

ENTERPRISE ANDROID™

INTRODUCTION . xix

CHAPTER 1 Developing for Android Tablets and Smartphones 1

CHAPTER 2 The Relational Model and SQLite . 39

CHAPTER 3 Android Database Support . 59

CHAPTER 4 Content Providers . 83

CHAPTER 5 REST, Content Providers, Concurrency,

Networking, and Sync Adapters . 115

CHAPTER 6 Service Development . 167

CHAPTER 7 Mobile and the Cloud . 205

CHAPTER 8 Complex Device-Based Data: Android Contacts 245

CHAPTER 9 Generic Data Synchronization:

Project Migrate and the WebData API . 265

CHAPTER 10 WebData Applications . 283

CHAPTER 11 Building Human Interfaces for Data . 305

CHAPTER 12 Security . 325

INDEX . 369

Enterprise Android™

Enterprise Android™

PROGRAMMING ANDROID DATABASE

APPLICATIONS FOR THE ENTERPRISE

Zigurd Mednieks
G. Blake Meike
Laird Dornin

Zane Pan

Enterprise Android™: Programming Android Database Applications for the Enterprise

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-18349-6
ISBN: 978-1-118-22747-3 (ebk)
ISBN: 978-1-118-24046-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specii cally disclaim all warranties, including
without limitation warranties of i tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013936843

Trademarks: Wiley, , Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its afi liates, in the United States and other countries, and may
not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

To Maija and Charles

—Zigurd Mednieks

To Jerry Meike, my inspiration for writing a book...

and a lot more

—G. Blake Meike

To Norah and Claire, my girls

—Laird Dornin

To Zhengfang

—Zane Pan

ABOUT THE AUTHORS

ZIGURD MEDNIEKS is a consultant to leading OEMs, enterprises, investors, and entrepreneurial
ventures creating Android-based systems and software. Previously, he was Chief Architect at D2
Technologies, a voice-over-IP (VoIP) technology provider. There he led engineering and product-
dei nition work for products that blend communication and social media in purpose-built embedded
systems and on the Android platform.

Zigurd is a 25-year veteran of user interface, telephony, and social media product creation in
the computing and telecommunications industries. He has authored and co-authored books
about Android software development, and written book chapters on telephony and inter-process
 communication. His i rst book, C Programming Techniques for the Macintosh, co-authored with
Terry Mednieks, was published in 1986. Information about Zigurd can be found at zigurd.com.

G. BLAKE MEIKE is a passionate engineer and code poet with more than 20 years of experience. He
has spent much of his time working with Java, building systems as large as Amazon’s massively
 scalable Auto Scaling service and as small as a pre-Android OSS/Linux- and Java-based platform
for cell phones. He is co-author of the bestselling Programming Android and has taught nearly a
 thousand people the art of writing Android apps that aren’t toys.

LAIRD DORNIN graduated from Williams College in 1997 with a Bachelor of Arts degree in
Computer Science. Laird began his career at Sun Microsystems working on the Java JDK (RMI) and
the forward-looking Jini Technology out of Sun Labs. From there he moved to SavaJe Technologies
and helped to build a full-featured Java SE mobile operating system that shipped in 2006 and pro-
vided the platform for “Device of the Show” at JavaOne. Again at Sun Microsystems, Laird contin-
ued working on SavaJe OS to integrate the WebKit browser library to provide a full-featured mobile
browser. Laird is an author of two books on Android programming and now works as an architect
for a major wireless carrier.

ZANE PAN began building large, scalable distributed systems at Sun Microsystems Labs working
on Jini Technology in the late ‘90s. He has been actively designing and architecting solutions for
distributed computing performance and scalability problems since then. Zane has held architect
level roles at many large companies including Lotus Development Corporation, Digital Equipment
Corporation, Intuit, and EMC. Most recently, Zane architected and built a large-scale mobile ser-
vice backend system using Big Data and NoSQL at Nokia.

ABOUT THE TECHNICAL PROOFREADER

JIM FITZGERALD has worked in many facets of the technology industry. His humble beginnings
in Silicon Valley as a software engineer for Hewlett-Packard eventually led him to positions in
 marketing and sales before graduate school brought him back to software development and
project management. He has programmed in many different languages and operating systems,
from old mainframes to Windows desktops, and currently spends his time in Android and
Windows mobile environments. While he considers himself more of a frontend guy, he will
admit to dabbling with PHP and writing a lot of PL/SQL in the past when pressed.

When not investigating how technical things work, Jim spends his time as a bibliophile, avid artist
and photographer, collecting far more books, paint brushes, and lenses than he can hope to use.
Jim has a undergraduate BS degree from California Polytechnic, and a MS degree from Yale
University.

ABOUT THE TECHNICAL EDITOR

MAIJA MEDNIEKS is a senior at the Carnegie Mellon University School of Computer Science and a
former buggy driver. Among her interests are knitting, Norse epics, science i ction, interactive user
experience design, creating and solving puzzles for puzzle hunts, and functional programming.

EXECUTIVE EDITOR

Robert Elliott

SENIOR PROJECT EDITOR

Kevin Kent

TECHNICAL EDITOR

Maija Mednieks

PRODUCTION EDITOR

Christine Mugnolo

COPY EDITOR

Kezia Endsley

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

TECHNICAL PROOFREADER

Jim Fitzgerald

INDEXER

John Sleeva

COVER DESIGNER

Ryan Sneed

COVER IMAGE

©iStockphoto.com/Iaroslav Neliubov

CREDITS

ACKNOWLEDGMENTS

I WANT TO THANK the editors at Wiley who have the vision to publish books about Android in the
enterprise; our agent, Carole Jelen, for bringing this project to us; and my co-authors who brought the
concept of a book about data-oriented apps to life. I also thank Maija Mednieks and Jim Fitzgerald,
the technical editor and technical proofreader, for their exacting attention to making sure our
 examples work.

—Zigurd Mednieks

I WOULD LIKE TO THANK my co-authors, Zigurd, Laird, and Zane, for making this book way bigger
than the sum of its parts. Bob Elliott and Kevin Kent were incredibly patient with us; and the rest of
the editors, Maija Mednieks, Christine Mugnolo, Kezia Endsley, and Jim Fitzgerald, kept us honest
and intelligible. Marakana Inc., my employer, gave me time to work on it. A special shout out to
L. Carl Pedersen for taking the time to explain SQL. As always, a project like this would be
 impossible without the support of my wife, Catherine. You and me, babe, ‘til the wheels fall off.

—G. Blake Meike

I NEED TO THANK my sweetie, Norah, for being so patient with all the long weekends and late nights
working on this ambitious project. You’ve been amazing for this, and for carrying another far more
important project—our new son.

Thanks to my parents—we’ve missed trips to NH!

I’d like to thank Kevin and Robert for all their excellent support on this project. I’m excited that we
managed to cover so many popular topics to create a comprehensive picture of end-to-end enterprise
Android development. Thanks to Jim and Maija, our reviewers; this book contained a lot of material
to cover. Thanks to my brother, Chris, and to Nathan Babb for reviewing parts of the manuscript.

Finally, thanks to my co-authors for collaborating to bring this project to completion.

—Laird Dornin

I’D LIKE TO THANK Kevin and Robert for their support on this project.

—Zane Pan

CONTENTS

INTRODUCTION xix

CHAPTER 1: DEVELOPING FOR ANDROID TABLETS
AND SMARTPHONES 1

Android Is a Java Operating System 2
Your Tools and Your First Android App 2

Prerequisites and Getting Ready 2

Toolchain Test Drive 4

One Code-Base for All Types of Devices 4
Getting Started with the Code Framework Example 5

Automatically Adapting to Screen Size 10

Components, Views, and Lifecycle 11
Destroying and Re-Creating Components 11

The MainActivity Class 12

Activity: The Basic Unit of User Interaction 12

Fragment: A Tool for Organizing Code and UI 17

The PickFragment Class 18

The ItemFragment Class 22

The ItemDetailFragment Class 25

Tying Together Activities, Fragments,
and the Action Bar 25
The TabbedActivity Class 25

A Main.xml File for Large Tablets 28

A Main.xml and a Subsidiary Activity for Smaller Screens 29

The TabActivity Class 30

The Android Task and Process Model 33
Starting Dalvik Instances 34

Death, but No Transfi guration 34

Tasks Span Applications and Processes 35

Multiprocessing, Security, and Lifecycle 35
The Process and User ID as Security Boundary 36

Declaring Application Properties 36
Summary 37

xiv

CONTENTS

CHAPTER 2: THE RELATIONAL MODEL AND SQLITE 39

Databases and the Relational Model 40
The History of the RDBMS 41

The Relational Model 41

Other DBMS Features 43

The SQL Language 45

Introduction to SQLite 48
SQLite from the Command Line 49

An Example SQLite Database 53

Summary 58

CHAPTER 3: ANDROID DATABASE SUPPORT 59

SQL in Java: The SQLiteDatabase Class 60
Basic SQL Embedding 60

Syntactic SQL 61

Creating a Database: The SQLiteOpenHelper Class 67

Managing a Database 71

Cursors, Loaders, and Adapters 73
Cursors 74

Adapters and View Binders 76

Loaders 79

Summary 81

CHAPTER 4: CONTENT PROVIDERS 83

Using a Content Provider 84
URIs as Names for Virtual Datasets 84

Content Resolvers: The Link between Clients and Providers 85

Content Observers: Completing the Loop 87

IPC: System-Wide Accessibility 89

The Contract: URIs and Types 90
Authority 91

Virtual Table URIs 93

Return Value MIME Types 94

Permissions 94

Publishing the Contract 95

Implementing the Content Provider 95
Creating the Content Provider 96

Return Types and the URI Matcher 97

Writing the Database 98

Database Queries 101

Content Observers (Again) 105

xv

CONTENTS

Permissions and Registration 106
Content Providers and Files 109
Summary 114

CHAPTER 5: REST, CONTENT PROVIDERS, CONCURRENCY,
NETWORKING, AND SYNC ADAPTERS 115

Basic REST 116
Why REST? 117

REST over HTTP 118

An Example REST API 120

Contact Representation 120

Contact Methods and URIs 122

Contact Transactions 122

Android Networking 125
The Apache Libraries 125

The java.net Libraries 126

Permissions 128

Considering Concurrency and Lifecycles 128
The Android Concurrency Architecture 128

A Naive Request 129

An Architecture for Robust Networking 131
Approach 1: Service-Centric 131

Approach 2: ContentProvider-Centric 133

Approach 3: SyncAdapter-Centric 135

REST within Android 135

The restfulCachingProviderContacts Project: An Example Client 136

Adding a Contact 138

Using Sync Adapters 143
Android Account Management 144

Creating a Sync Adapter 155

Summary 165

CHAPTER 6: SERVICE DEVELOPMENT 167

A Choice for Service Development 168
The Lifecycle of a Request 168

Three-Tier Service Architecture 169

Service Development Background 169

Building a RESTful Service for Contacts 172
A Conservative Software Stack 172

Writing the Examples: Spring Contacts Service
 and Its Synchronization Variant 175

Code Example: Spring Sync Contacts Service 195

Summary 202

xvi

CONTENTS

CHAPTER 7: MOBILE AND THE CLOUD 205

Cloud Performance and Scalability 206
The Scale of Mobile 207

Persistence in the Cloud: From SQL to NoSQL 208

Database File Format 211

NoSQL Persistence 213

Design Considerations for Scalable Persistence 215
To SQL or Not to SQL? 215

Looking at Popular Cloud Providers 218
Amazon AWS 218

Google App Engine 219

Joyent: Hosted MongoDB+node.js 219

Red Hat OpenShift 220

Exploring the Code Examples 220
The Contacts DAO Interface (Again) 221

Writing the Code: Amazon Contacts Service 221

Writing the Code: Google App Engine Contacts 235

Summary 243

CHAPTER 8: COMPLEX DEVICE-BASED DATA:
ANDROID CONTACTS 245

PIM Databases: Fossils from Smartphone Pre-History 246
Android’s Contacts Provider 246
The ContactsContract API 246
A Contacts Provider Explorer 247

Code for Exploring a Database 249

Source Code for a Contacts Provider Explorer 249

Summary 262

CHAPTER 9: GENERIC DATA SYNCHRONIZATION:
PROJECT MIGRATE AND THE WEBDATA API 265

Introducing WebData and Project Migrate 266
How Project Migrate Works 266

How Project Migrate Streamlines the Mobile Connection
to the Enterprise 267

The WebData API in Detail 268

The WebData API RESTful Protocol 269

Project Migrate in Detail 279
The Migrate Project Android WebData Client 279

Project Migrate Android Features 279

xvii

CONTENTS

The WebData Content Provider Android API 281
Android Built-In Provider APIs 281

The Migrate Provider API 281

Summary 281
Service-Side Advantages 282

Client Advantages 282

CHAPTER 10: WEBDATA APPLICATIONS 283

The Migrate Client 284
Creating a Migrate Project 285

Step 1: Importing the Project 285

Step 2: Enabling the Project as a Migrate Client 285

Step 3: Defi ning the Information to Be Managed by Migrate 286

Step 4: Generating the Contacts Contract 287

Interfacing with the Migrate REST Proxy 291
Step 5: Starting a Local Migrate Service 296

Step 6: Publishing Your Application’s Schema 296

Setting Up a Device 298
Step 1: Installing the Migrate Client 298

Step 2: Adding a WebData Account 299

Step 3: Turning on Synchronization 299

Step 4: Running the Application 300

Step 5: Confi guring an Account in Migrate Contacts (Optional) 300

Future Directions: MigrateClinic 300
Summary 303

CHAPTER 11: BUILDING HUMAN INTERFACES FOR DATA 305

Modularity and Flexibility Compared
with a “Cookbook” Approach 306

Overview of Modules 306

Layout Changes 307

Direct Manipulation 308
The TabbedActivity Class 308

The TabbedPagedFragment Class 319

Navigation 320
Multitasking in a Small-Screen Environment 320

The Android Task Model 320

Tasks and the Conventional Process Model 321

Modifying Task Behavior 321

Navigation in Tablets 323

Choosing to Use the Support Package 323
Summary 324

xviii

CONTENTS

CHAPTER 12: SECURITY 325

Platform Security 326
Keeping Handsets Safe 327

Avoiding Malicious Applications 327

Understand Malware Mechanics: The Malware Genome 330

Writing Secure Applications 331
Hacking Targets 331

Ingredients of a Secure Application 332

Example Code: Protecting RESTful Invocations 353

Preventing Piracy 365

Summary 366

INDEX 369

INTRODUCTION

MANY ENTERPRISE-ORIENTED APPLICATIONS i t a broad template: They access data using one or
more RESTful APIs. They present the data to the user. They may enable the user to modify the data,
and update the data on servers. Enterprise Android is a book about those applications.

WHO THIS BOOK IS FOR

If you are an experienced Java or JavaScript coder, you may have some ideas about how RESTful
apps should work. You can correctly think of Android as a Java OS: You write apps in Java and
deploy them to an environment that, in some ways, very closely resembles a Java VM. These apps
communicate with RESTful APIs to fetch data to present to the user.

But, as with many aspects of Android software development, it pays to look at how Android is
designed before wading in. This book was created to give you a substantial head start at applying
your experience with RESTful applications and APIs to creating Android apps that are efi cient,
versatile, and responsive. You will avoid the pitfalls of assuming Android programming is like web
programming or client Java programming using Oracle’s class libraries, and be able to do it using
Android APIs effectively on the i rst try.

If you are a beginning Android programmer, and do not have signii cant experience with iOS or Java,
or if you are unsure that RESTful applications are what you need to learn about, you should start with
a general introduction to Android. Beginners will appreciate a book like Reto Meier’s excellent
Professional Android 4 Application Development (John Wiley & Sons, 2012) or the online tutorials
at developer.android.com, which are much improved compared to the early days of Android.

If you are interested in expanding your development horizon beyond device programming by push-
ing into service-side development, this book builds competence handling application data on both
sides of the network.

WHAT THIS BOOK COVERS

This book starts with the basics of creating an Enterprise-oriented Android app that can run on
handsets and tablets. But it’s not a beginner’s book. You should, at least, read the online tutorials at
Google’s Android Developer’s site before reading this book.

Android uses SQLite, and this book covers SQL and SQLite in enough depth that you will
 understand how data is stored in SQLite databases in Android systems.

Android wraps SQLite in database classes, and this book covers those classes in depth, as well.

When apps make use of data in the Android environment, they often use a specialized service
 component called a ContentProvider. This class, and the related ContentResolver class, provide
a REST-like interface to data within an Android device. Using these classes has other advantages in
building apps that use the observer pattern.

xx

INTRODUCTION

Enabling you to implement an end-to-end observer pattern is a key element of this book. Your data
resides in a database behind a RESTful API on your servers. Locally, it is likely to be stored in a
SQLite database inside a ContentProvider component. This book shows you how to make sure the
data you present to the user is consistent and up to date.

Simplicity is important, too. JSON is a simple way to represent data with simplicity and l exibility

where, otherwise, a complex database design might be required. This book shows you how to use JSON

with SQLite to maintain simplicity in your implementation. It also shows you a complex Android data-

base and ContentProvider interface, implemented with a conventional approach to database design.

You will create and deploy a server for your front end as you use the examples in this book. In

 particular, Chapters 5 and 6 come together at the end of Chapter 6 to form an end-to-end example

of the techniques covered in this book. You’ll deploy this service on Amazon and Google cloud

resources in Chapter 7.

One thing you won’t spend much time on is loading indicators. A networked app should be as respon-

sive as a “local” app. Create, update, and delete (CRUD) should not be interposed between the user and

the data the user wants. A very important part of this book explains how to keep CRUD off the net-

work and out of the user’s way, using a lightweight but powerful synchronization protocol. The book

completes this approach by introducing an open source framework that encapsulates this approach.

The book concludes with an in-depth tour of Android security.

HOW THIS BOOK IS STRUCTURED

This book is called Enterprise Android because it is about acquiring, presenting, and updating data

on devices and using cloud resources, which is the core of most enterprise applications.

This book starts with a brisk-paced introduction to Android programming that puts you on track to make

an application for displaying data. This is about as fast an introduction as can be, so don’t be surprised if

you need to go to the online tutorials in the Android documentation to go deeper on some basics.

Following this introduction, you will be immersed in the core subject matter of this book: data. The

book progresses from the bottom up: how to store data locally, how to make queries, how to get it

and serve it from REST APIs, how the observer pattern is implemented in Android idioms, how to

update it, and how to make this all happen with or without connectivity and with the best apparent

performance. Later in the book, more UI programming oriented toward presenting data is covered.

The book closes with a chapter on security.

WHAT YOU NEED TO USE THIS BOOK

This book is about Android software development, and the examples in it require the use of the

Android software development kit (SDK), which is available from developer.android.com. The

SDK is compatible with the three most widely used desktop operating systems: Windows, Mac OS

X, and Linux. You may prefer to use an Android device to run the example code, but you can use an

emulator, included in the SDK, running on your desktop computer.

xxi

INTRODUCTION

NOTE Database code in Android has been very stable for several versions of
the Android OS. Mostly due to the way we cover user interface for database
apps, this book assumes you will run your programs on Android 4 or later
 versions. You can expect most of this book to remain current for future version
of Android.

To run the service examples in the book, you’ll need to download the packages in each chapter,
including the following: Apache Tomcat, ant, MySQL, and the cygwin toolkit. You’ll also need
an Amazon AWS account with manager privileges and a Google account.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, you’ll see a number of
conventions throughout the book.

WARNING Warnings like this one hold important, not-to-be forgotten informa-
tion that is directly relevant to the surrounding text.

NOTE Notes offer tips, hints, tricks, and asides to the current discussion.

As for styles in the text:

 ➤ New terms and important words are highlighted when they are introduced.

 ➤ Keyboard strokes appear like this: Ctrl+A.

 ➤ Filenames, URLs, and code within the text appear like so: persistence.properties.

 ➤ Code appears in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you read the chapters in this book, you will want to run, inspect, and perhaps modify the source
code i les that accompany the book. Please note that all the code examples in this chapter are avail-
able at https://github.com/wileyenterpriseandroid/Examples.git and as a part of the
book’s code download at www.wrox.com on the Download Code tab.

xxii

INTRODUCTION

To i nd the source code via the Wrox site, locate the book’s title (either by using the Search box or
by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

NOTE Because many books have similar titles, you may i nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-18349-6

Alternately, you can go to the main Wrox code download page at http://www.wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you i nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To i nd the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to each book’s errata is also available
at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and i x the problem in subsequent edi-
tions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

xxiii

INTRODUCTION

At http://p2p.wrox.com you will i nd a number of forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specii c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Developing for Android
Tablets and Smartphones

WHAT’S IN THIS CHAPTER?

 ➤ Getting your tools set up

 ➤ Testing your tools setup

 ➤ What a modern Android application looks like

 ➤ Introducing a concise application framework that works on all sizes

of Android devices

 ➤ Exploring Android component lifecycles and the Android task model

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab. At various points throughout the book, the
authors refer to the “Examples” directory using a pseudo-variable called, “CODE”. Readers
can either explicity set this value as a shell variable or can just keep in mind that the variable
refers to the book example code directory.

This book is about best practices in handling data for enterprise application across the client
and RESTful backend services, and this chapter gets you through the basics at a brisk pace
while providing a framework, which is the starting point for the example code in this book.
The advice in this chapter, especially the advice to pay attention to Android component
lifecycles, will enable you to complete an Android coding project efi ciently, without having to
know everything about Android, and with a minimum of grief.

Many Android books were written before there were Android tablet devices, and before the
APIs central to creating good UIs for those devices were a mainstream concern for Android
developers. This chapter starts by assuming your apps will run on both tablets and handsets
and provides a framework that embodies the best practices for doing so.

1

2 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

This chapter also covers tools — and knowledge resources for the tools — that you need to follow
the code examples in this book.

This isn’t a beginner’s book. If this is your i rst time programming Android applications, use the
information resources listed here for i lling in the gaps in your knowledge of and experience with
Java and Android programming.

ANDROID IS A JAVA OPERATING SYSTEM

Almost all applications and all system services in Android are coded in Java (and other JVM
languages). Code is compiled to Java bytecode before being translated into Dalvik bytecode, which,
in turn, runs in the Android managed runtime environment. These characteristics make Android
at once familiar and strange: If you have used Java or a similar managed language before, you will
i nd Android code fairly easy to read. You will i nd the tools for Android programming familiar.
Many aspects of Android’s managed language run time are identical to Java. Android relies on Java
base classes, and wouldn’t work if the semantics of the Android runtime environment were not very
similar to those of a standard Java runtime environment.

If you come to this book not having written Android-specii c code, you have probably never written
code for an operating system like Android. Android uses managed language runtime concepts in
ways you may i nd unfamiliar, especially in the ways Android implements modularity and memory
management. In many ways, Android is the most sophisticated environment for interactive Java
programs ever created.

WARNING Pay close attention to the basics of Android application program-
ming and follow the key practices described in this chapter. If you try to impose
your coding practices from server Java or MIDlets, or attempt to thwart the way
the Android system works with applications, bugs and frustration will result.

YOUR TOOLS AND YOUR FIRST ANDROID APP

This section covers setting up your programming tools. You will run your i rst example application,
which is a user interface framework.

Prerequisites and Getting Ready

You can use any of the three major operating systems for PCs to develop Android software: Linux,
Mac OS, or Windows. You will need three independent pieces to assemble your toolchain for
creating Android applications: The Java JDK, Eclipse, and the Android SDK. All three of these
pieces work on all three operating systems.

The place to i nd reference information on developing Android is http://developer.android
.com and the place to get started with instructions on installing your tool set is http://developer
.android.com/guide/developing/index.html.

Your Tools and Your First Android App ❘ 3

Follow the instructions at the URL to install the tools you need. If you follow the instructions
correctly, you will install a toolchain consisting of the three pieces listed previously.

Java and Java Knowledge

The i rst piece of the tool set you need is the Java Development Kit, or JDK. The JDK provides
both a Java runtime environment, which is needed by Eclipse, and some tools for creating Android
applications.

Java is a cross-platform runtime environment and is the key to developing Android software on any
of the top three personal computer operating systems.

You will write your Android programs in Java, even though the runtime environment in the Android
operating system is internally substantially different from Java runtime environments. Although you
don’t need to know the details of the way your programming tools are implemented using Java,
you have to know Java to write Android programs. There are numerous tutorials on the web and
books to help you learn Java. One free resource for learning Java is Oracle’s Java Tutorials site:

http://docs.oracle.com/javase/tutorial/java/index.html

Eclipse and Eclipse Knowledge

Eclipse is the integrated development environment (IDE) you will be using. An IDE is an all-in-one
software development tool that enables you to create source code with correct syntax and style, run
that code, and examine and debug it if you need to i nd out why it isn’t working correctly. As you
create Android software, you will spend most of your time using the Eclipse IDE.

Eclipse is a Java program and it uses the Java run time in the JDK you installed to run on your
personal computer. Eclipse is widely used for many kinds of programming, including creating Java-
based server software for the kinds of applications described in this book.

The use of Eclipse is one of the reasons Android was born with a mature toolchain. You write
Android programs using the Java language, and most of the toolchain for writing “normal” Java
programs can be applied to Android.

Eclipse enables you to edit your code while providing quick access to documentation. It enhances
productivity through automatic completion of symbols and automatic formatting. It helps you i nd
syntax errors, and it performs static analysis that i nds potential runtime errors. It also enables
you to inspect running applications, stop them, single-step across code that corresponds to lines
of source code, inspect variables, examine unhandled exceptions, and perform dozens of other
operations that will improve your productivity in creating Android applications.

Knowing your IDE’s features is key to productivity and to avoiding frustration when programs
don’t work. This is especially true for Eclipse, which is very powerful and has many more useful
tools available for it than listed here, but it isn’t as simple as some other IDEs, such as Apple’s
IDE for iOS development. So it is likely you will need to become more familiar with Eclipse
if you are a i rst-time user. Tutorials on Eclipse can be found at http://www.eclipse.org/
resources/?category=Tutorial. To run all the examples in this book, you will need to download
and install Eclipse IDE for Java EE Developers.

4 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The Android SDK and Resources for Android Tools Knowledge

The third part of your toolchain is the Android Software Development Kit (SDK). The SDK is
documented in Google’s online documentation for Android developers at http://developer
.android.com/index.html.

The SDK turns the Eclipse IDE into an IDE that can create Android programs. The SDK provides
plugins for Eclipse and many external components that are used to create Android applications and
diagnose problems in Android software. Eclipse can be adapted to many purposes with plugins.
In fact, Eclipse is made almost entirely of plugins. The set of plugins you started with when you
installed Eclipse make Eclipse suitable for creating Java programs. For the purposes of this book,
you will mostly work in the Eclipse IDE, and all you need to do at this point is to coni gure Eclipse
to use the Android plugins and to be able to locate other programs installed with the SDK. You will
be prompted to do so when you start Eclipse after the Android SDK is installed.

Now you have all the tools for general Android programming, and for this chapter. Later in this
book, other tools specii c to topics introduced in those chapters will be added to your toolchain.

Toolchain Test Drive

You can test that your toolchain is installed correctly by creating a new Android project, and
selecting an example from the SDK as the basis of your project. You should be able to run your
project in an Android Virtual Device (AVD).

Directions for creating a project are here:

http://developer.android.com/training/basics/firstapp/creating-project.html

Directions for running a project are here:

http://developer.android.com/training/basics/firstapp/running-app.html

By doing this, you have created an Android project in Eclipse, and created and run an Android
application, even though you have not written any code yet. If you are successful in doing this, you
can be coni dent your toolchain and the software it depends on have been correctly installed. The
next section describes how to download and use the example code in this chapter to create another
Android project. But you might want to explore your toolchain at this point.

NOTE One thing you might want to do is create more Android projects based on
the example code using the option in the New Project wizard to select example
applications.

ONE CODE-BASE FOR ALL TYPES OF DEVICES

This section introduces the i rst code that is specii c to this book. This framework is used to
illustrate some important points about Android application fundamentals, to get you used to the
tools you just installed, and to provide a quick way to start writing application-specii c code rather

One Code-Base for All Types of Devices ❘ 5

than use boilerplate. There are two related approaches we adhere to in the examples in this book
because we assume that enterprise deployments will be for a controlled set of mobile devices:

 ➤ Develop a single code-base for tablets and handsets.

 ➤ Develop for the latest APIs, as of this writing, and encourage the use of the back-
compatibility support classes provided with the Android SDK to enable compatibility for a
range of earlier versions of Android, if needed.

You will use a design pattern in which you allow the Android system to select different layouts
based on screen size and pixel density and write code that is largely independent of the choice the
system made. This technique makes your apps more robust by not duplicating the mechanisms
Android uses to make decisions about display geometry.

Following this pattern simplii es your tasks in publishing software, makes the example code as
concise as possible, and enables you to publish a single version for many kinds of devices.

Getting Started with the Code Framework Example

Here you will perform a further check that you have installed your toolchain correctly and import
the example code for this chapter. Later, you will examine the code in this example, and run it in
order to see what it does.

You can obtain the example code as an archive at www.wrox.com and https://github.com/
wileyenterpriseandroid/Examples.git. The i rst thing you do to use example code is to extract the
project folder from the archive into your workspace folder. Then, import the project from the archive
i le. You will use the File ➪ Import… command to display the Import dialog box as in Figure 1-1.

FIGURE 1-1

6 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

Select General and Existing Projects into Workspace. Pressing Next will display the Import dialog
box shown in Figure 1-2. Select the folder you extracted, and press Finish. Depending on the
platform you are using, the project name may differ from what you see in the screen shot in Figures
1-2 and 1-3.

FIGURE 1-2

You should now see the example project in your Eclipse Project Explorer window, as shown in
Figure 1-3.

Now right-click on the name of the project and select Run as ➪ Android Application. If you have
not connected your Android device to a USB cable connected to your PC, and you have not created
an emulator coni guration for running examples, you will see a dialog box like the one in the
Figure 1-4. If you do, press Yes.

One Code-Base for All Types of Devices ❘ 7

FIGURE 1-3

FIGURE 1-4

Pressing Yes displays the Android Virtual Device (AVD) Manager. If you got here from the error
dialog box indicating no AVDs have yet been created, you will see an empty list of AVDs, as in the
Figure 1-5. Press the button labeled New....

Now you see a dialog box for creating a new Android AVD. Pick Nexus 7 from the list of available
AVD coni gurations, and name it something sensible like nexus7. This conveniently selects all the
right parameters for emulating hardware that resembles a Nexus 7 tablet, including the correct API
level for the example, as seen in the Figure 1-6.

8 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

WARNING If you are using a Windows system for compiling and running the
examples from this book, and depending on the version of the Android SDK you
are using, you may need to pick a different device to emulate due to limitations
on memory size of emulators on Windows.

FIGURE 1-5

FIGURE 1-6

One Code-Base for All Types of Devices ❘ 9

When you press OK, you will return to the AVD Manager and see that an AVD named nexus7 now
exists in the previously empty list, as shown in the Figure 1-7. Press the button labeled Start....

FIGURE 1-7

Pressing the Start button launches the AVD. First, it may want some more information from you
about how it should be rendered. The Launch Options dialog box shown in Figure 1-8 can be used
to scale the display of an AVD. We won’t do that, so press the Launch button.

And now…still no emulator. If you are using a fresh installation of the SDK, you may encounter the
dialog box in Figure 1-9. This dialog box lets you enable the logcat view, provided by the Android
SDK plugins in the Eclipse IDE. Select the Yes option here. You will need logcat a bit later in this
chapter to see what your application is doing.

FIGURE 1-8 FIGURE 1-9

10 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

Now you have done it! The emulator will launch. Android will start up on the emulator, and the
example application will start up in Android, as shown in Figure 1-10.

If you encountered a problem at any step here, you may need to reinstall your toolchain. If you
previously validated the installation of your toolchain through to the steps where you launch an
Android application, you will not encounter some of the steps here, which happen only once upon a
i rst use after a new installation.

You now have running an example application that coni gures itself to different screen sizes.

Automatically Adapting to Screen Size

You can see the results of the design pattern example in this chapter by creating an AVD for a small
Android device and a larger tablet style Android device (see Figure 1-10).

FIGURE 1-10

You can see that the design pattern used in this framework application automatically adapts,
depending on the system displaying it. Users will see a single screen with a list on the left and
fragments selected using tabs on the right if the screen is big enough. Otherwise, users see two
separate screens, one showing the list of choices and the other containing tabs and fragments
corresponding to those tabs. The content depends on the choice users make from the list.

Components, Views, and Lifecycle ❘ 11

This is a typical UI design pattern. This framework will speed your way past the obligatory parts
of Android application development so you can get to the parts most useful to the enterprise
application developer.

But, before you adapt this framework to the kinds of applications that use local and networked data
resources, you’ll i rst take a look at this code in greater detail and see how it embodies many of
the Android features that users expect and that conform to Android best-practices for a broad class
of Android applications.

COMPONENTS, VIEWS, AND LIFECYCLE

The example code in this chapter contains all the objects needed for a minimal, but typical,
Android application. Since this book is about enterprise Android applications, this minimal
framework application includes a i eld for entering search terms, a list for the results of the search/
query, and places where search results and information about those results are displayed.

Most of the classes used in this minimal application framework are components or Android widgets
from the View class hierarchy.

Components are the large-scale building blocks of Android applications:

 ➤ You create a subclass of Activity for every major grouping of interactive functionality
that is distinctive enough for the user to notice that something different is displayed on the
screen.

 ➤ Fragments are used to organize interactive code within an activity. On big screens, multiple
fragments might be visible at the same time, while on smaller screens, a single fragment is
usually contained in each activity.

 ➤ You will subclass Service for code that performs long-running processing and that has no
interactive elements. Service components are an important part of the code in subsequent
chapters.

Components have lifecycles. You may be familiar with the concepts of components with lifecycles
from the J2ME MIDlet lifecycle, where apps that are paused should release resources. But the
Android component and lifecycle is far richer and more powerful. The Android lifecycle enables
large, complex apps to i t in small heap sizes.

Destroying and Re-creating Components

Every instance of every component in an Android application can be destroyed, releasing the
memory it used. The lifecycle methods in components enable them to save their state before they are
destroyed, as well as to initialize themselves when i rst created, and to restore their state when they
are re-created.

For components that have state, lifecycle methods indicate that a component is a candidate for being
destroyed, and you have to provide code that saves the state of your component. This isn’t optional.
Functionally, this is a bit like “swapping.” Instead of swapping all instance data, the lifecycle methods
enable you to save only the data needed to restore state, in the form most convenient for doing so.

12 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

There are no workarounds. If you attempt to subvert component destruction by keeping a reference
to a component, all you have done is create a memory leak.

The MainActivity Class

The code in this subclass of Activity (Listing 1-1) shows how to implement lifecycle handling for
Android. Each lifecycle method is logged, which means you are aware of what happens when this
Activity instance is no longer on the display, and you know when the Android system decides to
destroy an instance of this Activity.

In your Eclipse IDE, you can use the logcat view to display this logging information. Normally, this
view appears at the bottom of your screen.

Activity: The Basic Unit of User Interaction

Even though there is no code in Listing 1-1 for interacting with the users, you can call an activity the
basic unit of user interaction because it represents a screen-full of user interaction.

In a subsequent section, you will see how user interaction is handled by the Fragment subclasses in
this application.

The Activity class is the basis of the card-stack metaphor of user interaction in Android, and
navigating between activities is an important part of user interaction. This Activity subclass
is the main activity of this application. This is where the application starts when users touch the
application’s icon, and this is the bottom of the application’s back-stack.

LISTING 1-1: MainActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;

/**
* @author zigurd
*
*/
public class MainActivity extends TabbedActivity {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private final boolean L = true;

Components, Views, and Lifecycle ❘ 13

The code shown in this example for the lifecycle methods is here to help you visualize the application
lifecycle. Visualizing the application lifecycle is important because it is easy to ignore. You will want
to see what the Android OS is doing to your application by way of the component lifecycle in order to
plan your application implementation to most readily adapt to the component lifecycle.

The code for the onCreate method that follows shows that the parent class’s method should i rst be
called, and then code specii c to the subclass added. In this case, that code logs the method call, and
it logs whether the method was called to create this Activity instance the i rst time, or whether a
previous instance existed and the state of that instance should be restored. (More about that after
you see some of the other lifecycle methods.) The bulk of the work performed during the onCreate
call is factored out into the doCreate method. It loads the layout, sets up the action bar, and
initializes the tabs in the action bar.

@Override
protected void onCreate(Bundle savedState) {
super.onCreate(savedState);
// To keep this method simple
doCreate(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));
}

@Override
protected void onRestart() {
super.onRestart();
// Notification that the activity will be started
if (L) Log.i(CLASSNAME, "onRestart");
}

@Override
protected void onStart() {
super.onStart();
// Notification that the activity is starting
if (L) Log.i(CLASSNAME, "onStart");
}

@Override
protected void onResume() {
super.onResume();
// Notification that the activity will interact with the user
if (L) Log.i(CLASSNAME, "onResume");
}

protected void onPause() {
super.onPause();
// Notification that the activity will stop interacting with the user
if (L) Log.i(CLASSNAME, "onPause" + (isFinishing() ? " Finishing" : ""));

continues

14 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

}

@Override
protected void onStop() {
super.onStop();
// Notification that the activity is no longer visible
if (L) Log.i(CLASSNAME, "onStop");
}

The code for the onDestroy method that follows next logs when this method is called. The method
name onDestroy causes some confusion. What is being destroyed? In fact what happens at this point
is that the Android system “destroys,” or sets to null, its reference to this instance of this subclass of
Activity, so it can be garbage-collected. You may think that thwarting this destruction is possible
by simply holding a reference to this Activity instance. That won’t work: The Android system will
create a new instance of this Activity after it has “destroyed” this one, whether a reference to it is
being held or not. You could prevent this now-useless instance from being garbage-collected, but it
is a zombie, wreaking havoc in the heap. Note that the onDestroy method tests and logs whether
the activity is “i nishing” — meaning that this instance of Activity won’t be re-created because it is
done, not because it was destroyed to recover memory space.

@Override
protected void onDestroy() {
super.onDestroy();
// Notification the activity will be destroyed
if (L) Log.i(CLASSNAME, "onDestroy"
// Are we finishing?
+ (isFinishing() ? " Finishing" : ""));
}

The code for the onSaveInstanceState method that follows next logs when it is called. Note that a
Bundle object is passed to this method. This Bundle object enables you to attach serializable objects
implementing the Parcelable interface. The Bundle object itself implements the Parcelable
interface, so it and all the objects it holds references to can be serialized and stored — or “persisted”
in Java parlance.

This is where the Bundle object that’s passed to the onCreate method comes from. If you added
objects to it, they will be there when the onCreate and onRestoreInstanceState are called.

@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
saveState(outState);

// Called when state should be saved
if (L) Log.i(CLASSNAME, "onSaveInstanceState");

}

@Override

LISTING 1-1 (continued)

Components, Views, and Lifecycle ❘ 15

protected void onRestoreInstanceState(Bundle savedState) {
super.onRestoreInstanceState(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onRestoreInstanceState" +
(null == savedState ? " Restored state" : ""));
}

///
// The minor lifecycle methods - you probably won't need these
///

@Override
protected void onPostCreate(Bundle savedState) {
super.onPostCreate(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));

}

@Override
protected void onPostResume() {
super.onPostResume();
// Notification that resuming the activity is complete
if (L) Log.i(CLASSNAME, "onPostResume");
}

@Override
protected void onUserLeaveHint() {
super.onUserLeaveHint();
// Notification that user navigated away from this activity
if (L) Log.i(CLASSNAME, "onUserLeaveHint");
}

///
// Overrides of the implementations ComponentCallbacks methods in Activity
///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks

continues

16 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// App-specific code here
///

/**
* This is where we restore state we previously saved.
* @param savedState the Bundle we got from the callback
*/
private void restoreState(Bundle savedState) {
// Add your code to restore state here

}

/**
* Add this activity's state to the bundle and/or commit pending data
*/
private void saveState(Bundle state) {
// Add your code to add state to the bundle here
}

/**
* Perform initializations on creation of this Activity instance
* @param savedState
*/
private void doCreate(Bundle savedState) {
setContentView(R.layout.main);

if (null != savedState) restoreState(savedState);

 ActionBar bar = getActionBar();
 bar.setDisplayShowTitleEnabled(false);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

// Initialize the tabs (Fails silently if the tab fragments don't exist)
int names[] = {R.string.item, R.string.detail };
int fragments[] = { R.id.content_frag, R.id.detail_frag };
initializeTabs(0, names, fragments);
}

}

The preceding code contains the method implementations for the lifecycle methods onRestart,
onStart, onResume, onPause, and onStop. These callbacks are, like the other important lifecycle
methods in this example, logged to illustrate when they are called. These methods inform you when
this activity is becoming visible or is obscured by other activities on the screen. You may i nd it
useful to observe these logging messages in the logcat view in the Eclipse IDE, and follow along
with the diagrams in the Android documentation covering the activity lifecycle in order to see when

LISTING 1-1 (continued)

Components, Views, and Lifecycle ❘ 17

the state transitions in those diagrams occurs. See http://developer.android.com/training/
basics/activity-lifecycle/starting.html.

Note that you are not required to use the Bundle object to save state. There are three fundamental
ways to save state in Android:

 ➤ Recover state — If your state is the result of a database query, you can save the query in the
bundle (or even recover the query if it is, for example, based on the time of day) and re-run it.

 ➤ Save state in a database — If your state is in a database, locally, on the client device on
which your app is running, you can read it from that database if your components are
re-created.

 ➤ Put it in the bundle — You can, as described previously, save your state in the Bundle
object.

In most non-trivial applications, some combination of these methods for saving state is used. The
need to save state in Android applications has an inl uence on how they are designed. A data model

that lives primarily in a SQLite database is a convenient way to minimize the state your application

needs to preserve. Putting that database in a ContentProvider object removes it from the Activity

object. The ContentProvider API enables a simple implementation of the observer pattern, and it

puts your application on track with a design pattern that will be elaborated throughout this book,

where local databases are synched to a network database.

Fragment: A Tool for Organizing Code and UI

In Android versions prior to Honeycomb, the typical Android application implementation placed

the code for interacting with user interface widgets in subclasses of Activity. When Google’s

partners introduced tablet computers using the Android OS, Google responded by redesigning the

user interface — and the APIs developers use to create a user interface — around a new class called

Fragment.

Fragment is not a subclass of Activity, nor is it a subclass of View. Like an activity, a fragment can

contain the code that handles user interaction. A fragment can be laid out like an Android widget,

but it isn’t a widget. A fragment is a container for code that interacts with the users.

The Fragment class includes lifecycle methods, but it isn’t an Android component. The lifecycle

methods in Fragment exist as a way for the Activity containing the fragment to propagate lifecycle

events into the fragments contained in that activity. That is, individual fragment instances are never

destroyed, but the Activity instances that contain them are destroyed.

In the chapter’s example, the three most important things you will i nd are:

 ➤ Code for handling user interactions with Android widgets.

 ➤ Lifecycle method overrides, as in the Activity example, that enable logging, so you can see

when these methods are called relative to the activity lifecycle.

 ➤ Some lifecycle methods that are unique to Fragment, mostly for implementing how a

fragment object is initialized.

18 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

In addition to these aspects of this Fragment subclass, you will see some code for putting example
data into a list.

The PickFragment Class

The code in Listing 1-2 looks very much like an Activity subclass would look if you were not
using Fragment. But, unlike an Activity, the fragment’s lifecycle is tied to the lifecycle of the
Activity in which it is contained. In a large-screen layout, that means that all the Fragment
objects in an Activity have their lifecycle methods called when the corresponding lifecycle
methods of the Activity are called.

LISTING 1-2: PickFragment.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.Activity;
import android.app.Fragment;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class PickFragment extends Fragment implements OnItemClickListener {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private static final boolean L = true;

public void onAttach(Activity activity) {
super.onAttach(activity);

// Notification that the fragment is associated with an Activity
if (L)
Log.i(CLASSNAME, "onAttach " + activity.getClass().getSimpleName());
}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Tell the system we have an options menu
this.setHasOptionsMenu(true);

if (null != savedInstanceState)

Components, Views, and Lifecycle ❘ 19

restoreState(savedInstanceState);

// Notification that
if (L)
Log.i(CLASSNAME, "onCreate");
}

// Factor this out of methods that get saved state
private void restoreState(Bundle savedInstanceState) {
// TODO Auto-generated method stub

}

The onCreate method calls attachAdapter and setOnItemClickListener, initializing this
fragment.

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

final ListView list = (ListView) inflater.inflate(
R.layout.list_frag_list, container, false);
if (L)
Log.i(CLASSNAME, "onCreateView");

attachAdapter(list);
list.setOnItemClickListener(this);

return list;
}

public void onStart() {
super.onStart();
if (L)
Log.i(CLASSNAME, "onStart");
}

public void onresume() {
super.onResume();
if (L)
Log.i(CLASSNAME, "onResume");
}

public void onPause() {
super.onPause();
if (L)
Log.i(CLASSNAME, "onPause");
}

public void onStop() {
super.onStop();
if (L)
Log.i(CLASSNAME, "onStop");

continues

20 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

}

public void onDestroyView() {
super.onDestroyView();
if (L)
Log.i(CLASSNAME, "onDestroyView");
}

public void onDestroy() {
super.onDestroy();
if (L)
Log.i(CLASSNAME, "onDestroy");
}

public void onDetach() {
super.onDetach();
if (L)
Log.i(CLASSNAME, "onDetach");
}

// //
// Minor lifecycle methods
// //

public void onActivityCreated() {
// Notification that the containing activiy and its View hierarchy exist
if (L)
Log.i(CLASSNAME, "onActivityCreated");
}

// ///
// Overrides of the implementations ComponentCallbacks methods in Fragment
// ///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L)
Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L)
Log.i(CLASSNAME, "onLowMemory");
}

LISTING 1-2 (continued)

Components, Views, and Lifecycle ❘ 21

// ///
// Menu handling code
// ///

public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.search_menu, menu);
}

// //
// App-specific code
// //

The attachAdapter method is used to attach an ArrayAdapter to the ListView object in this
fragment. The ArrayAdapater contains test values for this application.

/**
* Attach an adapter that loads the data to the specified list
*
* @param list
*/
private void attachAdapter(final ListView list) {

// Make a trivial adapter that loads an array of strings
ArrayAdapter<String> numbers = new ArrayAdapter<String>(list
.getContext().getApplicationContext(),
android.R.layout.simple_list_item_1, new String[] { "one",
"two", "three", "four", "five", "six" });

// tell the list to use it
list.setAdapter(numbers);
// l.setOnItemClickListener(this);
}

// //
// Implementation of the OnItemClickListener interface
// ///

The onItemClick method implements the onItemClickListener interface. This means that the
onItemClick method is called whenever an Android item has been clicked. In this case, the whole
fragment is full of one ListView, and clicking on an item in the list causes some data to be loaded into
the fragments on the right side of the screen, or, in the case of small screens, in a separate Activity.

@Override
public void onItemClick(AdapterView<?> arg0, View view, int position,
long id) {
// As an example of sending data to our fragments, we will create a
// bundle
// with an int and a string, based on which view was clicked
Bundle data = new Bundle();
int ordinal = position + 1;
data.putInt("place", ordinal);
data.putString("placeName", Integer.toString(ordinal));
((TabbedActivity) getActivity()).loadTabFragments(data);

}

}

22 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The ItemFragment Class

When you run this application on a large-screen device, the ItemFragment object appears next or
below the PickFragment object and displays the data corresponding to what the user selected in the
PickFragment object, in Listing 1-3.

Like all the other classes that might need to respond to lifecycle methods, the methods are
implemented and logged here, so you can readily see when they are called.

LISTING 1-3: ItemFragment.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.Fragment;
import android.app.FragmentTransaction;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.FrameLayout;

public class ItemFragment extends Fragment implements TabListener,
 TabbedActivity.SetData {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

//Turn logging on or off
private final boolean L = true;

public void onAttach(Activity activity) {
super.onAttach(activity);

// Notification that the fragment is associated with an Activity
if (L) Log.i(CLASSNAME, "onAttach " + activity.getClass().getSimpleName());
}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Notification that
Log.i(CLASSNAME, "onCreate");
}

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
FrameLayout content = (FrameLayout) inflater.inflate(R.layout.content, container,
 false);
if (L) Log.i(CLASSNAME, "onCreateView");

Components, Views, and Lifecycle ❘ 23

return content;

}

public void onStart() {
super.onStart();
Log.i(CLASSNAME, "onStart");
}

public void onresume() {
super.onResume();
Log.i(CLASSNAME, "onResume");
}

public void onPause() {
super.onPause();
Log.i(CLASSNAME, "onPause");
}

public void onStop() {
super.onStop();
Log.i(CLASSNAME, "onStop");
}

public void onDestroyView() {
super.onDestroyView();
Log.i(CLASSNAME, "onDestroyView");
}

public void onDestroy() {
super.onDestroy();
Log.i(CLASSNAME, "onDestroy");
}

public void onDetach() {
super.onDetach();
Log.i(CLASSNAME, "onDetach");
}

//
// Minor lifecycle methods
//

public void onActivityCreated() {
// Notification that the containing activiy and its View hierarchy exist
Log.i(CLASSNAME, "onActivityCreated");
}

///
// Overrides of the implementations ComponentCallbacks methods in Fragment
///

@Override

continues

24 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// Implementation of TabListener
///

The following three methods implement the TabListener interface. They are passed a
FragmentTransaction object, which aggregates all the actions taken when navigating between
fragments. Here, you simply show or hide the fragment.

@Override
public void onTabReselected(Tab tab, FragmentTransaction ft) {
// TODO Auto-generated method stub

}

@Override
public void onTabSelected(Tab tab, FragmentTransaction ft) {
ft.show(this);

}

@Override
public void onTabUnselected(Tab tab, FragmentTransaction ft) {
ft.hide(this);

}

///
// Implementation of SetData
///

The following is the setData method, which implements the SetData interface. This interface tells
this fragment what data it should display.

@Override
public void setData(Bundle data) {
// Display the number
EditText t = (EditText) getActivity().findViewById(R.id.editText1);

LISTING 1-3 (continued)

Tying Together Activities, Fragments, and the Action Bar ❘ 25

int i = data.getInt("place");
t.setText(Integer.toString(i));
}

}

The ItemDetailFragment Class

The ItemDetail fragment class is similar enough to the ItemFragment class that it does not
merit displaying the listing in this chapter. You can i nd it in the i le ItemDetailFragment
.java in this chapter’s downloadable i les available at www.wrox.com and https://github.com/
wileyenterpriseandroid/Examples.git.

TYING TOGETHER ACTIVITIES, FRAGMENTS,
AND THE ACTION BAR

The Android APIs provide you with ini nite ways to design your user experiences. Your challenge
is to i nd a consistent path through those ini nite choices that can be considered “typical.” One
typical approach is to combine the Activity, Fragment, and ActionBar classes, along with the
View class hierarchy and tabs to provide a user experience that resembles other well-designed
Android applications. The TabbedActivity class in Listing 1-4 glues together the use of Activity,
Fragment, and ActionBar.

The TabbedActivity Class

The TabbedActivity class is an abstract subclass of Activity. The other Activity subclasses in
this application framework extend TabbedActivity, and if you go on to use this framework, the
Activity subclasses you add to this framework will also likely extend this class.

As an abstract parent class of the concrete classes in this framework, TabbedActivity provides
some capabilities inherited by those subclasses, specii cally:

 ➤ Enabling tabs in the action bar to select among fragments

 ➤ Enabling the app to load data into fragments

 ➤ Abstracting whether the user interface is on one large screen, or divided across two smaller
screens

LISTING 1-4: TabbedActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;

continues

26 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public abstract class TabbedActivity extends Activity {

This abstract class is where most of the work, and most of the cleverness, resides. The
initializeTabs method initializes the names of the tabs and connects the tabs to the fragments
they control. This is called from the onCreate method of the Activity.

/**
* Initialize tabs in an activity that uses tabs to switch among fragments
*
* @param defaultIndex
* The index of the Fragment shown first
* @param nameIDs
* an array of ID for tab names
* @param fragmentIDs
* an array of IDs of Fragment resources
*/
public void initializeTabs(int defaultIndex, int[] nameIDs, int[] fragmentIDs) {

// How many do we have?
int n = nameIDs.length;
int i = 0;

// Find at least one fragment that should implement TabListener
TabListener tlFrag = (TabListener) getFragmentManager()
 .findFragmentById(fragmentIDs[i]);

// Null check - harmless to call if there are no such fragments
if (null != tlFrag) {

// Get the action bar and remove existing tabs
ActionBar bar = getActionBar();
bar.removeAllTabs();

// Make new tabs and assign tags and listeners
for (; i < n; i++) {
tlFrag = (TabListener) getFragmentManager().findFragmentById(fragmentIDs[i]);
Tab t = bar.newTab().setText(nameIDs[i]).setTag(tlFrag).setTabListener(tlFrag);
bar.addTab(t);
}
bar.getTabAt(defaultIndex).select();
}
}

The loadTabFragments method is called whenever the user picks an item from the list on the left
side of the screen. It loads the selected data into the views in the fragments on the right side of the

LISTING 1-4 (continued)

Tying Together Activities, Fragments, and the Action Bar ❘ 27

screen. This method contains the only logic in the app that can be said to be somewhat aware of the
layout of the screen. If there are tabs in this activity, the doLoad method is called. If not, something
interesting happens — a new activity is started and the Bundle object containing the data is
attached to the intent.

Despite the fact that there is an if statement here that, effectively, distinguishes between the one-
activity case on larger screens and the two-activity case on smaller screens, none of the code has
any logic that makes decisions based on screen size or pixel density. That is as it should be. Your
program will always encounter new screen geometries. Code that makes decisions based on the
parameters of the screen is always susceptible to being surprised by new devices. Instead, you should
let the system make decisions about which layout to use, and ensure that your code accommodates
all the possible choices.

/**
* If we have tabs and fragments in this activity, pass the bundle data to
* the fragments. Otherwise start an activity that should contain the
* fragments.
*
* @param data
*/
public void loadTabFragments(Bundle data) {
int n = getActionBar().getTabCount();
if (0 != n) {
doLoad(n, data);
} else {
startActivity(new Intent(this, TabActivity.class).putExtras(data));
}
}

/**
* An interface to pass data to a Fragment
*/
public interface SetData {
public void setData(Bundle data);
}

/**
* Iterate over the tabs, get their tags, and use these as Fragment
* references to pass the bundle data to the fragments
*
* @param n
* @param data
*/
private void doLoad(int n, Bundle data) {

// Null check - harmless if no data
if (null == data) return;

int i;
ActionBar actionBar = getActionBar();

for (i = 0; i < n; i++) {

continues

28 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

SetData f = (SetData) actionBar.getTabAt(i).getTag();
f.setData(data);
}
actionBar.selectTab(actionBar.getTabAt(0));
}

}

A Main.xml File for Large Tablets

If the code isn’t making decisions about screen size, what is? In this framework, you harness the
decisions the Android system makes about layouts to also determine the number of fragments
displayed on different screen sizes.

This i le (Listing 1-5) contains a layout that includes both the list fragment on the left and the
information fragments on the right. It is in the directory called layout-large. So, whenever the
system decides to i nd layouts in the layout-large folder, it will pick this i le and all the fragments
will be displayed.

LISTING 1-5: Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content_layout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:id="@+id/list_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.PickFragment"
 android:layout_width="250dp"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.PickFragment" />

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <fragment
 android:id="@+id/content_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.ItemFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.ItemFragment" />

 <fragment

LISTING 1-4 (continued)

Tying Together Activities, Fragments, and the Action Bar ❘ 29

 android:id="@+id/detail_frag"
 android:name="com.enterpriseandroidbook.fragmentframework
 .ItemDetailFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.ItemDetailFragment"
 />
 </LinearLayout>

</LinearLayout>

The code in the fragment doesn’t ask which layout was chosen. It doesn’t make decisions based
on screen size or pixel density either. All it does is accommodate having, or not having, all the
fragments on the screen. That accommodation is made in the loadTabFragments method of
the TabbedActivity class.

A Main.xml and a Subsidiary Activity for Smaller Screens

This version of the main.xml i le (Listing 1-6) is found in the layout folder, as opposed to the
layout-large folder, where the other main.xml i le is placed. This version is used for every screen size
other than ones the Android system deems to be “large.”

LISTING 1-6: Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:id="@+id/list_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.PickFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.PickFragment" />

</LinearLayout>

Note that only the fragment that on a large screen displays the list on the left side of the screen
appears in this layout. That means that an instance of that Fragment subclass is created when this
layout is used. The Fragment subclasses that would on a large screen correspond to the fragments
on the right side of the screen are never instantiated.

This isn’t a problem because all the code that interacts with the user is in those Fragment subclasses.
As long as the other code makes no assumptions about those classes, their presence (or absence)
makes no difference.

30 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The TabActivity Class

This activity, in Listing 1-7, starts when the loadTabFragments method i nds no tabs. It is notable,
as with the other Activity class in this example, for what it doesn’t do. It exists to load the layout
containing the fragments that would on a larger screen appear to the right of the list, but it makes
no decisions or assumptions about screen sizes or layouts, or which Fragment subclasses are used in
the layout.

The result is that on small screens this activity is launched, and it displays the tabs that would
otherwise be on the right side of a larger screen.

LISTING 1-7: TabActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;

public class TabActivity extends TabbedActivity {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private static final boolean L = true;

@Override
protected void onCreate(Bundle savedState) {
super.onCreate(savedState);

// To keep this method simple
doCreate(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));
}

@Override
protected void onRestart() {
super.onRestart();
// Notification that the activity will be started
if (L) Log.i(CLASSNAME, "onRestart");
}

@Override
protected void onStart() {
super.onStart();
// Notification that the activity is starting
if (L) Log.i(CLASSNAME, "onStart");

Tying Together Activities, Fragments, and the Action Bar ❘ 31

}

@Override
protected void onResume() {
super.onResume();
// Notification that the activity will interact with the user
if (L) Log.i(CLASSNAME, "onResume");
}

protected void onPause() {
super.onPause();
// Notification that the activity will stop interacting with the user
if (L) Log.i(CLASSNAME, "onPause" + (isFinishing() ? " Finishing" : ""));
}

@Override
protected void onStop() {
super.onStop();
// Notification that the activity is no longer visible
if (L) Log.i(CLASSNAME, "onStop");
}

@Override
protected void onDestroy() {
super.onDestroy();
// Notification the activity will be destroyed
if (L) Log.i(CLASSNAME, "onDestroy"
// Are we finishing?
+ (isFinishing() ? " Finishing" : ""));
}

@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
saveState(outState);

// Called when state should be saved
if (L) Log.i(CLASSNAME, "onSaveInstanceState");

}

@Override
protected void onRestoreInstanceState(Bundle savedState) {
super.onRestoreInstanceState(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onRestoreInstanceState" +
(null == savedState ? " Restored state" : ""));
}

continues

32 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

///
// The minor lifecycle methods - you probably won't need these
///

@Override
protected void onPostCreate(Bundle savedState) {
super.onPostCreate(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" + (null == savedState ?
 " Restored state" : ""));

}

@Override
protected void onPostResume() {
super.onPostResume();
// Notification that resuming the activity is complete
if (L) Log.i(CLASSNAME, "onPostResume");
}

@Override
protected void onUserLeaveHint() {
super.onUserLeaveHint();
// Notification that user navigated away from this activity
if (L) Log.i(CLASSNAME, "onUserLeaveHint");
}

///
// Overrides of the implementations ComponentCallbacks methods in Activity
///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// App-specific code here
///

/**
* This is where we restore state we previously saved.

LISTING 1-7 (continued)

The Android Task and Process Model ❘ 33

* @param savedState the Bundle we got from the callback
*/
private void restoreState(Bundle savedState) {
// Add your code to restore state here

}

/**
* Add this activity's state to the bundle and/or commit pending data
*/
private void saveState(Bundle state) {
// Add your code to add state to the bundle here
}

/**
* Perform initializations on creation of this Activity instance
* @param savedState
*/
private void doCreate(Bundle savedState) {
setContentView(R.layout.content_control_activity);

if (null != savedState) restoreState(savedState);

 ActionBar bar = getActionBar();
 bar.setDisplayShowTitleEnabled(false);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

// Initialize the tabs
int names[] = {R.string.item, R.string.detail };
int fragments[] = { R.id.content_frag, R.id.detail_frag };
initializeTabs(0, names, fragments);

// Load data if there is some
loadTabFragments(getIntent().getExtras());
}

}

NOTE Note that we sometimes use the words activity, fragment, service, view,
and so on to refer to places in programs where the corresponding classes, which
are named with their precise names, are used. That is, we use these nouns in
place of the object names when that makes the text in this book easier to read.
You will see this pattern of usage throughout this book.

THE ANDROID TASK AND PROCESS MODEL

In the previous sections you learned how an Android process is assembled out of components, and
how components work together with garbage collection in the Android managed run time to keep
per-process heap size small. One reason per-process heap size needs to be small is that Android runs

34 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

many instances of the run time at once, one for each process where a Java program is running in
the Android environment. A “small” heap size means specii cally that the total amount of memory
available to all the applications in an Android device ranges between a few tens of megabytes to
a few hundred megabytes. Each process is limited to between 24MB and 48MB, although some
devices may have lower or higher limits. This means you cannot count on a i xed amount of
memory, or on being able to use more than a small share of the total memory in the device.

Android’s approach differs from most systems where per-process heap size can take up a large
amount of available memory, and it is not uncommon for Java VM instances to have heap sizes in
the hundreds of megabytes.

Starting Dalvik Instances

Although you don’t need to know the details to write Android applications, it’s still a good idea
to know why you can start dozens of instances of the Dalvik virtual machine (VM), which is the
basis of Android’s managed language runtime environment, when trying to do the same with a
conventional Java VM would bog down your computer, never mind a mobile device.

One problem with managed language runtime
environments is that bytecodes, such as those used
in Java VMs and Dalvik, are loaded like data,
not like the machine instructions that computer
processors run. Dalvik optimizes the creation
and initialization of new instances of Dalvik by
using a template process, or an instance. This
template process starts, loads, and initializes many
base classes, and it then waits until it needs to be
“cloned,” using the fork system call. See
Figure 1-11 for an example.

When the Dalvik template instance, called the
Zygote, is forked, it both speeds up the loading
and initialization of new processes and reduces the
memory footprint of every Dalvik instance. It does
this by treating the pre-loaded base classes as if they
were pure code and sharing this code across all the
Dalvik instances forked from the Zygote.

For you, the developer, this means that you don’t
have to avoid starting Dalvik instances. If it makes
sense to start an Activity from another app to, for
example, pick an image i le to load, do it, and don’t
worry about the overhead.

Death, but No Transfi guration

In the section on the Activity class and its component lifecycle, you saw how an activity can be
destroyed and re-created. Every component in an Android process can be destroyed and, if the

FIGURE 1-11

Zygote

App1

Process-specific

code and heap

Dalvik pure code

shared

Process-specific

code and heap

Dalvik pure code

shared

App1

Process-specific

code and heap

Base classes byte-

code shared with

copy-on-write

Base classes byte-

code shared with

copy-on-write

Base classes byte-

code shared with

copy-on-write

Dalvik pure code

shared

Multiprocessing, Security, and Lifecycle ❘ 35

developer correctly handles lifecycle method calls, re-created. Every object in an Android process is
contained in components. That is, there is nothing in an Android process that can hold a reference
to an instance of any class that is not itself referred to only by a component. That means that whole
processes could be destroyed and re-created. And they routinely are.

You can demonstrate this by running the example in this chapter and watching the logcat view in
Eclipse. Note that each line in the log lists a process ID or PID. After starting the example app and
observing the lifecycle method calls in the logcat view, start a large number of other applications.
Eventually you will see that, when you go back to this example app, not only are the instances of
every component destroyed and re-created, but the process ID (PID) has changed too! This is a bit
remarkable: The user sees no difference in the operation and state of the app he is interacting with,
but every object in that app has been destroyed and re-created, and it is in an entirely new process.
This also illustrates that “process” and “task” are only loosely coupled in the Android task model.

This is how Android recovers memory at the granularity of a process. It also “resets” the heap size
for a running app, in case the app had used a large block of memory for some purpose and then
freed it. This should also convince you, if you have not already been convinced, that any attempts
to thwart the Android lifecycle are futile. Occasionally, your whole process is going to get reaped by
Android’s memory management. There is no place to hide from the component lifecycle.

Tasks Span Applications and Processes

Android also differs from most OSs in that a task in Android isn’t synonymous with a process.
Android applications can, using the startActivity method, cause another application to be
started. But that application is often part of the same task. Its capabilities are being borrowed. For
example, the Gallery app is frequently used to select an image i le. When this happens, another
app creates an Intent object with the PICK action and asks for an image. The Gallery app has a
matching intent i lter, and it starts an activity enabling the user to pick an image from the gallery.
While this is happening, the app that was launched and the Gallery app are part of the same task,
even though they are in two separate processes.

This kind of late-binding, loosely-coupled modularity is characteristic of Android applications,
and the component-based implementation of Android apps, where an Activity component is used
to group Fragment objects and the View objects they contain into screens of UI work. Note in the
TabbedActivity.java listing (Listing 1-4 earlier in the chapter) that an Intent object is used in the
startActivity method call that results in a new activity being started. In this case, a class name is
specii ed. But an Intent can contain a looser specii cation than actions and data types, instead of
class names. That enables you to consume pieces of other application’s UI and provide pieces of a UI
to other applications.

Later in this chapter you will see how Intent objects are used to start applications.

MULTIPROCESSING, SECURITY, AND LIFECYCLE

Android’s designers faced a difi cult problem. Unlike a web server, in which all the software is
controlled by one developer/administrator, a mobile device runs applications developed by multiple
developers. The user has limited trust for these developers, and the developers have limited trust of

36 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

one another. They all need to share memory resources, and you can’t predict how many applications
the user will want to run.

The Process and User ID as Security Boundary

A single runtime environment with multiple threads just isn’t going to cut it for enabling a secure
multiprocessing environment. Every Android application runs in its own process, which is an
instance of the Dalvik managed runtime environment.

Each Android developer gets a signature (the examples you are running now are signed with a
temporary signature), and every signature creates a separate user ID (UID) and group ID (GID)
in the Android system. Access to each developer’s application’s i les is limited to the UID and
GID of that developer’s applications.

Android processes cannot access memory in other processes, and they cannot access i les with other
UIDs/GIDs.

NOTE While managed language run times do enhance the robustness of systems
because they run code inside a virtual machine, the Dalvik VM is not a security
boundary in Android. Android applications can and do run native code.

DECLARING APPLICATION PROPERTIES

Previously in this chapter you saw how Android components, especially the Activity component,
are used to group elements of a user interface onto a device screen, and how the Fragment subclasses
dei ned here are used to group View objects and the code that handles user interaction with those
objects, and how declarative UI can drive the coni guration of activities and fragments to adapt to a
wide range of device sizes. But how did your application get started?

Components are central to starting applications. So are Intent objects. Manifest i les are used to
bring together information about all the components in your application, plus some data about
names and system compatibility. Intent i lter specii cations are key to the loosely coupled, high-level
modularity of Android applications.

You see all this information come together in the manifest i le (Listing 1-8) for the framework
application:

LISTING 1-8: manifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.enterpriseandroidbook.fragmentframework"
 android:versionCode="1"
 android:versionName="1.0">

Summary ❘ 37

 <uses-sdk android:minSdkVersion="15" />

 <application android:icon="@drawable/icon" android:label="@string/app_name"
 android:uiOptions="splitActionBarWhenNarrow"
 android:theme="@android:style/Theme.Holo">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="com.enterpriseandroidbook.fragmentframework
 .TabActivity" android:label="@string/data"></activity>

 </application>
</manifest>

A i le called a “manifest” lists the contents of something; in this case, it lists the contents of an
Android application. Android application manifests list all the components in an application. If,
in addition to the name of an activity, an intent i lter is dei ned for an activity, that activity can be
“matched” instead of being specii ed by name.

In this manifest, the intent i lter for MainActivity matches the action android.intent
.action.MAIN. It specii es that it also matches the category android.intent.category
.LAUNCHER. These are the constants that Android launchers use to launch applications.

SUMMARY

This chapter guided you through setting up your tools and verifying that they were set up correctly.

You saw how a modern Android framework suitable for database applications is put together:

 ➤ It adapts to all sizes of Android devices. It’s time to stop whining about “fragmentation”
and write apps that adapt.

 ➤ It harnesses declarative UI in Android to avoid making decisions about screen coni guration
in code.

 ➤ It organizes code that interacts with the user into Fragment subclasses that can be combined
into activities.

 ➤ It looks, acts, and interacts with the user like the latest generation of Android applications.
It’s up to date inside and out.

Although the example framework code in this chapter embodies how to write code for the most
recent versions of Android, it can be back-ported to earlier versions of Android using the Support
Package (discussed more in Chapter 11). By following the design patterns in this framework you can
have code that is up to date, forward-compatible, and back-compatible as well.

The Relational Model
and SQLite

WHAT’S IN THIS CHAPTER?

 ➤ Reviewing relational databases and history of the relational model

 ➤ Reviewing the SQL language

 ➤ Introducing SQLite

 ➤ Dealing with SQLite from the command line

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

Mobile enterprise applications — perhaps most mobile applications — involve synchronizing
data between some large, network-accessible backend stores and a mobile device with limited
resources.

The backend has lots of data. The mobile device only needs — and can only hold — a little bit
of it at any given time.

This chapter begins the exploration of the datastores that are found at the two ends of an
Android enterprise application: SQL engines.

If you are already acquainted with relational data systems, many of the concepts in this
chapter will be familiar to you.

2

40 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

SQL is the language of the relational database management systems (RDBMSs) that have been
a standard on the backend for many years. Since Android adopted SQLite as a way of storing
structured, persistent data, SQL is, now, also found on the mobile client side.

There are entire books on the subject of SQL and even just the SQLite dialect of SQL. This chapter
is not a replacement for those resources: It is not a reference manual. There are two goals:

 ➤ Review the main concepts of the relational model and the SQL language to set the stage for
a later architectural level discussion of their suitability in specii c circumstances.

 ➤ Review some of the key differences between SQLite, the SQL engine used in the Android
system and the SQL engines with which most enterprise developers are already familiar.

DATABASES AND THE RELATIONAL MODEL

For the last 20 years or so, the relational model has dominated as the standard for large-scale data-
management systems. Nearly any project that requires storing signii cant quantities of information
for signii cant lengths of time uses some kind of relational engine to do it. It is possible that this
period of relative stability is simply the eye of a storm.

Although SQL didn’t actually become a standard until 1986, relational systems were already
gaining a foothold in the late 1970s. Before that, system architects often had to confront the issue
of data storage themselves. There were best practices, plenty of academic research, and even some
commercial tools. Still, developers often had to build custom data storage systems using only a i le
system and low-level access to it.

Since RDBMSs have become a standard, though, we’ve had many years to get addicted to the idea
that if it is data, it is the database’s problem. It is only recently that system designers have begun to
question the idea that RDBMSs are a generic solution to all of their data storage needs. Especially
as they turn to distributed, cloud-based architectures, some developers are i nding that there
are all kinds of attractive alternatives to big SQL. The particular challenges of distributed data
management are discussed in some detail in the second half of this book.

Mobile devices provide another environment that challenges the traditional SQL engine approach to
data storage. In fact, until very recently, most mobile devices barely supported a i le system, let alone
a SQL engine.

It is obviously desirable that smart mobile devices continue to work — possibly with reduced
functionality — even when they are not connected to a network. That implies that they must have
local data storage. Certainly, it would be possible to return developers to a 1970’s environment and
leave them to build their own i le- or record-based storage systems. That seems a bit austere, though,
especially in the Android environment, which is a full Linux-based system and theoretically capable
of supporting nearly any of the common RDBMS systems, open or proprietary. Most Android
platforms, though, are still resource constrained: Using memory and battery to run a big SQL
engine would be a waste.

The Android platform takes an interesting middle road by embedding SQLite. Very conveniently,
SQLite speaks SQL, which makes it familiar and easy to use for a wide range of developers. SQLite,
on the other hand, is very dei nitely not a full RDBMS. In some ways, it is the best of both worlds

Databases and the Relational Model ❘ 41

— it looks like an RDBMS, but it doesn’t cost as much. On the other hand, since it looks like an
RDBMS, developers are sometimes surprised when it doesn’t act like one.

The History of the RDBMS

Before digging into the specii cs of SQLite and how it is used on Android, it is worth taking some time
to set the stage with a little bit of history and theory. Enterprise Android applications bring together
developers with a broad range of experiences. In particular, developers that have focused on mobile
platforms may not be as familiar with RDBMS as their backend counterparts. While this discussion
may not contribute directly to code or coding practices, it is one piece of getting mobile and server-
side developers to speak the same language.

Although the relational model has roots that are pretty i rmly attached to the mathematics of
sets — a i eld that is well over a century old — it was only in 1970 that Edgar F. Codd
introduced it as a foundation for data management. Codd’s original proposal was an extension of
a mathematically sound and well understood algebraic model. He demonstrated that it was not
only sufi cient for representing and manipulating datasets but that it also had some very convenient
properties. Among other important features, his model provided the possibility of considering the
structure of data as an entity distinct from the data itself and included the value null — a marker
used to indicate that a given data value is missing from the database.

By the end of the 1980s, Codd’s relational model became a commercial success. As extended by C.
J. Date and others, RDBMS became a recognized term, and there were several implementations.
Because the RDBMS model described behavior, not implementation, the developers of these systems
were free to optimize them with a variety of cutting-edge, proprietary technologies, as long as the
system behaved as prescribed by the model. The two main, original implementations — Ingres and
System R — are the ancestors of virtually every RDBMS today, including Microsoft SQL Server and
Oracle, respectively.

SQL, the standard language for RDBMS, is oddly not a descendant of ALPHA, Codd’s own
RDBMS language. Instead it is a descendant of SEQUEL, the language used in IBM’s R Project. It
was renamed SQL because the original name was already under copyright.

SQL was adopted as a standard by the National Institute of Standards and Technology (NIST)
in 1986, by the International Organization for Standardization (ISO) in 1987, and has changed
relatively little since. There have been fads — object-orientation and XQuery to name two — but
SQL remains, pretty much unchallenged, the king of the hill.

NOTE It is an interesting mental exercise to compare this stability to the changes
in other programming languages since 1986.

The Relational Model

As mentioned previously, Codd’s original model is based in mathematics, specii cally a branch
called i rst-order predicate logic. The model describes relations: unordered sets of tuples whose
type is dei ned by the relation’s attributes. Relations look a lot like the familiar and intuitive

42 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

spreadsheet. The model also describes several
operations on relations, the most important
ones being restriction, projection, and join

(cross-product). The relational model and
the corresponding distributed database
management system (DDBMS) model are
illustrated in Figures 2-1 and 2-2.

The i rst two of these operations — restriction
and projection — are very similar except
that they affect relation rows and columns,
respectively. Restricting a relation produces
a new relation with a subset of the original’s
rows. Projection does almost exactly the
same thing except that the new relation has a
subset of the original’s columns.

The cross-product operation formalizes
the combination of two or more relations.
The cross-product of two relations is a new
relation in which each row from the i rst table
is combined with every row from the second.
Figure 2-4, included later in this chapter,
shows examples of a simple cross-product and
the special restriction of the cross-product,
a join.

This algebra — relations and the handful of
operations on them — forms the basis of the relational model. Table 2-1 shows a list of common
terms used in the predicate calculus and relates them to the corresponding RDBMS vocabulary. By
starting with only these simple underpinnings, and then building relations and operating on them
with compositions of operators, you can manipulate data in tremendously powerful ways. You can
imagine, for instance, joining the projection of a restriction of one table to the restriction of another
and then performing one more restriction on the result.

TABLE 2-1

 RELATIONAL MODEL DDBMS

Relation Table

Tuple Row

Attribute Column

Cross-product Join

Projection Select <column>,...

Restriction Where <expression>

FIGURE 2-1

Attributes

Tuples Relation

Columns

Rows Table

FIGURE 2-2

Databases and the Relational Model ❘ 43

It is worthwhile to reiterate that, although an RDBMS presents data as tables, it does not
necessarily represent them that way internally. Because the relational model is clear and specii c,
RDBMS designers are free to implement their products in any way they choose — probably using
technologies that were completely unknown in 1970 — to make them as fast and efi cient as
possible.

It is also worth noting that the relational model is explicitly based on i rst-order predicate calculus.
A i rst-order calculus is one in which the arguments to functions are not, themselves, functions. The
notion, increasingly popular in modern programming languages, of passing functions (closures,
continuations, and so on) around in code is, by dei nition, not possible within the relational model.

Other DBMS Features

Most RDBMS engines support — to varying degrees — other features that are not specii cally part
of the relational model. If a database engine is a single, monolithic entity addressed by multiple
client applications, it makes a great deal of sense to make these features part of the engine, instead
of leaving their implementations — and the resulting variety of bugs — to the client applications.

Strong Typing

Most database engines strictly enforce attribute types. Typically an engine dei nes a few native
data types that describe the kind of data that can be put into a column. These types — usually
various sizes of l oating-point numbers, strings, integers, and so on — are specii c to a particular

implementation and cannot be extended. Part of dei ning a relation (demonstrated in the SQL

language examples later in this chapter) is dei ning the type of data that can be placed into each of

its columns. Once the relation is dei ned, the RDBMS will fail any attempt to put data of the wrong

type into the column. An attempt, for instance, to insert a tuple that contains a string as its third

attribute into a relation that specii es that that third attribute should be a l oating-point number will

fail and usually generate some kind of exception.

Referential Integrity

In a relational database, the native type system (the types dei ned by the RDBMS as described in

the previous section) can be extended by declaring a column in one relation to be a reference to

another relation. That is, using a special construct of the SQL language (primary and foreign keys,

demonstrated later in the chapter), the data architect can declare that the contents of some column

in one relation are a reference to a similarly typed column in another relation. Figure 2-3 illustrates

a foreign key.

A given value in the foreign key column in Table A (the rightmost, in this particular case) is either

null, or it is a link to exactly one row in Table B, the single row that contains the matching value in

its leftmost column (again, leftmost in this case).

Most RDBMS engines enforce this relationship, referential integrity, for relations on which it is

dei ned. The enforcement has two parts.

44 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

 ➤ The i rst part, enforcing the primary key constraint, guarantees that there is no more than
one row in the target table (Table B in Figure 2-3) with the given value as primary key (in
its left column in the example). A table may contain, at most, one (possibly multicolumn)
primary key. A database that enforces the primary key constraint will fail an attempt to
insert a new row into a table if the table already contains the key value found in the new
row. For instance, if the table contains three rows with the key column values of “yes”,
“no”, and “maybe”, the attempt to add a new row with a key column value of “purple” will
succeed. Attempting to add a new row whose key column contains the value “no”, however,
will fail.

 ➤ The second part of referential integrity enforcement guarantees that if the foreign key is
non-null in a row in the child table (Table A in the example), there is a unique record with
that key in the parent table (Table B). There are two ways that this rule might be violated,
and both are forbidden. An attempt to insert a row with a foreign key whose value is not
the primary key of any row in the target table will fail and usually generate an exception. So
will the attempt to delete the (unique) row in the parent table that is referenced by a foreign

FIGURE 2-3

Table A

foreign key

.......

Table B

candidate key

.......

Databases and the Relational Model ❘ 45

key in the child table. If there is no information in the parent table corresponding to a given
row in the child table, that row’s foreign key value must be null.

Transactions

The last of the features frequently supported by RDBMS systems is the transaction. A transaction
is a group of operations on the data that must be considered as a unit: They must either all succeed
or all fail. Transaction support in a database system is frequently discussed in terms of the extent to
which it supports “ACID” properties:

 ➤ Atomicity — A transaction is “all or nothing”: Either the entire transaction succeeds or none
of it does.

 ➤ Consistency — If the database is in a valid state before a transaction, it is still in a valid
state after the transaction. A transaction cannot cause the violation of any data constraints.

 ➤ Isolation — The state of the database after a transaction is a state that could have been
achieved by applying the statements in the transaction serially in some order.

 ➤ Durability — Once a transaction has completed, it can’t be forgotten. Even if the power
fails or the network collapses, the new state persists until it is changed by other statements.

Database engines frequently allow the data architect fairly i ne-grained control over several kinds
of transaction support, from permitting access to the data to only one client at a time (slow, but all
transactions succeed) to allowing multiple simultaneous access, and failing the entire transaction for
a client that, by chance, violates transactional rules (faster but sometimes requires retrying).

Transactions, referential integrity, strong typing, and the relational model are all core concepts of
relational data systems. Now that you’ve re-acquainted yourself with them, it is time to turn to the
specii cs of their use. The canonical language for using relational systems is SQL. As an Enterprise
Android developer, you will have to be l uent with SQL both to manage data within the Android

platform and to use backend services effectively.

The SQL Language

SQL really is a comparatively simple language. Still, as noted earlier, it is the topic for entire books.

A complete description is well outside the scope of this one. Because developers at both ends of a

mobile application — the mobile side and the server backend — are likely to use SQL, it is worth

taking a few moments to review its main features in general, before turning to the specii cs of the

SQLite dialect.

Statements in the SQL language can be divided into three large classes, the Data Dei nition

Language (DDL), the Data Manipulation Language (DML), and queries.

Data Defi nition Language (DDL)

The Data Dei nition Language (DDL) describes the structure of the data that a database contains. The

most common DDL statements are used to dei ne a table — the number of columns it contains,

the names of those columns, and the kinds of values allowed in them. This is accomplished with the

CREATE TABLE statement, illustrated in Listing 2-1, along with its inverse, DROP TABLE.

46 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

LISTING 2-1: The CREATE TABLE statement

DROP TABLE contacts;
CREATE TABLE contacts (
 _id INTEGER PRIMARY KEY AUTOINCREMENT,
 name_raw_contact_id INTEGER REFERENCES raw_contacts(_id),
 photo_id INTEGER REFERENCES data(_id),
 photo_file_id INTEGER REFERENCES photo_files(_id),
 custom_ringtone TEXT,
 send_to_voicemail INTEGER NOT NULL DEFAULT 0,
 times_contacted INTEGER NOT NULL DEFAULT 0,
 last_time_contacted INTEGER,
 starred INTEGER NOT NULL DEFAULT 0,
 has_phone_number INTEGER NOT NULL DEFAULT 0,
 lookup TEXT,
 status_update_id INTEGER REFERENCES data(_id)
);

Listing 2-1 is an example of the dei nition of a moderately complex table, named contacts. It
happens that this is, specii cally, the SQLite dialect of SQL, but the dei nition would look nearly
identical in most other dialects. The code creates the single table called contacts with 12 columns,
each dei ned in one line of the code. The name of a table must be unique within a database and is
frequently a plural noun, naming the objects found in the rows of the table: EMPLOYEES, NOSES,
HIPPOPOTUMUSES, and so on.

NOTE A debate rages in the SQL community over whether to use singular or
plural nouns to name tables. Recently the discussion seems to be favoring the sin-
gular. There is dei nite and strong agreement, though, that whichever scheme you
choose, you should be consistent.

The names of the columns in a table must be unique within the table. In the example, the column _id
is an integer valued primary key for the table. The AUTOINCREMENT constraint on the _id column
causes the db engine to create a new, unique integer for each row, automatically, as it is added.

The other columns in the table use two primitive data types — text and integer. Several of the
columns — those that use the REFERENCES keyword — have complex types that are dei ned in
other tables using foreign keys. The column photo_file_id, for instance, is a reference to the table
photo_files.

NOTE Some of the other columns dei ned in the table have other data
constraints — NOT NULL, DEFAULT 0, and so on. For more information on any of
these constraints and how they work refer to a standard SQL reference like the
following:

http://dev.mysql.com/doc/refman/5.0/en/language-structure.html

http://msdn.microsoft.com/en-us/library/ms166026(v=sql.90).aspx

http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm

Databases and the Relational Model ❘ 47

In addition to being able to create tables, SQL DDL allows the creation of other standard RDBMS
data structures like views, triggers, and indices. A typical database is likely to contain several tables,
maybe an index or two, and depending on the inclinations of the designer, a few triggers or views.
The collection of DDL statements that dei ne all of the objects in a given database is called its schema.

Data Manipulation Language (DML)

Data Manipulation Language (DML) statements are used to add, remove, and modify data in
the database. There are three DML statements — INSERT, UPDATE, and DELETE. They are all
demonstrated in Listing 2-2.

