xi

k:n, Zk)+ const. (5.50)

Q can be expressed more explicitly by using the known transition densities, sensor
likelihood functions, prior information on the object states at time tn−1, and the
posterior association probabilities yielding:

Q(xk:n; xi
k:n) =

S∑

s=1

log p(xs
n−1|Zn−1)+

k∑

l=n

S∑

s=1

log p(xs
l |xs

l−1)

+
k∑

l=n

∑

al

log
(

p(Zl |al , xl)
)

p(al |xi
l , Zl)+ const., (5.51)

where we assumed p(al |xi
k:n, Zk) = p(al |xi

l , Zl). To proceed, let us first calculate
the posterior association probabilities with the additional assumption

p(al |xi
l , Zl) = p(a1→s1

l , . . . , a
ml→sml
l |xi

l , Zl) (5.52)

=
ml∏

j=1

p(a
j→s j
l |xi

l , Zl). (5.53)

According to Bayes’ rule we obtain:

p(al |xi
l , Zl , ml) = p(Zl |al , ml , xi

l ) π
j→s j

l
∑

al
p(Zl |al , ml , xi

l ) π
j→s j

l

(5.54)

with π
j→s j

l denoting the prior probability for associating at time tl the measurement

z j
l to the object indexed by s j :

π
j→s j

l = p(a
j→s j
l |xi

l , ml). (5.55)
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These quantities will be discussed below in greater detail. The nominator can be
rewritten by using an induction argument:

∑

al

p(Zl |al , ml , xi
l ) p(al |xi

l , ml) (5.56)

=
S∑

s1=1

· · ·
S∑

sml=1

ml∏

j=1

p(z j
l |x

i;s j
l ) π

j→s j
l (5.57)

=
S∑

sl=1

· · ·
S∑

sml−1=1

ml−1∏

j=1

p(z j
l |x

i;s j
l ) π

j→s j
l

×
{

S∑

s=1

p(zml
l |xi;s

l ) π
j→s j

l

}
(5.58)

=
ml∏

j=1

S∑

s j=1

p(z j
l |x

i;s j
l ) π

j→s j
l . (5.59)

The posterior association probabilities are thus given by:

p(al |xi
l , Zl , ml) =

ml∏

j=1

N (
z j

l ; Hlx
i;s j
l , R j

l

)
π

j→s j
l

∑S
s=1 N (

z j
l ; Hlx

i;s
l , R j

l

)
π

j→s j
l

(5.60)

=
ml∏

j=1

w
i; j→s j
l , (5.61)

where we used as an abbreviation individual weighting factors w
i; j→s
l denoting the

posterior association probability for associating in the iteration step i at time tl the
measurement z j

l to the object indexed by s. With this result and using

log
(

p(Zl |al , xl)
)

p(al |xi
l , Zk) = log

⎧
⎨

⎩

ml∏

j=1

N (
z j

l ; Hlx
s j
l , R j

l /w
i; j→s j
l

)
⎫
⎬

⎭ ,

(5.62)
we can finally calculate the expectation according to the previous considerations:

∑

al

log
(

p(Zl |al , xl)
)

p(al |xi
l , Zl) (5.63)

=
S∑

s1=1

· · ·
S∑

sml=1

ml∑

j=1

log N (
z j

l ; Hlx
s j
l , R j

l /w
i; j→s j
l

)
(5.64)
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=
S∑

s1=1

· · ·
S∑

sml−1=1

ml−1∑

j=1

S∑

s=1

log N (
zml

l ; Hlxs
l , Rml

l /w
i; j→s
l

)
(5.65)

=
ml∑

j=1

S∑

s=1

log N (
z j

l ; Hlx
s j
l , R j

l /w
i; j→s
l

)
. (5.66)

Since a sum of logarithms is the logarithm of a product, the resulting product of linear
Gaußian likelihood functions is equivalent to a likelihood function characterized by
a “fused” measurement as previously discussed,

p(z∗sl |xs
l ) ∝

ml∏

j=1

N (
z j

l ; Hlxs
l , R j

l /w
i; j→s
l

)
(5.67)

∝ N (
z∗sl ; Hlxs

l , R∗sl

)
. (5.68)

For each object s, the “synthetic” measurement z∗sl obtained by combining all mea-
surements at the corresponding time frame tl according to weighting factors specific
for each object s is given by:

z∗sl =
ml∑

j=1

w
i; j→s
l R j−1

l z j
l (5.69)

R∗s−1

l =
ml∑

j=1

w
i; j→s
l R j−1

l . (5.70)

Inserting these results into the function Q and taking the logarithm of Q, it is propor-
tional to a double product, which is can be represented by a product of S Accumulated
State Densities, according to the discussion in the previous section:

log Q(xk:n; xi
k:n) ∝

S∏

s=1

k∏

l=n

p(z∗sl |xs
l ) p(xs

l |xs
l−1) p(xs

n−1|Zn−1) (5.71)

∝
S∏

s=1

N (
xs

k:n; x∗sk:n, P∗sk:n
)
. (5.72)

The maximization of the function Q is thus obtained by running S independent
Kalman filters on the synthetic measurements followed by Kalman retrodiction. The
resulting expectation vectors x∗k:n = xi+1

k:n are input for calculating the Q(xk:n; xi+1
k:n )

to be maximized in the next step. The EM loop is repeated until convergence. Instead
of enumeration association hypotheses followed by pruning an merging, the EM
philosophy thus tries to solve the association problem by an iteration. Linearity
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in the number of targets and measurements is the main motivation for a further
development and extension of this methodology, which is often called Probabilistic
Multiple Hypothesis Tracking (PMHT).

5.2.3 Discussion of Problems

Unfortunately, compared with alternatives such as the Probabilistic Data Associa-
tion Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost
statistics. Furthermore, the problem of track extraction and deletion is apparently
not yet satisfactorily solved within this framework. Four properties of PMHT are
responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Nar-
cissism, and Local Maxima [13]. Approaches towards a solution for each of these
phenomena and derivations of improved PMHT trackers have been proposed such
as [14]. Moreover, a sequential Likelihood-Ratio (LR) test for track extraction has
been developed, which in the context of the PMHT methodology has the potential
for track extraction [15]. As PMHT provides all required ingredients for a sequential
LR calculation, the LR is thus a by-product of the PMHT iteration process.

Here, he have considered point-source objects. A generalization to extended
objects is straightforward and will in a be discussed in Chap. 8. For introducing
missing and false measurements into the framework, let Ps

D be denoting a detection
probability related to object s, which produces at most one measurement at time tl
per object and sensor. Moreover, z0

l indicates a non-informative measurement rep-
resenting a missing detection, i.e. a measurement with a very large measurement
error. The probability of having ml false measurements is pF (mt ) given by a Pois-
son distribution characterized by a spatial clutter density as before. Let us introduce
a fictitious target s = 0 producing ml ≥ 0 false measurements at time tl , which are
equally distributed in space. The detection probability related to this fictitious target
s = 0 is given by P0

D = 1− pF (0). As before, we assume that the data associations
are independent of each other, which is a critical one since it can be justified as an
approximation only.

For performance improvements, much depends on the proper formulation of prior

probabilities π
j→s j

l under the hypothesis S targets are existent. See [14] for a detailed
discussion.
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Chapter 6
Aspects of Track-to-Track Fusion

In many distributed tracking applications, the quality of a state estimation suffers
from communication bandwidth limitations. In particular, scenarios using wireless
channels such as HF radio, WLAN, or 3G networks experience link breakdowns and
limited capacity constraints. Furthermore, if sensors are involved which have a high
update rate, e.g. sonar or lidar, or return much clutter, e.g. radar, network technologies
are hardly sufficient to cover all needs with respect to a constantly full transfer of
measurements. A common approach for such applications is to transmit only local
tracks instead of measurements. This method has important advantages. First and
foremost, the load on communication channels is much lower because false tracks
and clutter are suppressed already. However, such a paradigm raises the question of
an optimal track-to-track fusion (T2TF) in a central fusion center. The pioneering
paper in this area has been written by Chee Chong [1]

The goal of T2TF is combining locally preprocessed information of individual
sensors optimally, i.e. in a way that is equivalent to fusing all measurements of all
sensors directly (measurement fusion, see the discussion in sect. 3.1.1). It is well
known that this can be achieved for deterministically moving targets or in situations
where the sensor tracks produced at all individual data collection times are available
in the fusion center. Full-rate communication in this sense, however, is impractical in
many applications. We thus propose a distributed Kalman-type processing scheme
for maneuvering targets, which provides optimal track-to-track fusion results at arbi-
trarily chosen instants of time by communicating and combining the local sensor
‘tracks’ referring to this time. Applications can be found in situations with a highly
fluctuating connectivity.

For the sake of simplicity, let us assume conditions where measurement fusion
with Kalman filtering is applicable and S synchronized sensors produce measure-
ments at the same instants of time tl , l = 1, . . . , k denoted by Zl = {zs

l }Ss=1. The
proposed methodology can be directly extended to asynchronous sensors.

W. Koch, Tracking and Sensor Data Fusion, 107
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_6,
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6.1 Full-Rate Communication Fusion

It is well-known that optimal track-to-track fusion, i.e. the full reconstruction of
p(xk |{Zk

s }Ss=1) from the locally produced densities p(xk |Zk
s ), 1 ≤ s ≤ S, is possible

if the local tracks produced at all instants of time tl , l = 1, . . . , k of all sensors
are available in the fusion center. This can easily be seen by considering the joint
probability density:

p(Zs
k, xk |Zk−1

s ) = p(xk |Zk
s ) p(Zs

k |Zk−1
s ) (6.1)

= p(Zs
k |xk) p(xk |Zk−1

s ), (6.2)

which allows the representation of the local likelihood function p(Zs
k |xk)

∝ �s
k(xk; Zs

k) of the sensor s at each time tk using the results of prediction and
filtering up to a factor independent of the object state:

�s
k(xk; Zs

k) ∝
p(xk |Zk

s )

p(xk |Zk−1
s )

. (6.3)

6.1.1 Frenkel Tracklets

Under the conditions where Kalman filtering is applicable, Eq. 6.3 is a quotient of
Gaußians, which can be calculated up to a factor independent of xk according to a
product formula for Gaußians (see Appendix A.5, Eq. A.28, 2nd version):

�s
k(xk; zs

k) ∝
N (

xk; xs
k|k, Ps

k|k
)

N (
xk; xs

k|k−1, Ps
k|k−1

) (6.4)

∝ N (
xk; x∗sk|k, P∗sk|k

)
(6.5)

with x∗sk|k and P∗sk|k given by:

P∗s −1
k|k−1 = Ps −1

k|k − Ps −1
k|k−1 (6.6)

x∗sk|k−1 = P∗sk|k
(
Ps −1

k|k xs
k|k − Ps −1

k|k−1xs
k|k−1

)
. (6.7)

This representation of the local likelihood function �s
k(xk; zs

k) has also been called a
‘tracklet’ according to G. Frenkel [2].
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6.1.2 Tracklet Fusion

Along this line of argumentation and with a repeated use of the product formula, the
joint likelihood function of the measurements of S independent sensors producing
data at the same time tk can be written as:

�k(xk; Zk) ∝
S∏

s=1

N (
x∗sk|k−1; xk, P∗sk|k−1

)
(6.8)

∝ N (
xk; x∗k|k−1, P∗k|k−1

)
(6.9)

with x∗k|k and P∗k|k given by

P∗ −1
k|k−1 =

S∑

s=1

(
Ps −1

k|k − Ps −1
k|k−1

)
(6.10)

x∗k|k−1 = P∗k|k−1

S∑

s=1

(
Ps −1

k|k xs
k|k − Ps −1

k|k−1xs
k|k−1

)
. (6.11)

With this representation of the joint likelihood function �k(xk; Zk) built up by using
the local sensor tracks, formulae for optimal track-to-track fusion are a direct result
of Bayes’ Theorem and the product formula:

p(xk |Zk) = �k(xk; Zk) p(xk |Zk−1)∫
dxk �k(xk; Zk) p(xk |Zk−1)

(6.12)

= N (
xk; xk|k, Pk|k

)
(6.13)

with xk|k and Pk|k given by

P−1
k|k = P−1

k|k−1 + P∗ −1
k|k−1 (6.14)

xk|k = Pk|k
(
P−1

k|k−1xk|k−1 + P∗ −1
k|k−1x∗k|k−1

)
. (6.15)

6.2 Arbitrary Communication Rate Fusion

In many applications, the full communication of all local sensor tracks produced at
all scan times of the individual sensors along with fusing them as previously sketched
is impractical. We therefore propose a distributed Kalman-type processing scheme
that provides optimal track-to-track fusion results at an arbitrarily chosen instant
of time by communicating the local sensor ‘tracks’ referring to this time only and
fusing them in the fusion center.
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More concretely speaking, we derive fusion formulae to correctly reconstruct
the probability densities p(xl |Zk) for an arbitrary instant of time tl from local state
estimates xs

l|k , s = 1, . . . , S, which are calculated by processing data from sensor s
only:

{xs
l|k}Ss=1

track-to-track−−−−−−−→
fusion

p(xl |{Zk
s }Ss=1). (6.16)

At each local sensor processing site, the positions rs , s = 1, . . . , S of all contributing
sensors with reference to the underlying global Cartesian coordinate system are
known. For the sake of notational simplicity, let all sensors be equally aligned and
synchronized with the same data update rate. These assumptions, however, are not
essential and can be relaxed. We furthermore assume that the measurement error
covariance matrices of all individual sensors are known for the local processors
(e.g. the sensor-specific standard deviations in x and y coordinates, σ s

x , σ s
y ). The

detection probability is assumed to be one.
In calculating the local ‘tracks’ xs

l|k , the filtering update with the local sensor
data is identical with the standard Kalman filtering update step, while the predic-
tion and the retrodiction steps must be modified in order to be able to reconstruct
p(xl |{Zk

s }Ss=1) after fusing them according to Eq. 6.23. For a distributed application
of the standard Kalman prediction and retrodiction steps, i.e. if the object evolution
model has to be taken into account, we essentially have to perform a “globalization”
of the covariances. By this term we refer to a local adaptation of the covariance
matrices to the global knowledge of the distributed system. As a result of this glob-
alization, all estimate covariances of the local sensors will be mutually the same. In
consequence, the local ‘tracks’ xs

l|k are not identical with the results of local Kalman
filtering. As becomes clear below, however, the locally optimal tracks can easily be
obtained as by-products when calculating the state estimates xs

l|k .
The proposed distributed Kalman-type processing scheme essentially makes use

of the fact that the sensor measurements do not enter into the update equation for the
estimation error covariance matrices. This means in particular that the covariance
matrices of all sensors can be calculated at each individual sensor site without any
further need of communication (given the relevant parameters of all sensors are
known at each sensor site).

A consequence of this fact is, however, that the proposed optimal processing
scheme cannot be generalized directly to IMM-or PDA-type tracking, where the
covariance matrices are explicitly data-dependent. Moreover, in the proposed dis-
tributed processing scheme for multiple sensor Kalman filtering and retrodiction, the
local ‘tracks’ xs

l|k to be communicated are identical with the state estimates of locally
optimal Kalman filtering and retrodiction based on the measurements of sensor s in
certain limiting cases only.
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6.2.1 Gaußian Product Densities

Let us consider probability density functions p(xl |Zk) that are proportional to a
product of S Gaußians:

p(xl |Zk) = cl|k
S∏

s=1

N (
xl; xs

l|k, Ps
l|k

)
. (6.17)

The normalizing constant cl|k is a direct result of a repeated use of the product formula
for Gaußians (Eq. A.28):

c−1
l|k =

S∏

s=1

∫
dxl N (

xl; xs
l|k, Ps

l|k
)

(6.18)

=
S−1∏

s=1

N (
x∗sl|k; xs+1

l|k , P∗sl|k + Ps+1
l|k

)
, (6.19)

where the parameters x∗sl|k and P∗sl|k are given by

P∗s −1
l|k =

s−1∑

i=1

Pi −1
l|k

x∗sl|k = P∗s −1
l|k

s−1∑

i=1

Pi −1
l|k xi

l|k .

In the sequel, as well as in most applications, it is unnecessary to calculate the
normalization constant cl|k explicitly.

By virtue of the same product formula, probability densities defined by Gaußian
products as in Eq. 6.17 can be transformed into a single Gaußian:

p(xl |Zk) = cl|k
S∏

s=1

N (
xl; xs

l|k, Ps
l|k

)
(6.20)

= N (
xl; xl|k, Pl|k

)
, (6.21)

with an expectation vector xl|k and a covariance matrix Pl|k obtained by ‘fusing’ xs
l|k

and Ps
l|k , s = 1, . . . , S according to the formulae:

P−1
l|k =

S∑

s=1

Ps −1
l|k (6.22)
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xl|k = Pl|k
( S∑

s=1

Ps −1
l|k xs

l|k
)
. (6.23)

‘Convex combinations’ of this type are fundamental in almost all data fusion appli-
cations (see e.g. [3, Chap. 12]).

This simple observation leads to the question whether it is possible to calculate
at least the expectation vectors xs

l|k by using the measurements of sensor s only,
i.e. in a way that can be done locally at each node of a distributed sensor network.
As previously stated, under conditions where Kalman filtering is appropriate for
tracking, the covariance matrices Ps

l|k can be calculated locally for all sensors without
exchanging sensor data, provided the measurement error covariance matrices of each
individual sensor are known, or if they can be reconstructed at each node of the sensor
network.

If the locally produced ‘tracks’ xs
k|k are sent at some arbitrary instant of time

tk to a fusion node, they can be fused according to Eq. 6.2, leading to the density
p(xk |Zk) from which optimal state estimates based on all sensor measurements of
the sensors s = 1, . . . , S can be derived. According to this processing scheme, the
fusion step does not have to be performed at each sensor scan time in order to obtain
an optimal result. The fusion result xk|k , Pk|k may or may not be communicated to the
individual nodes of the sensor network. The proposed distributed processing scheme
is thus well-suited for applications where reduced or arbitrary rate communication
is to be taken into account.

6.2.2 Distributed Filtering Update

Let the distributed multiple sensor fusion procedure be initiated by

p(x1|Z0) = N (
x1; x1|0, P1|0

)
(6.24)

∝
S∏

s=1

N (
x1; xs

1|0, Ps
1|0

)
(6.25)

with xs
1|0 = x1|0, Ps

1|0 = SP1|0. The iterative calculation of the probability densities
involved is thus started by distributing an initial track x0|0 obtained from initial
measurements in the sensor network along with the covariance matrix P1|0.

The expectation vectors xs
k|k , s = 1, . . . , S are obtained by a simple Kalman

update provided the prediction density p(xk |Zk−1) also obeys the structure previ-
ously discussed,

p(xk |Zk−1) ∝
S∏

s=1

N (
xk; xs

k|k−1, Ps
k|k−1

)
. (6.26)

http://dx.doi.org/10.1007/978-3-642-39271-9_12
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That this representation can actually be achieved is shown below. The joint likelihood
function p(Zk |xk) = �k(Zk |xk) given by:

�k(xk;Zk) =
S∏

s=1

�s
k(xk; zs

k) (6.27)

is essential for the filtering update, with �s
k(xk; zs

k) = N (
zs

k; Hs
kxk, Rs

k

)
. Bayes

Theorem and a repeated use of the product formula (Eq. A.28) yield:

p(xk |Zk) = �k(Zk |xk) p(xk |Zk−1)∫
dxk �k(Zk |xk) p(xk |Zk−1)

(6.28)

∝
∏S

s=1 �s
k(xk; zs

k) N (
xk; xs

k|k−1, Ps
k|k−1

)

∫
dxk

∏S
s=1 �s

k(xk; zs
k) N (

xk; xs
k|k−1, Ps

k|k−1

) (6.29)

∝
S∏

s=1

N (
xk; xs

k|k, Ps
k|k

)
(6.30)

with the parameters xs
k|k and Ps

k|k , s = 1, . . . , S given by the standard Kalman update
equations:

xs
k|k = xs

k|k−1 +Ws
k|k−1(z

s
k −Hs

kxs
k|k−1) (6.31)

Ps
k|k = Ps

k|k−1 −Ws�
k|k−1Ss −1

k|k−1Ws
k|k−1 (6.32)

with the corresponding Kalman gain and innovation covariance matrices

Ss
k|k−1 = Hs

kPs
k|k−1Hs�

k + Rs
k (6.33)

Ws
k|k−1 = Ps

k|k−1Hs�
k Ss −1

k|k−1. (6.34)

6.2.3 Distributed Prediction Update

As all sensors observe the same target a standard Kalman filter prediction applied to
the local tracks would implicate cross-correlations and therefore the product repre-
sentation from above would not hold anymore. As a consequence the prediction step
has to be modified in order to obtain the product representation. To this end, we first
note that the filtering probability density function from time tk−1 can be rewritten in
the following way.

p(xk−1|Zk−1) ∝
S∏

s=1

N (
xk−1; xs

k−1|k−1, Ps
k−1|k−1

)
(6.35)
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= N (
xk−1; 1

S

S∑

s=1

xs
k−1|k−1, Pk−1|k−1

)
, (6.36)

=
S∏

s=1

N (
xk−1; xs

k−1|k−1, SPk−1|k−1
)
, (6.37)

where the parameters xs
k−1|k−1 and the global filtering covariance Pk−1|k−1 are given

by:

xs
k−1|k−1 = SPk−1|k−1Ps −1

k−1|k−1xs
k−1|k−1 (6.38)

Pk−1|k−1 =
(

S∑

s=1

Ps −1
k−1|k−1

)−1

. (6.39)

As the Markovian propagation density p(xk |xk−1) can be written as:

p(xk |xk−1) = N (
xk; Fk|k−1xk−1, Dk|k−1

)
(6.40)

∝ N (
xk; Fk|k−1xk−1, SDk|k−1

)S
, (6.41)

we obtain for the prediction density p(xk |Zk−1):

p(xk |Zk−1) =
∫

dxk−1 p(xk |xk−1) p(xk−1|Zk−1) (6.42)

∝
∫

dxk−1

S∏

s=1

N (
xk; Fk|k−1xk−1, SDk|k−1

) N (
xk−1; xs

k−1|k−1, SPk−1|k−1
)
.

(6.43)

A repeated use of the product formula for Gaussians now yields

p(xk |Zk−1) ∝
∫

dxk−1

S∏

s=1

N (
xk; x̃s

k|k−1, P̃k|k−1
) N (

xk−1; W̃k−1xk + z̃s
k−1, R̃k−1

)
,

(6.44)

where the following abbreviations were used:

x̃s
k|k−1 = Fk|k−1xs

k−1|k−1 (6.45)

P̃k|k−1 = S
(

Fk|k−1Pk−1|k−1FT
k|k−1 + Dk|k−1

)
(6.46)

z̃s
k−1 = xs

k−1|k−1 − W̃k−1x̃s
k|k−1 (6.47)

W̃k−1 = SPk−1|k−1FT
k|k−1P̃

−1
k|k−1. (6.48)

P̃k|k−1 = SPk−1|k−1 − W̃k−1P̃k|k−1W̃
T
k−1 (6.49)
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One might say that Pk−1|k−1 is the global filtering covariance, while P̃k|k−1 may be
seen as the globalized local prediction covariance. Obviously, (6.44) can be written
as

p(xk |Zk−1) = �k|k−1

S∏

s=1

N (
xk; x̃s

k|k−1, P̃k|k−1
)

(6.50)

by introducing the function �k|k−1 defined by

�k|k−1 =
∫

dxk−1

S∏

s=1

N (
xk−1 − W̃k−1xk; z̃s

k−1, R̃k−1
)
. (6.51)

Again, applying the product formula repeatedly along the product within �k|k−1
yields

�k|k−1 =
S−1∏

s=1

N (
z̃s+1

k−1;
1

s

s∑

i=1

z̃i
k−1,

(
1+ 1

s

)
R̃k−1

)

·
∫

dxk−1 N (
xk−1 − W̃k−1xk; 1

S

S∑

i=1

z̃i
k−1,

1

S
R̃k−1

)

︸ ︷︷ ︸
=1

. (6.52)

As one can see, the integration term becomes trivial, as it is over a single Gaussian.
As a result, the function �k|k−1 is independent of the current state variable xk and we
obtain the desired product representation:

p(xk |Zk−1) ∝
S∏

s=1

N (
xk; x̃s

k|k−1, P̃k|k−1
)
. (6.53)

Figure 6.1 illustrates under which conditions several known track-to-track fusion
approaches (Centralized Kalman Filtering and Retrodiction, Local Kalman Track
Fusion, Local Fraenkel Tracklet Fusion, and Local Kalman Track Fusion) appear as
limiting cases of the proposed exact distributed Kalman filtering scheme.

Illustration of the Processing Flow

The first processing steps for each sensor (initiation, filtering, local prediction)
are nearly identical to standard local Kalman filtering. We recall that in the local
prediction step a ‘relaxed’ dynamics covariance matrix is to be used (SDk|k−1). It is
essential to the suggested approach that the individual sensor models and the common
target dynamics model be known at each network node (global properties). After the
local filtering, the local covariances are globalized. In this step, access to the global
properties is required. The final prediction densities result from an application of
the relaxed evolution model on the globalized densities. The processing loop is thus
closed and restarts with a local filtering step.
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Fig. 6.1 Interrelation of exact distributed Kalman filtering to existing processing schemes

Whenever it is required, a fusion step can be performed for obtaining fused pre-
diction and filtering results, which reproduces the results of full communication-rate
measurement fusion at this time, i.e. as if all measurements or local tracks were
communicated to the fusion center.

6.2.4 Distributed Retrodiction Update

Essentially the same considerations are valid for distributed retrodiction, if for the
retrodicted probability density p(xl |Zk) a product representation exists,

p(xl |Zk) ∝
S∏

s=1

N (
xl; xs

l|k, Ps
l|k

)
, l < k, (6.54)

where the retrodicted local state estimates xs
l|k can be calculated by processing the

measurements of sensor s only. To show that this is possible, we assume such a
representation for step l + 1, where l + 1 ≤ k, and derive it for step l. At first,
standard probability reasoning yields:



6.2 Arbitrary Communication Rate Fusion 117

p(xl |Zk) =
∫

dxl+1 p(xl , xl+1|Zk) =
∫

dxl+1 p(xl |xl+1,Zk) p(xl+1|Zk).

(6.55)
For the integration kernel p(xl |xl+1,Zk), we obtain after applying Bayes’ rule:

p(xl |xl+1,Zk) = p(xl |xl+1,Zl) = p(xl+1|xl) p(xl |Zl)∫
dxl p(xl+1|xl) p(xl |Zl)

. (6.56)

As in the prediction step, we rewrite the density p(xl |Zl). Because of the derivations
above, a product representation may be assumed for it. Therefore, by the product
formula it holds

p(xl |Zl) ∝
S∏

s=1

N (
xl; xs

l|l , Ps
l|l

)
(6.57)

∝ N (
xl; 1

S

S∑

s=1

xs
l|l , Pl|l

)
(6.58)

∝
S∏

s=1

N (
xl; xs

l|l , SPl|l
)
, (6.59)

where we used the following abbreviations:

xs
l|l = SPl|lPs −1

l|l xs
l|l (6.60)

Pl|l =
(

S∑

s=1

Ps −1
l|l

)−1

. (6.61)

In the same way, we modify the product representation for time tl+1 and obtain

p(xl+1|Zk) ∝
S∏

s=1

N (
xl+1; xs

l+1|k, SPl+1|k
)
. (6.62)

Now, we insert (6.59) into (6.56). This enables us to apply the product formula again:

p(xl |xl+1,Zl) ∝
S∏

s=1

N (
xl; xs

l|l , SPl|l
) N (

xl+1; Fl+1|lxl , SDl+1|l
)

(6.63)

∝ N (
xl; hs

l|l(xl+1), Rl|l
)
, (6.64)

by using the parameters
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hs
l|l(xl+1) = xs

l|l +Wl|l+1

(
xl+1 − x̃s

l+1|l
)

(6.65)

Rl|l = S
(

Pl|l −Wl|l+1Pl+1|lW
�
l|l+1

)
(6.66)

Wl|l+1 = SPl|lF�l+1|lPl+1|l (6.67)

Inserting p(xl |xl+1,Zk) into (6.55) and applying the product formula again repeat-
edly yields

p(xl |Zk) ∝ �l|k
S∏

s=1

N (
xl; x̃s

l|k, P̃l|k
)
, (6.68)

where the parameters x̃s
l|k , P̃l|k are given by the modified Rauch-Tung-Striebel update

equations for Kalman retrodiction

x̃s
l|k = xs

l|l +Wl|l+1(x
s
l+1|k − x̃s

l+1|l) (6.69)

P̃l|k = S
(

Pl|l +Wl|l+1(Pl+1|k − Pl+1|l)W
s�
l|l+1

)

and a normalizing function �l|k , which is defined by

�l|k(xl) =
∫

dxl+1

S∏

s=1

N (
xl+1 − Vl|l+1xl; ys

l|l+1, Yl|l+1
)

(6.70)

with the abbreviations

ys
l|l+1 = xs

l+1|k − Vl|l+1x̃s
l|k, (6.71)

Yl|l+1 = S
(

Pl+1|k − Vl|l+1P̃l|kV�l|l+1

)
, (6.72)

Vl|l+1 = SPl+1|kW
�
l|l+1P̃

−1
l|k . (6.73)

If we use the product formula along the terms in �l|k , we obtain

�l|k =
S−1∏

s=1

N (
ys+1

l|l+1;
1

s

s∑

i=1

yi
l|l+1, (1+ 1

s
)Yl|l+1

)

·
∫

dxl+1 N (
xl+1 − Vl|l+1xl; 1

S

S∑

i=1

yi
l|l+1,

1

S
Yl|l+1

)
. (6.74)

As in the prediction step the integration term becomes trivial, as it is over a single
Gaussian distribution. Therefore, the normalizing function �l|k does not depend on
xl , and we have
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p(xl |Zk) ∝
S∏

s=1

N (
xl; x̃s

l|k, P̃l|k
)
. (6.75)

6.3 Discussion of a Simulated Example

Figure 6.2a shows a simulated trajectory of a maneuvering air target defined by x(t)=
v2

q sin(
q
2v

t), y(t)= 2x(t), v = 300 m
s , q = 4g. It is observed by two typical mid-

range radars located at (−50, 0)km and (0, 50)km (scan period: T=5 s, measurement
error standard deviations: σr = 20 m (range), σφ = 0.2◦ (azimuth). This is the same
simulated scenario as considered in Sect. 5.1.

On the coarse-grained time scale, defined by tk = 2kT , k = 1, 2, . . ., the figure
also shows the position estimates and the corresponding estimation error ellipses of
the local sensor tracks as well as the results of measurement fusion, standard track-
to-track fusion, and the results of the proposed new method. To better understand the
latter ones, Fig. 6.2b shows a magnification of a characteristic detail of Fig. 6.2a. As
expected, the exact distributed Kalman filtering is identical with measurement fusion
and somewhat better than local Kalman track fusion. Nevertheless, we can be sure
to be able to use a correct distributed data fusion scheme at arbitrary communication
times, which is equivalent to measurement fusion.

