
Principles of
Distributed
Database
Systems

M. Tamer Özsu · Patrick Valduriez

Fourth Edition

Principles of Distributed Database Systems

M. Tamer Özsu • Patrick Valduriez

Principles of Distributed
Database Systems

Fourth Edition

123

M. Tamer Özsu
Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, Canada

Patrick Valduriez
Inria and LIRMM
University of Montpellier
Montpellier, France

The first two editions of this book were published by: Pearson Education, Inc.

ISBN 978-3-030-26252-5 ISBN 978-3-030-26253-2 (eBook)
https://doi.org/10.1007/978-3-030-26253-2

3rd edition: © Springer Science+Business Media, LLC 2011
© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26253-2

To our families
and our parents
M.T.Ö. and P.V.

Preface

The first edition of this book appeared in 1991 when the technology was new and
there were not too many products. In the Preface to the first edition, we had quoted
Michael Stonebraker who claimed in 1988 that in the following 10 years, centralized
DBMSs would be an “antique curiosity” and most organizations would move
towards distributed DBMSs. That prediction has certainly proved to be correct, and
a large proportion of the systems in use today are either distributed or parallel—
commonly referred to as scale-out systems. When we were putting together the
first edition, undergraduate and graduate database courses were not as prevalent
as they are now; so the initial version of the book contained lengthy discussions
of centralized solutions before introducing their distributed/parallel counterparts.
Times have certainly changed on that front as well, and now, it is hard to find
a graduate student who does not have at least some rudimentary knowledge of
database technology. Therefore, a graduate-level textbook on distributed/parallel
database technology needs to be positioned differently today. That was our objective
in this edition while maintaining the many new topics we introduced in the third
edition. The main revisions introduced in this fourth edition are the following:

1. Over the years, the motivations and the environment for this technology have
somewhat shifted (Web, cloud, etc.). In light of this, the introductory chapter
needed a serious refresh. We revised the introduction with the aim of a more
contemporary look at the technology.

2. We have added a new chapter on big data processing to cover distributed storage
systems, data stream processing, MapReduce and Spark platforms, graph
analytics, and data lakes. With the proliferation of these systems, systematic
treatment of these topics is essential.

3. Similarly, we addressed the growing influence of NoSQL systems by devoting
a new chapter to it. This chapter covers the four types of NoSQL (key-value
stores, document stores, wide column systems, and graph DBMSs), as well as
NewSQL systems and polystores.

4. We have combined the database integration and multidatabase query processing
chapters from the third edition into a uniform chapter on database integration.

vii

viii Preface

5. We undertook a major revision of the web data management discussion that
previously focused mostly on XML to refocus on RDF technology, which is
more prevalent at this time. We now discuss, in this chapter, web data integration
approaches, including the important issue of data quality.

6. We have revised and updated the peer-to-peer data management chapter and
included a lengthy discussion of blockchain.

7. As part of our cleaning the previous chapters, we condensed the query process-
ing and transaction management chapters by removing the fundamental central-
ized techniques and focused these chapters on distributed/parallel techniques. In
the process, we included some topics that have since gained importance, such as
dynamic query processing (eddies) and Paxos consensus algorithm and its use
in commit protocols.

8. We updated the parallel DBMS chapter by clarifying the objectives, in particu-
lar, scale-up versus scale-out, and discussing parallel architectures that include
UMA or NUMA. We also added a new section of parallel sorting algorithms and
variants of parallel join algorithms to exploit large main memories and multicore
processors that are prevalent today.

9. We updated the distribution design chapter by including a lengthy discussion of
modern approaches that combine fragmentation and allocation. By rearranging
material, this chapter is now central to data partitioning for both the distributed
and parallel data management discussions in the remainder of the book.

10 Although object technology continues to play a role in information systems, its
importance in distributed/parallel data management has declined. Therefore, we
removed the chapter on object databases from this edition.

As is evident, the entire book and every chapter have seen revisions and updates
for a more contemporary treatment. The material we removed in the process is not
lost—they are included as online appendices and appear on the book’s web page:
https://cs.uwaterloo.ca/ddbs. We elected to make these available online rather than in
the print version to keep the size of the book reasonable (which also keeps the
price reasonable). The web site also includes presentation slides that can be used
to teach from the book as well as solutions to most of the exercises (available only
to instructors who have adopted the book for teaching).

As in previous editions, many colleagues helped with this edition of the book
whom we would like to thank (in no specific order). Dan Olteanu provided a
nice discussion of two optimizations that can significantly reduce the maintenance
time of materialized views in Chap. 3. Phil Bernstein provided leads for new
papers on the multiversion transaction management that resulted in updates to
that discussion in Chap. 5. Khuzaima Daudjee was also helpful in providing a
list of more contemporary publications on distributed transaction processing that
we include in the bibliographic notes section of that chapter. Ricardo Jimenez-
Peris contributed text on high-performance transaction systems that is included
in the same chapter. He also contributed a section on LeanXcale in the NoSQL,
NewSQL, and polystores chapter. Dennis Shasha reviewed the new blockchain
section in the P2P chapter. Michael Carey read the big data, NoSQL, NewSQL and

https://cs.uwaterloo.ca/ddbs

Preface ix

polystores, and parallel DBMS chapters and provided extremely detailed comments
that improved those chapters considerably. Tamer’s students Anil Pacaci, Khaled
Ammar and postdoc Xiaofei Zhang provided extensive reviews of the big data
chapter, and texts from their publications are included in this chapter. The NoSQL,
NewSQL, and polystores chapter includes text from publications of Boyan Kolev
and Patrick’s student Carlyna Bondiombouy. Jim Webber reviewed the section
on Neo4j in that chapter. The characterization of graph analytics systems in that
chapter is partially based on Minyang Han’s master’s thesis where he also proposes
GiraphUC approach that is discussed in that chapter. Semih Salihoglu and Lukasz
Golab also reviewed and provided very helpful comments on parts of this chapter.
Alon Halevy provided comments on the WebTables discussion in Chap. 12. The data
quality discussion in web data integration is contributed by Ihab Ilyas and Xu Chu.
Stratos Idreos was very helpful in clarifying how database cracking can be used as
a partitioning approach and provided text that is included in Chap. 2. Renan Souza
and Fabian Stöter reviewed the entire book.

The third edition of the book introduced a number of new topics that carried over
to this edition, and a number of colleagues were very influential in writing those
chapters. We would like to, once again, acknowledge their assistance since their
impact is reflected in the current edition as well. Renée Miller, Erhard Rahm, and
Alon Halevy were critical in putting together the discussion on database integration,
which was reviewed thoroughly by Avigdor Gal. Matthias Jarke, Xiang Li, Gottfried
Vossen, Erhard Rahm, and Andreas Thor contributed exercises to this chapter.
Hubert Naacke contributed to the section on heterogeneous cost modeling and Fabio
Porto to the section on adaptive query processing. Data replication (Chap. 6) could
not have been written without the assistance of Gustavo Alonso and Bettina Kemme.
Esther Pacitti also contributed to the data replication chapter, both by reviewing
it and by providing background material; she also contributed to the section on
replication in database clusters in the parallel DBMS chapter. Peer-to-peer data
management owes a lot to the discussions with Beng Chin Ooi. The section of this
chapter on query processing in P2P systems uses material from the PhD work of
Reza Akbarinia and Wenceslao Palma, while the section on replication uses material
from the PhD work of Vidal Martins.

We thank our editor at Springer Susan Lagerstrom-Fife for pushing this project
within Springer and also pushing us to finish it in a timely manner. We missed almost
all of her deadlines, but we hope the end result is satisfactory.

Finally, we would be very interested to hear your comments and suggestions
regarding the material. We welcome any feedback, but we would particularly like to
receive feedback on the following aspects:

1. Any errors that may have remained despite our best efforts (although we hope
there are not many);

x Preface

2. Any topics that should no longer be included and any topics that should be added
or expanded;

3. Any exercises that you may have designed that you would like to be included in
the book.

Waterloo, Canada M. Tamer Özsu (tamer.ozsu@uwaterloo.ca)
Montpellier, France Patrick Valduriez (patrick.valduriez@inria.fr)
June 2019

Contents

1 Introduction . 1
1.1 What Is a Distributed Database System? . 1
1.2 History of Distributed DBMS . 3
1.3 Data Delivery Alternatives . 5
1.4 Promises of Distributed DBMSs . 7

1.4.1 Transparent Management of Distributed and
Replicated Data. 7

1.4.2 Reliability Through Distributed Transactions. 10
1.4.3 Improved Performance . 11
1.4.4 Scalability . 13

1.5 Design Issues . 13
1.5.1 Distributed Database Design . 13
1.5.2 Distributed Data Control . 14
1.5.3 Distributed Query Processing. 14
1.5.4 Distributed Concurrency Control . 14
1.5.5 Reliability of Distributed DBMS . 15
1.5.6 Replication. 15
1.5.7 Parallel DBMSs . 16
1.5.8 Database Integration . 16
1.5.9 Alternative Distribution Approaches . 16
1.5.10 Big Data Processing and NoSQL. 16

1.6 Distributed DBMS Architectures . 17
1.6.1 Architectural Models for Distributed DBMSs 17
1.6.2 Client/Server Systems. 20
1.6.3 Peer-to-Peer Systems. 22
1.6.4 Multidatabase Systems. 25
1.6.5 Cloud Computing . 27

1.7 Bibliographic Notes . 31

xi

xii Contents

2 Distributed and Parallel Database Design . 33
2.1 Data Fragmentation . 35

2.1.1 Horizontal Fragmentation. 37
2.1.2 Vertical Fragmentation . 52
2.1.3 Hybrid Fragmentation. 65

2.2 Allocation . 66
2.2.1 Auxiliary Information . 68
2.2.2 Allocation Model . 69
2.2.3 Solution Methods . 72

2.3 Combined Approaches . 72
2.3.1 Workload-Agnostic Partitioning Techniques 73
2.3.2 Workload-Aware Partitioning Techniques 74

2.4 Adaptive Approaches . 78
2.4.1 Detecting Workload Changes . 79
2.4.2 Detecting Affected Items . 79
2.4.3 Incremental Reconfiguration. 80

2.5 Data Directory . 82
2.6 Conclusion . 83
2.7 Bibliographic Notes . 84

3 Distributed Data Control . 91
3.1 View Management . 92

3.1.1 Views in Centralized DBMSs. 92
3.1.2 Views in Distributed DBMSs . 95
3.1.3 Maintenance of Materialized Views . 96

3.2 Access Control . 102
3.2.1 Discretionary Access Control. 103
3.2.2 Mandatory Access Control . 106
3.2.3 Distributed Access Control . 108

3.3 Semantic Integrity Control . 110
3.3.1 Centralized Semantic Integrity Control 111
3.3.2 Distributed Semantic Integrity Control. 116

3.4 Conclusion . 123
3.5 Bibliographic Notes . 123

4 Distributed Query Processing . 129
4.1 Overview. 130

4.1.1 Query Processing Problem. 130
4.1.2 Query Optimization . 133
4.1.3 Layers Of Query Processing . 136

4.2 Data Localization. 140
4.2.1 Reduction for Primary Horizontal Fragmentation 141
4.2.2 Reduction with Join . 142
4.2.3 Reduction for Vertical Fragmentation . 143
4.2.4 Reduction for Derived Fragmentation. 145
4.2.5 Reduction for Hybrid Fragmentation. 148

Contents xiii

4.3 Join Ordering in Distributed Queries . 149
4.3.1 Join Trees . 149
4.3.2 Join Ordering . 151
4.3.3 Semijoin-Based Algorithms . 153
4.3.4 Join Versus Semijoin . 156

4.4 Distributed Cost Model . 157
4.4.1 Cost Functions. 157
4.4.2 Database Statistics . 159

4.5 Distributed Query Optimization . 161
4.5.1 Dynamic Approach. 161
4.5.2 Static Approach . 165
4.5.3 Hybrid Approach . 169

4.6 Adaptive Query Processing . 173
4.6.1 Adaptive Query Processing Process . 174
4.6.2 Eddy Approach . 176

4.7 Conclusion . 177
4.8 Bibliographic Notes . 178

5 Distributed Transaction Processing . 183
5.1 Background and Terminology . 184
5.2 Distributed Concurrency Control . 188

5.2.1 Locking-Based Algorithms . 189
5.2.2 Timestamp-Based Algorithms . 197
5.2.3 Multiversion Concurrency Control . 203
5.2.4 Optimistic Algorithms . 205

5.3 Distributed Concurrency Control Using Snapshot Isolation 206
5.4 Distributed DBMS Reliability . 209

5.4.1 Two-Phase Commit Protocol . 211
5.4.2 Variations of 2PC. 217
5.4.3 Dealing with Site Failures . 220
5.4.4 Network Partitioning . 227
5.4.5 Paxos Consensus Protocol . 231
5.4.6 Architectural Considerations . 234

5.5 Modern Approaches to Scaling Out Transaction Management 236
5.5.1 Spanner . 237
5.5.2 LeanXcale . 237

5.6 Conclusion . 239
5.7 Bibliographic Notes . 241

6 Data Replication . 247
6.1 Consistency of Replicated Databases . 249

6.1.1 Mutual Consistency . 249
6.1.2 Mutual Consistency Versus Transaction Consistency . . . 251

6.2 Update Management Strategies . 252
6.2.1 Eager Update Propagation . 253
6.2.2 Lazy Update Propagation . 254

xiv Contents

6.2.3 Centralized Techniques . 254
6.2.4 Distributed Techniques. 255

6.3 Replication Protocols . 255
6.3.1 Eager Centralized Protocols . 256
6.3.2 Eager Distributed Protocols. 262
6.3.3 Lazy Centralized Protocols . 262
6.3.4 Lazy Distributed Protocols . 268

6.4 Group Communication . 269
6.5 Replication and Failures . 272

6.5.1 Failures and Lazy Replication . 273
6.5.2 Failures and Eager Replication . 273

6.6 Conclusion . 276
6.7 Bibliographic Notes . 277

7 Database Integration—Multidatabase Systems . 281
7.1 Database Integration . 282

7.1.1 Bottom-Up Design Methodology . 283
7.1.2 Schema Matching . 287
7.1.3 Schema Integration . 296
7.1.4 Schema Mapping . 298
7.1.5 Data Cleaning . 306

7.2 Multidatabase Query Processing . 307
7.2.1 Issues in Multidatabase Query Processing 308
7.2.2 Multidatabase Query Processing Architecture 309
7.2.3 Query Rewriting Using Views . 311
7.2.4 Query Optimization and Execution . 317
7.2.5 Query Translation and Execution. 329

7.3 Conclusion . 332
7.4 Bibliographic Notes . 334

8 Parallel Database Systems . 349
8.1 Objectives. 350
8.2 Parallel Architectures . 352

8.2.1 General Architecture . 353
8.2.2 Shared-Memory . 355
8.2.3 Shared-Disk . 357
8.2.4 Shared-Nothing. 358

8.3 Data Placement . 359
8.4 Parallel Query Processing. 362

8.4.1 Parallel Algorithms for Data Processing 362
8.4.2 Parallel Query Optimization . 369

8.5 Load Balancing . 374
8.5.1 Parallel Execution Problems . 374
8.5.2 Intraoperator Load Balancing. 376
8.5.3 Interoperator Load Balancing. 378
8.5.4 Intraquery Load Balancing . 378

Contents xv

8.6 Fault-Tolerance . 383
8.7 Database Clusters . 384

8.7.1 Database Cluster Architecture . 385
8.7.2 Replication. 386
8.7.3 Load Balancing . 386
8.7.4 Query Processing . 387

8.8 Conclusion . 390
8.9 Bibliographic Notes . 390

9 Peer-to-Peer Data Management . 395
9.1 Infrastructure . 398

9.1.1 Unstructured P2P Networks . 399
9.1.2 Structured P2P Networks . 402
9.1.3 Superpeer P2P Networks . 406
9.1.4 Comparison of P2P Networks . 408

9.2 Schema Mapping in P2P Systems . 408
9.2.1 Pairwise Schema Mapping. 408
9.2.2 Mapping Based on Machine Learning Techniques 409
9.2.3 Common Agreement Mapping . 410
9.2.4 Schema Mapping Using IR Techniques 411

9.3 Querying Over P2P Systems. 411
9.3.1 Top-k Queries . 412
9.3.2 Join Queries . 424
9.3.3 Range Queries . 425

9.4 Replica Consistency . 428
9.4.1 Basic Support in DHTs . 429
9.4.2 Data Currency in DHTs . 431
9.4.3 Replica Reconciliation . 432

9.5 Blockchain . 436
9.5.1 Blockchain Definition . 437
9.5.2 Blockchain Infrastructure . 438
9.5.3 Blockchain 2.0. 442
9.5.4 Issues. 443

9.6 Conclusion . 444
9.7 Bibliographic Notes . 445

10 Big Data Processing . 449
10.1 Distributed Storage Systems . 451

10.1.1 Google File System . 453
10.1.2 Combining Object Storage and File Storage 454

10.2 Big Data Processing Frameworks . 455
10.2.1 MapReduce Data Processing . 456
10.2.2 Data Processing Using Spark . 466

10.3 Stream Data Management . 470
10.3.1 Stream Models, Languages, and Operators 472
10.3.2 Query Processing over Data Streams. 476
10.3.3 DSS Fault-Tolerance . 483

xvi Contents

10.4 Graph Analytics Platforms . 486
10.4.1 Graph Partitioning. 489
10.4.2 MapReduce and Graph Analytics . 494
10.4.3 Special-Purpose Graph Analytics Systems 495
10.4.4 Vertex-Centric Block Synchronous. 498
10.4.5 Vertex-Centric Asynchronous . 501
10.4.6 Vertex-Centric Gather-Apply-Scatter . 503
10.4.7 Partition-Centric Block Synchronous Processing. 504
10.4.8 Partition-Centric Asynchronous . 506
10.4.9 Partition-Centric Gather-Apply-Scatter 506
10.4.10 Edge-Centric Block Synchronous Processing 507
10.4.11 Edge-Centric Asynchronous . 507
10.4.12 Edge-Centric Gather-Apply-Scatter . 507

10.5 Data Lakes . 508
10.5.1 Data Lake Versus Data Warehouse . 508
10.5.2 Architecture . 510
10.5.3 Challenges . 511

10.6 Conclusion . 512
10.7 Bibliographic Notes . 512

11 NoSQL, NewSQL, and Polystores . 519
11.1 Motivations for NoSQL . 520
11.2 Key-Value Stores . 521

11.2.1 DynamoDB . 522
11.2.2 Other Key-Value Stores . 524

11.3 Document Stores . 525
11.3.1 MongoDB . 525
11.3.2 Other Document Stores . 528

11.4 Wide Column Stores . 529
11.4.1 Bigtable . 529
11.4.2 Other Wide Column Stores . 531

11.5 Graph DBMSs . 531
11.5.1 Neo4j. 532
11.5.2 Other Graph Databases . 535

11.6 Hybrid Data Stores . 535
11.6.1 Multimodel NoSQL Stores . 536
11.6.2 NewSQL DBMSs . 537

11.7 Polystores . 540
11.7.1 Loosely Coupled Polystores . 540
11.7.2 Tightly Coupled Polystores . 544
11.7.3 Hybrid Systems . 549
11.7.4 Concluding Remarks . 553

11.8 Conclusion . 554
11.9 Bibliographic Notes . 555

Contents xvii

12 Web Data Management . 559
12.1 Web Graph Management. 560
12.2 Web Search . 562

12.2.1 Web Crawling . 563
12.2.2 Indexing . 566
12.2.3 Ranking and Link Analysis . 567
12.2.4 Evaluation of Keyword Search . 568

12.3 Web Querying . 569
12.3.1 Semistructured Data Approach . 570
12.3.2 Web Query Language Approach . 574

12.4 Question Answering Systems. 580
12.5 Searching and Querying the Hidden Web . 584

12.5.1 Crawling the Hidden Web . 585
12.5.2 Metasearching . 586

12.6 Web Data Integration. 588
12.6.1 Web Tables/Fusion Tables . 589
12.6.2 Semantic Web and Linked Open Data 590
12.6.3 Data Quality Issues in Web Data Integration 608

12.7 Bibliographic Notes . 615

A Overview of Relational DBMS . 619

B Centralized Query Processing . 621

C Transaction Processing Fundamentals . 623

D Review of Computer Networks. 625

References . 627

Index . 663

Chapter 1
Introduction

The current computing environment is largely distributed—computers are con-
nected to Internet to form a worldwide distributed system. Organizations have
geographically distributed and interconnected data centers, each with hundreds or
thousands of computers connected with high-speed networks, forming mixture of
distributed and parallel systems (Fig. 1.1). Within this environment, the amount of
data that is captured has increased dramatically. Not all of this data is stored in
database systems (in fact a small portion is) but there is a desire to provide some
sort of data management capability on these widely distributed data. This is the
scope of distributed and parallel database systems, which have moved from a small
part of the worldwide computing environment a few decades ago to mainstream.
In this chapter, we provide an overview of this technology, before we examine the
details in subsequent chapters.

1.1 What Is a Distributed Database System?

We define a distributed database as a collection of multiple, logically interrelated
databases located at the nodes of a distributed system. A distributed database
management system (distributed DBMS) is then defined as the software system that
permits the management of the distributed database and makes the distribution
transparent to the users. Sometimes “distributed database system” (distributed
DBMS) is used to refer jointly to the distributed database and the distributed DBMS.
The two important characteristics are that data is logically interrelated and that it
resides on a distributed system.

The existence of a distributed system is an important characteristic. In this
context, we define a distributed computing system as a number of interconnected
autonomous processing elements (PEs). The capabilities of these processing ele-
ments may differ, they may be heterogeneous, and the interconnections might be

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_1

2 1 Introduction

Fig. 1.1 Geographically distributed data centers

different, but the important aspect is that PEs do not have access to each other’s
state, which they can only learn by exchanging messages that incur a communication
cost. Therefore, when data is distributed, its management and access in a logically
integrated manner requires special care from the distributed DBMS software.

A distributed DBMS is not a “collection of files” that can be individually stored
at each PE of a distributed system (usually called “site” of a distributed DBMS);
data in a distributed DBMS is interrelated. We will not try to be very specific with
what we mean by interrelated, because the requirements differ depending on the
type of data. For example, in the case of relational data, different relations or their
partitions might be stored at different sites (more on this in Chap. 2), requiring
join or union operations to answer queries that are typically expressed in SQL. One
can usually define a schema of this distributed data. At the other extreme, data in
NoSQL systems (discussed further in Chap. 11) may have a much looser definition
of interrelatedness; for example, it may be vertices of a graph that might be stored
at different sites.

The upshot of this discussion is that a distributed DBMS is logically integrated
but physically distributed. What this means is that a distributed DBMS gives
the users the view of a unified database, while the underlying data is physically
distributed.

As noted above, we typically consider two types of distributed DBMSs: geo-
graphically distributed (commonly referred to as geo-distributed) and single loca-
tion (or single site) . In the former, the sites are interconnected by wide area
networks that are characterized by long message latencies and higher error rates.
The latter consist of systems where the PEs are located in close proximity allowing
much faster exchanges leading to shorter (even negligible with new technologies)
message latencies and very low error rates. Single location distributed DBMSs are
typically characterized by computer clusters in one data center, and are commonly

1.2 History of Distributed DBMS 3

known as parallel DBMSs (and the PEs are referred to as “nodes” to distinguish
from “sites”). As noted above, it is now quite common to find distributed DBMSs
that have multiple single site clusters interconnected by wide area networks, leading
to hybrid, multisite systems. For most of this book, we will focus on the problems of
data management among the sites of a geo-distributed DBMS; we will focus on the
problems of single site systems in Chaps. 8, 10, and 11 where we discuss parallel
DBMSs, big data systems, and NoSQL/NewSQL systems.

1.2 History of Distributed DBMS

Before the advent of database systems in the 1960s, the prevalent mode of
computation was one where each application defined and maintained its own data
(Fig. 1.2). In this mode, each application defined the data that it used, its structure
and access methods, and managed the file in the storage system. The end result
was significant uncontrolled redundancy in the data, and high overhead for the
programmers to manage this data within their applications.

Database systems allow data to be defined and administered centrally (Fig. 1.3).
This new orientation results in data independence, whereby the application pro-
grams are immune to changes in the logical or physical organization of the data
and vice versa. Consequently, programmers are freed from the task of managing
and maintaining the data that they need, and the redundancy of the data can be
eliminated (or reduced).

One of the original motivations behind the use of database systems was the
desire to integrate the operational data of an enterprise and to provide integrated,
thus controlled access to that data. We carefully use the term “integrated” rather

Data
Description

PROGRAM 1

Data
Description

PROGRAM 2

Data
Description

PROGRAM 3

FILE 1

FILE 2

FILE 3 R
E
D

U
N

D
A

N
T

 D
A
T
A

Fig. 1.2 Traditional file processing

4 1 Introduction

PROGRAM 1

PROGRAM 2

PROGRAM 3

Data Description

Data Manipulation

...