LISTING 2-2: Data Manipulation Language statements

INSERT INTO contacts(
 name_raw_contact_id, photo_id, photo_file_id,
 last_time_contacted, status_update_id)
 VALUES(null, null, null, 1339365417, null);
UPDATE contacts SET starred=1, has_phone_number=1 WHERE _id = 3;
DELETE FROM contacts where _id = 2;

The INSERT statement adds a new row to the table and dei nes the values in some — in this case, not
all — of its columns. The insert will succeed because all of the columns that are required to have
values (constrained NOT NULL) have values specii ed or have defaults (constrained DEFAULT). The
primary key for the row inserted by this statement will have an integer value automatically created
by the database engine and different from any other value currently in the _id column.

The next statement in Listing 2-2, the UPDATE statement, changes the value of two columns for, at
most, one row in the contacts table. It changes the value for the single row in which the value of
the primary key is 3. Because the selection criteria is the primary key, there can be, at most, one
such row.

The last statement in the listing, the DELETE statement, deletes (in this case) at most one row from
the database. Again, this is because the selection criteria is the primary key and there can be at
most one record whose primary key is 2. After this statement is executed, there exists no row whose
primary key is 2 in the contacts table.

Queries

QUERY is probably the most frequently used of all the SQL statements. In relational terms, the query
creates a new relation — a virtual table — that is a restriction of a projection of the cross-product of
one or more other tables. Listing 2-3 shows an example of a query that illustrates an INNER JOIN.

LISTING 2-3: Query that uses INNER JOIN

SELECT rc.display_name, c.starred
 FROM contacts c INNER JOIN raw_contacts rc
 ON c.name_raw_contact_id = rc._id
 WHERE NOT rc.display_name IS NULL
 ORDER BY rc.display_name ASC;

48 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

As mentioned earlier, a join is an important
restriction on the cross-product of two tables.
As shown in Figure 2-4, a full cross-product of
two tables combines each of the rows from the
i rst table with every row from the second. In
the query in Listing 2-3, the table contacts is
joined with the table raw_contacts. There are
C(contacts) * C(raw_contacts) rows in this
cross-product, where C(t) is the number of rows
in the table t. This whole cross-product probably
isn’t very useful. In the query, though, the ON
clause restricts the cross-product to only rows in
which the column name_raw_contact_id has
the same value as the raw_contacts column
_id. The new relation generated by the join
contains the rows from contacts, each with the
corresponding information from
raw_contacts appended. That is dei nitely
useful! The bottom table in Figure 2-4 illustrates
a similar join.

By extension it is possible to construct joins of
many tables. In RDBMS systems joins are an
essential feature in almost the same way that
inheritance is an essential feature in object-
oriented systems.

This brief review of the SQL language completes
the overview of generic relational data storage.
All of the discussion in this chapter, so far,
applies to both the client and server sides of a
distributed mobile application. It is information with which mobile developers may be less familiar
than their backend counterparts. Discussing it at such a high level serves not only to help the mobile
developer understand an important local tool but also to understand the backend technology that
supports her mobile application. It is now time to turn to the specii cs of Android’s structured data
management tool, SQLite.

INTRODUCTION TO SQLITE

Android uses the open source database engine, SQLite. It is a small, serverless library that has
several features that are extremely attractive in the mobile environment. Data stored in SQLite
databases on a phone is persistent across processes, through power cycling, and, usually, across
upgrades and re-installs of the system software.

SQLite is an independent, self-sustaining project. Originally developed in 2000 by D. Richard
Hipp, it quickly i lled a niche as a lightweight way to manage structured data. A group of dedicated

FIGURE 2-4

Relation R

A1 B2

A2 B1

A3 B3

Relation P

B1 X1

B2 X2

B3 X3

Cross-Product

A1 B1

A1 B2

A1 B3

X1

X2

X3

A2 B1

A2 B2

A2 B3

X1

X2

X3

A3 B1

A3 B2

A3 B3

X1

X2

X3

Join on R.2=P.1

A1 B2

A2 B1

A3 B3

X2

X1

X3

Introduction to SQLite ❘ 49

developers supports a large user community and such high-proi le projects as Apple Mail, the
Firefox web browser, and Intuit’s TurboTax.

As part of this strong support, each release of SQLite is tested very carefully, especially under
failure conditions. The library is designed to handle many kinds of failures gracefully, including
low memory, disk errors, and power outages. Reliability is a key feature of SQLite and more than
half of the project code is devoted to testing. This is very important on a mobile platform where
the environment is less predictable than it is for a device coni ned to a server room. If something
goes wrong — the user removes the battery or a buggy app hogs all available memory — SQLite-
managed databases are unlikely to be corrupted and user data is likely safe and recoverable.

NOTE There is comprehensive and detailed documentation about SQLite at the
project website at http://www.sqlite.org/docs.html.

The other side of the coin, though, is that SQLite is not really an RDBMS. Several of the
features that you’d expect from a relational system, are completely missing. As built for Android,
SQLite does support transactions and the SQL language. However, until Android API level 10
(Gingerbread), it did not support referential integrity or strong typing. In more recent versions of
Android, SQLite can support referential integrity, but that support is turned off by default. It still
does not support strong typing. Its own documentation suggests that one should think of SQLite
“not as a replacement for Oracle, but as a replacement for fopen().”

SQLite from the Command Line

Perhaps the best way to introduce SQLite and its vagaries is to use it. In the interests of authenticity,
this entire example was recorded on an Android emulator: an Android Virtual Device (AVD).
The i rst line of Listing 2-4 starts an instance of the emulator, using the previously created device
coni guration named tablet. In this case, that coni guration is running Android Ice Cream
Sandwich, release 15, v4.0.3. The example would look nearly identical on most other versions of
Android or on an actual Android device. For that matter, it would look the same from the command
line of any other UNIX-like system that has sqlite3 installed.

NOTE The sqlite3 program is only available on “engineering” builds of Android.
The emulator uses an engineering build, but most production devices (such as
your phone) use dramatically streamlined versions of Android. Production builds
have fewer debugging tools installed, thus leaving more space for user data and
making them somewhat more resistant to data breaches.

A SQLite database is a simple i le. On Android devices most applications store their databases
in their i le system sandbox in a sub-directory named databases. For instance, databases for an
application whose package name is com.enterpriseandroid.contacts.webdataContacts are most
likely to be in the directory /data/data/com.enterpriseandroid.contacts.webdataContacts/
databases. There is no reason, of course, that an application can’t share access to its databases by

50 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

putting them, instead, into a public storage area (anything stored on the i le system named /sdcard,
for instance, is publicly available to any application). As you will see in the next chapter, though,
there are much better ways to share data than by making the database itself globally available.

The example also demonstrates the use of the adb tool, the Android Debugger, from the Android
SDK. adb is the Swiss Army knife of Android tools. It is found in the directory platform-tools of
the SDK (which, in the example, is located using the shell variable $ANDROID_HOME). When run, adb
connects to a daemon on a running Android system. In this case it is connecting to the emulator
started on the line above. To get a shell prompt on the emulator, use the command adb shell.

From the shell prompt, you can run the SQLite command-line utility sqlite3. Listing 2-4 uses the i le
system sandbox for an installed application whose package name is com.enterpriseandroid
.contacts.dbDemo.

LISTING 2-4: Starting sqIite3

wiley> $ANDROID_HOME/sdk/tools/emulator -avd tablet &
wiley> $ANDROID_HOME/sdk/platform-tools/adb shell
cd /data/data/com.enterpriseandroid.contacts.dbDemo/databases
sqlite3 demo.db
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

The i rst thing to remember when using sqlite3 from the command line is that each command must
be terminated with a semicolon. Listing 2-5 illustrates this point.

LISTING 2-5: Ending sqlite3 commands with semicolons

sqlite> select * whoops typo
 ...>
 ...> ;
Error: near "whoops": syntax error

Until sqlite3 sees the statement-terminating semicolon, it interprets all input as part of a single SQL
statement and offers the continuation prompt, ...>. Only after the semicolon does it parse and
evaluate the input, delivering any necessary error messages.

There are also several meta-commands (not part of the SQL language) that are very useful when
working with sqlite3. Meta-commands are commands that begin with a period. They are not
interpreted as SQL but, instead, as commands to the sqlite3 command-line program. The two most
important of these are .help and .exit.

 ➤ The .exit command exits the sqlite3 command interpreter.

 ➤ The .help command prints a list of other “dot” commands.

NOTE You can also terminate a SQLite command-line session by typing Ctrl+D.
This will work even when the command parser is hopelessly confused.

Introduction to SQLite ❘ 51

SQLite syntax supports a wide variety of data types: TINYINT, BIGINT, FLOAT(7, 3), LONGVARCHAR,
SMALLDATETIME, and so on. As mentioned earlier, though, the type of a column is actually little
more than a comment. Listing 2-6 demonstrates this by storing the string value "la" into several
columns with non-text types.

LISTING 2-6: sqlite3 data types

sqlite> create table test (
 ...> c1 biginteger, c2 smalldatetime, c3 float(9, 3));
sqlite> insert into test values("la", "la", "la");
sqlite> select * from test;
la|la|la

The column type is useful only as a hint to help SQLite choose an efi cient internal representation
for the data stored in the column. SQLite determines the internal storage type using a handful of
simple rules that regulate “type afi nity.” These rules are very nearly invisible except as they affect
the amount of space that a given dataset occupies on disk.

NOTE There are full details at
http://www.sqlite.org/datatype3.html#affinity.

In practice, many developers just restrict themselves to four primitive internal storage types used
by SQLite — integer, real, text, and blob — and explicitly represent timestamps as text and
booleans as integers.

There are a number of constraints that can be attached to a column dei nition. The most important
is the PRIMARY KEY constraint. A primary key column contains for each row in a table a unique
value that identii es the row.

SQLite does support non-integer primary keys. It even supports composite (multi-column) primary
keys. Beware, though, of primary key columns that are not integer primary keys! In addition to
implying a UNIQUE constraint (described later in this chapter), the primary key constraint should
also imply a NOT NULL constraint. Unfortunately, because of an oversight in early versions, SQLite
allows NULL as the value of a primary key for any type except integer. Because each NULL is a
distinct value (different from even other NULLs) SQLite permits a primary key column to contain
multiple NULLs and thus permits multiple rows in a table that cannot be distinguished by their
primary key.

As Listing 2-7 demonstrates, an integer primary key column is, by default, also set to
autoincrement. That means that SQLite will automatically create a new value for that column
for each new row added to the database. To make this behavior explicit, declare the column
PRIMARY KEY AUTOINCREMENT.

52 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

LISTING 2-7: sqlite3 primary key autoincrement

sqlite> create table test (key integer primary key, val text);
sqlite> insert into test (val) values ("something");
sqlite> insert into test (val) values ("something else");
sqlite> select * from test;
1|something
2|something else
sqlite>

The autoincrement feature is very useful because through it the database engine itself guarantees
that the key created for a new row is unique. However, it presents a problem that can lead to
awkward and clumsy code. When adding a new row to the database, the code may have to read the
new row immediately after creating it to discover the key that the database assigned.

Another important constraint that might appear in the column dei nition is FOREIGN KEY. As noted
previously, by default, SQLite does not enforce foreign key constraints. Like the column type, it is
essentially a comment. This is demonstrated in Listing 2-8.

LISTING 2-8: The foreign key comment

sqlite> create table people (
 ...> name text, address integer references addresses(id));
sqlite> create table addresses (id integer primary key, street text);
sqlite> insert into people values("blake", 99);
sqlite> insert into addresses(street) values ("harpst");
sqlite> select * from people;
blake|99
sqlite> select * from addresses;
1|harpst
sqlite> select * from people, addresses where address = id;
sqlite>

In a database that supported referential integrity, the i rst insert statement would fail with a
foreign key constraint violation. In fact, the attempt to create the table in the i rst create table
statement would fail for the same reason.

NOTE To enable referential integrity support in recent versions of Android, use
the pragma: pragma foreign_keys = true.

Although SQLite does not necessarily enforce referential integrity, the relational concept of a
complex type, dei ned in one table and referenced from others through a foreign key, is central to
well designed, easily modii ed, and efi cient data storage. Developers are encouraged to use standard
best practices (for example, normalization) when designing SQLite databases. The only difference
is that the code accessing the database must be prepared to enforce referential integrity constraints
itself instead of depending on the database to do it. Listing 2-9 extends the example begun in
Listing 2-8 by demonstrating a simple join.

Introduction to SQLite ❘ 53

LISTING 2-9: A simple join

sqlite> insert into addresses(street) values("pleasant");
sqlite> insert into addresses(street) values("western");
sqlite> insert into people values ("catherine", 2);
sqlite> insert into people values ("john", 3);
sqlite> insert into people values ("lenio", 3);
sqlite> select name,street from people, addresses where address = id;
catherine|pleasant
john|western
lenio|western

In this example there is one person who lives on Pleasant Street but there are two who live on
Western Avenue. There is, however, only one record in the addresses table for the street named
western. The data is not duplicated. The foreign key in the people table refers to the single record
that holds the address of the two people who live on Western Avenue.

SQLite supports several other column constraints. They are illustrated in Listing 2-10.

 ➤ unique: When this constraint is applied to a column, SQLite will refuse any attempt to add
a row to the table that would result in some value appearing in the column more than once.

 ➤ not null: When this constraint is applied to a column, SQLite will refuse to perform any
operation that would cause the value in the constrained row to be NULL.

 ➤ check(expression): When this constraint is applied to a column, the expression is
evaluated whenever a new row is added to the table, or when an existing row is modii ed. If
the result of the evaluation is 0 when cast as an integer, the attempt fails and is aborted. If
the expression evaluates to NULL or any other non-zero value, the operation succeeds.

LISTING 2-10: Column constraints

sqlite> create table test (
 ...> c1 text unique, c2 text not null, c3 text check(c3 in ("OK", "dandy")));
sqlite> insert into test values("dandy", "dandy", "dandy");
sqlite> insert into test values("dandy", "dandy", "dandy");
Error: column c1 is not unique
sqlite> insert into test values("dandy", null, "dandy");
Error: test.c2 may not be NULL
sqlite> insert into test values("dandy", "dandy", "bad");
Error: constraint failed
sqlite>

An Example SQLite Database

Now that you’ve explored some of the idiosyncrasies of SQLite, you are ready to work a complete
example: a simple contacts database. First create the contacts table:

sqlite> create table contacts (
 ...> _id integer primary key autoincrement,
 ...> name text not null);
sqlite>

54 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

The name of the primary key column is determined by an Android system requirement (more about
that in the next chapter). Perhaps, after a moment’s consideration, it seems like a great idea to add
a column to the table, to record the time at which a contact’s information was last changed. That is
accomplished with an additional column and a pair of triggers:

sqlite> alter table contacts add last_modified text;
sqlite> create trigger t_contacts_audit_i
 ...> after insert on contacts begin
 ...> update contacts set last_modified=datetime('now', 'utc')
 ...> where rowid = new.rowid;
 ...> end;
sqlite> create trigger t_contacts_audit_u
 ...> after update on contacts begin
 ...> update contacts set last_modified=datetime('now', 'utc')
 ...> where rowid = new.rowid;
 ...> end;
sqlite>

Now try adding a record to verify that things are working so far:

sqlite> insert into contacts(name) values("Dianne");
sqlite> select * from contacts;
1|Dianne|2012-06-30 08:29:18
sqlite>

Perfect! The contacts need addresses. You can create a table for those:

sqlite> create table addresses(
 ...> _id integer primary key autoincrement,
 ...> number integer not null,
 ...> unit text,
 ...> street text not null,
 ...> city integer references cities);
sqlite>

As noted previously, if referential integrity support had been enabled, this table dei nition would
cause an error because the cities table does not exist. In SQLite’s default coni guration, however, it
is not a problem: You can dei ne it later.

What’s missing is a way to connect contacts to their addresses. In order to do that, you need one
more table:

sqlite> create table contact_addresses(
 ...> contact integer references contacts,
 ...> address integer references addresses);
sqlite>

You can now add data:

sqlite> insert into contacts(name) values("Guy");
sqlite> insert into contacts(name) values("Chet");
sqlite> insert into contacts(name) values("Tim");
sqlite> insert into addresses(number, street)
 ...> values(651, "North 34th Street");
sqlite> insert into addresses(number, street)
 ...> values(345, "Spear Street");

Introduction to SQLite ❘ 55

sqlite> insert into addresses(number, street)
 ...> values(1600, "Amphitheatre Parkway");
sqlite> select * from contacts;
1|Dianne|2012-06-30 09:46:42
2|Guy|2012-06-30 09:46:42
3|Chet|2012-06-30 09:46:42
4|Tim|2012-06-30 09:46:42
sqlite> select * from addresses;
1|651||North 34th Street|
2|345||Spear Street|
3|1600||Amphitheatre Parkway|
sqlite> insert into contact_addresses(contact, address) values(1,1);
sqlite> insert into contact_addresses(contact, address) values(2,2);
sqlite> insert into contact_addresses(contact, address) values(3,3);
sqlite> insert into contact_addresses(contact, address) values(4,2);
sqlite>

The contacts now have addresses. You can see those addresses using a join query:

sqlite> select name, number, street
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address;
Dianne|651|North 34th Street
Guy|345|Spear Street
Chet|1600|Amphitheatre Parkway
Tim|345|Spear Street
sqlite>

Perhaps you would like to determine how many contacts are to be found at each address. That can
be done using the count function and the group by clause:

sqlite> select count(name), number, street
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address
 ...> group by number, street;
2|345|Spear Street
1|651|North 34th Street
1|1600|Amphitheatre Parkway
sqlite>

Perhaps, now that you know how many contacts are at each address, you want to show a new list
of contacts ordered by their address. In a small database like this, that is no problem. On the other
hand, if there are a lot of addresses and you are going to use the address number and street as a sort
key, you should probably create an index. An index simply optimizes the process of i nding a specii c
value in the indexed columns. It does this at the expense of the space needed to store the index and
the time needed to update it on write operations. Columns (or sets of columns) that don’t change
often and are frequently used as selection or sort criteria are good candidates for indices. You can
now create indices on both contacts’ names and addresses.

sqlite> create index t_contacts_name on contacts(name);
sqlite> create index t_addresses_num_street on addresses(number,street);
sqlite>

56 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

Take a look at that list of contacts again, this time organized by address:

sqlite> select number, street, name
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address
 ...> order by number asc, street desc, name asc;
345|Spear Street|Guy
345|Spear Street|Tim
651|North 34th Street|Dianne
1600|Amphitheatre Parkway|Chet
sqlite>

Suppose that one of the contacts moves to a new address. Perhaps you want to keep track of your
contacts’ current addresses, as well as their previous ones. You might do that by adding a new
column to the contact_addresses table, called moved_in, to record the date on which a contact
arrives at a particular address.

...> alter table contact_addresses add moved_in text;
sqlite>

Notice that the type of the new i eld to be used as a timestamp is text. The standard way to
represent a timestamp in SQLite is as a text i eld within which times are represented by i xed format
strings.

NOTE There is more information about standard representations of time formats
here: http://www.sqlite.org/lang_datefunc.html

This code places a default value for the move in date into all of the records already in the database:

sqlite> update contact_addresses set moved_in=datetime(0, 'unixepoch');
sqlite> select * from contact_addresses;
1|1|1970-01-01 00:00:00
2|2|1970-01-01 00:00:00
3|3|1970-01-01 00:00:00
4|2|1970-01-01 00:00:00
sqlite>

Now you can move the contact Guy from Spear Street to Amphitheatre Parkway:

sqlite> insert into contact_addresses(contact, address, moved_in)
 ...> values(2, 3, datetime("2012-05-01"));
sqlite> select * from contact_addresses order by contact desc, moved_in asc;
4|2|1970-01-01 00:00:00
3|3|1970-01-01 00:00:00
2|2|1970-01-01 00:00:00
2|3|2012-05-01 00:00:00
1|1|1970-01-01 00:00:00
sqlite>

Introduction to SQLite ❘ 57

Notice that there are now two records in the contact_addresses table for contact 2, one much
more recent than the other. A query similar to the last will show all of Guy’s addresses:

sqlite> select name, number, street, moved_in
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address
 ...> order by name asc, moved_in desc;
Chet|1600|Amphitheatre Parkway|1970-01-01 00:00:00
Dianne|651|North 34th Street|1970-01-01 00:00:00
Guy|1600|Amphitheatre Parkway|2012-05-01 00:00:00
Guy|345|Spear Street|1970-01-01 00:00:00
Tim|345|Spear Street|1970-01-01 00:00:00
sqlite>

Using the having clause, you can show only contacts that have moved at least once:

sqlite> select name, number, street
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address
 ...> group by name
 ...> having count(contacts._id) > 1
 ...> order by name desc;
Guy|1600|Amphitheatre Parkway
sqlite>

And, i nally, with a sub-select, you can show only each contact’s most recent address:

sqlite> select name, number, street
 ...> from contacts, addresses, contact_addresses
 ...> where contacts._id = contact_addresses.contact
 ...> and addresses._id = contact_addresses.address
 ...> and moved_in = (
 ...> select max(moved_in)
 ...> from contact_addresses
 ...> where contact = contacts._id)
 ...> order by name desc;
Tim|345|Spear Street
Guy|1600|Amphitheatre Parkway
Dianne|651|North 34th Street
Chet|1600|Amphitheatre Parkway

At this point, the database schema looks like this:

sqlite> .schema
CREATE TABLE addresses(
_id integer primary key autoincrement,
number integer not null,
unit text,
street text not null,
city integer references cities);
CREATE TABLE contact_addresses(
contact integer references contacts,
address integer references addresses,
moved_in text);
CREATE TABLE contacts (

58 ❘ CHAPTER 2 THE RELATIONAL MODEL AND SQLITE

_id integer primary key autoincrement,
name text not null, last_modified text);
CREATE INDEX t_addresses_num_street on addresses(number, street);
CREATE INDEX t_contacts_name on contacts(name);
CREATE TRIGGER contacts_audit_i
after insert on contacts begin
update contacts set last_modified=datetime('now', 'utc')
where rowid = new.rowid;
end;
CREATE TRIGGER contacts_audit_u
after update on contacts begin
update contacts set last_modified=datetime('now', 'utc')
where rowid = new.rowid;
end;
sqlite>

Although simple, this example demonstrates many of the concepts used in even very complex
databases. The next chapter shows you how to harness these concepts in an Android application.

SUMMARY

In the i rst half of this chapter, you reviewed some of the essential concepts that underlie relational
database systems:

 ➤ Relations (tables), cross-products (joins), projections, and restrictions

 ➤ The SQL language: data dei nition, manipulation, and queries

 ➤ Transactions, data typing, and referential integrity

Many of these concepts will be familiar to experienced enterprise system developers. Android,
however, is among the i rst platforms to bring them to a mobile environment and they may be new
even to very experienced mobile systems developers.

In the second half of this chapter you met SQLite, Android’s mechanism for storing structured
data. While SQLite speaks SQL, it is not at all the kind of RDBMS with which most enterprise
developers are familiar. Rather, it is a library included in an application that allows the application
to efi ciently and safely manage structured data stored in a i le. However, its support for data typing
and referential integrity is limited.

Android Database Support

WHAT’S IN THIS CHAPTER?

 ➤ Learning about SQL support in Android

 ➤ Understanding SQL from Java: The SQLiteDatabase class

 ➤ Creating a database: The SQLiteOpenHelper class

 ➤ Understanding loaders, cursors, and adapters

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

The previous chapter introduced SQLite and demonstrated its use from a command line on the
Android platform. This chapter extends the demonstration to show the use of SQLite from an
application.

In order to use local, structured data from an application, it is necessary to do several things:

 ➤ Embed SQL commands in application code and execute them at run time.

 ➤ Create, initialize, and update databases as needed.

 ➤ Select a database lifecycle management strategy appropriate for an application.

 ➤ Parse the data obtained from queries for use in an application.

3

60 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

SQL IN JAVA: THE SQLITEDATABASE CLASS

Chapter 2 demonstrated the use of SQLite from the command line. In order to be useful as part
of an application, however, it must be possible to embed SQL in the Java code that composes an
application. The Android library provides the SQLiteDatabase class for this purpose.

Running SQL queries against a SQLite database, from Java code, requires an instance of the
SQLiteDatabase class. You’ll see in the next section how to get such an instance. This section
shows the basics of how to use the instance, once you have it. Here, you will see how the instance
methods provide basic, low-level access to a database.

Basic SQL Embedding

The simplest and most representative of the SQLiteDatabase methods is execSQL. It takes as an
argument a single string containing arbitrary SQL and executes that string as a query against the
attached database. This is, in general, how SQL code is embedded in an application: The SQL
is expressed as a Java string and then passed to a synchronous method for execution. When the
method returns, the SQL has been executed. Nearly all of the SQL statements demonstrated in the
previous chapter can be executed in this way. Here, for example, is Java code that executes a single
SQL statement that creates a database table:

db.execSQL("create table pets(name text, age integer)");

If executed successfully, this Java code will create the new table named pets with two columns in
the attached database.

There are some limitations to keep in mind when using the Android SQL APIs. The i rst of these
limitations — and this particular limitation isn’t specii c to the execSQL method — is that the
SQLite “dot” commands introduced in the previous chapter (for example, .help, .schema, .table,
and .exit) are not SQL. They are artifacts of the sqlite3 command-line interpreter and cannot be
used from application code.

Another limitation that applies across the entire Android SQLite API — one that might be
particularly surprising in the context of the execSQL method — is that multiple SQL statements
cannot be batched in a single method call. The string passed to execSQL as an argument should
contain exactly one SQL statement. If it contains more than one statement (probably separated by
semicolons), all of the statements after the i rst semicolon are silently ignored.

A i nal and perhaps obvious limitation, specii c to executing SQL statements from the execSQL
method, is that the method has no means of returning a value. Even if it were possible to run a SQL
query using execSQL, it would be pointless to do so because there is no way to get programmatic
access to the query results. In fact, when a statement executed by the execSQL method does return
data, the method throws a SQLiteException with an error message indicating that a query
statement should be run using a different method.

The most generic method that returns a result is the rawQuery method. It can be used to execute
SQL that returns a result and to recover that result programmatically. As an example, consider
an application that requires the ability to determine, at run time, the structure of a table in an
open database: It needs something roughly equivalent to the .schema <tablename> command

SQL in Java: The SQLiteDatabase Class ❘ 61

implemented by the sqlite3 CLI. An implementation of this requirement might use rawQuery and
SQLite’s pragma table_info command, like this:

Cursor c = db.rawQuery("pragma table_info(" + tableName + ")", null);

This query is a bit far-fetched, perhaps, because applications are unlikely ever to connect to a
database whose structure is not well known. The point, however, is that rawQuery is an analog to
execSQL: It provides a way to execute arbitrary SQL that returns data. That data is returned — as it
is from most SQLite API methods — as a cursor. Cursors are discussed in detail later in this chapter.

In general, execSQL and rawQuery are both blunt instruments. Rather than being general tools for
programmatic execution of SQL, they should, instead, be used as last resorts to access infrequently
used SQL that is not addressed elsewhere in the Android SQLite API. The execSQL method’s chief
use, as will become clear in a moment, is building a new database. Most developers will probably
never use rawQuery.

Before moving away from these low-level methods, you should examine one more generic API
pattern. Both execSQL and rawQuery take a third argument (it is optional for execSQL), called
bindArgs. As an example of why bindArgs is valuable, consider this naive code — incorrect for
many reasons, but intended to clean old records for a given individual from the database:

db.execSQL("delete from people where name='" + person
 + "' and added_date < "
 + String.valueOf(System.currentTimeMillis() - HISTORY));

Now consider what happens if the variable person contains the value fred';. Remember that the
execSQL method simply ignores any text that appears after a semicolon. When executed, this code
will delete all of the records for fred instead of just a few historical records. This is a very simple
example of the problem that is at the root of the by now very familiar SQL-injection database
attack.

This kind of error can be avoided by using bindArgs. The SQLite API provides a way of replacing
parameter characters (? and ?NNN) in a SQL expression with the values specii ed as bindArgs. This
binding is subject to syntactical checks and is thus much less vulnerable to the kind of security
issue demonstrated in this section. For more information on using SQL parameters in SQLite, see
http://www.sqlite.org/lang_expr.html#varparam.

Syntactic SQL

Instead of embedding SQL in application code as unchecked, untyped strings, the Android SQLite
API hoists the semantics of SQL into API methods. As you might expect, most of these methods
fall into one of four families: insert, update, delete, and query. There are, in addition, a couple of
convenience methods and several management methods.

Delete

The smallest of the families is the delete-related methods. In fact, it contains exactly one method:
delete. It is instructive to review the arguments to the delete method because they establish
another pattern used throughout the API.

62 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

Before reviewing the method arguments, though, you should note that the two methods on the
SQLiteDatabase object, create and delete, are not opposites! The create method creates a
new database. Its opposite is deleteDatabase. Most developers will never use either. The delete
method executes a SQL delete statement that, conditionally, deletes rows from a specii c table in
the database. Its opposite is insert.

In general, again, statements in the SQL language have a syntax that dei nes clauses. This structure
is frequently highlighted when SQL statements are pretty-printed, as were some of the examples in
the previous chapter. Here is an example of a pretty-printed delete statement:

DELETE
 FROM pets
 WHERE age > 10 AND age < 20

The pattern within the Android SQLiteDatabase API is that the i rst part of this statement, in
this case, the DELETE, is supplied by the method itself — the delete method produces a DELETE
statement, the insert method produces an INSERT statement, and so on.

The subclauses for the statement are, each, separate arguments to the method. They are specii ed
without the keyword that introduces them in SQL. For instance, the previous pretty-printed
example could be embedded in Java as:

db.delete("pets", "age > 10 AND age < 20", null);

Aside from preventing minor misspellings (deleet for delete or something), this code isn’t really a
dramatic improvement over execSQL. It is simply a convenience method that is transformed, quite
literally, into the execSQL version. The third argument, however, is the bindArgs feature, and
makes the delete statement signii cantly safer. Given a table:

CREATE TABLE pets(name text, age integer)
INSERT INTO pets VALUES("linus", 14)
INSERT INTO pets VALUES("fellini", 15)
INSERT INTO pets VALUES("totoro", 8)

The following method call will successfully delete two rows from the database, leaving only the row
for "totoro":

db.delete("pets", "age = ? OR name = ?", new String[] {"15", "linus"});

Although it does not support the named arguments described in the SQLite documentation, the
Android API does support numbered arguments. This method call has exactly the same effect as the
previous one:

db.delete("pets", "age = ?2 OR name = ?1", new String[] {"linus", "15"});

Update

The family of methods that implement database updates is also very small. It includes two methods,
update and updateWithOnConflict. They introduce a new syntactic constraint in the form of a
new type, ContentValues. ContentValues provides a binding from a column name to its value. For
instance, the SQL statement:

UPDATE pets
 SET age = 99
 WHERE name = "linus" OR name = "fellini"

SQL in Java: The SQLiteDatabase Class ❘ 63

would be coded using the Android SQLite API as follows:

ContentValues newAges = new ContentValues();
newAges.put("age", Integer.valueOf(99));
db.update(
 "pets",
 newAges,
 "name = ? OR name = ?",
 new String[] {"linus", "fellini"});

Again, the interface extensions appropriately enforce structure. The SQL statement that the library
actually prepares for execution looks like this:

UPDATE pets SET age = ? WHERE name = ? OR name = ?
bindArgs: 99, "linus", "fellini"

The other update method, updateWithOnConflict, supports the SQLite ON CONFLICT clause
(see http://www.sqlite.org/lang_conflict.html), which controls behavior when statement
execution would violate a UNIQUE or NOT NULL constraint. This can happen, for instance, when
an update statement attempts to set the primary key for some row to a value that is already
the primary key for some other row. Although the choice of a conl ict resolution algorithm can

affect the method’s return value (or the exceptions it throws), it is primarily something that

is passed to the SQLite engine and not explicitly handled by the Android SQLite library. In

particular, calling updateWithOnConflict, specifying CONFLICT_IGNORE, does not guarantee

that no SQLiteException will be thrown. The SQLiteException is an unchecked exception

and can be thrown by nearly any method in the Android SQLite API. The documentation for the

SQLiteDatabase class mentions it only haphazardly: There are many situations in which it could be

thrown that are not described there.

Insert

The insert family of methods is nearly identical to the update family: Its methods take as arguments

the name of the database they must update and a ContentValues object mapping column names to

values. There are a few small differences, however. Perhaps oddly, the insert methods, alone among

the statement execution methods, catch and discard any SQLiteException thrown by underlying

code. They return an error value of -1 to indicate failure. To get behavior that is analogous to the

behaviors of the delete and update methods, use insertOrThrow. Here is an example of an insert:

ContentValues newPet = new ContentValues();
newPet.put("name", "luna");
newPet.put("age", 99);
db.insert("pets", null, newPet);

The replace method is also a member of the insert family. It is a convenience method that is

translated to a call to insert using the OR REPLACE ON CONFLICT algorithm for resolving constraint

violations. The replace method will insert a new row, if the insertion does not cause a conl ict. If

the insertion would cause a conl ict, existing rows are replaced by new values. The behavior of this

method can be surprising. Consider the following dataset:

CREATE TABLE test(id integer primary key, key text unique, val text unique)
INSERT INTO test VALUES(1, "foo", "foo")
INSERT INTO test VALUES(2, "bar", "bar")

64 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

Running the following code:

ContentValues newTest = new ContentValues();
newTest.put("key", "bar");
newTest.put("val", "foo");
db.replace("test", null, newTest);

results in the following:

sqlite> select * from test;
3|foo|bar

Although this particular sample code, simple as it is, does not generate any exceptions, clearly the
deletion of two rows and the disappearance of the two associated primary keys could cause all sorts
of foreign key constraints to be violated. Caveat emptor.

Query

The query family of methods is, by virtue of being most complex, the largest. Including the
rawQuery methods that you met earlier in the chapter and the methods on the SQLiteQueryBuilder
class, there are a total of 13 query methods.

To begin, Listing 3-1 shows an example of a SQL query, with all of its clauses.

LISTING 3-1: A complete query

SELECT table1.name, sum(table2.price)
 FROM table1, table2
 WHERE table1.supplier = table2.id AND table1.type = "spigot"
 GROUP BY table1.name
 HAVING sum(table2.price) < 50
 ORDER BY table1.name ASC
 LIMIT 100

Each of the clauses is represented by its own argument in the query methods:

 ➤ table — The FROM clause: a table to query

 ➤ columns — A list of columns to be included in the result: the projection

 ➤ selection, selectionArgs — The WHERE clause and its arguments

 ➤ groupBy — The GROUP BY clause

 ➤ having — The HAVING clause

 ➤ orderBy — The ORDER BY clause

An empty or non-existent clause can be represented by a Java null value. Analogous to the insert
and update statements, the WHERE clause in the query method is specii ed using two method
arguments: selection and selectionArgs. The string passed as the selection can contain
parameter tokens (such as ? or ?NNN), which are replaced by the corresponding values from the
selectionArgs array. Here is a very simple query on the pets database:

SQL in Java: The SQLiteDatabase Class ❘ 65

Cursor c = db.query(
 "pets",
 new String[] { "name", "age" },
 "age > ?",
 new String[] { "50" },
 null, // group by
 null, // having
 "name ASC");

There are four additional arguments, available on overloaded variations of the query method. They
are listed here in roughly decreasing order of normal use:

 ➤ limit — Maximum number of rows to be returned in the query

 ➤ distinct — A standard SQL keyword that causes the query to return only one instance of
each row meeting the selection criteria, even if there are several such rows in the queried table

 ➤ CancellationSignal — An object that can cancel the query to which it is passed

 ➤ cursorFactory — Allows the use of custom implementations of the cursor

Even the full version of the SQLiteDatabase query method, however, with all 11 of its arguments,
cannot accommodate a UNION query. To do that, it is necessary to use the SQLiteQueryBuilder.

The query builder is not an elegant tool. In the end, it basically concatenates clause strings together to
build a query string. It also has several bells and whistles that can be a bit confusing. Although it is one
of the few tools available for constructing generic complex queries, its API suggests that it was designed
not as a general-purpose query tool but rather as a means of handling queries for a content provider
(discussed in detail in Chapter 4). It does facilitate the task of constructing JOIN and UNION queries.

Consider the following database:

CREATE TABLE vals(id integer PRIMARY KEY, val text)
CREATE TABLE keys(key text, fk integer references ref(id))
INSERT INTO vals VALUES(1, 'bar')
INSERT INTO vals VALUES(2, 'baz')
INSERT INTO vals VALUES(3, 'zqx3')
INSERT INTO vals VALUES(4, 'quux')
INSERT INTO keys VALUES('one', 1)
INSERT INTO keys VALUES('one', 4)
INSERT INTO keys VALUES('two', 2)
INSERT INTO keys VALUES('two', 3)

This code uses the SQLiteQueryBuilder to construct and execute a query on a join of its two
tables:

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables("keys k INNER JOIN vals v ON k.fk = v.id");
Cursor c = qb.query(db,
 new String[] {"k.key AS kk", "v.val AS vv"},
 "kk = ?",
 new String[] { "two" },
 null,
 null,
 "vv DESC",
 null);

66 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

The actual query run by this bit of code looks like this:

SELECT k.key AS kk, v.val AS vv
 FROM keys k INNER JOIN vals v ON k.fk = v.id
 WHERE (kk = ?)
 ORDER BY vv DESC

And its output is as follows:

two|zqx3
two|baz

Note, i rst of all, that this query supports the, by now familiar, separation of selection clause from
the arguments to the clause. Once again, expression parameters, represented by ?NNN (a question
mark followed by between 0 and 3 digits), are replaced by their corresponding values from the
selectionArgs array. This substitution is performed by SQLite and is fairly resistant to misuse.
The query builder actually performs one other safety check on the WHERE clause, verifying that
it is syntactically correct both as given and when wrapped in parentheses (that is, both expr and
(expr)). The idea is that it is extremely difi cult (if not completely impossible) to construct a devious
selection clause that produces a correct SQL expression both ways.

Next, note that the query builder allows the construction of complex queries. Because it is basically
just concatenating strings together, it is largely agnostic as to what is in those strings. The previous
query, for instance, could also be written as follows:

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables("keys k, vals v");
Cursor c = qb.query(db,
 new String[] {"k.key as kk", "v.val as vv"},
 "k.fk = v.id AND kk = ?",
 new String[] { "two" },
 null,
 null,
 "vv DESC",
 null);

In which case, the actual query looks like this:

SELECT k.key as kk, v.val as vv
 FROM keys k, vals v
 WHERE (k.fk = v.id AND kk = ?)
 ORDER BY vv DESC

The features demonstrated thus far make the query builder sufi cient to create nearly any query
needed in application code. As mentioned, there is also a facility to produce a UNION query that is
not explored here. The query builder provides some measure of safety both against syntactic errors
and against the injection of malicious code by a client in the SQL it constructs.

NOTE Actually, there is one more tool in the query builder suite, the
ProjectionMap. That tool is discussed in the context in which it is most relevant,
a content provider, in Chapter 4.

SQL in Java: The SQLiteDatabase Class ❘ 67

Other Tools

In addition to the four main statement families, the SQLiteDatabase object supports several other
methods. A signii cant number of these methods are used to manage transactions.

Code that must manage its own transactions will do so using something like the following template:

db.beginTransaction();
try {
 // sql...
 db.setTransactionSuccessful();
}
finally {
 db.endTransaction();
}

In other words, any transaction that is not explicitly marked as successful is rolled back. The
SQLiteDatabase object supports all of the SQLite transaction types (documented here:
http://www.sqlite.org/lang_transaction.html).

There is one other method that deserves some special attention:
setForeignKeyConstraintsEnabled. As noted in the previous chapter, the Android build
of SQLite disables foreign key constraints by default. As of API level 16, Jelly Bean, the
setForeignKeyConstraintsEnabled method allows an application to enable the constraints
programmatically. The new method replaces the previous means of achieving the same effect, which
worked as far back as API level 7, Eclair, executing the pragma PRAGMA foreign_keys=true.

Most of the other methods on the SQLiteDatabase object manage, create, or delete the i le that
contains the database. The Android library has a much more convenient tool for that purpose,
called SQLiteOpenHelper.

Creating a Database: The SQLiteOpenHelper Class

In a typical web service, creating a database is likely to be a distinct, infrequent, and substantial
task. Designing, tuning, maintaining, and updating a database on an engine hosting several can
be very specialized work. An organization might even employ an entire, separate segment of its
engineering staff, database administrators, to do such work. Regardless of who does the work,
creating the database is certainly part of the installation of the application and not part of its
execution.

In a mobile application, things are different. When a user installs a new application, that application
is going to have to bootstrap itself into existence. The application bundle is all there is. If a
database is necessary, the application is going to have to create it. The SQLiteOpenHelper class is
Android’s hedge against this edge case.

SQLiteOpenHelper is a template class — it is abstract. To use it, you must create a subclass. There
will be one such subclass for each database managed by your application.

The subclass typically has a constructor that takes only a single argument, the context. The constructor
for SQLiteOpenHelper, itself, however, takes at least four arguments. In order to make this work,
the subclass dei nes several constants — including the name of the i le to contain the database and

68 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

its current version — and passes them to the super constructor. For instance, an application that is
currently using version 6 of a database stored in the i le keyval.db, might look something like this:

public class KeyValHelper extends SQLiteOpenHelper {
 public static final String DB_FILE = "keyval.db";
 public static final int VERSION = 6;
 // ...

 public KeyValHelper(Context context) {
 super(context, DB_FILE, null, VERSION);
 }
 // ...
}

When application code requests a new instance of this database from the helper, the helper i rst
checks to see if the database i le exists. If there is no such i le, it creates it, using the name passed
as the second argument to the constructor (a name that, by convention, ends with the sufi x .db).
Next, it calls onCreate, one of its three template methods. The subclass implementation of this
method is responsible for completely creating the necessary schema in the newly created database
i le. The code shown in Listing 3-2, for example, creates and initializes the key/value database used
in the examples in the previous section of the chapter.

LISTING 3-2: The SQLOpenHelper onCreate method

@Override
public void onCreate(SQLiteDatabase db) {
 ContentValues vals = new ContentValues();
 db.execSQL("CREATE TABLE " + TAB_VALS
 + "(" + COL_ID + " integer PRIMARY KEY,"
 + KeyValContract.Columns.VAL + " text)");
 vals.put(COL_ID, 1);
 vals.put(KeyValContract.Columns.VAL, "bar");
 db.insert(TAB_VALS, null, vals);
 vals.clear();
 vals.put(COL_ID, 2);
 vals.put(KeyValContract.Columns.VAL, "baz");
 db.insert(TAB_VALS, null, vals);
 vals.clear();
 vals.put(COL_ID, 3);
 vals.put(KeyValContract.Columns.VAL, "zqx3");
 db.insert(TAB_VALS, null, vals);
 vals.clear();
 vals.put(COL_ID, 4);
 vals.put(KeyValContract.Columns.VAL, "quux");
 db.insert(TAB_VALS, null, vals);
 vals.clear();

 db.execSQL("CREATE TABLE " + TAB_KEYS + "("
 + KeyValContract.Columns.KEY + " text, "
 + COL_FK + " integer references ref(" + COL_ID + "))");
 vals.put(KeyValContract.Columns.KEY, "one");
 vals.put(COL_FK, 1);

SQL in Java: The SQLiteDatabase Class ❘ 69

 db.insert(TAB_KEYS, null, vals);
 vals.clear();
 vals.put(KeyValContract.Columns.KEY, "one");
 vals.put(COL_FK, 4);
 db.insert(TAB_KEYS, null, vals);
 vals.clear();
 vals.put(KeyValContract.Columns.KEY, "two");
 vals.put(COL_FK, 2);
 db.insert(TAB_KEYS, null, vals);
 vals.clear();
 vals.put(KeyValContract.Columns.KEY, "two");
 vals.put(COL_FK, 3);
 db.insert(TAB_KEYS, null, vals);
}

An application should always use the database’s helper object to obtain an instance of a database.
By doing so, it guarantees that the instance it holds is complete, initialized, and ready for use.

WARNING Do not call getReadableDatabase or getWriteableDatabase
from an implementation of the onCreate method! Suppose, for instance, that
you intend to expose the ability to insert keys and values into the database from
Listing 3-2 using methods like this:

void insertKey(String key, int fk) {
 ContentValues r = new ContentValues();
 r.put(KeyValContract.Columns.KEY, key);
 r.put(COL_FK, Integer.valueOf(fk));
 getWriteableDatabase().insert(TAB_KEYS, null, r);
}

void insertVal(String val, int id) {
 ContentValues r = new ContentValues();
 r.put(COL_ID, Integer.valueOf(id));
 r.put(KeyValContract.Columns.VAL, val);
 getWriteableDatabase().insert(TAB_VALS, null, r);
}

Realizing that the extremely verbose implementation of onCreate could be

improved dramatically by using these methods, you write:

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL(“CREATE TABLE “ + TAB_VALS + “(“
 + COL_ID + “ integer PRIMARY KEY,”
 + KeyValContract.Columns.VAL + “ text)”);
 // DON’T DO THIS!!!
 insertVal(“bar”, 1);
 // ...
} continues

70 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

continued

This won’t work. The call to getWriteableDatabase in insertVal will cause
a recursive loop. An overloaded version of the method that allows onCreate to
pass on the database passed to it as a parameter solves the problem:

public void addVal(int id, String val) {
 addVal(dbHelper.getWriteableDatabase(), id, val);
}
void insertVal(SQLiteDatabase db, String val, int id) {
 ContentValues r = new ContentValues();
 r.put(COL_ID, Integer.valueOf(id));
 r.put(KeyValContract.Columns.VAL, val);
 db.insert(TAB_VALS, null, r);
}

The fourth argument to the helper’s constructor is the database version. It is an integer and must be
greater than 0. When the helper creates the new database, in addition to using the onCreate method
to initialize it, it also stores the version number in database metadata. In addition to checking for
existence, when opening a database, the helper also compares the version number passed in this
open attempt against the one that is stored in the metadata. If the version numbers are the same,
the open succeeds without further processing. On the other hand, if the version requested by the
application (the argument to the constructor) is greater or less than the version number stored in the
metadata, the helper invokes the method onUpgrade or onDowngrade, respectively. These methods
are responsible for converting the existing database to the schema requested by the application.

Obviously, the application user does not expect a version change to cost them their stored data.
The onUpgrade and onDowngrade methods must be coded very carefully to assure that they do not
corrupt or lose data. The helper object wraps the call to either method in a transaction so that any
exception thrown during the transformation will cause it to be rolled back entirely. At least the data
won’t be completely lost.

NOTE An important technique, suggested by the documentation, consists of
using an ALTER_TABLE statement to change the name of an existing table, creat-
ing a new and correctly coni gured table with the same name, and then copying
data from the old to the new table.

As mentioned, although foreign key constraints are disabled by default, there are programmatic
means for enabling them. The helper object supports two methods that are well suited to making the
necessary calls. If the design of an application includes the enforcement of foreign key constraints,
your choice of which method is used to implement those constraints might hinge on how the
application performs up and downgrades.

 ➤ The onConfigure method is called as soon as the connection to the database
has been set up and before onCreate, onUpgrade, or onDowngrade. A call to
setForeignKeyConstraintsEnabled here will enforce the constraints, all
the time, for the entire database.

SQL in Java: The SQLiteDatabase Class ❘ 71

 ➤ The onOpen method is called only after onCreate, onUpgrade, and onDowngrade, leaving
those methods free to play fast and loose while they rebuild the schema. The occasion in
which an application must rename or recreate a table or two during an upgrade might be
one of the few times that it is truly a relief that foreign key constraints are not enforced.
Enabling foreign key constraints in the onOpen method causes them to be enforced only
after the database has been initialized.

As must be apparent by this point, attempting to open a database can take a relatively long time. If
the act of getting a database instance requires either creating the schema from scratch or copying
over a substantial amount of data, the operation might take several seconds. This is far too long for
an operation that runs synchronously, as part of the UI.

The SQLiteOpenHelper class guarantees that its constructor runs very quickly. It is quite safe to
create the helper itself, directly, for instance, in response to the push of a button or a selection in the
Action Bar. On the other hand, when it comes time to request the actual database instance, using
getReadableDatabase or getWriteableDatabase, that action must be performed asynchronously
and not on the UI thread.

NOTE A discussion of Android concurrency tools is out of the scope of this
chapter. On the other hand, an essential part of creating a lively, respon-
sive application is understanding those tools and how to use them correctly.
Fortunately, Android provides a convenient tool for asynchronously accessing a
database, the loader. It is discussed in detail later in this chapter.

Managing a Database

Before leaving the discussion of the database, you should consider one other topic, lifecycle
management. An open database is about 1KB of memory. On a device with memory restrictions,
that’s enough to be of interest. There are two basic strategies for managing a database from an
application:

 ➤ Get it and keep it

 ➤ Get it when you need it

The i rst, get it and keep it, is the simpler of the two strategies and is a very reasonable choice unless
there is a case for recovering memory within the application process. If there are substantial periods
of time during which an application does not need access to the database — an application with
multiple activities, only one of which uses the database, for instance — then holding the database
means that the memory it occupies cannot be repurposed.

Don’t confuse garbage collection of in-process memory, though, with the Android system’s management
of process lifecycle! If an application’s process is terminated — perhaps because it has been in the
background for too long or because too many new applications have been started in front of it — the
database, any connections, and everything else that is part of the application memory space are gone. As
long as you’ve left the database in a consistent state — no uncommitted transactions and no open i le
connections to large objects (BLOBs) — tweaking soon-to-be-deallocated memory is a waste of effort.

72 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

Although it is simpler, the get-it-and-keep-it strategy still requires attention. If code simply forgets
about the db instance, without explicitly closing it, the garbage collector will collect the instance.
That will generate an error message similar to this:

09-02 15:27:10.286: E/SQLiteDatabase(16433): close() was never explicitly called on
database '/data/data/net.callmeike.android.sqlitetest/databases/test.db'
09-02 15:27:10.286: E/SQLiteDatabase(16433): android.database.sqlite.
DatabaseObjectNotClosedException: Application did not close the cursor or database
object that was opened here
09-02 15:27:10.286: E/SQLiteDatabase(16433): at android.database.sqlite.SQLiteD
atabase.<init>(SQLiteDatabase.java:1943)
09-02 15:27:10.286: E/SQLiteDatabase(16433): at android.database.sqlite.
SQLiteDatabase.openDatabase(SQLiteDatabase.java:1007)

...

09-02 15:27:10.286: E/System(16433): Uncaught exception thrown by finalizer
09-02 15:27:10.297: E/System(16433): java.lang.IllegalStateException: Don't have
database lock!

Holding a reference to the database only in an instance variable of an activity will cause this error.
When the activity is no longer visible, it is subject to garbage collection. If it holds the only reference
to the database, the database will be i nalized at the same time without having been closed.

In order to get and keep a database, it is necessary to hold a strong reference to it. To do this, keep
the reference in either in a static class variable or an application instance variable. The latter
policy — holding the database reference in an application object — is an excellent way to share a
database instance across multiple activities. Listing 3-3 is an example of an Application subclass
that does this.

LISTING 3-3: Holding a database reference in an Application object

public class KeyValApplication extends Application {
 private KeyValHelper dbHelper;
 private Thread uiThread;

 @Override
 public void onCreate() {
 super.onCreate();

 // ...

 uiThread = Thread.currentThread();
 dbHelper = new KeyValHelper(this);
 }

 public SQLiteDatabase getDb() {
 if (Thread.currentThread().equals(uiThread)) {
 throw new RuntimeException("Database opened on main thread");
 }
 return dbHelper.getWriteableDatabase();
 }
 }

Cursors, Loaders, and Adapters ❘ 73

Note the check in the i rst few lines of the getDb method that verii es the constraint described earlier
in this chapter: The database must not actually be opened on the UI thread.

This code also makes use of another feature of Android’s SQLite system. The database helper holds
a reference to the database instance that it creates. In terms of memory management, holding a
reference to a database helper is equivalent to holding a reference to the database that it opened.
Further, closing the database instance (calling its close method) simply annoys the helper. The
helper’s strategy is to create and cache a single database instance and return a reference to that
cached instance, in response to each request. If it notices that the instance has been explicitly closed,
it must release the cached reference and open a new connection. That is hardly optimal.

You might wonder at the implementation of the getDb method, recalling that there are actually
two methods on SQLiteOpenHelper for obtaining a database: getReadableDatabase and
getWriteableDatabase. It might be a surprise to discover that getReadableDatabase usually
returns a writeable database.

An application can get a reference to a read-only database only by explicitly requesting one (using
getReadableDatabase) when for some reason the Android system cannot open a connection to a
writeable database. That might happen, for instance, if the i le system were full. Normally, however,
both methods return a reference to the same, single, cached database object.

Further, there is an interesting corollary to this that explains the implementation of the getDb
method in Listing 3-3. Consider that an application has, somehow, obtained a reference to a
database that is actually read-only. Suppose, now, that the condition that made it impossible to
acquire a writeable database clears and that, after the condition clears, the application makes a
call to getWriteableDatabase. Under these circumstances, the helper will open a new, writeable
database connection, and may close the read-only connection. If the application has cached
references to the read-only database, further attempts to use them will result in errors. Given these
semantics, best practice is to request and use only writeable database instances, unless there is a
clear and very time-constrained reason to do otherwise. The implementation of getDb in Listing 3-3
does exactly this.

An application for which the second strategy, get it when you need it, is necessary must be aware of
all of the objects that might hold references to the database object that it wants to release. Closing
the database without releasing all of the references to it accomplishes nothing, of course, because
unless the last reference is gone, the database object cannot be garbage collected and its memory
re-used. As described previously, the SQLiteOpenHelper retains a reference to its database. Both
of the classes SQLiteQuery and SQLiteCursor also retain back pointers to their owner database.
It is essential to remember this, even when the query and cursor are managed by a loader, a service
introduced in the next section.

CURSORS, LOADERS, AND ADAPTERS

Veterans of Java J2EE development typically i nd that Android has a familiar feel about it.
Applications that don’t have clear beginnings and endings and objects that have managed lifecycles
are things they know and may even have come to appreciate, if not exactly to love. That familiarity
comes to a harsh end, though, at the interface between the DB and UI tiers.

74 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

In the Android world, the DB tier is embodied in the ContentProvider class, the topic of the
next chapter. In the UI, Android’s analog for a servlet is the activity. J2EE developers — especially
those who have worked for many years with Java EE version 3.0 or later and for whom Spring and
Hibernate are old friends — will be expecting some kind of object-relational model as the next
step. Think again. In Android, the interface between the UI and DB tiers is CRUD and cursors. The
tolerant will call it “REST-like.”

Cursors

Cursors are the objects returned from database-query methods, query and rawQuery. An Android
cursor is an in-memory representation of a SQL relation. It is rectangular, with rows and columns.
It also has a pointer to a current row, which is often, confusingly, called the cursor. There is only
a single current row pointer per cursor, and its value is between -1 and the value returned by the
getCount method (that is, just before the i rst row, 0, to just after the last row, count – 1). The row
pointer is a mutable part of the cursor state and is accessible for both read and write from all objects
with references to the cursor.

Upon return, the new cursor has a row pointer that points just before the i rst row. Therefore, a
common idiom for reading all of the data from a cursor looks like this:

while (c.moveToNext()) {
 // get data from a single row
}

Because the method moveToNext returns false if it is pointing at the last row of data in the cursor,
this code will loop through all of the rows in the cursor and then terminate. Because the cursor
method getCount returns the number of rows in the cursor, this same loop could be written,
perhaps less expressively, as follows:

for (int i = 0; i < c.getCount(); i++) {
 c.moveToPosition(i);
 // get data from a single row
}

There are several other methods available for managing the row pointer. The methods
getPosition, isFirst, isLast, isBeforeFirst, and isAfterLast all can be used to i nd the
current location of the row pointer. The methods moveToPrevious, moveToFirst, moveToLast,
moveToPosition and move all set the location of the row pointer. The last two, moveToPosition
and move, set the new position absolutely and with reference to the current position, respectively.

Once the row pointer is set to the row currently of interest, data are extracted from particular
columns using their column indices. The columns in a cursor will, in most cases, be exactly those
from the projection specii ed in the call to the query method — in most cases, in the order in which
they were specii ed in the query. Nonetheless, the best practice for minimizing the possibility of
hard-to-i nd protocol errors is to use symbolic column names. Reasonably safe code might look
something like this:

private void getValues(SQLiteDatabase db) {
 Cursor c = db.query(
 KeyValContract.TABLE_KEYVAL,
 new String[] {
 KeyValContract.Columns.ID,

Cursors, Loaders, and Adapters ❘ 75

 KeyValContract.Columns.KEY },
 null, null, null, null, null);
 int idIdx = c.getColumnIndex(KeyValContract.Columns.ID);
 int keyIdx = c.getColumnIndex(KeyValContract.Columns.KEY);
 while (c.moveToNext()) {
 Integer id = getInt(c, idIdx);
 String key = c.getString(keyIdx);
 // ... process the extracted value
 }
}

private Integer getInt(Cursor c, int idx) {
 if (c.isNull(idx)) { return null; }
 long n = c.getLong(idx);
 if ((Integer.MAX_VALUE < n) || (Integer.MIN_VALUE > n)) {
 throw new RuntimeException("Not an integer: " + n);
 }
 return Integer.valueOf((int) n);
}

Note the getInt method, which checks to make sure that the value of the numeric column is
neither null nor out of range. The ofi cial documentation for the cursor object notwithstanding,
the data-extraction methods that return primitive types (getDouble, getInt, and so on) do not
throw exceptions when the value in a source column is null. Instead they return a zero value.
The SQLiteCursor object is implemented using a CursorWindow, and an accurate description of
its behavior can be found in the description of that object (http://developer.android.com/
reference/android/database/CursorWindow.html). In order to distinguish between missing and
actual zero-valued data, the null check is necessary.

In fact, the SQLiteCursor data-extraction methods cannot be trusted to throw exceptions
on data conversion errors, either. Although the various methods that extract the data are
typed — getString returns a string, getDouble a double, and so on — extracting data from the
column is not type-checked. Any value can be retrieved as a string, for instance. An attempt to
retrieve an integer value from a column that contains a value greater than Integer.MAX_VALUE will
simply cause the actual value to be truncated.

The cursor method getType might be of some help in verifying that the data in a column is of the
expected type: It separates values into four categories — null, integer, l oat, and string. Because

it does not distinguish between the integer value 99 and the long value 9999999999, but does

distinguish between 99 and its perfectly convertible string representation “99”, other means of type-

checking, especially for foreign data, are likely to be necessary.

NOTE Note that cursors do need to be closed. They, like databases, are closeable
objects and expect an explicit call to close. Be sure that there is some strategy for
managing a cursor’s lifecycle. Either close it explicitly, when the required values
have been recovered, or make sure that it is managed.

There is one other important family of methods on the cursor, those concerned with notii cation

and content observers. They are discussed in Chapter 4 in context of content providers and content

resolvers.

76 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

Adapters and View Binders

The most common means of viewing cursor-based data in the UI is through a list view. The Android
ListView and its associated convenience classes, ListActivity and ListFragment, abstract the
process of displaying homogenous data from the particular data being displayed. In order to do this
they depend on adapters and view binders.

An adapter maps columns in a cursor to views in a cell of a list view layout. Figure 3-1 illustrates its
role.

FIGURE 3-1

Cursor Adapter View

Binder

Cells
Rows

The Android-supplied SimpleCursorAdapter is quite l exible and very easy to use. It is probably

sufi cient for most applications. To use it, simply create the adapter and pass it to the list view by

using the setAdapter method. The list view will use the adapter both to identify the values that

should be visible in a particular list view cell and also to identify the row in the attached cursor that

corresponds to clicks and edits in the view.

The SimpleCursorAdapter constructor takes i ve arguments:

 ➤ context — Usually the activity from which this list is visible.

 ➤ layout — The ID of standard XML layout for a single cell in the list view. This is the target

for the cursor data.

 ➤ cursor — The source cursor from which data is obtained. Each row in this cursor

corresponds to a cell in the list view and each column to a subview in the cell’s layout.

 ➤ from — An ordered list of column names.

 ➤ to — An ordered list of IDs for corresponding subviews of the list cell layout. The contents

of column from[0] will be placed in view to[0], from[1] in to[1], and so on.

For example, the code in Listing 3-4 will generate the screen shown in Figure 3-2, assuming that

keyvalCursor is the result of querying the database used as an example elsewhere in this chapter.

Cursors, Loaders, and Adapters ❘ 77

LISTING 3-4: A simple list view

RES/LAYOUT/KEYVAL_ROW.XML

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" >

 <TextView
 android:id="@+id/listview_key"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:textSize="18sp">
 </TextView>

 <TextView
 android:id="@+id/listview_id"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:textStyle="bold" >
 </TextView>

 <TextView
 android:id="@+id/listview_val"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/listview_key"
 android:layout_alignParentLeft="true"
 android:paddingLeft="12dp">
 </TextView>
</RelativeLayout>

KEYVALACTIVITY.JAVA

private static final int LOADER_ID = 6;
private static final String[] FROM = new String[] {
 KeyValContract.Columns.ID,
 KeyValContract.Columns.KEY,
 KeyValContract.Columns.VAL
};

private static final int[] TO = new int[] {
 R.id.listview_id,
 R.id.listview_key,
 R.id.listview_val

continues

78 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

};

// ...

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(
 new SimpleCursorAdapter(this, R.layout.row, null, FROM, TO, 0));
 // ...
}

If an adapter is the wiring between the source
cursor and the target view, a view binder is a
transformation along a wire. By default, an
adapter tries to do something sensible with the
data it maps. If the target view is a text view,
it is easy (recall that the value of any column
can be retrieved as a string). Adapters make
reasonable choices, as well, if the target is an
image view and the source can be interpreted
as the resource ID of an image. If the data
represents a time since the epoch and needs
to be translated into a real date, or a 32-bit
ARGB hue representation to be displayed as
a color, a custom view binder is the tool for
the job.

A quick note about the implementation of a
view binder is in order. Remember that the
view binder’s setViewValue method will be
called for every sub-view of every cell in the
target list. If the list view is to be fast, smooth,
and responsive, it is essential that the view
binder do its work very quickly. This is one
of the few places that extreme optimization is
appropriate.

In order for an adapter to work correctly,
the cursor to which it is a view must have an
integer primary key named '_id'. The adapter
uses the canonically named column to map
view rows to cursor rows. If it cannot i nd the
column, it will throw an exception like this:

09-03 14:27:50.285: E/AndroidRuntime(2289): FATAL EXCEPTION: main
09-03 14:27:50.285: E/AndroidRuntime(2289): java.lang.IllegalArgumentException:
column '_id' does not exist

FIGURE 3-2

LISTING 3-4 (continued)

Cursors, Loaders, and Adapters ❘ 79

09-03 14:27:50.285: E/AndroidRuntime(2289): at android.database.AbstractCursor.
getColumnIndexOrThrow(AbstractCursor.java:267)
09-03 14:27:50.285: E/AndroidRuntime(2289): at android.database.CursorWrapper.
getColumnIndexOrThrow(CursorWrapper.java:78)

This does not imply that all tables viewed through list views must have a column named '_id'.
There are several alternatives.

If the relation to be viewed has an integer primary key column, my_pk, for instance, that column can
be aliased in the query, using a SQL column alias: SELECT my_pk AS _id FROM

If the viewed relation does not have an integer primary key, a little SQLite skill may solve the
problem. It turns out that rows in SQLite data tables have an implicit column, rowid. The rowid is
integer-valued and unique to a row. In most circumstances — anything except many-to-many joins
— adding rowid to the projection and renaming it in the query, SELECT rowid AS _id, . . ., makes

it possible to view the resulting cursor through a list view.

Loaders

As mentioned earlier, database operations cannot be performed on the UI thread. A slow query,

a contended transaction, or a database update might require an amount of time that would cause

an intolerable stall in the UI. Recall that the code in Listing 3-3 explicitly checks to see whether a

database instance is being requested from the UI thread. It throws an exception if so. The standard

Android tool for avoiding such problems, by moving queries off the UI thread is the loader.

Loaders appeared in Honeycomb to replace the managed query interface. They are an abstraction

of a process that loads data in the background. The subclass of interest here is the CursorLoader,

which, given some parameters that specify a database and a query to be made against that database,

runs the query on a daemon thread and then publishes the result. Loaders are used in activities or

fragments by passing them to the loader manager.

Implementing and using a loader can seem like a study in indirection. What the code actually needs

is a cursor to the data. It can’t simply ask for the cursor, though, because it might take a signii cant

amount of time to get it and that would excessively delay the UI thread. Instead, it asks the loader

manager to initialize a new load process. Again, instead of simply describing the process of getting

the cursor to the loader manager, when it requests initialization, the code must pass a reference to

an observer. Figure 3-3 diagrams the process.

At some point, the loader manager calls the observer. It is the observer’s responsibility to create

and return the correct loader. The loader is the object that implements the process of obtaining the

cursor. The loader manager runs the loader and, when it completes, again calls the observer, this

time with the cursor that the loader returned.

This surprising amount of complexity is necessary, in short, because there is no telling when an

activity is suddenly going to become unimportant. Users looking at their contacts might suddenly

recall the phone number of the person they intended to call and navigate directly to the phone app.

If the loader continues running when that happens, it is wasting battery. Solving this problem of

incongruous lifecycles is not impossible but it can be tricky and difi cult. Representing the entire

load process as an object and letting the loader manager manage its execution is a big win.

80 ❘ CHAPTER 3 ANDROID DATABASE SUPPORT

Here’s a simple example of the use of a loader:

public class KeyValActivity extends ListActivity
 implements LoaderManager.LoaderCallbacks<Cursor>
{
 private static final int LOADER_ID = 6;
// ...
@Override
 public Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {
 return new CursorLoader(
 this,
 KeyValContract.URI,
 null, null, null, null);
 }
@Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 ((SimpleCursorAdapter) getListAdapter()).swapCursor(c);
 }
@Override
 public void onLoaderReset(Loader<Cursor> arg0) {
 ((SimpleCursorAdapter) getListAdapter()).swapCursor(null);
 }
@Override
 protected void onCreate(Bundle savedInstanceState) {
 // ...
 getLoaderManager().initLoader(LOADER_ID, null, this);
 }
}

Loader

initLoaderManager

onCreateLoader

Cursor

Cursor

loadlnBackground

query

daemon thread

DB
Cursor

Activity Loader Manager

Loader

FIGURE 3-3

Summary ❘ 81

The onCreate method in the ListViewActivity gets the loader manager and asks it to initialize
a new load process. The important thing to note here is the unique identii er, LOADER_ID. The
Android system guarantees that there will never be more than one loader with that identii er. This
is essential, because if onCreate (or any other lifecycle method) is called again while the loader still
exists (remember that their lifecycles are not the same), it would be possible to have multiple loaders
in different phases of execution completing the same load process. The unique, per-process identii er
eliminates this possibility.

The third argument to initLoader is a reference to the observer that will actually create the loader.
In this example, the activity itself will serve as the observer. This is a reasonable consolidation because
it is the activity’s lifecycle that needs to be synchronized with that of the loader. The second argument
to initLoader is a bundle that can be used to supply arguments to the loader, on its creation.

In order to be an observer to the LoaderManager, the ListViewActivity must implement
LoaderManager.LoaderCallbacks<Cursor> (Cursor, because the loader will return a cursor).
Implementing that interface requires that it implement the three new methods — onCreateLoader,
onLoaderFinished, and onLoaderReset.

The i rst of these methods, onCreateLoader, simply creates the new loader and returns it. The
loader that is created in this example is a CursorLoader that requests data from a content provider.
The specii cs of this request are the subject of the next chapter. For the moment, presume that its
interface is very similar to the interface for the database query method: It takes similar arguments
and returns a cursor on completion.

The loader manager executes the returned loader asynchronously. When it eventually completes,
it returns its cursor. The loader manager then calls the second of the observer’s methods,
onLoaderFinished, with that cursor. The implementation of the callback quite simply replaces
the cursor visible from the list view. If, for some reason — perhaps a phone call or a navigation
event — the activity no longer needs to populate the view, the manager calls onLoaderReset.
onLoaderReset replaces the cursor with null. Since the loader manager executes the loaders, it can
manage the cursors that they return. When onLoaderReset is run the replaced cursor is also closed
as necessary.

SUMMARY

In this chapter, you have explored the essentials of using SQL from code. The chapter introduced:

 ➤ The low-level methods required to execute SQL commands

 ➤ The tools necessary to create and manage the lifecycle of a database

 ➤ The cursor object that manages query results

 ➤ Asynchronous queries, the tools to manage them, and display them in an activity

You now have the tools to manage persistent data on an Android device. Information that must
survive even power-cycling can be stored into a SQLite database and recovered quickly and correctly
using Android built-in tools like cursors, loaders, adapters, and view binders. Sharing that data
across an enterprise, though, requires additional tools. The next chapter introduces the content
provider, the architectural component used to share data.

Content Providers

WHAT’S IN THIS CHAPTER?

 ➤ Using content providers

 ➤ Publishing a contract: URIs and types

 ➤ Implementing a content provider

 ➤ Controlling access to your content provider with permissions and

registration

 ➤ Understanding content provider fi le operations

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

Content providers are the foundation for the rest of this book. In this chapter you will meet
content providers and the tools used to build them. In addition you are introduced to the
REST-like architecture they support and how that architecture enables the use of Android in
the enterprise. The application created in this chapter can be found in the project KeyValCP.

The techniques introduced in the previous chapter — creating a globally accessible reference
to a database object — might be appropriate for a small application. In more complex
applications, however, developers will require better architectural separation between data
management and other components of their application.

4

84 ❘ CHAPTER 4 CONTENT PROVIDERS

The Android content provider framework has several parts:

 ➤ Contract — A Java source i le that publishes symbols and constants that external processes
need to access the provider. External applications include this i le as part of their source.

 ➤ Content Resolver — A part of the Android library that uses system-level services to identify
the single content provider currently registered as the manager of the dataset corresponding
to a given URI. The URI is typically obtained from the contract.

 ➤ Content Provider — The content resolver forwards requests to a content provider. The
provider manages a dataset, supplying clients with a consistent view of the data and
managing their access to it.

 ➤ Content Observer — The content observer API supports a URI-based notii cation system,
which makes it possible for clients to discover changes in the dataset.

The investigation of content providers starts with a review of their use. Approaching the new
component from the top down reveals some interesting architectural issues and motivates the
discussion of its implementation that comprises the remainder of the chapter.

USING A CONTENT PROVIDER

The i nal example in Chapter 3 quietly introduced a content provider: It is the source of the data
that is displayed through the simple cursor adapter in the list view. The example code is deceptively
simple — it slides the content provider into the example with very little comment. Reexamining
the code carefully, though, you can infer some of the essential architectural details of the content
provider. There are four of them, as follows.

URIs as Names for Virtual Datasets

Listing 4-1 shows an excerpt from the “Loaders” section of the previous chapter. It’s just the snippet
in which the cursor loader is created.

LISTING 4-1: Creating a CursorLoader

@Override
public Loader<Cursor> onCreateLoader(int id, Bundle params) {
 return new CursorLoader(
 this,
 KeyValContract.URI,
 null, null, null, null);
}

There must be a query to the content provider hidden inside the cursor loader created here,
because the loader eventually produces a cursor. In order to understand how that might work, let’s
review the formal parameters for the CursorLoader constructor. They are:

Using a Content Provider ❘ 85

CursorLoader(
 Context context,
 Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sortOrder)

This should look familiar. Most of the parameters are very similar to those shown in Chapter 3,
Listing 3-1. They are the parameters required by the database query method. This cursor loader has — as
you might expect — enough information to identify some data source and to perform a query
against it. Chapter 3 demonstrated that the cursor created by the loader is passed as the argument
to the callback method onLoadFinished. In the KeyVal example that returned cursor was used to
power the list view that is the application’s main screen.

While most of the parameters to the two methods (the loader constructor and the database query
method) are identical, notice that the database query method (shown in Chapter 3) is a method
on a SQLite database object. It takes as its i rst argument the name of a database table. The i rst
parameter to the loader constructor is instead a URI. If the cursor loader is going to be able to
construct a complete query from its parameters, there must be some way for it to identify
a database — and a table within that database — from the URI.

This is the i rst important architectural feature of the content provider: URIs are used as abstract
names for virtual datasets. Content providers are identii ed indirectly, using the URIs that name
them. Android reserves URIs with the canonical scheme content:// for this purpose. The protocol
by which a content provider registers the owner of a particular group of URIs is discussed in
detail later in this chapter. For now, let’s return to exploring the behavior of a content provider by
observing it in use.

NOTE The type hierarchy of the CursorLoader, a subtype of
AsyncTaskLoader<D>, suggests the creation of other custom loader types.
Although this is possible, it is equally clear that the CursorLoader is more
mature than its potential cousins. This long-standing issue:

http://code.google.com/p/android/issues/detail?id=14944

unresolved at the time of this writing, demonstrates the kinds of problems that
developers may encounter when creating custom loaders.

Content Resolvers: The Link between Clients and Providers

In the example code as it stands, the content provider is used entirely behind the scenes in the cursor
loader. All of the details are hidden in its implementation. Adding a new feature to the application
will help to reveal some of those details. The implementation of this new feature, a data insert, is
very similar to the implementation of the query, shown previously. It moves one step closer to the
content provider, though, and requires writing code that was hidden in the loader in that example.

86 ❘ CHAPTER 4 CONTENT PROVIDERS

To the application UI, add a pair of text i elds and a button, which, when pushed, inserts the
contents of the text i elds into the database as a new key/value pair. Listing 4-2 shows the essentials
of the implementation of the new feature. Only the snippet of code that actually uses the content
provider is shown here — as noted, the complete code for all of the examples in the chapter, as well
as the rest of the book, are available as a part of this book’s download at www.wrox.com.

LISTING 4-2: Using ContentResolver insert

private static class AsyncInsert extends AsyncTask<Void, Void, Void> {
 private final Context ctxt;
 private final String key;
 private final String val;

 public AsyncInsert(Context ctxt, String key, String val) {
 this.ctxt = ctxt;
 this.key = key;
 this.val = val;
 }

 @Override
 protected Void doInBackground(Void... params) {
 ContentValues values = new ContentValues();
 values.put(KeyValContract.Columns.KEY, key);
 values.put(KeyValContract.Columns.VAL, val);

 try {
 ctxt.getContentResolver()
 .insert(KeyValContract.URI_KEYVAL, values);
 }
 catch (Exception e) { Log.w("INSERT", "Insert failed", e); }

 return null;
 }
}

Because database access is a relatively slow operation, it cannot be performed from the UI thread.
The implementation of the new feature must call the content resolver’s — and thereby the content
provider’s — insert method from a non-UI thread. The cursor loader, in its implementation, does
exactly the same thing for the query method. AsyncInsert, the class from which the insert call is
performed, is based on an AsyncTask, as is the loader.

The new feature uses a new button, added to the view, to submit the new key/value pair for insertion
into the database. The code in the button’s onClick method (not shown) creates a new instance
of the AsyncInsert task and executes it. Unlike the query example, this simple insert is i re-and-
forget. The insert task does not return a result and, unlike the loader, does not need a way to notify
anyone of its completion. The code in AsyncInsert.doInBackground — the business end of the
AsyncInsert class — should look entirely familiar. It is nearly identical to the database insert
method, described in Chapter 3. As in the previous examination of the cursor loader, you can
infer that the name of the table into which the new values are to be inserted must be encoded in
the URI passed as the i rst argument to the insert method. The new tool introduced here is the

Using a Content Provider ❘ 87

ContentResolver. It is obtained from the context. The insert method used to add the new key/
value pair to the database is a method on this new object.

From this new feature you might deduce that content providers are not, typically, used directly
through object references. You do not normally obtain a reference to a content provider object and
then call methods on it. Instead, as demonstrated in this code, you obtain a content resolver
object from the context and then use it to forward requests to the content provider.

If you were to examine the code for the CursorLoader, you would i nd that, internally it uses the
parameters passed to its constructor to make an analogous call to ContentResolver.query. This is
the second important architectural artifact in the content provider framework. The content resolver
is the tool that resolves a content URI into a connection to a specii c content provider.

Content Observers: Completing the Loop

The next important architectural feature of a content provider is also already part of the example
application and is also hidden in the loader. The application as implemented thus far looks like
Figure 4-1 when it’s run.

Pressing the Add button causes the display to update so that it looks like Figure 4-2.

FIGURE 4-1 FIGURE 4-2

This is exactly what should happen. On the other hand, it is a little surprising that it does! Consider
that the example code obtained one specii c cursor from one specii c query to the database and then
associated that cursor with the displayed list view. That cursor contains data from a query that was
made before the new key and value were added to the database. Why did the new database row
become visible in the list view? How did the list view discover that something had changed and that
an update was necessary?

88 ❘ CHAPTER 4 CONTENT PROVIDERS

The answer is another content resolver method called registerContentObserver. The parameters
to this method are:

registerContentObserver(
 Uri uri,
 boolean notifyForDescendents,
 ContentObserver observer))

By this time, you may be expecting the URI argument. Its meaning here, though, is quite ingenious.
The registerContentObserver method allows an object to register as a listener for changes, but
not changes to a particular database, a particular table, or even a particular content provider.
Instead, it registers the listener for notii cation of any changes that affect a particular URI. Using a
URI to represent a dataset is a very powerful concept. Listing 4-3 shows how to add a little bit more
code to the example application to demonstrate the function of a content observer.

LISTING 4-3: Registering a content observer

getContentResolver().registerContentObserver(
 KeyValContract.URI,
 true,
 new ContentObserver(null) {
 public void onChange(boolean selfChange) { toast.show(); }
 });

This new snippet registers a new content observer with the context’s content resolver. Notice
that, unlike many of the callback registration methods in the Android framework (such as
setOnClickListener), the registerContentObserver method supports the registration of
multiple observers.

This new code uses a Toast — Android’s simple means of briel y

displaying a small asynchronous message — to provide notii cation

when it receives the onChange callback. When this code is added to the

example, pressing the Add button causes the display, after a very brief

pause, to look like Figure 4-3.

Notice the little “update!” message at the bottom of the display. It was

generated in the newly added observer.

The new observer is registered to listen to the same URI that is the target

of both the query and insert calls already part of the example. The call

to insert changes the dataset that backs that URI and that causes the

new observer to be notii ed.

A similar observer, registered by the cursor loader, causes the list

view to be updated. If you were to examine the internals of the cursor

loader, you would i nd that when it obtains a cursor from the database,

it registers through a chain of listeners (loader manager to loader, to

cursor, to content resolver) as an observer for this same URI. Any change to the underlying dataset

that generates a notii cation to that URI will alert the loader manager that it must requery the

database and create a new cursor with the updated data.

FIGURE 4-3

Using a Content Provider ❘ 89

Here is a partial log from a run of the example program. It provides a little more insight into what is
going on:

10-09 18:18:58.812: D/LOADER(768): onCreateLoader
10-09 18:18:59.663: D/LOADER(768): onLoadFinished
10-09 18:20:16.723: D/INSERT(768): button click!
10-09 18:20:16.843: D/LOADER(768): onLoadFinished

The i rst line shows the loader manager calling the example activity’s onCreateLoader
method to create a loader. The manager uses the new loader to get a cursor from the content
provider (the loader’s query method is run in the background and returns the cursor). Once it has the
cursor, the manager calls the activity’s onLoadFinished method, creating the second line in the log.
The entire process — creating the loader and using it to obtain a cursor — takes almost a second on
an emulator. At this point, the load is complete and the cursor data is visible through the list view.

Almost a minute later, the log registers a click on the Add button. About a quarter of a second later,
there is second call to onLoadFinished. This second call is the result of the following steps:

 1. When the user clicks the button and its handler’s onClick method is called, a new
AsyncInsert object is created and started.

 2. The AsyncInsert object’s doInBackground method is scheduled to run asynchronously on
a daemon thread. When it runs, it obtains a content resolver object and uses it to invoke the
insert method on the content provider.

 3. The content provider updates its data (inserts rows into its database tables, in this case)
and notii es observers that a change has taken place in the data underlying the URI that
represents the dataset.

 4. The observer registered by the loader manager as part of the process of creating the loader
receives the notii cation.

 5. When it receives the notii cation of a change in the dataset, the loader manager runs the
loader again. The loader is an async task and is also scheduled and run on a daemon thread.

 6. When its doInBackground method runs, the loader obtains a content resolver object and
uses it to run a new query with the parameters passed to it at its creation. This is exactly the
same query it ran last time but the results will now be different; they will include the newly
added rows.

 7. When the query returns a new cursor, the loader passes the cursor back to the loader
manager. The loader manager in turn calls onLoadFinished (a second time, shown as the
fourth line in the log), passing it the updated cursor.

 8. The activity’s onLoadCursor method attaches the updated cursor to the list view’s adapter
and the updated contents of the query become visible through it.

IPC: System-Wide Accessibility

The last important architectural feature supported by content providers is perhaps the most
signii cant. It is the ability to use them no matter where they are on the system. All of the previous
examples use URIs to identify specii c content providers. They interact with a specii c dataset:
obtaining or updating data or receiving update notii cations based solely on the URI. At no time

90 ❘ CHAPTER 4 CONTENT PROVIDERS

does anything in the code indicate whether the target content provider is bundled as part of the
activity’s application, part of some other application, or a part of some system service.

This exact code works equally well regardless of which application, user, or process owns the
content provider. This ability to identify data by its name instead of by the specii c object that
happens to provide it makes the content provider a powerful tool for extensibility in the enterprise
environment. The example code for this chapter includes a second application, the KeyValClient,
which is nearly an exact copy of the UI sections of the KeyVal application. It does not, however,
include any of the data management sections. As long as the KeyVal application — the app that
registers the content provider — is installed on a target device, KeyValClient will also run. It uses
the content provider from the other application.

Now that you’ve seen what a content provider looks like from the client side, it’s time to implement
one. There are four key parts to a content provider:

 ➤ The contract

 ➤ CRUD methods and database management

 ➤ Content observers

 ➤ Registration and permissions

THE CONTRACT: URIS AND TYPES

Because content providers are intended for use across application — and here the term application is
intended to mean a compilation unit — there must be some way of describing the provider’s protocol
to all of its clients. In order for other applications to interact with a given content provider, they
must know its URI at the very least. By convention, they do this by including a small source i le
called the contract.

A contract is a Java source i le that simply dei nes some global symbols (constants) needed by clients
that want to use the provider. The i le usually contains no methods and is based on the standard
Java idiom for a namespace used only for symbol dei nition — an uninstantiable class with a private
constructor. Also by convention, a content provider’s contract has the name of the content provider,
with the sufi x Contract.

The example content provider, the KeyValContentProvider, has a contract called
KeyValContract. It is shown in its entirety in Listing 4-4.

LISTING 4-4: The contract

public final class KeyValContract {
 private KeyValContract() {}
 public static final int VERSION = 1;

 public static final String AUTHORITY
 = "com.enterpriseandroid.database.keyval";

 private static final Uri URI_BASE

The Contract: URIs and Types ❘ 91

 = new Uri.Builder()
 .scheme(ContentResolver.SCHEME_CONTENT)
 .authority(AUTHORITY)
 .build();

 public static final String TABLE_VALS = "vals";
 public static final Uri URI_VALS
 = URI_BASE.buildUpon().appendPath(TABLE_VALS).build();
 public static final String TYPE_VALS
 = ContentResolver.CURSOR_DIR_BASE_TYPE
 + "/vnd.com.enterpriseandroid.database.val";
 public static final String TYPE_VAL
 = ContentResolver.CURSOR_ITEM_BASE_TYPE
 + "/vnd.com.enterpriseandroid.database.val";

 public static final String TABLE_KEYVAL = "keyval";
 public static final Uri URI_KEYVAL
 = URI_BASE.buildUpon().appendPath(TABLE_KEYVAL).build();
 public static final String TYPE_KEYVALS
 = ContentResolver.CURSOR_DIR_BASE_TYPE
 + "/vnd.com.enterpriseandroid.database.keyval";
 public static final String TYPE_KEYVAL
 = ContentResolver.CURSOR_ITEM_BASE_TYPE
 + "/vnd.com.enterpriseandroid.database.keyval";

 public static final class Columns {
 private Columns() {}

 // vals table columns
 public static final String ID = BaseColumns._ID;
 public static final String VAL = "val";

 // the keyval table has the following columns,
 // in addition to those above
 public static final String KEY = "key";
 public static final String EXTRA = "extra";
 }

 public static final class Permission {
 private Permission() {}

 public static final String READ
 = "com.enterpriseandroid.database.keyval.READ";
 public static final String WRITE
 = "com.enterpriseandroid.database.keyval.WRITE";
 }
}

Authority

The i rst item to notice — the most important part of the contract — is the authority string. The
authority is the namespace for the data owned by this content provider. Although it can be any
string at all as long as it is unique, by convention it starts with the reversed Internet domain name
of the owner.

92 ❘ CHAPTER 4 CONTENT PROVIDERS

The Android system will not allow two content providers to be registered simultaneously as
authorities for any single data namespace. The process by which content providers register their
authority is described later in this chapter in the section on registration and permissions. An attempt
to register a second content provider as authority for the same namespace will cause an error.

