
Undergraduate Topics in Computer Science

Software 
Quality 
Assurance

Neil Walkinshaw

Consistency in the Face of 
Complexity and Change



Undergraduate Topics in Computer Science

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter C. Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK



More information about this series at http://www.springer.com/series/7592

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality 
 instructional content for undergraduates studying in all areas of computing and 
information science. From core foundational and theoretical material to final-year 
topics and applications, UTiCS books take a fresh, concise, and modern approach 
and are ideal for self-study or for a one- or two-semester course. The texts are all 
authored by established experts in their fields, reviewed by an international advisory 
board, and contain numerous examples and problems. Many include fully worked 
solutions.



1 3

Neil Walkinshaw

Software Quality Assurance
Consistency in the Face of Complexity and 
Change



Neil Walkinshaw
Department of Computer Science 
 University of Leicester  
Leicester  
UK

ISSN  1863-7310 ISSN  2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-64821-7 ISBN 978-3-319-64822-4 (eBook)
DOI 10.1007/978-3-319-64822-4

Library of Congress Control Number: 2017947829

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, express or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To Emma, Iona, and Dougie.



Preface

“Let’s think the unthinkable, let’s do the undoable. Let us prepare to grapple with the inef-
fable itself, and see if we may not eff it after all.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

This book is an introduction for students to the main principles and some of
the most popular techniques that constitute ‘software quality assurance’. It is worth
emphasising from the outset that this book is not a reference book. There are already
plenty of excellent comprehensive Software Engineering reference books in print.

Instead, this book seeks to provide a focus on Quality Assurance that typical,
more generic Software Engineering reference books do not. The goal is to to do so
in such a way that the book can be read from cover to cover throughout the course
of a typical university module. Specifically, this book aims to be:

• Concise: It aims to be small enough to be readable in its entirety over the course
of a typical software engineering module.

• Explanatory: When topics are covered, it is important not merely to describe
what they are, but also why they are the way they are – describing what events,
technologies, and individuals or organisations helped to shape them into what
they are now.

• Applied: Topics will be covered with a view to giving the reader a good idea of
how they can be applied in practice, and by pointing where possible to evidence
about their efficacy.

Quality Assurance is often presented and discussed in somewhat utilitarian terms,
as a set of necessary, occasionally tedious, techniques; required reading for anybody
who aspires to become a capable, reliable Software Engineer. This brings us to the
final, slightly more nebulous objective of this book: To convince the reader that there
is much, much more to Quality Assurance than that.

We inhabit a world in which software is increasingly pervasive – controlling ev-
erything from light bulbs in homes to smart phones, cars, planes, power stations, and

vii



Preface

voting machines. Failures in software quality can have and have had disastrous con-
sequences. There is an urgent need for a widespread appreciation of how precarious
software quality can be, and how it can improved and ensured.

Although the application of Quality Assurance techniques can become ‘tedious’,
this misses what are (for the author at least) the real attractions. The subject is not
only necessary, but academically fascinating too. There is no way of guaranteeing
that a software system will ‘succeed’ - that it will not contain bugs, satisfy the cus-
tomer, and be delivered on time and at cost. The task of building complex systems
according to complex, continuously changing requirements, in a limited amount of
time, within a limited budget, whilst managing large teams of developers, is enor-
mously challenging. There is no single ‘best’ solution, and there are so many open
(often surprising) problems.

Acknowledgements

This book is an extension of the course notes for the “Software Quality Assurance
and Metrics” course at the University of Leicester, jointly taught to under- and post-
graduate students. The course was originally taught by Helge Janicke (now at De
Montfort University) until I took over as convenor in 2013. Although the course has
changed in several respects, I am very grateful to Helge for developing the initial
structure, and thus setting the direction for a large portion of the subject-matter
covered in this book.

Throughout the writing of the book, several undergraduate and postgraduate stu-
dents have been kind enough to provide valuable feedback on its contents. Many
thanks especially to Cara Bateman, Anita Lad, Shriya Malhotra, and Sylvester
Saracevas.

Finally, I owe a debt of gratitude to the editorial team at Springer, and Ralf Ger-
stner in particular, for their valuable support, feedback, and patience.

viii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Consistency, Complexity, and Change . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 What Is Software Quality, and Why Does it Matter? . . . . . . . . . . . . . . . 7
2.1 Why Care about Software Quality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 What Drives Software Quality Assurance? . . . . . . . . . . . . . . . . . . . . . 14
2.3 Defining “Software Quality” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The Challenge of Defining Quality . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Quality Models - a Historical Perspective . . . . . . . . . . . . . . . . 18

2.4 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Software Development Processes and Process Improvement . . . . . . . . . 23
3.1 Process and Process Improvement in Manufacturing . . . . . . . . . . . . . 24

3.1.1 The Industrial Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Plan Do Check Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Quality-Driven Manufacturing in Japan . . . . . . . . . . . . . . . . . . 27
3.1.4 Total Quality Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The Software Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 The Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Iterative and Incremental Software Development . . . . . . . . . . 35

3.3 Agile Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 The Principles of Agile Software Development . . . . . . . . . . . 38
3.3.2 An Example: SCRUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Relation to Total Quality Management . . . . . . . . . . . . . . . . . . 42
3.3.4 Why Not Always Go Agile? . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Software Process Improvement - The Capability Maturity Model . . . 45
3.5 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



x Contents

4 Managing Requirements and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Managing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 What is a Requirement? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Requirements Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Requirements Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.4 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.5 Tracing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.6 Prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.7 Oversight with Kanban boards . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Writing Maintainable Source Code and Handling Change . . . . . . . . . 64
4.2.1 Coding Conventions and Design / Architecture Patterns . . . . 65
4.2.2 Collaborative Development and Version Repositories . . . . . . 69

4.3 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Planning Activities and Predicting Costs . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Program Evaluation and Review Technique (PERT) . . . . . . . 78
5.1.2 Gantt Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Predicting Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Base Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Parameter Fitting by Linear Regression . . . . . . . . . . . . . . . . . . 83
5.2.3 COCOMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.4 Planning Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.5 Uncertainty and Predictive Accuracy . . . . . . . . . . . . . . . . . . . . 91
5.2.6 Keeping Track of Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 The Foundations of Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 White-Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Code coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2 White Box Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 The Case(s) Against Code Coverage . . . . . . . . . . . . . . . . . . . . 106
6.2.4 Goto Fail: A Case For Code Coverage . . . . . . . . . . . . . . . . . . . 108
6.2.5 An Alternative: Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Black-Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.1 Specification-Based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.2 Random Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Exposing Security Flaws with Fuzz-Testing . . . . . . . . . . . . . . 123

6.4 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Software Inspections, Code Reviews, and Safety Arguments . . . . . . . . 127
7.1 Formal Inspections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Modern Code Reviews - Reviewing Code During Development . . . . 128

7.2.1 Tool-Driven Code Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Contents

7.2.2 Pull-Based Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.3 The Impact of MCR on Software Development and Quality . 131

7.3 Code Reviewing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1 Tool-Driven Code Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.2 Developer-driven Code Reviews . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Safety Arguments and Inspections of Safety Requirements . . . . . . . . 136
7.4.1 Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.2 Safety Argumentation and the Goal Structure Notation . . . . . 138

7.5 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.1 Measurement Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2.1 Size and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.2 Modularity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.3 Maintainability Metrics and the Maintainability Index . . . . . 158

8.3 Validity and the Use of Goal Question Metric . . . . . . . . . . . . . . . . . . . 159
8.3.1 Problems of Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3.2 Goal Question Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.1 Topical and Emerging Quality Concerns . . . . . . . . . . . . . . . . . . . . . . . 165

9.1.1 Autonomy in Socio-Technical Systems . . . . . . . . . . . . . . . . . . 165
9.1.2 Data-Intensive, Untestable Systems . . . . . . . . . . . . . . . . . . . . . 167

9.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xi

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Chapter 1

Introduction

The term ‘software quality assurance’ rarely evokes much excitement. It is often
perceived as a form of applied pedantry, lacking the challenge and creativity that is
required to actually design and build a software system. In short, it is often seen as a
necessary chore. Nobody wants to read and learn about necessary chores. To some,
a book on quality assurance is about as enticing as a book on dish-washing.

In reality such preconceptions are wildly misguided (surely something you would
hope for, given that you have nine chapters on the topic ahead of you). The idea that
quality assurance stands separately from other software development activities is not
true. Nor is the perception that it is particularly pedantic or lacks creativity (though
pedantry can be useful!). It is not a chore, and if it is treated as an afterthought, any
non-trivial software project is bound to fail.

In this book we will show how quality assurance and software development are
inextricably linked. A software system cannot succeed and be sustained without the
framework of practices and concepts to continuously assess, ensure, and improve
its quality. The real challenge of software development is not merely to assimilate
the right source code instructions, but to do so in a way that the code can be readily
understood, maintained, and shown to be correct, and to achieve all of this within
appropriate time and cost bounds.

1.1 Consistency, Complexity, and Change

Software quality assurance is, as we shall see, notoriously difficult to pin down as a
concept. Every software development activity, from drawing up the requirements all
the way through to deployment and maintenance, can at some level contribute to (or
detract from) the quality of the final software system. Loosely put, the term ‘quality
assurance’ refers to the various strategies and techniques that can be adopted to
convey a certain level of confidence in the quality of the final system.

A successful quality assurance strategy should also ensure a degree of repeatabil-
ity and reliability. It should provide safeguards and mechanisms that will not depend

1© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_1



2 1 Introduction

on the capabilities of the individual developers. In other words, one overarching goal
is to ensure consistency.

The challenge is to achieve this in the face of complexity and change. Complexity
comes in a variety of forms – from the problem domain for which the software is
being developed, the existing base of software libraries and frameworks, and the
organisational structure within which the software is being developed. Change also
comes in several forms. Capricious customers can continuously change their minds
about requirements and priorities. Development teams can comprise large numbers
of developers, often located in different locations and time-zones, tweaking the code
base at the same time. During development, some activities can take longer than
expected, others less.

A key challenge of quality assurance is to ensure that processes are in place
that are capable of detecting, accommodating and controlling these various forms
of complexity and change. This has to be achieved in a manner is not counter-
productive. Quality assurance processes must not hamper development by placing
an unnecessary burden on the developers, being overly restrictive in terms of flexi-
bility, or causing unsustainable increases in time or expense.

Finding or developing a suitable quality assurance process is in and of itself a
challenge. There are a huge number of potential frameworks, techniques, and tools
for every aspect of software development. The most appropriate combination of
these approaches invariably depends on various factors that are specific to a given
organisation or project. Finding a suitable process therefore relies upon a capacity
for introspection – the ability to experiment with different tools and techniques, to
determine which approaches work, and which ones need to be refined or replaced.

1.2 Synopsis

This book aims to provide a concise introduction to the approaches to quality assur-
ance that span every aspect of software development. To ensure concision, the book
places an emphasis on the underlying foundations of modern quality assurance tech-
niques – on emphasising the whys instead of the hows. Although the book will delve
into some specific techniques, it does not seek to provide a comprehensive reference.
The main objective is to provide the reader with a comprehensive understanding of
where software quality fits into the development life-cycle (spoiler: everywhere),
and what the key quality assurance activities are.

Although software development is relatively new as a discipline, many of the
quality assurance principles and techniques have roots in other, more established
disciplines. In order to fully appreciate these techniques it is necessary to be aware
of their back-stories. This is not only useful from a pedagogical perspective. An
appreciation of the historical roots of areas such as software process improvement
and agile development supports an often under-appreciated but very important point:
software development today has been largely shaped by some of the major advances
in manufacturing that shaped the world as we know it.



1.2 Synopsis 3

The reader is encouraged to read the book in a sequential fashion from start to
end. The chapters have been structured in such a way that we start from some fo the
most general notions (e.g. quality and development process), and gradually home-in
on the more specific activities, assuming knowledge of basic notions established in
prior chapters.

Chapter 2: What is Software Quality, and Why Does it Matter?

It is impossible to understate the importance of software quality. Software is increas-
ingly pervasive, controlling many devices that we depend upon, both as individuals
and as a society. Poor software quality can have wide-ranging, and often unexpected
consequences. In this chapter we look at some notable examples. We also use these
examples to illustrate just how broad the term “software quality” can be, and ex-
plain why it is consequently so notoriously difficult to pin down. The rest of the
chapter then looks at some of the key attempts over the last 40 years to formalise
such definitions as software quality models.

Chapter 3: Software Development Processes and Process Improvement

The ‘quality’ of a product is dependent upon the process that was used to develop
it – a realisation that underpinned the revolution in industrial manufacturing across
the globe. In this chapter we start with some of the key innovations within manu-
facturing that shaped the principles that have influenced software engineering de-
velopment processes. We then go on to cover three particularly popular software
engineering processes: The Waterfall model, Iterative and Incremental Develop-
ment, and finally Agile software development (with an emphasis on the SCRUM
methodology). The chapter concludes by introducing frameworks to tailor and im-
prove processes within the context of a particular organisation, with a focus on the
CMMI framework.

Chapter 4: Managing Requirements and Code

Software development is ultimately about the ability to turn a set of (implicit or ex-
plicit) requirements into source code. Given that the requirements can be complex,
and the development process can involve many developers, this process needs to be
carefully managed. This chapter is split into two parts - the first part examines the
challenge of managing requirements: How to elicit and capture them, dealing with
questions such as security, how to prioritise them, and trace them to the various de-
velopment artefacts. The second part is concerned with managing the corresponding
source code as it evolves by adopting design and coding conventions and using ver-
sion repositories.



4 1 Introduction

Chapter 5: Planning Activities and Predicting Cost

Ultimately, sound management of a project requires a degree of planning. A typical
project involves lots of different types of activities, that can require varying degrees
of time and effort. It is necessary to predict how long different activities will take,
and to figure out how to schedule them. Poor planning can lead to cost-overruns
or even abandoned projects. In this chapter we look at some of the most popular
techniques that can serve to attenuate this risk. The chapter starts by presenting two
generic planning tools - the PERT technique and Gantt charts. This is followed by
various techniques that can be used to predict the effort or cost required for a project
by either using historical data with linear regression techniques, the off-the-shelf
COCOMO model, and Planning poker.

Chapter 6: Testing

Testing - the execution of a software system to identify failures or faults - is a par-
ticular activity that is most obviously linked with quality assurance. As such, this
chapter treats testing with a greater degree of detail. It introduces the key concepts
that are involved in software testing. It then proceeds to cover white-box testing
(testing techniques that are predicated upon access to the source code), including
the various notions of code coverage that can be used to assess test adequacy, test
generation techniques that aim to achieve coverage, the cases for and against said
coverage metrics, and mutation testing. It concludes with an overview of black-box
testing techniques, which cater for the scenario that the source code is not available.
This part introduces specification-based testing, random testing, and Fuzz-testing
techniques.

Chapter 7: Inspections, Reviews, and Safety Arguments

Software inspection sits alongside software testing as an activity that is specifically
geared to identify faults in the source code. In contrast to testing, inspection does
not depend on the ability to execute the code. Although the activity has its roots in
the traditional ‘Fagan inspections’, this book only briefly covers these in favour of
focussing on the less formal but more widespread activities that are broadly referred
to as ‘Modern Code Review’, where version repository-based tools such as Gerrit
and Pull-requests are used to orchestrate light-weight code reviews. This is followed
briefly by an introduction to specific automated and manual code review approaches.
The chapter concludes with an overview of an inspection approach that is specific
to safety-critical systems, by introducing the concept of safety-arguments, and a
graphical language that can be used to express these arguments.



1.2 Synopsis 5

Chapter 8: Measurement

Quality assurance relies fundamentally on the ability to measure: measuring the
progress of the development, or the size, complexity, and cost of the system, the
complexity of the code-base, etc. This chapter starts off by presenting some general
background theory to measurement - what constitutes a valid measurement, and the
different types of scales that can be used. It then moves on to cover a variety of
software metrics, which analyse software size, modularity, and maintainability. It
then concludes with a section that discusses the validity of metrics specifically in
the context of software measurement, and how the Goal Question Metric technique
can be used to ensure validity.

Chapter 9: Future Challenges and Opportunities

Software development is evolving at a fast pace. Software systems are continuously
growing in terms of complexity and expense, which poses enormous challenges in
terms of the overhead required by quality assurance activities. Software is increas-
ingly incorporating data-intensive Machine Learning algorithms, the behaviour of
which can be very difficult to constrain and validate. These algorithms are being
placed into devices that have an increasing bearing on safety and society, with self-
driving cars being a prime example. On the other hand, software development has
also changed to alleviate some of the long-standing problems. This chapter exam-
ines some of these changes, and discusses what they mean for software develop-
ment.

Key Points and Exercises

Each chapter will be concluded by a section called “Key Points” which summarises
the main points that have been covered within the chapter.

Throughout the book you will find “exercises”:

Exercises will be presented in a highlighted box, such as this one.

These are to be treated as reading-aids, to remind you of relevant parts in the
book that have been covered previously, or to give you the opportunity to reflect on
a particular topic and refer to related references.



Chapter 2

What Is Software Quality, and Why Does it

Matter?

If you have ever debated the relative merits of an operating system, a programming
language, or even a text editor1, you will immediately appreciate the difficulties that
arise when trying to assess and communicate about software quality. Software has
many ‘qualities’, some of which are easy to assess (e.g. cost or ease by which it is
installed), whereas others lie within the eye of the beholder (e.g. the aesthetics of a
user interface). Different users can also priorities these qualities in different ways,
can have very different expectations, and can easily come up with contradictory
assessments.

Though it may be hard to characterise, software quality directly affects us all.
Digital systems are pervasive; they control cars, aircraft, military weapons systems,
our communication infrastructure, financial markets, etc. Stories of how the faulty
behaviour of these systems can affect thousands of people appear in the news on an
increasingly regular basis.

In this chapter we discuss first of all why we should care about software quality.
We analyse some of the drivers that compel developers and organisations to push for
quality assurance, and examine some of the predominant efforts to define software
quality.

2.1 Why Care about Software Quality?

Digital technology pervades everyday life. Almost every aspect of our daily lives
is affected or controlled at some level by a piece of software. On an individual
level, most of us own a smart phone, and are signed up to social networks such
as Facebook or Twitter. If you drive a car, a huge proportion of its functionality –
acceleration, breaking, steering, air bag deployment, entertainment system, naviga-
tion, etc. – are controlled by software. Systems that are essential for everyday life –

1 https://www.reddit.com/r/programming/comments/2v9uzx/vim_vs_
emacs_is_it_really_a_competition/

7© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_2



8 2 What Is Software Quality, and Why Does it Matter?

transport and communications networks and financial markets – are to a large extent
controlled by software systems.

There have been countless instances where the (mis-)behaviour or escalating cost
of a software system has led to severe (sometimes potentially disastrous) conse-
quences. Huge amounts of money have been lost, private data has been released,
and people have died. Software failures are ultimately the result of failures in qual-
ity assurance.

We will now examine some notable examples of software failures. You may be
familiar with some of these from news reports about them. The goal is to illustrate
two of the key motivations for caring about software quality: (1) That software can
affect a broad range of stakeholders (who are often unaware that they are stakehold-
ers), (2) that “poor quality” can manifest itself in a variety of ways.

NORAD’s Nuclear Missile Defence System

We start by considering this passage of events, chronicled by Borning [24]:

On Tuesday, June 3, 1980, at 1:26 a.m., the display system at the command post of the
Strategic Air Command (SAC) near Omaha, Nebraska, indicated that two submarine-
launched ballistic missiles (SLBMs) were headed toward the United States. Eighteen sec-
onds later, the system showed an increased number of SLBM launches. SAC personnel
called the North American Aerospace Defense Command (NORAD), who stated that they
had no indication of attack.

After a brief period, the SAC screens cleared. But, shortly thereafter, the warning display
at SAC indicated that Soviet ICBMs had been launched toward the United States. Then
the display at the National Military Command Center in the Pentagon showed that SLBMs
had been launched. The SAC duty controller directed all alert crews to move to their B-
52 bombers and to start their engines, so that the planes could take off quickly and not
be destroyed on the ground by a nuclear attack. Land-based missile crews were put on a
higher state of alert, and battle-control aircraft prepared for flight. In Hawaii, the airborne
command post of the Pacific Command took off, ready to pass messages to US warships if
necessary.

This obviously alarming situation was especially precarious because, once the
alarm had been raised, a decision had to be taken immediately whether to respond
with a counter-attack. This critical decision was based primarily on the evidence
as presented by the computer system. As it turned out, the computer system was
wrong:

Fortunately, there were a number of factors which made those involved in the assessment
doubt that an actual attack was underway. Three minutes and twelve seconds into the alert,
it was canceled. It was a false alert.

NORAD left the system in the same configuration in the hope that the error would repeat
itself. The mistake recurred three days later, on June 6 at 3:38 p.m., with SAC again receiv-
ing indications of an ICBM attack. Again, SAC crews were sent to their aircraft and ordered
to start their engines.

The cause of these incidents was eventually traced to the failure of a single integrated circuit
chip in a computer which was part of a communication system. To ensure that the commu-
nication system was working, it was constantly tested by sending filler messages which had



2.1 Why Care about Software Quality? 9

the same form as attack messages, but with a zero filled in for the number of missiles de-
tected. When the chip failed, the system started filling in random numbers for the ”missiles
detected” field.

The problems were summarised in a report (with the worrying title) NORAD’s
missile warning system: What went wrong [37] , detailing a further litany of software
/ hardware errors that led to other false alarms.

We start with this example for the obvious reason that it is a system, controlled
by software, where malfunctions have the potential of leading to a genuine disaster
that can affect anybody, as opposed to a narrow group of defined stakeholder ‘users’
or ‘operators’. Of course, the root cause of the failure was ultimately hardware (the
faulty chip), but the faulty messages that it injected into the network were allowed to
percolate because there was no error-checking in the communications infrastructure
[24, 37], something that one would expect should be absolutely critical for messages
as critical as ‘the number of missiles detected in an incoming nuclear attack’ .

Star Wars Missile Defence System

Despite the various technical challenges that had been faced by the NORAD Missile
Defence Systems, in the mid-80s the US government sought to achieve a yet more
ambitious feat. The new system, dubbed ‘Star Wars’ would not only detect a nuclear
missile attack. It would also, upon detection, fire missiles that would automatically
intercept and destroy any incoming missiles.

The system would have been highly dependent upon software. Software would
have been required to target and steer missiles travelling at many times the speed
of sound to hit other missiles travelling at a similar speed. Computation would have
been guided by a vast network of sensors and other computers. The system would
have to respond within very hard real-time constraints.

The programme never came to fruition for various reasons. However, what is of
particular interest from this book’s perspective is the fact that one of the core reasons
was the perception that it was impossible to construct a software system that was
going to be sufficiently reliable. This case was made forcefully by David Parnas
[106] (a prominent Computer Scientist whose work we will encounter later on),
who resigned from the panel of scientists responsible for implementing the system.

Toyota Unintended Acceleration Bug

In 2010 several news articles reported instances of Toyota cars failing to stop when
drivers attempted to break2. Toyota suggested that this could be due to faults with
the mats underneath the breaks (the break pedal perhaps getting stuck under the
mat), or that it was simply driver error that resulted in the crashes. After numerous

2 c.f. http://www.bbc.co.uk/news/business-12072394



10 2 What Is Software Quality, and Why Does it Matter?

deaths that apparently arose from this problem3, there was a growing suspicion that
the problem was not as trivial as Toyota were suggesting. Numerous victims and
their relatives took Toyota to court, arguing that the fault lay with the car’s software.

The court cases brought about a formal investigation of the source code itself
(by a team at NASA [85]), and an analysis of the software development procedures,
software metrics, and functionality by Professor Koopman of Carnegie Mellon Uni-
versity [86]4. These investigations were not able to reveal the specific bug in the
source code that would have led to the unintended accelerations. However, they
were damning about the software quality - highlighting the fact that the source code
was inscrutable, and that the software developers had evidently failed to adopt even
some of the most basic procedures to guard against faults (such as versioning, or
avoiding poor programming practice).

Volkswagen Dieselgate

In 2015, Volkswagen was rocked by the “Dieselgate” scandal. Investigators in the
US discovered discrepancies, indicating that a large number of their cars (the num-
ber eventually came to around 11 million [44] ) produced lower measures of harmful
Diesel emissions (NOx) during laboratory tests than they did during conventional
use. After further investigation it turned out that Volkswagen had fitted the affected
cars with ‘defeat devices’.

The “devices” were ultimately embedded software components that controlled
the Engine Control Unit (ECU). The ECU is a chip-set that, for the affected models,
was supplied by Bosch. The ECU takes as input a range out sensor-readings from the
car and, under control of the software embedded by the car manufacturer, modulates
the behaviour of the engine. The ‘ideal’ ECU settings depend on a raft of factors,
such as the engine temperature, atmospheric pressure, air temperature, etc. In the
case of Volkswagen, the software controlling the ECU guessed when the car was
undergoing a laboratory test and changed the parameters to the ECU to artificially
reduce the NOx emissions.

Was the “quality” of the software really at fault here? This depends on how we
choose to define and measure quality. Ultimately, the software did what it was de-
signed to do. It behaved “correctly”. However, in doing so, it served only a small
fraction of its stakeholders (i.e. Volkswagen). However, in doing so it also caused
a lot of damage. The defeat devices have been estimated to have caused 59 early
deaths in the US alone, and to have led to a ‘social cost’ of $450m [14]. A full recall
of the affected cars by the end of 2016 is estimated to prevent approximately 130
early deaths, and an estimated $850m in social costs.

3 http://www.cbsnews.com/news/toyota-unintended-acceleration-has-
killed-89/
4 Koopman’s presentation on his investigation [86] is very engaging.



2.1 Why Care about Software Quality? 11

Boeing 787 “Reboot” Problem

In 2015 the US Department for Transportation issued an “Airworthiness Directive”
(AD). The directive pertained to the Boeing 787 Dreamliner, which had been intro-
duced in 2011. The abstract of the directive contains the following summary [49]:

This AD requires a repetitive maintenance task for electrical power deactivation on Model
787 airplanes. This AD was prompted by the determination that a Model 787 airplane that
has been powered continuously for 248 days can lose all alternating current (AC) electrical
power due to the generator control units (GCUs) simultaneously going into failsafe mode.
This condition is caused by a software counter internal to the GCUs that will overflow after
248 days of continuous power. We are issuing this AD to prevent loss of all AC electrical
power, which could result in loss of control of the airplane.

The “repetitive maintenance task” in essence amounts to ‘rebooting’ the plane
periodically. The “overflow” occurs when a number (perhaps incremented continu-
ally throughout operation of the software without being reset or decremented) be-
comes too large to represent in memory. Overflows can result in exceptions, which
can lead to behaviour which is generally unanticipated. In this case, it would lead to
a complete loss of power in (and therefore control of) the aircraft.

The fault is surprising. For one, software in aircraft (especially software that is
potentially critical to safety) is subject to some of the most stringent standards in
existence (c.f. DO178-B/C [1]). Overflow errors are also sufficiently commonplace
that they are routinely checked for, especially within the various mechanisms stip-
ulated by the aforementioned standards. Nevertheless, even in the presence of such
standards and scrutiny, it remains possible for such ‘typical’ faults to avoid detection
and to be deployed on modern aircraft.

The fault is also, again, an illustration of why software quality assurance is so
important. There is of course the obvious reason of avoiding any harm. However,
there is also the practical problem here: software can be embedded into hardware
circuitry, within planes that are distributed across the globe. This can make the act
of fixing or updating software prohibitively expensive. This latter point of course
also applies to the Vokswagen Dieselgate scandal, where the world-wide recall of
the affected cars has run to billions of dollars.

Vulnerabilities and Cyber-attacks

The term ‘software exploit’ amounts to the deliberate abuse of a software bug, to
perhaps gain unauthorised access to a software system, either to steal its data, or
to influence its behaviour. As we have discussed previously, computer systems per-
meate everything – from individual smart-phones to transport / communications in-
frastructures (not to speak of missile defence systems). As such, the ability to gain
unauthorised control of these systems can convey a huge amount of power to the
attacker; exploits can be used to spy on individuals, or to disrupt the functioning of
entire sectors of a government.



12 2 What Is Software Quality, and Why Does it Matter?

It is no surprise that, as a result, a market has emerged in software exploits. An
undocumented software exploit (otherwise referred to as a ‘Zero-Day’ ) can be sold
on the black market for tens or hundreds of thousands of dollars. Obtaining, dis-
covering, and sometimes even creating such vulnerabilities has become a key tool
for government agencies across the world. This was highlighted in 2017 when Wik-
iLeaks released a tranche of thousands of confidential documents pertaining to the
cyber-attack capabilities of the US Central Intelligence Agency (which they named
Vault75). This included dozens of zero-day exploits that could enable access to data
on every-day consumer devices, from Apple and Android phones to the intercep-
tion of audio recorded by smart TVs. This was accompanied by a series of leaks by
a separate group (who called themselves ‘Shadow Brokers’), which included a list
of zero-day exploits and tools used by the US National Security Agency6. This list
included a range of exploits for implementations of the SMB protocol (popular on
Windows and Linux), along with utilities to collect information about potentially
exploited or exploitable PCs.

The ramifications of this leak became apparent when, the following month, the
WannaCry malware was released, which took advantage of one of the exploits re-
leased by the Shadow Brokers group. WannaCry ransomware was able to spread
through networks through an exploit within the SMB protocol that resided on huge
numbers of older Windows machines that had not been maintained with recent se-
curity patches. Once infected, the malware would prohibit access to the computer
whilst demanding payment of a ransom of $300. The attack affected hundreds of
thousands of computers across the globe, but took a particular hold within the UK
National Health Service (which has a particularly large number of legacy Windows
XP PCs), ultimately leading to a paralysis that saw many thousands of patients being
turned away from GPs, and many cancellations of operations on patients in hospi-
tals.

The WannaCry malware shared several hallmarks with the notorious StuxNet
malware, which had been deployed several years earlier, in 2010 in Iran. StuxNet
[88] found its way onto the computer infrastructure that controlled centrifuges,
which were key to processing Uranium for the Iranian nuclear programme. The
malware caused the centrifuges to spin out of control, causing significant damage
to the centrifuges and significantly denting Iran’s nuclear programme in the pro-
cess. The attack became notorious because of its complexity; the number of ways
in which it could spread from one computer to another, and sophistication by which
it ended up manipulating the hardware of the centrifuges. A dossier on StuxNet by
Symantec documented (amongst sundry others) the following features:

• Self-replicates through removable drives exploiting a vulnerability allowing auto-execution.

• Spreads in a LAN through a vulnerability in the Windows Print Spooler.

• Spreads through SMB by exploiting the Microsoft Windows Server Service Vulnerabil-
ity.

• Updates itself through a peer-to-peer mechanism within a LAN.

5 https://wikileaks.org/ciav7p1/
6 https://github.com/misterch0c/shadowbroker/



2.1 Why Care about Software Quality? 13

• Exploits a total of four unpatched [zero-day] Microsoft vulnerabilities, two of which are
previously mentioned vulnerabilities for self-replication and the other two are escalation
of privilege vulnerabilities that have yet to be disclosed.

• Contacts a command and control server that allows the hacker to download and execute
code, including updated versions.

• Fingerprints a specific industrial control system and modifies code on the Siemens PLCs
to potentially sabotage

• Hides modified code on PLCs, essentially a rootkit for PLCs.

Whereas WannaCry had merely exploited one particular vulnerability, StuxNet
was particularly surprising for its time because it combined several zero-day vulner-
abilities in a highly targeted way. This highlights the power that can be afforded to
governments by building up repositories of zero-day exploits. However, the release
of the WannaCry malware (which had been created from a leak of such exploits)
also highlighted the enormous danger that such exploits can pose to society (as well
as the ethical questions that have to be confronted by agencies who decide not to
disclose their existence).

Software quality and security go hand-in-hand. Exploits in essence take advan-
tage of bugs – lapses in quality that were not prevented, detected, or tracked by the
developers. The existence of a thriving market in exploits demonstrates that there
is a will (both by some individuals and organisations) to undermine the privacy and
even safety of users. This places an onus on developers to ensure that the opportu-
nities for such exploits are minimal.

Code Quality and Maintainability

Successful software tends to evolve at a rapid pace. Large numbers of developers
can end up simultaneously updating large numbers of code files, often to different,
even conflicting, ends. If this change is not managed properly, the design and read-
ability of the code base can start to deteriorate. It can become harder to understand,
increasing the risk of introducing bugs, and the cost of maintaining the system fur-
ther down the line.

One extreme example of the scale and complexity of a code base can be found
at Google [111]. The Google code base contained in 2016 approximately 1 billion
files, including 9 million files of source code, comprising approximately 2 billion
lines of source code. It had a history of approximately 35 million commits to the
version repository spanning Google’s 18 years of existence. In 2016 it was being
updated by approximately 40,000 commits per day.

Although Google has managed its code quality, there are numerous examples of
organisations where the opposite has happened. A notorious example of this was
Denver Airport’s automated baggage handling system [40], which was introduced
with a degree of fanfare in 1994, at an initial cost of $186 million. The system was
unfortunately beset by glitches, and none of the airlines apart from United (the air-
port’s busiest airline) switched over to the system. However, the continued problems
with the system led to daily maintenance costs of $1 million. Ultimately, United de-



14 2 What Is Software Quality, and Why Does it Matter?

cided to switch the system off, and to resort to normal ‘manual’ baggage-handling,
because they realised that this would save them $1 million per month.

2.2 What Drives Software Quality Assurance?

There are many reasons that an organisation might seek to ensure that its software
is of a high quality. These often become apparent when quality fails (as we have
seen above); poor software quality can have a myriad of consequences for users,
businesses, and other stakeholders. Some of the key drivers are listed below.

Exercise: Before we read some suggestions, try to list what you consider to be
key, overriding reasons that might drive an organisation to ensure that the software
it develops is of a high quality.

Reputation

Software developers and their organisations rely on reputation. A poor quality prod-
uct (or family of products) can be hugely damaging for business. Software bugs can
have immediate impacts on custom, especially in customer-facing industries. The
automotive software problems with Volkswagen and Toyota have led to an enor-
mous amount of negative publicity.

Limiting Technical Debt

Cost is an overriding factor in software development. Poor quality software tends
to be expensive to develop and to maintain, which can have a detrimental effect the
organisations that end up maintaining the software in the longer term. These costs
are often referred to as ‘Technical Debt’; the organisation in charge of the software
needs to invest a disproportionate amount of resources into maintaining and running
the software to make up for (and to try and remedy) poor design and implementation
decisions.

Software Certification

Depending on the domain of the software (e.g. software for civilian aircraft or nu-
clear power stations), the development and use of software might require some form
of certification, which can often require evidence of the application of various qual-
ity control and assessment measures. For example, software in modern civilian air-



2.2 What Drives Software Quality Assurance? 15

craft often has to be certified to the DO178 standard [1], which imposes require-
ments on every aspect of the software development lifecycle.

Organisational Certification

As we shall see, the procedures and structures that are employed for software de-
velopment within an organisation can have a huge bearing on the quality of the
software that it produces. There are various ways by which to categorise the extent
to which an organisation employs good practice. International certification proce-
dures and standards such as CMMI7 and ISO90018 (more about these later) exist,
so that software development organisations can ensure and continuously improve
their “capability” to develop high quality software. Being certified to such standards
can play an important role when companies bid for software development contracts.
For example, the US Department of Defence has requirements, grounded in CMMI,
on the maturity of the software development processes employed by its contractors.

Legality

Depending on the country, there may be overriding legal obligations that apply to or-
ganisations that use software. For example, in the UK, organisations have to demon-
strate that the risk posed by their technology (this includes software) is “As Low As
Reasonably Practicable” or “ALARP”9. In other words, every “practicable” measure
must have been taken to demonstrate that (in our case) the software system does not
pose a risk to its users.

Moral / ethical codes of practice

Even in cases where a software system is not covered by industrial certification and
legislation, and where its failure is not necessarily business or safety-critical, there
can remain a moral obligation to the users. Professional organisations such as the
American Computer Society (ACM) have explicit ethical guidelines and codes of
practice10, with statements such as “Software engineers shall act consistently with
the public interest”. This clearly implies that they ought to do whatever possible to
maximise the quality of their software and to prevent it from containing potentially
harmful bugs.

7 https://www.sei.cmu.edu/cmmi/
8 http://www.iso.org/iso/home/standards/management-standards/iso_
9000.htm
9 http://www.hse.gov.uk/risk/theory/alarpglance.htm
10 http://www.acm.org/about/se-code



16 2 What Is Software Quality, and Why Does it Matter?

Exercise: Read through the ACM ethical guidelines, and think about how
these align with the development of the Volkswagen Dieselgate software mentioned
above.

2.3 Defining “Software Quality”

Exercise: Write down 6 attributes of a product (possibly a software system) that
in your opinion relate to its quality.

Software quality is notoriously difficult to capture. Although you might have found
the above exercise straightforward, it is likely that your definition would not nec-
essarily fit with that of your colleagues. Different people value different attributes
of a software system. Some favour reliability, others favour usability, or the number
of features, or the cost. In this subsection we will look at some of the overriding
attempts to define quality, and some mechanisms that can be used to capture it.

2.3.1 The Challenge of Defining Quality

In 1931, Walter Shewhart [121] noted that the notion of “quality” is multidimen-
sional. When we speak of the “quality” of a product, we are commonly referring to
a multitude of individual qualities. He used the example of a relay switch, where its
‘goodness’ might be reflected in the qualities of capacity, inductance, and resistance.

The challenge of defining quality ultimately lies in determining what these in-
dividual ‘qualities’ are. The wrong choice of qualities can ultimately undermine a
product, because limited resources are focussed on the wrong areas. Does one aim
for a product with lots of features and accept that some of them may not function
perfectly? Or does one aim to produce a focus with relatively few features, but that
are implemented well? Should focus be placed on security or usability?

Over the past century, several schools of thought have emerged to answer such
questions. Chief amongst these are the philosophies of Joseph Juran (a colleague of
Shewhart’s), and Phil Crosby, two key figures in the broad area of quality assurance.
The former placed an emphasis on satisfying the user, whereas the latter placed an
emphasis on satisfying fixed, objective requirements:

• Fitness for use (Joseph Juran): Joseph Juran had been a contemporary of Walter
Shewhart, and embodied the idea that the quality product revolves around its
fitness for use [78]. He argued that, ultimately, the value of a product depends
on the customer’s needs. Crucially, it forces product developers to focus on those



2.3 Defining “Software Quality” 17

Fig. 2.1 Walter Shewhart (1891-1967) was an American Physicist and Statistician. He is known
as the father of ‘statistical quality control’ and his work had a profound impact on quality con-
trol in the engineering and manufacturing sector, and eventually on software engineering as well.
c© Nokia Corporation, reused with permission.

aspects of the product that are especially crucial (the vital few objectives) as
opposed to the useful many.

• Conformance to Requirements (Phil Crosby): Phil Crosby embodied a differ-
ent tone. He defined quality as “conformance to requirements” [38]. His opinion
was that quality can be achieved by the disciplined specification of these require-
ments, by setting goals, educating employees about the goals, and planning the
product in such a way that defects would be avoided.

On the one hand we have Crosby’s view that quality is an intrinsic property of
the product. On the other hand we have Juran’s view that quality is perceived by
the user. As such, Crosby’s view tends to be referred to as ‘product-centric’, whilst
Juran’s view is referred to as ‘user-centric’.

Occasionally, these two definitions can come into tension. This is nicely illus-
trated by the Volkswagen Dieselgate scandal discussed previously. Viewed from a
strictly product-centric perspective, the software is doing what it is supposed to do.
However, viewed from a user-centric perspective, the opposite is true. Users clearly
did not want a car that had cheated its way through emissions tests. This is corrob-
orated by the fact that, in the UK at the time of writing, an “10,000 owners had
already expressed an interest in suing VW”11.

11 http://www.bbc.co.uk/news/business-38552828



18 2 What Is Software Quality, and Why Does it Matter?

Exercise: Take the six quality attributes you wrote down earlier, and divide them
into what you would consider to be product-centric properties, or user-centric.

2.3.2 Quality Models - a Historical Perspective

It is important for software developing organisations to have a well-defined set of
principles that can be used as a basis for discussing and assessing software quality.
Given the various ways in which quality can be defined, there have been a multitude
of efforts to formalise definitions. These formalisations are called quality models. In
this section, we will cover some of the most prominent models.

The term ‘formalisation’ is perhaps a bit of an overstatement. Quality models are
rarely formal in the mathematical sense. Instead, they tend to take the shape of a
structured hierarchy - a tree. Terms at a higher level in the tree tend to correspond to
more abstract concepts that are deemed to be of relevance from a quality perspective,
and these tend to be subdivided into more granular, low-level concepts.

Over the years there have been many different attempts to create ‘definitive’ mod-
els. The first attempt was made by Jim McCall in 1977 [36], whose model was devel-
oped for software development within the US Airforce. He defined a (hierarchical)
set of “Quality Factors”, shown in Figure 2.2.

• Product Operation Factors

– Reliability

– Efficiency

– Integrity

– Usability

– Correctness

• Product Revision Factors

– Maintainability
– Flexibility
– Testability

• Product Adaptability Factors

– Portability
– Reusability
– Interoperability

Fig. 2.2 McCall’s Quality Model

A couple of years later, in 1979, Barry Boehm extended McCall’s model [22].
He contended that, although McCall’s model was useful because it made the various
quality concerns explicit, it was difficult to use. Specifically, he argued that it was
difficult to quantify the extent to which a product fulfilled its quality model - (i.e. to
answer the question “how good is it?”).