DATABASE

Fig. 1.3 Database processing

than “centralized” because, as discussed earlier, the data can physically be located
on different machines that might be geographically distributed. This is what the
distributed database technology provides. As noted earlier, this physical distribution
can be concentrated at one geographic location or it can be at multiple locations.
Therefore, each of the locations in Fig. 1.5 might be a data center that is connected to
other data centers over a communication network. These are the types of distributed
environments that are now common and that we study in this book.

Over the years, distributed database system architectures have undergone sig-
nificant changes. The original distributed database systems such as Distributed
INGRES and SDD-1 were designed as geographically distributed systems with very
slow network connections; consequently they tried to optimize operations to reduce
network communication. They were early peer-to-peer systems (P2P) in the sense
that each site had similar functionality with respect to data management. With the
development of personal computers and workstations, the prevailing distribution
model shifted to client/server where data operations were moved to a back-end
server, while user applications ran on the front-end workstations. These systems
became dominant in particular for distribution at one particular location where the
network speeds would be higher, enabling frequent communication between the
clients and the server(s). There was a reemergence of P2P systems in the 2000s,
where there is no distinction of client machines versus servers. These modern P2P
systems have important differences from the earlier systems that we discuss later in
this chapter. All of these architectures can still be found today and we discuss them
in subsequent chapters.

The emergence of the World Wide Web (usually called the web) as a major
collaboration and sharing platform had a profound impact on distributed data
management research. Significantly more data was opened up for access, but this
was not the well-structured, well-defined data DBMSs typically handle; instead, it
is unstructured or semistructured (i.e., it has some structure but not at the level of a
database schema), with uncertain provenance (so it might be “dirty” or unreliable),
and conflicting. Furthermore, a lot of the data is stored in systems that are not easily

1.3 Data Delivery Alternatives 5

accessible (what is called the dark web). Consequently, distributed data management
efforts focus on accessing this data in meaningful ways.

This development added particular impetus to one thread of research that existed
since the beginning of distributed database efforts, namely database integration.
Originally, these efforts focused on finding ways to access data in separate databases
(thus the terms federated database and multidatabase), but with the emergence of
web data, these efforts shifted to virtual integration of different data types (and the
term data integration became more popular). The term that is in vogue right now is
data lake which implies that all of the data is captured in a logically single store,
from which relevant data is extracted for each application. We discuss the former in
Chap. 7 and the latter in Chaps. 10 and 12.

A significant development in the last ten years has been the emergence of cloud
computing. Cloud computing refers to a computing model where a number of
service providers make available shared and geo-distributed computing resources
such that users can rent some of these resources based on their needs. Clients can
rent the basic computing infrastructure on which they could develop their own
software, but then decide on the operating system they wish to use and create
virtual machines (VMs) to create the environment in which they wish to work—the
so-called Infrastructure-as-a-Service (IaaS) approach. A more sophisticated cloud
environment involves renting, in addition to basic infrastructure, the full computing
platform leading to Platform-as-a-Service (PaaS) on which clients can develop their
own software. The most sophisticated version is where service providers make
available specific software that the clients can then rent; this is called Software-
as-a-Service (SaaS). There has been a trend in providing distributed database
management services on the cloud as part of SaaS offering, and this has been one of
the more recent developments.

In addition to the specific chapters where we discuss these architectures in depth,
we provide an overview of all of them in Sect. 1.6.1.2.

1.3 Data Delivery Alternatives

In distributed databases, data delivery occurs between sites—either from server sites
to client sites in answer to queries or between multiple servers. We characterize
the data delivery alternatives along three orthogonal dimensions: delivery modes,
frequency, and communication methods. The combinations of alternatives along
each of these dimensions provide a rich design space.

The alternative delivery modes are pull-only, push-only, and hybrid. In the pull-
only mode of data delivery, the transfer of data is initiated by a pull (i.e., request)
from one site to a data provider—this may be a client requesting data from a
server or a server requesting data from another server. In the following we use
the terms “receiver” and “provider” to refer to the machine that received the data
and the machine that sends the data, respectively. When the request is received by
the provider, the data is located and transferred. The main characteristic of pull-

6 1 Introduction

based delivery is that receivers become aware of new data items or updates at the
provider only when they explicitly poll. Also, in pull-based mode, providers must be
interrupted continuously to deal with requests. Furthermore, the data that receivers
can obtain from a provider is limited to when and what clients know to ask for.
Conventional DBMSs offer primarily pull-based data delivery.

In the push-only mode of data delivery, the transfer of data from providers is
initiated by a push without a specific request. The main difficulty of the push-
based approach is in deciding which data would be of common interest, and when
to send it to potentially interested receivers—alternatives are periodic, irregular,
or conditional. Thus, the usefulness of push depends heavily upon the accuracy
of a provider to predict the needs of receivers. In push-based mode, providers
disseminate information to either an unbounded set of receivers (random broadcast)
who can listen to a medium or selective set of receivers (multicast), who belong to
some categories of recipients.

The hybrid mode of data delivery combines the pull and push mechanisms. The
persistent query approach (see Sect. 10.3) presents one possible way of combining
the pull and push modes, namely: the transfer of data from providers to receivers is
first initiated by a pull (by posing the query), and the subsequent transfer of updated
data is initiated by a push by the provider.

There are three typical frequency measurements that can be used to classify the
regularity of data delivery. They are periodic, conditional, and ad hoc (or irregular).

In periodic delivery, data is sent from the providers at regular intervals. The
intervals can be defined by system default or by receivers in their profiles. Both
pull and push can be performed in periodic fashion. Periodic delivery is carried out
on a regular and prespecified repeating schedule. A request for a company’s stock
price every week is an example of a periodic pull. An example of periodic push is
when an application can send out stock price listing on a regular basis, say every
morning. Periodic push is particularly useful for situations in which receivers might
not be available at all times, or might be unable to react to what has been sent, such
as in the mobile setting where clients can become disconnected.

In conditional delivery, data is sent by providers whenever certain conditions
specified by receivers in their profiles are satisfied. Such conditions can be as
simple as a given time span or as complicated as event-condition-action rules.
Conditional delivery is mostly used in the hybrid or push-only delivery systems.
Using conditional push, data is sent out according to a prespecified condition,
rather than any particular repeating schedule. An application that sends out stock
prices only when they change is an example of conditional push. An application
that sends out a balance statement only when the total balance is 5% below the
predefined balance threshold is an example of hybrid conditional push. Conditional
push assumes that changes are critical to the receivers who are always listening and
need to respond to what is being sent. Hybrid conditional push further assumes that
missing some update information is not crucial to the receivers.

Ad hoc delivery is irregular and is performed mostly in a pure pull-based system.
Data is pulled from providers in an ad hoc fashion in response to requests. In

1.4 Promises of Distributed DBMSs 7

contrast, periodic pull arises when a requestor uses polling to obtain data from
providers based on a regular period (schedule).

The third component of the design space of information delivery alternatives is
the communication method. These methods determine the various ways in which
providers and receivers communicate for delivering information to clients. The
alternatives are unicast and one-to-many. In unicast, the communication from a
provider to a receiver is one-to-one: the provider sends data to one receiver using a
particular delivery mode with some frequency. In one-to-many, as the name implies,
the provider sends data to a number of receivers. Note that we are not referring here
to a specific protocol; one-to-many communication may use a multicast or broadcast
protocol.

We should note that this characterization is subject to considerable debate. It is
not clear that every point in the design space is meaningful. Furthermore, specifi-
cation of alternatives such as conditional and periodic (which may make sense) is
difficult. However, it serves as a first-order characterization of the complexity of
emerging distributed data management systems. For the most part, in this book, we
are concerned with pull-only, ad hoc data delivery systems, and discuss push-based
and hybrid modes under streaming systems in Sect. 10.3.

1.4 Promises of Distributed DBMSs

Many advantages of distributed DBMSs can be cited; these can be distilled to
four fundamentals that may also be viewed as promises of distributed DBMS
technology: transparent management of distributed and replicated data, reliable
access to data through distributed transactions, improved performance, and easier
system expansion. In this section, we discuss these promises and, in the process,
introduce many of the concepts that we will study in subsequent chapters.

1.4.1 Transparent Management of Distributed and Replicated
Data

Transparency refers to separation of the higher-level semantics of a system from
lower-level implementation issues. In other words, a transparent system “hides” the
implementation details from users. The advantage of a fully transparent DBMS
is the high level of support that it provides for the development of complex
applications. Transparency in distributed DBMS can be viewed as an extension of
the data independence concept in centralized DBMS (more on this below).

Let us start our discussion with an example. Consider an engineering firm that
has offices in Boston, Waterloo, Paris, and San Francisco. They run projects at each
of these sites and would like to maintain a database of their employees, the projects,

8 1 Introduction

Fig. 1.4 Example engineering database

and other related data. Assuming that the database is relational, we can store this
information in a number of relations (Fig. 1.4): EMP stores employee information
with employee number, name, and title1; PROJ holds project information where
LOC records where the project is located. The salary information is stored in PAY
(assuming everyone with the same title gets the same salary) and the assignment
of people to projects is recorded in ASG where DUR indicates the duration of the
assignment and the person’s responsibility on that project is maintained in RESP. If
all of this data were stored in a centralized DBMS, and we wanted to find out the
names and employees who worked on a project for more than 12 months, we would
specify this using the following SQL query:

SELECT ENAME, AMT
FROM EMP NATURAL JOIN ASG, EMP NATURAL JOIN PAY
WHERE ASG.DUR > 12

However, given the distributed nature of this firm’s business, it is preferable,
under these circumstances, to localize data such that data about the employees in
Waterloo office is stored in Waterloo, those in the Boston office is stored in Boston,
and so forth. The same applies to the project and salary information. Thus, what we
are engaged in is a process where we partition each of the relations and store each
partition at a different site. This is known as data partitioning or data fragmentation
and we discuss it further below and in detail in Chap. 2.

Furthermore, it may be preferable to duplicate some of this data at other sites
for performance and reliability reasons. The result is a distributed database which
is fragmented and replicated (Fig. 1.5). Fully transparent access means that the
users can still pose the query as specified above, without paying any attention to
the fragmentation, location, or replication of data, and let the system worry about
resolving these issues. For a system to adequately deal with this type of query over
a distributed, fragmented, and replicated database, it needs to be able to deal with a
number of different types of transparencies as discussed below.

Data Independence. This notion carries over from centralized DBMSs and refers
to the immunity of user applications to changes in the definition and organization
of data, and vice versa.
Two types of data independence are usually cited: logical data independence and
physical data independence. Logical data independence refers to the immunity of
user applications to changes in the logical structure (i.e., schema) of the database.

1Primary key attributes are underlined.

1.4 Promises of Distributed DBMSs 9

Boston Paris

Waterloo
San

Francisco

Communication
Network

Boston employees, Paris em-
ployees, Boston projects

Paris employees, Boston employees, Paris
projects, Boston projects

Waterloo employees, Waterloo projects,
Paris projects

San Francisco employees, San
Francisco projects

Fig. 1.5 Distributed database

Physical data independence, on the other hand, deals with hiding the details of
the storage structure from user applications. When a user application is written, it
should not be concerned with the details of physical data organization. Therefore,
the user application should not need to be modified when data organization
changes occur due to performance considerations.

Network Transparency. Preferably, users should be protected from the opera-
tional details of the communication network that connects the sites; possibly even
hiding the existence of the network. Then there would be no difference between
database applications that would run on a centralized database and those that
would run on a distributed database. This type of transparency is referred to as
network transparency or distribution transparency.
Sometimes two types of distribution transparency are identified: location trans-
parency and naming transparency. Location transparency refers to the fact that
the command used to perform a task is independent of both the location of the
data and the system on which an operation is carried out. Naming transparency
means that a unique name is provided for each object in the database. In the
absence of naming transparency, users are required to embed the location name
(or an identifier) as part of the object name.

Fragmentation Transparency. As discussed above, it is commonly desirable to
divide each database relation into smaller fragments and treat each fragment as
a separate database object (i.e., another relation). This is commonly done for
reasons of performance, availability, and reliability—a more in-depth discussion

10 1 Introduction

is in Chap. 2. It would be preferable for the users not to be aware of data
fragmentation in specifying queries, and let the system deal with the problem
of mapping a user query that is specified on full relations as specified in the
schema to a set of queries executed on subrelations. In other words, the issue is
one of finding a query processing strategy based on the fragments rather than the
relations, even though the queries are specified on the latter.

Replication Transparency. For performance, reliability, and availability reasons,
it is usually desirable to be able to distribute data in a replicated fashion across
the machines on a network. Assuming that data is replicated, the transparency
issue is whether the users should be aware of the existence of copies or whether
the system should handle the management of copies and the user should act as if
there is a single copy of the data (note that we are not referring to the placement
of copies, only their existence). From a user’s perspective it is preferable not to
be involved with handling copies and having to specify the fact that a certain
action can and/or should be taken on multiple copies. The issue of replicating
data within a distributed database is introduced in Chap. 2 and discussed in detail
in Chap. 6.

1.4.2 Reliability Through Distributed Transactions

Distributed DBMSs are intended to improve reliability since they have replicated
components and thereby eliminate single points of failure. The failure of a single
site, or the failure of a communication link which makes one or more sites
unreachable, is not sufficient to bring down the entire system. In the case of a
distributed database, this means that some of the data may be unreachable, but with
proper care, users may be permitted to access other parts of the distributed database.
The “proper care” comes mainly in the form of support for distributed transactions.

A DBMS that provides full transaction support guarantees that concurrent
execution of user transactions will not violate database consistency, i.e., each user
thinks their query is the only one executing on the database (called concurrency
transparency) even in the face of system failures (called failure transparency) as
long as each transaction is correct, i.e., obeys the integrity rules specified on the
database.

Providing transaction support requires the implementation of distributed con-
currency control and distributed reliability protocols—in particular, two-phase
commit (2PC) and distributed recovery protocols—which are significantly more
complicated than their centralized counterparts. These are discussed in Chap. 5.
Supporting replicas requires the implementation of replica control protocols that
enforce a specified semantics of accessing them. These are discussed in Chap. 6.

1.4 Promises of Distributed DBMSs 11

1.4.3 Improved Performance

The case for the improved performance of distributed DBMSs is typically made
based on two points. First, a distributed DBMS fragments the database, enabling
data to be stored in close proximity to its points of use (also called data locality).
This has two potential advantages:

1. Since each site handles only a portion of the database, contention for CPU and
I/O services is not as severe as for centralized databases.

2. Locality reduces remote access delays that are usually involved in wide area
networks.

This point relates to the overhead of distributed computing if the data resides at
remote sites and one has to access it by remote communication. The argument is that
it is better, in these circumstances, to distribute the data management functionality
to where the data is located rather than moving large amounts of data. This is
sometimes a topic of contention. Some argue that with the widespread use of high-
speed, high-capacity networks, distributing data and data management functions
no longer makes sense and that it may be much simpler to store data at a central
site using a very large machine and access it over high-speed networks. This
is commonly referred to as scale-up architecture. It is an appealing argument,
but misses an important point of distributed databases. First, in most of today’s
applications, data is distributed; what may be open for debate is how and where
we process it. Second, and more important, point is that this argument does not
distinguish between bandwidth (the capacity of the computer links) and latency
(how long it takes for data to be transmitted). Latency is inherent in distributed
environments and there are physical limits to how fast we can send data over
computer networks. Remotely accessing data may incur latencies that might not
be acceptable for many applications.

The second point is that the inherent parallelism of distributed systems may be
exploited for interquery and intraquery parallelism. Interquery parallelism enables
the parallel execution of multiple queries generated by concurrent transactions,
in order to increase the transactional throughput. The definition of intraquery
parallelism is different in distributed versus parallel DBMSs. In the former,
intraquery parallelism is achieved by breaking up a single query into a number
of subqueries, each of which is executed at a different site, accessing a different
part of the distributed database. In parallel DBMSs, it is achieved by interoperator
and intraoperator parallelism. Interoperator parallelism is obtained by executing
in parallel different operators of the query trie on different processors, while with
intraoperator parallelism, the same operator is executed by many processors, each
one working on a subset of the data. Note that these two forms of parallelism also
exist in distributed query processing.

Intraoperator parallelism is based on the decomposition of one operator in a
set of independent suboperators, called operator instances. This decomposition
is done using partitioning of relations. Each operator instance will then process

12 1 Introduction

one relation partition. The operator decomposition frequently benefits from the
initial partitioning of the data (e.g., the data is partitioned on the join attribute).
To illustrate intraoperator parallelism, let us consider a simple select-join query.
The select operator can be directly decomposed into several select operators, each
on a different partition, and no redistribution is required (Fig. 1.6). Note that if the
relation is partitioned on the select attribute, partitioning properties can be used to
eliminate some select instances. For example, in an exact-match select, only one
select instance will be executed if the relation was partitioned by hashing (or range)
on the select attribute. It is more complex to decompose the join operator. In order to
have independent joins, each partition of one relation R may be joined to the entire
other relation S. Such a join will be very inefficient (unless S is very small) because
it will imply a broadcast of S on each participating processor. A more efficient
way is to use partitioning properties. For example, if R and S are partitioned by
hashing on the join attribute and if the join is an equijoin, then we can partition
the join into independent joins. This is the ideal case that cannot be always used,
because it depends on the initial partitioning of R and S. In the other cases, one
or two operands may be repartitioned. Finally, we may notice that the partitioning
function (hash, range, round robin—discussed in Sect. 2.3.1) is independent of the
local algorithm (e.g., nested loop, hash, sort merge) used to process the join operator
(i.e., on each processor). For instance, a hash join using a hash partitioning needs
two hash functions. The first one, h1, is used to partition the two base relations on
the join attribute. The second one, h2, which can be different for each processor, is
used to process the join on each processor.

Two forms of interoperator parallelism can be exploited. With pipeline paral-
lelism, several operators with a producer–consumer link are executed in parallel. For
instance, the two select operators in Fig. 1.7 will be executed in parallel with the join
operator. The advantage of such execution is that the intermediate result does not
need to be entirely materialized, thus saving memory and disk accesses. Independent

σ ≡ σ1 σ2 σ3 ··· σn

S

R

S1

R1

S2

R2

S3

R3

Sn

Rn

Fig. 1.6 Intraoperator parallelism. σi is instance i of the operator; n is the degree of parallelism

σ σ

Fig. 1.7 Interoperator parallelism

1.5 Design Issues 13

parallelism is achieved when there is no dependency between the operators that
are executed in parallel. For instance, the two select operators of Fig. 1.7 can be
executed in parallel. This form of parallelism is very attractive because there is no
interference between the processors.

1.4.4 Scalability

In a distributed environment, it is much easier to accommodate increasing database
sizes and bigger workloads. System expansion can usually be handled by adding
processing and storage power to the network. Obviously, it may not be possible
to obtain a linear increase in “power,” since this also depends on the overhead
of distribution. However, significant improvements are still possible. That is why
distributed DBMSs have gained much interest in scale-out architectures in the
context of cluster and cloud computing. Scale-out (also called horizontal scaling)
refers to adding more servers, called “scale-out servers” in a loosely coupled
fashion, to scale almost infinitely. By making it easy to add new component database
servers, a distributed DBMS can provide scale-out.

1.5 Design Issues

In the previous section, we discussed the promises of distributed DBMS technology,
highlighting the challenges that need to be overcome in order to realize them. In
this section, we build on this discussion by presenting the design issues that arise in
building a distributed DBMS. These issues will occupy much of the remainder of
this book.

1.5.1 Distributed Database Design

The question that is being addressed is how the data is placed across the sites.
The starting point is one global database and the end result is a distribution of
the data across the sites. This is referred to as top-down design. There are two
basic alternatives to placing data: partitioned (or nonreplicated) and replicated.
In the partitioned scheme the database is divided into a number of disjoint partitions
each of which is placed at a different site. Replicated designs can be either fully
replicated (also called fully duplicated) where the entire database is stored at each
site, or partially replicated (or partially duplicated) where each partition of the
database is stored at more than one site, but not at all the sites. The two fundamental
design issues are fragmentation, the separation of the database into partitions called
fragments, and distribution, the optimum distribution of fragments.

A related problem is the design and management of system directory. In central-
ized DBMSs, the catalog contains metainformation (i.e., description) about the data.

14 1 Introduction

In a distributed system, we have a directory that contains additional information
such as where data is located. Problems related to directory management are similar
in nature to the database placement problem discussed in the preceding section. A
directory may be global to the entire distributed DBMS or local to each site; it can
be centralized at one site or distributed over several sites; there can be a single copy
or multiple copies. Distributed database design and directory management are topics
of Chap. 2.

1.5.2 Distributed Data Control

An important requirement of a DBMS is to maintain data consistency by controlling
how data is accessed. This is called data control and involves view manage-
ment, access control, and integrity enforcement. Distribution imposes additional
challenges since data that is required to check rules is distributed to different
sites requiring distributed rule checking and enforcement. The topic is covered in
Chap. 3.

1.5.3 Distributed Query Processing

Query processing deals with designing algorithms that analyze queries and convert
them into a series of data manipulation operations. The problem is how to decide
on a strategy for executing each query over the network in the most cost-effective
way, however, cost is defined. The factors to be considered are the distribution
of data, communication costs, and lack of sufficient locally available information.
The objective is to optimize where the inherent parallelism is used to improve
the performance of executing the transaction, subject to the above-mentioned
constraints. The problem is NP-hard in nature, and the approaches are usually
heuristic. Distributed query processing is discussed in detail in Chap. 4.

1.5.4 Distributed Concurrency Control

Concurrency control involves the synchronization of accesses to the distributed
database, such that the integrity of the database is maintained. The concurrency
control problem in a distributed context is somewhat different than in a centralized
framework. One not only has to worry about the integrity of a single database, but
also about the consistency of multiple copies of the database. The condition that
requires all the values of multiple copies of every data item to converge to the same
value is called mutual consistency.

1.5 Design Issues 15

The two general classes of solutions are pessimistic, synchronizing the execution
of user requests before the execution starts, and optimistic, executing the requests
and then checking if the execution has compromised the consistency of the database.
Two fundamental primitives that can be used with both approaches are locking,
which is based on the mutual exclusion of accesses to data items, and timestamping,
where the transaction executions are ordered based on timestamps. There are
variations of these schemes as well as hybrid algorithms that attempt to combine
the two basic mechanisms.

In locking-based approaches deadlocks are possible since there is mutually
exclusive access to data by different transactions. The well-known alternatives of
prevention, avoidance, and detection/recovery also apply to distributed DBMSs.
Distributed concurrency control is covered in Chap. 5.

1.5.5 Reliability of Distributed DBMS

We mentioned earlier that one of the potential advantages of distributed systems
is improved reliability and availability. This, however, is not a feature that comes
automatically. It is important that mechanisms be provided to ensure the consistency
of the database as well as to detect failures and recover from them. The implication
for distributed DBMSs is that when a failure occurs and various sites become
either inoperable or inaccessible, the databases at the operational sites remain
consistent and up-to-date. Furthermore, when the computer system or network
recovers from the failure, the distributed DBMSs should be able to recover and
bring the databases at the failed sites up-to-date. This may be especially difficult in
the case of network partitioning, where the sites are divided into two or more groups
with no communication among them. Distributed reliability protocols are the topic
of Chap. 5.

1.5.6 Replication

If the distributed database is (partially or fully) replicated, it is necessary to
implement protocols that ensure the consistency of the replicas, i.e., copies of the
same data item have the same value. These protocols can be eager in that they force
the updates to be applied to all the replicas before the transaction completes, or they
may be lazy so that the transaction updates one copy (called the master) from which
updates are propagated to the others after the transaction completes. We discuss
replication protocols in Chap. 6.

16 1 Introduction

1.5.7 Parallel DBMSs

As earlier noted, there is a strong relationship between distributed databases
and parallel databases. Although the former assumes each site to be a single
logical computer, most of these installations are, in fact, parallel clusters. This
is the distinction that we highlighted earlier between single site distribution as in
data center clusters and geo-distribution. Parallel DBMS objectives are somewhat
different from distributed DBMSs in that the main objectives are high scalability
and performance. While most of the book focuses on issues that arise in managing
data in geo-distributed databases, interesting data management issues exist within a
single site distribution as a parallel system. We discuss these issues in Chap. 8.

1.5.8 Database Integration

One of the important developments has been the move towards “looser” federation
among data sources, which may also be heterogeneous. As we discuss in the next
section, this has given rise to the development of multidatabase systems (also called
federated database systems) that require reinvestigation of some of the fundamental
database techniques. The input here is a set of already distributed databases and the
objective is to provide easy access by (physically or logically) integrating them. This
involves bottom-up design. These systems constitute an important part of today’s
distributed environment. We discuss multidatabase systems, or as more commonly
termed now database integration, including design issues and query processing
challenges in Chap. 7.

1.5.9 Alternative Distribution Approaches

The growth of the Internet as a fundamental networking platform has raised
important questions about the assumptions underlying distributed database systems.
Two issues are of particular concern to us. One is the re-emergence of peer-to-peer
computing, and the other is the development and growth of the World Wide Web.
Both of these aim at improving data sharing, but take different approaches and pose
different data management challenges. We discuss peer-to-peer data management in
Chap. 9 and web data management in Chap. 12.