Here, for instance, is what happens to an attempt to use Android’s standard debugging tool, adb,
to install a second application that contains a conl icting registration for the authority already

registered by the previously installed KeyVal example:

adb install KeyValConflict.apk
1790 KB/s (29937 bytes in 0.016s)
 pkg: /data/local/tmp/KeyValConflict.apk
Failure [INSTALL_FAILED_CONFLICTING_PROVIDER]

NOTE Note that the authority for which a content provider registers is an
absolute string, not a prei x. It is perfectly acceptable for one content provider
to register for the authority com.fortunefivecompany.data and for a second,
unrelated content provider to register for the authority com.fortunefivecompany
.data.blackhat.

Within the namespace, a content provider may maintain any number of virtual tables. A table

is simply the relation described in Chapter 2 — a rectangular array of data in which each tuple

(row) contains data for each of the table’s attributes (columns). As noted previously, the Android

architecture does not include the ORM layer that developers accustomed to enterprise programming

might expect. Instead of an object model for data, Android uses the relational model consistently

from its backend persistent storage mechanisms, all the way up to the UI.

A discussion of relational table model and contract API is as good a place as any to pause and

revisit Android’s use of the relational model. Architecturally, it is certainly a plausible decision. The

relational model of data is sound, l exible, and well understood. Using it from the bottom of the stack

all the way through to the top clearly reduces copy costs. On the other hand, experienced backend

developers will smell a rat.

The most compelling arguments against the pervasive use of the relational model have to do with the

specii c implementation: the mutability of the cursor object. Moving the cursor’s row pointer (its

cursor) is an essential part of using it. At the very least, client code must have a protocol establishing

ownership of the cursor’s row pointer. Perhaps more important, it is essentially impossible to make a

cursor thread-safe. Android’s creators apparently felt the trade-off was worth it.

It is certainly possible to layer an ORM over the Android relational model. Just as certainly, there

are commercial and OSS frameworks that do exactly that. Under some circumstances this may be

desirable. There are, however, two fairly strong arguments against the general use of this type of

architecture.

The i rst argument is that the cursor is very well integrated into Android’s super-fast interprocess

communication mechanism. Although implementing your own cross-process data communication

mechanism is simply a matter of programming, it is a matter of a lot of programming. More

The Contract: URIs and Types ❘ 93

important, only applications that embed the entire client half of your custom mechanism have access
to the data. Content resolvers support content providers and cursors, not their extensions.

A second reason for learning to live with the relational model is that the environment around
cursors and the relational model they represent is well used. Chapter 3 demonstrated a very typical
list view: It used a cursor all the way up to the UI glass. This architecture helps make the list view
quick and responsive. We noted, at the time, that it isn’t absolutely necessary to hand the list view a
cursor. We also noted, though, that the tools for working with cursors, the CursorLoader and the
SimpleCursorAdapter, are mature and well documented even if the super-classes they specialize in
are not. We do not recommend replacing, subclassing, or wrapping cursors.

The contract contains an internal namespace, Columns, that dei nes the names of the columns
in the virtual tables. These are the names of the columns that will appear in a cursor obtained from
the content provider. As usual, these names need not be the names of actual columns in any actual
database. There is a pretty good argument that revealing the actual names of your tables gives
clients too much information about the internal implementation of the content provider.

The KeyVal example is very simple and does expose actual column names. It also has only one set of
column names that apply to the columns in both of its virtual tables. Were this not the case, it might
have been necessary to dei ne separate inner namespaces for each of the tables or perhaps to dei ne
two entirely separate contracts.

Virtual Table URIs

The next important item in the contract is the
URI. By convention, a content provider URI
looks like Figure 4-4.

The i rst portion of the URI, the scheme, is always content://. As noted previously, Android
reserves this scheme for content providers and all content provider URIs must use it.

The next portion of the URI is the authority. It is the unique name for the dataset, as described
previously.

The last section of the URI, the path, is typically the name of a virtual table maintained by the
content provider. The virtual table named by a path need not correspond to a physical table in a
SQLite database. There is no reason that it needs to correspond with anything in any particular
database. A content provider is free to use any convenient storage mechanism — SQLite tables, a
directory tree on the i le system, or even values obtained from some external hardware sensor — to
back its virtual table.

The content provider in the KeyVal example supports two virtual tables: vals, which maps directly
to a SQLite table, and keyval, which is a virtual table created from a join of the SQLite keys and
vals tables. The URIs for the two virtual tables are:

content://com.enterpriseandroid.database.keyval/vals
content://com.enterpriseandroid.database.keyval/keyvals

In the KeyVal contract these URIs are constructed from the base URI using the handy URI.Builder
class.

FIGURE 4-4

content://com.enterpriseandroid.database.keyval/keyvals/3

scheme authority path id

94 ❘ CHAPTER 4 CONTENT PROVIDERS

The ID portion of a content provider URI is an integer. If a URI contains an ID, the URI refers to a
specii c, single row in the virtual table named in the path. The ID is meant to act as a primary key
into the virtual table.

The path/ID portion of a URI may be arbitrarily complex. One can imagine, for instance, a URI
that looks like this:

content://com.android.contacts/contacts/52/phone/2

a request for the second phone number of the contact whose ID is 52. Although convention — and
even some past documentation — suggest this kind of path, the tools to support it are at best
immature.

Return Value MIME Types

A content provider’s virtual table contains data of a particular type, dei ned by the relational
attributes — the columns — in the cursor it returns. The content provider framework includes a
protocol that allows providers to specify that type and a provider’s contract should dei ne them for
each of its tables. Content provider types are simply MIME types (strings that have the format type/
subtype).

The type portion of a content provider MIME type is determined by a strong convention. If the
query specifying the returned data is semantically constained so the the returned cursor contains 0
or 1 rows — it is a query that specii es a unique row — the major type of the returned value must
be vnd.android.cursor.item. For example, a query that specii es a primary key for the table it
references cannot return more than one row. It should, therefore, return the item type. If, on the
other hand, the cursor might contain any number of rows (0 to n), the returned major type is
vnd.android.cursor.dir. A content provider should be able to tell, simply by examining a URI,
whether that URI is legal and whether it is bound to return at most one row from the database.

The subtype portion of the type is dei ned, entirely, by the service providing the data. For very
simple one column data, it might make sense to use one of the standard MIME subtypes: html,
jpeg, mpeg3, and so on. By convention, however, any complex (multi-column) data should have its
own unique type and that type should begin with the string "vnd.". The KeyVal example dei nes
two tables and, therefore, four MIME types: item and dir for each. Since the contents of the dir
and item cursors are the same for a given table, the subtypes for both of the MIME types for that
table are also the same.

Permissions

The last set of dei nitions in a contract comprises the permissions that a client application must
request, in order to get access to the provider’s dataset. As you will see toward the end of this
chapter, permissions are simple strings used in the application’s manifest i le. They do not typically
appear in code. It might be perfectly reasonable to document the permissions in a comment, instead
of as symbol dei nitions.

One reasonable approach — used in the actual code for the KeyValContract but excluded here to
save space — is to include in the contract the excerpt from the manifest that declares, dei nes, and
applies permissions to the content provider.

Implementing the Content Provider ❘ 95

Publishing the Contract

It probably goes without saying that designing a content provider’s API and the contract that dei nes
it can be a tricky job. There are no constraints and barely any conventions controlling what a
content provider can or can’t do when it translates URIs into references to the dataset it controls.
As usual, APIs that take full advantage of the l exibility of the interface tend to be less useful, in the

long run, than those that are simpler and more consistent. The architect of a content provider API

could do much worse than to take advice from two specii c sources:

 ➤ Android’s Contacts API — The i rst design for the Contacts API is an excellent example

of a pretty good interface that simply did not support the l exibility that was eventually

necessary. The new API is considerably more complex but quite l exible.

 ➤ RESTful client/service architecture — The construction and use of APIs that support

scalable, stateless, and cacheable data communications are the topic of the rest of this book.

No matter how you choose to implement your contract, remember that it is the only means you have

for communicating to potential clients the API that your content provider exposes. The contract

i le is the place to document exactly how your content provider works. It should contain comments

describing the details of your API, including what exceptions it might throw and under what

conditions it might throw them, use cases you do not intend to support, even in the long run, and

so on.

The Android content provider framework doesn’t really support API versioning in any meaningful

way. If you ever have to change the contact provider’s API, you will probably have to create a new

authority and support both the old and the new, distinguishing them by URI.

Once you have a well-designed and documented contract, publish it. If you are targeting a specii c

enterprise, you will use the internal source control system or repository to publish the contract i le.

If you are targeting a general audience, you might use one of the popular code-sharing sites like

GitHub or SourceForge.

IMPLEMENTING THE CONTENT PROVIDER

You’ve now seen how to use a content provider and how to publish its API. The next step it to

implement its CRUD methods — create, insert, update, and delete. This section examines the code

that does that for the content provider you’ve been considering so far in this chapter — KeyVal.

In the process of creating the content provider CRUD methods, there are a few architectural issues

that a developer must keep in mind. As usual when building Android components, one of the most

important of these is understanding the component lifecycle and which methods are run on which

threads.

A content provider’s onCreate method is always run on the UI thread of the application to which

it belongs. This means that it must not undertake any long-running initialization. Fortunately, the

framework guarantees that creating a SQLiteDatabaseHelper object is a fast operation — the

onCreate method may create an instance of the helper.

96 ❘ CHAPTER 4 CONTENT PROVIDERS

It may not, however, use the instance to obtain a database instance! As noted previously, obtaining
the actual database instance may require rebuilding a database’s entire schema and repopulating it
with data. That is an operation far too slow to be run on the UI thread.

All of the other externally visible methods in the content provider may be called from multiple
threads. When used from the application that dei nes the provider, they will probably be invoked
from an AsyncTask — perhaps explicitly, or perhaps using a loader — and thus run on one
of several daemon threads in the AsyncTask’s executor’s thread pool. When called from other
applications, content provider methods are run on Binder threads, which are threads allocated
explicitly for interprocess communications. In either case, because it is the client’s responsibility to
make sure they are not run on the UI thread, the externally visible content provider methods may
perform long running operations.

Finally, remember to keep the content provider thread safe. Although onCreate is called from a
single thread — the UI thread — the other methods in the class may each be called from multiple
threads. If onCreate shares data with other methods, it must share it safely. Those other methods
must synchronize even to share data across multiple executions.

Creating the Content Provider

Listing 4-5 shows the initialization of the example content provider. Note that the onCreate method
returns a boolean indicating whether initialization was completed successfully or not.

LISTING 4-5: Initializing a content provider

public class KeyValContentProvider extends ContentProvider {
 // code elided...

 private volatile KeyValHelper helper;

 @Override
 public boolean onCreate() {
 helper = new KeyValHelper(getContext());
 return null != helper;
 }

Earlier in this chapter, you read that the virtual tables provided by a content provider are identii ed
by their URIs. The section “Virtual Table URIs” earlier in the chapter explored the syntax of those
URIs. A content resolver forwards a data request to the appropriate content provider based on the
authority section of the URI in the request. The task of parsing the rest of the URI, however, falls to
the content provider. It must identify the table to which the request refers and must extract path and
ID sections, if they are present.

Fortunately, the Android framework supplies a simple but very convenient URI parsing tool, called
the URI Matcher. Listing 4-6 shows the construction of the URI matcher for the KeyVal example
program.

Implementing the Content Provider ❘ 97

LISTING 4-6: Defi ning a URIMatcher

private static final int STATUS_VAL_DIR = 1;
private static final int STATUS_VAL_ITEM = 2;
private static final int STATUS_KEYVAL_DIR = 3;
private static final int STATUS_KEYVAL_ITEM = 4;

private static final UriMatcher uriMatcher;
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(
 KeyValContract.AUTHORITY,
 KeyValContract.TABLE_VALS,
 STATUS_VAL_DIR);
 uriMatcher.addURI(
 KeyValContract.AUTHORITY,
 KeyValContract.TABLE_VALS + "/#",
 STATUS_VAL_ITEM);
 uriMatcher.addURI(
 KeyValContract.AUTHORITY,
 KeyValContract.TABLE_KEYVAL,
 STATUS_KEYVAL_DIR);
 uriMatcher.addURI(
 KeyValContract.AUTHORITY,
 KeyValContract.TABLE_KEYVAL + "/#",
 STATUS_KEYVAL_ITEM);
}

Return Types and the URI Matcher

The URI matcher is, essentially, a map of regular expressions to integers. It supports replacing long
chains of if-then-else statements with a terser, more compact implementation based on a single
switch statement.

In order to see a URI matcher in use, i rst recall from the section called “Return Value MIME
Types” earlier in the chapter that a content provider dei nes MIME types for the data it manages.
There are different types for different tables and different types for cursors that contain single and
multiple rows. An implementation of a content provider must dei ne the method getType, which
clients use to determine what kind of data will be returned for a request from a particular URI.
Because the getType method must determine the return type from the URI, it provides an excellent
example of the use of the URI matcher.

The example content provider returns one of four MIME types, a dir, and an item type for each of
its two tables. The URI matcher contains the four corresponding regular expressions, two for each
table, one ending with the table name, and one ending with the table name followed by /#. Each of
these four expressions is mapped to one of the unique integers dei ned in the symbols STATUS_VAL_
DIR, STATUS_VAL_ITEM, STATUS_KEYVAL_DIR, and STATUS_KEYVAL_ITEM. A properly formed URI
for this content provider will match exactly one of the expressions and thus be mapped to one of the
unique integers.

98 ❘ CHAPTER 4 CONTENT PROVIDERS

Consider the URI:

content://com.enterpriseandroid.database.keyval/vals

This is a valid URI for the KeyVal content provider. It matches only one entry in the URI matcher,
the i rst. An attempt to match this URI will therefore return the value STATUS_VAL_DIR.

On the other hand, the following URI:

content://com.enterpriseandroid.database.keyval/vals/47

matches only the second entry in the matcher. The second entry is very like the i rst — matching
the same authority and the same table name — but ends with the token #, which matches any
string of numerals (the * matches any string). The attempt to match this URI will return the value
STATUS_VAL_ITEM.

The following are all examples of URIs that will not match any of the expressions in the URI
matcher:

content://com.enterpriseandroid.database.keyval/vals/val
content://com.enterpriseandroid.database.keyval/mango
content://com.enterpriseandroid.database.keyval/47

All three of these URIs will be mapped to the URI matcher’s default value, specii ed in its
constructor, called UriMatcher.NO_MATCH.

As shown in Listing 4-7, the implementation of the getType method need only use the URI matcher
to categorize a URI into one of the i ve classes and return the MIME type for the corresponding
class, or null, when the URI cannot be matched.

LISTING 4-7: Using a URIMatcher

@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case STATUS_VAL_DIR:
 return KeyValContract.TYPE_VALS;
 case STATUS_VAL_ITEM:
 return KeyValContract.TYPE_VAL;
 case STATUS_KEYVAL_DIR:
 return KeyValContract.TYPE_KEYVALS;
 case STATUS_KEYVAL_ITEM:
 return KeyValContract.TYPE_KEYVAL;
 default:
 return null;
 }
}

Writing the Database

The content provider in KeyVal, a simplii ed example application, implements only one of the three
possible write methods. Of insert, update, and delete, it supports only insert and supports that on
only one of the two tables it maintains. Insert is only legal on the keyval table. It is neither legal

Implementing the Content Provider ❘ 99

to insert a key with no value nor a value with no key. As shown in Listing 4-8, the URI matcher
handles this constraint nicely.

LISTING 4-8: Implementing insert

@Override
public Uri insert(Uri uri, ContentValues vals) {
 long pk;
 switch (uriMatcher.match(uri)) {
 case STATUS_KEYVAL_DIR:
 pk = insertKeyVal(vals);
 break;

 default:
 throw new UnsupportedOperationException(
 "Unrecognized URI: " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return uri.buildUpon().appendPath(String.valueOf(pk)).build();;
}

The call to the content resolver method notifyChange is an essential part of the content observer
feature discussed in the section entitled “Content Observers: Completing the Loop” earlier in the
chapter. You’ll see it again shortly in the section “Content Observers (Again).”

The insert method returns a URI for the newly added row. It is the URI for the table into which the
row was inserted with the primary key for the new row appended.

Listing 4-9 shows the implementation of the insert.

LISTING 4-9: Insert using a transaction

private long insertKeyVal(ContentValues vals) {
 SQLiteDatabase db = helper.getWritableDatabase();
 try {
 db.beginTransaction();
 long id = helper.insertVal(
 db,
 vals.getAsString(KeyValContract.Columns.VAL));
 long pk = helper.insertKey(
 db,
 vals.getAsString(KeyValContract.Columns.KEY),
 id);
 db.setTransactionSuccessful();
 return pk;
 }
 finally { db.endTransaction(); }
}

The use of the transaction in this method is worthy of note. By default, SQLite wraps each
write operation (two inserts, in this case, performed within the helper methods insertKey and

100 ❘ CHAPTER 4 CONTENT PROVIDERS

insertVal) in its own transaction. In order to implement a transaction, SQLite must open, write,
and then close the database’s journal i le. This can be incredibly expensive for operations that
require multiple writes to the database. In addition to providing the atomicity necessary to preserve
referential integrity, explicitly wrapping the two operations in the code in a single transaction can
substantially improve performance.

As noted previously, a content provider exposes a virtual relation. Even if there is a real SQLite
table backing it, there is no reason that either the name of that virtual table or the names of its
virtual columns should match their actual counterparts. To the contrary, best practice suggests that
exposing the internal implementation of the content provider, by tying virtual and actual names
together, is a bad idea. It both cracks the layer of abstraction between the content provider contract
and its implementation and may even allow clients to breach the provider’s security.

The code in Listing 4-9 uses explicit methods on the helper class to insert data into the database.
Listing 4-10 demonstrates another means of converting between virtual and actual column names,
using a small utility class, ColumnDef, and a static map.

LISTING 4-10: Converting virtual column names to real

COLUMNDEF.JAVA

public class ColumnDef {
 public static enum Type {
 BOOLEAN, BYTE, BYTEARRAY, DOUBLE, FLOAT, INTEGER, LONG, SHORT, STRING
 };

 private final String name;
 private final Type type;

 public ColumnDef(String name, Type type) {
 this.name = name;
 this.type = type;
 }

 public void copy(String srcCol, ContentValues src, ContentValues dst) {
 switch (type) {
 case BOOLEAN:
 dst.put(name, src.getAsBoolean(srcCol));
 break;
 case BYTE:
 dst.put(name, src.getAsByte(srcCol));
 break;
 case BYTEARRAY:
 dst.put(name, src.getAsByteArray(srcCol));
 break;
 case DOUBLE:
 dst.put(name, src.getAsDouble(srcCol));
 break;
 case FLOAT:
 dst.put(name, src.getAsFloat(srcCol));
 break;
 case INTEGER:

Implementing the Content Provider ❘ 101

 dst.put(name, src.getAsInteger(srcCol));
 break;
 case LONG:
 dst.put(name, src.getAsLong(srcCol));
 break;
 case SHORT:
 dst.put(name, src.getAsShort(srcCol));
 break;
 case STRING:
 dst.put(name, src.getAsString(srcCol));
 break;
 }
 }
}

KEYVALCONTENTPROVIDER.JAVA

private static final Map<String, ColumnDef> COL_MAP;
static {
 Map<String, ColumnDef> m = new HashMap<String, ColumnDef>();
 m.put(
 KeyValContract.Columns.KEY,
 new ColumnDef(KeyValHelper.COL_KEY, ColumnDef.Type.STRING));
 m.put(
 KeyValContract.Columns.VAL,
 new ColumnDef(KeyValHelper.COL_VAL, ColumnDef.Type.STRING));
 COL_MAP = Collections.unmodifiableMap(m);
}

// code omitted...

private ContentValues translateCols(ContentValues vals) {
 ContentValues newVals = new ContentValues();
 for (String colName: vals.keySet()) {
 ColumnDef colDef = COL_MAP.get(colName);
 if (null == colDef) {
 throw new IllegalArgumentException(
 "Unrecognized column: " + colName);
 }
 colDef.copy(colName, vals, newVals);
 }

 return newVals;
}

Although it is not used in the KeyVal example, the ColumnDef utility class is a very handy tool.

There is yet one more tool for making this virtual to actual mapping. It is a class introduced back
in Chapter 3, the QueryBuilder. It works only for queries, not any of the write methods. As a tool
for managing queries against the virtual tables exposed by a content provider, though, the query
builder’s full power becomes evident.

Database Queries

All that remains to complete the implementation of this content provider is to implement the query
methods. The KeyVals example supports queries on either of its two tables, keys and keyvals.

102 ❘ CHAPTER 4 CONTENT PROVIDERS

Because they are very similar, this section examines only the implementation of the more complex
of the two, keyvals, in detail. Listing 4-11 shows the i rst of the two methods that, together, handle
queries to the keyvals table.

LISTING 4-11: Implementing query

@Override
public Cursor query(
 Uri uri,
 String[] proj,
 String sel,
 String[] selArgs,
 String ord)
{
 Cursor cur;

 long pk = -1;
 switch (uriMatcher.match(uri)) {
 case STATUS_VAL_ITEM:
 pk = ContentUris.parseId(uri);
 case STATUS_VAL_DIR:
 cur = queryVals(proj, sel, selArgs, ord, pk);
 break;

 case STATUS_KEYVAL_ITEM:
 pk = ContentUris.parseId(uri);
 case STATUS_KEYVAL_DIR:
 cur = queryKeyVals(proj, sel, selArgs, ord, pk);
 break;

 default:
 throw new IllegalArgumentException(
 "Unrecognized URI: " + uri);
 }

 cur.setNotificationUri(getContext().getContentResolver(), uri);

 return cur;
}

Again, the URI matcher manages the work of sorting query URIs into i ve classes: those with and
without specii ed primary keys for the two tables, respectively, and those that are unrecognized and
illegal. If a primary key is specii ed in the URI, it is parsed out and passed to the query method for a
specii c table as the i nal parameter.

Note, again, the call to setNotification. You’ll return to it in the section called “Content Observers
(Again).” This time, the notii cation URI is the URI that specii ed the table to be queried.

Listing 4-12 shows the use of a QueryBuilder to construct and run the join query underlying the
content provider’s keyval table.

Implementing the Content Provider ❘ 103

LISTING 4-12: Using the QueryBuilder

private Cursor queryKeyVals(
 String[] proj,
 String sel,
 String[] selArgs,
 String ord,
 long pk)
{
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
 qb.setStrict(true);

 qb.setProjectionMap(KEY_VAL_COL_AS_MAP);

 qb.setTables(
 KeyValHelper.TAB_KEYS
 + " INNER JOIN " + KeyValHelper.TAB_VALS
 + " ON(fk=id)");

 if (0 <= pk) { qb.appendWhere(KeyValContract.Columns.ID + "=" + pk); }

 return qb.query(
 helper.getWritableDatabase(),
 proj,
 sel,
 selArgs,
 null,
 null,
 ord);
}

The QueryBuilder method setTables creates the join and the appendWhere method adds the
primary key match, if it was specii ed. Be careful using appendWhere to add multiple constraints.
Although anything added using appendWhere is added to the selection clause specii ed in the call to
query — using parentheses and an AND — multiple calls to appendWhere are simply concatenated.
Thus, although:

qb.appendWhere("cond1");

//...

qb.query(
 //...
 “condSel”,
 //...
);

produces:

(cond1) AND (condSel)

perhaps unexpectedly:

qb.appendWhere("cond1");
qb.appendWhere("cond2");

104 ❘ CHAPTER 4 CONTENT PROVIDERS

//...

qb.query(
 //...
 “condSel”,
 //...
);

produces:

(cond1cond2) AND (condSel)

If you specify multiple appendWhere constraints, you must add your own conjunctions and
parentheses as needed.

The most interesting thing in this code is the use of the query builder’s projection map feature. If a
projection map is specii ed, the query builder parses the select clause and replaces column names it
i nds there with the names to which they are mapped in the projection map. There is a trick to this!
If you simply map each virtual name to its actual counterpart, other clauses specii ed by the client
will fail. For instance, if the projection map contains:

clave => key
valer => val

and the query built from client arguments is:

SELECT clave, valer FROM keys INNER JOIN vals ON(fk=id) ORDER BY clave;

then after translation by the query builder the query will look like this:

SELECT key, val FROM keys INNER JOIN vals ON(fk=id) ORDER BY clave;

which will, of course, fail because there is no column named clave on which to sort.
Listing 4-13 shows the projection map used for the keyval table. It works because,
instead of mapping the virtual name to the actual name, it instead maps the virtual name to
<actual_name> AS <virtual_name>. The previous query, after a similar translation, would look
like this:

SELECT key as clave, val as valer
 FROM keys INNER JOIN vals ON(fk=id) ORDER BY clave;

LISTING 4-13: Creating a ProjectionMap

private static final Map<String, String> KEY_VAL_COL_AS_MAP;
static {
 Map<String, String> m = new HashMap<String, String>();
 m.put(KeyValContract.Columns.ID,
 KeyValHelper.TAB_KEYS + "." + KeyValHelper.COL_ROWID
 + " AS " + KeyValContract.Columns.ID);
 m.put(KeyValContract.Columns.KEY,
 KeyValHelper.COL_KEY + " AS " + KeyValContract.Columns.KEY);
 m.put(KeyValContract.Columns.VAL,
 KeyValHelper.COL_VAL + " AS " + KeyValContract.Columns.VAL);
 KEY_VAL_COL_AS_MAP = Collections.unmodifiableMap(m);
}

Implementing the Content Provider ❘ 105

Using a query builder projection map provides an additional layer of security for a content
provider. If, in the process of mapping virtual column names to their actual counterparts, the query
builder encounters a request for a column that is not a key in the projection map, it throws an
IllegalArgumentException. The KeyVal content provider, for instance, protects the two columns
keys.fk and vals.id from exposure, simply by not including them in the projection map.

The query builder also supports a default projection. Because an empty projection — the list of
columns to include in the result — doesn’t make any sense, when a null is passed to the query
method, the value of the projection parameter the query builder uses is a default projection that
contains all of the actual columns (the map values). If your content provider supports this default
value or any other default, for that matter, be sure to document it in the provider’s contract.

As of the Ice Cream Sandwich release, the QueryBuilder supports a strict mode, which is enabled
by calling setStrict(true). By default (and in an earlier version of Android), strict mode is off.
In this state, a client-supplied column specii er that contains the word as (upper- or lowercase) is
allowed, whether or not it is in the projection map. It is best practice to set strict mode if
possible.

Content Observers (Again)

In the section earlier in the chapter entitled “Content Observers: Completing the Loop,” you
examined content observers from the client side in some detail. During the implementation of the
example content provider there were two additional places that the subject of content observers
arose. The i rst of these was near the end of the insert method, when writing to the database. The
code uses the content resolver method called notifyChange. Similarly, the cursor method called
setNotificationUri is used near the end of the query method, after a database read. It sets a URI
as the notii cation target for the cursor.

These two methods really do complete the content observer loop. Ensuring that your content
provider uses them correctly is an important key to making it useful, both within your application
and to external clients.

In the query method, the cursor returned from the query is registered as an observer for changes
posted for the URI that represents the dataset onto which it is a view. It is because it receives these
notii cations that it can, as you saw, notify the loader manager that a change has occurred and
an update is necessary. Unless the cursor in the example application is registered to receive these
notii cations, the view will not update when the database changes.

The insert method contains the call to notifyChange, which actually broadcasts the notii cation
to all observers. The URI chosen as the notii cation target deserves some thought. The second
argument to registerContentObserver, which is notifyForDescendents, was not discussed
when it was i rst shown in Listing 4-3. The code in that listing demonstrates registering an observer
that posts a toast when a database update occurs. That second argument controls whether the
observer is notii ed only for exact matches to the target URI (false) or whether, instead, it is
notii ed for any URI for which the target URI is a prei x (true). As with all API design decisions,
best practice suggests dei ning a policy and sticking to it.

106 ❘ CHAPTER 4 CONTENT PROVIDERS

For instance, it might make sense for the insert method’s notii cation target to be exactly the URI
for the newly inserted row. The code would look like this:

uri = uri.buildUpon().appendPath(String.valueOf(pk)).build();
getContext().getContentResolver().notifyChange(uri, null);
return uri;

causing the URIs on which it notii ed to look like this:

content://com.enterpriseandroid.database.keyval/keyvals/42

This i ner-grained notii cation might be preferable. Clients can use the notifyForDescendents
parameter when registering their observers if they require notii cation of any change in the dataset
(as the list view in the example does). Remember, though, that more frequent, smaller notii cations
may be less efi cient than broader and less specii c ones. Consider your use patterns and design
accordingly.

PERMISSIONS AND REGISTRATION

Like all of the other major managed Android components, a content provider must be registered in
the manifest. Listing 4-14 shows a typical registration, the one used for the example program.

LISTING 4-14: Registering a content provider

<provider
 android:name=".data.KeyValContentProvider"
 android:authorities="com.enterpriseandroid.database.keyval"
 android:grantUriPermissions="true"
 android:readPermission="com.enterpriseandroid.database.keyval.READ"
 android:writePermission="com.enterpriseandroid.database.keyval.WRITE" />

This registers the content provider dei ned in the class com.enterpriseandroid.database
.keyval.data.KeyValContentProvider — the class that has been the subject of the chapter — as
authority for the namespace com.enterpriseandroid.database.keyval. All content URIs for
that authority will now be directed to an instance of this content provider. Again, note that this
authority is simply a string and that clients must match it exactly. There is no semantic information
in the string. Your personal application could probably register as authority for the string
"com.google.zqx3".

The declaration also uses permissions to dei ne access rights for the content provider.

NOTE This section discusses only the mechanics of using permissions with a con-
tent provider. There is a more complete discussion of permissions and why they
are necessary in Chapter 12.

Permissions and Registration ❘ 107

Using permissions in Android is a three-step process:

 1. A service provider dei nes the permission.

 2. The service provider uses the permission to protect a component.

 3. Clients request the permission.

Listing 4-15 shows the dei nitions for the permissions used by the KeyVal content provider.
Although any component — including a content provider — can be protected with the
android:permissions attribute, the content provider allows somewhat i ner grained control; there
are separate read and write permissions.

LISTING 4-15: Defi ning permissions

<permission
 android:name="com.enterpriseandroid.database.keyval.READ"
 android:description="@string/content_read_desc"
 android:permissionGroup="com.enterpriseandroid.database.keyval"
 android:protectionLevel="dangerous" />
<permission
 android:name="com.enterpriseandroid.database.keyval.WRITE"
 android:description="@string/content_write_desc"
 android:permissionGroup="com.enterpriseandroid.database.keyval"
 android:protectionLevel="signature" />

The most signii cant feature of a permission is probably its name. The usual warnings
apply — a permission name is simply a string that uniquely identii es the permission and contains
absolutely no semantic information about the permission. A close second in importance is
android:protectionLevel. The protection level determines how difi cult it is to obtain the
associated permission. The possible values for permission level are:

 ➤ Normal — A permission that is granted if requested.

 ➤ Dangerous — If an application requests a dangerous permission, the user is offered the
opportunity to approve granting the permission to the application before the application is
installed. If the user approves, the permission is granted, and the application is installed. If
the user does not approve, the application is not installed.

 ➤ Signature — Like normal, a signature permission is granted without notifying the user, but
only if the application requesting the permission is signed with the same certii cate as the
application using it to protect a component.

NOTE There are actually three other permissions, signatureOrSystem, system,
and development, all described in Chapter 12. None of them are relevant to
normal application development.

108 ❘ CHAPTER 4 CONTENT PROVIDERS

Permissions may be grouped together into collections of permissions that control related
capabilities. Permission groups have no effect on permission function. They may affect the way they
are displayed to a user when installing the application. In the case of the KeyVal example, the two
permissions controlling read and write access to the content provider belong to a single permissions
group. The dei nition for that group is shown in Listing 4-16

LISTING 4-16: Defi ning a permission group

<permission-group
 android:name="com.enterpriseandroid.database.keyval"
 android:description="@string/content_group_desc"
 android:label="@string/content_group_label" />

Once the permissions have been dei ned, they must be applied, as demonstrated in Listing 4-14. As
used in that listing, applications that request the permission named:

android:readPermission="com.enterpriseandroid.database.keyval.READ"

are allowed to perform queries against the KeyVal content provider, if the end user approves the
capability.

Only applications that request this permission:

android:readPermission="com.enterpriseandroid.database.keyval.WRITE"

and that are signed with the same key that was used to sign the KeyVal app itself will be granted the
capability to write to the KeyVal content provider. Listing 4-17 shows an example of requests for
both permissions taken from the KeyValClient application.

LISTING 4-17: Requesting permissions

<uses-permission
 android:name="com.enterpriseandroid.database.keyval.READ" />
<uses-permission
 android:name="com.enterpriseandroid.database.keyval.WRITE" />

The grantUriPermissions attribute in the provider declaration in Listing 4-14 is also of interest.
A full description of this attribute is outside the scope of this section. Documentation can be found
on the Android Developer website:

http://developer.android.com/guide/topics/manifest/grant-uri-permission-element.html

In short, this permission allows the application dei ning the content provider to grant extremely
i ne-grained access permissions to clients a single URI at a time. The following code, for instance
in the application dei ning the content provider, passes a single, explicit URI to the activity
responding to the implicit intent named in the symbol KEYVAL_CLIENT.

Intent i = new Intent(KEYVAL_CLIENT);
i.setData(KeyValContract.URI_KEYVAL.buildUpon().appendPath("2").build());
i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);

Content Providers and Files ❘ 109

Presuming the content provider’s manifest declaration sets the grantUriPermissions to true,
the client application will, regardless of other permissions, be able to perform a query against the
provider, using the single passed URI.

CONTENT PROVIDERS AND FILES

There is one more issue to address, before leaving the discussion of content providers: storing large
data objects. Imagine for instance that you are designing an application that will allow doctors to
review and comment on patient records. The problem changes dramatically if the records include
digitized x-rays, each of which is several megabytes.

To demonstrate solutions to the issue, consider a new feature for the KeyVal application that allows
values to be associated with arbitrarily large text “extras.” A key is associated with a value, as is
already the case. The new feature adds the ability to associate a value with a very large amount of
text.

In the UI, a value that has extras available shows in the list view with a green check to its left. If
there is no blob available, the item has a red X, as shown in Figure 4-5.

Clicking on one of the items with a green check starts a new activity that displays the contents of the
value’s associated extras, as shown in Figure 4-6.

FIGURE 4-5 FIGURE 4-6

The details of implementing the UI are left to the curious. The concern here is how to implement a
content provider that efi ciently stores the large text objects.

Like most database systems, SQLite supports blobs — binary large objects. There are several ways
to use SQLite blobs from within the Android framework. For instance, either of the code fragments
shown in Listing 4-18 will work.

110 ❘ CHAPTER 4 CONTENT PROVIDERS

LISTING 4-18: Using blobs

// blob is a byte array
ContentValues vals = new ContentValues();
vals.put("image", blob);
db.insert(TAB_KEYS, null, vals);

SQLiteStatement ins = db.compileStatement(
 "INSERT INTO " + TAB_KEYS + "(image) VALUES(?)");
ins.bindBlob(1, blob);

Although this is a plausible solution for small byte arrays — hundreds of bytes or fewer — it is quite
inefi cient when the arrays get large. There are two reasons for this.

The i rst reason has to do with the implementation of SQLite. As a database i le gets bigger
and the widths of columns get larger, operations just get slower. Even for SQLite, with all its clever
optimizations, size matters.

There are several ways to optimize blob storage, if necessary.

 ➤ One useful trick is to keep the blobs in a separate database i le — not a separate table in
the same i le, but an entirely separate i le. A table in the main i le holds only the primary key
(and other small columns). One or more tables in the second i le hold the blobs themselves.
There is evidence that this scheme helps SQLite handle database fragmentation caused
by deletes, and that it can speed queries. Certainly it will speed up any query that doesn’t
actually require recovering a blob.

 ➤ There is also evidence that the efi ciency of blob storage can be improved by appropriate
use of the page size pragma. SQLite stores blobs in blocks called pages. Adjusting the page
size for a database i le to correspond with the size of the blobs being stored in its tables can
signii cantly improve efi ciency. Of course, this may require separate database i les for blobs
of different sizes.

 ➤ Finally, especially when dealing with large data objects, it’s useful to remember that in
order to recover i le system space after deletes, it may be necessary to use the SQLite VACUUM
command:

db.execSQL("VACUUM")

A second reason for avoiding blobs in database tables is much more important. When using a
content provider from an external application — an application that runs in a different process — the
blob data must be transferred across the interprocess communications channel. Clearly, for large
data objects, this is inefi cient. Fortunately, the Android framework provides a very slick way to
avoid the problem.

Among the kinds of data that can be transferred through Binder, Android’s interprocess
communication framework, is a i le descriptor. It is possible for one application to open a i le
and then pass the open i le descriptor to another application. The second application may then
use the i le as if it had opened it itself (constrained, of course, by the read/write permissions on
the descriptor). The data contained in the i le does not have to cross the IPC boundary! This
mechanism, in addition, allows the serving application to share the contents of a i le without ever

Content Providers and Files ❘ 111

giving the client application access to it on the i le system. The client cannot open it, or even i nd it
without the content provider’s help.

This suggests an alternative means of storing large data objects as i les. Content providers support
this scheme using the methods ContentResolver.openInputStream(URI), ContentResolver
.openOutputStream(URI), and ContentProvider.openFile(URI, mode).

As usual, the URI must be a content URI (its scheme must be content://). It is forwarded to the
content provider registered as owner of the URI’s authority section. A content provider implements
the openFile method to handle these requests. It is free to handle the URIs it receives in any way it
chooses.

File requests might, for instance, be modeled as an entirely new virtual table. A content provider
implemented in this way will have to handle URIs naming the new table, appropriately, in the
previously described CRUD methods. This probably means throwing exceptions.

Listing 4-19 is the beginning of another way to handle i le requests.

LISTING 4-19: Implementing openFile

@Override
public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException
{
 switch (uriMatcher.match(uri)) {
 case STATUS_VAL_ITEM:
 if (!"r".equals(mode)) {
 throw new SecurityException("Write access forbidden");
 }
 return readExtras(uri);

 default:
 throw new UnsupportedOperationException(
 "Unrecognized URI: " + uri);
 }
}

Again, the URI Matcher manages parsing the passed URI. In this case, it rejects any requests that
are not against the values table. Because this is a simplii ed example, it also rejects any requests for
write permission. All legal requests are passed to the readExtras method.

What does readExtras do? It must open a ParcelFileDescriptor — a i le descriptor that can be
passed over the IPC channel — and return it. You need a place in the Android i le system to create,
read, and write those i les.

A complete review of the Android i le system is out of the scope of this book. Before creating and
using i les, it’s worthwhile to review the documentation. At the very least, you should understand
the implications of the various possible locations for saving a i le — the application sandbox and the
SD card.

112 ❘ CHAPTER 4 CONTENT PROVIDERS

The example program will create i les in the sandbox, the directory /data/data/
<application-package>. Android puts i les it creates on your behalf into a directory
just beneath the sandbox named files.

Of course, there are many ways to implement readExtras. Since the feature specii cation dictates
that there can be no more than one i le associated with a particular value — and values are
unique — the implementation might construct a i le name from the value itself. Another possibility
might add a new column to the virtual keyval table, containing the URI of the i le that holds
a value’s extras. Especially if there were multiple blobs associated with a keyval record, an
implementation along these lines might work well.

NOTE Recall that the column contents should be virtual. There is no reason to
reveal actual i le locations to the client. Doing so exposes implementation details
that are better kept private.

Once the code has determined a pathname for the i le containing the extras, it will use the
framework method ParcelFileDescriptor.open(path, modeBits) to create i le handle that can
be passed back to the client over the IPC channel. The client reads (or possibly writes) and closes the
i le normally.

Instead of any of these strategies, the KeyVal implementation of readExtras makes use of yet
another feature in the Android framework, the openFileHelper. The complete readExtras method
is shown in Listing 4-20.

LISTING 4-20: Using the openFileHelper

private ParcelFileDescriptor readExtras(Uri uri)
 throws FileNotFoundException
{
 return openFileHelper(uri, "r");
}

You might ask what is going on. How can it be so simple? It turns out that the framework supports
a special database column named _data. If a normal query to a content provider for the column
_data returns a cursor that contains a single row, the single value in that column is used as the full
pathname for the i le to be opened.

Making this work in KeyVal requires changes to both of the virtual tables managed by the content
provider. First, there are some simple changes necessary for the values table. It will need a _data
column that contains either null if there are no related extras, or else the full pathname of the
i le containing the extras if there are. Because openFileHelper makes a normal call to the query
method, the new column must be visible. To make it visible, it must be added to the projection map
for the values virtual table. That, in turn will make it visible to all clients. The new column is not
mentioned in the contract i le. That may not be sufi cient to ensure security but it at least makes it
clear that it is not part of the KeyVal API.

Content Providers and Files ❘ 113

The changes to the keyval table are more interesting and do require a change in the contract. You
need to expose a new column that can be used to locate the extras associated with a key’s value, if
one exists. The new column must be added to the contract and exposed through the projection map.
The right value to use in that column is the primary key of the value that has the extras.

Listing 4-21 shows the dei nition for the new virtual column.

LISTING 4-21: Using CASE to defi ne a virtual column

m.put(KeyValContract.Columns.EXTRA,
 "CASE WHEN " + KeyValHelper.COL_EXTRA
 + " NOT NULL THEN " + KeyValHelper.COL_ID
 + " ELSE NULL END AS " + KeyValContract.Columns.EXTRA);;

This dei nition makes use of the SQL CASE statement to produce the new virtual column. If a value
has no associated extra data, this virtual column contains a null. If the value does have associated
extras, however, the column contains the primary key for the value from the values table. In order
to get the i le data, now the client needs to request a i le from the content provider. The client does
this using the URI for the values virtual table and restricts it with the primary key from this new
column. Listing 4-22 is an example of code that does just that.

LISTING 4-22: Reading a fi le from a content provider

InputStream in = null;
try {
 in = getContext().getContentResolver().openInputStream(
 KeyValContract.URI_VALS.buildUpon()
 .appendPath(String.valueOf(extra))
 .build());

 // process the file contents
}
catch (FileNotFoundException e) {
 Log.w("CONTENT", "File not found: " + extra, e);
}
catch (IOException e) {
 Log.w("CONTENT", "Failed reading: " + extra, e);
}
finally {
 if (null != in) { try { in.close(); } catch (IOException e) { } }
}

There is just one other detail necessary to make the application work. Recall that
ParcelFileDescriptor.open(path, modeBits), the method used to open the extras i le, requires
a full pathname for the i le it opens. It follows that the _data i eld in the values database must
contain a full pathname.

114 ❘ CHAPTER 4 CONTENT PROVIDERS

The method Context.openFileOutput is a convenient way to create private i les. As described,
it creates i les in a subdirectory of an application’s private sandbox. In order to programmatically
obtain the name of that directory, to construct the full pathname for the _data column, use the
method Context.getFilesDir. The name of the i le stored into the _data column is:

context.getFilesDir() + "/" + filename

SUMMARY

This chapter examined the Android content provider component in thorough detail.

 ➤ Starting with a client’s point of view, the chapter uncovered the content provider’s essential
behavior.

 ➤ Next, it introduced the contract i le, an exportable dei nition of a content provider’s API.

 ➤ The chapter took a deep dive into the specii cs of content provider implementation,
exploring tools like the URI matcher, transactions, the query builder, and a couple of handy
tools for implementing a virtual table space.

 ➤ It described registering a content provider in the application manifest and the types of
permissions used to control access to it.

 ➤ As a recurring theme, the chapter discussed one of Android’s most brilliant features, the
content observer. The content observer uses a URI as a rendezvous point for the dataset it
represents. Notii cations sent by clients that change the backing dataset are broadcast to all
clients subscribed to those notii cations.

 ➤ Finally there was a discussion of an advanced topic, using a content provider to facilitate
access to large data objects, including the ability to efi ciently transfer i les.

This chapter completes a low-level foundation upon which you can build an architecture for
enterprise application. It steps away from the generic programming concerns of the preceding
chapters and introduces one of Android’s key architectural components. The content provider is the
basis for Android’s approach to mobile architecture: a RESTful cache pulled up out of the Internet,
right onto the mobile device.

The rest of this book explores effective use of this cache.

REST, Content Providers,
Concurrency, Networking,
and Sync Adapters

WHAT’S IN THIS CHAPTER?

 ➤ Understanding REST basics

 ➤ Looking at RESTful Contacts: An example REST API

 ➤ Learning about Android networking

 ➤ Understanding concurrency and lifecycles

 ➤ Building an architecture for robust networking

 ➤ Implementing RESTfulContacts: An example client

 ➤ Understanding sync adapters

 ➤ Understanding Spring for Android

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

Mobile developers — including Android developers — face common challenges when
communicating with remote services. Tasks that are straightforward on a local network or
even the wired Internet — using a remote service or requesting remote data — can have all
sorts of subtle pitfalls in a mobile environment. Attempting to use the network efi ciently
while synchronizing data between mobile platforms and backend web services adds additional
headaches. Among the key challenges that Android developers face are these:

5

116 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

 ➤ Data synchronization between a mobile client and a web service

 ➤ Handling large datasets

 ➤ Using Android APIs to solve these problems in such a way that the solutions can be reused
across application domains

 ➤ Android MVC and correct handling of the UI thread during remote requests

The previous chapters built the foundation for Android applications, setting the stage by describing
the Android user interface, database programming and, most important, content providers. This
chapter builds on that foundation — which, so far, is entirely local — to introduce client-side
network programming. Here you step off the isolated mobile device and expand your horizons to a
connected mobile device.

This chapter introduces REST (Representational State Transfer) as a powerful architectural style.
It demonstrates this style with two example clients that store information about contacts in a
RESTful server. The next chapter illustrates the construction of the server with which the clients
communicate. Together, these two chapters provide the model for a generic, functional, end-to-end
mobile platform based on sound principles for robust Android programming.

NOTE Note that in order to run the client application created in this chapter it
is necessary, also, to run a server like the one described in the next chapter. The
material presented here follows logically from the discussion of content providers
in Ch. 4 and, thus, appears here, before the description of the server on which it
depends.

The Android platform creates an issue of particular concern to developers creating networked
applications: How do well behaved networking and data management interact with Android’s
process model — the lifecycles of activity and service components? This chapter describes three
rock-solid architectural approaches that answer that question.

 ➤ Service-centric — Based on an Android IntentService

 ➤ ContentProvider-centric — Based on an Android ContentProvider

 ➤ SyncAdapter-centric — Based on Android’s sync adapter framework

BASIC REST

The exploration of external data management on Android starts with a primer on what has become
a standard set of architectural constraints for designing communication protocols between Internet
services and their clients — Representational State Transfer or REST. Although REST has roots that
go well back into the mid-1990s, the name was introduced and formalized by Roy Fielding in his
doctoral dissertation in the year 2000. One of the designers of HTTP, Fielding used REST as a way
of formalizing an architectural style that meets the goals of the web, among them extreme, anarchic
scalability.

Basic REST ❘ 117

Why REST?

As far back as 1990, Sun Fellow Peter Deutsch codii ed a list of assumptions that engineers were
making at the time in their distributed computing architectures that doomed the resulting products
to failure. Dubbed by Deutsch as the “Fallacies of Networked Computing,” the i rst four are
attributed to Bill Joy and Dave Lyon and the last to James Gosling. They are:

 1. The network is reliable.

 2. Latency is zero.

 3. Bandwidth is ini nite.

 4. The network is secure.

 5. Topology doesn’t change.

 6. There is one administrator.

 7. Transport cost is zero.

 8. The network is homogenous.

Engineers at the time assumed — sometimes implicitly — that multiple computers connected
together by a network would behave as an analog of multiple components connected in a computer.
They expected, in other words, that a network would behave like a single, huge machine. As is so
often the case in engineering, size matters. The early attempts to scale architecture linearly, from a
single machine to a network, were largely disappointing.

Enter REST and a radical change in point of view. Instead of hiding the vagaries of the underlying
network, the REST style focuses on them. The architectural constraints imposed by the RESTful
style assume the contradictions of Deutsch’s fallacies and provide elegant tools for designing
consistent, resilient, and highly scalable client-server systems.

RESTful style architectures are particularly relevant in the world of mobile computing. The
network as perceived from a mobile device is even less reliable than that perceived by the pioneers
of distributed architecture. In the course of a normal day, a mobile device might be powered down
abruptly, lose its signal in a subway tunnel, switch from a 3G to a WiFi network, and so on. An
architectural style that frankly acknowledges this environment and offers the developer ways to
thrive in it means the difference between applications that constantly and mysteriously fail and
those that work. As you will see, the constraints imposed by the Android-managed container are yet
another reason to prefer the RESTful style.

The exact dei nition of REST and whether a particular API is RESTful can be the source of lengthy
and heated discussions. This chapter makes every attempt to avoid those discussions, focusing
instead on what distinguishes the REST style from others, and how REST is particularly suited for
use in Android.

An API that is RESTful will tend to have the following attributes:

 ➤ It is client/server. A RESTful API clearly distinguishes the role of a client, the entity that
makes requests for services, from a server, the entity that listens for those requests and
supplies the services.

118 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

 ➤ It is stateless. In a RESTful API a client cannot expect a server to hold context between
requests. Each client request must contain all of the information necessary for the server to
process it completely.

 ➤ It describes the exchange of representations of named resources, not the exchange of those

resources themselves. This is a bit subtle, but fairly important — it acknowledges a layer
of abstraction between internal and external representations of objects. A resource is any
object that can be named, commonly with a URI. A representation is simply a transferable
document that describes the current state of some resource. A trivial example of this
distinction is a server that is willing to describe the single resource named by a given
URI using either JSON or XML: a single resource with multiple representations. A more
technical example is a protocol in which a representation includes a version number. This
representation is a snapshot of the resource at some particular moment in time and, clearly,
not the resource itself.

 ➤ It has a uniform interface. This is probably the best known and most signii cant of the
REST constraints. A RESTful API will, typically, support only the four standard CRUD
methods, insert, update, delete, and query (PUT, POST, DELETE and GET, respectively, in
HTTP) regardless of the application’s functional API. This design choice represents a focus
on the nature of the infrastructure that supports client/server transactions: an unreliable,
asynchronous network. This is dramatically different from the APIs typical of other remote
technologies such as COM, CORBA, and SOAP that have a set of operations that is much
richer and more tightly coupled to the behavior of the specii c service.

NOTE For the curious, there are lengthy discussions of REST online:

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm

These attributes lead to protocols that have some very nice characteristics. First of all, because the
interface is uniform, it is possible to create generic proxies for RESTful APIs. That means that a
proxy for one RESTful API is a proxy for any RESTful API. The client of a RESTful API cannot tell
whether it is talking to the origin server or to some local cache that is ignorant of the service it is
caching. RESTful APIs automatically scale with the network.

The REST constraints for idempotency, the transfer of resource representations rather than objects,
and against server-side session state also facilitate the caching of RESTful protocols. Although a
particular representation of a resource may be out of date, it is probably consistent forever. A service
and its clients can negotiate the degree of staleness that is tolerable. Many RESTful APIs include
specii c metadata that describes what can be cached and for how long.

By recognizing and embracing the vagaries of the medium — a slow, unreliable network with
changing, anarchic topology — REST insulates a client from the concerns of the server.

REST over HTTP

Although the REST style can be used with nearly any protocol, in the Internet, HTTP is the vehicle
of choice because it is RESTful in itself. The combination of a URI to name a target resource;
the four methods PUT, POST, DELETE, and GET; and the request content provide a transport

Basic REST ❘ 119

that most RESTful services simply adopt. Let’s take a minute to review a few of the details of the
mapping from REST to HTTP.

URIs

Almost all RESTful APIs in the Internet use URIs to name their resources. These URIs have a
predictable structure that is dei ned in RFC 3986. Here is an abbreviated version of that structure:

http[s]://<host>[:<port>]/(<path-seg>/)*<path-seg>[?<param>=<value>(&<param>=<value>)*]

This proto-typical URI has four parts — a scheme, an authority, a path, and a query. In detail:

 ➤ The scheme for a URI used in a RESTful protocol is very likely to be either http:// or
https://.

 ➤ The authority for a URI used by a RESTful protocol is likely to be the DNS name of the
origin server for the service that is the target of the request. In addition to the hostname,
the URI may contain the port number on the target host at which the server is accepting
connections.

 ➤ The path portion of a URI used by a RESTful protocol is a standard slash-separated (/),
hierarchical namespace. Just as the scheme and authority sections of the URI probably identify
a service, so the path portion identii es a specii c resource maintained by that service.

 ➤ A URI used in a RESTful protocol may have a query section. If the section exists, it begins
with a question mark (?). Following the question mark is a list of one or more key/value
pairs separated by ampersands (&). The key/value pairs are given as a key followed by an
equals sign (=) and then its value.

NOTE There is more information on the full syntax of a URI at:

http://tools.ietf.org/html/rfc3986

Although the similarity is only partial, a URI in a RESTful API might be understood as a reference
to an object in much the same way that a Java variable is a reference to an object. In a well-designed
Java program, it is likely that you have no idea what, actually, is at the end of a Java reference. You
can ask for information about the referenced object’s state, and you may even be able to change that
state. You should not take the liberty, though, of guessing at the object’s actual implementation.

In a RESTful protocol, the URI functions in much the same way. The client program can ask
about the resource to which the URI refers and may, similarly, be able to ask the service to update
that resource. However, it never touches the actual resource and is not free to infer the resource’s
implementation.

Contents

In addition to containing a URI, an HTTP request may contain a typed data payload. For example,
the payload often is structured application data. When this is the case, the data is typically
represented either as XML or, more popular in recent history, JSON.

120 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

An HTTP request has a header section that contains metadata about the request. Among other
things, the header for a request containing a payload will specify a Content-Type. The value for
the content type header i eld is a MIME (Multipurpose Internet Mail Extension) type that describes
how the payload should be interpreted.

MIME is an Internet standard for describing content type. If the payload data is structured
application data, XML or JSON, as described previously, the Content-Type i eld will contain
application/xml or application/json. If the content is something else entirely — perhaps an
audio i le — the MIME type will identify it accordingly (audio/mp3, for instance).

NOTE There is more information on MIME and HTTP at the following sites.

MIME — http://tools.ietf.org/html/rfc2045 through 2049
HTTP — http://tools.ietf.org/html/rfc2616

An Example REST API

To make this discussion of REST more concrete, let’s look at a simplistic web service API. This
API is the basis for the example code — clients and a backend service — implemented in this and
the next chapter. The API supports persistent operations on a collection of contact resources.
Although the example is simplistic in several respects — respects that will be discussed in detail
later in the chapter — the general concept is entirely realistic. Any mobile application that has a
social aspect will have to track relationships between entities that are similar to the contacts used
in this example. Developers familiar with the Android platform will know that it already supports
a rich and extensible framework for contacts. Creating a useful social application will require, at
best, understanding and integrating with that framework. At least as likely, though, it will require a
custom implementation such as the one discussed here.

Contact Representation

The example API supports a set of contact resources. These resources will be represented in
messages between the client and the server as JSON documents described by the following schema:

{
 "title": "RESTfulContacts",
 "type": "object",
 "properties": {
 "id": {
 "type": "integer"
 },
 "firstName": {
 "description": "first name",
 "type": "string"
 },
 "lastName": {
 "description": "last name",
 "type": "string"
 }

Basic REST ❘ 121

 "phone": {
 "description": "phone number",
 "type": "string"
 }
 "email": {
 "description": "email address",
 "type": "string"
 }
 "version": {
 "description": "version id",
 "type": "integer",
 "minimum": 0
 }
 "updateTime": {
 "description": "time of last sync",
 "type": "integer",
 "minimum": 0
 }
 "deleted": {
 "description": "contact has been deleted",
 "type": "boolean",
 }
 }
}

NOTE This document is in a format called json-schema. JSON schema is the
JSON analog for XML Schema; it is used to describe the format of a family of
JSON documents. The rest of this book will use it, frequently, for that purpose.
There is more documentation on JSON schema at:

http://json-schema.org/

Remember that since this is a RESTful API, the previous schema describes only a representation of
the actual resource. The version, updateTime, and deleted attributes, for instance, are metadata
that describe a resource. The client and server may use that metadata to synchronize their respective
versions of the resources.

In order to exchange information about those internal representations — however they are
implemented — the client and the server must be able to describe those resources in a way that i ts
into the JSON schema. This process — creating a transferable representation from a resource — is
called marshaling. For example, here is the marshaled representation of the resource for John Smith:

{
 "firstName": "john",
 "lastName": "smith",
 "phone:": "781-123-4567",
 "email": "john.smith@gmail.com"
}

122 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

Contact Methods and URIs

The JSON schema describes the payload for the HTTP requests that the client sends to the server.
Dei ning the schema is analogous to dei ning parameters for API methods. In this simple example,
the schema is the union of the parameters for all of the API methods. You might think of it is as
if all of the arguments to all of the methods supported by the server were combined into a single
parameter, passed to each of those methods. To complete the dei nition of the RESTful Contacts
API, you also need a catalog of the small set of methods that the server supports. Here it is:

 ➤ A request for the states of all contacts:

GET /Contacts

 ➤ A request for the state of a specii c contact, the contact with id 1:

GET /Contacts/1

 ➤ A request to create a new contact. The payload describes the new contact:

POST Contacts

payload:

{
 "firstName": "john",
 "lastName": "smith",
 "phone:": "781-123-4567",
 "email": "john.smith@gmail.com"
}

 ➤ A request to update the phone number associated with a contact, which is contact #1 again.
As with the preceding example, the payload contains a description of the contact i elds to be
changed, along with their new values:

PUT /Contacts/1

payload:

{
 "phone:": "781-123-4567"
}

 ➤ A request to delete all of the information about the contact whose phone number was
changed:

DELETE /Contacts/1

 ➤ A request to synchronize information about multiple contacts. The payload (not shown
here) is a list of one or more contacts that have been changed on the client and that must be
updated on the server:

POST /Contacts/sync

Contact Transactions

This section puts this API, as specii ed so far, into practice. You can try out a few HTTP
transactions by issuing requests from the command line using the command-line tool curl.
Exercising the server in this way will reveal its behavior.

Basic REST ❘ 123

NOTE The backward-slash (\) character in the command line examples below,
is the line continuation character. It is used by UNIX command line interpret-
ers (shells) to indicate that a single command spans several lines. It is used here
simply for formatting purposes: It is not actually part of the curl command. This
session may look slightly different in other command-line interpreters.

First, let’s create a new contact:

> curl -X POST \
 -H "Content-Type: application/json" \
 -d '{"firstName":"mike","email":"mlayton@dartmouth.edu",
 "lastName":"layton","phone":"826-9027"}' \
 http://wileycontacts.com:8080/springServiceContacts/Contacts

POST /springServiceContacts/Contacts HTTP/1.1
User-Agent: curl/7.28.0
Host: wileycontacts.com:8080
Accept: */*
Content-Type: application/json
Content-Length: 91
{
 "firstName":"mike",
 "lastName":"layton",
 "email":"mlayton@dartmouth.edu",
 "phone":"826-9027"
}

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Sun, 06 Jan 2013 05:56:31 GMT
{
 "location":"http://wileycontacts.com:8080/springServiceContacts/Contacts/28"
}

That seems to have worked! The 200 return status indicates that the server successfully processed
the request. The returned payload appears to be the URI for the newly created contact. Excellent!
You should now be able to retrieve this newly created resource:

> curl -X GET http://wileycontacts.com:8080/springServiceContacts/Contacts/28

GET /springServiceContacts/Contacts/28 HTTP/1.1

User-Agent: curl/7.28.0

Host: wileycontacts.com:8080

124 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

Accept: */*

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Sun, 06 Jan 2013 06:21:36 GMT

{
 "id":28,
 "firstName":"mike",
 "lastName":"layton",
 "phone":"(802) 826-9027",
 "email":"mlayton@dartmouth.edu",
 "version":1,
 "updateTime":1357451791659,
 "deleted":false
}

That worked too. The service is holding version “1” of the resource.

This demonstrates the basic functionality of the API. Tidy up by deleting the test resource:

> curl -X DELETE http://wileycontacts.com:8080/springServiceContacts/Contacts/28

DELETE /springServiceContacts/Contacts/28 HTTP/1.1
User-Agent: curl/7.28.0
Host: wileycontacts.com:8080
Accept: */*

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/plain;charset=ISO-8859-1
Content-Length: 3
Date: Sun, 06 Jan 2013 06:35:55 GMT

Again, this seems to have worked. The 200 status coni rms that the server successfully processed the
request. To verify that the test resource is gone, you can query for it again.

> curl -X GET http://wileycontacts.com:8080/springServiceContacts/Contacts/28

GET /springServiceContacts/Contacts/28 HTTP/1.1
User-Agent: curl/7.28.0
Host: wileycontacts.com:8080
Accept: */*

HTTP/1.1 404 Not Found
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Length: 952
Date: Sun, 06 Jan 2013 06:50:45 GMT

Android Networking ❘ 125

The resource is gone. The 404 status indicates that it no longer exists on the server.

As this section demonstrates, a basic RESTful interface can be a very simple thing. It does not
require complex clients — in this case you used a simple HTTP command-line tool — and both the
queries from the client and the responses from the server are straightforward and understandable.
REST can get quite complex, but it doesn’t start that way.

ANDROID NETWORKING

Before we turn to creating client code for this RESTful API, this section reviews some basic
networking and how applications implement HTTP connections on the Android platform.

Network connections and their attributes can be i nicky and time-consuming to debug. Trying to
turn around even the simplest REST request can be maddening when a tight-lipped server returns
nothing more informative than a 400 status in response to a request. The fault can be in the request
headers (unexpected or multiple content types, an unsupported encoding, or a missing response
type), or in the payload (bad JSON or XML syntax, or possibly something wrong in the payload
semantics, such as a missing attribute). Because REST syntax is so generic, it can be difi cult to
determine the root cause of a failure.

As always, an excellent strategy for dealing with this sort of problem is to start with working code.
There are many example RESTful HTTP client implementations to be found with simple web
searches. There are also two good examples in this section. Copy them and tweak them until they
meet your needs.

Better yet, if there is a client that already works with the specii c server that is your target, use it! If
it is in a different language, translate it. If that is impractical, use a network monitor like tcpdump
or Wireshark to determine exactly what it is sending and make sure your client sends the same
thing. Of course, if you have access to the server itself, you may be able to use its log to understand
what is going on. Once you have something that works, it is easy to modify and refactor it, backing
out changes when it breaks.

The Apache Libraries

Android contains two entirely different networking libraries, found in the packages java.net
and org.apache.http, respectively. Until about 2011, the word (some of it from Google insiders)
seemed to be that Apache framework was a better choice. Listing 5-1 shows the implementation of a
method that does an HTTP POST using the Apache framework.

LISTING 5-1: HTTP POST implemented using the Apache libraries

public void post(Uri uri, String payload, ResponseHandler hdlr) {
 HttpPost req = new HttpPost(uri.toString());
 req.setHeader(HTTP.USER_AGENT, USER_AGENT);

 if (null != payload) {
 StringEntity s = new StringEntity(payload);

continues

126 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

 s.setContentType(MIME_JSON);
 req.setEntity(s);
 }

 if (null != hdlr) { req.setHeader(HEADER_ACCEPT, MIME_JSON); }

 HttpParams httpParams = new BasicHttpParams();
 HttpConnectionParams.setConnectionTimeout(httpParams, TIMEOUT);
 HttpConnectionParams.setSoTimeout(httpParams, TIMEOUT);
 DefaultHttpClient client = new DefaultHttpClient(httpParams);

 HttpResponse resp = client.execute(req);

 if (null != hdlr) {
 Reader in = new InputStreamReader(resp.getEntity().getContent());
 try { hdlr.handleRepsonse(); }
 finally {
 try { in.close(); } catch (Exception e) { }
 }
 }
}

The java.net Libraries

Recently, though, the tune has changed. The Android development team devoted considerable effort
to the java.net libraries and is now recommending them as the preferred choice. The timing of the
change correlates pretty well with the release of Gingerbread. The Android Developer website says:

Apache HTTP client has fewer bugs in Android 2.2 (Froyo) and earlier releases. For Android 2.3

(Gingerbread) and later, HttpURLConnection is the best choice.

At the time of this writing, Froyo comprises less than 10 percent of the Android installed base — and
even that share is shrinking. Unless there is a clear, specii c reason for choosing the Apache frameworks,
Android developers should choose the java.net HTTP library classes.

An implementation of a fairly general HTTP request processor using the java.net libraries looks
like Listing 5-2. This is the one you want.

LISTING 5-2: HTTP POST implemented using the java.net libraries

private int sendRequest(
 HttpMethod method,
 Uri uri,
 String payload,
 ResponseHandler hdlr)
 throws IOException
{
 HttpURLConnection conn
 = (HttpURLConnection) new URL(uri.toString()).openConnection();

LISTING 5-1 (continued)

Android Networking ❘ 127

 int code = HttpURLConnection.HTTP_INTERNAL_ERROR;
 try {
 conn.setReadTimeout(HTTP_READ_TIMEOUT);
 conn.setConnectTimeout(HTTP_CONN_TIMEOUT);
 conn.setRequestMethod(method.toString());
 conn.setRequestProperty(HEADER_USER_AGENT, USER_AGENT);
 conn.setRequestProperty(HEADER_ENCODING, ENCODING_NONE);

 if (null != hdlr) {
 conn.setRequestProperty(HEADER_ACCEPT, MIME_JSON);
 conn.setDoInput(true);
 }

 if (null != payload) {
 conn.setRequestProperty(HEADER_CONTENT_TYPE, MIME_JSON);
 conn.setFixedLengthStreamingMode(payload.length());
 conn.setDoOutput(true);

 conn.connect();
 Writer out = new OutputStreamWriter(
 new BufferedOutputStream(conn.getOutputStream()),
 "UTF-8");
 out.write(payload);
 out.flush();
 }

 code = conn.getResponseCode();

 if (null != hdlr) {
 hdlr.handleRepsonse(new BufferedReader(
 new InputStreamReader(conn.getInputStream())));
 }
 }
 finally {
 if (null != conn) {
 try { conn.disconnect(); } catch (Exception e) { }
 }
 }

 return code;
}

NOTE The best reference material for the Android network frameworks is the
following:

http://d.android.com/reference/java/net/HttpURLConnection.html

Should you need it, there is additional information about the Apache framework
here:

http://hc.apache.org/

128 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

Permissions

Remember that on Android platforms, network access is a restricted privilege. An application must
request permissions to gain access. In order for any of this code to work, you need to include the
following request in your Android manifest:

<uses-permission android:name="android.permission.INTERNET"/>

Chapter 12 describes permissions, security, and access control, in detail.

CONSIDERING CONCURRENCY AND LIFECYCLES

There is an old adage in some developer circles: “The novice programmer believes concurrency
is hard but the journeyman programmer does not fear it. The master programmer believes that
concurrency is hard.” Concurrency is a very important issue in Android and most developers
embarking on an Android project can benei t from a review. While a complete discussion of Java
concurrency is well outside the scope of this book, reviewing some of the key issues is well worth
the time. The beginning of this chapter alluded to the fact that on the Android platform invoking
a network request can be a minei eld of subtle problems for which even developers with substantial
mobile and Java experience may not be prepared. To illustrate these issues, this section tours a series
of code snippets, each of which will highlight one or more problems that Android developers may
encounter.

The Android Concurrency Architecture

To begin the discussion, we want to review a few of the basics of Android’s concurrency
architecture.

An Android application is a single Linux process. It has its own address space — other applications
cannot accidentally change its state — and one or more of its own threads of execution.

An Android application is also a managed container. Unlike the applications that run on a common
laptop or even an iPhone, an Android application does not usually control how the application
process is started or stopped. Instead, an Android app is a set of special objects, declared to the
framework in the manifest i le, each of which can be created and used at the framework’s whim.
Server-side developers who have experience with JEE containers and managed beans will i nd this
concept familiar.

The main thread in an Android application’s process is usually called the UI thread, sometimes the
main looper or just the main thread. Unless there is a specii c arrangement to execute code on some
other thread, the UI thread powers all an application’s components — activities, services, content
providers, and so on. All run on the UI thread.

This poses a problem because the UI thread eponymously powers the UI. Any task that occupies
it for any signii cant period of time will cause the UI to become unresponsive. That is intolerable:
Long-running tasks must run on a different thread. The Android framework will terminate your
program with prejudice — with an Application Not Responding error — if it hangs the UI thread.

Considering Concurrency and Lifecycles ❘ 129

There is a related issue that also stems from the single threaded nature of Android’s UI. The UI
code is not thread safe and verii es, during method calls, that it is running on the UI thread. If a UI
object discovers that one of its methods is being called from something other than the UI thread,
it immediately throws an exception, killing the application. When a long-running task produces
results on a non-UI thread, it must safely communicate those results back to the UI thread for
presentation in the UI.

As if it were not enough that an Android developer must constantly confront one of the most
difi cult things to do in Java — publishing objects between threads — there is another concern. The
Android framework controls the lifecycle of component objects: activities, services, and so on. It
does not, on the other hand, control the lifecycle of asynchronous threads spawned to handle long-
running tasks. This leads to two more unsatisfactory consequences.

First of all, if a long-running task holds a reference — a Java variable — to a managed object, it
can prevent that object from being garbage collected. Spawning a thread that holds a reference
to an activity, for instance, might easily keep that activity object around long after the Android
framework has no use for it. The activity has been leaked — its memory cannot be reclaimed.

The second unsatisfactory consequence of the clash between objects with managed and unmanaged
lifecycles is that the object with the managed lifecycle may be in an inconsistent state when a long-
running task tries to use it. In the previous example, an attempt to draw on the device screen using
the reference to the destroyed activity is likely to result in unpredictable behavior.

This conundrum — getting long-running tasks off the UI thread and getting the results back onto
the UI thread, while keeping object lifecycles congruent — is a key force that drives the architecture
of Android applications, especially ones that participate in an enterprise system.

A Naive Request

You might think that it’s straightforward to invoke a RESTful operation from an Android
application. It is as simple as adding one of the example clients in Listings 5-1 and 5-2 to your code
and then calling it as necessary, right? After considering the threading problem, though, it should be
clear that such an extremely naïve approach is not sufi cient.

Developers with some UI experience might address the issue by spawning a worker thread to make
the remote call and then notifying the UI thread when the call completes. As the previous section
notes, this solves some problems but creates others. Developers with Android experience may even
use the framework’s scheduling tool, AsyncTask, to manage long-running tasks without spawning
lots of expensive, heavy-weight thread objects. Truly savvy disciples of the robot may use the
powerful asynchronous tool introduced in the previous chapter, the Loader. Alas, none of these
solutions, depicted schematically in Figure 5-1, is sufi cient.

What’s wrong with these simple and seemingly reasonable approaches? Unfortunately, plenty:

 ➤ The Android framework might shut down a long-running network process.

 ➤ The managed object to which the result of the transaction must be reported might be
destroyed before the transaction is complete. The application recovers but discards the
result. This is an unacceptable waste of the battery and network bandwidth.

130 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

 ➤ After sending the request, the device might enter a network dead spot and be unable to
communicate with the server. The request has been sent but might not succeed.

 ➤ The device might be powered down (or, worse yet, the battery suddenly removed). The
request was never sent and there is no indication that it failed.

 ➤ The Android framework might need space for a new application and might terminate the
process for the application running the task. All of the threads, including the one running
the long-running task, are ended.

The problem here is structural. Users see an application as a collection of contracts. When, for
instance, users press a Send button, they believe that they have entered into a contract with the
application to send something. If the application fails to send the data, that’s bad enough. If it fails
to do so without notii cation, the user experience is very bad. When the user demands a contract on
one side, and the network is unreliable on the other, that’s a problem.

A mobile application that represents the state of its contract with the user as an in-memory
command object is doomed to failure. In order to meet the user’s expectations, it is essential to
record those contracts in some persistent way.

FIGURE 5-1

RESTful call

HTTP request

HTTP response

REST state

UI update

UI Thread

Initiate Action

Remote ServiceActivity Network Client
Asyns Task/

Loader

An Architecture for Robust Networking ❘ 131

AN ARCHITECTURE FOR ROBUST NETWORKING

How, then, can an Android application call a remote server safely and efi ciently? There are three
approaches that vary from one another, slightly, in their implementations. Although the three
approaches differ in their implementation, they share common themes. All of the approaches are
based on RESTful architecture. All depend on the fact that a query to a content provider is similar
to the query to the remote service for which the content provider is a proxy. In all three, resource
state, including whether the resource has changed since the last time it was synchronized with
the remote service, is stored locally in a content provider (probably backed by a SQLite database).
Finally, in all three, the task of synchronizing the data held locally in the content provider with the
parallel data on the remote server, is implemented in an Android service, not an activity.

NOTE The discussion in this chapter — and, indeed, the rest of this book — is
based in part on an architecture proposed in a presentation by Google Engineer,
Virgil Dobjanschi, at the 2010 Google I/O. The presentation is available on
YouTube:

http://www.youtube.com/watch?v=xHXn3Kg2IQE

The three resulting approaches, detailed in the next several sections are:

 ➤ Service-centric

 ➤ ContentProvider-centric

 ➤ SyncAdapter-centric

An architectural-level examination of these three approaches may make them seem top-heavy and
over-engineered. As you review this section remember that, just because a functional component
appears in a schematic does not necessarily mean that it requires a substantial amount of code.
Depending on the underlying complexity of the application in which these abstract architectures are
used, a diagram component may represent a Java class, a method, or even just a few lines of code
somewhere.

Approach 1: Service-Centric

Although this approach may be the simplest of the three, it is also the least malleable. This section
looks at it quickly, as you can see in Figure 5-2.

When an activity must perform an asynchronous task, it makes what looks like straightforward
method calls to a service helper. The service helper is nothing more than a proxy that translates the
arguments to the method call into extra data in an intent. When the service helper i res the intent,
the service catches it in its onStartService method. Listing 5-3 shows what this might look like in
an implementation of a client for the simple contacts API.

132 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

LISTING 5-3: A service helper

 public void createContact(
 Activity ctxt,
 String fname,
 String lname,
 String email,
 String phone)
{
 Intent intent = new Intent(ctxt, ContactsService.class);
 intent.putExtra(ContactsService.FNAME, fname);
 intent.putExtra(ContactsService.LNAME, lname);
 intent.putExtra(ContactsService.PHONE, phone);
 intent.putExtra(ContactsService.EMAIL, email);
 ctxt.startService(intent);
}

NOTE There is a complete explanation of intents and intent services in the
Android developer documentation:

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/app/IntentService.html

activity

Intent Callback

cursor

adapter

content

provider

service helper

service

REST method

remote

service

processor

startService Callback

ContentObserver

notification

query

/requery

CRUD method

REST response

HTTP response

REST request

HTTP request

FIGURE 5-2

An Architecture for Robust Networking ❘ 133

When the service receives the intent, it is responsible for several things. Its i rst order of business is
to move the process of handling the intent off the UI thread. Recall that even in an Android service,
class methods are run on the UI thread, by default. The Android IntentService is a perfect tool for
scheduling tasks on background threads. Each call to an intent service’s onStartService method
results in a call to the service onHandleIntent method running on a daemon thread.

On the daemon thread the service implementation must:

 ➤ Create the new resource in the database.

 ➤ Mark the new resource as “dirty” — which means it’s not yet synchronized with the service.

 ➤ Initiate a transaction with the remote service to update the remote resource.

 ➤ Record the ID for the update transaction in the database.

A single call to a content provider handles three of these four requirements.

To initiate the transaction with the remote server, the service object uses another architectural
abstraction that is simpler than it sounds, the REST method. A REST method is very similar to the
service helper. It is simply a proxy that translates a method call, from the service, into an HTTP
request to the remote server.

When the remote server returns its HTTP response, processing proceeds back up the stack. The
REST method returns to the service. The service interprets the response. Response processing must
always clear the ID of the outstanding request, recorded when the request was initiated (because
the transaction has completed). Depending on whether the request was successful, it may also
clear the “dirty” l ag and record other metadata — the time of last sync or a version number — in

the resource.

If the response from the remote server forces the content provider to change a resource in any way

that is visible from the UI, the content provider will use the content observer protocol to notify

listeners that they need to re-query.

Notice that the burden of communicating inbound data — new information sent by the server — back

to the UI thread, is handled by the content provider. Instead of explicitly publishing the new data into

the UI thread, in order to make it available for display in view components, updates are pushed

into the content provider. The content provider notii es the view that the data has changed, and the

view makes a normal, loader-driven query to refresh the display.

Even at this crude level of detail, the appeal of this multi-tier architecture is apparent. The activity

does not create or manage any AsyncTasks. The state of requests to the remote server is kept in the

database. The state information may even be useful to the user and, therefore, rel ected in the UI.

The processor component may be somewhat complex, but it is complexity that is intrinsic in the

problem and ignored by less sophisticated solutions.

Approach 2: ContentProvider-Centric

This approach is very appealing because of its homogeneity. It has a fractal-like design in which the

small components look very much like the larger components that they comprise (see Figure 5-3).

This is the architecture used to implement the example client in the next part of this chapter.

134 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

The components in this approach are similar to those in the previous one. The signii cant difference
is that here the activity makes RESTful calls to a content provider as if all of the data were local.
Hidden behind the content provider is a service helper that forwards requests to a service. The
service is responsible, as it was in the previous approach, for synchronizing local resources with
their counterparts on the remote server and doing so on a thread other than the UI thread. It uses a
REST method, also similar to that in the previous style, to communicate with the remote server.

When the remote server returns a response, a processor component updates the content provider,
which notii es content observers as necessary.

Notice that this style does require AsyncTasks in the activity. Content provider operations may
take signii cant time and cannot be performed on the UI thread. On the other hand, this adds a
certain symmetry to the architecture. The queries that populate the cursor adapter were, even in the
previous approach, performed from a loader. A loader is, essentially, an AsyncTask.

In this style, both outbound updates and inbound queries use AsyncTasks. Note, though, that
these AsyncTasks perform only local operations. The lifetime of one of these tasks is only the time
necessary to read or write a SQLite database.

At this point the origin of a second name for these architectural styles, “i gure-eight,” should become
apparent. In addition to the UI thread, there are two asynchronous processes. One of them — the
lower lobe — synchronizes the content provider with the remote server. The second — the upper
lobe — obtains information from the content provider and publishes it into the UI. AsyncTasks and

activity

startService

Async task

insert, update, delete

ContentObserver

notification

loader query

service helper

service

REST method

processor

cursor

adapter

content provider

remote

service

HTTP response

REST response CRUD methodREST request

HTTP request

FIGURE 5-3

An Architecture for Robust Networking ❘ 135

loaders comprise the upper lobe, asynchronously synchronizing the UI with the data model in the
content provider. In both this and the preceding approach the lower lobe is an intent service thread. It
pushes data to the network or publishes it to the UI by storing it directly into the content provider.

You’ll revisit this architecture in more detail later in the chapter, when you build the
restfulCachingProviderContacts project.

Approach 3: SyncAdapter-Centric

This i nal style is very similar to the previous approach. The essential difference is that it
uses the Android sync adapter framework, instead of a custom service, to manage the remote
synchronization process. See Figure 5-4.

activity

Get dirty resources

Async task

insert, update, delete

ContentObserver

notification

loader query

SyncAdapter

REST method processor

cursor

adapter

content provider

remote

service

HTTP response

REST response

CRUD method

REST request

HTTP request

FIGURE 5-4

Sync adapters are resilient, persistent, and very efi cient. They are complex and are discussed
separately, in detail, in the next section of this chapter.

REST within Android

You may have noticed the parallels between the discussion of content providers in the previous
chapter and the discussion of REST in this one. The relationships between the managed components
within an Android application are a microcosm of the relationships between objects outside the
application on the greater network. As on the Internet, client and service components have disparate
lifecycles, different owners, and scale unpredictably.

136 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

Further, as you saw in Chapter 4, Android content providers support inter-process communication
(IPC). The KeyValClient demonstrated a content provider that is part of one application and
used by client code that is running in a completely different Linux process as part of a separate
application. The details of how this works — an Android technology called Binder — are
only partially addressed in this book. Note, however, that the Android framework implements
communication between a client application and a content provider running as part of a different
application by handing the client application a proxy for the serving content provider. In other
words, the client holds a proxy to the serving content provider, and that proxy is indistinguishable
from that content provider. Sound familiar?

The fact that an Android system looks a lot like a network, internally, gives rise to the architectural
choice, noted in Chapter 4, that may surprise and even disturb developers with experience in back-
end server-side development. Although most Enterprise Java developers (JEE) are at home using
REST as an external architectural style, they are typically used to using object-relational mapping
(ORM) technologies for moving data internally.

Android is much more homogeneous — the REST style is pervasive. UI components like activities
use loaders to run RESTful queries against content providers, and receive cursors in return.
Most JEE developers would shudder at the server-side equivalent, running a SQL query from a
servlet and pushing a cursor into the JSP. In Android, however, this is a sensible choice. Using a
standardized cursor API to manage relational data is useful, because client code cannot distinguish
between a simple cursor, delivered from another component of the same application, or a cursor
wrapper, constructed by Binder and delivered across an IPC connection from a completely different
application. A l uent Android developer is comfortable using REST not only for requests to external

services, but also for requests to internal services.

The restfulCachingProviderContacts Project: An Example Client

In this section, you’ll see how to build a client for the RESTful API discussed so far. The full

project containing all code and metadata for the client application in this chapter is available from

https://github.com/wileyenterpriseandroid/Examples.git and as a part of the book’s

code download at www.wrox.com on the Download Code tab. This section analyzes only the

highlights. The project is called restfulCachingProviderContacts and it produces an application,

RESTfulContacts, that demonstrates basic REST techniques and the architectural style discussed in

this chapter. It is based on the second architectural style, the content provider-centric API backed by

a custom service.

This application is by no means industrial strength or ready for release. Although it is a good start,

it has shortcomings that will provide motivation for the more mature architectures discussed in the

second half of this book.

The application presents a typical list view that displays contact information, as you can see in

Figure 5-5. List cells contain the contact attributes, as described in the RESTful API: i rst name,

last name, phone number, and e-mail address. In addition — though you can’t see the color in this

black-and-white i gure — there is a small bar on the left of each row that shows the synchronization

status of a contact. The status bar is green if the contact is fully synchronized with the server side.

It is yellow if there is a synchronization transaction outstanding. It’s red if the contact is out of sync

and there is no active transaction to sync it.

An Architecture for Robust Networking ❘ 137

Clicking on the row for an individual contact or on the New button at the bottom of the page
brings up a detail view. The view is populated with contact details, in the former case, and empty,
in the latter. Again, there is a narrow status line at the top of the page that rel ects that contact

synchronization status — green, yellow, or red.

The delete button at the bottom of the page deletes an existing contact. The submit button submits

changes to an existing contact or creates a new one. See Figure 5-6.

FIGURE 5-5

138 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

The wrench icon in the Action Bar brings up a preferences page from which users can enter the
base URI for the server with which the client will communicate. The README i le in the project’s
source describes how to coni gure an endpoint for a demo server.

Adding a Contact

Start examining the program by tracing the process of adding a new contact. This process begins
when a user uses the New button to navigate to the details page, i lls it out, and then presses the
Submit button.

FIGURE 5-6

An Architecture for Robust Networking ❘ 139

The implementation of the Submit button handler is shown in Listing 5-4. The button
onClickListener calls the update method. The update method makes a sanity check (to make
sure that the user hasn’t mistakenly submitted an empty form) and then creates a ContentValues
object to hold the user’s input. Again, note that there is no intermediate POJO (Plain Ole Java
Object) representation of the contact. Instead, the UI represents that data as an instance of the
standard, pervasive ContentValues object.

When it has constructed the ContentValues object, it passes it to an AsyncTask called
UpdateContact that posts the new values to the content provider. Remember that in order to pass
the mutable content values object safely to the AsyncTask thread, the calling activity must guarantee
that it no longer holds any references to it.

When the user is creating a new contact, the URI used to name the contact whose information
should be edited is null. The task can determine whether an insert or an update is required by
checking the URI.

The UpdateContact asynchronous task is quite safe. It is i re-and-forget, runs quickly, does not
directly report results, and does not hold references to managed components.

NOTE It is best practice to make all AsyncTasks static. Because Java is a block-
structured language, variables declared in a surrounding block are visible from
within inner blocks. Java implements this for nested classes by manufacturing an
implicit pointer, a reference to the outer class that is not visible to the program-
mer. A non-static AsyncTask declared inside an activity always has a reference to
that activity. That reference will cause all of the problems described earlier in this
chapter.