2.3 Defining “Software Quality” 19

To address this, he suggested that the low-level nodes in the hierarchy should be
attached to specific metrics – techniques that could be used to provide a quantita-
tive value for a given aspect of the system (we will cover these in Chapter 8). He
broadly maintained the three high-level categories proposed by McCall, but substi-
tuted some of the leaf nodes with definitions that were more explicitly measurable
(whilst eliminating those nodes that were not). His model is shown in Figure 2.3.

His important contribution was not so much the model itself (as you will see,
these have changed over the years). It was however this principle that, in order to
be useful, a model had to be measurable. That any aspect of a model had to be
quantifiable for the model to be of value to an organisation.

• As-Is Utility

– Reliability
– Efficiency
– Usability

• Maintainability

– Understandability

– Flexibility
– Testability

• Portability

– Portability

Fig. 2.3 Boehm’s Q-Model

Boem’s Q-Model and McCall’s prior model formed the basis for subsequent in-
ternational standards that were used to define software quality. One notable example
is ISO9126, which was published in 1991. This is shown in Figure 2.4.

• Functionality

– Suitability
– Accuracy
– Interoperability
– Security
– Functionality Compli-

ance

• Reliability

– Maturity
– Fault Tolerance
– Recoverability
– Reliability Compliance

• Usability

– Understandability
– Learnability
– Operability
– Attractiveness
– Usability Compliance

• Efficiency

– Time Behaviour
– Resource Utilization
– Efficiency Compliance

• Maintainability

– Analyzability

– Changeability
– Stability
– Testability
– Maintainability Com-

pliance

• Portability

– Portability
– Adaptability
– Installability
– Co-Existence
– Replaceability
– Portability Compliance

Fig. 2.4 ISO 9126



20 2 What Is Software Quality, and Why Does it Matter?

• Functional Suitability

– Functional Complete-
ness

– Functional Correctness
– Functional Appropri-

ateness

• Performance Efficiency

– Time Behaviour
– Resource Utilisation
– Capacity

• Compatibility

– Co-existence
– Interoperability

• Usability

– Appropriateness
– Realisability
– Learnability
– Operability
– User Error Protection
– User Interface Aesthet-

ics
– Accessibility

• Reliability

– Maturity
– Availability
– Fault Tolerance
– Recoverability

• Security

– Confidentiality

– Integrity
– Non-repudiation
– Authenticity
– Accountability

• Maintainability

– Modularity
– Reusability
– Analysability
– Modifiability
– Testability

• Portability

– Adaptability
– Installability
– Replaceability

Fig. 2.5 ISO/IEC25010

The ISO9126 standard was later replaced by ISO/IEC25010 [5, 97], shown in
Figure 2.5. This has since, again, been revised and built upon in recent years. There
are too many models to provide a complete reference in this book, and indeed that
would miss the point. The bottom line is that the list of software quality concerns is
continuously growing to respond to changes in technology and the way in which it
is used. Quality models, which are often enshrined in international standards, have
therefore become increasingly elaborate.

• Safety - Ability to operate free from risk of causing unacceptable levels of harm.
• Reliability - Behaviour of the (sub-) system in a manner that is predictable and not liable to

lead to faulty behaviour.
• Availability - Ability to perform tasks when requested.
• Resilience - Sensors are coherent and system is able to function in the case of a fault, damage,

or error.
• Security - Ability to function without inadvertent or intentional external influence.

Fig. 2.6 PAS-754 Software Trustworthiness Aspects

So far, the quality standards listed have sought to encompass every conceivable
angle of quality (it is the proliferation of these qualities that explains their continual
growth). The final standard that we include here bucks this trend, by only focussing
on those aspects of quality that are of concern to the operation of the software in



2.4 Key Points 21

question. The PAS-754 standard, shown in Figure 2.6 is not presented as a hierarchy
of factors (though one can easily see how the high-level factors such as safety could
be broken down into sub-factors).

As is the case with most aspects of quality assurance, there is no single model
that represents the “best” choice. Quality requirements can vary depending on the
usage domain, the nature of the users, and the software development organisation.
xAs a consequence there has been a gradual movement towards the development
of customised quality models. Approaches such as QUAMOCO [131] have been
developed which, starting from established models such as ISO/IEC25010 (Figure
2.5), enable organisations to refine and customise quality models to their specific
context and needs.

2.4 Key Points

• Software is pervasive. Everyday devices, from personal / household items such
as phones and TVs are controlled by software. Software is central to financial
markets, energy, communications, and transport infrastructure.

• Poor software quality can have far-reaching consequences. Faults in a soft-
ware system can lead to incorrect software behaviour. Some of the examples we
covered illustrate just how far-reaching those consequences can be – from en-
abling far-reaching cyber-attacks to raising false alarms of a nuclear strike. Even
if the software is functionally correct, a poorly constructed software system can
become difficult and expensive to maintain, and raise the risk of the introduction
of critical faults over the longer term.

• There are several drivers for software quality. Software has many responsi-
bilities to many stakeholders. Developers and organisations that deploy software
systems have ethical and legal responsibilities towards the users. There are also
business considerations (poor quality software can, if it is customer-facing, deter
customers, and can become increasingly expensive to run over the longer term).

• There is no single canonical definition for ”software quality”. The question
of what constitutes a “high quality” system is continuously shifting, and depends
to a large extent on the broader context within which it is deployed.

• There are two prevailing perspectives on software quality: Juran’s user-
centric perspective, and Crosby’s product-centric view. Both of these viewpoints
pre-date software-engineering as a discipline, and were used to assess quality in
a manufacturing context.

• Software quality is commonly formalised in software quality models. There
have been numerous models that have been proposed over the decades. These
models have grown over time. It is important to be able to, for a given model, be
able to link specific concepts of quality to measurable artefacts in the system (we
will explore this in more detail in Chapter 8).



Chapter 3

Software Development Processes and Process

Improvement

Software systems can be extremely complex. There can be numerous stakeholders,
with different (often conflicting) requirements. There can be, as we have already
seen, a raft of (often conflicting) quality concerns that need to be satisfied. However,
time and resources are often limited.

For a software development project to be successful, it is vital that the devel-
opment team are able to organise themselves in such a way that they are able to
maximise their productivity within the constraints of a project. This must include
some guidance in addressing the key questions that arise, such as:

• What are the (most important) requirements?
• What specific tasks need to be achieved in order to fulfil these requirements?
• By when (and in what order) should these tasks be carried out to ensure that the

system is delivered on time?
• What is the modus-operandi; what is the specific sequencing of development

activities within the team? For example, how should a design be produced, or
how should developers make their actual contributions to the code base in such a
way that conflicts with other contributions are minimised?

This must all be accomplished in the face of a raft of challenges. The circum-
stances under which a software system is to be deployed can change, or a capricious
client can change their mind, leading to sudden changes in requirements. Develop-
ment activities can take longer than anticipated. Staff may be making contributions
to the code base from geographically disparate locations, and may not be in-sync
with each other.

Many of the essential organisational questions can be addressed by adopting a
‘development process’. A development process (often referred to as a “Software
Development Lifecycle”) refers to a particular way of organising the activities that
span the development (and sometimes deployment) of a software system. They set
out an idealised work-flow that can be used to orchestrate activities within an organ-
isation or development team.

The choice of development process is critical when it comes to assuring the
quality of a software system. A failure in quality – the existence of bugs, or cost-

23© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_3



24 3 Software Development Processes and Process Improvement

overruns, can usually be blamed (at least in part) on a poor choice of development
process, or a lack of adherence to it. Accordingly, if an organisation wishes to im-
prove the quality of the software it produces, an obvious starting point is to look at
improving the underlying software development processes.

Ultimately, this chapter is about the relationship between the quality of a prod-
uct, and the process that was used to develop it. One key to ensuring quality lies
in adopting a scientific approach to the development process; devising a process,
trying it, observing the quality of the result, and using this as a basis for refining the
process. It was this systematic approach that fired the revolutions in manufacturing
that spurred much of the technological progress throughout the 20th century.

This chapter starts by providing a historical introduction to manufacturing, fo-
cussing on the innovations in mass-production that linked processes to the quality
of the products they produced. In this context we focus on concepts such as PDCA -
linking iteration to process improvements, which went on to form the basis for itera-
tive software development techniques such as Agile software development. We then
introduce three popular software development process families - the Waterfall pro-
cess, Iterative and Incremental software development and its offspring - the Spiral
model and agile software development. We conclude the chapter with an overview
of Software Process Improvement (relating this to manufacturing process improve-
ment frameworks which we cover at the beginning of the chapter).

3.1 Process and Process Improvement in Manufacturing

In the abstract, software engineering can simply be seen as the product of a process
– a sequence of activities that culminate in a software system. From this perspective,
software engineering is comparable to any other manufacturing activity. Crucially,
the very innovations that led to step-changes in manufacturing – breaking complex
processes down into simple ones, and continuously improving these processes –
have strongly influenced today’s most successful software development practices. It
is for this reason that we start this chapter with a (very) brief look at some of the key
points in the history of manufacturing.

3.1.1 The Industrial Revolution

The birth of manufacturing as we know it today – the industrial production of
complex products and materials – occurred with the Industrial Revolution in Great
Britain in the late 18th and early 19th centuries. The arrival of steam power enabled
complex products to be produced by machines instead of humans. Factories were
constructed to manufacture a huge range of materials and products (especially iron,
steel, and textiles).



3.1 Process and Process Improvement in Manufacturing 25

The key to this leap was mechanisation. What had been complex, fiddly activities
carried out by humans (e.g. weaving thread into a textile) were rethought in such a
way that they could be carried out automatically, by machines. If a task remained too
fiddly to automate, then it would still be sufficiently simple for a relatively unskilled
human to carry out. Reducing dependence upon skilled humans made the activity
cheaper.

Exercise: Aside from being cheaper to run, what might the other benefits of
using machines to manufacture products instead of relying upon skilled humans?

In the early 19th century, many of the innovations that spurred the British Indus-
trial Revolution were replicated around the world. In the US this was epitomised by
the emergence of the assembly line. As had happened with mechanisation through-
out the industrial revolution, assembly lines enabled a complex activity to be broken
down into simple steps. However, assembly lines lifted this to a higher level – in-
stead of focussing on specific activities (such as weaving), assembly lines enabled
entire manufacturing processes to be broken down into their simple, constituent
steps.

Fig. 3.1 Workers on the first moving assembly line put together magnetos and flywheels for Ford
cars. Taken by unknown photographer in 19132.

One of the early proponents of the assembly line was Henry Ford. Ford used
assembly lines to systematise the entire production of cars (illustrated in Figure
3.1). Although much of the production was not fully automated, the individual steps
that required human input were sufficiently simple that they did not require skilled

2 Source:
https://www.mediawiki.org/wiki/File:Ford_assembly_line_-_1913.jpg



26 3 Software Development Processes and Process Improvement

labour. Assembly lines would (often on a rolling band) deliver partly assembled
components to a worker, who would carry out a specific (often menial) task, before
it was passed along to the next worker, for the next task.

In this context of mass-production, it soon became apparent that there was a di-
rect link between the profitability of a company and its manufacturing processes.
Unnecessary steps in the manufacturing process could render the product more ex-
pensive or complex than it needed to be. Failures to safeguard against mistakes
would lead to a poor-quality product, which would make it less competitive against
rivals.

3.1.2 Plan Do Check Act

It was against this backdrop that Walter Shewhart (as introduced in Chapter 2)
worked on quality assurance, and specifically the issue of process improvement. His
employers at Bell Telephone had been struggling to address problems with some of
their transmission equipment (which was usually buried underground). They noted
that the problems were especially difficult to pinpoint and eliminate because the pro-
cess that had been used to manufacture the equipment varied across the company.

Shewhart observed that the key to eliming these manufacturing problems was to,
at least at first, eliminate the variability in the manufacturing process. If a consistent
process was used to manufacture the product, it would follow that any problems with
the resulting product would have a specific cause, making them easier to eliminate
by refining the process.

Plan

Do

Check

Act

Fig. 3.2 Shewhart’s PDCA cycle. This forms the essential foundation for any process improvement
framework.



3.1 Process and Process Improvement in Manufacturing 27

One of Shewhart’s key innovations was the “Shewhart Cycle”, which was later
popularised as the Plan-Do-Check-Act (PDCA) cycle, shown in Figure 3.2.

• Plan: Set out the goals of the project, and the set of procedures you intend to
apply to achieve them.

• Do: Carry out the planned set of procedures. Take note of any problems you
encounter along the way.

• Check: Review the problems that were encountered during the project, along
with any problems that have arisen with the final product. For each problem, try
to pinpoint a reason or cause.

• Act: Try to identify changes to the procedures that would eliminate or mitigate
the problems that you have identified.

Although Shewhart is credited with PDCA, it was brought to wide attention by
a colleague of his, Edwards Deming (also a leading figure in Quality Assurance).
As we will see in later sub-sections, this approach to retrospective assessment and
improvement forms the basis for today’s software process improvement techniques.

3.1.3 Quality-Driven Manufacturing in Japan

In the wake of the second world war, Japan made a concerted effort to rebuild the
country as an economic power (as opposed to a military one). International experts
in manufacturing were invited to consult for Japanese corporations, run courses
in quality management, and were often offered positions in Japanese universities.
Many luminaries in quality assurance migrated from the US to Japan, including
familiar names – Walter Shewhart, Joseph Juran, and Edwards Deming. They (es-
pecially Deming) were to a large part credited with spurring what became known as
the Japanese “economic miracle”.

One especially celebrated quality assurance ‘framework’ to arise from this period
is the Toyota Production System. In the aftermath of the war, Toyota were struggling
as an organisation, and there was a suspicion that this was due to inefficiencies in
its manufacturing processes. This was put into perspective when their manager at
the time visited Ford’s Rogue manufacturing plant in the US. Whereas Toyota had
constructed 2,500 vehicles in their entire history, he observed with astonishment
how Ford were producing 8,000 vehicles per day.

As a consequence of this realisation, there was a drive within Toyota to over-
haul its manufacturing processes to increase production capacity. This was achieved
with an overriding aim of eliminating waste. The Toyota Production System (TPS)
consisted of a variety of maxims and guidelines that revolved around this aim, and
remain an active part of the development ethos to this day. TPS is underpinned by
the following 12 principles3.

3 http://blog.toyota.co.uk/13-pillars-of-the-toyota-production-
system



28 3 Software Development Processes and Process Improvement

• ‘Kaizen’ - Continuous Improvement: Staff are encouraged to continuously look
for areas in which procedures can be improved and refined.

• ‘Just In Time’ - this term was coined for the TPS, and means that products should
only be developed if they are required and when they are required. This gave rise
to the idea of so-called “pull-through manufacturing”.

• ‘Jidoka’ - develop techniques to capture faults as close to their source as possible.
• ‘Poka Yoke’ - prevent errors from occurring in the first place by embedding pre-

vention mechanisms into the manufacturing process.
• ‘Hansei’ - learn from mistakes in order to prevent them from recurring.
• ‘Andon’ - enable workers to immediately highlight what they perceive to be a

threat to [vehicle] quality by providing alert mechanisms.
• ‘Hejunka’ - have the correct number of parts required to build a vehicle.
• ‘Genchi Genbutsu’ - the best way to solve a problem is to be present and to see

it for yourself.
• ‘Nemawashi’ - decisions should be arrived at as a team, not dictated by individ-

uals.
• ‘Kanban’ - a board to communicate the state of the manufacturing system4.
• ‘Muda, Muri, Mura’ - eliminate waste.
• ‘Genba’ - understand the work load on individuals, and ensure that processes are

as transparent as possible to facilitate this understanding.

Exercise: Many of the TPS maxims are recognisable in modern software devel-
opment (in various guises). Based on your current knowledge, see if you can relate
any of them to current software engineering practice.

Exercise: Relate relevant parts of TPS to PDCA.

In the 80s, and the aftermath of the Japanese ”economic miracle”, there was a
significant stagnation in the economies of Europe and the US. In the face of compe-
tition from highly successful Japanese manufacturers the UK became (for the first
time since the industrial revolution) a net-importer of goods. This led to much intro-
spection, both within the UK and the US. There was an admiration of the disciplined
use of quality assurance and improvement techniques in Japan, and an acknowledge-
ment that a similar level of discipline and innovation was required in Europe and the
US if their economies were going to compete.

As a good illustration of this introspection (and of the acknowledgement of the
role of quality management), watch the 1980 NBC documentary If Japan Can, Why
Can’t We?[118]. The film features several leading figures who were so instrumental
in the success of the Japanese economy. At one point early on in the documentary,

4 Anybody from an Agile software development background will be familiar with the notion of a
Kanban board. This was directly inspired by the TPS, and is something we will come back to later
on in this book.



3.1 Process and Process Improvement in Manufacturing 29

the narrator states the following, which nicely captures the sentiment of the docu-
mentary:

In a recent American study of one type of integrated circuit [. . . ] the best American product
failed six times more often than the best Japanese product - six times. Built in quality and
reliability pushed Japanese productivity up, and American productivity down.

Fig. 3.3 Aftermath of the Challenger explosion. NASA, 1986, reprinted with permission5.

This crisis of confidence was brought into sharp relief in January 1986, when
the Challenger space shuttle exploded shortly after lift-off, killing its seven crew
members (six astronauts and a school teacher). In the aftermath, a commission was
formed, including notable pilots, astronauts, politicians, and one scientist, to inves-
tigate the cause of the explosion. The scientist in question was Richard Feynman,
a nobel-prize winning physicist. Whereas the commission were reluctant to publish
findings that might embarrass NASA, Feynman embarked on a forensic examination
of the accident6

Feynman’s findings did indeed end up causing considerable embarrassment.
They did so because they unflinchingly exposed failures with the processes that
were used within NASA. In particular, he exposed the absence of proper lines of
communication, whereby it became routine for different groups of staff (e.g. engi-
neers and management) to have entirely contrasting opinions about the safety of a
shuttle, or component within the shuttle.

5 Source:
https://www.mediawiki.org/wiki/File:Challenger_explosion.jpg
6 In 2013 the BBC produced The Challenger, an excellent documentary of Feynman’s part in the
Rogers Commission.



30 3 Software Development Processes and Process Improvement

Exercise: Read the appendix. It is brilliantly written, managing to communicate
the various complexities and technicalities to a general audience, but managing to
remain forensic and convincing throughout.

Here is the opening paragraph of his final report (this was only included in the
final Rogers Report [27] as an appendix to minimise embarrassment to NASA):

It appears that there are enormous differences of opinion as to the probability of failure
with loss of vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in
100,000. The higher figures come from working engineers, and the very low figures come
from management. What are the causes and consequences of this lack of agreement? Since 1
part in 100,000 would imply that one could put a shuttle up each day for 300 years expecting
to lose only one, we could more properly ask ”What is the cause of management’s fantastic
faith in the machinery?”

Exercise: List some of the TPS maxims that, if implemented, might have pre-
vented the Challenger disaster.

3.1.4 Total Quality Management

In Europe and the US it became generally accepted that, in order to compete eco-
nomically with Japan and to prevent disasters such as the Challenger disaster from
recurring, there needed to be a concerted effort to improve quality assurance pro-
cesses. One technique to arise from this drive became known as Total Quality Man-
agement (TQM). Although TQM has taken on a number of meanings, it broadly
represents an approach to management that aims for long-term success by linking
quality with customer satisfaction. Its essential principles can be summarised as
follows [80]:

• Customer focus: The objective is to achieve total customer satisfaction. Cus-
tomer focus includes studying customer’s wants and needs, gathering customers’
requirements, and measuring and managing customers’ satisfaction.

• Process: The objective is to reduce process variations and to achieve continuous
improvement. This element includes both the business process and the product
development process. Through process improvement, quality will be enhanced.

• Human side of quality: The objective is to create a company-wide quality cul-
ture. Focus areas include leadership, management commitment, total participa-
tion, employee empowerment, and other social, psychological, and human fac-
tors.

• Measurement and analysis: The objective is to drive continuous improvement
in all quality parameters by a goal-oriented measurement system.



3.2 The Software Development Process 31

Exercise: Can you relate elements of PDCA and Toyota’s TPS to the TQM
principles?

Exercise: In what way does TPS relate to the Joseph Juran’s take on quality?

Exercise: Read Feynman’s appendix of the Rogers Commission Report. Attempt
to identify aspects of TQM that might not have been adopted within NASA at the
time.

TQM is the embodiment of a ‘Process Improvement’ framework. There is a focus
on what customers value, and this is used to drive improvements in the underlying
processes used to manufacture products. Employees are seen as intrinsic to the man-
ufacturing process, and are relied upon to assess a process, and to implement change
if required.

The use of TQM per-se has waned in the last couple of decades. It has however
inspired several derivative processes that have become widespread, especially in Eu-
rope and in the US. These include Motorola’s Six Sigma approach7 and the ISO9000
standard8. These are beyond the scope of this book. However, in the software devel-
opment domain, TQM also influenced the development of the widely used CMMI
approach, which is discussed later in this chapter.

3.2 The Software Development Process

In the earlier days of software development (pre-70s), the very idea that software
was something that had to be “engineered” was not widely understood. Software
development was seen as a simple, quasi-administrative process. The widespread
view was that any reasonably able engineer (in the traditional sense of the word)
could turn their hand to programming. This, after all, merely consisted of “build-
ing a flow-chart and turning it into computer code” (the phrasing comes from this
charming 1962 film on “Programming” by Bell Labs9).

Clearly this attitude failed to appreciate just how complex software development
can be. Nevertheless there were several notable successes. Figure 3.4 shows Mar-
garet Hamilton, who was the software development lead for the Apollo 11 moon
landing mission. The software was highly complex for its time (it comprised approx-
imately 450,000 lines of code and was responsible for, amongst other things, man-
aging the allocation of power to different parts of the spacecraft). The source code

7 https://en.wikipedia.org/wiki/Six_Sigma
8 https://en.wikipedia.org/wiki/ISO_9000
9 https://www.youtube.com/watch?v=dFZecokdHLo



32 3 Software Development Processes and Process Improvement

is now available online10, and is worth a read, especially for the code comments,
which have also been transcribed. These convey a good impression of how the de-
velopers struggled at times to fully understand some of the details of the code. A
good example is the module LUNAR LANDING GUIDANCE EQUATIONS.agc,
where comments for variables include “TEMPORARY, I HOPE HOPE HOPE”, and
“Numero Mysterioso”. Nevertheless, the mission succeeded and the software did its
job. Considering that this took place before the emergence of software engineering
as a discipline and before a widespread appreciation of software complexity, this
was an astonishing feat.

Fig. 3.4 Pioneer of “Software Engineering” Margaret Hamilton standing next to print-outs of the
source code for the Apollo 11 moon landing mission. Draper Laboratory 1969; reprinted with
permission12.

This somewhat dismissive attitude to software development gradually changed
as the engineering challenge was exposed by an increasing prevalence of notable
software-related problems. The complexity of software systems, coupled with the
fact that they often required continuous development and maintenance, inevitably
started to lead to problems. This realisation was perhaps best symbolised by the
1968 NATO conference on Software Engineering, where the term “software crisis”
was coined. The concept was summarised in Edsger Dijkstra’s 1972 Turing award
lecture [43]:

10 https://github.com/chrislgarry/Apollo-11
12 Source: https://www.mediawiki.org/wiki/File:Margaret_Hamilton.gif



3.2 The Software Development Process 33

“The major cause of the software crisis is that the machines have become several orders
of magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become
an equally gigantic problem.”

The problem was subsequently elaborated by a collection of essays on the chal-
lenges of developing software from an industrial perspective (now hailed as land-
marks in software engineering literature) by Fred Brooks [25]. He drew upon his
experience of working with IBM on the development of their OS/360 operating sys-
tem.

Exercise: The most famous of Brooks’ essays is entitled “No Silver Bullet -
Essence and Accident in Software Engineering”. Read this essay to obtain what
remains a concise and highly relevant insight into the core software engineering
challenges [and thus the challenges to quality assurance].

This widespread recognition of a crisis gave rise to several efforts to systematise
software development. There was a general recognition that good engineering prac-
tices ought to be developed to make software development more “rigorous”. This
resulted in a large number of methodologies which sought to build guarantees of
quality into the development process. As we shall see, many of these were inspired
by the manufacturing principles that were explored in Section 3.1.

3.2.1 The Waterfall Model

The canonical software development process is generally referred to as the Water-
fall Model [114]. This envisages the software development process as an entirely
sequential, staged process. Development starts off with the elicitation of require-
ments, moves on to design, etc., until the product is finalised and can be tested and
deployed. The process is illustrated in Figure 3.5.

The waterfall model represents the first popular effort to provide a formal de-
scription of the software development process. Perhaps for the lack of a better al-
ternative it became the de-facto development standard. It was promoted by the US
Department of Defence throughout the 80s, and enshrined in standard DOD-STD-
2167A [2], which stated that:

... the contractor shall implement a software development cycle that includes the following
six phases: Preliminary Design, Detailed Design, Coding and Unit Testing, Integration, and
Testing.

Exercise: Consider the possible flaws of the Waterfall approach. What assump-
tions does the approach make about the software developer(s)? What situations



34 3 Software Development Processes and Process Improvement

Requirements

Specifications

Design

Implementation

Integration & 
Testing

Operation & 
Maintenance

rements

Specifi ations

De

fica

gn

Implem

esig

ntation

Integrati
Tes

men

ion & 
sting

Operatio
Maintena

rati
stin

Fig. 3.5 Waterfall model.

does it suit or not suit? Looking at the model, consider the testing box. Consider
the following question: What happens in this model if tests detect serious bugs at a
requirement level?

Clearly, the Waterfall model leaves little room for error. The requirements must
be correct the first time around, because once development has begun, there is no
going back (at least not according to the model). As a consequence, implementation
of the waterfall model often included a substantial emphasis on documentation, and
on the various processes that were involved in making sure that the documents were
correct.

It is worth highlighting that, although the Waterfall approach as depicted in Fig-
ure 3.5 represents the standard interpretation, it does not represent the approach as
originally envisaged by Royce [89]. Royce’s proposed process in fact included the
suggestion of two iterations, where the first iteration focussed on the development
of a prototype. However, this was discarded in what eventually became the predom-
inant, more rigid, sequential interpretation.

The various problems that beset the Waterfall process became apparent through-
out the course of the 80s and 90s. The need to nail down all requirements up-front,
and for these requirements to be completely accurate, often turned out to be unreal-



3.2 The Software Development Process 35

istic. This made adoption of the waterfall model highly risky; if the requirements-
elicitation stage failed, it could cost huge amounts to rectify. The stakeholders13

were only involved at the beginning, and then didn’t have any formal opportunity to
“steer” the project as it developed.

3.2.2 Iterative and Incremental Software Development

As the problems with the Waterfall model became increasingly apparent, its popu-
larity waned. Developers and organisations became increasingly receptive to alter-
native development processes. One such process came out of the domain of engi-
neering and manufacturing, and was known as Iterative Incremental Design (IID)
[89]. The key characteristics are as follows:

• Iterative: Instead of constituting a single flow from inception to completion,
software development should consist of time-boxed cycles of refinement. Instead
of producing everything in one go, the software product should be completed
over several iterations.

• Incremental: The software product would be constructed in increments. Devel-
opment would adopt a process of divide-and-conquer, choosing to build individ-
ual components or features one-at-a-time, instead of all at once.

Exercise: How might these two principles address the key weaknesses of the
Waterfall model? Are you familiar with any existing software development processes
that spring to mind?

IID was based on the fundamental notion that the development of products in iter-
ations made it possible to regularly check on progress and the quality of the product,
and to improve things if they went wrong. These ideas had been employed within
NASA for the development of the experimental X-15 plane in the 1950s, which had
been considered a major engineering success. Many of the engineers (and practices)
from the X-15 project then moved on to more software-focussed departments within
NASA and elsewhere, where the same notions of IID were carried over to software
projects.

Throughout the seventies, IID became widely adopted within IBM, and was used
for several large, safety critical systems for the Department of Defence, includ-
ing the command and control systems for the US Trident submarines. Reasons for
adoption tended to be two-fold. On the one-hand, IID made it easier to control the
scheduling. The Trident system had to be delivered by a certain date, or the devel-
opers would face a fine of $100,000 per day overdue. This made it crucial to be able
to time-box the development process.

13 “Stakeholders” refers to anybody who has an interest in the final software product. So stake-
holders could include purchasers, future users, customers, etc.



36 3 Software Development Processes and Process Improvement

On the other hand there was an added flexibility that was notoriously absent from
the waterfall model. This was noted by the team who developed NASA’s space shut-
tle software from 1977-1980 (Larman and Basili [89] note their almost apologetic
tone for not using the Waterfall-esque plan-driven approach):

Fig. 3.6 The X-15 jet was a pioneering, extremely impressive piece of engineering. Although it
was built in the 50s, as of 2015 it still holds the world record for the highest speed ever recorded
in a manned, powered aircraft (Mach 6.72). NASA, 1960, reprinted with permission15.

Due to the size, complexity, and evolutionary [changing requirements] nature of the pro-
gram, it was recognized early that the ideal software devel- opment life cycle [the waterfall
model] could not be strictly applied...However, an implementation approach (based on small
incremental releases) was devised for STS-1 which met the objectives by applying the ideal
cycle to small elements of the overall software package on an iterative basis.

Exercise: What is the relationship, if any, between IID and PDCA.

Although the Waterfall model was clearly dominant throughout the 80s (and
is still used in several respects), IID gradually gained currency outside of the US
aerospace and defence domains. This accelerated as the case against the Waterfall
model became more apparent. One example of this movement is illustrated in a pa-
per by Parnas and Clements [107], in which the authors enunciate a comprehensive
critique of the Waterfall process, including the following (paraphrased by Larman
and Basili):

• A system’s users seldom know exactly what they want and cannot articulate all they
know.

15 Source: https://www.mediawiki.org/wiki/File:North_American_X-15.
jpg



3.2 The Software Development Process 37

• Even if we could state all requirements, there are many details that we can only discover
once we are well into implementation.

• Even if we knew all these details, as humans, we can master only so much complexity.

• Even if we could master all this complexity, external forces lead to changes in require-
ments, some of which may invalidate earlier decisions.

Although we present IID here as a ‘process’, to be more precise it refers to two
basic design and development principles. There are many ways in which these can
feed into a more concrete, well-defined software development process. In the 80s
and 90s, several such processes emerged and became widely adopted within the
industry.

Identify
requirements

Identify & resolve
 risks

Develop & 
test

Plan next
iteration

Release 1

Release 2

Release 3

Fig. 3.7 Barry Boehm’s Spiral model, which implements IID.

One example was Barry Boehm’s Spiral model [21], shown in Figure 3.7. In this
model, each iteration amounts to one circuit of the spiral. Each circuit consists of
four phases: (1) generating requirements, (2) considering and addressing risks, (3)
development and testing, and (4) planning the next iteration. The idea is that, for
each circuit, multiple software artefacts are developed concurrently, according to
their perceived priorities (we will come on to how this can be determined later on).

Since then several other IID-based approaches have been defined. The Rational
Unified Process is another popular example, which was developed within IBM in the
late 90s [73]. However, perhaps the biggest influence was the rise of Agile software
development processes.



38 3 Software Development Processes and Process Improvement

3.3 Agile Software Development

Since the end of the 90s, Agile software development principles have come to dom-
inate software development. This section provides a light overview of some of the
core ideas, and reviews these specifically in the context of quality assurance.

Exercise: In the final section of this chapter we will reflect on agile software
development in the context of some of the quality initiatives from the manufacturing
industry discussed previously. As you read through this section, try to pre-empt this
discussion by making these connections yourself.

3.3.1 The Principles of Agile Software Development

The term “Agile Software Development” refers to software development techniques
that are light-weight in nature, and within which developers can readily respond to
changes in requirements. This was largely driven by a reaction to the documentation-
heavy, planning-heavy Waterfall model. Such development processes were ma-
ligned in certain sectors, because they struggled to deal with situations where the
requirements were uncertain, where budgets and time-constraints were limited, and
where neither the organisation nor the client had the time or appetite for lengthy
contract negotiations.

To address this, a movement emerged towards the end of the 90s and the begin-
ning of the 2000’s. This was embodied in the 2001 Manifesto for Agile Software
Development [55]. This set out the following twelve principles:

1. Customer satisfaction by early and continuous delivery of valuable software.
2. Welcome changing requirements, even in late development.
3. Working software is delivered frequently (weeks rather than months).
4. Close, daily cooperation between business people and developers.
5. Projects are built around motivated individuals, who should be trusted.
6. Face-to-face conversation is the best form of communication (co-location).
7. Working software is the principal measure of progress.
8. Sustainable development, able to maintain a constant pace.
9. Continuous attention to technical excellence and good design.

10. Simplicity – the art of “maximizing the amount of work not done” – is essential.
11. Best architectures, requirements, and designs emerge from self-organizing teams.
12. Regularly, the team reflects on how to become more effective, and adjusts ac-

cordingly.

With respect to previous software development processes, the gist of agile soft-
ware development was to move the emphasis on the ingenuity of the developers,
instead of relying on rigid processes. Nerur et al. [101] provide a good comparison



3.3 Agile Software Development 39

Traditional Agile

Fundamental Assumptions Systems are fully specifiable,
predictable, and can be built
through meticulous and ex-
tensive planning.

High-quality, adaptive soft-
ware can be developed by
small teams using the prin-
ciples of continuous design
improvement and testing
based on rapid feedback and
change.

Control Process centric People centric
Management Style Command-and-control Leadership-and-

collaboration
Knowledge Management Explicit Tacit
Role Assignment Individual - favors specializa-

tion
Self-organizing teams - en-
courages role interchange-
ability

Communication Formal Informal
Project Cycle Guided by tasks or activities Guided by product features
Development Model Life-cycle model Evolutionary - delivery

model

Table 3.1 Comparison of Traditional and Agile approaches

between “traditional” and agile approaches - which is reproduced in Table 3.1 (the
original table by Nerur is larger; this version omits some rows).

These principles formed the basis for a large raft of structured development
methodologies (Extreme Programming, Feature Driven Development, SCRUM,
etc.).

3.3.2 An Example: SCRUM

So far we have merely discussed Agile software development in terms of its ideals
and principles. There are many potential ways in which these can be applied in prac-
tice, which is why a large number of alternative agile development methodologies
have arisen since then [45]. One of the most popular approaches is currently the
SCRUM method [115]. The aim of this section is not to provide an in-depth treat-
ment of SCRUM (you can find that elsewhere), but just to provide a flavour of what
a typical agile development methodology looks like. In this description, we also in-
volve some agile practices that are not specific to SCRUM, but nicely illustrate the
quality-assurance tools that tend to be used.

3.3.2.1 Teams

The main roles in a typical SCRUM team are as follows:



40 3 Software Development Processes and Process Improvement

• Product owner: Represents the stakeholders and is the voice of the customer.
Responsible for providing feedback, customer-centric user stories (see below),
and for prioritising the requirements.

• SCRUM Master: Represents the team-leader. Is the interface between the de-
velopment team and the organisation management. Chairs the meetings, enforces
protocols, and removes any impediments that might be hindering the team.

• Development team: A set of developers who are responsible for writing source
code, tests, UI design, etc. SCRUM makes a point of not putting developers into
specialised roles, but of having multi-functional teams.

Exercise: On the subject of development teams - why does it make more sense to
stress cross-disciplinary teams, instead of having developers specialise on certain
areas such as testing?

3.3.2.2 Work flow

Product 
backlog

Sprint
Planning

Sprint
Backlog

Daily Scrum

Sprint
Execution

Usable
Product

Review & 
Retrospective

Fig. 3.8 SCRUM work-flow.

The essential SCRUM work-flow is shown in Figure 3.8. It consists of the fol-
lowing key components and procedures:



3.3 Agile Software Development 41

A product backlog of user stories

A list of desirable software features are compiled with the help of the stakeholders.
The list is compiled in terms of user stories. A user story is a short-form natural
language requirement, commonly used in agile software development. It commonly
takes the following form:
”As a <role>, I want <goal / desire> so that <benefit> ”.

User stories are commonly associated with a number of story points - a numer-
ical estimation of how much effort they will require to implement. The purpose is
to establish their relative complexity with respect to other stories (not to provide
an absolute measure of the amount of effort required). An approach by which to
link story points to the amount of time required will be covered in Section 5.2.6.
Although the choice of a number of story-points is often entirely down to intuition,
it can also be supported by activities such as Planning Poker, which we will discuss
in Section 5.2.4.

The product owner is responsible for managing this list throughout the devel-
opment process. The list is prioritised, ensuring that the highest-value, and riskiest
items appear towards the top, and the low-value, low-risk items appear towards the
bottom. The backlog can continuously change throughout the development of the
product.

Exercise: Consider why risk is a factor in the ordering of the product backlog.

Exercise: Consider a typical online banking system, and its users: bank em-
ployees and customers. Write down two user-stories for the bank employee, and five
user stories for the customer, using the template given in the side-note.

Sprints

A sprint is a time-boxed period of development, which should always yield a work-
ing version of the product. The end-date of a sprint is always firm, and the period
tends to range from a week up to a month.

Sprint planning

A sprint-planning session involves agreeing upon a goal for the sprint, and choos-
ing suitable elements for a sprint from the product-backlog. The session is usually
limited to last no longer than eight hours. Half of the time involves the entire team,
and the other half involves a development-team follow-up to agree upon a develop-
ment strategy, discuss higher-level architectural questions, and to allocate tasks to
individual members.



42 3 Software Development Processes and Process Improvement

Daily Scrum

A daily stand-up meeting that lasts approximately 10 minutes. Every member of the
development team answers three questions:

1. What have I done in the last day?
2. What am I planning to do today?
3. Are there any impediments?

Stand-up meetings are especially common in agile projects. In an environment
where requirements can frequently change, it is necessary to change plans and dis-
cuss implementation implications, for which face-to-face discussions are taken to
be the best form of communication. The challenge is to enable regular face to face
meetings in such a way that the meetings do not end up taking too long and becom-
ing counter-productive. The rationale of a standing meeting is that the discomfort of
standing for too long will become uncomfortable for the participants, thus providing
a natural incentive to keep the meeting brief.

Though popularised by agile software development, standing meetings have long
been popular ways to keep meetings short. For example, the UK Privy Council is a
formal body of governmental advisers to the king or queen (formed in 1708) who
meet every month. Queen Victoria introduced the convention in the 19th century
that the meeting should be held standing up to keep them as short as possible. This
custom remains in place to this day16

Review and Retrospective

At the end of the sprint, the team should have developed a usable product. This is
then reviewed with the product owner and, ideally, stakeholders. Any feedback is
fed-in to the product backlog, and a new iteration begins.

Exercise: Considering the work-flow and key SCRUM activities, can you relate
these to the 12 principles set out in the agile manifesto (see Section 3.3.1)?

3.3.3 Relation to Total Quality Management

Agile techniques and methods are different from traditional software development
work-flows, because they shift the emphasis from planning and specification to de-
velopment and refinement. Developers no longer rely upon a canonical specification
and accompanying documentation as a reference for what they do. The specification

16 http://privycouncil.independent.gov.uk/work-of-the-privy-
council-office/faqs/.



3.3 Agile Software Development 43

is a ‘living document’, embodied in product backlogs, kanban boards with sticky-
notes, and communicated by daily scrums.

These principles clearly owe a lot to their manufacturing predecessors. Let us
revisit the Total Quality Management principles (see Section 3.1), and discuss them
from an agile perspective:

• Customer focus: It is customer satisfaction that underpins the first agile prin-
ciple of early and continuous delivery, and the second principle of embracing
regular changes in requirements. Regular contact with the customer is encour-
aged. In SCRUM, the product-owner exists to ensure that the customer’s views
come centre-stage throughout the development process.

• Process - reducing variations and achieving continuous improvement: One
of the key drivers behind agile development is the fact that the processes are
lightweight – that they are easy to adopt and follow. This makes them straight-
forward to adopt, and there are often strong incentives from a quality standpoint.
Finally, there are often roles in agile development teams (such as the scrum mas-
ter) who’s key task is to ensure that the processes are adhered to, and to remove
any obstacles that prevent this.

• Human side of quality: The shift of responsibility from management to devel-
opers is a fundamental property of agile development. One of the principles of
the agile manifesto states that “projects are built around motivated individuals
who should be trusted”, and another states that the team should regularly reflect
on how to become more effective. Teams should self-organise. SCRUM meetings
give individuals the opportunity to raise problems or obstacles, and to assist each
other.

• Measurement and analysis: Agile development revolves around the use of
techniques that convey progress, such as Kanban boards to keep track of de-
velopment status, as well as burndown charts to show progress.

Exercise: We have covered the relationship between Agile methods and TQM.
Can you do a similar exercise for the Toyota Production System?

Agile approaches capture much of the best-practice that pre-dates most of the
traditional software development methodologies. This point can at times be missed;
there is often a perception that many of the principles advocated by agile approaches
do not have adequate foundations – for example that they are not adequately sup-
ported by sufficient experimental evidence. Although this may be true in the imme-
diate empirical software-engineering sense, it is also often the case that the under-
lying rationale is very well established indeed, through decades of success in other
areas of manufacturing.



44 3 Software Development Processes and Process Improvement

3.3.4 Why Not Always Go Agile?

The principles espoused by agile software development are quite intuitive. They
are directly or indirectly built upon decades of experience from the manufacturing
industry. There have been many empirical studies [45], which have by and large
indicated that software is of higher quality and that teams are more productive if
the software is developed in an agile environment. Why then, would one not always
opt for an agile approach instead of a top-heavy, centralised, documentation and
specification-driven ”traditional” approach?