1.5.10 Big Data Processing and NoSQL

The last decade has seen the explosion of “big data” processing. The exact definition
of big data is elusive, but they are typically accepted to have four characteristics
dubbed the “four V’s”: data is very high volume, is multimodal (variety), usually

1.6 Distributed DBMS Architectures 17

comes at very high speed as data streams (velocity), and may have quality concerns
due to uncertain sources and conflicts (veracity). There have been significant efforts
to develop systems to deal with “big data,” all spurred by the perceived unsuitability
of relational DBMSs for a number of new applications. These efforts typically take
two forms: one thread has developed general purpose computing platforms (almost
always scale-out) for processing, and the other special DBMSs that do not have
the full relational functionality, with more flexible data management capabilities
(the so-called NoSQL systems). We discuss the big data platforms in Chap. 10 and
NoSQL systems in Chap. 11.

1.6 Distributed DBMS Architectures

The architecture of a system defines its structure. This means that the components
of the system are identified, the function of each component is specified, and
the interrelationships and interactions among these components are defined. The
specification of the architecture of a system requires identification of the various
modules, with their interfaces and interrelationships, in terms of the data and control
flow through the system.

In this section, we develop four “reference” architectures2 for a distributed
DBMS: client/server, peer-to-peer, multidatabase, and cloud. These are “idealized”
views of a DBMS in that many of the commercially available systems may deviate
from them; however, the architectures will serve as a reasonable framework within
which the issues related to distributed DBMS can be discussed.

We start with a discussion of the design space to better position the architectures
that will be presented.

1.6.1 Architectural Models for Distributed DBMSs

We use a classification (Fig. 1.8) that recognizes three dimensions according to
which distributed DBMSs may be architected: (1) the autonomy of local systems,
(2) their distribution, and (3) their heterogeneity. These dimensions are orthogonal
as we discuss shortly and in each dimension we identify a number of alternatives.
Consequently, there are 18 possible architectures in the design space; not all of
these architectural alternatives are meaningful, and most are not relevant from the
perspective of this book. The three on which we focus are identified in Fig. 1.8.

2A reference architecture is commonly created by standards developers to clearly define the
interfaces that need to be standardized.

18 1 Introduction

Autonomy

Distribution

Heterogeneity

Parallel, NoSQL,
NewSQL DBMS

Peer-to-Peer
DBMS

Multidatabase
Systems

Client-Server
Systems

Fig. 1.8 DBMS implementation alternatives

1.6.1.1 Autonomy

Autonomy, in this context, refers to the distribution of control, not of data. It indi-
cates the degree to which individual DBMSs can operate independently. Autonomy
is a function of a number of factors such as whether the component systems (i.e.,
individual DBMSs) exchange information, whether they can independently execute
transactions, and whether one is allowed to modify them.

We will use a classification that covers the important aspects of these features.
This classification highlights three alternatives. One alternative is tight integration,
where a single-image of the entire database is available to any user who wants to
share the data that may reside in multiple databases. From the users’ perspective, the
data is logically integrated in one database. In these tightly integrated systems, the
data managers are implemented so that one of them is in control of the processing
of each user request even if that request is serviced by more than one data manager.
The data managers do not typically operate as independent DBMSs even though
they usually have the functionality to do so.

Next, we identify semiautonomous systems that consist of DBMSs that can (and
usually do) operate independently, but have decided to participate in a federation to
make their local data sharable. Each of these DBMSs determines what parts of their
own database they will make accessible to users of other DBMSs. They are not fully

1.6 Distributed DBMS Architectures 19

autonomous systems because they need to be modified to enable them to exchange
information with one another.

The last alternative that we consider is total isolation, where the individual
systems are stand-alone DBMSs that know neither of the existence of other DBMSs
nor how to communicate with them. In such systems, the processing of user
transactions that access multiple databases is especially difficult since there is no
global control over the execution of individual DBMSs.

1.6.1.2 Distribution

Whereas autonomy refers to the distribution (or decentralization) of control, the dis-
tribution dimension of the taxonomy deals with data. Of course, we are considering
the physical distribution of data over multiple sites; as we discussed earlier, the user
sees the data as one logical pool. There are a number of ways DBMSs have been
distributed. We abstract these alternatives into two classes: client/server distribution
and peer-to-peer distribution (or full distribution). Together with the nondistributed
option, the taxonomy identifies three alternative architectures.

The client/server distribution concentrates data management duties at servers,
while the clients focus on providing the application environment including the
user interface. The communication duties are shared between the client machines
and servers. Client/server DBMSs represent a practical compromise to distributing
functionality. There are a variety of ways of structuring them, each providing a
different level of distribution. We leave detailed discussion to Sect. 1.6.2.

In peer-to-peer systems, there is no distinction of client machines versus servers.
Each machine has full DBMS functionality and can communicate with other
machines to execute queries and transactions. Most of the very early work on
distributed database systems have assumed peer-to-peer architecture. Therefore, our
main focus in this book is on peer-to-peer systems (also called fully distributed),
even though many of the techniques carry over to client/server systems as well.

1.6.1.3 Heterogeneity

Heterogeneity may occur in various forms in distributed systems, ranging from
hardware heterogeneity and differences in networking protocols to variations in
data managers. The important ones from the perspective of this book relate to
data models, query languages, and transaction management protocols. Representing
data with different modeling tools creates heterogeneity because of the inherent
expressive powers and limitations of individual data models. Heterogeneity in
query languages not only involves the use of completely different data access
paradigms in different data models (set-at-a-time access in relational systems
versus record-at-a-time access in some object-oriented systems), but also covers
differences in languages even when the individual systems use the same data model.
Although SQL is now the standard relational query language, there are many

20 1 Introduction

different implementations and every vendor’s language has a slightly different flavor
(sometimes even different semantics, producing different results). Furthermore, big
data platforms and NoSQL systems have significantly variable access languages and
mechanisms.

1.6.2 Client/Server Systems

Client/server entered the computing scene at the beginning of 1990s and has made
a significant impact on the DBMS technology. The general idea is very simple
and elegant: distinguish the functionality that needs to be provided on a server
machine from those that need to be provided on a client. This provides a two-level
architecture which makes it easier to manage the complexity of modern DBMSs
and the complexity of distribution.

In relational client/server DBMSs, the server does most of the data management
work. This means that all of query processing and optimization, transaction man-
agement, and storage management are done at the server. The client, in addition to
the application and the user interface, has a DBMS client module that is responsible
for managing the data that is cached to the client and (sometimes) managing the
transaction locks that may have been cached as well. It is also possible to place
consistency checking of user queries at the client side, but this is not common
since it requires the replication of the system catalog at the client machines. This
architecture, depicted in Fig. 1.9, is quite common in relational systems where
the communication between the clients and the server(s) is at the level of SQL

Communication Software

Semantic Data Controller

Query Optimizer

Transaction Manager

Recovery Manager

Runtime Support Processor

Client DBMS
Communication Software

Result
relation

SQL
query

User
Interface

Application
Program

· · ·

O
pe

ra
ti
ng

Sy
st

em

O
p
e
r
a
t
i
n
g S y s t e m

Database

Fig. 1.9 Client/server reference architecture

1.6 Distributed DBMS Architectures 21

statements. In other words, the client passes SQL queries to the server without trying
to understand or optimize them. The server does most of the work and returns the
result relation to the client.

There are a number of different realizations of the client/server architecture.
The simplest is the case where there is only one server which is accessed by
multiple clients. We call this multiple client/single server. From a data management
perspective, this is not much different from centralized databases since the database
is stored on only one machine (the server) that also hosts the software to manage
it. However, there are important differences from centralized systems in the way
transactions are executed and caches are managed—since data is cached at the
client, it is necessary to deploy cache coherence protocols.

A more sophisticated client/server architecture is one where there are multiple
servers in the system (the so-called multiple client/multiple server approach). In
this case, two alternative management strategies are possible: either each client
manages its own connection to the appropriate server or each client knows of only its
“home server” which then communicates with other servers as required. The former
approach simplifies server code, but loads the client machines with additional
responsibilities. This leads to what has been called “heavy client” systems. The latter
approach, on the other hand, concentrates the data management functionality at the
servers. Thus, the transparency of data access is provided at the server interface,
leading to “light clients.”

In the multiple server systems, data is partitioned and may be replicated across
the servers. This is transparent to the clients in the case of light client approach,
and servers may communicate among themselves to answer a user query. This
approach is implemented in parallel DBMS to improve performance through
parallel processing.

Client/server can be naturally extended to provide for a more efficient function
distribution on different kinds of servers: clients run the user interface (e.g., web
servers), application servers run application programs, and database servers run
database management functions. This leads to the three-tier distributed system
architecture.

The application server approach (indeed, an n-tier distributed approach) can be
extended by the introduction of multiple database servers and multiple application
servers (Fig. 1.10), as can be done in classical client/server architectures. In this
case, it is typically the case that each application server is dedicated to one or
a few applications, while database servers operate in the multiple server fashion
discussed above. Furthermore, the interface to the application is typically through a
load balancer that routes the client requests to the appropriate servers.

The database server approach, as an extension of the classical client/server archi-
tecture, has several potential advantages. First, the single focus on data management
makes possible the development of specific techniques for increasing data reliability
and availability, e.g., using parallelism. Second, the overall performance of database
management can be significantly enhanced by the tight integration of the database
system and a dedicated database operating system. Finally, database servers can
also exploit advanced hardware assists such as GPUs and FPGAs to enhance both
performance and data availability.

22 1 Introduction

Client ··· Client

Network

Application
Server

Application
Server

···

Database
Server

Database
Server

Database
Server

Network

Fig. 1.10 Distributed database servers

Although these advantages are significant, there is the additional overhead
introduced by another layer of communication between the application and the
data servers. The communication cost can be amortized if the server interface is
sufficiently high level to allow the expression of complex queries involving intensive
data processing.

1.6.3 Peer-to-Peer Systems

The early works on distributed DBMSs all focused on peer-to-peer architectures
where there was no differentiation between the functionality of each site in the
system. Modern peer-to-peer systems have two important differences from their
earlier relatives. The first is the massive distribution in more recent systems. While
in the early days the focus was on a few (perhaps at most tens of) sites, current
systems consider thousands of sites. The second is the inherent heterogeneity of
every aspect of the sites and their autonomy. While this has always been a concern
of distributed databases, as discussed earlier, coupled with massive distribution,
site heterogeneity and autonomy take on an added significance, disallowing some
of the approaches from consideration. In this book we initially focus on the
classical meaning of peer-to-peer (the same functionality at each site), since the
principles and fundamental techniques of these systems are very similar to those
of client/server systems, and discuss the modern peer-to-peer database issues in a
separate chapter (Chap. 9).

1.6 Distributed DBMS Architectures 23

In these systems, the database design follows a top-down design as discussed ear-
lier. So, the input is a (centralized) database with its own schema definition (global
conceptual schema—GCS). This database is partitioned and allocated to sites of the
distributed DBMS. Thus, at each site, there is a local database with its own schema
(called the local conceptual schema—LCS). The user formulates queries according
to the GCS, irrespective of its location. The distributed DBMS translates global
queries into a group of local queries, which are executed by distributed DBMS
components at different sites that communicate with one another. From a querying
perspective, peer-to-peer systems and client/server DBMSs provide the same view
of data. That is, they give the user the appearance of a logically single database,
while at the physical level data is distributed.

The detailed components of a distributed DBMS are shown in Fig. 1.11. One
component handles the interaction with users, and another deals with the storage.

USER

User
Requests

System
Responses

User Interface
Handler

Data Controller

Global Query
Optimizer

Distributed Execution
Monitor

External
Schema

Global
Conceptual

Schema

USER
PROCESSOR

Local Query
Processor

Local Recovery
Manager

Runtime Support
Processor

Local
Conceptual

Schema

System
Log

Local Internal
Schema

DATA
PROCESSOR

Fig. 1.11 Components of a distributed DBMS

24 1 Introduction

The first major component, which we call the user processor, consists of four
elements:

1. The user interface handler is responsible for interpreting user commands as they
come in, and formatting the result data as it is sent to the user.

2. The data controller uses the integrity constraints and authorizations that are
defined as part of the global conceptual schema to check if the user query can
be processed. This component, which is studied in detail in Chap. 3, is also
responsible for authorization and other functions.

3. The global query optimizer and decomposer determines an execution strategy to
minimize a cost function, and translates the global queries into local ones using
the global and local conceptual schemas as well as the global directory. The
global query optimizer is responsible, among other things, for generating the
best strategy to execute distributed join operations. These issues are discussed in
Chap. 4.

4. The distributed execution monitor coordinates the distributed execution of the
user request. The execution monitor is also called the distributed transaction
manager. In executing queries in a distributed fashion, the execution monitors
at various sites may, and usually do, communicate with one another. Distributed
transaction manager functionality is covered in Chap. 5.

The second major component of a distributed DBMS is the data processor and
consists of the following three elements. These are all issues that centralized DBMSs
deal with, so we do not focus on them in this book.

1. The local query optimizer, which actually acts as the access path selector, is
responsible for choosing the best access path3 to access any data item.

2. The local recovery manager is responsible for making sure that the local database
remains consistent even when failures occur.

3. The runtime support processor physically accesses the database according to
the physical commands in the schedule generated by the query optimizer. The
runtime support processor is the interface to the operating system and contains
the database buffer (or cache) manager, which is responsible for maintaining the
main memory buffers and managing the data accesses.

It is important to note that our use of the terms “user processor” and “data
processor” does not imply a functional division similar to client/server systems.
These divisions are merely organizational and there is no suggestion that they
should be placed on different machines. In peer-to-peer systems, one expects to find
both the user processor modules and the data processor modules on each machine.
However, there can be “query-only sites” that only have the user processor.

3The term access path refers to the data structures and the algorithms that are used to access the
data. A typical access path, for example, is an index on one or more attributes of a relation.

1.6 Distributed DBMS Architectures 25

1.6.4 Multidatabase Systems

Multidatabase systems (MDBSs) represent the case where individual DBMSs are
fully autonomous and have no concept of cooperation; they may not even “know”
of each other’s existence or how to talk to each other. Our focus is, naturally, on
distributed MDBSs, which refers to the MDBS where participating DBMSs are
located on different sites. Many of the issues that we discussed are common to both
single-node and distributed MDBSs; in those cases we will simply use the term
MDBS without qualifying it as single node or distributed. In most current literature,
one finds the term database integration used instead. We discuss these systems
further in Chap. 7. We note, however, that there is considerable variability in the
use of the term “multidatabase” in literature. In this book, we use it consistently as
defined above, which may deviate from its use in some of the existing literature.

The differences in the level of autonomy between the MDBSs and distributed
DBMSs are also reflected in their architectural models. The fundamental difference
relates to the definition of the global conceptual schema. In the case of logically
integrated distributed DBMSs, the global conceptual schema defines the conceptual
view of the entire database, while in the case of MDBSs, it represents only the
collection of some of the local databases that each local DBMS wants to share.
The individual DBMSs may choose to make some of their data available for access
by others. Thus the definition of a global database is different in MDBSs than in
distributed DBMSs. In the latter, the global database is equal to the union of local
databases, whereas in the former it is only a (possibly proper) subset of the same
union. In an MDBS, the GCS (which is also called a mediated schema) is defined
by integrating (possibly parts of) local conceptual schemas.

The component-based architectural model of a distributed MDBS is significantly
different from a distributed DBMS, because each site is a full-fledged DBMS that
manages a different database. The MDBS provides a layer of software that runs on
top of these individual DBMSs and provides users with the facilities of accessing
various databases (Fig. 1.12). Note that in a distributed MDBS, the MDBS layer may
run on multiple sites or there may be central site where those services are offered.
Also note that as far as the individual DBMSs are concerned, the MDBS layer is
simply another application that submits requests and receives answers.

A popular implementation architecture for MDBSs is the mediator/wrapper
approach (Fig. 1.13). A mediator “is a software module that exploits encoded
knowledge about certain sets or subsets of data to create information for a higher
layer of applications” [Wiederhold 1992]. Thus, each mediator performs a particular
function with clearly defined interfaces. Using this architecture to implement an
MDBS, each module in the MDBS layer of Fig. 1.12 is realized as a mediator.
Since mediators can be built on top of other mediators, it is possible to construct a
layered implementation. The mediator level implements the GCS. It is this level that
handles user queries over the GCS and performs the MDBS functionality.

The mediators typically operate using a common data model and interface
language. To deal with potential heterogeneities of the source DBMSs, wrappers

26 1 Introduction

USER

User
Requests

System
Responses

MDBS Layer

Component DBMS Component DBMS···

Fig. 1.12 Components of an MDBS

USER

User
Requests

System
Responses

Mediator Mediator

Mediator Mediator

Wrapper Wrapper Wrapper

DBMS DBMS DBMS DBMS

Fig. 1.13 Mediator/wrapper architecture

are implemented whose task is to provide a mapping between a source DBMSs
view and the mediators’ view. For example, if the source DBMS is a relational
one, but the mediator implementations are object-oriented, the required mappings
are established by the wrappers. The exact role and function of mediators differ
from one implementation to another. In some cases, mediators do nothing more than
translation; these are called “thin” mediators. In other cases, wrappers take over the
execution of some of the query functionality.

1.6 Distributed DBMS Architectures 27

One can view the collection of mediators as a middleware layer that provides
services above the source systems. Middleware is a topic that has been the
subject of significant study in the past decade and very sophisticated middleware
systems have been developed that provide advanced services for development of
distributed applications. The mediators that we discuss only represent a subset of
the functionality provided by these systems.

1.6.5 Cloud Computing

Cloud computing has caused a significant shift in how users and organizations
deploy scalable applications, in particular, data management applications. The
vision encompasses on demand, reliable services provided over the Internet (typ-
ically represented as a cloud) with easy access to virtually infinite computing,
storage, and networking resources. Through very simple web interfaces and at
small incremental cost, users can outsource complex tasks, such as data storage,
database management, system administration, or application deployment, to very
large data centers operated by cloud providers. Thus, the complexity of managing
the software/hardware infrastructure gets shifted from the users’ organization to the
cloud provider.

Cloud computing is a natural evolution, and combination, of different computing
models proposed for supporting applications over the web: service-oriented archi-
tectures (SOA) for high-level communication of applications through web services,
utility computing for packaging computing and storage resources as services, cluster
and virtualization technologies to manage lots of computing and storage resources,
and autonomous computing to enable self-management of complex infrastructure.
The cloud provides various levels of functionality such as:

• Infrastructure-as-a-Service (IaaS): the delivery of a computing infrastructure
(i.e., computing, networking, and storage resources) as a service;

• Platform-as-a-Service (PaaS): the delivery of a computing platform with devel-
opment tools and APIs as a service;

• Software-as-a-Service (SaaS): the delivery of application software as a service;
or

• Database-as-a-Service (DaaS): the delivery of database as a service.

What makes cloud computing unique is its ability to provide and combine all
kinds of services to best fit the users’ requirements. From a technical point of view,
the grand challenge is to support in a cost-effective way, the very large scale of the
infrastructure that has to manage lots of users and resources with high quality of
service.

Agreeing on a precise definition of cloud computing is difficult as there are many
different perspectives (business, market, technical, research, etc.). However, a good
working definition is that a “cloud provides on demand resources and services over
the Internet, usually at the scale and with the reliability of a data center” [Grossman
and Gu 2009]. This definition captures well the main objective (providing on-

28 1 Introduction

demand resources and services over the Internet) and the main requirements for
supporting them (at the scale and with the reliability of a data center). Since the
resources are accessed through services, everything gets delivered as a service.
Thus, as in the services industry, this enables cloud providers to propose a pay-
as-you-go pricing model, whereby users only pay for the resources they consume.

The main functions provided by clouds are: security, directory management,
resource management (provisioning, allocation, monitoring), and data management
(storage, file management, database management, data replication). In addition,
clouds provide support for pricing, accounting, and service level agreement man-
agement.

The typical advantages of cloud computing are the following:

• Cost. The cost for the customer can be greatly reduced since the infrastructure
does not need to be owned and managed; billing is only based on resource
consumption. As for the cloud provider, using a consolidated infrastructure and
sharing costs for multiple customers reduces the cost of ownership and operation.

• Ease of access and use. The cloud hides the complexity of the IT infrastructure
and makes location and distribution transparent. Thus, customers can have access
to IT services anytime, and from anywhere with an Internet connection.

• Quality of service. The operation of the IT infrastructure by a specialized
provider that has extensive experience in running very large infrastructures
(including its own infrastructure) increases quality of service and operational
efficiency.

• Innovation. Using state-of-the-art tools and applications provided by the cloud
encourages modern practice, thus increasing the innovation capabilities of the
customers.

• Elasticity. The ability to scale resources out, up and down dynamically to accom-
modate changing conditions is a major advantage. This is typically achieved
through server virtualization, a technology that enables multiple applications to
run on the same physical computer as virtual machines (VMs), i.e., as if they
would run on distinct physical computers. Customers can then require computing
instances as VMs and attach storage resources as needed.

However, there are also disadvantages that must be well-understood before mov-
ing to the cloud. These disadvantages are similar to when outsourcing applications
and data to an external company.

• Provider dependency. Cloud providers tend to lock in customers, through
proprietary software, proprietary format, or high outbound data transfer costs,
thus making cloud service migration difficult.

• Loss of control. Customers may lose managerial control over critical operations
such as system downtime, e.g., to perform a software upgrade.

• Security. Since a customer’s cloud data is accessible from anywhere on the
Internet, security attacks can compromise business’s data. Cloud security can
be improved using advanced capabilities, e.g., virtual private cloud, but may be
complex to integrate with a company’s security policy.

1.6 Distributed DBMS Architectures 29

User 1 User 2

Cluster 1

service compute storage
nodes nodes nodes

Cluster 2

service compute storage
nodes nodes nodes

create VMs
start VMs
terminate
pay

reserve
store
pay

WS calls

Fig. 1.14 Simplified cloud architecture

• Hidden costs. Customizing applications to make them cloud-ready using SaaS/-
PaaS may incur significant development costs.

There is no standard cloud architecture and there will probably never be one,
since different cloud providers provide different cloud services (IaaS, PaaS, SaaS,
etc.) in different ways (public, private, virtual private, etc.) depending on their
business models. Thus, in this section, we discuss a simplified cloud architecture
with emphasis on database management.

A cloud is typically multisite (Fig. 1.14), i.e., made of several geographically
distributed sites (or data centers), each with its own resources and data. Major
cloud providers divide the world in several regions, each with several sites. There
are three major reasons for this. First, there is low latency access in a user’s
region since user requests can be directed to the closest site. Second, using data
replication across sites in different regions provides high availability, in particular,
resistance from catastrophic (site) failures. Third, some national regulations that
protect citizen’s data privacy force cloud providers to locate data centers in their
region (e.g., Europe). Multisite transparency is generally a default option, so the
cloud appears “centralized” and the cloud provider can optimize resource allocation
to users. However, some cloud providers (e.g., Amazon and Microsoft) make their
sites visible to users (or application developers). This allows choosing a particular
data center to install an application with its database, or to deploy a very large
application across multiple sites communicating through web services (WS). For
instance, in Fig. 1.14, we could imagine that Client 1 first connects to an application
at Data Center 1, which would call an application at Data Center 2 using WS.

The architecture of a cloud site (data center) is typically 3-tier. The first tier
consists of web clients that access cloud web servers, typically via a router or load
balancer at the cloud site. The second tier consists of web/application servers that
support the clients and provide business logic. The third tier consists of database
servers. There can be other kinds of servers, e.g., cache servers between the
application servers and database servers. Thus, the cloud architecture provides two

30 1 Introduction

levels of distribution: geographical distribution across sites using a WAN and within
a site, distribution across the servers, typically in a computer cluster. The techniques
used at the first level are those of geographically distributed DBMS, while the
techniques used at the second level are those of parallel DBMS.

Cloud computing has been originally designed by web giants to run their very
large scale applications on data centers with thousands of servers. Big data systems
(Chap. 10) and NoSQL/NewSQL systems (Chap. 11) specifically address the
requirements of such applications in the cloud, using distributed data management
techniques. With the advent of SaaS and PaaS solutions, cloud providers also
need to serve small applications for very high numbers of customers, called
tenants, each with its own (small) database accessed by its users. Dedicating
a server for each tenant is wasteful in terms of hardware resources. To reduce
resource wasting and operation cost, cloud providers typically share resources
among tenants using a “multitenancy” architecture in which a single server can
accommodate multiple tenants. Different multitenant models yield different trade-
offs between performance, isolation (both security and performance isolation), and
design complexity. A straightforward model used in IaaS is hardware sharing,
which is typically achieved through server virtualization, with a VM for each
tenant database and operating system. This model provides strong security isolation.
However, resource utilization is limited because of redundant DBMS instances (one
per VM) that do not cooperate and perform independent resource management.
In the context of SaaS, PaaS, or DaaS, we can distinguish three main multitenant
database models with increasing resource sharing and performance at the expense
of less isolation and increased complexity.

• Shared DBMS server. In this model, tenants share a server with one DBMS
instance, but each tenant has a different database. Most DBMSs provide support
for multiple databases in a single DBMS instance. Thus, this model can be easily
supported using a DBMS. It provides strong isolation at the database level and is
more efficient than shared hardware as the DBMS instance has full control over
hardware resources. However, managing each of these databases separately may
still lead to inefficient resource management.