Figures 6.3 and 6.4 show numerical results based on 1,000 Monte-Carlo-runs.
While in Fig. 6.3 full-rate communication is assumed, i.e. the local tracks are fused
at each scan, the local tracks of each 4th scan are fused in the situation displayed in
Fig. 6.4 (reduced-rate communication). The lines denote the Minimum Mean Squared
Error (MMSE), the shadowed areas indicate the corresponding mean tracking error
(square-root of the error covariance matrix). The figures compare centralized Kalman
filtering (i.e. measurement fusion) with exact distributed Kalman filtering, relaxed
local Kalman track fusion, local Fraenkel tracklet fusion, and local Kalman track
fusion. As expected, measurement fusion and exact distributed Kalman filtering are
numerically identical in both figures.

In the case of full-rate communications, also local Fraenkel tracklet fusion is iden-
tical with measurement fusion, while for reduced-rate communications differences
occur in the MMSE as well as in the covariance. As reported in the literature, the
local Kalman track fusion is over-optimistic in both cases. This effect, however, is
not very pronounced. An astonishing result is that relaxed local track fusion is close
the exact distributed Kalman track fusion.

These observations are typical in the sense that we obtain very similar tendencies
when the target dynamics parameters, the sensor parameters, and the sensor-to-target
geometries are varied. See [4] for a more detailed discussion.

http://dx.doi.org/10.1007/978-3-642-39271-9_5
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object trajectory. b magnification of a detail
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Fig. 6.3 Numerical results (1000 runs): full-rate communication
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Sensor Data Fusion:

Selected Applications



Chapter 7
Integration of Advanced Sensor Properties

Advanced signal processing techniques exploit even sophisticated physical phenom-
ena of objects of interest and are fundamental to modern sensor system design. In
particular, they have a direct impact on the quantitative and qualitative properties of
the sensor data produced and to be fused. This makes a more subtle modeling of the
statistical characteristics of the sensor output inevitable. Via constructing appropri-
ate sensor models based on a deeper insight into the physical and technical sensor
design principles, the performance of tracking and sensor data fusion systems can
be significantly improved.

Chapter 7 is focused on selected physical and technical properties of sensor sys-
tems that are used in real-world ISR applications (Intelligence, Surveillance, and
Reconnaissance), such as those discussed in [1, Chap. 20]. The analysis of charac-
teristic examples shows that context information on particular performance features
of the sensor systems involved is useful, in some cases even inevitable, to fulfill an
overall ISR task. The Bayesian methodology discussed in Part I is wide and flexible
enough to integrate more sophisticated, appropriately designed, but still mathemat-
ically tractable likelihood functions into the process of Bayesian Knowledge Prop-
agation. The discussed examples cover finite sensor resolution, Doppler blindness,
and main-lobe jamming.

The possibility to exploit even negative sensor evidence is a consequence that is
directly connected with the use of more advanced sensor models. This notion covers
the conclusions to be drawn from expected, but actually missing sensor measurements
for improving the state estimates of objects under track. Even a failed attempt to detect
an object of interest is a useful sensor output that is interpretable only if a consistent
sensor modeling is available.

7.1 Finite Sensor Resolution

Air surveillance in a dense object/dense clutter environment is a difficult task that
requires refined data association and tracking techniques. In this context, tracking

W. Koch, Tracking and Sensor Data Fusion, 127
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_7,
© Springer Verlag Berlin Heidelberg 2014
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for maneuvering groups of objects that join, operate closely spaced for a while, and
split off again is confronted with mainly three problems:

1. Sensor Resolution: Due to the limited resolution of every radar sensor, closely-
spaced targets will continuously transition from being resolved to irrresolved
and back again. The importance of resolution phenomena has been addressed in
Ref. [2].

2. Data Association: Ambiguous data-to-object associations due to overlapping
expectation gates are an inherent problem for formations, which is made even
more difficult by high false return densities and missed detections.

3. Maneuvers: Often distinct maneuvering phases can be identified, as even agile
objects will not always make use of their maneuvering capability. Nevertheless,
abrupt turns may occur, e.g. if a formation dissolves into well-separated objects.

These problems require the use of multiple hypothesis, multiple model tracking
methods as discussed in Part I. The multiple hypothesis character mirrors the uncer-
tain origin of the data, while the multiple models refer to the different maneuvering
phases (see discussion in Sect. 8.1). In Sect. 2.3.3, we briefly sketched a model pro-
viding a qualitative description of resolution phenomena in terms of the resolution
probability, by which potentially irresolved measurements can be handled within
the Bayesian framework [3]. The data association problem is covered by a likeli-
hood function p(Zk, mk |xk) that statistically describes what a set of mk observations
Zk = {z j

k }mk
j=1 can say about the joint state xk of the objects to be tracked. Due to

the Total Probability Theorem, it can be written as a sum over all possible, mutually
exclusive, and exhaustive data interpretations jk :

p(Zk, mk |xk) =
∑

jk

p(Zk, mk, jk |xk) (7.1)

=
∑

jk

p(Zk |mk, jk, xk) p(mk | jk, xk) p( jk |xk). (7.2)

Generally, the formulation of such likelihood functions is by no means a trivial task.
In many practical cases, however, a given multiple-object tracking problem can be
decomposed into independent sub-problems of reduced complexity. The example
below is practically important but can still be handled more or less rigorously.

7.1.1 A Radar Resolution Model

For the sake of conciseness, we confine the discussion to non-imaging radar sensors.
With some modifications, the results can also be transferred to infrared or electro-
optical sensors, for example. Let us consider a medium range radar producing range
and azimuth measurements of an object formation consisting of two targets. For
physical reasons the resolution in range, azimuth, and range-rate will be independent

http://dx.doi.org/10.1007/978-3-642-39271-9_8
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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from each other. In particular, range and cross-range resolution differ significantly
in many radar applications. Therefore, the resolution performance of the sensor is
expected to depend strongly on the current sensor-to-group geometry and the relative
orientation of the targets within the group. The sensor’s resolution capability is also
determined by the particular signal processing techniques used and the random target
fluctuations. As a complete description is rather complicated, we have to look for a
simplified, but qualitatively correct and mathematically tractable model. In any case,
the radar resolution capability in range and azimuth is limited by the corresponding
band- and beam-width. These radar-specific parameters must explicitly enter into
any processing of potentially irresolved plots. The typical size of resolution cells in a
medium distance is about 50 (range) and 500 m (cross range). As in target formations
the mutual distance may well be 50–500 m or even less, the limited sensor resolution
is a real problem in object tracking.

Centroid Measurements

Under the hypothesis jk = Eii
k assuming that the radar plot zi

k is an irresolved
measurement belonging to two targets with a joint vector xk = (x1�

k , x2�
k )�, the

conditional likelihood is given by:

p(zi
k |xk) = N (

zi
k; Hg

kxk, Rg
k

)
, (7.3)

where the measurement matrix Hg
k describes a centroid measurement of the group

center, characterized by a corresponding measurement error covariance matrix Rg
k :

Hg
kxk = 1

2 Hk(x1
k + x2

k), (7.4)

where (rk, ϕk)
� = Hkxi

k , i = 1, 2, is the measurement of the underlying tracking
problem, where resolution phenomena are irrelevant.

Resolution Probability

Resolution phenomena will be observed if the range and angular distances between
the objects are small compared with αr , αϕ : Δrk/αr < 1 and Δϕk/αϕ < 1. The
objects within the group are resolvable if Δrk/αr � 1 or Δϕk/αϕ � 1. Furthermore,
we expect a narrow transient region. A more quantitative description is provided by
introducing a resolution probability Pr = Pr (Δr,Δϕ) depending on the sensor-
to-group geometry. It can be expressed by a corresponding probability of being
irresolvable Pr = 1−Pu(Δrk,Δϕk). Let us describe Pu by a Gaussian-type function
of the relative range and angular distances [3]:

Pu(Δrk,Δϕk) = exp
[
− log 2(

Δrk
αr

)2
]

exp
[
− log 2(

Δϕk
αϕ

)2
]
. (7.5)

Obviously, this simple model for describing resolution phenomena reflects the pre-
vious, more qualitative discussion. We in particular observe that Pu is reduced by
a factor of 2 if Δrk is increased from zero to αr . Due to the Gaussian character of
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its dependency on the state vector xk the probability Pu can formally be written in
terms of a normal density:

Pu = exp
[
− log 2

(
Hk(x1

k − x2
k)

)�A−1(Hkx1
k −Hkxk

2)
]

(7.6)

= exp
[
− log 2 (Hu

k xk)
�A−1Hu

k xk

]
. (7.7)

Here the resolution matrix A is defined by A = diag(α2
r , α2

ϕ), while the quantity
Hu

k xk = Hk(x1
k − x2

k) can be interpreted as a measurement matrix for distance mea-
surements. Up to a constant factor the resolution probability Pu(xk) might formally
be interpreted as the fictitious likelihood function of a Zero measurement for the dis-
tance Hk(x1

k − x2
k) between the objects with a corresponding fictitious measurement

error covariance matrix Ru defined by the resolution parameters αr , αϕ .

Pu(xk) = |2πRu |−1/2 N (
O; Huxk, Ru

k

)
. (7.8)

with Ru
k = A

2 log 2 = 1
2 log 2 diag[α2

r , α2
ϕ]. According to a first order Taylor expansion in

analogy to the discussion in Sect. 2.3.1, the resolution matrix describing the resolution
cells in Cartesian coordinates proves to be time dependent and results from the matrix
A by applying dilatation and a rotation. In the same way as the Cartesian measurement
error ellipses, the Cartesian “resolution ellipses” depend on the target range. Suppose
we have αr = 100 m and αϕ = 1◦. We then expect that the resolution in a distance
of 50 km is about 100 (range) and 900 m (cross range). Since for military targets in
a formation their mutual distance may well be 200–500 m or even less, resolution is
a real target tracking problem.

d1

d2

ra ra
rb rb

r

R

Φa Φa

Φb
Φb

Fig. 7.1 Radar resolution phenomena: simulated object group passing a radar sensor (left: both
targets within same range resolution cell; right: both targets within same azimuth resolution cell)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Fig. 7.2 Effect of the underly-
ing sensor-to-group geometry:
resolution probability depend-
ing on the distance between
group center and radar for
R = 0, 10, 30, 60 km. r ′
denotes the radial speed

Pu = Pu(r;R): Echelon Formation
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Impact of Sensor-to-Object Geometry

We expect that the resolution performance of the sensor is highly dependent on the
current sensor-to-group geometry and the relative orientation of the targets within the
group. As an example, let us consider the simplified situation in Fig. 7.1. A formation
with two targets is passing a radar. We here consider an echelon formation. R is the
minimum distance of the group center from the radar.

Figure 7.2 shows the resulting probability Pu(r; R) parameterized by R = 0,
10, 30, 60 km as a function of the distance r between the formation center and the
radar. The solid lines refer to a formation approaching the radar (ṙ < 0), the dashed
lines refer to ṙ > 0. For R �= 0, both flight phases differ substantially. Near R, the
probability Pu varies strongly (0.85→ 0.15). For a radial flight (R = 0), we observe
no asymmetry and Pu is constant over a wide range (r � rc).

7.1.2 Resolution-Specific Likelihood

For a cluster of two closely-spaced objects moving in a cluttered environment five
different classes of data interpretations exist [3]:

1. Eii
k , i = 1, . . . , mk : Both objects have not been resolved but detected as a group

with probability Pu
D , zi

k ∈ Zk representing the centroid measurement; all remain-
ing returns are false (mk data interpretations):
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p(Zk |mk, Eii
k , xk) = N (z j

k ;Hg
kxk, Rg

k)

|FoV|mk−1 (7.9)

p(mk |Eii
k , xk) = pF (nk − 1) (7.10)

P(Eii
k |xk) = 1

mk
Pu(xk) Pu

D . (7.11)

With Pu as represented in Eq. 7.8, p(Zk, mk, Eii
k |xk) is up to a constant factor

given by:

p(Zk, mk, Eii
k |xk) ∝ N

( (
zi

k
0

)
;
(

Hg
k

Hu
k

)
xk,

(
Rg

k O
O Ru

k

) )
. (7.12)

Hence, under the hypothesis Eii
k two measurements are to be processed: the (real)

plot zi
k of the group center Hg

kxk = 1
2 Hk(x1

k + x2
k) and a (fictitious) measurement

‘zero’ of the distance Hu
k xk = Hk(x1

k−x2
k) between the objects. We can thus speak

of ‘negative’ sensor information [4], as the lack of a second target measurement
conveys information on the target position. In the case of a resolution conflict,
the relative target distance must be smaller than the resolution.

2. E0
k : Both objects were neither resolved nor detected as a group, so all returns in

Zk are thus assumed to be false (one interpretation hypothesis):

p(Zk, mk |E0
k , xk) = Pu(xk) (1− Pu

D) pF (mk) (7.13)

P(E0
k |xk) = Pu(xk) (1− Pu

D). (7.14)

In analogy to the previous considerations, we can write up to a constant factor:

p(Zk, mk, E0
k |xk) ∝ N (

0; Hu
k x, Ru

k

)
. (7.15)

This means that even under the hypothesis of a missing irresolved plot, at least
a fictitious distance measurement 0 is processed with a measurement error given
by the sensor resolution.

3. Ei j
k , i, j = 1, . . . , mk , i �= j : Both objects were resolved and detected, zi

k, z j
k ∈

Zk are the measurements, mk − 2 returns are false (mk(mk − 1) interpretations):

p(Zk |mk, Ei j
k , xk) = N (zi

k;Hkx1
k, Rk) N (z j

k ;Hkx2
k, Rk)

|FoV|mk−2 (7.16)

p(mk |Ei j
k , xk) = pF (mk − 2) (7.17)

P(Ei j
k |xk) =

(
1−Pu(xk )

)

mk (mk−1)
P2

D. (7.18)

According to the factor 1 − Pu(xk) = 1− |2πRu | 12 N (
0; Hu

k x, Ru
k

)
the likeli-

hood function becomes a mixture, in which negative weighting factors can occur.
Nevertheless, the coefficients sum up to one; the density p(xk |Zk) is thus well-
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defined. This reflects the fact that in case of a resolved group the targets must
have a certain minimum distance between each other which is given by the sensor
resolution. Otherwise they would not have been resolvable.

4. Ei0
k , E0i

k , i = 1, . . . , mk : Both objects were resolved but only one object was
detected, zi

k ∈ Zk is the measurement, mk − 1 returns in Zk are false (2mk

interpretations):

p(Zk, mk |Ei0
k , xk) = |FoV|1−mk N (zi

k; Hkx1
k, Rk) pF (mk − 1) (7.19)

P(Ei0
k |xk) = 1

mk

(
1− Pu(xk)

)
PD (1− PD). (7.20)

5. E00
k : The objects were resolved, but not detected; all mk plots in Zk are false (one

interpretation):

p(Zk, mk |E00
k , xk) = |FoV|−mk pF (mk) (7.21)

P(E00
k |xk) =

(
1− Pu(xk)

)
(1− PD)2. (7.22)

Since there exist (mk + 1)2 + 1 interpretation hypotheses, the ambiguity for even
small clusters of closely-spaced objects is much higher than in the case of well-
separated objects (mk + 1 each). This means that only small groups can be handled
more or less rigorously. For larger clusters (raids of military aircraft, for instance)
a collective treatment seems to be reasonable until the group splits off into smaller
sub-clusters or individual objects (see the discussion in Sect. 3.3.3).

Up to a factor 1
mk ! ρ

mk−2
F |FoV|−mk e−|FoV|ρF independent of xk , by using Eq. 2.35,

the likelihood function of potentially irresolved sensor data in a clutter background,

p(Zk, mk |xk) = p(Zk, mk, E0
k )+

mk∑

i, j=0

p(Zk, Ei j
k , mk |xk), (7.23)

is proportional to a sum of Gaußians and a constant:

p(Zk, mk |xk) ∝ ρ2
F (1− PD)2(1− Pu(xk)

)+ ρF (1− Pu
D)Pu(xk)

+Pu
DρF Pu(xk)

mk∑

i=1

N (zi
k; Hg

kxk, Rg
k)

+ρF PD(1− PD)
(
1− Pu(xk)

) mk∑

i=1

{N (zi
k; Hkx1

k, Rk)+ N (zi
k; Hkx2

k, Rk)
}

+P2
D

(
1− Pu(xk)

) mk∑

i, j=1
i �= j

pi j
k (xk) N (zi

k; Hkx1
k, Rk) N (z j

k ; Hkx2
k, Rk).

(7.24)

http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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7.1.3 A Formation Tracking Example

If the spatial false return density is not too high, JPDA-type approximations [5] can be
applied (JPDA: Joint Probabilistic Data Association). According to this philosophy,
the joint state mixture density p(x1

k, x2
k |Zk) resulting from the likelihood function

previously discussed is approximated by a single Gaussian with the same expectation
vector and covariance matrix as the mixture p(x1

k, x2
k |Zk) (moment matching [5, p. 56

ff]). Objects moving closely-spaced for some time irreversibly lose their identity if
no other information is available such as measurements of object attributes [16].
When they dissolve again, a unique track-to-target association is impossible. It is
thus reasonable to deal with densities that are symmetric under permutations of the
individual targets. Thus, no statistically relevant information is lost and the filter
performance remains unchanged, while the mean number of hypotheses involved
may be significantly reduced. Within the framework of JPDA-type approximations,
this has the following effect: Before combining two components of the mixture via
moment matching, we check if the components are more ‘similar’ to each other when
the target indices are switched. If this is the case, we combine them instead. These
considerations are also a useful and simple means to avoid track coalescence.

Figure 7.3 shows a set of data from a typical medium-range radar. The scan
interval is 5 s and the detection probability about 80 %. The example clearly shows
that resolution must be taken into account as soon as the targets begin to move

Formation Flight: Raw Data
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Fig. 7.3 Partly irresolved aircraft formation: accumulated raw data of a mid-range radar
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JPDAF: Perfect Detection Assumed
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Fig. 7.4 Tracking of an aircraft formation: filtering results (JPDA, no resolution model)

closely-spaced. Figures 7.4 and 7.5 show the estimation error ellipses for two targets
solid and dashed lines resulting from JPDA filtering. While in Fig. 7.4 perfect sensor
resolution was assumed (wrongly!), in Fig. 7.5 the previously discussed resolution
model was used. JPDA filtering without considering resolution phenomena evidently
fails after a few frames, as indicated by diverging tracking error ellipses. This has
a simple explanation: without modeling the limited sensor resolution, an actually
produced irresolved plot can only be treated as a single target measurement along
with a missed detection. In consequence, the related covariance matrices increase in
size. This effect is further intensified by subsequent irresolved returns. If hypotheses
related to resolution conflicts are taken into account, however, the tracking remains
stable. The error ellipses in Figs. 7.4 and 7.5 have been enlarged to make their data-
driven adaptivity more visible. The ellipses shrink, for instance, if both targets are
actually resolved in a particular scan. The transient enlargement halfway during the
formation flight is caused by a crossing target situation.

7.1.4 Resolution: Summary of Results

MHT filtering with explicit handling of resolution conflicts can successfully be
applied to real radar data [6]. The main conclusions of extensive simulations based
on exemplary scenarios and typical radar parameters are [7]:



136 7 Integration of Advanced Sensor Properties

Fig. 7.5 Tracking of an
aircraft formation: filtering
results (with resolution model)

JPDAF: Imperfect Detection Assumed
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1. For objects with overlapping expectation gates and potentially irresolved mea-
surements, MHT filters that handle data association conflicts in combination with
resolution phenomena by far outperform more conventional trackers (monohy-
pothesis approximations or filters ignoring imperfect resolution). Much higher
false return densities and significantly lower detection probabilities can be toler-
ated, the tracks are more accurate, the correlation gates are reduced in size, and
the critical phases of joining and splitting-off are supported.

2. Provided only primary radar data are available, information on the object identity
rapidly fades out while the objects move closely-spaced and produce potentially
irresolved plots. After splitting off again, a unique track-to-target correlation
is no longer possible. We may thus drop the notion of identity and deal with
indistinguishable targets. By this, no statistically relevant information is lost, i.e.
the number of hypotheses involved can significantly be reduced without affecting
the track accuracy.

3. Whether an object group is resolvable or not is highly dependent on the specific
sensor-to-object geometry considered and on the position of the objects relative
to each other. This phenomenon is adaptively taken into account by the resolution
model used. As the correct association hypotheses can reliably be reconstructed
by retrodiction techniques at the expense of some delay, the resolution model may
in a retrospective view provide information on the relative position of the targets
within the formation.

4. Besides the ambiguity due to irresolved or missed detections, overlapping corre-
lation gates, and false returns, scenarios with highly maneuvering targets are also
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ambiguous with respect to the object evolution model assumed to be in effect.
Hypotheses related to resolution conflicts fit well into the more complex frame-
work of IMM-MHT and provide performance improvements over more simplified
dynamics models.

Further Reading

A detailed discussion of this approach has been published in:

• W. Koch, G. van Keuk
Multiple hypothesis track maintenance with possibly unresolved measurements.
IEEE Trans. Aerosp. Electron. Syst. 33(3), 883–892, 1997.
An extended version with results from various related conference papers of the
author has been published as a handbook chapter in W. Koch. Target tracking,
Chap. 8, in Advanced Signal Processing: Theory and Implementation for Sonar,
Radar, and Non-Invasive Medical Diagnostic Systems, ed. by S. Stergiopoulos.
CRC Press, Boca Raton (2001).

Abstract
In surveillance problems, dense clutter/dense target situations call for refined data
association and tracking techniques. In addition, closely-spaced targets may exist
which are not resolved. This phenomenon has to be considered explicitly in the
tracking algorithm. We concentrate on two targets that temporarily move in close
formation and derive a generalization of MHT methods on the basis of a simple
resolution model.

Key words: Sensor resolution, Bayesian multiple target tracking, Multiple hypoth-
esis tracking, Target formations

7.2 GMTI Radar: Doppler Blindness

Ground surveillance comprises track extraction and maintenance of single ground-
moving vehicles and convoys, as well as low-flying objects such as helicopters or
Unmanned Aerial Vehicles. As ground object tracking is a challenging problem, all
available information sources must be exploited, i.e. the sensor data themselves, as
well as context knowledge about the sensor performance and the underlying scenario.

7.2.1 Air-to-Ground Surveillance

For long-range, wide-area, all-weather, and all-day surveillance operating at high
data update rates, GMTI radar proves to be the sensor system of choice (GMTI:
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Ground Moving Target Indication). By using airborne sensor platforms in stand-off
ground surveillance applications, the effect of topographical screening is alleviated,
thus extending the sensors’ field of view. In Ref. [8] characteristic problems of signal
processing related to GMTI tracking with STAP radar are discussed. In this context,
the following topics are of particular interest:

• Doppler-Blindness. Ground moving vehicles can well be masked by the clutter
notch of the sensor. This physical phenomenon directly results from the low-
Doppler characteristics of ground-moving vehicles and causes interfering fading
effects that seriously affect track accuracy and track continuity. The problems are
even more challenging in the presence of Doppler ambiguities.
• Collectively Moving Targets. Collectively moving convoys consisting of individual

vehicles are typical of certain applications and have to be treated as aggregated
entities. In some cases, the kinematic states of the individual vehicles can be treated
as internal degrees of freedom. In addition, the convoy extension can become part
of the object state (see Sects. 2.51 and 8.2).
• Road-Map Information. Even military targets usually move on road networks,

whose topographical coordinates are known in many cases. Digitized topograph-
ical road-maps such as provided by Geographical Information Systems (GIS)
should therefore enter into the target tracking and sensor data fusion process (see
Sect. 9.1).
• Multisensor Data. Since a single GMTI sensor on a moving airborne platform can

record a situation of interest only over short periods of time, sensor data fusion
proves to be of particular importance. The data processing and fusion algorithms
used for ground surveillance are closely related to the statistical, logical, and
combinatorial methods applied to air surveillance.

7.2.2 A Model for Doppler Blindness

For physical and technical reasons, the detection of ground-moving targets by air-
borne radar, typically on a moving platform, is limited by strong ground clutter
returns. This can be much alleviated by STAP techniques [8]. The characteristics
of STAP processing, however, directly influence the GMTI tracking performance.
Even after platform motion compensation by STAP filtering low-Doppler targets can
be masked by the clutter notch of the GMTI radar. Let ep

k = (rk − pk)/|rk − pk |
denote the unit vector pointing from the platform position pk at time tk to the target
at the position rk moving with the velocity ṙk . The kinematic object state is given
by xk = (r�k , ṙ�k )�. Doppler blindness occurs if the radial velocities of the object
as well as of the surrounding main-lobe clutter return are nearly identical, i.e. if the
function

hn(rk, ṙk;pk) =
(rk − pk)

�ṙk

|rk − pk |
(7.25)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_8
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is close to zero. In other words, hc(xk;pk) ≈ 0 holds if the target’s velocity vector is
nearly perpendicular to the sensor-to-target line-of-sight. For this reason, the equation
hc(xk;pk) = 0 defines the location of the GMTI clutter notch in the state space of
a ground target and as such reflects a fundamental physical/technical fact without
implying any further modeling assumptions.

Qualitative Discussion

Any GMTI detection model for air-to-ground radar must thus reflect the following
phenomena:

1. The detection probability PD depends on the target state and the sensor/target
geometry.

2. PD is small in a certain region around the clutter notch characterized by the
Minimum Detectable Velocity (MDV), an important sensor parameter that must
enter into the tracking process.

3. Far from the clutter notch, the detection probability depends only on the directivity
pattern of the sensor and the target range.

4. There exists a narrow transient region between these two domains.

GMTI models are adapted to STAP techniques in that the detection probability
assumed in the tracking process is described as a function of the GMTI-specific
clutter notch. While the current location of the notch is determined by the kinemati-
cal state of the target and the current sensor-to-target geometry, its width is given by
a characteristic sensor parameter (MDV). In this way, more detailed information on
the sensor performance can be incorporated into the tracking process. This in par-
ticular permits a more appropriate treatment of missing detections. In other words,
information on the potential reasons that might have caused the missing detections
enters into the tracking filter. We observed that by this measure, the number of lost
tracks can significantly be reduced, while the track continuity is improved, finally
leading to a more reliable ground picture. This qualitative discussion of the observed
detection phenomena related to the GMTI clutter notch is similar in nature to that of
resolution effects.

Quantitative Discussion

In a generic description of the detection performance of GMTI sensors it seems
plausible to write PD = PD(xk) as a product with one factor reflecting the directivity
pattern and propagation effects due to the radar equation [9], pD = pD(rk, ϕk), the
other factor being related to the clutter notch. To this end, let us consider functions
of the following form:

PD(rk, ϕk, ṙk) = pd(rk, ϕk)
(

1− e−
1
2

(
hn (rk ,ϕk ,ṙk )

MDV

)2)
. (7.26)

In this expression the sensor parameter MDV has a clear and intuitive meaning: In
the region defined by |nc(xk)| < MDV we have PD < 1

2 pd . The parameter MDV
is thus a quantitative measure of the minimum radial velocity with respect to the
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Table 7.1 Simplified GMTI tracking scenario: selected sensor and platform parameters.

Sensor h p (km) vp (m/sec) Δr (km) Δϕ (deg) ΔT (sec) MDV (m/sec)

1 10 200 [232, 292] [−128, −67] 15 2
2 1 40 [22, 54] [ 77, 172] 10 2

sensor platform that a ground-moving target must at least have to be detectable by
the sensor. The actual size of MDV depends on the particular signal processor used.

For Swerling I targets pd is given by: pd(r, ϕ) = pF
1/[1+snr(r,ϕ)] with the false

alarm probability pF and the signal-to-noise ratio snr(r, ϕ) = snr0 D(ϕ) (σ/σ0)

(r/r0)
−4 according to Ref. [9] and the discussion in Sect. 2.3.4. Let the sensor’s

directivity pattern be described by D(ϕ) = sin2(ϕ − ϕa).
After rearranging the terms in Eq. 7.26, we can formally introduce Gaußian likeli-

hood functions, where hn(xk) appears as a fictitious nonlinear measurement function:

PD(xk;pk) = PD − Pn
D N (0; hn(xk;pk), Rn)

)
, (7.27)

with a detection parameter Pn
D and a related ‘variance’ Rn that may be a function of

MDV.

Impact of Sensor-to-Object Geometry

Assuming a flat earth, Fig. 7.6 shows an idealized scenario with two airborne GMTI
sensors observing a ground vehicle moving at a constant speed (15 m/s = 54 km/h)
parallel to the x-axis for most of the time. This situation is typical of stand-off or
gap-filling ground surveillance missions. In the second half of the observation period
over Δtmax = 25 min the target stops for 7 min. Then it speeds up again reaching its
initial velocity. Finally, the target leaves the field of view of sensor 2. In Table 7.1
selected sensor and platform parameters are summarized. h p, vp denote the constant
height and speed of the sensor platforms over ground. Δr , Δϕ are the range and
azimuth regions covered by each sensor during observation. The revisit intervals are
given by ΔT . Unless appropriately handled, two phenomena in particular can cause
problems in GMTI tracking:

1. Sensor-to-target geometries can occur where targets to be tracked are masked by
the clutter notch of the sensor. This results in a series of missing detections until
the geometry changes again.

2. As stopping targets are indistinguishable from ground clutter, the early detection
of a stopping event itself as well as tracking of ‘stop & go’ targets can be important
to certain applications.

The impact of these effects on the detection probability (see definitions in Sect. 2.3.2)
is shown in Fig. 7.7 for the scenario previously introduced. For both sensors we
observe deep notches (dashed line: platform 1, dotted line: platform 2). In the center
of these notches the radial velocities of the target and the surrounding ground patch

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Fig. 7.6 Simplified ground target tracking scenario: two moving airborne GMTI radar platforms
and a single ground moving target
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Fig. 7.7 GMTI tracking: detection probability of the individual sensors and the mean accumulated
detection probability as a function of the tracking time

are very close to each other, thus making target discrimination by Doppler processing
(STAP [8]) impossible. This is particularly true if the target stops.

The dashed and solid lines in Fig. 7.8 denote the radial velocities of ground patches
around the target and target returns, respectively. The area shaded in gray reflects
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Fig. 7.8 GMTI tracking: range rate of the ground target and the surrounding ground patch relative
to the moving GMTI sensors

the width of the clutter notches of the sensors, which is determined by the individual
Minimum Detectable Velocities (MDVs). For each sensor, both curves are closely
adjacent to each other, indicating that the target is moving at a much lower speed
than the sensor platforms. We notice sliding intersections between the curves. They
are responsible for the relatively long duration of Doppler-blind phases.

Assuming an idealized processing architecture (measurement fusion), the mean
cumulative revisit interval ΔTc results from the individual revisit intervals ΔT1 =
15 s, ΔT2 = 10 s, yielding ΔTc = 6 s. The mean cumulative detection probability
Pc

D is shown in Fig. 7.7 (solid line). The impact of the clutter notches is more or less
compensated for. Due to the fact that Pc

D is related to the mean cumulative revisit
interval ΔTc = 6 s, being shorter than those of the individual sensors (ΔT1 = 10 s,
ΔT2 = 15 s), Pc

D is smaller than the detection probability of the sensor dominating
at that time.

On Convoy Resolution

Since in certain applications, ground traffic vehicles often move in convoys, at first
view resolution phenomena seem to be typical of long-range ground surveillance.
Due to the asymmetric effect of range and angle resolution, however, Doppler-
blindness in many cases superimposes resolution effects. As soon as convoy targets
cease to be resolvable, they are at the same time buried in the clutter notch and thus
escape detection. Vice versa, resolvable convoy targets are rarely Doppler-screened.
A separate modeling of the sensor resolution might therefore be omitted.