There are some downsides. Removing the emphasis on architecture and design
has the (unsurprising) consequence that agile software systems can end up with
architectures and designs that are less intuitive [113]. There is also the perception
that agile methods tend to favour smaller projects, but that larger projects are better
off with techniques that emphasise central control and planning [33] (perhaps borne
out by the following case study).

3.3.4.1 The UK Government Universal Credit Project

An interesting example of where agile failed can be found in a relatively recent large
IT project commissioned by the UK government. Billed as the “world’s biggest agile
software project”, the £2.4bn scheme was intended to showcase how agile software
development could apply to large projects.

The project was complex. The idea was to provide an IT infrastructure that could
support several significant changes to the British welfare system. These were to
simplify the process of applying for state benefits, and to enable greater control of
the conditions under which individuals could receive benefits, such as tracking their
applications for jobs for work, as well as factoring in certain types of disabilities,
whether they had dependants, etc.

Within two years, the project had run into severe difficulties. The government’s
Major Projects Authority reviewed the project and identified serious concerns,
which are set out in a candid report [35]. Below are some quotes that, together,
paint a picture of why the project failed:

The introduction of an agile methodology within an environment that lacked
experience in agile development.

In late 2010, the Department decided to use an ‘agile’ methodology to manage the pro-
gramme. Agile approaches allow programmes to start technical work before requirements
have been finalised, in contrast to traditional ‘waterfall’ approaches. . . . In 2010, the Depart-
ment was unfamiliar with the agile methodology and no government programme of this size
had used it.



3.4 Software Process Improvement - The Capability Maturity Model 45

The complexity of the system, and the fact that it interfaced with many systems
that were not developed in an agile context.

The Department recognised that the agile approach would raise risks for an organisation
that was unfamiliar with this approach. In particular, the Department:

• was managing a programme which grew to over 1,000 people using an approach that is
often used in small collaborative teams;

• had not defined how it would monitor progress or document decisions;

• needed to integrate Universal Credit with existing systems, which use a waterfall ap-
proach to managing changes; and

• was working within existing contract, governance and approval structures.

To tackle concerns about programme management, the Department has repeatedly redefined
its approach. The Department changed its approach to ‘Agile 2.0’ in January 2012. Agile 2.0
was an evolution of the former agile approach, designed to try to work better with existing
waterfall approaches that the Department uses to make changes to old systems.

The source of many problems has been the absence of a detailed view of how Universal
Credit is meant to work.

From the above extracts, it is clear that many problems were at play here, and it
would be entirely unfair to pin the roots of the problem on the adoption of agile soft-
ware development alone. The last quote is especially revealing - it was seemingly
difficult to get the stakeholders and ministers to accurately convey how the system
was supposed to work.

In this case, the strengths of agile development seem to have turned out to be the
roots of the problem. The ability to embrace changes in requirements is a strength.
However, no amount of flexibility can make up for situations where the requirements
are simply not known at all.

This weakness - the absence of an exact understanding on the part of the stake-
holders - would probably have been exposed earlier on in a traditional software
development context. Instead of starting development with a view to refining the
requirements as they came in, the project would not even have begun in a waterfall
context. And in this situation, that scenario would have probably been preferable.

3.4 Software Process Improvement - The Capability Maturity

Model

Software development processes cannot simply be applied ‘out of the box’. Pro-
cesses invariably have to be tweaked to suit a particular business context, to suit an
organisation, a client, or problem domain (this much is clear from the previous ex-
ample of trying to apply SCRUM to the Universal Credit project). Throughout the
80s, this task of tailoring an improving development projects was an ad-hoc process,
which varied from one organisation to the other.



46 3 Software Development Processes and Process Improvement

1: Initial

2: Managed

3: Defined

4: 
Quantitatively 

managed

5: 
Optimizing

Chaotic, Unpredictable cost, schedule, and quality performance

Cost and quality are highly variable. Reasonable control of schedules. Informal / ad-hoc methods and 
procedures.

Reliable costs and schedules. Improving, but unpredictable quality 
performance.

Reasonable statistical control over product quality.

Quantitative basis for continued capital 
investment in process automation and 
improvement. 

nitial

2: Ma

Chaotic, Un

aged

3: De

Cost and quana

efined

Quant
manag

Reliable cefin

4: 
atively 

5: 
Optimiz

Reasonabletita

Fig. 3.9 CMMI 1.3 levels of maturity.

Towards the end of the 80s, practitioners and academics tried increasingly to
draw upon the process improvement notions that had been so successful within the
manufacturing sector. For one striking example in this regard, see this interview with
Steve Jobs17 about the impact that Joseph Juran had on him when he was asked to
visit the NeXT corporation, of which Jobs was president at the time. In it, Jobs gives
an excellent summary of the basic principles of Juran’s work. Interestingly, Jobs also
pays tribute to the rise of manufacturing in Japan (as discussed previously), and how
he felt that the US had been usurped in this respect.

This led to the Capability Maturity Model (CMM) [69], which was developed
at the Carnegie Mellon Software Engineering Institute. It was heavily inspired by
the principles of Total Quality Management (see section 3.1.4). The CMM was in-
tended as an instrument that could be used to assess the capabilities of software
development organisations.

Over the past 20 years, the model has evolved through various different versions
(different text books on software quality can often refer to different versions). The
current version is CMMI 1.3 [127] (the I in CMMI stands for “Integration”, since
the new CMMI model is an integration of various previous versions and variants of
CMM).

The current CMMI divides the broad practice of software development into 17
core “Process Areas” (with additional areas depending on the particular domain,
e.g. for services, or acquisition). These are shown in Figure 3.10. In order to climb
the CMMI ladder, organisations have to introduce increasingly stringent protocols
that span all of these 17 areas.

17 https://www.youtube.com/watch?v=XbkMcvnNq3g



3.4 Software Process Improvement - The Capability Maturity Model 47

• Causal Analysis and Reso-
lution (CAR)

• Configuration Manage-
ment (CM)

• Decision Analysis and
Resolution (DAR)

• Integrated Work Manage-
ment (IWM)

• Measurement and Analysis
(MA)

• Organizational Process
Definition (OPD)

• Organizational Process Fo-
cus (OPF)

• Organizational Perfor-
mance Management
(OPM)

• Organizational Process
Performance (OPP)

• Organizational Training
(OT)

• Project Monitoring and
Control (PMC)

• Project Planning (PP)

• Process and Product Qual-
ity Assurance (PPQA)

• Quantitative Project Man-
agement (QPM)

• Requirements Manage-
ment (REQM)

• Risk Management
(RSKM)

• Supplier Agreement Man-
agement (SAM)

Fig. 3.10 17 Core Process Areas for CMMI 1.3.

The “maturity” of an organisation in each process area is measured according to
five levels, which are shown in Figure 3.9. Each maturity level is associated with a
selection of questions, of which some are designated as“key questions”. To attain a
given level, an organisation must affirmatively answer 80% of the questions for that
level, including 90% of the key questions. The levels subsume each other. In order
to obtain a given level, an organisation must also have attained the level below.

Thousands of companies around the world have been assessed according to the
CMMI framework. Many organisations use CMMI certification as a basis for set-
ting tender requirements, with one significant example being the US Department of
Defence.

Exercise: Adopting CMMI provides a structured framework within which to
assess software development processes. What are the possible downsides?

Although there are many strong drivers for organisations to certify themselves
according to CMMI (and other software process improvement frameworks), many
choose not to. On the face of it this counter-productive – in doing so an organisation
can rule itself out of competing for potentially lucrative software development con-
tracts. In order to understand why this was the case, Staples et al. [126] carried out
a survey of 73 organisations that had specifically not certified themselves according
to CMMI (this was in 2007, thus applying to versions of CMMI that predate the
current version).

On the one hand, their findings were as one might expect; for 35% of organ-
isations the primary reason was that it was too costly, and for 25% it was too
time-consuming. CMMI certification certainly does require a lot of time and ef-
fort. Changing the business processes within an organisation can be very costly,
and might not be considered worth-while (even if these changes are improvements
and ought to lead to greater profitability in the long term). The overriding factor,



48 3 Software Development Processes and Process Improvement

however, was the fact that CMMI is geared towards larger organisations. 43% of
respondents suggested that, as a small organisation, the overheads required by cer-
tification were simply too high to absorb.

The CMMI framework is not the only approach within which to assess an organi-
sation’s software development capability. There are other frameworks and standards
that accomplish similar aims. These include the ISO9001 standard, Motorola’s Six
Sigma framework, SPICE, and the Malcolm Baldrige Assessment (MBNQA). We
cover only CMMI here. For a (perhaps somewhat dated) overview of the other ap-
proaches you can refer to Kan’s book on Software Quality Engineering [80].

Ultimately however, all of these alternative approaches share the same roots in
the various lessons to have emerged from the manufacturing industy. All promote
the increased control (reduction of variance) of the development processes. They
encourage the use of measurements and metrics to keep track of performance, the
disciplined application of procedures, and the ability to adapt processes to address
problems.

3.5 Key Points

• The quality of a product, and the ability to control that quality, is dependent

upon the choice of process that is used to produce it.

• The waterfall model dominated the formative years of software develop-

ment. It embodied the idea of extensive documentation, and development in a
step-wise process. It was much maligned for being inflexible, and often led to
cost-overruns.

• Iterative and Incremental (IID) techniques differ from the waterfall model

by framing product development as a continuous, iterative process. They had
shown some considerable successes, but were not widely adopted until the late
80s. IID techniques offer more flexibility and facilitate time-boxing. IID formed
the basis for agile techniques.

• Process improvement emerged from the drive to improve manufacturing

processes. These approaches were first recognised as a key driver of economic
success in the US, with the emergence of advanced manufacturing (e.g. the Ford
Assembly line).

• Walter Shewhart first systematised the study and improvement of develop-

ment processes with the PDCA cycle. The PDCA cycle in its essence underpins
current quality improvement techniques. Shewhart’s lessons were further refined
by Japanese companies during the Japanese “economic miracle”. Toyota’s TPS
contained many of the pre-cursors to today’s manufacturing and software devel-
opment processes.

• The success of process improvement in Japan inspired the development in

the US and Europe of the notion of Total Quality Management (TQM). TQM
inspired several software-specific process improvement frameworks, of which
CMMI is a leading example.



3.5 Key Points 49

• CMMI is a process improvement framework for software development. It
is widely used, but is often eschewed by smaller organisations because of the
overheads involved in certification.

• Agile software development refers to a family of iterative, lightweight soft-

ware development processes. They are ‘lightweight’ in the sense that they seek
to shift responsibility for quality from the process itself to the developers. Many
of the examples of ‘good practice’ espoused by agile techniques were inspired
by advances in manufacturing process, such as the practices in the Toyota Pro-
duction System.

• SCRUM is one of the most popular agile methods. It places a particular em-
phasis on face-to-face meetings, and time-boxed “sprints” within which to iterate
versions of the software system.



Chapter 4

Managing Requirements and Code

Software development revolves around the ability to implement a set of require-
ments (whether explicit or implicit) as source code. Requirements can be diverse in
nature, complex, and continuously subject to change. The same goes for the source
code; it too is invariably complex, can constitute various libraries and languages,
and is also subject to change, potentially by hundreds or even thousands of differ-
ent, disparate developers. For a project to prosper and retain its quality, strategies
and mechanisms need to be in place that can support management of both.

In this chapter we will examine some of the specific challenges that arise when
it comes to managing requirements and source code, and some of techniques and
tools that can be adopted to address them. For requirements, we will examine the
challenges of requirements elicitation, security, traceability, and prioritisation. For
coding, we will look at the challenge of handling concurrent contributions from
multiple developers at the same time, and of trying to ensure consistency and good
coding practice within the code base.

4.1 Managing Requirements

The term ‘requirement’ covers any feature or obligation that a stakeholder would
the system to fulfil. Requirements are challenging to manage for a variety of rea-
sons. They are ultimately the desires of a stakeholder, and can be difficult to express
(and capture) clearly, and without any ambiguity. When circumstances change (or
the stakeholder changes their mind) requirements have to change too, and these
changes can have repercussions that can affect the rest of the system – something
that can become especially challenging if large parts of the system have already
been implemented. For any non-trivial software system there can be a large number
of requirements, some of which invariably have a greater priority than others, which
gives rise to the problem of how to sort out the most important ones from the rest.
Finally, there is the task of providing some sort of oversight to the developer team,
to give an intuition of progress, and what needs to be done.

51© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_4



52 4 Managing Requirements and Code

Exercise: There is one line of thought that suggests that requirements are the
‘be all and end all’ for software quality; that the quality of the final product can be
definitively assessed in terms of its requirements alone. Who does this remind you
of?

4.1.1 What is a Requirement?

Although the above description of a requirement as “anything that a stakeholder
expects the system to accomplish” is intuitive, it is perhaps a bit too simplistic.
Software can have a huge range of different ‘qualities’ – its functional behaviour,
the way in which it is constructed, the aesthetics of the user interface, its security,
etc. Indeed, there tend to be too many possible considerations to be individually
considered and written down by stakeholders.

In practice, requirements tend to be broken down into two high-level categories:
Functional requirements that capture the functionality and non-functional require-
ments. This dichotomy is helpful because these two classes of requirements are
captured and handled in different ways throughout the development life-cycle.

Functional requirements (often captured in the form of use-cases – see below)
capture the core desired behavioural features of the software system. Tests of func-
tional requirements tend to exercise and examine the input / output behaviour; an
expected (or unexpected) input is executed, and the observed outputs are checked
against the requirements.

Non-functional requirements are (to put it glibly) requirements that are not func-
tional. Surprisingly, a more specific, unambiguous definition has proved to be elu-
sive (Glinz’s article on this matter nicely captures the various areas of confusion on
this matter [58]). For the sake of simplicity (and accepting that this leaves scope for
ambiguity), we will refer to a non-functional requirement as simply some character-
istic that is qualitative in nature – it specifies how the behaviour or structure of the
system should contribute to the fulfilment of some functional specification(s).

Exercise: In practice, non-functional requirements cover a huge range of as-
pects that are relevant to software quality. Look at the software quality models in
Chapter 2, and you will see that the majority of concerns in these models are ul-
timately non-functional. This should also serve to remove any preconception that
non-functional requirements are in any way of secondary importance when it comes
to software quality.



4.1 Managing Requirements 53

4.1.2 Requirements Elicitation

One of the essential challenges of software development is referred to as require-
ments elicitation1 – the process of taking abstract ideas and capturing in a concrete
form that form the basis for subsequent phases of development.

4.1.2.1 The Challenge of Requirements Elicitation

A requirement should be detailed enough to be completely unambiguous to the de-
veloper. Every angle of intended software behaviour should be covered, and to a suf-
ficiently detailed level. At the same time of course, requirements elicitation should
be sufficiently lightweight so that they can be readily managed and updated through-
out the software lifecycle, and to leave enough time for development.

Therein lies the tension. Producing a set of sufficiently detailed, unambiguous
requirements can be enormously time consuming and tends to lead to large sets of
documents that become hard to manage and maintain. On the other hand, require-
ments that are less detailed risk raising ambiguities, can form the basis for mistakes
and bugs further down the line.

To make the point of how expensive requirements elicitation can be, we can look
at some requirements projects at a somewhat extreme end of the spectrum – the use
of ‘Formal Methods’ to construct software systems. Formal Methods is an umbrella
term for techniques that use mathematical frameworks to reason about (amongst
other things) software requirements, with the goal of providing mathematically jus-
tified guarantees about their correctness. In this context, the system in question is
modelled (e.g. as a set of abstract functions, or as a state machine), and the result-
ing model is then analysed to ensure that it obeys (or conversely does not exhibit)
particular properties.

One success story of such a technique is the CompCert compiler for the C lan-
guage. Here, a complete compiler for the C language was modelled and “proven
correct”. However, this required an estimated two person years (of an expert in
theorem proving) of effort, and 400,000 lines of proofs [91] (which embody the
requirements) in the Coq theorem proving language. The downsides of such an in-
volved approach are clear – they are time-consuming, and leave little resource for
the actual development of the source code2.

The alternative, however, of resorting to bullet points of natural language, has its
own obvious problems. Complex functionalities can be difficult to capture in a way
that they can be understood by developers, and are not ambiguous. The problem
of elicitation was nicely expressed by Fred Brooks in his famous “no silver bullet”
essay [25]:

1 The term ‘requirements elicitation’ is used here out of convention. It would (in the author’s
opinion) be grammatically more appropriate to make ‘requirements’ singular.
2 In the case of CompCert this was acceptable, because the code could largely be generated au-
tomatically from the model. However, this is not in general going to be practicable for broader
families of software systems.



54 4 Managing Requirements and Code

“The hardest single part of building a software system is deciding precisely what to build.
No other part of the conceptual work is as difficult as establishing the detailed technical
requirements . . . No other part of the work so cripples the resulting system if done wrong.
No other part is as difficult to rectify later.”

4.1.2.2 Requirements Elicitation Steps

A host of techniques have been proposed to support requirements elicitation. As
with most of the other topics covered in this book, there is no single approach that
is best-suited for every situation. There is invariably a trade-off between the time
/ effort required, and the detail or reliability of the resulting requirements docu-
ment. However, all approaches tend to follow a similar template. We will cover the
high-level steps (as set out by Zowghi and Coulin [140]) in the remainder of this
subsection.

Understanding the application domain

It is important to gain an understanding of the ‘real-world’ situation within which
the software system will be deployed. Is the software safety-critical or business-
critical? Who will be using the software? Will it be large numbers of users, using it
in a variety of capacities, or will it be few users with a relatively fixed set of use-
cases? Is the software ultimately going to be embedded onto a device? Or deployed
as an app? Is the software subject to standards? Are these liable to change? Are
there any pertinent political or cultural factors? How does the software align with
the business goals of the organisation?

Identifying sources of requirements

Requirements come in various forms. Obvious sources include the stakeholders (see
below) – the eventual users of the system, the people who will be responsible for
its deployment and maintenance, etc. However, requirements can also come from
other sources too. For example, if the software is intended to fit into an existing
work-flow, or needs to interact with other established software systems, then these
processes will need to be consulted. If the software is safety-critical, legislation will
be need to be consulted (c.f. the UK law that the risk posed to a user should be
reduced to the point that it is ‘As Low As Reasonably Practicable’ (ALARP)).

Analysing stakeholders

Stakeholders represent any people who have an interest in the system or are affected
by its development in some way. These tend to include different user-groups (groups



4.1 Managing Requirements 55

of users who might use the system in different capacities, such as administrators,
mobile app users, web-app users, etc.), people who are responsible for procuring the
system, deploying it, maintaining it, etc. All groups of users will have a particular
perspective or opinion on the system, and these could easily conflict with each other.
Accordingly, it is important to identify who the stakeholders are, and to obtain all
of their viewpoints so that they can be appropriately reconciled.

Selecting the elicitation technique

As mentioned previously, there are numerous different elicitation techniques. In
their Requirements Engineering Roadmap Nuseibeh and Easterbrook [102] provide
a nice overview:

• Traditional techniques: Questionnaires, surveys, interviews, analysis of existing
documentation including organisational charts, process models, and user or other
manuals of existing systems.

• Group elicitation techniques: Brainstorming, focus groups, and workshops. These
are aimed to take advantage of group dynamics to build a richer picture of what
is required.

• Prototyping: Developing a prototype to gain feedback from stakeholders, espe-
cially when the requirements are subject to a lot of uncertainty.

• Model-driven techniques: Provide a specific model of the type of information to
be gathered, and use this to drive the elicitation process. These include goal-based
methods such as KAOS [39] and I* [31].

• Cognitive techniques: A series of techniques originally developed for knowledge
acquisition in knowledge-based systems. These include protocol analysis, where
the developer thinks aloud whilst accomplishing a task and card sorting, where
participants organise cards with domain concepts into groups, to highlight key
functional areas within the system.

• Contextual techniques: A family of alternatives to traditional and cognitive tech-
niques, in which ethnographic techniques are adopted to observe users. Instead
of playing an active role in querying the participant, or in making the partici-
pant aware that they are being observed by getting them to speak aloud, these
techniques are less obtrusive. The goal is to collect requirements by passively
observing the participants, in the hope that they will be less self-conscious, and
will indicate a more fine-grained set of requirements in the process.

Eliciting the requirements

Employing the selected technique(s) to elicit requirements from the identified
sources and stakeholders. As a part of this process, it is necessary to identify the
scope of the system – which requirements are essential, which ones are desirable,
and which ones are irrelevant (we will explore some techniques to support this spe-
cific question below).



56 4 Managing Requirements and Code

4.1.3 Requirements Documents

So far, we have discussed requirements in a purely conceptual manner. When it
comes to actually writing them down, their format can vary depending on the de-
velopment context - the choice of development procedure and the processes within
an organisation. As we have seen, in a Waterfall context it is important to be as de-
tailed and verbose as possible, whereas agile processes tend to keep requirements at
a more lightweight level (i.e. single sentences on a post-it note).

4.1.3.1 Use Cases

Admin

Student

System

Switch 
modules

Add / 
Remove 
courses

Edit 
registration 

details

Change 
address

Edit 
Payment 
Details

Fig. 4.1 Example of a Use-Case Diagram

Use-cases are light-weight requirements specifications that are designed to cap-
ture the various ways in which the system will be used. They were first conceived
by Jacobson in 1986 as a means by which to capture functional requirements for
Object-Oriented systems [72]. Use cases tend to have two components. Use-Case
Diagrams indicate relationships between user-groups and use-cases, and link use-
cases to each other. The textual component provides a description.

An example of a use-case diagram for a fictional university student registration
system is shown in Figure 4.1. It shows how use case diagrams are quite intuitive; the
main groups of users are shown by various actors. Their various interactions with the
system are shown by (solid) arrows to the use-cases themselves, which are labelled
ovals. These can then be linked to other use-cases by dashed ‘extension’ arrows,
indicating that one use case is an extension of another. So here the specific actions
of switching modules and changing address are extensions of the “Edit registration
details” use case.



4.1 Managing Requirements 57

As far as the accompanying textual description is concerned, there is no pre-
scribed template to be adopted. This will depend to an extent on the development
context. User Stories (see Section 3.3.2.2, page 40) for example, are highly informal
variants of use-cases that are well suited to an agile environment because they are
particularly light weight, and can fit onto a postit-note.

1. Title: Edit Registration Details
2. Description: User is able to edit their details

on the database.

a. Logs in
b. Selects “edit registration details”
c. Selects option.
d. . . .

3. Extensions

a. Switch modules
i. User selects “Switch Modules”

ii. User selects module they wish to
switch.

iii. . . .
b. . . .

Fig. 4.2 Fowler’s Proposed Use Case Structure, applied to “Edit registration details” use case in
Figure 4.1.

One slightly more elaborate (yet still relatively simple) variant was proposed by
Martin Fowler [53]. It consists of three sections: A title, a description (with key steps
in a successful usage scenario), and any variants (extensions). An small illustration
is shown in Figure 4.2.

4.1.3.2 Software Requirements Specifications

Use-cases and their variants are especially popular because they are intuitive and
accessible. They provide a user-centric view of the system, and individual use cases
can be readily altered and enhanced as development progresses. As such, they are
especially popular for agile software development.

Their strength is, in some respects, also a weakness. Use cases are appropriate
for functional requirements, and are good at presenting the user’s concerns. They are
however not so good at collecting non-functional requirements, and do not necessar-
ily provide a sufficiently in-depth picture of the system requirements as a whole. For
this, it is necessary to adopt a more comprehensive, and necessarily more verbose
approach.

The Software Requirements Specification (SRS) [34] (IEEE Standard 830-1998)
is a standard that sets out a typical document structure, and is shown in Figure 4.3.
The structure makes it apparent that, as expected, requirements have to cover a lot of
ground – from underlying assumptions and dependencies to detailing every possible
facet of a given requirement. Producing a comprehensive requirement document for
a non-trivial system is invariably a time-consuming task.



58 4 Managing Requirements and Code

1. Introduction

• Purpose
• Scope
• Definitions, acronyms, abbreviations
• References
• Overview

2. Overall description

• Product perspective
– System Interfaces
– User Interfaces
– Hardware interfaces
– Software interfaces
– Communication Interfaces
– Memory Constraints
– Operations
– Site Adaptation Requirements

• Product functions

• User characteristics
• Constraints
• Assumptions and dependencies
• Apportioning of requirements

3. Specific requirements

• External interfaces
• Functions
• Performance
• Logical database
• Design constraints
• Software System attributes

– Reliability
– Availability
– Security
– Maintainability
– Portability
– others

Fig. 4.3 Typical SRS structure.

Exercise: Buried within the SRS specification highlighted in Figure 4.3, you
will see a series of “Software System attributes”. Which quality model (discussed in
Chapter 2) do they indicate influenced the SRS structure?

The level of detail to which requirements documents (SRS or other types) are
populated in practice can vary substantially, and ultimately depends on the develop-
ment context. In situations where there is a Waterfall-style development, or where
the requirements are used as a basis for contractual obligations, there is invariably a
drive to make each part as detailed as possible. If the development context is more
relaxed or agile, it is crucial to keep the requirements as light-weight as possible.

When it comes down to the specific individual (non-)functional requirements,
the SRS standard is relatively non-prescriptive as to how these should be captured.
Regardless of the format (and the detail) of a requirement, it is generally important
that a requirement captures the following:

• A unique identifier, including a version number.
• A clear description of the essential functionality (or property in the non-functional

case) to be implemented.
• A measure of value or importance to the project.
• A success criterion - how should one be able to demonstrate that the requirement

has been successfully implemented.



4.1 Managing Requirements 59

• Any dependencies upon other requirements (facilitated when requirements have
unique ID’s).

4.1.4 Security Requirements

From a requirements elicitation point of view, thinking about security might appear
somewhat premature. After all, we only have a set of requirements; we have not yet
decided the implementation details – the language, the frameworks we’ll use, etc.
Surely it makes more sense to wait until we have made some of the main engineering
decisions, so that we can start to think about security in more concrete terms?

The problem with this is that “security” is not merely a technical concern. Al-
though some aspects of security are without doubt low-level implementation con-
cerns (e.g. input sanitisation), there are other security concerns that have to be con-
sidered from the get-go. Security-critical decisions at a requirement-level can have
knock-on implications for other requirements in the system, and can require special
treatment when it comes to testing and inspection activities.

As an example, we can return the module-registration use case diagram in Figure
4.1. The university in question might consider the use case “Edit payment details” to
require special treatment; the system is storing sensitive bank account details that,
if they fell into the wrong hands, could result in students falling victim to fraud.
From a system design perspective, they might want to arrange separate, storage
arrangements for bank details, or might want to consider different authentication
mechanisms for students who wish to access their bank details on the system.

So where does one start when it comes to thinking about potential security re-
quirements? One approach is to consider the potential threats to the system in line
with an existing security model. A straightforward model is the C-I-A triad (Con-
fidentiality, Integrity, Availability), embodying three principles that should hold for
any kind of secure system:

• Confidentiality: The ability to hide data from unauthorised access. Can be en-
abled by the adoption of encryption methods.

• Integrity: Data should be incorruptible, should be possible to ascertain prove-
nance of data.

• Availability: System should always be available to some degree of performance.
Should not be vulnerable to DDoS attacks, etc.

A more granular approach is to consider the potential security vulnerabilities in
terms of the existing system requirements. If there are use-cases there, one possibil-
ity is to consider the potential attacker as a user themselves. Instead of merely cre-
ating a set of use-cases geared towards conventional users, these should be accom-
panied by a set of misuse-cases [122], which could be employed by the nefarious
attacker. The idea, first proposed by Sindre and Opdahl, is a powerful one because
it can readily complement any existing requirements, by supporting the developer
in adopting a more adversarial mindset.



60 4 Managing Requirements and Code

Admin

Student

System

Switch 
modules

Add / 
Remove 
courses

Edit 
registration 

details
Change 
address

Crook

Get  student 
privileges

Get  staff 
privileges

Edit 
payment 
details

2-factor 
authent.

<<threatens>>

<<threatens>>

<<threatens>>

<<mitigates>>
<<threatens>>

Fig. 4.4 Misuse case diagram example - an extension of the diagram shown in Figure 4.1.

Misuse cases are simply an extension of the use-cases we covered in Section
4.1.3.1. The diagrammatic part is extended with a special kind of actor (with a
filled-in head) representing a ‘misuser’. The misuse-cases are black ovals, which
represent lines of attack that the misuser could conceivably take. These misuse-
cases are linked to relevant normal use-cases with “threatens” arrows to indicate a
threat. Normal use-cases can also be linked to misuse cases with “mitigates” arrows
to indicate that a use-case could mitigate a particular line of attack.

The textual accompaniment for each use-case can be written in a similar structure
to Fowler’s use-case structure shown in Figure 4.2. Sindre and Opdahl [122] do
provide a more detailed textual use-case template if desired.

4.1.5 Tracing Requirements

Requirements are bound to change, both during the development of the system, and
once it has been deployed3. A customer can have a change of heart, the environment
within which a system is to be used might change, testing might establish problems
with the original requirements, feature requests will need to be addressed etc. This
has to be borne in mind when capturing requirements. If a change in a requirement

3 For a humorous illustration of how change can hamper and infuriate software developers, watch
Tom Scott’s video “The Problem with Time and Time Zones”: https://www.youtube.com/
watch?v=-5wpm-gesOY.



4.1 Managing Requirements 61

does occur, which other aspects of the software system will be affected? Which
design artefacts, source code modules, test cases, etc. will need to be updated?

Keeping track of requirements (and their various changes) is a crucial activity
when it comes to ensuring the quality of the final system. If the requirements of
a stakeholder change, these changes must be reflected in changes to the require-
ments documentation. If the requirements documents change, these changes must
be tracked so that they can be incorporated in to the system design, its source code
implementation, and any tests that arise from it. The extent to which it is possible
to “trace” changes in requirements down to their various low level components is
known as “traceability” [61].

Traceability is not just important for accommodating change. In safety-critical
software, it is vital that the implementations of any requirements can be closely
scrutinised, and be subjected to testing etc. For this reason, traceability also plays
a major role in most safety-critical software standards, notably DO178-B/C [1] and
ISO26262 [4].

One standard approach to keeping track of requirements (and their subsequent
changes) is via a traceability matrix. This is a table in which every row corresponds
to a requirement, and every column corresponds to other software artefacts that are
directly related to that requirement. An illustrative example of a traceability matrix
for an imaginary software system that reads and writes files is given in Table 4.1
(we will return to this imaginary software system later on).

Requirement ID Design Artefacts Source code Tests Deps.

A.0.1: Develop
storage format

Scenarios save file
and load file

Package
org.processor.xml

WriterTest.testSave,
Read-
erTest.testLoad

D 0.2

B.2.1: Develop
file reader

load file scenario Reader.java ReaderTest.testLoadA0.1

C.2.0: Develop
file writer

save file scenario Writer.java WriterTest.testSave A0.1

D.0.2: Develop
core data struc-
ture

Scenarios save file
and load file

Package
org.processor.model

WriterTest.testSave,
Read-
erTest.testLoad

Table 4.1 Example of a traceability matrix

Exercise: Traceability matrices are clearly useful if they are complete and up
to date. What are the potential weaknesses of using them?



62 4 Managing Requirements and Code

4.1.6 Prioritisation

Once requirements have been drawn up, the development team is commonly faced
with the challenge that there are more requirements to be implemented than devel-
opment time and resource will allow. As a result, it is necessary to somehow priori-
tise them, to figure out how much effort they will require, and how important they
are with respect to the rest of the requirements. A large number of ‘requirement
prioritisation’ techniques have been proposed. In their 2014 survey on the field,
Achimugu et al. [7] identified 165 empirical studies on requirements prioritisation
techniques. Their survey lists 49 different prioritisation techniques for requirements.
In this book we focus on two specific, relatively popular techniques: The MoSCoW
and Kano methods.

4.1.6.1 MoSCoW

One common approach by which to categorise requirements is to use the MoSCoW
method [32]. This consists of categorising each requirements as follows:

• Must have: Requirements that are critical (either to the product as a whole or
the current iteration). Omitting one of the requirements in this category will mean
that the project (or the current iteration) will have failed.

• Should have: Requirements that are important but not critical for success of the
current iteration or product.

• Could have: Requirements that are desirable, but not especially important.
These provide value to the stakeholders with relatively little investment.

• Won’t have: Requirements that are not important, which do not return sufficient
value to the stakeholders to justify investment.

This ranking provides a simple basis upon which to proceed with development.
The team starts with the “must haves”, and proceeds down the scale as far as time
and resource permits.

4.1.6.2 The Kano Model

The Kano model [81] takes a slightly different approach to weighing up require-
ments. Using this model, requirements are divided into three categories:

• Baseline requirements: Requirements that, if not fulfilled, will cause the user to
be extremely dissatisfied. However, since the user takes the existence of these re-
quirements for granted, their satisfaction will not be increased if they are present.
These are the baseline requirements of the product.

• One-dimensional requirements: Requirements where the extent to which they
are fulfilled has a direct bearing on the satisfaction of the user. If they are not



4.1 Managing Requirements 63

implemented or poorly implemented, the user will be dissatisfied. However (un-
like the baseline requirements), if they are fulfilled, the customer will be very
satisfied.

• Attractive requirements: These are neither explicitly expressed or expected by
the customer, but can have a strong impact on the customer’s satisfaction if they
are implemented.

Customer satisfied

Requirement
unfulfilled

Requirement
fulfilled

Customer dissatisfied

Baseline

One-
dimensional

Attractive

Fig. 4.5 The Kano relation between fulfilment of requirements and customer satisfaction.

From these definitions, Kano posited a non-linear relationship between the extent
to which these requirements were implemented, and their effect on customer satis-
faction. If one accepts this model of the customer (or user), the task of requirements
prioritisation takes on an extra dimension; the relative pay-off from implementing a
particular type of requirement depends on the relative progress of the other require-
ments.

Earlier on in the development cycle, it clearly makes most sense to focus on
the baseline requirements. However, once the satisfaction in return for fulfilling
these starts to level-off, there may be more to be gained from focussing on the one-
dimensional requirements. And later on in the cycle again, there may be a greater
return in terms of customer satisfaction to be gained from switching to focussing on
the “Attractive” requirements.



64 4 Managing Requirements and Code

Exercise: Write down a set of 4-5 requirements for a fictional hotel room book-
ing system. First, use MoSCOW to prioritise them. Put the MoSCOW ranking aside,
and create a new list using the Kano approach (trying your best to ignore any con-
siderations you took into account during the MoSCOW process). Are they the same?
If not, why not? And which one do you consider to be more appropriate?

4.1.7 Oversight with Kanban boards

There are usually large numbers of requirements. These are often subject to change
(especially in an agile environment). So are their priorities. Some will take longer
than expected to implement, others less. Some will stall, and will need to be revisited
at a later stage in the development process. There is usually a constant “churn”
in terms of which requirements need to be serviced, and this requires a continual
dialogue with the development team, to establish a universal understanding of who
is doing what, and what the various priorities are at any given moment.

This communication of the status of a project is often achieved with the help of
Kanban boards, which are especially common in agile projects. The notion of “Kan-
ban” is directly inspired by the Kanban practice used for the Toyota Production Sys-
tem. Kanban is a Japanese word for “signboard” or “billboard” from Japanese. The
rationale is that the status of development should be visible to all of the developers,
so that any problems or imminent problems can be addressed immediately.

In a software development context, Kanban boards are commonly maintained on
a white-board, or electronically. They tend to follow a ‘binned’ system. The board
is divided into a number of columns, representing the status of a job. Figure 4.6
shows a typical system, where the bins correspond to ‘to do’, ‘doing’, and ‘done’.
Sticky-notes are then used to represent individual tasks or user stories representing
the ongoing work units, which can be transferred between bins.

For distributed development teams, several online variants have been developed.
One popular example is the Trello app4, which enables users to collaboratively edit
and maintain kanban boards.

4.2 Writing Maintainable Source Code and Handling Change

Source code is the ultimate embodiment of any software system. This is what all of
the other development processes culminate in; it is ultimately what is delivered to a
client or to the general public. Much of the ‘quality’ of a software system is directly
reflected by the quality of the source code itself.

4 https://trello.com/



4.2 Writing Maintainable Source Code and Handling Change 65

Todo Doing Done

Fig. 4.6 Example of a typical three-bin Kanban.

Code quality can be encouraged in two ways. Firstly, developers can adopt partic-
ular design principles and coding practices to support a greater mutual understand-
ing of the code base. Secondly, changes to the code can be controlled and recorded
by mechanisms such as version repositories to minimise the likelihood of develop-
ers making conflicting changes to the code base, and to make it easier to compare
against (or even revert to) older versions if bugs are introduced.

4.2.1 Coding Conventions and Design / Architecture Patterns

It is intuitive that certain styles of source code are easier to read, understand, and
maintain than others. Source code that is written as a large, monolithic block of code,
with lots of interdependencies and non-descriptive identifier names is going to be
harder to understand and edit than source code that is split up into neat functions
that are clearly labelled with comments and suitable naming conventions.

Perhaps the most renowned criticism of a particular coding-style was published
by Dijkstra in 1968, in his essay “Go To Statement Considered Harmful” [42]. One
key principle of Dijkstra’s criticism was that the existence of ‘go to’ statements
(which would represent a jump in control from one point in the source code to
another) made it difficult for the developer to understand what the source code was
doing.

He argued that such jumps should be avoided, and that more emphasis should
be placed on the structure of the source code. The code should be constructed in
such a way that individual functions can be understood without having to follow
complex jumps of control throughout the system. This presaged the advent of a more
structural approach to programming, championed by figures such as David Parnas
[105], who emphasised the need for modularity (presenting functionality in terms



66 4 Managing Requirements and Code

of well-defined interfaces whilst hiding internal data) and the ability to support code
reuse.

Good coding practice nowadays spans every aspect of source code development,
from design-level considerations such as information hiding and reuse, right down
to syntactic considerations such as where to place the opening / closing brackets of
a function, or the treatment of white-space in a code document.

4.2.1.1 Coding Style Guidelines and Conventions

The Google Style Guide5 offers a comprehensive set of guidelines for open-source
projects that originated at Google. The guide contains language-specific instructions
for a variety of languages including Java, R, C, C++, and HTML. These include
design choices (e.g. every class should be in a file of its own) down to formatting
instructions and the use of braces.

There is not enough space here to cover the individual style guidelines. Figure 4.7
picks out some examples from the Google style guidec, to provide an idea of what
guidance is on offer (some of which may surprise you). There are many resources
online6 that will explain terms such as the “egyptian brackets” mentioned in the
guidelines, along with various other stylistic terminologies (including “Pokemon
exception handling”).

Guidelines can often be enforced with source code analysis tools such as the
Lint tool [76], as will be elaborated when we discuss automated code inspections
in Chapter 7. In Google’s case, their style guide includes a Lint configuration file
that encodes the various guidelines, and that can be used to flag up any violations
automatically.

4.2.1.2 Design and Architecture Patterns

Coding conventions are useful for ensuring that the code is easier to understand at
a low-level. However, good coding style can only go so far. Software systems also
have to be easy to understand and maintain at the level of architecture. A non-trivial
software system could have hundreds or thousands of classes (recall the admittedly
somewhat extreme example from Chapter 2 that the Google code base contains ap-
proximately 9 million files of source code). For large scale systems, developers need
to gain a shared understanding of the design of the system; which classes, or groups
of classes, are responsible for which aspects of functionality.

It is immensely challenging to build upon the existing design of a system, to
implement requirements in such a way that the overall design remains understand-
able and easy to maintain. Invariably, certain requirements cannot be implemented
in isolation, but need to draw upon (and influence) design across the system in var-

5 https://github.com/google/styleguide
6 C.f. https://blog.codinghorror.com/new-programming-jargon/.



4.2 Writing Maintainable Source Code and Handling Change 67

• Source files

– Line terminators and the ASCII ‘space’
characters are the only white-space char-
acters allowed in a file. Tabs are not al-
lowed.

– A source file consists of: (1) License in-
formation (if present), (2) Package state-
ment, (3) import statements, (4) exactly
one top-level class. Exactly one blank
line separates each of these sections.

– No wild-card imports.
– No line-wrapping.

• Formatting

– Braces are always used where optional.
– Use of braces should follow the “egyp-

tian style” - the opening brace should be
in-line with the preceding declaration or
predicate, and the closing brace trails the
block on its own line.

– Blocks should be indented with two
spaces.

– Empty blocks may be concise - i.e. {}
– Only one statement per line.
– Multiple consecutive blank lines are per-

mitted, but never encouraged.

– Optional grouping parameters are en-
couraged.

• Naming

– Class names should be written in Upper-
CamelCase.

– Method names should be written in low-
erCamelCase.

– Constant names should be written in
CONSTANT CASE.

– Non-constants, parameter names, local
variable names, should be written in
lowerCamelCase.

• Programming Practices

– Caught exceptions should never be ig-
nored.

– Do not use object finalizers.

• JavaDocs

– At the minimum, Javadoc is present for
every public class, and every public or
protected member of such a class, un-
less the method is truly self explanatory
(e.g. is a getter method), or overrides a
method.