LISTING 5-4: Adding a contact, the UI

static class UpdateContact extends AsyncTask<Uri, Void, Void> {
 private final ContentResolver resolver;
 private final ContentValues vals;

 public UpdateContact(ContentResolver resolver, ContentValues vals) {
 this.resolver = resolver;
 this.vals = vals;
 }

 @Override
 protected Void doInBackground(Uri... args) {
 Uri uri = args[0];
 if (null != uri) { resolver.update(uri, vals, null, null); }
 else { resolver.insert(ContactsContract.URI, vals); }
 return null;
 }
}

continues

140 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

// code elided...
void update() {
 String s = fnameView.getText().toString();
 if (TextUtils.isEmpty(s)) {
 Toast.makeText(
 this,
 R.string.name_required,
 Toast.LENGTH_SHORT)
 .show();
 return;
 }

 ContentValues vals = new ContentValues();
 addString(fnameView, fname, vals, ContactsContract.Columns.FNAME);
 addString(lnameView, lname, vals, ContactsContract.Columns.LNAME);
 addString(phoneView, phone, vals, ContactsContract.Columns.PHONE);
 addString(emailView, email, vals, ContactsContract.Columns.EMAIL);

 new UpdateContact(getContentResolver(), vals).execute(contactUri);

 goToContacts();
}

Upon receiving the insert request that the UI sends to create a new contact, the content provider
does a couple of things, as shown in Listing 5-5.

The Contacts content provider maintains a virtual table, as described in Chapter 4. Its i rst job is to
convert virtual columns to physical columns.

The next step, although only a couple of lines of code, is the key point of this entire chapter. The
fact that this newly created record is out of sync with the backend service is not represented as a
running task. Instead it is represented as state in the database.

To do this, the code i rst calls the sendInsert method. In this implementation, sendInsert is the
embodiment of the service helper architectural component. It creates a unique transaction ID and
forwards the request to the service component as an intent. Marshalling method parameters as an
intent in this way was i rst shown in Listing 5-3. The service will process the intent asynchronously,
initiating a transaction with the remote server (as will be described shortly). The sendInsert
method returns immediately with the transaction ID.

When the sendInsert method returns, having scheduled the remote transaction, the insert
method completes its work by calling localInsert. localInsert adds the newly created record
to the database, including the “dirty” l ag, marking it as unsynchronized, and the transaction ID,

identifying the transaction that has been scheduled to synchronize it.

The localInsert method also notii es any observers that the dataset backing the content provider’s

URI has changed. For example, if the user is now looking at the list of all contacts — quite likely,

since creating a new contact causes the UI to navigate back to the list view — that list displays the

newly entered, but out of sync, contact. Because it is out of sync but has a transaction scheduled to

synchronize it, the status bar at the left of the row should be yellow. The notii cation generated in

the localInsert method will cause the UI to update to show the yellow status bar.

LISTING 5-4 (continued)

An Architecture for Robust Networking ❘ 141

LISTING 5-5: Adding a contact, the content provider

@Override
public Uri insert(Uri uri, ContentValues vals) {
 switch (uriMatcher.match(uri)) {
 case CONTACTS_DIR:
 break;

 default:
 throw new UnsupportedOperationException(
 "Unrecognized URI: " + uri);
 }

 vals = COL_MAP.translateCols(vals);
 vals.put(ContactsHelper.COL_DIRTY, MARK);

 String xact = sendInsert(vals);
 vals.put(ContactsHelper.COL_SYNC, xact);

 return localInsert(uri, vals);
}

public Uri localInsert(Uri uri, ContentValues vals) {
 long pk = helper.getWritableDatabase().insert(
 ContactsHelper.TAB_CONTACTS,
 ContactsContract.Columns.FNAME,
 vals);

 if (0 > pk) { uri = null; }
 else {
 uri = uri.buildUpon().appendPath(String.valueOf(pk)).build();
 getContext().getContentResolver().notifyChange(uri, null);
 }

 return uri;
}

private String sendInsert(ContentValues vals) {
 Intent intent
 = RESTService.getIntent(getContext(), RESTService.Op.CREATE);

 putContentValues(vals, intent);

 getContext().startService(intent);

 return intent.getStringExtra(RESTService.XACT);
}

The application’s intent service will eventually get around to processing the request that was posted
from the sendInsert method. Since the service is an intent service, that processing automatically
takes place on a daemon thread. Again, remember that this is not true for subclasses of a standard
service.

142 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

The implementation of the request processor section of the intent service is shown in
Listing 5-6. The sendRequest method used to post an HTTP request to the network is the
embodiment of the HTTP method architectural component, and is the network client shown in
Listing 5-2. The MessageHandler object marshals the content values object to JSON, and the
resulting message is passed on as the payload for the HTTP request.

When the server returns its response, the contents are passed to the response handler. It simply
unmarshals that content into another new, content values object. If the request is successful, the new
contact has been synchronized and no longer dirty.

Whether or not the request was successful, there is no longer an outstanding transaction to
synchronize the data. Once the service receives the transaction response, it is obliged to update the
content provider when the transaction completes. This update is handled in the cleanup method,
the embodiment of the processor component in this implementation.

The cleanup method calls the content provider to update the record on which the transaction is
outstanding. The implementation is a little l abby here; it uses the ID of the transaction to identify

the record requiring update. This requires exposing columns in the provider contract that really

should be private. A more complete application might describe a second virtual table to be used only

by the service and in which the transaction ID was the primary key.

The content provider receives the update, stores it in the database, and notii es the UI. The color of

the status bar next to the new contact will change to green if the request was successful or to red if

it was not.

LISTING 5-6: Adding a contact, the service

private void createContact(Bundle args) {
 if (args.containsKey(ID)) {
 throw new IllegalArgumentException("create must not specify id");
 }
 Uri uri = ((ContactsApplication) getApplication()).getApiUri();

 final ContentValues vals = new ContentValues();
 try {
 String payload = new MessageHandler().marshal(args);

 sendRequest(
 HttpMethod.POST,
 uri,
 payload,
 new ResponseHandler() {
 @Override
 public void handleRepsonse(BufferedReader in)
 throws IOException
 {
 new MessageHandler().unmarshal(in, vals);
 } });

 vals.putNull(ContactsContract.Columns.DIRTY);
 }

Using Sync Adapters ❘ 143

 catch (Exception e) {
 Log.w(TAG, "create failed: " + e, e);
 }
 finally {
 cleanup(args, vals);
 }
}

private void cleanup(Bundle args, ContentValues vals) {
 if (null == vals) { vals = new ContentValues(); }

 vals.putNull(ContactsContract.Columns.SYNC);
 if (BuildConfig.DEBUG) {
 Log.d(TAG, "cleanup @" + args.getString(XACT) + ": " + vals);
 }

 getContentResolver().update(
 ContactsContract.URI,
 vals,
 ContactsProvider.SYNC_CONSTRAINT,
 new String[] { args.getString(XACT) });
}

While still raw and uni nished, this program is a much i rmer architectural grounding on which to
base mobile applications. The code is not signii cantly more complex than a naïve implementation.
Once you grasp the concept of storing synchronization state in the database, it is easy to read and
understand.

This implementation is so much more robust! Unlike the naïve implementation, this application
could be extended to recognize and handle records that have not been successfully synchronized:
They are the records that are still marked as dirty and that do not have pending synchronizing
transactions.

Extending it to notify the user when synchronization succeeds or when new data arrives is similarly
straightforward. This is a solid basis for applications that delight their users.

USING SYNC ADAPTERS

The RESTfulContacts client, as described so far, is a major step toward an enterprise-enabled
application. It not only uses the network, but also uses it in a safe and robust way. Its RESTful
architecture, internal and external, elegantly navigates the minei eld of Android concurrency and
lifecycle management issues. It is, to paraphrase Albert Einstein, as simple as possible, and no
simpler.

There are, however, still some signii cant problems. Displaying a contact’s synchronization status in
the UI might be interesting, perhaps even useful, if done well. RESTfulContacts as it stands, though,
is an excellent example of a horrible user experience. When a contact’s synchronization status turns
red, there is no hope that it will ever turn green again by itself. Worse than that, there is very little
that users can do to remedy the situation.

144 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

The bad UI experience actually rel ects a deeper architectural problem. Imagine the following

scenario. Suppose that the user chooses a contact for editing and mistypes the telephone number.

After submitting the edit, she immediately notices the misspelling in the list view and edits the

contact information a second time. If she manages to submit the second edit before the i rst one

completes, the ID for the i rst transaction will be overwritten in the database. Although this might

just work accidentally, it certainly seems unreliable.

There is an even broader consideration. As it stands, the server-side database is wide open. Even

if you and I have different base URIs to keep our contacts separate, there is nothing to stop me

from using your URI and discovering all of your contacts. This is intolerable. Users need to be able

to control access to their personal information. Adding authentication to the RESTfulContacts

application would be quite a chore. Fortunately, the Android framework provides a tool that

addresses many of these issues, the sync adapter. This section will develop a new application, based

on it. The full project containing all code and metadata for the client application in this chapter

is available from https://github.com/wileyenterpriseandroid/Examples.git and as a part

of the book’s code download at www.wrox.com on the Download Code tab. This section analyzes

only the highlights. The project is called syncAdapterContacts, and it produces an application,

SyncContacts.

The Android Synchronization service, frequently referred to by the term sync adapter is made up

of two components. One of the components is responsible for synchronizing data between a local

content provider and a backend data service. The other component manages the accounts that the

synchronization service uses when authenticating itself with the backend service.

In the Android system, synchronization is organized around accounts. While one can imagine other,

more data-oriented units of synchronization — a database, tables within a database, and so on — in

Android it is an account that is synchronized.

Android Account Management

Account management in Android is a large, complex and ill-documented space. Much of it is also

outside the scope of this book. Because accounts are the unit of synchronization, however, it will be

necessary to create one in order to give the client application something to synchronize.

In order to create an account, an application must do several things:

 ➤ Request the permissions necessary to manage accounts.

 ➤ Declare an account authentication service component in its manifest.

 ➤ Within the service declaration, create a metadata declaration that refers to a resource

describing the application’s account type.

 ➤ Create a Java implementation of the declared service that returns an instance of a subclass

of Android’s account authentication template class.

 ➤ Optionally, implement preference pages for the account.

This section examines these requirements.

Using Sync Adapters ❘ 145

Declaring an Account Authenticator

Much of the work involved in getting account creation to work takes place in the manifest. Be
warned that coni guring an account authenticator is meticulous work. Android discussion forums
are full of descriptions of how minor mistakes in these declarations have caused the entire Android
system to crash and reboot. You would be well advised to start with working code and to make
small, incremental changes to it to make it meet your specii c needs.

Listing 5-7 shows the essential portions of a manifest declaring an account authentication service:

LISTING 5-7: Adding an account management service to the manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.enterpriseandroid.syncadaptercontacts"
 android:versionCode="4"
 android:versionName="1.0RC5" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />

 <!-- Network -->
 <uses-permission android:name="android.permission.INTERNET" />

 <!-- Accounts -->
 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
 <uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />

 <application
 android:name=".ContactsApplication"
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

<!-- ... component declarations omitted -->

 <service
 android:name=".sync.AccountService"
 android:exported="false" >
 <intent-filter>
 <action android:name="android.accounts.AccountAuthenticator" />
 </intent-filter>

 <meta-data
 android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/account" />
 </service>
 </application>

</manifest>

First, note that the application uses the two permissions android.permission.AUTHENTICATE_
ACCOUNTS and android.permission.WRITE_SYNC_SETTINGS. The i rst of these permissions

146 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

controls the ability of an application to create an account at all. The Android system distinguishes
between the ability to create a new account and the ability to change the coni guration of that
account. Without the second permission, an application cannot modify an account it has just
created.

There are two other permissions that may be necessary to an application that manipulates accounts
(note that managing accounts is different than authenticating them). The permission android
.permission.GET_ACCOUNTS allows an application to view the list of accounts known to the
account service. If an application wishes to make use of an existing account — an account that it
did not itself create — it may need to request this permission. The permission android.permission
.MANAGE_ACCOUNTS allows an application to create and edit accounts.

As you design your account system, recall that these are fairly powerful permissions you are
requesting. As anyone who has seen Spider-Man knows, “With great power comes great
responsibility.” Your application is responsible, not only for using these permissions only for
honorable purposes but also for making sure that any code that actually uses them is secure from
attack. This is code that should be written carefully and, if at all possible, reviewed by a security
professional.

In Android, accounts of a given account type are dei ned by the existence of a service component
that meets several rigid requirements. The service declaration identii es the component that Android
will use to create, coni gure, and authenticate one or more accounts of the declared account type. In
order for Android to recognize a service as an account authenticator, its declaration must have all of
the following elements:

 ➤ It must declare a service that, on bind, returns an instance of
AbstractAccountAuthenticator.

 ➤ The declaration must contain a i lter for the intent android.accounts
.AccountAuthenticator.

 ➤ The declaration must contain a reference to a metadata i le.

 ➤ The referenced metadata i le must contain an account-authenticator element.

 ➤ The account-authenticator element in the metadata i le must contain an
android:accountType attribute.

Unless the account authenticator (the service, the intent i lter, the metadata declaration and the
account type) exists, there is no account type. Without an account type, there are no accounts.
Unless there is an account, there is nothing for the synchronization service to synchronize.

Recall that, by default, adding an intent i lter to a service causes that service to be accessible to
external applications that send the i ltered intent: The service is exported. That makes sense in
most cases. Providing external applications access to an application component is one of the most
common reasons for declaring an intent i lter. For an account authenticator, however, the fewer
access patterns, the better. Perhaps surprisingly, an account authentication service does not have to
be exported. The service in Listing 5-7 has its “exported” attribute explicitly set to false. It cannot
be used from other applications.

Using Sync Adapters ❘ 147

This is certainly the safest way to coni gure an authenticator. If it is necessary to allow some external
access — perhaps there are multiple applications that need to use the same authenticator — it is also
possible to use permissions to control access (permissions are discussed in detail, in Chapter 12).

The next absolute requirement in the declaration of an account authentication service is a metadata
reference. The metadata element must have a name attribute whose value is android.accounts
.AccountAuthenticator (this is also the name of the intent accepted by the service intent i lter).
The metadata attribute must refer (using an android:resource attribute) to a correctly built
account-authenticator resource. Listing 5-8 shows a very simple example of such a resource.

LISTING 5-8: An account authenticator metadata resource

RES/XML/ACCOUNT.XML

<?xml version="1.0" encoding="utf-8"?>
<account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountPreferences="@xml/account_prefs"
 android:accountType="@string/account_type"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:smallIcon="@drawable/ic_launcher" />

RES/VALUES/STRINGS.XML

<?xml version="1.0" encoding="utf-8"?>
<resources>

<!-- ... string declarations omitted -->

 <!-- Sync -->
 <string name ="account_type"
 >com.enterpriseandroid.syncadaptercontacts.ACCOUNT</string>

</resources>

This resource appears to be fairly fault-tolerant in recent versions of Android. As mentioned
previously, though, in older versions of Android, seemingly trivial errors could cause a reboot of the
entire Android system. If your application targets older Androids, be sure to test thoroughly on each
specii c, targeted version to make sure that your implementation is sound.

The meanings of most of the attributes in the metadata i le are self-evident. There are two that
require additional explanation. The i rst of these is the android:accountType.

The account type is — as are most of the dei nable tokens used in the Android system: permissions,
content provider authorities, and so on — simply a bag of characters. There are no semantic
constraints. You could probably dei ne a new account type for your application gov.whitehouse
.zork if you chose to do so. By convention, of course, you will probably use the package name for

148 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

your application or the reversed domain name of the remote service to be synchronized.
In the example, the account type is a reference to a string resource whose value is
com.enterpriseandroid.syncadaptercontacts.ACCOUNT.

The second attribute in the metadata i le that requires some discussion, is
android:accountPreferences. This attribute points to yet another resource, this time a i le
dei ning the preferences page that will be used to coni gure the account. It is likely that the page
that you want to use here — preferences that coni gure the account — will also be part of your
application’s standard preferences. They are probably available, from your application, through an
action bar item.

If you have already built preferences pages for your application, you may be tempted to refer here
to one of the preference dei nition resources you’ve already created. Unfortunately, that won’t
work. You cannot simply use a standard permissions dei nition resource (preference-headers,
PreferenceScreen). Instead you need a special resource, like the one shown in Listing 5-9, that
uses an intent to launch your application’s preferences activity.

LISTING 5-9: Account authenticator preferences

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >

 <Preference
 android:key="account_settings"
 android:summary="@string/prefs_sync_summary"
 android:title="@string/prefs_sync_title" >
 <intent
 android:targetClass
 ="com.enterpriseandroid.syncadaptercontacts.PrefsActivity"
 android:targetPackage
 ="com.enterpriseandroid.syncadaptercontacts" >
 <extra
 android:name=":android:no_headers"
 android:value="true" />
 <extra
 android:name=":android:show_fragment"
 android:value
 ="com.enterpriseandroid.syncadaptercontacts.PrefsActivity$SyncPrefs"
 />
 </intent>
 </Preference>
</PreferenceScreen>

This declaration will cause your application to be started, and your preferences activity to be run,
exactly as if you’d navigated there from the application menu. The intent declaration in the example
uses intent extras to navigate directly to the sync prefs page (":android:show_fragment" mimics
the behavior of the PreferenceActivity.EXTRA_SHOW_FRAGMENT l ag).

Using Sync Adapters ❘ 149

NOTE Re-using application preferences can be a can of worms. To begin,
the documentation of XML specii cation of intents is not very good. There is
another issue, though.

While the example code nicely navigates directly to the sync prefs page, the bad
news is that, if your application is started from preferences like these, then it is
running, and its top activity is the sync prefs page. If you, subsequently, launch it
from the launcher, you will i nd yourself in preferences, not in your launch page.
Consider setting the android:clearTaskOnLaunch attribute to true in your
launch activity to correct this.

This completes the declaration of a very simple authentication service. While there are many possible
variations and extensions on this minimal example — some documented and some not — this
declaration is sufi cient to allow the creation of an account that can be synchronized with the Android
synchronization service.

The manifest declarations dei ne a new account type, com.enterpriseandroid
.syncadaptercontacts.ACCOUNT, in the metadata for a service component. The implementation
of that service component, the class com.enterpriseandroid.syncadaptercontacts.sync
.AccountService, is responsible for managing and authenticating accounts of the new type. You
can now turn to the implementation of that service.

Using an Account Authenticator

In order to understand the implementation of the account authenticator it will be very useful, i rst,
to understand what happens when an application wants to manage an account. Consider then
what happens when some application unrelated to SyncContacts want to manage SyncContacts
accounts. It turns out that, there is no need to simply imagine such an application! The ubiquitous
Settings application, pre-installed as part of the Android’s system, does exactly that. Without any
loss of generality — another application would implement the same behavior in the same way — the
example will use the Settings application for demonstration.

When started, the Settings (this example is taken from Android V4.0.3, Ice Cream Sandwich)
application displays a page similar to the one shown on the left in Figure 5-7.

Selecting the “Accounts & sync” item invokes a page like the one shown in the center of the i gure.
Finally, selecting “ADD ACCOUNT” from the bottom of the page presents a page like the one on
the right of the i gure.

When the SyncContacts application is installed on a device, the Android framework on that
device discovers the new account type declared in its manifest as part of the installation process.
It remembers it. When the Settings application requests a list of all account types present on the
device, the new type is included in the list, along with its icon and label, and they are displayed,
as shown on the right side of Figure 5-7. Clicking the corresponding item will cause the Settings
application to initiate the process of creating a new account.

When the Settings application needs to create a new account, it obtains an instance of the Android
framework’s AccountManager object. It calls the method addAccount on the object. This call

150 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

FIGURE 5-7

initiates an inter-process communications connection that, eventually, binds the SyncContacts
authenticator, AccountService. The framework knows that it should bind this particular service
because one of the arguments to the addAccount method is the account type for the account to be
added, the SyncContacts account type. The framework starts the SyncContacts application if it is
not already running, binds the service, and forwards the request to its onBind method.

NOTE The creation of inter-process communication channels is what bound ser-
vices are all about. Briel y, the process goes like this: A client running in one pro-
cess calls Context.bindService with an intent identifying the service to which
it wants to connect. For each such request, the service process receives a call to
its onBind method and returns an IBinder object. The client back in its process
receives a corresponding IBinder object that connects the two processes through
Binder, Android’s IPC kernel extension.

For further information on the use of Android bound services, see:

http://developer.android.com/guide/components/bound-services.html

Implementing an Account Authenticator

The AccountService, the service that supports SyncContacts’ implementation of an account
authentication service, is shown in its entirety in Listing 5-10. As is frequently the case for an

Using Sync Adapters ❘ 151

Android bound service, the implementation of the service itself is trivial. It is simply a named factory
that returns the IBinder object that supports inter-process communication — in this case, between
Android’s account manager service and the account authenticator. The object that the service
returns in its onBind method, the AccountMgr, is the thing that actually manages the accounts of
the type declared in the manifest.

LISTING 5-10: The account service

public class AccountService extends Service {
 private volatile AccountMgr mgr;

 @Override
 public void onCreate() {
 super.onCreate();
 mgr = new AccountMgr(getApplicationContext());
 }

 @Override
 public IBinder onBind(Intent intent) {
 return mgr.getIBinder();
 }
}

An implementation of an account authenticator must be a subclass of the abstract
class AbstractAccountAuthenticator. AbstractAccountAuthenticator wraps an
IAccountAuthenticator, which is the IBinder object that forms the IPC connection to the
account manager. IAccountAuthenticator, though, is a hidden type and is not exposed by the
Android API. The only way to use it is to subclass AbstractAccountAuthenticator.

As a subclass of the abstract type, an authenticator implementation must dei ne seven methods:
addAccount, getAuthToken, updateCredentials, hasFeatures, confirmCredentials,
editProperties, and getAuthTokenLabel. Each of these methods can be quite complex. An
authenticator’s implementation of the addAccount method, might, for instance, require a user to
enter data from a security token, send that data to a remote service, wait for the remote service
to send a one-time passphrase via SMS to a pre-determined phone number, and then coni rm the
password with the remote service.

An authenticator may also be very simple. In the example explored here, most of the methods simply
throw an UnsupportedOperationException. The implementation of the addAccount method here
actually does no authentication at all. It creates a one account per application installation and uses
that account for all communications with the upstream contacts server. In order to accommodate
such a broad range of policies, most of the methods in AbstractAccountAuthenticator operate in
three different modes, identii ed here as immediate, intent, and delayed.

Listing 5-11 demonstrates an implementation of the immediate mode.

152 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

LISTING 5-11: Simple account creation

@Override
public Bundle addAccount(
 AccountAuthenticatorResponse response,
 String accountType,
 String authTokenType,
 String[] requiredFeatures,
 Bundle options)
{
 Bundle reply = new Bundle();

 String at = ctxt.getString(R.string.account_type);
 reply.putString(AccountManager.KEY_ACCOUNT_TYPE, at);

 if (!at.equals(accountType)) {
 reply.putInt(AccountManager.KEY_ERROR_CODE, -1);
 reply.putString(
 AccountManager.KEY_ERROR_MESSAGE,
 "Unrecognized account type");
 return reply;
 }

 Account account = new Account(ctxt.getString(R.string.app_name), accountType);
 if (!AccountManager.get(ctxt).addAccountExplicitly(account, null, null)) {
 reply.putInt(AccountManager.KEY_ERROR_CODE, -1);
 reply.putString(
 AccountManager.KEY_ERROR_MESSAGE,
 "Unable to create account");
 return reply;
 }
 reply.putString(AccountManager.KEY_ACCOUNT_NAME, account.name);

 String provider = ctxt.getString(R.string.contacts_authority);
 ContentResolver.setIsSyncable(account, provider, 1);
 ContentResolver.setSyncAutomatically(account, provider, true);

 String token = obtainToken(authTokenType);
 if (null == token) {
 reply.putInt(AccountManager.KEY_ERROR_CODE, -1);
 reply.putString(
 AccountManager.KEY_ERROR_MESSAGE,
 "Unrecognized token type");
 return reply;
 }
 reply.putString(AccountManager.KEY_AUTHTOKEN, token);

 return reply;
}

In immediate mode, an authenticator methods return a bundle that contains any values the authenticator
wants to return to its caller. The implementation of the addAccount method in Listing 5-11, for
instance, has enough information so that when it is run, it can create the account on the spot (using
AccountManager.addAccountExplicitly). The type and name for the single account it will create are
simply resource values that it looks up.

Using Sync Adapters ❘ 153

In the bundle, the authenticator returns the account type for which the caller requested an account.
If it successfully creates an account of that type, it makes the new account synchronizable, sets it up
to sync automatically, and returns the account name and an authorization token for it.

Understanding the other two modes, intent and delayed, requires revisiting the client side of
account management. Most of the methods on the account manager — the client-side framework
that an application, Settings, in this example, uses to manage accounts — return values that are
Java Future objects (AccountManagerFuture<Bundle> specii cally). A method that creates an IPC
connection and proxies its request to another process cannot provide its return values immediately.
Instead it returns a future, a token that represent an asynchronous computation. The future can be
redeemed for the value of that computation when the computation completes.

In the example, the Settings program calls the account manager’s addAccount method to manage a
SyncContacts account. The method returns a Future object that represents the computations being
done by the bound account authenticator at the other end of the connection. If the Settings program
needs to obtain a result from that remote computation, it calls the future’s getResult method. This
method blocks until the asynchronous computation is complete and then returns the bundle that is
forwarded across the IPC connection from the authenticator’s addAccount method.

In immediate mode, the authenticator returned its result relatively quickly. The future’s getResult
method on the client side of the connection would block only briel y (still too long to be called from

the UI thread, however).

In intent mode, however, instead of returning values to be forwarded to the client application, the

authenticator instead returns a bundle with string value for the key KEY_INTENT like this:

 Intent intent = new Intent(ctxt, AuthenticatorActivity.class);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);
 reply.putParcelable(AccountManager.KEY_INTENT, intent);

The returned bundle may contain other content, as necessary. Instead of returning this bundle

directly to the client, though, the framework processes it specially. If the bundle contains a

KEY_INTENT key, the framework extracts the intent that is its value and uses it to start the activity it

identii es (AuthenticatorActivity.class in this case). When the activity runs, it can take as much

time as it likes and is free to interact with the user, the network, biometrics sensors, goat entrails,

or anything else necessary to authenticate a new account. Frequently this means collecting some

data from the user and forwarding them to a backend server. The Android framework provides the

handy activity subclass AccountAuthenticatorActivity as a base class for activities that support

an account authenticator.

When the activity eventually completes, it (or one of its delegates) retrieves the response object, also

in the bundle returned by the authenticator, and calls its onResponse method.

Remember the calling client? It is still waiting for the getResult method of the future object

returned from its call to unblock and return a value! It is only when the onResponse method of the

response object — it was passed to the account authenticator in the original client call — is invoked,

that the client’s getResult method i nally unblocks and returns the bundle that the authenticator

supplied as parameter to the onResponse method. Obviously, if the authenticator is operating in

intent mode, the client can wait for a very long time, to get its response. It must be designed to

accommodate that eventuality.

154 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

Delayed mode is similar to intent mode, except that the account authenticator returns null instead
of a bundle. When the framework observes the null response, it, again, does not unblock the
caller’s getResult method. Unlike intent mode, though, it does not take any other action. In this
mode, it is the authenticator’s responsibility to make sure that the response object’s onResponse
method gets called. The authenticator is free to take action itself or to pass the response object
along to any delegate it chooses. Eventually, though, it must make a decision and allow the client
to proceed.

WARNING Beware! It is quite possible for an account authenticator to uninten-
tionally block a client for a very, very long time by incautiously returning null
from one of its methods!

Creating an Account

With the implementation of the account authenticator, as shown in Listings 5-10 and 5-11, it is
now possible to create an account. Returning to the window shown on the right of Figure 5-7 and
selecting the SyncContacts item from the list results in a window similar to that shown in
Figure 5-8.

FIGURE 5-8

Using Sync Adapters ❘ 155

An account has been created! Clicking on the SyncContacts item on the left of Figure 5-8 brings up
the window shown on the right. Selecting the Sync Prefs entry on the setting page (the right-hand
window) navigates to the SyncContacts application preferences page.

It is also possible to initiate account creation from within an application. Listing 5-12 shows an
application menu item that has the same effect as the interactions in Figures 5-7 and 5-8. In order to
run this code an application must request the permission android.permission.MANAGE_ACCOUNTS.

Notice that that the code does not expect a response from the call to addAccount. An examination
of the Android source reveals that the Settings application works the same way. Neither calls
getResponse on the future object returned by the call to addAccount. This suggests that it is
probably safe to return null from the corresponding call in the account authenticator.

LISTING 5-12: Using the account manager within the application

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.item_prefs:
 startActivity(new Intent(this, PrefsActivity.class));
 break;

 case R.id.item_account:
 AccountManager.get(this).addAccount(
 getString(R.string.account_type),
 getString(R.string.token_type),
 null,
 null,
 null,
 null,
 null);
 break;

 default:
 Log.i(TAG, "Unrecognized menu item: " + item);
 return false;
 }

 return true;
}

Finally, notice that the sync icon in the left window of Figure 5-8 is dimmed (whether the account
was created from within the application or from Setting) and that there is no information in the
“DATA & SYNCHRONZATION” section of the window on the right of the i gure. That is because
there is no service to synchronize the account. That’s the project for the next section.

Creating a Sync Adapter

Creating a sync adapter is quite a bit simpler than creating the code to manage an account. To
begin, a sync adapter service must be declared in the manifest, as shown in Listing 5-13.

156 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

LISTING 5-13: Adding synchronization service to the manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.enterpriseandroid.syncadaptercontacts"
 android:versionCode="4"
 android:versionName="1.0RC5" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />

 <!-- Network -->
 <uses-permission android:name="android.permission.INTERNET" />

 <!-- Accounts -->
 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
 <uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />

 <!-- Account extra -->
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />

 <!-- Sync -->
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />

 <application
 android:name=".ContactsApplication"
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

<!-- ... component declarations omitted -->

 <provider
 android:name=".data.ContactsProvider"
 android:authorities="@string/contacts_authority"
 android:exported="false" />

 <service
 android:name=".sync.SyncService"
 android:exported="false" >
 <intent-filter>
 <action android:name="android.content.SyncAdapter" />
 </intent-filter>

 <meta-data
 android:name="android.content.SyncAdapter"
 android:resource="@xml/sync" />
 </service>
 </application>

</manifest>

Using Sync Adapters ❘ 157

This listing is similar to Listing 5-7, but there are several new components that are worthy of
note. First, the application now requests three new permissions: android.permission.MANAGE_
ACCOUNTS, android.permission.GET_ACCOUNTS, and android.permission.USE_CREDENTIALS.
The i rst of these was added to support the menu item introduced in the previous section. The
remaining two permissions support the sync adapter.

Next, note the declaration of the content provider. Its implementation was copied, very nearly
verbatim, from the RESTContacts application and will not be explored here. The declaration,
though, is important because it dei nes the provider’s authority. That authority will be used again,
shortly.

A sync adapter declaration is, like an account manager declaration, a service that i lters a particular
intent and declares a special metadata resource. The android:name attribute for both i ltered intent
and the metadata declaration are the same: android.content.SyncAdapter. When the application
is installed, the Android system will discover this declaration and, in addition to making it available
as a bindable service, will record it as the service that supports the account type mentioned in the
metadata resource.

A minimal sync adapter’s metadata resource looks like this (Listing 15-14):

LISTING 5-14: A sync adapter metadata resource

RES/XML/SYNC.XML

<?xml version="1.0" encoding="utf-8"?>
<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountType="@string/account_type"
 android:contentAuthority="@string/contacts_authority" />

RES/VALUES/STRINGS.XML

<?xml version="1.0" encoding="utf-8"?>
<resources>

<!-- ... string declarations omitted -->

 <!-- Sync -->
 <string
 name="contacts_authority"
 >com.enterpriseandroid.syncadaptercontacts.CONTACTS</string>
 <string
 name="account_type"
 >com.enterpriseandroid.syncadaptercontacts.ACCOUNT</string>

</resources>

This declaration links the account type from the previous section with the authority for the content
provider. The references to string resources used here reduce the possibility of problems caused by
typos.

158 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

There are several other attributes that can be added to the sync-adapter element.
For instance, although synchronizers are, by default, listed on the Sync Settings page
(Figure 5-8), the android:userVisible attribute makes it possible to hide them. Setting the
android:isAlwaysSyncable attribute to true — the default is false — has the same effect as
that achieved in Listing 5-11 by calling ContentResolver.setIsSyncable. Although current
documentation describes the attribute, android:syncAdapterSettingsAction, that specii es an
intent that will start an activity to coni gure the sync adapter, the resource compiler will not
compile it.

Again, like the account authenticator, the implementation of the sync adapter service is very simple.
It is just a factory whose onBind method returns an IBinder object that supports the inter-process
communications channel through which the Android framework’s SyncManager sends requests.

Listing 5-15 shows it in its entirety.

LISTING 5-15: A sync adapter service

public class SyncService extends Service {
 private volatile SyncAdapter synchronizer;

 @Override
 public void onCreate() {
 super.onCreate();
 synchronizer = new SyncAdapter(getApplicationContext(), true);
 }

 @Override
 public IBinder onBind(Intent intent) {
 return synchronizer.getSyncAdapterBinder();
 }
}

As with the account manager, the inter-process communication interface used by the SyncManager
to communicate with clients, ISyncAdapter, is not published as part of the Android API. You
must subclass the framework class AbstractThreadedSyncAdapter, which wraps that interface, to
implement a sync adapter. Its getSyncAdapterBinder method returns the IPC channel.

Perhaps a surprise — and unlike the account manager — the sync manager itself is also hidden from
the API. It is used only by the framework to implement behavior accessible through other objects,
mostly the ContentResolver.

AbstractThreadedSyncAdapter is an abstract class. Extending it requires you to implement only
one method, onPerformSync. Listing 5-16 gives an implementation of that method. Finally! The
implementation of a sync adapter!

LISTING 5-16: Implementing a sync adapter

@Override
public void onPerformSync(
 Account account,

Using Sync Adapters ❘ 159

 Bundle extras,
 String authority,
 ContentProviderClient provider,
 SyncResult syncResult)
{
 AccountManager mgr = AccountManager.get(ctxt);
 String tt = ctxt.getString(R.string.token_type);

 Exception e = null;
 String token = null;
 try { token = mgr.blockingGetAuthToken(account, tt, false); }
 catch (OperationCanceledException oce) { e = oce; }
 catch (AuthenticatorException ae) { e = ae; }
 catch (IOException ioe) { e = ioe; }

 if (null == token) {
 Log.e(TAG, "auth failed: " + AccountMgr.acctStr(account) + "#" + tt, e);
 return;
 }

 new RESTService(ctxt).sync(account, token);

 // force re-validation
 mgr.invalidateAuthToken(account.type, token);
}

There are many possibilities for the implementation of a sync adapter. This particular
implementation is based on an architecture in which the authentication process results in a token,
which is then used by the client to demonstrate to the remote service for a limited period of time
that the requesting account has been authenticated. Calls to blockingGetAuthToken return a
cached copy of that token.

In the example, the only failure mode occurs if the attempt to retrieve the token fails. If that
happens, the service simply returns without attempting synchronization.

Real enterprise applications will encounter another, much more interesting failure mode. Once the
Android framework gets an authentication token, it will cache it for a very long time. At some point,
though, the token will by dei nition expire. When that happens, the upstream server will refuse to
honor it any longer. In order to proceed, it is necessary to get a new token.

To do this, an application must, i rst, remove the existing token from the cache. It does this by
marking the token invalid, with the account manager method invalidateAuthToken.

The code in Listing 5-16 illustrated the use of this method by implementing a one-time token.
It invalidates the existing token after every successful server transaction. While an interesting
demonstration, this is almost certainly not a good idea for production code. Instead, a real
enterprise application will invalidate the token in response to an HTTP 401 status (Unauthorized)
from the server.

When the new token is requested, the Android framework forwards the request to the authenticator
built in the previous section. When you left that section, there was only one method implemented
in the authenticator class, addAccount. It is now necessary to implement a second, as shown in
Listing 5-17.

160 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

LISTING 5-17: Obtaining authentication tokens

@Override
public Bundle getAuthToken(
 AccountAuthenticatorResponse response,
 Account account,
 String authTokenType,
 Bundle options)
{
 Bundle reply = new Bundle();
 reply.putString(AccountManager.KEY_ACCOUNT_TYPE, account.type);
 reply.putString(AccountManager.KEY_ACCOUNT_NAME, account.name);
 reply.putString(KEY_TOKEN_TYPE, authTokenType);

 String tt = ctxt.getString(R.string.account_type);
 if (!tt.equals(account.type)
 || !ctxt.getString(R.string.app_name).equals(account.name))
 {
 reply.putInt(AccountManager.KEY_ERROR_CODE, -1);
 reply.putString(AccountManager.KEY_ERROR_MESSAGE, "Unrecognized account");
 return reply;
 }

 String token = obtainToken(authTokenType);
 if (null == token) {
 reply.putInt(AccountManager.KEY_ERROR_CODE, -1);
 reply.putString(
 AccountManager.KEY_ERROR_MESSAGE,
 "Unrecognized token type");
 return reply;
 }

 reply.putString(AccountManager.KEY_AUTHTOKEN, token);
 return reply;
}

This implementation is, as was the implementation of addAccount, very simple. It delegates the
actual task of obtaining a token to the obtainToken method. In this example, the implementation
of that method (not shown here) simply looks up a per-installation unique id string. A more realistic
implementation might, instead, use Google’s utility class GoogleAuthUtil.

With this addition to the authentication manager, you can return to the examination of the sync
adapter. Notice, in passing, that all of the warnings from the previous section about the length
of time required to complete an authenticator method apply in spades here. The getAuthToken
method might have to go through the entire authentication process again. It might require a series of
activities and several round trips to the remote server to present credentials and, perhaps, to coni rm
their receipt in order to get a new token. The call to blockingGetAuthToken in the sync adapter
might not return for quite a long time.

As the name of the sync adapter base class, AbstractThreadedSyncAdapter, suggests a sync
adapter does not run on the UI thread. Long running processes are, while never desirable, at least
tolerable.

Using Sync Adapters ❘ 161

This completes the essentials of sync adapter construction. At this point, returning to the Settings
application and navigating through the process of account creation will result in pages like those
shown in Figure 5-9.

FIGURE 5-9

Though the i gure is in black and white here, the sync icon in the left window in this i gure is green
instead of gray and the Sync Settings page now has information about the last synchronization time
and a check box checked to indicate that the account is being synchronized.

The implementation of the RESTService.sync method — the method called from the sync adapter
of this new application to perform the actual synchronization with the remote service — is very
similar to other methods built for the RESTfulContacts application in the i rst half of this chapter.
It will use JSON over HTTP to communicate change to the upstream service for incorporation into
the remote database.

The architecture for the new application, however, is dramatically simpler. RESTfulContacts used
a “CRUD over the wire” design. As a i rst foray into RESTful design, the content provider in that
application is a strict, local, in-line, RESTful cache for calls to the remote service. It proxies the
local calls nearly verbatim to the network. While queries are handled locally, inserts, updates, and
deletes are all applied to the local cache and then forwarded, literally, to the remote.

SyncContacts, on the other hand, uses the single method, sync, to handle any necessary changes.
With careful design it is even possible to implement a synchronization protocol that supports
multiple sources for changes and handles conl icts in a convergent manner. While the sync method

162 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

is more complex than any one of the methods it replaces, the overall architecture is much simpler.
There is one isolated component that is responsible for synchronizing differences between a client
and a server. In order for this to work though, the content provider has to be able to schedule
synchronization when the local database is changed.

Scheduling the Sync Adapter

There are several ways to schedule a run of a sync adapter. The Sync now item in the Settings
application Sync settings menu, shown in Figure 5-10, will work, for any visible account.

FIGURE 5-10

Using Sync Adapters ❘ 163

That’s i ne, as a last resort. An application must have a way, though, to schedule synchronizations
dynamically. There are two ways to do that. The i rst is brute force and the second is pure Android
magic.

Listing 5-18 demonstrates scheduling a synchronization by brute force.

LISTING 5-18: Scheduling a synchronization by force

private void requestSync() {
 Account[] accounts = AccountManager.get(this)
 .getAccountsByType(getString(R.string.account_type));
 if ((null == accounts) || (0 >= accounts.length)) {
 Toast.makeText(this, R.string.msg_no_account, Toast.LENGTH_SHORT).show();
 return;
 }

 // Just use the first account of our type.
 // This works because there should be at most one.
 // If there were more, we'd have to choose an account in prefs or something.
 ContentResolver.requestSync(accounts[0],
 ContactsContract.AUTHORITY,
 new Bundle());
}

This method, called from a menu item in the SyncContacts application, simply requests a
list of accounts of the type it declares. In order to do this, it must use the permission
android.permission.GET_ACCOUNTS, as shown in Listing 5-13. Once it has the account, it uses a
content resolver method to request that a synchronization be run. The method’s second argument,
the authority for the content provider to be synchronized, is simply the authority from the content
provider’s contract. If it were necessary to pass parameters to the sync adapter, they would be
passed in the bundle supplied as the third argument. Even if there are no parameters for the sync
adapter, the third argument cannot be null.

Saving the best for last, the other way to schedule synchronization between a remote service and the
local data model employs exactly the same code used back in Chapter 4 to schedule synchronization
between the local data model and the local view components: the content resolver method
notifyChange.

That is nearly all there is to it. Because a sync adapter is tied to a content provider authority, a
change notii cation for that authority will cause the sync adapter to be scheduled. The content
provider code from the previous client nearly works without any change.

The one change that is necessary prevents extraneous updates. Consider, for instance, what happens
when an application user adds a new contact from the UI. Adding the record to the content provider
database generates a change notii cation. The change notii cation schedules the sync adapter. The
sync adapter run is scheduled a bit in the future, in case, as is likely, the user makes other changes at
about the same time. In many versions of Android, this delay is 30 seconds.

When the sync adapter runs, it looks in the database for records that are marked as dirty, bundles
them up into a JSON document, and sends them off to the server. When the server replies, the sync
adapter marks the records as synced with a call to the content provider’s update method. That call

164 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

generates another change notii cation, as it must, to update the record state in the UI: the status bar
changes from yellow, syncing, to green, synced.

It would be bad, however, if that second notii cation caused the sync adapter to be scheduled again!
In order to prevent that, there are two, overloaded versions of ContentResolver.notifyChange.

Recall that the version of this method used in the code in Chapter 4 takes two arguments: a URI
and a content observer. It signals a change in the dataset that backs the URI. That version is an
abbreviation for the three argument version:

 notifyChange(Uri uri, ContentObserver observer, boolean syncToNet)

The third argument indicates whether or not this notii cation should be broadcast to sync adapters.
Listing 5-19 shows its use in one of the content provider methods from the SyncContacts, updated
from the similar method in the RESTfulContacts application shown in Listing 5-5.

LISTING 5-19: Using notifyChange’s third argument

SYNCUTIL.JAVA

private static final Uri CONTENT_URI = ContactsContract.URI.buildUpon()
 .appendQueryParameter(ContactsProvider.SYNC_UPDATE, "true")
 .build();

CONTACTSPROVIDER.JAVA

private Uri localInsert(Uri uri, ContentValues vals) {
 long pk = localInsertRow(getDb(), vals);

 if (0 > pk) { uri = null; }
 else {
 uri = uri.buildUpon().appendPath(String.valueOf(pk)).build();
 getContext().getContentResolver()
 .notifyChange(uri, null, !isSyncUpdate(uri));
 }

 return uri;
}

private boolean isSyncUpdate(Uri uri) {
 return null != uri.getQueryParameter(ContactsProvider.SYNC_UPDATE);
}

The methods in SyncUtil, part of the sync adapter, call content provider methods with a version
of the URI that has a query parameter appended to it. Within the content provider, code that must
notify observers that changes have taken place simply checks for the query parameter. If the query
parameter is not present, the call should schedule a sync. If the query parameter is present, the call
is already from the sync adapter and should not schedule additional synchronizations.

Summary ❘ 165

SUMMARY

This chapter reviewed the RESTful architectural style and demonstrated its use, both using
HTTP as transport and within Android itself. You’ve read about both the basics of network client
implementation and the essentials of Java concurrency and how they apply in the context of an
Android application.

From this basis, the chapter turned to a discussion of specii c challenges inherent in the Android
architecture — the UI-imposed concurrency requirements and their relation to objects with
managed lifecycles — and introduced three powerful approaches to solving them.

While differing in the specii cs of their implementation, the three approaches all share a few common
features. All are based on RESTful architecture and the fact that a content provider can be used as a
caching proxy for a remote service. All represent the need to synchronize data with a remote server as
persistent data stored locally in a content provider database. Perhaps most important, all three move
network communications out of the UI layer and into a separate, independent service component.
In none of these approaches is UI code cluttered with the details of initiating or managing network
connections.

This chapter also introduced Android’s complex, powerful, and poorly documented synchronization
framework, sync adapters.

Finally there was in-depth discussion of two different concrete example implementations of a client
that demonstrated the use of these concepts. These examples not only establish the efi cacy of the
approach, they also show, in their simplicity, that the overhead for adopting the RESTful approach
is not signii cant. Instead, the RESTful approach leads to clear, elegant maintainable code.

SPRING FOR ANDROID

The Spring project is well known among Enterprise Android developers. It provides
a well-known and widely used Java technology used for developing backend ser-
vices. You’ll use it in the next chapter for exactly that purpose.

SpringSource, the organization that manages Spring, has ported parts of it to the
Android platform. The resulting library provides a less well known but excellent
networking framework for Android application development. The Android version
uses the same metaphors found in the server-side counterpart. Some of its desirable
characteristics include:

 ➤ Code that is automatically up to date with networking changes in Android.
As noted previously, recommendations about whether to use the core Java
networking APIs or their Apache equivalents have changed over time. A
Spring client will always make the best choice.

 ➤ A rich and convenient API, called RestTemplate.

 ➤ Parameter-based method invocation.
continues

166 ❘ CHAPTER 5 REST, CONTENT PROVIDERS, CONCURRENCY, NETWORKING, AND SYNC ADAPTERS

The following code is a brief example of the use of the Spring RestTemplate. For
more information on Spring for Android, visit the project’s website:

http://www.springsource.org/spring-android

// Add a message converter
restTemplate.getMessageConverters()
 .add(new MappingJacksonHttpMessageConverter());

// Make the HTTP GET request, marshaling the response
// from JSON to an array of Contacts
Contact[] contacts = restTemplate.getForObject(url, Contact[].class);

// Set the Accept header
HttpHeaders requestHeaders = new HttpHeaders();
requestHeaders.setAccept(
 Collections.singletonList(new MediaType("application", "json")));
HttpEntity<?> requestEntity = new HttpEntity<Object>(requestHeaders);

// Create a new RestTemplate instance
RestTemplate restTemplate = new RestTemplate();

// Add the Jackson message converter
restTemplate.getMessageConverters()
 .add(new MappingJacksonHttpMessageConverter());

// Make the HTTP GET request, marshaling the response
// from JSON to an array of Events
ResponseEntity<Contact[]> responseEntity = restTemplate.exchange(
 url,
 HttpMethod.GET,
 requestEntity,
 Contact[].class);
Contact[] contacts = responseEntity.getBody();

continued

Service Development

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the many choices in service development

 ➤ Learning the three-tier service architecture

 ➤ Understanding Spring and Hibernate: A conservative service stack

 ➤ Building a RESTful web service for contacts

 ➤ Building a synchronization service for contacts

 ➤ Learning best practices for service design

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at

www.wrox.com on the Download Code tab.

This chapter provides a getting started tutorial that enables developers to write their i rst

backend data service — making sure that the service integrates well with Android. The focus

is on web service development that supports mobile applications with code running on a

backend service host, not in an Android handset.

The discussion addresses mobile computing issues raised in earlier chapters. The following

problems hold particular relevance when thinking about backend services for mobile clients:

 ➤ The network is not always available.

 ➤ Scalability requires efi ciency in network use and power consumption.

 ➤ Mobile network connectivity is intermittent, slow, or altogether gone (when users

drive into tunnels or otherwise off the grid).

6

168 ❘ CHAPTER 6 SERVICE DEVELOPMENT

The chapter example implements the RESTful contacts interface introduced in the previous
chapter, and also explores the patterns from the previous chapter that will provide the focus for
several subsequent chapters. This chapter will discuss implementations of the /Contacts REST
methods and the /Contacts/sync POST method showing how a backend service should support
these operations.

To elaborate, caching data on mobile devices has many advantages, such as reducing load on
backend services, lowering the cost of user data bills, and allowing applications to keep working
when the network becomes unavailable. Such benei ts incur the cost of increased complexity in the
form of synchronization logic that can handle data changes from concurrent hosts. If an app makes
changes off the network, it needs to be able to sync with changes made in its absence on return. You
can commonly i nd sophisticated synchronization behavior in enterprise applications like Gmail
from Google. The next several chapters will explain how to integrate this type of support into
services and applications that you develop. Along the way, you’ll pick up lucrative development skills

for popular cloud providers.

A CHOICE FOR SERVICE DEVELOPMENT

Developers writing web applications and web services face an overwhelming array of architectural

choices. Even selection of a software language or operating system doesn’t limit the options much.

This chapter builds a simple three-tier RESTful service based on the Java-based software tools

Spring, Hibernate, and Java Database Connectivity (JDBC). This is a commonly used technology

stack, but there are many other valid alternatives.

This chapter makes getting started easier, and also provides background on more traditional

software development tools. This software service stack provides a number of benei ts, including

wide deployment and a well understood feature set. The chapter notes the benei ts of using this

particular approach; the next chapter will cover more recent styles of persistence associated with

modern cloud platforms.

The Lifecycle of a Request

Previous chapters discussed the widely popular web services protocol called REST from the

perspective of client usage. This chapter focuses on implementing a RESTful interface by providing

service for each RESTful URI. But what does that mean exactly? Software service implementations

revolve around serving requests, like a GET for a contact. When a service receives a request, it’s

possible that the service itself was not even running prior to receiving the invocation. Each request

should run in isolation from other requests and should not make assumptions about the condition

of memory (for example, it should not rely on memory in static i elds) or about the machine on

which they run. Distributed services usually run on a large number of different hosts inside a cloud

provider. Well-written request implementations should seek to minimize the use of system resources

such as memory, storage, and processing time. Figure 6-1 shows that a service request can run on

many hosts in several different geographies. The code itself should not need to “know” about any

other requests.

A well designed request should read arguments sent from the client, perform its function in isolation

from other requests, store all its state in a persistence layer, return its result to the client, and i nish

by deleting any intermediate state from memory.

A Choice for Service Development ❘ 169

Application Containers

Now that you know what requests are, you’ll need to know where they live:

Traditional service deployments have relied on a software service known

as an application container. Application containers are web servers that

support an application archive format that contains application logic

and supporting libraries. When installed from an archive into a container, a web

application will coni gure for a particular URL namespace. The container then

forwards all HTTP requests to the URI space of the registered application,

which entirely dei nes the behavior of the request.

Three-Tier Service Architecture

The most common style of web application and service is the three-tier service

architecture. This approach, illustrated in Figure 6-2, separates processing

of request data parameters, called the presentation tier (or remote interface),

from the logic of the application or service, the logic tier, and then again relies

on a clearly dei ned data persistence layer known as the data tier. In large

commercial systems, different layers can reside on different physical hardware.

You can i nd extensive details on this type of service architecture here:

http://en.wikipedia.org/wiki/Three-tier_architecture#Three-tier_architecture

Figure 6-2 illustrates a basic three-tier service architecture.

Service Development Background

The array of choices for architecting a web service solution can be mind-boggling, especially for a

software developer who has not settled on a useful set of tools. But to start thinking about how to

narrow the choices, it’s important to be aware of the issues involved. These issues are covered in the

following sections.

FIGURE 6-1

Host

Tiers3

Mobile

Device

HTTP

request

response

Cloud Provider

GeoØ

Cloud Provider

Geo1

Data changes

persisted as quickly

as possible.

- Many Devices

- Many Hosts

- Many Geographies

FIGURE 6-2

Presentation

Logic

Data

Database

SQL or

NonSQL (Key, Value)

170 ❘ CHAPTER 6 SERVICE DEVELOPMENT

Language Choice (Type Safety vs. Convenient Syntax)

Choosing a server development environment begins with choosing a software language. Since
backend applications do not mandate a language (the way Android requires Java and iOS requires
Objective-C), language designers have taken every opportunity to explore this space with popular
languages ranging from those on the type safe side, like Java, Dart, and Go, to those with more
l exible language design like server JavaScript, Ruby, and Perl. Each popular language supports a

plethora of software libraries, and it’s possible to build sophisticated applications in all of them.

One of the main differentiating features between languages is type safety, and the lack of it. Proponents

of type safety advocate the ability to i nd syntax errors at build time, rather than at run time.

It’s hard to overstate the potential benei ts of i nding errors at compile time instead of run time.

Compiler found bugs shorten code ➪ test ➪ debug cycles. Also, you i nd your bugs instead of your

customers running into them and disliking your product.

NOTE The utility of type safety tends to be a highly controversial topic. If you
are interested, you can read the following sobering blog post:

http://www.artima.com/weblogs/viewpost.jsp?thread=36525

Application Container

Java alone supports several commercial and open source application containers, including JBoss,

Apache Tomcat, WebLogic, and Glassi sh, among others. The language Python supports Zope

1, 2, 3, BlueBream, and Grok. You can start to see that even when you pick a language, it’s still

difi cult to know what software to use to build a given application.

In Java, web applications and services almost exclusively require the support of an “application

server,” which, as mentioned, is just a web server that can load and serve applications in the form

of “web archives,” or .war i les. Application servers support a programming interface called a

“servlet container.” A servlet is a low-level Java service and application interface that uses an API

tailored specii cally to handling raw HTTP requests. Many open source libraries exist to add higher

level implementation support on top of servlets, such as for JSON and REST support, or for older

applications, SOAP. The i le web.xml, part of a war i le, provides the main point of coni guration for

these value-add libraries and enables developers to list the following components of their application —

classpath, URL mapping, servlet dispatcher, and the i les that are part of the application.

Prolifi c Software Libraries

Fortunately for application developers it’s possible to integrate a plethora of software libraries for

all popular languages. The following list of functional areas provides a small taste of the richness

and diversity of commercial and open source libraries available for popular languages: multiple

web MVC frameworks per language, object relational mapping, JSON mapping, natural language

processing, artii cial intelligence, API libraries for communicating with Amazon web services,

Google App Engine APIs, and so on. You can i nd library repositories by language in the following

locations:

A Choice for Service Development ❘ 171

 ➤ Ruby — http://rubygems.org/gems

 ➤ Java — http://mvnrepository.com

 ➤ Python — http://pypi.python.org/pypi

Choice of MVC

The de facto standard tool for building web-based user interfaces is a web MVC framework.
Examples of popular frameworks include Ruby on Rails, Play, Groovy and Grails, Spring MVC3,
and JSF. These frameworks provide:

 ➤ View languages composed of different types of markup, including Java Server Pages (jsp),
Groovy Server Pages (gsp), and Ruby Server Pages (rsp), which compile to HTML output
for browser consumption

 ➤ Controller bindings that map web events, such as a user clicking on a button or link, to
registered language level controller components, and that allow application logic to handle
browser events

 ➤ A data model, a persistence layer such as the standard JPA, or Java Persistence API, that
stores data in a SQL or key value datastore

Figure 6-3 illustrates the web MVC architecture.

FIGURE 6-3

Application

controller

(Receives

Web Events)

Request

Response
View

Dispatcher Data Layer

Unless developers plan to run services on their own hardware, they will need to pick from a growing
selection of cloud service providers that provide computing power for a usage fee. Here is a list of
some signii cant cloud providers:

 ➤ Google App Engine

 ➤ Amazon Web Services

 ➤ Joyent

172 ❘ CHAPTER 6 SERVICE DEVELOPMENT

NOTE Chapter 7 introduces the various differentiating features available in these
providers to give you a sense of why you might choose one over another.

Databases

Like all other areas of service development just discussed, choices of software for application
persistence seems to be growing exponentially. Today developers need to think beyond just SQL
databases from different vendors, but also about newly popular schema-free databases built on
JSON and plain key, value storage. Persistence tools in these categories include:

 ➤ SQL — MySQL, PostgreSQL, and Oracle

 ➤ Key, Value — Cassandra, DynamoDB, Voldemort, and Riak

 ➤ JSON — MongoDB

 ➤ Google App Engine — GQL

 ➤ Hadoop — HBase

You can i nd more detailed explanations of these tools in later chapters of this book. Chapter 7
introduces web services from Amazon — specii cally examples based on DynamoDB.

NOTE One important differentiator between SQL databases (such as MySQL)
and key, value stores (such as DynamoDB) is the inherent ability of key, value
storage to seamlessly distribute data across many hosts. This characteristic can
lead to greater scalability than SQL-based systems, but often goes in hand with
less l exibility. Chapter 7 delves more deeply into the differences between modern
persistence mechanisms.

BUILDING A RESTFUL SERVICE FOR CONTACTS

Now that you have completed a brief tour of the myriad different kinds of service development
technologies, it should be clearer why this chapter uses a simple tried-and-true software stack to
introduce you to the backend service development in the context of Android technology. Also, as an
Android developer, you have some familiarity with Java.

A Conservative Software Stack

Let’s dig into the chapter examples: persistence and synchronization backend support for the

contacts remote interface from Chapter 5. The example code is simple, but provides functional

client-to-server solutions for Android. The contacts service uses a conservative but still relevant and

productive environment based primarily on the Spring service framework and the Hibernate and

JDBC persistence APIs. Although newer languages like Ruby and Scala have been gaining traction

recently, a signii cant server-side contingent depends heavily on Java tools for existing and new

Building a RESTful Service for Contacts ❘ 173

projects — mainly for the reasons described earlier in this chapter: Java is a stable environment
geared toward precluding the possibility of bugs, rather than i nding them during runtime tests, or
worse, in a production environment.

Let’s examine the technologies underlying the examples.

Spring

The power of Spring comes from dependency injection. Say you’re writing a Bank class for a i nance

program, and the class has a reference to an ATM cash machine object. Without dependency

injection, you might write code that constructs a new ATM object and invokes it as needed. This

is i ne, but in the long run it is harder to maintain and test. In essence, you have hardcoded the

dependency between the Bank class and the ATM class. With Spring, instead of constructing a

new ATM object, you inject an implementation of the ATM interface into the Bank class through

the constructor or through a public setter method. For testing, you could pass in a dummy ATM

class that doesn’t make any real calls through the bank network. However, in your production

servers, you have Spring inject an ATM interface, which does actual i nancial transactions. Through

dependency injection, you can inject whichever dependency you want and the Bank code remains

exactly the same. Not having to change the Bank class when you make changes in the ATM class

makes the overall program easier to maintain and test in the long term.

Figure 6-4 shows an ATM implementation loaded into a Bank class using dependency injection.

FIGURE 6-4

Configuration
Bank

ATM

Dependency Injection

Deposit

ATM

Regular

ATM

Scanned

Implementations

Spring injection uses a coni guration system to track implementation classes for a particular

component that should be assigned to a i eld of an object. The service or application only knows

about a Java interface that the component implements, and at run time, the coni guration system

“injects” the implementation component into the proper i eld values. The system i nds out what

implementation object to inject only by reading the Spring coni guration.

You may be familiar with using a properties i le to avoid hard-coding String values into your

programs. This is useful for Strings, but becomes very cumbersome if you want to dei ne complex

objects. Spring allows you to specify an object’s data in an XML i le (or through Spring Java

annotations). Once you have dei ned your Objects, they can be referred to by a key/name, just like a

property in a property i le.

Applications do not use the new operator to instantiate its dependencies. Additionally, long chains

of implementation inheritance constitute one of the more signii cant anti-patterns in object-oriented

programming. Dependency injection encourages object composition over object inheritance to avoid

this problem. See http://en.wikipedia.org/wiki/Composition_over_inheritance.

174 ❘ CHAPTER 6 SERVICE DEVELOPMENT

NOTE For more information on Spring, see http://www.springsource.org/.

JDBC

This is the standard library for accessing a SQL database in Java. The major functions of JDBC
include:

 ➤ SQL language support including select, insert, update, and delete

 ➤ Statement and prepared statement support

 ➤ Query statements return JDBC result sets

NOTE For more information, see http://en.wikipedia.org/wiki/Jdbc.

Hibernate

Hibernate, the most common Java Object Relational Mapping (ORM) layer, and JDBC, which
provides a direct SQL language binding, represent the two most widely deployed Java persistence
technologies. You’ll need to decide for yourself whether an ORM makes sense for your application.

The chapter example supports both technologies using a simple abstraction layer. Both example

persistence mappings make use of high-level utilities of the Spring project, thereby increasing the

ease of programming with both approaches.

The Hibernate package provides an ORM on top of Java JDBC. Features of Hibernate include:

 ➤ Ability to transparently map Java POJO objects to and from database rows

 ➤ An object-oriented query language called HQL

NOTE For more information, see http://www.hibernate.org/ and http://
en.wikipedia.org/wiki/Hibernate_(Java).

METHOD-ORIENTED PERSISTENCE

Another promising framework, MyBatis, provides an alternate way of solving the

service persistence problem; this system is method-oriented rather than object-based.

MyBatis uses Java annotations to attach SQL statements to Java methods. The

chapter material is not based on this library due to the longer-term use and greater

 community experience of Hibernate. For now, you can i nd more information on the

MyBatis home page at http://www.mybatis.org/.

Building a RESTful Service for Contacts ❘ 175

Writing the Examples: Spring Contacts Service and
its Synchronization Variant

The following code examples demonstrate basic service development with a specii c example
of a contacts service with a “three-tier” architecture — a standard way of writing web services. This
contacts service supports the remote interface listed in Chapter 5. The example uses Spring for the
presentation layer, Java for the logic tier, and a simple custom abstraction layer for the data layer.
The data layer also uses Spring to inject the use of either direct JDBC or Hibernate.

NOTE The CODE variable refers to the location of the wileyenterpriseandroid/
Examples directory. The reader should interpret CODE references as a shorthand for
this directory. It’s optional for readers to actually set this variable in their shell of
choice. For example, with Windows cmd, you might use %CODE%/Examples, or in
bash you could use $CODE/Examples — but only if you set the variable yourself.

The i les for a CRUD oriented REST contact service reside in the examples project called $CODE/
springServiceContacts. The chapter also describes a second variant of this service that adds
synchronization support. You can i nd the variant of this service with synchronization support
added in the project, $CODE/springSyncServiceContacts.

NOTE Please keep in mind that the examples for getting started with service
development have signii cantly more setup overhead than examples in earlier
chapters. However, once you complete them, you’ll be able to reuse much of this
work in Chapters 7, 9, and 10.

Additionally, the book project site has information that can ease setup of back-
end services discussed in this book. Please see:

https://github.com/wileyenterpriseandroid/Examples/wiki

Also, note that the examples have duplicate, and potentially more up-to-date,
sets of instructions in the following i les:

$CODE/springServiceContacts/README
$CODE/springSyncServiceContacts/README

Prepare: Prerequisites and Getting Ready

Chapter 1 covered the use of Eclipse for Android; this chapter discusses how to use the IDE for
service development. You’ll need to coni gure some tools i rst on the host that will run the service

(localhost assumed). You can use any of the three major operating systems for PCs to develop

the web backend: Linux, Mac OS, or Windows. The OS is not particularly relevant for backend

services. The code is likely to work on a variety of software versions, but was specii cally tested on

Java (1.7.0_25), MySQL (5.7), Ant (1.9.1), EclipseEE (Kepler), and Tomcat (7.0.12).

176 ❘ CHAPTER 6 SERVICE DEVELOPMENT

NOTE Most of the command-line invocations in this book use a UNIX style.

If you are using Windows, this book requires you to install cygwin software from
the following location:

http://www.cygwin.com/install.html

After launching the cygwin setup, select a host to install from, and then check the
following packages for installation:

Net/OpenSSH
Net/OpenSSL
Net/curl
Perl/Larry Wall’s Wait Practical Extraction and Report Language

Make certain that each of the required packages has an install version number—
they don’t have a “Skip” status next to them. Change the status by clicking in the
“New” column.

Click next and wait until cygwin completes its install (a fast connection
takes 5-10 minutes).

If you are not familiar with UNIX-style shells, you should read the following:

http://freeengineer.org/learnUNIXin10minutes.html

Prepare

 1. Install MySQL Community Server Edition

The data tier of this example relies on mysql for SQL persistence; consequently, you’ll need

to download it after creating an Oracle account:

http://dev.mysql.com/downloads/mysql/

Select your platform in the list at the bottom of the page, and then pick an appropriate

download, like .msi for Windows or .dmg for MacOS. If you need more detailed instruc-

tions, see the following URL:

http://dev.mysql.com/doc/refman/5.7/en/installing.html

NOTE Make sure to set the root password to be “mysql”, or edit the i le
$CODE/springContactsService/src/jdbc.properties to use a root password
of your choosing. You will also need to use the default mysql port 3306, though
you should not need to explicitly coni gure it.

If you are installing on MacOS, make sure to get the DMG archive and install it
using the setup script.

On Windows, execute the .msi i le and complete the wizard.

If asked during the install, indicate that the service should start on boot.

Building a RESTful Service for Contacts ❘ 177

 2. Install the latest version of the Java from the following location:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

 3. Install Apache Tomcat.

The code uses Apache Tomcat as its application server, so you’ll start by downloading

Tomcat from the following location:

http://tomcat.apache.org/download-70.cgi

And then follow the installation instructions on the Tomcat site:

http://tomcat.apache.org/tomcat-7.0-doc/appdev/installation.html

Basically, just uncompress the download archive where you would like Tomcat to reside.

Then set the shell variable, CATALINA_HOME to that directory. There’s lots of documen-

tation about Tomcat online:

http://tomcat.apache.org/tomcat-7.0-doc/index.html

After you install it, Tomcat is very easy to use. To install an application, you just need

to place the application’s war i le into $CATALINA_HOME/webapps and then restart

Tomcat with:

$CATALINA_HOME/bin/shutdown.sh
$CATALINA_HOME/bin/startup.sh

On windows, these scripts end with .bat

Set CATALINA_HOME to the directory where you unpack Tomcat.

NOTE Throughout the chapters on server development, the book will say to
“restart Tomcat” as a shorthand for restarting the server if it’s running or
 starting it if it’s not.

Of course, if you’ll be using Eclipse, it’s even easier than that — the IDE will deploy your

application and handle the installation for you.

 4. Install ant.

The most popular build tool for Java is called ant, and it uses a simple XML format for

listing commands that can perform operations required for building a Java project, such as

compiling classes, copying i les to a directory, or creating a Java archive .jar i le.

Set the shell variable ANT_HOME to the directory where you unpack ant. Place the directory

$ANT_HOME/bin in your System Path environment variable.

178 ❘ CHAPTER 6 SERVICE DEVELOPMENT

For more information on ant, see:

http://ant.apache.org

To install ant, see

http://ant.apache.org/manual/install.html

 5. Open a shell prompt; on Windows, use cygwin. Build the project using ant and set up the
database (must be done before using Eclipse):

cd $CODE/springServiceContacts
ant dist

Initialize the service database:

ant builddb

NOTE These ant targets need Internet connectivity to download the ivy utility
dependencies and build successfully.

Now that you have set up the required tools, you can move to deploying the projects.

Deploying Using Ant

 1. Build the project, whenever you make code changes (if not done already):

 ant dist

 2. Copy the war i le to Tomcat:

 $CODE/springServiceContacts/dist/springServiceContacts.war

to

 $CATALINA_HOME/webapps

 3. Restart Tomcat (discussed previously)

Loading the Project in Eclipse

Perform all steps in the “Prepare” section.

 1. If its not already running, start the Eclipse IDE for Java EE Developers from:

http://www.eclipse.org/downloads/

WARNING Make sure you are using Eclipse Enterprise Edition (standard edition
is not sufi cient for service development). Also make sure that the build of Java,
32- or 64-bit, matches that of Eclipse.

 2. Run the following commands in a shell:

cd $CODE\springservicecontacts
 ant eclipse

Building a RESTful Service for Contacts ❘ 179

Like other chapters, this command copies the Eclipse project i les from the tools directory
to the root directory. Note that if you do not run this step, Eclipse will not see the project
folder as an Eclipse project, and you will not be able to open the project in Eclipse.

 3. Add Ivy support to Eclipse:

 a. Select Help ➪ Install new software

Work with the url:

http://www.apache.org/dist/ant/ivyde/updatesite

Check the following for install:

 Apache Ivy Library
 Apache IvyDE Eclipse plugins

 b. Click Next.

 c. Accept the terms, i nish, and restart Eclipse.

 4. Import the Eclipse project.

 a. Import the project with File ➪ General ➪ Import Existing Project.

 b. Click the Browse button, and choose the $CODE/springServiceContacts
directory; then check the checkbox to select the springServiceContacts. Click the
Finish button.

 c. Click Next.

Example Dependencies with Ivy

With Ivy, developers just need to specify top-level dependencies and their version, and then Ivy will
download and install any dependency libraries. Listing 6-1 shows a list of Ivy dependencies for the
contacts service, contained in the i le:

$CODE/springServiceContacts/ivy.xml

LISTING 6-1: ivy.xml

<dependencies>
 <dependency org="org.hibernate" name="hibernate-entitymanager"
 rev="3.6.10.Final"/>
 <dependency org="org.hibernate" name="hibernate-tools" rev="3.2.4.GA"/>
 <dependency org="org.codehaus.jackson" name="jackson-core-asl" rev="1.9.5" />
 <dependency org="org.codehaus.jackson" name="jackson-mapper-lgpl" rev="1.9.5"/>
 <dependency org="org.springframework" name="spring-core" rev="3.1.1.RELEASE" />
 <dependency org="org.springframework" name="spring-webmvc"
 rev="3.1.1.RELEASE" />
 <dependency org="org.springframework" name="spring-oxm" rev="3.1.1.RELEASE"/>
 <dependency org="org.springframework" name="spring-orm" rev="3.1.1.RELEASE"/>
 <dependency org="org.springframework" name="spring-aop" rev="3.1.1.RELEASE"/>
 <dependency org="org.aspectj" name="aspectjweaver" rev="1.6.12"/>
 <dependency org="cglib" name="cglib-full" rev="2.0.2"/>

continues

180 ❘ CHAPTER 6 SERVICE DEVELOPMENT

 <dependency org="log4j" name="log4j" rev="1.2.16"/>
 <dependency org="commons-dbcp" name="commons-dbcp" rev="1.4"/>
 <dependency org="junit" name="junit" rev="4.10"/>
 <dependency org="org.springframework" name="spring-test" rev="3.1.1.RELEASE"/>
 <dependency org="mysql" name="mysql-connector-java" rev="5.1.18"/>
 <dependency org="commons-httpclient" name="commons-httpclient" rev="3.1"/>
</dependencies>

NOTE You can learn more about the Ivy project on its home page at http://
ant.apache.org/ivy.

Tools and Software Stack

It’s worth spending a minute to discuss Listing 6-1 to talk about other software that has not yet

been highlighted, but is involved in the chapter example and in future chapters. As mentioned, these

examples rely heavily on Spring and Hibernate, versions 3.1.1 and 3.6.10.Final, respectively. The

following libraries are also included:

 ➤ Jackson — Supports JSON Java object serialization and JSON Schema, which is needed for

serializing and deserializing service parameters and return values:

http://jackson.codehaus.org/

 ➤ Spring WebMVC — The Spring answer to MVC web architecture; enables the use of Spring

controllers:

http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html

 ➤ MySQL — The open source and most popular SQL database on the Internet. Provides

underlying persistence support for Hibernate:

http://www.mysql.com/

 ➤ Commons httpclient — Apache Java libraries for HTTP communication; superior to core

Java networking libraries for backend development.

Confi guring Spring

When you create your own new application, you will need to take the following steps to coni gure

Spring. Of course, the springServiceContacts code example has already completed these tasks.

As noted, with Java web applications, the common practice is to use servlets as hooks for layering

value add frameworks. The code in web.xml for inserting Spring is shown as the main servlet

dispatcher:

<servlet>
 <servlet-name>DispatcherServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>

LISTING 6-1 (continued)

Building a RESTful Service for Contacts ❘ 181

 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:spring/application*.xml</param-value>

 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>DispatcherServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

This code indicates to the Spring framework the location of the example Spring coni guration i les.
The example has three coni gurations for rest, storage, and test. Let’s take a look inside the

rest coni guration i le:

$CODE/springServiceContacts/src/spring/applicationContext-rest.xml

The most signii cant part of the i le is a command for scanning class i les, the effect of which is to

search all classes in the named base package annotated with Spring annotations, like @Controller.

This search is an automatic component-registering process. You only need to annotate your

controllers and Spring will integrate them for you:

<!-- Enable annotation scanning. -->
<context:component-scan base-package="com.enterpriseandroid.springServiceContacts" />

When the application container runs the Spring servlet, org.springframework.web.servlet

.DispatcherServlet, Spring will load the components of the contact service. This servlet will

forward all requests to scanned controllers.

The previous discussion dei nes the Spring dispatcher servlet in the web application. The

contextConfigLocation dei nes the location for the Spring coni guration i les. In this case, you set

it to the spring directory of the classpath. You also want the Spring dispatcher servlet to handle all

the client requests that are sent to the / path of your service servlet, so you need to add the servlet

mapping to the following:

<!-- mapping all request to "/" to the Dispatcher Servlet -->
 <servlet-mapping>
 <servlet-name>DispatcherServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

Example Code

At this point it’s time to jump into the example code itself. We start with the overall architecture

diagram of the contact service, showing the signii cant dependent libraries and layers of this

simple three-tier architecture. (Figure 6-5 shows the three-tier architecture and its component

dependencies.) The rest of the chapter explains the service and its code in detail.

Contacts Data Model

We start by looking at what the service does — often called the service domain. The example service

provides persistent access to contact information. The code uses the following data model class,

Contact, shown in Listing 6-2, to manipulate contacts in memory, transmit them to the network,

and store them in MySQL. This class is central to the role of the contact service and is known as a

model object.

182 ❘ CHAPTER 6 SERVICE DEVELOPMENT

LISTING 6-2: The contacts data model

public class Contact implements Serializable {
 private static final long serialVersionUID = 5322847412825669350L;
 private Long id;
 private String firstName;
 private String lastName;
 private String phone;
 private String email;
 private Long version;
 private long updateTime;
}

At this point, you should pause a moment to consider the similarity of this class to the schema
dei ned model from Chapter 5. The listing here is the backend service equivalent of it.

Example Spring Controller

Next, we look at the events that drive the operation of contacts service requests — the heart of
our three tier web service. Spring controllers receive the action of web UI remote requests as
controller actions. When a Spring-based service receives a remote request, it delegates the request
service to a scanned Spring controller, specii cally to the class ContactsController, which will
implement the backend service version of the RESTful contacts API from Chapter 5, listed for
review as follows:

 1. Access a contact:

GET /Contacts/{id}

 2. Access all contacts:

GET /Contacts

FIGURE 6-5

DAO: Create,

 update,

 delete

Persist Contacts

Manage Contacts

Presentation Tier Logic Tier Data Tier

Contacts REST
Java Logic

create,

update,

delete,

and

sync

contacts.

Spring

Content

Provider

Android Client

UI

Jackson

Hibernate

mysql

JDBC
REST

@ Controller

ContactController

Building a RESTful Service for Contacts ❘ 183

 3. Create or modify a contact:

POST /Contacts
PUT /Contacts/{id}

 4. Delete a contact:

DELETE /Contacts/{id}

Contact Service Controller

Now you’ll see how to use the Spring framework to implement these requests. You start by dei ning

the class, ContactController, in Listing 6-3.

LISTING 6-3: Annotations for a controller

@Controller
@RequestMapping("/Contacts")
public class ContactController {

ContactController gets marked as a Spring controller, which means that it can receive the action

of the contact service REST methods (as mentioned, this means Spring will i nd it

during the coni guration scan).

The code requests a mapping for the namespace, "/Contacts". This will cause the application

container and the Spring framework to direct contact requests that start with

"/Contacts" to the implementation methods in the ContactController class. The following

section explains these implementation methods as well as the RequestMapping annotation.

Presentation Tier: Spring Annotations

Now that you have a controller to contain it, it’s time to dei ne the presentation layer for the

contacts service. Recall that the presentation layer for a RESTful service encapsulates the processing

of service parameters. The annotations provided next do this for the contact operations. We’ll start

with the i rst RESTful operation listed previously. Listing 6-4 shows the Spring-based presentation

layer implementation for a contact GET operation.

LISTING 6-4: Annotations for getting a contact

@RequestMapping(value = "/{id}", method = RequestMethod.GET)
@ResponseBody public Contact getContact(@PathVariable Long id,
 HttpServletResponse resp)

This segment of the presentation layer consists of the associated annotations, RequestMapping and

ResponseBody. The RequestMapping annotation causes the contact service to use the getContact

method to respond to any HTTP GET request for a specii c given id, as indicated by the value and

method annotation parameters. The ResponseBody annotation indicates that the method return

value will be returned directly as an HTTP response. Spring passes the contact id to the method

as a PathVariable, which is an elegant way of referring to variables embedded in RESTful URLS,

such as:

184 ❘ CHAPTER 6 SERVICE DEVELOPMENT

http://host:port/Contacts/1

where the 1 is the URL embedded id of the desired contact, or path parameter. You can use
PathParam to refer to any variable embedded in a URL path.

The logic in the method itself and the persistence abstraction used in the method form the other two
layers in the three-tier architecture — which you’ll read about shortly.

Next, you can i nd the Spring mappings for the remaining service operations. They work in roughly

the same way as the one you just saw. Listing 6-5 shows the Spring-based presentation layer

implementation for getting all contacts.

LISTING 6-5: Annotations for getting all contacts

@RequestMapping(value = "", method = RequestMethod.GET)
@ResponseBody public List<Contact> getAllContacts(@RequestParam(value="start",
 required=false)

The getAllContacts method uses a blank value to indicate that all contacts should be returned for

a GET request on the "/Contacts" URL.

Listing 6-6 shows the implementation for creating a contact.

LISTING 6-6: Annotations for creating a contact

@RequestMapping(value = "", method = RequestMethod.POST)
@ResponseBody public Map<String, String> createObject(
@RequestBody Contact contact, HttpServletRequest req)

The value is blank here since the namespace is "/Contacts". The createObject creates the object

and the contact ID does not yet exist. The @RequestBody annotation indicates that the POST payload

should be deserialized to a Contact Java object. The Spring annotation framework delegates the

deserialization process to a registered Jackson deserialization handler — more about that in a minute.

Listing 6-7 shows the implementation for updating a contact.

LISTING 6-7: Annotations for updating a contact

@RequestMapping(value = "", method = RequestMethod.PUT)
@ResponseBody public Map<String, String> updateObject(@PathVariable Long id,
@RequestBody Contact contact, HttpServletRequest req)

Again, the namespace is "/Contacts", although an id is passed to this method in the form of

a PathVariable, where the code passes the id to the utility method createOrUpdate, which

will update the indicated and already existing contact. The contact must exist, because it has

an id. The request body contact is again deserialized from the request input, and becomes the

information to update.

Finally, Listing 6-8 shows the implementation for deleting a contact.

Building a RESTful Service for Contacts ❘ 185

LISTING 6-8: Annotations for deleting a contact

@RequestMapping(value = "/{id}", method = RequestMethod.DELETE)
@ResponseBody public String delete(@PathVariable Long id) throws IOException {

The ID value here refers to a pre-existing contact ID just like the getContact method. The URL for
deletion is "/Contacts/{id}".

Data Marshaling

To wrap up the presentation layer, take a look at how input parameters and response values
get marshaled back and forth between the client and server over the network: Jackson, a JSON
serialization library, provides the answer. The following lines in the Spring coni guration i le
(Listing 6-9) set up the use of a Jackson class as the system that maps Java objects into a wire
transfer format.

LISTING 6-9: Spring confi guration for setting the marshalling converter

<bean id="marshallingHttpMessageConverter"
 class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter">
</bean>

Next, Listing 6-10 shows an example of using Jackson to convert objects to JSON.

LISTING 6-10: A method that depends on Jackson for data marshalling

@RequestMapping(value = "/{id}", method = RequestMethod.GET)
@ResponseBody public Contact getContact(@PathVariable Long id,
 HttpServletResponse resp)
 throws IOException
{
 Contact c = service.getContact(id);
 if (c == null) {
 resp.setStatus(HttpStatus.NOT_FOUND.value());
 }
 return c;
}

You can see that all the code has to do to get objects on and off the wire is use them as parameters
and as standard return values — no manual coding required.

Logic Tier: Java Code

As mentioned, the logic tier of a three-tier service is where service domain operations take place.
They usually consist of manually written code in the service language of choice. Example operations
for the logic tier of a contact service could involve i nding the geographic distance between the
handsets of two contacts, comparing the “Facebook likes” of one set of contacts against another set,
or obtaining a list of bookmarks for a contact.

186 ❘ CHAPTER 6 SERVICE DEVELOPMENT

The logic tier of the chapter example contacts service is not particularly demonstrative of what you
might expect to see in a “real-world” service because it’s part of the design of the example service to

be simple.

This section focuses on a Java method, getAllContacts, from the logic tier of the chapter example

contacts service interacting with the values from the Spring “presentation layer.”

Getting All Contacts

The getAllContacts method shown in Listing 6-11 does not have much of a logic layer, but it should

serve to show that more complex domain operations could take place in a Spring controller method.

LISTING 6-11: Method for getting all contacts

 @RequestMapping(value = "", method = RequestMethod.GET)
 @ResponseBody public List<Contact> getAllContacts(
 @RequestParam(value="start", required=false) String startStr,
 @RequestParam(value="num", required=false) String numStr)
 throws IOException
 {
 int start = 0;
 int num = 100;

 if (startStr != null) {
 start = Integer.parseInt(startStr);
 }

 if (numStr != null) {
 num = Integer.parseInt(numStr);
 }

 return service.getAll(start, num);
}

Take note of the following in the preceding code:

 ➤ An empty mapping value to "/Contacts" means get all contacts.

 ➤ The code includes the parameter bounds of the resulting contacts window.

 ➤ The code queries the contacts persistence service to return the requested window of

contacts.

Data Tier: Persistence Layer

As illustrated in Figure 6-6, the contacts service persistence service layer has two layers of its own

for service abstraction and data access.

The Service Interface

The service interface provides a layer of abstraction that can hide information about the

initialization of the data access layer from the logic layer and other parts of the persistence

layer. The service interface shown in Listing 6-12 provides operations for storing and i nding

contacts. The operations support the contact controller, as discussed previously.

Building a RESTful Service for Contacts ❘ 187

LISTING 6-12: The contacts data service interface

import java.io.IOException;
import java.util.List;

import com.wiley.demo.android.dataModel.Contact;

public interface ContactService {
 Long storeOrUpdateContact(Contact c) throws IOException;

 List<Contact> findContactByFirstName(String firstName,
 int start, int numOfmatches) throws IOException;
 List<Contact> getAll(int start, int numOfmatches) throws IOException;
 Contact getContact(long id) throws IOException ;
 void deleteContact(long id) throws IOException;
 }

The DAO Interface

The contacts example service provides support to its data service interface using a well-established
metaphor — that of the data access object, or DAO. A DAO maps object persistence operations
to a persistence layer. The example contacts DAO provides methods for i nding, deleting, and
saving contacts. Later you’ll see the implementations for mapping this DAO interface to JDBC and

Hibernate. The DAO interface is shown in Listing 6-13.

FIGURE 6-6

Example Contacts Service Data Tier

Contacts Service

ContactDAOJDBCImpl

Contacts DAO

Hibernate

JDBC

SQL

Database

(MySQL)

ContactDAOHibernateImpl

188 ❘ CHAPTER 6 SERVICE DEVELOPMENT

LISTING 6-13: The contacts DAO interface

import java.io.IOException;
import java.util.List;
import com.wiley.demo.android.dataModel.Contact;

public interface ContactDao {
 Contact getContact(Long id) throws IOException;
 Long storeOrUpdateContact(Contact contact) throws IOException;
 List<Contact> findContactFirstName(String firstName, int start,
 int numOfmatches);
 List<Contact> findChanged(long timestamp, int start, int numOfmatches);
 void delete(Long id) throws IOException ;
 List<Contact> getAll(int start, int numOfmatches) throws IOException;
}

This interface supports methods to create a new contact or update an existing one; the other
methods do what their self-documenting names describe.

Also, take note of the following in Listing 6-13:

 ➤ The methods getContact and delete both take an identii er that refers to a unique
contact object. When supported with a SQL implementation, this identii er will most likely
be a SQL primary key.

 ➤ Several of the DAO operations support the ability to select a window from possible database
results, allowing a client to access sections of queries with a large number of results into
small chunks or pages that do not overwhelm client resources.