As an example we assume two targets moving in a row along a straight road
with 30 km/h as typical of military applications. Their mutual distance is 50 m.
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Fig. 7.9 Detection and
resolution probability
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The target/sensor geometry is as depicted in Fig. 7.6. Let the sensor resolution be
given by: αr = 10 m (range), αϕ = 0.1◦ (azimuth), αṙ = 0.5 m/s (range-rate).
Figure 7.9 shows the detection probabilities of both sensors (solid lines). The width
of the notches is larger than in Fig. 7.7 due to the smaller convoy speed. The dotted
lines denote the resolution probabilities Pr of the sensors modeled according to the
discussion in Sect. 7.1:

Pr = 1− e− log 2(Δr/αr )
2

e− log 2(Δϕ/αϕ)2
e− log 2(Δṙ/αṙ )

2
. (7.28)

Δr , Δϕ, Δṙ are the distances between the targets in sensor coordinates. If Pr is
dominated by the angular resolution (i.e. Δr and Δṙ are small), Doppler-blindness
occurs. Outside of the notch the high range/range-rate resolution guarantees resolved
returns.

7.2.3 Essentials of GMTI Tracking

The choice of a suitable coordinate system for describing the underlying sensor/target
geometry, the sensor platform trajectory, and the available a priori information on the
dynamical behavior of ground-moving targets are prerequisites to target tracking. In
wide-area applications a flat earth model is often not admissible. We consider three
coordinate systems in which the underlying physical phenomena become transparent:

1. Appropriate ground coordinates, typically WGS84, where the description of the
target and platform kinematics is of a particularly simple form,

2. the moving Cartesian antenna coordinate system, whose x-axis is oriented along
the array antenna of the GMTI radar mounted on the airborne sensor platform,

3. the sensor coordinate system, in which the measurements of the kinematical target
parameters are described (target range, azimuth, and range-rate).

Under the assumptions made in Sect. 2.3.3, the likelihood is given by the following
expression (single vehicle, mild residual clutter density ρF , mk plots in each sensor

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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scan Zk = {z j
k }mk

j=1):

p(Zk, mk |xk) =
(
1− PD(xk;pk)

)
ρF + PD(xk;pk)

∑mk
j=1 N (

z j
k ; h(xk), Rk

)

= p0(Zk, mk |xk)+ pn(Zk, mk |xk) (7.29)

where p0 = p0(Zk, mk |xk) denotes the standard likelihood without considering
clutter notches:

p0 = (1− Pd)ρF + Pd
∑mk

j=1 N (
ZJ

K ; h(xk), Rk
)
, (7.30)

pn = pn(Zk, mk |xk) is the part of the overall likelihood function characteristic of the
GMTI problem. For a generalization in case of Doppler-unambiguous measurements
see [10, 11].

If the GMTI detection model is inserted into this expression, we immediately
see that the effect of the GMTI-specific clutter notch on the likelihood function can
formally be described by a fictitious measurement of a quantity defined by pseudo
measurement function hn

k , where the minimum detectable velocity plays the role of
a fictitious measurements error standard deviation.

According to Bayes’ rule, the processing of the new sensor data Zk received
at revisit time tk is based on the predicted density p(xk |Zk−1) and the likelihood
function p(Zk, mk |xk). Assuming a Gaussian sum representation for p(xk |Zk−1),
the Gaußian sum structure of the likelihood function guarantees that also p(xk |Zk)

belongs to this family. According to Bayes Theorem we obtain up to a normalizing
constant:

p(xk |Zk) ∝ p(Zk, mk |xk) p(xk |Zk−1) (7.31)

∝
∑

i

pi
k N (

xk; xi
k|k, Pi

k|k
)
. (7.32)

The same type of mixture reduction techniques can be applied as discussed in
Sect. 3.3.3 (pruning, local combining) in order to keep the number of mixture com-
ponents under control. Simulations showed that even a representation by only two
mixture components is sufficient in many practical cases and seems to mirror the
underlying physics of the detection process quite well.

7.2.4 Effect of GMTI-Modeling

Figures 7.10, 7.11 and 7.12 provide a qualitative insight into the effect of the refined
sensor model on target tracking/data fusion. While a high adaptivity is evident near
the clutter notch, far from the notch no difference to standard filters is observed.

Figure 7.10 displays the probability density functions resulting from process-
ing the event that a missing detection occurred near the notch. To show the most

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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(a) (b)

Fig. 7.10 Effect of GMTI modeling (missing detection near the clutter notch): a standard filter,
b GMTI filter)

(a) (b)

Fig. 7.11 Effect of GMTI modeling (target buried in the notch for several revisits): a standard
filter. b GMTI filter

interesting features, the densities are projected on the azimuth/range-rate plane.
While the probability density of the standard tracker (Fig. 7.10a) is identical with
the corresponding predicted density, the refined sensor model leads to a bimodal
structure (Fig. 7.10b). The broader peak refers to the possible event that the missing
detection has purely statistical reasons as in the case of standard filtering, while the
sharper peak behind it reflects the hypothesis that the target was not detected because
it is masked by the clutter notch.

The situation where the target is buried in the clutter notch for several revisits
is represented in Fig. 7.11. Obviously, the probability density of the standard filter
totally faded away permitting no reasonable state estimation (Fig. 7.11a). The refined
filter, however, preserved a definite shape (Fig. 7.11b). This can be explained as
follows. Instead of actual sensor data, the very information that several successively
missing detections occurred was processed. This event provides a hint to the filter
that the kinematical target state probably obeys a certain relation determined by
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(a) (b)

Fig. 7.12 Effect of GMTI modeling (detection occurs near the clutter notch): a standard filter.
b GMTI filter

(a) (b)

Fig. 7.13 Gain by processing GMTI data from sensor 1 only: a during tracking. b target stop

the clutter notch. Apparently, this piece of evidence proves to be as valuable as a
measurement of one of the components of the target state.

Figure 7.12 refers to the event that a detection occurred near the clutter notch.
While the standard filter produced a simple Gaußian, the refined filter shows a more
complex structure. In fact, the probability density is a two-component mixture whose
weighting factors differ in their sign (but sum up to one). The resulting shape permits
an intuitive interpretation. The sensor model inherently takes into account the fact
that the target state xk does not lead to a small value of nc(xk); otherwise the target
would not have been detected at all. For this reason, the sharp cut in the probability
density simply indicates the location of the clutter notch.

Gain by Sensor Data Fusion

Figures 7.13, 7.14 and 7.15 show the probability densities of the target position in
Cartesian ground coordinates after filtering. The prolated structure of the probability
densities mirrors the predominant impact of cross-range errors. Their shape is rotated
with respect to each other due to the different sensor-to-target geometries. This
effect can be much more pronounced in other situations. We indicated the true target
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(a) (b)

Fig. 7.14 Gain by processing GMTI data from sensor 2 only: a during tracking. b target stop

(a) (b)

Fig. 7.15 Gain by fusing GMTI data from sensor 1 and 2: a during tracking. b target stop

position. Figures 7.13a, 7.14a and 7.15a refer to a regular tracking situation (after
10 min, see Figs. 7.6 and 7.7). Doppler-blindness occurred for sensor 2 during the
previous revisits. The probability densities shown in Figs. 7.13b, 7.14b and 7.15b
have been calculated at a time when the target has stopped for 3 min. Evidently
in Figs. 7.13b and 7.14b the dissipation of the density functions is confined to a
particular direction according to the GMTI sensor model.

Gain by Sensor Data Fusion

Figures 7.13, 7.14 and 7.15 show the probability densities of the target position in
Cartesian ground coordinates after filtering. The prolated structure of the probabil-
ity densities mirrors the predominant impact of cross-range errors. Their shape is
rotated with respect to each other due to the different sensor-to-target geometries.
This effect can be much more pronounced in other situations. We indicated the true
target position. Figures 7.13a, 7.14a and 7.15a refer to a regular tracking situation
(after 10 min, see Figs. 7.1, 7.7). Doppler-blindness occurred for sensor 2 during the
previous revisits. The probability densities shown in Figs. 7.13b, 7.14b and 7.15b
have been calculated at a time when the target has stopped for 3 min. Evidently
in Figs. 7.13b and 7.14b the dissipation of the density functions is confined to a
particular direction according to the GMTI sensor model.
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Figure 7.15 shows the probability densities obtained by sensor data fusion. In
both cases we observe a significant fusion gain. It is a consequence of the different
orientation of the density functions and leads to improved state estimates. The result
for the stopping targets is particularly remarkable. Though no sensor data are avail-
able from both sensors, the very fusion of the sensor output ‘target under track is no
longer detected’ implies an improved target localization. This is a consequence of
the different target/sensor geometries.

Further Reading

A detailed discussion of this approach has been published in:

• W. Koch, R. Klemm
Ground target tracking with STAP radar. IEE Proc. Radar Sonar Navig. 148(3),
173–185, 2001 (Special Issue on: Modeling and Simulation of Radar Systems, ed.
by S. Watts, invited paper).
An extended version with results from various related conference papers of the
author has been published as a handbook chapter in W. Koch, Ground target track-
ing with STAP radar: Selected tracking aspects, Chap. 14, in Applications of Space-
time Adaptive Processing. Institution of Electrical Engineers ed. by R. Klemm.
IEE Press, London, 41 pages (2004).

Abstract
The problem of tracking ground-moving targets with a moving radar (airborne,
spaceborne) is addressed. Tracking of low Doppler targets within a strong clut-
ter background is of special interest. The motion of the radar platform induces a
spreading of the clutter Doppler spectrum so that low Doppler target echoes may
be buried in the clutter band. Detection of such targets can be much alleviated
by space-time adaptive processing (STAP) which implicitly compensates for the
Doppler spread effect caused by the platform motion. Even if STAP is applied, low
Doppler targets can be masked by the clutter notch. This physical phenomenon is
frequently observed and results in a series of missing detections, which may seri-
ously degrade the tracking performance. We propose a new sensor model adapted
to STAP and discuss its benefits to tracking well-separated targets. By exploiting
a priori information on the sensor specific clutter notch, the model in particular
provides a more appropriate treatment of missing detections. In this context the
Minimum Detectable Velocity (MDV) proves to be an important sensor parameter
explicitly entering into ground-moving target indication (GMTI) tracking.

Key words: Air-/spaceborne radar, STAP, GMTI radar, GMTI tracking, Minimum
detectable velocity (MDV), Bayesian target tracking, Probabilistic data association
(PDA)
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7.3 Main-Lobe Jamming

The degrees of freedom available in applications with airborne phased-array radar
enable suppression of so called main-lobe jammers that try to blind the radar by
transmitting specially designed radiation directly into the main beam of the radar, by
using adaptive array signal processing techniques [12]. Following the spirit of the
discussions in the previous sections, the current position of the resulting jammer notch
as well as information on the distribution of the related monopulse measurements [17]
can be incorporated into a more sophisticated sensor performance model of airborne
phased-array radar. The proposed model does not only improve object tracking in
the vicinity of a jammer notch in terms of a shorter extraction delay, improved
track accuracy/continuity. It also has strong impact on strategies for adaptive sensor
control.

7.3.1 Modeling the Jammer Notch

Tracking of an approaching missile under mainlobe jamming conditions is among the
most challenging data fusion tasks [13]. Advanced sensor models can contribute to
their efficient and robust solution. An example is the simulated situation in Fig. 7.16,
which shows the trajectories of a sensor (AESA: Active Electronically Scanned
Array) on a moving platform, of an object to be tracked, and the jammer.

By using adaptive digital beamforming techniques, AESA radars of modern inter-
ceptor aircraft are able to electronically produce a sector of vanishing susceptibility
in their receive beam pattern. Excepting this “blind spot”, also called jammer notch,
the radar is operating more or less normally. A non-cooperative missile, however, is
expected to approach the interceptor aircraft as long as possible in the shadow of the
jammer notch. The dashed lines in Fig. 7.16 characterize the spatial region of the
blind spot depending on the current sensor-to-jammer geometry object.

The effect of the jammer is directly visible in the signal-to-noise-plus-jammer
ratio (SNJR) of the target, which is shown in Fig. 7.17 for the scenario discussed as
a function of time. Only in the beginning can the missile be detected for a short time.
Then it is masked for a long time by the radar’s blind spot, until it becomes visible
again in close vicinity of the sensor, where the reflected signal is very strong (Burn
Through). Sophisticated signal processing provides estimates of the missile direction
by using adaptive monopulse techniques [12] as well as the corresponding estimation
error covariance matrix R(bk, jk) as an additional sensor output. R(bk, jk) depends
on the current beam direction bk of the AESA radar and the jammer direction jk and
describes in particular the mutual correlation of the estimated direction cosines in
the vicinity of the jammer notch. It thus provides valuable context information on
the sensor performance.



150 7 Integration of Advanced Sensor Properties

Fig. 7.16 Moving aircraft
under mainlobe jamming
conditions: approaching
missile near the shadow of
the jammer notch
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Fig. 7.17 Temporal varia-
tion of the signal-to-noise
ratio of an approaching
missile main-lobe
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Following the spirit of the discussion in Sect. 2.3.4, the sensor model is based on an
expression for the signal-to-noise+jammer ratio (SNJR) after completing the signal
processing chain. The following simple formula mirrors all relevant phenomena
observed:

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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SNJR(dk, rk;bk, jk) = SNR0
(rk

r0

)−4
D(dk)

× e− log 2|dk−bk |2/b2 (
1− e− log 2|dk−jk |2/j2)

.

The vectors bk and jk denote the angular position of the current beam and the jammer,
respectively (assumed to be known). b is a measure of the beam width, while j
indicates the width of the jammer notch produced by adaptive nulling, and r0 is the
radar’s instrumented range. dk is the object’s direction vector and rk its range from
the sensor. D(dd) reflects the antenna’s directivity pattern. In the case of Swerling
I fluctuations of the objects’ radar cross section and for a simple detection model
(see the discussion in Sect. 2.3.4, the detection probability is a function of dk , rk , bk ,
and jk :

PD(dk, rk;bk, jk) = P
1

1+SNJR(xk ;bk ,jk )

F . (7.33)

PD can be approximated by using Gaußians linearly depending on the object state.
Essentially, we enter this expression of the detection probability into the likelihood
function in Eq. 2.40, yielding a Gaußian sum type expression for it.

7.3.2 Tracking Filter Alternatives

According to the previous discussion, the signal-to-noise-plus-jammer is essential
in the modeling of the detection probability and thus enters into the likelihood func-
tion ratio. After some approximations, the likelihood function can be represented
by a Gaußian mixture, finally leading to a version of the Gaußian sum filter. Since
the number of mixture components grows in each update step, adaptive approxima-
tion schemes must be applied. By using Monte-Carlo simulations five competing
approaches have been evaluated and compared with each other:

1. Method 1 (Fixed EKF). This tracking filter serves as a reference and uses no
sophisticated sensor model. The impact of the jammer notch on PD and the
measurement error covariance matrix R are not taken into account.

2. Method 2 (Variable EKF). Here, only the monopulse error covariance R(bk, jk)

is used as an improvement of the sensor model. The detection probability PD is
is assumed to be constant.

3. Method 3 (Fixed Pseudo-bearing EKF). This approach assumes a constant error
covariance matrix R, but uses the correct likelihood function, i.e. the jammer
notch, in a second-order approximation.

4. Method 4 (Variable Pseudo-bearing EKF). In addition to the previous realization,
here also the covariance matrix R(bk, jk) is part of the sensor model.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Fig. 7.18 Simulation results (250 runs) characterizing track continuity for different tracking filters

5. Method 5 (Gaussian Sum Filter). In this tracker the complete likelihood function
and the monopulse covariance R(bk, jk) are used. The number of the mixture
components involved to represent p(xk |Zk) is confined by three.

For the methods 3–5 the following is true: If the radar beam points to the vicinity
of the blind spot and no detection occurs, a local search is performed similar to the
ideas discussed in Sect. 10.4.3. By this, probability mass is concentrated near the
blind spot provided the target is actually there.

7.3.3 Selected Simulation Results

Figure 7.18 shows the mean track continuity averaged over 250 Monte-Carlo runs.
The superiority of tracking methods that use context information on the spatial posi-
tion of the blind spot is obvious. The use of the monopulse covariance matrix is
necessary, but not sufficient for avoiding track loss. The methods 3, 4, and 5 can,
using “negative” sensor evidence, bridge over the missing data in the jammer notch.
In spite of the fact that method 5 is more computationally intensive than method 4, it
shows deficiencies if compared with method 4. This is an indication for the fact that
further performance improvements are possible by more advanced approximation
methods.

http://dx.doi.org/10.1007/978-3-642-39271-9_10
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Further Reading

A detailed discussion of this approach has been published in:

• W. Blanding, W. Koch, U. Nickel
Adaptive phased-array tracking in ECM using negative information. IEEE Trans.
Aerosp. Electron. Syst. 45(1), 152–166, 2009.

Abstract
Advances in characterizing the angle measurement covariance for phased array
monopulse radar systems that use adaptive beamforming to null a jammer source
allow for the use of improved sensor models in tracking algorithms. Using a detec-
tion probability likelihood function consisting of a Gaussian sum that incorporates
negative contact measurement information, four tracking systems are compared
when used to track a maneuvering target passing into and through standoff jammer
interference. Each tracker differs in how closely it replicates sensor performance
in terms of accuracy of measurement covariance and the use of negative informa-
tion. Only the tracker that uses both the negative contact information and corrected
angle measurement covariance is able to consistently reacquire the target when it
exits the jammer interference.

Keywords: Target tracking, Adaptive beamforming, Standoff jamming, Gaußian
sum filter.

7.4 Negative Sensor Information

More advanced sensor models especially enable the exploitation of ‘negative’ sensor
evidence. By this we mean the rigorous drawing of conclusions from expected but
actually missing sensor measurements. These conclusions aim at an improvement of
the position or velocity estimates for objects currently kept under track. Even a failed
attempt to detect an object in the field of view of a sensor is to be considered as a
useful sensor output, which can be processed by using appropriate sensor models, i.e.
by background information on the sensors, with benefits for target tracking, sensor
management, and sensor data fusion. The technical term chosen here for denoting
such pieces of evidence, i.e. ‘negative’ information, seems to be accepted in the data
fusion community (see, e.g. [14, 15]).

7.4.1 A Ubiquitous Notion

A very simple example illustrates that negative sensor information is an ubiquitous
phenomenon, which often appears in disguise. The notion fits well into the Bayesian
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formalism. Assume a sensor producing at discrete time instants tk mutually indepen-
dent measurements zk of a single object with Gaußian likelihood N (zk; Hxk, R).
Absence of clutter is assumed (ρF = 0). The objects are detected with a constant
detection probability PD < 1. We thus have classical Kalman filtering under the
constraint that there exists not at each time a measurement. The likelihood function
is thus given by Eq. 2.41 and yields:

1. In the case of a positive sensor output (mk = 1), zk is processed by Kalman
filtering leading to p(xk |Zk) = N (

xk; xk|k, Pk|k
)

with xk|k and Pk|k given by:

Pk|k = (P−1
k|k−1 +H�R−1H)−1 (7.34)

xk|k = Pk|k(P−1
k|k−1xk|k−1 +H�R−1zk). (7.35)

2. For a negative sensor output (mk = 0), the likelihood function is a constant
1− PD. By filtering the prediction density is not modified: xk|k = xk|k−1, Pk|k =
Pk|k−1. According to 7.34 and 7.35 this result could formally be interpreted as
the processing of a fictitious measurement with an infinite measurement error
covariance R, since R−1 = 0.

7.4.2 Lessons Learned from Examples

The Bayes formalism and the likelihood function thus precisely indicate, in which
way a negative sensor output, i.e. a missing detection has to be processed. This
observation notion can be generalized and leads to the following conclusions:

1. Missing but expected (i.e. negative) sensor data can convey information on the
current target position or a more abstract function of the kinematic object state.
This type of negative evidence can be included in data fusion within the rigorous
Bayesian structure. There is no need for recourse to ad hoc or empirical schemes.

2. The prerequisite for processing negative evidence is a refined sensor model, which
provides additional background information for explaining its data. As a con-
sequence, negative evidence often appears as an artificial sensor measurement,
characterized by a corresponding measurement matrix and a measurement error
covariance.

3. The particular form of the fictitious measurement equation involved is deter-
mined by the underlying model of the sensor performance, while the fictitious
measurement error covariance is characterized by sensor parameters such as sen-
sor resolution, radar beam width, or minimum detectable velocity.

4. Negative evidence implies well-defined probability densities of the object states
that prove to be Gaussian mixtures with potentially negative coefficients summing
up to one. Intuitively speaking, these components reflect that the targets keep a
certain distance from each other, from the last beam position, or the clutter/jammer
notch.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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5. If the fictitious measurement depends on the underlying sensor-to-target geome-
try, we can even introduce the fusion of negative evidence.

Further Reading

A detailed discussion of this approach has been published in:

• W. Koch, On exploiting ‘negative’ sensor evidence for target tracking and sensor
data fusion. Int. J. Inf. Fusion 8(1), 28–39, 2007 (Elsevier) (Special Issue: Best
Papers of FUSION 2004 ed. by P. Svensson, J. Schubert, invited paper).

Abstract
In various applications of target tracking and sensor data fusion all available infor-
mation related to the sensor systems used and the underlying scenario should be
exploited for improving the tracking/fusion results. Besides the individual sensor
measurements themselves, this especially includes the use of more refined models
for describing the sensor performance. By incorporating this type of background
information into the processing chain, it is possible to exploit ‘negative’ sensor
evidence. The notion of ‘negative’ sensor evidence covers the conclusions to be
drawn from expected but actually missing sensor measurements for improving the
position or velocity estimates of targets under track. Even a failed attempt to detect
a target is a useful sensor output, which can be exploited by appropriate sensor
models providing background information. The basic idea is illustrated by selected
examples taken from more advanced tracking and sensor data fusion applications
such as group target tracking, tracking with agile beam radar, ground-moving tar-
get tracking, or tracking under jamming conditions.

Keywords:
Negative information/evidence, Target tracking, Sensor resolution, Local search,
Adaptive beam positioning, GMTI sensor fusion
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Chapter 8
Integration of Advanced Object Properties

In several applications, it is necessary to learn more from the sensor data received
than the time-varying geolocation of moving objects of interest. Rather, we wish
to understand what the objects we observe are, i.e. we aim to learn as much as
possible about their attributes in order to be able to classify or even identify them.
Many relevant object attributes can be derived even from their purely kinematic
properties such as speed, heading vector, and normal acceleration as well as from
mutual interrelations inferable from multiple object tracks, as has been extensively
discussed in the introductory chapter, Sect. 1.3.5.

This chapter illustrates this concept with selected application examples and shows
how object attributes such as the maneuvering class an air target currently belongs to,
the spatial extension of an extended object or a collectively moving group, including
size, shape, and orientation, or even the “anomalous” behavior of an individual in a
person stream can be considered as state quantities that can be included into a more
general notion of an object state and be tracked by fusing imperfect data within the
Bayesian framework.

In particular, the notion of an ‘object extension’ is introduced by symmetrical and
positively definite random matrices serving as state quantities that complement the
kinematic state vectors. In this way, matrix-variate analysis is brought into play, by
which is made possible to deal with collectively moving object groups and extended
objects in a unified approach. This point of view is all the more appropriate, the
smaller the mutual distances between the individual objects within a group are, or
the larger an extended object is.

In another example, chemical sensors are discussed that make it possible to classify
objects with respect to characteristic chemical signatures. Due to their fundamental
lack of space-time resolution, chemical sensors develop their full potential for the
classification of individuals only if the output of multiple chemical sensors distributed
in space is fused with kinematic person or object tracks. The fusion result enables to
identify which individual person in a person stream, for example, is actually carrying
a hazardous carry-on item. Obviously, this type of behavior is a fairly well defined
pattern of “anomalous behavior” that can easily be recognized using methodologies
of multiple sensor data fusion.
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8.1 Model History MHT Tracking

As discussed in the introductory remarks of Sect. 7.1, air surveillance in a dense
object/dense clutter environment is a difficult task that requires refined data associa-
tion and tracking techniques that make use of multiple model and multiple hypothe-
sis tracking methods as discussed in Part I. While the multiple hypothesis character
mirrors the uncertain origin of the data, the multiple models refer to the different
maneuvering phases. For this reason, adaptive IMM modeling describing the object
evolution and more sophisticated sensor models for ambiguous data including res-
olution phenomena (Sect. 7.1, Eq. 7.24) have to be combined in a unified approach
(IMM-MHT [1]).

Moreover, since the standard IMM approach with the approximations discussed in
Sect. 3.36 does not lead to satisfying results in certain applications, the consideration
of evolution model histories is inevitable. Simulation studies indicate that a worst/best
case modeling (i.e. 2 evolution models) and model histories up to a length of 4
processing steps into the past provide enough internal degrees of freedom to make
an adequate representation of the actual object behavior possible. In a worst-/best-
case analysis, reasonable and practical assumptions for the switching probabilities
are easily obtainable. IMM-MHT thus enables a more simplified dynamics modeling
at a nearly optimal level of performance.

In many applications, IMM-MHT methods result in trees of hypothetical state esti-
mates that are simply structured and provide satisfying target trajectories. In a more
difficult dense target/dense clutter environment, however, the current sensor data
may be highly ambiguous, thus leading to a filtering output that is hard to interpret
(and to display) and may lead to unsatisfying estimates of the current target states.
Nevertheless, even under those conditions pruning methods do remain applicable
that preserve the statistically relevant information on the targets and avoid memory
explosions: The filtering results are represented by potentially large and fluctuating
but limited hypothesis trees.

As this phenomenon is a direct consequence of the current lack of information,
hard pruning measures guaranteeing a fixed amount of computational load are not an
answer to obtain more easily interpretable results. At the expense of a certain time
delay, however, a retrodictive analysis of the MHT output may provide significantly
improved estimates of the trajectories. This might well alleviate the surveillance task
in dense target/dense clutter situations (see the discussion in Sect. 3.4.4).

8.1.1 IMM-MHT Tracking

By making use of the Total Probability Theorem, the multiple model approach
can easily be adopted to multiple hypothesis filtering. In the probability density
p(xk |Zk) = ∑

jk
p(xk, jk |Zk) at each step k of the filtering loop (Eq. 3.38), the

individual terms of the sum become mixture densities themselves,

http://dx.doi.org/10.1007/978-3-642-39271-9_7
http://dx.doi.org/10.1007/978-3-642-39271-9_7
http://dx.doi.org/10.1007/978-3-642-39271-9_7
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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p(xk, jk |Zk) =
∑

ik ,...i1

p(xk, ik, . . . i1, jk |Zk) (8.1)

=
∑

ik ,...i1

p(ik, . . . i1, jk |Zk) p(xk |ik, . . . i1, jk, Zk). (8.2)

Hence, in the optimal approach to IMM-MHT filtering the conditional densities
p(xk, jk |Zk) of the joint state xk of the targets are sums over every possible sequence
of dynamics models ik, . . . i1 from the initial observation through the most recent
measurement at scan k (“Dynamics Histories”). As the number of terms in the sum
(8.2) increases exponentially with increasing k, various techniques have been devel-
oped that represent the densities (8.2) approximately by mixtures with a constant
number of components at each scan k.

Let us denote the dynamics histories “n scans back” by ik , an n-tuple of indices,
ik = (ik, ik−1, . . . ik−n+1). In particular, we are looking for approximations by
Gaußian mixtures,

p(xk, jk |Zk) ≈
∑

ik

p(ik, jk |Zk) p(xk |ik, jk, Zk) (8.3)

=
∑

ik

p
ik ,jk
k|k N (

xk; xik ,jk
k|k , Pik ,jk

k|k
)
. (8.4)

The weighting factors of the data association history jk (Sect. 3.3.3), p
jk
k|k = p(jk |Zk),

are given by p
jk
k|k =

∑
ik p

ik ,jk
k|k . Due to Bayes’ Theorem, the expectation vectors xik ,jk

k|k
and covariance matrices Pik ,jk

k|k of the mixtures are iteratively obtained by formulae

that are essentially based on Kalman filtering. Also the weighting factors p
ik ,jk
k|k obey

simple update formulae. In case of a single dynamics model (r = 1), the conditional
densities p(xk |jk, Zk) are strictly given by Gaussians; i.e. up to measures controlling
the growth of the tree of association hypotheses, the filtering loop may be performed
in an approximately optimal way.

For n = 1 and assuming well-separated targets, the density p(xk, jk |Zk) is approx-
imated by a mixture with r components according to the r dynamics models used.
GPB and IMM algorithms are possible realizations of this scheme. More generally
speaking, the basic idea of the original IMM algorithm (moment matching directly
after the prediction step) may easily be adopted to n > 1 providing a more accu-
rate approximation of the densities p(xk, jk |Zk) and essentially leads to a disguised
version of GPBn [2]. The book chapter [3] is a reference going beyond the standard
IMM approach with n = 1.

The IMM approach can easily be adopted to fixed-interval retrodiction. In a direct
analogy to Eq. 8.4, the densities p(xl |Zk) =∑

jk
p(xl , jk |Zk) in the retrodiction loop

(Eq. 3.65) are approximately represented by the same class of functions previously
used in the filtering loop:

http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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p(xl , jk |Zk) ≈
∑

ii

p
il jk
l|k N (

xl; xil jk
l|k , Pil jk

l|k
)

(8.5)

with l < k. The backward iteration is initialized by the filtering result at the present
scan k: p

ik jk
k|k , xik jk

k|k , Pik jk
k|k . In analogy to the reasoning in Sect. 3.4.3, approximate

update formulae for the parameters defining p(xl , jk |Zk) can be derived.

8.1.2 Performance Evaluation

The performance of IMM-MHT techniques is demonstrated by a simulation example.
The operational conditions chosen (spatial false return density, detection probability)
are challenging, but not extreme in so far as tracks are seldom lost, and the algorithms
produce useful results even under significantly worse conditions. We consider a sce-
nario with two maneuvering closely-spaced targets characterized by data association
and resolution conflicts. Since the resulting MHT output is hard to interpret and leads
to unsatisfactory tracks, the benefits of retrodiction become obvious. The treatment
of potentially irresolved measurements is based on the resolution model in Sect. 7.1.

Pruning methods have been used but were not optimized with respect to this
particular example. We observed that retrodiction-based cut-off (Sect. 3.4.4) may
well stabilize tracking in that the number of track losses is reduced while the mean
number of hypotheses and the track accuracy are kept roughly constant. To achieve
the same probability of track loss by using pruning methods based only on the
current filtering results, more hypotheses are required on average. This observation
indicates that retrodiction-based approximations might be advantageous for realizing
MHT trackers. A more detailed quantitative study of the impact of various pruning
methods on the filter performance, however, is not within the scope of this section.

Sensor Model and Scenario

Let us consider a typical 2D medium range radar characterized by the following
parameters: sensor resolution in range and azimuth αr = 150 m, αϕ = 1.5◦, mea-
surement error σr = 30 m, σϕ = 0.2◦, measurement error for unresolved returns
σ u

r = 75 m, σ u
ϕ = 0.75◦, scan period of the radar T = 5 s, maximum range

rmax = 100 km, detection probability PD = 0.8 and spatial false return density
ρF = 0.002/km2.