• Shared database. In this model, tenants share a database, but each tenant has
its own schema and tables. Database consolidation is typically provided by
an additional abstraction layer in the DBMS. This model is implemented by
some DBMS (e.g., Oracle) using a single container database hosting multiple
databases. It provides good resource usage and isolation at schema level.
However, with lots (thousands) of tenants per server, there is a high number of
small tables, which induces much overhead.

• Shared tables. In this model, tenants share a database, schema, and tables.
To distinguish the rows of different tenants in a table, there is usually an
additional column tenant_id. Although there is better resource sharing (e.g.,
cache memory), there is less isolation, both in security and performance. For
instance, bigger customers will have more rows in shared tables, thus hurting the
performance for smaller customers.

1.7 Bibliographic Notes 31

1.7 Bibliographic Notes

There are not many books on distributed DBMSs. The two early ones by Ceri and
Pelagatti [1983] and Bell and Grimson [1992] are now out of print. A more recent
book by Rahimi and Haug [2010] covers some of the classical topics that are also
covered in this book. In addition, almost every database book now has a chapter on
distributed DBMSs.

The pioneering systems Distributed INGRES and SDD-1 are discussed in
[Stonebraker and Neuhold 1977] and [Wong 1977], respectively.

Database design is discussed in an introductory manner in [Levin and Morgan
1975] and more comprehensively in [Ceri et al. 1987]. A survey of the file
distribution algorithms is given in [Dowdy and Foster 1982]. Directory management
has not been considered in detail in the research community, but general techniques
can be found in [Chu and Nahouraii 1975] and [Chu 1976]. A survey of query
processing techniques can be found in [Sacco and Yao 1982]. Concurrency control
algorithms are reviewed in [Bernstein and Goodman 1981] and [Bernstein et al.
1987]. Deadlock management has also been the subject of extensive research; an
introductory paper is [Isloor and Marsland 1980] and a widely quoted paper is
[Obermack 1982]. For deadlock detection, good surveys are [Knapp 1987] and
[Elmagarmid 1986]. Reliability is one of the issues discussed in [Gray 1979], which
is one of the landmark papers in the field. Other important papers on this topic are
[Verhofstadt 1978] and [Härder and Reuter 1983]. [Gray 1979] is also the first paper
discussing the issues of operating system support for distributed databases; the same
topic is addressed in [Stonebraker 1981]. Unfortunately, both papers emphasize
centralized database systems. A very good early survey of multidatabase systems
is by Sheth and Larson [1990]; Wiederhold [1992] proposes the mediator/wrapper
approach to MDBSs. Cloud computing has been the topic of quite a number of
recent books; perhaps [Agrawal et al. 2012] is a good starting point and [Cusumano
2010] is a good short overview. The architecture we used in Sect. 1.6.5 is from
[Agrawal et al. 2012]. Different multitenant models in cloud environments are
discussed in [Curino et al. 2011] and [Agrawal et al. 2012].

There have been a number of architectural framework proposals. Some of the
interesting ones include Schreiber’s quite detailed extension of the ANSI/SPARC
framework which attempts to accommodate heterogeneity of the data models
[Schreiber 1977], and the proposal by Mohan and Yeh [1978]. As expected, these
date back to the early days of the introduction of distributed DBMS technology.
The detailed component-wise system architecture given in Fig. 1.11 derives from
[Rahimi 1987]. An alternative to the classification that we provide in Fig. 1.8 can be
found in [Sheth and Larson 1990].

The book by Agrawal et al. [2012] gives a very good presentation of the
challenges and concepts of data management in the cloud, including distributed
transactions, big data systems, and multitenant databases.

Chapter 2
Distributed and Parallel Database Design

A typical database design is a process which starts from a set of requirements
and results in the definition of a schema that defines the set of relations. The
distribution design starts from this global conceptual schema (GCS) and follows two
tasks: partitioning (fragmentation) and allocation. Some techniques combine these
two tasks in one algorithm, while others implement them in two separate tasks as
depicted in Fig. 2.1. The process typically makes use of some auxiliary information
that is depicted in the figure although some of this information is optional (hence
the dashed lines in the figure).

The main reasons and objectives for fragmentation in distributed versus parallel
DBMSs are slightly different. In the case of the former, the main reason is data
locality. To the extent possible, we would like queries to access data at a single
site in order to avoid costly remote data access. A second major reason is that frag-
mentation enables a number of queries to execute concurrently (through interquery
parallelism). The fragmentation of relations also results in the parallel execution
of a single query by dividing it into a set of subqueries that operate on fragments,
which is referred to as intraquery parallelism. Therefore, in distributed DBMSs,
fragmentation can potentially reduce costly remote data access and increase inter
and intraquery parallelism.

In parallel DBMSs, data localization is not that much of a concern since the
communication cost among nodes is much less than in geo-distributed DBMSs.
What is much more of a concern is load balancing as we want each node in the
system to be doing more or less the same amount of work. Otherwise, there is the
danger of the entire system thrashing since one or a few nodes end up doing a
majority of the work, while many nodes remain idle. This also increases the latency
of queries and transactions since they have to wait for these overloaded nodes to
finish. Inter and intraquery parallelism are both important as we discuss in Chap. 8,
although some of the modern big data systems (Chap. 10) pay more attention to
interquery parallelism.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_2

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_2

34 2 Distributed and Parallel Database Design

GCS

Distribution
Design

Auxiliary
Information

Set of LCSs

Allocation

LCS2LCS1 LCSn

Physical
Design

Physical
Design

Physical
Design

Physical
Schema 1

Physical
Schema 2

Physical
Schema n

...

...

Fig. 2.1 Distribution design process

Fragmentation is important for system performance, but it also raises difficulties
in distributed DBMSs. It is not always possible to entirely localize queries and
transactions to only access data at one site—these are called distributed queries and
distributed transactions. Processing them incurs a performance penalty due to, for
example, the need to perform distributed joins and the cost of distributed transaction
commitment (see Chap. 5). One way to overcome this penalty for read-only queries
is to replicate the data in multiple sites (see Chap. 6), but that further exacerbates the
overhead of distributed transactions. A second problem is related to semantic data
control, specifically to integrity checking. As a result of fragmentation, attributes
participating in a constraint (see Chap. 3) may be decomposed into different
fragments that are allocated to different sites. In this case, integrity checking itself
involves distributed execution, which is costly. We consider the issue of distributed
data control in the next chapter. Thus, the challenge is to partition1 and allocate

1A minor point related to terminology is the use of terms “fragmentation” and “partitioning”: in
distributed DBMSs, the term fragmentation is more commonly used, while in parallel DBMSs, data
partitioning is preferred. We do not prefer one over the other and will use them interchangeably in
this chapter and in this book.

2.1 Data Fragmentation 35

ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP
ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36
E8 P3 Manager 40

ASG

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York
P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ
TITLE SAL
Elect. Eng. 40000
Syst. Anal. 34000
Mech. Eng. 27000
Programmer 24000

PAY

Fig. 2.2 Example database

the data in such a way that most user queries and transactions are local to one site,
minimizing distributed queries and transactions.

Our discussion in this chapter will follow the methodology of Fig. 2.1: we will
first discuss fragmentation of a global database (Sect. 2.1), and then discuss how
to allocate these fragments across the sites of a distributed database (Sect. 2.2). In
this methodology, the unit of distribution/allocation is a fragment. There are also
approaches that combine the fragmentation and allocation steps and we discuss
these in Sect. 2.3. Finally we discuss techniques that are adaptive to changes in
the database and the user workload in Sect. 2.4.

In this chapter, and throughout the book, we use the engineering database
introduced in the previous chapter. Figure 2.2 depicts an instance of this database.

2.1 Data Fragmentation

Relational tables can be partitioned either horizontally or vertically. The basis
of horizontal fragmentation is the select operator where the selection predicates
determine the fragmentation, while vertical fragmentation is performed by means
of the project operator. The fragmentation may, of course, be nested. If the nestings
are of different types, one gets hybrid fragmentation.

Example 2.1 Figure 2.3 shows the PROJ relation of Fig. 2.2 divided horizontally
into two fragments: PROJ1 contains information about projects whose budgets are
less than $200,000, whereas PROJ2 stores information about projects with larger
budgets. �

36 2 Distributed and Parallel Database Design

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

PROJ1

PNO PNAME BUDGET LOC
P3 CAD/CAM 255000 New York
P4 Maintenance 310000 Paris

PROJ2

Fig. 2.3 Example of horizontal partitioning

PNO BUDGET
P1 150000
P2 135000
P3 250000
P4 310000

PROJ1
PNO PNAME LOC
P1 Instrumentation Montreal
P2 Database Develop. New York
P3 CAD/CAM New York
P4 Maintenance Paris

PROJ2

Fig. 2.4 Example of vertical partitioning

Example 2.2 Figure 2.4 shows the PROJ relation of Fig. 2.2 partitioned vertically
into two fragments: PROJ1 and PROJ2. PROJ1 contains only the information
about project budgets, whereas PROJ2 contains project names and locations. It is
important to notice that the primary key to the relation (PNO) is included in both
fragments. �

Horizontal fragmentation is more prevalent in most systems, in particular in
parallel DBMSs (where the literature prefers the term sharding). The reason for
the prevalence of horizontal fragmentation is the intraquery parallelism2 that most
recent big data platforms advocate. However, vertical fragmentation has been
successfully used in column-store parallel DBMSs, such as MonetDB and Vertica,
for analytical applications, which typically require fast access to a few attributes.

The systematic fragmentation techniques that we discuss in this chapter ensure
that the database does not undergo semantic change during fragmentation, such as
losing data as a consequence of fragmentation. Therefore, it is necessary to be able
to argue about the completeness and reconstructability. In the case of horizontal
fragmentation, disjointness of fragments may also be a desirable property (unless
we explicitly wish to replicate individual tuples as we will discuss later).

1. Completeness. If a relation instance R is decomposed into fragments FR =
{R1,R2, . . . ,Rn}, each data item that is in R can also be found in one or more of
Ri’s. This property, which is identical to the lossless decomposition property of

2In this chapter, we use the terms “query” and “transaction” interchangeably as they both refer to
the system workload that is one of the main inputs to distribution design. As highlighted in Chap. 1
and as will be discussed in length in Chap. 5, transactions provide additional guarantees, and
therefore their overhead is higher and we will incorporate this into our discussion where needed.

2.1 Data Fragmentation 37

normalization (Appendix A), is also important in fragmentation since it ensures
that the data in a global relation is mapped into fragments without any loss. Note
that in the case of horizontal fragmentation, the “item” typically refers to a tuple,
while in the case of vertical fragmentation, it refers to an attribute.

2. Reconstruction. If a relation R is decomposed into fragments FR = {R1,R2, . . . ,

Rn}, it should be possible to define a relational operator � such that

R = �Ri , ∀Ri ∈ FR

The operator � will be different for different forms of fragmentation; it is
important, however, that it can be identified. The reconstructability of the relation
from its fragments ensures that constraints defined on the data in the form of
dependencies are preserved.

3. Disjointness. If a relation R is horizontally decomposed into fragments FR =
{R1, R2, . . . , Rn} and data item di is in Rj , it is not in any other fragment
Rk (k �= j). This criterion ensures that the horizontal fragments are disjoint.
If relation R is vertically decomposed, its primary key attributes are typically
repeated in all its fragments (for reconstruction). Therefore, in case of vertical
partitioning, disjointness is defined only on the nonprimary key attributes of a
relation.

2.1.1 Horizontal Fragmentation

As we explained earlier, horizontal fragmentation partitions a relation along its
tuples. Thus, each fragment has a subset of the tuples of the relation. There are
two versions of horizontal partitioning: primary and derived. Primary horizontal
fragmentation of a relation is performed using predicates that are defined on that
relation. Derived horizontal fragmentation, on the other hand, is the partitioning of
a relation that results from predicates being defined on another relation.

Later in this section, we consider an algorithm for performing both of these
fragmentations. However, we first investigate the information needed to carry out
horizontal fragmentation activity.

2.1.1.1 Auxiliary Information Requirements

The database information that is required concerns the global conceptual schema,
primarily on how relations are connected to one another, especially with joins. One
way of capturing this information is to explicitly model primary key–foreign key
join relationships in a join graph. In this graph, each relation Ri is represented as a
vertex and a directed edge Lk exists from Ri to Rj if there is a primary key–foreign
key equijoin from Ri to Rj . Note that Lk also represents a one-to-many relationship.

38 2 Distributed and Parallel Database Design

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP
L1

PNO, PNAME, BUDGET, LOC

PROJ

ENO, PNO, RESP, DUR

ASG

L2 L3

Fig. 2.5 Join graph representing relationships among relations

Example 2.3 Figure 2.5 shows the edges among the database relations given in
Fig. 2.2. Note that the direction of the edge shows a one-to-many relationship. For
example, for each title there are multiple employees with that title; thus, there is an
edge between the PAY and EMP relations. Along the same lines, the many-to-many
relationship between the EMP and PROJ relations is expressed with two edges to
the ASG relation. �

The relation at the tail of an edge is called the source of the edge and the relation
at the head is called the target. Let us define two functions: source and target, both
of which provide mappings from the set of edges to the set of relations. Considering
L1 of Fig. 2.5, source(L1) = PAY and target (L1) = EMP.

Additionally, the cardinality of each relation R denoted by card(R) is useful in
horizontal fragmentation.

These approaches also make use of the workload information, i.e., the queries
that are run on the database. Of particular importance are the predicates used in
user queries. In many cases, it may not be possible to analyze the full workload,
so the designer would normally focus on the important queries. There is a well-
known “80/20” rule-of-thumb in computer science that applies in this case as well:
the most common 20% of user queries account for 80% of the total data accesses,
so focusing on that 20% is usually sufficient to get a fragmentation that improves
most distributed database accesses.

At this point, we are interested in determining simple predicates. Given a relation
R(A1, A2, . . . , An), where Ai is an attribute defined over domain Di , a simple
predicate pj defined on R has the form

pj : Ai θ V alue

where θ ∈ {=, <, �=, ≤, >, ≥} and Value is chosen from the domain of
Ai (V alue ∈ Di). We use Pri to denote the set of all simple predicates defined
on a relation Ri . The members of Pri are denoted by pij .

2.1 Data Fragmentation 39

Example 2.4 Given the relation instance PROJ of Fig. 2.2,

PNAME = “Maintenance” and BUDGET ≤ 200000

is a simple predicate. �
User queries often include more complicated predicates, which are Boolean com-

binations of simple predicates. One such combination, called a minterm predicate,
is the conjunction of simple predicates. Since it is always possible to transform a
Boolean expression into conjunctive normal form, the use of minterm predicates in
the design algorithms does not cause any loss of generality.

Given a set Pri = {pi1, pi2, . . . , pim} of simple predicates for relation Ri , the
set of minterm predicates Mi = {mi1, mi2, . . . , miz} is defined as

Mi = {mij =
∧

pik∈Pri

p∗
ik}, 1 ≤ k ≤ m, 1 ≤ j ≤ z

where p∗
ik = pik or p∗

ik = ¬pik . So each simple predicate can occur in a minterm
predicate in either its natural form or its negated form.

Negation of a predicate is straightforward for equality predicates of the
form Attribute = V alue. For inequality predicates, the negation should be
treated as the complement. For example, the negation of the simple predicate
Attribute ≤ V alue is Attribute > V alue. There are theoretical problems of
finding the complement in infinite sets, and also the practical problem that the
complement may be difficult to define. For example, if two simple predicates
are defined of the form Lower_bound ≤ Attribute_1, and Attribute_1 ≤
Upper_bound, their complements are ¬(Lower_bound ≤ Attribute_1) and
¬(Attribute_1 ≤ Upper_bound). However, the original two simple predicates
can be written as Lower_bound ≤ Attribute_1 ≤ Upper_bound with a
complement ¬(Lower_bound ≤ Attribute_1 ≤ Upper_bound) that may not be
easy to define. Therefore, we limit ourselves to simple predicates.

Example 2.5 Consider relation PAY of Fig. 2.2. The following are some of the
possible simple predicates that can be defined on PAY.

p1 : TITLE = “Elect. Eng.”

p2 : TITLE = “Syst. Anal.”

p3 : TITLE = “Mech. Eng.”

p4 : TITLE = “Programmer”

p5 : SAL ≤ 30000

The following are some of the minterm predicates that can be defined based on
these simple predicates.

40 2 Distributed and Parallel Database Design

m1 : TITLE = “Elect. Eng.” ∧ SAL ≤ 30000

m2 : TITLE = “Elect. Eng.” ∧ SAL > 30000

m3 : ¬(TITLE = “Elect. Eng.”) ∧ SAL ≤ 30000

m4 : ¬(TITLE = “Elect. Eng.”) ∧ SAL > 30000

m5 : TITLE = “Programmer” ∧ SAL ≤ 30000

m6 : TITLE = “Programmer” ∧ SAL > 30000

�
These are only a representative sample, not the entire set of minterm predicates.

Furthermore, some of the minterms may be meaningless given the semantics of
relation PAY, in which case they are removed from the set. Finally, note that
these are simplified versions of the minterms. The minterm definition requires each
predicate to be in a minterm in either its natural or its negated form. Thus, m1, for
example, should be written as

m1 : TITLE = “Elect. Eng.” ∧ TITLE �= “Syst. Anal.” ∧ TITLE �= “Mech. Eng.”

∧ TITLE �= “Programmer” ∧ SAL ≤ 30000

This is clearly not necessary, and we use the simplified form.
We also need quantitative information about the workload:

1. Minterm selectivity: number of tuples of the relation that would satisfy a given
minterm predicate. For example, the selectivity of m2 of Example 2.5 is 0.25
since one of the four tuples in PAY satisfies m2. We denote the selectivity of a
minterm mi as sel(mi).

2. Access frequency: frequency with which user applications access data. If Q =
{q1, q2, . . . , qq} is a set of user queries, acc(qi) indicates the access frequency
of query qi in a given period.

Note that minterm access frequencies can be determined from the query frequen-
cies. We refer to the access frequency of a minterm mi as acc(mi).

2.1.1.2 Primary Horizontal Fragmentation

Primary horizontal fragmentation applies to the relations that have no incoming
edges in the join graph and performed using the predicates that are defined on that
relation. In our examples, relations PAY and PROJ are subject to primary horizontal
fragmentation, and EMP and ASG are subject to derived horizontal fragmentation.
In this section, we focus on primary horizontal fragmentation and devote the next
section to derived horizontal fragmentation.

A primary horizontal fragmentation is defined by a selection operation on the
source relations of a database schema. Therefore, given relation R its horizontal

2.1 Data Fragmentation 41

fragments are given by

Ri = σFi
(R), 1 ≤ i ≤ w

where Fi is the selection formula used to obtain fragment Ri (also called the
fragmentation predicate). Note that if Fi is in conjunctive normal form, it is a
minterm predicate (mi). The algorithm requires that Fi be a minterm predicate.

Example 2.6 The decomposition of relation PROJ into horizontal fragments
PROJ1 and PROJ2 in Example 2.1 is defined as follows3:

PROJ1 = σBUDGET≤200000(PROJ)

PROJ2 = σBUDGET>200000(PROJ)

�
Example 2.6 demonstrates one of the problems of horizontal partitioning. If the
domain of the attributes participating in the selection formulas is continuous and
infinite, as in Example 2.6, it is quite difficult to define the set of formulas F =
{F1, F2, . . . , Fn} that would fragment the relation properly. One possible solution
is to define ranges as we have done in Example 2.6. However, there is always the
problem of handling the two endpoints. For example, if a new tuple with a BUDGET
value of, say, $600,000 were to be inserted into PROJ, one would have to review
the fragmentation to decide if the new tuple is to go into PROJ2 or if the fragments
need to be revised and a new fragment needs to be defined as

PROJ2 = σ200000<BUDGET∧BUDGET≤400000(PROJ)

PROJ3 = σBUDGET>400000(PROJ)

Example 2.7 Consider relation PROJ of Fig. 2.2. We can define the following
horizontal fragments based on the project location. The resulting fragments are
shown in Fig. 2.6.

PROJ1 = σLOC=“Montreal”(PROJ)

PROJ2 = σLOC=“New York”(PROJ)

PROJ3 = σLOC=“Paris”(PROJ)

�
Now we can define a horizontal fragment more carefully. A horizontal fragment

Ri of relation R consists of all the tuples of R that satisfy a minterm predicate mi .

3We assume that the nonnegativity of the BUDGET values is a feature of the relation that is enforced
by an integrity constraint. Otherwise, a simple predicate of the form 0 ≤ BUDGET also needs to be
included in Pr . We assume this to be true in all our examples and discussions in this chapter.

42 2 Distributed and Parallel Database Design

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC

P2 Database Develop. 135000 New York
P3 CAD/CAM 255000 New York
P4 Maintenance 310000 Paris

PROJ2

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

PROJ3

Fig. 2.6 Primary horizontal fragmentation of relation PROJ

Hence, given a set of minterm predicates M , there are as many horizontal fragments
of relation R as there are minterm predicates. This set of horizontal fragments is also
commonly referred to as the set of minterm fragments.

We want the set of simple predicates that form the minterm predicates to be
complete and minimal. A set of simple predicates Pr is said to be complete if and
only if there is an equal probability of access by every application to any tuple
belonging to any minterm fragment that is defined according to Pr .4

Example 2.8 Consider the fragmentation of relation PROJ given in Example 2.7.
If the only query that accesses PROJ wants to access the tuples according to the
location, the set is complete since each tuple of each fragment PROJi has the same
probability of being accessed. If, however, there is a second query that accesses only
those project tuples where the budget is less than or equal to $200,000, then Pr is not
complete. Some of the tuples within each PROJi have a higher probability of being
accessed due to this second application. To make the set of predicates complete, we
need to add (BUDGET ≤ 200000,BUDGET > 200000) to Pr:

Pr = {LOC = “Montreal”,LOC = “New York”,LOC = “Paris”,

BUDGET ≤ 200000,BUDGET > 200000}

�
Completeness is desirable because fragments obtained according to a complete set
of predicates are logically uniform, since they all satisfy the minterm predicate.
They are also statistically homogeneous in the way applications access them. These

4Clearly the definition of completeness of a set of simple predicates is different from the
completeness rule of fragmentation we discussed earlier.

2.1 Data Fragmentation 43

characteristics ensure that the resulting fragmentation results in a balanced load
(with respect to the given workload) across all the fragments.

Minimality states that if a predicate influences how fragmentation is performed
(i.e., causes a fragment f to be further fragmented into, say, fi and fj), there
should be at least one application that accesses fi and fj differently. In other words,
the simple predicate should be relevant in determining a fragmentation. If all the
predicates of a set Pr are relevant, Pr is minimal.

A formal definition of relevance can be given as follows. Let mi and mj be two
minterm predicates that are identical in their definition, except that mi contains the
simple predicate pi in its natural form, while mj contains ¬pi . Also, let fi and fj

be two fragments defined according to mi and mj , respectively. Then pi is relevant
if and only if

acc(mi)

card(fi)
�= acc(mj)

card(fj)

Example 2.9 The set Pr defined in Example 2.8 is complete and minimal. If,
however, we were to add the predicate PNAME = “Instrumentation” to Pr , the
resulting set would not be minimal since the new predicate is not relevant with
respect to Pr—there is no application that would access the resulting fragments
any differently. �

We now present an iterative algorithm that would generate a complete and
minimal set of predicates Pr ′ given a set of simple predicates Pr . This algorithm,
called COM_MIN, is given in Algorithm 2.1 where we use the following notation:

Rule 1: each fragment is accessed differently by at least one application.

fi of P r ′: fragment fi defined according to a minterm predicate defined over the
predicates of Pr ′.

COM_MIN begins by finding a predicate that is relevant and that partitions the
input relation. The repeat-until loop iteratively adds predicates to this set, ensuring
minimality at each step. Therefore, at the end the set Pr ′ is both minimal and
complete.

The second step in the primary horizontal design process is to derive the set of
minterm predicates that can be defined on the predicates in set Pr ′. These minterm
predicates determine the fragments that are used as candidates in the allocation step.
Determination of individual minterm predicates is trivial; the difficulty is that the
set of minterm predicates may be quite large (in fact, exponential on the number of
simple predicates). We look at ways of reducing the number of minterm predicates
that need to be considered in fragmentation.

This reduction can be achieved by eliminating some of the minterm fragments
that may be meaningless. This elimination is performed by identifying those
minterms that might be contradictory to a set of implications I . For example, if
Pr ′ = {p1, p2}, where

44 2 Distributed and Parallel Database Design

Algorithm 2.1: COM_MIN
Input: R: relation; Pr: set of simple predicates
Output: Pr ′: set of simple predicates
Declare: F : set of minterm fragments
begin

Pr ′ ← ∅; F ← ∅ {initialize}
find pi ∈ Pr such that pi partitions R according to Rule 1
Pr ′ ← Pr ′ ∪ pi

P r ← Pr − pi

F ← F ∪ fi {fi is the minterm fragment according to pi}
repeat

find pj ∈ Pr such that pj partitions some fk of Pr ′ according to Rule 1
Pr ′ ← Pr ′ ∪ pj

P r ← Pr − pj

F ← F ∪ fj

if ∃pk ∈ Pr ′ which is not relevant then
Pr ′ ← Pr ′ − pk

F ← F − fk

end if
until Pr ′ is complete

end

p1 : att = value_1
p2 : att = value_2

and the domain of att is {value_1, value_2}, so I contains two implications:

i1 : (att = value_1) ⇒ ¬(att = value_2)

i2 : ¬(att = value1) ⇒ (att = value_2)

The following four minterm predicates are defined according to Pr ′:

m1 : (att = value_1) ∧ (att = value_2)

m2 : (att = value_1) ∧ ¬(att = value_2)

m3 : ¬(att = value_1) ∧ (att = value_2)

m4 : ¬(att = value_1) ∧ ¬(att = value_2)

In this case the minterm predicates m1 and m4 are contradictory to the implications
I and can therefore be eliminated from M .