Fig. 4.7 A Selection of rules (paraphrased for the sake of conciseness) from the Google Style
Guide for Java.

ious ways. For example, a developer might be implementing a feature that needs to
be updated every time a variable in a different part of the system changes its state.
This can, depending on the system, be deceptively difficult to achieve. There is the
challenge of accessing the variable without needlessly exposing it to irrelevant parts
of the system, and the need to monitor it in a way that does not impinge on the
performance of the application.

One solution for such design challenges is similar to the solution for dealing
with source code style: To develop and adopt standardised solutions to these prob-
lems. In the context of design, such standardised solutions are referred to as “design
patterns”. Design patterns have their roots (as is often the case) outside of soft-
ware engineering. Christopher Alexander was an architect (in the buildings sense
of the word), who was interested in developing generic architectural solutions to
encourage good building and town design, which he published in 1977 in a book of
“patterns”’ [9].



68 4 Managing Requirements and Code

In the mid-90s, four software engineers (Gamma, Helm, Johnson and Vlissides)
adopted Alexander’s idea of patterns and produced their own book of “Design Pat-
terns” for software systems [57]. Essentially, a design pattern provides a template
for a solution to a design problem that can be re-used throughout a system. Since
their book was published, a large number patterns have been published, for a variety
of programming paradigms, and addressing a large range of problems.

+notify()

Observer

+notify()

ConcreteObserver

+registerObserver(Observer)
+unregisterObserver(Observer)
+notifyObservers()

+observerCollection
Observable

Fig. 4.8 The Observer Pattern template

To provide a more concrete example of a pattern, we can return to the above
example; a developer is working on a piece of code that needs to be synchronised
with the state of another part of the system every time its state changes. For situa-
tions like this, the “Observer pattern” [57] offers a potential solution. The solution
is illustrated in Figure 4.8. The key lies in ensuring that any classes7 that are to be
updated implement the same interface (the Observer interface). Then, any class that
is being observed by the observers can maintain a collection of Observer classes,
and can notify them whenever it updates its state.

At an even higher level of abstraction, patterns can also apply at an architectural
level [119]. As with the design patterns mentioned above, many patterns have been
proposed; famous examples include Microservices8 and Service-oriented architec-
tures. Perhaps the most well-known pattern is the Model-View-Controller (MVC),
which has its origins in the late 70s, and was first formally documented in the con-
text of the Smalltalk-80 language [87].

The MVC pattern pattern, shown in Figure 4.9, can be used to construct systems
where a user may wish to visualise and interact with data (a very large category of
systems). The architecture provides a means by which to simplify implementation
and maintenance by decomposing the system into three components that can be

7 Patterns are traditionally discussed in object-oriented terms, but are certainly not exclusive to that
paradigm. The Publish-Subscribe pattern is a similar solution for non object-oriented systems, for
example.
8 http://microservices.io/patterns/microservices.html



4.2 Writing Maintainable Source Code and Handling Change 69

Model View

Controller

Updates

Notifies

Updates

Notifies

Fig. 4.9 The interactions in the Model View Controller architectural pattern.

broadly kept separate: The code for storing and manipulating the data (the Model),
the code for visualising the data (the View), and the code for interacting with the
data and view (the Controller).

Exercise: What do architecture and design patterns, coding conventions, and
process improvement have in common?

4.2.2 Collaborative Development and Version Repositories

In the last two decades the process by which software is developed has changed sub-
stantially. The traditional presumption that individuals (or groups of individuals) are
working from the same location has gradually been replaced by the widespread use
of networked version repositories, where developers can be spread geographically,
and across different time zones. This shift is especially apparent in Open Source
Software (OSS) development.

This networked distributed software development has led to several innovations,
to address the situation where source code is being changed by multiple developers,
potentially at the same time in conflicting ways. A host of new tools have emerged
to synchronise changes to the source code, and to enable developers to keep track of
each others’ work. These changes enable a much larger scale of development, poten-
tially involving thousands of software developers. Developers can be geographically
spread, operating from different time zones.

This change has however led to procedural challenges. One of the key prob-
lems of software development (which turned out to be the downfall of the Waterfall
model) is the fact that development activities are highly interdependent; a change to



70 4 Managing Requirements and Code

the code base can have knock-on effects on the wider design and the corresponding
requirements. A development process needs to provide a framework within which
these distributed, asynchronous changes are productive and do not gradually lead to
the deterioration of the software system as a whole. In the remainder of this subsec-
tion we provide an overview of distributed version repositories - the predominant
technology for distributed software development.

4.2.2.1 Version Repositories

Version repository systems have been a key enabler of distributed software devel-
opment. A version repository provides a mechanism by which developers can con-
tribute changes to a code base, whilst ensuring that their individual changes do not
conflict with each other. They provide a log of what has changed, and provide a
means by which to undo changes that might have been counter-productive.

Early version repositories followed what is known as a ‘centralised’ model. Sys-
tems such as CVS (Concurrent Versions System)9 and SVN (Apache Subversion)10

operated by hosting a central version of the source code on a server. Developers
could then use client software to ‘check out’ a copy of the source code, to work on
changes, and then to ‘commit’ their changes back to the central server.

Some of the key concepts of version repositories are shown in Figure 4.10. The
current authoritative version is called the ‘trunk’ (this is version 1, 4, 6, 8, and 9).
Developers can either make changes to the trunk directly (as happens through ver-
sions 6, 8, and 9). If they are embarking on a slightly more elaborate change, they
can create a separate branch to be worked on separately whilst other developers
carry on working on the trunk. Once they have finished working on their branch,
they can combine their changes with the trunk again, an operation that is referred to
as a ‘merge’.

4.2.2.2 Merge Conflicts

Usually, different versions of source code files are merged together automatically.
When a changed file is committed back to the repository, an algorithm can process
it, finding changes in the newer version of the file, and replacing them. There are
numerous variants of such merging algorithms [95], that manage to execute merges
to varying degrees of fidelity.

Problems can arise when two developers have been editing the same file at the
same time, because the same portions of the file could have been edited in different
(conflicting) ways. If two developers check out the same version, edit the same
portions of code in different ways, and then try to check these changes in, version

9 http://savannah.nongnu.org/projects/cvs
10 https://subversion.apache.org/



4.2 Writing Maintainable Source Code and Handling Change 71

1

2

3

5

6

7

4

8

9

1

2

4

3

branches

trunk

merges Version 
repository

1

2

check out

commit

Fig. 4.10 Version Repository Concepts. The boxes represent versions, and the arrows represent
the flow of changes to the system.

Repository
A B

public void fooBar(){ //TODO rename
    …
}

public void calculateProductXY(){
    …
}

public void fooBar(){
    …
}

checkout

checkout

commit
(merge)

commit
(merge)

�

�

Fig. 4.11 Example of a merge conflict.



72 4 Managing Requirements and Code

repositories have to flag these possibly conflicting changes, and enforce some form
of resolution.

An example of this is shown in Figure 4.11 (it loosely follows the sequence dia-
gram notation to give an idea of time, which runs from top to bottom). Developers
A and B might check out version 1, which contains a poorly named method. Devel-
oper A might insert a comment highlighting the problem. Developer B might choose
to rename the method. Developer A commits their change first, which is accepted.
When developer B then tries to commit their change, the version repository identi-
fies that the [line of] code that she is seeking to change has been updated since she
last checked out the code, and that she could therefore be unwittingly overwriting
the change already made by developer A.

At this point, developer B has to resolve the conflict by hand. This is conven-
tionally handled by a process known as “three-way merging” [95]. The developer
is shown three versions of the source code: Their own attempted commit, developer
A’s commit, and the common ancestor version in the repository. The difference be-
tween the three files is commonly highlighted with tools (e.g. as provided in the
GNU DiffUtils package11). Developer B then has to edit the source code to produce
a final version that accounts for developer A’s changes, and can then commit a final
merge.

Conflicts can understandably cause problems in projects, especially where many
developers are frequently working on overlapping portions of source code. A con-
flict indicates that developers might have spent time attempting to address the same
problem, which indicates a waste of resource and time. They can also lead to bugs,
if merges fail to properly resolve the conflict [64]. To avoid this where possible,
it is therefore important that developers follow a development process that enables
them to communicate with each other to avoid overlap (e.g. to keep each other up to
date with respect the source code files or aspects of functionality they intend to be
working on). It is also considered to be good practice to encourage small, frequent
commits (and ensure that people check out the latest version regularly), instead of
few, larger commits, which intrinsically pose a greater risk of introducing conflicts.

4.2.2.3 Decentralised Version Repositories

In the last decade, centralised systems such as CVS and SVN have gradually been
usurped by ‘distributed’ version repositories such as Git12 and Mercurial13. Instead
of operating from a single central repository, distributed version repositories are
founded on the idea that every developer maintains a complete copy of the repository
on their machine (as opposed to just the current version of the source code). There
is one trusted central ‘official’ repository that developers can use as as a basis for

11 https://www.gnu.org/software/diffutils/
12 https://git-scm.com/
13 https://www.mercurial-scm.org/



4.2 Writing Maintainable Source Code and Handling Change 73

uploading and downloading their respective changes, but the core operations (code
commits, reverts, merges, etc.) are carried out locally by the developers.

Fig. 4.12 The term ”patch” is often attributed to the physical patches that were applied to cor-
rect bugs in punch-hole programs (visible in this tape, being processed by a Harvard Mark I, for
example). Arnold Reinhold, 2014, licensed under CC BY-SA 3.015.

Instead of operating in terms of ‘versions’ of a software system, decentralised
repositories operate in terms of ‘patches’; specific changes to the code base. As an
aside – Figure 4.12 shows a possible origin for the term ‘patch’; in paper-tape or
punch-card systems, faulty segments of source code were commonly tweaked by
patching up holes. Modern patches are the equivalent, but applied to two versions
of a text file. A patch essentially contains the lines that need to be added or removed
from one file to produce the other. Patches make it easier to keep track of changes
to a software system by focussing on only the areas that have changed (instead of
relying on a developer to pick them out). We will return to patch-inspection later on
in Chapter 7.

15 Source:
https://www.mediawiki.org/wiki/File:Harvard_Mark_I_program_tape.
agr.jpg
Licence: http://creativecommons.org/licenses/by-sa/3.0



74 4 Managing Requirements and Code

Exercise: To appreciate how code repositories are used in practice, have a look
at some of the open source code repositories on sites such as Github. If you look
at a relatively active project, such as Apache Spark (https://github.com/
apache/spark/commits/master), you will see that commits are made very
frequently (by the hour), and that the current code base is the product of tens or
even hundreds of thousands of commits.

4.3 Key Points

• Software development ultimately revolves around the ability to capture re-

quirements, and to turn these into source code. Generic software development
processes tend not to be prescriptive about how these are accomplished, yet both
are critical when it comes to ensuring the quality of the final system.

• Requirements are intrinsically difficult to capture. They can be difficult to
express by stakeholders, and can be difficult to capture in a non-ambiguous, clear
way by developers.

• Use cases represent the most popular format within which to capture func-

tional use cases. Use case diagrams serve to provide an overview of who can
interact with a system, and in what capacity. Each individual use case is captured
individually in a structured textual description.

• The IEEE standard for capturing requirements is in the form of the Soft-

ware Requirements Specification (SRS) document. This document contains
(at least according to the specification) a multitude of sections and sub-sections,
and goes to illustrate how tricky it can be to capture a requirement in a detailed
way. It also illustrates the level of documentation that could be expected with
top-heavy techniques such as the Waterfall method.

• Security-specific requirements are particularly important to capture early-

on, but can also be especially difficult to conceptualise. Security-specific mod-
els such as C-I-A are useful prompters to guide developers towards salient se-
curity concerns. Misuse-cases can also be devised to complement existing use-
cases.

• Once requirements have been finalised, it is important to be able to trace

them to their relevant development artefacts. This problem is referred to as
‘traceability’. It is common to use a ‘traceability matrix’ to link requirements to
their various artefacts.

• There are often more requirements than can be addressed within the avail-

able frame of time and resource, which means that they have to be priori-

tised. There are many prioritisation techniques. In this chapter we have intro-
duced the MoSCoW approach (splitting requirements into ‘Musts’, ‘Shoulds’,
‘Coulds’ and ‘Won’t’s), and the Kano model.



4.3 Key Points 75

• Frequent changes in requirements and their priorities can be communicated

to the development team with the help of a Kanban board. This consists
of a number of ‘bins’ or columns (e.g. “to be implemented”, “currently being
implemented”, and “completed”.). Individual requirements can then be moved
between them, and can be listed in order of priority, so that the whole team is
able to share the current state of the project.

• Ensuring that all source code (and its design / architecture) is understand-

able and maintainable can be encouraged by trying to remove as much scope

for variability as possible. For source code, this is achieved by enforcing style
guidelines to enforce a uniform approach to writing code. At a design level and
architecture level, design and architectural patterns should be promoted to en-
courage the use of standard templates to solutions where possible.

• Collaboratively writing the source code for a large system is a hugely com-

plex endeavour, which relies on an commonly understood modus operandi

amongst developers. Organisations tend to support the adoption of coding con-
ventions and style-guides in an attempt to maintain uniformity within a project.

• Controlling changes to source code becomes particularly challenging when

lots of developers are working on the same code base at the same time. For
this, version repositories are crucial. These come in various flavours, and recently
distributed version repositories such as Git and Mercurial have become especially
popular.



Chapter 5

Planning Activities and Predicting Costs

In Chapter 3 we saw that development processes can provide a broad work-flow to
govern the development of a software product. In Chapter 4 we covered the various
conventions and technologies that can help developers to successfully collaborate on
source code. Even with those tools, there still needs to be an understanding amongst
the developers of who will do what, and when. In a project with a tight time and
resource constraints, how much time can be allocated to particular activities? Which
activities are the best ones to prioritise? At the end of the day, how much is the whole
endeavour going to cost, and how much time will it require?

Such questions are crucial to quality assurance. If the time and effort required
for a project is not estimated properly, it can lead to huge cost overruns. A 2011
study of 1,1471 IT projects [52] established that 27% of IT projects are subject to
cost-overruns. More worryingly, one in six projects was subject to cost-overruns of
more than 200%, and schedule overruns of 70%. In financial terms, such overruns
can be disastrous.

Although certain aspects of development processes can help to guard against
such overruns (c.f. the use of time-boxed iterations by IID and SCRUM), these can
only succeed if the developers are able to plan their work and predict the resources
required. Over the years several approaches have emerged to support these activities.

This chapter presents these approaches in two parts. Section 5.1 presents ap-
proaches that support planning at a lower-level; determining when what activities
should be undertaken. For this we present two general project-management tech-
niques: PERT and Gantt charts. In section 5.2 we present techniques that are specif-
ically geared towards predicting the cost of a project (or a portion thereof). These
techniques are not concerned with the low-level sequencing of activities, but are
more statistical in nature; examining previous experience and cost data to make a
valid prediction of the overall cost of a project.

77© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_5



78 5 Planning Activities and Predicting Costs

5.1 Planning

The cost and time required to develop a project are often intricately interlinked.
Producing a high quality software system in a short amount of time can impose
huge pressures on developers, taking them away from other projects or requiring the
recruitment of new staff (and thus leading to higher costs). Allowing for a longer
time-frame can relieve pressures on staff, can provide more scope for testing and
other quality assurance activities, leading to higher quality software at a potentially
lower cost.

Ultimately, in either case, success comes down to proper planning. A plan needs
to set out the (anticipated) resources that will be required throughout the course of
a project. It needs to set out when certain tasks need to be achieved. It needs to also,
set of priorities amongst tasks, and set out which tasks potentially have some scope
for leeway to allow for overruns.

5.1.1 Program Evaluation and Review Technique (PERT)

At this level, a software engineering project is akin to any other conventional engi-
neering project. Accordingly, the most popular planning techniques were not specifi-
cally developed for software projects, but can be applied in the same manner. In this
section we cover one of the most popular Program Evaluation and Review Tech-
nique (PERT).

The PERT technique was developed for the U.S. Navy in 1957 to support their
development of the Polaris submarine-launched nuclear weapons system [92]. Its
main selling point was the ability to explicitly incorporate uncertainty as far as the
scheduling of individual tasks is concerned. This makes it especially appealing from
a software engineering point of view where, as we shall see in Chapter 5, predicting
the duration it takes to develop a software module is fraught with uncertainty.

The PERT technique starts off with a table that captures all of the essential in-
formation about the project. The project is split into its essential activities. Each
activity is associated with the following attributes:

• Predecessor: Any other activities that must be completed in order for this activ-
ity to start.

• Time estimates:

– Optimistic (o): The duration that this activity will take in an ideal setting
where there are no hitches and the developers are able to make good progress.

– Normal (n): The duration that this activity will take under ‘normal’ circum-
stances.

– Pessimistic (p): The duration that this activity will take if problems are en-
countered along the way.



5.1 Planning 79

• Expected time: This is derived from the above time estimates as o+4n+p
6 . In

other words, it takes the average of o, n, and p, but gives n a weighting that is
four times greater than the optimistic and pessimistic estimates1.

The time-units used depend on the broader context of the project. For smaller
projects with a more granular plan the unit could be person-hours. For larger projects
it might be days or even weeks of developer-time. For our examples we assume days.

Time Estimates
Activity Predecessor Optimistic Normal Pessimistic Expected Time

A: Develop storage format D 2 3 4 3
B: Develop file reader A 3 5 6 4.83
C: Develop file writer A 3 4 7 4.33
D: Develop core data structure - 3 5 10 5.5

Table 5.1 Example table of activities and time estimates, for a small component to load and save
data.

An example table of activities is shown in Table 5.1. These activities are con-
cerned with the activities that are involved in the development of a module for read-
ing and writing data to the disk. There are some pertinent dependencies between the
activities. The components for writing-to and reading from the file on disk (activi-
ties B and C) cannot be achieved until we know what the data format is that we are
dealing with (which is developed in activity A). However, this cannot be achieved
until we know what the underlying data structure(s) in the program are – which data
elements will it be necessary for the program to be able to store and access in a
persistent manner (activity D).

8.5 4.83 13.33

8.5 0 13.33

B: Develop file reader

0 0 0

0 0 0

Start

5.5 3 8.5

5.5 0 8.5

A: Develop storage format

8.5 4.33 12.83

9 0.5 13.33

C: Develop file writer

0 5.5 5.5

0 0 5.5

D: Develop core data 
structure

13.33 0 13.33

13.33 0 13.33

Finish

Earliest 
start

Expected 
duration

Earliest 
finish

Latest 
start

Slack
Latest 
finish

NAME

Fig. 5.1 PERT chart for activities in Table 5.1.

Once the activities have been entered into the table, they can be displayed as a
PERT chart. This is created in three phases. Firstly, the ‘network diagram’ is created
to highlight the sequential dependencies. This is achieved by creating a ‘start’ node,
one node for each of the activities, and a finish node. The nodes are then connected

1 It is not clear that this formula is clearly justified; i.e. why the weighting of four is chosen for the
normal estimate.



80 5 Planning Activities and Predicting Costs

according to the ‘predecessor’ activities set out in the table. The Start node is con-
nected to the activity with no predecessors, and then the dependencies are traced
out. Any activities with no successors are connected to the ‘finish’ node.

The next step is to identify the time-constraints that govern the activities. To
facilitate this, we use the following structured labels to annotate the activities.

• Earliest start time and Latest start time
• Expected duration (as calculated in from the time estimates) and slack-time
• Earliest finish time and latest finish time

We populate the PERT chart with these values as follows:

1. In the ‘start’ node, set all of the values to zero.
2. For each of the nodes that follow on from the start node, set the earliest start time

to zero, and set the earliest finish time to the expected duration of that activity.
3. Trace out the subsequent dependent activities, setting their earliest start time to

the earliest finish time of the preceding activities, and calculating the earliest
finish times by adding the expected duration to the earliest start time.

• If you have the situation where you have a node with multiple preceding ac-
tivities (such as the Finish node in our case) the earliest start time is the max-
imum of the “early finish” times of any of the preceding nodes.

4. In the ‘Finish’ node, set the latest finish time and latest start times to the earliest
finish time.

5. Trace back to the preceding activities, and set each of their latest finish times to
the latest start time of the finish node. Calculate their latest start time by subtract-
ing the expected duration from the latest finish time.

• In situations where several nodes are preceded by a single node, the latest
finishing time of that node is set to the minimum latest start time of the suc-
ceeding nodes.

6. Calculate the slack for all of the nodes by subtracting the earliest finishing time
from the latest finishing time.

Finally, we are able to calculate the Critical Path . This constitutes the path
through the PERT chart where there is no slack. Where any delay to an activity
will have immediate knock-on effects for the rest of the project and will result in a
delay to the overall finishing time. On our PERT chart this is highlighted in red.

The critical path is particularly valuable when it comes to prioritisation. From a
management perspective, if two activities are being worked on concurrently, where
one is on the critical path and the other has some slack-time, it makes sense to
prioritise the critical project. For example, by moving relevant staff from the from
the less critical activity to the critical one.



5.1 Planning 81

5.1.2 Gantt Charts

PERT charts are a useful means by which to elicit the key dependencies and time
constraints that will underpin a project. However, the PERT chart can be difficult
to interpret. The chart does not visually convey the explicit flow or duration of the
activities. One visual tool that can be used to better convey the timings of the ac-
tivities is the Gantt chart. The Gantt chart is named after Henry Gantt, who devised
them in the early 1900s (their specific origins are dates are not known [134]). They
came to prominence through Gantt’s work during the First World War, and became
widespread project planning tools in the mid 1920s.

Days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D: Develop core data structure

A: Develop storage format

C: Develop file writer

B: Develop file reader

Fig. 5.2 Gantt chart corresponding to the activities in Table 5.1.

Figure 5.2 shows an example of a Gantt chart corresponding to the activities
in Table 5.1 (using the expected durations). For the sake of illustration, decimal
places in the durations are rounded to the nearest full day. The chart sets out the
flow of activity (what happens when), and how long each activity is going to take.
Gantt charts often include two different types of arrow: One type to represent the
sequential flow between activities, and another to represent the dependency of one
activity on another (in our example the flow and dependencies overlap anyway). It
is trivially also possible to highlight the critical path on a Gantt chart (by simply
highlighting the relevant activities on the path).

Even though they both represent the same information, Gantt and PERT charts
are nevertheless complementary in nature. Whereas Gantt charts are purely visual,
PERT charts also provide a basis upon which to calculate some of the data that
might go into a Gantt chart; the durations, and essential dependencies (which in
turn inform the possible flow of activities).



82 5 Planning Activities and Predicting Costs

5.2 Predicting Costs

Effort2 prediction is crucial when it comes to planning how a software system is
going to be developed. It is vital to determine the resources that are required, and
how this matches up ot the resources that are available. If the software is being paid
for, it is necessary to agree upon a price for the development, and this can only be
done in a reasonably reliable way if one can draw upon some prior experience.

The nature and fidelity of effort estimation depends on the type and amount of
prior data that is available. At the simplest end of the spectrum, one might only have
an idea of how large and complex the system ought to be. On the other hand, one
might have both such an estimate, along side a wealth of cost data from previous
projects.

5.2.1 Base Models

The simplest approach is to predict the cost in two steps. First of all, one derives an
estimate of software complexity or size (S), by deriving a measure such as Albrecht’s
Function Points or an overall estimate of LOC from the requirements. The act of
estimation is then reduced to estimating the cost of developing a single unit a (e.g.
cost per LOC or cost per function point). So the cost E is computed as:

E = a∗ s (5.1)

For example, if you estimate that your project will amount to 1,230 LOC, and you
estimate the cost per LOC to be £25, then the total cost E = 25∗1250 = £30,750.

Often, the cost of a model does not merely depend on “size”. There can be a base-
cost to a project before a single line of code has been written - with the preliminary
requirements elicitation, the initial architecture, design, recruitment, etc. To account
for this, we can add an additional parameter to the model, c, so that the estimate
becomes:

E = a∗ s+ c (5.2)

In this case, if one were to plot the cost estimate as a line, c would be the intercept
– the point at which the line crosses the y axis.

In reality, the relationship between size and effort is not linear. After all, every
line of code (let alone entire function) that is added to a project presents the devel-
oper with an additional responsibility to maintain and test as well. To address this,
an additional ‘scale’ coefficient b is added, resulting in:

E = a∗ sb + c

2 In this context, the terms “cost” and “effort” are used synonymously.



5.2 Predicting Costs 83

In this case b > 1 indicates a non-linear increase in cost per unit (i.e. per LOC).
Conversely, b < 1 indicates a decrease, though this is highly unlikely to be the case
in a typical project.

5.2.2 Parameter Fitting by Linear Regression

But where do the values for parameters such as a, b, and c come from? Unless you
have some prior experience, it has to come out of pure intuition, and this is un-
likely to be particularly reliable. However, if you do have experience – if you have
recorded previous project costs and sizes, it becomes possible to make a more edu-
cated guess. This is the setting that broadly sets the scene for most of the techniques
in software cost estimation.

0

2000

4000

6000

8000

0 250 500 750 1000
KLOC

P
er

so
n−

m
on

th
s

NASA Dataset

Fig. 5.3 Linear Regression on cost-effort data from the NASA’93 dataset. a = 5.059 and c = 148.8

The approach is best illustrated visually, and by example. To illustrate this we
use a dataset collated by NASA in 1993, which maps the amount of effort in



84 5 Planning Activities and Predicting Costs

person-months to KLOC (amongst other things) for 101 data-points, spanning eight
projects3. The scatter-plot for this data is shown in Figure 5.3. Essentially cost esti-
mation amounts to identifying a “model” that fits this data, and which can thus be
used to predict the effort for projects of other sizes.

The task now is to identify a “model” that can explain this data, and that we can
therefore use to predict the cost of our project. In the simplest case, we can assume
that the model in question is a straightforward line (in this case we assume that
b = 1).

The approach of finding the necessary values for a and c to best fit a set of data
is known as Linear Regression. We will not cover the specific mechanics of Linear
Regression in this book - there are plenty of references and tools that will do this
for you. In our case, if we apply Linear Regression to the data in Figure 5.3, we end
up the line that is plotted in the figure – which has the coefficients a = 5.059 and
c = 148.8.

Exercise: The model fits a lot of the data points quite well. However, it fares less
well with some of the “outliers” highlighted in the plot. Why might the data points
not fit a straight line? What would the implications have been, had NASA adopted
this linear model?

As shown above, the model of a simple straight line for modelling cost or effort
can be somewhat coarse. For example, one simplifying assumption made by the
straight-line cost model is that b = 1 – that the cost is directly relative to a fixed
cost-per Line of Code (or whatever the unit of software size). In reality, it is likely
that b > 1; that for every additional line of code there is an additional cost to bear, in
terms of efforts involved in activities such as maintenance, testing, documentation,
etc.

5.2.3 COCOMO

The linear regression can fit a straight line to existing data, and provides an rough
basis upon which to begin approximating the costs of a project. However, a straight
line does not allow us to account for other ‘non-linear’ factors, such as the scale
factor b. Also, fitting the parameters by approaches such as Linear Regression can
be tricky because one might not have access to the sort of historical data that is
required to yield a useful prediction.

To address this, Boehm developed the Constructive Cost Model (COCOMO)
effort prediction framework in 1981 [23]. Instead of requiring historical data, the
model provides certain parameters that, collectively, should characterise the devel-
opment task at hand. It comes in three levels:

3 You can download this data yourself from the PROMISE software repository [6]



5.2 Predicting Costs 85

1. Basic: The project is in its very early stages and has been subject only to some
very basic requirements capture.

2. Intermediate: The requirements have been collected to a reasonable degree of
detail.

3. Detailed: The requirements have been collected and the system has been de-
signed.

For each level, COCOMO provides additional parameters that can be populated
by the user to provide a (hopefully) increasingly accurate prediction of the effort
required. Here we present the Basic and Intermediate stages4.

Over the years, COCOMO (and its successor COCOMO II) have become widely
used within industry, especially in the Aerospace domain by organisations such as
NASA.

5.2.3.1 Basic Model

The basic model for COCOMO provides three models, to predict three aspects of
the effort that a project is going to require. The effort E is computed by the familiar
equation we have covered previously:

E = a∗ sb (5.3)

This effort value contributes to the calculation of the development time, which is
computed as follows:

D = c∗Ed (5.4)

Both of these values can then be used to calculate the number of people required:

P = E/D (5.5)

To use these equations, the user has to provide s (the estimated size of the final
system in KLOC), and has to select the values of four coefficients (a, b, c, and d).
The COCOMO model provides suggested values for these parameters. These values
were derived from data collected from 63 software development projects in the 70s5.
These projects were largely from a single organisation, along with a selection of
others from university courses and other organisations.

The selection of a suitable set of variables first of all depends on the “type” of
project. This is decided as one of the following:

1. Organic: Small teams of experienced developers with flexible requirements.

4 The detailed stage is a very Waterfall-model specific adaptation that refines the prediction in a
way that is sensitive to the various development stages.
5 The original COCOMO dataset can be downloaded here: http://openscience.us/
repo/effort/cocomo/coc81.html



86 5 Planning Activities and Predicting Costs

2. Semi-detached: Medium teams, mixed experience, working towards a mixture
of tight and flexible requirements.

3. Embedded: The software is developed towards tight constraints.

Based on this categorisation, the values for a, b, c and d are shown in Table 5.2.

Development context a b c d
Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.2 2.5 0.32

Table 5.2 COCOMO coefficients for the ”Basic” model.

5.2.3.2 Intermediate COCOMO

The intermediate version of COCOMO incorporates some additional factors that
can have a bearing on the time and effort required within a project, but which were
not considered in the basic version. These “cost drivers” are shown in Figure 5.4.

• Product attributes

– Required software reliability
– Size of application database
– Complexity of the product

• Hardware attributes

– Run-time performance constraints
– Memory constraints
– Volatility of the virtual machine environ-

ment
– Required turnabout time

• Personnel attributes

– Analyst capability
– Software engineering capability
– Applications experience
– Virtual machine experience
– Programming language experience

• Project attributes

– Use of software tools
– Application of software engineering

methods
– Required development schedule

Fig. 5.4 Cost drivers for Intermediate COCOMO

For each of these cost drivers, the developer is required to rate them on an ordinal
scale from 1 to 6, where 1 is “very low” and 6 is “extra high”. Each combination of
factor and rating is given a weighting, as shown in Table 5.3. The “Effort Adjustment
Factor” (EAF) is calculated as the product of the weightings attributed to all of the
cost drivers.

The Intermediate COCOMO uses this EAF to produce a more refined effort es-
timation:



5.2 Predicting Costs 87

Category Cost drivers Very low Low Nominal High Very High Extra High

Product

Req. Reliability 0.75 0.88 1.0 1.15 1.4
Database size 0.94 1.0 0.08 1.16
Complexity 0.70 0.85 1.0 1.15 1.3 1.65

Hardware

RT Perf. 1.0 1.11 1.3 1.66
Memory 1.0 1.06 1.21 1.56
Volatility of VM 0.87 1.0 1.15 1.3
Turnabout time 0.87 1.0 1.07 1.15

Personnel
Attributes

Analyst 1.46 1.19 1.0 0.86 0.71
Apps. 1.29 1.13 1.0 0.91 0.82
Soft. Eng. 1.42 1.17 1.0 0.86 0.70
Virt. Machine 1.21 1.1 1.0 0.9
Prog. Lang. 1.14 1.07 1.0 0.95

Project

SE Methods 1.24 1.1 1.0 0.91 0.82
Tools 1.24 1.1 1.0 0.91 1.83
Schedule 1.23 1.08 1.0 1.04 1.1

Table 5.3 Weightings for Intermediate COCOMO “cost drivers”.

E = a∗ sb ∗EAF (5.6)

The other calculations (for development time and personnel) are calculated as in
the basic model. The coefficients for a, b, c and d are chosen from the same set of
values (as shown in Table 5.2).

Exercise: Compare and contrast Intermediate COCOMO with Albrecht’s Func-
tion Point model. Can you identify any common weaknesses between them?

5.2.3.3 COCOMO II

The application of COCOMO is problematic. Looking at the entire COCOMO
model, it provides a set of fixed parameters for a, b, c, d, as well as the 15 cost
drivers. It has derived values for these 19 parameters from a relatively small selec-
tion of projects (only 63). Furthermore, the projects in question that were used to
derive these values were of a relatively specific nature; they were all from the 70s;
most likely written in languages such as C and Pascal, with development method-
ologies that have since become largely outdated, such as the Waterfall model. Ap-
plying these values in a modern context, to an agile project that is being developed
with modern tooling, by developers with different skill sets, adopting “new” lan-
guage paradigms such as Object-Oriented development, risks producing results that
are misleading.

To address this weakness, Boehm collated a new, larger set of data (amounting to
161 projects). He used this to fit variables for a new COCOMO II model [20], which
is designed to be applied to software systems that are developed in a more modern



88 5 Planning Activities and Predicting Costs

context. Their intention is to take into account factors such as reuse, automated
programming, the integration of COTS components, etc., which were not explicitly
accounted for by the original COCOMO model.

The equation underpinning the COCOMO II model is as follows:

E = a∗∏
i

EMi ∗ sb+0.01∗Σ jSFj (5.7)

Here, a, s, and b are the same as the variables that were used in the original
COCOMO.

The SF represents a set of ‘scale-factor’ values that are added up to produce an
overall scale factor. These are obtained by rating a set of factors on a scale from 1-6.
These ratings are chosen according to Table 5.4.

Definition

(abbreviation)
Low (1,2) Medium (3,4) High (5,6)

Development flexi-
bility
(flex)

Process rigorously
defined

Some guidelines, can
be relaxed

Only general goals

Process Maturity
(pmat)

CMM Level 1 CMM Level 3 CMM Level 5

Precedentedness
(prec)

Never build this kind
of software before

Quite new Thoroughly familiar

Architecture or risk
resolution (resl)

Few interfaces de-
fined or few risks
eliminated

Most interfaces
defined, most risks
eliminated

All interfaces defined
and all risks elimi-
nated

Team cohesion
(team)

Very difficult interac-
tions

Basically cooperative Seamless interactions

Table 5.4 Scale factors for COCOMO II

EM is a set of “effort multipliers”. These are chosen on a similar basis to the scale
factors, and are shown in Table 5.5. The actual coefficient values that are associated
with each of these ratings for both SF and EM are shown in Table 5.6.

Once the EM and SF elements have been provided, the effort E can be calcu-
lated, which can feed into the calculation of developer time and number of people
required as in equations 5.4 and 5.5. Boehm recognised that the given coefficients
may not be appropriate to an arbitrary setting. It is unlikely that the data, even in its
expanded form of 161 projects, would not adequately apply to every applied setting.
Accordingly, it is customary to tune COCOMO. This can be achieved if an organi-
sation has just a few examples, and is commonly accomplished by varying variables
a and b whilst holding the other values constant.



5.2 Predicting Costs 89

Definition Low (1,2) Medium (3,4) High (5,6)

Analyst capacity
(acap)

Worst 35% 35% – 90% best 10%

Applications experi-
ence
(aexp)

2 months 1 year 6 years

Product complexity
(cplx)

E.g. Simple read /
write statements

E.g. Use of simple in-
terface widgets

E.g. Performance
critical embedded
system

Database size (DB
bytes / SLOC)
(data)

10 100 1000

Documentation
(docu)

Many life-cycle
phases not docu-
mented

Extensive reporting
for each life-cycle
phase

Language and tool
experience
(ltex)

2 months 1 year 6 years

Programmer Capa-
bility
(pcap)

Wost 15% 55% best 10%

Personnel Continuity
(% turnover per
year.)
(pcon)

48% 12% 3%

Platform experience
(plex)

2 months 1 year 6 years

Platform volatility
(pvol)

Major change every
12 months, minor
change every month.

Major change every
6 months, minor
change every 2
weeks.

Major change every 2
weeks, minor change
2 days.

Required reliability
(rely)

Errors a slight incon-
venience

Errors are easily re-
coverable

Errors can risk hu-
man life

Required reuse
(ruse)

none Multiple program Multiple product
lines

Dictated program
schedule
(sced)

Deadlines moved to
75% of original esti-
mate

No change Deadlines moved
back to 160% of
original estimate

Multi-site develop-
ment
(site)

Some - contact by
phone and mail

some email Interactive multi-
media

Required % of avail-
able RAM
(stor)

N/A 50% 95%

Required % of CPU
(time)

N/A 50% 95%

Use of software tools
(tool)

edit, encoding, debug Integrated with life-
cycle

Table 5.5 Effort Multipliers for COCOMO II



90 5 Planning Activities and Predicting Costs

Category Vey Low Low Norm High Very High Extra High

Scale
Factors

Prec 6.20 4.96 3.72 2.48 1.24 0.00
Flex 5.07 4.05 3.04 2.03 1.01 0.00
Resl 7.07 5.65 4.24 2.83 1.41 0.00
Team 5.48 4.38 3.29 2.19 1.10 0.00
Pmat 7.80 6.24 4.68 3.12 1.56 0.00

Effort
Multipliers

Rely 0.82 0.92 1.00 1.10 1.26 –
Data – 0.90 1.00 1.14 1.28 –
Cplx 0.73 0.87 1.00 1.17 1.34 1.74
Ruse – 0.95 1.00 1.07 1.15 1.24
Docu 0.81 0.91 1.00 1.11 1.23 –
Time – – 1.00 1.11 1.29 1.63
Stor – – 1.00 1.05 1.17 1.46
Pvol – 0.87 1.00 1.15 1.30 –
Pcon 1.29 1.12 1.00 0.90 0.81 –
Acap 1.42 1.19 1.00 0.85 0.71 –
Pcap 1.34 1.15 1.00 0.88 0.76 –
Apex 1.22 1.10 1.00 0.88 0.81 –
Plex 1.19 1.09 1.00 0.91 0.85 –
Ltex 1.20 1.09 1.00 0.91 0.84 –
Tool 1.17 1.09 1.00 0.90 0.78 –
Site 1.22 1.09 1.00 0.93 0.86 0.80
Sced 1.43 1.14 1.00 1.00 1.00 –

Table 5.6 COCOMO II Coefficients

5.2.4 Planning Poker

So far, all of the cost-prediction approaches considered have been ‘model-based’.
We are assuming that there is a hidden relationship at play, between certain prop-
erties of the software system such as its size and complexity, and the ultimate cost.
However, not all cost-prediction approaches are based on this framework.

Planning poker is one cost-prediction approach that is not model-based. As the
name suggests, Planning poker is based on a ‘game’ that several developers play
amongst themselves. The approach is especially popular in agile-development con-
texts, and is an informal variant of the Wideband-Delphi approach proposed by
Boehm in 1981 [23].

Planning poker provides a structured protocol that aims to elicit a consensus
from the developers as to how much effort a piece of work is going to take. Each
developer is given a set of numbered cards, where the numbers fit some non-linear
scale6, along with a wild-card “?”. For a given user story, each developer picks a
card that corresponds to their estimation of how much effort a story will take. Units
here are commonly referred to as ‘story points’. These are intended to measure the
complexity or size of the task (but are not tied to a unit of time).

To play the game, each player places the card representing their estimate face-
down on the table (to prevent biasing other players). Once the cards have been turned

6 The scale often follows the Fibonacci sequence: 1, 3, 5, 8, 13, 20, . . . .



5.2 Predicting Costs 91

over, the players with the highest and lowest values are given the option of arguing
why they believe they are right. Once they have made their cases, the entire process
is repeated; players place their cards afresh until a consensus is reached.

There have been few studies into the accuracy of planning-poker, but those that
have been carried out have been supportive. A study in 2008 by Moløkken et al.
[98] on an industrial software development project indicates that planning poker
leads to group-estimates that are more conservative than simply taking the averages
of individual estimates, and that these consensus estimates were more accurate than
individual estimates.

5.2.5 Uncertainty and Predictive Accuracy

One crucial factor in predicting software cost is the amount of reliable information
that can be used about the software project in question. This amount of information
increases as software development progresses. At the earliest stage, before require-
ments have been properly elicited, any estimates are bound to be less certain than
they are in later stages.

This is one of the key sources of error in the use of, for example, the linear
regression models above. In order to produce a cost estimate, it is still necessary to
produce an estimate of the size of the final system. Without a proper grasp on the
requirements, such a guess (and any cost estimate derived from it) has to be treated
with extreme caution.

This problem was characterised by Barry Boehm as the “Cone of Uncertainty”,
shown in Figure 5.5. He suggests that predictions that are made in the very initial
stages can be a quarter of the actual cost if overly optimistic, or four times the actual
cost if overly pessimistic.

We have seen that cost estimation is one of the most important factors in qual-
ity assurance. Without the ability to anticipate costs properly, a project is doomed.
Developers are not given the time and resource necessary to fulfil their obligations,
the project becomes subject to overbearing time and cost pressures that, ultimately,
undermine quality, and can even lead to projects being abandoned.

The “cone of uncertainty” goes some way towards explaining why effort estima-
tion is difficult. Early on in a project, little is known, and the estimate is necessarily
approximate. This can only become more reliable as the blanks are filled in once the
project has had a chance to mature.

It also gives rise to a more fundamental question: How accurate is COCOMO?
How does it compare to more recent proposed approaches, or more basic approaches
such as the simple Lines of Code function in Equation 5.1?

These questions, and others, were posed by Menzies et al. (including CO-
COMO’s originator Barry Boehm) in a recent paper [96]. To answer the above
questions, they carried out a comprehensive study, comparing the performance of
COCOMO and a raft of more recent techniques on a range of prediction tasks. Inter-
estingly, their analysis showed that, despite its age and apparently biased coefficient



92 5 Planning Activities and Predicting Costs

1x

0.25x

4x

Fe
as

ibi
lity

Pla
ns

 & 

Req
uir

em
en

ts
Des

ign
Deta

ile
d

Des
ign

Dev
el 

& T
es

t
Ac

ce
pte

d
So

ftw
are

Fig. 5.5 Boehm’s Cone of Uncertainty.

values, no technique outperformed COCOMO II. It was far more accurate than mea-
sures that are based upon Lines of Code alone. The key to accuracy, they found, is
the choice of suitable data for calibrating the model, as opposed to the model itself.