In Fig. 8.1, the trajectories of two targets moving with constant speed (v =
300 m/s) are displayed over a period of 100 scans (8’20”). The radar is located
in (0,0). At the beginning, the targets are well-separated. After a crossing and a
join-maneuver, they fly in echelon formation (separation d = 150 m) approaching
the radar radially. At a distance of 17 km from the radar the formation changes its
direction of flight. Finally, a split-off maneuver is followed by a second crossing.
The crossings differ in their target-to-sensor geometry. Both targets maneuver with
constant normal acceleration (q = 30 m/s2) for 45 s (joining/splitting-off) and 22 s

http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_7
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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(in formation). During the radial flight, the range difference between the targets is
constant (Δr = d/

√
2). After the change of heading, Δr is increasing.

The resolution and measurement accuracy depend on the target-to-sensor geom-
etry (Fig. 8.2). First, the probability of receiving resolved returns (solid line) is equal
to one (except the crossing). During the radial flight it is determined by the range
resolution mainly and thus constant. After the change of heading the resolution is
improved as Δr is increasing. The peak occurs during the split-off maneuver. Due
to the particular target-to-sensor geometry at that time, both targets differ in azimuth
only before they are separated enough to be perfectly resolvable. See [4, 5] for details
of the resolution model used. The mean major semi axes (dashed line) of the mea-
surement error ellipses reflect the azimuth error, the minor semi axes (dotted line)
the error in range. Unresolved returns have greater measurement errors than resolved
returns. The different flight phases may easily be identified.

We apply two Van-Keuk-evolution models (r = 2, Eq. 2.2.1) characterized by two
parameters (maneuver correlation time θi = 60 s, 30 s and acceleration bandwidth
Σi = 3, 30 m/s2, i = 1, 2). The model transition probabilities are given by p11 =
0.85, p22 = 0.7, p12 = 1− p11, p21 = 1− p22. In our simplified example we further
assume that the two targets obey the same dynamical model during a particular scan
and consider “standard” IMM-MHT (i.e. n = 1).

Fig. 8.1 Trajectories of two
maneuvering targets moving
partly closely spaced

Target Trajectories
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Fig. 8.2 Sensor
characteristics depend-
ing on the sensor-to-target
geometry
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Measures of Performance

Performance evaluation for surveillance systems employing MHT methods is a
difficult task that involves various conflicting aspects and user-dependent limitations
[6, 7]. To illustrate the potential gain by retrodiction, we have here confined the dis-
cussion to intuitively clear and simple performance measures obtained by simulation
(1000 runs; 43 lost tracks). The filter was initiated in the first 5 scans by using the true
measurements only. Monohypothesis approximations to MHT (e.g. JPDAF) proved
to be inapplicable under the conditions considered here.

As a function of the scan number k, we evaluated the mean number of hypotheses
nl(k) and the mean model probabilities μl(k) provided a delay of l scans is toler-
ated. The mean reconstruction time τr (k) denotes the average time delay required to
uniquely represent the targets at scan k by “reconstruction of histories” (Sect. 4.4). A
simple quality measure for multiple hypothesis tracks may be obtained by summing
up the distances between the hypothetical estimates and the true states weighted by
the coefficients p

jk
k|k = p(jk |Zk) (Sects. 3.3.3, 3.4.4). As this quantity reflects the

scattering around the true trajectories in some sense, it seems to be more meaningful
and has better statistical properties than the mean distance between the MMSE esti-
mate (obtained by global combining) and the true states. Following this definition let
pl(k), vl(k), hl(k), ql(k) denote the mean position, speed, heading, and acceleration
error at scan k with l scans delay.

Discussion of Results

In Fig. 8.3, nl is displayed for l = 0, 1, 3, 6 (solid lines). Figure 8.3a refers to
single model MHT (SM-MHT, r = 1), while in Fig. 8.3b IMM-MHT (r = 2) is
used. n0 is particularly large during the formation flight. The peaks at scan 15 and 82
correspond with the crossings. In the maneuvering phases, the hypothesis numbers

http://dx.doi.org/10.1007/978-3-642-39271-9_4
http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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Fig. 8.3 a Single Model
MHT, b IMM MHT
(r = 2), Performance of
Logical Reconstruction
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for SM- and IMM-MHT differ less than in between the maneuvers. This is due to the
adaptability of IMM-MHT. In both cases a delay of one scan already significantly
reduces the number of hypotheses required to represent the target states. The dashed
curves represent the mean reconstruction time and show an analogous behavior.

In Fig. 8.4 we compared the normal acceleration of one target (solid line) and
the x-component of the velocity (dashed line) with the mean model probabilities μl

for delays l = 0, 3, 6. While at present (no delay, dashed line) no clear structure is
visible, by a delay of only three scans the structure of the underlying target dynamics
can clearly be identified.



164 8 Integration of Advanced Object Properties

Fig. 8.4 a True normal
acceleration (solid),
x-component of the
velocity (dashed), b mean
model probabilities μl

for delays l = 0, 3, 6,
Identification of the Underly-
ing Target Dynamics
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The gain in track accuracy by tolerating delay is displayed in Fig. 8.5. While pl ,
hl , ql , l = 1, 3, 6 denote the track accuracy in position, heading, and acceleration
with l scans delay, p∗, h∗, q∗ denote the maximum track accuracy that is achievable
by applying the backward-time recursion over the previously obtained forward-time
filtered estimates. Even by a delay of one scan (i.e. l = 1) a significant improvement
may be obtained on average. These quantities are close to the results obtained for
ρF = 0 (dotted lines in Fig. 8.5, Table 8.1). Again, the pronounced adaptability of
IMM-MHT is evident between the maneuvers where after a small delay accurate
estimates are achieved. Shortly after a maneuver has begun the mean heading error for
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Fig. 8.5 Achievable advantage by tolerating delay
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Table 8.1 Quantitative results for PD = 0.8, ρF = 0.002/km2

model delay [scans] n̄l p̄l [m] v̄l [m/s] h̄l [deg] rgpl rgvl rghl

SM-MHT l = 0 9.1 806 105.7 12.1 0.00 0.00 0.00
l = 1 4.1 522 70.2 7.8 0.42 0.43 0.48

τ̄r = 3.0 l = 3 1.8 283 45.7 5.2 0.77 0.73 0.77
TL = 74 l = 6 1.2 173 34.5 3.9 0.94 0.87 0.88

∗ 1.0 141 30.4 3.6 0.98 0.92 0.93
ρF = 0 ∗ 1 125 29.0 3.5 – – –
IMM-MHT l = 0 6.5 506 79.9 9.9 0.44 0.31 0.24

l = 1 3.0 322 47.2 5.9 0.72 0.71 0.68
τ̄r = 2.5 l = 3 1.6 186 29.4 3.6 0.92 0.93 0.94
TL = 43 l = 6 1.1 141 24.7 3.1 0.98 0.99 0.99

∗ 1.0 130 23.7 3.1 1.0 1.0 1.0
ρF = 0 ∗ 1 130 23.4 3.0 – – –

IMM-MHT is larger than for SM-MHT reflecting the switching mechanism between
the models.

In Table 8.1 we collected time averages of the above performance measures (n̄l =
1

60

∑79
k=20 nl(k), etc.) that enable a more quantitative comparison between SM- and

IMM-MHT. TL is the number of lost tracks in 1000 runs. rgpl , rgvl , rghl denote the
relative gain in position, speed, heading, and acceleration by tolerating l scans delay
with reference to the maximum accuracy (IMM-MHT, p∗, v∗, h∗). We observed:

1. In general, IMM-MHT filtering is more stable than SM-MHT in that track loss
occurs less often and the tracks are more accurate.

2. There is a significant gain by retrodiction for both, SM- and IMM-MHT.
3. The “steady state” accuracy (p∗, v∗, h∗) is comparable for SM- and IMM-MHT,

and approximately equal to the results obtained in absence of false returns. Hence
in this example, the deterioration of track quality due to clutter and maneuvers
may be removed by tolerating delay.

4. Roughly speaking, IMM-MHT without delay provides a track quality comparable
to SM-MHT with 1 scan delay, while 1 scan delay (IMM-MHT) refers to 3 scans
for SM-MHT.

5. For SM-MHT we obtain approximately 45 % of the maximum gain after a delay
of one scan, 75 % after three scans, and 90 % after six scans delay. By using
IMM-MHT, however, more than 90 % of the relative gain are achievable after 3
scans delay.

8.1.3 IMM-MHT: Conclusions

1. We have proposed a fixed-interval retrodiction method for Bayesian multiple
target tracking that is a straightforward generalization of standard Rauch-Tung-
Striebel (RTS) fixed-interval smoothing [8] to applications employing MHT and
IMM methods. If the approximations involved preserve the relevant information
(pruning/local combining, shortened dynamics histories), retrodiction provides
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the best possible knowledge about the targets’ history. The quality of the approx-
imations is at the users disposal and depends on his particular needs and compu-
tational resources.

2. Besides using the underlying dynamics model, retrodiction only acts on the den-
sities provided by filtering/prediction. It is thus decoupled from the data asso-
ciation/processing task and may be switched off in overload situations without
affecting the filter performance. In particular, there is no explicit processing of the
sensor returns from multiple scans [9]. Retrodiction might be used for improved
pruning (Multiple Frame Data Association [10]).

3. The potential benefits of the method have been demonstrated by an example
involving two maneuvering targets in a cluttered environment. At the expense
of a relatively small delay (a few scans of the radar), retrodiction may signifi-
cantly improve the ambiguous MHT output under more serious conditions. The
maximum gain achievable by retrodiction is roughly the same for both, single
model (SM) and IMM-MHT, and comparable to the results if false returns are
absent. Hence, the deterioration of track quality due to clutter and maneuvers may
be removed by tolerating some delay. The combined concept, Bayesian MHT
supplemented by retrodiction, may thus open a fresh look at target identifica-
tion/classification or threat assessment in a dense target/dense clutter environment
(C3I applications).

4. Retrodiction algorithms employing multiple dynamics models are superior to
those with a single model in that the time delays involved are shorter. IMM
without delay provides a track quality approximately comparable to SM with 1
scan delay, while 1 scan delay (IMM) refers to 3 scans for SM. In case of SM,
roughly 45 % of the maximum gain is obtained after a delay of one scan, 75 %
after three scans, and 90 % after six scans delay. By using IMM, however, more
than 90 % of the relative gain is achievable after 3 scans delay and the structure
of the underlying target dynamics can be clearly identified.

As a final remark: improvement by retrodiction comes at the price of some (small)
delay. In discussing whether delay is admissible in air surveillance, however, it should
be noted that for a conventional radar with a scan period T and detection probability
PD < 1, an average delay of 1

2 T/PD is inevitable.

Further Reading

A detailed discussion of this approach has been published in:

• W. Koch
Fixed-Interval Retrodiction Approach to Bayesian IMM-MHT for Maneuvering
Multiple Targets
IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 1, p.2-14,
January 2000
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Abstract
In a Bayesian framework, we propose a hierarchy of suboptimal retrodiction
algorithms that generalize Rauch-Tung-Striebel fixed-interval smoothing to MHT
applications employing IMM methods (IMM-MHT). As a limiting case we obtain
new simple formulae for suboptimal fixed-interval smoothing applied to Markov-
ian switching systems.
Retrodiction techniques provide uniquely interpretable and accurate trajectories
from ambiguous MHT output if a certain (small) time delay is tolerated. By a sim-
ulated example with two maneuvering targets that operate closely-spaced under
relatively hard conditions we demonstrate the potential gain by fixed-interval retro-
diction and provide a quantitative idea of the achievable track accuracy and mean
time delay involved.

Keywords: Fixed-interval retrodiction, Rauch-Tung-Striebel (RTS) formulae,
dense target/dense clutter environment, Probabilistic Data Association (PDA),
Multiple Hypothesis Tracking (MHT), Markovian switching systems, Interacting
Multiple Model (IMM) algorithms, Generalized Pseudo-Bayesian (GPB) algo-
rithms

8.2 Extended Object Tracking

Due to the increasing resolution capabilities of modern sensors, there is an increas-
ing need for recognizing extended objects as individual units, for initiating extended
object tracks, and for extended object track maintenance. Extended objects typically
involve a relatively large and often strongly fluctuating number of sensor reports
originated by the individual scattering centers that are part of one and the same
object. In this context, we usually cannot assume that in subsequent target illumina-
tions the same scattering centers are always responsible for the measurements. The
individual sensor reports can therefore no longer be treated in analogy to point object
measurements produced by a group of well-separated targets.

Related problems arise if a group of closely-spaced objects is to be tracked.
For sensors such as radar, the resolution capability in range is usually much better
than in cross-range. As a consequence, two or more targets within the group can
be irresolvable, depending on the current sensor-to-target geometry [4, 11, 12]. In
addition, little is known about the measurement error of irresolved measurements
produced by an unknown number of targets involved. Practically important examples
are aircraft formations or ground moving convoys. Under these circumstances, it
seems to be reasonable to treat the group as an individual object and to estimate and
track its current extension from the sensor data.

In view of the discussion in Sect. 2.1 and 2.3.5, the object extension should be
considered as an additional ‘internal degree of freedom’ characterizing an extended
object or a collectively moving object group (cluster) to be tracked. The object
extension is thus a part of the object state and has to be estimated jointly with

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_2
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the kinematic properties involved. This paper section discusses a realization of this
concept within a Bayesian framework. Temporally changing object extensions are
tractable within the proposed framework. An extension increasing along a certain
direction, e.g., can indicate that an object is beginning to separate into individual
subgroups or parts, which then have to be tracked individually.

8.2.1 Generalized Formalism

In a Bayesian view, a tracking algorithm for an extended object or a collectively
moving object group is an updating scheme for p(xk, Xk |Zk) at each time tk given
the accumulated sensor data Zk = {Zl , ml}kl=1 and underlying models describing the
object’s temporal evolution and the sensor performance. Evidently the joint density

p(xk, Xk |Zk) = p(xk |Xk, Zk) p(Xk |Zk) (8.6)

can be written as a product of a vector-variate probability density p(xk |Xk, Zk) and
a matrix-variate density p(Xk |Zk) [13]. Furthermore, the probabilistic formalism
indicates that the density p(xk |Xk, Zk), describing the kinematical object properties
in the product representation in Eq. 8.6, should show an explicit dependency on the
current object extension Xk . To the author’s knowledge, random matrices were first
introduced for describing physical phenomena by Eugene Wigner [14].

Extended target tracking, i.e. the iterative calculation of the joint density
p(xk, Xk |Zk), basically consists of two steps: prediction and filtering. This scheme
is completed by the notion of retrodiction.

Prediction

Each update of the joint probability density p(xk, Xk |Zk) of the extended target
state (xk, Xk) is preceded by a prediction step,

p(xk−1, Xk−1|Zk−1)
evolution−−−−−→

models
p(xk, Xk |Zk−1), (8.7)

based on the underlying evolution models. More precisely, we interpret the prediction
density p(xk, Xk |Zk−1) as a marginal density to be calculated by integration:

p(xk, Xk |Zk−1) =
∫

dxk−1dXk−1

× p(xk, Xk |xk−1, Xk−1, Zk−1) p(xk−1, Xk−1|Zk−1). (8.8)

For the (joint) transition density in the previous representation,
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p(xk, Xk |xk−1,Xk−1, Zk−1) =
p(xk |Xk, xk−1, Xk−1, Zk−1) p(Xk |xk−1, Xk−1, Zk−1), (8.9)

we make use of natural Markov-type assumptions for its kinematical part, i.e. p(xk |Xk,

xk−1, Xk−1, Zk−1) = p(xk |Xk, xk−1), and assume that the object’s kinematical
properties have no impact on the temporal evolution of the object extension and
previous measurements if Xk−1 is given, i.e.:

p(Xk |xk−1, Xk−1, Zk−1) = p(Xk |Xk−1). (8.10)

This restriction can be justified in many practical cases. We thus have:

p(xk, Xk |xk−1, Xk−1, Zk−1) = p(xk |Xk, xk−1) p(Xk |Xk−1). (8.11)

The probabilistic formalism clearly indicates that the evolution of the object kine-
matics, described by p(xk |Xk, xk−1), is affected by the current object extension Xk

as well. This dependence cannot be ignored.
With the previous filtering update p(xk−1, Xk−1|Zk−1) we obtain the following

prediction formula:

p(xk, Xk |Zk−1) =
∫

dxk−1dXk−1

× p(xk |Xk, xk−1) p(Xk |Xk−1)︸ ︷︷ ︸
evolution model

p(xk−1|Xk−1, Zk−1) p(Xk−1|Zk−1)︸ ︷︷ ︸
previous update

. (8.12)

The transition densities p(xk |Xk, xk−1) and p(Xk |Xk−1) will be specified below
using suitable models that describe the temporal evolution of extended or group
targets.

Further discussion is much simplified if we additionally assume that the tem-
poral change of the object extension has no impact on the prediction of the kine-
matical object properties, i.e. if we are allowed to assume p(xk−1|Xk−1, Zk−1) ≈
p(xk−1|Xk, Zk−1) or, in other words, to replace Xk−1 by Xk . Such an assumption
seems to be justified in many practical cases. By this approximation, the predicted
density

p(xk, Xk |Zk−1) = p(xk |Xk, Zk−1) p(Xk |Zk−1) (8.13)

is given by two factors to be obtained by independent integrations:

p(xk |Xk Zk−1) =
∫

p(xk |Xk, xk−1) p(xk−1|Xk, Zk−1) dxk−1 (8.14)

p(Xk |Zk−1) =
∫

p(Xk |Xk−1) p(Xk−1|Zk−1) dXk−1. (8.15)
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Filtering

The prediction is followed by a filtering step, in which the current sensor infor-
mation Zk at time tk is to be processed:

p(xk, Xk |Zk−1)
data:Zk ,mk−−−−−−−→

sensor model
p(xk, Xk |Zk). (8.16)

More precisely, in the filtering step the sensor-specific likelihood function p(Zk, mk |
xk, Xk), defined by the current data and the underlying sensor model, is combined
with the predicted density by exploiting Bayes’ formula [15, 16]:

p(xk, Xk |Zk) = p(Zk, mk |xk, Xk) p(xk, Xk |Zk−1)∫
p(Zk, mk |xk, Xk) p(xk, Xk |Zk−1) dxkdXk

. (8.17)

8.2.2 Extended Object Prediction

The probability density p(xk, Xk |Zk) of an extended or group target state is given
by Eq. 8.17. The joint densities in this equation can be written as products:

p(xk, Xk |Zk) = p(xk |Xk, Zk) p(Xk |Zk)

p(xk, Xk |Zk−1) = p(xk |Xk, Zk−1) p(Xk |Zk−1) (8.18)

p(Zk, mk |xk, Xk) = p(Zk |mk, xk, Xk) p(mk |xk, Xk).

The kinematical state variable xk at time tk is given by xk = (r�k , ṙ�k , r̈�k )� with
the spatial state components rk . Let the dimension d of the vector rk be also the
dimension of the d × d SPD matrix Xk that describe the current ellipsoidal object
extension (SPD: symmetrical and positively definite). ṙk , r̈k denote the corresponding
velocity and acceleration. The dimension of the kinematical state vector xk is thus
s×d, where s−1 describes up to which derivative the object kinematics is modeled.
Here we have s = 3.

Extended Object Evolution

The temporal evolution of an extended or collective object is modeled as usual in
Kalman filtering theory: xk = �k|k−1xk−1+ vk , p(vk) = N (vk; 0, �k|k−1). Using
the Kronecker product [13], the evolution matrix �k|k−1 can be written as:

�k|k−1 = Fk|k−1 ⊗ 1d , (8.19)

where the s×s matrix Fk|k−1 is given for example by van Keuk’s model (Sect. 2.2.1).
The use of Kronecker products will prove to be very convenient in the subsequent
calculations. For the dynamics noise covariance �k|k−1, we postulate the following
structure:

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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�k|k−1 = Dk|k−1 ⊗ Xk . (8.20)

Model parameters describing the underlying dynamics are part of a s × s matrix
Dk|k−1, as given by van Keuk’s model, for example (Sect. 2.2.1). The s × s matrices
Fk|k−1, Dk|k−1 also appear in this form in the 1D tracking problem. The system noise
is thus a band limited Gaussian acceleration noise process with a covariance propor-
tional to the extension matrix Xk . This has the effect of directing the acceleration of
the group (or object) centroid along the direction of the major axis of the ellipse.

The assumption of a dynamics covariance matrix �k|k−1 depending on the current
object extension Xk , which is a consequence of the probability formalism, needs a
discussion with more physical arguments:

1. The collective character of a group motion is the more pronounced the smaller
the group is. The dynamical behavior of a smaller group is thus to a larger extent
deterministic in nature (‘maneuvering becomes dangerous’).

2. For a group dissolving into subgroups, i.e. if its extension is increasing, the
knowledge of its dynamical behavior decreases, and the motion of the group is not
easily predictable, being expressed by the increasing dynamics noise covariance.

3. In addition, large extended or group objects will produce so many sensor mea-
surements that the prediction part of the tracking process, i.e. exploitation of
information on the object evolution, seems to be negligible if compared to the
gain obtained in the filtering step.

4. In case of extended objects like submarines or ground moving convoys, which
show a clear orientation, the proposed dynamics model provides a natural
description of their actual movement along the major axes of the extension
ellipse.

Besides these more or less physically motivated reasons, an important formal argu-
ment exists in favor of the model: A dynamics model of the proposed form implies a
formal structure of the densities p(xk, Xk |Zk), which enables a rigorous application
of the Bayesian formalism under certain assumptions.

Structure of the Predicted Density

According to Eq. 8.18, the kinematics can be discussed separately from the exten-
sion estimation in the tracking process. Let us assume that the density of the kine-
matical state variable p(xk−1|Xk, Zk−1) after filtering at time tk−1 is a Gaussian with
the following special structure:

p(xk−1|Xk, Zk−1) = N (xk−1; xk−1|k−1, Pk−1|k−1 ⊗ Xk). (8.21)

Then the previous evolution model guarantees that this structure is preserved by the
prediction process (Eq. 8.14):

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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p(xk |Xk, Zk−1) =
∫

N (xk; (Fk|k−1 ⊗ 1d)xk−1, Dk|k−1 ⊗ Xk)

× N (xk−1; xk−1|k−1, Pk−1|k−1 ⊗ Xk) dxk−1 (8.22)

= N (xk; xk|k−1, Pk|k−1 ⊗ Xk) (8.23)

according to the usual rules for Kronecker products (see Appendix A. 4) with xk|k−1
and Pk|k−1 given by:

xk|k−1 = (Fk|k−1 ⊗ 1d)xk−1|k−1 (8.24)

Pk|k−1 = Fk|k−1Pk−1|k−1F�k|k−1 + Dk|k−1 (8.25)

in close analogy to standard Kalman filtering.
Moreover, let us assume that the densities of the extension state variable p(Xk−1|

Zk−1) are given by Inverted Wishart densities [13] defined up to a factor independent
of Xk−1 by (see Appendix A. 11):

p(Xk−1|Zk−1) = IW(
Xk−1; νk−1|k−1, Xk−1|k−1

)
(8.26)

∝ |Xk−1|− 1
2 νk−1|k−1 etr

[
− 1

2 Xk−1|k−1X−1
k−1

]
. (8.27)

d is the dimension of the measurement vectors z j
k and etr[A] an abbreviation for

exp[trA]with trA denoting the trace of a matrix A. The expectation of Xk−1 is given
by E[Xk−1|Zk−1] = Xk−1|k−1

νk−1|k−1−2d−2 .

In the prediction step, the parameters νk|k−1, Xk|k−1 defining p(Xk |Zk−1) have
to be calculated from νk−1|k−1, Xk−1|k−1 available after the previous filtering step
according to appropriate modeling assumptions. In a first heuristic approach, we pos-
tulate that the expectation of the predicted density shall be equal to the expectation
of the previous filtering step; i.e.: Xk|k−1

νk|k−1−2d−2 = Xk−1|k−1
νk−1|k−1−2d−2 . The degrees of free-

dom of an inverse Wishart density are related to the ‘precision’ of the corresponding
expectation. The ‘precision’ of predictions, however, will decrease with increasing
update intervals Δtk = tk−tk−1. With a temporal decay constant τ as an additional
modeling parameter, the following prediction update equations seem to be plausible:

νk|k−1 = e−Δtk/τ νk−1|k−1 (8.28)

Xk|k−1 = e−Δtk /τ νk−1|k−1−d−1
νk−1|k−1−d−1 Xk−1|k−1. (8.29)

τ = ∞ represents a static object or group extension.

8.2.3 Extended Object Filtering

In the case of extended or group targets, the significance of a single measurement
is obviously dominated by the underlying object extension. The sensor-specific
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measurement error that describe the precision by which a given scattering center
is currently measured is the more unimportant, the larger the actual extension of the
object is compared to the measurement error. The individual measurements must
therefore rather be interpreted as measurements of the centroid of the extended or
collective object, since it is unimportant for the extended object tracking task which
of the varying scattering centers was actually responsible for the measurement.

We thus interpret each individual measurement produced by an extended object
as a measurement of the object centroid with a corresponding ‘measurement error’
that is proportional to the object extension Xk to be estimated. By means of this
‘measurement error’, however, the object extension Xk becomes explicitly part of
the likelihood function p(Zk, mk |xk, Xk), which describes what the measured quan-
tities Zk , mk can say about the state variables xk and Xk . As a consequence of this
interpretation, the object extension Xk can also be estimated by exploiting the sensor
data (besides the kinematical state vector xk).

By using the Kronecker product, we also assume that the measurement matrix
has the following special structure:

(h1
k1d , h2

k1d , h3
k1d) = Hk ⊗ 1d . (8.30)

With Hk = (1, 0, 0), e.g., scenarios with range and azimuth measurements are acces-
sible after transforming them into Cartesian coordinates. According to the previous
considerations, the corresponding measurement error covariance is given by the
extension matrix Xk to be estimated.

Likelihood Function

In order to exploit Bayes’ formula Eq. 8.17, a likelihood function factorized
according to Eq. 8.18 needs to be defined. For the sake of simplicity, let us exclude
false or unwanted measurements at present. In a first approximation, the number
mk of measurements in Zk is assumed to be independent of the state variables xk ,
Xk ; i.e. p(mk |xk, Xk) is assumed to be a constant. According to the discussion in
Sect. 2.3.5, the joint density p(Zk |mk, xk, Xk) can be factorized:

p(Zk |mk, xk, Xk) ∝ N (
zk; (Hk ⊗ 1d)xk,

Xk
mk

) LW(
Zk; mk−1, Xk

)
. (8.31)

with a centroid measurement zk , a corresponding scattering matrix Zk , and a Wishart
density in Zk with mk−1 degrees of freedom.

Structure After Filtering

With these preliminaries, it is possible to exploit the Bayes formula Eq. 8.17. To
this end, we have to calculate the product:

p(Zk |mk, xk, Xk) p(xk, Xk |Zk−1) ∝ N (
zk; (Hk ⊗ 1d)xk,

Xk
mk

)

× N (
xk; xk|k−1, Pk|k−1 ⊗ Xk

)

× LW(
Zk; mk−1, Xk

) IW(
Xk; νk|k−1, Xk|k−1

)
. (8.32)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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By standard calculations (product formula for Gaussians and properties of Kronecker
products, see Appendix A. 5, A. 4), the product of the two Gaussians in the previous
equation yields:

N (
zk; (Hk ⊗ 1d)xk,

Xk
nk

) N (
xk; xk|k−1, Pk|k−1 ⊗ Xk

)

= N (
zk; (Hk ⊗ 1d)xk|k−1, Sk|k−1Xk

) N (
xk; xk|k, Pk|k ⊗ Xk

)
(8.33)

where the quantities xk|k and Pk|k are given by

xk|k = xk|k−1+(Wk|k−1 ⊗ 1d)(zk−(Hk ⊗ 1d)xk|k−1) (8.34)

Pk|k = Pk|k−1 −Wk|k−1Sk|k−1W�k|k−1 (8.35)

with a scalar innovation factor and a gain vector defined by

Sk|k−1 = HkPk|k−1H�k + 1
nk

(8.36)

Wk|k−1 = Pk|k−1H�k S−1
k|k−1. (8.37)

The first factor on the right side in Eq. 8.31 does not depend on the kinematical state
variable xk . It can be rewritten as

N (
zk; (Hk ⊗ 1d)xk|k−1, Sk|k−1Xk

) ∝ |Xk |− 1
2 etr

[
− 1

2 Nk|k−1X−1
k

]
(8.38)

up to a factor independent of the state variables and with an innovation matrix Nk|k−1
defined by

Nk|k−1 = S−1
k|k−1

(
zk − (Hk ⊗ 1d)xk|k−1

) (
zk − (Hk ⊗ 1d)xk|k−1

)�
. (8.39)

The remaining two factors on the right side of Eq. 8.32 yield:

LW(
Zk; nk−1, Xk

) IW(
Xk; νk|k−1, Xk|k−1

) |Xk |− 1
2 etr

[
− 1

2 Nk|k−1X−1
k

]

∝ IW(
Xk; νk|k, Xk|k

)

(8.40)

with the simple update equations:

Xk|k = Xk|k−1 + Nk|k−1 + Zk (8.41)

νk|k = νk|k−1 + nk . (8.42)

Joint Density after Filtering

The probability density function of the joint state (xk , Xk) after processing the
current sensor data Zk at time tk is thus given by:



176 8 Integration of Advanced Object Properties

p(xk, Xk |Zk) = N (xk; xk|k, Pk|k ⊗ Xk) IW(
Xk; νk|k, Xk|k

)
. (8.43)

Important Remark: By means of the innovation matrix Nk|k−1, it is possible to esti-
mate an unknown measurement error covariance even in the case of point source
targets or the extension of a completely irresolved target group, i.e. for mk=1.

8.2.4 Extended Object Kinematics

In many practical applications, we are interested in estimates of the kinematic state
variables only, i.e. on the marginal density p(xk |Zk) obtained by integrating the joint
density p(xk, Xk |Zk) over the random matrices Xk :

p(xk |Zk) =
∫

p(xk, Xk |Zk) dXk (8.44)

=
∫

N (xk; xk|k, Pk|k ⊗ Xk) IW(
Xk; νk|k, Xk|k

)
dXk . (8.45)

By lengthy but elementary algebraic calculations using the facts listed in Appendix
(see also [17]) the integrand can be transformed into the following product:

N (
xk; xk|k,

)
Pk|k ⊗ Xk IW(

Xk; νk|k, Xk|k
) ∝

|Yk(xk)|−
(νk|k+s−sd)+sd

2 IW(
Xk; νk|k + s, Yk(xk)Xk|k

)
(8.46)

with a matrix Yk = Yk(xk) depending on the kinematical state variable xk whose
determinant is given by

|Yk | = 1+ (xk − xk|k)� (P−1
k|k ⊗ X−1

k|k)(xk − xk|k). (8.47)

With this representation of the integrand, integration over the random matrix Xk is
trivial. We ultimately find that the marginal density with respect to the kinematical
state variable xk is given by a multivariate version of the Student density with νk|k
degrees of freedom (see Appendix A. 11):

p(xk |Zk) = T (
xk; νk|k + s − sd, xk|k, Pk|k ⊗ Xk|k

)
. (8.48)

By exploiting the multivariate t-density a ‘gating’ can be constructed that is simply
a version of the Hotelling-t2-test.