The algorithm for primary horizontal fragmentation, called PHORIZONTAL,
is given in Algorithm 2.2. The input is a relation R that is subject to primary
horizontal fragmentation, and Pr , which is the set of simple predicates that have
been determined according to applications defined on relation R.

Example 2.10 We now consider relations PAY and PROJ that are subject to primary
horizontal fragmentation as depicted in Fig. 2.5.

2.1 Data Fragmentation 45

Suppose that there is only one query that accesses PAY, which checks the salary
information and determines a raise accordingly. Assume that employee records are
managed in two places, one handling the records of those with salaries less than or
equal to $30,000, and the other handling the records of those who earn more than
$30,000. Therefore, the query is issued at two sites.

The simple predicates that would be used to partition relation PAY are

p1 : SAL ≤ 30000

p2 : SAL > 30000

thus giving the initial set of simple predicates Pr = {p1, p2}. Applying the
COM_MIN algorithm with i = 1 as initial value results in Pr ′ = {p1}. This
is complete and minimal since p2 would not partition f1 (which is the minterm
fragment formed with respect to p1) according to Rule 1. We can form the following
minterm predicates as members of M:

m1 : SAL < 30000

m2 : ¬(SAL ≤ 30000) = SAL > 30000

Therefore, we define two fragments FPAY = {PAY1,PAY2} according to M

(Fig. 2.7).

Algorithm 2.2: PHORIZONTAL
Input: R: relation; Pr: set of simple predicates
Output: FR: set of horizontal fragments of R
begin

Pr ′ ←COM_MIN(R, P r)
determine the set M of minterm predicates
determine the set I of implications among pi ∈ Pr ′
foreach mi ∈ M do

if mi is contradictory according to I then
M ← M − mi

end if
end foreach
FR = {Ri |Ri = σmi

R},∀mi ∈ M

end

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY1

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY2

Fig. 2.7 Horizontal fragmentation of relation PAY

46 2 Distributed and Parallel Database Design

Let us next consider relation PROJ. Assume that there are two queries. The first is
issued at three sites and finds the names and budgets of projects given their location.
In SQL notation, the query is

SELECT PNAME, BUDGET
FROM PROJ
WHERE LOC=Value

For this application, the simple predicates that would be used are the following:

p1 : LOC = “Montreal”

p2 : LOC = “New York”

p3 : LOC = “Paris”

The second query is issued at two sites and has to do with the management of
the projects. Those projects that have a budget of less than or equal to $200,000 are
managed at one site, whereas those with larger budgets are managed at a second
site. Thus, the simple predicates that should be used to fragment according to the
second application are

p4 : BUDGET ≤ 200000

p5 : BUDGET > 200000

Using COM_MIN, we get the complete and minimal set Pr ′ = {p1, p2, p4}.
Actually COM_MIN would add any two of p1, p2, p3 to Pr ′; in this example we
have selected to include p1, p2.

Based on Pr ′, the following six minterm predicates that form M can be defined:

m1 : (LOC = “Montreal”) ∧ (BUDGET ≤ 200000)

m2 : (LOC = “Montreal”) ∧ (BUDGET > 200000)

m3 : (LOC = “New York”) ∧ (BUDGET ≤ 200000)

m4 : (LOC = “New York”) ∧ (BUDGET > 200000)

m5 : (LOC = “Paris”) ∧ (BUDGET ≤ 200000)

m6 : (LOC = “Paris”) ∧ (BUDGET > 200000)

As noted in Example 2.5, these are not the only minterm predicates that can be
generated. It is, for example, possible to specify predicates of the form

p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5

2.1 Data Fragmentation 47

However, the obvious implications (e.g., p1 ⇒ ¬p2 ∧ ¬p3, ¬p5 ⇒ p4) eliminate
these minterm predicates and we are left with m1 to m6.

Looking at the database instance in Fig. 2.2, one may be tempted to claim that
the following implications hold:

i8 : LOC = “Montreal” ⇒ ¬(BUDGET > 200000)

i9 : LOC = “Paris” ⇒ ¬(BUDGET ≤ 200000)

i10 : ¬(LOC = “Montreal”) ⇒ BUDGET ≤ 200000

i11 : ¬(LOC = “Paris”) ⇒ BUDGET > 200000

However, remember that implications should be defined according to the seman-
tics of the database, not according to the current values. There is nothing in the
database semantics that suggest that the implications i8–i11 hold. Some of the
fragments defined according to M = {m1, . . . , m6} may be empty, but they are,
nevertheless, fragments.

The result of the primary horizontal fragmentation of PROJ is to form six
fragments FPROJ = {PROJ1,PROJ2,PROJ3,PROJ4,PROJ5,PROJ6} of relation
PROJ according to the minterm predicates M (Fig. 2.8). Since fragments PROJ2
and PROJ5 are empty, they are not depicted in Fig. 2.8. �

2.1.1.3 Derived Horizontal Fragmentation

A derived horizontal fragmentation applies to the target relations in the join graph
and is performed based on predicates defined over the source relation of the
join graph edge. In our examples, relations EMP and ASG are subject to derived
horizontal fragmentation. Recall that the edge between the source and the target
relations is defined as an equijoin that can be implemented by means of semijoins.

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC
P2 Database Develop. 135000 New York

PROJ3

PNO PNAME BUDGET LOC
P3 CAD/CAM 255000 New York

PROJ4

PNO PNAME BUDGET LOC
P4 Maintenance 310000 Paris

PROJ6

Fig. 2.8 Horizontal fragmentation of relation PROJ

48 2 Distributed and Parallel Database Design

This second point is important, since we want to partition a target relation according
to the fragmentation of its source, but we also want the resulting fragment to be
defined only on the attributes of the target relation.

Accordingly, given an edge L where source(L) = S and target (L) = R, the
derived horizontal fragments of R are defined as

Ri = R� Si , 1 ≤ i ≤ w

where w is the maximum number of fragments that will be defined on R and Si =
σFi

(S), where Fi is the formula according to which the primary horizontal fragment
Si is defined.

Example 2.11 Consider edge L1 in Fig. 2.5, where source(L1) = PAY and
target (L1) = EMP. Then, we can group engineers into two groups according to
their salary: those making less than or equal to $30,000, and those making more
than $30,000. The two fragments EMP1 and EMP2 are defined as follows:

EMP1 = EMP� PAY1

EMP2 = EMP� PAY2

where

PAY1 = σSAL≤30000(PAY)

PAY2 = σSAL>30000(PAY)

The result of this fragmentation is depicted in Fig. 2.9. �
Derived horizontal fragmentation applies to the target relations in the join graph

and are performed based on predicates defined over the source relation of the
join graph edge. In our examples, relations EMP and ASG are subject to derived
horizontal fragmentation. To carry out a derived horizontal fragmentation, three
inputs are needed: the set of partitions of the source relation (e.g., PAY1 and PAY2
in Example 2.11), the target relation, and the set of semijoin predicates between

ENO ENAME TITLE
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1
ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

EMP2

Fig. 2.9 Derived horizontal fragmentation of relation EMP

2.1 Data Fragmentation 49

the source and the target (e.g., EMP.TITLE = PAY.TITLE in Example 2.11). The
fragmentation algorithm, then, is quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database
schema, it is common that there are multiple edges into a relation R (e.g., in Fig. 2.5,
ASG has two incoming edges). In this case, there is more than one possible derived
horizontal fragmentation of RṪhe choice of candidate fragmentation is based on two
criteria:

1. The fragmentation with better join characteristics;
2. The fragmentation used in more queries.

Let us discuss the second criterion first. This is quite straightforward if we
take into consideration the frequency that the data is accessed by the workload.
If possible, one should try to facilitate the accesses of the “heavy” users so that their
total impact on system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for
example, the fragmentation we discussed in Example 2.1. The effect (and the
objective) of this fragmentation is that the join of the EMP and PAY relations
to answer the query is assisted (1) by performing it on smaller relations (i.e.,
fragments), and (2) by potentially performing joins in parallel.

The first point is obvious. The second point deals with intraquery parallelism
of join queries, i.e., executing each join query in parallel, which is possible under
certain circumstances. Consider, for example, the edges between the fragments (i.e.,
the join graph) of EMP and PAY derived in Example 2.9. We have PAY1 → EMP1
and PAY2 → EMP2; there is only one edge coming in or going out of a fragment, so
this is a simple join graph. The advantage of a design where the join relationship
between fragments is simple is that the target and source of an edge can be
allocated to one site and the joins between different pairs of fragments can proceed
independently and in parallel.

Unfortunately, obtaining simple join graphs is not always possible. In that case,
the next desirable alternative is to have a design that results in a partitioned join
graph. A partitioned graph consists of two or more subgraphs with no edges between
them. Fragments so obtained may not be distributed for parallel execution as easily
as those obtained via simple join graphs, but the allocation is still possible.

Example 2.12 Let us continue with the distribution design of the database we
started in Example 2.10. We already decided on the fragmentation of relation EMP
according to the fragmentation of PAY (Example 2.11). Let us now consider ASG.
Assume that there are the following two queries:

1. The first query finds the names of engineers who work at certain places. It runs
on all three sites and accesses the information about the engineers who work on
local projects with higher probability than those of projects at other locations.

2. At each administrative site where employee records are managed, users would
like to access the responsibilities on the projects that these employees work on
and learn how long they will work on those projects.

50 2 Distributed and Parallel Database Design

The first query results in a fragmentation of ASG according to the (nonempty)
fragments PROJ1, PROJ3, PROJ4, and PROJ6 of PROJ obtained in Example 2.10:

PROJ1 : σLOC=“Montreal”∧BUDGET≤200000(PROJ)

PROJ3 : σLOC=“New York”∧BUDGET≤200000(PROJ)

PROJ4 : σLOC=“New York”∧BUDGET>200000(PROJ)

PROJ6 : σLOC=“Paris”∧BUDGET>200000(PROJ)

Therefore, the derived fragmentation of ASG according to {PROJ1, PROJ3, PROJ4,
PROJ6} is defined as follows:

ASG1 = ASG� PROJ1

ASG2 = ASG� PROJ3

ASG3 = ASG� PROJ4

ASG4 = ASG� PROJ6

These fragment instances are shown in Fig. 2.10.
The second query can be specified in SQL as

SELECT RESP, DUR
FROM ASG NATURAL JOIN EMPi

where i = 1 or i = 2, depending on the site where the query is issued. The derived
fragmentation of ASG according to the fragmentation of EMP is defined below and
depicted in Fig. 2.11.

ASG1 = ASG� EMP1

ASG2 = ASG� EMP12

ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24

ASG1

ENO PNO RESP DUR
E3 P3 Consultant 10
E7 P3 Engineer 36
E8 P3 Manager 40

ASG3

ENO PNO RESP DUR
E2 P2 Analyst 6
E4 P2 Programmer 18
E5 P2 Manager 24

ASG2

ENO PNO RESP DUR
E3 P4 Engineer 48
E6 P4 Manager 48

ASG4

Fig. 2.10 Derived fragmentation of ASG with respect to PROJ

2.1 Data Fragmentation 51

ENO PNO RESP DUR
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E7 P3 Engineer 36

ASG1
ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E5 P2 Manager 24
E6 P4 Manager 48
E8 P3 Manager 40

ASG2

Fig. 2.11 Derived fragmentation of ASG with respect to EMP

�
This example highlights two observations:

1. Derived fragmentation may follow a chain where one relation is fragmented as a
result of another one’s design and it, in turn, causes the fragmentation of another
relation (e.g., the chain PAY → EMP → ASG).

2. Typically, there will be more than one candidate fragmentation for a relation
(e.g., relation ASG). The final choice of the fragmentation scheme is a decision
problem that may be addressed during allocation.

2.1.1.4 Checking for Correctness

We now check the fragmentation algorithms discussed so far with respect to the
three correctness criteria we discussed earlier.

Completeness

The completeness of a primary horizontal fragmentation is based on the selection
predicates used. As long as the selection predicates are complete, the resulting
fragmentation is guaranteed to be complete as well. Since the basis of the fragmen-
tation algorithm is a set of complete and minimal predicates (Pr ′), completeness is
guaranteed if Pr ′ is properly determined.

The completeness of a derived horizontal fragmentation is somewhat more
difficult to define since the predicate determining the fragmentation involves two
relations.

Let R be the target relation of an edge whose source is relation S, where R and S
are fragmented as FR = {R1,R2, . . . ,Rw} and FS = {S1,S2, . . . ,Sw}, respectively.
Let A be the join attribute between R and S. Then for each tuple t of Ri , there should
be a tuple t ′ of Si such that t[A] = t ′[A]. This is the well-known referential integrity
rule, which ensures that the tuples of any fragment of the target relation are also in
the source relation. For example, there should be no ASG tuple which has a project
number that is not also contained in PROJ. Similarly, there should be no EMP tuples
with TITLE values where the same TITLE value does not appear in PAY as well.

52 2 Distributed and Parallel Database Design

Reconstruction

Reconstruction of a global relation from its fragments is performed by the union
operator in both the primary and the derived horizontal fragmentation. Thus, for a
relation R with fragmentation FR = {R1,R2, . . . ,Rw}, R = ⋃

Ri , ∀Ri ∈ FR.

Disjointness

It is easier to establish disjointness of fragmentation for primary than for derived
horizontal fragmentation. In the former case, disjointness is guaranteed as long as
the minterm predicates determining the fragmentation are mutually exclusive.

In derived fragmentation, however, there is a semijoin involved that adds
considerable complexity. Disjointness can be guaranteed if the join graph is simple.
Otherwise, it is necessary to investigate actual tuple values. In general, we do not
want a tuple of a target relation to join with two or more tuples of the source relation
when these tuples are in different fragments of the source. This may not be very
easy to establish, and illustrates why derived fragmentation schemes that generate a
simple join graph are always desirable.

Example 2.13 In fragmenting relation PAY (Example 2.10), the minterm predicates
M = {m1,m2} were

m1 : SAL ≤ 30000

m2 : SAL > 30000

Since m1 and m2 are mutually exclusive, the fragmentation of PAY is disjoint.
For relation EMP, however, we require that

1. Each engineer has a single title.
2. Each title has a single salary value associated with it.

Since these two rules follow from the semantics of the database, the fragmenta-
tion of EMP with respect to PAY is also disjoint. �

2.1.2 Vertical Fragmentation

Recall that a vertical fragmentation of a relation R produces fragments R1,R2,
. . . ,Rr , each of which contains a subset of R’s attributes as well as the primary key
of RȦs in the case of horizontal fragmentation, the objective is to partition a relation
into a set of smaller relations so that many of the user applications will run on only
one fragment. Primary key is included in each fragment to enable reconstruction, as
we discuss later. This is also beneficial for integrity enforcement since the primary

2.1 Data Fragmentation 53

key functionally determines all the relation attributes; having it in each fragment
eliminates distributed computation to enforce primary key constraint.

Vertical partitioning is inherently more complicated than horizontal partitioning,
mainly due to the total number of possible alternatives. For example, in horizontal
partitioning, if the total number of simple predicates in Pr is n, there are 2n

possible minterm predicates. In addition, we know that some of these will contradict
the existing implications, further reducing the candidate fragments that need to
be considered. In the case of vertical partitioning, however, if a relation has m

nonprimary key attributes, the number of possible fragments is equal to B(m),
which is the mth Bell number. For large values of m,B(m) ≈ mm; for example, for
m = 10, B(m) ≈ 115, 000, for m = 15, B(m) ≈ 109, for m = 30, B(m) = 1023.

These values indicate that it is futile to attempt to obtain optimal solutions to the
vertical partitioning problem; one has to resort to heuristics. Two types of heuristic
approaches exist for the vertical fragmentation of global relations5:

1. Grouping: starts by assigning each attribute to one fragment, and at each step,
joins some of the fragments until some criteria are satisfied.

2. Splitting: starts with a relation and decides on beneficial partitionings based on
the access behavior of applications to the attributes.

In what follows we discuss only the splitting technique, since it fits more
naturally within the design methodology we discussed earlier, since the “optimal”
solution is probably closer to the full relation than to a set of fragments each of
which consists of a single attribute. Furthermore, splitting generates nonoverlapping
fragments, whereas grouping typically results in overlapping fragments. We prefer
nonoverlapping fragments for disjointness. Of course, nonoverlapping refers only
to nonprimary key attributes.

2.1.2.1 Auxiliary Information Requirements

We again require workload information. Since vertical partitioning places in one
fragment those attributes usually accessed together, there is a need for some measure
that would define more precisely the notion of “togetherness.” This measure is the
affinity of attributes, which indicates how closely related the attributes are. It is not
realistic to expect the designer or the users to be able to easily specify these values.
We present one way they can be obtained from more primitive data.

Let Q = {q1, q2, . . . , qq} be the set of user queries that access relation
R(A1,A2, . . . ,An). Then, for each query qi and each attribute Aj , we associate an
attribute usage value, denoted as use(qi,Aj):

5There is also a third, extreme approach in column-oriented DBMS (like MonetDB and Vertica)
where each column is mapped to one fragment. Since we do not cover column-oriented DBMSs in
this book, we do not discuss this approach further.

54 2 Distributed and Parallel Database Design

use(qi,Aj) =
{

1 if attribute Aj is referenced by query qi

0 otherwise

The use(qi, •) vectors for each query are easy to determine.

Example 2.14 Consider relation PROJ of Fig. 2.2. Assume that the following
queries are defined to run on this relation. In each case, we also give the SQL
expression.

q1: Find the budget of a project, given its identification number.

SELECT BUDGET
FROM PROJ
WHERE PNO=Value

q2: Find the names and budgets of all projects.

SELECT PNAME, BUDGET
FROM PROJ

q3: Find the names of projects located at a given city.

SELECT PNAME
FROM PROJ
WHERE LOC=Value

q4: Find the total project budgets for each city.

SELECT SUM(BUDGET)
FROM PROJ
WHERE LOC=Value

According to these four queries, the attribute usage values can be defined in
matrix form (Fig. 2.12), where entry (i, j) denotes use(qi,Aj). �

Attribute usage values are not sufficiently general to form the basis of attribute
splitting and fragmentation, because they do not represent the weight of application
frequencies. The frequency measure can be included in the definition of the attribute
affinity measure aff (Ai ,Aj), which measures the bond between two attributes of a
relation according to how they are accessed by queries.

PNO PNAME BUDGET LOC

q1 0 1 1 0

q2 1 1 1 0

q3 1 0 0 1

q4 0 0 1 0

Fig. 2.12 Example attribute usage matrix

2.1 Data Fragmentation 55

The attribute affinity measure between two attributes Ai and Aj of a relation
R(A1,A2, . . . ,An) with respect to the set of queries Q = {q1, q2, . . . , qq} is defined
as

aff (Ai ,Aj) =
∑

k|use(qk,Ai)=1∧use(qk,Aj)=1

∑

∀Sl

refl(qk)accl(qk)

where refl(qk) is the number of accesses to attributes (Ai ,Aj) for each execution
of application qk at site Sl and accl(qk) is the application access frequency measure
previously defined and modified to include frequencies at different sites.

The result of this computation is an n×n matrix, each element of which is one of
the measures defined above. This matrix is called the attribute affinity matrix (AA).

Example 2.15 Let us continue with the case that we examined in Example 2.14.
For simplicity, let us assume that refl(qk) = 1 for all qk and Sl . If the application
frequencies are

acc1(q1) = 15 acc1(q2) = 5

acc1(q3) = 25 acc1(q4) = 3

acc2(q1) = 20 acc2(q2) = 0

acc2(q3) = 25 acc3(q4) = 0

acc3(q1) = 10 acc3(q2) = 0

acc3(q3) = 25 acc2(q4) = 0

then the affinity measure between attributes PNO and BUDGET can be measured as

aff (PNO,BUDGET) =
1∑

k=1

3∑

l=1

accl(qk) = acc1(q1) + acc2(q1) + acc3(q1) = 45

since the only application that accesses both of the attributes is q1. The complete
attribute affinity matrix is shown in Fig. 2.13. Note that the diagonal values are not
computed since they are meaningless. �

PNO PNAME BUDGET LOC

PNO 0 45 0

PNAME 0 5 75

BUDGET 45 5 3

LOC 0 75 3

Fig. 2.13 Attribute affinity matrix

56 2 Distributed and Parallel Database Design

The attribute affinity matrix will be used in the rest of this chapter to guide
the fragmentation effort. The process first clusters together the attributes with high
affinity for each other, and then splits the relation accordingly.

2.1.2.2 Clustering Algorithm

The fundamental task in designing a vertical fragmentation algorithm is to find some
means of grouping the attributes of a relation based on the attribute affinity values
in AA. We will discuss the bond energy algorithm (BEA) that has been proposed
for this purpose. Other clustering algorithms can also be used.

BEA takes as input the attribute affinity matrix for relation R(A1, . . . ,An),
permutes its rows and columns, and generates a clustered affinity matrix (CA).
The permutation is done in such a way as to maximize the following global affinity
measure (AM):

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)

+ aff (Ai−1,Aj) + aff (Ai+1,Aj)]

where

aff (A0,Aj) = aff (Ai ,A0) = aff (An+1,Aj) = aff (Ai ,An+1) = 0

The last set of conditions takes care of the cases where an attribute is being placed
in CA to the left of the leftmost attribute or to the right of the rightmost attribute
during column permutations, and prior to the topmost row and following the last row
during row permutations. We denote with A0 the attribute to the left of the leftmost
attribute and the row prior to the topmost row, and with An+1 the attribute to the
right of the rightmost attribute or the row following the last row. In these cases, we
set to 0 aff values between the attribute being considered for placement and its left
or right (top or bottom) neighbors, since they do not exist in CA.

The maximization function considers the nearest neighbors only, thereby result-
ing in the grouping of large values with large ones, and small values with small ones.
Also, the attribute affinity matrix (AA) is symmetric, which reduces the objective
function to

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)]

2.1 Data Fragmentation 57

Algorithm 2.3: BEA
Input: AA: attribute affinity matrix
Output: CA: clustered affinity matrix
begin

{initialize; remember that AA is an n × n matrix}
CA(•, 1) ← AA(•, 1)

CA(•, 2) ← AA(•, 2)

index ← 3
while index ≤ n do {choose the “best” location for attribute AAindex}

for i from 1 to index − 1 by 1 do calculate cont (Ai−1,Aindex,Ai)

calculate cont (Aindex−1,Aindex,Aindex+1) {boundary condition}
loc ← placement given by maximum cont value
for j from index to loc by −1 do

CA(•, j) ← CA(•, j − 1) {shuffle the two matrices}
end for
CA(•, loc) ← AA(•, index)

index ← index + 1
end while
order the rows according to the relative ordering of columns

end

The details of BEA are given in Algorithm 2.3. Generation of the clustered
affinity matrix (CA) is done in three steps:

1. Initialization. Place and fix one of the columns of AA arbitrarily into CA.
Column 1 was chosen in the algorithm.

2. Iteration. Pick each of the remaining n − i columns (where i is the number
of columns already placed in CA) and try to place them in the remaining
i + 1 positions in the CA matrix. Choose the placement that makes the greatest
contribution to the global affinity measure described above. Continue this step
until no more columns remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the
rows should also be changed so that their relative positions match the relative
positions of the columns.6

For the second step of the algorithm to work, we need to define what is meant
by the contribution of an attribute to the affinity measure. This contribution can
be derived as follows. Recall that the global affinity measure AM was previously
defined as

6From now on, we may refer to elements of the AA and CA matrices as AA(i, j) and CA(i, j),
respectively. The mapping to the affinity measures is AA(i, j) = aff (Ai ,Aj) and CA(i, j) =
aff (attribute placed at column i in CA, attribute placed at column j in CA). Even though AA

and CA matrices are identical except for the ordering of attributes, since the algorithm orders all
the CA columns before it orders the rows, the affinity measure of CA is specified with respect to
columns. Note that the endpoint condition for the calculation of the affinity measure (AM) can be
specified, using this notation, as CA(0, j) = CA(i, 0) = CA(n + 1, j) = CA(i, n + 1) = 0.