5.2.6 Keeping Track of Progress

Once the cost of an activity has been estimated, it is important to monitor whether
its actual cost reflects the prediction or not. If the prediction was wrong, it is better
to realise this early on so that any miscalculations can be factored into subsequent
planning iterations. For this we can refer to two useful notions that are particularly
prevalent in agile software development: Team Velocity and Burndown Charts.

Team Velocity is the estimated speed at which a development team works. In an
agile context it can be described as “Number of story-points completed per sprint”7.
The velocity of a sprint is calculated by adding up the story point estimates for
stories that were successfully completed in that sprint.

7 We use the ‘story point’ unit here, but this could be replaced with whatever metric is being used
to predict time or effort.



5.2 Predicting Costs 93

Exercise: Having played a few rounds of Planning Poker, your team has es-
tablished that the total number of story points for all of the stories amounts to 203
story points. Having completed a sprint, your team has implemented 5 stories, which
amount to 25 story points. What is their velocity, and (assuming this velocity con-
tinues) how long will they take to complete the software?

Fig. 5.6 Example burndown chart. Here, a sprint takes 20 days, and the total estimate of effort for
the sprint amounts to 30 story points.

The velocity and the amount of work left to do can be visualised with Burndown
charts. An example is shown in Figure 5.6. Burndown charts are quite flexible, and
there is no prescriptive way in which they are to be used. They can be used to
visualise progress throughout the lifetime of a project, or just for the day-by-day
progress of a sprint.

The starting point is the total amount of effort that has been estimated. This can
be achieved by totting up the total number of story-points estimated (or whatever
other unit of effort is used). The length of the x-axis is determined by the amount
of time planned for the given iteration or sprint (we refer to this number as x here),
and is usually divided into days. The “ideal” line is simply a straight line from the
total estimated value at day 1 to 0 effort at day x. The “actual” accomplishment is
measured by the number of units that are deemed to have been completed after each
day. The idea is that the burn-down chart is visible throughout the project, and is
updated at regular intervals (e.g. every day).



94 5 Planning Activities and Predicting Costs

5.3 Key Points

• Coming in on time and on budget is a key consideration when it comes to the

quality of a software system. A huge portion of IT projects fail in this respect; a
2011 survey indicated that 27% of projects are subject to cost-overruns, and that
one in six suffer cost-overruns of over 200%.

• PERT charts were established in the late 50 so support project management

activities. They combine a simple form of cost-estimation with dependence anal-
ysis to compute dependency diagrams, where the estimated start and end-point
of each activity can be predicted.

• Gantt charts show the sequential activity within a project. In doing so they
complement PERT charts, which only show dependencies, but do not necessarily
visualise the duration and actual order of activities.

• There are several approaches to predicting the cost of a project. In most

cases, techniques try to infer the cost of a project from the costs of previ-

ous projects. The idea is that organisations collect data on the costs of previous
projects, along with some basic metrics (e.g. their size in terms of lines of code).
This then forms the basis for a relation between size and cost. Accordingly, if it
is possible to predict the size of future projects, their costs can be extrapolated
from the existing data. These approaches tend to require some parametrisation –
e.g. the predicted size, and perhaps other parameters to capture the changeability
of requirements or the experience of the team.

• COCOMO is a cost prediction approach that provides pre-computed pa-

rameters. The idea is that any organisation can calculate the predicted cost for a
project by simply ‘plugging in’ a set of parameters that characterise the nature of
the project and organisation within which it is developed.

• Planning-poker is an example of a cost-prediction approach that does not

take a ‘model-based’ view of cost prediction. It is a variant of the Wideband-
Delphi method, popularised by Barry Boehm. The idea is that a group of devel-
opers collaboratively estimate the expected cost of individual activities (drawing
upon their own experience).

• The accuracy of a prediction approach invariably depends on the amount of

intelligence available. At the very beginning of a project, there is little experi-
ence or knowledge to draw upon, which means that any prediction is necessarily
accompanied by a great deal of uncertainty. This uncertainty diminishes as the
project progresses. This was visualised by Boehm in the ‘Cone of Uncertainty’.

• It is important to keep track of progress, so that any deviation from pre-

dicted effort / cost can be detected. This can be achieved with the use of Burn-
down Charts and Team Velocity.



Chapter 6

Testing

So far, we have discussed software quality purely in terms of what it is (Chapter 2),
and in terms of the process frameworks (Chapter 3), and the good practice – coding,
design, and planning (Chapters 4 and 5) – that can be used to ensure it. Ultimately,
however, it becomes necessary to actually take stock – to step back and assess the
quality of the system at hand. This chapter marks the point where we move from
discussing ‘good practice’ to discussing families of techniques – testing, inspection,
and measurement, that are specifically dedicated to providing an objective assess-
ment of (a particular aspect of) the quality of a system.

As discussed in Chapter 2, two of the fundamental definitions of (software) qual-
ity are Joseph Juran’s statement that it should be fit for purpose, and Crosby’s state-
ment that it should conform to its requirements. The most obvious way to establish
quality in either of those respects is to actually execute the software. In doing so, one
can assess whether or not the software is of some value, or whether it is fulfilling its
various requirements. This, in a nutshell, is what testing is all about.

In practice, testing can be a highly potent means by which to expose faults. This
has been recently shown in a study on testing by Yuan et al. [138]. They sampled
198 bug reports from five large (data-intensive) Java and C distributed computing
systems (Cassandra, HBase, HDFS, MapReduce, and Redis). 48 of these faults were
“catastrophic”, i.e. would have prevented a majority of users from access to the
system. Amongst their findings, they state for example that 58% of faults that led
to “catastrophic” failures could have been found by testing the exception handling
code. More significantly, they found that 77% of the production failures can be
reproduced by a unit test. In other words, 77% of the failures could have been caught
if the systems in question had been properly unit tested.

6.1 The Foundations of Software Testing

In superficial terms testing is straightforward:

95© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_6



96 6 Testing

A program is executed and the outputs are checked to determine whether the pro-
gram is behaving correctly.

However, these notions – a program, its execution, checking its outputs, and de-
termining ‘correctness’, can mean wildly different things. They can vary according
to the characteristics of the software being tested, the expectations and abilities of
the person doing the testing, and the prior knowledge or expectations about what
the system is supposed to do in the first place. As a consequence, many different
flavours and notions have emerged around testing; usability testing, integration test-
ing, unit testing, model-based testing, etc.

It is beyond the scope of this book to provide a comprehensive introduction to
testing that covers all of these various notions. There are plenty of good text books
that do this already [110]. Here, we provide an overview of the core principles of
software testing. Most importantly, we will look at how different types of testing
techniques can be used to corroborate software quality, linking back to the various
definitions of quality that were discussed in Chapter 2.

System 
under test

Oracle Test Cases

Specification

System
unde

observes

Speci

approximates

asracle checks

m 
est

stem

ec

execute

m
e

stem
er te

fi

implements

a

ation

Test Ccks

afica

try to
cover

Fig. 6.1 Main elements and relationships that govern the testing process.

The key components of any testing process are laid out Figure 6.1, which was
adapted from a paper by Staats et al. [125]. These are elaborated below.



6.1 The Foundations of Software Testing 97

System under Test

This is the system being tested, and is often abbreviated to SUT. It seeks to imple-
ment the specification (see below).

The SUT can either be a white-box system, where we have complete access to
the source code and the run-time state (e.g. the call-stack), or a black-box system,
where we only have access to the external interface or API (depending on the type
of system). It can also be a mixture of the two; for example, library routines might
be provided in the form of closed source components1, whilst the source code for
the main core of the system is available for analysis.

Although we use the term ‘System’, in our context this need not necessarily refer
to the system in its entirety. A SUT might also just refer to just a single ‘unit’ in the
system, for example a class or a function.

The system might be reactive where the input / output behaviour at one stage is
affected by previous inputs (e.g. a GUI), or it might process inputs in a single batch
and return to its initial state. This matters from a testing perspective, because in the
reactive case, the test inputs have to be formulated as sequences.

The system might be deterministic, where it always returns the same answer for
a given input. It might however also be non-deterministic, where the same input can
elicit different outputs (perhaps because of randomised internal behaviour, or other
factors beyond control such as thread-scheduling).

It is commonly important to ensure that the SUT is ‘sandboxed’ – isolated from
the operational production system. The reasons for this were almost demonstrated
to disastrous effect in the late 70s with the NORAD nuclear missile defence system
we mentioned briefly in Chapter 2. Two of the false alarms raised by that system
were inadvertently caused by tests. The following are extracts from the actual report
[37] (the first bullet point must have been especially frightening!):

• On November 9, 1979, false indications of a mass raid were caused by inadvertent in-
troduction of simulated data into NCS.

• On June 6, 1980, false attack indications were again caused by the faulty component
during operational testing.

Specification

A specification represents the idealised behaviour of the system under test. Depend-
ing on the development context, this might be embodied as a comprehensive, rig-
orously maintained document (e.g. a set of UML diagrams or a Z specification).
Alternatively, if developed in an agile context, it might be a partial intuitive descrip-
tion captured in a selection of user stories, test cases, and documented as comments
in the source code.

The nature of the specification has an obvious bearing on testing. If a concrete,
reliable specification document exists and there is a shared understanding of what

1 Often referred to as Components Off The Shelf or COTS.



98 6 Testing

the system is supposed to do, this can be used as the basis for a systematic test-
generation process. If this is not the case, then testing becomes a more ad-hoc and
dependent upon the intuition and experience of the tester2.

Test cases

The test cases correspond to the executions of the SUT. In practical terms a test case
corresponds to an input (or a sequence of inputs) to the system.

Test cases should ideally cumulatively execute every distinctive facet of software
behaviour. An ideal test set (collection of test cases) should be capable of exposing
any deviation that the SUT makes from the specification. If it can be shown to do
this, the test set is deemed to be adequate [125].

One of the fundamental problems of software testing is that there is no way of
guaranteeing that a test set is adequate. This problem was best captured by Edsger
Dijkstra, when he stated that “testing shows the presence, not the absence of bugs”
[26]. He was in effect arguing that, since a program can accept an infinite number
of possible inputs, testing can only represent a nominal sample of the program’s
possible behaviours, and cannot be used to make any claims about the absence of
faults.

As a consequence, many approximations of test adequacy have arisen. These in-
clude notions such as code coverage and specification coverage, which we elaborate
upon below. However, even when such goals do exist, there still remains the chal-
lenge of actually identifying the test cases that are able to achieve them. The reason
for this is that the behaviour of a program (and thus the contribution to any measure
of coverage that is made by an input) cannot generally be anticipated or computed
in advance. This makes it impossible to determine which combinations of tests (if
any) can achieve a given level of coverage. This problem is generally referred to as
the test generation problem.

Test Oracle

Executing the test cases alone will not determine whether the SUT conforms to the
specification or not. This decision – whether or not the output of a test is correct
or not – is made by a test oracle. In practice, an oracle might be an assertion in the
source code that is checked during the test execution, or it might be the human user,
deciding whether or not the behaviour is acceptable.

Test oracles are notoriously difficult to produce [13]. There is in practice rarely
an explicit, comprehensive, up to date specification that can be used as a reference.
A successful software has usually been developed over the course of decades by a
multitude of developers, which means that, ultimately, there is rarely a definitive
record of how exactly the system should behave. What’s more, there may be tens

2 Not that this is necessarily bad; it just represents a shift in responsibility from process and docu-
mentation to trust in the individual developer



6.2 White-Box Testing 99

of thousands of test cases, each of which might produces complex outputs, which
can make the task of manual validation of the outputs prohibitively time consuming.
These issues are collectively referred to as the oracle problem.

6.2 White-Box Testing

Having covered the basic notions within software testing, we can now look at some
specific scenarios and and the most popular approaches. As we will see, there is
no “silver bullet” – no perfect testing technique that is guaranteed to highlight any
bugs. Nonetheless, there are several approaches that are widely accepted and used.

White-box testing is concerned with the scenario where the tester has access to
the source code and some aspects of the runtime state of the SUT. Source code
presents perhaps the most popular basis for assessing test adequacy (as defined
above); a test set can be deemed to be sufficiently complete if it exercises the source
code in a sufficiently extensive manner.

6.2.1 Code coverage

Measuring coverage requires the ability to keep track of which source code ele-
ments are executed within the code. In many IDE’s such facilities are built-in, or
can be obtained via plug-ins3. Alternatively, it is often reasonably easy to construct
a custom-made tool using a suitable source code analysis framework4.

Many standards for certifying software quality mandate the use of code cover-
age to ensure the adequacy of test sets. One prominent example is the DO178-B/C
standard for civilian aircraft software [1]. In this standard, software components are
categorised according to their “criticality” - from components that would pose no
threat if they failed, to components that are clearly safety-critical. On the non-critical
end of the spectrum, it suffices to test components to achieve statement coverage,
whereas for safety-critical components it is necessary to achieve the much more
stringent MC/DC coverage (both detailed below).

Over the past 40-50 years, a huge variety of code coverage metrics have been
devised [139]. Some of the most widely-used ones are as follows:

Statement coverage

The proportion of executable statements in the program that have been executed.

3 IntelliJ IDEA (’urlhttps://www.jetbrains.com/idea/) has built-in coverage tracking. For Eclipse,
there are plug-ins such as EclEmma (http://eclemma.org/)
4 For Java, for example, there is the ASM framework http://asm.ow2.org/.



100 6 Testing

Branch coverage

The proportion of all of the logic-branches in the source code (e.g. outcomes of IF,
WHILE, or FOR statements) to have been executed.

Def-Use or Dataflow coverage

The source code is analysed to extract the def-use relations, which relate statements
at which a variable is defined (i.e. instantiated and given a value) to subsequent
statements using that definition. The test-goal is to cover all of the possible def-use
relations.

MC/DC (Modified Condition / Decision Coverage)

This is a more stringent extension of Branch coverage. The measure came to promi-
nence because it was set as a standard against which to test safety-critical software
(specifically critical aircraft software component that are to be certified to DO178-
B/C [1]). MC/DC focusses on the especially rigorous testing of programs where
there are decision-points (e.g. IF statements) that contain multiple conditions. For
MC/DC, each individual condition must be shown to affect the outcome of a deci-
sion, independently from any other conditions.

We can consider an example (inspired by the NORAD missile-defence example
discussed previously) in Figure 6.2.

public boolean raiseAlarm(boolean detected, boolean verified,
boolean test){

if(detected & verified & !test)
return true;

else
return false;

}

Fig. 6.2 raiseAlarm code.

For typical branch coverage, the following inputs (for example) would suffice5:
raiseAlarm(true,true,false)
raiseAlarm(true,true,true)

However, from an MC/DC standpoint, this has only shown that the test con-
dition independently affects the outcome of the if condition. To achieve MC/DC

5 It is worth noting that this example is very simplistic. There is rarely a direct link from the input
parameters to the conditions that one wishes to test, there is usually an additional challenge of
finding the inputs that will guide the execution through the requisite branches / paths in the source
code which, as we will see, is impossible to automate in a reliable way.



6.2 White-Box Testing 101

coverage, one would have to add additional tests that show the same for the other
two variables:
raiseAlarm(false,true,false)
raiseAlarm(true,false,false)

The first test shows that detected will affect the outcome if it is switched
to false. The second test shows that verified will affect the outcome if it is
switched.

6.2.2 White Box Test Generation

Code coverage only addresses the question of how we measure test adequacy, but
does not address the key problem of how to actually generate the test cases in order
to achieve this adequacy. The subsequent task of finding a test set to achieve some
degree of source code coverage is an interesting, and notoriously difficult, challenge.
This comes down to the fundamental problem that test generation is undecidable

[132]:

There is no approach or algorithm that can (in the general case – for all possi-
ble programs) determine whether or not a given piece of code within a program is
executable.

This means that, even if we have full access to the source code, we cannot be
guaranteed to be able to find an adequate test set for any arbitrary system. Despite
this negative result (or perhaps because of it) numerous researchers have developed
techniques that attempt to do their best anyway. If maximal coverage cannot be
guaranteed (or even determined), the goal is to at least approximate this maximal
coverage in some sense.

These approaches can be split into two families. The first family attempts to de-
rive the necessary conditions on the inputs that are required to achieve coverage
directly from the source code. The second family probes the source code by execut-
ing it with (quasi-random) inputs, and adjusts the inputs to gradually increase code
coverage. These two approaches are introduced below.

6.2.2.1 Generating inputs by code analysis

This family of techniques attempts to figure out the relationship between each state-
ment in the source code, and the input parameters that are required to reach it. The
archetypical approach within this family is known as Symbolic Execution, and was
proposed by King in 1976 [83].

Symbolic execution is based on the idea that the SUT can be “executed” in a
special way, by substituting the actual inputs for symbols. Instead of running a sin-
gle, conventional path through the source code, a symbolic execution traces all of



102 6 Testing

the possible paths through the program. For each path, it keeps track of the internal
state of the program, and any conditions on the symbolic inputs that are required to
reach that state.

To someone who is not familiar with the notion, this idea can be challenging to
conceptualise from a mere description. Let us consider the piece of code in Figure
6.3, which calculates a person’s Body Mass Index (BMI)6.

1 public String bmi(double h,
2 double w){
3 double bmi = w / (h * h);
4 if(bmi < 16)
5 return "severely underweight";
6 else if (bmi < 18.5)
7 return "underweight";
8 else if (bmi < 25)
9 return "normal";

10 else if(bmi < 30)
11 return "overweight";
12 else return "obese";
13 }

Fig. 6.3 BMI code

A symbolic execution proceeds by associating every statement in the program
under test with a ‘path condition’ – a condition on the inputs to the program that
needs to be satisfied for the execution to reach that statement. This can be auto-
matically generated by tracing the data-flow from the variables throughout the pro-
gram. In our case, the bmi variable is formed as a computation on the height and
weight variables. In order to execute line number 4, bmi must be less than 16.
Accordingly the path condition for line 4 is:

w/(h∗h)< 16

Consequently, the path condition for line 5 (the else-statement) is:

¬(w/(h∗h)< 16)

For line 6, the path condition is the conjunction of the above path condition and
the condition that the computation is less than 18.5:

(¬(w/(h∗h)< 16))∧ (w/(h∗h)< 18.5)

Exercise: Try to figure out the path conditions for yourself! Pick an imple-
mentation of a method (c.f. a simple QuickSort implementation, such as: http://

6 https://en.wikipedia.org/wiki/Body\_mass\_index



6.2 White-Box Testing 103

entry

exit

bmi=w/(h*h)

if(bmi<16)

return “severely underweight”; else 
if(bmi<18.5)

return “underweight”;

else 
if(bmi<25)

return “normal”;

else 
if(bmi<30)

return “overweight”;

else 

return “obese”;

(w/(h*h))<16 (w/h*h)>=16 

(w/(h*h))>=16 & 
(w/(h*h)) < 18.5 

(w/(h*h))>=16 & 
(w/(h*h)) >= 18.5 

(w/(h*h))>=16 & 
(w/(h*h)) >= 18.5 & 
(w/(h*h)) <25 

(w/(h*h))>=16 & 
(w/(h*h)) >= 18.5 & 
(w/(h*h)) >= 25 

(w/(h*h))>=16 & 
(w/(h*h)) >= 18.5 & 
(w/(h*h)) >= 25 &
(w/(h*h)) <30 (w/(h*h))>=16 & 

(w/(h*h)) >= 18.5 & 
(w/(h*h)) >= 25 &
(w/(h*h)) >= 30

exit

exit

exit

exit

Fig. 6.4 Control Flow Graph of BMI example, with Path Conditions for different branches.

www.algolist.net/Algorithms/Sorting/Quicksort) and work out
the path conditions that govern each branch.

The computation of the remaining path conditions continue in a similar fashion.
The full control flow graph with path conditions is shown in Figure 6.4.

The computation of the path conditions is only the first step in symbolic exe-
cution. The identification of suitable inputs can only be achieved by solving them.
Solving the path conditions can be achieved automatically with the help of auto-
mated constraint solvers.

Ultimately, the capabilities of a symbolic execution engine depend on the capa-
bilities of its underlying solver. Commonly, solvers such as Microsoft’s Z3 solver7

are used, which can rapidly identify solutions for a many types of constraints.
Note the use of the phrase ‘many types of’ – there are several kinds of constraints

for which there are no efficiently computable solutions. This means that symbolic
execution cannot guarantee to determine the inputs for every statement in every
program.

7 https://github.com/Z3Prover/z3



104 6 Testing

Exercise: This relates back to the problems of undecidability discussed above.
How?

In their basic form, symbolic execution techniques have been beset by problems.
There are the limitations imposed by constraint-solving technology discussed above.
However, there is also the problem that programs typically have loops; often lots of
them. This is highly problematic when working out the path-conditions, because it
is not always possible to determine when a loop will terminate (i.e. one can end up
trying to calculate an infinite number of path conditions).

Work-arounds to these problems tend to require execution fo the program. Ap-
proaches such as Concolic Testing [117] combine symbolic execution with “con-
crete” execution. This makes it possible to plug-in actual values into symbolic vari-
ables whenever a condition is too hard to solve, or the limits of a loop are not deter-
minable.

Such pragmatic solutions have recently made it possible to use symbolic execu-
tion in a more applied, industrial setting. To see symbolic execution in action, you
can have a look at Microsoft’s PEX For Fun site8. Microsoft have also employed
symbolic execution as a part of their IntelliTest framework9, which can be used to
automatically generate tests for .NET programs as part of their VisualStudio IDE
(from 2015 onwards).

6.2.2.2 Generating inputs by experimentation

An alternative approach to the analytical approaches espoused by symbolic or con-
colic execution is to ignore the contents of the conditions altogether, and to try to
find the best set of test cases by an experimental process. This approach has broadly
become to be known as ‘Search Based Testing’ [94]. The rationale is that, if for a
given test execution it is possible to observe the extent to which the code has been
covered, then the corresponding test inputs, paired with their coverage data, can be
used as the basis for finding better inputs.

Perhaps, again, the simplest way to convey an intuition of how these approaches
work is by example. Let us again consider the BMI code in Figure 6.3. Let us sup-
pose that we know the input to bmi (that it consists of a pair of doubles), but we do
not wish to / are unable to analyse the source code. All we can obtain is a number
that corresponds to the number of statements (or branches, etc.) covered by a given
test set.

Let us start with a completely arbitrary / random test set, shown in Table 6.1.
This set of inputs would end up executing 8 of the statements in the program (as ).
One natural approach would be to simply carry on generating random test inputs.
However, this could easily lead to a test set “explosion” – where the number of test

8 http://www.pexforfun.com/
9 https://www.visualstudio.com/en-us/docs/test/developer-testing/
intellitest-manual/input-generation



6.2 White-Box Testing 105

h w Result Statements covered

1 20 normal 1,2,3,4,6,8,9
2.4 100 underweight 1,2,3,4,6,7
7 75 severely underweight 1,2,3,4,6,7
2 119 normal 1,2,3,4,6,8,9
5 500 normal 1,2,3,4,6,8,9

Total 1,2,3,4,6,7,8,9

Table 6.1 Initial, random test set. Covers 8 lines of code in total.

cases becomes too large to manage. Instead, we want to find a test set that is of ap-
proximately the same size, but with a better coverage. There are many strategies by
which to achieve this. One of the simplest approaches is the ‘hill-climbing’ method.
This operates by trying to “explore the neighbourhood” of the test set.

There are many possible ways in which to formulate the ‘neighbourhood’, and
indeed many possible ways in which to formulate a hill-climbing testing algorithm.
For example, one could try, for every value of every input to increase it, and then
to decrease it by some amount. For the test set in Table 6.1 this would lead to 20
new tests (four new candidate tests for each of the five existing test cases). For every
set, a hill-climbing search would keep track of the code covered, and then pick the
test case for which the coverage had increased the most. This would then form the
new test set, and the process would reiterate until no increase in statement coverage
could be found.

To illustrate this process, Table 6.2 shows a search of the values around the input
h=2 and w=119, by increasing and decreasing the height by 0.1, and increasing and
decreasing the weight by 1. This ultimately ends up including test cases that cover
the two cases that are not covered in the initial test cases (overweight and obese),
which ultimately ends up covering the whole method. To avoid a rapid increase in
the size of the test set, one might only retain new tests that execute new lines of code
(i.e. ignoring the italicised test cases in Table 6.2).

h w result Statements covered

1 20 normal 1,2,3,4,6,8,9
2.4 100 underweight 1,2,3,4,6,7
7 75 severely underweight 1,2,3,4,6,7
2 119 normal 1,2,3,4,6,8,9
5 500 normal 1,2,3,4,6,8,9

1.9 119 obese 1,2,3,4,6,8,10,12
2.1 119 overweight 1,2,3,4,6,810,11
2 118 normal 1,2,3,4,6,8,9
2 120 overweight 1,2,3,4,6,810,12

Total 1,2,3,4,6,7,8,9,10,11,12

Table 6.2 “Searching” around the highlighted initial test set (h=2, weight=119). Three of the four
candidate replacements improve the coverage of the initial test set by executing new branches.



106 6 Testing

This hill-climbing example is simply to show how a search-strategies (hill-
climbing in this case) can be applied to the problem of test-generation. There are
lots and lots of alternative search-strategies and heuristics, which have been applied
to great effect [94]. There are also several tools that have emerged. The EvoSuite
tool [56], for example, uses a search-framework known as ‘Genetic Algorithms’
[59] to maximise coverage of Java units.

6.2.3 The Case(s) Against Code Coverage

White-box testing is appealing because code coverage provides a seemingly direct
measure of test-adequacy. Coverage can, it seems, be used to assess and improve test
cases. As such, it is appealing for use as a tool; many software certification standards
(such as the DO178 standard we have mentioned previously [1]) explicitly impose
code coverage targets on software systems.

In reality, however, code coverage is not as useful as it appears and can, if any-
thing, lead to a false sense of security. In other words (and we will come back to this
term in Chapter 8) code coverage is not a valid measurement. Although a score of
100% adequacy is meant to guarantee that the full range of behaviour of a program
has been executed (and thus that any bugs within the program are guaranteed to have
been exposed) this is not necessarily the case.

1 public String bmi(double h,
2 double w){
3 double bmi = w / (h * h);
4 if(bmi < 16)
5 return "severely underweight";
6 else if(bmi < 18) //BUG! <- 18.5
7 return "underweight";
8 else if(bmi < 25)
9 return "normal";

10 else if(bmi < 30)
11 return "overweight";
12 else return "obese";
13 }

Fig. 6.5 Buggy BMI code

We can give a simple illustration of this by returning to our bmi example. This
time, in Figure 6.5, we have inserted a bug by changing the threshold bmi value in
line 6 from 18.5 to 18. A successful test case would produce a different output in
this program from the original program in Figure 6.3. A valid adequacy criterion
should always ensure that any ‘adequate’ test set would be guaranteed to include
this test case.



6.2 White-Box Testing 107

h w result
100 4 severely underweight
70 2 underweight
80 2 normal
110 2 overweight
130 2 obese

Table 6.3 A test set that achieves statement (and branch) coverage, but does not expose the bug in
Figure 6.5.

It is easy to show how, in this case, statement coverage is invalid. For example
the test set in Table 6.3 provides a test set that will cover all of the statements and
branches in the bmi code (i.e. they are adequate with respect to these criteria). How-
ever, when it comes to computing the “underweight” category, the value computed
for the bmi is 17.5, and would lead to the same output in the unbuggy program.

Exercise: Find the test input that would expose the bug!

This criticism has been widely acknowledged for many decades. Goodenough
and Gerhart originally discussed the problems of using code coverage to assess ad-
equacy in 1975 [60] – it was their work that led to the proliferation of the various
alternative metrics discussed above. However, ultimately, none of the existing source
code metrics is impervious to these problems.

Their criticisms have recently been supported by a large amount of empirical
evidence. For example, in their recent work on assessing code coverage, Inozemt-
seva et al. [70] studied 31,000 test suites from five open-source projects. They found
that, although there was a weak correlation between test suite effectiveness and code
coverage, there was a much higher correlation between the shear size of the test set.

Exercise: Think about the experiment that Inozemtzeva et al. might have carried
out to reach the conclusions that they did. If code-coverage is not a valid measure,
they must have had some basis for asserting this. What could they have referred to
or done to give them a ‘true’ measure of the effectiveness of a test case?

Inozemtseva’s findings (along with other similar findings) are unsettling. At the
beginning of this section we discussed how the need to achieve code-coverage is
a fundamental part of most well-established quality assurance standards (such as
DO178-B [1]). The fact that such measures are in fact invalid means that achieving
code coverage fails to provide the assurance that had been presumed. Although code
coverage can be a useful starting point for identifying test sets that are effective at
exposing faults, it is by no means sufficient.



108 6 Testing

6.2.4 Goto Fail: A Case For Code Coverage

Code coverage has been shown to be a poor basis for producing truly adequate
test sets. Executing the code is merely a first-step to exposing a bug (which can
also depend on more subtle underlying data constraints). And this ‘first-step’ part
is important. If a piece of code is not executed, then any bugs therein will simply
not be exposed. If a piece of code remains un-executed after testing, it still indicates
that there is a problem with the test set, or with the program itself.

One appropriate example is the Apple ‘Goto Fail’ bug 10. This fault arose in
2014, and featured in its iOS and OSX operating systems (i.e. spanning many of
its devices, from mobile devices such as iPhones and iPads up to desktops, laptops
and servers). The bug was contained in an important unit of code that is responsible
for verifying SSL signatures. Any bugs in this code (such as this one) represent a
potentially major security vulnerability that can give unauthorised users the ability
to eavesdrop on communications to and from the device (for example bank details
sent to an online banking or shopping website). The source code for the bug is shown
in Figure 6.6.

1 static OSStatus
2 SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3 SSLBuffer signedParams, uint8_t *signature, UInt16 signatureLen)
4 {
5 OSStatus err;
6 ...
7

8 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9 goto fail;

10 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11 goto fail;
12 goto fail;
13 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14 goto fail;
15 ...
16

17 fail:
18 SSLFreeBuffer(&signedHashes);
19 SSLFreeBuffer(&hashCtx);
20 return err;
21 }

Fig. 6.6 The code for the Goto-fail bug, provided by Adam Langley https://www.
imperialviolet.org/2014/02/22/applebug.html

Exercise: Can you spot the bug?

The key lies in the two consecutive goto fail; statements. In the event that
the if statement at line 10 evaluates to false, err will contain a successful value.

10 CVE-2014-1266 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-1266



6.2 White-Box Testing 109

This is exploitable, because it is not being checked according to the condition in
statement 13.

In other words, statement 13 is not executable. No matter what test-input you
provide to the program, this statement will not be covered. In a testing context that
places emphasis on code coverage, this problem would be flagged up straight away,
because lines 13 and 14 can never be executed.

6.2.5 An Alternative: Mutation Testing

Let us remind ourselves of the definition of what code coverage was trying to mea-
sure: ‘test adequacy’ (as described in Section 6.1) is the extent to which a test set
can be guaranteed to expose any bugs in the program [60]. If trying to maximise
syntax-coverage is ineffective, then what are our alternative options?

Mutation testing [74] presents an alternative means to assessing adequacy by
interpreting this definition in a very literal sense. The underlying idea is to produce
lots of copies of the SUT, but where each copy is buggy in a subtly different way.
In other words, the goal is to insert lots of bugs into the program, then to assess
how good a test set is at exposing them. This (to answer the above exercise) is the
technique that was used by Inozemtzeva et al. to assess their test sets.

In mutation testing terminology, a ‘bug’ that is introduced to a program is called
a ‘mutation’. This is because each mutation ‘mutates’ the existing source code, ac-
cording to a set of given mutation operators . For example, one mutation operator
might change a ‘+’ in the source code into a ‘-’. It might change the definition of a
String variable from CustomerID to null, etc. For every application of a muta-
tion operator, a new, separate program is produced.

Figure 6.7 provides some examples of what mutants look like. You can imagine
different versions of the program, but with one of the currently commented lines
replacing the lines they precede. For example, one mutated program could replace
line 5 with line 3.

Although mutation testing is intuitive, its validity can be called into question. Is
the ability of a test set that is able to kill a large proportion of mutants necessarily
indicative of its ability to expose “real” bugs? This, one would think, depends on
the choice of mutation operators, and on the nature of the program.

There have however been several empirical studies that have examined the rela-
tionship between the two – between the ability to kill lots of mutants and the ability
to expose real bugs. One notable example is a recent paper by Just et al. [79]. They
collected a large set of real bugs from a variety of Java programs, and used this as a
basis for assessing a range of test sets, and specifically comparing the relative muta-
tion scores of the test sets to their relative capacity to expose real faults. Their results
indicate that there is indeed a significant correlation; test sets with higher mutation
scores do tend to expose more real faults.



110 6 Testing

1 public String bmi(double h,
2 double w){
3 // double bmi = w / (h / h);
4 // double bmi = w / (h * w);
5 double bmi = w / (h * h);
6 // if(bmi < 0)
7 if(bmi < 16)
8 return "severely underweight";
9 else if(bmi < 18.5)

10 // return null;
11 return "underweight";
12 // else if(bmi > 25);
13 else if(bmi < 25)
14 // return "";
15 return "normal";
16 else if(bmi < 30)
17 return "overweight";
18 else return "obese";
19 }

Fig. 6.7 BMI code from Figure 6.3, with potential mutations added as comments. Note that only
one of these would be activated for a given mutated copy of the program.

6.3 Black-Box Testing

Whereas white-box testing suggests that the tester has complete access to the inter-
nal workings of the system – source-code and runtime-state information – black-box
testing is the opposite. It suggests that the tester cannot access the internals of the
system; all that they see is its interface. In practice, the system under test might, for
example, be a remote network protocol, or a closed-source executable binary.

This setting obviously rules out the various white-box strategies discussed previ-
ously. We cannot assess test set adequacy by coverage, because we cannot observe
what parts of the internal structure have or have not been covered. This setting for
testing was first described by Edward Moore in 1956[99], who added the following,
somewhat colourful scenario (he assumed that the SUT was not restricted to being
merely a software system):

There is one special situation that can occur in such an experiment that is worthy of note.
The device being experimented on [tested] may explode, particularly if it is a bomb, a mine,
or some other infernal machine. Since the experimenter [tester] is presumably intelligent
enough to have anticipated this possibility, he may be assumed to have conducted his ex-
perimentation by remote control from a safe distance.

We will assume, for the purposes of this chapter, that the SUT is something more
pedestrian such as a closed-source Java unit or a web-service.

In this black-box scenario, there are essentially two ways by which to go about
generating test sets. One approach is to draw upon any available specifications of the
system and to use these as a basis for generating targeted test inputs. Alternatively,



6.3 Black-Box Testing 111

if these do not exist, the only alternative is to resort to quasi-random test generation
approaches. We cover each of these approaches in the following sub-sections.

6.3.1 Specification-Based Testing

Specification-based testing11 is concerned with the situation where we have a docu-
ment that, in a reasonably comprehensive manner, captures the expected behaviour
of the system. The fundamental idea of specification-based testing is to use this
specification as a basis for driving the selection of test inputs, to ensure that any
tests focus on establishing the correctness of whatever has been specified.

The specific mechanisms that are used to generate tests depend on the type of
specification. For certain types of specification, there are very well-established test-
generation techniques. Ultimately, this also depends on the nature of the system
under test. For systems that depend on highly sequential activities, such as GUI’s
or network protocols, a specification might take the form of a state machine. For
systems that are more data-driven, a specification might take the form of a simple
data-invariant (i.e. an assertion in the source code) or a Z-specification [136]. If the
specification is less formal, it might take the form of a structured natural-language
specification such as CUCUMBER [137].

To provide a broad-brush overview of black-box testing, we will not go into
the details of how all of these different types of specifications can be tested. We
will focus only on two (complementary) aspects of software behaviour: sequential
behaviour, and data constraints. For the sequential behaviour, we will provide a
brief overview of state-machine testing (state machines are most commonly used to
model this aspect of behaviour). For the data behaviour, we will focus on natural-
language requirements, and the use of ‘categories’ to formulate test cases.

6.3.1.1 Testing Sequential Behaviour with State Machines

State machines12 capture requirements on sequential behaviour of a system. An
example is shown in Figure 6.8. This shows what should (and conversely should
not) happen when someone tries to log-in to a system (e.g. a web-service). The
‘entry-point’ is the dash-board, and the user is not logged-in. If they click on the
‘login’ button, this takes them to some dialogue box where they can enter their log-
in details. If accepted, they return to the dash-board in a logged-in state. If the login

11 For the purposes of this chapter, by ‘specification-based testing’ we also refer to ‘Model-based
Testing’, or ‘Property-based Testing’. In practice these all have slightly different connotations, but
are all fundamentally based on the same principles that we discuss here.
12 There are lots of different types of state machines; they can be hierarchical (e.g. UML state-
charts), factor in data conditions, temporal properties, etc. In this chapter we simply consider the
simplest type of state machine - labelled transition systems where a label corresponds to some
‘action’ in the SUT.



112 6 Testing

Log-in 
window

Dash-
board 

[logged 
in]

Password 
reminder

Dash-
board 

[logged 
out]

boar
[lo

L

d 
ed 
]

ow remindwin

h-
d 
ed

L
w ndo

Da
bo
og

r
g
o

boar
og

r
gge
out]

oar
gg

ash
oar
gge

PasswPassw
remind

login

remind

-

success

LoLo
win

inog-in 
ow

og-og
ndo

failed

logout

Fig. 6.8 Example state machine of a simple login requirement.

fails, they remain in the dialogue box. Alternatively, they can request a reminder of
their login details.

Since Moore’s early work on the subject [99], a large amount of research has been
invested into suitable algorithms that can be used to test them [90]. The challenge is
to determine the ideal set of ‘program executions’ – paths through the state machine
– that will ensure that any deviations between the model and an implementation of
it are exposed.

The approaches are broadly reminiscent of the various levels of code coverage
discussed in Section 6.2.1. The simplest approach is ‘state-coverage’ - find a set of
sequences in the state machine that ‘cover’ every state in the machine. In our simple
example, it is possible to achieve state coverage with a single test:

< login,remind,−,success >

This however means that certain state transitions might go uncovered, so the
next level up is ‘transition coverage’ (which is reminiscent of Branch coverage in
the source code). Again, this can be achieved with a single test:

< login, f ailed,remind,−,success, logout >

State machine testing can be challenging because of the problem of ‘equiva-
lence’. Since the system under test is a ‘black box’, we cannot (usually) know for
certain that the traversal of a state in the model amounts to the traversal of an identi-
cal state in the underlying system. As an example, the implementation might take the
form of the faulty model shown in Figure 6.9, where all three inputs (reminder, -,



6.3 Black-Box Testing 113

and failed) all lead to the same state, and no input leads to the password reminder
state.

Log-in 
window

Dash-
board 

[logged 
in]

Password 
reminder

Dash-
board 

[logged 
out]

board
[log

ow

d 

gged 

windo

oard
gged
out]

oard
gged

ash-
oard 
gged

login

success

n 
w

Log-in
ow

Log
windo

failed, remind, -

logout

Fig. 6.9 A faulty implementation of the state machine in Figure 6.8.

Whether or not such a fault would be detected or not depends on the fidelity of
our oracle. The most common assumption is that the oracle is “weak” – it is only
able to check whether a sequence of events has executed or not. In this case, using
either of the test cases listed above, it would not identify these faults. Of course, if
the oracle is more capable, e.g. is able to verify that the SUT is in the correct state
by checking the GUI, then this fault would be flagged up. The down-side of such an
approach, however, is that this will tend to imply that the oracle is either human with
plenty of time to spare, or that there is more than just the state-machine specification
to rely upon, which is rarely the case in practice.

If we assume that the oracle is weak (i.e. that we are only able to check the
sequencing of the inputs), then it is often necessary to carry out a more rigorous
form of testing than merely achieving state or transition coverage. One approach (a
simplification of what is known as the W-Method [30]) is to build a set of test cases
as follows:

1. Let T be our test set (set of test sequences).
2. For each state s, find the shortest path p from the start state to s.

• Construct a set A from the emphalphabet of the state machine (every possible
input), and the empty event ε .

• For each element a ∈ A, add p.a to T



114 6 Testing

In other words, we find a path to each state, and try every possible input from
each state. From this we can check whether an input is possible from a state that
should not be, or vice versa.

Exercise: Produce this more rigorous test set for the state machine in Figure
6.8.

It is often insufficient to merely find sequences that cover all states or all tran-
sitions, because these will not necessarily guarantee that a defect will be found. To
ensure this, once a state has been reached, it is also necessary to attempt sequences
that can elicit responses from the system that can guarantee that the system is in the
expected state. There are lots of ways to compute these sequences, and some of the
main approaches are surveyed by Lee and Yannakakis [90].

6.3.1.2 Category Partition Method

State machines have historically been appealing to study because they form a graph,
which offers an intuitive basis for assessing coverage (in a similar way to the con-
trol flow graph for white-box testing). What, then, about non-sequential black-box
systems? What about programs that take as input some data argument, and process
that input in a single step?