It is immediately clear that the marginalized prediction and retrodiction den-
sities are also given by Student densities: p(xl |Zl−1) = T (

xl; νl|l−1 + s −
sd, xl|l−1, Pl|l−1 ⊗ Xl|l−1

)
, p(xl |Zk) = T (

xl; νl|k + s − sd, xl|k, Pl|k ⊗ Xl|k
)
.
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Fig. 8.6 Measurements of a Partly Unresolved Formation (resolution: 50 m, 1.0◦, measurement
error: 10 m, 0.1◦): Accumulated radar data (a), Details (b, c)

8.2.5 Selected Simulation Results

For the sake of simplicity, aircraft trajectories are simulated in a plane and par-
titioned into straight and circular segments where each aircraft is moving with a
constant tangential speed as shown in Fig. 8.6. In an echelon formation consisting
of five aircraft, the leading aircraft is responsible for navigating, while the other
aircraft try to preserve their relative position to the leading aircraft. The underlying
radar sensor has a finite resolution capability (range resolution: 50 m, azimuth resolu-
tion: 1.0◦). The corresponding measurement error standard deviations for resolvable
objects are 10 m and 0.1◦, respectively. The orientation of the aircraft formation
varies as it moves around the trajectory. The update interval is 5 s. For the para-
meters of the Van-Keuk-evolution model, we chose � = 1g, θ = 40s. The normal
acceleration during the maneuvers is 1g, the speed is 250 m/s. The formation starts
at the origin of the coordinate system.
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Simulating a Partly Resolvable Formation

For the simulation of radar measurements, the corresponding measurements errors
and the sensor resolution have to be taken into account. The generation of false returns
is not considered here. For a group of two targets at positions (r1, ϕ1), (r2, ϕ2) in polar
coordinates with respect to the sensor position, the probability of being unresolved,
Pu , can be modeled as in Sect. 7.1:

Pu(Δr,Δϕ) = e−
1
2 (Δr/αr )

2
e−

1
2 (Δϕ/αϕ)2

(8.49)

with Δr = r2− r1, Δϕ = ϕ2− ϕ1, where the sensor parameters αr , αϕ characterize
the radar’s resolution capability in range and azimuth, respectively. According to
this probability and for pairs of aircraft, it can be simulated whether an unresolved
measurement occurs or not. In case of a resolution conflict the pair is replaced by a
single unresolvable object at the centroid position. For large formations with more
than two targets, a list is created containing all possible pairs of aircraft. A pair of
this list is selected at random according to Pu and merged. In this case, one of the
aircraft is to be removed the list, which thus has to be recalculated. If no resolution
conflict occurs according to the probability 1− Pu , the pair is removed from the list.
The previous reasoning is repeated for the remaining pairs. If the list is empty, the
algorithm terminates.

We finally have to consider the effect of successive mergings on the simulated
measurement errors of unresolvable objects. To this end, we assume that an unre-
solved measurement error resulting from m aircraft is to be simulated according to
σ u

r,ϕ = mσr,ϕ where σr,ϕ denote the standard deviations of resolvable range and
azimuth measurements, respectively. It is reasonable to delimit the growth of the
measurement error by the sensor resolution: σ u

r,ϕ ≤ αr,ϕ . In the same manner, miss-
ing detections can be simulated. We here assumed a detection probability Pu

D = 1
for unresolvable aircraft and Pr

D = 0.9 otherwise.

Impact of the Resolution Parameters

Figure 8.6 displays the radar data simulated according to these assumptions. The
details in Fig. 8.6b, c clearly reveal the impact of resolution phenomena and make
it obvious that they depend heavily on the current sensor-to-target geometry. The
discussed phenomena make it clearly evident that even a very regular target formation
is very similar in appearance to an extended object producing a highly fluctuating
number of measurements. There is no reasonable hope to be able to track the single
components of such a formation individually.

Discussion of Results

As before in the case of a totally irresolvable formation, in Fig. 8.7 the root mean
squared errors of the position estimates of the extended target filter are compared
with the corresponding results produced by standard Kalman filtering. As the mea-
surement error in the Kalman filter, we used the scattering matrix calculated from
the true target positions within the formation and processed averaged measurements.
The extended target filter shows significantly smaller estimation errors.

http://dx.doi.org/10.1007/978-3-642-39271-9_7
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In Fig. 8.8, the estimated major semi-axes are compared with the major semi-axes
of the scattering matrix of the true target positions. The concordance seems to be
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fairly good. The peak in the middle of the time axis is due to the reorganization of
the formation.

Figures 8.9 and 8.10 a ‘split-off’ maneuver is clearly indicated by the increasing
eccentricity of the estimated extension ellipse. As soon as the eccentricity exceeds
a certain threshold, two extended object tracks are initiated and the sub-groups are
tracked separately. The proposed filter thus provides a criterion of when a single
extended object track has to be split into two extended object tracks. An analogous
mechanism is possible in the case of a larger formation being created by merging
two or more converging sub-groups.

8.2.6 Summary of Results

The essential theoretical result of this paper seems to be the insight that the Bayesian
formalism can be applied to extended objects or collectively moving target clusters
with approximations to be justified in many applications. Basically, the application
of the Bayesian formalism relies on closure properties of matrix-variate Wishart and
Inverted Wishart densities under multiplication.

In view of practical applications, the following aspects seem to be of particular
relevance:

1. There exists a natural extension of the standard Kalman filter equations to objects
whose spatial extension is approximately described by ellipsoids.
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2. The object extension can be modeled by symmetrical, positive definite random
matrices, whose statistical properties are described by well-known matrix-variate
probability densities [13].

3. Due to the mild character of the approximations used, a representation of the
probability densities involved by particle filtering techniques such as proposed
in [15, 18], does not seem to be necessary. The densities are characterized by a
finite parameter set.

4. Information on the objects’ kinematic properties is represented by vector-variate
Student densities. ‘Gating’, i.e. exclusion of unwanted measirements, is provided
by a Hotelling test.

5. Tracking of point source targets with an unknown measurement error is a limiting
case of the proposed method (e.g. tracking of an irresolvable formation).

6. With respect to the kinematical properties, the achievable filter performance is
only slightly different from Kalman filtering with a known measurement error
covariance matrix.

7. The estimated measurement error covariance matrix corresponds to the true mea-
surement error covariance matrix (simulated) relatively well. This is an interesting
side result, considering the small number of data in the case of a totally unresolved
group.

8. The proposed filter can successfully be applied to target formations, which are
only partly resolvable depending on the underlying sensor-to-target geometry.
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9. “Split-off” maneuvers, indicating that an object is beginning to separate into
individual subgroups or parts, can be detected by analyzing the extension ellipsoid
(e.g. by designing a test based on its eccentricity).

In principle, the proposed approximate Bayesian method for dealing with extended
objects or collectively moving target clusters can be embedded into multiple-object,
multiple-hypothesis tracking techniques and can also be combined with context infor-
mation (e.g. road-map assisted convoy tracking). This opens an interesting field for
further research.

Key Publication

A detailed discussion of this approach has been published in:

• W. Koch Bayesian Approach to Extended Object and Cluster Tracking using Ran-
dom Matrices. IEEE Transactions on Aerospace and Electronic Systems, Vol. 44,
Nr. 3, p. 1042-1059, July 2008.

Abstract In algorithms for tracking and sensor data fusion, the targets to be
observed are usually considered as point source objects; i.e. compared to the
sensor resolution, their extension is neglected. Due to the increasing resolution
capabilities of modern sensors, however, this assumption is often no longer valid,
since different scattering centers of an object can cause distinct detections when
passing the signal processing chain. Examples of extended targets are found in
short-range applications (littoral surveillance, autonomous weapons, or robotics).
A collectively moving target group can also be considered as an extended tar-
get. This point of view is the more appropriate, the smaller the mutual distances
between the individual targets are. Due to the resulting data association and reso-
lution conflicts, any attempt to track the individual objects within the group seems
to be no longer reasonable.
With simulated sensor data produced by a partly unresolvable aircraft formation,
the addressed phenomena are illustrated, and an approximate Bayesian solution
to the resulting tracking problem is proposed. Ellipsoidal object extensions are
modeled by random matrices, which are treated as additional state variables to
be estimated or tracked. We expect that the resulting tracking algorithms are also
relevant for tracking large, collectively moving target swarms.

Keywords: Target tracking, Extended targets, Group targets, Target clusters, Sen-
sor resolution, Random matrices, Matrix-variate analysis
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Fig. 8.11 Experimental corridor with 5 chemical and 2 tracking sensors

8.3 Tracking and Classification

Emerging applications in the domain of homeland security require non-standard
information sources such as chemical sensors for detecting explosives or other haz-
ardous materials. While in the biosphere "noses" belong to the oldest of senses, their
technical equivalents are still in the beginning of their development.

Nevertheless, there exists a fundamental commonality between natural "noses"
and chemical sensors in view of their limited space-time resolution: we may be able
to detect a specific smell or chemical signature, but this typicaUy occurs with a time
delay.

Moreover, due to the non-directional spread of chemical signatures we are usually
unable to localize its source, to associate it with an individual, or to track it. This
deficiency, however, can be compensated by fusing the output of multiple chemical
sensors distributed in space with kinematic data produced by laser-range-scanners
or video cameras. In other words, tracking spans an additional temporal dimension
for processing chemical sensor attributes. Multiple person tracking and chemical
attribute fusion are thus to be performed within a single framework (see Fig. 8.11,
[19, 20]).

In designing a multiple sensor system for decision support in security applica-
tions we wish to know which person going through an access area in an airport, e.g.,
may be carrying explosives. With reference to the experimental corridor sketched in
Fig. 8.11, five chemical sensors measure at each scan the chemical signatures with
respect to the position of each of the chemical sensors symbolized (green filled cir-
cles). Furthermore, there two laser-range-scanners (cyan and blue filled rectangles)
are used as tracking sensors. In this example, three persons are walking along the cor-
ridor, one of them carrying hazardous material. Space-time processing for multiple
person tracking and classification obviously plays a key role: Only in an integrated
framework can the potential of chemical sensors or other attribute sensors of this
type be exploited entirely.
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Further Reading

A detailed discussion of this approach has been published in:

• M. Wieneke and W. Koch Combined person tracking and classification in a network
of chemical sensors textitElsevier International Journal of Critical Infrastructure
Protection, vol. 2, nr. 1–2, p. 51–67, May 2009..

Abstract Transportation infrastructures play a crucial role in the way of life and
the economic vitality of a modern society. Access points like stations, airports
or harbors are among the most critical elements in these infrastructures because
they offer a possibility to bring in hazardous materials that can be used for attacks
against people and against the transportation network itself. A timely recogni-
tion of such threats is essential and can be significantly supported by systems
that monitor critical areas continuously and call the security personnel in case of
anomalies. We are describing the concept and the realization of an indoor secu-
rity assistance system for real time decision support. The system is specifically
designed for the surveillance of entrance areas in transportation access facilities
and consists of multiple heterogeneous sensors: Chemical sensors detecting haz-
ardous materials provide data for the classification of persons. But due to their
limited spatial?temporal resolution, a single chemical sensor cannot localize a
substance and assign it to a person. We compensate for this deficiency by fusing
the output of multiple, distributed chemical sensors with kinematical data from
laser range?scanners. Both tracking and fusion of tracks with chemical attributes
can be processed within a single framework called Probabilistic Multi-Hypothesis
Tracking (PMHT). An extension of PMHT for dealing with classification measure-
ments (PMHT-c) already exists.We show how PMHT- c can be applied to assign
chemical attributes to person tracks. This affords the localization of threats and a
timely notification of the security personnel.

Keywords: Person tracking, Probabilistic Multiple Hypothesis Tracking (PMHT),
Classification, Attributes, Data fusion, Security assistance systems
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Chapter 9
Integration of Topographical Information

Complex sensing environments, such as in airborne ground surveillance or recon-
naissance in an urban terrain, are increasingly present in modern applications of
sensor data fusion. In order to fulfill user requirements even under those challenging
conditions, it is not enough to use a broad spectrum of heterogeneous sensor systems
and to integrate all available context information on the sensor performance and the
object characteristics in the sense of the previous chapters. We also have to take
advantage of context information on the sensing environment in itself insofar as it is
the stationary or only slowly changing “stage” where a dynamic scenario evolves.

Typical examples of such environmental information are digital topographical
maps and map-related information, which is made available by Geographical Infor-
mation Systems. In the application examples of this chapter, road-maps in undevel-
oped areas are considered as well as city street maps and cadastre information on the
urban canyons. Another category of topographical context information is provided
by digital elevation models, which enable the identification of occluded areas, or
vegetation maps indicating regions, where a high clutter background is to be taken
into account, for example. This category of topographical information is especially
important in mission planing as well as in sensor deployment and sensor management
(see the discussion in Sect. 1.1.3, [4, Chap. 20] ).

The discussion below shows for a simplified example how road-map information
can be used to improve the track accuracy of road-moving vehicles and, most impor-
tantly, significantly enhance their track continuity. By using road-maps it is also
possible to design statistical tests to decide whether an object is moving on a road
or not (see the discussion in Sect. 1.3.5). Moreover, tracks produced by observing
road-moving vehicles are well-suited for extracting road-map information, which
is highly up-to-date and fairly precise. Sensor data fusion is thus even able to pro-
duce scenario-related context information, which can be stored as a data exploitation
product in a Geographical Information System.

Another example discussed here deals with emitter localization and tracking in
a city street using a receiver dislocated from the emitter, an application, which is
dominated by multipath propagation phenomena. In an urban scenario, however,

W. Koch, Tracking and Sensor Data Fusion, 187
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cadastre information on the location of the buildings is available, which can serve as
input for a ray-tracing algorithm, which evaluates the most likely propagation paths.
For each randomly chosen candidate of emitter positions, we can thus algorithmi-
cally calculate the likelihood function related to the measurements produced by the
receiver.

9.1 Road-map Assisted Tracking

In many practical cases, ground vehicles move on roads, whose topographical coordi-
nates are available up to a certain error (digitized vector map information). Figure 9.1
shows a schematic representation of a road-map by a graph, whose nodes are given
by sources or sinks of roads, or by ‘traffic signs’, indicating that a road changes its
quality. The edges represent individual road segments. For the sake of simplicity, we
here confine the discussion to road segments. For a solution of the road-intersection
problem see [2].

In this context, it seems reasonable to describe the kinematic state vector xr
k of a

road-moving vehicle at time tk by its position on the road lk (i.e. the arc length of the
curve) and its scalar speed l̇k : xr

k = (lk, l̇k)�. The model for describing the dynamic
behavior of road vehicles is therefore a 2D version of Eq. 3.10:

p(xr
k−1|Zk−1)

evolution−−−−−→
model

p(xr
k |Zk−1). (9.1)

A given road through a road network is mathematically described by a continuous
curve in Cartesian ground coordinates parameterized by the corresponding arc length
l. Digitized vector road-maps provide a piecewise linear approximation of the road
by a polygonal curve R. For a further discussion within the Bayesian framework, it
is essential to introduce road-map and discretization errors.

Fig. 9.1 Representation of a road

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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The processing of the sensor data itself has to be performed in ground or sensor-
oriented coordinates depending on the underlying application:

p(xs
k |Zk−1)

sensor−−−−−−→
model, data

p(xs
k |Zk). (9.2)

The key to incorporate road-map information into the Bayesian tracking paradigm
is therefore given by establishing a transformation of the probability densities of the
vehicle states in the different frames of reference:

p(xr
k |Zk−1)︸ ︷︷ ︸

road coordinates

road network−−−−−−−−−−−−−−−−→
mapping/discretization errors

p(xs
k |Zk−1)

︸ ︷︷ ︸
sensor coordinates

(9.3)

Some calculations and mild approximations [2, 3] yield that the probability densities
in sensor coordinates are approximately given by Gaußian mixtures referring to the
linear road segments involved, thus enabling a seamless embedding of this type of
context information into the Bayesian formalism. Quite naturally, crossing roads
imply an inherent multiple hypothesis structure of the tracking algorithm.

9.1.1 Modeling of Road Segments

A given road through a real road network is mathematically described by a continuous
3D curve R∗ in Cartesian ground coordinates. For the sake of simplicity the effect
of crossroads is not considered here. See [2–4] for a more detailed discussion. Let
R∗ be parameterized by the corresponding arc length l. The exploitation of digitized
road-maps provides the data base for a piecewise linear approximation of the road
curve R∗ : l �→ R∗(l) by a polygonal curve R. Let us furthermore assume that the
curve R is characterized by nr node vectors

sm = R∗(lm), m = 1, . . . , nr . (9.4)

From these quantities nr− 1 normalized tangential vectors

tm = (sm+1 − sm)/||sm+1 − sm ||, m = 1, . . . , nr − 1 (9.5)

can be derived. The Euclidian distance ||sm+1 − sm || between two adjacent node
vectors, however, is usually not identical with the distance λm = lm+1 − lm actually
covered by a vehicle when it moves from sm to sm+1 along the road. Besides the
vectors sm the scalar quantities λm ≥ |sm+1 − sm | should therefore enter into the
road model to make it more realistic. The differences σd = |λm − ||sm+1 − sm || |
can obviously serve as a quantitative measure of the discretization errors we have to
deal with. Using the characteristic functions defined by
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χm(l) =
{

1 for l ∈ (lm, lm+1)

0 else
(9.6)

m = 0, . . . , nr , l0 = −∞, lnr+1 = ∞ (9.7)

and s0 = s1, t0 = t1, l0 = l1, tnr = tnr−1, (9.8)

we obtain a mathematically simple description of the polygon curve R, by which
the road R∗ is approximated:

R : l �→ R(l) =
nr∑

m=0

[
sm + (l − lm)tm

]
χm(l) (9.9)

with: R∗(lm) = R(lm) = sm, m = 0, . . . , nr . (9.10)

9.1.2 Road-Constrained Densities

The Bayesian formalism previously discussed can be directly applied to road-moving
vehicles, if it is possible to find a transformation operator Tg←r by which the predicted
density p(xr

k |Zk−1) in road coordinates can be transformed into ground coordinates:

p(xgk |Zk−1) = Tg←r [p(xr
k |Zk−1)]. (9.11)

When available in ground coordinates, the linearized versions of the transforms ts←g

and tg←s (Sect. 2.1) can be used to represent the densities in sensor coordinates, where
the filtering step is performed. For this purpose, we write the density p(xgk |Zk−1) as
a sum over the nr + 1 road segments considered:

p(xgk |Zk−1) =
nr∑

m=0

p(xgk , m|Zk−1) (9.12)

=
nr∑

m=0

p(xgk |m,Zk−1) p(m|Zk−1) (9.13)

=
nr∑

m=0

pm
g←r T m

g←r

[
p(xr

k |Zk−1)
]
. (9.14)

In Eq. 9.13 the probability

p(m|Zk−1) =
∫

dxr
k p(m, xr

k |Zk−1) (9.15)

=
∫

dxr
k χm(Hr xr

k) p(xr
k |Zk−1) (9.16)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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=: pm
g←r (9.17)

denotes the probability that the vehicle moves on segment m given the accumu-
lated sensor data Zk−1. The matrix Hr is defined by Hr xr

k = lk . Later on, it
will be intuitively interpreted as a fictitious measurement matrix. Since the den-
sity p(xr

k |Zk−1) = ∑1
j=0 p j

k−1 N (
xr

k; xr j
k|k−1, Pr j

k|k−1

)
is a Gaußian mixture due

to the GMTI sensor model, the probabilities pm
g←r can be explicitly expressed by

error functions:

pm
g←r = p j

k−1 (Φ[λ(l j
m+1)] −Φ[λ(l j

m)]), m = 0, . . . , nr (9.18)

with:

Φ(λ) = 1/
√

2π
∫ λ

−∞
dt exp(−t2/2) (9.19)

λ(l) j = l −Hr xr j
k|k−1√

Hr Pr j
k|k−1H�r

. (9.20)

For the remaining term in Eq. 9.14 standard probability reasoning yields:

T m
g←r

[
p(xr

k |Zk−1)
] = p(xgk |m,Zk−1) (9.21)

=
∫

dxr
k p(xgk , xr

k |m,Zk−1) (9.22)

=
∫

dxr
k p(xgk |xr

k, m) p(xr
k |m,Zk−1). (9.23)

Straight Roads

Let us first consider the simple limiting case of a straight road defined by:

R(l) = s+ lt. (9.24)

Under Gaussian assumptions the transform from road to ground coordinates is
defined by the normal transition density: p(xgk+1|xr

k+1)= N (
xgk+1; tg←r [xr

k+1], σ2
m

)

with the affine transform

tg←r [xr ] =
(

t 0
0 t

)
xr +

(
s− lt

0

)
(9.25)

and σm denoting the standard deviation of the mapping error. The transformation of
the density p(xr

k |Zk−1) into the ground coordinate system is therefore described
by p(xgk |Zk−1) = ∫

dxr
k p(xgk |xr

k) p(xr
k |Zk−1). The integration can be carried
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out explicitly and preserves the Gaußian character of the density functions (normal
mixtures). The corresponding inverse is simply provided by a projection of the den-
sity p(xgk |Zk−1) on the road. With these transformations the previous considerations
directly apply.

Polygonal Roads

The transition density p(xgk |xr
k, m) for the road segment m (Eq. 9.23) is characterized

by road-map and discretization errors (σm , σd ), which may vary from segment to
segment. Under Gaußian assumptions regarding the possible error sources, with the
affine transforms

tm
g←r [xr ] =

(
tm 0
0 tm

)
xr +

(
sm − lmtm

0

)
(9.26)

for each individual road segment m, and the error standard deviation σ2
r = σ2

m +σ2
d ,

we obtain normal transition densities

p(xg|xr , m) = N (
xg; tm

g←r [xr ], σ2
r

)
. (9.27)

With these preliminaries, an application of Bayes’ rule to the remaining density in
the integrand of Eq. 9.23 yields:

p(xr
k |m,Zk−1) = p(m|xr

k) p(xr
k |Zk−1)∫

dxr
k p(m|xr

k) p(xr
k |Zk−1)

(9.28)

with probabilities p(m|xr
k) given by:

p(m|xr
k) = χm(Hr xr

k). (9.29)

Up to now the derivation was exact. Due to the normalization constant, however, the
characteristic functions violate the Gaussian character of the probability densities.
To circumvent this problem we propose the following normal approximation:

p(m|xr
k) ≈ exp[− 1

2 (zm
r −Hr xr )

2/λ2
m] (9.30)

c = √2πλm N (
zm

r ; Hr xr , λ
2
m

)
(9.31)

with zm
r and λ2

m given by:

zm
r = 1

2 (lm+1 + lm) (9.32)

λ2
m =

(lm+1 − lm)2

12
. (9.33)

The quantities zm
r and λ2

m can be interpreted as the mean and variance of a uniform
density given by χm(l). From Eq. 9.29 and the product formula (Sect. 4.3) we obtain:

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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p(xr
k |m,Zk−1) =

1∑

j=0

pm
k−1 N (

xr
k; xrmj

k|k−1, Prmj
k|k−1

)
(9.34)

with Kalman-type update equations for xrmj
k|k−1 and Prmj

k|k−1, where zm
r , λ2

m are in
analogy to a measurement and a related measurement error variance:

xrmj
k|k−1 = xr j

k|k−1 +Wmj
r (zm

r −Hr xrmj
k|k−1) (9.35)

Prmj
k|k−1 = Prmj

k|k−1 −Wmj
r Smj

r Wmj�
r . (9.36)

with “innovation” covariance matrices Smj
r and “Kalman Gain” matrices Wmj

r
given by:

Smj
r = Hr Prmj

k|k−1H�r + λ2
m (9.37)

Wmj
r = Prmj

k|k−1H�r Smj−1

r (9.38)

The notation chosen indicates that the effect of road-map information on the prob-
ability density functions can formally be described by a fictitious measurement, a
corresponding measurement matrix, and a fictitious measurement error. Now the inte-
gration in Eq. 9.23 can be carried out explicitly as in the previously discussed limiting
case. The transformation from road to ground coordinates is thus known. In analogy
to the limiting case of straight roads, the inverse transform is simply provided by
individually projecting the densities p(xgk |m,Zk) on the road (i.e. after the filtering
step has been performed). Before the subsequent prediction is performed, it seems
to be reasonable to apply a second-order approximation to the mixture densities:

p(xr
k |Zk) =

nr∑

m=0

p(m|Zk) p(xr
k |m,Zk) (9.39)

≈
1∑

i=0

pi
k N (

xr
k; xri

k|k, Pri
k|k

)
. (9.40)

9.1.3 Quantitative Discussion

The idealized sensor-to-object scenario discussed in Fig. 7.7, Sect. 7.2, displays fea-
tures characteristic of military ground surveillance applications with airborne GMTI
radar. Based on this example, we quantitatively illustrate the potential gain by
exploiting:

1. GMTI sensor modeling,
2. road-map information,

http://dx.doi.org/10.1007/978-3-642-39271-9_7
http://dx.doi.org/10.1007/978-3-642-39271-9_7
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Fig. 9.2 a Sensor 1, no GMTI model, no road, b Sensor 1, GMTI model, no road

3. and sensor data fusion.

The covariance matrices of the estimates resulting from filtering (Eq. 3.38) provide
tracking-inherent measures of performance. For the sake of simplicity we confine the
discussion to the semi-axes of the position error ellipses in ground coordinates. The
mean squared error with reference to the true trajectory (known in the simulation) is
a more direct measure of the tracking performance.

Simulation Parameters

The GMTI sensor reports are randomly generated according to the detection prob-
abilities of the individual sensors as defined in Eq. 7.27. The errors of the range,
azimuth, and range-rate measurements are assumed to be bias-free and normally
distributed. The corresponding standard deviations σϕ, σṙ of the azimuth and range-
rate measurement errors depend on the underlying signal-to-noise+interference ratio,
snir = snir(rk,ϕk, ṙk), after clutter filtering according to the previous discussion. The
standard deviation σr of the range errors is assumed to be constant. In order to focus
on GMTI-specific aspects, the spatial residual clutter density is assumed to be small.
False returns therefore play practically no role in our simulations. In the following
list the chosen simulation parameters are summarized:

range error: σr = 20 m; azimuth error: σϕ = 0.2 deg

range-rate error: σṙ = 0.5 m/s; false alarm probability: p f = 10−6

snir0 = 20 dB; r0
1,2 = 200 km, 50 km; dynamics model: vt = 18 m/s,

θt = 200 s; road-map error:σm = 20 m

Numerical Results

Figures 9.2–9.7 show the measures of performance plotted over the time. We consider
the sensors on both platforms individually as well as the result of

http://dx.doi.org/10.1007/978-3-642-39271-9_3
http://dx.doi.org/10.1007/978-3-642-39271-9_7
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centralized fusion. How the GMTI model and the fusion with road-map informa-
tion affect the track quality is examined for each case. The temporal behavior of
the performance measures reflects the four different phases of the scenario: (1) high
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PD far from the notches, (2) missing detections due to unfavorable sensor-to-object
geometries, (3) missing detections due to the vehicle stop, (4) decreasing PD when
the vehicle is leaving the field of view (sensor 2).

• Advantage of a GMTI Sensor Model. Unless appropriately handled by a GMTI
model, the sensor inherent clutter notch can seriously affect the over-all perfor-
mance of a ground vehicle tracking system. From the figures we can derive the
following conclusions:

1. By missing successive plots due to Doppler-blindness the mean tracking error
and filtering covariances strongly increase.

2. As a consequence the expectation gates also increase, making the discrimination
of false or unwanted returns more difficult.

3. Stopped vehicles escape detection by GMTI radar. An early recognition of this
event may be of particular military interest.

By these observations it is evident that track loss is the probable consequence in
ground situations similar to our example. Even if track re-initiation is successful



9.1 Road-map Assisted Tracking 197

after some delay, the re-establishment of the track continuity may remain a difficult
and time consuming task. The simulation results show, however, that the refined
sensor model can improve the tracking performance:

1. The minor semi-axes of the position error ellipses are stronger, the corresponding
major semi-axes are slightly reduced. This is due to the fact that the GMTI
model has a larger effect on the range/range-rate estimates than on the azimuth
estimates.

2. For this reason, the bridging over periods characterized by Doppler-blindness
and the recognition of stopping vehicles is much alleviated, while the discrimi-
nation of false returns can be improved by significantly smaller range/range-rate
gates.

• Advantage by Road-Map Information. Further improvements are obtained by
exploiting information from digitized road-maps:

1. Even without GMTI modeling in the tracking filter, the effect of Doppler-
blindness on the track accuracy can be alleviated. In the scenario considered, the
road-map information is equivalent to an additional range measurement (minor
semi-axis).

2. Depending on the sensor-to-object geometry actually in effect, the azimuth
estimates can be much improved. This affects the major semi-axes of the error
ellipses. In particular the impact of the object stop on the track accuracy is
reduced.

3. If both information on the current location of the GMTI clutter notch and topo-
graphical road-maps are exploited, the early recognition of the event ‘an object
being tracked has stopped’ can be assisted, which is important in military appli-
cations.

• Advantage of Sensor Data Fusion. Even if the GMTI sensor model and road-maps
are not exploited in the algorithms, sensor data fusion significantly improves the
track accuracy. Additional improvements result if this information is taken into
account:

1. The effect of Doppler-blindness on the track accuracy can be reduced even
more. We observe a gain by sensor fusion (combined with GMTI-modeling)
even in the case of stopping vehicles (i.e. if both sensors do not produce object
measurements).

2. The advantage of sensor data fusion is not merely due to the increased data rate,
but a consequence of the sensor-to-object geometries considered. Intuitively
speaking, the fusion algorithms combine estimation error ellipses rotated with
respect to each other.

3. Since the sensor platforms typically move much faster than the observed objects,
ground vehicles remain in the field of view for a relatively short time. Evidently,
by sensor fusion the total coverage can greatly be increased.

A direct comparison between Figs. 9.5a, 9.6a and 9.7b intuitively illustrates the
advantage of using the proposed methods.
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Further Reading

A detailed discussion of this approach and the extension to road networks has been
published in:

• M. Ulmke and W. Koch
Road-Map Assisted Ground Moving Target Tracking
IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 4, p. 1264-
1274, October 2006.
This work is an extension and quantitative evaluation of the methodology pub-
lished in: W. Koch. Ground Target Tracking with STAP Radar: Selected Track-
ing Aspects. Chap. 14 in: Klemm, R. (Ed.): Applications of Space-time Adap-
tive Processing. Institution of Electrical Engineers, IEE Press, 41 pages, London
(2004).
Fusion of road-map information in extended convoy tracking based in ideas dis-
cussed in Sect. 6.2 has been published in W. Koch and M. Feldmann. Cluster
tracking under kinematical constraints using random matrices. Elsevier Journal
on Robotics and Autonomous Systems, vol. 57, nr. 3, p. 296-309, March 2009.

Abstract
Tracking ground targets with airborne GMTI (ground moving target indicator)
sensor measurements is a challenging task due to high target density, high clutter,
and low visibility. The exploitation of nonstandard background information such
as road-maps and terrain information is therefore highly desirable for the enhance-
ment of track quality and track continuity. The present paper presents a Bayesian
approach to incorporate such information consistently. It is particularly suited to
deal with winding roads and networks of roads. The target dynamics is modeled
in quasi-one-dimensional road coordinates and mapped onto ground coordinates
using linear road segments taking road-map errors into account. The case of several
intersecting roads with different characteristics, such as mean curvature, slope, or
visibility, is treated within an interacting multiple model (IMM) scheme. Targets
can be masked both by the clutter notch of the sensor and by terrain obstacles.
Both effects are modeled using a sensor-target state-dependent detection probabil-
ity. The iterative filter equations are formulated within a framework of Gaussian
sum approximations on the one hand and a particle filter approach on the other
hand. Simulation results for single targets taken from a realistic ground scenario
show strongly reduced target location errors compared with the case of neglecting
road-map information. By modeling the clutter notch of the GMTI sensor, early
detection of stopping targets is demonstrated.