58 2 Distributed and Parallel Database Design

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)]

which can be rewritten as

AM =
n∑

i=1

n∑

j=1

[aff (Ai ,Aj)aff (Ai ,Aj−1) + aff (Ai ,Aj)aff (Ai ,Aj+1)]

=
n∑

j=1

[
n∑

i=1

aff (Ai ,Aj)aff (Ai ,Aj−1) +
n∑

i=1

aff (Ai ,Aj)aff (Ai ,Aj+1)

]

Let us define the bond between two attributes Ax and Ay as

bond(Ax,Ay) =
n∑

z=1

aff (Az,Ax)aff (Az,Ay)

Then AM can be written as

AM =
n∑

j=1

[bond(Aj ,Aj−1) + bond(Aj ,Aj+1)]

Now consider the following n attributes:

A1 A2 . . . Ai−1
︸�������������︷︷�������������︸

AM
′

Ai Aj Aj+1 . . . An
︸���������︷︷���������︸

AM1

The global affinity measure for these attributes can be written as

AMold = AM
′ + AM1

+ bond(Ai−1,Ai) + bond(Ai ,Aj) + bond(Aj ,Ai) + bond(Aj ,Aj+1)

=
i∑

l=1

[bond(Al ,Al−1) + bond(Al ,Al+1)]

+
n∑

l=i+2

[bond(Al ,Al−1) + bond(Al ,Al+1)]

+ 2bond(Ai ,Aj)

Now consider placing a new attribute Ak between attributes Ai and Aj in the
clustered affinity matrix. The new global affinity measure can be similarly written as

2.1 Data Fragmentation 59

AMnew = AM
′ + AM1 + bond(Ai ,Ak) + bond(Ak,Ai)

+ bond(Ak,Aj) + bond(Aj ,Ak)

= AM
′ + AM1 + 2bond(Ai ,Ak) + 2bond(Ak,Aj)

Thus, the net contribution to the global affinity measure of placing attribute Ak

between Ai and Aj is

cont (Ai ,Ak,Aj) = AMnew − AMold

= 2bond(Ai ,Ak) + 2bond(Ak,Aj) − 2bond(Ai ,Aj)

Example 2.16 Let us consider the AA matrix given in Fig. 2.13 and study the
contribution of moving attribute LOC between attributes PNO and PNAME, given
by the formula

cont (PNO,LOC,PNAME) = 2bond(PNO,LOC) + 2bond(LOC,PNAME)

− 2bond(PNO,PNAME)

Computing each term, we get

bond(PNO,LOC) = 45 ∗ 0 + 0 ∗ 75 + 45 ∗ 3 + 0 ∗ 78 = 135

bond(LOC,PNAME) = 11865

bond(PNO,PNAME) = 225

Therefore,

cont (PNO,LOC,PNAME) = 2 ∗ 135 + 2 ∗ 11865 − 2 ∗ 225 = 23550

�
The algorithm and our discussion so far have both concentrated on the columns

of the attribute affinity matrix. It is possible to redesign the algorithm to operate on
the rows. Since the AA matrix is symmetric, both of these approaches will generate
the same result.

Note that Algorithm 2.3 places the second column next to the first one during the
initialization step. This obviously works since the bond between the two, however,
is independent of their positions relative to one another.

Computing cont at the endpoints requires care. If an attribute Ai is being
considered for placement to the left of the leftmost attribute, one of the bond
equations to be calculated is between a nonexistent left element and Ak [i.e.,
bond(A0,Ak)]. Thus we need to refer to the conditions imposed on the definition

60 2 Distributed and Parallel Database Design

of the global affinity measure AM , where CA(0, k) = 0. Similar arguments hold
for the placement to the right of the rightmost attribute.

Example 2.17 We consider the clustering of the PROJ relation attributes and use
the attribute affinity matrix AA of Fig. 2.13.

According to the initialization step, we copy columns 1 and 2 of the AA matrix to
the CA matrix (Fig. 2.14a) and start with column 3 (i.e., attribute BUDGET). There
are three alternative places where column 3 can be placed: to the left of column
1, resulting in the ordering (3-1-2), in between columns 1 and 2, giving (1-3-2),
and to the right of 2, resulting in (1-2-3). Note that to compute the contribution
of the last ordering we have to compute cont (PNAME,BUDGET,LOC) rather than
cont (PNO,PNAME,BUDGET). However, note that attribute LOC has not yet been
placed into the CA matrix (Fig. 2.14b), thus requiring special computation as
outlined above. Let us calculate the contribution to the global affinity measure of
each alternative.
Ordering (0-3-1):

cont (A0,BUDGET,PNO) = 2bond(A0,BUDGET) + 2bond(BUDGET,PNO)

− 2bond(A0,PNO)

We know that

bond(A0,PNO) = bond(A0,BUDGET) = 0

bond(BUDGET,PNO) = 45 ∗ 45 + 5 ∗ 0 + 53 ∗ 45 + 3 ∗ 0 = 4410

PNO PNAME⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 0

PNAME 0 80

BUDGET 45 5

LOC 0 75

PNO BUDGET PNAME⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0

PNAME 0 5 80

BUDGET 45 53 5

LOC 0 3 75

PNO BUDGET PNAME LOC⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0 0

PNAME 0 5 80 75

BUDGET 45 53 5 3

LOC 0 3 75 78

PNO BUDGET PNAME LOC⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0 0

BUDGET 45 53 5 3

PNAME 0 5 80 75

LOC 0 3 75 78

(a)

(c)

(b)

(d)

Fig. 2.14 Calculation of the clustered affinity (CA) matrix

2.1 Data Fragmentation 61

Thus

cont (A0,BUDGET,PNO) = 8820

Ordering (1-3-2):

cont (PNO,BUDGET,PNAME)= 2bondPNO,BUDGET) + 2bond(BUDGET,PNAME)

− 2bond(PNO,PNAME)

bond(PNO,BUDGET) = bond(BUDGET,PNO) = 4410

bond(BUDGET,PNAME) = 890

bond(PNO,PNAME) = 225

Thus

cont (PNO,BUDGET,PNAME) = 10150

Ordering (2-3-4):

cont (PNAME,BUDGET,LOC)= 2bond(PNAME,BUDGET) + 2bond(BUDGET,LOC)

− 2bond(PNAME,LOC)

bond(PNAME,BUDGET) = 890

bond(BUDGET,LOC) = 0

bond(PNAME,LOC) = 0

Thus

cont (PNAME,BUDGET,LOC) = 1780

Since the contribution of the ordering (1-3-2) is the largest, we select to place
BUDGET to the right of PNO (Fig. 2.14b). Similar calculations for LOC indicate that
it should be placed to the right of PNAME (Fig. 2.14c).

Finally, the rows are organized in the same order as the columns and the result is
shown in Fig. 2.14d. �

In Fig. 2.14d we see the creation of two clusters: one is in the upper left corner
and contains the smaller affinity values and the other is in the lower right corner
and contains the larger affinity values. This clustering indicates how the attributes
of relation PROJ should be split. However, in general the border for this split may
not be this clear-cut. When the CA matrix is big, usually more than two clusters are
formed and there are more than one candidate partitionings. Thus, there is a need to
approach this problem more systematically.

62 2 Distributed and Parallel Database Design

2.1.2.3 Splitting Algorithm

The objective of splitting is to find sets of attributes that are accessed solely, or for
the most part, by distinct sets of queries. For example, if it is possible to identify
two attributes A1 and A2 that are accessed only by query q1, and attributes A3 and
A4 that are accessed by, say, two queries q2 and q3, it would be quite straightforward
to decide on the fragments. The task lies in finding an algorithmic method of
identifying these groups.

Consider the clustered attribute matrix of Fig. 2.15. If a point along the diagonal
is fixed, two sets of attributes are identified. One set {A1,A2, . . . ,Ai} is at the upper
left-hand corner (denoted T A) and the second set {Ai+1, . . . ,An} is at the lower
right corner (denoted T B) relative to this point.

We now partition the set of queries Q = {q1, q2, . . . , qq} that access only T A,
only BA, or both. These sets are defined as follows:

AQ(qi) = {Aj |use(qi,Aj) = 1}
T Q = {qi |AQ(qi) ⊆ T A}
BQ = {qi |AQ(qi) ⊆ BA}
OQ = Q − {T Q ∪ BQ}

The first of these equations defines the set of attributes accessed by query qi; T Q

and BQ are the sets of queries that only access T A or BA, respectively, and OQ is
the set of queries that access both.

TA

BA

A1 A2 A3 · · · Ai Ai+1 · · · An

A1

A2

A2

...
Ai

Ai+1

...

An

Fig. 2.15 Locating a splitting point

2.1 Data Fragmentation 63

There is an optimization problem here. If there are n attributes of a relation,
there are n − 1 possible positions where the dividing point can be placed along
the diagonal of the clustered attribute matrix for that relation. The best position for
division is one which produces the sets T Q and BQ such that the total accesses
to only one fragment are maximized, while the total accesses to both fragments are
minimized. We therefore define the following cost equations:

CQ =
∑

qi∈Q

∑

∀Sj

refj (qi)accj (qi)

CT Q =
∑

qi∈T Q

∑

∀Sj

refj (qi)accj (qi)

CBQ =
∑

qi∈BQ

∑

∀Sj

refj (qi)accj (qi)

COQ =
∑

qi∈OQ

∑

∀Sj

refj (qi)accj (qi)

Each of the equations above counts the total number of accesses to attributes
by queries in their respective classes. Based on these measures, the optimization
problem is defined as finding the point x (1 ≤ x ≤ n) such that the expression

z = CT Q ∗ CBQ − COQ2

is maximized. The important feature of this expression is that it defines two
fragments such that the values of CT Q and CBQ are as nearly equal as possible.
This enables the balancing of processing loads when the fragments are distributed
to various sites. It is clear that the partitioning algorithm has linear complexity in
terms of the number of attributes of the relation, that is, O(n).

This procedure splits the set of attributes two-way. For larger sets of attributes,
it is quite likely that m-way partitioning may be necessary. Designing an m-way
partitioning is possible but computationally expensive. Along the diagonal of the
CA matrix, it is necessary to try 1, 2, . . . , m − 1 split points, and for each of these,
it is necessary to check which point maximizes z. Thus, the complexity of such
an algorithm is O(2m). Of course, the definition of z has to be modified for those
cases where there are multiple split points. The alternative solution is to recursively
apply the binary partitioning algorithm to each of the fragments obtained during the
previous iteration. One would compute T Q, BQ, and OQ, as well as the associated
access measures for each of the fragments, and partition them further.

Our discussion so far assumed that the split point is unique and single and divides
the CA matrix into an upper left-hand partition and a second partition formed by the
rest of the attributes. The partition, however, may also be formed in the middle of the
matrix. In this case, we need to modify the algorithm slightly. The leftmost column
of the CA matrix is shifted to become the rightmost column and the topmost row is

64 2 Distributed and Parallel Database Design

Algorithm 2.4: SPLIT
Input: CA: clustered affinity matrix; R: relation; ref : attribute usage matrix; acc: access

frequency matrix
Output: F : set of fragments
begin

{determine the z value for the first column}
{the subscripts in the cost equations indicate the split point}
calculate CT Qn−1
calculate CBQn−1
calculate COQn−1

best ← CT Qn−1 ∗ CBQn−1 − (COQn−1)
2

repeat
{determine the best partitioning}
for i from n − 2 to 1 by −1 do

calculate CT Qi

calculate CBQi

calculate COQi

z ← CT Q ∗ CBQi − COQ2
i

if z > best then best ← z {record the split point within shift}
end for
call SHIFT(CA)

until no more SHIFT is possible
reconstruct the matrix according to the shift position
R1 ← �T A(R) ∪ K {K is the set of primary key attributes of R}
R2 ← �BA(R) ∪ K

F ← {R1,R2}
end

shifted to the bottom. The shift operation is followed by checking the n−1 diagonal
positions to find the maximum z. The idea behind shifting is to move the block of
attributes that should form a cluster to the topmost left corner of the matrix, where
it can easily be identified. With the addition of the shift operation, the complexity of
the partitioning algorithm increases by a factor of n and becomes O(n2).

Assuming that a shift procedure, called SHIFT, has already been implemented,
the splitting algorithm is given in Algorithm 2.4. The input of the algorithm is the
clustered affinity matrix CA, the relation R to be fragmented, and the attribute usage
and access frequency matrices. The output is a set of fragments FR = {R1,R2},
where Ri ⊆ {A1,A2 . . . ,An} and R1 ∩ R2 = the key attributes of relation RṄote
that for n-way partitioning, this routine should be either invoked iteratively or
implemented as a recursive procedure.

Example 2.18 When the SPLIT algorithm is applied to the CA matrix obtained for
relation PROJ (Example 2.17), the result is the definition of fragments FPROJ =
{PROJ1,PROJ2}, where

PROJ1 = {PNO,BUDGET}
PROJ2 = {PNO,PNAME,LOC}

2.1 Data Fragmentation 65

Note that in this exercise we performed the fragmentation over the entire set of
attributes rather than only on the nonkey ones. The reason for this is the simplicity
of the example. For that reason, we included PNO, which is the key of PROJ in
PROJ2 as well as in PROJ1. �

2.1.2.4 Checking for Correctness

We follow arguments similar to those of horizontal partitioning to prove that the
SPLIT algorithm yields a correct vertical fragmentation.

Completeness

Completeness is guaranteed by the SPLIT algorithm since each attribute of the
global relation is assigned to one of the fragments. As long as the set of attributes A
over which the relation R is defined consists of A = ⋃

Ri , completeness of vertical
fragmentation is ensured.

Reconstruction

We have already mentioned that the reconstruction of the original global relation
is made possible by the join operation. Thus, for a relation R with vertical
fragmentation FR = {R1,R2, . . . ,Rr } and key attribute(s) K, R =��K Ri ,∀Ri ∈
FR. Therefore, as long as each Ri is complete, the join operation will properly
reconstruct RȦnother important point is that either each Ri should contain the key
attribute(s) of R or it should contain the system assigned tuple IDs (TIDs).

Disjointness

As noted earlier, the primary key attributes are replicated in each fragment.
Excluding these, the SPLIT algorithm finds mutually exclusive clusters of attributes,
leading to disjoint fragments with respect to the attributes.

2.1.3 Hybrid Fragmentation

In some cases a simple horizontal or vertical fragmentation of a database schema
may not be sufficient to satisfy the requirements of user applications. In this
case a vertical fragmentation may be followed by a horizontal one, or vice
versa, producing a trie-structured partitioning (Fig. 2.16). Since the two types of

66 2 Distributed and Parallel Database Design

R

R1

R11

V

R11

V

H

R2

R21

V

R22

V

R23

V

H

Fig. 2.16 Hybrid fragmentation

⋃

R11 R11 R21 R22 R23

Fig. 2.17 Reconstruction of hybrid fragmentation

partitioning strategies are applied one after the other, this alternative is called hybrid
fragmentation. It has also been named mixed fragmentation or nested fragmentation.

A good example for the necessity of hybrid fragmentation is relation PROJ.
In Example 2.10 we partitioned it into six horizontal fragments based on two
applications. In Example 2.18 we partitioned the same relation vertically into two.
What we have, therefore, is a set of horizontal fragments, each of which is further
partitioned into two vertical fragments.

The correctness rules and conditions for hybrid fragmentation follow naturally
from those for vertical and horizontal fragmentations. For example, to reconstruct
the original global relation in case of hybrid fragmentation, one starts at the leaves of
the partitioning trie and moves upward by performing joins and unions (Fig. 2.17).
The fragmentation is complete if the intermediate and leaf fragments are complete.
Similarly, disjointness is guaranteed if intermediate and leaf fragments are disjoint.

2.2 Allocation

Following fragmentation, the next decision problem is to allocate fragments to the
sites of the distributed DBMS. This can be done by either placing each fragment
at a single site or replicating it on a number of sites. The reasons for replication
are reliability and efficiency of read-only queries. If there are multiple copies of

2.2 Allocation 67

a fragment, there is a good chance that some copy of the data will be accessible
somewhere even when system failures occur. Furthermore, read-only queries that
access the same data items can be executed in parallel since copies exist on multiple
sites. On the other hand, the execution of update queries causes trouble since the
system has to ensure that all the copies of the data are updated properly. Hence the
decision regarding replication is a trade-off that depends on the ratio of the read-
only queries to the update queries. This decision affects almost all of the distributed
DBMS algorithms and control functions.

A nonreplicated database (commonly called a partitioned database) contains
fragments that are allocated to sites such that each fragment is placed at one site.
In case of replication, either the database exists in its entirety at each site (fully
replicated database), or fragments are distributed to the sites in such a way that
copies of a fragment may reside in multiple sites (partially replicated database). In
the latter the number of copies of a fragment may be an input to the allocation
algorithm or a decision variable whose value is determined by the algorithm.
Figure 2.18 compares these three replication alternatives with respect to various
distributed DBMS functions. We will discuss replication at length in Chap. 6.

The file allocation problem has long been studied within the context of distributed
computing systems where the unit of allocation is a file. This is commonly referred
as the file allocation problem (FAP) and the formulations are usually quite simple,
reflecting the simplicity of file APIs. Even this simple version has been shown to be
NP-complete, resulting in a search for reasonable heuristics.

FAP formulations are not suitable for distributed database design, due funda-
mentally to the characteristics of DBMSs: fragments are not independent of each
other so they cannot simply be mapped to individual files; the access to data in a
database is more complex than simple access to files; and DBMSs enforce integrity
and transactional properties whose costs need to be considered.

There are no general heuristic models that take as input a set of fragments and
produce a near-optimal allocation subject to the types of constraints discussed here.
The models developed to date make a number of simplifying assumptions and are
applicable to certain specific formulations. Therefore, instead of presenting one or

Full replication Partial replication Partitioning
QUERY
PROCESSING Easy Same difficulty

DIRECTORY
MANAGEMENT

Easy or
nonexistent Same difficulty

CONCURRENCY
CONTROL Moderate Difficult Easy

RELIABILITY Very high High Low

REALITY Possible
application

Realistic Possible
application

Fig. 2.18 Comparison of replication alternatives

68 2 Distributed and Parallel Database Design

more of these allocation algorithms, we present a relatively general model and then
discuss a number of possible heuristics that might be employed to solve it.

2.2.1 Auxiliary Information

We need the quantitative data about the database, the workload, the communication
network, the processing capabilities, and storage limitations of each site on the
network.

To perform horizontal fragmentation, we defined the selectivity of minterms.
We now need to extend that definition to fragments, and define the selectivity of
a fragment Fj with respect to query qi . This is the number of tuples of Fj that need
to be accessed in order to process qi . This value will be denoted as seli(Fj).

Another piece of necessary information on the database fragments is their size.
The size of a fragment Fj is given by

size(Fj) = card(Fj) ∗ length(Fj)

where length(Fj) is the length (in bytes) of a tuple of fragment Fj .
Most of the workload-related information is already compiled during fragmen-

tation, but a few more are required by the allocation model. The two important
measures are the number of read accesses that a query qi makes to a fragment Fj

during its execution (denoted as RRij), and its counterpart for the update accesses
(URij). These may, for example, count the number of block accesses required by
the query.

We also need to define two matrices UM and RM , with elements uij and rij ,
respectively, which are specified as follows:

uij =
{

1 if query qi updates fragment Fj

0 otherwise

rij =
{

1 if query qi retrieves from fragment Fj

0 otherwise

A vector O of values o(i) is also defined, where o(i) specifies the originating site
of query qi . Finally, to define the response-time constraint, the maximum allowable
response time of each application should be specified.

For each computer site, we need to know its storage and processing capacity.
Obviously, these values can be computed by means of elaborate functions or by
simple estimates. The unit cost of storing data at site Sk will be denoted as USCk .
There is also a need to specify a cost measure LPCk as the cost of processing one
unit of work at site Sk . The work unit should be identical to that of the RR and UR

measures.

2.2 Allocation 69

In our model we assume the existence of a simple network where the cost of
communication is defined in terms of one message that contains a specific amount
of data. Thus gij denotes the communication cost per message between sites Si and
Sj . To enable the calculation of the number of messages, we use msize as the size
(in bytes) of one message. There are more elaborate network models that take into
consideration the channel capacities, distances between sites, protocol overhead,
and so on, but this simple model is sufficient for our purposes.

2.2.2 Allocation Model

We discuss an allocation model that attempts to minimize the total cost of processing
and storage while trying to meet certain response time restrictions. The model we
use has the following form:

min(Total Cost)

subject to

response-time constraint
storage constraint
processing constraint

In the remainder of this section, we expand the components of this model based
on the information requirements discussed in Sect. 2.2.1. The decision variable is
xij , which is defined as

xij =
{

1 if the fragment Fi is stored at site Sj

0 otherwise

2.2.2.1 Total Cost

The total cost function has two components: query processing and storage. Thus it
can be expressed as

T OC =
∑

∀qi∈Q

QPCi +
∑

∀Sk∈S

∑

∀Fj ∈F

ST Cjk

where QPCi is the query processing cost of query qi , and ST Cjk is the cost of
storing fragment Fj at site Sk .

Let us consider the storage cost first. It is simply given by

ST Cjk = USCk ∗ size(Fj) ∗ xjk

70 2 Distributed and Parallel Database Design

and the two summations find the total storage costs at all the sites for all the
fragments.

The query processing cost is more difficult to specify. We specify it as consisting
of the processing cost (PC) and the transmission cost (T C). Thus the query
processing cost (QPC) for application qi is

QPCi = PCi + T Ci

The processing component, PC, consists of three cost factors, the access cost
(AC), the integrity enforcement cost (IE), and the concurrency control cost (CC):

PCi = ACi + IEi + CCi

The detailed specification of each of these cost factors depends on the algorithms
used to accomplish these tasks. However, to demonstrate the point, we specify AC

in some detail:

ACi =
∑

∀Sk∈S

∑

∀Fj ∈F

(uij ∗ URij + rij ∗ RRij) ∗ xjk ∗ LPCk

The first two terms in the above formula calculate the number of accesses of
user query qi to fragment Fj . Note that (URij + RRij) gives the total number of
update and retrieval accesses. We assume that the local costs of processing them are
identical. The summation gives the total number of accesses for all the fragments
referenced by qi . Multiplication by LPCk gives the cost of this access at site Sk .
We again use xjk to select only those cost values for the sites where fragments are
stored.

The access cost function assumes that processing a query involves decomposing
it into a set of subqueries, each of which works on a fragment stored at the site,
followed by transmitting the results back to the site where the query has originated.
Reality is more complex; for example, the cost function does not take into account
the cost of performing joins (if necessary), which may be executed in a number of
ways (see Chap. 4).

The integrity enforcement cost factor can be specified much like the processing
component, except that the unit local processing cost would likely change to reflect
the true cost of integrity enforcement. Since the integrity checking and concurrency
control methods are discussed later in the book, we do not study these cost
components further here. The reader should refer back to this section after reading
Chaps. 3 and 5 to be convinced that the cost functions can indeed be derived.

The transmission cost function can be formulated along the lines of the access
cost function. However, the data transmission overhead for update and that for
retrieval requests may be quite different. In update queries it is necessary to inform
all the sites where replicas exist, while in retrieval queries, it is sufficient to access
only one of the copies. In addition, at the end of an update request, there is no data
transmission back to the originating site other than a confirmation message, whereas
the retrieval-only queries may result in significant data transmission.

2.2 Allocation 71

The update component of the transmission function is

T CUi =
∑

∀Sk∈S

∑

∀Fj ∈F

uij ∗ xjk ∗ go(i),k +
∑

∀Sk∈S

∑

∀Fj ∈F

uij ∗ xjk ∗ gk,o(i)

The first term is for sending the update message from the originating site o(i) of
qi to all the fragment replicas that need to be updated. The second term is for the
confirmation.

The retrieval cost can be specified as

T CRi =
∑

∀Fj ∈F

min
Sk∈S

(rij ∗ xjk ∗ go(i),k + rij ∗ xjk ∗ seli(Fj) ∗ length(Fj)

msize
∗ gk,o(i))

The first term in T CR represents the cost of transmitting the retrieval request to
those sites which have copies of fragments that need to be accessed. The second
term accounts for the transmission of the results from these sites to the originating
site. The equation states that among all the sites with copies of the same fragment,
only the site that yields the minimum total transmission cost should be selected for
the execution of the operation.

Now the transmission cost function for query qi can be specified as

T Ci = T CUi + T CRi

which fully specifies the total cost function.

2.2.2.2 Constraints

The constraint functions can be specified in similar detail. However, instead of
describing these functions in depth, we will simply indicate what they should look
like. The response-time constraint should be specified as

execution time of qi ≤ maximum response time of qi,∀qi ∈ Q

Preferably, the cost measure in the objective function should be specified in terms
of time, as it makes the specification of the execution time constraint relatively
straightforward.

The storage constraint is

∑

∀Fj ∈F

ST Cjk ≤ storage capacity at site Sk,∀Sk ∈ S

whereas the processing constraint is

∑

∀qi∈Q

processing load of qi at site Sk ≤ processing capacity of Sk,∀Sk ∈ S

72 2 Distributed and Parallel Database Design

This completes our development of the allocation model. Even though we have
not developed it entirely, the precision in some of the terms indicates how one goes
about formulating such a problem. In addition to this aspect, we have indicated the
important issues that need to be addressed in allocation models.

2.2.3 Solution Methods

As noted earlier, simple file allocation problem is NP-complete. Since the model we
developed in the previous section is more complex, it is likely to be NP-complete as
well. Thus one has to look for heuristic methods that yield suboptimal solutions. The
test of “goodness” in this case is, obviously, how close the results of the heuristic
algorithm are to the optimal allocation.