Implementing the DAO Interface

In keeping with the example, the ContactDao interface is quite simple, and provides only
the operations needed to support the contacts REST interface. This chapter provides two
implementations of it for these reasons:

 ➤ To give you an idea of what it’s like to work with two commonly used Java technologies

 ➤ To help demonstrate why some groups of developers advocate using an ORM and why

others feel that this class of technology can introduce hard-to-debug problems that do not

arise with direct use of JDBC

 ➤ To demonstrate the l exibility of the three-tier service architecture and how it can support

different storage solutions, like those found in different cloud vendors

Using Hibernate

After browsing the Hibernate code shown in Listing 6-14, one of the i rst takeaways you may notice

is that it is short. Each method consists only of accessing a Spring Hibernate template — an API

object that contains a slew of methods for accessing and modifying data — and then calling the

right template operation to achieve the appropriate effect of a given DAO method. Proponents of

Hibernate argue that this brevity is one of the main advantages of using the ORM. You just need to

work with objects, and the Hibernate mapping will take care of all the details of getting your data

into the underlying database. See the following link for more information on Hibernate mapping:

http://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/mapping.html

Building a RESTful Service for Contacts ❘ 189

LISTING 6-14: The Hibernate contacts DAO implementation

package com.wiley.demo.android.dao.impl;

import java.io.IOException;
import java.util.List;

import org.hibernate.Query;
import org.springframework.orm.hibernate3.HibernateTemplate;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import com.wiley.demo.android.dao.ContactDao;
import com.wiley.demo.android.dataModel.Contact;

 public class ContactDaoHibernateImpl extends HibernateDaoSupport implements
 ContactDao {
 @Override
 public Contact getContact(Long id) throws IOException {
 return getHibernateTemplate().get(Contact.class, id);
 }

 @Override
 public Long storeOrUpdateContact(Contact contact) throws IOException {
 contact.setUpdateTime(System.currentTimeMillis());
 getHibernateTemplate().saveOrUpdate(contact);
 return contact.getId();
 }

 @SuppressWarnings("unchecked")
 @Override
 public List<Contact> findContactFirstName(String firstName, int start, int
 numOfmatches) {
 String hql="from Contact where firstName = ?";
 return (List<Contact>) getHibernateTemplate().find(hql,
 new Object[] {firstName});
 }

 @Override
 public List<Contact> findChanged(long timestamp, int start, int numOfmatches) {
 String hql="from Contact where updateTime > " + timestamp ;
 Query q = getSession().createQuery(hql);
 q.setFirstResult(start);
 q.setMaxResults(numOfmatches);

 @SuppressWarnings("unchecked")
 List<Contact> list = q.list();
 return list;
 }

 @Override
 public void delete(Long id) throws IOException {
 getHibernateTemplate().delete(getContact(id));

continues

190 ❘ CHAPTER 6 SERVICE DEVELOPMENT

 }

 @Override
 public List<Contact> getAll(int start, int numOfmatches)
 throws IOException
 {
 String hql = "from Contact";
 Query q = getSession().createQuery(hql);
 q.setFirstResult(start);
 q.setMaxResults(numOfmatches);
 @SuppressWarnings("unchecked")
 List<Contact> list = q.list();
 return list;
 }
 }

Take note of the following:

 ➤ The single line getContact method gets a Hibernate template and then calls the get
operation to access an object of type Contact.class. The method returns a Contact object.

 ➤ This code sets the update time for use in sync operations.

 ➤ The Hibernate template storeOrUpdate method stores the updated object. Note that the
code also updates the contact with the service timestamp, enabling the application to know
the last time a contact object changed.

 ➤ This code shows the use of a data language called HQL (Hibernate Query Language), which
is a fully object-oriented version of SQL. In this case, the code just shows a simple query to
select a contact by name. With the query in hand, the findContactFirstName method uses
the Hibernate template to i nd contacts with the given parameter name firstName.

NOTE The Hibernate website has excellent resources on HQL:

http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html

 ➤ The findChanged method enables i nding users changed after a given timestamp, thus
taking advantage of the information left behind by storeOrUpdateContact.

 ➤ The query for the method to get all contacts, no arguments acts like a wild card.

Using JDBC

In Listing 6-15, you’ll i nd an implementation of the contact DAO interface based on JDBC. Your

i rst reaction on reading this code might be that this version is quite a bit longer, coming in

at well over twice the number of lines of code as the Hibernate equivalent. Of course, the main

differences are that the JDBC code does not have the benei t of either the object-oriented nature of

the Hibernate template class, nor the Hibernate object mapping. All contact insertions must consist

of invocations on the contact POJO class, concatenated into strings to make SQL commands, much

as is the case when using the raw SQL interface to SQLite on Android.

LISTING 6-14 (continued)

Building a RESTful Service for Contacts ❘ 191

Although the code is not as terse as the Hibernate side, it allows you to quickly see exactly how it
uses JDBC. The number of lines of code taken to write the Hibernate implementation, including the
Hibernate libraries, would be signii cantly greater than the code shown here. Hibernate is a reliable
ORM implementation, but it does have signii cant complexity in its session and object mapping
support. Developers do need to understand Hibernate well enough to use it correctly.

Listing 6-15 does not use a Hibernate template, but instead relies on a Spring JDBC template.
This template provides a large number of convenience methods for using JDBC directly without
an ORM. The code uses SQL statements to pass DAO parameters to the underlying database
connection. Two of the more interesting pieces of code include the use of a prepared statement to
insert a contact object into a database row and a Spring row mapper that enables a binding from a
row of a JDBC result set to a contact POJO.

LISTING 6-15: The JDBC contacts DAO implementation

1 package com.wiley.demo.android.dao.impl;
2
3 import java.io.IOException;
4 import java.sql.Connection;
5 import java.sql.PreparedStatement;
6 import java.sql.ResultSet;
7 import java.sql.SQLException;
8 import java.util.List;
9 import java.util.Map;
10
11 import javax.sql.DataSource;

12 import org.springframework.dao.EmptyResultDataAccessException;
13 import org.springframework.jdbc.core.JdbcTemplate;
14 import org.springframework.jdbc.core.PreparedStatementCreator;
15 import org.springframework.jdbc.core.RowMapper;
16 import org.springframework.jdbc.support.GeneratedKeyHolder;
17 import org.springframework.jdbc.support.KeyHolder;
18
19 import com.wiley.demo.android.dao.ContactDao;
20 import com.wiley.demo.android.dataModel.Contact;
21
22 public class ContactDaoJdbcImpl implements ContactDao {
23 private static final String FIND_FIRSTNAME_SQL =
24 "select * from contact where firstName = ?";
25 private static final String FIND_UPDATETIME_SQL =
26 "select * from contact where updateTime > ?";
27 private static final String GET_SQL =
28 "select * from contact where id = ?";
29 private static final String GET_ALL_SQL = "select * from contact ";
30 private static final String INSERT_SQL =
31 "Insert into contact(firstName, lastName, phone, email, updateTime,
 version)" +
32 VALUES(?,?,?,?,?,?);";
33 private static final String UPDATE_SQL = "update contact set firstname = ?, " +
34 lastname=?, phone=?, email=?, updateTime=?, version=? where id = ? and " +

continues

192 ❘ CHAPTER 6 SERVICE DEVELOPMENT

35 "version=?";
36 private static final String DELETE_SQL = "delete from contact where id =?";
37
38 private DataSource dataSource;
39 private JdbcTemplate jdbcTemplate;
40
41 public void setDataSource(DataSource ds) {
42 dataSource = ds;
43 jdbcTemplate = new JdbcTemplate(dataSource);
44 }
45
46 @Override
47 public Long storeOrUpdateContact(Contact contact) throws IOException {
48 contact.setUpdateTime(System.currentTimeMillis());
49 if (contact.getId() != null) {
50 update(contact);
51 } else {
52 create(contact);
53 }
54 return contact.getId();
55 }
56
57 @Override
58 public List<Contact> findContactFirstName(String firstName, int start,
59 int numOfmatches)
60 {
61 String query = FIND_FIRSTNAME_SQL + " limit " + new Long(start).toString()
 + " , " +
62 new Long(numOfmatches).toString();
63 return jdbcTemplate.query(query, getRowMapper(), new Object[] {firstName});
64 }
65
66 @Override
67 public List<Contact> getAll(int start, int numOfmatches) throws IOException {
68 String query = GET_ALL_SQL + " limit " + new Long(start).toString()
 + " , " +
69 new Long(numOfmatches).toString();
70 return jdbcTemplate.query(query, getRowMapper());
71 }
72
73 private void create(final Contact contact) {
74 if (contact.getVersion() != null) {
75 throw new IllegalArgumentException("version has to be 0 for create");
76 }
77
78 KeyHolder keyHolder = new GeneratedKeyHolder();
79 jdbcTemplate.update(new PreparedStatementCreator() {
80 public PreparedStatement createPreparedStatement(
81 Connection connection) throws SQLException
82 {
83 PreparedStatement ps = connection.prepareStatement(INSERT_SQL,
84 new String[] { "id" });

LISTING 6-15 (continued)

Building a RESTful Service for Contacts ❘ 193

85 ps.setString(1, contact.getFirstName());
86 ps.setString(2, contact.getLastName());
87 ps.setString(3, contact.getPhone());
88 ps.setString(4, contact.getEmail());
89 ps.setLong(5, contact.getUpdateTime());
90 ps.setLong(6, new Long(1));
91 return ps;
92 }
93 }, keyHolder);
94 contact.setId(keyHolder.getKey().longValue());
95 contact.setVersion(new Long(1));
96 }
97
98 private void update(Contact contact) throws IOException {
99 Long version = contact.getVersion();
100 contact.setVersion(version +1);
101 int rowupdated = jdbcTemplate.update(UPDATE_SQL, getUpdateSqlArgs(contact,
 version));
102
103 if (rowupdated != 1) {
104 throw new IllegalArgumentException("Verson mismatch. row updated : " +
105 rowupdated);
106 }
107 }
108
109 private Object[] getInsertSqlArgs(Contact contact) {
110 return new Object[] {
111 contact.getFirstName(), contact.getLastName(),
112 contact.getPhone(), contact.getEmail(), contact.getUpdateTime(),
 new Long(1L)};
113 }
114
115 private Object[] getUpdateSqlArgs(Contact contact, Long version) {
116 return new Object[] { contact.getFirstName(), contact.getLastName(),
117 contact.getPhone(), contact.getEmail(), contact.getUpdateTime(),
118 contact.getVersion(), contact.getId(), version };
119 }
120
121 @Override
122 public Contact getContact(Long id) {
123 try {
124 return jdbcTemplate.queryForObject(GET_SQL, getRowMapper(), id);
125 } catch(EmptyResultDataAccessException e) {
126 return null;
127 }
128 }
129
130 @Override
131 public void delete(Long id) throws IOException {
132 jdbcTemplate.update(DELETE_SQL, new Object[] {id});
133 }
134
135 private RowMapper<Contact> getRowMapper() {
136 RowMapper<Contact> mapper = new RowMapper<Contact>() {

continues

194 ❘ CHAPTER 6 SERVICE DEVELOPMENT

137 public Contact mapRow(ResultSet rs, int rowNum) throws SQLException {
138 Contact obj = new Contact();
139 obj.setId(rs.getLong("id"));
140 obj.setFirstName(rs.getString("firstName"));
141 obj.setLastName(rs.getString("lastName"));
142 obj.setPhone(rs.getString("phone"));
143 obj.setEmail((rs.getString("email")));
144 obj.setUpdateTime(rs.getLong("updateTime"));
145 obj.setVersion(rs.getLong("version"));
146 return obj;
147 }
148 };
149
150 return mapper;
151 }
152
153 @Override
154 public List<Contact> findChanged(long timestamp, int start, int numOfmatches) {
155 String query = FIND_UPDATETIME_SQL + " limit " + new Long(start).toString()
 + " , " +
156 new Long(numOfmatches).toString();
157 return jdbcTemplate.query(query, getRowMapper(), new Object[] {new
 Long(timestamp)});
158 }
159 }

Take note of the following lines in Listing 6-15:

 ➤ Lines 23-36 — Contain SQL convenience strings used later in the implementation of the
DAO methods.

 ➤ Lines 38 and 39 — Represent the connection to the JDBC database and a Spring JDBC
template, respectively. The DAO code uses the template to persist the contact state, and the
template uses the database connection to write the information to the database.

 ➤ Line 47 — This time, the storeOrUpdateContact method uses two private
implementation methods, update and create, on lines 50 and 52, respectively, depending
on whether the contact object has an existing ID (also the primary key in the contacts
database). On line 101, you can see the invocation of a template query method, passing in
the SQL convenience string, UPDATE_SQL template.

 ➤ Lines 58-62 — Shows the implementation of findContactFirstName using FIND_
FIRSTNAME_SQL and the JDBC Spring template. Allows one to query for contacts that have
the i rst name as supplied by the firstName method parameter.

 ➤ Lines 78-93 — Use a prepared statement as mentioned earlier to insert a new contact row
into the database. The prepared statement uses the INSERT_SQL string and the i elds of a
contact object as the parameters to the prepared statement.

 ➤ Lines 137-147 — Demonstrate the use of a Spring framework JDBC row mapper to map a
JDBC result set row to a contact POJO object. The Spring row mapper nicely adds some
object-oriented behavior to direct JDBC. With Spring, you can attain some signii cant
benei ts of Hibernate, but still work much closer to JDBC.

LISTING 6-15 (continued)

Building a RESTful Service for Contacts ❘ 195

 ➤ Lines 154-156 — The findChanged implementation and the query it uses, FIND_
UPDATETIME_SQL, enable i nding contacts changed since a given timestamp.

 ➤ Lines 63, 70, 124, and 157 — All make use of the row mapper to convert result
set rows into a Contact object that then is returned as a Java type from the relevant
method.

To conclude the discussion of the springContactsService, you can switch DAO implementations
by moving the x character between the following lines:

<!-- use jdbc dao -->

<bean id="contactServicex" class= ← - The x disables this DAO
 "com.enterpriseandroid.springServiceContacts.service.impl.ContactServiceImpl"
 p:contactDao-ref="contactDaoJdbc" />

<bean id="contactService" ← - Move x to here to switch impls
class="com.enterpriseandroid.springServiceContacts.service.impl.ContactServiceImpl"
p:contactDao-ref="contactDaoHibernate" />

in the i le:

$CODE/springServiceContacts/src/spring/applicationContext-storage.xml

and load it into Eclipse

Code Example: Spring Sync Contacts Service

The chapter began with a discussion of the benei ts of synchronization in enterprise Android
applications. Now that you have seen a CRUD-only version of the contacts RESTful service, the
next example adds a simple but powerful synchronization system that works well with the sync
adapter ➪ content provider pattern developed in the last chapter. This service resides in the project:

$CODE/springSyncServiceContacts

And you can build it and load it into Eclipse with the same instructions you used in the previous
example.

The following sections look at the relevant components of the contacts synchronization example.

Presentation Tier: Spring Controllers

The synchronization contact controller is identical to the CRUD version, except for two signii cant
differences:

 1. The synchronization service adds a i fth spring contact controller operation, sync:

POST /Contacts/sync

The Spring controller declaration appears as follows:

 @RequestMapping(value = "/sync", method = RequestMethod.POST)
 @ResponseBody
 public SyncResult sync(@REQUESTBODY SyncRequest syncR) throws IOException

196 ❘ CHAPTER 6 SERVICE DEVELOPMENT

 2. The controller operations take a UUID string ID instead of a long ID. Many RESTful web
services refer to specii c objects using a simple numeric long — a natural choice for SQL
databases with an autoincrement feature. UUIDs represent another common referencing
scheme in an era of SQL alternatives (see Chapter 7). A UUID is typically a 128-bit value
described as follows:

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html

NOTE An interesting feature of a randomly created UUID is that collisions (that
is, equivalent UUIDs) with other random UUIDs are incredibly unlikely to occur
due to the size of the UUID number—128 bits. This characteristic enables clients
to make up their own UUIDs without having to rely on the server to create them.

The Spring controller dei nition that follows takes a UUID string, instead of a long ID as in the
previous example:

 @RequestMapping(value = "/{id}", method = RequestMethod.GET)
 @ResponseBody
 public Contact getContact(@PathVariable String id,
 HttpServletResponse resp)

Clients for all services, except for springServiceContacts, will use RESTful URLs that look like
the following:

http://localhost:8080/Contacts/ab619fb-4331-4826-b2e9-9516efd4d953

which seems more complex, but is actually used the same way as a URL like the following:

http://localhost:8080/Contacts/1

Logic Tier: Java Synchronization Logic

You can i nd the simplii ed contact synchronization example in Listing 6-16. In production, it would
be necessary to improve its robustness, but the code should give you an idea of how backend service
side synchronization with a mobile client can work, with a brief introduction as follows:

The synchronization example contact service contains an internal Spring contacts persistence
service. Mobile clients have their own contact storage, likely in a SQLite table. When a sync
operation kicks off after being initiated by the client or the service, the client will send its
outstanding changes to the service, along with a timestamp, recorded on the service but stored in the
client, of the last time the client synced with the service.

The service will i rst query for changes to its own persistent contacts made since the timestamp
from the client. The service then merges with changes from the client. Finally, the service sends
its own changes, from before any client merges, back to the client, where the client can ask users
to resolve any conl icts between their own data and the data from the service. When the user

i nishes resolving the changes, the client should then perform another sync. This will ensure

that conl ict resolutions also make it back into service persistence. Figure 6-7 shows the example

synchronization operation.

Building a RESTful Service for Contacts ❘ 197

Listing 6-16 shows a simplii ed implementation of a synchronization routine for the synchronization
controller.

LISTING 6-16: A method for synchronizing contacts

@RequestMapping(value = "sync", method = RequestMethod.POST)
@ResponseBody
public SynchResult sync(@RequestBody SynchRequest clientData),
 throws IOException, ParseException
{
 List<Contact> dataList = clientData.getContactList();
 Long now = clientData.getSyncTime();
 List<Contact> changedData = service.findChanged(syncTime, 0, 1000);
 SynchResult ret = new SynchResult(changedData, now);
 for (Contact c : dataList) {
 if (c.isDeleted()) {
 service.deleteContact(c.getId());
 } else {
 service.storeOrUpdateContact(c);
 }
 }
 return ret;
}

Take note of the following in the preceding code:

 ➤ The client passes in a SyncResult object, which contains a list modii ed contacts and a sync time.

 ➤ The code gets the current time. This time gets passed back to the client, and the client
will pass it back during the next sync operation – the time allows the service to know its
modii cations since the last sync with a given client.

FIGURE 6-7

Simple

Synchronization

Sync

1. Makes

 changes

Client

Service

2. Sends

 changes

 in sync

3. Client

 resolves

 conflicts

4. Client

 sends

 resolved

 conflicts

 (if any)

1. Select afected but not

yet changed service items, S.

2. Integrate client changes

into service data.

3. Send S to client.

198 ❘ CHAPTER 6 SERVICE DEVELOPMENT

 ➤ If the client has deleted the object, it must be deleted on the server.

 ➤ The code updates the contact on the server.

 ➤ The server responds with the list of items it has changed since last sync.

Sync Client Implementation

You can i nd the corresponding client implementation of this synchronization protocol in the
project syncAdapterContacts. This project implements the Sync Adapter+Content provider pattern
discussed at length in Chapter 5. You’ve seen some details of how the synchronization algorithm

works on the service side. It’s now time to take a look at the operation of the client at a high level:

 1. The contacts SyncAdapter.onPerformSync method delegates to RESTService.sync, which

then performs a synchronization operation for a given user account.

 2. As mentioned, the client needs to send the server’s last sync time back to the server for each

new sync; this client stores that time as metadata with the Android account manager:

String ts = mgr.getUserData(account, KEY_SYNC_MARKER);

 3. RESTService.sync then calls RESTService.syncContacts, which begins by creating a

transaction ID to track this sync operation with:

 String xactId = UUID.randomUUID().toString();

And then follows by collecting all modii ed objects (that is, dirty) for the current transaction

using:

List<Map<String, Object>> localUpdates = syncUtil.getLocalUpdates(cr, xactId);

 4. The code then converts those updates into a JSON marshaled format:

String payload = gson.toJson(syncUtil.createSyncRequest(
 localUpdates, account.name, auth, clientId, lastUpdate));

 5. This is then sent to the backend contacts sync operation for integration with service

contacts:

String resp = sendRequest(HttpMethod.POST, uri, payload).getBody();

 6. The code then unpacks the results of the processing:

Map<String, Object> syncResultMap = gson.fromJson(resp, SyncUtil.MAP_TYPE);

 7. Then it merges the results into the local SQLite database:

t = syncUtil.processUpdates(cr, syncResultMap);

which requires processing server modii cations and resolving conl icts:

processServerUpdates(cr, (List<Map<String, Object>>)

resolveConflicts(cr, (List<Map<String, Object>>)

 8. The code stores the service’s time of last sync back into the account manager:

mgr.setUserData(account, KEY_SYNC_MARKER, String.valueOf(lastUpdate));

Building a RESTful Service for Contacts ❘ 199

 9. Finally, the code marks local objects complete by:

 a. Removing the dirty l ag

 b. Removing the transaction ID (sync)

 c. Incrementing versions where appropriate

Due to the detailed nature of the protocol implementation, it’s recommended that you look at the

code in the following classes to gain a greater understanding of the sync protocol.

$CODE/syncAdaperContacts/src/com/enterpriseandroid/syncadaptercontacts
.svcsyncAdapterContacts/SyncUtil.java
$CODE/syncAdapterContacts/src/com/enterpriseandroid/syncadaptercontacts/svc
/RESTService.java

Running the Services

At this point, all the coding is done, and you are ready to run springServiceContacts, and its

springSyncServiceContacts variant, with the following steps, which you'll run independently for

each service.

Using Eclipse

 1. Coni gure Eclipse to use Tomcat:

Use Window ➪ Preferences ➪ Server (on the left) ➪ Runtime

Environments ➪ Server ➪ Runtime Environments.

Select Add ➪ Apache Tomcat v7.0. Click Next.

Select the Tomcat Installation directory (CATALINA_HOME).

Browse to the directory where you previously unpacked Tomcat and select it.

Select a JRE: Make sure to use the previously installed “JDK” Java installation—a JRE is not

sufi cient. If you don’t see a JDK choice in the JRE drop-down, click the installed JRE’s button.

 a. Click the Add button.

 b. Select Standard VM ➪ Click Next.

 c. Click Directory to edit the JRE home.

 d. Browse and select the directory where you previously installed the Java JDK

 e. Click Finish.

If a JRE is selected, unselect it, and select the JDK instead.

Click OK.

Back in the Tomcat Server window under the JRE drop-down, if the JDK is not selected,

make sure you select it now.

Click Finish again to complete server coni guration.

Click OK again to leave preferences.

200 ❘ CHAPTER 6 SERVICE DEVELOPMENT

 2. Show the server’s view: Window ➪ Show view ➪ (Other) ➪ Server ➪ Servers ➪ OK.

 3. Click the link in the server view to create a new server.

Select the server type (your previously coni gured Tomcat7)

Leave the variables unchanged.

Click Next ➪ Select (springServiceContacts or springSyncServiceContacts).

Click Add.

Click Finish.

 4. Create a new coni guration and run:

 a. Right-click (springServiceContacts or springSyncServiceContacts) in the package

explorer.

 b. Select Run as ➪ Run Coni gurations.

Select Apache Tomcat on the left.

Click the New icon on the upper left.

 c. Enter the server name, contact_configuration; replace New_configuration.

Then click Apply.

Then click Run.

NOTE Windows i rewall will/may block the server, so hit "Allow Access" when
dialog opens.

Watch the log i le for errors, and keep in mind that it will take a few minutes for ivy to download

dependencies the i rst time the service runs. To see that each service is running correctly, load the

URL http://localhost:8080/springServiceContacts/Contacts in a browser. If you see an

empty array symbol (that is, “[]”) then it's working.

Using Ant

 1. Start a shell for your platform (for example, on windows use cygwin). Then build the

project:

$CODE/springServiceContacts
 ant dist

 2. Copy the war i le to tomcat, copy:

 $CODE/springServiceContacts/dist/springServiceContacts.war

to

 $CATALINA_HOME/webapps

 3. Restart Tomcat.

Building a RESTful Service for Contacts ❘ 201

Invoking Requests

Since you’ve just written a simple web service, it’s possible to drive its operation using only a web

browser using the endpoint URL:

http://localhost:8080/springServiceContacts/Contacts

If the servers are running correctly, when you load this URL, the browser will simply show "[]" for

an empty array - indicating an empty contacts database.

Another convenient way to drive the operation of the browser is to use a command like curl:

http://en.wikipedia.org/wiki/cURL

You can also install the Advanced Rest Client Chrome extension — a third convenient way to run

REST requests.

Figure 6-8 shows the output of a request to list contacts in a web-based REST invocation tool. This

service contains two contacts, “John Smith”, and “Mark Jackson”.

You can install this particular tool in the Chrome browser from Google using:

https://chrome.google.com/webstore/detail/advanced-rest-client/
hgmloofddffdnphfgcellkdfbfbjeloo/related?hl=en-US

Once you have installed the extension, you can run it using the following URL:

chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html

FIGURE 6-8

202 ❘ CHAPTER 6 SERVICE DEVELOPMENT

Sample Requests

Here you can i nd a list of CURL operations you can type into your shell of choice to try out contact
service operations.

Create an initial contact:

curl -H "Content-Type: application/json" -X POST -d '{"firstName":"John",
"lastName":"Smith", "phone":2345678901, "email":"jsmith@nosuchhost.com" }'
http://localhost:8080/springServiceContacts/Contacts

Get back the contact that you just sent:

curl –X GET http://localhost/Contacts/1

The following command should return a 404 error code response:

curl –X GET http://localhost:8080/Contacts/2

Since no contact exists for the ID 2.

NOTE Numeric IDs will only work for springServiceContacts; you’ll need to
use UUIDs for the other services in the book.

It’s now possible to run the Chapter 5 Android clients as standard APKs in Eclipse using the

coni guration from Chapter 1 — you can edit contacts and see them modii ed in the backend

services that you just learned to run.

To see the client and service operate, start restfulCachingProviderContacts, and then start

springServiceContacts. Add a contact in the Android client. Enter the URL listed in the previous

section; now instead of any empty array, you should see the contact you added. You can also run

syncAdapterContacts with springSyncServiceContacts and use the browser to verify changes

to contacts.

The project restfulCachingProviderContacts works with all services discussed in this book; the

example syncAdapterContacts works with all services except springServiceContacts (because

that service does not support synchronization). Set endpoint URLs as described in project README

i les after starting up the services.

You can try out a mix of interactions between the Chapter 5 clients and the previously listed curl

commands. As before, refer to the README i les contained in the repos for the most up-to-date

versions of chapter instructions.

SUMMARY

This chapter provided an introduction to service development using Spring, Hibernate, and JDBC.

Along the way, the discussion noted some common pain points in service development, as follows:

Summary ❘ 203

 ➤ The contacts service required an explicit dei nition of a RESTful protocol for transferring
objects over the wire. Although the protocol for the contacts service was simple, real-world
services often require more involved RESTful operations.

 ➤ The code showed a simple way to track changes to objects over time. Adding
synchronization support to enable contact versioning from changes to multiple sources
would add signii cant complexity as well.

 ➤ Both DAO implementations made use of a static SQL schema, thereby making the addition
and deletions of i elds difi cult after initial schema creation.

The chapter produced two working backend service implementations to support the clients written
in the previous chapter. You now have a complete mobile application and supporting web services
that can use a RESTful CRUD protocol or can use Android sync adapters to perform a simple
but powerful synchronization algorithm. The service code used a l exible three-tier architecture

to enable its portability to other styles of persistence, as the next chapter on cloud-based backend

services will demonstrate. When you work through the examples in Chapter 7, you’ll have ported

the contacts service to the Amazon and Google clouds, thus allowing your Android applications to

take advantage of the formidable resources offered by those platforms.

Mobile and the Cloud

WHAT’S IN THIS CHAPTER?

 ➤ Understanding cloud performance and scalability

 ➤ Considering mobile scalability, push, and synchronization

 ➤ Understanding cloud persistence: SQL and NoSQL

 ➤ Considering design issues when building scalable services

 ➤ Looking at some popular cloud providers

 ➤ Exploring the code examples: RESTful contacts using Amazon

DynamoDB and Google App Engine

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

Chapter 6 introduced a simple but functional backend RESTful contacts service based on
SQL persistence. But now that you have a backend service, how will you deploy it? Will your
chosen software technologies scale to meet demand as your trafi c grows? If you don’t want
to use your own service hardware, how do you pick from the many available cloud service
platforms?

Most Android developers know that cloud providers will save them the hassle of building
and maintaining their own massive banks of application servers, but persistence support and
pricing arrangements vary widely. As you learned in Chapter 6 selecting a cloud provider
and service software requires deep knowledge of several vendors and many different types
of databases. This chapter digs into the design and capabilities of cloud-based software, and
walks through the pros and cons of choosing one provider over another.

7

206 ❘ CHAPTER 7 MOBILE AND THE CLOUD

The chapter begins with a discussion of why performance and scalability are so crucial to web and
mobile applications. Then it delves into the pro and cons of SQL and NoSQL databases and covers
the differences among basic APIs from Amazon, Google, and other cloud vendors. The chapter then
provides a broad overview of several popular platforms and solutions, instead of diving deep into
any specii c technology.

After walking through the chapter code examples, you’ll understand the basics of Amazon’s most
popular cloud service platform AWS (Amazon Web Services) and DynamoDB, and Google’s App
Engine and GQL (Google Query Language). You’ll have enough information to make high-level
decisions about the backend solutions for your mobile applications.

CLOUD PERFORMANCE AND SCALABILITY

Fuli lling user requests as quickly as possible is the bread and butter of backend services, and
maintaining performance during spikes in application usage presents a signii cant challenge to
service developers. By far the most successful way to increase server availability is to run cloud-
based applications on large arrays of identical hosts. Application requests usually run entirely
independent of each other, and as long as the underlying persistence mechanism supports parallel
access, it’s possible to support large numbers of simultaneous requests simply by throwing large
numbers of commodity servers at an application. Each user sees that the application performs well
for them and does not need to know that perhaps thousands of other machines performed the exact
same operation for other users at the same time. Figure 7-1 illustrates the cloud. It’s called the cloud
because you don’t know where or how many hosts run your application; they are just available on
demand, as from an amorphous “cloud” of resources.

Cloud

Computing

Resources

Web Scale Requests

FIGURE 7-1

Cloud Performance and Scalability ❘ 207

The Scale of Mobile

As this book describes, supporting native Android clients involves a signii cant set of challenges for
service developers. However, when you consider the domain logic of applications, you’ll i nd that
there are more similarities than differences between mobile and desktop service development. Both
clients require REST support and use similar domain objects. The most drastic difference,
besides a smaller screen, is the sheer scale of clients that can make a request on a mobile service.
In the United States, not everyone in a household has his or her own laptop or desktop, but almost
everyone has at least one device. In developing nations, extremely cheap Android tablets are
bringing the Internet to billions of people who have never used a computer.

Using Push Messages

Given the sheer volume of trafi c possible with mobile computing, it’s critical to consider strategies
that reduce redundant client communication. Client-based polling represents a glaring form of
unnecessary communication; push-based protocols allow the service to inform clients about
relevant changes, rather than clients constantly asking if “they are there yet.” Chapter 6 introduced
a lightweight synchronization protocol that can work well with a push-based model, where the
push message itself can either directly include synchronization state, or simply indicate that a client
should initiate synchronization itself. When you think about hundreds of millions of devices all
simultaneously initiating wasteful poll requests, a push-based approach becomes highly desirable.

It’s relatively simple for a given device to initiate contact with a service, but it’s not nearly as
straightforward for a service to contact a device. Devices run on intermittently connected networks
where it’s not even guaranteed that a service will physically be able to contact a device — if there is
even a consistent way of contacting devices. Devices run on WiFi and a wide variety of 3G and
4G carrier networks. Sometimes devices have IP addresses and sometimes they do not. Most of the
time applications do not have permission to listen on ports to create a service. Traditionally, the
simplest and perhaps the most reliable and cross-platform way of sending a message to a device
is to use an SMS message. As primitive as it sounds, SMS works pretty well. Another common means
to implement push capabilities is by having a client just leave open a persistent HTTP connection
through which a service can push messages to the client for the duration of the connection.

NOTE Google and Apple both support platform-centric push technologies.
Google’s approach is called Google Cloud Messaging (GCM). Apple’s solution
is called Apple Push Notii cation service. Many cross-platform solutions exist,
such as technology from a company called Urban Airship. The following link
provides instructions to get started with GCM:

http://developer.android.com/google/gcm/gs.html

Synchronization

Chapter 6 introduced synchronization from the perspective of backend development, but with
no particular emphasis on scaling or implementation. In this section, you’ll consider how the

208 ❘ CHAPTER 7 MOBILE AND THE CLOUD

combination of push and synchronization technology can pair to create a drastic reduction in trafi c
and polling. Picture the following scenario:

 ➤ Clients can make changes locally without needing to poll the service, since they can rely on
push messages (the server can notify on change) to stay up to date.

 ➤ The client does not need to create a new request for every change it makes; a
synchronization request can batch client changes.

 ➤ The service is free to accept changes from and sync with other devices.

 ➤ Clients can lose network connectivity and remain functional, since the client has local state
it can edit and display.

 ➤ The developer has l exibility in coni guring synchronization times — periodically or as

needed depending on system resources.

As you can see, a push and synchronization-based system has signii cant advantages over polling

CRUD protocols. Consequently, this book spends a signii cant amount of time getting you to think

about specii c sync-based approaches.

Persistence in the Cloud: From SQL to NoSQL

Of the many challenging aspects of designing an app to have a l exible and scalable architecture,

persistence represents one of the thorniest problems. Recent trends in data-driven applications have

involved the use of traditional SQL as well as newer scalable architectures that rely on a persistence

technology called NoSQL. The next sections address important strengths and weaknesses of SQL

and discuss why NoSQL was created to maximize scalability for modern applications. Keep in mind

that the following discussions are a matter of some debate.

SQL Databases

Many proponents of NoSQL systems argue that the nature of SQL itself tends toward the creation

of static schema that have limited capability to evolve as underlying changes in schema become

necessary. By contrast, NoSQL approaches can handle such changes intrinsically. Although it’s

true that schema changes can be difi cult to implement in a typical SQL model, it’s actually

straightforward to create a SQL schema that can accommodate changes over time. Consider the

schemas shown in Listings 7-1 and 7-2.

LISTING 7-1: Static schema

CREATE TABLE contacts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 firstName VARCHAR(50),
 middleName VARCHAR(50),
 lastName VARCHAR(100)
);

Cloud Performance and Scalability ❘ 209

LISTING 7-2: Dynamic schema

CREATE TABLE KeyValue (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 objectId INT,
 key VARCHAR(100),
 value VARCHAR(100)
);

Suppose your application inserted thousands of records into the table for Listing 7-1, and you
needed to add a new i eld for a second middle name, due to a few users having non-standard names.
SQL supports schema modii cation using the alter table command. However, changing the table
structure would require all contacts to have a second middle name i eld, which would likely be
overkill and would waste resources.

Consider the alternative schema in Listing 7-2. This schema is similar to the KeyValueContentProvider
content provider from Chapter 4. With only a minimal amount of extra overhead, you can store
objects with arbitrary i elds all in the same table. To retrieve a complete object, you just select for a
given objectID, and you will get a result set with rows (instead of columns) that are the i elds of the
object. “Schema changes” in this scenario become simply a matter of adding and deleting KeyValue
rows and maintaining an object ID.

You might be thinking, okay, it’s possible to create l exible schema in SQL, but is it convenient?

The answer is a matter of opinion, but as you’ll soon learn, newer schema-less or NoSQL systems

can handle such behavior with less up-front design. For example, with MongoDB, a popular

NoSQL database, all database rows in a table are JavaScript objects; you don’t need to dei ne

l exible schema, you just insert objects that have different i elds into the same table, and MongoDB,

supports their storage by default.

SQL Indexes

SQL has supported indexes out of the box for most of its multi-decade history. When a developer

needs to speed up searching on a particular column, it’s as easy as declaring an index on the relevant

table and column, as is shown with the line that follows using the table from the previous chapter:

create index updateTimeIndex on contact (updateTime);

This declaration is all an application needs to create and maintain an index as data is inserted and

deleted over time. SQL indexes have made it very easy to enable efi cient lookup times for a highly

signii cant number of web applications. Although this is a straightforward observation, please keep

it in mind for the upcoming discussion on NoSQL databases.

SQL Transactions

SQL supports a wide array of powerful programming functions, the most signii cant of which is

transactional support. Transactions ensure that a set of database operations has atomic or “all or

none” behavior, guaranteeing that errors do not leave the database in an inconsistent state if only

part of the set operations were to succeed (for example, a bank account transaction whereby a debit

succeeds, but an intended subsequent credit fails). SQL databases have rich transaction support that

210 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Single Host Database

In previous chapters, you saw how SQL, and SQLite in particular, provides i ne-grained query
capabilities and high-level features like transaction support and the ability to apply indexes to
column data.

When considering scalability requirements for web scale solutions, such expressiveness does
not come without cost. To start, the most widely used SQL databases — such as MySQL and
PostgreSQL — represent a single point of failure where a single machine stores a database for what
might be a cluster of application containers serving parts of a single application in parallel
(see Figure 7-2).

guarantees so-called ACID properties (Atomicity, Consistency, Isolation, and Durability) for all
transactions on a database.

Transactions also have a standardized locking level scheme, whereby applications specify the level
of concurrency allowed for each transaction. The level of most isolation is SERIALIZABLE or no
concurrent access at all. Clearly higher isolation levels reduce parallel scalability, when a single user
can have exclusive access to data.

NOTE Databases have taken novel approaches to implementing ACID. For
example, the PostgreSQL database uses something called MVCC, or multi-
version concurrency control, whereby every transaction actually gets its own
copy of the relevant persistent state to increase concurrent access.

DB

Persistence Requests

Client Requests

Server

The database as a bottleneck and a single point of failure

FIGURE 7-2

Cloud Performance and Scalability ❘ 211

Scaling Relationships

Providing a signii cant basis for relationships between entries, the SQL join feature is among the
most useful of traditional database operations. Unfortunately it’s hard to distribute joins across
parallel data hosts, due to the inherent expense of accessing join data that resides on more than
one machine. To understand the problem a little better, consider that in a scalable persistence
solution, an element of data will reside on roughly a single machine (data redundancy for robustness
aside). Assembling data in multiple tables and columns needed for a join is likely to require many
round trips to different hosts. The communication and data marshaling make joins expensive.
Additionally, you’ll see how hard drive seek time plays a signii cant role.

Database File Format

The i le format that a database uses to persist information to disk has signii cant implications for the
performance of the database. For years, SQL databases have innovated in various ways with their
i le format (like PostgreSQL and its versioning system), but the high-level layout of data has been the
same, as discussed in the following sections.

Row-Oriented

The SQL create table command enables the declaration of two-dimensional data structures. To
support this function, traditional SQL databases use a two-dimensional row-oriented format. So
a very simple row oriented table could look like Listing 7-3, where a row contains id, firstName,
lastName, and age columns.

LISTING 7-3: An example two-dimensional row-oriented table

id, firstName, lastName, age
0, jon, smith, 12
1, kate, hughes, 32
2, joan, molan, 29

As concerns database implementers, seeking to a particular location in a i le is as expensive as
seeking and loading a moderate amount of data (such as 1MB) from that i le. Seeks take a long time
due to the need to physically orient a hard drive to the location of relevant data — once in position
it’s ideal if the data nearby is useful. For a given SQL query, if you were to search on an indexed
firstName, you would incur as many seeks as there are rows with the name selected in the query. A
query with no index (the default) would need a seek for every row in the table.

NOTE More advanced database systems such as Oracle RAC do support
data replication techniques where components of tables and database schema
transparently copy between systems. However, such feature sets are not standard
with SQL database deployments, and they don’t necessarily scale up as well as
fully distributed databases — for example, you may have to pay a license fee for
each added CPU.

212 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Column-Oriented

So take a step back for a minute. Is there a way to structure data to turn hard disk seek limitations
to the advantage of the database designer? In contrast to the row-oriented format used in SQL
databases, consider a column-oriented approach. The layout shown in Listing 7-4 reformats the
row-based data from the earlier section to use columns instead.

LISTING 7-4: An example two-dimensional column-oriented table

id: 0, 1, 2
firstName: jon, kate, joan
lastName: smith, hughes, molan
age: 12, 32, 29

Recall that multiple seek operations take more time than one seek plus reading up to about 1MB of
data. Suppose you wanted to compute the average age of all people in the table in Listing 7-4. With
one seek, you could read out an entire column and then compute the average in a single pass. In
contrast, a row-oriented format would require many seeks and reads to load the rows for all people
into memory and then select each age to compute the average. For certain types of operations, called
aggregate functions, columnar organization has enabled vast performance improvement.

Due to its heavy use in data intensive applications, it’s worth pointing out that sorting is effectively
an aggregate function as well. If it’s quick to read out values of a column into memory, you can
subsequently sort those values in memory. So for example, if you have a query that sorts by i rst
name, it’s much faster to have all i rst names in one i le, rather than spread across a set of rows, each
of which would need its own seek to read a single i rst name.

For more information on this topic, see Wikipedia:

http://en.wikipedia.org/wiki/Column-oriented_DBMS

Record Size

Because of the way the SQL language dei nes schema, a create table is effectively a declaration of
the sizes of the data types in a row, and the size of the two-dimensional structure that holds them.
The create table statement does not allow for varying element sizes. Of course, dropping the SQL
language would mean you could support that capability.

As you can see, traditional SQL database designs have some issues that could limit their use in
massively scalable deployments.

NOTE Recent novel SQL database solutions from vendors, such as VoltDB,
state that it’s entirely possible to achieve web scale with SQL, and that the
features just listed are critical to successful application deployment. See:

https://voltdb.com/

Cloud Performance and Scalability ❘ 213

NoSQL Persistence

As discussed, the demands of web and mobile scalability have driven the design of large-scale
storage systems. As you might have guessed, distributing request load and avoiding unnecessary seek
operations held critical importance in meeting scalability requirements. All of the major so-called
“NoSQL” databases — like Amazon DynamoDB, Google App Engine Datastore, Cassandra, and
MongoDB — use a column-oriented format for the reasons just discussed, and the presence of an
ID or key is the only requirement they place on the number of i elds for a given element. In these
systems it does not make sense to think of a “column” as similar to a column in a SQL table. This
NoSQL key is a lot more like a key/value pair in a persistent map data structure. As their name
suggests, none of these databases support the SQL language, and they do not require that records
contain the same number of i elds or have a static size.

Searching NoSQL

So far, NoSQL databases sound like a pretty solid way of meeting web scale requirements. They
minimize hard disk overhead and allow specii c column l exibility not found in SQL. But do they have

any drawbacks? The answer seems to be a clear yes. For example, searching with Amazon DynamoDB

is entirely unlike querying a SQL database and in many ways is much more primitive. You don’t get

a nice index keyword, and the database does not automatically update indexes on your behalf. Your

application must include code that creates and updates its own index whenever you insert or delete new

data. Perhaps not surprisingly, the reason for such “retro” coding techniques is a result of aggressive

optimization on the part of the database providers. Using a primitive API enables database developers

to increase the performance of their service platform as a whole, as you’ll see in the next section.

NOTE You can expect rapid feature improvements in the data systems of all
major cloud vendors. For example, DynamoDB has recently added support for a
“secondary index” capability.

NoSQL Scan Queries

Querying a NoSQL database depends signii cantly on intelligent sorting of column-based data. The

Google App Engine Datastore (which is built on a NoSQL technology called BigTable) sorts column

data using a hierarchical primary key. The basic layout of BigTable consists of a column containing

rows with the following layout:

Row Name: Column Set

It looks somewhat like a traditional database table, but the column is the row name and its column

set — only the row name is directly searchable. The row name or key is “known” to the implementation

of the database and all data in the database is sorted on it. The result of this simple structure is that

database queries simply scan the database for row names or, alternatively, for a range of row names.

In the case of BigTable, you can search based on a prei x. You can return all row names that start with

a given prei x (such as all the names that begin with the letters “ca”) or return a range of row names

starting with one prei x and ending with another. To understand a little better how this works for

BigTable, consider Figure 7-3, which shows the parent-child relationships of rows in BigTable.

214 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Signii cant operations like search are extremely fast with NoSQL databases, but the downside of less
structure is the signii cant complexity pushed out of the persistence layer into the application space.
Done right, NoSQL applications may scale better and run faster, but developers must address tricky
synchronization and performance issues that the database solves with SQL-based approaches.

What you see in Figure 7-3 illustrates the hierarchical key structure used with BigTable. Keys
are sorted according to name in hierarchical order. This clever arrangement allows not only fast
scanning lookup, but fast scanning of an element and its descendants. Such organization greatly
benei ts any data with a hierarchical relationship, such as geodata (for example, cities in a state),
players on a team, and so on. The keys in Figure 7-3 are built from a construct known as an entity
that this chapter will explore further in the App Engine code example later.

NOTE Google’s BigTable carries out scan queries with an impressive constant
number of disk seeks. A scan query uses one seek, and then maximizes disk
bandwidth to optimally read out the results of a given query. For their raw
performance speed, scan queries are considered the bread and butter of a
NoSQL database.

NOTE Google’s BigTable database is fully distributed and designed to handle
petabytes of data across thousands of inexpensive servers. BigTable uses a shared
nothing database partitioning scheme, also referred to as sharding. Sharding
breaks up data into smaller sections and distributes it across a large number of
hosts. You can think of sharding as pieces of a broken window; if you have all the
pieces, they will make the whole pane of glass.

http://en.wikipedia.org/wiki/Big_table

Additionally, Google has made the following highly informative video, which
introduces the Datastore design:

http://www.youtube.com/watch?v=tx5gdoNpcZM

Key Distribution

Column-oriented databases that “shard” their data based on row keys rely on applications to evenly
distribute data across different hosts. When applications fail to achieve this distribution, scalability
will degrade when the system becomes less than fully distributed — data will reside on fewer hosts
than possible thus increasing load on specii c servers. Such overload points are known as “hot spots”
or “hot keys” and developers can avoid them by using a sufi ciently distributed hash key. Figure 7-4
shows key distribution and scalability hot spots.

↓ /Grandparent:Jane

↓ /Grandparent:Jane/Parent:Bill

↓ /Grandparent:Jane/Parent:Bill/Child:John

FIGURE 7-3

Design Considerations for Scalable Persistence ❘ 215

DESIGN CONSIDERATIONS FOR SCALABLE PERSISTENCE

Now that you understand the basics of scalable cloud persistence and some pros and cons of using
SQL, the next few sections take the discussion into practical design matters like what to consider
when selecting a database style and when to update indexes, among others.

To SQL or Not to SQL?

Application developers making a decision about whether to use SQL should consider a number of
variables:

 ➤ Does your application handle vast amounts of data, on the order of serving millions of
users?

 ➤ Will the structure of your data benei t from using a l exible column set? Will you need to

add or remove columns on the l y?

 ➤ Does your application require sophisticated query support?

 ➤ Do you have the resources to host your own server farm?

 ➤ Can your engineering team handle the added development complexity of NoSQL?

If your application will use only moderate amounts of web trafi c (such as what most web

applications encounter), the limited querying capabilities of NoSQL could prove to be a signii cant

hurdle, and without much benei t. In many cases, starting with or using SQL will deliver the

l exibility you need and will help you to develop safer applications. On the other hand, large

datasets work well with NoSQL due to its fast scanning capabilities.

Too many client requests on a host with poorly distributed keys

Server

FIGURE 7-4

216 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Using Schema

Even with NoSQL datastores, developers will i nd it useful to employ a schema-like dei nition for
their application data model. Although NoSQL does not require similar columns between elements,
it’s useful if elements at least share a subset of i elds. For example, a business contact could support
all the same i elds as a contact, but also add a business phone number and business e-mail. Often
the form of such schema will bind to objects in the developer language of choice (such as a class
in Python or Java). You’ll see how this works later in the chapter in the Google code example with
queries on the contact class.

Handling NoSQL Indexes

SQL or NoSQL, data indexes — or precomputed answers to queries — are the primary method of
improving the performance of persistence queries. As mentioned, implementing your own indexes
with NoSQL databases adds signii cant complexity to your application. It’s possible to avoid some
of this complexity by integrating an existing search solution, such as Apache Lucene or Solr, into
your product. So, instead of building your own indexes, you can integrate a search engine into your
application and use it to implement queries.

Updating Indexes Asynchronously

Indexes must rel ect the current state of the database in order to return accurate results, which

means indexes must be updated when data changes. The work of managing the database while

satisfying user requests has the potential to degrade request performance. A common method

of dealing with this overhead is to handle it asynchronously from the requests themselves. It’s

convenient to use a persistent task queue. Amazon released a tool called Amazon SQS, which

is covered shortly.

Stateless Design

Continuing to hit on the main theme of the chapter, a successful cloud data model will seek to

maximize scalability of requests. A stateless service stores all persistence information in its data tier

and does not seek to reuse state across requests. A stateless request relies only on the content of the

request and persistent state in the database.

A typical example of shared state is a session-oriented protocol where session information must

be part of every request. Shared state requires blocking while different hosts access the shared

information where it happens to live in the database, and is generally the enemy of parallel

execution.

Eventual Consistency

NoSQL systems generally do not strive to maintain ACID-level consistency due to the noted trade-

off between exclusive access to data and optimal scalability. Indeed the formal CAP theorem

remarks on the extreme difi culty of building a system that is strongly consistent, highly available,

and fault tolerant:

http://en.wikipedia.org/wiki/CAP_theorem

Design Considerations for Scalable Persistence ❘ 217

Load Balancing

To take advantage of simultaneous data requests, an application needs to direct requests across
a large number of hosts. Developers call this distribution process load balancing. Most cloud
providers support load-balancing functions to make it easier to scale service trafi c. For example,
Google App Engine provides a built-in load balancer that automatically distributes the requests
among your servers, whereas AWS provides a technology called elastic-load-balancing. Making your
server stateless is critical to effective load balancing.

Most NoSQL systems, like DynamoDB, do not support complex transactions. Google Datastore is
a notable exception and does support them. On systems that do not support transactions, how do
NoSQL applications guarantee consistent state? Most modern cloud services rely on the principle
of eventual consistency. This principle states that if the users were to all of a sudden stop making
requests on a given service, the data for the service would be brought to a consistent state. The
database would have time to edit its internal state to make the effects of each request consistent.

Optimistic Concurrency Control

Massive simultaneous request execution provides the mechanism by which web scale applications
achieve high levels of scalability. With so many clients hitting the data simultaneously on different
machines, and only eventual consistency to hold the system together, it might seem that preventing
an inconsistent state would be impossible.

As it turns out, an extremely simple rule called optimistic concurrency control provides a solution.
Imagine that when a client attempted to submit changes to the database, the database detected
whether any changes from the client were in conl ict with changes already in the service. Detecting

changes in the service is application-specii c but can be as simple as checking modii cation times

or version numbers on data. If the service does i nd a conl ict, the client aborts its change and gets

the latest state from the service. When the client is ready to resubmit, the process repeats, until the

service accepts the client’s changes, and the client’s data gets written to the service datastore (see

Figure 7-5). The rule is called “optimistic” because the client always makes its best attempt to

commit data. Typical usage patterns suggest that in the majority of cases, it will succeed.

XP

XP

Attempt to

push

changes

Resolve

and retry

as needed

DONE

No

Retry

Abort client

changes

Modified? Return

success
No

Yes
Accepted?

FIGURE 7-5

218 ❘ CHAPTER 7 MOBILE AND THE CLOUD

LOOKING AT POPULAR CLOUD PROVIDERS

Cloud-based hosting has grown to encompass a vast technology industry. Most major technology
corporations host cloud platforms, but a few clear winners have emerged. The next section
highlights a few of them.

Amazon AWS

Amazon hosts a wide array of cloud products to support web applications and backend services, and
generally could be regarded as a 900-pound gorilla in cloud hosting services. Amazon provides a
large family of complementary technologies, and the following are relevant to the chapter examples:

 ➤ DynamoDB — Foremost among these services is DynamoDB, with which you are now well
familiar. It’s a scalable column-oriented database for storing structured data.

 ➤ Amazon S3 — Amazon Simple Storage Service, designed for storing large data blobs
ranging from up to 5 terabytes of data. The service could be used to store any large i le,
including videos or sensor data, but generally does not hold structured data.

 ➤ Amazon SQS — A distributed queue-based messaging service that supports guarantees
on message delivery. Amazon SQS supports “at most once” message delivery semantics,
meaning an app can resend a message without fear of redundant application. Many
readers will be familiar with the Java Message Service (JMS); the SQS fuli lls the same
role. Amazon SQS might be used to deliver periodic Android sensor data to a scientii c
monitoring service.

Optimizing Costs

One of the most important advantages of using a cloud service is the l exibility to scale up and down

as needed, which means you can add more servers during peak times and reduce service use during

down times. Your application only uses resources when it needs them. If you own your own bank

of servers capable of handling a massive peak, those servers are likely to sit idle and cost you money

during slow periods of trafi c.

NOTE AWS and most cloud providers provide trafi c-monitoring tools that
allow you to add or remove virtual server support as appropriate for your trafi c
load.

NOTE The chapter’s example code suggests a use for SQS in conjunction with
transaction support for DynamoDB. The AWS code walkthrough discusses how
it would work.

Looking at Popular Cloud Providers ❘ 219

 ➤ AWS Management Console — In addition to supporting cutting edge cloud services,
Amazon also supports easy-to-use online management tools for creating, modifying, and
monitoring running services.

 ➤ AWS Free Usage Tier — Most Amazon services have some sort of free introductory usage.
As of the time of writing of this book, DynamoDB supports 100MB of storage, i ve units of
write capacity (5 writes/second), and 10 units of read capacity (10 reads/second), available to
new and existing customers. With Amazon, each service has its own free plan:

http://aws.amazon.com/free/faqs/

Amazon AWS online:

http://aws.amazon.com/

Google App Engine

Clearly Google itself is a highly signii cant player in the cloud hosting space. Like Amazon, Google
also supports a large suite of mature, complementary services for running third-party applications
on Google’s formidable cloud infrastructure. Here are a few to get started:

 ➤ Datastore — This is Google’s persistence service based on the structured data, column-
organized BigTable, as discussed in this chapter.

 ➤ Blob store — Large object data storage, for objects that will not i t in Google’s structured
datastore. Blob i les are submitted using HTTP operations, often with a simple form.

 ➤ Memcache API — A high-performance distributed in-memory cache that applications access
in front of persistent storage, like Datastore. Memcache uses the JCache API, a standard
caching interface. Redundant queries accessing the same data should make use of the
memcache API. The memcache API is designed to work in a highly scalable load-balanced
environment.

For App Engine pricing:

https://cloud.google.com/pricing/

Joyent: Hosted MongoDB+node.js

The Joyent cloud-hosting platform optimizes the performance of several widely popular cloud-
computing technologies not presented in this version of Enterprise Android. Joyent is notable as
having hosted Twitter for a time — certainly a web scale application. These components include:

 ➤ MongoDB — A horizontally scaled, completely JSON-oriented columnar style database.
MongoDB is a “document-centric” database in which developers can directly insert or
delete JSON objects with no requirement to pre-dei ne schema for storage.

 ➤ node.js — An event-driven service development platform that leverages client-side web
development mindshare by using JavaScript as a server-side development technology.
Developers write services completely in JavaScript. Node.js strongly dei nes methods of

220 ❘ CHAPTER 7 MOBILE AND THE CLOUD

interaction, so all services running on a node.js installation integrate with each other by
default.

 ➤ Hadoop — A platform that supports data-intensive applications, supporting petabytes
of data. Hadoop supports a computational paradigm known as MapReduce that enables
processing of large datasets. MapReduce breaks up large computing problems into small
pieces so that they can be processed on parallel hardware:

http://en.wikipedia.org/wiki/Hadoop

Red Hat OpenShift

Red Hat has created an open source cloud-computing platform called OpenShift. OpenShift is
notable because it takes a different approach than some of the other providers. Where Amazon or
Google create an explicit API for their services that they intend developers to consume directly,
OpenShift allows developers to select a pre-coni gured, usually open source API for development.
Developers also have the option to dei ne their own new “cartridge” or set of OpenShift APIs. The
result is that developers end up using the API of their choice while still getting the benei t of cloud
hosting. For those concerned about “vendor lock-in,” becoming too directly dependent on the APIs
of any particular vendor, OpenShift can potentially help developers avoid this pitfall.

OpenShift supports the following set of default cartridges, which provide support for environments
from JBoss (a popular Java server technology) to Ruby (a popular open source programming
language):

https://openshift.redhat.com/community/developers/technologies

Now with enough background on cloud computing and service development technologies, you’re
ready to jump into the chapter code examples.

EXPLORING THE CODE EXAMPLES

This chapter provides contact service implementations for the two most popular cloud service
platforms discussed in this chapter: Amazon Web Services (AWS) and Google App Engine. The
examples build on the work done in Chapter 6 with the Spring-based contacts services — you’ll
build two new contact service variants for both of these service platforms. The examples will walk
through specii c code that demonstrates topics this chapter has covered so far, such as building
NoSQL indexes and using range queries. Each service reuses much of the code from Chapter 6,
taking advantage of its three-tier architecture. With some coni guration aside, these services only
need to provide their own new implementation of the contact DAO interface. In a production
deployment this architecture would mean that you could easily switch between cloud providers and
databases. This is a nice advantage given competing prices and designs prevalent in today’s cloud
services market.

Note that the idea behind these examples is to give you a taste of what it’s like to develop in each
environment and to get you thinking about how to solve common mobile data problems with these
technologies. The examples are not intended to provide a comprehensive introduction to the relevant
platforms. Authors have i lled volumes on both of them.

Exploring the Code Examples ❘ 221

The Contacts DAO Interface (Again)

Recall the contacts DAO interface introduced in the previous chapter. The DAO interface for this
chapter includes methods for i nding and manipulating contacts, as shown in Listing 7-5.

LISTING 7-5: Contact DAO review

 package com.wiley.demo.android.dao;

 import java.io.IOException;
 import java.util.List;

 import com.wiley.demo.android.dataModel.Contact;

 public interface ContactDao {
 Contact getContact(String userId, String id) throws IOException;
 String storeOrUpdateContact(String userId, Contact contact) throws IOException;
 List<Contact> findContactFirstName(String userId, String firstName,
 int start, int numOfmatches);
 List<Contact> findChanged(String userId, long timestamp, int start, int
 numOfmatches);
 void delete(String userId, String id) throws IOException;
 List<Contact> getAll(String userId, int start, int numOfmatches) throws
 IOException;
 }

The remaining sections of the chapter will cover example code for implementations of this interface
using Amazon DynamoDB and Google App Engine.

Writing the Code: Amazon Contacts Service

This example focuses on how to integrate with Amazon Web Services and how the tiers of the
contact service have changed to make use of DynamoDB, thus enabling the contacts service on the
highly available Amazon cloud. This section of the chapter investigates
the contact DAO implementation as implemented on Amazon’s DynamoDB. You can i nd a
complete working example in the following directory:

$CODE/awsServiceContacts

Prepare: Prerequisites and Getting Started

Chapter 6 covered all the requirements for developing a Java web application based on Spring,
Jackson, and the application container, Tomcat. The Amazon Web Services DynamoDB service
example leverages many of these same tools, but also requires the presence of the Amazon Web
Services SDK, an AWS account, and credentials.

Step 1: Create an Amazon Account

Create an Amazon AWS account if you do not have one. To create the account, go to http://aws
.amazon.com/ and click the Sign Up button. You should be able to follow the instructions from that
point to create the account. You will need a credit card to complete sign-up.

222 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Step 2: Confi gure DynamoDB with Application Schema

Once you have created an account, you can visit the AWS management console at:

https://console.aws.amazon.com

From there, click the DynamoDB link under the Database category. This takes you to the UI for
managing the DynamoDB. Follow the instructions there to create application tables in
DynamoDB — the table wizard may pop up by default.

Working with AWS is different than working with traditional SQL databases — schema management
takes place in an online editing tool, rather than with a source code-based SQL language. At the top
of the page in the Dynamo DB section, you should see a row of buttons. Find the one labeled Create
Table and repeat the table creation process for the next tables. You need to create the following three
tables: Contact,ContactFNameIndex, and ContactUpdateTimeIndex.

 ➤ The Contact table stores contact data. When creating each table, you will need to decide whether
the table will use a hash key and range key, or a hash key only. This table needs only a hash
key, which the UI will prompt you to add as a hash attribute name. Click the appropriate radio
button. The name should be id.

Next, continue through the optional add indexes screen — nothing to add right now, none
of the tables use a secondary index — then use Step 3 for each table to specify read/write
throughputs.

 ➤ ContactFNameIndex stores the index for searching on the i rst name. This table needs both
a hash key and a range key, and you should dei ne the type of the keys as String. The hash
attribute name is userId, and the range attribute name is firstName.

Hit continue to skip adding indexes.

Use Step 3 to specify the read and write throughputs.

 ➤ ContactUpdateTimeIndex stores the index for searching on update time. This table
needs both hash and range keys, and the range and hash attribute names are userId and
updateTime, respectively. Again, the types of the keys are String.

You may see a message regarding throughput warnings being sent to the designated e-mail
recipient. Click continue if you haven’t responded to the coni rmation e-mail yet.

Hit continue to skip adding secondary indexes.

Use Step 3 to specify the read and write throughputs.

Figure 7-6 shows the Amazon AWS online schema-editing tool showing the schema you’ll need to
create to use the contacts service.

WARNING One interesting characteristic of Amazon’s pricing policy is that
if you create a schema under a pricing plan, the existence of the schema itself,
rather than actual trafi c, can drive service charges! In other words, it’s possible
to dei ne a schema, have no trafi c, but still get a bill.

Amazon has provided DynamoDB documentation on its developer site as well:

http://aws.amazon.com/dynamodb/

Exploring the Code Examples ❘ 223

Step 3: Specify the Read/Write Throughputs

For each table you dei ne, you need to specify the Read Throughput and the Write Throughput. If
you are using the AWS free tier account, set both Read Throughput and Write Throughput capacity
units to 2 to avoid being charged. The higher you go, the more you will pay. You can i nd specii c
AWS pricing details on their site:

http://aws.amazon.com/dynamodb/pricing/

Click Continue. The next screen optionally allows you to monitor your request rates and set
throughput alarms. We won’t be doing that for our example, so just enter an e-mail address for
notii cation and click Continue to i nish table creation.

The i nal page provides a summary for your review. Click Create, and you’ll be taken to the Services
page, providing both editing capabilities and detailed information about the table(s) you just created.

Step 4: Create Access Credentials

Before your client can communicate with AWS, you need to create an access key, as follows: AWS
Management Console ➪ Your Name menu ➪ My Account ➪ Security Credentials (on the left).

NOTE You will need permission to modify the AWS account to edit Security
Credentials.

This brings you to the AWS security credentials page where you can create an access key with:
(Preferred) https://console.aws.amazon.com/iam/home?#security_credential ➪ Access
Keys ➪ Create New Root Key

Create the key and download its corresponding csv i le—it contains the access and secret keys.

Or use: (Deprecated) Access Credentials ➪ create new access key

Your key will be displayed; use the UI to show the secret key.

FIGURE 7-6

224 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Step 5: Install Amazon Web Services SDK (Optional)

To work with Amazon Web Services, you’ll need to download the SDK from Amazon’s development
center from the following location:

http://aws.amazon.com/sdkforjava/

NOTE Strictly speaking, you only need the SDK for its .jar i le, which can be
resolved in the project’s ivy.xml i le. Thus, it’s optional for you to download the
Amazon SDK.

Step 6: Add Security Credentials

Add the access key and secret access key to the i le:

$CODE/awsServiceContacts/src/main/resources/com/enterpriseandroid/awsContacts
/dao/impl/AwsCredentials.properties

By entering the keys as follows:

1 secretKey=<Insert your secret key here>
2 accessKey=<Insert your access key here>

Finally, change the following i eld:

$CODE/awsServiceContacts/src/main/java/com/enterpriseandroid/awsContacts
/rest/ContactController.USER_ID

to be your Amazon account user name.

NOTE While it’s possible to run the contacts service with DynamoDB remotely,
performance will improve signii cantly by running the tomcat instance on an
EC2 instance. See the AWS console for more information on EC2. It’s i ne to run
the examples on your local machine; contacts will save to DynamoDB remotely.

Step 7: Tools and Software Stack

This chapter has fewer libraries to cover in its software stack than in the previous chapter, given
how much code is the same for the presentation and logic tiers. The Amazon SDK is the only new
tool in the software stack, and its APIs are only used in the Data tier DAO. All the other software
dependencies from Chapter 6 apply here as well. For your convenience, the project ivy.xml contains
a dependency on the App Engine SDK, as follows:

<dependency org="com.amazonaws" name="aws-java-sdk" rev="1.3.26" />

Example Code: Replacement Contact DAO

As mentioned, the Amazon sample code demonstrates how to port the RESTful contacts service to
the Amazon cloud. The class, ContactDaoDynamoDBImpl, provides the relevant implementation code
for the contact’s DAO, which contains signii cant differences from the SQL or Hibernate versions of
the previous chapter.

Exploring the Code Examples ❘ 225

Instead, the Dynamo API client class, AmazonDynamoDBClient, supports all persistence operations,
which in turn uses the Amazon API for persistence as follows:

 ➤ The example uses a less sophisticated version of object serialization for persistence due to
the way that Dynamo structures return values. The Dynamo client returns objects in the
form of Java maps. Consequently, the example accesses object i eld values using simple
constant access, as follows:

item.get(FIRST_NAME).getS();

 ➤ As discussed earlier in the chapter, DynamoDB uses scan queries. To i nd contacts, the DAO
implementation uses the composite string key userId:contactID.

 ➤ The code uses two contact i elds to i nd contacts to support the contacts sync algorithm:
contact i rst name and contact update time.

 ➤ As mentioned earlier, DynamoDB does not support SQL style indexes. As a result, the code
also contains two methods for updating indexes for its two search i elds.

Listing 7-6 shows the documentation for the AWS DAO class.

LISTING 7-6: DAO implementation for DynamoDB

 package com.wiley.demo.android.dao.impl;

 import com.amazonaws.ClientConfiguration;
 import com.amazonaws.auth.AWSCredentials;
 import com.amazonaws.auth.PropertiesCredentials;
 import com.amazonaws.services.dynamodb.AmazonDynamoDBClient;
 import com.amazonaws.services.dynamodb.model.*;
 import com.wiley.demo.android.dao.ContactDao;
 import com.wiley.demo.android.dataModel.Contact;

 import java.io.IOException;
 import java.util.ArrayList;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;
 import java.util.UUID;

 /**
 * Enterprise Android contacts RESTful service implementation that uses the
 * Amazon Dynamo DB API for scalable, hosted persistence.
 */
 public class ContactDaoDynamoDBImpl implements ContactDao {
 private final String ID = "id";

Key names for the contacts search i elds, i rst name, and last name are as follows:

 private final String FIRST_NAME = "firstName";
 private final String LAST_NAME = "lastName";
 private final String EMAIL = "email";

226 ❘ CHAPTER 7 MOBILE AND THE CLOUD

 private final String UPDATE_TIME = "updateTime";
 private final String VERSION = "version";
 private final String HASH_KEY = "userId";

These are the names of the search i eld indexes. The relevant indexes get updated in the methods
updateUpdateTimeIndex and updateFnameIndex.

 private final String FIRST_NAME_INDEX_TABLE = "ContactFNameIndex";
 private final String UPDATE_TIME_INDEX = "ContactUpdateTimeIndex";
 private final String CONTACT_TABLE = "Contact";

 private AmazonDynamoDBClient client;

 public ContactDaoDynamoDBImpl() throws IOException {

This code initializes the Amazon DynamoDB client with credentials obtained from the properties
i le, AwsCredentials.properties.

 AWSCredentials credentials = new PropertiesCredentials(
 ContactDaoDynamoDBImpl.class
 .getResourceAsStream("AwsCredentials.properties"));

 ClientConfiguration config = new ClientConfiguration();
 client = new AmazonDynamoDBClient(credentials, config);
 }

 @Override

The method for getting a contact takes a userId and a contact id. It uses the Amazon request
class, GetItemRequest, to build a request consisting of a table name and a composite key, which
has the aforementioned format: userId:contactId. DynamoDB will service the request with a fast
scanning search.

 public Contact getContact(String userId, String id) throws IOException {

 // List<String> attributesToGet = new ArrayList<String>(
 // Arrays.asList(ID, FIRST_NAME, LAST_NAME, EMAIL,
 // UPDATE_TIME, VERSION));

 // Get a contact with the composed string key, userId:id to identify
 // the row for the contact. We're not explicitly specifying the
 // columns to get, since we want all of the columns. But you could
 // specify columns using the code commented out above and below.
 GetItemRequest getItemRequest = new GetItemRequest()
 .withTableName(CONTACT_TABLE)
 .withKey(new Key().withHashKeyElement(new AttributeValue()
 .withS(this.composeKeys(userId, id))))
 // .withAttributesToGet(attributesToGet)
 .withConsistentRead(true);

 awsQuotaDelay();

Exploring the Code Examples ❘ 227

The DAO implementation delegates to the Dynamo client to get the results of the request.

 GetItemResult result = client.getItem(getItemRequest);
 Map<String, AttributeValue> item = result.getItem();
 if (item == null) {
 return null;
 }

When the results return as maps, a utility method converts them into contact objects.

 return item2Contact(item);
 }

The method storeOrUpdateContact adds a contact under the given userId. The contact gets
updated if it already exists.

 @Override
 public String storeOrUpdateContact(String userId, Contact contact)
 throws IOException
 {
 Map<String, ExpectedAttributeValue> expectedValues =
 new HashMap<String, ExpectedAttributeValue>();
 Contact oldContact;

 String oldFirstName = null;
 long oldUpdateTime = -1;

 if (contact.getVersion() != 0) {
 expectedValues.put(VERSION,
 new ExpectedAttributeValue()
 .withValue(new AttributeValue()
 .withN(Long
 .toString(contact.getVersion()))));
 oldContact = getContact(userId, contact.getId());
 if (oldContact != null) {
 oldUpdateTime = oldContact.getUpdateTime();
 oldFirstName = oldContact.getFirstName();
 }
 }

 contact.setUpdateTime(System.currentTimeMillis());

Create the values for the contact object, making sure to increment the version, and set the update
time to the current time. The scan key is the same as before, userId:contactID.

 Map<String, AttributeValue> item = contactToItem(contact);
 item.put(VERSION, new AttributeValue()
 .withN(Long.toString(contact.getVersion() + 1)));
 item.put(ID, new AttributeValue().
 withS(composeKeys(userId, contact.getId())));

 /***
 * AWS does not provide transaction support, and cannot guarantee that

228 ❘ CHAPTER 7 MOBILE AND THE CLOUD

 * all the writes to DynamoDB are successful. To avoid this problem, we
 * recommend using AWS SQS service. The idea is to wrap both update
 * operations into a task, and then put the task into SQS. If and only
 * if both operations succeed, would we remove the task from the SQS.
 */
 putItem(CONTACT_TABLE, item, expectedValues);

Insert the given contacts object into the contact table, making sure to update the update time
index and the i rst name index. Take note that this is where the code needs to manually update its
own index. With SQL you would not need to remember to add this type of code — it’s critical to
performance that you maintain indexes correctly.

 updateUpdateTimeIndex(userId, oldUpdateTime, contact);
 updateFnameIndex(userId, contact.g etFirstName(),
 oldFirstName, contact.getId());

 return contact.getId();
 }

 private void updateUpdateTimeIndex(String userId,
 long oldUpdatTime, Contact contact)
 {
 if (oldUpdatTime == contact.getUpdateTime()) {
 return;
 }

Updating the update time index consists of putting an item into the update time index table, with
the hash key of userId and a composite update time key of updateTime:contactID.

NOTE Remember, the index is just another custom created table with normal
object i elds; there is no special support for indexes.

The newly inserted object enables lookup by userId of the lastUpdate time of a contact with the
given contactID.

 Map<String, AttributeValue> item =
 new HashMap<String, AttributeValue>();
 item.put(HASH_KEY, new AttributeValue().withS(userId));
 item.put(UPDATE_TIME, new AttributeValue().
 withS(composeKeys(Long.toString(contact.getUpdateTime()),
 contact.getId())));
 putItem(UPDATE_TIME_INDEX, item, null);
 if (oldUpdatTime > 0) {
 // delete the old index
 deleteDo(userId,
 composeKeys(Long.toString(oldUpdatTime), contact.getId()),
 UPDATE_TIME_INDEX);
 }
 }

Exploring the Code Examples ❘ 229

 private void updateFnameIndex(String hashKey,
 String fname, String oldFirstName, String id)
 {
 if (oldFirstName !=null && oldFirstName.equals(fname)) {
 return;
 }

 Map<String, AttributeValue> item =
 new HashMap<String, AttributeValue>();
 item.put(HASH_KEY, new AttributeValue().withS(hashKey));
 item.put(FIRST_NAME, new AttributeValue()
 .withS(composeKeys(fname, id)));
 putItem(FIRST_NAME_INDEX_TABLE, item, null);

Here, the code updates the i rst name index. Recall that the hash key in this case is the contact i rst
name. So in this case, the HASH_KEY = userId, and a i rst name attribute consists of a composed
key, firstName:contactID. This code sets the two i elds that are the hash key and the range key
used to locate contact data in the example DynamoDB.

Not pretty compared to a SQL index, but still an index of sorts — and you don’t have to host your
own machines. And at least in this simplii ed example, it was not too difi cult to set up the data
model and indexes for contacts.

 if(oldFirstName != null) {
 deleteDo(hashKey, composeKeys(oldFirstName, id),
 FIRST_NAME_INDEX_TABLE);
 }
 }

Here’s a simple utility method for putting items into a Dynamo table:

 private void putItem(String indexName, Map<String, AttributeValue> item,
 Map<String, ExpectedAttributeValue> expectedValues)
 {
 PutItemRequest putItemRequest = new PutItemRequest()
 .withTableName(indexName)
 .withItem(item);

 if(expectedValues != null) {
 putItemRequest.withExpected(expectedValues);
 }

This call prevents clients from accessing the service too quickly and incurring usage charges.

 awsQuotaDelay();
 client.putItem(putItemRequest);
 }

This is a search method to i nd a contact by the i rst name. The method i nds contacts based on a
Dynamo condition that matches a scan when a hash key starts with the i rst name of a given contact.
With the query condition established, the method then delegates to the utility query method.

230 ❘ CHAPTER 7 MOBILE AND THE CLOUD

 @Override
 public List<Contact> findContactFirstName(String userId, String firstName,
 int start, int numOfmatches)
 {

 Condition rangeKeyCondition = new Condition().withComparisonOperator(
 ComparisonOperator.BEGINS_WITH.toString())
 .withAttributeValueList(
 new AttributeValue().withS(firstName));

 return query(userId, rangeKeyCondition, start, numOfmatches,
 FIRST_NAME, FIRST_NAME_INDEX_TABLE);
 }

 @Override

The findChanged method also sets up a range key condition to use with a scan query, and then
delegates the i nd request to the query utility.

 public List<Contact> findChanged(String userId, long timestamp, int start,
 int numOfmatches)
 {
 Condition rangeKeyCondition = new Condition().withComparisonOperator(
 ComparisonOperator.GE.toString()).withAttributeValueList(
 new AttributeValue().withS(Long.toString(timestamp)));

 return query(userId, rangeKeyCondition, start, numOfmatches,
 UPDATE_TIME, this.UPDATE_TIME_INDEX);
 }

The query utility method supports Dynamo queries for all RESTful contact operations. The method
begins and sets up its main query. It sets the relevant table, hash, and range keys, as well the number
of desired matches.

The loop converts maps into contact objects to hold the content results.

 private List<Contact> query(String userId, Condition rangeKeyCondition,
 int start,
 int numOfmatches, String rangeKeyName,
 String table)
 {
 Key lastKeyEvaluated = null;
 List<Contact> ret = new ArrayList<Contact>();

 QueryRequest queryRequest = new QueryRequest()
 .withTableName(table)
 .withHashKeyValue(new AttributeValue().withS(userId))
 .withRangeKeyCondition(rangeKeyCondition)
 .withLimit(numOfmatches)
 .withExclusiveStartKey(lastKeyEvaluated)
 .withScanIndexForward(true);

 QueryResult result = client.query(queryRequest);

Exploring the Code Examples ❘ 231

 int pos = 0;
 for (Map<String, AttributeValue> indexItem : result.getItems()) {
 pos++;
 if (pos > start) {
 String[] ids = fromComposedKeys(indexItem
 .get(rangeKeyName).getS());
 Contact contact;
 try {
 contact = getContact(userId, ids[1]);
 if (contact != null) {
 ret.add(contact);
 } else {
 // delete the index if the data does not exists
 deleteDo(userId, composeKeys(ids[0], ids[1]), table);
 }

 // awsQuotaDelay();
 } catch (Exception e) {
 // if we cannot load the contact, we just continue
 }
 if (ret.size() == numOfmatches) {
 break;
 }
 }
 }

 return ret;
 }

 @Override

Since this DAO class needs to maintain its own indexes, the delete method must delete the contact
object as well as its associated indexes. Deletion happens by calling the deleteDo query method:

 public void delete(String userId, String id) throws IOException {
 Contact contact = getContact(userId, id);
 deleteDo(composeKeys(userId, id), null, CONTACT_TABLE);
 deleteDo(userId, composeKeys(contact.getFirstName(), id),
 FIRST_NAME_INDEX_TABLE);
 deleteDo(userId, composeKeys(
 Long.toString(contact.getUpdateTime()), id),
 UPDATE_TIME_INDEX);
 }

The deleteDo method deletes a data object with the given hashKey and optional rangeKey. The
data object is deleted using the DynamoDB client.

 private void deleteDo(String hashKey, String rangeKey, String table) {
 Key key = new Key()
 .withHashKeyElement(new AttributeValue().withS(hashKey));

 if (rangeKey != null) {
 key = key.withRangeKeyElement(new AttributeValue().withS(rangeKey));
 }

232 ❘ CHAPTER 7 MOBILE AND THE CLOUD

 DeleteItemRequest deleteItemRequest = new DeleteItemRequest()
 .withTableName(table)
 .withKey(key);
 DeleteItemResult result = client.deleteItem(deleteItemRequest);
 }

 @Override
 public List<Contact> getAll(String userId, int start, int numOfmatches)
 throws IOException
 {
 return findChanged(userId, 0, start, numOfmatches);
 }

Next is a utility method that converts a map-based Amazon return value into an internally used
contact object. Constant values access enables you to set contact i elds.

 private Contact item2Contact(Map<String, AttributeValue>item) {
 Contact contact = new Contact();
 String ids[] = fromComposedKeys(item.get(ID).getS());
 contact.setId(ids[1]);
 contact.setFirstName(item.get(FIRST_NAME).getS());
 contact.setLastName(item.get(LAST_NAME).getS());
 contact.setEmail(item.get(EMAIL).getS());
 contact.setUpdateTime(getLong(item.get(UPDATE_TIME)));
 contact.setVersion(getLong(item.get(VERSION)));
 return contact;
 }

Here is the reverse: A utility method that converts a contact into a map-based Amazon item that can be
sent to the Amazon API. Constant value access enables you to set map i elds from the contact object.

 private Map<String, AttributeValue> contactToItem(Contact contact) {
 String id = contact.getId();
 Map<String, AttributeValue> item =
 new HashMap<String, AttributeValue>();
 if (id == null) {
 id = UUID.randomUUID().toString();
 contact.setId(id);
 }
 item.put(ID, new AttributeValue().withS(id));
 item.put(FIRST_NAME, new AttributeValue()
 .withS(contact.getFirstName()));
 item.put(LAST_NAME, new AttributeValue().withS(contact.getLastName()));
 item.put(EMAIL, new AttributeValue().withS(contact.getEmail()));
 item.put(UPDATE_TIME, new AttributeValue()
 .withN(Long.toString(contact.getUpdateTime())));
 item.put(VERSION, new AttributeValue()
 .withN(contact.getVersion().toString()));
 return item;

 }
 private Long getLong(AttributeValue attr) {
 return Long.parseLong(attr.getN());
 }

Exploring the Code Examples ❘ 233

The following two methods enable you to split and compose a composite key. A composite key
contains a hash key and a range key, and you can use it as an argument in a scan query.

 private String composeKeys(String k1, String k2) {
 return k1 + ":" + k2;
 }

 private String[] fromComposedKeys(String k) {
 return k.split(":");
 }

 /**
 * The free AWS account only allows 5 read/write per second, so insert a
 * delay to stay under that quota.
 */
 private void awsQuotaDelay() {
 try {
 Thread.sleep(250);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Deploy the Service

NOTE Late in the development of this book, Amazon added support for
secondary indexes to remove the need for developers to have to write their own, as
discussed in this chapter. We have provided code for an alternate DAO
implementation that uses them but don’t include a detailed writeup in the i rst
release of this book:

$CODE/awsServiceContacts/com/enterpriseandroid/awsContacts/dao/impl/
ContactDaoDynamoDBV2Impl.java

For more information see:

http://aws.amazon.com/about-aws/whats-new/2013/04/18/amazon- dynamodb-
announces-local-secondary-indexes/

Now that you’ve developed a Dynamo-based contact service, you’ll need to deploy the code to a

Tomcat instance. Since the AWS SDK knows how to talk to the Dynamo backend, you can use

a local Tomcat instance, like the one from the last chapter, and as assumed in the instructions

that follow, or you can set one up in an Amazon VM. To do this, select My Account ➪ AWS

Management Console ➪ EC2 ➪ Launch Instance.

The instructions here describe how to build and deploy the code using Ant or using Eclipse.

234 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Deploying the Code with Ant

 1. Build the code with:

cd $CODE/awsServiceContacts
ant dist

 2. Deploy the code to Tomcat:

cp dist/awsServiceContacts.war $CATALINA_HOME/webapps

 3. Restart Tomcat.

Deploying the Code with Eclipse:

 1. Run ant to initialize Eclipse

As with other chapters, you’ll need to use ant to initialize Eclipse:

 cd $CODE/awsServiceContacts
 ant eclipse

 2. Import the AWS project directory in Eclipse, as was done in Chapter 6 for
springServiceContacts:

 $CODE/awsServiceContacts

Use File ➪ Import ➪ General ➪ Existing Projects into workspace

 3. Add a run coni guration

Right-click awsServiceContacts in the Package Explorer.

Select Run As ➪ Run on server ➪ and select the previously added Tomcat Coni guration.

Wait for ivy to resolve dependencies.

The AWS service should now be running with persistence in DynamoDB, assuming that the
Amazon SDK can connect to AWS services.

NOTE If you need to add a Tomcat coni guration, please see the instructions for
doing so in Chapter 6.

Congratulations, you’ve now ported the contacts example to AWS using DynamoDB. You
can use both of the Chapter 5 clients with this service simply by changing the client endpoint
URL to point to your AWS instance. As in Chapter 6, edit the variable SERVICE in either
of the ContactsApplication.java classes in the restfulCachingProviderContacts or
syncAdapterContacts projects, or set the system preference RESTfulContact.URI. You now have a
working mobile app that can harness the power of the Amazon cloud. Since it’s a good idea to avoid
vendor lock-in, next you’ll see how to build an example for another large cloud provider, Google.

Run the Chapter 5 clients and curl against the following local endpoint:

http://localhost:8080/awsServiceContacts/Contacts

Exploring the Code Examples ❘ 235

Test Your New DynamoDB Service

Test your service using the following commands.

Create contacts:

curl -H "Content-Type: application/json" -X POST -d '{"firstName":"John",
"lastName":"Smith", "phone":2345678901, "email":"jsmith@nosuchhost.com" }'
http://localhost:8080/awsServiceContacts/Contacts

Get contacts:

curl -X GET

http://localhost:8080/awsServiceContacts/Contacts

Writing the Code: Google App Engine Contacts

The next code walkthrough focuses on how to integrate with Google App Engine and its
BigTable-based Datastore. The Google example shares the three-tier architecture with the two
previous contacts examples, and the relevant DAO class, the focus of the code walkthrough, is
ContactDaoGoogleAppEngineImpl.

Prepare: Prerequisites and Getting Started

The App Engine example also relies on Spring and Tomcat, and of course, requires a Google
account for App Engine use, so create one if needed. Log in to your Google account and
then go to:

https://appengine.google.com/

Step 1: Create a Google App Engine Service

Click the Create Application button, and then follow the subsequent instructions to create a Google
App Engine application. Start by creating a Google “application identii er,” which is a unique string
you pick between 6 and 30 lowercase characters; be forewarned, many strings are already taken, we
used wileyenterpriseandroidae. Pick a title, select an access level, and sign the terms of use. Your
application should now be registered. Save the values that you enter. You’ll use them in subsequent
steps.