Keywords: Road-maps, Bayesian tracking, Gaußian sums, particle filtering,
GMTI tracking

http://dx.doi.org/10.1007/978-3-642-39271-9_6
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9.2 Track-Based Road-map Extraction

Seen from a different perspective, ground vehicles moving on road networks that
are observed by wide-area sensors, such as GMTI radar, produce large data streams
that can directly be used for road-map extraction: After a suitable post-processing,
GMTI tracks of road targets simply define an approximation of the corresponding
road segments currently being used by the ground moving targets.

Tracking-driven road extraction can be beneficial in situations or scenarios where
reliable road-maps are not available at all, where the maps provided by geographical
information systems are not up-to-date, or where the accuracy of the road-maps is
insufficient. In addition, there are fields of applications, in which roads or road-like
‘lines of communication’ exist only temporarily or may change with time. This can
be the case in deserts or in times of a conflict. As practical evidence shows, even in
typical off-road scenarios, the existence of structures similar to roads quickly evolve,
as a ‘second’ vehicle usually moves in the tracks of its precursor. This is especially
true in an insufficiently explored or dangerous environment (e.g. in a mine field).

9.2.1 Practical Relevance

In the sensor’s own coordinate system, the achievable accuracy of road-maps gen-
erated by road-target tracking depends on the measurement accuracies of the GMTI
sensors, the current sensor-to-target geometry, the scan rate, and the dynamic proper-
ties of the ground moving vehicles, i.e. on the accuracy of the produced GMTI tracks.
Since usually many vehicles use the same road segments, a significant gain results
from fusing several “road tracks”. In addition, the underlying sensor-to-target geom-
etry is continuously changing with time as GMTI radar is essentially an airborne,
i.e. a moving, sensor system. For this reason, the fusion of “road tracks” produced
at different instants of time is expected to improve the achievable accuracy of track-
generated road-maps even more, finally leading to high-precision road-maps.

Sensor registration or misalignment errors usually cause serious problems in sen-
sor data fusion. In other words, in a given sensor data fusion application, it cannot
always be taken for granted that the data originating from various distributed sensors
can be transformed into a common coordinate system. In order to mitigate the cor-
responding bias errors, the tracking-driven generation of accurate road-maps with
reference to the individual sensor coordinate system can well be used. Precisely
extracted road-maps with reference to the coordinate system of the individual sen-
sors can easily be matched with each other by using particular road-map features
such as characteristic curves or crossings. In this way, a compensation of relative
bias errors can easily be achieved. A contribution to remove absolute bias errors
as well is obtained by matching tracking-generated road-maps with geo-referenced
maps stored in a topographical data base.
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9.2.2 Road Node Reconstruction

According to the introductory remarks, the track of a road moving vehicle, i.e. the
collection of expectation vectors and covariance matrices {rl|k, Rl|k}kl=1, provides in
itself a first approximation of the road used by the vehicle. Due to low sensor update
rates, missing detections, or fading phenomena, Doppler blindness etc., however, the
accuracy and sample density of such track generated road-maps may be insufficient.

In applications we therefore wish to produce a suitable interpolation between
adjacent ‘node vectors’ and the related ‘mapping error’ covariance matrices. This
interpolation should take full advantage of the available knowledge of the vehicles’
kinematic state vector and the related track accuracy as well as of background infor-
mation on the vehicle’s behavior, i.e. the target dynamics model.

Given two adjacent nodes vectors rl−1|k , rl|k with their related accuracies Rl−1|k ,
Rl|k , we at first have to decide whether it is reasonable to create an additional node at
all. Obviously another node is necessary if there are curves or turns to be expected.
Vice-versa, for a more or less rectilinear road segment only very few nodes are
required.

An intuitively clear indication for the existence of a winding road is given by
comparing the direction of the velocity vector estimates ṙl−1|k , ṙl|k at subsequent
instants of time tl−1 and tl , which by definition are proportional to estimates of
the tangential vectors to the road at the locations rl−1|k and rl|k . The decision also
depends on the quality of these velocity estimates.

To introduce an additional node vector, let us denote byϕl|k the angle between the
velocity estimate ṙl|k and one of the axes of the coordinate system. The corresponding
angle for the actual velocity vector is a random variable approximately normally
distributed with a variance given by Φl|k . Let ψl|k be the corresponding angle of the
difference vector rl|k − rl−1|k . An intuitively plausible decision criterion whether an
additional node is to be introduced is thus given by:

(ϕl|k − ψl|k)2/Φl|k > κ2. (9.41)

If the inaccuracy of the heading estimates is large, subsequent headings are allowed
to differ more than in case of more precise estimates. It seems to be reasonable to
choose the decision parameter around unity. Obviously, the estimate of the complete
kinematical state vector enters into this criterion. See Fig. 9.8 for a characteristic
example and an intuitive interpretation of this criterion.

Given an additional node is to be introduced, let us consider the probability density
p(xl−θ|Zk) with 0 < θ < 1, typically θ = 1

2 if tl = lΔt . This density expresses the
available knowledge about the kinematical target state at an intermediate instant of
time tl−1 < tl−θ < tl . From this density, an intermediate node vector of the road and
a tangential vector can be derived. By considering several θ1, θ2, . . . an indication
of the arc length λ of the road between the positions rl−1 and rl can be obtained.
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Fig. 9.8 Adding a new node vector

According to the discussion in Sect. 3.4.2, we obtain:

p(xl−θ|Zk) = N (xl−θ; xl−θ|k, Pl−θ|k). (9.42)

9.2.3 Discussion of an Example

We discuss an example illustrating the iterative process of tracking-driven road-map
extraction sketched above.

Simplified Scenario

Figure 9.9 shows a simulated and idealized, but non-trivial GMTI tracking scenario.
On a road network a single ground vehicle is moving from ‘Start’ to ‘End’. On
its way it passes two regions, where it is not detectable by the radar sensor due to
terrain obscurations. The second obscuration hides an intersection. The vehicle stops
twice for several minutes (stars). Obviously, during these periods the vehicle is not
detectable by a GMTI radar.

Directly before and after the second terrain obscuration the detection probability
of the radar is significantly reduced due to the phenomenon of ‘Doppler blindness’.
In such regions the radial velocity of the moving vehicle relative to the moving sensor
platform is equal or close to the corresponding radial velocity of the ground patch
surrounding the vehicle. For this reason, the skin echo of the vehicle in most cases can
no longer be discriminated from the ground clutter returns by using Pulse-Doppler
signal processing (STAP: Space Time Adaptive Processing [5]). The vehicle is thus
masked by the ‘clutter notch’ of the GMTI radar.

The revisit interval of the simulated GMTI radar is 12 s. It is located in a distance
of 100 km along the y-axis (stand-off radar). Its measurement accuracy (standard
deviation) is 20 m in range (i.e.. along the y-axis) and 400 m in cross-range (i.e. along

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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Fig. 9.9 A GMTI tracking scenario
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Fig. 9.10 Filtering covariances (major/minor eigenvalues)

the x-axis). The corresponding Minimum Detectable Velocity (MDV) is 2 m/s. In this
simplified example, we exclude the treatment of false or unwanted radar returns and
consider well-separated ground-moving vehicles only. The total observation time is
one hour (300 scans).
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Fig. 9.11 Tracking error (localization, speed)

Simulation Results

Figure 9.10 shows the major and minor semi-axes of the error ellipses related to
the position estimates of the vehicle as a function of the tracking time (solid and
dashed lines, respectively). These quantities are simply obtained by applying Kalman
filtering for tracking as there are no false returns or other vehicles in the vicinity.
We observe four pronounced peaks which correspond to terrain obscurations, the
vehicle stops, and the regions where the radar is Doppler-blind. The mean values of
the semi-axes are 364 and 109 m, respectively.

In Fig. 9.11, the tracking error, i.e. the distance between the simulated true vehicle
state and the corresponding estimates, are displayed for a single run as a function
of the tracking time (TLE: Target Localization Error, TSE: Target Speed Error).
The corresponding mean values are 498 m and 4.9 m/s, respectively. In the temporal
evolution of the localization error, only two peaks are visible. The orientation of the
road happens to be along the resulting predictions in the situations where the other
peaks occurred in the previous figure.

Figure 9.12 shows the major and minor semi-axes of the error ellipses of the
retrodicted position estimates of the vehicle as a function of the tracking time (solid
and dashed lines, respectively). Obviously the error covariance matrices are much
reduced in size (mean values 161 and 41 m, respectively) and are used for describ-
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Fig. 9.13 Filtering covariances (major/minor eigenvalues)

ing the road-map errors as discussed in the previous sections. The retrodicted state
estimates of the road-moving vehicle are used for approximating the road.

This first approximation of the road-map, which was reconstructed by the track of
a first road-moving vehicle, is now used for ‘road-map-assisted tracking’ of a second
vehicle using the same road. In Fig. 9.13 the resulting major and minor semi-axes
of position error ellipses are shown. The mean values are 260 and 46 m, respec-
tively. Evidently, these quantities are much smaller than the corresponding quantities
obtained in the previous case. In particular, the pronounced peaks in the time periods
when the target stops are significantly smaller. The same tendencies can be observed
in Fig. 9.14, which shows the tracking errors for localization and speed (mean val-
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Fig. 9.14 Tracking error (localization, speed)

Table 9.1 Relevant accuracies (mean values)

Tracker P [m] P [m] TLE [m] TSE [m/s]

No road 364 109 489 4.9
Road 250 46 256 3.4

ues: 256 and 3.4 m/s, respectively). As expected, only a slight improvement in the
velocity estimates is obtained by road-map information.

The next step for improving the underlying road-map to be extracted consists in
applying retrodiction to this track, which is more accurate than the track used in the
first step of the iteration.

In Table 9.1 the mean values of the accuracies previously discussed are summa-
rized. P and p denote the major and minor eigenvalues of the corresponding covari-
ance matrices. Even by this first iteration for reconstructing a road-map from GMTI
tracks an error reduction in position of about 30–50 % can be obtained if this road
is used for road-map-assisted tracking. We expect that by iterating this procedure
under different sensor-to-target geometries and with a more refined continuous time
retrodiction technique, such as described in Sect. 4, highly accurate roads can finally
be obtained.

9.2.4 Summary of Observations

We discussed ground-moving vehicle tracking as a means for extracting road-map
information from GMTI radar data. The resulting tracking-generated road-maps are
highly up-to-date. By iteratively applying the described procedures, the produced

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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maps can be highly precise as well. Moreover, their accuracy in each node is quan-
titatively described. The proposed approach to road-maps extraction is essentially
based on a temporal integration of the received sensor data and by this differs in
nature from methods based on pattern recognition in a single image.

We summarize some aspects, which might be of particular interest in view of
sensing applications:

• Tracking-driven road extraction can be beneficial in situations or scenarios where
reliable road-maps are not or not yet available, where the road-maps provided by
geographical information systems are not up-to-date, or where the accuracy of
existing road-maps is insufficient.
• In certain applications, roads or road-like ‘lines of communication’ exist only

temporarily or may change with time. As practical evidence shows, even in typical
off-road scenarios, structures similar to roads quickly evolve, as a ‘second’ vehicle
usually moves in the ‘tracks’ of its precursor.
• As usually many targets use the same road, a significant advantage results from

fusing several ‘road tracks’. For airborne GMTI radar the sensor-to-target geom-
etry is continuously changing. Therefore the fusion of ‘road tracks’ produced at
different times improves the achievable accuracy even more.
• Sensor registration or misalignment errors usually cause serious problems in mul-

tiple sensor data fusion. For mitigating these phenomena, precisely extracted road-
maps can be matched with each other, thus compensating relative bias errors. For
removing absolute bias errors, matching with geo-referenced road-maps can be
used.

Further Reading

A detailed discussion of this approach has been published in:

• W. Koch, J. Koller and M. Ulmke.
Ground Target Tracking and Road-Map Extraction.
ISPRS Journal of Photogrammetry & Remote Sensing, 61 (2006), 197–208,
Elsevier.

Abstract
For analyzing dynamic scenarios with many ground moving vehicles, airborne
Ground Moving Target Indicator (GMTI) radar is well-suited due to its wide-
area, all-weather, day/night, and real time capabilities. The generation of GMTI
tracks from these data is the backbone for ground surveillance and traffic flow
analysis. In case of dense target situations, missing detections and false alarms,
Multi-Hypotheses Tracking (MHT) is the method at choice to solve the inherent
ambiguities in the data-targets assignment problem. The resulting MHT-tracks
are suited to extract road-map information which is highly up-to-date and fairly
precise. Moreover, their accuracy is quantitatively described. The precision of the
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extracted road segments can be improved significantly using smoothed or retro-
dicted tracks. In turn, the extracted road information is exploited for the precise
tracking of succeeding road targets. The proposed, fully Bayesian approach is
illustrated by a simulated example including Doppler and terrain obscuration,
providing hints to the achievable road-map accuracies.

Keywords: Tracking; Road extraction; Ground Moving Target Indicator (GMTI);
Retrodiction; MHT (Multi-Hypotheses Tracking); Sequential track extraction

9.3 Integration of Ray Tracers

Complex sensing environments, such as urban terrain, come more and more into the
focus of modern surveillance applications. As an example we may wish to localize an
emitter in a city street using a receiver dislocated from it. The measured Direction of
Arrival (DoA) of the emitted signal will generally not be related to the direct line of
sight due to multipath propagation. Even if this is actually the case, we do not know
it. Instead, there will be incident signals from several directions related to alternative
propagation paths. To each measured DoA belongs a relative Time Difference of
Arrival (rTDoA) with respect to first incoming signal.

9.3.1 Multipath Propagation Prediction

Evidently, this scenario is dominated by propagation phenomena. The key to localiz-
ing and tracking emitters in urban terrain thus lies in dealing with multipath phenom-
ena appropriately. In urban scenarios, however, context information on the underlying
road network and the location of the buildings is available. This context knowledge
can serve as input for a ray-tracing algorithm to be used for evaluating the most
likely propagation paths. In other words, for each randomly chosen candidate of
the emitter position we can algorithmically calculate the likelihood function related
to the measurements produced by the receiver. This pointwisely defined likelihood
function can be directly exploited for emitter localization and tracking within the
well established framework of particle filtering.

As an illustration, let us consider the situation shown in Fig. 9.3. OS denotes the
passive receiver location, while MS indicates the position of the emitter to be localized
and tracked. The buildings reflecting and refracting the emitted radiation are depicted
in dark gray. The five major propagation paths are shown. In any realistic urban
environment, however, propagation paths found by the ray tracer may actually be
missing. This phenomenon must be modeled by the underlying likelihood function.
The individual paths contribute differently to the localization accuracy achieved. The
regions A, B, and C in Fig. 9.15 contain the emitter position with a probability of
95 %, where region A refers to the case where all paths are detected, in B path 5
is not detected, while in C path 3 is missing. False paths must also be taken into
account and be modeled appropriately.
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Fig. 9.15 Multipath channels in an urban environment: impact on localization

9.3.2 Particle Filter Approach

Figure 9.15 illustrates the principle of context-aided tracking, which may find appli-
cation in many other fields where sophisticated models of the propagation channel
exist (“ray tracers”) and can be exploited for localization and tracking (ionospheric
propagation such as in communications or over-the-horizon radar (OTR), shallow-
water sonar, indoor navigation).

9.3.3 Conclusion

The key to blind mobile emitter tracking in urban scenarios is a likelihood function,
which determines the proximity of the measured and predicted multipath components
with respect to all possible association hypotheses between them. The measurements
of the multipath components are provided by a receiver station equipped with an
antenna array. The predicted temporal and spatial structure of the multipath compo-
nents is generated by means of the 2D-ray tracking analysis using a priori information
about the location of the scattering objects. In order to mitigate the impact of missing
and false propagation paths on the positioning result, the measured path parameters
have to be preprocessed. The likelihood function is algorithmically defined for a
randomly distributed set of potential emitter MS positions and can be applied within
a particle filtering realization of the Bayesian tracking paradigm. The simulation
results in a synthetic environment show that the tracking technique provides a robust
and accurate state initiation, which is essential for the subsequent track maintenance
part of the emitter tracking algorithm.
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Initially chosen particle distribution.

Distribution: 1st filtering cycle 5th filtering cycle

Fig. 9.16 Emitter localization and tracking exploiting multipath propagation within a particle
filter framework based on pointwisely defined likelihood functions calculated by using ray-tracing
algorithms

Further Reading

A detailed discussion of this approach has been published in:

• V. Algeier, B. Demissie, W. Koch, and R. Thomä
State Space Initiation for Blind Mobile Terminal Position Tracking
EURASIP Journal on Advances in Signal Processing, Special Issue on Track-
before-Detect Algorithms, Volume 2008 (2008), Article ID 394219, 14 pages

Abstract
Blind localization and tracking of mobile terminals in urban scenarios is an impor-
tant requirement for offering new location-based services, handling emergency
cases of unsubscribed users, public safety, countering IEDs, and so forth. In this
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context, we propose a track-before-detect scheme that takes explicit advantage of
multipath propagation in an urban terrain by using a priori information about the
known locations of the main scattering objects such as buildings. This information
is made available for localization and tracking by a real-time ray-tracing technique
based on a 2D geographic database. This allows the prediction of the directional
and temporal structure of the received multipath components for an arbitrary trans-
mitter position. We consider a single observing station where the direction and the
relative time of arrival of the received multipath components can be estimated by
an antenna array. By a likelihood function, which is algorithmically defined for
a randomly distributed set of potential transmitter positions, these measurements
are compared with those expected by ray tracing. This likelihood function is the
key component of a track-before-detect scheme providing initial state estimates
for mobile transmitter tracking using a particle filtering technique.
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Chapter 10
Feed-Back to Acquisition: Sensor Management

Modern active phased-array radar [1] is an example of a multifunctional sensor
system that requires sophisticated sensor management algorithms for its efficient
operation. Such systems call for efficient exploitation of their degrees of freedom,
which are variable over a wide range and may be chosen individually for each
track. This is especially true in multiple object tracking tasks. Of special interest
are air situations with agile objects significantly differing in their radar cross section.
Unless properly handled, such situations can be highly allocation time- and energy-
consuming. In this context, advanced sensor and dynamics models for combined
tracking and sensor management are discussed, i.e. control of data innovation inter-
vals, radar beam positioning, and transmitted energy management. By efficiently
exploiting its limited resources, the total surveillance performance of such sensor
systems can be significantly improved.

For track-while-scan sensor systems or operating modes, data acquisition and
tracking are completely decoupled. For phased-array radar operated in an active
tracking mode, however, the current signal-to-noise ratio of the object (i.e. the detec-
tion probability) strongly depends on the correct positioning of the pencil-beam,
which is now taken into the responsibility of the tracking system. Sensor control
and data processing are thus closely interrelated. This basically local character of
the tracking process constitutes the principal difference between phased-array and
track-while-scan applications from a tracking point of view. By using suitable sensor
and object evolution models, however, this fact can be incorporated into the Bayesian
formalism. The potential of this approach thus also applies to phased-array radar.
The more difficult problem of global optimization, taking successive allocations into
account, is not addressed here.

The discussion of a sensor management example seems to be well-suited as a
concluding chapter of Part II of this thesis. Many methods discussed in Part I and
specialized aspects of sensor and objects modeling must be combined appropriately.
The methodologies discussed below were inspired and in early parts evaluated by
the experimental system ELRA [1, Chap. 17]. Their applicability, however, includes
modern on-board radar systems for interceptor aircraft and multifunctional radar
systems for wide-area ground and sea surveillance. This application example thus

W. Koch, Tracking and Sensor Data Fusion, 211
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_10,
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illustrates in a particular way the inner structure and practical use of the underlying
Bayesian formalism. The very success of the Bayesian paradigm may serve as retro-
spective justification of the approach as well as a motivation to apply this formalism
to an even broader field of tracking, data fusion and sensor management applications.
The material presented here is essentially taken from [2, Chap. 12].

10.1 Information Flow in Agile-Beam Radar

A simplified scheme illustrating the information flow in tracking-driven phased-array
radar management is shown by Fig. 10.1. The starting point is the tracking system,
which generates a request for new sensor information based on the current quality of
an already established individual object track or on the requirement of initiating new
tracks. We thus distinguish between track update and search requests, which enter
into the priority management unit where its rank is evaluated based on the current
threat or overload situation, for example, thus enabling graceful system degradation
when necessary.

For each preparation of a radar system allocation, track-specific radar parameters
must be set, such as the calculated radar revisit time and the corresponding radar

initial/alertManeuver

Formation

Track Update Request Track Search Request

Confirmation

Sensor    Reports

Tracking System

Priority Management :

- Threat Assessment
- Overload Handling
- Graceful Degradation

Local Search 

Search Settings :

- Revisit Intervals
- Search Sectors
- Search Patterns
- Radar Parameters

Update Settings :

- Track-ID, Revisit Time
- New Beam Position
- Range /Doppler Gates
- Radar Parameters

Dwell Scheduling:

Antenna Commands

Detection Process :

Data Rate Reduction

Signal Processing :

Target Characteristics

Detections

Fig. 10.1 Simplified scheme of the information flow in tracking-driven phased-array radar
management
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beam position, range- and Doppler-gates, or the type of the radar waveforms to be
transmitted. Track search requests require the setting of appropriate revisit intervals,
search sectors and patterns, and other radar parameters. In the dwell-scheduling unit,
these preparations are transformed into antenna commands, by which the radar sensor
is allocated and radar energy transmitted. The received echo signals pass a detection
unit. If no detection occurs in the track maintenance mode, a local search procedure
is initiated, new radar parameters are set, and a subsequent radar sensor allocation
is started with as small a time delay as possible. This local search loop is repeated
until either a valid detection is produced or the track is canceled. While a new beam
position according to a global or sector search pattern is calculated if no detection
occurs in the track search mode, a tentative detection has to be confirmed before
a new track is finally established. After a successful detection, the received signal
passes the signal processing unit, where characteristic object parameters, such as
object range, azimuth angle, radial velocity, and the object strength, are estimated.
These are the inputs for the tracking system. This closes the data processing and
sensor management loop.

In certain applications, distinct maneuvering phases often exist, since even agile
objects do not maneuver permanently. Nevertheless, abrupt transitions to high-g
turns can easily occur. Allocation time and energy savings are thus to be expected if
adaptive dynamics models of the object dynamics are used. Besides their kinematic
characteristics, the mean radar cross section (RCS) of the objects to be tracked is
usually unknown and variable over a wide range. By processing signal amplitude
information, however, the energy spent for track maintenance can be adapted to the
actual object strength. In this way, the total sensor load can also be significantly
reduced.

Due to the locally confined object illumination by the pencil-beam of a phased-
array radar, abrupt transitions into maneuvering flight phases are critical since, in
contrast to more conventional track-while-scan radar, a periodic object illumination
is no longer guaranteed. Any track reinitiation is thus highly allocation time- and
energy-consuming. Track reinitiation is also in conflict with other sensor tasks, such
as weapon guidance or providing communications links. This calls for intelligent
algorithms for beam positioning and local search [3–5] that are crucial to phased-
array radar tracking.

Resource management for a multi-functional radar depends on the particular appli-
cation considered. We here discuss track maintenance for ground-based air surveil-
lance while minimizing the allocation time and energy required. Track accuracy is
important only insofar as stable tracks are guaranteed. Track initiation or implemen-
tation issues are not addressed here. To make the benefits of IMM modeling and
amplitude information clearly visible, false detections (clutter, electronic counter
measures), data association conflicts, or possibly unresolved measurements were
excluded. Nevertheless, their impact might well be incorporated into the general
Bayesian framework [6].
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10.2 Sensor Modeling for Phased-Array Radar

In phased-array radar tracking, additional sensor information can be acquired when
needed. Before each “radar resource allocation” [7], certain radar parameters must
be selected by the tracking system depending on the current lack of information.
We here consider the object revisit time tk , the current beam position bk , i.e. a unit
vector pointing into the direction where radar energy is to be transmitted, and the
transmitted energy per dwell ek . Other radar parameters (detection threshold λD ,
radar beam width B) are assumed to be constant for the sake of simplicity, i.e. we
neglect the dependence of the radar beam width on the beam position, for example.
After processing the skin echo produced by the illuminated object, the resource
allocation Rk at time tk results in measurements of direction cosines of the object and
the object range, zk = (ūk, v̄k, r̄k), along with the signal amplitude ak . A single dwell
may be insufficient for object detection and subsequent fine localization. Let nBk

denote the number of dwells needed for a successful detection and Bk = {bi
k}

nBk
i=1 the

set of the corresponding beam positions. Each radar allocation is thus characterized
by the tuple Rk = (tk, Bk, nBk , ek, zk, ak). The sequence of successive allocations
is denoted by Rk = {Rk,Rk−1}.

10.2.1 Radar Cross Section Fluctuations

The instantaneous radar cross section σk of realistic objects strongly depends on the
radar frequency used and the current aspect angle. For this reason, statistical models
are used to describe the backscattering properties of the objects. In many practical
cases, σk is described by gamma-densities,

p(σk |σ̄, m) = Gm
(
σk; σ̄, m

)
(10.1)

= (m/σ̄)m

Γ (m)
σm−1

k e−σk m/σ̄. (10.2)

In this equation σ̄ denotes the mean RCS of the object that is usually unknown, but
constant in time and characteristic of a certain class of objects, while the parame-
ter m denotes the number of “degrees of freedom”. The individual samples σk are
assumed to be statistically independent for subsequent dwells (guaranteed by fre-
quency decorrelation, e.g.). The cases m = 1, 2 are referred to as Swerling-I and -III
fluctuations [8].

Let the instantaneous object signal vk = (v1, v2) with the two orthogonal signal
components v1 and v2 be additively corrupted by Gaussian noise with variance σ2

n
according to the standard modeling assumptions [8]. Since the signal components
are assumed to be statistically independent, the pdf of the resulting sensor signal
sk = (s1, s2) is

p(sk |vk) = N (
s1; v1, σ

2
n

) N (
s2; v2, σ

2
n

)
. (10.3)
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The normalized scalar quantity a2
k = (s2

1 + s2
2 )/2σ2

n , derived from sk , is thus

Rice-distributed [8]: p(Ak |snk) = e−Ak−snk I0
(
2ak
√

snk
)

with snk = (v2
1+v2

2)/2σ2
n .

Hence, snk denotes the instantaneous signal-to-noise ratio of the object being pro-
portional to the instantaneous radar cross section σk . The expectation value of
a2

k with respect to p(Ak |snk) is given by E[Ak] = 1 + snk . According to the
normalization chosen, pure noise (snk = 0) has thus unit power. Due to the
RCS model previously discussed, snk is gamma-distributed with the mean SNR:
p(snk |SNR) = Gm

(
snk; SNR, m

)
. The conditional density of Ak given SNR is thus

obtained by calculating:

p(Ak |SNR) =
∫ ∞

0
dsnk p(Ak |snk) p(snk |SNR). (10.4)

The integration can be carried out (see [9], e.g.) yielding:

p(Ak |SNR) = (m+SNR
m

)−m e−mAk/(m+SNR) Lm−1
(−Ak SNR

m+SNR

)
(10.5)

where Lm−1 denotes the Laguerre polynomials. For Swerling-I/III these polynomi-
als are given by: L0(−x) = 1, L1(−x) = 1 + x . Obviously, p(Ak |SNR) can be
interpreted as a gamma mixture with the expectation value E[Ak] = 1+ SNR.

10.2.2 Mean Received Signal-to-Noise Ratio

Any sensor model for phased-array radar tracking has to provide a functional rela-
tionship linking the expected signal-to-noise ratio SNRk at the revisit time tk , the
sensor parameters considered (here: transmitted energy, beam position) and the rel-
evant object parameters (mean RCS, object position). With a Gaussian beam form
model [3], well proven in applications, the radar range equation (see [8], e.g.), we
assume:

SNRk = SN0
(
σ̄
σ̄0

) ( ek
e0

) ( rk
r0

)−4 e− log 2Δbk (10.6)

with Δbk = |dk − bk |2/B2. (10.7)

rk is the actual object range at time tk , while dk = (uk, vk)
� denotes the related

direction cosines. With the beam position bk = (bu
k , bv

k )� and the (one-sided) beam
width B, Δbk is a measure of relative beam positioning error. For Δbk = 1, the
signal-to-noise ratio is reduced by a factor of 2. The radar parameter SN0 is the
expected mean signal-to-noise ratio of a object with a standard mean cross section
σ̄0 at a reference range r0 that is directly (Δbk = 0) illuminated by the beam with the
energy e0. Due to the functional relationship stated in Eq. 10.5, the signal strength
Ak can be interpreted as a measurement of σ̄.
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10.2.3 Detection and Measurement Process

A detection is assumed if the received signal strength exceeds a certain detection
threshold: Ak > λD . For a given m in the fluctuation model (Eq. 10.2), the detection
probability PD is a function of SNR and λD:

PD(SNR,λD, m) =
∫ ∞

λD

dAk p(Ak |SNR). (10.8)

The false alarm probability PF is analogously obtained:

PF (λD) = PD(0,λD, m) = e−λD . (10.9)

Integration results in explicit expressions for PD [8]. For Swerling-I/III fluctuations,
we obtain:

PI
D(SNR,λD) = e−

λD
1+SNR = P

1
1+SNR

F (10.10)

PIII
D (SNR,λD) = e−

λD
1+SNR/2

(
1+ (SNR/2)λD

(1+SNR/2)2

)
. (10.11)

For object tracking Ak is available after a detection, i.e. Ak > λD . We thus need the
conditional density:

p(Ak |Ak > λD, SNR, m) =
{

p(Ak |SNR)
PD(SNR,λD,m)

for Ak > λD

0 else
. (10.12)

For strong objects, we can assume SNR ≈ 1 + SNR ≈ . . . ≈ m + SNR and thus
approximately obtain: p(Ak |SNR) ≈ (SNR

m

)−m e−mAk/SNR Lm−1
( − Ak

)
, which

is similar to the expression in Eq. 10.5. On the other hand, let the detection prob-
ability for m �= 1 be approximately given by: PD(SNR,λD, m) ≈ PI

D(SNR,λD)

(i.e. by a Swerling-I-model). We can therefore write: p(a|Ak > λD, SNR, m) ≈
Sm

(Ak; SNR, m
)

with:

Sm
(Ak; SNR, m

) =
{(SNR

m

)−m e−(mAk+λD)/SNR Lm−1
(−Ak

)
forAk > λD

0 else.
(10.13)

Let us furthermore assume that monopulse localization after detection results in
bias-free measurements u′k , v′k of the direction cosines and range with Gaussian
measurement errors. According to [8], the standard deviations σu,v

k depend on the
beam width B and the instantaneous snk in the following manner: σu,v

k ∝ B/
√

snk ≈
B/
√Ak − 1. Since snk is unknown, in the last approximation Ak is used as a bias-

free estimate of snk (E[Ak] = 1+ snk). The range error is assumed to be Gaussian
with a constant standard deviation σr , which can be related to the size rres of discrete
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range resolution cells via: σr = rres/
√

12. Evidently, this model of the measurement
process does not depend on the RCS fluctuation model.

10.3 Bayesian Tracking Algorithms Revisited

According to the previous discussion, object tracking is an iterative updating scheme
for conditional probability densities p(xk |Rk) that describe the current object state
xk given all available resource allocations Rk and the underlying a priori information
in terms of statistical models. The processing of each new measurement zk via Bayes’
Theorem establishes a recursive relation between the densities at two consecutive
revisit times (a prediction step followed by filtering).