It was observed early on that there is a correspondence between the file allocation
and the facility location problems. In fact, the isomorphism of the simple file
allocation problem and the single commodity warehouse location problem has been
shown. Thus, heuristics developed for the latter have been used for the former.
Examples are the knapsack problem solution, branch-and-bound techniques, and
network flow algorithms.

There have been other attempts to reduce the complexity of the problem. One
strategy has been to assume that all the candidate partitionings have been determined
together with their associated costs and benefits in terms of query processing. The
problem, then, is modeled as choosing the optimal partitioning and placement for
each relation. Another simplification frequently employed is to ignore replication at
first and find an optimal nonreplicated solution. Replication is handled at the second
step by applying a greedy algorithm which starts with the nonreplicated solution
as the initial feasible solution, and tries to improve upon it. For these heuristics,
however, there is not enough data to determine how close the results are to the
optimal.

2.3 Combined Approaches

The design process depicted in Fig. 2.1 on which we based our discussion separates
the fragmentation and allocation steps. The methodology is linear where the output
of fragmentation is input to allocation; we call this the fragment-then-allocate
approach. This simplifies the formulation of the problem by reducing the decision
space, but the isolation of the two steps may in fact contribute to the complexity
of the allocation models. Both steps have similar inputs, differing only in that
fragmentation works on global relations, whereas allocation considers fragments.
They both require workload information, but ignore how each other makes use
of these inputs. The end result is that the fragmentation algorithms decide how to
partition a relation based partially on how queries access it, but the allocation models

2.3 Combined Approaches 73

ignore the part that this input plays in fragmentation. Therefore, the allocation
models have to include all over again detailed specification of the relationship
among the fragment relations and how user applications access them. There are
approaches that combine the fragmentation and allocation steps in such a way that
the data partitioning algorithm also dictates allocation, or the allocation algorithm
dictates how the data is partitioned; we call these the combined approaches.
These mostly consider horizontal partitioning, since that is the common method
for obtaining significant parallelism. In this section we present these approaches,
classified as either workload-agnostic or workload-aware.

2.3.1 Workload-Agnostic Partitioning Techniques

This class of techniques ignores the workload that will run on the data and simply
focus on the database, often not even paying attention to the schema definition.
These approaches are mostly used in parallel DBMSs where data dynamism is
higher than distributed DBMSs, so simpler techniques that can be quickly applied
are preferred.

The simplest form of these algorithms is round-robin partitioning (Fig. 2.19).
With n partitions, the ith tuple in insertion order is assigned to partition (i mod
n). This strategy enables the sequential access to a relation to be done in parallel.
However, the direct access to individual tuples, based on a predicate, requires
accessing the entire relation. Thus, round-robin partitioning is appropriate for full
scan queries, as in data mining.

An alternative is hash partitioning, which applies a hash function to some
attribute that yields the partition number (Fig. 2.20). This strategy allows exact-
match queries on the selection attribute to be processed by exactly one node and all

· · ·

... · · ·

Fig. 2.19 Round-robin partitioning

...

Fig. 2.20 Hash partitioning

74 2 Distributed and Parallel Database Design

a–g h–m u–z

Fig. 2.21 Range partitioning

other queries to be processed by all the nodes in parallel. However, if the attribute
used for partitioning has nonuniform data distribution, e.g., as with people’s names,
the resulting placement may be unbalanced, with some partitions much bigger than
some others. This is called data skew and it is an important issue that can cause
unbalanced load.

Finally, there is range partitioning (Fig. 2.21) that distributes tuples based on
the value intervals (ranges) of some attribute and thus can deal with nonuniform
data distributions. Unlike hashing, which relies on hash functions, ranges must be
maintained in an index structure, e.g., a B-tree. In addition to supporting exact-
match queries (as in hashing), it is well-suited for range queries. For instance, a
query with a predicate “A between A1 and A2” may be processed by the only
node(s) containing tuples whose A value is in range [A1, A2].

These techniques are simple, can be computed quickly and, as we discuss in
Chap. 8, nicely fit the dynamicity of data in parallel DBMSs. However, they have
indirect ways of handling the semantic relationships among relations in the database.
For example, consider two relations that have a foreign key–primary key join
relationship such as R ��R.A=S.B S, hash partitioning would use the same function
over attribute R.A and S.B to ensure that they are located at the same node, thereby
localizing the joins and parallelizing the join execution. A similar approach can be
used in range partitioning, but round-robin would not take this relationship into
account.

2.3.2 Workload-Aware Partitioning Techniques

This class of techniques considers the workload as input and performs partitioning to
localize as much of the workload on one site as possible. As noted at the beginning
of this chapter, their objective is to minimize the amount of distributed queries.

One approach that has been proposed in a system called Schism uses the database
and workload information to build a graph G = V,E where each vertex v in V

represents a tuple in the database, and each edge e = (vi, vj) in E represents a
query that accesses both tuples vi and vj . Each edge is assigned a weight that is the
count of the number of transactions that access both tuples.

In this model, it is also easy to take into account replicas, by representing
each copy by a separate vertex. The number of replica vertices is determined by
the number of transactions accessing the tuple; i.e., each transaction accesses one

2.3 Combined Approaches 75

1 2

3 7

6

4

5

7

6

4

5

1 2

3

1 21

3

1 2

7

1

6

1

1

4 1

5

2 1

Q1

Q2

Q3

Q4

Q5

Fig. 2.22 Graph representation for partitioning in schism

copy. A replicated tuple is represented in the graph by a star-shaped configuration
consisting of n+1 vertices where the “central” vertex represents the logical tuple and
the other n vertices represent the physical copies. The weight of an edge between the
physical copy vertex and the central vertex is the number of transactions that update
the tuple; the weights of other edges remain as the number of queries that access the
tuple. This arrangement makes sense since the objective is to localize transactions
as much as possible and this technique uses replication to achieve localization.

Example 2.19 Let us consider a database with one relation consisting of seven
tuples that are accessed by five transactions. In Fig. 2.22 we depict the graph that
is constructed: there are seven vertices corresponding to the tuples, and the queries
that access them together are shown as cliques. For example, query Q1 accesses
tuples 2 and 7, query Q2 accesses tuples 2, 3, and 6, query Q3 accesses tuples 1, 2,
and 3, query Q4 accesses tuples 3, 4, and 5, and query Q5 accesses tuples 4 and 5.
Edge weights capture the number of transaction accesses.

Replication can be incorporated into this graph but replicating the tuples that are
accessed by multiple transactions; this is shown in Fig. 2.23. Note that tuples 1,
6, and 7 are not replicated since they are only accessed by one transaction each,
tuples 4 and 5 are replicated twice, and tuples 2 and 3 are replicated three times. We
represent the “replication edges” between the central vertex and each physical copy
by dashed lines and omit the weights for these edges in this example. �

Once the database and the workload are captured by this graph representation,
the next step is to perform a vertex-disjoint graph partitioning. Since we discuss
these techniques in detail in Sect. 10.4.1, we do not get into the details here, but
simply state that vertex-disjoint partitioning allocates each vertex of the graph to
a separate partition such that partitions are mutually exclusive. These algorithms
have, as their objective function, a balanced (or nearly balanced) set of partitions
while minimizing the cost of edge cuts. The cost of an edge cut takes into account
the weights of each edge so as to minimize the number of distributed queries.

The advantage of the Schism approach is its fine-grained allocation—it treats
each tuple as an allocation unit and the partitioning “emerges” as the allocation
decision is made for each tuple. Thus, the mapping of sets of tuples to queries can

76 2 Distributed and Parallel Database Design

1 22

2
2

3

3

3

3

7

6

4

4
4

5

5 5

2

3

5

4

7

2

6

2

3

1 2

3

3

5

4

5

4

1 221

2
2

3

3

1

3

3

1
7

1

6

1

1

4

4
4 1

5

5

1

5

11

Q1

Q2

Q3

Q4 Q5

Fig. 2.23 Schism graph incorporating replication

be controlled and many of them can execute at one site. However, the downside of
the approach is that the graph becomes very large as the database size increases, in
particular when replicas are added to the graph. This makes the management of the
graph difficult and its partitioning expensive. Another issue to consider is that the
mapping tables that record where each tuple is stored (i.e., the directory) become
very large and may pose a management problem of their own.

One approach to overcome these issues has been proposed as part of the SWORD
system that employs a hypergraph model7 where each clique in Fig. 2.22 is repre-
sented as a hyperedge. Each hyperedge represents one query and the set of vertices
spanned by the hyperedge represents the tuples accessed by it. Each hyperedge has
a weight that represents the frequency of that query in the workload. Therefore what
we have is a weighted hypergraph. This hypergraph is then partitioned using a k-way
balanced min-cut partitioning algorithm that produces k balanced partitions, each of
which is allocated to a site. This minimizes the number of distributed queries since
the algorithm is minimizing the cuts in hyperedges and each of these cuts indicates
a distributed query.

Of course, this change in the model is not sufficient to address the issues
discussed above. In order to reduce the size of the graph, and the overhead of
maintaining the associated mapping table, SWORD compresses this hypergraph as
follows. The set of vertices V in the original hypergraph G is mapped to a set of
virtual vertices V ′ using a hash or other function that operates on the primary keys
of the tuples. Once the set of virtual vertices are determined, the edges in the original
hypergraph are now mapped to hyperedges in the compressed graph (E′) such that
if the vertices spanned by a hyperedge e ∈ E are mapped to different virtual vertices
in the compressed graph, then there will be a hyperedge e′ ∈ E′.

7A hypergraph allows each edge (called a hyperedge) to connect more than two vertices as is the
case with regular graphs. The details of the hypergraph model are beyond our scope.

2.3 Combined Approaches 77

Q′
3

Q′
1,Q

′
2

1, 2

v ′
1

3, 4, 5

v ′
2

6,7

v ′
3

Fig. 2.24 Sword compressed hypergraph

Of course for this compression to make sense, |V ′| < |V |, so a critical issue is
to determine how much compression is desired—too much compression will reduce
the number of virtual vertices, but will increase the number of hyperedges, and
therefore the possibility of distributed queries. The resulting compressed hypergraph
G′ = (V ′, E′) is going to be smaller than the original hypergraph so easier to
manage and partition, and the mapping tables will also be smaller since they will
only consider the mapping of sets of virtual vertices.

Example 2.20 Let us revisit the case in Example 2.19 and consider that we are
compressing the hypergraph into three virtual vertices: v′

1 = 1, 2, v′
2 = 3, 4, 5, v′

3 =
6, 7. Then there would be two hyperedges: e′

1 = (v′
1, v

′
3) with frequency 2

(corresponding to Q1 and Q2 in the original hypergraph) and e′
2 = (v′

1, v
′
2) with

frequency 1 (corresponding to Q3). The hyperedges representing queries Q4 and
Q5 would be local (i.e., not spanning virtual vertices) so no hyperedges are required
in the compressed hypergraph. This is shown in Fig. 2.24. �

Performing the k-way balanced min-cut partitioning on the compressed hyper-
graph can be performed much faster and the resulting mapping table will be smaller
due to the reduced size of the graph.

SWORD incorporates replication in the compressed hypergraph. It first deter-
mines, for each virtual vertex, how many replicas are required. It does this by using
the tuple-level access pattern statistics for each tuple tj in each virtual vertex v′

i ,
namely its read frequency f r

ij and its write frequency f w
ij . Using these, it computes

the average read and write frequencies (ARF and AWF, respectively) of virtual
vertex v′

i as follows:

ARF(v′
i) =

∑
j f r

ij

log S(v′
i)

and AWF(v′
i) =

∑
j f w

ij

log S(v′
i)

S(v′
i) is the size of each virtual vertex (in terms of the number of actual vertices

mapped to it) and its log is taken to compensate for the skew in the sizes of virtual
vertices (so, these are size-compensated averages). From these, SWORD defines a

78 2 Distributed and Parallel Database Design

replication factor, R = AWF(v′
i)

ARWF(v′
i)

and a user-specified threshold δ (0 < δ < 1) is

defined. The number of replicas (#_rep) for virtual vertex v′
i is then given as

#_rep(v′
i) =

{
1 if R ≥ δ

ARF(v′
i) otherwise

Once the number of replicas for each virtual vertex is determined, these are added
to the compressed hypergraph and assigned to hyperedges in a way that minimizes
the min-cut in the partitioning algorithm. We ignore the details of this assignment.

2.4 Adaptive Approaches

The work described in this chapter generally assumes a static environment where
design is conducted only once and this design can persist. Reality, of course, is
quite different. Both physical (e.g., network characteristics, available storage at
various sites) and logical (e.g., workload) changes occur necessitating redesign
of the database. In a dynamic environment, the process becomes one of design-
redesign-materialization of the redesign. When things change, the simplest approach
is to redo the distribution design from scratch. For large or highly dynamic systems,
this is not quite realistic as the overhead of redesign is likely to be very high. A
preferred approach is to perform incremental redesign, focusing only on the parts of
the database that are likely to be affected by the changes. The incremental redesign
can either be done every time a change is detected or periodically where changes
are batched and evaluated at regular intervals.

Most of the work in this area has focused on changes in the workload (queries
and transactions) over time and those are what we focus in this section. While some
work in this area has focused on the fragment-then-allocate approach, most follow
the combined approach. In the former case one alternative that has been proposed
involves a split phase where fragments are further subdivided based on the changed
application requirements until no further subdivision is profitable based on a cost
function. At this point, the merging phase starts where fragments that are accessed
together by a set of applications are merged into one fragment. We will focus more
on the dynamic combined approaches that perform incremental redesign as the
workload changes.

The objective in the adaptive approaches is the same as the workload-aware par-
titioning strategies discussed in Sect. 2.3.2: to minimize the number of distributed
queries and ensure that the data for each query is local. Within this context, there are
three interrelated issues that need to be addressed in adaptive distribution design:

1. How to detect workload changes that require changes in the distribution design?
2. How to determine which data items are going to be affected in the design?
3. How to perform the changes in an efficient manner?

In the remainder we discuss each of these issues.

2.4 Adaptive Approaches 79

2.4.1 Detecting Workload Changes

This is a difficult issue on which there is not much work. Most of the adaptive
techniques that have been proposed assume that the change in the workload is
detected, and simply focus on the migration problem. To be able to detect workload
changes, the incoming queries need to be monitored. One way to do this is to
periodically examine the system logs, but this may have high overhead, especially
in highly dynamic systems. An alternative is to continuously monitor the workload
within the DBMS. In the SWORD system we discussed above, the system monitors
the percentage increase in the number of distributed transactions and considers that
the system has changed sufficiently to require a reconfiguration if this percentage
increase is above a defined threshold. As another example, the E-Store system
monitors both system-level metrics and tuple-level access. It starts by collecting
system-level metrics at each computing node using OS facilities. E-Store currently
focuses primarily on detecting workload imbalances across the computing nodes,
and therefore only collects CPU utilization data. If the CPU utilization imbalance
exceeds a threshold, then it invokes more fine-grained tuple-level monitoring to
detect the affected items (see next section). Although imbalance in CPU utilization
may be a good indicator of possible performance problems, it is too simple to
capture more significant workload changes. It is possible, of course, to do more
sophisticated monitoring, e.g., one can create a profile that looks at the frequency of
each query in a given time period, the percentage of queries that meet (or exceed)
their agreed-upon latencies (as captured in a service level agreement, perhaps),
and others. Then it can be decided whether the changes in the profile require
redesign, which can be done either continuously (i.e., every time the monitor
registers information) or periodically. The challenge here is to do this efficiently
without intruding on the system performance. This is an open research area that has
not been properly studied.

2.4.2 Detecting Affected Items

Once a change is detected in the workload the next step is to determine what data
items are affected and need to be migrated to address this change. How this is
done is very much dependent on the detection method. For example, if the system
is monitoring the frequency of queries and detects changes, then the queries will
identify the data items. It is possible to generalize from individual queries to query
templates in order to capture “similar” queries that might also be affected by the
changes. This is done in the Apollo system where each constant is replaced by a
wildcard. For example, the query

SELECT PNAME FROM PROJ WHERE BUDGET>200000 AND LOC = "London"

80 2 Distributed and Parallel Database Design

would be generalized to

SELECT PNAME FROM PROJ WHERE BUDGET>? AND LOC = "?"

While this reduces the granularity of determining the exact set of data items
that are affected, it may allow the detection of additional data items that might be
affected by similar queries and reduce the frequency of changes that are necessary.

The E-Store system starts tuple-level monitoring once it detects a system load
imbalance. For a short period, it collects access data to the tuples in each computing
node (i.e., each partition) and determines the “hot” tuples, which are the top-k most
frequently accessed tuples within a time period. To do this, it uses a histogram for
each tuple that is initialized when the tuple-level monitoring is enabled and updated
as access happens within the monitoring window. At the end of this time period, the
top-k list is assembled. The monitoring software gathers these lists and generates a
global top-k list of hot tuples—these are the data items that need to be migrated. A
side-effect is the determination of cold tuples; of particular importance are tuples
that were previously hot and have since become cold. The determination of the time
window for tuple-level monitoring and the value of k are parameters set by the
database administrator.

2.4.3 Incremental Reconfiguration

As noted earlier, the naive approach to perform redesign is to redo the entire data
partitioning and distribution. While this may be of interest in environments where
workload change occurs infrequently, in most cases, the overhead of redesign is
too high to do it from scratch. The preferred approach is to apply the changes
incrementally by migrating data; in other words, we only look at the changed
workload and the data items that are affected, and move them around.8 So, in this
section, we focus on incremental approaches.

Following from the previous section, one obvious approach is to use an incremen-
tal graph partitioning algorithm that reacts to changes in the graph representation we
discussed. This has been followed in the SWORD system discussed above and in
AdaptCache, both of which represent usage as hypergraphs and perform incremental
partitioning on these graphs. The incremental graph partitioning initiates data
migration for reconfiguration.

The E-Store system we have been discussing takes a more sophisticated
approach. Once the set of hot tuples are identified, a migration plan is prepared that
identifies where the hot tuples should be moved and what reallocation of cold tuples
is necessary. This can be posed as an optimization problem that creates a balanced
load across the computing nodes (balance is defined as average-load-across-nodes

8The research in this area has exclusively focused on horizontal partitioning, which will be our
focus here as well, meaning that our units of migration are individual tuples.

2.4 Adaptive Approaches 81

± a threshold value), but solving this optimization problem in real time for online
reconfiguration is not easy, so it uses approximate placement approaches (e.g.,
greedy, first-fit) to generate the reconfiguration plan. Basically, it first determines
the appropriate computing nodes at which each hot tuple should be located, then
addresses cold tuples, if necessary due to remaining imbalance, by moving them
in blocks. So, the generated reconfiguration plan addresses the migration of hot
tuples individually, but the migration of cold tuples as blocks. As part of the plan a
coordinating node is determined to manage the migration, and this plan is an input
to the Squall reconfiguration system.

Squall performs reconfiguration and data migration in three steps. In the first
step, the coordinator identified in the reconfiguration plan initializes the system for
migration. This step includes the coordinating obtaining exclusive access control
to all of these partitions through a transaction as we will discuss in Chap. 5. Then
the coordinator asks each site to identify the tuples that will be moving out of the
local partition and the tuples that will be coming in. This analysis is done on the
metadata so can be done quickly after which each site notifies the coordinator and
the initialization transaction terminates. In the second step, the coordinator instructs
each site to do the data migration. This is critical as there are queries accessing
the data as it is being moved. If a query is executing at a given computing node
where the data is supposed to be according to the reconfiguration plan but the
required tuples are not locally available, Squall pulls the missing tuples to process
the query. This is done in addition to the normal migration of the data according to
the reconfiguration plan. In other words, in order to execute the queries in a timely
fashion, Squall performs on-demand movement in addition to its normal migration.
Once this step is completed, each node informs the coordinator, which then starts
the final termination step and informs each node that reconfiguration is completed.
These three steps are necessary for Squall to be able to perform migration while
executing user queries at the same time rather than stopping all query execution,
performing the migration and then restarting the query execution.

Another approach is database cracking, which is an adaptive indexing technique
that targets dynamic, hard to predict workloads and scenarios where there is little or
no idle time to devote to workload analysis and index building. Database cracking
works by continuously reorganizing data to match the query workload. Every query
is used as an advice on how the data should be stored. Cracking does this by
building and refining indices partially and incrementally as part of query processing.
By reacting to every single query with lightweight actions, database cracking
manages to adapt to a changing workload instantly. As more queries arrive, the
indices are refined, and the performance improves, eventually reaching the optimal
performance, i.e., the performance we would get from a manually tuned system.

The main idea in the original database cracking approach is that the data system
reorganizes one column of the data at a time and only when touched by a query.
In other words, the reorganization utilizes the fact that the data is already read and
decides how to refine it in the best way. Effectively the original cracking approach
overloads the select operator of a database system and uses the predicates of each
query to determine how to reorganize the relevant column. The first time an attribute

82 2 Distributed and Parallel Database Design

A is required by a query, a copy of the base column A is created, called the cracker
column of A. Each select operator on A triggers the physical reorganization of the
cracker column based on the requested range of the query. Entries with a key that
is smaller than the lower bound are moved before the lower bound, while entries
with a key that is greater than the upper bound are moved after the upper bound
in the respective column. The partitioning information for each cracker column is
maintained in an AVL-tree, the cracker index. Future queries on column A search
the cracker index for the partition where the requested range falls. If the requested
key already exists in the index, i.e., if past queries have cracked on exactly those
ranges, then the select operator can return the result immediately. Otherwise, the
select operator refines on the fly the column further, i.e., only the partitions/pieces
of the column where the predicates fall will be reorganized (at most two partitions
at the boundaries of the range). Progressively the column gets more “ordered” with
more but smaller pieces.

The primary concept in database cracking and its basic techniques can be
extended to partition data in a distributed setting, i.e., to store data across a set of
nodes using incoming queries as an advice. Each time a node needs a specific part
of the data for a local query but the data does not exist in this node, this information
can be used as a hint that the data could be moved to this node. However, contrary to
the in-memory database cracking methods where the system reacts immediately to
every query, in a distributed setting we need to consider that moving the data is more
expensive. At the same time, for the same reason, the benefit that future queries
may have is going to be more significant. In fact, the same trade-off has already
been studied in variations of the original database cracking approach to optimize for
disk-based data. The net effect is twofold: (1) instead of reacting with every query,
we should wait for more workload evidence before we embark on expensive data
reorganization actions, and (2) we should apply “heavier” reorganizations to utilize
the fact that reading and writing data is more expensive out of memory. We expect
future approaches to explore and develop such adaptive indexing methods to benefit
from effective partitioning in scenarios where the workload is not easy to predict,
and there is not enough time to fully sort/partition all data before the first query
arrives.

2.5 Data Directory

The final distribution design issue we discuss is related to data directory. The
distributed database schema needs to be stored and maintained by the system.
This information is necessary during distributed query optimization, as we will
discuss later. The schema information is stored in a catalog/data dictionary/di-
rectory (simply directory). A directory is a metadatabase that stores a number of
information such as schema and mapping definitions, usage statistics, access control
information, and the like.

2.6 Conclusion 83

In the case of a distributed DBMS, schema definition is done at the global level
(i.e., the global conceptual schema—GCS) as well as at the local sites (i.e., local
conceptual schemas—LCSs). GCS defines the overall database while each LCS
describes data at that particular site. Consequently, there are two types of directories:
a global directory/dictionary (GD/D)9 that describes the database schema as the
end users see it, and the local directory/dictionary (LD/D) that describes the
local mappings and describes the schema at each site. Thus, the local database
management components are integrated by means of global DBMS functions.

As stated above, the directory is itself a database that contains metadata about
the actual data stored in the database. Therefore, the techniques we discussed in
this chapter, with respect to distributed database design also apply to directory
management, but in much simpler manner. Briefly, a directory may be either global
to the entire database or local to each site. In other words, there might be a single
directory containing information about all the data in the database (the GD/D), or
a number of directories, each containing the information stored at one site (the
LD/D). In the latter case, we might either build hierarchies of directories to facilitate
searches or implement a distributed search strategy that involves considerable
communication among the sites holding the directories.

A second issue is replication. There may be a single copy of the directory
or multiple copies. Multiple copies would provide more reliability, since the
probability of reaching one copy of the directory would be higher. Furthermore,
the delays in accessing the directory would be lower, due to less contention and the
relative proximity of the directory copies. On the other hand, keeping the directory
up-to-date would be considerably more difficult, since multiple copies would need
to be updated. Therefore, the choice should depend on the environment in which
the system operates and should be made by balancing such factors as the response-
time requirements, the size of the directory, the machine capacities at the sites, the
reliability requirements, and the volatility of the directory (i.e., the amount of change
experienced by the database, which would cause a change to the directory).

2.6 Conclusion

In this chapter, we presented the techniques that can be used for distributed database
design with special emphasis on the partitioning and allocation issues. We have
discussed, in detail, the algorithms that one can use to fragment a relational schema
in various ways. These algorithms have been developed quite independently and
there is no underlying design methodology that combines the horizontal and vertical
partitioning techniques. If one starts with a global relation, there are algorithms
to decompose it horizontally as well as algorithms to decompose it vertically into
a set of fragment relations. However, there are no algorithms that fragment a

9In the remainder, we will simply refer to this as the global directory.