The Category Partition Method [104] provides a basis for testing such non-
sequential systems. The fundamental idea is to use the specification to identify spe-
cific ‘categories’ of inputs, which are supposed to elicit a particular output character-
istic. Test generation then consists of ensuring that every category (or combination
of categories) is executed.

As an example, we can consider a program that calculates personal income tax-
rates in the UK. As this is a black-box scenario, let us assume that the system we are
trying to test is a web-service. To apply the Category Partition Method, we would
start with the high-level requirements. The high-level rules for tax allowances are
shown in Figure 6.10.

Looking at the rules, we can discern several obvious categories, pertaining to the
straightforward tax bands: Personal allowance, basic rate, higher rate, and additional
rate. We also know that the question of whether or not a claimant is married or blind
might affect their tax returns. There is also a threshold value of £100,000 that could
affect the tax rate.

From the requirements we can also surmise that there must be (at least) three in-
puts in the interface to the program: The salary / income (pay), and two boolean vari-
ables that indicate whether the individual is married or blind respectively (married
and blind). The full set of categories is captured in Table 6.4.

Having identified the categories, the Category Partition Method continues by sys-
tematically combining these to formulate a comprehensive set of test cases. It is ob-
vious, however, that many of these categories are mutually exclusive; for example



6.3 Black-Box Testing 115

someone’s income cannot be below £11,000 and above £150,000 at the same time.
Nor can somebody be blind and not blind, etc.

Your tax-free Personal Allowance

The standard personal allowance is £11,000, which is the amount of income you don’t have to pay
tax on.

Your Personal Allowance may be bigger if you claim Marriage Allowance or Blind Person’s Al-
lowance. It’s smaller if your income is over £100,000.

Income Tax rates and bands

The table shows the tax rates you pay in each band if you have a standard personal allowance of
£11,000.

Band Taxable income Tax rate

Personal Allowance Up to £11,000 0%
Basic rate £11,000 to £43,000 20%
Higher rate £43,001 to £150,000 40%
Additional rate over £150,000 45%

You can also see the rates and bands without the Personal Allowance. You don’t get a Personal
Allowance on taxable income over £122,000.

Fig. 6.10 UK Tax rules for the year 201613.

Category Condition

A In Personal Allowance pay ≤ 11,000
B In Basic Rate 11,000 < pay ≤ 43,000
C In Higher Rate 43,000 < pay ≤ 150,000
D In Additional Rate pay > 150,000
E Above 100k, sub additional rate 100,000 < pay < 150,000
F Blind blind = true
G Not blind blind = f alse
H Married married = true
I Not Married Married = f alse

Table 6.4 Possible categories for the tax calculator.

One straightforward way to set out the possible and impossible category combi-
nations is to set these out as a graph14. The relationships between the categories in
Table 6.4 is shown in Figure 6.11. Categories A, B, C, D, and E all correspond to

13 Source:
https://www.gov.uk/income-tax-rates/current-rates-and-allowances
14 Although straightforward, this approach cannot always be applied as-is. If there are conditional
constraints that hold between different categories (e.g. the example in Ostrand’s paper [104]), a
more involved approach is required.



116 6 Testing

values of a single variable (pay), so these cannot be combined with each other, and
are put in a row without edges between them. The same goes for categories F and G
(blind) and H and I (married). A test case thus corresponds to a path through this
graph, from a node without incoming edges to a node without outgoing ones. In the
graph in Figure 6.11 there are 20 such possible paths.

EA B C D

F G

H I

F

H

G

I

Fig. 6.11 Graph of possible category combinations, where category labels are defined in Table 6.4.

Exercise: Try applying the Category-Partition approach to producing test cases
for a different system. You could, for example, attempt the wc command in Unix.
Use the man-page (obtained in Unix / Linux by typing man wc in a terminal) to
identify the categories. For inspiration, you can look at Ostrand and Balcer’s original
paper, which used a similar example (the find command).

6.3.2 Random Testing

So far, black-box techniques have depended upon some form of specification / re-
quirements document to guide the selection of test cases. These have either been
in the form of an explicit model (e.g. state machines), or have been extracted from
informal documents (e.g. the categories in the Category Partition method). This re-
liance upon ‘test-specifications’ is in many circumstances unrealistic. Requirements
documents are rarely kept up to date; there is rarely a firm, up-to-date document that
concisely sets out what to expect from the behaviour of a system. The system is also
black-box, which makes it impossible to scrutinise its internals to attempt to derive



6.3 Black-Box Testing 117

its behaviour. In this context, the only apparent way to generate test cases is to do
so at “random” [67].

Given the fact that it is not especially dependent upon the availability of speci-
fications or models, random testing is popular in the industry. Random testing was
used within NASA for their Mars exploration rovers [63]. Numerous testing com-
panies exist that are able to apply their random testing tools to systems as diverse as
mobile phones and cars (c.f. Quviq15 and Vertizan16).

6.3.2.1 Defining the Input Space

At this point it helps to be a bit specific as to what is meant by the term “random”.
In simple terms, it is picking a possible outcome from a finite (but potentially very
large) number of possibilities, where the probability that any given outcome will
be selected is the same for all outcomes. You can envisage the selection of a ran-
dom element as being similar to a lottery-machine. Each outcome can be one of the
labelled balls in the machine, and the selection of one of the balls occurs at random.

The effectiveness of random testing rests on our ability to define and constrain the
“input space” in such a way that maximises the likelihood that a randomly selected
set of inputs will expose as many distinct facets of behaviour (including potentially
faulty behaviour) as possible. Returning to our lottery analogy, the effectiveness of
random testing relies on our ability to pick a suitable set of balls for the machine.

As an example, we can imagine a scenario where we are testing a black-box
implementation of the BMI calculator that was discussed in Section 6.217. To ran-
domly test this, you would essentially choose a set of random values for height and
weight. The input space would be defined by the upper and lower limits that you
impose both parameters.

Thanks to the fact that we know what is inside the black box (and bearing in
mind that you usually don’t know this), we can visualise the input space as shown
in Figure 6.12, and in doing so illustrate how critical it is to define it properly. In
the plots height and weight are plotted along the x and y axes respectively. Colours
correspond to different outputs. Both plots also contain 100 randomly scattered dots,
corresponding to random test inputs.

The plots illustrate just how important it is to carefully pick value ranges for input
variables18. In the left-hand plot, the range is selected so that more of the inputs fall
within plausible height and weight ranges, and thus more often elicit varying BMI
scores. In the left plot, the random test inputs cover more fo the outputs (and thus
expose more of the program behaviour) more often than in the right hand one.

15 http://www.quviq.com/
16 http://www.vertizan.com/
17 As a reminder, the inputs for this program were a person’s height and weight, and the output
was a categorisation of severely underweight, . . . , obese.
18 Although we used numerical inputs here for the sake of simplicity, the same principle of course
also applies to other types of input.



118 6 Testing

Fig. 6.12 Visualisation for input space for BMI program. The left plot shows the space for 0 <
height < 5 and 0 < height < 150. The right plot shows the space for 0 < height < 50 and 0 <
height < 400. The plots are scattered with 100 dots (within the specified limits) which correspond
to random test inputs.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 2 4
height

w
ei

gh
t

category

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

0 5 10 15 20 25 30 35 40 45 50
height

w
ei

gh
t

category

normal obese overweight severely underweight

normal obese overweight severely underweight



6.3 Black-Box Testing 119

Complex inputs

One useful property of random testing is the following property: If the test genera-
tion approach is truly random is capable in theory of producing inputs that cover ev-
ery distinctive facet of software behaviour, then it will eventually almost certainly19

do so [71].
It is crucial to leave open the possibility that any feasible input to the program

could be executed (regardless of how non-sensical it is). However this becomes dif-
ficult when considering larger programs, with less straightforward input types. One
could, for example, consider a web-app, where input is provided via browser, and
the modes of the GUI change according to which options are selected via widgets
in a webpage. A truly random set of movements, clicks, and text entries would
probably fail to (within a reasonable amount of time) meaningfully explore the app
beyond the entry page. On the other hand, enforcing too many constraints on the
input selection will remove the randomness that makes random testing so powerful.

The problem is reminiscent of the hypothesis that if you put a sufficiently large
number of monkeys in a room for a sufficiently long time, that they would eventually
end up typing up the works of Shakespeare. If you place no constraints whatsoever
on the monkeys, you probably won’t get them to type anything20. On the other hand,
if you place several constraints on them, and ensure that they continuously type, then
it becomes more plausible. This is what happened in a subsequent experiment [10]
(which was carried out on virtual monkeys due to the obvious ethical implications).

-100 200

1

0

Pr
ob

ab
ilit

y

Age

Fig. 6.13 A probability distribution over the “age” input for a fictional program.

In the context of testing, random test-generators tend to employ various tricks to
restrict (most of) the inputs to those that are liable to trigger some interesting form
of behaviour. If the inputs are numeric, it is possible to use probability distributions.

19 The probability of doing so tends to 1.
20 Confirmed in the only such experiment involving real animals: http://news.bbc.co.uk/
1/hi/3013959.stm



120 6 Testing

An example of a probability distribution over an “age” input is shown in Figure
6.13. This seeks to ensure that, although some inputs might fall outwith the age
of a typical human, that most will fall somewhere closer to a realistic age. This is
in contrast to a “uniform” distribution, where the likelihood of a random generator
choosing the value of 200 or -100 is identical to the probability of choosing the
value 0, 10, or 30.

For more complex input types (e.g. a program that takes a date as input) custom-
made data generators can be created. For example, Quick-Check21 – one of the
leading random test frameworks – revolves around such generators. To generate a
date (as three numbers), a constrained generator might focus the selection of the
number representing the month on the values -1 to 13 (for example), and might pick
numbers representing the days to focus on particular combinations of months and
days that could trip up an implementation.

Exercise: Devise your own random date generator for the sake of testing. Write
a routine that can generate an unlimited number of dates, most of which are valid,
but some of which are invalid.

6.3.2.2 Quantifying Reliability

Random testing is more than just a last resort to produce input data. It offers certain
unique properties that do not arise with other non-random approaches. If we assume
that the inputs are selected independently (that the selection of one cannot affect an-
other) and that they are truly random, then it becomes possible to apply probabilistic
reasoning to the question of how reliable it is.

The reasoning works as follows [67]. First, let us use θ to represent the prob-
ability that a system will fail (its ‘failure-rate’). Of course, in reality this value is
rarely definitively known in advance. Nonetheless, it can often be estimated (e.g. by
counting the proportion of failures in previous executions).

This means that the probability that the probability that a given test will succeed
is:

1−θ

For N independent tests, the probability that all tests will pass is:

(1−θ)N

The probability e that at least one failure will be observed is

e = 1− (1−θ)N

21 http://www.cse.chalmers.se/˜rjmh/QuickCheck/



6.3 Black-Box Testing 121

Exercise: Let us assume that in 2,900 executions, there have been 121 failures.
How many executions would it take to observe at least one failure?

6.3.2.3 The Rule of Three

The traditional approach of quantifying reliability relies upon some way of estimat-
ing the probability that an individual test will succeed or fail – θ . This is fine if there
are previous failures to draw upon; if the proportion of failed test executions can be
measured. However, what if there have been no observed failures at all? In this case,
there is no reliable basis for estimating reliability.

For this we can refer to a similar problem that is prevalent in the field of
Medicine. Imagine that a new medical intervention is devised – e.g. a surgeon comes
up with a new surgical procedure, or a new medical treatment is developed. At some
point it becomes necessary to quantify how safe this is for patients. As is the case
with testing, it can easily be the case that, even after several hundred operations, no
patient has suffered ill effects. How then can the surgeon produce an estimate for
the safety of their procedure?

One rule of thumb that medics have used to work around this problem is known
as the “Rule of Three” [47]. The rule is as simple as it sounds. If you have N ob-
servations (where N ≥ 30), and have not observed any “adverse events” (in our case
test failures) the rule of three runs as follows. You can estimate with a confidence of
95% that the probability of a future failure is 3

N .

Exercise: Let us assume that you have observed 37 software executions that have
not failed. What is the probability (to a confidence of 95%) that a future execution
will fail?

6.3.2.4 Improving upon Random

Random testing has an bad reputation – in practice the vast majority of its inputs
end up being non-sensical, and thus only skirt a small, often trivial, subset of func-
tionalities22. As a result, it is unlikely that random tests will yield a test set that
is anywhere close to adequate within a reasonable number of tests. To address this
issue, several approaches have been devised that seek to use some form of strategy
to select inputs, in the hope that these will more rapidly converge upon an adequate
set.

22 This reputation is somewhat unfair in my opinion, because it probably arises from the fact that
an insufficient amount of effort has been invested in the definition of the domain from which the
inputs are selected, as discussed above.



122 6 Testing

One technique that has gained some traction (at least in the academic testing
community) is Adaptive Random Testing (ART) [28]. This approach adds a step
to conventional random testing. Instead of simply selecting a single test case and
executing it proceeds as follows: It selects a set of possible test inputs (say 10) and,
for each candidate, computes a ‘distance’ between it and the set of test cases that
have already been executed. The nature of the distance measure depends entirely
on the types of the inputs. In the simplest case, if the inputs are all numerical, it
becomes possible to use one of the types of distance measures that arise between
multi-dimensional numerical coordinates, such as the Euclidean distance. Having
computed the distances between every proposed test input and all of the existing
test cases, ART then chooses the test case with the biggest distance, on the rationale
that this is most likely to elicit some form of behaviour that has not already been
witnessed.

h w Result
1 20 normal

2.4 100 underweight
7 75 severely underweight
2 120 obese
5 500 normal

Proposed by ART Minimum distance
1 12 8.0
7 3 18.02
2 200 80.0
3 100 0.6

Table 6.5 Illustration of ART with respect to the random BMI inputs produced in Table 6.1.

As an example, let us look at Table 6.5. In the upper section, there is a randomly
generated set of tests for the BMI program (taken from table 6.1). Below are four
random test inputs proposed by ART. For each test case, the (euclidean) distance was
calculated with each of the other test cases (in the upper half of the table). The value
to the right of the test cases represents the minimum distance that was recorded.
Here we clearly see that the input (2,200) has the largest minimum distance, which
makes it a prime candidate, as it is ‘furthest away’ from all of the other tests.

Exercise: The choice of distance measure for ART is clearly crucial. Looking a
the above BMI example, what is an apparent problem with our use of the Euclidean
measure?

ART is not without its problems. Firstly, the choice of distance measure is crucial.
In our BMI example, height and weight are in different units; height is in meters, and
weight is in kilograms. Euclidean distance is of course unaware of this. Accordingly,
a unit difference in weight has the same effect on distance as a unit difference in
weight.



6.3 Black-Box Testing 123

Secondly, there is the question of time and performance – a point made by Arcuri
et al. [11]. As the size of the tests set (or the number of input parameters) increases,
there are more tests against which new candidate tests have to be measured. This
incurs a performance penalty. Ultimately, if tests can be executed very rapidly any-
way, it might make more sense to simply execute all of the candidate tests (i.e. to
revert to conventional random testing) instead of using ART.

6.3.3 Exposing Security Flaws with Fuzz-Testing

Security is often an implicit factor when it comes to software testing. If we are able
to highlight a bug - some unanticipated response by the software system - we are
potentially highlighting security vulnerabilities in the process. When it comes to
security-testing as a discipline, a large number of tools essentially apply the var-
ious white-box and black-box techniques described above (symbolic execution is
especially popular in the security domain).

Fuzz testing is however a security-focussed technique that makes a subtle but
interesting departure from what we have discussed so far. Fuzz testing does not
merely have the goal of highlighting arbitrary bugs in a system; it aims to identify
those bugs that are particularly pernicious – security loopholes where an input that
might appear superficially valid can lead to some form of unauthorised access to the
system.

Instead of generating test inputs from scratch, by analysing code or following
some user-model, fuzz testing attempts to produce inputs that are “nearly valid”.
This can be accomplished a various ways, and depends on the material that is avail-
able, from which the inputs can be synthesised. For a black-box setting, there are two
basic fuzz testing techniques: Mutation-based fuzzing, and input-structure based
fuzzing. These are discussed in more detail below.

Mutation-based fuzzing

Mutation-based fuzzing operates on an existing test set. The idea is that there is
some corpus of existing valid inputs to the system, such as a corpus of PDF files for
a PDF-reader. The task for the fuzzer is to take these inputs, and to apply mutations
to them. Mutations might vary from flipping a random bit, to being more advanced
(e.g. trying to detect a data field within a data file and changing its value).

Exercise: Mutation-based fuzzers are appealing because they are very easy to
create. Try to write your own mutation-based fuzzer to fuzz-test a file-processing
program such as a PDF or image reader.



124 6 Testing

Input-structure fuzzing

Whereas mutation-based fuzzing does not assume prior knowledge of the input for-
mat, the availability of the format can be an enormous asset. If we consider the
above example of testing a PDF reader, an awareness of the PDF file format can
provide some valuable indicators of which areas within a PDF file might be the best
areas to mutate. One particularly popular input-aware fuzzer is the Peach Fuzzer23.

6.4 Key Points

• Testing is a process that encompasses several components: The SUT, Speci-

fication, Test Set, and Oracle. The SUT represents the system under test. The
test set represents the set of inputs to the system that we wish to exercise. The
specification represents an implicit or explicit capture of the idealised behaviour
of the system under test. The oracle is a decision procedure (e.g. a programmatic
assertion) that can determine whether the outcome of a test execution is correct
or not.

• Adequacy is the term attributed to the ability of a test set to ‘cover’ the be-

haviour of a system (and thus its capacity to expose potential faults). There
are no reliable ways by which to assess adequacy. The approach ultimately de-
pends on what can be observed of the system under test, and what we know about
its intended behaviour.

• White box testing is concerned with testing systems where the source code

and run-time dynamics of the SUT can be tracked. In white box systems, test
adequacy is commonly measured in terms of the executed source code. This can
be measured in many ways, ranging from statement coverage down to mutation
coverage and dataflow coverage.

• Black box testing is the opposite of white-box testing – the internals of the

system are not observable. In this case, test generation tends to rely on the avail-
ability of an external document of how the system is supposed to behave (e.g. a
model). Detailed models (e.g. state machine models) can be used to produce
comprehensive test sets. Other models can take the form of broad constraints on
inputs, which can be used by approaches such as the Category Partition method.

• In the absence of any significant knowledge of what is to be expected from a

system, random testing can offer a useful basis upon which to generate use-

ful tests. Random testing is (unsurprisingly) good at producing unexpected in-
puts. There are various random testing techniques that enable the tester to reason
about the probability of failure within a system, and to reason probabilistically
about the reliability of the system.

• Fuzz testing is a special form of random testing, which is particularly pop-

ular for trying to highlight security flaws. Fuzz testing works by starting from

23 www.peachfuzzer.com



6.4 Key Points 125

inputs (or input structures) that are known to be valid, and then proceeds to gen-
erate inputs that are ‘nearly valid’.



Chapter 7

Software Inspections, Code Reviews, and Safety

Arguments

In the chapter on software testing, we have seen that there are numerous strategies
by which to assess the quality of a software system by executing it. However, the
effectiveness of testing is subject to a range of limitations; there is rarely a complete
and reliable oracle, and there is no accepted means by which to generate adequate
test sets (or even by which to measure adequacy). Furthermore, many aspects of
software quality (such as the maintainability of the source code) cannot be estab-
lished by testing.

Software inspections and reviews are concerned with the (usually manual) re-
view of software artefacts. Whereas the goal with testing is relatively narrow (to
establish correct behaviour), the goals with inspections can be broader; reviewers
can consider whether the architecture is sensible, the code is maintainable, a code
change is necessary, whether there are better potential solutions, etc. Inspections
and code reviews are widely used within organisations, and in open source projects.
The requirement for peer-review is an integral part of most development and quality
assurance processes and tools.

In this chapter we will briefly cover the origins of software inspections and re-
views. In their original form, software inspections were perceived to be too “heavy-
weight” for routine software development. This led to the development of new,
lightweight “Modern Code Review” techniques, which we will cover in Section
7.2. The more heavyweight traditional inspections do however remain a key part
of the development of safety-critical systems. We will thus look at inspections –
specifically the safety-specific aspects of software inspections – in Section 7.4.

It is worth noting that the placement of sections on “conventional” software in-
spections alongside sections on safety assessments of software is somewhat un-
orthodox; in a traditional text book they would probably be in separate chapters.
They are put together here because, conceptually, they are fundamentally related;
they involve the manual scrutiny of software artefacts, with the aim of detecting
problems and ensuring quality.

127© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_7



128 7 Software Inspections, Code Reviews, and Safety Arguments

7.1 Formal Inspections

Software inspections are well-established. Michael Fagan originally developed the
notion in 1976 [48]. He proposed what are now known as “formal” inspections,
which were geared towards structured organisations. The idea was that inspections
would take place in structured meetings, where different stakeholders would prepare
for the meeting by carefully reading through the document in question (e.g. the
source code), and would then discuss this during the meeting.

This then led to a very substantial amount of research throughout the 80s and 90s,
which focussed on the specifics of reviews and inspection meetings, with a view to
maximising their effectiveness. This culminated in various structured reading tech-
niques, such as Active Design Reviews [108] and Perspective Based Reading [16],
which were underpinned by extensive empirical studies indicating their efficacy.

Nevertheless, inspections never became particularly widespread in their formal
incarnation. They were largely intended for structured work-flows such as the Wa-
terfall model (see section 3.2.1), and failed to adapt to emergent agile processes.
The need for synchronicity (for inspectors to meet and discuss a piece of code at the
same time) was at odds with the tendency towards distributed software development
teams, where different groups of individuals would work on different pieces of code
at different times. There also emerged several studies that showed that they did not
(in their meeting-centric form) tend to improve defect detection efforts, despite their
high costs [75].

This eventually led to the development of more light-weight inspection tech-
niques that could more easily be integrated into routine software development prac-
tices. For example, Pair Programming (see section 7.3.2.2), which became an in-
tegral part of Extreme Programming, is an apt example of a peer-review technique
that does not revolve around costly meetings.

7.2 Modern Code Reviews - Reviewing Code During

Development

In recent years, the term ‘Modern Code Review’[12] (MCR) has emerged to refer to
this new family of inspections. MCR does not rely on face-to-face meetings. On the
contrary, it commonly presumes that developers are distributed, and are operating
asynchronously. To enable this, MCR operates on tools and processes that are based
upon the use of a version repository (as introduced in Chapter 3).

The specifics of MCR vary extensively from one development context to another,
and often depend upon the nature of the development process (e.g. whether or not
it is agile), the makeup of the development teams, and the work-flow required by
the version-control system or the associated code review tools that are used. This
section will set out some of the most common MCR features and practices.



7.2 Modern Code Reviews - Reviewing Code During Development 129

7.2.1 Tool-Driven Code Review

One major factor that distinguishes MCR from traditional inspections is the fact that
MCR focusses on what are usually small, manageable updates to an underlying sys-
tem (such as the patches that form a commit to a version repository), as opposed to
entire files or modules. To enable reviews, reviewing tools such as Gerrit1 can eas-
ily be integrated with version repositories to act as ‘gate keepers’ to commits. Aside
from Gerrit (which was developed by Google for the development of its Android
operating system), other notable examples of reviewing tools include Microsoft’s
CodeFlow tool [12], and Facebook’s Phabricator tool2.

Version 
repository

1

check out

Review tool 
(e.g. Gerritt)

submittedsubmit

inspected 2

checked 
out

edit

verify

review commit

Developer

Reviewers

Verifier

Fig. 7.1 Example of a typical MCR-flow, using a code reviewing tool.

A typical work-flow is illustrated in Figure 7.1. A developer will check out a
version from the repository and make their change. This change is then submitted
for review (this is often automatically initiated when the developer tries to push
their change to the central version repository). Before the commit can be finalised,
the patch submitted by the reviewer is subject to review by a pool of reviewers. If
the patch is accepted by the reviewers, it is then passed to someone who ‘verifies’ it
- e.g. by testing it, and finally commits the reviewed, verified code fragment to the
version repository.

1 https://gerrit.googlesource.com/gerrit
2 http://phabricator.org/



130 7 Software Inspections, Code Reviews, and Safety Arguments

Although MCR is commonly associated with code reviewing tools, these are not
essential. Most versioning systems (see Section 4.2.2) provide plenty of mecha-
nisms that can be employed for code review without the use of explicit tools. For
example, one convention is to use branching and merging; developers use dedicated
branches to make their changes, but these changes are only merged to the ‘trunk’ by
a dedicated user, and only after a review. Reviewers can use plenty of tools (such
as repository logs) to inspect the various changes that were made to the code under
review. The challenge, in the absence of appropriate code review tools, is to ensure
that developers ultimately bother to go through the various reviewing steps, which
can easily be neglected if they are not enforced.

7.2.2 Pull-Based Development

Github

Version 
repository

1

fork / clone

2

fork / 
clone

edit

Developer Integrator
Pull Requests

patch

Pull request

commit

patcht h

fork / 
clone

fork / clone

review

integrate

commit

Fig. 7.2 Pull-Based Development

One ‘tool-less’ development approach that enforces MCR is known as ‘Pull-
Based Development’ [62]. The approach revolves around a mechanism known as a
‘Pull Request’. The flow is illustrated in Figure 7.2. A developer (who does not have
the privileges to push their changes directly to the central repository) takes a clone
of the code from the repository. They make their changes, which are typically small
(of the order of a few dozen lines of code [62]). They then submit their proposed
changes to the repository as a ‘pull request’. A developer with appropriate priv-
ileges (often referred to as an ‘integrator’) then examines their proposed changes,
integrates them with their own clone of the source code, and makes the commit. This



7.2 Modern Code Reviews - Reviewing Code During Development 131

integration step can often be automated (if there have not been too many intervening
changes).

Pull requests are becoming increasingly popular in open source systems because
they enable anybody to at least attempt to make contributions to any open source
system (that supports pull requests). Reviews and discussions of pull requests do not
necessarily have to be restricted to a small band of privileged developers, but can be
opened up to the wider community of developers. This can, at least in principle, open
up software development to greater scrutiny, and a higher level of shared decision
making.

It is instructive to skim some of the open-source projects on GitHub to witness
how extensively MCR is embedded within large software development projects. We
can take, for example, a relatively extensive change proposed as a pull request to
the Erlang OTP libraries: https://github.com/erlang/otp/pull/960.
The pull request includes changes to 52 files within the libraries, and is accompanied
by a discussion of 121 (largely substantial and constructive) comments, eventually
culminating in the acceptance of the proposed feature.

7.2.3 The Impact of MCR on Software Development and Quality

MCR has, as a practice, emerged out of necessity. Different organisations developed
their own internal reviewing approaches. As a result, there is no single canonical
definition of the “rules of MCR”; the term covers a relatively broad range of prac-
tices. This makes it difficult to analyse or discuss how it is used. Nevertheless, there
have been some recent efforts to study the trends underlying MCR, and these are
discussed here.

In their 2013 study, Rigby et al.[112] analysed the review practices for thir-
teen projects, including large open-source projects such as Android, Chromium OS,
Apache, and Linux. They found the following:

• Reviews tend to occur before changes have been committed (as per Figure

7.1), and occur frequently. At AMD the median time for the completion of a
review was 17.5 hours. At Microsoft the median review time for the Bing, SQL,
and Office projects was 14.7, 19.8, and 18.9 hours respectively. Office had a
median of 4384 reviews per month.

• Change sizes (and thus reviewer loads) are small. The median change size
observed for most of the active open source and industrial projects was below
100 lines of code. For Android and AMD the average was 44 lines.

• The number of reviewers that typically take part in a review is 2. This is
in line with findings from the era of formal code reviews that 2 reviewers are
optimal for defect detection meetings [135].

• Review is about more than just detecting defects. Rigby and Bird noticed that
the goal of reviews was rarely to record defects – in fact, current reviewing plat-
forms rarely offer such a feature. Instead, the nature of discussions tends to be



132 7 Software Inspections, Code Reviews, and Safety Arguments

‘perfective’; reviewers and code authors share the goal of refining and improving
a submitted piece of code to a point where it can be merged back into the main
code base.

In a similar study, focussed specifically on the use of MCR at Microsoft (with
the CodeFlow tool), Bacchelli and Bird[12] interviewed developers who used MCR
and analysed their respective changes. Their interview responses emphasised the
benefits aside from finding defects that can be brought about by code reviews. These
include:

• Code improvement. One of the managers at Microsoft noted that the “discipline
of explaining your code to your peers drives a higher standard of coding. I think
this process is even more important that the result.”. This sentiment echoes one
of the key drivers behind pair programming.

• Alternative solutions. 17% of developers put this as their first motivation - the
rationale being that different team members could have better ideas as to how to
implement a particular solution.

• Knowledge transfer. Code reviews can be a key driver to disseminating knowl-
edge about the system within a team, and especially to new members. Being privy
to a code review encourages participants to familiarise themselves with aspects
of the system that might be outside of their area of expertise.

• Team awareness. Code reviews serve as a useful basis for notifying the rest of
the team about what is happening in different parts of the system.

Bacchelli and Bird followed up their interviews with a review of the various code
changes that arose from the reviews. They found that the majority of code changes
were concerned with code improvement. The second largest proportion of changes
was concerned with defect finding.

Their findings were supported by a subsequent study by Beller et al.[18]. Their
studies of two large open source systems also illustrated that 75% of code com-
mits that resulted from code reviews were related to maintenance and improvement,
whereas only 25% are related to functionality. These statistics nicely illustrate the
complementary nature of software testing and inspection. Whereas testing is pri-
marily concerned with functional software correctness, inspections can support the
assessment of a much broader range of concerns.

7.3 Code Reviewing Techniques

Code quality is one of the key factors in whether a software system as a whole is
maintainable or not. Poor code quality hinders the ability of developers to under-
stand software. This in turn raises the likelihood of accidentally introducing faults,
and can lead to further degradation as the source code evolves.

These ‘patterns’ of poor code quality are often referred to as ‘code smells’. The
term originated from Martin Fowler [54], to describe the sorts of things that devel-
opers should routinely be keeping an eye out for when trying to improve their code.



7.3 Code Reviewing Techniques 133

These can range from highly localised problems (e.g. function or variable names
that are non-descriptive, or the existence of a data class in an object-oriented sys-
tem), to problems that span the whole system, such as the existence of duplicate
code.

In this section the focus primarily on the task of detecting such smells. The task
of fixing them once they have been detected is somewhat beyond the scope of this
book. However, good starting points (at least when dealing with object-oriented
software) would be Fowler’s refactoring book (which was geared towards address-
ing code smells) and, for some larger architectural problems, Demeyer et al.’s book
on software reengineering [41].

There are two families of approaches to inspecting code quality: (1) automated
code analysis techniques that can pick out problematic patterns within the source
code, and (2) reviews by the developer themselves to pick out problems. In this
section we provide a brief overview of the key approaches, and cover what they
look for.

7.3.1 Tool-Driven Code Review

Automated code reviews are ultimately driven by source code analysis. These tools
go back to the Lint tool for C [76], which first emerged in 1977. Since then, code
checkers have become heavily used, and are often routinely built in to IDEs such as
Eclipse and IntelliJ. For example, if a variable is declared but never used, or used
without being initialised this is commonly flagged up without the developer even
having to explicitly invoke a tool.

The nature of the code problems that are (or can be) identified varies from
one tool to another, and depends to an extent on the nature of the underlying lan-
guage. For example, Strongly typed languages such as Java provide more informa-
tion through which to discern potential problems than dynamically typed languages.
Automated tools are especially good at identifying problems that are relatively lo-
calised (e.g. are localised to a single method or class). For tasks that encompass
larger parts of a system.

Within Java, which is more relatively amenable to static analysis, perhaps the
most popular tool (which is not already built in to an IDE) is Findbugs3. This tool
analyses the byte-code of the compiled program and checks for over 400 problems,
from unwritten object fields to non-terminating loops.

One problem that besets tools such as Findbugs is their propensity to overload
the developer with warnings. Not every “bug” that a tool checks for is a genuine
bug; they can often be false alarms. Nevertheless, when faced with large numbers
of fault reports, the developer invariably has to spend a large amount of their time
reading through them to separate the genuine problems from the false ones.

3 http://findbugs.sourceforge.net/



134 7 Software Inspections, Code Reviews, and Safety Arguments

Exercise: Open Eclipse or IntelliJ with the Findbugs plugin, and run it on a
software system (preferably your own!).

7.3.2 Developer-driven Code Reviews

Some properties of code quality are very difficult, if not impossible, to automatically
assess. Questions of good design, for example, are often subjective. Some aspects of
good design are measurable by algorithms (as we will see in Chapter 8), but others
(such as whether the files and modules are intuitively aligned with the problem
domain) require a degree of insight that requires a degree of human reasoning.

Developer-driven code review is usually a two-step process [124]. The developer
first has to first understand the program so that they can form an opinion of its
implementation and design. Only then can they appraise the program in properly.

When it comes to the appraisal itself, the specific goals depend on several factors.
There is the paradigm of the language that was used to write the system (Object-
oriented systems are understood according to a different mental model from func-
tional or imperative programs, for example). There are also the priorities – for ex-
ample, developers that are focussed on security might look for different potential
problems than developers who are focussed on issues such as maintainability.

7.3.2.1 Understanding the Code

How can a developer (or a group of developers) aggregate the knowledge knowledge
about a code-base, and use it to form a coherent mental model? It is rarely tractable
to try to read through all of the source code to systematically form a complete un-
derstanding of code behaviour (imagine being confronted with a truly large-scale
system, comprising thousands of files, and millions of lines of code).

The question of code comprehension is a challenging one. Figuring out how to
best understand a code-base ultimately requires a sound understanding of human
psychology. Although a large body of research has hypothesised how humans un-
derstand code, confirming these hypotheses is difficult. Experiments rely on large
numbers of human participants, and can be difficult to design. They have to con-
vincingly address all manner of confounding factors (such as the prior experience
of participants or the paradigm of the programming language), and also have to
somehow measure the knowledge gained during a comprehension exercise, which
can be difficult in its own right.

In practice, software comprehension amounts to a mixture of (a) taking stock of
what you already know about a program, and (b) exploring the program to find out
more about what you do not already know (but need to know) [129]. Elements of a
program that you already know about can be indicated by ‘beacons’ – method names



7.3 Code Reviewing Techniques 135

that are sufficiently descriptive to render their functionality obvious, or classes that
contain sufficiently detailed comments, or obey design patterns [57] (recall Section
4.2.1) with which you’re already familiar.

This is why good programming practice is so important. Sensible names and
succinct comments remove the need for other developers to invest precious time
into comprehension, and enable them to spend it more productively. This can also
be fostered by carrying out light-weight changes to the source code of a program
throughout its development [41]4; if a developer learns something about a program
whilst trying to understand it, this understanding can be embedded into the source
code as a comment to assist other developers further down the line.

7.3.2.2 Pair Programming

Pair programming is an alternative approach to code review that takes place during
coding (as opposed to afterwards). The idea is that software development is carried
out by pairs of developers, so that each developer is in effect continuously scrutin-
ising the others’ work. Pair programming tends to be promoted with the following
arguments:

• Code quality is higher, because it is continuously being reviewed.
• Good practice is shared between the programmers.
• There is greater shared knowledge of the code base, which leads to better solu-

tions.

Most of the claims that advocate the use of pair programming have been the
subject of empirical studies. In 2009, Hannay et al. helpfully collated them in a
meta-analysis [68] of 18 relevant articles. This analysis indicated that: (1) pair-
programming is faster than solo-programming when the complexity of the task is
low, and (2) pair-programming produces results that are of a higher quality than solo
programming when the tasks are complex. On the down-side, the higher-quality for
complex task comes at a significant cost, requiring much more effort, whilst the
quicker completion time for lower-complexity tasks comes at a cost of significantly
lower quality

The ability to pair program makes some obvious assumptions about the develop-
ment context, which often might not apply. For example, it assumes that the devel-
opment team is collocated, and that the team is sufficiently large. In recent years, the
enhanced role of collaborative software development environments and distributed
version repositories has perhaps diminished the prevalence of pair programming5.

4 See the ‘Tie Code and Questions’ pattern.
5 I am not aware of any data on the prevalence of pair-programming, so this is based on intuition,
not evidence.



136 7 Software Inspections, Code Reviews, and Safety Arguments

7.4 Safety Arguments and Inspections of Safety Requirements

For the majority of routine software development projects, MCR alone, coupled
with some testing, can suffice to provide a sufficient confidence in software quality.
For certain systems, however, more evidence is required, which cannot be obtained
during routine software development. In the domain of safety-critical systems, for
example, software has to be certified before it can be deployed, and certification can
often only be achieved by examining a single, fixed version of the system (not one
that is continuously in flux).

A profusion of software safety certification standards exist, which are often tai-
lored for particular domains. For civilian aircraft software, there is DO178-B/C[1],
which we have already encountered. There is ISO26262 [4] for automotive software,
IEC 60880 [3] for software in the nuclear domain, etc. These various standards all
share the commonality that they place an onus on the organisation that is responsi-
ble for developing the software to collect evidence that demonstrates that the various
safety requirements have been met.

Establishing that a software product meets a particular set of safety standards is
challenging for the following reasons [100]:

1. The document describing the standards can run into hundreds of pages of natural
language text that is subject to interpretation.

2. The evidence that is required to establish a particular safety requirement can be
difficult to collect and can, depending on the requirement, at best corroborate but
not prove that a requirement has been fulfilled.

The amount and diversity of evidence that can be required can be truly bewilder-
ing. In their taxonomy of evidence types, having studied over 200 papers on safety
certification, Nair et al. present 49 basic evidence types. Although their complete
taxonomy is too large to present here, we can look at the high-level categories in
their taxonomy, which are shown in Figure 7.3. The figure is instructive because it
shows just how far-reaching a safety certification must be.

There are several approaches to collecting and presenting safety evidence. The
top two approaches (at least according to their prevalence in research publications
[100]) are checklists and what Nair et al. refer to as ‘qualitative argumentation’. We
examine both of these techniques in more detail below.

7.4.1 Checklists

Checklists set out requirements against which a software system should be inspected
as a ‘to-do’ list of guided questions that need to be answered. Ultimately, the ratio-
nale of a checklist is to make the inspection repeatable – to ensure that, regardless
of the expertise of the individual inspector, they would be prompted to highlight any
potential faults.



7.4 Safety Arguments and Inspections of Safety Requirements 137

Safety 
Evidence

Product 
Information

Process 
Information

Activity 
Planning

Activity 
Resource 

Specifications

System 
Lifecycle 

Plan

Project 
Management 

Plan

QA Plan

Reused 
Components 
Information

Personnel 
Competence 
Specification

Safety 
Analysis 
Results

Hazard 
Analysis 
Results

System 
Specifications Code V&V 

Results

Tool-
Supported 

V&V Results
Manual V&V 

Results

Formal 
Verification 

Results
Testing 
Results

Objective-
Based Testing 

Results

Environment 
Based Testing 

Results

Target Based 
Testing 
Results

Fig. 7.3 Categories from Nair et al.’s safety evidence taxonomy [100].

Exercise: Checklists are intended to support repeatability. Think back to Chap-
ter 3 - Process-Based Quality Assurance. Which aspects of process-based quality
assurance does this remind you of.

Constructing an effective checklist is an art. If the list is too focussed and gran-
ular, the inspector can become too focussed on following the checklist objectives,
but can miss out on specific faults that are not in the list. If it is too abstract, the
inspector is left to their own devices and the performance of the checklist will vary
more from one inspector to the other. The key is to (1) cover as many areas that
are of importance from a quality perspective, (2) to ensure that the inspector does a
thorough job – goes to the effort to fully understand the item under inspection, and
(3) to not require a prohibitive amount of time and effort.

Two potential approaches by which to strike this balance are as follows6:

1. Write the questions from the perspectives of different stakeholders[16]. Ideally,
task different individuals to adopt the perspectives of, for example, the designer,
the tester, the coder, etc., and have them write a set of questions. The rationale
is that these will force the inspector to consider the broadest possible range of
concerns.

6 These are techniques that are inspired by two ‘formal inspection’ approaches that appeared in the
90s – we will not go into their associated methodological details in this book, but their essential
lessons can be readily applied to simple checklists.



138 7 Software Inspections, Code Reviews, and Safety Arguments

2. Write the questions in such a way that the inspector is forced to engage with the
document under inspection (i.e. by completing some task)[108]. E.g. instead of
asking a relatively subjective question that is easy to answer in a hurry “Are the
test sets sufficient?”, one could write “Is the branch coverage achieved by all
tests greater than 80%?” – thus forcing the inspector to execute the tests and to
monitor their coverage.

7.4.2 Safety Argumentation and the Goal Structure Notation

Although checklists can offer valuable guidance and are easy to use, they also have
their weaknesses. If some aspect of safety is not properly captured by way of the
questions in a checklist, it is unlikely to be inspected. They only illustrate what has
been inspected (what has been ticked-off), but not why. There is no guidance as to
how specific items might help to substantiate a higher-level safety property.

Argumentation-based approaches add an additional dimension to the traditional
checklists. The underlying rationale with argumentation-based approaches is that,
instead of checking a box, the inspector has to build an explicit argument that ex-
plicitly links the evidence to the conclusion that a given safety requirement has been
satisfied. For example, instead of merely ticking a box to indicate that test coverage
was satisfactory, a safety argument might indicate how the coverage data had been
collected, and what coverage criteria had been used, etc.

Safety case argumentation can come in various forms [100]. They can be simply
consist of structured natural language arguments, or be graphical in nature. Goal
Structure Notation (GSN)[82] is a popular example of such a notation that sets out
an argument in a hierarchical form – high level safety goals are broken down into
sub-goals and arguments.