10.3.1 Predictions: Basis for Allocation Decisions

The knowledge of the object state at time tk before a new radar allocation has taken
place is thus given by p(xk |Rk−1). Allocation decisions for a certain time tk must thus
be based on this prediction, which essentially depends on the underlying dynamics
model. For IMM dynamics model, p(xk |Rk−1) is given by a finite mixture density:

p(xk |Rk−1) =
∑

jk

pjk
k|k−1 N (

xk; xjk
k|k−1, Pjk

k|k−1

)
(10.14)

with jk = ( jk, . . . , jk−n+1) denoting a particular model history, i.e. a sequence of
possible hypotheses regarding the object dynamics model from a certain observation
at time tk−n+1 up to the most recent measurement at time tk (“n scans back”). In the
case of a single dynamics model (r = 1), the prediction densities p(xk |Rk−1) are
strictly given by Gaussians (standard Kalman prediction). For n = 1, p(xk |Rk−1) is
approximated by a mixture with r components according to the r dynamics models
used. GPB2 and standard IMM algorithms are possible realizations of this scheme
[10]. For standard IMM, the approximations are made after the prediction, but before
the filtering step, while for GPB2 they are applied after the filtering step. Hence, GPB2
requires more computational effort. For details see [10].

10.3.2 Processing of Signal Strength Information

Let us treat the normalized mean RCS of the object, sk = σ̄k/σ̄0, as an additional
component of the state vector. Since the signal strength after a detection occurred
may be viewed as a measurement of sk , let us consider the augmented conditional
density
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p(xk, sk |Rk) = p(sk |xk,Rk) p(xk |Rk). (10.15)

The calculation of p(xk |Rk) was discussed in Sect. 10.2. For the remaining density
p(sk |xk,Rk), an application of Bayes’ Theorem yields up to a normalizing constant:

p(sk |xk,Ak,Rk−1) ∝ Sm
(Ak; SNR, m

)
p(sk |xk, Rk−1). (10.16)

Let us furthermore assume that p(sk |xk,Rk−1) are given by inverse gamma densities,

p(sk |xk,Rk−1) = Iμk|k−1

(
sk; ŝk|k−1, μk|k−1

)
, (10.17)

which are defined by:

Iμ
(
s; ŝ, μ

) = [
((μ− 1)ŝ)μ/Γ (μ)

]
s−μ−1 e−

(μ−1)ŝ
s , (10.18)

where ŝ is the expectation of this density, ŝ = E[s] > 0, μ a parameter μ > 1.
For μ > 2, the related variance exists: V[s] = ŝ2/(μ− 2). This class of densities is
invariant under the successive application of Bayes’ Theorem according to Eq. 10.16,
since up to normalization we obtain:

Sm
(Ak; SNR, m

) Iμk|k−1

(
sk; ŝk|k−1, μk|k−1

)
(10.19)

∝ α−m
k s

−μk|k−1−m−1
k exp

(− (μk|k−1−1)ŝk|k−1+mAk+λD
αk

sk

)
(10.20)

∝ Iμk

(
sk; ŝk, μk

)
, (10.21)

where the parameters αk , ŝk , and μk are given by:

αk = SN0
( ek

e0

) ( rk
r0

)−4 e−2Δbk , (10.22)

ŝk = μk|k−1−1
μk|k−1+m−1 ŝk|k−1 + (mAk+λD)/αk

μk|k−1+m−1 (10.23)

μk = μk|k−1 + m. (10.24)

With reference to sk the density Iμk

(
sk; ŝk, μk

)
is correctly normalized. Evidently,

αk depends on the object position (αk = αk(rk, uk, vk)). In order to preserve the
factorization of p(xk, sk |Rk) in a normal mixture related to the kinematic properties
of the object xk and an inverse gamma density related to its RCS sk , we use the
approximation:

αk ≈
( ek

e0

) ( r̂k
r0

)−4 e−2{(ûk−bu
k )2+(v̂k−bv

k )2}/B2
, (10.25)

where r̂k, ûk, v̂k are the MMSE estimates for rk , uk and vk derived from p(xk |Rk).
Hence, αk compensates both the estimated positioning error of the radar beam and
the propagation loss due to the radar equation. Assuming sk to be constant, we have
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Iμk|k
(
sk; ŝk|k−1, μk|k

) = Iμk|k−1

(
sk; ŝk−1, μk|k−1

)
. In principle, a dynamics model

describing temporal changes of the radar cross section could be introduced.

10.4 Adaptive Bayesian Sensor Management

The predicted tracking performance is essential for adaptive radar revisit time control,
the selection of the transmitted radar energy, and the design of intelligent algorithms
for local search.

10.4.1 Adaptive Radar Revisit Time Control

The time tk when a radar allocation Rk should take place is determined by the current
lack of information conveniently described [3] by the error covariance matrix Pk|k−1
of the predicted state estimate xk|k−1. Since p(xk |Rk−1) is a normal mixture, xk|k−1
and Pk|k−1 are given by:

xk|k−1 =
∑

jk

pjk
k|k−1 xjk

k|k−1 (10.26)

Pk|k−1 =
∑

jk

pjk
k|k−1

(
Pjk

k|k−1 (10.27)

+ (xjk
k|k−1 − xk|k−1) (xjk

k|k−1 − xk|k−1)
�)

. (10.28)

The covariance matrix Pjk
k|k−1 of the individual mixture components grow the faster

in time the more often maneuvers are assumed in the corresponding model histories.
This has an impact on the total covariance matrix Pk|k−1 according to the correspond-

ing weighting factors pjk
k|k−1. In addition, Pk|k−1 is “broadened” by the positively

definite spread terms (xjk
k|k−1 − xk|k−1) (xjk

k|k−1 − xk|k−1)
�. Obviously, the adaptive

IMM modeling affects Pk|k−1 in a rather complicated way.
A scalar measure of the information deficit is provided, e.g., by the largest eigen-

value of the covariance matrix of the predicted object direction (in terms of u, v).
Let it be denoted by Gk|k−1. A track update is allocated when the Gk|k−1 exceeds a
predetermined proportion of the squared radar beam width B:

Gk|k−1 > (v0 B)2. (10.29)

The relative track accuracy v0 introduced by this criterion is a measure of the min-
imum track quality required and a parameter to be optimized. In many practical
applications, v0 = 0.3 is a reasonable choice [3].
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10.4.2 Transmitted Radar Energy Selection

In view of the tracking system, the sensor performance is mainly characterized
by the signal-to-noise ratio that determines both, the detection probability and the
measurement error. By suitably choosing the transmitted energy per dwell ek , the
expected signal-to-noise ratio SNk|k−1 can be kept constant during tracking. Besides
v0, SNk|k−1 is an additional parameter subject to optimization. Since v0 may be
viewed as a measure of the beam positioning error, the energy ek at time tk is defined
by this condition (Eq. 10.6):

SNk|k−1
!= const. (10.30)

→ ek
e0
= ( SN0

SNk|k−1

) ( σ̄0
σ̄

) ( r̂k|k−1
r0

)4 e2v2
0 . (10.31)

By this particular choice, the influence of the radar range equation is compensated
(at least for a certain range interval). For the mean radar cross section σ̄ either a
worst-case assumption or estimates from object amplitude information can be used.
The track quality v0 also affects the transmitted energy. As a side effect of this choice,
the standard deviations σu,v

k of the u, v-measurements are kept constant on average.

10.4.3 Bayesian Local Search Procedures

Intelligent algorithms for beam positioning and local search are crucial for IMM-type
phased-array tracking. Overly simple strategies may easily destroy the benefits of
the adaptive dynamics model, because track loss immediately after a model switch
can easily occur. To avoid this phenomenon, we adapt the optimal approach based
on the predicted densities p(xk |Rk−1) proposed in [3] to IMM tracking [4].

1. The beam position b1
k of the first dwell at time tk is simply given by the predicted

direction dk|k−1 to be derived from the predicted density function p(xk |Rk−1).
2. If no detection occurs in the first dwell, even this non-detection provides useful

information on the target. We thus have to calculate the conditional density of
the target state given the event ¬D1

k : ‘no detection at time tk in the direction b1
k .’

3. An application of Bayes’ Theorem directly yields:

p(dk |¬D1
k,Rk−1) ∝ (

1− PD(dk;b1
k)

)
p(dk |Rk−1) (10.32)

up to a normalizing factor. In this expression, the detection probability PD

depends on the expected SNR (Eq. 10.6) and thus on the current beam and target
position bk , dk .

4. The two dimensional density p(dk |¬D1
k,Rk−1) can easily be calculated on a

grid. The beam position for the next dwell is then simply provided by its maxi-
mum.
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5. This computational scheme for Bayesian local search is repeated until a detection
occurs. Since the maximum of p(dk |¬D1

k,¬D2
k, . . . ,Rk−1) is searched, the

computation of the normalization integral is not required. Numerically efficient
realizations are possible.

Alternatively, p(dk |¬D1
k,Rk−1) might be used for calculating the expected SNR in

a certain direction bk :

SNR(bk) =
∫

ddk SNR(bk, dk) p(dk |¬D1
k,Rk−1).

Searching the maximum of SNR(bk) results in a different local search strategy. In
the examples considered below, however, no significant performance improvements
were observed. Nevertheless, there might be applications where the maximization
of SNR(bk) is advantageous (e.g. for track recovery in case of intermittent operating
modes).

This local search scheme exploits ‘negative’ evidence, as also here the lack of an
expected measurement carries information on the current target position. In partic-
ular, we here observe a direct impact on adaptive sensor management. Again, the
prerequisite for dealing with negative evidence is an adequate sensor performance
model. As in the case of resolution phenomena (Sect. 10.2), the processing of neg-
ative sensor evidence implies mixture densities with potentially negative mixture
coefficients, i.e. not each mixture component has a direct probabilistic interpreta-
tion. Since the mixture coefficients sum up to one, the overall density still has a
well-defined probabilistic meaning.

Figure 10.2 illustrates this scheme of Bayesian local search for a particular exam-
ple. In Fig. 10.2a, the predicted pdf p(dk |Rk−1), a mixture density, is shown for
some time tk . The target is expected to be in the bright region with high probabil-
ity; the true target position is indicated by a green dot. The blue dot denotes the
beam position of the next dwell. The related detection probability is 26 %. However,
no detection occurred during the first dwell. We thus calculate the conditional pdf
p(dk |¬D1

k,Rk−1) given that event. As visible in Fig. 10.2b, it differs significantly
from p(dk |Rk−1). The previous maximum decreased in height, while the global
maximum is at a different location. Again no detection occurred; the resulting den-
sity p(dk |¬D1

k,¬D2
k,Rk−1) reflecting the two pieces of ‘negative’ evidence ¬D1

k
and ¬D2

k is shown in Fig. 10.2c. Now the search algorithm decides to look again
near the position at dwell 1. Although wrong in this case, this does not seem to be
unreasonable. In addition, two smaller local maxima appear that increase in size as in
the next dwell no detection occurs either. According to Fig. 10.2d, the next decision
is ambiguous. We finally obtain a decision which leads to success. The last picture
shows the updated pdf (Fig. 10.2f).
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Fig. 10.2 Bayesian local search: five consecutive dwells
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10.5 Discussion of Numerical Simulation Results

Simulation results provide hints as to what extent the total performance of multiple-
object air surveillance by phased-array can be improved by using adaptive tech-
niques for combined tracking and sensor control. The following four questions are
addressed:

1. What resource savings (allocation time, energy) can be expected by using adap-
tive dynamics models?

2. How should the IMM dynamics modeling be designed (e.g. number of models,
transition matrix)?

3. What energy savings can be expected if object amplitude information for sensor
control is exploited?

4. Why is Bayesian local search important when adaptive dynamics models are
used for revisit time control?

10.5.1 Discussion of Simulation Scenarios

In general we follow the parameter and threshold settings recommended in [3]. To
exclude false alarms due to receiver noise, the false alarm probability is PF = 10−4.
False returns due to clutter or ECM are not considered. The standard deviation of the
measurement errors in object range is σr = 100 m, while the the radar beam width is
B = 1◦. We assume a minimum time interval of 20 ms between consecutive dwells
on a particular object and statistically independent signal amplitudes (achievable by
frequency agility, e.g.). The reference range is set to r0 = 80 km.

IMM Modeling Parameters

Antenna coordinates (direction cosines, range) are used also for tracking; non-
linearities introduced by these non-Cartesian coordinates are taken into account [6].
In each component uk , vk , rk the state vector is given by position, speed, and acceler-
ation. For the sake of simplicity, we consider a block diagonal system matrix defined
by

Fk|k−1 =
⎛

⎝
1 Δtk1 1

2Δt2
k 1

O 1 Δtk1
O O e−Δtk/θ

⎞

⎠ (10.33)

Dk|k−1 = Σ2(1− e−2Δtk/θ)

⎛

⎝
O O O
O O O
O O 1

⎞

⎠ , (10.34)
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with Δtk = tk− tk−1. The maneuvering capability of the objects is thus characterized
by two parameters: maneuver correlation time θ and acceleration width Σ . For
r = 2, 3 we consider the parameter sets:

• M1 (worst-case model): Σ1 = 60 m/s2, θ1 = 30 s
• M2 (best-case model): Σ2 = 1 m/s2, θ2 = 10 s
• M3 (medium-case model): Σ3 = 30 m/s2, θ3 = 30 s

The matrices of the model transition probabilities are given by:

(pi j )
2
i=1, j=1 =

(
0.8 0.1
0.2 0.9

)
, (pi j )

3
i=1, j=1 =

⎛

⎝
0.8 0.1 0
0 0.9 0.2

0.2 0 0.8

⎞

⎠ . (10.35)

We observed that the performance does not critically depend on the particular switch-
ing probabilities pi j chosen. A detailed mismatch analysis, however, has not been
performed. A track is considered to be lost if more than 50 dwells occur in the local
search or if the beam positioning error Δbk is greater than 3B. We thus permit even
a rather extensive local search that correspondingly burdens the total energy budget.
In all simulations considered below (1000 runs) the relative frequency of track loss
is less than 2 %.

Selected Benchmark Trajectories

The horizontal projection of four standard benchmark trajectories (cargo aircraft,
medium bomber, interceptor aircraft, and anti-ship missile) is shown in Fig. 10.3
along with representative kinematical characteristics such as acceleration (solid line),
range (dashed), height (dotted), and speed (solid). They have been proposed in [11,
12] and cover a rather wide range of militarily relevant objects. The missile trajectory
might serve to explore the performance limits of the algorithms. In principle, mis-
siles can execute even stronger maneuvers. It is questionable, however, if for those
objects and their individual missions the dynamics models discussed above remain
applicable. All objects are tracked over a period of 180 s. The RCS fluctuations are
described by a Swerling-III model. The mean cross sections significantly vary from
object to object (4.0, 2.0, 1.2, 0.5 m2).

Measures of Performance Considered

The discussion is confined to a few intuitively clear and simple performance measures
obtained by Monte-Carlo simulation (1000 runs). In general a single performance
measure is not sufficient as there may exist applications where the transmitted energy
is the limiting factor, while in a different scenario the number of radar allocations
must be kept low.
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Fig. 10.3 Horizontal projections and kinematical quantities (cargo aircraft, medium bomber, inter-
ceptor aircraft, and anti-ship missile)

The adaptivity becomes visible if the performance is evaluated as a function
of the tracking time that can be compared with the kinematics of the individual
trajectories (Fig. 10.3). Here, histograms with 100 cells were used. In particular, it
was considered: the mean revisit intervals, the mean number of dwells for a successful
update, the mean number of sensor allocations in total required for track maintenance,
the mean energy spent for a successful allocation, the mean energy totally spent for
track maintenance, and the mean RCS of the objects estimated during tracking.

Four tracking filters were compared: worst-case Kalman filter (KF), standard IMM
filter with two or three models, respectively (S-IMM2,3), and IMM-MHT filtering
with model histories of length n = 4. For IMM-MHT with n > 4, the performance
characteristics change only slightly. We thus conclude that n = 4 already provides a
good approximation to optimal filtering (at least for the scenarios considered here).
With reference to object amplitude information we considered three cases: (1) the
object RCS σ̄ is known and used for energy management. (2) The mean RCS σ̄ is
unknown and to be estimated during tracking. (3) A worst-case assumption is used
for all objects (σ̄ = 0.5 m2).
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10.5.2 Remarks on IMM Modeling Design

Practically, the question of how many models should be used in the IMM approach
arises. In addition, it must be clarified whether each trajectory needs an individual
modeling or if the same IMM modeling can be used without significant loss of perfor-
mance. For the interceptor scenario, a worst/best-case model should be appropriate
at first sight. Trajectory 1 (Cargo Aircraft), however, shows that objects can occur
for which medium-case models are sufficient. To answer these questions, we used
IMM with two (r = 2, M1, M2) and three models (r = 3, M1, M2, M3), respectively,
with v0 = 0.3, SNk|k−1 = 50. How these parameters affect the performance is dis-
cussed further below. Figure 10.4 shows the resulting mean revisit intervals for all
trajectories. The kinematic object characteristics are clearly mirrored. We observed:

1. As expected, Kalman filtering (r = 1, M1) leads to constant revisit intervals
that are comparable for all trajectories. This is no longer true for S-IMM. The
resultant curves related to r = 2 (solid) and r = 3 (dashed) differ from each
other significantly. The onset of maneuvers (Fig. 10.3) strongly affects the mean
update intervals and thus illustrates the adaptivity of the algorithm.

2. The difference between the cases r = 2, 3 vanishes however, if IMM-MHT is
used. If model histories are permitted (here n = 4), it seems to be irrelevant if,
besides worst/best-case assumptions, additional medium-case models are used.
Even longer histories or further models (r > 3) do not significantly improve
the performance obtained with r = 2 and n = 4. For a suitable (!) choice of
the switching probabilities, the performance of S-IMM4 approaches closes to
B-IMM2; for B-IMM4 no improvement over B-IMM2 was observed.

3. For the bomber and the interceptor, S-IMM3 (M1, M2, M3) outperforms S-IMM2
(M1, M2), in spite of the fact that for these trajectories only worst-case maneuvers
occur and the medium-case model appeared to be unnecessary at first sight. The
difference between r = 2 and r = 3, however, is not as clear as for scenario 1
(cargo aircraft).

4. For moderately maneuvering cargo aircraft, the question arises whether the per-
formance can be improved using a medium/best-case IMM modeling. We found
that worst/best-case IMM-MHT and medium/best-case IMM-MHT differ, but
not very much. This indicates that worst/best-case IMM-MHT has a more or less
“universal” character, i.e. it does not critically depend of the scenario considered
(at least within certain limits).

These observations indicate that the mixtures p(xk |Rk) for n = 4, r = 2 have enough
internal degrees of freedom to provide an adequate representation of the actual object
behavior. Refined approximations using even more mixture components seem to be
irrelevant for the trajectories considered. A rule of thumb: A worst/best-case analy-
sis of the problem along with IMM-MHT seems to be sufficient to achieve a nearly
optimal tracking performance. Obviously, for two dynamics models, reasonable and
intuitive assumptions for the switching probabilities are easily obtained. IMM-MHT
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Fig. 10.4 Revisit intervals for different filters: cargo aircraft, medium bomber, interceptor aircraft,
and anti-ship missile

thus enables a more simplified dynamics modelling without significant loss of per-
formance.

10.5.3 Gain by IMM Modelling

To investigate the gain by adaptive dynamics models, let us for the present assume that
the mean RCS of the object is known and used for energy management. Figure 10.5
shows the mean number of allocations required for track maintenance (KF, S-IMM2,
B-IMM2). As expected, for KF the mean number of revisits increases linearly with
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Fig. 10.5 Radar allocations for different filters: cargo aircraft, medium bomber, interceptor aircraft,
and anti-ship missile

increasing tracking time and is nearly the same for all trajectories. By adaptive
dynamics modeling, however, the number of sensor allocations is reduced.

1. Compared with KF, IMM results in significant resource savings. There is an
improvement by IMM-MHT over S-IMM; the difference, however, is less sig-
nificant than between S-IMM and KF. Besides simplified modeling assumptions,
the practical use of IMM-MHT therefore consists in the exploration of the lim-
iting bounds for performance improvements.

2. The largest gain is observed for the cargo aircraft and the bomber. In the case
of the interceptor aircraft, the allocations required are reduced by about 50 %
compared with worst-case Kalman filtering. Even during the 7 g weaving of the
missile, some advantages of the IMM modeling can be observed.
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Fig. 10.6 Radar energy spent for different filters: cargo aircraft, medium bomber, interceptor air-
craft, and anti-ship missile

Figure 10.5 shows the mean number of dwells per revisit. Up to peaks corresponding
with the onset of maneuvers, it is constant and roughly equal for all filters and
trajectories. The more adaptive the filter is, the higher the peaks are, i.e. the larger
the revisit intervals can be during inertial flight. The peaks thus indicate that, for
abrupt maneuvers, a local search might be required. This is the cost of increased
adaptivity. Evidently, intelligent algorithms for beam positioning and local search
are essential for IMM phased-array tracking.

These observations are consistent with Fig. 10.6, which shows the mean energy
spent for track maintenance (relative units). Besides the object maneuvers, these
curves are influenced by the current object range (Fig. 10.3, dotted line). In addition,
the mean energy spent per revisit is displayed. Up to characteristic peaks, the energy
per revisit is roughly the same for all tracking filters.
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Fig. 10.7 On the quality of RCS estimates

10.5.4 On the Quality of RCS Estimates

In a practical application, the mean RCS of the objects to be tracked is unknown
and might be estimated from object amplitude information. In general, the estimators
used should be at least approximately bias-free, the estimated error and the empirical
error should be roughly identical, and the estimators should show a certain robustness
against model mismatch. As indicated by Fig. 10.7, the estimator previously proposed
provides rather satisfying results for all trajectories. Using IMM-MHT for tracking,
the recursion was initiated with σ̄ = 0.5 m2 (worst-case assumption) and m0 = 1.01.

The solid lines show the mean RCS estimates as a function of the tracking time.
For all scenarios it is roughly constant and corresponds with the actual values (4,
2, 1.2, 0.5 m2). The dotted lines indicate the mean estimation error (available in
the simulation). The curves show peaks that are related to the onset of maneuvers
and the corresponding lack of track accuracy. The dashed lines denote the mean
standard deviation calculated by the estimator itself. Tracking and RCS estimation
are closely interrelated: Only when tracked over a certain period of time, the estimates
are reliable enough to distinguish between the object classes. A satisfying RCS
estimation by signal processing only, i.e. without a temporal integration along the
estimated trajectory does not seem to be possible. In this context, IMM retrodiction
techniques [13] might be considered that can provide more accurate estimates of the
trajectory and thus more accurate RCS estimates.

10.5.5 RCS Model Mismatch

The backscattering properties of real objects are highly complex. A practicable
method for estimating the RCS must thus show some robustness against model
mismatch. To get a first hint, we simulated amplitude information according to both
Swerling I and III being processed according to both modelling assumptions. The
results for the four possible combinations are summarized in Table 10.1. Besides
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Table 10.1 Mismatch regarding the fluctuation model

Object type Processed Simulated RCS [m2] Estimated error Estimation error Energy

Bomber III III 1.96 0.22 0.28 0.37
III I 2.34 0.25 0.57 0.42
I III 1.77 0.28 0.33 0.39
I I 2.03 0.32 0.34 0.44

Fighter III III 1.19 0.13 0.16 0.82
III I 1.41 0.15 0.34 1.
I III 1.07 0.16 0.19 0.86
I I 1.22 0.18 0.19 0.99

the quantities already shown in Fig. 10.7, we also listed the total energy spent for
tracking (relative units).

1. For matching models, the RCS estimates are nearly bias-free and more or less
roughly consistent.

2. For Swerling III fluctuations, the estimates are more accurate than in case of
Swerling I.

3. For Swerling I (no mismatch), more energy is spent than for Swerling III (keeping
SNk|k−1 constant).

4. If Swerling I amplitudes are processed according to Swerling III, the RCS is
overestimated, consistency is lost.

5. It is underestimated if Swerling III amplitudes are processed according to Swer-
ling I.

6. Mismatch does not greatly affect the performance (energy).

10.5.6 Adaptive Energy Management

Finally, we have to show to what degree the transmitted radar energy can be reduced
by estimating the RCS in comparison to worst-case assumptions. In Fig. 10.7 the
mean radar energy spent for track maintenance is displayed. The dotted lines refer
to IMM-MHT tracking using the true RCS of the objects (as previously discussed).
In a practical application, this cannot be realized; the resultant curves, however, may
serve as a reference to discuss the performance of RCS-adaptive algorithms. The
solid lines denote methods that exploit signal strength information for estimating the
RCS (Worst-Case Kalman filter, IMM-MHT). Dashed lines indicate algorithms that
use a worst-case assumption (here: 0.5 m2, missile) on the RCS (KF, IMM-MHT).

A comparison between sensor control by using the true RCS (not available in
a real application) and methods exploiting recursive RCS estimates is of particular
interest. The largest deviation is observed for scenario 1 (σ̄ = 4 m2). This is to be
expected, as the recursion was started with a worst-case assumption. The discrepancy
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Table 10.2 Gain by RCS-adaptive energy control

Object type RCS Filter ΔT [s] Revisits Energies Rel.

Cargo Worst case Kalman 3.3 55.1 2828 8.5
IMM-MHT 6.5 32.6 1664 5.0

Estimated Kalman 2.0 90.3 750 2.2
IMM-MHT 4.9 45.0 453 1.4

Known 4.9 46.4 334 1
Bomber Worst case Kalman 3.1 60.1 5488 5.5

IMM-MHT 6.4 34.0 2868 2.9
Estimated Kalman 2.2 85.5 2257 2.3

IMM-MHT 5.1 44.2 1095 1.1
Known 5.0 45.7 993 1

Fighter Worst case Kalman 2.8 67.3 5786 2.6
IMM-MHT 4.9 43.3 3882 1.7

Estimated Kalman 2.2 85.6 3563 1.6
IMM-MHT 3.9 54.0 2420 1.1

Known 3.8 55.1 2226 1
Missile Worst case Kalman 2.1 86.6 8657 1.3

IMM-MHT 4.1 56.1 6593 1
Estimated Kalman 2.2 85.4 9036 1.4

IMM-MHT 4.2 55.4 7042 1.1
Known 4.1 56.1 6593 1

between both curves, however, is not very significant in all four cases. Compared
with IMM-MHT (Worst-Case RCS) it can be neglected. The difference between
sensor control with known and estimated RCS is roughly constant during tracking.
We thus conclude that it is caused primarily in the initiation phase, where not much
signal strength information is yet available. As soon as reliable RCS estimates have
been produced, the performance is practically identical. Figure 10.7 also shows how
the resource savings due to adaptive dynamics models and RCS-adaptive energy
management are related to each other.

In Table 10.2, scalar performance measures are summarized for all scenarios and
processing methods: object revisit intervals (ΔT ), sensor allocations required, energy
spent for track maintenance (time averages taken over the tracking time). The last
column shows the energy spent by the various methods relative to IMM-MHT with
known RCS. Compared with IMM-MHT (Worst-Case RCS), the gain is: 3.8 (cargo
aircraft), 2.6 (Bomber), 1.5 (Fighter), 0.9 (anti-ship missile). Hence, in the missile-
scenario, where the worst-case assumption is correct, a small loss of performance
must be taken into account.
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Fig. 10.8 Mean number of allocations for different filters and trajectories

10.6 Adaptive Sensor Management: Summary of Results

The gain by exploiting adaptive dynamics models and signal amplitude information
is demonstrated by simulations with standard benchmark trajectories representative
of typical objects (cargo aircraft, medium bomber, interceptor, and anti-ship missile)
[11, 12]. Preliminary results were published in [14].

1. In the case of IMM-MHT, simple worst/best-case considerations seem to be
sufficient for modelling the object dynamics. Medium-case models implying
additional, a priori unknown parameters (e.g. transitions matrices) result in sig-
nificant performance improvements only for standard IMM algorithms. IMM-
MHT thus permits simplified, more qualitative models without significant loss
of performance.
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2. Compared with worst-case Kalman filtering, IMM results in considerable
resource savings. The reduction with respect to the number of allocations
required and the energy spent for track maintenance is roughly comparable and
varies between 50 and 100 % depending on the scenario considered. Essentially,
the savings are due to longer revisit intervals on average.

3. IMM-MHT improves on standard IMM algorithms. The difference, however, is
less significant than between standard IMM and worst-case Kalman filtering.
Besides simplified modelling assumptions, the practical use of IMM-MHT pri-
marily consists in the exploration of the theoretical boundaries that limit the
performance improvements achievable by adaptive dynamics models.

4. Due to abrupt maneuvers after a longer inertial flight, IMM-type tracking must
necessarily be complemented by efficient Bayesian algorithms for adaptive beam
positioning and local search. If used, however, the tracking process remains
highly stable, because all information on the possible dynamical behavior of the
objects is taken into account.

5. By processing object amplitude information along the estimated trajectory, the
a priori unknown RCS of the objects can (roughly) be estimated. The estimate
is approximately bias-free; its variance corresponds with the empirical variance.
It is closely related to the tracking process and might provide a contribution to
object classification. Within certain limits, the method seems to be rather robust
against model mismatch.

6. Compared with worst-case assumptions on the object RCS, significant energy
savings can be obtained by exploiting amplitude information. Depending on
the scenario considered, the gain is larger than the improvement achievable by
adaptive dynamics models. The difference compared to algorithms that use of
the correct object RCS (available in a simulation) is comparatively small and
arises mainly in the initiation phase.
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A.1 List of Acronyms Used

C4ISTAR Command, control, communications, computers, intelligence, surveil-
lance, target acquisition, and reconnaissance

E/O Electro-optical sensor
ESM Electronic support measures
FDoA Frequency difference of arrival
GMTI Ground moving target indicator radar
HMI Human-machine interaction (HMI)
IMM Interacting multiple models
IR Infrared sensor
JDL Joint directors of laboratories
SAR Synthetic aperture radar
SDI Stratecic defence initiative
SPD Symmetric and positively definite
TDoA Time difference of arrival
ToA Time of arrival

A.2 List of Symbols Used

N Set of natural numbers
k, l, m, n Integers
R Set of real numbers
a, b, . . . , x, y, z Scalars
a, b, . . . , x, y, z Vectors
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A, B, . . . , X, Y, Z Matrices
t Time
| · · · | Determinant of a matrix, norm of a vector
(· · · )� Transpose
(· · · )−1 Inverse
trace(· · · ) Trace
etr(· · · ) exp(trace(· · · ))
N (x; E[x], C[x]) Gaußian with expectation E[x], covariance matrix C[x]
E[· · · ] Expectation
C[· · · ] Covariance matrix

LW(
Z; m, X

) |X|−m−1
2 etr

(− 1
2 (ZX−1)

)

rk , ṙk , r̈k Position, velocity, acceleration at time tk
xk Kinematic state vector at time tk
Zk A set of measurements at time tk
Zk Time series of measurements up to time tk
mk Number of measurements at time tk
zk Measurement vector at time tk
Xk A set of state quantities at time tk
ik Characteristic object feature (e.g. dynamics mode)
Xk SDP matrix modeling object extension at time tk
Fk|k−1 Evolution matrix
Dk|k−1 Evolution covariance matrix
qt Acceleration bandwidth
θt Maneuver correlation time
pi j Transition probabilities
�(· · · ; · · · ) Likelihood function
p(· · · | · · · ) Conditional probability density function
Rk Measurement error covariance matrix
hk Measurement function
Hk Measurement matrix
rk , ṙk , φk Range, range-rate, azimuth
t, T Transform, corresponding Jacobian
Sk|k−1 Innovation covariance matrix
χ2(P) χ2-value at P
Pc Correlation probability
PD Detection probability
Pu Probability of being irresolved
PF False alarm probability
λ Detection threshold
jk Index of measurements/data interpretations at time tk
ΔT Data innovation interval
ρF Spatial density of false measurements/clutter
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pF (m) Poisson distribution (number of false measurements)
D, ¬D Object has/has not been detected
m̄ F Mean number of false measurements
|FoV| Field of view of one ore more sensors
dk Distance between two objects at time tk
zk Strength of received object signals at time tk
ck Strength of clutter objects at time tk
xk Strength of an object at time tk

A.3 Elementary Facts on Probability Densities

In the following several facts from elementary probability theory are collected:

1. Information on a vector variate random variable x is gained by integrating the
corresponding probability density function p(x) properly. As an example, inte-
gration over a volume V yields the probability that the event ‘x ∈ V ’ occurs:

P(x ∈ V ) =
∫

V
dx p(x). (A.1)

According to this interpretation, a probability density function must be non-
negative, p(x) ≥ 0, and normalized, i.e. the probability of x ‘being somewhere
in the domain of x’ is given by

∫
dx p(x) = 1.