Step 2: Install the App Engine SDK

To work with App Engine, you’ll need to download the SDK for Java from Google’s developer site at
the following location:

https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Java

NOTE Make sure that you download the App Engine SDK for Java, not for
Python or another language. It’s easy to pick the wrong one on the download page.
Also choose a version that matches your OS and Java binary version, 32- or 64-bit.

236 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Of course, Google has signii cant documentation online:

https://developers.google.com/appengine/

Step 3: Import the Project into Eclipse

Just like you have done for the other service projects in the book so far, import the project into
Eclipse:

cd $CODE/googleAppEngineContacts/
ant eclipse

Then import the project folder into Eclipse.

Step 4: Install the Google Plugin for Eclipse

Follow the instructions below to install the Google plugin for Eclipse:

https://developers.google.com/appengine/docs/java/tools/eclipse

Edit the build properties i le:

 $CODE/googleAppEngineContacts/build.properties

to enter the path where you installed the App Engine SDK.

Step 5: Confi gure an Application Identifi er

You need to put the application identii er you created in Step 1 into the $CODE/war/WEB-INF/
appengine-web.xml, as follows:

 <?xml version="1.0" encoding="utf-8"?>
 <appengine-web-app xmlns="http://appengine.google.com/ns/1.0">
 <application>Add_your_application_id_here</application>
 <version>1</version

Step 6: Create an Application-Specifi c Password

You won’t be able to deploy updates to your app engine service using your normal account
password; instead you must create an application-specii c password from the following
location:

https://accounts.google.com/IssuedAuthSubTokens?hide_authsub=1#acccess_codes

Application-specii c passwords require you to have two-step verii cation in place, so if you don’t
have it on your Google account, you’ll have to turn it on and authorize your computer before
completing the process. Be sure to have a phone or a device on which you can receive text messages
available. The included link provides a YouTube tutorial on this process.

When invoking update requests from ant or in eclipse, use the following credentials:

 ➤ E-mail address—Your account e-mail address

 ➤ Password—An application-specii c password

Exploring the Code Examples ❘ 237

Example Code: Replacement Contact DAO

The Google App Engine Datastore sample code illustrates how to port the RESTful contacts service
into the Google’s BigTable for structured data. When you examine the App Engine code, it’ll be
clear that the App Engine API is in many ways signii cantly more user friendly than DynamoDB.
Google’s Query Language (GQL), loosely based on SQL, has many convenience features that help
developers write App Engine services. Such services are not necessarily always benei cial, given
that they may interfere with developers’ abilities to optimize performance and scalability in their
applications.

The class, ContactDaoAppEngineImpl, provides the relevant implementation code for the contacts
DAO. The App Engine contact DAO uses the Datastore Entity API, which revolves around the entity
construct, and also Google’s Query Language, which enables SQL-like operations on entities.

Entities Table

The Datastore API stores persistent objects in the form of entities. All entities have a write-once key
that uniquely identii es them in the entities table, and a collection of typed properties that contain
the data associated with the entity. The entity key contains the following pieces of information:

 ➤ Application ID — Uniquely identii es the application in App Engine.

 ➤ Kind — Categorizes the entity for queries.

 ➤ Entity ID — An ID unique to the application. The application can dei ne the ID, or the
Datastore can automatically generate it. Entity names are also called key names.

NOTE The entity table stores all entities for all App Engine applications. This
should give you an idea of the scalability that the Datastore can support.
The uniqueness of the application ID guarantees that other applications cannot
access your application’s data, and vice versa.

Recall that because the App Engine Datastore is a NoSQL database, the property set of two entities
of the same kind do not need to be the same — developers can add or remove properties at will.

Google Query Language

Recall that BigTable is a column-oriented database. The design of the GQL language rel ects this

underlying structure. Likely, developers familiar with SQL are better off thinking about GQL in

terms of what it does not do, rather than about the features it does support. GQL enables “SQL-

like” queries on cloud data, with the following restrictions:

 ➤ JOIN is not supported.

 ➤ Applications can SELECT from at most one table at a time.

 ➤ You can name only one column in a query WHERE clause.

238 ❘ CHAPTER 7 MOBILE AND THE CLOUD

As stated in the earlier discussion regarding the limitations of implementing a multi-host JOIN
operation with a column-oriented database, it’s not hard to see where the limitations regarding
GQL versus SQL arise. Although developers may i nd these limitations frustrating, Google has still
provided a useful data language that will be familiar to SQL developers in an environment (such as
a scalable cloud development) where less friendly programming techniques are not uncommon.

This chapter provides only a brief explanation of tools related to BigTable and App Engine. The
Google GQL documentation is a great way to get started with the language:

http://code.google.com/appengine/docs/datastore/gqlreference.html

For the purposes of the App Engine RESTful contacts example, consider the following queries,
which i nd a contact by name and by modii ed time:

SELECT c FROM Contact c where c.updateTime > ?1

This query returns all contact entities changed after the specii ed update time. The following query
yields contacts with a requested i rst name:

SELECT c FROM Contact c where c.firstName = ?1

The Java Persistence API

The App Engine API borrows signii cantly from a Java community standard called the Java
Persistence API (JPA), which has a long evolutionary history from Enterprise Java Beans
(EJB). JPA supports an API-based data querying capability and dei nes persistence support
from a Java perspective. The most important API from the perspective of the DAO object is
javax.persistence.EntityManager, which becomes the main interface into the App Engine
Datastore and the entities it contains. JPA dei nes a large and rich API, most of which is outside the
scope of this example. You can learn more about JPA online:

http://en.wikipedia.org/wiki/Java_Persistence_API

All most Datastore developers need to know is that Google has solid support for JPA, and the
implementation of the API works its magic to translate JPA requests into Datastore requests. For
example, QGL queries are automatically converted into a range key search when appropriate.

The Code: Contacts DAO Implementation

At this point, having gained an overview of all the concepts used in the Google App Engine
example, you’re ready to jump into the code. Listing 7-7 shows a documented version of the App
Engine DAO class.

LISTING 7-7: DAO implementation for Google App Engine (“BigTable”).

 package com.enterpriseandroid.googleappengineContacts.dao.impl;

 import java.io.IOException;
 import java.util.List;
 import java.util.UUID;
 import java.util.logging.Logger;

Exploring the Code Examples ❘ 239

 import javax.persistence.EntityManager;
 import javax.persistence.PersistenceContext;
 import javax.persistence.TypedQuery;

 import org.springframework.stereotype.Repository;
 import org.springframework.transaction.annotation.Transactional;

 import com.enterpriseandroid.googleappengineContacts.dao.ContactDao;
 import com.enterpriseandroid.googleappengineContacts.dataModel.Contact;

The following annotations indicate that this class is a Spring repository or DAO — this is the
contact DAO.

 @Repository
 @Transactional
 public class ContactDaoGoogleAppEngineImpl implements ContactDao {
 private static final Logger log = Logger
 .getLogger(ContactDaoGoogleAppEngineImpl.class.getName());
 @PersistenceContext
 private EntityManager entityManager;

Finding a contact is a simple matter of delegating to the entity manager for an object of type
Contact.class, and then passing in the ID of the contact.

 @Override
 public Contact getContact(String id) throws IOException {
 return entityManager.find(Contact.class, id);
 }

To store or update a contact, you just need to ask the entity manager to persist the contact if it
already has an ID (update), or i rst create an ID, and then persist the object.

 @Override
 public String storeOrUpdateContact(Contact contact)
 throws IOException {
 contact.setUpdateTime(System.currentTimeMillis());
 if(contact.getId() != null) {
 entityManager.persist(contact);
 } else {

Using a random UUID is a simple and effective way of ensuring an even distribution of contacts in
the Datastore. It’s a good way to avoid “hot keys” that can limit application scalability.

 contact.setId(UUID.randomUUID().toString());

To store a contact, just ask the entity manager to persist it.

 entityManager.persist(contact);
 }

240 ❘ CHAPTER 7 MOBILE AND THE CLOUD

 return contact.getId();
 }

 @Override

You can i nd a contact by i rst name by using a simple GQL query. The query selects a contact from
the contact table with a i rst name matching the firstName parameter. As you can see, the code
looks a lot like many standard SQL-based programs:

 public List<Contact> findContactFirstName(String firstName,
 int start, int numOfmatches)
 {
 TypedQuery<Contact> query = entityManager.createQuery(
 "SELECT c FROM Contact c where c.firstName = ?1",
 Contact.class);
 query.setParameter(1, firstName);
 query.setFirstResult(start);
 query.setMaxResults(numOfmatches);
 List<Contact> list = query.getResultList();
 return list;
 }

Another query supports i nding all contacts changed after a given timestamp, thus helping to
implement the example sync algorithm:

 @Override
 public List<Contact> findChanged(long timestamp, int start,
 int numOfmatches) {
 TypedQuery<Contact> query = entityManager.createQuery(
 "SELECT c FROM Contact c where c.updateTime > ?1",
 Contact.class);
 query.setParameter(1, timestamp);
 query.setFirstResult(start);
 query.setMaxResults(numOfmatches);
 List<Contact> list = query.getResultList();
 return list;
 }

Delegate to the entity manager to remove the contact:

 @Override
 public void delete(String id) throws IOException {
 log.info("delete: "+ id);
 try {
 Contact c = getContact(id);
 entityManager.remove(c);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Exploring the Code Examples ❘ 241

Another GQL request selects all relevant contacts and returns them to the client:

 @Override
 public List<Contact> getAll(int start, int numOfmatches)
 throws IOException
 {
 TypedQuery<Contact> query =
 entityManager.createQuery("SELECT c FROM Contact c",
 Contact.class);
 System.out.println(" size :" + query.getResultList().size());
 return query.getResultList();
 }
 }

Deploy the Code

As with other projects, you can run the code from the command line or in Eclipse.

Deploying the Code with ant

 1. Deploy the project:

 cd $CODE/googleAppEngineContacts
 ant

 2. To run the code locally on port 8080:

 ant runserver

The local endpoint is:

http://localhost:8080/Contacts

 3. To deploy to the Google cloud, run the command:

 ant deploy-app

Enter credentials as specii ed previously for your application-specii c password.

Testing the Local Service

To test the service, run the following commands in a shell (cygwin for Windows).

Create contacts:

 curl -H "Content-Type: application/json" -X POST -d '{"firstName":"John",
"lastName":"Smith", "phone":2345678901, "email":"jsmith@nosuchhost.com" }'
http://localhost:8080/Contacts

Get contacts:

 curl -H "Content-Type: application/json" -X GET
http://localhost:8080/Contacts

242 ❘ CHAPTER 7 MOBILE AND THE CLOUD

Deploying with Eclipse

 1. Set up the Eclipse build i les:

 cd $CODE/googleAppEngineContacts
 ant eclipse

NOTE In this project, this command also resolves ivy dependencies.

 2. As shown in springServiceContacts, import the project directory in Eclipse:

 $CODE/googleAppEngineContacts

 3. Add the AppEngine SDK to the classpath.

 a. Right-click the googleAppEngineContacts project.

 b. Go to Project menu and select properties.

 c. Click the Java Build Path on the left. When the dialog opens, click the Library tab.

 d. Click the Add Library button.

 e. Select Google App Engine, and then click the N ext button.

 f. Select the App Engine SDK, choose Use default if you’ve just installed a single copy,
and then click Finish.

Click OK and Eclipse will build the project.

 4. To run the sample code locally, right-click the googleAppEngineContacts and select the
Run As ➪ Web Application menu.

 5. To deploy the app to Google:

 a. Right-click googleAppEngineContacts.

 b. Select Google ➪ Deploy to App Engine.

NOTE You can view log messages or check the status of your app by selecting
your_app_id from the list of apps listed from http://appengine.google.com/.
Google provides a large array of service statistics here as well.

Testing the Deployed Service

Run commands from a shell as follows.

Create contacts:

curl -H "Content-Type: application/json" -X POST -d '{"firstName":"John",
"lastName":"Smith", "phone":2345678901, "email":"jsmith@nosuchhost.com" }'
http://<your_ae_id>.appspot.com>/Contacts

Summary ❘ 243

Get contacts:

curl -i -H "Content-Type: application/json" -X GET
http://<your_ae_id>.appspot.com/Contacts

Replace <your_ae_id> with your application ID.

Congratulations! You can now change the Chapter 5 endpoint again to point to your new service
URL on Google. If the contacts service was a product, you would now, thanks to its l exible

architecture, be able to deploy it on your own hardware, the AWS cloud, or Google’s

App Engine cloud.

NOTE Please keep in mind that as with Chapter 6, you can i nd up-to-date
instructions for building and running the chapter examples in the following
locations:

$CODE/awsServiceContacts/README

$CODE/googleAppEngineContacts/README

SUMMARY

This chapter discussed implementing scalable cloud-based services to support mobile clients. The

two example service implementations ported the three-tier architecture from Chapter 6 onto

Amazon’s DynamoDB and Google App Engine BigTable, which are two of the more scalable and

popular cloud services available today.

The chapter discussed the idea of cloud computing, the major scalability problems cloud services

face, and how different database designs solve them. The chapter showed how NoSQL databases

achieve high scalability and in some ways allow l exibility that can be harder to achieve with SQL.

However, you learned that SQL has signii cantly safer and higher level APIs than column-oriented

databases like DynamoDB.

The chapter showed how to write a cloud-based RESTful service, while emphasizing the importance

of using an architecture that can port easily between various cloud products. Such practices allow

developers to focus on the issues that will really matter to their business goals.

Developers typically choose cloud platforms for systemic reasons, rather than functional ones. For

example, they don’t want to run their own server hardware, they need to leverage cloud scalability,

and they want to use the cheapest service platform to run their trafi c. Even though it’s more

difi cult to implement your own indexes with DynamoDB, an investment in code is likely small

compared to what you might save in the long run by being able to pick the cheapest cloud provider.

The databases discussed in this chapter have architectural differences for demanding applications,

but for most enterprise scale applications, performance of all platforms discussed is likely excellent.

Complex Device-Based Data:
Android Contacts

WHAT’S IN THIS CHAPTER?

 ➤ Using the Android Contacts database

 ➤ Using the ContactsContract API

 ➤ Learning how the Contacts database illustrates content provider

concepts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab.

Most of this book is about innovative techniques that simplify your use of databases in
Android and in network services backing Android applications. However, this chapter looks at
a complex multi-table database with a complex content provider API that has a conventional
design in the context of the database APIs in the Android system. That is, this chapter shows
an example of how to create a big, complex SQL database and provider interface as a contrast
to using the kinds of techniques covered in the rest of this book.

8

NOTE To get the most out of this chapter, you should have read Chapter 2, on
relational database concepts and SQL, and Chapter 4, on the ContentProvider
class and related classes.

246 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

PIM DATABASES: FOSSILS FROM SMARTPHONE PRE-HISTORY

The Contacts database was inl uenced by earlier smartphone architectures. The i rst smartphones

were devices that combined mobile phones with personal information managers (PIMs). These

pre-iPhone smartphones dated back to an era when there was no wide-area data connectivity, cloud

services didn’t exist, and syncing meant syncing to data on your PC. These smartphones enabled

you to carry your PIM data in your phone.

Android’s designers might have done most of this “in the cloud,” but that would have made Android

less open, and more closely tied to Google’s cloud services. And there are still places where your

contacts and other PIM data are useful without data connectivity. If the goal is to provide l exible,

unii ed contact information using the capabilities available on a mobile device, the Android

Contacts provider is a good example.

ANDROID’S CONTACTS PROVIDER

The Contacts database API, called ContactsContract, isn’t a “normal” Java API. It isn’t a set of

methods contained in a ContentProvider subclass. Instead, it consists mostly of constants —

strings, values, and static objects — that help you access information using the URL-based API style

of a content provider.

When you get contact information, you get Cursor objects, and you get them through a loader

or, more directly, through a content resolver. There is no object-relational mapping (ORM) in the

ContactsContract API, and there are no objects that model individual contacts. The API and the

Cursor objects put as little as possible between you, the contacts data, and the UI widgets. If you

look at the example code listed later in this chapter, you can see where the program gets a Cursor

object where the data from a table will be loaded into a view.

When databases get more complex in Android, the APIs to access them provide access to the tables

in the database, of course, but they also provide access to “abstract” tables, which are the results of

SQL queries that select and combine information across the tables in the database. This is how an

Android content provider-style API abstracts queries from users of the API. You will explore this

provider in two ways and will see which tables are “real” and which are created on the l y.

THE CONTACTSCONTRACT API

The ContactsContract API consists mainly of constants. For example, the constant AUTHORITY

has the value com.android.contacts, which is the string you need to form a URL to access the

Contacts provider. To take another example, the tables in the Contacts provider are represented

by embedded subclasses, and you access those tables using the CONTENT_URI static object.

Commonality in constants is created using interfaces. By implementing interfaces with no methods,

the ContactsContract classes achieve a kind of multiple inheritance of constants and static objects.

You can i nd the documentation you need to understand this API in two places. First, you need to

understand the Contacts provider, which is the part of the Android system that implements the API

you’ll use. Documentation on the Contacts provider is found here:

http://developer.android.com/guide/topics/providers/contacts-provider.html

A Contacts Provider Explorer ❘ 247

You also need the ContactsContract API documentation, which you can i nd here:

http://developer.android.com/reference/android/provider/ContactsContract.html

Not only is the Contacts provider a complex database, the API to access it is an example of a

complex hierarchy of classes and interfaces. If you are still puzzled about the difference between the

Contacts provider and the ContactsContract API, take a look at the documentation on designing

and creating content providers:

http://developer.android.com/guide/topics/providers/
content-provider-creating.html

What you are looking at in the Contacts provider is a particularly complex and evolved provider.

The API style used in the ContactsContract API is common and idiomatic in Android, but unusual

in Java practice, in general. We have been using the term API, but that usually means a collection

of classes and methods. Here, you have constants and static objects organized into classes and

interfaces. It’s an unusual style of API: It combines Java classes and interfaces with a REST-style

system of URI objects to access the information in the provider.

There are benei ts and drawbacks to this unusual API style: The benei ts come, chiel y, from the way

the API style mirrors REST stylistically. Among the drawbacks is the fact that the API style invites

probing through rel ection, and, if that probing uncovers undocumented parts of the API, the API

can be accused of failing to abstract its implementation.

To illustrate these points, we want you to take a look at an app in the next section that explores the

Contacts provider via the ContactsContract API.

A CONTACTS PROVIDER EXPLORER

The example application for this chapter explores the data contained in the Contacts provider. It

does so by enumerating the classes that represent tables in the API, and by enumerating the columns

in each table — that is, it queries the Contacts provider for all the rows in all the tables named in the

API and displays all the columns in each row. As noted earlier in the chapter, you can get the source

code for this application at https://github.com/wileyenterpriseandroid/Examples.git and

as a part of the book’s code download at www.wrox.com.

To follow along with this chapter, you should import the example source code into a project in your

Eclipse workspace.

Running the application results in displays like the one shown in Figure 8-1. Be aware that if you

have no contacts in the database, there will be no contacts to display.

The Option menu, shown open and on the right in Figure 8-1, enables you to select a table to

peruse. The list on the left side of the screen in Figure 8-1 shows a column from the table (in this

i gure the table selected is an empty one), enabling you to select a row based on the data from

that column.

When you select a row, the row information is shown in the Item tab (see Figure 8-2).

The table information is shown in the Table tab (see Figure 8-3).

248 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

FIGURE 8-1

FIGURE 8-2

A Contacts Provider Explorer ❘ 249

Code for Exploring a Database

Rather than just run down a list of constants and explain what they mean, it’s better to show how
they are used. Using these constants in the context of Android’s content provider and related APIs
illustrates more clearly what is inside the Contacts provider.

The goals for this example program are as follows:

 ➤ Enabling you to i nd every table corresponding to every class that contains a static object

named CONTENT_URI, which is to say every table accessible through the ContactsContract

API

 ➤ Enabling you to see the structure of the table, including the names of every column and the

number of rows in a large, real-world address book

 ➤ Enabling you to see the data in a real address book

In order to see what’s in your address book, compile and run the example, and make sure you see

something similar to the i gures shown previously in this chapter. Select different tables from the

Option menu. Select the Table and the Data tabs to view the information about the table and about

the row in the table you selected from the list on the left side of the screen.

Source Code for a Contacts Provider Explorer

The listings that follow are really all part of one long program listing.

FIGURE 8-3

250 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

Only the PickFragment.java class is included here, because all the important code for exploring
the Contacts provider via the ContactsContract API is in this class.

Exploring the Menu of Tables

This application (starting with Listing 8-1) explores an API with unusual characteristics. It consists
mostly of constants that have to do with tables that can be queried in a content provider.

LISTING 8-1: Your fi rst look at PickFragment.java

 package com.enterpriseandroidbook.contactscontractexample;

 import java.util.ArrayList;
 import java.util.Arrays;
 import java.util.ListIterator;

 import android.app.Activity;
 import android.app.Fragment;
 import android.app.ListFragment;
 import android.app.LoaderManager;
 import android.content.CursorLoader;
 import android.content.Loader;
 import android.content.res.Configuration;
 import android.database.Cursor;
 import android.net.Uri;
 import android.os.Bundle;
 import android.provider.BaseColumns;
 import android.provider.ContactsContract;
 import android.util.Log;
 import android.view.LayoutInflater;
 import android.view.Menu;
 import android.view.MenuInflater;
 import android.view.MenuItem;
 import android.view.MenuItem.OnMenuItemClickListener;
 import android.view.View;
 import android.view.ViewGroup;
 import android.widget.CursorAdapter;
 import android.widget.LinearLayout;
 import android.widget.ListView;
 import android.widget.SimpleCursorAdapter;

 /**
 * @author default-name
 *
 */
 /**
 * @author default-name
 *
 */
 public class PickFragment extends ListFragment implements

A Contacts Provider Explorer ❘ 251

 LoaderManager.LoaderCallbacks<Cursor>, OnMenuItemClickListener {

 // Turn logging on or off
 private static final boolean L = true;

 // String for logging the class name
 private final String CLASSNAME = getClass().getSimpleName();

 // Tag my loader with this ID
 public static final int LOADER_ID = 42;

 // Labels for members saved as state
 private final String STATE_LABEL_NAME = "tablename";

 //The current table's class name
 private String tableName;

 public void onAttach(Activity activity) {
 super.onAttach(activity);

 // Notification that the fragment is associated with an Activity
 if (L)
 Log.i(CLASSNAME, "onAttach " + activity.getClass().getSimpleName());
 }

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Tell the system we have an options menu
 setHasOptionsMenu(true);

 doLoaderCreation(savedInstanceState);

 // Notification that
 if (L)
 Log.i(CLASSNAME, "onCreate");
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 final LinearLayout listLayout = (LinearLayout) inflater.inflate(
 R.layout.list_frag_list, container, false);
 if (L)
 Log.i(CLASSNAME, "onCreateView");

 return listLayout;
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

continues

252 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

 outState.putString(STATE_LABEL_NAME, tableName);
 }

 public void onStart() {
 super.onStart();
 if (L)
 Log.i(CLASSNAME, "onStart");
 }

 public void onresume() {
 super.onResume();
 if (L)
 Log.i(CLASSNAME, "onResume");
 }

 public void onPause() {
 super.onPause();
 if (L)
 Log.i(CLASSNAME, "onPause");
 }

 public void onStop() {
 super.onStop();
 if (L)
 Log.i(CLASSNAME, "onStop");
 }

 public void onDestroyView() {
 super.onDestroyView();
 if (L)
 Log.i(CLASSNAME, "onDestroyView");
 }

 public void onDestroy() {
 super.onDestroy();
 if (L)
 Log.i(CLASSNAME, "onDestroy");
 }

 public void onDetach() {
 super.onDetach();
 if (L)
 Log.i(CLASSNAME, "onDetach");
 }

 // //
 // Minor lifecycle methods
 // //

 public void onActivityCreated() {
 // Notification that the containing activiy and its View hierarchy exist
 if (L)
 Log.i(CLASSNAME, "onActivityCreated");

LISTING 8-1 (continued)

A Contacts Provider Explorer ❘ 253

 }

 // ///
 // Overrides of the implementations of ComponentCallbacks methods in Fragment
 // ///

 @Override
 public void onConfigurationChanged(Configuration newConfiguration) {
 super.onConfigurationChanged(newConfiguration);

 // This won't happen unless we declare changes we handle in the manifest
 if (L)
 Log.i(CLASSNAME, "onConfigurationChanged");
 }

 @Override
 public void onLowMemory() {
 // No guarantee this is called before or after other callbacks
 if (L)
 Log.i(CLASSNAME, "onLowMemory");
 }

 // ///
 // ListFragment click handling
 // ///

Handling Clicks in the List View

The onListItemClick method (in Listing 8-2) implements the callback for the way a list fragment
handles clicks in the list view contained in the fragment.

In the case of this application, data about the database and data about the row selected are prepared
and displayed in the tabs. The data is placed in a Bundle object in case the tabs are in a separate
activity, in order to support the way that this application approaches the problem of scaling across
small- and large-screen devices.

NOTE Chapter 1 explains this approach in detail.

LISTING 8-2: Handling clicks

 public void onListItemClick(ListView l, View v, int position, long id) {
 Cursor c = ((CursorAdapter) getListView().getAdapter()).getCursor();
 String item = buildItemInfo(c, position);
 String tableInfo = buildDatabaseInfo(c);
 Bundle data = ((MainActivity) getActivity()).buildDataBundle(item,
 tableInfo);
 ((TabbedActivity) getActivity()).loadTabFragments(data);

continues

254 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

 }

 // //
 // Implementation of LoaderCallbacks
 // //

Implementing the Loader Callbacks Interface

This application uses a Loader and LoaderManager to handle long-running code — in this case the
code for accessing a content provider. If you have a large number of contacts, you can readily see
that querying a content provider would result in hanging the UI for the duration it takes the query to
run. The CursorLoader used here prevents the UI from locking up by performing query operations
on a separate thread.

In Listing 8-3 you can see implementations for all three Loader callback methods.

 ➤ OnCreateLoader creates and returns the CusorLoader object initialized by a query from
the specii ed table, taken from the member tableName.

 ➤ The onLoadFinished method gets a reference to the Adapter object, which puts data into

the list’s views and sets the new cursor for the list.

 ➤ The onLoaderReset call sets the cursor to null.

LISTING 8-3: Implementing Loader callbacks

 // Create the loader, passing in the query
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return new CursorLoader(this.getActivity(), uriForTable(tableName),
 null, null, null, null);
 }

 // Get results
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 ((SimpleCursorAdapter) getListAdapter()).swapCursor(cursor);
 }

 // Reset
 public void onLoaderReset(Loader<Cursor> loader) {
 ((SimpleCursorAdapter) getListAdapter()).swapCursor(null);

 }

 // //
 // App-specific code
 // //

LISTING 8-2 (continued)

A Contacts Provider Explorer ❘ 255

 private final static String NL = System.getProperty("line.separator");

 /**
 * Called from onCreate. restore state if available
 *
 * @param savedInstanceState
 */
 private void doLoaderCreation(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // If no saved state, start fresh with the Data table
 if (null == savedInstanceState) {
 openNewTableByName("android.provider.ContactsContract$Data");
 } else {
 // See if we can recreate the query from saved state
 tableName = savedInstanceState.getString(STATE_LABEL_NAME);
 if (null == tableName) {
 doLoaderCreation(null); // Nope
 } else {
 openNewTableByName(tableName);
 }
 }

 }

Opening a New Table

In Listing 8-4, the method openNewTableByName calls some other methods that turn a class name
into a URI, and result in a query based on that URI. The uriForTable method goes from class
name to URI object. The newTableQuery method starts the query operation.

LISTING 8-4: Opening a new table

 /**
 * Open a new table, based on the name of the class
 * from the API.
 *
 * @param tableClassName
 */
 private void openNewTableByName(String tableClassName) {

 Uri table = uriForTable(tableClassName);
 if (null == table) {return;} // Fail silently
 tableName = tableClassName;
 newTableQuery(table, ListColumnMap.get(table));
 }

256 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

From a Name to a Query

In Listing 8-5, you can see the methods that go from the name of a class to a query for the contents of
a table corresponding to the CONTENT_URI URI object in that class. The name of the class comes from a
menu selection, built from the content provider’s own information, so error checking here is minimal.

The uriForTable method takes the information the app gets when a user makes a menu
selection — which is the name of a class — and returns the CONTENT_URI object, which is a static
object in that class.

First, the forName method of the class Class is used to turn the name of a class into a reference to
the class object. Then a reference to the CONTENT_URI static object is returned.

Even though you should be coni dent that your class names and i eld names are valid, a lot can go

wrong during the process of going from the string that names a class, to the class object itself, and

then to a i eld, which is also retrieved by name. This method therefore catches all the exceptions that

could result from an incorrect class or i eld name and fails silently. If a table selected by class name

does not exist or cannot be accessed by the means used in this app, the app does nothing.

LISTING 8-5: Going from the name of a class to a query for the contents of a table

 /**
 * Get the content uri, given the corresponding
 * class name
 *
 * @param name The name of the class in ContactsContract
 * @return The content uri for the corresponding class
 */
 private Uri uriForTable(String name) {
 Class<?> tableClass;
 Uri table;

 // Get the table's class
 try {
 tableClass = Class.forName(name);
 } catch (ClassNotFoundException e) {
 return null;
 }

 // Get the content Uri, which should be static, hence no instance for get
 try {
 table = (Uri)(tableClass.getDeclaredField("CONTENT_URI").get(null));
 } catch (IllegalArgumentException e) {
 return null;
 } catch (IllegalAccessException e) {
 return null;
 } catch (NoSuchFieldException e) {
 return null;
 }
 return table;
 }

A Contacts Provider Explorer ❘ 257

From a URI to a Query

When you choose a table to explore in this app, two things happen. A Cursor object is created
with all the data in the table, and the list on the left side of the screen is loaded with values that
help you pick rows in that table. For example, contact names help you pick rows that correspond to
information about the people with those names.

In Listing 8-6, the NewTableQuery method sets this process in motion. First, it determines whether
the column name that is supposed to go in the list is null, in which case the _ID i eld of the

BaseColumns interface is used. If that happens, the list will contain record ID numbers.

Next, arrays that specify the mapping of the named column to a view ID are created. Because there

is only one column and one view being used, these arrays have one member each.

Then an Adapter instance is created. The subclass SimpleCursorAdapter is used, and it is provided

with the arrays specifying the mapping of columns to views. The new adapter is set to be the adapter

for the list view in this fragment.

Now that the ListView object is ready to display new data, a loader is created and started with the

help of the LoaderManager object associated with this fragment. That new loader is assigned an ID,

and any existing loader is destroyed.

LISTING 8-6: Going from a URI to a query for the contents of a table

 private void newTableQuery(Uri table, String column) {

 if (null == column || column.isEmpty()) {
 column = BaseColumns._ID;
 }

 String[] fromColumns = { column };
 int[] toViews = { android.R.id.text1 };

 // Create an adapter without a cursor
 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this.getActivity(),
 android.R.layout.simple_list_item_1, null,
 fromColumns, toViews, 0);
 setListAdapter(adapter);

 // Make a new loader
 LoaderManager m = getLoaderManager();
 if (null != m.getLoader(LOADER_ID)) {
 m.destroyLoader(LOADER_ID);
 }
 m.initLoader(LOADER_ID, null, this);
 }

Formatting Data for Display

In Listing 8-7, two methods for formatting data are dei ned: buildItemInfo returns a string that

contains all the data from a row in a database, and buildDatabaseInfo returns a string containing

258 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

the number of rows and columns in a database. In both these methods, as with other code in this
application, you want to avoid entering a lot of strings for the purpose of labeling, and you want to
avoid table-specii c UI constructs. So each column in the table gets one line of output in the Item

fragment, and is labeled with the name of the column.

You can see you get the names of the columns from the Cursor object. Then you iterate over the

columns, get the data for the specii ed row and column, and concatenate this to a string that’s

returned.

LISTING 8-7: Formatting data for display

 /**
 * Extracts, labels, and formats all the information in
 * all the columns in a row.
 *
 * @param c The cursor
 * @param position The position in the cursor
 * @return The formatted data from the row
 */
 private String buildItemInfo(Cursor c, int position) {

 int i;
 int columns = c.getColumnCount();
 String info = "";

 c.moveToPosition(position);
 String names[] = c.getColumnNames();

 for (i = 0; i < columns; i++) {
 info += names[i] + ": ";
 try {
 info += c.getString(i);
 } catch (Exception e) {
 // Fail silently
 }
 info += NL;
 }

 return info;
 }

 private String buildDatabaseInfo (Cursor c) {
 String info = "";

 info += getString(R.string.column_count_label) + c.getColumnCount() + NL;
 info += getString(R.string.row_count_label) + c.getCount() + NL;

 return info;

 }

A Contacts Provider Explorer ❘ 259

 ///
 // Methods for transferring data between Fragments
 ///

Packaging Data for Tabs

In Listing 8-8, the method buildDataBundle packages the data in a way that one or two fragments
can appear on the screen at one time. If the screen is small and only one fragment is displayed, and
the user clicks on a list item, a new activity is started to display the Item and Table tabs. A single
string contains all the data for each tab. These strings are placed in two places in the Bundle object,
each with names specii ed in the XML i le that specii es the layout for each tab.

LISTING 8-8: Packaging data for tabs

 /**
 * Build a Bundle that holds the database and item information
 *
 * @param item Information about the selected row
 * @param dbInfo Information about the database
 * @return the Bundle containing the above information
 */
 public Bundle buildDataBundle(String item, String dbInfo) {
 Bundle data = new Bundle();

 data.putString(getDataLabel(R.id.item_frag), item);
 data.putString(getDataLabel(R.id.detail_frag), dbInfo);
 return data;

 }

 public String getDataLabel(int id) {
 Fragment frag = getFragmentManager().findFragmentById(id);
 String label = ((TabbedActivity.SetData)frag).getDataLabel();
 return label;
 }

 // ///
 // Menu handling code, including implementation of onMenuItemClickListener
 // ///

Creating the Menu

The menu for selecting a table is created in the onCreateOptionsMenu method in Listing 8-9. You

could type in all the table and column names from the documentation, but that defeats the purpose

of exploring this large and unusual API by writing an app.

260 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

LISTING 8-9: Creating the menu

 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 buildTableMenu(menu);
 super.onCreateOptionsMenu(menu, inflater);
 }

Selecting a Table from the Option Menu

In Listing 8-10 the onMenuItemClickListener method handles the selection of a table name from
the menu and calls the openNewTableByName method. In the previous listing, you could see
when the menu is created, and shortly you will see the code for building the menu.

LISTING 8-10: Selecting a table

 @Override
 public boolean onMenuItemClick(MenuItem item) {
 openNewTableByName((String) item.getTitle());
 return true;
 }

 // //
 // App-specific code to create a menu of tables
 // //

Finding Possible Tables

Instead of hard-coding table names and copying them from the API documentation, all the tables
are enumerated in a general-purpose way, with a method called buildTableMenu (see Listing 8-11).
This will also enable you to see if there are undocumented tables in this database.

First, an array of all the classes in ContactsContract is created by using the getClasses method
of the ContactsContract class object. This array might contain classes that don’t correspond to
any table. An array isn’t the best way to i lter out everything that isn’t a table, so on the next line

an array list is created using the array of classes.

Building an Option Menu for Tables

Now that the list of tables has been built and scrubbed in Listing 8-11, the buildTableMenu

method uses the add method of the Menu class to add each table name to the option menu

and the setOnMenuItemClickListener method to set this fragment as the click listener for the

menu item.

A Contacts Provider Explorer ❘ 261

LISTING 8-11: Finding tables and building an Option menu

 /**
 * Add a MenuItem to the specified menu for each table in the
 ContactsContract
 * class
 *
 * @param menu
 */
 private void buildTableMenu(Menu menu) {
 Class<?>[] tablesArray = ContactsContract.class.getClasses();
 ArrayList<Class<?>> tablesList = new ArrayList<Class<?>>
 (Arrays.asList(tablesArray));
 deleteNonTables(tablesList);
 for (Class<?> c : tablesList) {
 menu.add(c.getName()).setOnMenuItemClickListener(this);
 }
 }

Scrubbing the Menu of Tables

Previously, the deleteNonTables method was called from buildTableMenu. In Listing 8-12, this
method scrubs the list of possible tables and eliminates those that can’t be tables. Interfaces can’t
represent tables. The isInterface method of the Class object determines whether a class is an
interface and, if so, drops it from the list.

LISTING 8-12: Scrubbing the menu list of tables

 /**
 * Delete the embedded classes of ContactsContract that are not tables
 * i.e. not the interfaces, and not the classes that do not implement
 * BaseColumns.
 *
 * This might miss tables that do not, in fact, implement BaseColumns
 * but are still tables (but not ones that follow ContactsContract API
 * conventions)
 *
 * @param tablesList The raw list of embedded classes
 */
 private void deleteNonTables(ArrayList<Class<?>> tablesList) {
 ListIterator<Class<?>> l = tablesList.listIterator();
 while (l.hasNext()) {
 Class<?> c = l.next();

 // Might be belt-and-suspenders
 if (true == c.isInterface()) {
 l.remove();
 }
 else if (false == implementer(c, BaseColumns.class)) {
 l.remove();

continues

262 ❘ CHAPTER 8 COMPLEX DEVICE-BASED DATA: ANDROID CONTACTS

 }
 }
 }

The implementer method (Listing 8-13) is called to test if the specii ed class implements the

specii ed interface. The implementer method gets an array of interfaces for the specii ed class.

Iterating over the array determines whether the class includes the interface. But it does not determine

whether a parent class includes the interface, so this method recurses to walk the inheritance

hierarchy for the specii ed class.

LISTING 8-13: The implementer method

 /**
 * Does the specified class implement the specified interface?
 *
 * @param c The class
 * @param interf The interface
 * @return True if the interface is implemented by the class
 */
 private boolean implementer(Class<?> c, Class<?> interf) {
 for (Class<?> ci : c.getInterfaces()) {
 if (ci.equals(interf)) {
 return true;
 } else {
 // Recurse, getInterfaces only gets one level (?!)
 if (true == implementer(ci, interf)) {
 return true;
 }
 }
 }
 return false;
 }

 }

SUMMARY

In this chapter you learned how to automatically i nd out about the tables in and explore one of

the most complex SQLite databases you are likely to encounter in Android programming. Though

complex, it is also a notably small database — usually no more than a few thousand rows in

any table.

LISTING 8-12 (continued)

Summary ❘ 263

The setting for this kind of database is also unusual: It exists in a mobile handset, managed by the
SQLite library. Rarely is a SQL database so intensively designed when it holds a relatively small
amount of data. You can consider it the pinnacle of an unusual breed: the PIM database.

However, that is not to say it is just a curiosity. You may want to use it in your applications, and
knowing it thoroughly will help in both scoping the possibilities when using the Contacts provider
and in designing apps that use it.

And, not least of all, it serves as a contrast to the approach in the rest of this book, which
emphasizes JSON over multiple tables for l exibility and simplicity of design.

Generic Data Synchronization:
Project Migrate and the
WebData API

 WHAT’S IN THIS CHAPTER?

 ➤ Understanding the common problems that Android developers

encounter when interacting with network data

 ➤ Solving common mobile data problems in a generic way with project

Migrate and the WebData API

 ➤ Looking at the WebData protocol in detail

 ➤ Noting advantages of a WebData API–based system

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download
at www.wrox.com on the Download Code tab.

As you’ve read in this book, mobile developers face similar problems on many platforms
when writing applications that use network services to store data. Developers getting started
with Android face problems associated with network data loading right off the bat. A typical
i rst application for many developers will include a list of items loaded from a network
service. The items will use thumbnails that require lazy loading. Developers with a bit more
experience will start to use more sophisticated techniques like paging schemes that avoid the
need to load all the results of a query over the network — large queries are loaded in pieces.
Developers will also need a RESTful protocol for communicating with a backend service, and
that protocol is likely to need synchronization support to deal with multiple hosts changing
the same state. Developers often want ofl ine data editing that allows an app to remain useful

if the network becomes unavailable. Ideally, developers won’t have to reinvent the wheel to

9

266 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

address concerns such as these, but Android out of the box could do more to help developers solve
these problems correctly.

As noted in earlier chapters, when implementing these functions, developers are likely to create
similar bugs such as long-running UI events, hanging UI threads, or inl exible code that requires

frequent application updates. Developers often write inefi cient network protocols that rely on

polling to update application data.

Why not create a system that solves all of these problems in a generic way that can be reused for

many applications?

Of all the expressive web services and built-in content providers available on mobile platforms

today, we see a gap in the available features — a generic data service explicitly designed to plug into

a mobile MVC client in a way that extracts the redundantly implemented chores of handling data

from the user interface of a mobile application.

This chapter introduces a new and simple RESTful network API that leverages the Android content

provider system to facilitate seamless custom data integration into the Android platform. It covers a

service implementation of that API and a mobile client for the API that communicates directly with user

interface components. The chapter ends by summarizing advantages of deploying applications around

an architecture that uses this technology. The next chapter digs into writing some real applications using

this system.

INTRODUCING WEBDATA AND PROJECT MIGRATE

The WebData API and an open source implementation of it called, project Migrate provide a solution

in this space. These technologies relieve Android developers from the need to write their own SQL

tables, create their own synchronized and RESTful protocol, and integrate with the Android view

components in a way that is resilient to all of the problems described in this and previous chapters.

At the time of writing of this book, Migrate and WebData represent a l edgling open source effort.

Consequently, you should expect to see signii cant changes in the project in the coming months. The

Migrate feature set currently just puts “meat on the bones” of a compelling set of ideas and in terms

of features that can make this system convenient for developers, the project has room to grow. For

this reason, this chapter delves into both the existing Migrate implementation and important future

enhancements for the project.

NOTE You can i nd more information about the Migrate project, including
future architectural directions, on the following github wiki:

https://github.com/wileyenterpriseandroid/migrate/wiki

How Project Migrate Works

We’ve focused on the third pattern from Chapter 5, content providers used with sync adapters,

and created a specii c RESTful protocol that supports robust Android network communication for

Introducing WebData and Project Migrate ❘ 267

custom data with synchronization support. The Migrate project provides a generic data binding
framework that links standard Android UIs to backend service persistence on a remote host. The
API is geared toward a persistent key/value interface like that of android.content.Cursor that
enables WebData service implementations to easily leverage web-scale databases like DataStore,
MongoDb, DynamoDb, etc.

With WebData, developers use a schema format to dei ne custom data in a backend service. The Migrate
client, an Android-based content provider and sync adapter, can synchronize this data to a device and
bind it into UI components. An Android application UI only needs to communicate with an Android-
based API to store and access data (for example, a provider contract). Project Migrate handles the REST
(pun intended). The Migrate provider API shares characteristics of built-in Android content providers,
like the calendar and contacts providers, but also enables applications to dei ne their own types of data
and reuse a generic framework to create data that can serve a diverse range of applications.

The WebData API enables developers to dei ne and synchronize persistent “objects” or map
oriented key/value pairs (like JavaScript objects). The Migrate system takes care of persisting and
synchronizing changes in these objects between a backend service with scalable storage, and mobile
clients using SQLite over time. The API is event oriented, so it i ts seamlessly into the network-
oriented MVC pattern discussed in Chapter 5.

Figure 9-1 provides an illustration of the Migrate and WebData architecture with an Android client.

How Project Migrate Streamlines the Mobile Connection
to the Enterprise

The following characteristics of the WebData API and project Migrate drastically reduce the
amount of overhead required to create robust Android network applications:

 ➤ The WebData protocol replaces many transactions that would normally require the
development of a custom RESTful web protocol.

FIGURE 9-1

Generated

SQLite

DB

ProviderUI

Lightweight
Migrate

Contract

Provider

Migrate

Sync

Adapter

WebData

Service

Implementation

json schema

“id”: “contact”,

“properties”;}

 ...

Generic

– App Specific Inserted

Schema.

&

Generic

Generic

Synchronization

268 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

 ➤ Migrate provides a seamless connection from a backend service to the Android UI using
Android content providers and cursors.

 ➤ Migrate also provides streamlined synchronization built into the central Android provider
sync adapter framework.

 ➤ The WebData API provides an event-oriented, reusable, and scalable synchronization
protocol.

 ➤ The Migrate client creates and manages SQL tables on behalf of client applications.

 ➤ The Migrate service maintains a managed data connection that supports service managed
data evolution.

 ➤ Developers do not need to “know” the correct way to program the handset and service — the
Migrate framework enforces correct programming techniques (for example, correct
synchronization, proper use of the UI event thread, and efi cient network programming).

 ➤ Migrate supports a transparent and l exible data paging scheme for efi cient use of system

resources.

 ➤ Migrate enables support for UI component validation that leverages the same schema that

dei nes data.

The WebData API in Detail

The WebData API reuses standard web services concepts wherever possible in order to permit as

wide a range for integration as possible (we currently support an Android client, foresee an iPhone

client, and may eventually provide HTML5 integration). The API stipulates a serialization format

based on JSON, which is both widely deployed and efi cient, and on JSON schema, a simple object

schema format. The API also requires RESTful URL-based protocol requests. Here’s a complete list

of the components of the WebData API specii cation:

 ➤ Schema-based dei nition of objects to dei ne the structure of objects (for creation of SQLite

tables)

 ➤ A RESTful request protocol for modifying and transmitting objects

 ➤ An object serialization format based on JSON; see:

http://en.wikipedia.org/wiki/Json
http://en.wikipedia.org/wiki/Json#Schema

 ➤ Paging parameters that enable client- and server-side specii cation of the size of data

“windows” that clients will use to transmit collections of data

 ➤ An integrated synchronization scheme

 ➤ A notii cation system that enables event-based interaction between a WebData instance and

mobile clients to support MVC-style client architectures

 ➤ Application of schema data for user interface component validation

Introducing WebData and Project Migrate ❘ 269

The next sections provide detailed descriptions of relevant aspects of the WebData API protocol. As
you read, keep in mind that the Migrate WebData client API relies on the standard content provider
API CRUD operations and sync adapter synchronization to access and update WebData objects.

The following explanations of protocol operations only serve as an overview for developers who
want to understand the details of the Migrate client and synchronization protocol. In explicit
terms, the Migrate client directly uses these operations; UI developers do not. Note also that we
have structured the design of protocol operations to preserve the standard sequence of the built-in
providers — the CRUD operations operate on local SQLite state, and the synchronization operation
is the only time that the provider communicates with the backend service.

The WebData API RESTful Protocol

The WebData API specii es a REST-based synchronization protocol. The API revolves around
schema that dei ne data, REST operations that modify persistent objects, and a synchronization
system that uses those operations to keep data consistent between a service and multiple clients.

Using Schema to Defi ne Data

Before a client can use a WebData service to store domain objects, the service must have schema
information that dei nes those objects. WebData uses JSON schema, http://json-schema.org/,
as an object schema format, and a WebData JSON envelope to support synchronization. JSON
schema is an extremely simple object dei nition language that supports the declaration of an array of
domain objects with corresponding <key, type> properties that dei ne i elds of those objects.

Applications that need to dei ne new schema, simply POST JSON schema to WebData service
instances. The POSTing entity will typically be a backend service itself, rather than a mobile client.
Using a third party program to dei ne schema allows the schema to change in backward-compatible
ways (for example, i elds used by clients are not removed, and so forth) after an application is
deployed.

NOTE It’s a general architectural theme of Migrate to enable post-deployment
coni guration of handset applications.

The schema in Listing 9-1 dei nes a domain object for a contact usable in a hypothetical contacts
application. To dei ne this contact type, you’ll need a utility that POSTs the schema and Sync
envelope into the following WebData service URL:

http://host:port/contacts/scheme/com.enterpriseandroid.webDataContacts.dataModel
.Contact

Figure 9-2 shows a web application posting a schema into a WebData service implementation. After
the web app POSTs this schema, clients can read and write objects with i elds that conform to the
schema.

The schema payload includes the synchronization envelope and the schema itself. Listing 9-1 shows
the contact POST.

270 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

LISTING 9-1: A WebData schema creation POST payload

1 POST\
 http://host:port/context/schema/com.enterpriseandroid.webDataContacts.Contact
2 {
3 "wd_version":1,
4 "wd_id":"com.enterpriseandroid.webDataContacts.Contact",
5 "wd_classname":"com.migrate.webData.model.PersistentSchema",
6 "wd_namespace":"__schema",
7 "wd_deleted":false,
8 "wd_status":0
9 "jsonSchema":{
10 "properties":{
11 "status":{
12 "type":"string"
13 },
14 "lastname":{
15 "type":"string"
16 },
17 "email":{
18 "type":"string"
19 },
20 "age":{
21 "type":"integer"
22 },
23 "birthDate":{
24 "type":"integer"
25 },
26 "phoneNumber":{
27 "type":"string"
28 },
29 "wd_id":{
30 "required":true,
31 "type":"string"
32 },
33 "firstname":{

FIGURE 9-2

WebData

Service

Implementation

3rd-Party

Web Application

Post-app deployment

injection of a WebData

schema. Schema syncs

with content provider

version of schema.

Introducing WebData and Project Migrate ❘ 271

34 "type":"string"
35 },
36 "wd_namespace":{
37 "type":"string"
38 },
39 "wd_classname":{
40 "type":"string"
41 },
42 "wd_updateTime":{
43 "required":true,
44 "type":"long"
45 },
46 "wd_version":{
47 "required":true,
48 "type":"integer"
49 },
50 "wd_deleted":{
51 "required":true,
52 "type":"integer"
53 },
54 },
55 "type":"object"
56 },
57 }

We want to take a minute to point out some interesting details about this code:

 ➤ Lines 3-8 — Specify envelope information that enables synchronization of the schema itself
whenever the POSTing application needs to modify the schema to support new versions of
the application. The i elds work as follows:

 ➤ wd_id — Dei nes the JSON schema ID that the Migrate project uses as the name of
the domain object in reverse domain name format. This name can be used to create
names of tables for client or service SQL storage.

 ➤ This is the i rst version of the schema, so the value of wd_version: is 1; the version
will increment on subsequent POSTs to this URL.

 ➤ The wd_namespace i eld specii es that this payload pertains to " __schema" and not
to " __data".

 ➤ The wd_deleted i eld indicates that this schema has not been deleted.

 ➤ Line 9 — Starts the listing of JSON that conforms to the JSON schema specii cation. The
JSON schema is the largest part of the schema payload — it dei nes the typed i elds of each
WebData object.

 ➤ Lines 29-53 — Show the dei nition of i elds that Migrate requires in the domain object itself
to enable synchronization in instances of the type — the WebData i elds will be part of
the data object itself. Migrate won’t directly show these i elds to UI code; they assist with
internal bookkeeping.

 ➤ Lines 20-22 — A declaration of a domain i eld, age. The declaration has a type of integer,
and note that type is contained in a map of its own — thus allowing the possibility of other
metadata associated with the age i eld, such as UI validation information (for example, the
format of the i eld, if the i eld is required, etc.).

272 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

Referencing Data

WebData supports both CRUD and Sync based access to schema and domain data. For example,
the following URI format provides access to contact objects with i elds dei ned by the schema in the
previous section:

http://host:port/contacts/classes/com.enterpriseandroid.webDataContacts.api.
Contact/{id}

The general form of WebData data URIs follows:

http://host:port/context/classes/{class}/{id}

where class denotes the schema id of the requested object, and id indicates the UUID of the object.
GET, PUT, POST, and DELETE operations on URIs like the one shown here have the standard RESTful
effect — POST creates an object, PUT updates it, GET returns it, and DELETE removes the object.
Requests select specii c object instances using the UUID. The next few code listings show signii cant
example protocol requests, to give you a sense of how WebData works.

Listing 9-2 shows an example POST payload that creates a new contact instance.

LISTING 9-2: An example domain object POST request

1 POST\
 http://host:port/context/classes/com.enterpriseandroid.webdataContacts.Contact/\
 b83296c4-2bdb-438e-a789-57536431026c
2
3 {
4 "wd_version":1,
5 "wd_namespace":"__data",
6 "wd_deleted":0
7 "firstname":"John",
8 "lastname":"Smith",
9 "birthDate":136194847583,
10 "email":"johnSmith4321@yahoo.com",
11 "age":23,
12 "phoneNumber":"978-123-4567",
13 "status":"some status",
14 }

This POST creates a new WebData object with data and envelope i elds described as follows:

 ➤ Line 1 — Specii es the complete RESTful URL for the object, including a client created
UUID that allows the WebData service to create new data, or correlate the POST with pre-
existing persistent storage. The class, or type of the object is com.enterpriseandroid
.webdataContacts.Contact.

 ➤ Line 4-6 — WebData synchronization support i elds:

 ➤ On creation, the WebData object version is 1.

 ➤ The wd_namespace is " __data", since this is object information, not schema
related.

 ➤ The object is new and not deleted, wd_deleted is 0.

 ➤ Line 7-12 — Actual data i eld values for the POSTed object.

Introducing WebData and Project Migrate ❘ 273

Listing 9-3 shows a WebData GET request for the object posted in Listing 9-2. Such a request would
return a JSON-formatted WebData object, as listed.

LISTING 9-3: An example WebData GET response

1 GET
http://host:port/context/classes/com.enterpriseandroid.webDataContacts.Contact/\
 b83296c4-2bdb-438e-a789-57536431026c
2 {
3 "wd_id":"b83296c4-2bdb-438e-a789-57536431026c",
4 "wd_version":1,
5 "wd_classname":"com.enterpriseandroid.webDataContacts.Contact",
6 "wd_namespace":"__data",
7 "wd_updateTime":1369022907831,
8 "wd_deleted":0
9 "firstname":"John",
10 "lastname":"Smith",
11 "birthDate":136194847583,
12 "email":"johnSmith4321@yahoo.com",
13 "age":23,
14 "phoneNumber":"978-123-4567",
15 "status":"some status",
16 }

The response retrieves the formerly POSTed contact object. The following highlights the lines that
should catch your interest:

 ➤ Line 1 — The URI is the same as that in Listing 9-2, but the operation is GET.

 ➤ Lines 3-8 — Contain the WebData envelope information.

 ➤ Lines 9-14 — Show the same contact data as that from Listing 9-2.

Searching

The WebData API supports CRUD-based queries; however, the typical usage pattern for Migrate
at the time of writing of this book is to rely on synchronization and local content provider
operations. A future edition of this book may cover more detail on Migrate CRUD operations,
such as remote search. For now, Migrate relies on the ContentProvider.query method to enable
searching for data in content provider managed SQLite tables.

Notifi cations

WebData specii es support for push messaging notii cation to prevent clients from needing to poll
a WebData implementation service for data changes. The WebData payload for push messages
merely contains a list of schema identii ers that indicate the data that has changed since the last
client update. Once the client has received this list from the push notii cation, it should engage in the
synchronization protocol outlined in the next section for each modii ed schema identii er. Listing 9-4
shows an example WebData schema modii cation notii cation, where lines 4 and 5 list the schema
ids for which data has changed.

274 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

LISTING 9-4: An example WebData schema modifi cation notifi cation

1 {
2 "modified":
3 [
4 "com.enterpriseandroid.webDataContacts.Contact",
5 "com.enterpriseandroid.webDataAutomobile.Automobile"
6]
7 }

Synchronization

Data travels or “migrates” between a WebData client and a WebData service instance during a
synchronization operation. Such operations are central to the concept of the WebData API. These
exchanges of data allow clients to merge local changes with remote changes in a service host, and
also represent the mode of transport of the objects between the client and the service. The WebData
API specii es synchronization support according to the following protocol:

 1. WebData clients persistently maintain a timestamp of the last synchronization operation
with a particular service host. The synchronization time is recorded on the service host, and
then passed to clients at synchronization time.

 2. During any synchronization operation between a WebData client and a service, the client
will i rst send changes it has made locally since it last updated with the service, to the
service host. The client should maintain a “dirty” l ag to know which elements it has

changed. The service host will attempt to resolve the client’s changes against any changes

that may have taken place in the service since the last update.

 3. When the service is ready, it will send back to the client all changes that took place since the

client’s last update. The client updates its timestamp from the service accordingly to rel ect

that the synchronization operation has completed successfully.

 4. Synchronization operations can originate from the client (a “pull” or “poll”) or from the

service host (a “push”). The WebData content provider makes use of local Android network

APIs to poll the service. Push operations will use one of several commercially available

mobile push services such as Google Cloud Message for Android, Apple Push Technology,

or a commercially available push technology aggregator.

 5. If a client application knows that it needs new data, it can request a sync operation to take

place. Application developers should use such requests judiciously given that polling-based

applications can place a great strain on network resources.

Confl ict Resolution

Because the WebData API permits concurrent changes on multiple devices, it’s possible for conl icts

to arise between data modii cations from different sources. The WebData API specii es the

transmission of version information to enable the resolution of versioning conl icts when data is

modii ed between the backend service and multiple clients. WebData objects must always contain a

version i eld that is incremented every time the client or service succeeds in changing a given object.

When a client updates an object, the server checks the version against the one stored on the server.

The update operation succeeds only when the version numbers match.

Introducing WebData and Project Migrate ❘ 275

WebData implementations should resolve conl icts as follows:

 ➤ The service i rst attempts to resolve changes sent from clients.

 ➤ The service sends conl icts it cannot resolve to the client for resolution.

 ➤ A client can request all conl icts since the last synchronization.

 ➤ The Migrate client attempts to resolve the conl icts. If the Migrate client cannot resolve a

change automatically, the client delegates to the end user to resolve it.

 ➤ If a client is unable to resolve the conl ict, the server keeps its own version of the data and

ignores the version of the data sent by the client.

These operations should look similar to the ones outlined in Chapter 6, which intentionally

built a foundation for WebData synchronization as discussed earlier in this chapter.

An Example Synchronization and Confl ict Resolution Scenario

To help you understand how synchronization and conl ict resolution works in practice, we’ve created a

simple scenario in which:

 1. A client makes changes to a contact object.

 2. The server has a change to the same contact, creating a conl ict for id

a7329678-4bdc-536a-b234-78236431026a.

 3. A different client has also added a new contact to the service (not in conl ict).

The client will need to sync the server contact that is not in conl ict (that is, make its own copy

locally) and will need to resolve differences between its own version of the conl icted contact and

the server’s version. Listings 9-5, 9-6, and 9-7 show these changes and Figure 9-3 illustrates the

interaction. Changes are l owing in and out of the local SQLite cache on the client. Changes from

the client and service are selected based on timestamp, similar to what you saw in Chapter 6.

The scenario begins with Listing 9-5, when a client initiates a sync request.

FIGURE 9-3

WebData Service
a7329678 ...1026a

insert

a7329678 ...1026a

d7894563 ...2378d

Migrate Client

Content Provider

1

2

3

Changes in steps 1 and 2 conflict. The server sends its own non-conflicting change,

and then asks the client to resolve the conflict.

Modifies

the same

Adds

276 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

LISTING 9-5: A client initiates sync with objects changed since last sync time

1 POST http://host:port/migrate/context/classes/\
 com.enterpriseAndroid.webDataContacts.dataModel.Contact?syncTime=13423220558251
2
3 {
4 "modified":[
5 {
6 "firstname":"Mark",
7 "lastname":"Johnson",
8 "birthDate":135579679583,
9 "email":"mj234@yahoo.com",
10 "age":43,
11 "phoneNumber":"781-201-4567",
12 "status":"some status",
13 "wd_id":"a7329678-4bdc-536a-b234-78236431026a",
14 "wd_version":1,
15 "wd_classname":"com.enterpriseandroid.webDataContacts.Contact",
16 "wd_namespace":"__data",
17 "wd_updateTime":1369010208846,
18 "wd_deleted":0
19 }
20],
21 "resolved" : []
22 }

The sync request shows the client has changed a contact “Mark Johnson”. The following points
explain the payload:

 ➤ Line 1 — Shows a POST from a Migrate client to sync changes it has made since the last time
it sync’ed, syncTime. The client has made one change provided in the modified list, and has
no conl ict resolutions to send; the resolved list is empty.

 ➤ Lines 6, 7 — The modii ed contact name is “Mark Johnson.”

 ➤ Line 13 — Shows the unique identii er for this contact object.

 ➤ Line 14 — This is still version 1 of the contact object. It will be up to the server to increment

the version if it accepts the change.

The service responds to the sync request with the payload in Listing 9-6.

LISTING 9-6: The service response — the service has changed two contacts and one modifi cation

has resulted in a confl ict

1 {
2 "syncTime":13690102023423,
3 "modified":[
4 {
5 "firstname":"Andrew",
6 "lastname":"Smith",
7 "birthDate":135579679583,
8 "email":"asmith@gmail.com",

Introducing WebData and Project Migrate ❘ 277

9 "age":12,
10 "phoneNumber":"781-201-4567",
11 "status":"some status",
12 "wd_id":"d7894563-9edf-378w-u907-94675342378d",
13 "wd_version":1,
14 "wd_classname":"com.enterpriseandroid.webDataContacts.Contact",
15 "wd_namespace":"__data",
16 "wd_updateTime":1369010208846,
17 "wd_deleted":0
18 }
19],
20 "conflict":[
21 {
22 "firstname":"Mark",
23 "lastname":"Johnson",
24 "birthDate":135579679583,
25 "email":"mj234@gmail.com",
26 "age":43,
27 "phoneNumber":"781-223-1234",
28 "status":"some status",
29 "wd_id":"a7329678-4bdc-536a-b234-78236431026a",
30 "wd_version":2,
31 "wd_classname":"com.enterpriseandroid.webDataContacts.Contact",
32 "wd_namespace":"__data",
33 "wd_updateTime":1369010208846,
34 "wd_deleted":0
35 }
36]
37 }

The server response contains a new contact for “Andrew Smith” that the client can simply add
locally. However, the contact with an id "a7329678-4bdc-536a-b234-78236431026a" for “Mark
Johnson” is in conl ict. The version of this contact from Listing 9-5 has a phone number of 781-201-

4567, and the server has a version of the contact with phone number 781-223-1234. The Migrate

client will call back to the relevant Android UI to ask the application user to pick the right phone

number. Points to note in the payload include:

 ➤ Line 2 — The server sends the time of sync, that the client will store persistently. The client

will send this sync time the next time it syncs, so the server can send back any changes the

client has missed in the interim.

 ➤ Lines 10, 27 — As noted, the phone number for “Mark Johnson” is changed to different

values by both the client and backend.

 ➤ Line 30 — Since the server already accepted a change for “Mark Johnson” the value of

wd_version is now 2.

To resolve the conl ict in the service, the client needs to POST the resolved object back with the new

version in another sync request as follows (Listing 9-7).

278 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

LISTING 9-7: The client resolves the confl icting phone number

1 POST \
 http://host:port/migrate/contact/classes/\
 com.enterpriseAndroid.webDataContacts.Contact?syncTime=1342322066851
2 {
3 "modified":[],
4 "resolved":[
5 {
6 "firstname":"Mark",
7 "lastname":"Johnson",
8 "birthDate":135579679583,
9 "email":"mj234@gmail.com",
10 "age":43,
11 "phoneNumber":"781-223-1234",
12 "status":"some status",
13 "wd_id":"a7329678-4bdc-536a-b234-78236431026a",
14 "wd_version":2,
15 "wd_classname":"com.enterpriseandroid.webDataContacts.Contact",
16 "wd_namespace":"__data",
17 "wd_updateTime":1369010208846,
18 "wd_deleted":0
19 }
20]
21}

With the sync request in Listing 9-7, the client has selected the desired phone number on line 11,
and used the same version as was sent to it as a conl ict from the service, on line 14. The service will

see that this is a resolution request, from line 4, and apply the change from the client to increment

the object to version 3, assuming no other conl icting changes happen in the interim — which

demonstrates optimistic concurrency control as applied to WebData.

Now that you understand WebData synchronization, it’s time to take a look at some other features.

Polling

Polling for changes in data goes somewhat against the grain of the design of the WebData

API. In the absence of a push notii cation system, a WebData client should periodically invoke

synchronization to ensure data stays current for a particular schema identii er. In Android, polling

should be invoked using the Android sync adapter API ContentResolver.requestSync.

Paging

The WebData API provides parameters for paging that enable a client to download subsets of results

when a query would return a large number of objects. The client can use these paging controls to

conserve memory and storage space as needed. The following URL query parameters provide paging

controls to a WebData client:

 ➤ maxSize — Specii es the maximum number of results that should be present in the response

to a given query

 ➤ startPosition — Specii es the start position in a given query

Project Migrate in Detail ❘ 279

The following GET request shows an example query with paging parameters:

GET http://host:port/context/classes/{classname}?startPosition=30&maxSize=10

The WebData Specifi cation

Now that you’ve learned a bit about the components of the WebData API, it’s a good time to look at
the complete WebData specii cation, which is available at the following location:

https://github.com/wileyenterpriseandroid/migrate/wiki/WebData

PROJECT MIGRATE IN DETAIL

The project Migrate client currently provides a complete implementation of the WebData API and
supports an API for UI integration on the Android platform. Future versions of Migrate may provide
iPhone and Objective C support, and potentially support for JavaScript. However, this book focuses
on Migrate support for Android. As of the time of writing of this book, the Migrate open source
project supports a working Android client implementation.

The Migrate Project Android WebData Client

The Migrate project supports an Android client that leverages the Android content provider
framework. Although the WebData API may be useful on IOS and on other platforms, it’s not an
exaggeration to say that the API was designed to take advantage of the Android content provider
infrastructure. Recall that with project Migrate, developers can create their own synchronized
data services that offer the convenience of the built-in Android content providers, but allow
application-dei ned data types. The project Migrate Android client uses the service schema
dei nition to create local SQLite tables as needed to store synchronization data. The client also
uses the WebData versioning protocol to update data and schema information as directed by the
WebData service host.

Project Migrate Android Features

The bulk of the Migrate WebData client on Android resides inside a custom Android content
provider. This provider supports the following features that help developers manage data for
Android mobile applications:

 ➤ Semantics similar to the built-in providers — The Migrate project maintains the goal of
keeping the semantics of its provider as similar to the built-in Android content providers
as possible. In most cases, developers use the Migrate content provider just as they use the
built-in content providers, using URIs, Cursors, and ContentObservers to track data.

 ➤ Integrated synchronization — When an application modii es local Migrate content
provider data, the Migrate client leverages the Android synchronization system to upload
the changes to the Migrate backend service. Specii cally, the Migrate client uses a custom
synchronization adapter, as described in Chapter 5, to initiate synchronization. Developers
can use the standard android.content.SyncStatusObserver to check on synchronization
operations in progress.

280 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

As mentioned, there are a couple of ways in which the Migrate content provider differs from the
built-in providers, specii cally:

 ➤ Access to WebData schema — The Migrate content provider API provides access to the data
schema using a simple content provider URI.

 ➤ Service-side coni gurability — It’s possible to use Migrate schema to evolve a client SQLite
database schema in a deployed Migrate-based application. By invoking versioned PUTs
of a Migrate schema, it’s possible for a web app to drive schema evolution on a Migrate
service, and consequently when synchronization happens, also on Migrate clients. When the
Migrate client updates schema from the service, it will automatically update SQL tables to
rel ect the changed schema.

Synchronization

The project Migrate Android client uses the WebData synchronization protocol to maintain a local

persistent SQLite-based data cache that tracks changes from the client and service, updating and

replacing elements that change in the service host. The Migrate WebData Android client implements

the WebData synchronization protocol using a sync adapter implementation, using the standard

onPerformSync method, as shown in the pseudo-code in Listing 9-8:

LISTING 9-8: Illustrating sync from onPerformSync

1 onPerformSync(Account account, Bundle extras, String authority,
2 ContentProviderClient provider, SyncResult syncResult)
3 {
4 // The Migrate client synchronizes with its service host
5 Map serverData =
6 WebDataClient.syncData(className, values, lastUpdateTime);
7 . . .
8 }

Searching

A client that needs to query Migrate data should just use the standard ContentProvider.query

method.

Notifi cation

The Migrate client implementation can use Google Cloud messaging for Android to avoid polling

the Migrate service. In the absence of push notii cation support, the Migrate client can use a

polling system that operates out of band of the normal WebData synchronization protocol. The

implementation can periodically invoke a WebData synchronization operation.

Google has made documentation available on its website:

http://developer.android.com/google/gcm/index.html

Summary ❘ 281

THE WEBDATA CONTENT PROVIDER ANDROID API

Now that you have seen the features offered in the Migrate client and its content provider, this
section explains how to access Migrate data in an Android UI. Currently, the Migrate project
supports a slightly modii ed version of the API style used by the built-in Android content
providers.

Android Built-In Provider APIs

The APIs of built-in Android content providers each revolve around a contract class, like the one for
the contacts provider, ContactsContract:

http://developer.android.com/reference/android/provider/ContactsContract.html

The central purpose of the Android built-in content provider APIs is to host constant i elds in classes
like ContactsContract.Email.DATA, which can be used to index the Cursor results of invoking a
query method as follows:

Cursor email = ContentResolver.query();
final Cursor email = … // use of LoaderManager to access an email query cursor
final int contactEmailColumnIndex = email.getColumnIndex(Email.DATA);
String emailData = email.getString(contactEmailColumnIndex);

The last two lines show the indexing of a cursor to obtain its e-mail data.

These i elds — in combination with content provider URIs as discussed in Chapter 4 — compose
the APIs that developers use to access the Android contacts data and that of other built-in
providers. These column classes (ContactsContract.Email, ContactsContract.Settings,
ContactsContract.StatusUpdates, and so on) map to SQLite database tables that provide content
provider persistence. This API approach relies on a set of hard-coded constants to access the central
Android key/value-oriented data structure, Cursor. These constants must be “well known” to the
application developer in order to load cursor data.

The Migrate Provider API

The Migrate provider API uses the same style of contract API as discussed in the previous section;
however, the usage model has a signii cant difference: Migrate provides a utility in its SDK that
generates the code for a contract class given a service POJO with Migrate annotations as input.
The same tool also creates a WebData schema for POSTing to a WebData service instance. The next
chapter demonstrates how this works in a detailed example.

SUMMARY

This chapter has covered the WebData protocol and its application in the Migrate Android open
source project. Migrate has signii cant potential for Enterprise Android application development.
Much of this book has built a foundation in technical understanding that enables you to appreciate
the benei ts of using Migrate to bridge the gap between enterprise Android applications and scalable
cloud infrastructure.

282 ❘ CHAPTER 9 GENERIC DATA SYNCHRONIZATION: PROJECT MIGRATE AND THE WEBDATA API

Now that you have learned about the operation of the WebData API, the Migrate backend service,
and the Migrate Android client, the chapter concludes with a discussion of the benei ts of deploying
a mobile infrastructure based on a WebData style architecture.

Service-Side Advantages

The WebData API encourages efi cient network communication that reduces service load and
enhances application protocols in the following ways:

 ➤ WebData includes a push-oriented lightweight synchronization protocol out of the box.
Pushing data reduces the need to poll to detect service-side data changes, thus reducing
service load.

 ➤ WebData and Migrate enforces a data transmission format based on JSON and JSON
schema. This required structure enables you to create service management tools that can
interpret, manage, and create analytics for applications that use the WebData API.

 ➤ The WebData protocol can stand as a generic replacement for many custom-developed
RESTful protocols.

 ➤ Clients maintain an intelligent cache that precludes the need for redundant requests to
retrieve data, again reducing service load. Clients request new data only when notii ed that
their current set is out of date.

 ➤ Clients use paging size and have the opportunity to select only the data that they need to
see, rather than having to preconi gure a one-size-i ts-all data window. Clients only request
data they need, which also reduces service load.

 ➤ It’s easy to implement the key/value-oriented WebData API on highly scalable columnar
style databases, like DynamoDB or App Engine.

Client Advantages

Properties of WebData and the Migrate client that benei t handset applications include the
following:

 ➤ The Migrate framework has the potential to move applications from the mode of static
coni guration, which can be changed only at deployment time, to a l exible deployment

environment in which a backend service can change the behavior and coni guration of a

client on the l y. Such l exibility arises from supporting schema that can be pushed and

synchronized to clients.

 ➤ The Migrate client can function as a secure proxy for applications that do not have to

request Internet permission.

 ➤ You will see a decrease in the size and development cost of applications that do not need to

reinvent the wheel to access and synchronize network data with local SQLite tables.

Now that you’ve looked at the WebData and Migrate Android APIs in detail, you’ll jump into

building an actual application with project Migrate in the next chapter.

WebData Applications

WHAT’S IN THIS CHAPTER?

 ➤ Creating a Migrate project

 ➤ Interfacing with the Migrate REST proxy

 ➤ Setting up a device

 ➤ Looking at future directions: MigrateClinic

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download
at www.wrox.com on the Download Code tab.

In this chapter you learn about an implementation of the WebData protocol called Migrate. The
discussion walks through a single application — the simple Contacts application introduced in
Chapter 5. It then implements the Contacts application on top of the Migrate framework.

Chapter 9 introduced the concept of the WebData API and described Migrate, a generic
content provider that can be used as a backend for a wide variety of applications.
This chapter looks at what an application that uses such a generic provider might look like.
You’ll be writing an application similar to the restfulCachingProviderContacts project
from Chapter 5 that uses Migrate instead of its own, private data-synchronization code.

This chapter demonstrates:

 ➤ Creating a new project using the Migrate tools

 ➤ Converting an existing project to use the Migrate framework

 ➤ Installing the Migrate generic content provider on a device and creating an
automatically synchronized account to support it

10

284 ❘ CHAPTER 10 WEBDATA APPLICATIONS

 ➤ Running a Migrate-based application

 ➤ The future of the Migrate platform

NOTE We are actively engaged in developing Migrate. Although the con-
cepts and structures described in this chapter will endure, the specii cs of their
 implementation may change as the framework grows and matures. Please be sure
to use the latest versions of these projects, found in the code repository at
the project’s website, https://github.com/wileyenterpriseandroid, or
at the www.wrox.com website at this book’s web page. We strongly encourage
you to check out and explore the Enterprise Android and Migrate open source
 repositories provided at this github location.

THE MIGRATE CLIENT

Chapter 5 described how the adoption of REST changed the architectural focus for distributed
APIs from the content that they carry (in APIs like CORBA, RMI, and SOAP) to the medium over
which their content is transported: an unreliable network. Chapter 5 also pointed out that Android’s
internal architecture brings similar concerns into the application. An Android application is subject
to interruptions in connectivity, access to the CPU, and even power. Although these interruptions
may be of some concern in an application designed for a stationary device (a rack mounted server or
even a laptop), they are much less likely to occur. With mobile applications, they are an unavoidable
part of life.

Given these constraints, it makes a great deal of sense to pull REST-style access up one level. Instead
of using REST at the device boundary — only as a means of accessing remote data — what if, as
proposed in Chapter 9, you use REST right on the device? What if you pull the REST proxy —
made possible by adopting a REST-style architecture — off the network and put it right into the
phone?

In such an architecture, the UI — instead of expecting reliable access to a content-specii c network
library — simply performs RESTful requests against a local proxy for the network. The UI makes
its request to a local service and cannot tell that the service is a proxy for an endpoint that is
sometimes unreachable. Whether a given record in the cache is out of date with respect to some
external, upstream instance of the same data, is simply a piece of local state information.

There is an additional motivation for this approach that has not yet been discussed. Developers who
have built several content providers will have noticed that there are substantial internal similarities
among them. The code shown in Chapter 5 is very nearly generic already. Most of the specii cs that
customize the implementation of the Contacts provider shown in that chapter — the things that
specialize it to apply to a database of contacts — have been abstracted out into statically dei ned
constants: column names and Java constants that hold them. At some point, a developer who wants
to get some work done will begin to look for ways — perhaps along the lines of Ruby on Rails — to
avoid writing these hundreds of lines of boilerplate code for each new application.

These two insights together make a framework that provides REST access to application-specii c
data through a generic, local, device-wide proxy a very appealing idea, to say the least. The ability

Creating a Migrate Project ❘ 285

to create applications by focusing on powerful acquisition, manipulation, and presentation of data,
while leaving the details of robust, enterprise-wide synchronization of that data to automation,
could save hundreds of developer hours and avoid hundreds of unpleasant bugs.

Chapter 4 assumed the existence of a content provider and built code that revealed its behavior.
This chapter takes the same approach. It assumes the presence of the Migrate SDK — a toolkit that
supports building Migrate clients — and, by building code, reveals the contents of the toolkit and
the architecture of the Migrate itself.

CREATING A MIGRATE PROJECT

This section begins the exploration of the Migrate WebData framework by converting the
simplii ed Contacts program built in Chapter 5 for use in this context. Because that project is
familiar, it is a logical starting point. Because it is very simple, the size and complexity of the
converted result will be very instructive in evaluating the basic concepts.

Much of the code will, of course, stay the same. The whole point of the WebData API is to provide a
foundation to implement arbitrary UIs.

NOTE The “zeroth” step to creating a Migrate-based application, of course, is to
download the Migrate SDK, which contains a backend Migrate service deployment
(migrate.war), the Migrate provider proxy (migrate-client.apk), and tools for
managing Migrate provider contract APIs. The SDK is available as a zip i le from the
migrate wiki, https://github.com/wileyenterpriseandroid/migrate/wiki

Step 1: Importing the Project

Start by importing the project $CODE/MigrateContacts into Eclipse (see Figure 10-1), as you
did for the clients in Chapter 5. Remember to set up the project for Eclipse i rst as described in
Chapter 5 and in $CODE/MigrateContacts/README. Please keep in mind that the project will not
immediately compile — it needs a contract class that you will generate shortly.

Step 2: Enabling the Project as a Migrate Client

To enable this project as a Migrate client you need to add the Migrate client library, migrate-api
.jar, from the Migrate SDK, by dragging and dropping it on the libs directory, as shown in
Figure 10-2.

NOTE Note that the window on the left, in Figure 10-2, is a i le browser window
(an OS X Finder window, to be specii c) and that it is on top of an Eclipse win-
dow. Dragging i les from the i le browser and dropping them on Eclipse will copy
them from the source (the SDK in this case) into the Eclipse project.

286 ❘ CHAPTER 10 WEBDATA APPLICATIONS

Step 3: Defi ning the Information to Be Managed by Migrate

You’ll need to dei ne the information that will be managed by Migrate and synchronized with a
network backend. Because this data description will be used in multiple places — the UI code in an
Android client; the contract and SQLite tables in the Migrate cache; the JSON messages exchanged
between the Migrate cache and a Migrate enterprise backend service; and, perhaps, even the SQL
DDL for tables in a database supporting that service — it is desirable that it be automatically
generated from a single source. The current implementation of the Migrate framework does this by
using Java annotations and introspection on a Java class dei nition — of course, there’s no reason
not to support different language bindings, or web-based dei nition systems in the future.

This form of dei nition makes a great deal of sense in applications that represent data internally
as POJOs (plain old Java objects, which are objects that do little but represent data). It was made
popular by Java frameworks like XDoclet and Hibernate, and its use continues in App Engine.
As you saw in Chapter 6, the ability to generate both network and database representations

FIGURE 10-1

FIGURE 10-2

Creating a Migrate Project ❘ 287

automatically for a data object from the single dei nition makes sense as a way of saving time
and preventing errors. The obvious choice for that single dei nition, in a Java application is the
representation actually used throughout that application and verii ed by the
Java complier. As you’ve read, that’s the class that represents the data — the POJO.

In an Android program, on the other hand, this particular data-dei nition object will not likely be
used. Throughout this book the discussion has advocated the use of a REST-like style all the way
up to the UI. In that style, an Android program is likely to use either Cursor or ContentValues
objects, instead of POJOs, to represent data for the short period of time that it is in l ight between a

datastore and the screen.

In either of those representations the application code uses, as demonstrated in Chapter 5, a special

i le, the data contract, to identify a content provider, its virtual tables, and the columns in those

tables. As it is currently implemented, Migrate generates that contract automatically by analyzing

a data-dei nition POJO.

The POJO for the MigrateContacts project resides in the following location:

$CODE/MigrateContacts/src-schema/com/enterpriseandroid/migratecontacts/
Contact.java

You need to build this source i le using:

cd $CODE/MigrateContacts
ant -f build-schema.xml

Note: Once you have built this i le, you won’t use its output class directly in any Android

application; instead, you’ll use the Android contract that you generate from it.

Listing 10-1 shows the dei nition for the Contact data-dei nition POJO.

LISTING 10-1: The MigrateContacts Contact object

package com.enterpriseandroid.migratecontacts;
import net.migrate.api.annotations.WebDataSchema;

@WebDataSchema(version="1")
public interface Contact {
 public String getFirstname();
 public String getLastname();
 public String getEmail();
 public String getPhoneNumber();
}

The @WebDataSchema annotation on the interface allows the Migrate contract dei nition tool to

identify it as the target for analysis. Data member names and types are inferred from getter methods

and their return types.

Step 4: Generating the Contacts Contract

Now you’ll generate the contacts contract. The Migrate contract dei nition tool is part of the

Migrate SDK. At this time it is an ant script named migrate.xml. To use it, copy it from the SDK

distribution into the root of your project, as shown in Figure 10-3.

288 ❘ CHAPTER 10 WEBDATA APPLICATIONS

FIGURE 10-3

In order to use the contract dei nition tool, you must coni gure it by creating an ant properties i le.
This properties i le will supply the parameters specii c to the particular project. The coni guration
i le for this project resides in $CODE/MigrateContacts/tools/migrate.properties and is shown
in Listing 10-2. Copy this i le into place:

cp $CODE/MigrateContacts/tools/migrate.properties $CODE/MigrateContacts/

LISTING 10-2: Migrate contract defi nition tool confi guration

migrate.sdk.root=../../migrate-sdk-beta/
migrate.object=com.enterpriseandroid.migratecontacts.Contact
migrate.class.root=build/classes-schema
migrate.gen.root=gen
migrate.endpoint=http://localhost:8080/migrate

The coni guration i le specii es several things:

 ➤ migrate.sdk.root — The directory containing the Migrate SDK.

 ➤ migrate.object — This is the fully qualii ed name of the object that will be used as a
template for creating the data description. This is the Java interface dei nition shown in
Listing 10-1.

 ➤ migrate.class.root — This is the directory containing a compiled version of the class
named in the migrate.object property. Recall the earlier instructions regarding building
the migrate schema classes — the ant script places the compiled classes here. Be sure that this
property points at the root of the directory containing the class i le, not the actual directory
containing the i le. In this case, for instance, the property’s value is build/classes-schema,
not build/classes-schema/com/enterpriseandroid/migratecontacts.

 ➤ migrate.gen.root — This is the root of the i le tree into which the Migrate tool will
put the generated contract i le. This example uses the gen directory, the same directory
that the Android toolkit uses for its generated i les. Although this has a certain elegance,
remember that cleaning the project from Eclipse will delete the i le. Unlike the i les that are
automatically generated by the ADK, i les generated by the Migrate tool will not be recreated

Creating a Migrate Project ❘ 289

until the tool runs again. Again, the full path to the resulting generated i le, as is standard for
Java source i les, will mirror the fully qualii ed name of the class it contains. In this case, for
instance, the complete pathname for the contract class generated by the Migrate tool is …/
gen/com/enterpriseandroid/migratecontacts/ContactContract.java.

 ➤ migrate.endpoint — This is the URL for the Migrate service with which the client will
synchronize data. Subsequent sections will demonstrate using the Migrate tool to send a
copy of the data descriptor it generates to this endpoint.

Developers who are familiar with ant will realize that it is possible to specify or override any of
these dei nitions from the command line. As intrinsic properties of the project, however, it makes a
lot of sense to put them in a i le, where they can be managed with a version control system.

Once you have specii ed the tool parameters, run the tool to generate the contract i le. From Eclipse,
select the ant build i le, migrate.xml, and run it as an external tool, as shown in Figure 10-4,
making sure to select the i rst target.

FIGURE 10-4

The tool should complete successfully, producing the ContactContract class in the gen directory.
You may have to refresh the project to see it; it’s shown in Figure 10-5. The MigrateContacts project

290 ❘ CHAPTER 10 WEBDATA APPLICATIONS

Listing 10-3 examines the newly generated contract.

LISTING 10-3: The SDK-generated contract

/* Generated Source Code - Do not Edit! */
package com.enterpriseandroid.migratecontacts;

import android.net.Uri;
import android.provider.BaseColumns;
import net.migrate.api.WebData;

public final class ContactContract {
 private ContactContract() {}

 public static final String SCHEMA_ID = com.enterpriseandroid.migratecontacts.Contact

 public static final Uri SCHEMA_CONTACT_URI = WebData.Schema.schemaUri(SCHEMA_ID);
 public static final Uri OBJECT_CONTACT_URI = WebData.Object.objectUri(SCHEMA_ID);

 public static final class ContactColumns implements BaseColumns {

FIGURE 10-5

code should now compile sucessfully, and the errors should go away in Eclipse. Note though, you
should not try to run the project yet.