Goal

Context

Assumption

A

Extension

Strategy

Solution

Justification

J

Note

Fig. 7.4 Key GSN Symbols



7.5 Key Points 139

The main GSN symbols are shown in Figure 7.4. Their purposes are briefly sum-
marised below:

• Goal: A goal represents the safety property that we seek to build an argument
around.

• Strategy: A description delineating how a goal is established.
• Context: Supporting information required to understand what is meant by a goal.
• Solution: A piece of evidence that can contribute towards establishing a goal.
• Assumption: Conditions under which a piece of evidence can validly be held to

establish a goal.
• Justification: Reasons justifying the use of a piece of evidence.
• Extension: An indicator that further argumentation and support is required to

support a particular (sub-)goal.
• Note: Additional textual annotation.

When put together, arguments can be constructed, forming hierarchical struc-
tures7, where high-level safety goals can be broken down into sub-goals, and linked
to the sources of evidence that would be required to establish them.

A nice, comprehensive example of a safety case is the safety case that was pub-
lished in 2004 for the Panavia Tornado combat aircraft [128] (which can be down-
loaded in its entirety from the Gov.UK website). This was constructed, in part, to
comply with legal obligations stating, for example, that it was necessary to show
that the risk to its stakeholders was ALARP (As Low as Reasonably Practicable).

A small example GSN fragment is shown in Figure 7.5. This shows the high-
level goal at the top, which is broken down into sub-goals further down. Where
relevant, goals are linked to contexts, to explain what they mean, of justifications,
to contribute to the argument of why they exist. At the lowest level, goals are tied to
solutions – techniques that are to be used ot fulfil the goals.

7.5 Key Points

• Software inspections were formally proposed by Fagan in 1976. These ‘For-
mal Inspections’ remain widespread in certain sectors, but tend to be considered
‘heavyweight’, involving a lot of time and effort from the development team.

• In recent years, the notion of a ‘Modern Code Review’ has become widespread.

These are characterised by being more lightweight, tool-based, and suited to
distributed, asynchronous development. Reviews are often conducted on a per-
commit basis to a version repository. These can be facilitated by tools such
as Gerritt. An alternative is to adopt pull-based development, where proposed
changes to the code base are sent to the development team in the form of a pull-
request.

7 Specifically, these are directed acyclic graphs.



140 7 Software Inspections, Code Reviews, and Safety Arguments

G1: 
Functionally 

correct

C1: Code coverage 
standards in ISO-XX

S1:
Use MC/
DC tool.

G2: 
Code has been 
fully executed

G3: 
Code has been 

scrutinised.

G4: 
Ensure MC/DC 

coverage

Minimal data 
state - logic 

sufficient
J

G4: 
Code has been 
formally verified.

S2:
Use 

MCR.

Fig. 7.5 GSN example.

• A series of empirical studies have emerged to show several positive impacts

of code reviews. A series of empirical studies have emerged to show several
positive impacts of code reviews. Results indicate that the code quality increases,
along with team awareness of the code. They do not merely serve the narrow
purpose of detecting bugs, but also spread knowledge about the system within
the team, and lead to code improvement.

• Code reviews necessarily start with a phase of ‘program comprehension’ –

understanding the structure and functionality of the source code. The activity
is facilitated when there are areas of the source code (‘beacons’) that can be used
as a basis for orientation.

• Pair-programming is a means by which to review code during coding, as

opposed to afterwards. It was popularised with the emergence of agile soft-
ware development. Instead of development being undertaken by individuals, pair
programming sees pairs of developers sitting together to write code. Whilst one
developer does the typing, the other can assist and can help to guard against er-
rors.

• Safety inspections constitute a special type of software review. This tends to
be carried out by independent teams of inspectors, who seek to inspect a sys-
tem with respect to particular safety properties. These safety properties are often
specified in the form of check-lists or graphically in the form of Goal-Structure
Notation.



Chapter 8

Measurement

Chapter 3 showed us how software is the result of a process, and showed how the
quality of a product and the process used to create it are intricately linked. We have
seen how successful product development processes tend to be highly iterative and
feedback-driven (remember Shewhart’s Plan-Do-Check-Act cycle). And we have
seen how, with the emergence of Agile software development, these principles have
gradually filtered through to conventional software development. Ultimately, suc-
cessful software project management depends upon the ability to continuously keep
track of progress and quality. This is perhaps best captured by the following quote1:

“You cannot control what you cannot measure.” – Tom DeMarco, 1982

In software development, this is commonly facilitated by various measurements
of the system and the surrounding process – commonly referred to as Metrics. These
examine factors such as the progress made on a particular task, the time and re-
sources consumed, alongside product-specific metrics such as the complexity (e.g.
number of lines of code), or the extent to which it has been tested (test coverage).

Software measurement is fraught with difficulties. There are hundreds of possible
metrics that can be applied to a software system or process. However, these rarely
provide an accurate, complete picture with respect to what the developer (or some
other stakeholder) wants to know. Accordingly, metrics often have to be used an
interpreted with great care, with a full understanding of their limits and potential
threats to validity.

The use of metrics in the Toyota Unintended Acceleration trials

Metrics can provide valuable insights into the state of a software system. One use-
ful example arises when we consider the problems surrounding the software for the
Toyota engine controller unit, which was suspected of being responsible for the Un-
intended Acceleration faults that had apparently led to numerous deaths (see Section

1 Tom DeMarco was a leading figure in structured software development in the 1970s.

141© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_8



142 8 Measurement

2.1). In the US, this led to several law suits in 2013-14, amounting to over one bil-
lion dollars. The problem that confronted experts who were called in to support the
families of the victims was that they were not given access to the source code. All
that they could rely upon was information about the software that was already in the
public domain, by referring to previous trials, and an openly available report pro-
duced by NASA [85] who had been initially tasked with investigating the software
(they had failed to find the specific cause of the bug, but had flagged up numerous
instances of bad practice).

One notable source of information was a set of metrics pertaining to the Elec-
tronic Throttle Control System (ETCS), which was suspected of causing these un-
intended accelerations. In particular, although they could not look at the code itself,
they could look at metrics that quantified its complexity (the Cyclomatic Complexity
measure, which is something we will encounter in detail later on in this chapter). In
short - Cyclomatic complexity tries to gauge the number of possible paths through
the source code. An “acceptable” value that indicates that the function is reasonably
comprehensible lies somewhere betwee 5 and 15. Over 50, a function is considered
“untestable” – it is impossible to account for every possible path through the func-
tion. In the Toyota ETCS code, there were 67 functions with a complexity > 50.
One function – the “throttle angle” function – had a complexity of 146, was over
1300 lines long and had no unit-test plan!

As if the complexity metrics were not damning enough, there was another set of
metrics that furthermore painted a picture of a software system that was impossibly
complex to manage. The number of global variables (variables that can be written
and read by and from anywhere in the source code) should ideally be zero, though
in practice it can be quite common to have a moderate number of ‘constant’ values
and configuration variables. However, in the ETCS case, there were between 9,273
and 11,528 global variables (including variables that ‘commanded the throttle angle’
and reported engine speed).

Ultimately, it was this evidence (along with plenty of other examples of bad
practice highlighted by Koopman[86]) that led the jury to decide that ECTS defects
had caused a death.

8.1 Measurement Basics

Although metrics can be useful (indeed vital) for software development, this is only
the case if they are properly understood. Metrics that are misunderstood or misinter-
preted can become highly misleading, and can in turn lead to poor decision making
when it comes to managing a project. In order to prevent such mistakes from being
made, it is necessary to acquaint ourselves with some of the fundamental notions
that underpin measurement. Many of the definitions in this section closely follow
those by Fenton in his overview of software measurement [50].

There are many theoretical frameworks within which to understand measure-
ment. In this section we adopt the one that is most frequently associated with soft-



8.1 Measurement Basics 143

A

B

C

D

E

Relationship of interest
 (e.g. complexity)

2 3
5

6 9

Relationship between formal entitites
(e.g. >)

Formal Relation
System

Empirical Relation
System

entities

formal
entities

Measurement
(e.g. Lines of code)

Fig. 8.1 Illustration of the framework for the Representational Theory of Measurement.

ware measurement – the Representational Theory of Measurement. The essential
notions involved in the framework are shown in Figure 8.1. Empirical entities repre-
sent the subjects of interest. There is some qualitative relationship between them that
needs to be formalised by a measurement. The measurement provides a means by
which to associate quantitative values with the entities, so that they can be ordered
and compared in a more formal way. The details of this framework are provided
below.

Entities.

In abstract terms, the subject that we wish to measure is referred to as an ‘entity’. In
our case, this might be a software class or an entire software development project.



144 8 Measurement

Empirical Relation System.

An empirical2 relation system describes the essential aspects of the real system that
we wish to measure. Specifically, it tells us what the objects (entities) are that are
of interest to us, what the relationships between these entities are that are of impor-
tance, and different ways in which we can potentially combine these entities (which
will be of value to us to ensure that our measurements are ultimately consistent). In
formal terms, we define an empirical relations system as E = (A,R). The compo-
nents of E are elaborated as follows:

• A is the set of entities that we wish to measure and compare to each other. For
example, a set of classes in an object-oriented system.

• R is the set of empirical relations between attributes of the entities that we are
interested in. For example, one relation comparing the complexity of different
entities might be “is more complex than”. Another relation comparing size might
be “is larger than”, etc.

It is worth noting that, in the empirical relation system, all of the relations are
qualitative, not quantitative. They are intuitive relations that we wish to establish,
but for which it is not yet necessarily clear how we would assign numbers to the
entities by which to measure them.

Formal Relation System

A formal relation system provides a ‘formal’ counterpart to the empirical relation
system described above. Whereas the empirical relation system is grounded in en-
tities and qualitative relations, the formal relation system is grounded in formal ob-
jects – primarily numbers, and quantitative relationships. In formal terms, we define
a formal relations system as F = (B,S). The components of F are elaborated as
follows:

• B is a set of formal objects - such as numbers, sets, or vectors.
• S is a set of relations that can hold between elements in B, such as ≤,<,>, . . .

Measurement

Measurement is the process of attributing a number or a symbol to an attribute of an
entity. In formal terms, M is a measure with respect to an empirical relation system
E = (A,{R1, . . . ,Rn}) is valid when:

1. M : A → B
There is a mapping from every entity to a number or a symbol.

2 The term ‘empirical’ refers to the use of evidence to support a proposition.



8.1 Measurement Basics 145

2. ∀(a,b) ∈ R,∃(M(a),M(b)) ∈ S.
There is an equivalence between empirical relations and formal relations. This
second condition is referred to as the representation condition.

Scales and Admissible Transformations

Depending on the purpose of a measurement, it can lead to different types of values.
We may, for example, seek to classify source code files according to the language
in which they were written. We may want to rate developers according to their in-
volvement in a project (e.g. according to five levels from “not involved at all” to “a
key developer”). We may want to measure the size of a source code file in terms of
the number of lines of code within it.

These three types of measurement produce values (formal objects) that lie on
different scales (Nominal, Ordinal and Ratio scales respectively). These scales can
be characterised by referring to the relationships that they impose on the formal
objects (i.e. the results of any measurements). This characterisation is founded upon
the notion of admissible transformations.

An admissible transformation is a transformation that can be applied to the results
of a measurement, whilst maintaining its validity. In other words, a transformation
is admissible if it retains the relationship between the empirical and formal relation
systems.

Formally, let us suppose that we have some measure M, some set of entities E, a
set of formal entities B and F – a transformation (mapping) M(E) to some numeral
N, so F : M(E)→ N. T is an admissible transformation if and only if F(M(E)) is a
valid measure.

The following scales are some of the most common3. The structure of the de-
scriptions is based upon the structure used by Jørgensen in his paper on quality
measurement [77]:

• Nominal: As shown in Figure 8.2, a measurement is on a nominal scale if the
admissible transformations retain equality between the measured entities; a pair
of entities either belong ot the same category, or they do not. For example, a
metric that divides files into those that have been inspected and those that have
not been inspected would be on a nominal scale.

• Ordinal: As shown in Figure 8.3, admissible transformations are valid as long as
they retain any equality and order amongst the measured entities. For example,
a metric that rates the quality of a class according to “very poor quality”, “poor
quality”, “good quality” and “excellent quality” would be on an ordinal scale.

• Ratio: As shown in Figure 8.4, admissible transformations are of the form
T (x) = ax,a > 0. The empirical relations possible are related to equality, order,
difference, and relative difference. Ratio scales are distinguished by the fact that

3 There are other scales that are common outside of Software Engineering, such as the Interval
scale, but we do not consider this here because it is rarely (if ever) used in the context of software
development.



146 8 Measurement

A

B

C

D

E

inspected Not inspected M(E)

7 F(M(E))

A

B

C

D

E

inspected Not inspected

7 2

Not admissable Admissable

Fig. 8.2 Inadmissible and admissible transformations for the nominal scale. Any transformation is
valid as long as it retains the equality relation with respect to M(E).

A

B

C

D

E

1 
(awful))

2 
(poor))r)r) 3 

(pass)

4 
(good) 5 (v. 

good)

10

11
14

20
18

M(E)

F(M(E))

A

B

C

D

E

1 
(awful)

2 
(poor)))) 3 

(pass)

4 
(good) 5 (v. 

good)

10

11
14

20
18

Not admissable Admissable

Fig. 8.3 Inadmissible and admissible transformations for the ordinal scale. Any transformation is
valid as long as it retains the equality relation and the ordering of the entities with respect to M(E).



8.2 Metrics 147

they are based upon a definitive notion of ‘zero’. For example, the use of Lines of
Code (see below) to measure the length of a program would be on a ratio scale,
as would the use of the number of person-hours to measure the resources spent
on a project (again, see below).

A

B

C

D

E

1000

250 1200 5000

10

25 500120

M(E)

F(M(E))

A

B

C

D

E

1000

250 1200 5000

15

25 9080

Not admissable Admissable

Fig. 8.4 Inadmissible and admissible transformations for the ordinal scale. Any transformation is
valid as long as it retains not only any equality and order, but also the ratio between elements in
M(E).

8.2 Metrics

A software metric is, in the loosest possible terms, a measurement where the entity
that is the subject of the measurement is related to a software system. Metrics can
be concerned with the actual structure of the software system itself – for example
the complexity of individual classes, or the modularity of the system. Metrics can
also be used to measure qualities of the software development process – the amount
of time and effort required, the ability throughout the process to prevent bugs, or
the prevalence of bugs in different parts of the system. In this section we provide a
relatively brief overview of these different types of metrics, picking out a couple of
the most popular ones (at least from a quality assurance perspective).

In the introduction to this chapter, we discussed the Toyota case study, where
code metrics were used (amongst other data) to argue that the software in question



148 8 Measurement

was sub-standard. These metrics are calculated by analysing the underlying soft-
ware (usually the source code or bytecode). Metrics can focus on various levels of
a system – from individual functions to classes or modules (depending on the pro-
gramming paradigm), all the way up to individual metrics that apply to the system
in its entirety. The rest of this section provides an overview of some of the most
popular metrics.

8.2.1 Size and Complexity

A multitude (perhaps even the majority) of metrics seek to quantify how “large” or
“complex” a software system is. Such metrics have various applications; if derived
from the source code, they can be used to estimate how much effort has been in-
vested in its development. If derived from the design, they can be used to estimate
how much effort might be required for future implementation (in a similar vein to
what is achieved by Planning Poker in agile contexts - as described in section 5.2.4).
This subsection will provide a brief overview of some of the key metrics, spanning
both code and design metrics.

8.2.1.1 Lines of Code

The number of Lines of Code (LOC) is frequently used to gauge the size and com-
plexity of a software system. Its main strength is that it is easy to compute – it
requires no ability to parse source code.

There are plenty of obvious objections to the use of LOC. Firstly, it is not nec-
essarly clear what a “line” is. Is a comment a line? What about empty lines in
the source code that have been added to facilitate readability? What if every file
in the system is accompanied by a lengthy copyright proforma? To address these
queries, various specific notions of LOC have emerged, including NCLOC (Non-
Commented Lines of Code), SLOC (Source Lines of Code — referring to executable
statements), etc.

Exercise: Open up the Bash Shell on a Linux or Mac computer (or use Cygwin
on Windows). Locate a directory containing some source code files. Figure out how
to use the built-in Bash commands to count all of the lines in all of the files in the
source directory (including sub-directories).

Despite being widely derided, the LOC measurement (along with its various vari-
ants) remains the most widely used metric. As an approximate measure of size, it is
often as good a measure as any. In other words, a system of the order of hundreds of
thousands of lines of code is liable to be “larger” and “more complex” than a system
of the order hundreds of lines of code.



8.2 Metrics 149

8.2.1.2 Measuring Complexity with McCabe’s Cyclomatic Metric

McCabe’s Cyclomstic Complexity [93] seeks to provide a more insightful mea-
surement than LOC by accounting for branching structure within the source code.
The aim of Cyclomatic Complexity is to count the number of “linearly independent
paths” through the code (every path that arises from a unique combination of branch-
decisions). The metric can either be computed for individual functions / methods,
or for entire files or modules.

The metric is often computed by characterising the system in question as a Con-
trol Flow Graph – a directed graph where individual statements are nodes, and were
edges between nodes denote the possible flow of control from one statement to the
next. Within such a graph, the Cyclomatic Complexity (CC) can be computes as
CC = E −N +2P, where E is the number of edges, N is the number of nodes, and
P is the number of separate procedures or functions within the graph4.

1 void iqsort0(int *a, int n)
2 {
3 int i, j;
4 if (n <= 1)
5 return;
6 for (i = 1, j = 0; i < n; i++)
7 if (a[i] < a[0])
8 swap(++j, i, a);
9 swap(0, j, a);

10 iqsort0(a, j);
11 iqsort0(a+j+1, n-j-1);
12 }

Fig. 8.5 Toy implementation of the QuickSort algorithm, from Bentley and McIlroy [19]

Exercise: Do not read anything below this Exercise box! Looking at the source
code in Figure 8.5, try to draw out the Control Flow Graph by hand. Once you have
done this, you can compare what you obtained with Figure 8.6. Using your CFG (or
the corrected version), calculate the Cyclomatic Complexity.

To provide an illustration of how to calculate Cyclomatic Complexity, we draw
upon an example of a very simple sorting function, provided by Bentley and McIl-
roy [19], shown in Figure 8.5. The corresponding Control Flow Graph is shown in
Figure 8.6.

Applying the formula for Cyclomatic Complexity to the Control Flow Graph in
Figure 8.6, we obtain the following. There are 11 nodes, and 13 edges. We are only

4 So, if you have a large C file with 11 functions, the graph would be disconnected (you would
have multiple connected sets of nodes) and P would be 11.



150 8 Measurement

entry

3

4

entry

3

4

3

5

4

5

exit

5

e

6

4

66

7

8

99

8

66

7777

10

9

10

11

10

11

texi

11

Fig. 8.6 Control Flow Graph for sort function in Figure 8.5, where nodes are numbered according
to the line numbers in the code.

dealing with a single procedure, so P = 1. This leads to the result: CC = 13−11+
2 = 4.

8.2.1.3 Halstead Complexity Metrics

The Halstead complexity metric suite [66] is a set of metrics that are markedly
different to LOC and Cyclomatic Complexity. Instead of focussing on mere line
counts or logic structures, they focus entirely on the actual textual content of the
source code – the names of variables and operators within the source code. They
are rarely used as stand-alone metrics, but they are widely implemented; this is
primarily because they form a basis for the higher-level “Maintainability Index”
metric, which remains popular in the industry, and which we shall come to later on.



8.2 Metrics 151

The Halstead metrics are essentially founded on the idea that source code text can
be split into two categories: operators and operands. Operators amount to source
code tokens that refer to elements of “control” in the source code, such as if or
while instructions, and function declarations. Operands on the other hand corre-
spond to data, such as variable and function names, and variable values.

The metric suite is calculated by dividing the source code in question into these
two categories – producing the set of operators and operands. These are then used
to produce four values:

• n1 is the number of distinct operators.
• N1 is the total number of operator occurrences in the code.
• n2 is the number of distinct operands.
• N2 is the total number of operand occurrences in the code.

From these values, the actual metrics are calculated as follows:

• Program Length N = N1+N2
• Program Vocabulary= n = n1+n2
• Volume = N ∗ (log2n)
• Difficulty = n1

2 ∗ N2
n2• Effort = Di f f iculty∗Volume

Exercise: Pick a (small) source code file, written in your favourite language.
Compute the Halstead metrics for it.

If you attempted the above exercise, one of Halstead’s weaknesses will rapidly
become clear: It is not always obvious what constitutes an operator, and what con-
stitutes an operand. However, the boundaries between these two concepts are abso-
lutely crucial to the metric values. Whilst there are obvious control and data con-
structs (such as those listed above), others can be more problematic. What, for ex-
ample, about syntax such as parentheses or semi-colons? What about text that is
commented out? This raises serious questions of validity.

Exercise: In terms of the definition of validity in the Theory of Representa-
tional Measurement, why does the fact that some of the metrics are difficult to justify
threaten their validity?

8.2.1.4 Function Points

Measurements of size can transcend source code alone. Often, when reasoning about
the size or complexity of a software system, the source code may not yet be available
(e.g. when trying to predict the cost of a system that has yet to be developed). There



152 8 Measurement

are (perhaps surprisingly) very few alternatives to source code-based metrics when
it comes to providing a measure of software size.

One of the most popular, longstanding measures is the Albrecht Function Point.
The measure was introduced by Allan Albrecht in 1979 at IBM [8]. Since then it
has become a standard measure of size, incorporated into several ISO standards.
Function points seek to capture the complexity of a function from an “external”
perspective, irrespective of the underlying logical complexity.

Function points are calculated by categorising every “interaction” between the
system and its environment as follows:

1. External Inputs: Inputs are provided by a user.
2. External Outputs: Outputs are presented externally (e.g. via a GUI to the user).
3. External Inquiries: Inputs are solicited from a user (e.g. via dialogue boxes).
4. Internal files: Data is stored to files.
5. External files: Data is stored via external mechanisms (e.g. data bases).

Each interaction is also graded according to three difficulty levels – Simple, Av-
erage, and Difficult. For each combination of category and difficulty, there a “diffi-
culty weighting” (w) is provided (this is a fixed value). The resulting combinations
of interaction counts and weightings can be illustrated in a tabular format, as shown
in Table 8.1.

Category Simple Average Difficult

1: External inputs 3×4 4×3 6×1

2: External outputs 4×0 5×2 7×1

3: External inquiries 3×7 4×0 6×0

4: Internal files 7×3 10×0 15×0

5: External files 5×0 7×5 10×2

Table 8.1 Example of a set of external interactions, categorised according to difficulty. In each cell,
fixed weights are shown in a regular font, and the numbers provided for our imaginary software
system are shown in bold.

Once the interactions have been categorised and scored according to difficulty,
the Unadjusted Function point Count (UFC) can be computed. This is computed
by, for each category of interactions, multiplying the number of interactions by the
weighting of the given difficulty, and summing all of the values up, then adding all
of these summed difficulties together. More formally:

UFC = Σ 5
i=1Σ 3

j=1wi j × xi j

where xi j is the number of interactions of type i and complexity j, and wi j is a
weighting factor.

Exercise: Calculate the UFC for the values in Table 8.1.



8.2 Metrics 153

Once the UFC is calculated, a further score called the Technical Complexity Fac-
tor (TCF) is computed. This is computed by first of all rating 14 ‘technical factors’
on an ordinal scale from 0 to 5 (where 0 means ‘no influence’ and 5 means ‘critically
influential’). The factors are shown in Figure 8.7.

1. Requires reliable backup and recovery?
2. Requires data communications?
3. Are there distributed processing functions?
4. Is performance critical?
5. Will the system run in an existing, heavily

utilized environment?
6. Does the system require on-line data entry?
7. Does the on-line data entry require input

over multiple screens?
8. Are the master files updated online?

9. Are the inputs, outputs, files, or inquiries
complex?

10. Is the internal processing complex?
11. Is the code designed to be reusable?
12. Are conversion and installation included in

the design?
13. Is the system designed for multiple plat-

forms / organizations?
14. Is the application to facilitate ease of use by

the user?

Fig. 8.7 Technical Complexity Factors

This enables us to compute the TCF as follows:

TCF = 0.65+0.01∗Σ 14
i=1Fi

where Fi refers to the score given for the technical factor number i above. Finally,
the Function Point Count is computed as:

FPC =UFC×TCF

There are plenty of potential pitfalls to function points. For one, the weightings
that are attributed to different types of interactions need to be estimated, and it is
not clear how to do so. This is especially problematic because the wrong choice of
weightings (or categorisations of interactions for that matter) can lead to invalid re-
sults. As is also quite evident, the process of computing the function point count can
be tedious, and has been criticised as being unnecessarily complicated for purposes
such as resource estimation [51].

8.2.2 Modularity Metrics

Software systems are easier to understand if their various functionalities are neatly
packaged into well-defined areas of the system. For example, if we consider the
implementation of a word-processor, it would be easier to understand if the code
that is responsible for loading and saving files is not mixed in with the same code



154 8 Measurement

that is responsible for text editing and formatting. This criterion is what is loosely
referred to as “modularity”.

The issue came to prominence in the late 60s, when the general issue of soft-
ware quality first came under the spotlight. At the time, computer programs were
generally envisaged as flow-charts; a program was conceived as a sequence of in-
structions telling the computer what should happen when. This was supported by
the mainstream languages of the time – COBOL and FORTRAN. They would of-
fer high-level syntax for a multitude of functions, and it was essentially up to the
programmer to put these instructions in the right order. To enable complex control
constructs, they would offer commands such as GO TO, which would enable the
programmer to redirect the flow-of control to arbitrary points in the program if they
wanted to bring about loops etc.

The problem with this mode of programming was the fact that this could easily
lead to very labyrinthine programs, where the flow of control became very diffi-
cult to disentangle. Such programs were commonly referred to as ‘spaghetti code’
(where the various possible flows of control resembled a plate of spaghetti). This
rapidly gave rise to programs that were very difficult (and thus very expensive) to
maintain, and could easily contain lots of hidden bugs. These issues were brought
to wide-spread attention in a now famous essay by Edsger Dijkstra, called “Go To
Statement Considered Harmful” [42].

Exercise: Read Dijkstra’s essay.

Dijkstra’s observations led to several developments in programming language de-
sign that sought to encourage modular software development. This led to approaches
to ‘modularisation’, pioneered by figures such as David Parnas. In his 1972 essay
on the decomposition of software into modules [105], he developed the notion of
“information hiding” – that different modules (concerned with their own aspects of
functionality) should not need to be aware of each other’s decisions and data. Such
ideas led to many of the notions (information hiding, interfaces, inheritance, etc. )
that form the basis of modern programming languages and paradigms.

8.2.2.1 Coupling and Cohesion

“Coupling” and “Cohesion” are terms that have been around for as long as the notion
of modularity itself. They are terms that can be used to discuss the extent to which
a given system is “modular”. Intuitive definitions are as follows:

• Coupling characterises the extent to which two modules ‘are related’ with each
other (see discussion below).

• Cohesion pertains to a single module, and characterises the extent to which the
data and the functions are interlinked. In a cohesive module, variables and func-
tions will often be strongly interdependent. If this is not the case, it will often be
the case that several groupings of variables and functions within a module will



8.2 Metrics 155

be independent from each other (and could conceivably be split into separate
modules).

The notion of a “relation” in coupling requires some more discussion, because it
is rarely well defined. In strict, code-analytical terms, two modules can be related
if there is a concrete relationship in the source code: one module calls a function in
the other module, it reads from / writes to a variable in the other module, or (in an
Object-Oriented context) inherits from the other module.

However, there are many other possible ways in which a pair of modules can
be related. For example, Beck and Diehl [17] refer to several other, more latent
relationships:

• They might have similar relationships to other classes / libraries in the system.
• They might have been changed at similar points in time (revisions in the version

repository) during development.
• They might contain several code fragments that are similar or identical to each

other.
• They might share common authors.
• They might be textually similar (contain similar key-words, function names,

etc.).

Exercise: There are many possible ways in which a relation between a pair of
modules can be characterised. How could this potentially be problematic from a
measurement perspective?

For now, we stick with the simplest, structural definition of a relationship. To
provide an illustration of the basic notions of coupling and cohesion, we first con-
sider the illustration in Figure 8.8. Here we see that there is an extensive amount of
communication between the two modules; many of the methods in the left module
call methods in the right, and both sets of methods frequently access data members
in the other module.

High coupling can lead to a multitude of serious problems. If, for example, a
programmer wishes to understand what precisely is happening in module A, they
will need to trace along any dependencies to module B (and to any dependencies
that B has on other modules in the system). If a change is to be made, the profusion
of dependencies means that there is a greater risk that it can have unintended side-
effects. If we have a large, highly coupled system, individual modules also become
harder to disentangle and replace with alternative implementations, etc.

Cohesion is illustrated in Figure 8.9. Module A on the left demonstrates high co-
hesion, functions share a lot of the variables. Module B on the other hand represents
a function where none of the variables are shared. In Object Oriented systems, data
classes can often adopt this pattern. Each variable will have a getter and a setter, but
these will rarely read from or write to other variables.

Although Coupling and Cohesion are often used in tandem, they are measured
by separate metrics. The main Coupling and Cohesion metrics to be used today



156 8 Measurement

A B

Fig. 8.8 Illustration of high coupling (and low cohesion). The two rectangles represent modules
(e.g. classes in an Object-Oriented system). The circles represent data variables (e.g. class at-
tributes), and the squares represent functions (e.g. class methods). Arrows between a pair functions
represent function calls, and arrows between functions and data attributes represent reads or writes.

A

2

3

4
1

a

b
c

B
5 7

6

e

d
f

Fig. 8.9 Illustration of high cohesion (in module A) and low cohesion (in module B).



8.2 Metrics 157

emerged from the suite of Object-Oriented metrics devised by Chidamber and Ke-
merer in 1994 [29]. Coupling was measured by the Coupling Between Objects met-
ric, and Cohesion was measured by the Lack of Cohesion metric, both described
below.

8.2.2.2 Coupling Between Objects (CBO)

Coupling Between Objects (CBO) calculates a value for every class in the system,
representing the number of other classes to which it is coupled. The relationships
considered are the standard ones: reading from / writing to a variable, or invoking
a method. If a method call is polymorphic (there are multiple implementations of
a method that could be invoked by a given call) then all of the possible calls are
counted.

Exercise: In Figure 8.8, assume that you are looking at two classes. Calculate
the CBO for class A.

8.2.2.3 Lack of Cohesion between Methods (LCOM)

Cohesion (or more specifically, lack thereof) is commonly measured by the LCOM
metric. In short, it is computed as the number of pairs of methods without access to
shared class attributes minus the number of pairs of member functions with access to
shared class attributes. This metric has changed over the years, having been subject
to a great amount of criticism [15].

A B

Methods Variables shared Methods Variables shared
a,b {2} d,e /0
a,c {4} d,f /0
b,c {3} e,f /0

Table 8.2 Basis for calculation of LCOM for classes A and B in Figure 8.9

Table 8.2 shows how LCOM is computed for the examples in Figure 8.9. Each
row corresponds to one pair of methods, and the ‘Variables’ column shows how
many variables they share. For class A, all three pairs of methods share variables
(which means that are no pairs of methods that do not share variables), so LCOMA =
0−3 =−3, which is re-written as zero; in other words there is no lack of cohesion.
For Class B there are again three pairs of variables, but none of them share access
to a variable, so for class B LCOMB = 3−0 = 3.



158 8 Measurement

Exercise: Referring to the various scale-types we learned about in Section 8.1,
why might the LCOM metric be problematic?

The major criticism of LCOM (in answer to the above exercise) is the fact that it
is fundamentally measured on an interval-scale, but is somewhat clumsily coerced
into a ratio scale by rewriting any negative values as zero. The problem is that this
conversion does not quite work, because there is no canonical definition of what
amounts to a zero-value; modules that differ wildly in terms of how (un)cohesive
they are can all produce a zero LCOM value.

C

2

3

4
1

a

b
c

Fig. 8.10 Class that has a different cohesion to class A in Figure 8.9, but produces the same LCOM
value.

As an example, we can look at class C in Figure 8.10. Looking at this class, one
pair of methods does not share access to variables (b and c), whereas two do. This
means that LCOMC = 1−2, which is also re-written to zero. So although classes A
and C clearly have different levels of cohesion, they share the same value.

8.2.3 Maintainability Metrics and the Maintainability Index

As we have seen in Chapter 2, “Maintainability” forms a key component of most
mainstream quality models. If a software system is not maintainable, it cannot be
readily adapted to changes in its environment and changes in requirements from



8.3 Validity and the Use of Goal Question Metric 159

users. This renders it increasingly expensive to operate in the long run, because it is
harder for developers to correctly make any necessary changes.

The Maintainability Index (MI), which was devised by Oman and Hagemeister
in 1992 [103], is perhaps the most popular metric for measuring maintainability.
Unlike the metrics discussed previously, it is not ‘atomic’, but is instead a combina-
tion of multiple other metrics. Specifically, it combines Halstead’s volume (HV - see
section 8.2.1.3), Cyclomatic Complexity (CC - see section 8.2.1.2), Lines of Code
(LOC - see section 8.2.1.1), and an additional measure that we haven’t covered in
this book, which is simply the percentage of the LOC that are comments (COM).
The combination is computed by the following formula:

171−5.2ln(HV )−0.23CC−16.2ln(LOC)+50sin
√

2.46∗COM

To produce this formula, Oman and Hagemeister started with a number of sys-
tems developed by Hewlett-Packard, written in C and Pascal, between 1000 and
10,000 LOC in size. For each system, they asked the engineers to rate it in terms
of its “maintainability” on a scale from 1 to 100. They then calculated 40 different
metrics for each system and applied a statistical regression, which resulted in the
above formula.

This metric subsequently garnered a lot of attention. Its use was widely promoted
in the 90s and beyond. It has been included as part of the metrics suite in Microsoft
Visual Studio since 2007, as well as a host of other metrics tools.

Exercise: Let us suppose that you are assessing a C# project. You load it into
Visual Studio and go about computing the MI to gain an idea of its maintainability.
Why might you hesitate to trust the resulting metrics? Write down three reasons.

8.3 Validity and the Use of Goal Question Metric

This section considers the problems of validity that tend to dog software engineering
metrics. It then presents a general technique - Goal Question Metric (GQM), which
can be used to address some of these issues.

8.3.1 Problems of Validity

As we have seen, metrics are fundamentally based on the representation condition:
that the relationships between the elements that are being measured (e.g. source
code files) are maintained within the measurements. Note that this means that the
validity of a simple metric (e.g. LOC) cannot be assessed in isolation; its validity is
intrinsically dependent upon the property that it purports to measure.



160 8 Measurement

This relationship has certain strong implications. In order to use a metric to mea-
sure a property, it is necessary to (a) have an unambiguous definition of the property
that one seeks to measure, and (b) be able to explain why a given metric will ad-
equately represent that property. If either of these points is not fulfilled, there is
no basis upon which to attest the validity of the metric. In this case, the question
of whether or not the metric actually fulfils the representation condition ultimately
comes down to luck. There are very few applications of metrics where one or both of
these points cannot be called into question. There are countless published criticisms
of most popular metrics, and most tend to focus on situations where the representa-
tion condition is violated and the metric becomes invalid.

In software, metrics tend to be valid when their purpose is specific. If, for exam-
ple, one seeks to measure how easy a function will be to test with respect to Branch
Coverage, then Cyclomatic Complexity is probably a reasonably valid metric. How-
ever, if one seeks to measure more abstract properties, such as development effort
or reliability, the Cyclomatic Complexity is probably not a valid measure (at least
in the general case) [120].

Metrics such as the Halstead Metrics and the MI are especially vulnerable to
these criticisms. They purport to measure things that are not particularly well de-
fined (”Effort”, ”Maintainability”). The formulae they use are also hard to justify. In
the case of MI, these problems are almost pathological5. Maintainability is a very
abstract concept with lots of different interpretations that are hard to pin down. On
top of that, the MI formula is impossible to understand fully because it was produced
automatically (e.g. why take the Sine of the square root of 2.45 times the number of
commented lines of code?).

The problems with MI (and other metrics) are reinforced by more recent studies
on maintainability. In 2012, Sjoberg et al. carried out a small empirical study into
maintainability metrics [123], from which we can derive some useful insights. They
compared a raft of maintainability metrics, including the MI, on four large systems,
and factored in the actual maintenance effort that had been attributed to them. The
key outcomes were as follows:

• None of the customised maintainability metrics (such as MI) were consistent
with each other.

• The only metrics that were consistent with the actual maintenance effort required
were LOC, and LCOM (see Secion 8.2.2.3).

8.3.2 Goal Question Metric

Without a thorough empirical study to back up the validity of a metric, the decision
of whether a metric can be trusted comes down to one’s subjective intuition. With-

5 With respect to MI, some of these criticisms were eloquently summarised by Arie van Duersen
in a blog post on the matter https://avandeursen.com/2014/08/29/think-twice-
before-using-the-maintainability-index/



8.3 Validity and the Use of Goal Question Metric 161

out any empirical evidence, one is essentially left asking the question “Is there a
plausible explanation as to why metric X will provide me with a reliable, valid mea-
surement of what I am trying to assess?”. One of van Duersen’s criticisms of the
MI was that this explanation is certainly not forthcoming; there is no obvious ex-
planation why the various logs and square roots of various metrics should obviously
produce a valid indicator for maintainability.

The Goal Question Metric framework[129] provides a useful basis for explaining
choices of metrics. The concept is very straightforward. The challenge of measuring
a particular property in a system is achieved on three levels:

1. Conceptual: This captures the high level goals of the measurement exercise.
Which ineffable properties of the system do we need to establish?

2. Operational: This captures the questions that need to be answered in order to
establish the goals. Which questions need to be answered in order to capture
enough information from which to provide a reliable assessment of the goals?

3. Quantitative: What data that can be obtained to answer the questions?

Is the 
software well 
modularised?

How cohesive 
are modules?

How decoupled 
are modules?

How intuitive 
are modules?

LCOM CBO

Developer 
rating - 
suitable 

number of 
modules

Developer rating 
- modules 
represent 

suitable domain 
entities

Fig. 8.11 Example of GQM applied to the assessment of software modularity. Each level repre-
sents conceptual, operational and quantitative levels respectively.

This will produce a tree-shaped structure, with high-level goals at the top level,
each of which is linked to a set of questions, and where each question is linked to
a set of metrics. An example is provided in Figure 8.11. Note that GQM makes no
presumptions about whether or not the metrics are automated or not. For our metric,
it modularity is not merely assessed by Coupling and Cohesion. These metrics are
blind to other, more subjective questions (e.g. whether the modules correspond to



162 8 Measurement

suitable entities in the problem domain [65]). Thus, for the third question, this de-
composition takes into account a domain expert’s opinion of whether the modules
are suitable in number (i.e. there isn’t just one large module for the entire system),
and whether the modules represent intuitive entities within the domain.

At this point it is worth looking back to previous sections in the book. There are
several point at which hierarchies have been advocated to facilitate some form of
measurement.

Exercise: Can you remember what they are? Do not read further until you want
the answer!

In Chapter 2 we encountered Barry Boehm’s Q-Model [22]. This was a hierarchi-
cal means by which to capture software quality attributes, but placed an emphasis on
the fact that the lowest “leaves” in the tree should be measurable. Later on, we en-
countered GSN [82], a tree structured notation by which to make safety arguments
for software systems more measurable. In both cases (as with GQM) a complex
task is made possibly by dividing and conquering, by splitting complex concepts
into simpler, more measurable ones.

8.4 Key Points

• Metrics are a lynch-pin for any efforts by which to ensure software qual-

ity. As DeMarco’s quote goes – you cannot control what you cannot measure,
and quality assurance is ultimately about controlling what you can to maximise
software quality. It also follows that metrics can also shine a harsh light on sys-
tems where quality assurance appears to have failed, as is testified by the use of
metrics in the Toyota unintended acceleration case.

• Metrics have to be interpreted with care; there has to be an understand-

ing of what the numbers mean (what is a good or a bad value, can they be

compared, and if so how, etc.). The Representative Theory of Measurement pro-
vides a framework within which to do so. It provides a formal basis upon which
to understand different scales (in the form of Admissible Transformations).

• The size and complexity of a program can be measured in various ways.

The source code can be analysed to count lines of code, to measure Cyclomatic
Complexity and Halstead Complexity. The stated functionality can be analysed
to measure the Albrecht Function Point count.

• Modularity can be measured by assessing a system in terms of its Coupling

and Cohesion. Doing so can be deceptively difficult in an Object-Oriented con-
text, because it is not necessarily obvious how to distinguish between ‘internal’
and ’external’ dependencies (e.g. in the presence of inheritance relationships be-
tween classes).

• The Maintainability Index is a ‘composite’ metric by which to assess the

maintainability of a system. It is based on cyclomatic complexity, Halstead’s



8.4 Key Points 163

volume, and LOC. It is relatively popular, despite the fact that it is difficult to
justify from the perspective of validity.

• The Goal Question Metric (GQM) approach presents a means by which to

quantitatively answer high level questions about a software system. Goals
can be hierarchically decomposed into questions, which can be answered by sets
of specific metrics.