2. An observable of x is a scalar-, vector- or matrix-valued function g : x �→ g(x)

of the random variable x. The expectation of an observable is defined by the
integral

E[g(x)] =
∫

dx g(x) p(x). (A.2)

An important example is the expectation of a random variable x, x̄ = E[x],
defined by the ‘centroid’ of the corresponding probability density p(x). Another
important expectation is the ‘expected error of the expectation of x’, i.e. a quality
measure for x̄ = E[x]. Using a matrix-valued quadratic observable g : x �→
(x − x̄)(x − x̄)�, it is called covariance matrix and defined by the integral:

E[(x − x̄)(x − x̄)�] =
∫

dx (x − x̄)(x − x̄)� p(x). (A.3)

3. Forming an expectation is a a linear operation, i.e. with two observables g, f
and scalars α1, α2 the following identity holds:

E[α1g(x)+ α2 f (x)] = α1E[g(x)] + α2E[ f (x)]. (A.4)

4. A conditional probability density p(x|y) of a random variable x describes how
available knowledge about another random variable y affects knowledge avail-



240 Appendix A

able on x. It is defined by:

p(x|y) = p(x, y)

p(y)
(A.5)

with p(x, y) denoting the joint pdf of both random variables x and y. In this
notation we do not distinguish between a random variable and a realization of it
in order to keep the formulae lean.

5. By writing the probability density function p(x) of a random variable x as a
marginal probability density,

p(x) =
∫

dy p(x, y) =
∫

dy p(x|y) p(y), (A.6)

we are able to bring another random variable y into the play, which is related
to x.

6. By using Bayes’ formula we can calculate how information on a random vari-
able y affects our knowledge on x, provided the probability density functions
p(y|x) and p(x) are known. According to p(x|y) p(y) = p(x, y) = p(y, x) =
p(y|x) p(x), Bayes’ rule it is a direct consequence of the last two statements and
is given by:

p(x|y) = p(y|x)p(x)∫
dx p(y|x)p(x)

. (A.7)

7. Precise knowledge that a random variable x is equal to a certain value x̄ fits
well into the description of uncertainty by using probability densities if Dirac’s
δ-distributions p(x) = δ(x − x̄) are considered. In this case, we have for any
reasonable observable g : x �→ g(x):

E[g(x)] =
∫

dx g(x) δ(x − x̄) = g(x̄). (A.8)

8. The probability density of a random variable y = t(x), which results from x via
an invertible transformation t : x �→ t[x] is given by:

p(y) =
∫

dx p(y|x) p(x) (A.9)

=
∫

dx δ(y− t[x]) p(x) (A.10)

=
∫

dz |T−1(z)| δ(y− z) p(t−1[z]) (A.11)

= |T−1(y)| p(t−1[y]), (A.12)

where the substitution x = t−1[z] with the corresponding Jacobi determinant

|T−1(z)| = |∂t−1[z]
∂z | was used. The transformation of p(x) induced by t can thus
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be described by a Transfer Operator:

T [p](y) = |T−1(y)| p(t−1[y]). (A.13)

Under certain conditions, a similar result can be obtained for piecewise invertible
transforms t.

9. An important special case is the Gaußian probability density characterized by a
single maximum concentrated around x̄. Let the quadratic form q(x) = 1

2 (x −
x̄)�C−1(x − x̄) be a measure of the distance between the random variable x
and the ‘center’ x̄ weighted by a symmetric and positively definite matrix C.
Evidently, by q(x) = const. ellipsoids are defined that are centered around x̄
and whose volume and orientation are determined by the eigenvectors and the
eigenvalues of the matrix C. As a special density function that decays with an
increasing distance of x from x̄, let us consider:

p(x) = e−q(x)

∫
dx e−q(x)

. (A.14)

Evidently, p(x) is positive and correctly normalized. After integration we obtain:

p(x) = |2πC|− 1
2 exp

{− 1
2 (x − x̄)�C−1(x − x̄)

}
(A.15)

=: N (
x; x̄, C

)
(A.16)

with |2πC| denoting the determinant of the matrix 2πC and an expectation vector
and covariance matrix given by:

E[x] = x̄ (A.17)

E[(x − x̄)(x − x̄)�] = C, (A.18)

respectively. By this, the covariance matrix C has a simple and intuitive geomet-
rical interpretation, since it defines ellipsoidal contours.

10. Let x be a Gaußian random variable. The probability function of an affine trans-
form of x,

t : x �→ y = a + Ax, (A.19)

with a fixed vector a and matrix A is given by

N (
x; x̄, X

) y=a+Ax−−−−−−→ N (
y; a + Ax̄, AXA�

)
. (A.20)

This directly follows from: p(y) = |∂t−1[y]
∂y | p

(
t−1[y]) with t−1 : y �→ t−1[y] =

A−1(y− a) and ∂t−1[y]
∂y = A−1.
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11. A d-dimension random vector x is Student-t-distributed with n degrees of free-
dom and a parameter matrix A, if its density is given by [1, p. 133]:

T (
x; n, a, A

) = 1
Z

(
1+ (x − a)�A−1(x − a)

)− n+d
2

. (A.21)

with a normalizing constant Z . It has the following expectation and covariance:

E[x] = a, E[(x − a)(x − a)�] = 1
n−2 A. (A.22)

A.4 Facts on Inverse Block Matrices

In several calculations involving multivariate Gaußian probability density functions,
matrices with a block structure have to be inverted. In this case, the following results
can be useful (see [2], e.g.), which provide the inverse of a suitably partitioned
symmetric matrix:

(
A C

C� B

)−1

=
(

A−1 + A−1CS−1C�A−1 −A−1CS−1

−S−1C�A−1 S−1

)
(A.23)

=
(

T−1 −T−1CB−1

−B−1C�T−1 B−1 + B−1C�T−1CB−1

)
(A.24)

where the auxilliary matrices:

S = B− C�A−1C (A.25)

T = A− CB−1C� (A.26)

are called the Schur Complements of the matrix A and B, respectively. The useful
Matrix Inversion Lemma directly results from comparing corresponding diagonal
blocks:

(
A− CB−1C�

)−1 = A−1 + A−1C(B− C�A−1C)−1C�A−1. (A.27)

A.5 A Product Formula for Gaußians

For matrices and vectors of compatible dimensions, the following formula for prod-
ucts of Gaussians holds:

N (
z; Hx, R

)N (
x; x̄, P

) = N (
z; Hx̄, S

) N (
x; q, Q

)
, (A.28)

where for S, q, and Q several equivalent representations exist:
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S =
{

HPH� + R
(R−1 − R−1HQH�R−1)−1 (A.29)

q =

⎧
⎪⎨

⎪⎩

x̄ +W(z−Hx̄)

x̄ +Wν

Q(P−1x̄ +H�R−1z)

(A.30)

Q =

⎧
⎪⎨

⎪⎩

P −WSW�

(1−WH)P
(P−1 +H�R−1H)−1

(A.31)

with the following abbreviations:

ν = z−Hx̄, W = PH�S−1. (A.32)

Note that the vector x appearing in both Gaußians of the left side of Eq. A.28 only
exists in one of the factors on the right side.

Proof

The product N (
z; Hx, R

) N (
x; x̄, P

)
can be interpreted as a joint probabil-

ity density p(z, x) = p(z|x) p(x) with p(z|x) = N (
z; Hx, R

)
and p(x) =

N (
x; x̄, P

)
. It can be written as:

p(z, x) = |2πR|− 1
2 |2πP|− 1

2 exp{− 1
2 q(z, x)}, (A.33)

where q(z, x) is a sum of two quadratic forms:

q(z, x) = (z−Hx)�R−1(z−Hx)+ (x − x̄)�P−1(x − x̄). (A.34)

By a completion of the square, q(z, x) can be transformed in such a way that it
contains the joint vector u = (z�, x�)� in a quadratic form (u − ū)�U−1(u − ū)

with a suitably chosen matrix U and vector ū. Moreover, u, z, or x appear nowhere
else. For this reason, u must be a Gaußian random variable with p(u) = N (

u; ū, U
)
,

since it is already known that p(u) = N (
z; Hx, R

) N (
x; x̄, P

)
is a probability

density, i.e. normalized.
With A = (1,−H), B = (O, 1), b = (O, x̄)�, q(u) can be written as:

q(u) = (Au)�R−1Au+ (
B(u− b)

)�P−1(B(u− b)) (A.35)

= u�(A�R−1A)u+ (u− b)�(B�P−1B)(u− b) (A.36)

= u�(A�R−1A+ B�P−1B)u− 2u�(B�P−1B)b+ const. (A.37)

= u�U−1u− 2u�U−1ū+ const. (A.38)

= (u− ū)�U−1(u− ū)+ const.′ (A.39)



244 Appendix A

where U−1 and ū is given by:

U−1 = A�R−1A+ B�P−1B (A.40)

=
(

R−1 −R−1H
−H�R−1P−1 +H�R−1H

)
(A.41)

=
(

S HP
PH� P

)−1

(A.42)

ū = U(B�P−1B)b (A.43)

=
(

Hx̄
x̄

)
. (A.44)

These calculations make use of the inversion formulae for partitioned matrices dis-
cussed in the previous section.

Since the joint density p(z, x) = p(x, z) is available now, it can be used to
calculate the marginal density p(z) = ∫

dx p(z, x) and the conditional density
p(x|z) = p(z, x)/p(z). To this end, we rewrite via another completion of the square
the quadratic form (u − ū)U−1(u − ū) as a sum of two quadratic forms in such a
way that the integration variable x in

∫
dx p(z, x) appears in one of them only:

(u− ū)�U−1(u− ū)

= (
(z−Hx̄)� (x − x̄)�

) ( R−1 −R−1H
−H�R−1 Q−1

)(
z−Hx̄
x − x̄

)
(A.45)

= (
(z−Hx̄)� (x − x̄)�

) ( R−1(z−Hx̄)− R−1H(x − x̄)

−H�R−1(z−Hx̄)+Q−1(x − x̄)

)
(A.46)

= (z−Hx̄)�R−1(z−Hx̄)− 2(x − x̄)�H�R−1(z−Hx̄)

+ (x − x̄)�Q−1(x − x̄) (A.47)

= (z−Hx̄)�S−1(z−Hx̄)+ (x − q)Q−1(x − q)� + const.. (A.48)

The various versions for S, q, and Q result from the matrix inversion lemma
discussed in the previous section. We thus have p(x, z) = p(x|z) p(z) with
p(x|z) = N (x; q, Q) and p(z) = N (z; Hx̄, S). This completes the proof.

A.6 Approximation by Moment Matching

Moment matching is an important approximation method, by which a probabil-
ity density function p(x) with expectation Ep[x] = x and a covariance matrix
Ep[(x − x̄)(x − x̄)�] = P is approximated by p(x) ≈ N (x; x, P). In the con-
text of this thesis, moment matching is applied to mixture densities of the form
p(x) =∑

i pi N (x; xi , Pi ), i.e. to normal mixtures. In this case, x and P are given
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by:

x =
∑

i

pi xi (A.49)

P =
∑

i

pi
(
Pi + (xi − x)(xi − x)�

)
. (A.50)

The matrix
∑

i pi (xi − x)(xi − x)� is called spread matrix. These formulae are a
consequence of the following calculations:

Ep[x] =
∫

dx x p(x) (A.51)

=
∑

i

pi

∫
dx x N (x; xi , Pi ) =

∑

i

pi xi =: x (A.52)

Cp[x] =
∫

dx p(x) (x − Ep[x])(x − Ep[x])� (A.53)

=
∑

i

pi

∫
dx (x − x)(x − x)� N (x; xi , Pi ) (A.54)

=
∑

i

pi

∫
dx

{
(x − x)(x − x)� − 2(x − xi )(xi − x)�

} N (x; xi , Pi )

=
∑

i

pi

∫
dx

{
(x − xi )(x − xi )

� + (xi − x)(xi − x)�
} N (x; xi , Pi )

=
∑

i

pi
{
Pi + (xi − x)(xi − x)�

} = P. (A.55)

Figure A.1 provides a schematic illustration of moment matching. A particular mix-
ture density p(x) = c1 p1(x)+ c2 p2(x) is displayed along with the related mixture
components c1 p1(x), c1 p1(x) (Fig. A.1a). In Fig. A.1b the mixture p(x) is compared
with the Gaussian density N (x; x, P) with x = Ep[x], P = Ep[(x−x)2]. The bars
at the bottom line indicate the relative size of the mixture coefficients c1, c2 in this
example. Evidently, moment matching can provide a satisfactory approximation to
a mixture as long as it is unimodal.

A.7 Retrodiction: Dependency Analysis

We wish to show: p(xl |xl+1, Zk) = p(xl |xl+1, Zl). With a Markovian evolution
model and under the assumptions p(Zk, nk |xk, . . .) = p(Zk, nk |xk), this follows
from an application of Bayes rule:
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p1N1(x)

p1N1(x) + p2N2(x)

p2N2(x)

Gauss-Dichte p1N1(x) + p2N2(x)

p1

p2

(a) (b)

Fig. A.1 Scheme of moment matching

p(xl |xl+1,Zk)

= p(Zk, nk, . . . , Zl+1, nl+1|xl+1, 	xl ,Zl) p(xl |xl+1,Zl)∫
dxl p(Zk, nk, . . . , Zl+1, nl+1|xl+1, 	xl ,Zl) p(xl |xl+1,Zl)

(A.56)

and a closer look at the likelihood function p(Zk, nk, . . . , Zl+1, nl+1|xl+1, xl ,Zl)

herein:

p(Zk, nk, . . . , Zl+1, nl+1|xl+1, xl ,Zl)

=
∫

dxk . . . dxl+2 × p(Zk, nk, xk, . . . , xl+2, Zl+1, nl+1|xl+1, xl ,Zl) (A.57)

=
∫

dxk . . . dxl+2 p(Zk, nk |xk, . . .)

× p(xk, Zk−1, nk−1, xk−1, . . . , xl+2, Zl+1, nl+1|xl+1, xl ,Zl) (A.58)

=
∫

dxk . . . dxl+2 p(Zk, nk |xk) p(xk |xk−1, . . .)

× p(Zk−1, nk−1, xk−1, . . . , Zl+1, nl+1|xl+1, xl ,Zl) (A.59)

= p(Zl+1, nl+1|xl+1, xl ,Zl)

∫
dxk . . . dxl+2

k∏

i=l+2

p(Zi , ni |xi ) p(xi |xi−1)

= p(Zl+1, nl+1|xl+1)

∫
dxk . . . dxl+2

k∏

i=l+2

p(Zi , ni |xi ) p(xi |xi−1). (A.60)
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A.8 Gaußian Accumulated States Densities

For the accumulated object state xk:n = (x�k , x�k−1, . . . , x�n+1, x�n )�, the accumulated
state density p(xk:n|Zk) is a Gaußian given by:

p(xk:n|Zk) = N (
xk:n; xk

k:n, Pk
k:n

)
, (A.61)

where the accumulated expectation vector xk
k:n and the corresponding covariance

matrix Pk
k:n are completely determined by the underlying evolution model, i.e. by

Fl+1|k and Dl+1|l , n ≤ l ≤ k−1, by the covariance matrices Pl|l , n ≤ l ≤ k provided
by filtering, and by the expectation vectors xl|k and the corresponding covariance
matrices Pl|k , n ≤ l ≤ k available after retrodiction. While the expectation vector
xk

k:n of the accumulated object states xk:n is defined by:

xk
k:n = (x�k|k, x�k−1|k, . . . , x�n+1|k, x�n|k)�, (A.62)

the corresponding covariance matrix Pk
k:n can recursively be written as:

Pk
l:n =

(
Pl|k Pl|kW�l−1:n

Wl−1:nPl|k Pk
l−1:n

)
, n + 1 ≤ l ≤ k (A.63)

with Pk
n:n = Pn|k and Wl:n given by:

Wl:n =
(

Wl|l+1
Wl−1:nWl|l+1

)
(A.64)

with Wn:n =Wn|n+1 and the retrodiction gain matrices Wl|l+1:

Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l (A.65)

= Pl|lF�l+1|l(Fl+1|lPl|lF�l+1|l + Dl+1|l)−1. (A.66)

Proof

This statement directly follows from a straightforward induction argument, though
the necessary calculations are perhaps somewhat tedious. Evidently, the proposition
holds for k = n. Let us assume that it is true at time tk . Due to the standard conditional
independence and Markov assumptions regarding the measurement and evolution
process, the accumulated state density at tk+1 can be represented by:
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p(xk+1:n|Zk+1) = p(xk+1, xk:n|zk+1, Zk) (A.67)

= p(zk+1|xk+1) p(xk+1, xk:n|Zk)∫
dxk+1:n p(zk+1|xk+1) p(xk+1, xk:n |Zk)

(A.68)

= p(zk+1|xk+1) p(xk+1|xk) p(xk:n|Zk)∫
dxk+1:n p(zk+1|xk+1) p(xk+1|xk) p(xk:n|Zk)

. (A.69)

With modeling assumptions compatible with Kalman filtering and using the projec-
tion matrices Πk = (1, O, . . . , O) defined by Πkxk:n = xk and Πk:n = (−Wk:n, 1)

defined by Πk:n(x�k+1, x�k:n)� = −Wk:nxk+1 + xk:n , a repeated use of the product
formula A.28 yields:

p(zk+1|xk+1) p(xk+1|xk) p(xk:n|Zk) (A.70)

= N (
zk; Hkxk+1, Rk+1

) N (
xk+1; Fk+1|kΠkxk:n, Dk+1|k

)

× N (
xk:n; xk

k:n, Pk
k:n

)
(A.71)

= N (
zk; Hkxk+1, Rk+1

) N (
xk+1; xk+1|k, Pk+1|k

)× N (
xk:n; xk

k:n
+Wk:n(xk+1 − xk+1|k), Rk:n

)
(A.72)

= N (
zk; Hkxk+1|k, Sk+1|k

) N (
xk+1; xk+1|k+1, Pk+1|k+1

)

× N (
Πk:nxk+1:n; Πk:n(x�k+1|k, xk

k:n)�, Rk:n
)

(A.73)

with Wk:n and Rk:n given by:

Wk:n = Pk
k:nΠ�k F�k+1|kP−1

k+1|k (A.74)

=
(

Pk|k Pk|kW�k−1:n
Wk−1:nPk|k Pk

k−1:n

)
Π�k F�k+1|kP−1

k+1|k (A.75)

=
(

Wk|k+1
Wk−1:nWk|k+1

)
(A.76)

Rk:n = Pk
k:n −Wk:nPk+1|kW�k:n (A.77)

Π�k:nR−1
k:nΠk:n =

(−W�k:nR−1
k:n

R−1
k:n

) (−Wk:n, 1
)

(A.78)

=
(

W�k:nR−1
k:nWk:n −W�k:nR−1

k:n
−R−1

k:nWk:n R−1
k:n

)
. (A.79)

By a second use of the product formula for Gaußians, we thus obtain up to a constant
independent of the state vectors:

p(zk+1|xk+1) p(xk+1|xk) p(xk:n|Zk)

∝ N (
zk; Hkxk+1|k, Sk+1|k

) N (
xk+1:n; xk+1

k+1:, Pk+1
k+1:n

)
, (A.80)

where the covariance matrix Pk+1
k+1:n it is given by:
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Pk+1
k+1:n =

(
Π�k+1P−1

k+1|k+1Πk+1 +Π�k:nR−1
k:nΠk:n

)−1 (A.81)

=
(

P−1
k+1|k+1 +W�k:nR−1

k:nWk:n −W�k:nR−1
k:n

−R−1
k:nWk:n R−1

k:n

)−1

. (A.82)

This block matrix can directly be inverted by using Eq. A.24. The corresponding
Schur Complement is particularly simple and given by (Eq. A.26):

T = P−1
k+1|k+1 +W�k:nR−1

k:nWk:n −W�k:nR−1
k:nRk:nR−1

k:nWk:n (A.83)

= P−1
k+1|k+1. (A.84)

We thus obtain for the covariance matrix of the ASD:

Pk+1
k+1:n =

(
Pk+1|k+1 Pk+1|k+1W�k:n

Wk:nPk+1|k+1 Rk:n +Wk:nPk+1|k+1W�k:n

)
(A.85)

=
(

Pk+1|k+1 Pk+1|k+1W�k:n
Wk:nPk+1|k+1 Pk

k:n +Wk:n(Pk+1|k+1 − Pk+1|k)W�k:n

)
. (A.86)

Using the identity Wk|k+1(Pk+1|k+1 − Pk+1|k)W�k|k+1 = Pk|k+1 − Pk|k resulting

from the Rauch-Tung-Striebel equations, the matrix Wk:n(Pk+1|k+1 − Pk+1|k)W�k:n
can be transformed yielding:

Wk:n(Pk+1|k+1 − Pk+1|k)W�k:n (A.87)

=
(

Wk|k+1(Pk+1|k+1 − Pk+1|k)
Wk−1:nWk|k+1(Pk+1|k+1 − Pk+1|k)

)(
W�k|k+1 W�k|k+1W�k−1:n

)

=
(

Pk|k+1 − Pk|k (Pk|k+1 − Pk|k)W�k−1:n
Wk−1:n(Pk|k+1 − Pk|k) Wk−1:n(Pk|k+1 − Pk|k)W�k−1:n

)
. (A.88)

With this result, the block matrix Pk
k:n +Wk:n(Pk+1|k+1−Pk+1|k)W�k:n on the right-

lower corner on the right side of Eq. A.86 is given by:

Pk
k:n +Wk:n(Pk+1|k+1 − Pk+1|k)W�k:n (A.89)

=
(

Pk|k+1 Pk|k+1W�k−1:n
Wk−1:nPk|k+1 Pk

k−1:n +Wk−1:n(Pk|k+1 − Pk|k)W�k−1:n

)
. (A.90)

An induction argument for the block matrix on the right-lower corner directly yields:

Pk
k:n +Wk:n(Pk+1|k+1 − Pk+1|k)W�k:n = Pk+1

k:n . (A.91)

In the sequel, the expectation vector xk+1
k+1:n will be calculated. According to the

product formula A.28, xk+1
k+1:n is the sum of the following vectors:
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Pk+1
k+1:nΠ�k:nR−1

k:nΠk:n(x�k+1|k, xk�
k:n)� (A.92)

=
(

Pk+1|k+1 Pk+1|k+1W�k:n
Wk:nPk+1|k+1 Rk:n +Wk:nPk+1|k+1W�k:n

)(−W�k:n
1

)

× (−R−1
k:nWk:n R−1

k:n
) (xk+1|k

xk
k:n

)
(A.93)

=
(

O
Rk:n

) (−R−1
k:nWk:n R−1

k:n
) (xk+1|k

xk
k:n

)
(A.94)

=
(

O O
−Wk:n 1

)(
xk+1|k
xk

k:n

)
(A.95)

=
(

O
−Wk:nxk+1|k + xk

k:n

)
(A.96)

Pk+1
k+1:nΠ�k+1P−1

k+1|k+1Πk+1xk+1|k+1 (A.97)

=
(

Pk+1|k+1
Wk:nPk+1|k+1

)
P−1

k+1|k+1xk+1|k+1 (A.98)

=
(

xk+1|k+1
Wk:nxk+1|k+1

)
. (A.99)

By using an induction argument, we thus obtain:

xk+1
k+1:n =

(
xk+1|k+1

xk
k:n +Wk:n(xk+1|k+1 − xk+1|k)

)
(A.100)

=
⎛

⎝
xk+1|k+1

xk|k +Wk|k+1(xk+1|k+1 − xk+1|k)
xk

k−1:n +Wk−1:nWk|k+1(xk+1|k+1 − xk+1|k)

⎞

⎠ (A.101)

=
⎛

⎝
xk+1|k+1
xk|k+1

xk
k−1:n +Wk−1:n(xk|k+1 − xk|k)

⎞

⎠ . (A.102)

An induction argument concludes the proof.

A.9 Some Facts on Kronecker Products

The Kronecker product A⊗ B of two matrices A = (ai j )
m,n
i=1, j=1, B is defined by:

A⊗ B =

⎛

⎜⎜⎜⎝

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...

am1B am2B · · · amnB

⎞

⎟⎟⎟⎠ . (A.103)
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For matrices A, B, C and a scalar α (e.g. [2]):

(A⊗ B)⊗ C = A⊗ (B⊗ C) (A.104)

α⊗ A = αA = Aα = A⊗ α (A.105)

(A⊗ B)(C⊗ D) = AC⊗ BD (A.106)

(A⊗ B)� = A� ⊗ B� (A.107)

(A⊗ B)−1 = A−1 ⊗ B−1. (A.108)

For quadratic matrices A, B we obtain:

tr[A⊗ B] = (trA) (trB). (A.109)

The determinant of A⊗ B is given by the determinants of A, B with m = dim(A),
n = dim(B):

|A⊗ B| = |A|n|B|m . (A.110)

A.10 Extended Object Likelihood: Details

For column vectors x, y of equal dimension, the following identities are valid:

x�y = tr
[
xy�

]
(A.111)

x�A−1x = tr
[
xx�A−1

]
= tr

[
A−1xx�

]
(A.112)

exp
[
− 1

2 x�A−1x
]
= etr

[
− 1

2 xx�A−1
]

(A.113)
∣∣∣1+ xy�

∣∣∣ = 1+ x�y. (A.114)

etr[A] is an abbreviation for exp[trA]. For proofs see e.g. [2].
By applying the product formula for Gaussians (Eq. A.28) repeatedly we obtain:

p(Zk |nk, xk, Xk)

= N (
zk; Hkxk,

1
nk

Xk
) nk−1∏

i=1

N (
zi+1

k ; z̄i
k,

i+1
i Xk

)
(A.115)

with the following quantities:

z̄i
k = 1

i

∑i
j=1z j

k , zk = z̄nk
k = 1

nk

∑i
j=1z j

k . (A.116)
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Only the first factor of the right side of this equation depends on the kinematic state
variable xk . The remaining nk − 1 factors are functions of the extension Xk alone.
An induction argument yields:

nk−1∏

i=1

N (
zi+1

k ; z̄i
k,

i+1
i Xk

) ∝ |Xk |−
nk−1

2 etr
[
− 1

2 ZkX−1
k

]
(A.117)

∝ LW(
Zk; nk − 1, Xk

)
. (A.118)

A.11 Facts on Matrix-variate Densities

Wishart Density
A d × d SPD random matrix X is “Wishart-distributed”, if its density is given by

[1, p. 87]:

W(
X; a, A

) = 1
Z |A|−

1
2 a |X| 12 (a−d−1) etr

[
− 1

2 A−1X
]
, a ≥ d (A.119)

with a scalar parameter a, a d × d SPD matrix A, and a normalizing constant Z . Its
first and second moments are given by [1, p. 98]:

E[X] = a A (A.120)

C
[
xi j , xkl

] = a (aika jl + aila jk) (A.121)

with A =
(a11 a12

a12 a22

)
, X =

( x11 x12
x12 x22

)
. As a scalar measure for the second moments,

we consider
E

[
(x11)

2
]
+ E

[
(x22)

2
]
= 2a

(
(a11)

2 + (a22)
2). (A.122)

Inverted Wishart Density
A d × d SPD random matrix X is ‘inverted-Wishart-distributed’, if its density is

given by [1, p. 111]:

IW(
X; a, A

) = 1
Z |A|

1
2 (a−d−1) |X|− 1

2 a etr
[
− 1

2 AX−1
]
, a > 2d. (A.123)

with a scalar parameter a, a d × d SPD parameter matrix A, and a normalizing
constant Z . Its first and second moments are given by [1, p. 113]:

E[X] = A/(a − 2d − 2), a − 2d − 2 > 0 (A.124)

C
[
xi j , xkl

] = 2(a − 2d − 2)−1ai j akl + aika jl + ailak j

(a − 2d − 1)(a − 2d − 2)(a − 2d − 4)
, (A.125)
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a − 2d − 4 > 0. As a scalar measure for the second moments, we consider

C

[
(x11)

2
]
+ C

[
(x22)

2
]

= 2(a − 2d − 2)−1 + 2

(a − 2d − 1)(a − 2d − 2)(a − 2d − 4)

(
(a11)

2 + (a22)
2). (A.126)

The following is obviously true: if X is an Inverted Wishart distributed random matrix
with the density p(X) ∝ |X|−a/2 etr[− 1

2 X−1A], then the inverse matrix Y = X−1 is
Wishart-distributed with p(Y) ∝ |Y|(a−d−1)/2 etr[− 1

2 YA]. This is due to the fact that
the Jacobi matrix of the inverse transformation is given by J (X→ X−1) = |X|d+1

[1, p. 14]. This, however, is a Wishart density given by p(Y) = W(
Y; b, B

)
with

parameters b = a − d − 1, B = A−1.

Beta Density
A d×d SPD random matrix X is ‘generalized-beta-type-II-distributed’, if its density
is given by [1, p. 167]:

GBII
d (X; a, b, A, B = O) := B(

X; a, b, A
)

(A.127)

:= 1
Z |A|b |X|a−

d+1
2 |A+ X|−(a+b) . (A.128)

with scalar parameters a, b, a d × d SPD parameter matrix A, and a normalizing
constant Z . Its first and second moments are given by [1, p. 179]:

E[X] = 2a
2b−d−1 A, 2b−d−1>0 (A.129)

C
[
xi j xkl

] = 2a
(2a(2b − d − 2)+2)ai j akl+(2(a + b)−d−1)(a jlaik + ailak j )

(2b − d)(2b − d − 1)(2b − d − 3)
(A.130)

with 2b − d − 3 > 0. As a scalar measure for the second moments we consider

E

[
(x11)

2
]
+ E

[
(x22)

2
]
= 4a(2b−d)(a+1)

(2b−d)(2b−d−1)(2b−d−3)

(
(a11)

2 + (a22)
2). (A.131)
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