Interfacing with the Migrate REST Proxy ❘ 291

 private Columns() {}

 public static final String FIRSTNAME = "firstname";
 public static final String LASTNAME = "lastname";
 public static final String EMAIL = "email";
 public static final String PHONE_NUMBER = "phoneNumber";
 }
}

There are a couple of things to consider here. Certainly there are dei nitions for column names,
exactly as expected. However, in addition, note the dei nition, early in the i le, of a schema ID. This
ID identii es to Migrate which of the many datastores Migrate manages that the given application
wishes to use.

Finally — and perhaps this is a surprise — notice that there are two URIs in the contract. The i rst,
the schema URI, is the URI for the metatable. The metatable holds data about the datasets that
Migrate manages. An application must be able to discover the state of the dataset it intends to use.
It will use the row in the metatable identii ed by the schema ID to i nd that state. This process is
discussed in the next section.

The second URI — the object URI — is for the actual contact data. Like the schema URI, this URI’s
authority section also belongs to Migrate. The virtual table it identii es, however, will contain the
contact data.

At this point, the Migrate framework has been fully integrated into the MigrateContacts project.
All that remains is to write the code that uses it.

INTERFACING WITH THE MIGRATE REST PROXY

Nearly all of the code that comprises the MigrateContacts project is taken directly from its
Chapter 5 predecessor, restfulCachingProviderContacts. Notice, on the other hand, that half
of the classes and more than half of the code have not been copied to the new project: They’ve been
replaced by the Migrate framework and left behind. Only the UI components of the, admittedly
simple, application are still needed. So far, so good!

There is one new class that you can i nd in the migrate-client source repository, SchemaManager.
This class replaces the entire data and service sections from the Chapter 5 version of the application.
It is instructive to walk through it in order to understand how it works.

The main problem that the client application must solve is very similar to that addressed by
SQLiteOpenHelper: the initialization problem. Recall from Chapter 3 that an application newly
installed on a device must initialize any SQLite databases that it needs before they are used
for the i rst time. It accomplishes this by requesting instances of the open database exclusively
from a subclass of SQLiteOpenHelper. The helper instance determines if the database exists.
If getWritableDatabase is called ten million times during the installed life of an application,
SQLiteOpenHelper simply returns the cached, open database for all but one of those calls. That
single i rst time it is called, though, it i nds that the database does not exist (or needs an update).
Since the helper contains the initialization code for the database, it can create or update it before it
returns. The calling code is none the wiser.

292 ❘ CHAPTER 10 WEBDATA APPLICATIONS

In a similar manner, the Migrate content provider must initialize its copy of any given schema
the i rst time it encounters it, before it can provide data from that schema to its clients. This
initialization is not a request for data from the schema. Instead it is a meta request, asking Migrate
to initialize the schema.

Recall from Chapter 3 the oblique process of obtaining a cursor by using the loader manager. When
the code needs a cursor, instead of simply asking for it, it undertakes a three-step process. First it
initializes the loader manager. Next, it responds to a callback from the manager to onCreateLoader
by creating an instance of a loader. Finally, when the loader manager runs the loader, it receives the
resulting cursor in a callback to onLoadFinished.

When using the Migrate framework these two processes are combined: First, the Migrate
framework must be initialized — using a loader, incidentally. Then once it is initialized, you can
query it — using another loader — for the needed data. You’ll explore this in the context of the
sample project. ContactsActivity needs to display a list of all contacts. It will ask Migrate,
a generic content provider, for a cursor, just as the previous version made the same request
of an internal content provider in the original, pre-Migrate implementation. In that original
implementation, though, SQLiteOpenHelper invisibly managed initialization when the application
was newly installed and the database did not yet exist.

The new Migrate-based version of the program, however, must handle the analogous case, the case
in which the Migrate framework has not yet created a table for the contacts data. Listing 10-4
contains the code for the SchemaManager class.

LISTING 10-4: The schema manager

 1 public class SchemaManager extends ContentObserver
 2 implements LoaderManager.LoaderCallbacks<Cursor>
 3 {
 4 public static interface SchemaLoaderListener { void onSchemaLoaded(); }
 5
 6 private static boolean ready;
 7
 8
 9 private final int loaderId = new Random().nextInt();
10 private final Uri uri;
11 private final String user;
12 private final String schema;
13
14 final Activity ctxt;
15 final SchemaLoaderListener listener;
16
17 public SchemaManager(
18 Activity ctxt,
19 String schema,
20 Uri uri,
21 String user,
22 SchemaLoaderListener listener)
23 {
24 super(new Handler());
25 this.ctxt = ctxt;

Interfacing with the Migrate REST Proxy ❘ 293

26 this.schema = schema;
27 this.uri = uri;
28 this.user = user;
29 this.listener = listener;
30 }
31
32 public void initSchema() {
33 if (ready) { listener.onSchemaLoaded(); }
34 else { ctxt.getLoaderManager().initLoader(loaderId, null, this); }
35 }
36
37 @Override
38 public boolean deliverSelfNotifications() { return true; }
39
40 @Override
41 public void onChange(boolean selfChange) {
42 ctxt.getLoaderManager().restartLoader(loaderId, null, this);
43 }
44
45 @Override
46 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
47 return new CursorLoader(
48 ctxt,
49 uri,
50 new String[] { WebData.Schema.STATUS },
51 WebData.Schema.SCHEMA_ID + "=?",
52 new String[] { schema },
53 null);
54 }
55
56 @Override
57 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
58 if (schemaReady(data)) { listener.onSchemaLoaded(); }
59 else {
60 data.registerContentObserver(this);
61 startSync();
62 }
63 }
64
65 @Override
66 public void onLoaderReset(Loader<Cursor> arg0) { }
67
68 private boolean schemaReady(Cursor data) {
69 ready = data.moveToFirst()
70 && (WebData.Schema.STATUS_ACTIVE
71 == data.getInt(data.getColumnIndex(WebData.Schema.STATUS)));
72 return ready;
73 }
74
75 private void startSync() {
76 ContentResolver.requestSync(
77 new Account(user, WebData.ACCOUNT_TYPE),
78 WebData.AUTHORITY,
79 new Bundle());
80 }
81 }

294 ❘ CHAPTER 10 WEBDATA APPLICATIONS

Examine this code by walking the path of execution. In order to ensure that Migrate has loaded the
necessary schema — and then obtained a cursor to data in that schema — the client must do the
following:

 1. (Lines 32-35) Verify that Migrate has initialized the needed schema. The client code does
this by creating a new instance of the SchemaManager class and calling its initSchema
method. If the manager has already discovered that the necessary dataset is present and
ready, it can skip to Step 9.

 2. (Line 34) If the manager must determine whether the requested schema is present, it must
do so by obtaining the metatable from Migrate. The metatable was mentioned earlier. It is
not the table that contains the list of contacts. Instead, it is a list of schemas that Migrate
knows about along with descriptions of their states. In order to get the metatable, the
schema manager initializes a loader requesting a cursor for it.

 3. (Lines 45-63) There is nothing special about the request; it is just a standard cursor loader
query against the metatable, one of Migrate’s virtual tables. It is the metatable that is a little
bit special. In typical three-phase loader fashion, the schema manager initializes the loader
manager to load a cursor from the metatable. That causes the loader manager to request a
loader using the onCreateLoader method. When that loader completes, onLoadFinished is
called with the cursor it returns.

 4. (Lines 68-74) When the loader manager returns a cursor to the metatable to the schema
manager’s onLoadFinished method, there are two possibilities. If there is a row in the
metatable recording the state of the contacts schema (identii ed by the schema ID from
the contract), and if that state indicates that the table is ready, then the schema is initialized,
and processing can skip to Step 9.

 5. (Lines 59-62) In any other case — the row does not exist or the schema is not ready — the
application cannot proceed. Before it can display the list of contacts, it must wait for
the Contacts dataset to be created and pre-populated from the network. So that it can
receive notii cations of any changes in state of the metatable, it registers as a content
observer for the cursor obtained in the query in Step 4.

 6. (Lines 75-80) Once it has been registered to receive notii cations, the schema manager must
do something to induce Migrate to fetch the necessary schema. It does this by placing a
request for an update with the SyncManager. Of course, in order for this request to
succeed — for the SyncManager to successfully download the new schema — the device user
must have created a WebData account that can connect to an appropriate backend service.
You’ll see how this is accomplished in the next section of this chapter. The name associated
with the account is one of the parameters to the manager.

 7. When the SyncManager successfully downloads the data for the new schema, it will push
the new data into the Migrate metatable. Migrate will, in turn, notify all observers of the
metatable update. Since the schema manager registered as an observer in Step 5, it will
receive the notii cation.

 8. (Lines 41-43) In response to the notii cation, the schema manager will reload the metatable,
essentially returning to Step 3. This loop repeats until the manager i nds the requested
schema as “ready” in the metatable.

Interfacing with the Migrate REST Proxy ❘ 295

NOTE Although all of this is happening asynchronously with respect to the UI,
it may take a signii cant amount of time. The delay may well be visible to a user.
In order to provide an acceptable user experience, applications will have to be
designed to accommodate this one time delay.

 9. (Line 58) At this point, the metatable indicates that the Migrate content provider has
created and populated the requested schema. At last, there is data available and the
application can use it! The schema manager has completed its work. It uses the callback
method onSchemaLoaded to notify its listener that the data is ready.

 10. The client can now begin the standard three-step download process. In its onSchemaLoaded
method, it initializes a new loader manager instance to get the contact data from Migrate.
The loader manager obtains a loader, runs it, and, i nally, calls the activity onLoadFinished
method with data from the requested table.

Although this process looks convoluted, remember that nearly all of it happens only once. As with
the SQLiteOpenHelper — which may, on some occasions, have to copy an entire database — the
worst case looks pretty bad. Most of the time, though, most of these steps won’t happen at all. Even
when initialization is necessary, it usually completes very quickly and with delays no greater than
those imposed by the network.

The rest of the code in the ported version of the simple Contacts application is nearly unchanged.
Other than the changes in symbol names due to the automatically generated contract, only three
other changes are necessary. They are shown in Listing 10-5.

LISTING 10-5: Porting a client activity

public class ContactsActivity extends BaseActivity
 implements LoaderManager.LoaderCallbacks<Cursor>,
 SchemaManager.SchemaLoaderListener
{
 // … code elided
 @Override
 public void onSchemaLoaded() {
 getLoaderManager().initLoader(CONTACTS_LOADER_ID, null, this);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // … code elided
 new SchemaManager(
 this,
 ContactContract.SCHEMA_ID,
 ContactContract.SCHEMA_CONTACT_URI,
 ((ContactsApplication) getApplication()).getUser(),
 this)
 .initSchema();
 }
}

296 ❘ CHAPTER 10 WEBDATA APPLICATIONS

Note that in its onCreate method, the activity initializes the schema manager. This is entirely
analogous to initializing a loader manager: It kicks off the process of getting the data that the activity
will display, as described previously. The name of the user account, used by the SynchManager to log
into the remote service, comes from the application object. You’ll see how that works in a moment.

Next, notice that the activity extends SchemaManager.SchemaLoaderListener. This allows it to
receive the callback indicating that the dataset it requires has loaded. Its implementation of the
method required by the interface onSchemaLoaded initializes a loader manager instance to get the
data cursor. This is the call to initLoader that would have been in onCreate. It has simply been
delayed by one layer of indirection.

Just as all requests for databases must be made of the SQLiteOpenHelper, in order for it to be
effective, all requests for data from the Migrate service must be made through a schema manager.
Both of the application’s activities have been modii ed to add this new layer of indirection.

Careful observers will notice that there is one additional change in the ported version of the simple
Contacts application. In the original version, there were colored bars that provided feedback to the
user about the state of a record: synched, synching, failed. Although the information that makes
that feature possible is not available in the current implementation of Migrate, it is regarded as
essential by the developers, and is scheduled for addition in the near future.

As noted, a Migrate client application must be able to identify the account to use, in order to log in
to and synchronize with a remote service. Android’s SyncManager is a powerful and secure tool for
managing remote accounts. It safely manages credentials and optimizes the process of synchronizing
data. It is, however, completely external to the client application. An installation of Migrate may
have to communicate with several different backend services and may do so using accounts that
exist only on your private device. An application must be able to discover the account to use in order
to synchronize the data. The sample application does that using a standard preferences activity
and a specialized Application class so that the information is available application-wide. That is
demonstrated in the next section.

Step 5: Starting a Local Migrate Service

This task should be pretty easy if you have run through the examples in Chapter 6. If you have not,
we suggest that you do so now. After you have installed the required tools for Chapter 6, simply copy
the $MIGRATE_SDK/migrate.war binary to $CATALINA_HOME/webapps directory and restart Tomcat.

NOTE Make sure that your Migrate service is running and that a MySQL
instance is available on port 3306, with credentials available for the root user as:
username: root, password: mysql. You can check the status by visiting
http://localhost:8080/migrate in a browser. If you are having trouble with
this step, see the README i le for information about troubleshooting MySQL.

Step 6: Publishing Your Application’s Schema

The last step of creating a Migrate-enabled application is publishing its schema into your new local
service instance. You do this, once again, using the ant tool. Select the tool, migrate.xml, in Eclipse

Interfacing with the Migrate REST Proxy ❘ 297

FIGURE 10-6

FIGURE 10-7

but instead of running it directly, choose Run As ➪ External Tools ➪ Coni gurations, as shown in
Figure 10-6.

This will bring up a dialog box shown in Figure 10-7. Choose the Targets tab.

298 ❘ CHAPTER 10 WEBDATA APPLICATIONS

In the Targets tab, select the second target, postSchema. Click Run to run the tool. The console
should coni rm that your schema has been posted to the site you named with the migrate.endpoint
property, in the migrate.properties i le.

Once you have posted the Migrate schema, you can check the presence of the new metadata by
loading the following URL in a browser: http://localhost:8080/migrate/schema/com
.enterpriseandroid.migratecontacts.Contact. The response should be JSON that contains
recognizable contact i elds.

SETTING UP A DEVICE

The i rst step to running a Migrate client on a device or an emulator, of course, is installing the Migrate
generic content provider itself. There are several ways to do this. If you have cloned the open-source
project and have it open as an Eclipse project, you can run it as you would any other Android project.
It should also soon be possible to download Migrate directly to your emulator from several Android
storefronts. For now, you should install the version found in the Migrate SDK.

In this command-line session (for example, in Bash on Linux, MacOS, or cygwin) the shell variables
$MIGRATE_SDK and $ADK_HOME point to the root of the installation of the Migrate SDK and the
Android Developers Toolkit, respectively.

NOTE If you are not familiar with adb, you can learn about it here:

http://developer.android.com/tools/help/adb.html

It is a tremendously useful tool for understanding an Android system. It is part
of the ADK that you installed, when you started doing Android development,
and can be found in the $ANDROID_HOME/platform-tools directory.

Before you begin, be sure that the emulator you intend to use is up and running:

$ adb devices
List of devices attached
emulator-5554 device

Or you can just look in the DDMS perspective in Eclipse, and you can i nd available devices on the
left side.

Step 1: Installing the Migrate Client

Start the AVD manager, launch an AVD, and before you continue, ensure the emulator is running.
Then install the Migrate client, located in <migrate_sdk>/migrate-client.apk, as follows:

$ cd $MIGRATE_SDK

The adb command that installs an application is adb install. If the Migrate client has already
been installed on the emulator, adb will refuse to install it again unless you specify the -r l ag,

which indicates that you want to reinstall the apk.

$ adb install /migrate-client.apk
2660 KB/s (356476 bytes in 0.130s)
 pkg: /data/local/tmp/migrate-client.apk
Success

Setting Up a Device ❘ 299

Verify that Migrate has been installed and start it (see Figure 10-8).
If you’re successful, you’ll get a Toast message indicating that Migrate is
up, as shown in Figure 10-8.

Step 2: Adding a WebData Account

Next, recall that Migrate depends on the sync manager. In order to work
correctly, the manager must be coni gured with an account. To create
this account, use the Settings application shown in Figure 10-9.

From the Settings application (leftmost pane) choose “Add account.”
This will bring up a new page showing the types of accounts known to
the Account manager (the center pane). Among the choices you should
see “webdata SyncAdapter” (at the bottom of the list, in this case), the
type of account used by the Migrate framework. Selecting the account
type will bring up a dialog (the rightmost pane) that allows you to
log into the Migrate service. If this were a real Enterprise application,
you would have to provide real credentials here. If you are using the
demonstration service, described in Chapter 9, any username and password will work, and you
should not change the endpoint URI. The default will work with the local service instance if you are
running in the emulator.

FIGURE 10-8

FIGURE 10-9

Step 3: Turning on Synchronization

Before you can start the Migrate contacts application, you now just need to activate synchronization
for your new Migrate account. Do so using Settings ➪ Accounts ➪ webdata SyncAdapter ➪ Migrate.
Then check the sync checkbox.

300 ❘ CHAPTER 10 WEBDATA APPLICATIONS

Step 4: Running the Application

Run the MigrateContacts application using Run As Android application, as you’ve done for other
Android projects in this book.

Step 5: Confi guring an Account in Migrate Contacts (Optional)

Recall that in order to use the Migrate service, the application must know which account to use. In
order for it to get data from the Migrate service, it must be coni gured to use the correct account.
You coni gure this account using the Settings activity, which appears as a wrench in the action bar.
Coni gure the application to use the same account used previously, as shown in Figure 10-10.The
application will not work until this account has been coni gured correctly.

FIGURE 10-10

FIGURE 10-11

Select the “Preferences” item in the application’s Action Bar. It’s represented
by the standard wrench icon (the leftmost pane in Figure 10-10). Since this
is a very simple demonstration application, there is only one item in the
preferences: the user coni guration (the center pane). Selecting the single
item brings up a standard preferences edit text dialog that allows you to
enter the name of the account coni gured in the previous section.

Congratulations, you have successfully set up MigrateContacts! Return to
the main activity to manage the contacts (see Figure 10-11).

FUTURE DIRECTIONS: MIGRATECLINIC

While MigrateContacts is appealing, it is certainly not ready for prime
time yet. In order to be ready for use in real enterprise environments,
future implementations of Migrate will have to support things like large

Future Directions: MigrateClinic ❘ 301

data objects, joins between virtual tables, schema versioning, and security (security issues in general
are discussed in Chapter 12).

The example code for this chapter includes a second application, MigrateClinic, that hints at the
how the Migrate framework might address some of these things.

NOTE MigrateClinic is not working code. It suggests one of several possible
directions that the Migrate framework might take in implementing some of the
features above.

In order to manage large objects, the Migrate tool will support a new datatype. In the prototype
code in Listing 10-6, this type is InputStream.

LISTING 10-6: Proposed Migrate InputStream type

@WebdataSchema(version="1")
public interface XRay {
 public String getSsn();
 public String getDescription();
 public String getNotes();
 public Long getTimestamp();
 public InputStream getXRay();
}

When the Migrate framework encounters a i eld with this special datatype, it populates it not with
the actual data, but instead with a URL. That URL can be used, as demonstrated in Chapter 4, to
get an input stream from the Migrate content provider. Listing 10-7 shows the implementation of a
Loader that reads the input stream into a bitmap and then displays the result in an ImageView.

There are two classes (XRayLoader, XRayLoaderCallbacks) and one method (populateXRay) in
this listing. They are not discussed here in detail because they are nearly identical to their analogs
in Chapter 4.

LISTING 10-7: Using the proposed type extension

private static class XRayLoader extends AsyncTaskLoader<Bitmap> {
 private volatile boolean loaded;
 private final Uri uri;

 public XRayLoader(Context context, Uri uri) {
 super(context);
 this.uri = uri;
 }

 @Override
 public Bitmap loadInBackground() {
 Bitmap xray = null;

continues

302 ❘ CHAPTER 10 WEBDATA APPLICATIONS

 InputStream in = null;
 try {
 in = getContext().getContentResolver().openInputStream(uri);
 xray = BitmapFactory.decodeStream(in);
 }
 catch (FileNotFoundException e) { }
 finally {
 if (null != in) { try { in.close(); } catch (IOException e) { } }
 }

 return xray;
 }

 // see bug: http://code.google.com/p/android/issues/detail?id=14944
 @Override
 protected void onStartLoading() {
 if (!loaded) { forceLoad(); }
 }
}

// code omitted...

class XRayLoaderCallbacks implements LoaderManager.LoaderCallbacks<Bitmap> {

 @Override
 public Loader<Bitmap> onCreateLoader(int id, Bundle args) {
 Uri uri = null;
 if (null != args) {
 String s = args.getString(PARAM_XRAY);
 if (null != s) { uri = Uri.parse(s); }
 }
 return (null == uri) ? null : new XRayLoader(XRayActivity.this, uri);
 }

 @Override
 public void onLoadFinished(Loader<Bitmap> loader, Bitmap bm) {
 populateXRay(bm);
 }

 @Override
 public void onLoaderReset(Loader<Bitmap> loader) {
 populateXRay(null);
 }
}

// code omitted...

void populateXRay(Bitmap xray) { xrayView.setImageBitmap(xray); }

The ability to do table joins is also a critical feature for Migrate. As the code in this chapter has
shown, Migrate maintains a virtual metatable describing the schemas it supports, at any given

LISTING 10-7 (continued)

Summary ❘ 303

time. One possible implementation of table joins simply inserts descriptions for a new view into this
metatable. The code to do that might look something like Listing 10-8.

LISTING 10-8: Proposed Migrate view feature

ContentValues view = new ContentValues();
view.put("name", SCHEMA_ID);
view.put("tables", TABLES);
view.put("projection", PROJECTION);
view.put("selection", SELECTION);
Uri schemaUri = resolver.insert(XRayContract.SCHEMA_XRAY_URI, view);

The URI returned by the insert statement is the object URI for the new table. As shown in
Listing 10-9, if the insert completes successfully, the new URI could be used as the object URI
in any other Migrate contract. The contract is simply created dynamically instead of statically.

LISTING 10-9: Using the proposed Migrate dynamic contract

new SchemaManager(
 activity,
 SCHEMA_ID,
 schemaUri,
 getUser(),
 listener)
 .initSchema();

Dynamic contracts introduce a small additional constraint: The URI for the data is no longer static.
It will be null until the new view is created. If the new view cannot be created, perhaps because
some parent table cannot be downloaded, it will stay null. The fact that code uses a dynamically
created view and must protect itself from a null valued content URI is, actually, not that signii cant.
As demonstrated earlier in this chapter, the application may already have to wait for the data to
which the URI refers, to become “ready.” This new constraint simply means that the URI may not
be ready either.

The Migrate framework is an attempt to prove a concept. It is useful to engage in speculation
of the sort pursued in this section to understand whether or not it is up the task. Certainly, the
system has promise.

SUMMARY

The MigrateContacts application is intended as an interesting proof of concept. The process of
creating it should reveal some of the details of the WebData architecture and give you substantial
insight into its viability as a real tool.

This chapter began by offering several potential strategic advantages for the WebData approach:

 ➤ It is an implementation of enterprise-wide data sharing that doesn’t attempt to sweep the
challenges of mobile synchronization under the rug.

304 ❘ CHAPTER 10 WEBDATA APPLICATIONS

 ➤ It makes good use of the Android components designed for the job: content providers,
synchronization manager, service-based threading, and the best networking packages.

 ➤ Because it is a single implementation used by multiple clients, it is likely that serious bugs
will occur less often in production and be i xed more quickly if they do occur.

 ➤ It completely removes the issue of implementing one somewhat complex piece of code from
an application.

The list is obviously appealing but so is faster than light travel. What did the exercise of building an
actual application demonstrate?

There are some real high points. The ported application started simple and, for the most part, got
much simpler. The restfulCachingProviderContacts project is something like 1,700 lines of Java
and XML code. MigrateContacts is something like 500 lines, which is almost entirely hooking
the provider contract to the application view. At least in this constrained context, the approach is a
win. Even the i nal bit of speculation in the “Future Directions: MigrateClinic” section suggests that
Migrate can be extended into a practical and useful platform.

Building Human Interfaces
for Data

 WHAT’S IN THIS CHAPTER?

 ➤ UI conventions for data-oriented apps

 ➤ Scaling the display

 ➤ Combining Tab and Fragment

 ➤ Using the ActionBar

 ➤ Touch and direct manipulation

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download
at www.wrox.com on the Download Code tab.

Chapter 1 introduced the basics of an application framework. The example code in Chapter 1
showed how to handle an application lifecycle correctly and illustrated good practices in
scaling applications to i t many screen sizes.

That basic framework introduced the use of the Fragment class, which enabled the application
to spread out across the screen of a tablet and “fold up” to i t on a handset. The framework
integrated the use of fragments with tabs in the Action Bar.

Now that you have an application that meets those basic requirements and actually does
something, it’s time to upgrade the ease and facility of interaction with that application and
to implement a more complete range of Android conventions in the UI.

11

306 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

The users should i nd the UI obvious, and where it isn’t obvious at i rst glance, it should be
explorable. Users should be able to guess at outcomes with reasonable success. That is, the
application should encourage experimentation. It should avoid disappointing the users by having
them i nd that a touch or a gesture that could do something useful does nothing.

MODU LARITY AND FLEXIBILITY COMPARED
WITH A “COOKBOOK” APPROACH

The “recipe” you i nd in this chapter shows you how to combine the scaling and Fragment-based
modularity described earlier in this book with the direct manipulation and animation needed to
create a UI that has a more satisfying touch experience than simply selecting list items and tabs.

You may wonder why in Google’s Android reference material there isn’t a model Android app that
illustrates all the conventions covered in this chapter. In part this is due to the generality of each
part of the Android user interface APIs. Each can be used separately, and in a near-ini nite number
of combinations. It’s also easier to make examples that focus on one feature or capability at a
time. The example in this chapter shows some of the places where the API design hasn’t perfectly
dovetailed, even when features should work well together.

Overview of Modules

Before you start looking at code, take a look at the modules, which have been added to achieve this
boost in user interface sophistication:

ItemDetailFragment.java

ItemFragment.java

ListColumnMap.java

MainActivity.java

PickFragment.java

TabActivity.java

TabbedActivity.java

TabbedPagedFragment.java

So compared to what was discussed in Chapter 1, the number of modules in this program has
increased.

The TabbedPagedFragment class is a class that ItemFragment and ItemDetailFragment both
inherit from in order to acquire some common capabilities and behaviors.

We have also added a subclass of FragmentPagerAdapter called TabbedFragmentPagerAdapter,
which works with the ViewPager to enable direct manipulation of the fragments. This is
implemented in a private class within TabbedActivity in order to share information with that class.

Sideways swiping to “page” among items has become a popular Android UI convention, and the
ViewPager class was created to make implementation of this convention convenient.

Modularity and Flexibility Compared with a “Cookbook” Approach ❘ 307

Layout C hanges

Some of the layouts have changed, too. The following code shows the layout i le called
data_only.xml, where we have replaced the Fragment subclasses specii ed in XML with a
ViewPager. The Fragment subclasses are instantiated by the TabbedFragmentPagerAdapter
constructor, an implementation strategy that’s explained in depth later in this chapter.

Listing 11-1 is the layout for an activity containing just one ViewPager nested inside a
LinearLayout.

LISTING 11-1: data_only.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </android.support.v4.view.ViewPager>

</LinearLayout>

Similarly, the layout-large version of main.xml (Listing 11-2) has a pager in place of the Fragment
subclasses:

LISTING 11-2: main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/content_layout"
 android:orientation="horizontal" >

 <fragment
 android:id="@+id/list_frag"
 android:name=
 "com.enterpriseandroidbook.contactscontractexample.PickFragment"
 android:layout_width="250dp"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.contactscontractexample.PickFragment"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <android.support.v4.view.ViewPager

continues

308 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </android.support.v4.view.ViewPager>

 </LinearLayout>

These layouts are the way this app differentiates between running on a small screen and a large
screen. This approach has the benei t of leaving the decision of whether to put multiple fragments
on a screen to the Android system, and we want to maintain this benei t as we integrate paging
with tabs.

DIRECT MA NIPULATION

In Figure 11-1 we demonstrate the ability to page, using one’s i nger, between fragments that
otherwise require selecting a tab to navigate to. Drag a fragment left or right, and watch the other
fragment come into view. Drag far enough and let go, and you switch between fragments.

LISTING 11-2 (continued)

FIGURE 11-1

Both dragging and l inging gestures are supported. You can drag a page almost fully into view and

then drag it back to the side of the screen from which you dragged it. Or you can l ing a page into

view, something like the way you might leaf through a book or magazine.

The Tabbed Activity Class

The TabbedActivity class incorporates both the code for initializing tabbing and all of the code

for page-swiping functionality because it must be aware of changes in the display commanded

Direct Manipulation ❘ 309

by switching among fragments using tabs. This is where most of the interesting modii cations to
support swiping were made. The next sections look at the details of how and why.

The Support Library

To implement this family of gestures and related UI behaviors, you use a ViewPager, which also requires
use of the Support Library. In Listing 11-3, you see some imports related to the ViewPager class. Please
note that you can i nd the code for Listings 11-3 through 11-12 in TabbedActivity.java in the code
download for the chapter.

LISTING 11-3: Declaring use of the Support Library

package com.enterpriseandroidbook.contactscontractexample;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.Fragment;
import android.app.FragmentTransaction;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.view.ViewPager;
import android.support.v4.view.ViewPager.OnPageChangeListener;

The i rst thing to notice is that we use the Support Library. The Support Library is installed by
the SDK Manager. Once the Support Library is installed, you copy the jar i le from the SDK
i le hierarchy to your project’s libs folder and add the jar to the libraries listed in your project
properties. In this case we are using the v13 library.

Once you have the jar i le copied into your libs folder, add it to the build path of your project.
Figure 11-2 shows a properly coni gured build path.

Why do we have the import statements for support.v4 in the list of imports in Listing 11-3?
Because, even though we are using the v13 version of the Support Library, the package names for the
imports use “v4” in the current version of the online documentation, and we chose to be consistent
with the documentation. The v13 library supports import statements using v4 or v13. There are
a few places, which will be pointed out, where you do need to specify a v13 package, however.
The following shows the heading of the class dei nition for TabbedActivity. It implements
OnPageChangeListener. A discussion about why the OnPageChangeListener is implemented here
occurs later in this chapter:

public abstract class TabbedActivity extends Activity implements
 ViewPager.OnPageChangeListener {

As before, TabbedActivity inherits from Activity. That’s because you’re not using the Support
Library to implement compatibility with earlier versions of Android that don’t directly support
Fragment. Essentially, there are two main use cases for the Support Library:

 1. Implementing support for Fragment and other newer APIs that were not part of Android’s
APIs prior to Android 3.1

 2. Making use of new APIs that have not yet ofi cially “made the team”

310 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

This application is an example of the latter case. Using the Support Library for back-compatibility
with early versions of Android introduces more complexity than we want to present here.

NOTE This book is about enterprise software, and we are making the assump-
tion that since that is a nascent topic, it implies new deployments of new mobile
devices. If we were making mass-market software for the Google Play store, we
might draw different conclusions about how to use the Support Library.

Initializing Ta bs and the ViewPager

The initializeTabs method (Listing 11-4) has the same signature as before, but most of the
initialization has been moved from this method into the constructor for the private nested class
TabbedFragmentPagerAdapter. As you’ll see, the reason for moving that code and the reason its
new class is private and nested are intertwined.

LISTING 11-4: Initializing tabs

private NerfTabListener nerfTabListener = new NerfTabListener();

/**
 * Initialize tabs in an activity that uses tabs to switch among fragments

FIGURE 11-2

Direct Manipulation ❘ 311

 *
 * @param defaultIndex
 * The index of the Fragment shown first
* @param nameIDs
* an array of ID for tab names
* @param fragmentClasses
 * an array of Class objects enabling instantiation of Fragments
 * to be tabbed/paged
 */
public void initializeTabs(int defaultIndex, int[] nameIDs,
 Class<?>[] fragmentClasses) {

 // Find the pager
 ViewPager pager = (ViewPager) findViewById(R.id.pager);

 // If there is no pager, there are no tabs
 if (null == pager) {
 return;
 }

 // Set the action bar to use tabs
 getActionBar().setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 /*
 * Create an adapter that knows our Fragment classes and Activity. This
 * constructor does most of the heavy lifting because it knows about
 * both the tabs and the pager.
 */
 TabbedFragmentPagerAdapter adapter = new TabbedFragmentPagerAdapter(
 pager, nameIDs, fragmentClasses);

 // Tell the adapter it has new items to display
 adapter.notifyDataSetChanged();

 // Select the tab designated as default
 getActionBar().getTabAt(0).select();
 }

Moving Data betw een Fragments

The code for loading data into the fragments to display it is much the same as it was in previous
versions of this code. That’s on purpose. We didn’t want to disrupt the strategy for scaling this app
over small and large screen sizes, and we didn’t want to give up the modularity of pushing the tab
listener code out into the Fragment classes. After all, Fragment prevents you from having to place
all your interaction code into Activity subclasses.

The method shown in Listing 11-5 is key to implementing that scaling. Notice that this is where a
decision is made about layout. Not screen size. Not density. If the layout includes certain Fragment
objects and their corresponding tabs, you can show the data for the item you selected.

312 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

LISTING 11-5: Bundle for moving data between components

/**
 * If we have tabs and fragments in this activity, pass the bundle data to
 * the fragments. Otherwise start an activity that should contain the
 * fragments.
 *
 * @param data
 */
 public void loadTabFragments(Bundle data) {
 int n = getActionBar().getTabCount();
 if (0 != n) {
 doLoad(n, data);
 } else {
 startActivity(new Intent(this, TabActivity.class).putExtras(data));
 }
}

You can show the it em list and data in one of two ways. Either the screen is big enough for both the item
list and the data for each item, or you must start a new activity to show the data. Since this is an abstract
parent class of the Activity classes that can be in either role, the same code works in either case.

The code lets the system decide and follows the layout decision made by the system. That way you
don’t have to take into account whether the users have changed font size and other often-overlooked
factors in how much information can be displayed.

Abstract Methods and Nested Interfaces

To build the interface, you need a list of Fragment classes that should be represented by tabs in
the Action Bar and the ViewPager needs to know about these classes. The abstract method here
ensures that the child classes provide that information:

/**
 *
 * @return The array of Classes to be instantiated and tabbed/paged
 */
// public abstract Class<?>[] getTabFragmentClasses();

You could have put the following interface dei nition into a separate i le, but it is so intimately tied
to what this class does that it might as well remain here. And it serves as a useful contrast to the
abstract method you just added. Why use an abstract method in one case and an interface in
another? The SetData interface consists of more than one method, and its implementer isn’t going
to be a child class of this class. In contrast, the getTabFragmentClasses abstract method doesn’t
need to be grouped with other methods and is implemented only by its child classes.

/**
 * An interface to pass data to a Fragment
 */
 public interface SetData {
 public void setData(Bundle data);

 public String getDataLabel();

 void setDataLabel(String label);
 }

Direct Manipulation ❘ 313

Connecting Tabs and Fr agments

A key element in the architecture of this UI framework example is the use of the Tab object’s tag
i elds as references to the Fragment objects the tabs are related to. In Listing 11-6, you can see that
the doLoad method uses this aspect of the implementation to i nd and call the setData method
of the SetData interface implemented by each fragment. This is what happens when the user selects
an item from the list: Related data is serialized into a bundle object, which is used to convey the
data to the fragment objects that display it.

LISTING 11-6: Delivering the data

/**
 * Iterate over the tabs, get their tags, and use these as Fragment
 * references to pass the bundle data to the fragments
 *
 * @param n
 * @param data
 */
private void doLoad(int n, Bundle data) {

 // Null check - harmless if no data
 if (null == data)
 return;

 int i;
 ActionBar actionBar = getActionBar();

 for (i = 0; i < n; i++) {
 SetData f = (SetData) actionBar.getTabAt(i).getTag();
 f.setData(data);
 }
}

Mixing in the ViewPager

Although the previous code did not change from the example used in Chapter 8, the following code
is new. Mixing tabs, the Fragment class, and ViewPager requires mixing two different APIs that,
in some places, don’t mix that well. As you have seen in the XML for the layouts, the Fragment
instances you can page among are not created by inl ating the XML any longer. That is because the

ViewPager uses an Adapter class that behaves something like a ListView’s adapter.

Unlike tabs, where each tab can have its own listener and where an instance of a fragment can

implement that listener interface, a pager wants one adapter and one listener and has no provision in

the API design to call each fragment being paged. In part this is a consequence of working like the

adapter of a ListView, which may be used to create and destroy items in the ViewPager container

dynamically. So, though here we don’t use the adapter in the way that adapters are used to put

arrays of data into ListViews, some of the same architectural constraints apply.

314 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

The question is, “Can you deal with these constraints while meeting the key architecture and
implementation goals?” Consider these questions:

 ➤ Can you avoid having the TabListener pulled out of the Fragment class and having one
place where all these interfaces converge?

 ➤ Can you avoid holding references to Android components, especially instances of this
activity, in multiple other objects?

 ➤ Can you coordinate swiping a page with tapping a tab and be able to use both interaction
gestures?

 A Nested Subclass of FragmentPagerAdapter

A ViewPager is generic: It will page anything you give it. In this case, you are giving it Fragment
objects and their view hierarchies. What makes this ViewPager page Fragment objects is its adapter
class. The adapter class is a subclass of FragmentPagerAdapater, whose name is a dead giveaway to
what it does.

As we mentioned earlier, the trick here is getting Fragment objects, Tab objects, the ActionBar
object in its enclosing activity, and a ViewPager and its FragmentPagerAdapater object to all
coordinate. That way, when the users use a tab or a swipe gesture, they get the expected result.
The Tab objects should be highlighted correctly and the correct fragment should be displayed. This
should happen no matter how the users choose to interact.

As it turns out, by embedding the FragmentPagerAdapter subclass (see Listing 11-7), and at the
cost of a fairly complex constructor, you can retain the way your scaling decision is made, and you
can retain the implementation of TabListener in the Fragment classes controlled by the tabs. You
can also coordinate between the tabs in the Action Bar and the Fragment objects being paged by the
ViewPager.

LISTING 11-7: The pager’s adapter

/**
 * This class is private because we only access it from here and it is
 * intimately tied to instances of this class. That is, unless it was nested
 * it would be holding a reference to instances of this component
 */
private class TabbedFragmentPagerAdapter extends
 android.support.v13.app.FragmentPagerAdapter {

private Class<?> fragmentClasses[];
private int[] nameIDs;

T he TabbedFragmentPagerAdapter Constructor

The code in Listing 11-8 illustrates why nested classes are sometimes useful and sometimes
confusing. For example, the keyword this refers to two different instances of two different classes
in this method. When used this way, it is qualii ed with the class name.

Direct Manipulation ❘ 315

FragmentPagerAdapter is nested to give it access to the members of the TabbedActivity class,
especially to the instances of its subclasses, which are accessed through the keyword this. The
TabbedActivity class name qualii es the use of the this keyword. TabbedActivity.this refers
to the instance of TabbedActivity that called the constructor, whereas the this keyword without
any qualii er refers to the instance of TabbedFragmentPagerAdapter being initialized by this
constructor.

Only the abstract Activity subclass needs to refer to instances of TabbedFragmentPagerAdapter,
which means you can make the class private and prevent the concrete subclasses from having to
be aware of what happens at this layer. Among the benei ts of this approach is that references to
instances of this component don’t leak out of this component, while the code of this constructor has
access to the Activity instance and its members. Also, you know that the only user of this class is
the enclosing abstract Activity class.

Most of the following code (Listing 11-8) appeared in the initializeTabs method in the example
code for Chapter 8. The reason it is now here is that tab initialization and pager initialization need
to happen alongside each other. They both use information common to the pager subclass and the
fragments to be paged.

LISTING 11-8: Creating tabs

/**
 * Create an instance of TabbedFragmentPagerAdapter. This constructor
 * sets up later instantiation of fragments, and tab creation
 *
 * @param tabbedActivity
 * - the activity with tabs and a pager
 * @param pager
 * - the pages that pages the fragments
 * @param nameIDs
 * - the names identifying the fragments
 * @param fragmentClasses
 * - the Fragment subclasses to instantiate
 */
TabbedFragmentPagerAdapter(ViewPager pager, int[] nameIDs,
 Class<?>[] fragmentClasses) {
 super(TabbedActivity.this.getFragmentManager());

 /*
 * The activity implements PageChangeListener, we
 * set it here, though
 */

pager.setOnPageChangeListener((OnPageChangeListener) TabbedActivity.this);

A Placebo Tab Listener

Here (Listing 11-9) is where you set up the tabs. But wait! You don’t have the real Fragment objects
yet, and the Fragment classes implement TabListener. The Fragment objects are created in a
FragmentPagerAdapater callback and passed to the ViewPager. You need to use a placebo called

316 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

nerfTabListener in case the TabListener is called before it is set. Because of the way the Tab API
works, it is more convenient to use a placeholder tab listener than it is to check the validity of the
TabListener every time you do something that might invoke it.

LISTING 11-9: Adding tabs to the Action Bar

// Check if there are any Fragments to instantiate
if (null != fragmentClasses && fragmentClasses.length != 0) {

 /*
 * Stash a reference to the fragment classes and names for
 * later use in the callbacks
 */
 this.fragmentClasses = fragmentClasses;
 this.nameIDs = nameIDs;

 // Get the action bar and remove existing tabs
 ActionBar bar = TabbedActivity.this.getActionBar();
 bar.removeAllTabs();

 // Make new tabs
 int i = 0;
 for (; i < fragmentClasses.length; i++) {

 // Create the tab
 Tab t = bar.newTab().setText(nameIDs[i]);

 // Give it a placebo to chew on
 t.setTabListener(nerfTabListener);

 // Add the tab to the bar
 bar.addTab(t);
 }
 }

 // Set the pager's adapter to this
 pager.setAdapter(this);

 notifyDataSetChanged();
}

Fra gmentPagerAdapter Callbacks

Here you override some methods of the FragmentPagerAdapter class. The way that tabs and the
pager are woven together is such that when a fragment is instantiated, the instance is stored with
the tab that is used to select it. When the pager asks its adapter for a fragment at a position, you use
the fact that fragment and tab positions are always the same. The position in the Action Bar’s tabs
returns a tab with a fragment instance stored in the tag. This results in using the Action Bar tabs as
the “data model” for the pager and its adapter.

The following methods (Listing 11-10) override the getItem and getCount methods. You can see
how the tabs of the Action Bar are accessed to retrieve Fragment instances. The index or position
parameter identii es which tab holds the requested fragment instance.

Direct Manipulation ❘ 317

Note that the fragments are instantiated in the getItem method. This is due to the way that a
ViewPager uses the FragmentPagerAdapter. The ViewPager is enabled to think that it never needs
to instantiate the fragments.

LISTING 11-10: Accessing the fragments being paged

@Override
public Fragment getItem(int index) {

 ActionBar bar = TabbedActivity.this.getActionBar();
 TabbedPagedFragment f = (TabbedPagedFragment) bar.getTabAt(index)
 .getTag();

 if (null == f) {

 /*
 * Instantiate the Fragment here. Otherwise it is never
 * added to the pager.
 */
 f = (TabbedPagedFragment) Fragment.instantiate(
 TabbedActivity.this, fragmentClasses[index].getName());

 // Set the data label to the name of the corresponding tab
 f.setDataLabel(TabbedActivity.this.getString(nameIDs[index]));

 // Set the tab's tag and the TabListener
 bar.getTabAt(index).setTag(f).setTabListener((TabListener) f);
 }

 return f;
 }

@Override
public int getCount() {
 return TabbedActivity.this.getActionBar().getTabCount();
}

/**
 * Find a fragment by position
 *
 * @param position
 * The position of the fragment in both the ViewPager and as the
 * tag of tab
 * @return
 */
public Fragment getFragmentByPosition(int position) {
 return (Fragment) getActionBar().getTabAt(position).getTag();
}

OnPa geChangeListener and Tabs

The following code (Listing 11-11) implements the OnPageChangeListener interface. The
onPageSelected callback connects the ViewPager to the tabs. When a page is selected, the Action
Bar is told to set the selected navigation item using the same position. When you are notii ed of a
new selection via tabs, the obverse is implemented in the tab listener.

318 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

Recall from earlier that, when initializing the Fragment, Tab, ViewPager, and other objects, you
used a temporary tab listener. That’s because the TabListener and OnPageChangeListener don’t
simply call each other. The link between them runs through the Action Bar in one direction and the
ViewPager in the other direction.

LISTING 11-11: OnPageChangeListener implementation

///
// Implementation of OnPageChangeListener
///

@Override
public void onPageScrollStateChanged(int arg0) {
 // Do nothing

}

@Override
public void onPageScrolled(int arg0, float arg1, int arg2) {
 // Do nothing

}

@Override
public void onPageSelected(int position) {
 getActionBar().setSelectedNavigationItem(position);

}

The Pl acebo

This class (Listing 11-12) enables you to decouple the way Fragment objects get instantiated from
the Tab objects that are created, without subclassing Tab or implementing null checks in all the code
that uses the Tab API.

LISTING 11-12: A convenient placeholder

private class NerfTabListener implements TabListener {

 @Override
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // Do nothing

 }

 @Override
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 // Do nothing

 }

 @Override

Direct Manipulation ❘ 319

 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 // Do nothing

 }

 }

}

The Ta bbedPagedFragment Class

We need to make some additional changes from the previous version of this example from Chapter
8. One is that the implementation of the TabListener interface has been pulled into a new abstract
class called TabbedPagedFragment, so it can be easily shared among tabbed fragments as you can
see in Listing 11-13.

LISTING 11-13: TabbedPagedFragment.java

package com.enterpriseandroidbook.contactscontractexample;

import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Fragment;
import android.app.FragmentTransaction;
import android.support.v4.view.ViewPager;

public abstract class TabbedPagedFragment extends Fragment implements TabListener {

@Override
public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // Do nothing

}

Comple ting the Circuit

This (Listing 11-14) is where you tell the ViewPager, if necessary, to change which Fragment object
is in view. You must check to see that a change is necessary; otherwise, you might ping pong back
and forth between the TabListener here and the OnPageChangeListener.

LISTING 11-14: Coupling tabs to the pager

@Override
public void onTabSelected(Tab tab, FragmentTransaction ft) {

 if (true == attached) {

 // The ViewPager is used to show the specified Fragment
 ViewPager pager = (ViewPager) getActivity()
 .findViewById(R.id.pager);

 // Check that we need to change current fragments
continues

320 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

 if (pager.getCurrentItem() != tab.getPosition()) {
 pager.setCurrentItem(tab.getPosition());
 }
 }
}

@Override
public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 // Do nothing

}

}

At thi s point, you have taken three separate parts that can be used in any combination with other
ways of building Android user interfaces and combined them into a UI that i ts many common use
cases. You have multiple fragments that can be brought into view as needed. These fragments are
controlled by tabs and through direct manipulation using a pager.

NAVIGATION

Navigation and l ow from one activity to another is a fundamental aspect of the architecture of

Android applications, and it goes hand in hand with lifecycle. In a mobile device with a small

screen, having an intuitive l ow among multiple screens is the key to maximizing the visual

information the user can access and use.

When applications are correctly implemented and seamlessly cooperative, users can navigate among

several activities, each implemented in a separate application, and think they have used only one

application.

Multit asking in a Small-Screen Environment

Keeping track of multiple tasks on a PC — multiple programs, documents, and so forth — is so

commonplace that you might not think much about how it is accomplished. Multiple documents,

overlapping windows, and a mouse pointer are all ingredients of a user interface paradigm called the

“desktop metaphor.” Your personal computer screen is a metaphor for a real desk, with overlapping

documents on it. Move a document to the top by selecting it with the pointer, and it becomes the

active document.

On a small screen, the entire screen is devoted to a single task, and the concept of a task, and task

switching, is inherently less visual, since other tasks are not visible in other windows. In mobile

interfaces, a back-stack — the stack of activities you can go back to — is often a central concept. In

Android, the back-stack is called the “activity stack.”

The Androi d Task Model

If an activity is the basic unit of Android user interaction, a “task” is the next grouping. In Android,

the word task does not denote an executable object such as a process or application; instead, it refers

to a single activity stack with, potentially, multiple activities from multiple applications in it.

LISTING 11-14 (continued)

Navigation ❘ 321

As the user interacts with the system, sometimes one activity will — by way of an Intent object —
ask the system to i nd an activity that matches the intent’s specii cations. If that activity is in another
application, it usually becomes part of the task the users began when they launched an application
from the launcher or home screen shortcut. When users launch what they think of as an application,
they also start the “root activity” of a task.

Concepts like a “root activity” become concrete to the users through Android’s methods of task
switching. If users touch an application icon in the Home activity or use the Recent Tasks switcher
after an application has been launched, in most cases the system goes back to an already started
task.

Tasks and th e Conventional Process Model

Tasks are not always processes. Even when the process containing the current activity of a task
has been killed, it will be restarted when users switch to the task where that activity is in the
foreground. A new instance of the Activity object is created in a new process. Every other
component in that process is re-created and their states are restored as needed.

Android provides developers with rich control over the behavior of interactive components in tasks.
Used correctly, your control over task behavior will reinforce the Android concept of tasks and
make the users feel as though the Back button always does what they expect. If it’s used incorrectly
or inconsistently, the users might be wondering, “How did I get here?”

Modifying Tas k Behavior

Some task behavior is determined by the argument to the launchMode attribute in the activity tag of
the manifest.

If you think of activities as cards in a stack, think of these launchMode variants as ways of stacking
new cards or re-ordering the stack.

 ➤ The standard launch mode is the default. Default back-stack behavior when launching
a new activity is to create a new instance of the Activity object and put it on top of the
stack. This is the correct behavior in most cases.

 ➤ The singleTop launch mode diverges from the default behavior by checking if an instance
of the specii ed Activity already exists in the stack, and bringing it to the top. Let’s say you
have an activity for setting global parameters and it has an “OK” button for committing
changes. You would want only one such Activity instance, with one set of state, in your
back-stack.

Two other launch modes are seldom used and not recommended.

 ➤ LaunchMode variants are a way to specify behavior that differs from the default when you
declare an activity in the manifest. But there are a surprisingly large number of ways to
modify task behavior in intent l ags.

 ➤ Intent l ags are usually used in the code that builds an Intent object for the purpose of

launching an activity, so these are more dynamic.

322 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

Some are obviously useful, but others are just perplexing (in an area of functionality that is
perplexing enough as it is):

 ➤ FLAG_ACTIVITY_BROUGHT_TO_FRONT — Used by the system to implement the behavior to
be used when an activity has the singleTask or singleInstance launch mode attribute
specii ed.

 ➤ FLAG_ACTIVITY_CLEAR_TASK — Indicates the tasks to be cleared before the new activity
starts. This means the new activity is the new root activity of the task, and no other
activities are stacked on it or under it.

 ➤ FLAG_ACTIVITY_CLEAR_TOP — Puts the matching activity on top of the activity stack, if
it is in the activity stack of the current task, by i nishing all activities on top of the one the
Intent object matches. If the specii ed activity is at the top of the activity stack, it is i nished
and re-created, unless it is capable of receiving a new intent via the onNewIntent() method.
This is a complex combination of effects, especially since the default behavior without
using onNewIntent is to both chop off the top of the activity stack and replace the existing
matching activity with a new instance. Be sure your use-case supports using this l ag.

 ➤ FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET — Indicates that the activity being launched

should be on top of the activity stack if the task is reset.

 ➤ FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS — Normally the recent applications list displays

to the top of each task’s stack of activities. If you use this l ag, the activity started with

this Intent (and hence the task that would be represented by this activity) is not presented

among the recent applications.

 ➤ FLAG_ACTIVITY_FORWARD_RESULT — The new activity can provide a result to the activity

that launched the current activity. This enables substituting for an activity started with the

startActivityForResult method. In other words, “Here, you answer this.”

 ➤ FLAG_ACTIVITY_LAUNCHED_FROM_HISTORY — The new activity was, in effect, launched

from the “Recent Applications” list.

 ➤ FLAG_ACTIVITY_MULTIPLE_TASK — The new activity can be the root of multiple tasks.

This is used to launch a launcher so that it can be the bottom or the back-stack for all the

activities it launches.

 ➤ FLAG_ACTIVITY_NEW_TASK — The new activity is the root of a new task.

 ➤ FLAG_ACTIVITY_NO_ANIMATION — Suppresses transition animation.

 ➤ FLAG_ACTIVITY_NO_HISTORY — The new activity is not on the back-stack. It is the same as

the noHistory attribute.

 ➤ FLAG_ACTIVITY_NO_USER_ACTION — Suppresses the onUserLeaveHint callback for the

current activity. Assuming this callback is used to clear alerts, the alerts will stay up. This is

useful for activity transitions the users did not initiate, such as displaying an incoming call

or message.

 ➤ FLAG_ACTIVITY_PREVIOUS_IS_TOP — The new activity will not be treated as the top of

the activity stack, and the previous top activity will be treated as the top for the purposes

of deciding whether an Intent should be delivered to the top activity, or whether a new

activity should be created.

Choosing to Use the Support Package ❘ 323

 ➤ FLAG_ACTIVITY_REORDER_TO_FRONT — If the activity is already running, it will be raised to
the top of the activity stack and made visible.

 ➤ FLAG_ACTIVITY_RESET_TASK_IF_NEEDED — This activity becomes the task root, even if it
is pre-existing activity in a pre-existing task and is not the task root.

 ➤ FLAG_ACTIVITY_SINGLE_TOP — Equivalent to the singleTop launch mode: If the activity is
already the top of the back-stack of the task, a new Activity is not created.

 ➤ FLAG_ACTIVITY_TASK_ON_HOME — Puts that new activity just above Home in the task. This
has the effect of making back-navigation from that activity go to Home, rather than to the
activity that launched it.

 Together, launch modes specii ed in the manifest and l ags set in the Intent objects that cause

activities to be launched enable manipulation of navigation by arranging the back-stack, and, in

turn, affecting the behavior of the Back button in the Android user experience. While the examples

here are simple, with one or two Activity components on the back-stack, your applications will

likely need to consider how they arrange the back-stack as they contain more activities.

Navigation in Tablets

Critics have said that the Back button should really be called “Shufl e” because you never know

where you will end up. More recently, Google has promulgated some conventions that make

navigation less of an adventure for the user.

The original navigation conventions in Android were so simple, app developers had hardly any work

to do to implement them. As Android scaled up to tablet size and acquired new features for creating

richer user interfaces, the burden on developers grew. Developers now need to be aware of more

conventions and to embody those conventions in their code.

You might ask why isn’t there an application or activity class that embodies these conventions and

makes life easier for the developers. It’s hard to pick a set of conventions to enshrine in a framework.

Android enables a variety of styles and ini nite variations on those styles, for better or worse. We

can show you one “slice” or path through those choices, but you are free to make your application

as distinctive as you like, and branch off from Android’s framework at a variety of levels.

CHO OSING TO USE THE SUPPORT PACKAGE

The Android SDK includes a library commonly referred to as the Support Package or Support

Library. It used to be called the Android Compatibility Package. When it was i rst released, it was

used mainly for providing back-compatibility for applications. Recently, it incorporated a utility

library that can be used with both “green-i eld” applications targeted at recent API levels and back-

compatible applications.

In creating enterprise applications, you can set reasonable standards for using current versions of

Android, even in bring your own device (BYOD) environments. Therefore, we encourage you to develop

for and use recent APIs and test for API availability to achieve some back-compatibility. You will save

signii cant effort if you can avoid back-porting, since, among other complications, not all recent APIs

are supported by the Support Package. That is how the Support Package has been used in this book.

324 ❘ CHAPTER 11 BUILDING HUMAN INTERFACES FOR DATA

If you need more back-compatibility than you can reasonably achieve by testing for API availability,
use the Support Package’s Activity subclass and Fragment back-port and other classes to create
a branch of your code-base for the purpose of back-porting your application. You will also need to
i nd a substitute for the ActionBar class, which is not included in the Support Package. That is one
of the reasons back-compatibility is outside the scope of this book, and of this UI framework, which
depends on ActionBar for a lot of functionality.

For some mass-market apps that need to hit the market targeting every possible user, back-
compatibility dominates decision making about which APIs can be used. In general, however,
back-compatibility strategies are outside the scope of this book and need to be tailored to the
requirements of specii c apps, developers, and user communities.

Here, you use the Support Package only for utility classes, especially for swiping between Fragment
objects.

SUMMARY

In this chapter, we combined two previous examples and expanded on them to show how a user
interface framework can be created for data-oriented applications. While we used local data to
keep our dependencies manageable for the purposes of an example, this framework is applicable to
applications that use web APIs as well.

This chapter tied together the classes that form a common user interface idiom in Android: the
Action Bar, tabs, fragments, swipe gestures, the option menu, a list of items; and we combined these
elements with the declarative layout-driven strategy for scaling from small to large screens. Together
these elements form a solid foundation for implementations that do not force an artii cial decision to
go handset-i rst or tablet-i rst and that make use of up-to-date APIs and idioms.

Security

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the OS-level security features in Android

 ➤ Discussing tools for using Android securely

 ➤ Writing secure applications

 ➤ Protecting data and communication

 ➤ Protecting application IP

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download

at www.wrox.com on the Download Code tab.

Mobile devices present one of the most proi table hacking targets in the average person’s

digital world. They contain copious amounts of personal information, often include access

to bank and retirement accounts, contain all your contacts, and can access your e-mail. They

can also fall, without a sound, out of your pocket. They know where you are, can see your

face, and can eavesdrop on your conversations while they sit in your backpack. They might

also randomly load malicious code from the phones of other people as they walk nearby in the

street. Clearly, the stakes in securing mobile applications are high.

Hacking for proi t or espionage has become big business worldwide. Keeping user data safe

and developer assets secure requires vigilance on the part of mobile developers and handset

owners. This chapter covers Android techniques for enhancing security for both handset users

and application developers regarding the following topics:

 ➤ Android platform security

 ➤ User techniques for keeping phones secure

12

326 ❘ CHAPTER 12 SECURITY

 ➤ Writing secure applications that protect privacy and prevent theft

 ➤ Protecting applications from piracy

PLATFORM SECURITY

The previous paragraphs painted a potentially bleak picture of mobile security, but of course those
scenarios depend on circumventing Android platform security controls. Mobile device features are
generally safe as long as malware does not subvert formidable operating system and application
protections.

When confronting long-standing security problems, recent mobile operating systems employ
defenses that are leaps and bounds better than security techniques used in traditional desktop
platforms like Windows and Mac OS. One of the most common ways to get a desktop virus is
to unwittingly open a malicious e-mail attachment. Another pitfall is to allow insecure plugins to
run in your web browser — desktop Java Technology from Oracle has recently encountered a
string of serious and high-proi le security l aws related to Java running in web pages. For years,

Windows would run all programs downloaded from the Internet or even from l oppy disks with

administrative privileges. Once activated a virus could access sensitive system resources at will.

Windows XP corrected this problem with user and i le system permissions, but many users still ran

all programs as an administrative user, thus nullifying the security enhancements. Linux and Mac

OSX have always run user-level processes with a vastly reduced level of access — without admin

access.

Android takes OS-level protection a step further, by extending the security model already found

on Linux and Mac OS to drastically increase the level of isolation between individual applications.

Each application runs as an entirely different UNIX user. This simple but effective step uses the base

operating system to prevent applications from tampering with each other’s data in the i le system,

from accessing shared pipes, and a range of Linux resources.

Android also supports application permissions that provide another level of security not found

on a platform level in traditional operating systems. Users don’t need to fully trust application

code; instead, they can rely on OS-imposed limitations to prevent apps from performing sensitive

operations, such as covertly slurping a user’s contacts list out of a device.

In spite of these improvements, modern mobile attacks take many forms. For example, there was a

recent spate of hijacked, Trojan applications posing as popular Android applications, such as “Angry

Birds”, which caused phones to participate in a spam botnet. The hijacked phones sent out prolii c

messages at the expense of the end user. Despite enhanced platform security, downloading malicious

code onto a device is still a primary concern.

NOTE For reference, the Google Open Source project provides a comprehensive
overview of the Android platform and its security model:

http://source.android.com/devices/tech/security/index.html

Keeping Handsets Safe ❘ 327

KEEPING HANDSETS SAFE

Before you begin writing secure code for Android applications, it’s important to be aware of the tools

that end users can use to keep their handsets safe and to know which of these tools help developers

write secure applications. Before walking through a set of Android security examples, the chapter covers

techniques for safe usage of Android by end users. This involves a discussion of several security tools

from Google and other vendors, all of which impact the security of the Android ecosystem.

Avoiding Malicious Applications

For several years, the iPhone was king of the mobile application space. As of the time of writing of

this book, Android had caught up signii cantly and was closing in on 800,000 applications listed in

the Google Play store. With that many applications, simple probability gives hackers many chances

to sneak code onto user’s phones.

Attacks on Android systems have several common sources:

 ➤ Android applications

 ➤ Browser-based JavaScript

 ➤ Messaging

 ➤ NFC and Bluetooth

 ➤ Kernel root exploits

Secure usage is currently the i rst defense against these types of attacks. We want to take a look at

platform and ecosystem tools that can help handset users keep their phones safe.

Use a Safe Browser Like Google Chrome

If your Android device does not have the Chrome browser pre-installed, you should install it. It’s

available in the Google Play store. Many attacks against applications involve cooperation on the part of

the browser — like an app that directs the browser to malicious websites. Chrome helps to close holes of

this nature with built-in malware and phishing protection and — of critical importance — process-level

sandboxing support. Chrome is widely regarded to be one of the most, if not the most, secure browser.

Understand Google Bouncer

To protect users from application threats, Google created the Bouncer program, which is an

application that emulates applications to look for malware patterns. The program prevents

malicious applicants from gaining entrance to the Google Play application store. Users and

developers don’t need to do anything specii c to take advantage of Bouncer’s protection — apps are

rejected on store submission if they don’t pass security tests when running on the Bouncer emulator.

Beware Installing from Unknown Locations

Although the Google Play store and the Amazon app store provide the “front door” for application

installation on Android devices, Android also supports application installation through SD card

side loading, as well as the ability to install applications from unknown locations. As many Android

developers know, you can get to this location using the following:

Settings -> Applications -> Check Allow "Unknown Sources"

328 ❘ CHAPTER 12 SECURITY

On Android 4.0 or greater use:

Settings -> Security -> Check "Unknown Sources"

Of course, users should keep in mind that although there may be good reasons to download
Android applications from unknown sources, careless downloading of applications not fully known
to the user is a great way to compromise phone security. For example, one spam botnet attack,
that Lookout Security gave the moniker SpamSoldier, spread itself by sending SMS messages with
a link for unsuspecting users to download — not particularly sophisticated, but successful against
teenagers and other newbies using phones.

Use the Application Verifi er Service

Although you might think you know an application from an “unknown source” well enough to
install it outside of the store, it’s smart to check it for viruses just in case. As of Android 4.1/4.2,

Jellybean, on Google Nexus, Google has provided users with an additional security check that

blocks malicious apps from installation, called the application verii er service. The feature is active

by default, but users can turn it off, at their own risk, with:

Settings -> Security -> Verify Apps

When you install a new app — from any app store, or “unknown sources”, not just Google Play —

the verii er service will collect information about the application. If the Google cloud has information

that the application is malicious, it will take one of two actions. If the app is dangerous, Android will

not install it. If the app is potentially dangerous, it will warn the user and provide the option of not

installing it. You can i nd instructions for turning on the verii er service for the Google Nexus below:

https://support.google.com/nexus/galaxy/answer/2812853?hl=en-CA

Consider the Success of Security Measures

Now that you have some awareness of major security measures that Google has put in place for

Android, it’s time to take a look at publicly available security reviews of them:

Bouncer

Security researchers initially investigated Google Bouncer and found that it was possible to

“i ngerprint” the service, which meant that it was possible, at one point in time, for applications

under review to investigate the Bouncer environment and report back this useful information about

it to potentially malicious authors. You can i nd more information about the review here:

http://blog.trendmicro.com/trendlabs-security-intelligence/
a-look-at-google-bouncer/

Such transparency might open the door to security attacks.

Nexus Application Verifi er Service

As of November 2012, another security researcher investigated the Nexus Application Verii er

Service and presented his results online, along with a description of the App Verii er tool:

http://www.cs.ncsu.edu/faculty/jiang/appverify/

Keeping Handsets Safe ❘ 329

This researcher, a founder of the Android Malware Genome project, attempted to install a large number
of known malicious Android applications. Alarmingly, the researcher found a low detection rate of
< 20 percent. The results of this research indicate that even with Google’s security measures, users

should approach the installation of Android applications with a strong sense of caution. Still, keep in

mind that this work was very early in the life of the verii er service, and Google is likely to improve it.

Although Google and other vendors have made considerable progress in protecting user security,

these results indicate that device users should know enough about the applications and their

corresponding developers to self-curate the apps that they install on their phones. According to

sources online, detection rates for malicious apps are well below 100 percent — users should not

operate under the assumption that all applications in Android app stores are safe.

Use Google Apps Device Management

Users who have Google Apps for Business accounts can take advantage of additional Android

Security features, such as requiring a screen lock and pin or password for users, and remote wipe for

lost or stolen phones. Users also get the ability to remotely:

 ➤ Reset pins

 ➤ Ring devices

 ➤ Lock devices

 ➤ Locate devices

After you have a Google Apps for Business account, you also need to download the Device Policy

application. You can get this application, like any other, from the Google Play store. Once you have

installed it, if you are not signed into your Google Apps account, you will need to add the account to

the Device Policy application. Google has provided instructions for installing the Device Policy app:

http://support.google.com/a/users/bin/answer.py?hl=en&answer=2364439

Once the Device Policy is installed, you can set up the device management features:

http://support.google.com/a/users/bin/
answer.py?hl=en&answer=1235372&topic=2365092&ctx=topic

Know Alternative Security Products

Beyond tools from Google, the rising need for Android security has bred an industry in advanced

mobile application security protection. Some of the more successful companies in this space include

Lookout, Appthority, and Bit9. The main features of many of these applications include:

 ➤ Real-time scanning for malware

 ➤ Locating lost devices

 ➤ Remote locking or wiping of handsets to protect security

 ➤ Securely backing up user data such as contacts and password management

Pay Attention to Your Phone Bill

According to Lookout Security, the most prevalent form of Android malware takes the form of toll

fraud, which is a covert and particularly common way of sneaking charges into a subscriber’s cell

330 ❘ CHAPTER 12 SECURITY

phone bill — 72 percent of Lookout-detected malware involved toll fraud. Typically, toll fraud involves
billable SMS messages, which is a common way of paying for mobile transactions. Cell phones have
supported text-based billing for many years to enable users to buy ring tones, images, and so on.

An example of toll fraud involves the installation of a malicious app that can hide and respond
to billable SMS messages. Such an application will work with a cooperating backend that can
receive malicious SMS messages sent from the app. The carrier ends up allowing a charge from the
malicious service, since the malicious app is able to receive SMS coni rmation messages. The carrier
interprets access to a device as coni rmation of a user’s identity. With an insidious twist, the toll

fraud application will hide the coni rmation SMS message so that the handset user never even sees it.

The only way that users will ever know that theft has occurred is by paying careful attention to their

cell phone bills. For more information, check out the following:

http://bits.blogs.nytimes.com/2012/12/13/lookout-toll-fraud/

Understand Malware Mechanics: The Malware Genome

Another promising Android security investigation called the “malware genome” analyzed known

Android exploits to discover their modes of operation and the security l aws in Android and

applications that they exploit. A brief summary of the i ndings concerning malware includes:

 ➤ 86 percent are repackaged legitimate applications.

 ➤ 40 percent used root-level exploits.

 ➤ 90 percent turn phones into botnets — device networks that serve a malicious purpose. A

typical botnet might recruit hacked devices to send out SMS spam.

 ➤ 45 percent have built-in support for sending SMS messages, premium rate calls, or making

calls without the user knowing.

 ➤ 51 percent are harvesting user information, including user accounts and short messages

stored on phones.

To give you an idea of what’s involved in detecting malicious apps, here’s a list of the prominent

types of attacks:

 ➤ Repacking — Downloading a legitimate application, unpacking the contents, inserting

malicious code, and repacking the app to appear as the original app.

 ➤ Drive by downloads — Downloading malicious content, as by an e-mail attachment, where

the user either does not know the payload is downloaded, or is unaware that the download

could infect their systems.

 ➤ Update attacks — Initial applications have no malicious code, but an application update

includes one. This strategy avoids virus scan detection on i rst download.

 ➤ Root exploits — Involve memory overruns that give malicious code complete system

access. After execution, the main defense against this type of attack is application-based

encryption. Unfortunately, Android root exploits often persist in devices because the kernel

vulnerabilities they use go unpatched as carriers take time to push OS updates to devices.

Writing Secure Applications ❘ 331

NOTE You can learn more about the malware genome here:

http://www.malgenomeproject.org/

You i nd the comprehensive review of malware applications in the following
document:

http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf

WRITING SECURE APPLICATIONS

Compared to traditional desktop systems, Android certainly has improved OS-level protection,
but mobile software supports complex and detailed data about its users and faces increasingly
sophisticated attacks trying to access that lucrative information. Developers writing applications
for Android need to consider security upfront and be sure that they write secure code from the i rst
deployment of their application. It’s time to shift focus from keeping malicious code off Android to

defending your own application in an environment where malicious code might be present.

NOTE As you learn about writing secure applications, you will encounter
several chapter examples that you can invoke from the user interface of the
AndroidSecurity project. Import each project into Eclipse, as in previous chapters,
run the main apk, and then invoke each one as you read its section in the chapter.
Keep in mind that you will have to modify some of the code as you go, and refer
to $CODE/AndroidSecurity/README for the most up to date instructions.

Hacking Targets

When it makes its way onto a device, malware seeks access to the system as a whole or to

individually installed applications, including the ones you develop. To defend your application,

consider these high-value targets that hackers are likely to attack:

 ➤ Security keys — Provide access to encrypted i les, which would normally protect even a

“rooted” or jail-broken device.

 ➤ Passwords: Passwords provide access to remote web service data, and should not be stored

directly on a device.

 ➤ Insecure APIs — Applications that implement Android APIs by creating content providers,

using Android Interface Dei nition Language (AIDL), services, or handling intents should

take care to i lter out malicious invocations by detecting attack parameters.

 ➤ Permission-based privileges — Unauthorized and transitive use of permissions, also known

as “privilege escalation.”

 ➤ Communication channels — AIDL, intents, and services all have the potential to leak

sensitive information across process boundaries. Effectively sandboxed applications will

leverage modes of communication to access privileges available to your application.

332 ❘ CHAPTER 12 SECURITY

 ➤ Root-level access — If an attacker physically holds a device, it’s fairly easy for them to unlock

it and obtain admin access. More often, inadvertently installed malware will take advantage

of vulnerabilities in the base of the operating system itself to gain full system access.

 ➤ Billable events — Most malicious app developers are in the business of making money,

which means they seek monetary targets like in-app billing or premium SMS messages.

Before getting too paranoid about the number of possible security holes, keep in mind that most

Android settings — including i le permissions — have secure default values. Android also protects

applications using the Linux i le system, process model, and a strong security sandbox. Android

employs the following technologies to avoid traditional penetrations due to memory: SLR, NX,

ProPolice, safe_iop, OpenBSD dlmalloc, OpenBSD calloc, and Linux mmap_min_addr. Android

also has interesting security tricks up its sleeve, like the ability to encrypt an entire i le system

volume and more described in the following location:

http://developer.android.com/training/articles/security-tips.html

Ingredients of a Secure Application

The i rst step in designing any secure application is to consider the principle of least privilege, which

means that applications request only the minimum access to sensitive resources and privileges

required for an app to perform its functions. For example, if you’ve written a content provider that

needs to be used only in its declaring apk, don’t export the provider to other processes. Instead use

android:exported="false". If external applications do need to read from the content provider,

allow only read access, instead of requiring read/write access by default. If you are writing a

location-aware application that does not need incredibly precise location information, request

ACCESS_COARSE_LOCATION instead of ACCESS_FINE_LOCATION. And so on...

Android app developers have important reasons for writing applications that request only the

permissions they need:

 ➤ If a hacker compromises your application’s security, either through a published API like a

received intent, or any other security backdoor, the privileges granted to your application

can become accessible to the attacker. When your app asks only for privileges it needs,

it closes unnecessary security risks even in the event of a successful attack. If you “over-

privilege” your app, you might leak privileges you did not even need.

 ➤ Users who read the list of permissions your app declares in its manifest are more likely to

install apps with smaller sets of less sensitive permissions.

NOTE In Android 2.2, Google released a transitive security bug when its power
control widget enabled unauthorized modii cation of system settings:

https://code.google.com/p/android/issues/detail?id=7890

Keep the principle of least privilege in mind, as you read the rest of the chapter, which covers

the “ingredients” of a secure application that successfully defend against security attacks. These

ingredients include:

 ➤ Secure use of permissions

Writing Secure Applications ❘ 333

 ➤ Protecting and encrypting data

 ➤ Protecting communication

 ➤ Preventing piracy

Secure Use of Permissions

As you discovered when writing your i rst Android application, you must declare permissions for
features, such as Internet access, used in a given application. Applications use these declarations to
request the use of permissions from the user installing an application. Explicitly asking end users to
grant all permissions used in an app has some associated controversy. On one hand, a careful user
has the opportunity to pick up on strange access requests (such as a to-do list application that asks
permission to send SMS messages and to manage Android accounts). On the other hand, perhaps
the majority of handset users will not have the technical savvy to know why some permissions
might be sensitive, and might get tired of trying to review information they do not understand. On
the whole, requiring apps to be open with the capabilities they require will almost certainly lead to
informed scrutiny from some portion of each application's user base.

When writing Android applications that handle sensitive data, it’s important to understand the

power of the Android permission system: It’s a i ne-grained and powerful capability-granting

framework. The Android permission system provides another strong example of how the Android

platform has improved security over traditional operating systems — applications for the same user

don’t automatically get access to each other’s resources or capabilities. Android enforces strong

separation between all running processes.

NOTE As an aside, it’s important not to confuse the Android permission system
with the Linux Security model and permissions. In Android, i le system permis-
sions are Linux permissions.

Permissions are likely the most prominent of Android security features that app developers need to

consider when developing applications. Developers should keep a vigilant eye on which privileges

they request, and how they make them available to other applications. This section provides an

overview of how permissions work and includes interesting details of important permissions,

including a sense of their comparative danger. This section also shows you when and how to create

your own custom permissions.

Permission Basics

To review, a permission on Android protects calls that can perform security sensitive operations

like sending an SMS message. Permissions can also protect calls that application developers deem

sensitive. If a caller invokes a method but does not have the requisite permission, an instance of

java.lang.SecurityException will be thrown, preventing the call from taking place. Applications

request use of permissions in their AndroidManifest, as follows:

<uses-permission android:name="android.permission.INTERNET" />

334 ❘ CHAPTER 12 SECURITY

Upon installation, end users review the list of permissions an app has requested and can reject the
app if they deem the list suspicious.

Android Permissions

The base Android operating system provides a wide array of permissions that protect the functions
available on Android devices. You can i nd them all listed in the class android.Manifest
.permission, as follows:

http://developer.android.com/reference/android/Manifest.permission.html

Every Android permission, including custom application permissions, has an associated protection
level that gives users and developers a sense of how concerned they should be about granting and
asking to use the permission. For example, the permission android.permission.BRICK clearly
poses a lot of danger to a device, and is considered a “Dangerous” permission. A declaration of a
permission in an AndroidManifest i le includes specii cation of a protection level, as follows:

android:protectionLevel =
 "normal" | "dangerous" | "signature" | "signatureOrSystem"

The following table explains protection levels in detail:

PROTECTION LEVEL DESCRIPTION

Normal Minimal level threat that does not pose signifi cant danger to the user or the

system. Automatically granted on app installation.

Dangerous Poses signifi cant threat to the system and to user data. Dangerous

permissions require user approval and are generally subject to a large

community of users who will spot suspicious permission requests.

Signature A permission that Android grants only to applications that have the same

signature as the app that defi ned the permission. Automatically granted on

signature match.

SignatureOrSystem Reserved for system use; your application should not use this level.

But what practical knowledge do these levels provide? As you can see, Android end users must
manually approve all dangerous permissions in your applications, and you should be aware of
the ones that will raise eyebrows so you can work to avoid them. Of critical importance are the
permissions users don’t want to see when they install your application; you need to convince users

that it is okay to download your application.

NOTE This chapter contains more “real-world” knowledge than readers might
expect. The intent of the discussion is to show how exploits subvert Android
 permissions and how users and developers can understand security attacks to
avoid becoming malware victims.

Writing Secure Applications ❘ 335

High Risk Permissions (Users Might Not Want to Grant)

Many of the permissions that should set off red l ags for savvy Android users relate to the hacking

targets that we have outlined in this chapter. Access to billable events, private data, sensitive

user information, and security keys all have signii cant potential for exploitation. Here are some

comments from the malware genome to give you a sense of the priorities of malware applications:

 ➤ INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE, and WRITE_EXTERNAL_STORAGE

permissions are widely requested in both malicious and benign apps.

 ➤ Malicious apps are 10 times more likely to request CHANGE_WIFI_STATE than benign applications,

likely because the permission enables hot plug events that are needed for root exploits.

 ➤ Malicious apps clearly tend to request SMS-related permissions — READ_SMS, WRITE_SMS,

RECEIVE_SMS, and SEND_SMS — more frequently than benign applications.

Users should install only well known apps, like Google Voice, from trusted vendors like Google that

seem to have a very good reason for accessing particularly lucrative target permissions like CALL_

PHONE and CALL_PRIVILEGED or the ability access text messages. If a puzzle game requires access to

send text messages, it may not be a good idea to download and install it.

The following table lists the top Android permissions requested in malware applications (as

provided by the Malware Genome Project) and notes vulnerabilities of each of them.

PERMISSION NAME ACCESS NOTES

INTERNET INTERNET permission is useful to attackers in myriad dif erent ways;

here are a few popular ones:

1. Allows an application to open Internet sockets to any outgoing

host; contrast to web-based JavaScript which can read responses

from connections to its host of origin, excluding HTML5 Cross-Origin

Resource Sharing (CORS), which can be as permissive as Android

INTERNET permission.

2. Enables a botnet to communicate with its command and control

(C&C) server.

3. A common hack directs browser and apps that have INTERNET

permission to load malicious website URLs — more on this in the

section, “Checking the Caller’s Permissions” later in the chapter.

4. Surprisingly, Android does not require permission to access a

user’s photos. Any app that has INTERNET permission can upload

user photos to the site of their choice on the Internet:

http://bits.blogs.nytimes.com/2012/03/01/android-photos/

READ_PHONE_STATE Provides read-only access to phone state.

continues

336 ❘ CHAPTER 12 SECURITY

PERMISSION NAME ACCESS NOTES

ACCESS_NETWORK_STATE Allows applications to access information about networks.

WRITE_EXTERNAL_

STORAGE
Provides the ability to write to the SD card. Example use: to hide the

location of a C&C server.

ACCESS_WIFI_STATE Allows access to information about WiFi networks. Potentially related

to root-level exploits.

READ_SMS Allows applications to read existing SMS messages that are for other

applications; a nice way to get at text sensitive information.

RECEIVE_BOOT_

COMPLETED
Requested fi ve times more frequently by malware than legitimate

applications.

WRITE_SMS Allows an application to write SMS messages.

SEND_SMS Allows an application to send an outgoing SMS, as would have been

required by SpamSoldier. Receiving an SMS is a chargeable event,

which makes it an attractive target to thieves. Sending SMS messages

is especially attractive given the prevalence of toll fraud schemes

based on carrier premium SMS messages.

RECEIVE_SMS Allows applications to receive SMS messages as required for an SMS

based push notifi cation system. Receiving an SMS is a chargeable

event, which makes the action attractive to thieves.

VIBRATE Allows an application to turn on the phone’s vibrator.

ACCESS_COARSE_

LOCATION
Provides access to the phone’s coarse or network location — the

location value that does not come from the GPS radio.

READ_CONTACTS Provides access to a user’s contacts; clearly valuable information for a

hacker.

ACCESS_FINE_LOCATION Provides access to fi ne-grained GPS information; higher resolution

than coarse network location.

WAKE_LOCK Prevents the phone from sleeping or the screen from dimming. This

plays into the strategy of malicious applications using the phone for

botnets that need the ability to run in the background without the

user’s knowledge.

CALL_PHONE Enables outbound calls potentially to premium phone services, likely

outside the United States, which can be associated with signifi cant

per instance charges.

 (continued)

Writing Secure Applications ❘ 337

PERMISSION NAME ACCESS NOTES

CHANGE_WIFI_STATE The ability to change WiFi state is related to system events that

enable a malicious application to execute root-level exploits.

WRITE_CONTACTS The ability to add contacts is useful for malicious apps in a number of

ways — for example, to write a contact that looks like someone they

recognize, but perhaps representing a malicious phone number.

WRITE_APN_SETTINGS Allows applications to write the GSM Access Point Name (APN)

settings.

RESTART_PACKAGES The permission is deprecated, and applications should not use it.

Using Application-Defi ned Permissions

Protecting sensitive resources in your own applications, specii cally to protect IPC access to your
Android components such as content providers or services, may require the use of application-
dei ned permissions. The manifest declaration in Listing 12-1 creates a permission for reading
contacts from the contacts’ content provider.

LISTING 12-1: Create a custom permission for accessing contacts

<permission
 android:name="com.enterpriseandroid.permission.READ_CONTACTS"
 android:label="Read contact information."
 android:description=
 "Enables reading contacts from the contacts content provider."
 android:protectionLevel="dangerous"
 android:permissionGroup="android.permission-group.PERSONAL_INFO"
/>

 ➤ name — The name of the permission that apps will declare in their manifest.

 ➤ label — The label of the permission.

 ➤ description — A description of the permission shown to end users.

 ➤ protectionLevel — The protection level of the permission, as discussed previously. This

permission is dangerous, so the user will have to approve it.

 ➤ permissionGroup — The string that dei nes the group in which the permission will be

placed when presented to the end user for permission approval. In this case, the permission

relates to personal information.

Enacting the newly dei ned permission requires checking the required permission when sensitive

code is called, as in Listing 12-2.

338 ❘ CHAPTER 12 SECURITY

LISTING 12-2: Checking an application-defi ned permission

PackageManager manager = getPackageManager();
int hasPermission =
 manager.checkPermission(
 "com.enterpriseandroid.permission.READ_CONTACTS",
 "com.enterpriseandroid.androidSecurity");

if (hasPermission != PackageManager.PERMISSION_GRANTED) {
 throw new SecurityException("Permission Denied: Reading Contacts.");
}

This snippet of code resides in an application method that needs to read enterpriseandroid
contacts. To be secure, the method should verify that a caller also has permission to read this
sensitive information by comparing the return value of checkPermission to PERMISSION_GRANTED.
If either the calling code or the method code do not have permission, then the method should fail by
throwing the security exception.

Protecting Data

As this book has discussed, typical places to store data include i les in the i le system (both internal
l ash storage and external SD card devices), SQLite databases, and content providers. Different

Android components and i les systems require different handling to maintain security. The next

several sections cover securing Android i le systems and application components.

Securing Data in Files

Android extends the Linux security system and protects i les using the base Linux i le system. In

Linux, i le permissions follow a standard format based on binary settings, where individual bits

represent whether a given i le is readable, writeable, or executable by the i le owner, the i le group,

or by all users. As an example, a i le with permissions, (7, 5, 5) or (111, 110, 110) would be

readable, writeable, and executable by the owner, and readable and executable by everyone else.

Android relies on the core Java API, specii cally java.io.File, to enable programmatic control

over i le system permissions. The following methods on File change underlying Linux i le

permissions:

setReadable(boolean readable, boolean ownerOnly)
setWriteable(boolean writeable, boolean ownerOnly)

The following sequence of invocations:

File myFile = new File(...);
myFile.setReadable(true, false);
myFile.setWriteable(true, false);

results in a Linux permission setting of (110,000,000) or (600), which is a secure access setting

that allows only the application to read and write a i le stored in an application’s internal storage.

Writing Secure Applications ❘ 339

Internal Storage

Android internal storage supports Linux i le system permissions. Applications writing i les to
their data directory, located at /data/data/<manifest_package_name>, can make use of Linux
i le permissions as described in the previous section. Trolling for inadvertently accessible i les is a
popular technique for malware to gain access to sensitive data. In almost all cases, applications
should create i les that are readable and writeable only by the application itself. Keep the following
in mind when setting i le permissions:

 ➤ World accessible i les should be carefully reviewed for sensitive data.

 ➤ World writeable i les can be i lled up with junk to overwrite system memory for denial
attacks.