Chapter 9

Conclusions

This book has sought to cover the most salient aspects of software quality assur-
ance. In doing so we have discussed what software quality is, why it is important,
and how it is defined. We have examined how the activities of quality assurance
are closely linked to the choice of software development process. We have covered
agile software development, testing, inspections, safey reviews, metrics, and cost
estimation.

9.1 Topical and Emerging Quality Concerns

With the rapid emergence of new technology, and rapid changes in the way tech-
nology is used, the landscape of software quality assurance is constantly shifting. In
the rest of this chapter, we look at what could be considered to be some of the key
quality assurance challenges to have emerged in recent years.

9.1.1 Autonomy in Socio-Technical Systems

Let us consider two relatively recent incidents. In 2009, an Airbus A330 Air France
flight 447 on its way from Rio de Janeiro to Paris crashed into the Atlantic, killing all
228 passengers on board. A subsequent crash investigation indicated the following
sequence of events [116]:

• The plane, flying on autopilot, had encountered an adverse weather system,
which had caused the Pitot tubes1 to freeze.

• The autopilot disconnected and the control of the plane fell to manual control.
• The pilots were unprepared for the sudden disengagement, and were confused as

to why this had happened.

1 Small external tubes that are used to measure air-speed on aircraft.

© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4_9

165



166 9 Conclusions

• In the mean time the plane had entered into a stall and descended rapidly (11,000
ft per minute) towards the ocean and crashed.

For the second incident, in May 2016 a Tesla Model S was driving along a high-
way at 74mph. The driver had engaged the “autopilot” mode in the car and was not
concentrating on what was happening. A tractor-trailer crossed the path of the car,
but its sensors failed to detect it. The car crashed under the side of the trailer, ripping
off the roof of the car, and subsequently crashed into a pole at the side of the road,
killing the driver.

Although the vehicles involved and the scales of the tragedies are different, both
share two links. Firstly, and most obviously, the Airbus and the Tesla had been
entirely autonomous (controlled by their own software without human intervention)
in the run-up to the crash (in the case of the Airbus) and during the crash (in the case
of the Tesla). Secondly, and perhaps more surprisingly, in both cases the software
was not held to be responsible for the tragedies, which were ultimately blamed on
human error.

Why human error? In the case of the Air France crash, the pilots were deemed to
have lacked ‘situational awareness ’[46]; they should have immediately been able to
determine why the autopilot had disengaged, and have thus reacted more speedily,
in a more appropriate way. In the case of the Tesla, the driver was deemed again
to lack situational awareness. For that car model, the system was only designed to
keep the car in its lane and to avoid crashes with other cars (the scenario of trailer
crossings was beyond the scope of the system).

This is understandable on the one level; the software systems when viewed in
isolation performed exactly as they were designed to. However, when one takes a
step back, and considers the broader context within which the systems were used,
the culpability of the users is perhaps not so clear-cut. These systems are invariably
complex, comprising a multitude of components and operators, where it is not nec-
essarily possible for a single unit (human or technological) to maintain a coherent,
macroscopic overview of the state of the system at any given time. In the case of the
Air France disaster this problem has been demonstrated [116].

However, even in the case of the Tesla accident one could also argue that, though
contrary to the system specifications and instructions, it is only to be expected that
some drivers will be seduced by the idea of “driverless cars” and be willing to test
its capabilities to the limit. Indeed, for typical road users, who are unaware of the
detailed sensor configurations and limitations on the underlying control algorithms
and Machine Learnt models, it can be argued that it is ultimately impossible for the
driver to maintain a sufficient degree of “situational awareness” to be able to truly
account for the behaviour of their car when it is under its own control.

So, although lack of situational awareness is to blame, the question of whether it
is the human operator’s fault is another question. The problems caused by the fuzzy
boundaries between an inscrutably complex system (or system of systems) and a
human operator are not new, and are not even specific to digital systems. In his book
“Normal Accidents: Living with High Risk Technologies” [109], Perrow highlights
how similar incidents – misuse of technology, rooted in misunderstanding and a
lack of situational awareness, have contributed to some of the great disasters of our



9.1 Topical and Emerging Quality Concerns 167

time, including the disasters at the Three-Mile Island and Chernobyl nuclear power
plants.

Although the problem in its essence is not new, there is a strong argument to
be made that the increased pervasiveness of software-driven technology is greatly
exacerbating it. Software is taking over activities that have traditionally been entirely
manual, and the rules by which people interact with technology are constantly being
re-written. With these changes, users (or drivers or pilots) are bound to be uncertain
about the boundary between their areas of responsibility, and the ‘system’s’ set of
responsibilities.

From a quality assurance perspective, this blurring of responsibilities between
the operator and the system put a new spin on long-standing questions. What is
the scope of a ‘system’? What use and context should the system design take into
account? What should be the ‘contract’ between the user and the system, and how
should this be communicated to users, to prevent the sorts of misunderstandings that
we have described above?

9.1.2 Data-Intensive, Untestable Systems

Machine Learning algorithms used to play a relatively confined role when it came
to software systems, finding their uses for relatively ‘niche’ activities such as de-
tecting junk emails or credit card fraud. However, as the prevalence of data (espe-
cially data that pertains to individuals) has grown, and Machine Learning algorithms
have become more versatile and powerful, their role in the functionality of software
has greatly increased. The driverless cars discussed above represent one particular
area where Machine Learning has become a central component. However, it has
become prominent in almost any area that involves large volumes of data, from de-
tecting user web-browsing patterns, to intrusion detection in networks and detecting
suitable trades in financial systems. These systems become problematic when the
algorithms, which are developed and trained to react to a vast range of scenarios,
encounter one example of a scenario that they have not been prepared for.

As an example we refer to another example of a driverless car crash, also in 2016,
but this time one that did not cause any fatalities. In May 2016 in Mountain View, a
Google driverless car pulled out from a parked position and crashed into the side of
a bus that was overtaking it2. Here, the fault did lie with the software system. This
was not an isolated event; according to a document filed by Google with the Cali-
fornia Department for Motor Vehicles, its driverless car software experienced 272
failures and would have crashed 13 times had it not been for human intervention3.
The various problems that are thrown up in driverless cars by Machine Learning

2 https://www.theguardian.com/technology/2016/feb/29/google-self-
driving-car-accident-california
3 https://www.theguardian.com/technology/2016/jan/12/google-self-
driving-cars-mistakes-data-reports



168 9 Conclusions

algorithms are discussed in more detail by Wagner and Koopman [130] (Koopman
had also investigated the Toyota Unintended Acceleration fault - see Chapter 2).

Of course, driverless cars are far from the only area within which data-intensive
algorithms have become increasingly prevalent. Another area is in the finance sector,
and specifically in the form of High Frequency Trading (HFT) algorithms. HFT
algorithms analyse data from a variety of sources; they monitor real-time stock-
market data, often alongside large streams of news-information, and use this data to
automatically trade on the stock market. They use this data to predict future stock
values, often by the use of intricate statistical data processing algorithms, often using
the results to execute thousands of trades per second.

When these systems malfunction, they can have potentially disastrous effects, not
just on individual businesses, but entire economies. There are plenty of examples
[84], and we pick out a few notable ones here. In August 2012, Knight Capital
introduced a faulty trading algorithm to the market. As soon as they activated it, it
lost approximately £6.4m per minute, ultimately losing £281m before it could be
switched off. Aside from such individual failures, the more frightening problems
arise when HFT algorithms interact with each other to produce “flash crashes”. In
2010, such an event led to the loss of 998 points (approximately 9%) off the Dow
Jones Industrial Average, only to rise to its previous level after about 15 minutes.
More recently, in the aftermath of the Brexit vote, the British pound slumped 6%
against the dollar in a similar flash crash, only to regain its value again after a couple
of minutes.

What are the similarities that link HFT systems to driverless cars? They both
involve the use of Machine Learning and other statistical data processing algorithms
to process large volumes of data. Both are either safety or business critical; when
the underlying software is faulty, the consequences can be disastrous.

Exercise: Before reading on, think back to the chapter on software testing.
Using testing terminology, what is the problem with statistical data processing /
Machine Learning algorithms?

Statistical data processing and Machine Learning algorithms pose interesting
problems from a quality assurance perspective because their “correct” behaviour
is difficult to anticipate and express. They exist to mine and discover things about
data that are not necessary known or even knowable a-priori, which means that a lot
of their outputs will by necessity be unpredictable.

As a result, such systems are intrinsically difficult to specify. Though straight-
forward in the abstract (a car should not collide with other cars, a trading algorithm
should minimise losses and maximise gains) tying these requirements to implemen-
tation details and verification or validation activities is extremely difficult. “Other
cars” could correspond to a vast range of possible sensor signal patterns and could,
depending on the sensor configurations, vary according to light / road conditions,
speed, etc. The question of whether a trading algorithm is successful at minimising
losses and maximising gains depends on a host of external factors (the combination



9.2 Concluding Remarks 169

of current events, competing trading algorithms, current stock market movements,
etc.), where it is practically impossible to determine “the” ideal behaviour.

The standard approaches to quality assurance and testing would struggle (and
probably fail) to provide compelling answers to these questions. Although the prob-
lem is not new [133], the prevalence of such systems certainly makes the task of
finding a compelling solution all the more urgent.

9.2 Concluding Remarks

Software development does not take place in a vacuum, and is therefore inevitably
an involved, at times messy, process. Users are capricious and liable to change their
minds about what they want. Technology is evolving at a fast pace, demanding con-
tinuous changes to the way in which software operates. The time and effort required
for various activities can often be grossly underestimated (and occasionally overes-
timated).

Ultimately, the challenge of trying to produce a successful software system in the
face of these various forces lies with a band of fallible human software developers.
They probably have varying abilities, are subject to different time pressures, may
be geographically distributed, perhaps don’t work under the auspices of the same
organisation, and possibly don’t even know each other. Often it is these same devel-
opers that are also responsible for managing the quality assurance of the product.

It is unsurprising that even the most safety-critical or business-critical systems
can end up with quality problems. There are plenty of techniques that can improve
quality assurance, however, no technique is bullet proof. All approaches tend to
require a degree of intuition and experience, and rely on a level of discipline, time,
and effort that is rarely practical in a realistic software engineering context.

This is what makes quality assurance especially interesting: Far from being an
after-thought to be ‘done’ if there is time, it is integral throughout – the most vital,
and most interesting angle of software development. The dynamics of software de-
velopment are relentless, subject to so many human and technological factors. And
in the face of all of this, you are given only an imperfect armoury of tools, and
very little time to ensure the quality of a product where failure to do so can have
significant (potentially devastating) consequences.

As it stands, it is impossible to guarantee that a software system will be bug free,
will be readily maintainable, and be delivered on schedule. It is even impossible to
reliably measure the quality of a software system. The big challenges of software
quality assurance have not yet been solved. As time passes, technology and the way
in which it is used will continue to evolve at breakneck speed. Software systems will
inevitably become increasingly complex, larger in scale, and increasingly safety-
and business-critical.

One aim of this book has been to present an overview of the key problems, prin-
ciples, and techniques within the remit of quality assurance. Given the breadth of



170 9 Conclusions

the area, this has by necessity been selective. For any of the topics covered there
exist enormous volumes of in-depth text books and research publications.

And this is where your pursuit of software quality assurance can begin in earnest!
If you have found yourself looking up references, alternative approaches, or query-
ing whether one of the techniques described in this book really is the most appro-
priate solution to a problem, then the book has fulfilled its ultimate goal – to pique
your interest.



References

[1] (1982) DO-178B: Software Considerations in Airborne Systems and Equip-
ment Certification. Radio Technical Commission for Aeronautics (RTCA)

[2] (1988) DOD-STD-2167A, Defense Systems Software Development. Depart-
ment of Defence

[3] (2006) IEC 60880: Nuclear power plants - Instrumentation and control sys-
tems important to safety - Software aspects for computer-based systems per-
forming category A functions. International Electrotechnical Commission

[4] (2011) ISO 26262-1:2011: Road Vehicles - Functional Safety. International
Standards Organisation

[5] (2011) ISO/IEC 25010:2011: Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models. International Standards Organisation

[6] (2015) The promise repository of empirical software engineering data
[7] Achimugu P, Selamat A, Ibrahim R, Mahrin MN (2014) A systematic litera-

ture review of software requirements prioritization research. Information and
software technology 56(6):568–585

[8] Albrecht AJ (1979) Measuring application development productivity. In: Pro-
ceedings of the joint SHARE/GUIDE/IBM application development sympo-
sium, vol 10, pp 83–92

[9] Alexander C (1977) A pattern language: towns, buildings, construction. Ox-
ford University Press

[10] Anderson J (2011) A million monkeys and shakespeare. Significance
8(4):190–192

[11] Arcuri A, Briand L (2011) Adaptive random testing: An illusion of effec-
tiveness? In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ACM, pp 265–275

[12] Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of mod-
ern code review. In: Proceedings of the 2013 International Conference on
Software Engineering, IEEE Press, pp 712–721

171© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4



172

[17] Beck F, Diehl S (2011) On the congruence of modularity and code coupling.
In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th Euro-
pean conference on Foundations of software engineering, ACM, pp 354–364

[18] Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews
in open-source projects: which problems do they fix? In: Proceedings of the
11th working conference on mining software repositories, ACM, pp 202–211

[19] Bentley JL, McIlroy MD (1993) Engineering a sort function. Software: Prac-
tice and Experience 23(11):1249–1265

[20] Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R (1995)
Cost models for future software life cycle processes: Cocomo 2.0. Annals of
software engineering 1(1):57–94

[21] Boehm BW (1988) A spiral model of software development and enhance-
ment. Computer 21(5):61–72

[22] Boehm BW, Brown JR, Kaspar H (1978) Characteristics of software quality
[23] Boehm BW, et al (1981) Software engineering economics, vol 197. Prentice-

hall Englewood Cliffs (NJ)
[24] Borning A (1987) Computer system reliability and nuclear war. Communica-

tions of the ACM 30(2):112–131
[25] Brooks F (1975) The Mythical Man Month. Information Systems Programs,

General Electric Company
[26] Buxton JN, Randell B (1970) Software engineering techniques: report on a

conference sponsored by the NATO Science Committee, Rome, Italy, 27th to
31st October 1969. NATO Science Committee

[27] Challenger PCOSS, Rogers W (1986) Report of the presidential commission
on the space shuttle challenger accident

[28] Chen TY, Leung H, Mak I (2004) Adaptive random testing. In: Advances in
Computer Science-ASIAN 2004. Higher-Level Decision Making, Springer,
pp 320–329

[29] Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented de-
sign. IEEE Transactions on software engineering 20(6):476–493

[30] Chow TS (1978) Testing software design modeled by finite-state machines.
IEEE transactions on software engineering 4(3):178

[31] Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional require-
ments in software engineering, vol 5. Springer Science & Business Media

[14] Barrett SR, Speth RL, Eastham SD, Dedoussi IC, Ashok A, Malina R, Keith
DW (2015) Impact of the volkswagen emissions control defeat device on us
public health. Environmental Research Letters 10(11):114,005

[15] Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented de-
sign metrics as quality indicators. IEEE Transactions on software engineering
22(10):751–761

[16] Basili VR, Green S, Laitenberger O, Lanubile F, Shull F, Sørumgård S,
Zelkowitz MV (1996) The empirical investigation of perspective-based read-
ing. Empirical Software Engineering 1(2):133–164

References

[13] Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle prob-
lem in software testing: A survey. Software Engineering, IEEE Transactions
on 41(5):507–525



References 173

[36] Company GE, McCall JA, Richards PK, Walters GF (1977) Factors in soft-
ware quality: Final report. Information Systems Programs, General Electric
Company

[37] Comptroller General (1981) Norad’s missile warning system: What went
wrong? URL http://www.gao.gov/assets/140/133240.pdf

[38] Crosby PB (1980) Quality is free: The art of making quality certain. Signet
[39] Darimont R, Delor E, Massonet P, van Lamsweerde A (1997) Grail/kaos: an

environment for goal-driven requirements engineering. In: Proceedings of the
19th international conference on Software engineering, ACM, pp 612–613

[40] De Neufville R (1994) The baggage system at denver: prospects and lessons.
Journal of Air Transport Management 1(4):229–236

[41] Demeyer S, Ducasse S, Nierstrasz O (2002) Object-oriented reengineering
patterns. Elsevier

[42] Dijkstra EW (1968) Letters to the editor: go to statement considered harmful.
Communications of the ACM 11(3):147–148

[43] Dijkstra EW (1972) The humble programmer. Communications of the ACM
15(10):859–866

[44] Domke F, Lange D (2015) The exhaust emissions scandal (”dieselgate”).
URL https://events.ccc.de/congress/2015/Fahrplan/
system/event_attachments/attachments/000/002/812/
original/32C3_-_Dieselgate_FINAL_slides.pdf

[45] Dybå T, Dingsøyr T (2008) Empirical studies of agile software development:
A systematic review. Information and software technology 50(9):833–859

[46] Endsley MR (1995) Toward a theory of situation awareness in dynamic sys-
tems. Human Factors: The Journal of the Human Factors and Ergonomics
Society 37(1):32–64

[47] Eypasch E, Lefering R, Kum C, Troidl H (1995) Probability of adverse events
that have not yet occurred: a statistical reminder. BMJ: British Medical Jour-
nal 311(7005):619

[48] Fagan M (1976) Design and code inspections to reduce errors in program
development. IBM Journal of Research and Development 15(3):182

[49] Federal Aviation Administration (2015) Docket no. faa-2015-0936; di-
rectorate identifier 2015-nm-058-ad; amendment 39-18153; ad 2015-09-
07. URL https://s3.amazonaws.com/public-inspection.
federalregister.gov/2015-10066.pdf

[33] Cohen D, Lindvall M, Costa P (2004) An introduction to agile methods. Ad-
vances in computers 62:1–66

[34] Committee ICSSES, Board ISS (1998) Ieee recommended practice for soft-
ware requirements specifications. Institute of Electrical and Electronics En-
gineers

[35] of Commons Public Accounts Select Committee H, et al (2013) Univer-
sal credit: early progress. URL https://www.nao.org.uk/wp-
content/uploads/2013/09/10132-001-Universal-
credit.pdf

[32] Clegg D, Barker R (1994) Case method fast-track: a RAD approach.
Addison-Wesley Longman Publishing Co., Inc.



174

[55] Fowler M, Highsmith J (2001) The agile manifesto. Software Development
9(8):28–35

[56] Fraser G, Arcuri A (2011) EvoSuite: Automatic test suite generation for
object-oriented software. In: Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software En-
gineering, ACM, New York, NY, USA, ESEC/FSE’11, pp 416–419

[57] Gamma E, Helm R, Johnson R, Vlissides J (1994) Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley

[58] Glinz M (2007) On non-functional requirements. In: Requirements Engineer-
ing Conference, 2007. RE’07. 15th IEEE International, IEEE, pp 21–26

[59] Goldberg DE (2006) Genetic algorithms. Pearson Education India
[60] Goodenough JB, Gerhart SL (1975) Toward a theory of test data selection.

IEEE Transactions on Software Engineering 1(2):156–173
[61] Gotel OC, Finkelstein C (1994) An analysis of the requirements traceabil-

ity problem. In: Requirements Engineering, 1994., Proceedings of the First
International Conference on, IEEE, pp 94–101

[62] Gousios G, Pinzger M, Deursen Av (2014) An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering, ACM, pp 345–355

[63] Groce A, Holzmann G, Joshi R (2007) Randomized differential testing as a
prelude to formal verification. In: 29th International Conference on Software
Engineering (ICSE’07), IEEE, pp 621–631

[64] Guimarães ML, Silva AR (2012) Improving early detection of software
merge conflicts. In: Software Engineering (ICSE), 2012 34th International
Conference on, IEEE, pp 342–352

[65] Hall M, Walkinshaw N, McMinn P (2012) Supervised software modularisa-
tion. In: Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference on, IEEE, pp 472–481

[66] Halstead M (1977) Elements of Software Science. North-Holland
[67] Hamlet R (1994) Random testing. Encyclopedia of software Engineering
[68] Hannay JE, Dybå T, Arisholm E, Sjøberg DI (2009) The effectiveness of

pair programming: A meta-analysis. Information and Software Technology
51(7):1110–1122

[69] Humphrey W (1989) Managing the Software Process. Addison Wesley

[50] Fenton N (1994) Software measurement: A necessary scientific basis. IEEE
Transactions on software engineering 20(3):199–206

[51] Fenton NE, Whitty RW, Iizuka Y (1995) Software Quality Assurance and
Measurement: A Worldwide Perspective. Itp-Media

[52] Flyvbjerg B, Budzier A (2011) Why your it project may be riskier than you
think. Harvard Business Review 89(9):601–603

[53] Fowler M (2004) UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional

[54] Fowler M, Beck K (1999) Refactoring: improving the design of existing code.
Addison-Wesley Professional

References



References 175

[75] Johnson PM, Tjahjono D (1998) Does every inspection really need a meet-
ing? Empirical Software Engineering 3(1):9–35

[76] Johnson SC (1977) Lint, a C program checker. Bell Telephone Laboratories
Murray Hill

[77] Jørgensen M (1999) Software quality measurement. Advances in engineering
software 30(12):907–912

[78] Juran J (1970) Quality planning and analysis: from product development
through usage

[79] Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G (2014) Are
mutants a valid substitute for real faults in software testing? In: Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ACM, pp 654–665

[80] Kan SH (2002) Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc.

[81] Kano N, Seraku N, Takahashi F, Tsuji S (1984) Attractive quality and must-
be quality. Journal of the Japanese Society for Quality Control 14

[82] Kelly T, Weaver R (2004) The goal structuring notation–a safety argument
notation. In: Proceedings of the dependable systems and networks 2004
workshop on assurance cases

[83] King JC (1976) Symbolic execution and program testing. Communications
of the ACM 19(7):385–394

[84] Kirilenko AA, Lo AW (2013) Moore’s law versus murphy’s law: Algorithmic
trading and its discontents. The Journal of Economic Perspectives 27(2):51–
72

[85] Kirsch M (2014) Technical support to the national highway traffic safety
administration (nhtsa) on the reported toyota motor corporation (tmc) un-
intended acceleration (ua) investigation. URL http://www.nasa.gov/
topics/nasalife/features/nesc-toyota-study.html

[86] Koopman P (2014) A case study of toyota unintended acceleration and
software safety. URL betterembsw.blogspot.co.uk/2014/09/
a-case-study-of-toyota-unintended.html

[87] Kransner G, Pope S (1988) Cookbook for using the model-view-controller
user interface paradigm. Object Oriented Programming pp 26–49

[70] Inozemtseva L, Holmes R (2014) Coverage is not strongly correlated with
test suite effectiveness. In: Proceedings of the 36th International Conference
on Software Engineering, ACM, pp 435–445

[71] Isaac R (2013) The pleasures of probability. Springer Science & Business
Media

[72] Jacobson I (1992) Object-Oriented Software Engineering. A Use Case Driven
Approach. Addison-Wesley

[73] Jacobson I, Booch G, Rumbaugh J, Rumbaugh J, Booch G (1999) The unified
software development process, vol 1. Addison-Wesley Reading

[74] Jia Y, Harman M (2011) An analysis and survey of the development of muta-
tion testing. IEEE Transactions on Software Engineering 37(5):649–678



176

[93] McCabe TJ (1976) A complexity measure. IEEE Transactions on software
Engineering (4):308–320

[94] McMinn P (2004) Search-based software test data generation: A survey. Soft-
ware Testing Verification and Reliability 14(2):105–156

[95] Mens T (2002) A state-of-the-art survey on software merging. IEEE transac-
tions on software engineering 28(5):449–462

[96] Menzies T, Yang Y, Mathew G, Boehm B, Hihn J (2016) Negative results for
software effort estimation. arXiv preprint arXiv:160905563

[97] Miguel JP, Mauricio D, Rodriguez G (2014) A review of software quality
models for the evaluation of software products. CoRR abs/1412.2977

[98] Moløkken-Østvold K, Haugen NC, Benestad HC (2008) Using planning
poker for combining expert estimates in software projects. Journal of Sys-
tems and Software 81(12):2106–2117

[99] Moore EF (1956) Gedanken–experiments on sequential machines. In: Shan-
non CE, McCarthy J (eds) Annals of Mathematics Studies (34), Automata
Studies, Princeton University Press, Princeton, NJ, pp 129–153

[100] Nair S, De La Vara JL, Sabetzadeh M, Briand L (2014) An extended system-
atic literature review on provision of evidence for safety certification. Infor-
mation and Software Technology 56(7):689–717

[101] Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile
methodologies. Communications of the ACM 48(5):72–78

[102] Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In:
Proceedings of the Conference on the Future of Software Engineering, ACM,
pp 35–46

[103] Oman P, Hagemeister J (1992) Metrics for assessing a software system’s
maintainability. In: Software Maintenance, 1992. Proceerdings., Conference
on, IEEE, pp 337–344

[104] Ostrand TJ, Balcer MJ (1988) The category-partition method for specifying
and generating fuctional tests. Communications of the ACM 31(6):676–686

[105] Parnas DL (1972) On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15(12):1053–1058

[106] Parnas DL (1985) Software aspects of strategic defense systems. Communi-
cations of the ACM 28(12):1326–1335

[88] Langner R (2011) Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9(3):49–51

[89] Larman C, Basili VR (2003) Iterative and incremental development: A brief
history. Computer (6):47–56

[90] Lee D, Yannakakis M (1996) Principles and Methods of Testing Finite State
Machines - A Survey. In: Proceedings of the IEEE, vol 84, pp 1090–1126

[91] Leroy X (2007) Formal verification of an optimizing compiler. Lecture Notes
in Computer Science 4533:1

[92] Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a
technique for research and development program evaluation. Operations re-
search 7(5):646–669

References



References 177

[112] Rigby PC, Bird C (2013) Convergent contemporary software peer review
practices. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ACM, pp 202–212

[113] Rosenberg D, Stephens M (2003) Extreme programming refactored: the case
against XP. Apress

[114] Royce WW (1970) Managing the development of large software systems. In:
proceedings of IEEE WESCON, Los Angeles, vol 26, pp 1–9

[115] Rubin KS (2012) Essential Scrum: A practical guide to the most popular
Agile process. Addison-Wesley

[116] Salmon PM, Walker GH, Stanton NA (2016) Pilot error versus sociotechnical
systems failure: a distributed situation awareness analysis of air france 447.
Theoretical Issues in Ergonomics Science 17(1):64–79

[117] Sen K, Marinov D, Agha G (2005) CUTE: a concolic unit testing engine for
C, vol 30. ACM

[118] Series NWP (1980) If Japan Can, Why Can’t We? URL https://www.
youtube.com/watch?v=vcG\_Pmt\_Ny4

[119] Shaw M, Garlan D (1996) Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall

[120] Shepperd M (1988) A critique of cyclomatic complexity as a software metric.
Software Engineering Journal 3(2):30–36

[121] Shewhart WA (1931) Economic control of quality of manufactured product.
ASQ Quality Press

[122] Sindre G, Opdahl AL (2005) Eliciting security requirements with misuse
cases. Requirements engineering 10(1):34–44

[123] Sjøberg DI, Anda B, Mockus A (2012) Questioning software maintenance
metrics: a comparative case study. In: Proceedings of the ACM-IEEE inter-
national symposium on Empirical software engineering and measurement,
ACM, pp 107–110

[124] Spinellis D (2003) Code reading: the open source perspective. Addison-
Wesley Professional

[125] Staats M, Whalen MW, Heimdahl MP (2011) Programs, tests, and oracles:
the foundations of testing revisited. In: Software Engineering (ICSE), 2011
33rd International Conference on, IEEE, pp 391–400

[107] Parnas DL, Clements PC (1986) A rational design process: How and why to
fake it. Software Engineering, IEEE Transactions on (2):251–257

[108] Parnas DL, Weiss DM (1985) Active design reviews: principles and practices.
In: Proceedings of the 8th international conference on Software engineering,
IEEE Computer Society Press, pp 132–136

[109] Perrow C (1984) Normal Accidents: Living with High Risk Technologies.
Princeton University Press

[110] Pezzè M, Young M (2007) Software testing and analysis - process, principles
and techniques. Wiley

[111] Potvin R, Levenberg J (2016) Why google stores billions of lines of code in
a single repository. Communications of the ACM 59(7):78–87



178

[130] Wagner M, Koopman P (2015) A philosophy for developing trust in self-
driving cars. In: Road Vehicle Automation 2, Springer, pp 163–171

[131] Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R,
Seidl A, Goeb A, Streit J (2012) The quamoco product quality modelling and
assessment approach. In: Proceedings of the 34th international conference on
software engineering, IEEE Press, pp 1133–1142

[132] Weyuker EJ (1979) Translatability and decidability questions for restricted
classes of program schemas. SIAM Journal on Computing 8(4):587–598

[133] Weyuker EJ (1982) On testing non-testable programs. The Computer Journal
25(4):465–470

[134] Wilson JM (2003) Gantt charts: A centenary appreciation. European Journal
of Operational Research 149(2):430–437

[135] Wood M, Roper M, Brooks A, Miller J (1997) Comparing and combin-
ing software defect detection techniques: a replicated empirical study. In:
ACM SIGSOFT Software Engineering Notes, Springer-Verlag New York,
Inc., vol 22, pp 262–277

[136] Woodcock J, Davies J (1996) Using Z: specification, refinement, and proof,
vol 39. Prentice Hall Englewood Cliffs

[137] Wynne M, Hellesoy A (2012) The cucumber book: behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf

[138] Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain PU, Stumm
M (2014) Simple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems. In: 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14),
pp 249–265

[139] Zhu H, Hall PA, May JH (1997) Software unit test coverage and adequacy.
Acm computing surveys (csur) 29(4):366–427

[140] Zowghi D, Coulin C (2005) Requirements elicitation: A survey of techniques,
approaches, and tools. In: Engineering and managing software requirements,
Springer, pp 19–46

exploratory study of why organizations do not adopt cmmi. Journal of sys-
tems and software 80(6):883–895

[127] Team CP (2010) CMMI for Services Version 1.3. Lulu. com
[128] UK MOD (2004) Tornado safety case report. URL https:

//www.gov.uk/government/uploads/system/uploads/
attachment_data/file/475938/20040616_Annex_C_-
_Tornado_SC__v1_U_0__-_Baseline.pdf

[129] Van Solingen R, Berghout E (1999) The Goal/Question/Metric Method: a
practical guide for quality improvement of software development. McGraw-
Hill

[126] Staples M, Niazi M, Jeffery R, Abrahams A, Byatt P, Murphy R (2007) An

References



Index

ACM, 15
Agile, 37, 38
ALARP, 15, 54, 137
Apple Goto Fail bug, 108
Assembly lines, 25

Ford assembly line, 25
Autonomy, 163

Barry Boehm, 18, 37
Bell Telephone company, 31
Bell Telephone company, 26
Boeing 2015 “reboot” problem, 11
Branch coverage, 100
Burndown charts, 93

C-I-A security model, 59
Capability Maturity Model (CMMI), 45
Certification, 14, 15
Checklists, 134
CMMI, 15
Code coverage

Goto Fail, 108
Code coverage, 99

The case against, 106
Coding style guidelines, 66

Lint, 66
Conclusions, 163
Concolic testing, 104
Cone of uncertainty, 91
Constructive Cost Model

COCOMO, 84
COCOMO II, 87
Intermediate COCOMO, 86

Control Flow Graph, 147

David Parnas, 9, 36, 65, 152
Def-use coverage, 100

Design and architecture patterns, 66
Model-View-Controller (MVC), 68
Observer pattern, 68

determinism, 97
Developer-driven code reviews, 132
Development process, 31
DO178B, 15, 61, 99, 134
DOD-STD-2167A, 33

Edsger Dijkstra, 32, 65, 98
Edwards Deming, 27
Entity, 141
Ethics, 15
Extreme Programming, 126

Formal methods, 53
Fred Brooks, 33, 53

Gantt charts, 81
Gerrit, 127
Goal Question Metric (GQM), 158
Goal Structure Notation (GSN), 136

Harvard Mark I, 73
Heartbleed, 11
High Frequency Trading, 166
hill climbing, 105

IBM, 37
Industrial Revolution

America, 25
Great Britain, 24

Inspections, 125
Code review, 130
Code review tools, 131
Fagan reviews, 126
Modern Code Review (MCR), 126

179© Springer International Publishing AG 2017
N. Walkinshaw, Software Quality Assurance, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-64822-4



180 Index

ISO/IEC25010, 20
ISO26262, 61
ISO9126, 19
Iterative and incremental software development

(IID), 35

Japanese economic miracle, 27
Joseph Juran, 16, 27

Kanban, 28, 64
Kano model, 62

Malware
StuxNet, 12
WannaCry, 12

Manufacturing, 24
Margaret Hamilton, 31
MC/DC coverage, 99, 100
Metrics, 139, 145

Albrecht Function Points, 149
Coupling and cohesion, 152
Coupling Between Objects (CBO), 155
Cyclomatic Complexity, 147
Halstead Complexity, 148
Lack of Cohesion between Methods

(LCOM), 155
Lines of Code (LOC), 146
Maintainability Index, 156
Validity, 157

Microsoft PEX Tool, 104
Misuse cases, 59
Modularity, 151
MoSCoW, 62
Mutation operators, 109
Mutation Testing, 109

NASA, 83
Apollo 11, 31
Challenger disaster, 29
Space shuttle, 36
X-15, 35, 36

NBC Documentary - I Japan Can Why Can’t
We?, 28

Nominal scale, 143
NORAD Missile Defence, 8

Open Source Software (OSS), 69
Oracle, 98
Oracle problem, 98
Ordinal scale, 143

Pair Programming, 126
Pair programming, 133
Phil Crosby, 16

Plan-Do-Check-Act, 26, 139
Planning, 78
Planning poker, 90
Predicting cost, 82

Linear Regression, 83
Program Evaluation and Review Technique

(PERT), 78
Critical Path, 80

PROMISE repository, 84
Pull-based development, 128

Quality models, 18
ISO/IEC25010, 20
ISO9126, 19
McCall’s Quality Model, 18
PAS754, 21
Q-Model, 18
QUALMOCO, 21

Ratio scale, 143
Rational Unified Process, 37
reactive, 97
Reliability, 120
Representation condition, 143
Representational theory of measurement, 140

Admissible transformations, 143
Empirical Relation System, 142
Entities, 141
Formal Relation System, 142
Scales, 143

Requirements, 51
elicitation, 53
Functional requirements, 52
Non-functional requirements, 52
Prioritisation, 62

Richard Feynman, 29
Rogers Commission, 29
Rule of Three, 120

Safety Argumentation, 136
Safety arguments, 134
SCRUM, 39

Product Backlog, 41
Sprint, 41

Security, 59
Socio-Technical Systems, 163
Software comprehension, 132
Software crisis, 32
Software development processes, 23
Software quality, 7
Software Requirements Specification (SRS)

format, 57
Spaghetti code, 152
Spiral Model, 37



Index 181

Stakeholders, 54
Star Wars Missile Defence System, 9
State machines, 111
Statement coverage, 99
Story Point, 41
Symbolic execution, 101

Path condition, 102

Team Velocity, 92
Technical Debt, 14
Test adequacy, 98, 99, 101
Test case, 98
Test generation, 98
Testing, 95

Adaptive Random Testing, 121
Black box testing, 110
Category Partition Method, 114
Foundations, 95
Fuzz testing, 122
Random Testing, 116
Search-based, 104
Specification, 97
Specification-Based Testing, 111
System under test, 97
White box testing, 99

Total Quality Management (TQM), 30, 42

Toyota
Unintended acceleration bug, 9
Toyota Production System (TPS), 27, 64
Unintended acceleration bug, 139
Unintended acceleration fault, 139

Traceability, 61
Traceability matrix, 61

Trident, 35

Undecidability, 101, 104
Universal Credit Project, 44
Use cases, 56

User stories, 57

Version repositories, 70
CVS, 70
Git, 72
Mercurial, 72
Merge conflicts, 70
SVN, 70

Volkswagen dieselgate, 10

Walter Shewhart, 16, 26, 27
Waterfall model, 33, 36

Zero-day, 12


	Preface
	Acknowledgements

	Contents
	1 Introduction
	1.1 Consistency, Complexity, and Change
	1.2 Synopsis

	2 What Is Software Quality, and Why Does it Matter?
	2.1 Why Care about Software Quality?
	2.2 What Drives Software Quality Assurance?
	2.3 Defining “Software Quality”
	2.3.1 The Challenge of Defining Quality
	2.3.2 Quality Models - a Historical Perspective

	2.4 Key Points

	3 Software Development Processes and Process Improvement
	3.1 Process and Process Improvement in Manufacturing
	3.1.1 The Industrial Revolution
	3.1.2 Plan Do Check Act
	3.1.3 Quality-Driven Manufacturing in Japan
	3.1.4 Total Quality Management

	3.2 The Software Development Process
	3.2.1 The Waterfall Model
	3.2.2 Iterative and Incremental Software Development

	3.3 Agile Software Development
	3.3.1 The Principles of Agile Software Development
	3.3.2 An Example: SCRUM
	3.3.2.1 Teams
	3.3.2.2 Work flow

	3.3.3 Relation to Total Quality Management
	3.3.4 Why Not Always Go Agile?
	3.3.4.1 The UK Government Universal Credit Project


	3.4 Software Process Improvement - The Capability Maturity Model
	3.5 Key Points

	4 Managing Requirements and Code
	4.1 Managing Requirements
	4.1.1 What is a Requirement?
	4.1.2 Requirements Elicitation
	4.1.2.1 The Challenge of Requirements Elicitation
	4.1.2.2 Requirements Elicitation Steps

	4.1.3 Requirements Documents
	4.1.3.1 Use Cases
	4.1.3.2 Software Requirements Specifications

	4.1.4 Security Requirements
	4.1.5 Tracing Requirements
	4.1.6 Prioritisation
	4.1.6.1 MoSCoW
	4.1.6.2 The Kano Model

	4.1.7 Oversight with Kanban boards

	4.2 Writing Maintainable Source Code and Handling Change
	4.2.1 Coding Conventions and Design / Architecture Patterns
	4.2.1.1 Coding Style Guidelines and Conventions
	4.2.1.2 Design and Architecture Patterns

	4.2.2 Collaborative Development and Version Repositories
	4.2.2.1 Version Repositories
	4.2.2.2 Merge Conflicts
	4.2.2.3 Decentralised Version Repositories


	4.3 Key Points

	5 Planning Activities and Predicting Costs
	5.1 Planning
	5.1.1 Program Evaluation and Review Technique (PERT)
	5.1.2 Gantt Charts

	5.2 Predicting Costs
	5.2.1 Base Models
	5.2.2 Parameter Fitting by Linear Regression
	5.2.3 COCOMO
	5.2.3.1 Basic Model
	5.2.3.2 Intermediate COCOMO
	5.2.3.3 COCOMO II

	5.2.4 Planning Poker
	5.2.5 Uncertainty and Predictive Accuracy
	5.2.6 Keeping Track of Progress

	5.3 Key Points

	6 Testing
	6.1 The Foundations of Software Testing
	6.2 White-Box Testing
	6.2.1 Code coverage
	6.2.2 White Box Test Generation
	6.2.2.1 Generating inputs by code analysis
	6.2.2.2 Generating inputs by experimentation

	6.2.3 The Case(s) Against Code Coverage
	6.2.4 Goto Fail: A Case For Code Coverage
	6.2.5 An Alternative: Mutation Testing

	6.3 Black-Box Testing
	6.3.1 Specification-Based Testing
	6.3.1.1 Testing Sequential Behaviour with State Machines
	6.3.1.2 Category Partition Method

	6.3.2 Random Testing
	6.3.2.1 Defining the Input Space
	6.3.2.2 Quantifying Reliability
	6.3.2.3 The Rule of Three
	6.3.2.4 Improving upon Random

	6.3.3 Exposing Security Flaws with Fuzz-Testing

	6.4 Key Points

	7 Software Inspections, Code Reviews, and Safety Arguments
	7.1 Formal Inspections
	7.2 Modern Code Reviews - Reviewing Code During Development
	7.2.1 Tool-Driven Code Review
	7.2.2 Pull-Based Development
	7.2.3 The Impact of MCR on Software Development and Quality

	7.3 Code Reviewing Techniques
	7.3.1 Tool-Driven Code Review
	7.3.2 Developer-driven Code Reviews
	7.3.2.1 Understanding the Code
	7.3.2.2 Pair Programming


	7.4 Safety Arguments and Inspections of Safety Requirements
	7.4.1 Checklists
	7.4.2 Safety Argumentation and the Goal Structure Notation

	7.5 Key Points

	8 Measurement
	8.1 Measurement Basics
	8.2 Metrics
	8.2.1 Size and Complexity
	8.2.1.1 Lines of Code
	8.2.1.2 Measuring Complexity with McCabe’s Cyclomatic Metric
	8.2.1.3 Halstead Complexity Metrics
	8.2.1.4 Function Points

	8.2.2 Modularity Metrics
	8.2.2.1 Coupling and Cohesion
	8.2.2.2 Coupling Between Objects (CBO)
	8.2.2.3 Lack of Cohesion between Methods (LCOM)

	8.2.3 Maintainability Metrics and the Maintainability Index

	8.3 Validity and the Use of Goal Question Metric
	8.3.1 Problems of Validity
	8.3.2 Goal Question Metric

	8.4 Key Points

	9 Conclusions
	9.1 Topical and Emerging Quality Concerns
	9.1.1 Autonomy in Socio-Technical Systems
	9.1.2 Data-Intensive, Untestable Systems

	9.2 Concluding Remarks

	References
	Index