Data on Upgrade

As you learned when deploying your i rst Android application, all applications that deploy to the
Google Play store must have a digital signature. These signatures fuli ll several roles for Android
applications and the Android platform. In many cases, they prevent malicious applications from
pretending to be better known and legitimate applications. They also prevent masquerading
applications from “upgrading” in place over the presence of existing applications that may have
already written data. For example, if a banking application wrote data into i les on Android
internal storage, Android does not permit a malicious application claiming to be an upgrade for the
legitimate application to access the i les.

External Storage

External storage devices on Android, such as removable SD cards, don’t support Linux i le system

permissions for the simple reason that the i le system format of most SD cards is a legacy format

initially created for DOS, called FAT, which does not support permissions on individual i les.

Storing sensitive information in i les on external storage is usually not a good idea since they

can only have world readable permissions and will persist even after the writing application is

uninstalled from the device. If you do need to store information on the SD card, it’s a good idea to

protect it using encryption.

Encrypting Data

Even if a i le resides in internal storage with proper i le system permissions, it’s still a good idea

to encrypt its data. File system permissions will not protect bank accounts, passwords, and other

information when thieves steal and jail-break phones. It’s fairly straightforward to encrypt data

using the Android API, but it dei nitely helps to have basic knowledge of encryption to decide which

algorithms you should use to secure data in i les, and in RESTful calls (covered a bit later in this

chapter).

The i eld of computer cryptography has a long and diverse history, going as far back as ciphers used

by the Roman military and code breaking machines used during World War II. Encryption is the

process of applying a mathematical algorithm to data to yield output data that is unintelligible to

anyone who does not have a valid decrypting key. If you have this key, you can produce the original

data by applying a decrypting algorithm to the encrypted data.

340 ❘ CHAPTER 12 SECURITY

Symmetric and Asymmetric Cryptography

Modern encryption algorithms typically take symmetric or asymmetric forms:

 ➤ A symmetric encryption algorithm means that you use the same key to encrypt and decrypt
data.

 ➤ Asymmetric encryption, also known as public key cryptography, involves the use of two
different keys — the public key (the encrypting key) and a private key (the decrypting key).
Usually, the public, private key pair is created by an entity known as a certii cate authority
(CA). See Figure 12-1.

FIGURE 12-1

Symmetric Cryptography

Key to lock and unlock

Encrypted

Info

Plain Text

Asymmetric Cryptography (Public Key Encryption)

Plain

Text

Encrypted

Info

Public Key to lock

Plain Text

Private Key to unlock

You can i nd symmetric and asymmetric encryption applied in modern secure software. Public key
cryptography has the signii cant advantage that two parties can securely exchange data without
having to transfer the private key over the Internet. It’s possible to send encrypted data using a

widely published public key, to a host that has access to the unpublished private key. Clients encrypt

data using the public key, and only the receiving host that has the private key can decrypt the data.

Public key cryptography in the form of Rivest, Shamir, Adleman (RSA) key exchange is the core of

the more commonly recognized SSL/TLS and HTTPS protocols.

The main use of asymmetric encryption is for sending data over the Internet. The advantage of

symmetric key encryption is its speed; it’s signii cantly faster than asymmetric encryption. If you

need to encrypt data for local i le system storage, you would likely use a symmetric algorithm.

Writing Secure Applications ❘ 341

Modern encryption algorithms rely on the computational difi culty of guessing unencrypted data
from its encrypted counterpart. The data from computationally complex encryption algorithms
become exponentially more difi cult to decrypt by brute force means as the size of the encrypting
key grows. Over the years, the size of keys has grown from 56 bits to the now commonplace
256 bits.

Secure Hashing

The need to determine the identity of arbitrary binary information arises for some important tasks
in mobile and service development, such as verifying i les are not modii ed during download and
determining uniqueness of i les in large i le sets. Using a secure hashing function provides an answer
for this type of problem. A secure hash, or digest, converts data into a single i xed length value,
much smaller than the data itself. A good hash function makes it unlikely that digests for various
i les collide — have the same binary digest value.

Storing Passwords

Another and perhaps more important use for hashing is for the secure storage of passwords.
Android applications often need to use passwords to access symmetrically encrypted i les and to
provide credentials for accessing RESTful web services. As noted, hackers often seek to acquire
these passwords to gain the same access as legitimate application code. Consequently, you should
not store user credentials for a RESTful service or an encrypted i le on a device. Google recommends
performing an initial authentication using credentials your app collects from the user, and then
using a short-lived, service-specii c authorization token (using OAuth or the account manager).

If an application i nds it needs to roll its own password storage, it should hash passwords and
store their hashed digest — the output of the hash function. When users give their passwords to an
application, the application will hash them, and then compare them against already stored digests. If
it i nds a match, the application accepts the user’s credentials. Modern password storage approaches

should include random values, called salt, along with the password and hash both together

repeatedly.

Practical Encryption for Android

A few encryption techniques stand out as particularly relevant for writing enterprise Android

applications:

 ➤ Advanced Encryption System (AES) is the commonly used symmetric encryption used

by applications. It’s fast, modern, and strong. The current AES standard key size is 256;

AES(256).

 ➤ HTTPS is the standard secure mode of Internet transport for most web and mobile

applications.

 ➤ Secure Hash Algorithm (SHA) provides cryptographically strong hashing with desirable

characteristics, such as uniqueness for datasets and low probability of hash collisions. It’s

difi cult to craft binary data that would contain subtle differences from the data being

hashed but still end up with both attack data and original data having the same hash digest.

With hashing algorithms, the size of the message digest can be 224, 256, 384, or 512 bits.

342 ❘ CHAPTER 12 SECURITY

Example Code: Symmetric Encryption

It’s time to get started with the i rst of the chapter examples. This code demonstrates the use of

symmetric encryption based on the AES algorithm. You can run the AESEncryption Activity

in the sample code to show a string, "This is a demo message from Java!" encrypted and

then decrypted. If you need to secure data, you should encrypt data as needed and then write the

encrypted text into i les as appropriate for your application.

The class AESEncryptionHelper has methods to encrypt and decrypt an array of bytes, as shown in

Listing 12-3:

LISTING 12-3: Symmetric encryption on Android (AES-256)

 package com.enterpriseandroid.androidSecurity;

 import java.io.ByteArrayInputStream;
 import java.io.ByteArrayOutputStream;
 import java.io.IOException;
 import java.security.InvalidAlgorithmParameterException;
 import java.security.InvalidKeyException;
 import java.security.NoSuchAlgorithmException;

 import javax.crypto.Cipher;
 import javax.crypto.CipherInputStream;
 import javax.crypto.CipherOutputStream;
 import javax.crypto.NoSuchPaddingException;
 import javax.crypto.spec.IvParameterSpec;
 import javax.crypto.spec.SecretKeySpec;

 /**
 * Demonstrates the use of symmetric encryption on Android (AES-256)
 */
 public class AESEncryptionHelper {

 private String padding =
 "ISO10126Padding"; //"ISO10126Padding", "PKCS5Padding"

 private byte[] iv;
 private byte[] key;
 private Cipher encryptCipher;
 private Cipher decryptCipher;

 public AESEncryptionHelper(byte[] key, byte[] iv) throws Exception {
 this.key = key;
 this.iv = iv;

 initEncryptor();
 initDecryptor();
 }

 private void initEncryptor() throws NoSuchAlgorithmException,
 NoSuchPaddingException, InvalidKeyException,

Writing Secure Applications ❘ 343

 InvalidAlgorithmParameterException
 {

 SecretKeySpec keySpec = new SecretKeySpec(key, "AES");
 IvParameterSpec ivSpec = new IvParameterSpec(iv);

Initialize the encryption cipher used to write encryption bytes:

 encryptCipher = Cipher.getInstance("AES/CBC/" + padding);
 encryptCipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec);
 }

 private void initDecryptor() throws Exception{
 SecretKeySpec keySpec = new SecretKeySpec(key, "AES");
 IvParameterSpec ivSpec = new IvParameterSpec(iv);

Initialize the decryption cipher used to write encryption bytes:

 decryptCipher = Cipher.getInstance("AES/CBC/" + padding);
 decryptCipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec);
 }

This is a generic method for encrypting an array of bytes and it works by writing all bytes to a
CipherInputStream that has been coni gured for AES. The encrypted bytes collect into a byte array
output stream, which is converted into a byte[] as a return value.

 public byte[] encrypt(byte[] dataBytes) throws IOException{
 ByteArrayInputStream bIn =
 new ByteArrayInputStream(dataBytes);
 @SuppressWarnings("resource")
 CipherInputStream cIn =
 new CipherInputStream(bIn, encryptCipher);
 ByteArrayOutputStream bOut =
 new ByteArrayOutputStream();
 int ch;
 while ((ch = cIn.read()) >= 0) {
 bOut.write(ch);
 }
 return bOut.toByteArray();
 }

Here is another generic method, this time for decrypting an array of bytes; it works by writing all
bytes to a CipherOutputStream that has been coni gured for AES. As before, the encrypted bytes
collect into a byte array output stream, which is converted into a byte[] as a return value.

 public byte[] decrypt(byte[] dataBytes) throws IOException {
 ByteArrayOutputStream bOut = new ByteArrayOutputStream();
 CipherOutputStream cOut =
 new CipherOutputStream(bOut, decryptCipher);
 cOut.write(dataBytes);
 cOut.close();

continues

344 ❘ CHAPTER 12 SECURITY

 return bOut.toByteArray();
 }

 public static void main(String[] args) throws Exception {

The message to encrypt:

 String demoMessage =
 "This is a demo message from Java!";

 byte[] demoMesageBytes =
 demoMessage.getBytes();

 //shared secret
 byte[] demoKeyBytes = "abcdefghijklmnop".getBytes();

 // Initialization Vector - usually contains random data along
 // with a shared secret or transmitted along with a message.
 // Not all the ciphers require IV - we use IV in this
 // particular sample
 byte[] demoIVBytes =
 new byte[] {
 0x00, 0x01, 0x02, 0x03,
 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b,
 0x0c, 0x0d, 0x0e, 0x0f};

 AESEncryptionHelper aesHelper =
 new AESEncryptionHelper(demoKeyBytes, demoIVBytes);

First encrypt the bytes:

 byte[] encryptedMsg =
 aesHelper.encrypt(demoMesageBytes);
 System.out.println("Encrypted Msg: " +
 new String(encryptedMsg));

Print the encrypted data:

 byte[] decryptedMsg =
 aesHelper.decrypt(encryptedMsg);

Print the decrypted data:

 System.out.println("Decrypted Msg: " +
 new String(decryptedMsg));
 }
 }

Now that you can encrypt and decrypt i les using AES, it’s time to think about how to handle

passwords.

LISTING 12-3 (continued)

Writing Secure Applications ❘ 345

Example Code: Password Hashing

The next code example shows how an application uses a hashed password as a key to a
symmetrically encrypted data i le, which was created in the previous example. The example hashes
the password with salt created from a supplied username. A real-world application of this idea
would store the password on a remote service to avoid the security risk of saving the password in
the local i le system. To decrypt a i le with such a key, an application would download the remote
password, rehash it, and then decrypt the relevant data. Listing 12-4 generates salt and then
performs a shaHex on the password and the salt.

NOTE Listing 12-4 uses a higher-level API, org.apache.commons.codec
.digest.DigestUtils, than the one found on base Android. You can i nd this
Apache API at $(CODE)/AndroidSecurity/libs/org.apache.commons
.codec-1.3.0.jar.

LISTING 12-4: Password hashing

 package com.enterpriseandroid.androidSecurity;

 import org.apache.commons.codec.digest.DigestUtils;

 import android.util.Log;

 public class PasswordHelper {
 private static final String TAG = "PasswordHelper";

 private String passwordHash;

 public PasswordHelper(String username, String password) {
 Log.i(TAG, "*****username:" + username + " password:" + password);
 String salt = generateSalt(username);
 Log.i(TAG, "*****salt:" + salt);

Generate the password digest:

 this.passwordHash = DigestUtils.shaHex(password + salt);
 Log.i(TAG, " hash:" + passwordHash);
 }

Generate salt:

 private String generateSalt(String s) {
 StringBuffer buf = new StringBuffer();
 for(int i=0; i< s.length(); i++) {
 if (i % 2 ==0) {
 buf.append(s.charAt(i));
 }
 }

continues

346 ❘ CHAPTER 12 SECURITY

 return buf.toString();
 }

 public String getPasswordHash() {
 return passwordHash;
 }

Perform a repeat hash as would be required when downloading a password for rehashing to unlock
decrypted data:

 public boolean validatePassword(String username, String password) {
 Log.i(TAG, "username:" + username + " password:" + password);
 String salt = generateSalt(username);
 Log.i(TAG, " salt:" + salt);
 Log.i(TAG, " hash:" + passwordHash);

 Log.i(TAG, "validate hash:" + DigestUtils.shaHex(password + salt));
 return passwordHash.equals(DigestUtils.shaHex(password + salt));
 }
 }

Encrypting All File System Data

Enterprise and otherwise security conscious users can attain peace of mind by simply encrypting
all user data on their devices. Android supports volume-wide data encryption, based on a required
phone pin or password (screen lock is not supported). It’s simple to enable i le system encryption.

Make sure your phone is charged and plugged in, and then select the option with:

Settings -> Security -> Encrypt Phone

WARNING Make certain that you maintain power to your phone during the
encryption process. If it fails part way through, you will likely lose all data on
your device. It’s dei nitely a good idea to back up the information on your phone
before you start.

Protecting Data in a Database: Preventing SQL Injection

SQL injection attacks are likely the most signii cant risk to data in a database. This type of attack is

easy for hackers to mount and has traditionally yielded signii cant low-hanging fruit. SQL injection

applies to backend services implemented with Hibernate in SQL, but also to Android applications

that use SQLite. Chapter 3 noted the peril of manually composing strings to create SQL queries.

Recall that the simple use of query, ?, parameters avoids such attacks. In backend services based on

Hibernate, a similar approach enables prevention of most injection attacks. Recall the discussion

from earlier chapters regarding usage of Android data APIs, specii cally where usage of

the method:

LISTING 12-4 (continued)

Writing Secure Applications ❘ 347

SQLiteDatabase.query(String table,
 String[] columns,
 String selection,
 String[] selectionArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

should always make use of the selectionArgs parameter to replace embedded query occurrences
of "?" Developers should never build queries by appending search parameters into a large string.
Doing so robs the underlying database engine of the ability to determine the bounds of input
parameters, which allows those parameters to include SQL designed to get the database to return
results that would otherwise never be part of a response.

Protecting APIs

Android supports a rich interprocess communication model, including Remote Procedure Calls
(RPC) based on AIDL, intent-based invocation and broadcasting, and a service model for
running tasks in the background. The next sections cover how to build security defenses for these
components.

Protecting Intents

The Android Intent system supports generic messaging for Android components. The Intent object
carries with it a logical operation to perform (such as, take a picture) and arguments to use (like a
URI). When you wrote your i rst Android application, you declared an intent i lter to decide which
activity would handle starting your application, as follows:

<activity android:name=".YourActivity" android:label="@string/your_app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

A declaration of an intent i lter means that Android should send intents to the declaring component.
This opens the door to potential attacks; malicious apps can send intents as easily as legitimate
ones. The easiest, but least functional, way to shut them down is to disallow cross process intents by
marking components as not exported in your application’s manifest, as follows:

<service android:exported="false"></service>

However, for components that you do export, if malicious code launches your application with

attack arguments, it should not end up doing the hacker’s bidding. An intent i lter is a good start to

adding security. Protect your components by specifying a i lter that lists the intents your component

can handle, as follows:

<intent-filter>
 <action android:name="com.enterpriseandroid.androidSecurity.DEMO_ACTION"/>
</intent-filter>

348 ❘ CHAPTER 12 SECURITY

The core Android platform dei nes a set of actions that start with android.intent.action, such
as android.intent.action.MAIN or android.intent.action.WEB_SEARCH. You can also dei ne
custom intent actions as follows:

<action android:name="com.enterpriseandroid.androidSecurity.DEMO_ACTION"/>

Although intent i lters are convenient, application developers should not rely on them as a “securely
hardened” API. You should also i lter on permission access, as explained in the next section, and
should sanitize intent arguments per the domain logic of your application.

Checking the Caller’s Permissions

Your code needs to detect bad arguments and reject those that compromise user security. You can
start by looking at the intent methods that provide data to your application, including the following:

getBundleExtra, getCharArrayExtra, getIntExtra

Then make sure you properly sanitize information from these calls, especially if you need to pass
intent arguments to sensitive system calls that your application has permission to access. Android
has provided a convenient but underused method called Context.checkCallingPermissions for
making sure that the call has sufi cient privileges to use your application’s privileges.

Listing 12-5 demonstrates how to check the calling permissions for intents that seek to take a

picture, access the Internet, and load a URI.

LISTING 12-5: Ensures that calling code has permission to access URI permissions for INTERNET

and CAMERA

 1 @Override
 2 protected void onCreate(Bundle savedInstanceState) {
 3 Intent activityIntent = getIntent();
 4 String uriParameter =
 5 activityIntent.getStringExtra(URI_PARAMETER);
 6
 7 Uri uriParam = Uri.parse(uriParameter);
 8 int checkCallingUriPermissions =
 9 checkCallingUriPermission(uriParam,
10 Intent.FLAG_GRANT_READ_URI_PERMISSION);
11 checkGranted(checkCallingUriPermissions,
12 "Uri: " + uriParam.toString());
13
14 String cameraPermission = "android.permission.CAMERA";
15 int checkCameraPermission = checkCallingPermission(cameraPermission);
16 checkGranted(checkCameraPermission, cameraPermission);
17
18 String internetPermission = "android.permission.INTERNET";
19 int checkUriPermission = checkCallingPermission(internetPermission);
20 checkGranted(checkUriPermission, internetPermission);
21 }
22
23 private void checkGranted(int checkPermission, String mesg) {
24 if (checkPermission ==

Writing Secure Applications ❘ 349

25 PackageManager.PERMISSION_GRANTED) {
26 Log.d(LOG_TAG, "Permission Granted: " + mesg);
27 } else if (checkPermission ==
28 PackageManager.PERMISSION_DENIED) {
29 Log.d(LOG_TAG, "Permission Denied: " + mesg);
30 }
31 }

The code in listing 12-5, verii es that the code that launched the given activity has:

 ➤ Lines 11, 12 — Permission to read the URI argument

 ➤ Line 16 — Permission to access the CAMERA

 ➤ Line 20 — Permission to access the INTERNET

So what are the consequences of not using these simple checks? A group of researchers at MIT
created a rigorous review of a large number of applications and looked at how they leak privileges
using intents. The researchers found that most applications did check for malicious input, but a
few did not. As we have mentioned, most intent-related attacks try to get the target application to
perform a sensitive operation using permissions it has that the calling code does not. The Android
INTERNET permission was the most commonly leaked privilege, where a calling app that does not
have the INTERNET permission can pass a URL to load as an intent parameter and direct another
app to visit a malicious web page. Unfortunately, the researchers also found that relatively few app
developers checked caller permissions. You can learn more about this study as follows:

http://css.csail.mit.edu/6.858/2012/projects/ocderby-dennisw-kcasteel.pdf

Securing Activities

As shown previously, several Android components can receive intents, activities included. However,
activities also have a convenient attribute, called android:permission, for ensuring that callers
have permission to start a given activity. This attribute obviates some of the need shown previously
for writing your own intent checks to ensure the caller has a given permission, but will not perform
more detailed inspections of intent parameters, such as URIs. The previous code example shows
how to protect intents sent to an activity.

Securing Broadcasts

The Android broadcast API supports delivery of an intent to multiple receivers in different
applications. An Android component sending a broadcast does not see a list of all receivers of the
intent, nor does a receiver have knowledge of what code might be sending it intents. Consequently,
i ltering of intents gains signii cant importance, as does ensuring that receivers have permission
to receive and senders have permission to send. Fortunately, Android supports ways of enforcing
security for both ends of broadcast intent delivery.

Receiving Broadcasts

Broadcast receivers can receive intents for which they did not register, which means developers
should be vigilant in i ltering their inputs, and only accept broadcast actions that they are designed
to accept, as discussed previously. Like the activity tag, the <receiver> tag also supports the

350 ❘ CHAPTER 12 SECURITY

android:permission attribute, but it’s still advised that you perform detailed caller permission

checking on receiving a broadcast intent.

The following example broadcast receiver requires that all senders have the RECEIVE_BROADCAST

permission. Additionally, the receiver only accepts intents with action DEMO_ACTION:

<receiver android:name=".AndroidSecurityBroadcastReceiver"
 android:permission=
 "com.enterpriseandroid.androidSecurity.permission.SEND_BROADCAST">
 <intent-filter>
 <action android:name=
 "com.enterpriseandroid.androidSecurity.DEMO_ACTION"/>
 </intent-filter>
</receiver>

Sending Broadcasts

It’s straightforward to send a broadcast intent and require that a receiver have a particular

permission to receive, in this case, RECEIVE_BROADCAST:

Intent secureIntent = new Intent("RECEIVE_BROADCAST");
String receivePermission =
 "com.enterpriseandroid.androidSecurity.RECEIVE_BROADCAST";
sendBroadcast(secureIntent, receivePermission);

Note that receivers that register for the given action, but do not have the specii ed permission, will

simply not receive the message. Android does not throw a security exception, but instead just blocks

the receivers from getting the message.

Services

Android can limit the processes that have the ability to bind or interact with a given service

component, by again requiring permission for these operations. The android:permission attribute

supports this restriction as follows:

<service
 android:name="SecurityDemo"
 android:permission="com.enterpriseandroid.androidSecurity.SERVICE_BIND"
 android:exported="true"
 android:enabled="true"
 >

 <intent-filter>
 ...
 </intent-filter>
</service>

where you can simply add the permission required for binding to the service declaration. Service

operations for starting and stopping all require the specii ed permission as well.

Content Provider Security

As you’ve seen in earlier chapters of this book, content providers should be a central part of the data

management strategy for your application.

Writing Secure Applications ❘ 351

Securing Custom Content Providers

Android provides read and write permissions to limit content provider access to only privileged
clients. As you’ve seen, it’s a good idea to use the principle of least privilege to write applications

that request read or write access as they need it (for example, to not request read and write, if they

only need read). Application developers should also keep in mind that write access does not imply

read access. Consider the sync adapter pattern from earlier chapters that reads data from a backend

service and pushes it into a content provider, but does not need to read the data it writes; actually

the Migrate sync adapter works along these lines. Listing 12-6 shows a provider declaration that

requires read and write permissions.

LISTING 12-6: Content provider declaration that requires read and write permissions

<provider
 android:name="com.enterpriseandroid.contacts.ContactsProvider"
 android:authorities="com.enterpriseandroid.contacts"
 android:readPermission="com.enterpriseandroid.contacts.READ_CONTACTS"
 android:writePermission="com.enterpriseandroid.contacts.WRITE_CONTACTS"
 >
</provider>

When a user has granted permissions as needed to an app, it can invoke content resolver or

content provider methods to query, insert, update, and delete contacts. An application that invokes

a query but does not have the READ_CONTACTS permission will cause the platform to throw a

SecurityException, and likewise the same will happen for a caller that does not have WRITE_

CONTACTS but still calls insert, update, or delete.

Sharing Permissions

Read and write access is the minimum control you need to protect content provider data. URI

permissions provide an important i ne-grained provider access control. They enable content

providers to limit access to data for specii ed namespaces. Consider that the contacts content

provider might have grouped contacts into business and personal categories. The following URIs

rel ect this organization:

content://com.enterpriseandroid.contacts/business
content://com.enterpriseandroid.contacts/personal

When applications need to share subsets of data, Android does something clever; it enables a

dynamic permission grant from one application that already has permission to read or write to

temporarily give a specii ed subset of these same permissions to another application. Imagine a

contacts application that needs to share a contact with a vCard application. Assuming the contacts

application has full access to the contacts provider when it launches an intent to be handled by

the vCard application, it can specify in the intent that the vCard application should also have

permission to read the data it needs to display a virtual card. Listing 12-7 shows a provider

declaration that enables this type of dynamic grant for the contacts content provider.

352 ❘ CHAPTER 12 SECURITY

LISTING 12-7: A provider declaration that allows dynamic grants to the business and personal

categories

<provider
 android:name="com.enterpriseandroid.contacts.ContactsProvider"
 android:authorities="com.enterpriseandroid.contacts"
 android:readPermission="com.enterpriseandroid.contacts.READ_CONTACTS"
 android:writePermission="com.enterpriseandroid.contacts.WRITE_CONTACTS"
 >
 <grant-uri-permission android:pathPrefix="/business/"/>
 <grant-uri-permission android:pathPrefix="/personal/"/>
</provider>

The code to launch an intent that grants a dynamic permission consists of creating the intent, setting
a data URI, and then setting Intent.FLAG_GRANT_READ_URI_PERMISSION, which causes Android to
grant the permission to the receiving application. See Listing 12-8.

LISTING 12-8: Code that launches an intent to show a vCard

Uri contactUri =
 Uri.parse("content://com.enterpriseandroid.contacts/business/1");

Intent vcardIntent = new Intent(Intent.ACTION_VIEW);
vcardIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
vcardIntent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
vcardIntent.setDataAndType(contactUri, "image/png");
startActivity(vcardIntent);

Figure 12-2 illustrates the sharing of dynamic permission grants:

FIGURE 12-2

Contact Provider Contact Activity vCard Activity

Intent to view contact

“Bob” dynamically unlocks access.

“Bob”

vCard App

Can

Read

Has permission to

READ contacts.

Initially has

no permission to

READ contacts.

Writing Secure Applications ❘ 353

Note that Android supports wildcarding in provider grant URI declarations. The following example
shows an intent that can grant all categories starting with personal, or business followed by a single
character:

<grant-uri-permission android:pathPrefix="/personal.*/"/>
<grant-uri-permission android:pathPrefix="/business.*/"/>

In this case, "." means match any single character and "*" means match one or more occurrences of
the preceding character.

Example Code: Protecting RESTful Invocations

As this chapter has shown, most forms of data on a mobile device present lucrative hacking targets,
worthy of encryption and careful handling. Sending this information over whatever Internet
connection your device happens to be using has serious security implications. Who knows whether
or not a hacker is peering at your application trafi c using Wireshark on WiFi at the nearest cafe?

Service Authentication

When a client opens a secure connection, a public key handshake takes place that enables an
Android client and backend service to communicate over an encrypted communication stream.
As you saw in the discussion of public key encryption, the public key enables encryption by all,
but decryption only by the holder of the private key. Unfortunately, a guarantee of encrypted
communication does not mean a client can be certain of the identity of the service to which it is
connected since an unknown public key does not have any distinguishing features by itself.

To enable clients to authenticate the service, all HTTPS sessions make use of digital certii cates,
which provide a way to ensure that a client can trust a public key for a given service host. As part
of the secure handshake, the service will send its certii cate to the client. Secure certii cates work
on a model of transitive trust, whereby a certii cate authority (CA) issues certii cates that individual
websites distribute. Most OS platforms hold a system keystore that contains well known certii cate
authorities like VeriSign, Google, and so on. When a client downloads a site certii cate, it can verify
that an already known certii cate authority digitally “vouches” for the new certii cate.

The hostname of a web service is encoded into each service certii cate, which means that the client
can extract the name encoded in the certii cate, compare it to the DNS name to which it opened its
connection, and make sure that they are the same. The combination of hostname and CA validation
allows the Android client to trust the identity of the target service.

NOTE It’s a i nancial advantage for a company to have a root CA pre-installed
in Android, in iOS, and in web browsers. Many certii cate authorities exist to
charge developers a fee for certifying communication of site certii cates.

Code Example: Securing the Chapter 6 Contacts Service Communication

As noted previously, web browsers and Android applications secure Internet trafi c using HTTPS,
which encrypts data sent between a client and web server and eliminates the risk of a “man in
the middle” attack. It’s not computationally feasible for an eavesdropper on the network to read

354 ❘ CHAPTER 12 SECURITY

the communication. In this code example, you’ll invoke a secure request on the Chapter 6 $CODE/

springServiceContacts service. You’ll make this request using HTTPS by setting up secure

communication on the client and backend service, with the following steps involved:

 1. Securing the Chapter 6 contacts web service:

 a. Creating a “Certii cate Signing Request”

 b. Creating your own CA (optional)

 c. Obtaining a site certii cate for service authentication

 d. Coni guring an HTTPS transport for Tomcat: with JSSE or APR

 e. Authenticating the service using basic authentication

 2. Invoking a secure connection to the service from Android using HTTP basic authentication

Securing the Chapter 6 Contacts Service

The task of securing a backend web service for an Android application can be quite easy, but

securing services with a moderate level of complexity provides signii cant challenges as hackers i nd

clever ways to get past your defenses. This chapter only covers the straightforward steps involved in

securing the RESTful web services from Chapter 6, as follows:

 ➤ Creating a site certii cate and adding it to a keystore for authentication

 ➤ Modifying the Chapter 6 Spring application context to support basic authentication

 ➤ Coni guring a demonstration user who can log into the Chapter 6 service

The next few sections walk through implementing these tasks using the code in $CODE/

springServiceContacts.

Creating a “Certifi cate Signing Request”

Before buying or signing your own certii cate, you will need to create a “Certii cate Signing

Request” that you can send to a commercial CA, or sign yourself (with instructions that follow).

You can learn more information about this request online:

http://en.wikipedia.org/wiki/Certificate_signing_request

The following steps for creating this request are based on the OpenSSL tool, which is pre-installed

on Linux and Mac OS:

NOTE When you run the commands that follow, you should answer all of
the questions, and answer them consistently (for example, use the same city
in all responses).

 1. If you are using Windows, you need to install cygwin software from the following location:

http://www.cygwin.com/install.html

as described in chapter 6.

Writing Secure Applications ❘ 355

 2. Start a shell on your particular platform. On Windows, double-click Cygwin-Terminal. The
example assumes that the SSL software is located at:

/usr/bin/openssl

 3. Create a CA working directory in $CA_DIR/AndroidSecurity/cadir these instructions
refer to it as CA_DIR — and change directory to it:

cd $CA_DIR

Run all commands from this directory.

 4. Create a private key as follows:

/usr/bin/openssl genrsa -out contacts_privkey.pem 1024

 5. Create a certii cate as follows:

/usr/bin/openssl req -new -x509 -key contacts_privkey.pem -out
contacts_cert.pem

Note that when you generate the certii cate, the common name should be the exact fully

qualii ed hostname, FQDN, of the service site; it will be accessed from the Android client.

NOTE Please keep in mind that the FQDN you choose for your site must be an
actual resolvable DNS hostname from whatever Android environment you
use — the Android emulator or an Android device. It’s a good idea to load the
site name as a web page in the Android browser to make certain Android can
really see it. Note also, that the DNS name must not use a known root domain
like amazonaws.com, but must be your own domain. Hover.com is a good place
to buy a domain name if you don’t already have one.

 6. Create a “request to sign” the certii cate, by concatenating the certii cate from Step 5 with
the private key from Step 4, as follows:

cat contacts_cert.pem contacts_privkey.pem |/usr/bin/openssl x509
-x509toreq -signkey contacts_privkey.pem -out contacts_certreq.csr

Now that you have a signing request, you can choose to do one of two things with it:

 ➤ Pay a fee to have a commercial certii cate authority, such as VeriSign or StartSSL to sign it.
This service varies widely in price, but starts at about $150 for a 2-year certii cate.

 ➤ Create your own certii cate authority, recognized by all the applications that you write, and
sign the certii cate yourself.

Creating Your Own CA

As previously discussed, a service needs a certii cate for secure handshakes with clients. It turns
out that with mobile applications it’s entirely possible to become your own certii cate authority and

356 ❘ CHAPTER 12 SECURITY

avoid any hassle associated with buying certii cates. You can create as many of your own free and
valid certii cates as you need. If you want to become your own certii cate authority, run the
following utilities, as per your platform:

 1. Create a new CA:

Linux:

/usr/lib/ssl/misc/CA.pl –newca

Mac OS:

/System/Library/OpenSSL/misc/CA.pl -newca

Cygwin:

perl /usr/ssl/misc/CA.pl –newca

 2. As you run the CA.pl program, answer all questions as follows:

 a. Press Enter when the tool asks for the CA certii cate i lename.

 b. Enter a PEM passphrase.

 c. Pick values for locality and organization.

 d. The common name is the name of your certii cate authority; choose an appropriate
name (for example, “my root CA”).

 e. Choose passphrases as appropriate.

 f. Enter your e-mail.

 g. Enter a challenge password.

 h. Enter the passphrase from Step b (make certain you enter it correctly).

Don’t skip any i eld, record what you enter, and re-use your answers in future steps.

When the program completes, you should have the i les you need to act as your own CA. Your CA

certii cate should now reside in demoCA/cacert.pem, and you can start signing certii cates with

it. Note that the default expiration period of certii cates that you sign with your CA is 365 days,

as specii ed in the CA.pl script. If you need to make the time period longer, you’ll need to modify

CA.pl to change the duration.

Obtaining a Site Certifi cate for Service Authentication

Now sign the certii cate request from Step 6 of “Creating a ‘Certii cate Signing Request’” with the

i les generated in demoCA. Run the following command using the output, demoCA directory from

“Creating your own CA” (note that the command “knows” the directory name, demoCA):

/usr/bin/openssl ca -policy policy_anything -in
contacts_certreq.csr -out contactservice.pem

 1. Enter the passphrase from Step 2, b of the “Creating Your Own CA” section and sign and

commit the new certii cate.

Writing Secure Applications ❘ 357

 2. Make sure that the size of contactservice.pem is not zero — this i le contains your new
certii cate. Note that you can only sign each cert request once.

 3. You can now add contactservice.pem to web service backends to communicate using
HTTPS with Android applications. You will add $CA_DIR/demoCA/cacert.pem to the root
store of your Android client, explained shortly.

Confi guring an HTTPS Transport for Tomcat: with JSSE or APR

Now that you have a certii cate, you can start the process of setting up Tomcat to use it and
exporting the contacts service with an HTTPS transport. You can coni gure Tomcat to use your
certii cates in two ways:

 ➤ Using Java Secure Sockets (JSSE), generally used with production deployments

 ➤ Using a native technology called the Apache Portable Runtime, which is often used in
development deployments

Confi guring Tomcat Using JSSE

 1. Create a service keystore and import the contact private key and service certii cate into it.

Tomcat will use the keystore to support HTTPs with the contacts service. Server-side Java
supports the keystore i le format “JKS” for storing certii cates and a utility for editing it
called keytool.

You’ll create the keystore and import the contacts service certii cate into it. This is either the

commercially signed certii cate or your own CA signed certii cate called contactservice.

pem. First, JSSE requires a different certii cate format, called DER. Use the following com-

mands to convert your i les into the DER format.

Convert the private key:

openssl pkcs8 -topk8 -nocrypt -in contacts_privkey.pem -inform PEM -out
contacts_privkey.der -outform DER

Convert the signed certii cate:

openssl x509 -in contactservice.pem -inform PEM -out contactservice.der
-outform DER

It’s common to use keytool to edit Java keystores, but in this case, you will need to use a

Java utility to import the converted certii cate i les into the keystore. You can download it

from the following location:

http://www.agentbob.info/agentbob/80/version/default/part/AttachmentData/data/
ImportKey.java

Or you can use the version included in:

$CODE/AndroidSecurity/ImportKey.java

358 ❘ CHAPTER 12 SECURITY

Edit the i le to set your keystore password — change the variable, keypass. For consistency,
use the same passphrase you used in the “Creating Your Own CA” section Step 2, b (if you
did that step); otherwise, pick a password.

Compile this utility using the following in the $CA_DIR:

NOTE Commands assume that java and javac are in the system classpath.

javac –d . ../ImportKey.java

Run ImportKey to create the keystore and import the private key and contacts certii cate, as
follows:

java -Dkeystore=<cadir>/tomcat_keystore.jks ImportKey <cadir>/contacts_
privkey.der <cadir>/contactservice.der

You should be able to list the contents of the keystore using Java’s keytool:

keytool -list -v -keystore tomcat_keystore.jks

keytool resides in $JAVA_HOME/bin, which should be in your system path.

 2. Edit the Tomcat server coni guration i le, called $CATALINA_HOME/conf/server.xml,

by uncommenting the 8443 ssl connector to make it active. Edit the i elds to match the

following code:

<Connector port="8443" maxThreads="200"
 scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="<ca_dir>/tomcat_keystore.jks" keystorePass="<your_password>"
 clientAuth="false" sslProtocol="TLS"/>

 3. Enter the password from “Creating Your CA” or the password you used for your

commercial certii cate. Change ca_dir to be the directory where your CA authenticated

private key resides.

 4. Restart Tomcat.

Confi guring Tomcat Using APR

APR is signii cantly easier to coni gure than JSSE. You can just use the certii cates you have created

by directly coni guring them into the Tomcat coni guration i le, $CATALINA_HOME/conf/server.

xml, as follows:

<-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->
<!--
<Connector
 port="8443" maxThreads="200"
 scheme="https" secure="true" SSLEnabled="true"
 SSLCertificateFile="<ca_dir>/contactservice.pem"
 SSLCertificateKeyFile="<ca_dir>/contacts_privkey.pem"
 clientAuth="optional" SSLProtocol="TLSv1"/>
-->

Writing Secure Applications ❘ 359

NOTE Replace ca_dir with the directory where the contactservice.pem
resides. contactservice.pem is the result of either your personal CA or signing
with a commercial CA.

Once you have edited server.xml, you’ll need to complete one last task: Edit $CODE/

springServiceContacts/applicationContext-rest.xml and uncomment the following line:

 <!--<security:http-basic/>-->

as documented in the i le. Then rebuild springServiceContacts and deploy the project war to

Tomcat. Now that you have a secure backend, it’s time to move on to creating a secure connection

to it from Android.

Opening a Secure Connection on Android

As noted in Chapter 5, Android supports a number of ways to open a secure connection.

Listing 12-9 demonstrates how to do so using the Apache framework, but you could also use the

Spring framework for Android. The example shows that it’s a pretty simple operation; you just need

to create a connection manager and socket factories for each of the ports you will serve — a secure

one for HTTPS and a plain text factory for unencrypted port 80. This example allows you to use

the certii cates signed using a commercial certii cate and your own root CA.

LISTING 12-9: Secure connection using the Apache framework

package com.enterpriseandroid.androidSecurity;

import java.io.IOException;
import java.io.InputStream;
import java.security.KeyManagementException;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.UnrecoverableKeyException;
import java.security.cert.CertificateException;

import org.apache.http.client.HttpClient;
import org.apache.http.conn.ClientConnectionManager;
import org.apache.http.conn.scheme.PlainSocketFactory;
import org.apache.http.conn.scheme.Scheme;
import org.apache.http.conn.scheme.SchemeRegistry;
import org.apache.http.conn.ssl.SSLSocketFactory;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpParams;
import android.content.res.Resources;

/**
 * Creates an Https client that loads a keystore that can supply an

360 ❘ CHAPTER 12 SECURITY

 * application defined root certificate authority to validate the client
 * connection.
 *
 * This client can also authenticate using the system keystore which
 * contains standard CAs as well.
 */
 public class HttpsClientHelper {
 public static HttpClient getHttpClient(Resources resources)
 throws KeyManagementException, UnrecoverableKeyException,
 NoSuchAlgorithmException,
 KeyStoreException, CertificateException,
 IOException
 {

If you created “your own CA,” the following code provides the implementation of the method for
avoiding paying for a valid certii cate. The code loads your own root CA from a trusted keystore
stored in a raw i le.

Note though that the format of the keystore must not be “JKS” as used with Tomcat. It needs to
be, “BKS” — for Bouncy Castle Keystore, which is the only format that Android supports. To use
your own CA certii cates, you will need to import the i le <cadir>/demoCA/cacert.pem into a BKS
keystore.

You will need to use a utility to import the converted certii cate i les into the keystore. Download
the following useful graphical tool, called Portecle, for this task:

http://sourceforge.net/projects/portecle/

Unzip the download i le and then run Portecle using the following command line from the unzipped
directory:

java –jar <unzip_dir>/portecle.jar

Using the portecle UI, import your CA certii cate into a new keystore, which should be of type BKS,
and save it into the following directory with the name listed as follows:

$CODE/AndroidSecurity/res/raw/your_ownca_keystore.bks

Record the password for the keystore. For convenience, you can use the same password you used
previously.

When asked, coni rm that the certii cate is trusted and accept the alias (for example, my root ca);
ignore the previous instructions, and comment out the lines to load the BKS keystore.

 KeyStore localRootStore = KeyStore.getInstance("BKS");
 // Contains your application's root CA and allows use of
 // certificates that you sign with that CA.
 InputStream in = resources.openRawResource(R.raw.your_own_ca_keystore);
 localRootStore.load(in, "changeit".toCharArray());

A scheme registry will hold the socket factories for port 80 and 443, non-secure and secure.

 // Use unencrypted factory for http port 80
 SchemeRegistry schemeRegistry = new SchemeRegistry();

Writing Secure Applications ❘ 361

 schemeRegistry.register(new Scheme("http",
 PlainSocketFactory.getSocketFactory(), 80));

 // Use a secure socket factory for 443, but this socket
 // factory will consider our "root" trust store when
 // making its connection.
 SSLSocketFactory sslSocketFactory =
 new SSLSocketFactory(localRootStore);
 schemeRegistry.register(new Scheme("https",
 sslSocketFactory, 443));
 HttpParams params = new BasicHttpParams();
 ClientConnectionManager cm =
 new ThreadSafeClientConnManager(params,
 schemeRegistry);

 HttpClient client = new DefaultHttpClient(cm, params);
 return client;
 }
 }

This code coni gures an HTTP client that can connect to the Chapter 6 service as follows:

 ➤ Loads a keystore to use as a root store — the store can contain the root CA created in
previous sections.

 ➤ A schema registry holds socket factories for HTTP and HTTPs.

 ➤ The SSL socket factory uses the previously loaded keystore as a root store, which enables
validation of certii cates signed using your own root CA as well as certii cates signed by
commercial CAs.

Authorizing the Client

Just like the service’s site certii cate enables the client to trust the host to which it is connecting,

the client also needs to authorize its user to the service. Modern mobile and web applications use

two standard modes of authentication — HTTP basic authentication and a protocol called OAuth.

HTTP basic authentication is by far the most common mechanism for authenticating users to

backend services. However, due to greater l exibility, OAuth is quickly replacing HTTP basic as the

de facto authorization for accessing service resources.

The various RESTful APIs for Android all directly support HTTP basic. To provide a bit more

detail, HTTP basic makes use of a header and a base-64 encoded username:password to transmit

credentials in every RESTful invocation of a secure backend service. When using HTTP basic,

applications don’t so much as log in to a service, as they simply collect user credentials that can be

attached to authorize every RESTful request. Readers familiar with JavaScript will recognize the

code used to add basic authentication to an AJAX request:

import base64
encodedAuth = base64.encodestring('%s:%s' % (username, password))[:-1]
req.add_header("Authorization", "Basic %s" % encodedAuth)

The resulting header looks like the following:

Authorization: Basic FJkjuekjDFJskjDKlFJSksfspt==

362 ❘ CHAPTER 12 SECURITY

Listing 12-10 i nishes the secure invocation with an example snippet of how to do basic
authentication in Java for Android.

LISTING 12-10: HTTP basic authentication in Java for Android

 UsernamePasswordCredentials credentials =
 new UsernamePasswordCredentials(user, pass);

The code creates a new instance of the HTTPS client utility helper.

 HttpClient httpClient =
 HttpsClientHelper.getHttpClient(mContext.getResources());

It then creates a new AuthScope that holds the basic credentials:

 AuthScope as = new AuthScope(host, 443);
 ((AbstractHttpClient) httpClient).getCredentialsProvider()
 .setCredentials(as, credentials);

It then creates a new basic contact and sets the basic auth header:

 BasicHttpContext localContext = new BasicHttpContext();
 BasicScheme basicAuth = new BasicScheme();
 localContext.setAttribute("preemptive-auth", basicAuth);

It then creates a new HTTP request and executes the request with attached credentials to
authenticate the client:

 HttpHost httpPost = new HttpHost(host, 443);
 HttpResponse response =
 httpClient.execute(httpPost, getRequest);
 response.getStatusLine();

Running the Example Client

Now that you’ve seen all relevant concepts, you can run the example:

Launch your securely modii ed springServiceContacts using the coni guration changes listed

previously.

Make sure to enter the hostname from Step 5 in “Creating a ‘Certii cate Signing Request’” into the

following i eld:

SecureConnectionActivity.SECURE_HOST

Additionally, set the password to your BKS keystore in HttpsClientHelper.CAPASSWORD.

Then run the SecureConnectionActivity in $CODE/AndroidSecurity project (choose the secure

connection option).

OAuth

Although basic authentication may be common, superior forms of authentication have come into

common usage on the Internet. Specii cally, OAuth allows clients to access server resources without

Writing Secure Applications ❘ 363

the liability of using passwords, much like the Android account manager. Clients access user data
on behalf of a user, and access a set of resources available under an OAuth ID, which is a one-
time temporary identii er that cannot leak the same way as a password. This version of Enterprise

Android does not provide a code example for OAuth, but you can learn more about it in relation to
Android at the following URL:

http://developer.android.com/training/id-auth/authenticate.html

Android Account Manager

Android APIs greatly simplify the task of managing passwords with the inclusion of the android
.accounts.AccountManager API, which allows an application to list service accounts registered on
the system (for Google, Facebook, and MS Exchange, and of course, the Migrate sync account from
Chapter 10).

Applications can manage accounts, and most importantly can obtain authorization tokens from
them in the style of OAuth. Specii cally, the account manager precludes the need for the application
to store passwords to remote services.

The URL referenced in the previous section leads to explanations in detail of how the account
manager works with OAuth.

Android Account Manager Example

This section contains a simple exploration of how the Android account manager works. The chapter
includes code to access the account manager, to list its accounts, and to obtain an auth token from
one account.

The code lists Android accounts, looking in particular for the Migrate account, and then acquires
an auth token from it for display. In a real usage, the auth token could be used for authorization to
access service resources. See Listing 12-11.

LISTING 12-11: A simple demonstration of the Android account manager

 package com.enterpriseandroid.androidSecurity;

 import android.accounts.Account;
 import android.accounts.AccountManager;
 import android.accounts.AccountManagerCallback;
 import android.accounts.AccountManagerFuture;
 import android.accounts.AuthenticatorException;
 import android.accounts.OperationCanceledException;
 import android.app.Activity;
 import android.content.Intent;
 import android.os.Bundle;
 import android.util.Log;
 import android.view.View;
 import android.view.View.OnClickListener;
 import android.widget.Button;
 import android.widget.TextView;

continues

364 ❘ CHAPTER 12 SECURITY

 /**
 * Use the Android account manger to lists accounts and get
 * an auth token from the Migrate account setup for Chapter 10.
 */
 public class AuthTokenActivity extends Activity{
 /** The tag used to log to adb console. **/
 private static final String TAG = "AuthTokenActivity";
 private static final String ACCOUNT_TYPE="myAccountType";

 private AccountManager mAccountManager = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.auth_token_activity);
 final Bundle bundle = savedInstanceState;
 try {
 mAccountManager = AccountManager.get(this);

Access and display the Android accounts:

 Account [] accounts =
 mAccountManager.getAccounts();
 String accountsList =
 "Accounts: " + accounts.length + "\n";
 for (Account account : accounts) {
 accountsList += account.toString() + "\n";
 }
 setText(R.id.message, accountsList);

 } catch (Exception e) {
 setText(R.id.message, e.toString());
 }

 Button loginBtn = (Button)
 findViewById(R.id.login);
 loginBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 Account [] accounts =
 mAccountManager.getAccounts();
 if (accounts.length == 0) {
 setText(R.id.result, "No Accounts");
 return;
 }
 Account account = accounts[0];

Obtain the auth token for the Migrate account:

LISTING 12-11 (continued)

Writing Secure Applications ❘ 365

 mAccountManager.getAuthToken(account,
 "com.migrate.webdata.account", bundle,
 false, new
 accountManagerCallback(), null);
 } catch (Exception e) {
 setText(R.id.result, e.toString());
 }
 }
 });
 }

 private class accountManagerCallback implements
 AccountManagerCallback<Bundle>
 {
 public void run(AccountManagerFuture<Bundle> result) {
 Bundle bundle;
 try {
 bundle = result.getResult();
 Intent intent =
 (Intent) bundle.get(AccountManager.
 KEY_INTENT);
 if(intent != null) {
 // asked user for input
 startActivity(intent);
 } else {
 setText(R.id.result, "auth token: " +
 bundle.getString(AccountManager.KEY_AUTHTOKEN));
 }
 } catch (Exception e) {
 Log.e("TAG", "accountManagerCallback failed: " + e);
 setText(R.id.result, e.toString());
 }
 }
 };

 public void setText(int id, String msg) {
 TextView tv = (TextView) this.findViewById(id);
 tv.setText(msg);
 }

 }

Now that you can secure and authenticate both ends of a secure invocation between an Android
client and a backend service you’re well on your way to writing secure enterprise Android

applications that you can deploy to a variety of major cloud vendors. Now it’s time to shift focus to

how to protect your Android applications from theft.

Preventing Piracy

Android is designed to be an open platform on which users can install applications from different

vendors. Pretty much anyone can create and install an application for Android, with few limitations.

It’s even possible to download and install entirely new application stores. This l exibility afforded to

users does not come without cost to application developers.

366 ❘ CHAPTER 12 SECURITY

Recall the earlier discussion regarding keeping malware off user devices that noted how Android
supports several sources from where users can install applications onto Android devices. These
sources include the Google Play and Amazon app stores, installing from unknown sources on
the Internet, and side loading from SD cards. In contrast, with iOS, Apple allows application
installation only from the Apple App store (not counting “jail-broken” devices). Also consider that
the Internet has no shortage of industrious hackers eager to break or pirate successful applications
so that they can be installed and used free of charge.

The bottom line is Android allows easy installation of pirated applications, as long as users are
willing to risk malware infection, assuming they consider the possibility at all. Indeed, many
application developers have voiced concerns regarding the ease with which users can install pirated
applications. As an example, the i rst person shooter game “Dead Trigger” dropped its price from
$0.99 to free due to extremely widespread piracy:

http://www.androidcentral.com/how-high-unbelievably-high-piracy-dead-trigger-devs-
not-saying

Some estimates state the revenue for Android applications is as much as 40 percent less than the
same or comparable applications on iOS.

The Google Play licensing service is one way to protect revenue from your Android applications
from piracy. The Google Play app store provides a license verii cation service that verii es whether
the current user has a valid license. The application can decide to shut the app down or provide
appropriate behavior when a user attempts to run an app without a license. You can i nd out more
about the licensing service here:

http://developer.android.com/google/play/licensing/index.html

SUMMARY

This chapter began by covering the steps that handset users can take to keep malicious applications
off their phones. This coverage included a walkthrough of tools from Google and a few other
vendors, as well as security reviews of these utilities; it turns out that there is still quite a bit of
risk involved when users install applications from unknown vendors. The chapter then moved
to present results from the malware genome project and discussed types of security attacks for
which application developers should build defenses in their applications. The chapter included an
introduction to Android permissions, and promoted an understanding of those permissions as
informed by the results of the malware genome project. The chapter directed developers to consider
typical application weaknesses and to understand the ingredients of applications that could protect
them, which included:

 ➤ Secure use of permissions

 ➤ Protecting data

 ➤ Protecting communication

 ➤ Preventing piracy

The chapter included practical demonstrations of these security tenants in the form of:

Summary ❘ 367

 ➤ Various code snippets regarding permission use

 ➤ An example data encryption using symmetric AES256

 ➤ A demonstration of secure password hashing based on SHA256

 ➤ An HTTPS version of the RESTful contacts service

 ➤ An example of how to use the Android account manager

In conclusion, application developers should keep in mind that while Google and other developers
are constantly improving malware defenses, malware is also in a race to circumvent safeguards
to proi t from theft and invasion of user privacy. Developers should consider how users will
protect their devices, write their applications to defend against attacks, and beware the signii cant
consequences of lapses in security. To avoid security holes, follow the precautions discussed in this
chapter and in the Android developer documentation and stay current with the latest in Android
security news.

369

INDEX

A

ACCESS_COARSE_LOCATION permission, 336

ACCESS_FINE_LOCATION permission, 336

ACCESS_NETWORK_STATE permission, 336

ACCESS_WIFI_STATE permission, 336

account manager, 363–365

ACID properties, 45

Action Bar

accessing fragments, 316–317

adding tabs, 315–316

Fragment classes, 312

setting navigation items, 317–318

Activity class

MainActivity subclass, 12–17

TabActivity subclass, 30–33

TabbedActivity subclass, 25–28

adapters, 76–79

adb (Android Debugger), 50

adb shell command, 50

AES (Advanced Encryption System), 341,

342–344

AESEncryptionHelper class, 342–344

aggregate functions, 212

Amazon S3, 218

Amazon SQS, 218

Amazon Web Services. See AWS

AmazonDynamoDBClient class, 225

Android

account manager, 363–365

Android Compatibility Package, 323

Malware Genome Project, 329, 330–331

permissions, 334

SDK, 4

task model, 33–35, 320–323

Android Debugger (adb), 50

Android SQLite API

delete methods, 61–62

insert methods, 63–64

limitations, 60

query methods, 64–66

update methods, 62–63

Android Virtual Device (AVD)

AndroidSecurity project, 331

ant, 177–178, 200

Apache libraries, 125–126

Apache Portable Runtime (APR), 358–359

API security, 347–353

Apple Push Notii cation service, 207

applications

application containers, 169, 170

application-dei ned permissions, 337–338

application verii er service, 328–329

code framework example, 5–10

prerequisites, 2–4

declaring properties, 36–37

reference information, 2

testing toolchain, 4

Appthority, 329

APR (Apache Portable Runtime), 358–359

ArrayAdapter, 21

asymmetric encryption, 340–341

AsyncInsert class, 86–87, 89

atomicity, 45

attachAdapter method, PickFragment

class, 21

attributes

relational model, 41–42

strong typing, 43

AUTOINCREMENT constraints, 46, 51–52

370

AVD (Android Virtual Device) – constraints

AVD (Android Virtual Device)

AWS (Amazon Web Services), 218–219

accounts, creating, 221

DynamoDB

coni guring with application schema,

222–223

contacts DAO interface implementation,

221–235

free usage tier, 219

management console, 219, 222

SDK, downloading, 224

security credentials, adding, 224

B

backend services

architecting choices, 169–172

limiting processes, 350

request lifecycle, 168–169

RESTful Contacts API example, 120–125

methods, 122

resources, 120–121

RESTfulContacts client, 136–143

service-centric networking, 131–133

transactions, 122–125

software stack, 172–174

Spring Contacts service, 175–195

Spring project, 165–166

Spring Sync Contacts service,

195–202

three-tier architecture, 169

BIGINT data type, 51

BigTable, 213–214

binary large objects. See blobs

bindArgs argument, 61, 62–63

Bit9, 329

broadcasts

receiving, 349–350

securing, 349

sending, 350

buildDatabaseInfo method, 257–259

buildDataBundle method, 259

buildItemInfo method, 257–259

buildTableMenu method, 260–261

Bundle object, 14–17

C

CA (certii cate authority), 340, 353

creating, 355–356

CALL_PHONE permission, 336

Certii cate Signing Request, 354–355

CHANGE_WIFI_STATE permission, 337

check constraint, 53

Chrome browser

security and, 327

clients

REST API example, 120–125

RestfulContacts application, 136–138

cloud computing, 205–206

code examples, 220

Amazon Web Services, 221–235

contacts DAO interface, 221

Google App Engine, 235–243

design considerations, 215–218

performance and scalability, 206–215

database i le format, 211–212

NoSQL persistence, 213–215

scale of mobile clients, 207–208

SQL persistence, 208–211

providers, 218–220

scalable persistence design considerations,

215–218

Codd, Edgar F., 41

ColumnDef class, 100–101

commands

SQLite command line, 49–53

terminating semicolon, 50

Commons httpclient library, 180

components, 11

destroying, 11–12

lifecycle handing, 12–17

concurrency, 128–130

Android’s concurrency architecture, 128–129

native requests, 129–130

consistency, 45

constraints

AUTOINCREMENT, 46, 51–52

check, 53

FOREIGN KEY, 52–53

NOT NULL, 46, 47, 51, 53

371

ContactDaoAppEngineImpl class – Data Manipulation Language (DML)

PRIMARY KEY, 44, 51–52

UNIQUE, 51, 53

ContactDaoAppEngineImpl class, 237

ContactDaoDynamoDBImpl class, 224

ContactDaoGoogleAppEngineImpl class,

235–243

Contacts content provider, 246–262

formatting data for display, 257–259

list view clicks, handling, 253–254

loader callbacks interface,

implementing, 254–

packaging data for tabs, 259

source code, 247

tables

i nding, 260

menu of, 250–253

opening, 255

scubbing menu of, 261–262

selecting from option menu, 260

contacts DAO interface

DynamoDB implementation, 221–235

deploying service, 233–234

example code, 224–233

prerequisites, 221–224

testing service, 235

Google App Engine implementation,

235–243

deploying service, 241, 242

example code, 237, 238–241

prerequisites, 235–236

testing service, 241, 242–243

Contacts database, 53–58, 246

ContactsContract API, 246–247

content observers, 84, 87–89, 105–106

content providers

architectural details

content observers, 87–89

content resolvers, 85–87

system-wide accessibility, 89–90

URIs as names for virtual datasets, 84–85

content observers, 84, 87–89, 105–106

content resolvers, 84, 85–87

contracts, 84

authority string, 91–93

permissions, 94

publishing, 95

return value types, 94–95

URIs, 93–94

CRUD methods, implementing, 95–96

content observers, 105–106

creating content providers, 96–97

database queries, 101–105

return types and URI matcher, 97–98

writing the database, 98–101

framework parts, 84

permissions, 106–109

reading i les from, 113–114

registering, 92, 106

security, 350–353

storing large data objects, 109–114

content resolvers, 84, 85–87

ContentProvider class, 74

contracts, 84, 90–95

authority, 91–93

permissions, 94

publishing, 95

return value MIME types, 94

URIs, 93–94

create method, SQLiteDatabase class, 62

CREATE TABLE statement, 45–46, 52

cross-product operations, 42, 47–48

cursors, 74–75

D

dangerous permission, 107, 334

DAO (data access object) interface

DynamoDB implementation, 221–235

deploying service, 233–234

example code, 224–233

prerequisites, 221–224

testing service, 235

Google App Engine implementation,

235–243

deploying service, 241, 242

example code, 237, 238–241

prerequisites, 235–236

testing service, 241, 242–243

Data Dei nition Language (DDL), 45–47

Data Manipulation Language (DML), 47

372

data tier – fragments

data tier, 169

persistence layer, 186–195

data types, SQLite support, 51

data_only.xml i le, 307

databases

adapters, 76–79

creating, 67–71

cursors, 74–75

example SQLite database, 53–58

lifecycle management, 71–73

loaders, 79–81

SQL injection attacks, 346–347

view binders, 76–79

Datastore, 219

Entity API, 237

porting RESTful contacts service into

BigTable, 235–243

Date, C. J., 41

DDL (Data Dei nition Language), 45–47

decryption, 339, 340, 342–345

delete method, SQLiteDatabase class, 61–62

delete methods, Android SQLite API, 61–62

DELETE statement, 47

deleteNonTables method, 261–262

dependency injection, 173

destroying components, 11–12

Device Policy application, 329

digital signatures, 334, 339

DML (Data Manipulation Language), 47

Dobjanschi, Virgil, 131

doCreate method, Activity class, 13

doInBackground method, AsyncInsert object,

86, 89

drive by downloads, 330

DROP TABLE statement, 45–46

durability, 45

DynamoDB

coni guring with application schema,

222–223

contacts DAO interface implementation,

221–235

deploying service, 233–234

example code, 224–233

prerequisites, 221–224

testing service, 235

E

Eclipse, 3

elastic load-balancing, 217

embedding

SQL, 60–61

encryption, 339–347

AES (Advanced Encryption System), 341,

342–344

asymmetric, 340–341

HTTPS, 341, 353–365

password hashing, 345–346

password storage, 341

secure hashing, 341

SHA (Secure Hash Algorithm), 341

SQL injection attacks, 346–347

symmetric, 340–341, 342–344

volume-wide data encryption, 346

eventual consistency, 216–217

execSQL method, SQLiteDatabase class,

60–62

external storage, protecting data, 339

.exit command, 50

F

i le system security, 338–339

i rst-order predicate logic, 41–43

FLOAT data type, 51

FOREIGN KEY constraints, 52–53

forName method, 256

Fragment class, 17–18

FragmentPagerAdapter class, 314, 316–317

fragments

direct manipulation, 308

Fragment class, 17–18

FragmentPagerAdapter class, 314, 316–317

ItemDetailFragment class, 25, 306

ItemFragment class, 22–25, 306

ListFragment, 76

PickFragment class, 18–21, 250, 306

TabbedActivity class, 308–319

TabbedFragmentPagerAdapter class, 306,

314–316

TabbedPagedFragment class, 306, 319–320

373

GCM (Google Cloud Messaging) – Java Persistence API (JPA)

G

GCM (Google Cloud Messaging), 207

getDb method, SQLiteOpenHelper class, 73

getDouble method, 75

getFilesDir method, 114

getInt method, 75

getReadableDatabase method,

SQLiteOpenHelper class, 69–70, 73

getString method, 75

getType method, 75

getWriteableDatabase method,

SQLiteOpenHelper class, 69–70, 73

Google App Engine, 219

contacts DAO interface implementation,

235–243

deploying service, 241, 242

example code, 237, 238–241

prerequisites, 235–236

testing service, 241, 242–243

Google Apps for Business accounts, 329

Google Bouncer, 327, 328

Google Cloud Messaging (GCM), 207

Google Play store applications

Device Policy, 329

digital signatures, 339

Google Bouncer, 327

licensing service, 366

verii er service, 328

GQL (Google Query Language), 237–238

H

Hadoop, 220

hashes

hashed passwords, 341, 345–346

secure hashing, 341

SHA (Secure Hash Algorithm), 341

.help command, 50

Hibernate, 174, 188–190

Hibernate Query Language (HQL), 174, 190

Hipp, Richard D., 48

hot keys, 214

hot spots, 214

HQL (Hibernate Query Language), 174, 190

HTTP connections, 125

Apache libraries, 125–126

java.net libraries, 126–127

mapping from REST to, 118–120

HTTPS, 341, 353–365

coni guring HTTPS transport for Tomcat,

357–359

I

implementer method, 262

Ingres, 41

initializeTabs method, TabbedActivity

class, 26

INNER JOIN, 47–48

insert methods, Android SQLite API, 63–64

INSERT statement, 47, 52

insertOrThrow method, SQLiteDatabase class,

63

integer data type, 46–47, 51–52

Intent object, 35, 36–37

intents, protecting, 347–349

inter-process communication (IPC), 89–90

internal storage, protecting data, 339

INTERNET permission, 335

IPC (inter-process communication), 89–90

isAfterLast method, 74

isBeforeFirst method, 74

isFirst method, 74

isInterface method, 261

isLast method, 74

isolation, 45

ItemDetailFragment class, 25, 306

ItemFragment class, 22–25, 306

Ivy, 179–180

ivy.xml i le, 224

J

Jackson library, 180

Java, 2, 3

application containers, 170

concurrency, 128–130

Java Development Kit (JDK), 3

Java Persistence API (JPA), 238

374

Java Secure Sockets (JSSE) – Migrate project

Java Secure Sockets (JSSE), 357–358

java.net libraries, 126–127

JDBC (Java Database Connectivity), 168, 174,

190–195

JDK (Java Development Kit), 3

joins, 42, 47–48, 52-53

Joyent cloud-hosting platform, 219–220

JPA (Java Persistence API), 238

json-schema format, 121

JSSE (Java Secure Sockets), 357–358

K

KeyVal content provider

CRUD methods, implementing, 95–96,

101–105

content observers, 105–106

creating content provider, 96–97

database queries, 101–105

return types and URI matcher, 97–98

writing the database, 98–101

permissions, 106–109

KEYVAL_ROW.XML i le, 77

KEYVALACTIVITY.JAVA i le, 77–78

KeyValClient application, 90, 108

KeyValContentProvider class

contract, 90–91

initializing content providers, 96

registering content providers, 106

KeyValContract contract, 90–91

KeyValCP project, 83

L

large-layout directory, 28–29

layout directory, 29

least privilege principle, 332–333, 351

lifecycle, 11

Activity class methods, 13–17

back request, 168–169

Fragment class methods, 17

ItemFragment class methods, 22–25

MainActivity class methods, 12

management, 71–73

PickFragment class methods, 18–21

Linux security system, 326, 333, 338, 339

Linux mmap_min_addr, 332

ListActivity, 76

ListColumnMap, 306

ListFragment, 76

ListView, 76

ListViewActivity, 81

load balancing, 217

LoaderManager, 81

loaders, 79–81

loadTabFragments method, TabbedActivity

class, 26–27, 29

logic tier, 169

Java code, 185–186

Java synchronization logic, 196–198

LONGVARCHAR data type, 51

Lookout, 329

M

main.xml i le, 307–308

for smaller screens, 29

for tablets, 28–29

MainActivity class, 12–17, 306

malicious applications, 327–330

malware

Android Malware Genome Projec, 329,

330–331

high risk permissions, 335–337

targets, 331–332

toll fraud, 329–330

manifest i les, 36–37

manifest.xml i le, 36–37

MapReduce, 220

marshalling, 121, 140–143, 185

memcache API, 219

meta-commands, 50

method-oriented persistence, 174

Migrate project, 266–267

accounts, coni guring, 300

acessing Migrate data in Android UI, 281

Android features, 279–280

client, 279, 284–285

activating synchronization, 299

adding WebData accounts, 299

375

migrate.xml fi le – onStart method

advantages, 282

enabling projects as, 285–286

installing, 298–299

setting up devices, 298–300

creating projects, 285–291

dei ning information managed by, 286–287

downloading SDK, 285

generating contacts contract, 287–291

importing projects, 285

MigrateClinic, 300–303

polling, 280

publishing Migrate-enabled application

schema, 296–298

REST proxy, interfacing with, 291–298

searching, 280

starting local Migrate service, 296

streamlining mobile connections to the

enterprise, 267–268

synchronization, 280

migrate.xml i le, 287, 289

MigrateClinic, 300–303

MigrateContacts. See Migrate project

MongoDB, 209, 219

move method, 74

moveToFirst method, 74

moveToLast method, 74

moveToNext method, 74

moveToPosition method, 74

moveToPrevious method, 74

multi-version concurrency control (MVCC), 210

multiprocessing, 35–36

multitasking, 320

MVC framework, 171

MVCC (multi-version concurrency control),

210

MySQL library, 180

N

navigation, 320–323

network connections

Apache libraries, 125–126

java.net libraries, 126–127

permissions, 128

robust networking

content provider-centric, 133–135

REST within Android, 135–136

service-centric, 131–133

sync adapter-centric, 135

newTableQuery method, 255, 257

Nexus Application Verii er Service, 328–329

node.js, 219–220

normal permission, 107, 334

NoSQL persistence, 213–215

NOT NULL constraints, 46, 47, 51, 53

NX, 332

O

OAuth, 361, 362–363

onConfigure method, SQLiteOpenHelper class,

70

onCreate method

Activity class, 13–17, 26

ListViewActivity class, 81

PickFragment class, 19–21

SQLiteOpenHelper class, 68–71

onCreateLoader method, 89, 254–255

onCreateLoader method, ListViewActivity

class, 81

onCreateOptionsMenu method, 259–260

onDestroy method, Activity class, 14

onDowngrade method, SQLiteOpenHelper class,

70–71

onItemClick method

PickFragment class, 21

onListItemClick method, 253–254

onLoaderFinished method, ListViewActivity

class, 81

onLoaderReset method, 81, 254–255

onLoadFinished method, 89, 254–255

onMenuItemClickListener method, 260

onOpen method, SQLiteOpenHelper class, 70

OnPageChangeListener interface, 309, 317–318

onPause method

Activity class, 16

onResume method

Activity class, 16

onStart method

Activity class, 16

376

onStop method – registering

onStop method

Activity class, 16

onUpgrade method, SQLiteOpenHelper class,

70–71

OpenBSD calloc, 332

OpenBSD dlmalloc, 332

openFile method, 111–112

openFileHelper, 112

openFileOutput method, 114

openNewTableByName method, 255

OpenShift, 220

optimistic concurrency control, 217

P

paging, WebData API, 278–279

Parcelable interface, 14

passwords

hashing example, 345–346

storing, 341

permissions. See also specii c permissions

content providers, 106–109

network connections, 128

secure use of, 333–338

Android permissions, 334

application-dei ned permissions, 337–338

high risk permissions, 335–337

sharing, 351–353

persistence in the cloud

design considerations, 215–218

NoSQL, 213–215

SQL, 208–213

PickFragment class, 18–21, 250, 306

PIMs (personal information managers), 246

piracy, preventing, 365–366

platform security, 326

polling

Migrate project, 280

WebData, 278

predicate calculus, 41–43

presentation tier, 169

Spring annotations, 183–185

Spring controllers, 195–196

PRIMARY KEY constraints, 44, 51–52

principle of least privilege, 332–333, 351

project Migrate. See Migrate project

projection maps, 104–105, 112–113

projection operations, 42

ProPolice, 332

public key cryptography, 340, 353

publishing contracts, 95

push messages, 207

Apple Push Notii cation service, 207

WebData, 273–274

Q

queries, 47–48

Google Query Language, 237–238

Hibernate Query Language, 174, 190

query methods, Android SQLite API,

64–66

QUERY statement, 47–48

QueryBuilder class, 101, 102–105

R

rawQuery method, SQLiteDatabase class,

60–61, 74

RDBMSs (relational database management

systems)

history of, 41

overview, 40–41

referential integrity, 43–45

relational model, 41–43

strong typing, 43

transactions, 45

READ_CONTACTS permission, 336, 351

READ_PHONE_STATE permission, 335

READ_SMS permission, 336

RECEIVE_BOOT_COMPLETED permission, 336

RECEIVE_BROADCAST permission, 350

RECEIVE_SMS permission, 336

Red Hat OpenShift, 220

REFERENCES keyword, 46

referential integrity, 43–45

registerContentObserver method, 88, 105

registering

content observers, 88–89

content providers, 92, 106

377

relational database management systems – security

relational database management systems. See

RDBMSs

relational model, 41–43

relations

i rst-order predicate logic, 41–43

join operations, 42, 47–48

projection operations, 42

referential integrity, 43–45

restriction operations, 42, 47–48

strong typing, 43

repacking applications, 330

replace method, SQLiteDatabase class, 63–64

REST (Representational State Transfer), 116–118

example REST API, 120–125

over HTTP, 118–120

restfulCachingProviderContacts

example client, 136–143

securing RESTful web services, 354–365

Android account manager, 363–365

certii cate authority, creating, 355–356

Certii cate Signing Request, 354–355

clients, authorizing, 361–362

example client, running, 362

HTTPS transport, coni guring, 357–359

secure connections, opening, 359–361

site certii cates, obtaining, 356–357

RESTART_PACKAGES permission, 337

RESTful Contacts API

methods, 122

resources, 120–121

RESTfulContacts client, 136–143

service-centric networking, 131–133

transactions, 122–125

restfulCachingProviderContacts project,

136–143

restriction operations, 42, 47–48

RestTemplate API, 165–166

robust networking, 131

content provider-centric, 133–135

service-centric, 131–133

sync adapter-centric, 135

root exploits, 330

ACCESS_WIFI_STATE permission, 336

CHANGE_WIFI_STATE permission, 337

RSA key exchange, 340

S

safe_iop, 332

salt, 341, 345–346

saving state, 11–17

scaling applications, 311–312

scheduling sync adapters, 162–164

SD cards, protecting data, 339

Secure Hash Algorithm (SHA), 341

secure hashing, 341

security

application verii er service, 328–329

AWS credentials, adding, 224

encryption, 339–347

AES, 341, 342–344

asymmetric, 340–341

HTTPS, 341, 353–365

password hashing, 345–346

password storage, 341

secure hashing, 341

SHA, 341

SQL injection attacks, 346–347

symmetric, 340–341, 342–344

volume-wide, 346

end user tools, 327

Android Malware Genome Project, 329,

330–331

avoiding malicious applications, 327–330

Google Apps for Business accounts, 329

group IDs (GIDs), 36

Linux security system, 326, 333, 338, 339

platform security, 326

RESTful web services example, 354–365

Android account manager, 363–365

certii cate authority, creating, 355–356

Certii cate Signing Request, 354–355

clients, authorizing, 361–362

HTTPS transport, coni guring, 357–359

OAuth, 362–363

running example client, 362

secure connections, opening, 359–361

site certii cates, obtaining, 356–357

toll fraud, 329–330

user IDs (UIDs), 36

writing secure applications, 331

378

security – TabbedActivity class

encrypting data, 339–347

hacking targets, 331–332

permissions, 333–338

preventing piracy, 365–366

principle of least privilege, 332–333, 351

protecting APIs, 347–353

protecting data, 338–339

protecting RESTful invocations, 353–365

SEND_SMS permission, 336

service domain, 181, 185

services. See backend services

servlet containers, 170

SetData interface, 24–25

setForeignKeyConstraintsEnabled method,

SQLiteDatabase class, 67

SHA (Secure Hash Algorithm), 341

sharing permissions, 351–353

signature permission, 107, 334

SignatureOrSystem permission, 334

SimpleCursorAdapter class, 76–79, 257

SLR, 332

SMALLDATETIME data type, 51

SMS messages, toll fraud, 329–330

SpamSoldier, 328

Spring project, 165–166

Spring WebMVC library, 180

springServiceContacts project, 175, 199–202

SpringSource, 165

springSyncServiceContacts project, 199–202

SQL

embedding, 60–61

injection attacks, 346–347

persistence in the cloud, 208–213

statements

Data Dei nition Language, 45–47

Data Manipulation Language, 47

queries, 47–48

syntactic SQL, 61–67

SQLite, 48–49

command line use, 49–53

contacts database example, 53–58

data types, 51

meta-commands, 50

sqlite3 command-line utility, 49–52

SQLiteCursor object, 73, 75

SQLiteDatabase class, 60–67

SQLiteOpenHelper class, 67–71

state, saving, 11–17

statements (SQL)

DDL (Data Dei nition Language), 45–47

DML (Data Manipulation Language), 47

queries, 47–48

strong typing, 43

Support Package, 323–324

swiping. See TabbedActivity class

symmetric encryption, 340–341, 342–344

sync adapters, 135, 143–144

Android account management, 144–155

creating accounts, 154–155

declaring authenticators, 145–149

implementing authenticators, 150–154

using authenticators, 149–150

creating, 155–162

scheduling, 162–164

syncAdapterContacts project, 198–199

SyncContacts application, 144, 149–164

creating accounts, 154–155

declaring account authenticator, 145–149

implementing account authenticator, 150–154

using account authenticator, 149–150

System R, 41

T

TabActivity class, 30–33, 306

TabbedActivity class, 25–28, 308–319

abstract methods, 313

connecting tabs and fragments, 313

FragmentPagerAdapter callbacks, 316–317

initializing tabs, 310–311

moving data between fragments, 311–312

nested interfaces, 313

nested subclass of FragmentPagerAdapter,

314

OnPageChangeListener interface

implementation, 317–318

Support Library, 309–310

security (continued)

379

TabbedFragmentPagerAdapter class – WebData

TabbedFragmentPagerAdapter constructor,

314–315

Tabbe dFragmentPagerAdapter class, 306,

314–316

TabbedPagedFragment class, 306, 319–320

tablets

main.xml i le, 28–29

navigation, 323

TabListener interface, 24

tabs

connecting tabs and fragments, 313

coupling to pager, 319–320

creating, 315

Fragment classes represented by, 312

FragmentPagerAdapter callbacks,

316–317

initializing, 310–311

OnPageChangeListener interface, 317–318

placebo tab listener, 315–316

task model, 33–35

text data type, 46, 51

TINYINT data type, 51

toll fraud, 329–330

Tomcat, coni guring HTTPS transport, 357–359

toolchain, testing, 4

transactions, 45

tuples, 41–42

U

UI framework

direct manipulation, 308

TabbedActivity class, 308–319

TabbedPagedFragment class, 319–320

modularity, 306–308

navigation, 320–323

Support Package, 323–324

UI thread, 128–134

UNIQUE constraints, 51, 53

unknown sources, installing apps from, 327–328

update attacks, 330

update method, SQLiteDatabase class, 62–63

update methods, Android SQLite API, 62–63

UPDATE statement, 47

updateWithonConflict method,

SQLiteDatabase class, 62–63

uriForTable method, 255, 256

URIs

RESTful APIs, 119

URI matcher, 96–98, 102, 111

V

vCard applications, sharing contacts, 351–353

VIBRATE permission, 336

view binders, 76–79

View class, 11, 25

ViewPager class, 306, 307

initializing tabs, 310–311

mixing tabs and Fragment class, 313–314

Support Library, declaring use of, 309–310

volume-wide data encryption, 346

W

WAKE_LOCK permission, 336

WebData, 266

accounts, adding, 299

components, 268–269

conl ict resolution, 274–278

content provider Android API, 281

CRUD-based queries, 273

Migrate project, 266–267

accessing Migrate data in Android UI,

281

Android features, 279–280

client, 279, 282–286, 298-300

coni guring accounts, 300

creating projects, 285–291

dei ning information managed by,

286–287

downloading SDK, 285

generating contacts contract, 287–291

importing projects, 285

MigrateClinic, 300–303

polling, 280

publishing Migrate-enabled application

schema, 296–298

380

WebData – WRITE_SMS permission

interfacing with REST proxy, 291–298

searching, 280

starting local Migrate service, 296

streamlining mobile connections to the

enterprise, 267–268

synchronization, 280

mobile infrastructure deployment benei ts,

282

notii cations, 273–74, 273–274

paging, 278–279

polling, 278

referencing data, 272–273

specii cation location, 279

streamlining mobile connections to the

enterprise, 267–268

synchronization operations, 274, 275–278

using schema to dei ne data, 269–271

WRITE_APN_SETTINGS permission, 337

WRITE_CONTACTS permission, 337, 351

WRITE_EXTERNAL_STORAGE permission, 336

WRITE_SMS permission, 336

WebData (continued)

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and

is valid for the i rst 6 consecutive monthly billing cycles.

Safari Library is not available in all countries.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety of
software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

 ~StormRG~

	Enterprise Android™: Programming Android Database Applications for the Enterprise
	Copyright
	About The Authors
	About the Technical Editor
	About the Technical Proofreader
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: Developing for Android Tablets and Smartphones
	Android Is a Java Operating System
	Your Tools and Your First Android App
	Prerequisites and Getting Ready
	Toolchain Test Drive

	One Code-Base for All Types of Devices
	Getting Started with the Code Framework Example
	Automatically Adapting to Screen Size

	Components, Views, and Lifecycle
	Destroying and Re-Creating Components
	The MainActivity Class
	Activity: The Basic Unit of User Interaction
	Fragment: A Tool for Organizing Code and UI
	The PickFragment Class
	The ItemFragment Class
	The ItemDetailFragment Class

	Tying Together Activities, Fragments, and the Action Bar
	The TabbedActivity Class
	A Main.xml File for Large Tablets
	A Main.xml and a Subsidiary Activity for Smaller Screens
	The TabActivity Class

	The Android Task and Process Model
	Starting Dalvik Instances
	Death, but No Transfiguration
	Tasks Span Applications and Processes

	Multiprocessing, Security, and Lifecycle
	The Process and User ID as Security Boundary

	Declaring Application Properties
	Summary

	Chapter 2: The Relational Model and SQLite
	Databases and the Relational Model
	The History of the RDBMS
	The Relational Model
	Other DBMS Features
	The SQL Language

	Introduction to SQLite
	SQLite from the Command Line
	An Example SQLite Database

	Summary

	Chapter 3: Android Database Support
	SQL in Java: The SQLiteDatabase Class
	Basic SQL Embedding
	Syntactic SQL
	Creating a Database: The SQLiteOpenHelper Class
	Managing a Database

	Cursors, Loaders, and Adapters
	Cursors
	Adapters and View Binders
	Loaders

	Summary

	Chapter 4: Content Providers
	Using a Content Provider
	URIs as Names for Virtual Datasets
	Content Resolvers: The Link between Clients and Providers
	Content Observers: Completing the Loop
	IPC: System-Wide Accessibility

	The Contract: URIs and Types
	Authority
	Virtual Table URIs
	Return Value MIME Types
	Permissions
	Publishing the Contract

	Implementing the Content Provider
	Creating the Content Provider
	Return Types and the URI Matcher
	Writing the Database
	Database Queries
	Content Observers (Again)

	Permissions and Registration
	Content Providers and Files
	Summary

	Chapter 5: Rest, Content Providers, Concurrency, Networking, and Sync Adapters
	Basic REST
	Why REST?
	REST over HTTP
	An Example REST API
	Contact Representation
	Contact Methods and URIs
	Contact Transactions

	Android Networking
	The Apache Libraries
	The java.net Libraries
	Permissions

	Considering Concurrency and Lifecycles
	The Android Concurrency Architecture
	A Naive Request

	An Architecture for Robust Networking
	Approach 1: Service-Centric
	Approach 2: ContentProvider-Centric
	Approach 3: SyncAdapter-Centric
	REST within Android
	The restfulCachingProviderContacts Project: An Example Client
	Adding a Contact

	Using Sync Adapters
	Android Account Management
	Creating a Sync Adapter

	Summary

	Chapter 6: Service Development
	A Choice for Service Development
	The Lifecycle of a Request
	Three-Tier Service Architecture
	Service Development Background

	Building a RESTful Service for Contacts
	A Conservative Software Stack
	Writing the Examples: Spring Contacts Service and its Synchronization Variant
	Code Example: Spring Sync Contacts Service

	Summary

	Chapter 7: Mobile and the Cloud
	Cloud Performance and Scalability
	The Scale of Mobile
	Persistence in the Cloud: From SQL to NoSQL
	Database File Format
	NoSQL Persistence

	Design Considerations for Scalable Persistence
	To SQL or Not to SQL?

	Looking at Popular Cloud Providers
	Amazon AWS
	Google App Engine
	Joyent: Hosted MongoDB+node.js
	Red Hat OpenShift

	Exploring the Code Examples
	The Contacts DAO Interface (Again)
	Writing the Code: Amazon Contacts Service
	Writing the Code: Google App Engine Contacts

	Summary

	Chapter 8: Complex Device-Based Data: Android Contacts
	PIM Databases: Fossils from Smartphone Pre-History
	Android’s Contacts Provider
	The ContactsContract API
	A Contacts Provider Explorer
	Code for Exploring a Database
	Source Code for a Contacts Provider Explorer

	Summary

	Chapter 9: Generic Data Synchronization: Project Migrate and the WebData API
	Introducing WebData and Project Migrate
	How Project Migrate Works
	How Project Migrate Streamlines the Mobile Connection to the Enterprise
	The WebData API in Detail
	The WebData API RESTful Protocol

	Project Migrate in Detail
	The Migrate Project Android WebData Client
	Project Migrate Android Features

	The WebData Content Provider Android API
	Android Built-In Provider APIs
	The Migrate Provider API

	Summary
	Service-Side Advantages
	Client Advantages

	Chapter 10: WebData Applications
	The Migrate Client
	Creating a Migrate Project
	Step 1: Importing the Project
	Step 2: Enabling the Project as a Migrate Client
	Step 3: Defining the Information to Be Managed by Migrate
	Step 4: Generating the Contacts Contract

	Interfacing with the Migrate REST Proxy
	Step 5: Starting a Local Migrate Service
	Step 6: Publishing Your Application’s Schema

	Setting Up a Device
	Step 1: Installing the Migrate Client
	Step 2: Adding a WebData Account
	Step 3: Turning on Synchronization
	Step 4: Running the Application
	Step 5: Configuring an Account in Migrate Contacts (Optional)

	Future Directions: MigrateClinic
	Summary

	Chapter 11: Building Human Interfaces for Data
	Modularity and Flexibility Compared with a “Cookbook” Approach
	Overview of Modules
	Layout Changes

	Direct Manipulation
	The TabbedActivity Class
	The TabbedPagedFragment Class

	Navigation
	Multitasking in a Small-Screen Environment
	The Android Task Model
	Tasks and the Conventional Process Model
	Modifying Task Behavior
	Navigation in Tablets

	Choosing to Use the Support Package
	Summary

	Chapter 12: Security
	Platform Security
	Keeping Handsets Safe
	Avoiding Malicious Applications
	Understand Malware Mechanics: The Malware Genome

	Writing Secure Applications
	Hacking Targets
	Ingredients of a Secure Application
	Example Code: Protecting RESTful Invocations
	Preventing Piracy

	Summary

	Index
	Advertisement