84 2 Distributed and Parallel Database Design

global relation into a set of fragment relations some of which are decomposed
horizontally and others vertically. It is commonly pointed out that most real-life
fragmentations would be mixed, i.e., would involve both horizontal and vertical
partitioning of a relation, but the methodology research to accomplish this is lacking.
If this design methodology is to be followed, what is needed is a distribution
design methodology which encompasses the horizontal and vertical fragmentation
algorithms and uses them as part of a more general strategy. Such a methodology
should take a global relation together with a set of design criteria and come up with
a set of fragments some of which are obtained via horizontal and others obtained
via vertical fragmentation.

We also discussed techniques that do not separate fragmentation and allocation
steps—the way data is partitioned dictates how it is allocated or vice versa. These
techniques typically have two characteristics. The first is that they exclusively focus
on horizontal partitioning. The second is that they are more fine-grained and the unit
of allocation is a tuple; fragments at each site “emerge” as the union of tuples from
the same relation assigned to that site.

We finally discussed adaptive techniques that take into account changes in
workload. These techniques again typically involve horizontal partitioning, but
monitor the workload changes (both in terms of the query set and in terms of
the access patterns) and adjust the data partitioning accordingly. The naïve way
achieving this is by to do new batch run of the partitioning algorithm, but this
is obviously not desired. Therefore, the better algorithms in this class adjust data
distribution incrementally.

2.7 Bibliographic Notes

Distributed database design has been studied systematically since the early years
of the technology. An early paper that characterizes the design space is [Levin
and Morgan 1975]. Davenport [1981], Ceri et al. [1983], and Ceri et al. [1987]
provide nice overviews of the design methodology. Ceri and Pernici [1985] discuss
a particular methodology, called DATAID-D, which is similar to what we presented
in Fig. 2.1. Other attempts to develop a methodology are due to Fisher et al. [1980],
Dawson [1980], Hevner and Schneider [1980], and Mohan [1979].

Most of the known results about fragmentation have been covered in this
chapter. Work on fragmentation in distributed databases initially concentrated on
horizontal fragmentation. The discussion on that topic is mainly based on [Ceri
et al. 1982b] and [Ceri et al. 1983]. Data partitioning in parallel DBMS is treated
in [DeWitt and Gray 1992]. The topic of vertical fragmentation for distribution
design has been addressed in several papers (e.g., Navathe et al. [1984] and Sacca
and Wiederhold [1985]). The original work on vertical fragmentation goes back
to Hoffer’s dissertation [Hoffer 1975, Hoffer and Severance 1975] and to Niamir
[1978] and Hammer and Niamir [1979]. McCormick et al. [1972] present the bond

2.7 Bibliographic Notes 85

energy algorithm that has been adopted to vertical fragmentation by Hoffer and
Severance [1975] and Navathe et al. [1984].

The investigation of file allocation problem on wide area networks goes back to
Chu’s work [Chu 1969, 1973]. Most of the early work on this has been covered in the
excellent survey by Dowdy and Foster [1982]. Some theoretical results are reported
by Grapa and Belford [1977] and Kollias and Hatzopoulos [1981]. The distributed
data allocation work dates back to the mid-1970s to the works of Eswaran [1974]
and others. In their earlier work, Levin and Morgan [1975] concentrated on data
allocation, but later they considered program and data allocation together [Morgan
and Levin 1977]. The distributed data allocation problem has been studied in many
specialized settings as well. Work has been done to determine the placement of
computers and data in a wide area network design [Gavish and Pirkul 1986].
Channel capacities have been examined along with data placement [Mahmoud and
Riordon 1976] and data allocation on supercomputer systems [Irani and Khabbaz
1982] as well as on a cluster of processors [Sacca and Wiederhold 1985]. An
interesting work is the one by Apers [1981], where the relations are optimally
placed on the nodes of a virtual network, and then the best matching between
the virtual network nodes and the physical network is found. The isomorphism
of data allocation problem to single commodity warehouse location problem is
due to Ramamoorthy and Wah [1983]. For other solution approaches, the sources
are as follows: knapsack problem solution [Ceri et al. 1982a], branch-and-bound
techniques [Fisher and Hochbaum 1980], and network flow algorithms [Chang and
Liu 1982].

The Schism approach to combined partitioning (Sect. 2.3.2) is due to Curino
et al. [2010] and SWORD is due to Quamar et al. [2013]. Other works along these
lines are [Zilio 1998], [Rao et al. 2002], and [Agrawal et al. 2004], which mostly
focus on partitioning for parallel DBMSs.

An early adaptive technique is discussed by Wilson and Navathe [1986]. Limited
redesign, in particular, the materialization issue, is studied in [Rivera-Vega et al.
1990, Varadarajan et al. 1989]. Complete redesign and materialization issues have
been studied in [Karlapalem et al. 1996, Karlapalem and Navathe 1994, Kazerouni
and Karlapalem 1997]. Kazerouni and Karlapalem [1997] describe the stepwise
redesign methodology that we referred to in Sect. 2.4. AdaptCache is described
in [Asad and Kemme 2016].

The impact of workload changes on distributed/parallel DBMSs and the desir-
ability of localizing data for each transaction have been studied by Pavlo et al.
[2012] and Lin et al. [2016]. There are a number of works that address adaptive
partitioning in the face of these changes. Our discussion focused on E-Store [Taft
et al. 2014] as an exemplar. E-Store implements the E-Monitor and E-Planner
systems, respectively, for monitoring and detecting workload changes, and for
detecting affected items to create a migration plan. For actual migration it uses an
optimized version of Squall [Elmore et al. 2015]. There are other works along the
same vein; for example, P-Store [Taft et al. 2018] predicts load demands (as opposed
to E-Store reacting to them).

86 2 Distributed and Parallel Database Design

The log-inspection-based determination of workload changes is due to Levan-
doski et al. [2013].

One work that focuses on detecting workload shifts for autonomic computing is
described in Holze and Ritter [2008]. The Apollo system, which we referred to in
discussion how to detect data items that are affected, and that abstracts queries to
query templates in order to do predictive computation is described in Glasbergen
et al. [2018].

Database cracking as a concept has been studied in the context of main-
memory column-stores [Idreos et al. 2007b, Schuhknecht et al. 2013]. The cracking
algorithms have been adapted to work for many core database architecture issues
such as: updates to incrementally and adaptively absorb data changes [Idreos et al.
2007a], multiattribute queries to reorganize whole relations as opposed to only
columns [Idreos et al. 2009], to use also the join operator as a trigger for adaptation
[Idreos 2010], concurrency control to deal with the problem that cracking effectively
turns reads into writes [Graefe et al. 2014, 2012], and partition-merge-like logic to
provide cracking algorithms that can balance index convergence versus initialization
costs [Idreos et al. 2011]. In addition, tailored benchmarks have been developed to
stress-test critical features such as how quickly an algorithm adapts [Graefe et al.
2010]. Stochastic database cracking [Halim et al. 2012] shows how to be robust
on various workloads, and Graefe and Kuno [2010b] show how adaptive indexing
can apply to key columns. Finally, recent work on parallel adaptive indexing
studies CPU-efficient implementations and proposes cracking algorithms to utilize
multicores [Pirk et al. 2014, Alvarez et al. 2014] or even idle CPU time [Petraki
et al. 2015].

The database cracking concept has also been extended to broader storage layout
decisions, i.e., reorganizing base data (columns/rows) according to incoming query
requests [Alagiannis et al. 2014], or even about which data should be loaded [Idreos
et al. 2011, Alagiannis et al. 2012]. Cracking has also been studied in the context of
Hadoop [Richter et al. 2013] for local indexing in each node as well as for improving
more traditional disk-based indexing which forces reading data at the granularity of
pages and where writing back the reorganized data needs to be considered as a major
overhead [Graefe and Kuno 2010a].

Exercises

Problem 2.1 (*) Given relation EMP as in Fig. 2.2, let p1: TITLE< "Programmer"
and p2: TITLE > “Programmer” be two simple predicates. Assume that character
strings have an order among them, based on the alphabetical order.

(a) Perform a horizontal fragmentation of relation EMP with respect to {p1, p2}.
(b) Explain why the resulting fragmentation (EMP1, EMP2) does not fulfill the

correctness rules of fragmentation.
(c) Modify the predicates p1 and p2 so that they partition EMP obeying the

correctness rules of fragmentation. To do this, modify the predicates, compose

Exercises 87

all minterm predicates and deduce the corresponding implications, and then
perform a horizontal fragmentation of EMP based on these minterm predicates.
Finally, show that the result has completeness, reconstruction, and disjointness
properties.

Problem 2.2 (*) Consider relation ASG in Fig. 2.2. Suppose there are two appli-
cations that access ASG. The first is issued at five sites and attempts to find the
duration of assignment of employees given their numbers. Assume that managers,
consultants, engineers, and programmers are located at four different sites. The
second application is issued at two sites where the employees with an assignment
duration of less than 20 months are managed at one site, whereas those with longer
duration are managed at a second site. Derive the primary horizontal fragmentation
of ASG using the foregoing information.

Problem 2.3 Consider relations EMP and PAY in Fig. 2.2. EMP and PAY are
horizontally fragmented as follows:

EMP1 = σTITLE=“Elect. Eng.”(EMP)

EMP2 = σTITLE=“Syst. Anal.”(EMP)

EMP3 = σTITLE=“Mech. Eng.”(EMP)

EMP4 = σTITLE=“Programmer”(EMP)

PAY1 = σSAL≥30000(PAY)

PAY2 = σSAL<30000(PAY)

Draw the join graph of EMP�TITLE PAY. Is the graph simple or partitioned? If it
is partitioned, modify the fragmentation of either EMP or PAY so that the join graph
of EMP�TITLE PAY is simple.

Problem 2.4 Give an example of a CA matrix where the split point is not unique
and the partition is in the middle of the matrix. Show the number of shift operations
required to obtain a single, unique split point.

Problem 2.5 (**) Given relation PAY as in Fig. 2.2, let p1 : SAL < 30000 and
p2 : SAL ≥ 30000 be two simple predicates. Perform a horizontal fragmentation
of PAY with respect to these predicates to obtain PAY1 and PAY2. Using the
fragmentation of PAY, perform further derived horizontal fragmentation for EMP.
Show completeness, reconstruction, and disjointness of the fragmentation of EMP.

Problem 2.6 (**) Let Q = {q1, . . . , q5} be a set of queries, A = {A1, . . . ,A5} be
a set of attributes, and S = {S1, S2, S3} be a set of sites. The matrix of Fig. 2.25a
describes the attribute usage values and the matrix of Fig. 2.25b gives the application
access frequencies. Assume that refi(qk) = 1 for all qk and Si and that A1 is the
key attribute. Use the bond energy and vertical partitioning algorithms to obtain a
vertical fragmentation of the set of attributes in A.

Problem 2.7 (**) Write an algorithm for derived horizontal fragmentation.

88 2 Distributed and Parallel Database Design

A1 A2 A3 A4 A5⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

q1 0 1 1 0 1

q2 1 1 1 0 1

q3 1 0 0 1 1

q4 0 0 1 0 0

q5 1 1 1 0 0

S1 S2 S3⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

q1 10 20 0

q2 5 0 10

q3 0 35 5

q4 0 10 0

q5 0 15 0

(a) (b)

Fig. 2.25 Attribute usage values and application access frequencies in Exercise 3.6

Problem 2.8 (**) Assume the following view definition:

CREATE VIEW EMPVIEW(ENO, ENAME, PNO, RESP)
AS SELECT EMP.ENO, EMP.ENAME, ASG.PNO, ASG.RESP

FROM EMP JOIN ASG
WHERE DUR=24

is accessed by application q1, located at sites 1 and 2, with frequencies 10 and 20,
respectively. Let us further assume that there is another query q2 defined as

SELECT ENO, DUR
FROM ASG

which is run at sites 2 and 3 with frequencies 20 and 10, respectively. Based on
the above information, construct the use(qi,Aj) matrix for the attributes of both
relations EMP and ASG. Also construct the affinity matrix containing all attributes
of EMP and ASG. Finally, transform the affinity matrix so that it could be used to
split the relation into two vertical fragments using heuristics or BEA.

Problem 2.9 (**) Formally define the three correctness criteria for derived hori-
zontal fragmentation.

Problem 2.10 (*) Given a relation R(K,A,B,C) (where K is the key) and the
following query:

SELECT *
FROM R
WHERE R.A=10 AND R.B=15

(a) What will be the outcome of running PHF on this query?
(b) Does the COM_MIN algorithm produce in this case a complete and minimal

predicate set? Justify your answer.

Problem 2.11 (*) Show that the bond energy algorithm generates the same results
using either row or column operation.

Exercises 89

Problem 2.12 (**) Modify algorithm SPLIT to allow n-way partitioning, and
compute the complexity of the resulting algorithm.

Problem 2.13 (**) Formally define the three correctness criteria for hybrid frag-
mentation.

Problem 2.14 Discuss how the order in which the two basic fragmentation schemas
are applied in hybrid fragmentation affects the final fragmentation.

Problem 2.15 (**) Describe how the following can be properly modeled in the
database allocation problem.

(a) Relationships among fragments
(b) Query processing
(c) Integrity enforcement
(d) Concurrency control mechanisms

Problem 2.16 (**) Consider the various heuristic algorithms for the database
allocation problem.

(a) What are some of the reasonable criteria for comparing these heuristics?
Discuss.

(b) Compare the heuristic algorithms with respect to these criteria.

Problem 2.17 (*) Pick one of the heuristic algorithms used to solve the DAP, and
write a program for it.

Problem 2.18 (**) Assume the environment of Exercise 3.8. Also assume that
60% of the accesses of query q1 are updates to PNO and RESP of view EMPVIEW
and that ASG.DUR is not updated through EMPVIEW. In addition, assume that the
data transfer rate between site 1 and site 2 is half of that between site 2 and site 3.
Based on the above information, find a reasonable fragmentation of ASG and EMP
and an optimal replication and placement for the fragments, assuming that storage
costs do not matter here, but copies are kept consistent.

Hint: Consider horizontal fragmentation for ASG based on DUR = 24 predicate
and the corresponding derived horizontal fragmentation for EMP. Also look at the
affinity matrix obtained in Example 2.7 for EMP and ASG together, and consider
whether it would make sense to perform a vertical fragmentation for ASG.

Chapter 3
Distributed Data Control

An important requirement of a DBMS is the ability to support data control, i.e.,
controlling how data is accessed using a high-level language. Data control typically
includes view management, access control, and semantic integrity control. Infor-
mally, these functions must ensure that authorized users perform correct operations
on the database, thus contributing to the maintenance of database integrity. The
functions necessary for maintaining the physical integrity of the database in the
presence of concurrent accesses and failures are studied separately in Chap. 5 in
the context of transaction management. In relational DBMSs, data control can
be achieved in a uniform fashion. Views, authorizations, and semantic integrity
constraints can be defined as rules that the system automatically enforces. The
violation of some rules by database operations generally implies the rejection of
the effects of some operations (e.g., undoing some updates) or propagating some
effects (e.g., updating related data) to preserve the database integrity.

The definition of these rules is part of the administration of the database, a
function generally performed by a database administrator (DBA). This person is
also in charge of applying the organizational policies. Well-known solutions for
data control have been proposed for centralized DBMSs. In this chapter, we discuss
how these solutions can be extended to distributed DBMSs. The cost of enforcing
data control, which is high in terms of resource utilization in a centralized DBMS,
can be prohibitive in a distributed environment.

Since the rules for data control must be stored, the management of a distributed
directory is also relevant in this chapter. The directory of a distributed DBMS can
be viewed as a distributed database. There are several ways to store data control def-
initions, according to the way the directory is managed. Directory information can
be stored differently according to its type; in other words, some information might
be fully replicated, whereas other information might be distributed. For example,
information that is useful at compile time, such as access control information, could
be replicated. In this chapter, we emphasize the impact of directory management on
the performance of data control mechanisms.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_3

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_3

92 3 Distributed Data Control

This chapter is organized as follows: View management is the subject of Sect. 3.1.
Access control is presented in Sect. 3.2. Finally, semantic integrity control is treated
in Sect. 3.3. For each section we first outline the solution in a centralized DBMS
and then give the distributed solution, which is often an extension of the centralized
one, although more difficult.

3.1 View Management

One of the main advantages of the relational model is that it provides full logical
data independence. As introduced in Chap. 1, external schemas enable user groups
to have their particular view of the database. In a relational system, a view is a
virtual relation, defined as the result of a query on base relations (or real relations),
but not materialized like a base relation in the database. A view is a dynamic window
in the sense that it reflects all updates to the database. An external schema can be
defined as a set of views and/or base relations. Besides their use in external schemas,
views are useful for ensuring data security in a simple way. By selecting a subset of
the database, views hide some data. If users may only access the database through
views, they cannot see or manipulate the hidden data, which is therefore secure.

In the remainder of this section we look at view management in centralized
and distributed systems as well as the problems of updating views. Note that in
a distributed DBMS, a view can be derived from distributed relations, and the
access to a view requires the execution of the distributed query corresponding
to the view definition. An important issue in a distributed DBMS is to make
view materialization efficient. We will see how the concept of materialized views
helps in solving this problem, among others, but requires efficient techniques for
materialized view maintenance.

3.1.1 Views in Centralized DBMSs

Most relational DBMSs use a view mechanism where a view is a relation derived
from base relations as the result of a relational query (this was first proposed within
the INGRES and System R projects). It is defined by associating the name of the
view with the retrieval query that specifies it.

Example 3.1 The view of system analysts (SYSAN) derived from relation EMP can
be defined by the following SQL query:

CREATE VIEW SYSAN(ENO, ENAME) AS
SELECT ENO, ENAME
FROM EMP
WHERE TITLE = "Syst. Anal."

�

3.1 View Management 93

The single effect of this statement is the storage of the view definition in the
catalog. No other information needs to be recorded. Therefore, the result of the
query defining the view (i.e., a relation having the attributes ENO and ENAME for the
system analysts as shown in Fig. 3.1) is not produced. However, the view SYSAN
can be manipulated as a base relation.

Example 3.2 The query

“Find the names of all the system analysts with their project number and
responsibility(ies)”

involving the view SYSAN and relation ASG can be expressed as

SELECT ENAME, PNO, RESP
FROM SYSAN NATURAL JOIN ASG

�
Mapping a query expressed on views into a query expressed on base relations

can be done by query modification. With this technique the variables are changed
to range on base relations and the query qualification is merged (ANDed) with the
view qualification.

Example 3.3 The preceding query can be modified to

SELECT ENAME, PNO, RESP
FROM EMP NATURAL JOIN ASG
WHERE TITLE = "Syst. Anal."

The result of this query is illustrated in Fig. 3.2. �
The modified query is expressed on base relations and can therefore be processed

by the query processor. It is important to note that view processing can be done at
compile time. The view mechanism can also be used for refining the access controls

ENO ENAME
E2 M. Smith
E5 B. Casey
E8 J. Jones

SYSAN

Fig. 3.1 Relation corresponding to the view SYSAN

ENAME PNO RESP
M. Smith P1 Analyst
M. Smith P2 Analyst
B. Casey P3 Manager
J. Jones P4 Manager

Fig. 3.2 Result of query involving view SYSAN

94 3 Distributed Data Control

to include subsets of objects. To specify any user from whom one wants to hide data,
the keyword USER generally refers to the logged-on user identifier.

Example 3.4 The view ESAME restricts the access by any user to those employees
having the same title:

CREATE VIEW ESAME AS
SELECT *
FROM EMP E1, EMP E2
WHERE E1.ENO = E2.ENO
AND E1.ENO = USER

In the view definition above, * stands for “all attributes” and the two tuple
variables (E1 and E2) ranging over relation EMP are required to express the join
of one tuple of EMP (the one corresponding to the logged-on user) with all tuples of
EMP based on the same title. For example, the following query issued by the user J.
Doe

SELECT *
FROM ESAME

returns the relation of Fig. 3.3. Note that the user J. Doe also appears in the result.
If the user who creates ESAME is an electrical engineer, as in this case, the view
represents the set of all electrical engineers. �

Views can be defined using arbitrarily complex relational queries involving
selection, projection, join, aggregate functions, and so on. All views can be
interrogated as base relations, but not all views can be manipulated as such. Updates
through views can be handled automatically only if they can be propagated correctly
to the base relations. We can classify views as being updatable and not updatable.
A view is updatable only if the updates to the view can be propagated to the base
relations without ambiguity. The view SYSAN above is updatable; the insertion, for
example, of a new system analyst 〈201, Smith〉 will be mapped into the insertion
of a new employee 〈201, Smith, Syst. Anal.〉. If attributes other than TITLE were
hidden by the view, they would be assigned null values.

Example 3.5 However, the following view, which uses a natural join (i.e., the
equijoin of two relations on a common attribute), is not updatable:

CREATE VIEW EG(ENAME, RESP) AS
SELECT DISTINCT ENAME, RESP
FROM EMP NATURAL JOIN ASG

ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 L. Chu Elect. Eng.

Fig. 3.3 Result of query on view ESAME

3.1 View Management 95

The deletion, for example, of the tuple 〈Smith, Analyst〉 cannot be propagated,
since it is ambiguous. Deletions of Smith in relation EMP or analyst in relation ASG
are both meaningful, but the system does not know which is correct. �

Current systems are very restrictive about supporting updates through views.
Views can be updated only if they are derived from a single relation by selection and
projection. This precludes views defined by joins, aggregates, and so on. However, it
is theoretically possible to automatically support updates of a larger class of views.
It is interesting to note that views derived by join are updatable if they include the
keys of the base relations.

3.1.2 Views in Distributed DBMSs

The definition of a view is similar in a distributed DBMS and in centralized systems.
However, a view in a distributed system may be derived from fragmented relations
stored at different sites. When a view is defined, its name and its retrieval query are
stored in the catalog.

Since views may be used as base relations by application programs, their
definition should be stored in the directory in the same way as the base relation
descriptions. Depending on the degree of site autonomy offered by the system, view
definitions can be centralized at one site, partially duplicated or fully duplicated. In
any case, the information associating a view name to its definition site should be
duplicated. If the view definition is not present at the site where the query is issued,
remote access to the view definition site is necessary.

The mapping of a query expressed on views into a query expressed on base
relations (which can potentially be fragmented) can also be done through query
modification in the same way as in centralized DBMSs. With this technique, the
qualification defining the view is found in the distributed database catalog and then
merged with the query to provide a query on base relations. Such a modified query is
a distributed query, which can be processed by the distributed query processor (see
Chap. 4). The query processor maps the distributed query into a query on physical
fragments.

In Chap. 2 we presented alternative ways of fragmenting base relations. The
definition of fragmentation is, in fact, very similar to the definition of particular
views. Thus, it is possible to manage views and fragments using a unified mech-
anism. Furthermore, replicated data can be handled in the same way. The value
of such a unified mechanism is to facilitate distributed database administration.
The objects manipulated by the database administrator can be seen as a hierarchy
where the leaves are the fragments from which relations and views can be derived.
Therefore, the DBA may increase locality of reference by making views in one-to-
one correspondence with fragments. For example, it is possible to implement the
view SYSAN illustrated in Example 3.1 by a fragment at a given site, provided that
most users accessing the view SYSAN are at the same site.

96 3 Distributed Data Control

Evaluating views derived from distributed relations may be costly. In a given
organization it is likely that many users access the same view which must be
recomputed for each user. We saw in Sect. 3.1.1 that view derivation is done
by merging the view qualification with the query qualification. An alternative
solution is to avoid view derivation by maintaining actual versions of the views,
called materialized views. A materialized view stores the tuples of a view in
a database relation, like the other database tuples, possibly with indices. Thus,
access to a materialized view is much faster than deriving the view, in particular,
in a distributed DBMS where base relations can be remote. Introduced in the
early 1980s, materialized views have since gained much interest in the context of
data warehousing to speed up Online Analytical Processing (OLAP) applications.
Materialized views in data warehouses typically involve aggregate (such as SUM and
COUNT) and grouping (GROUP BY) operators because they provide compact database
summaries. Today, all major database products support materialized views.

Example 3.6 The following view over relation PROJ(PNO,PNAME,BUDGET,LOC)
gives, for each location, the number of projects and the total budget.

CREATE VIEW PL(LOC, NBPROJ, TBUDGET) AS
SELECT LOC, COUNT(*),SUM(BUDGET)
FROM PROJ
GROUP BY LOC

�

3.1.3 Maintenance of Materialized Views

A materialized view is a copy of some base data and thus must be kept consistent
with that base data which may be updated. View maintenance is the process of
updating (or refreshing) a materialized view to reflect the changes made to the
base data. The issues related to view materialization are somewhat similar to
those of database replication which we will address in Chap. 6. However, a major
difference is that materialized view expressions, in particular, for data warehousing,
are typically more complex than replica definitions and may include join, group
by, and aggregate operators. Another major difference is that database replication is
concerned with more general replication configurations, e.g., with multiple copies
of the same base data at multiple sites.

A view maintenance policy allows a DBA to specify when and how a view should
be refreshed. The first question (when to refresh) is related to consistency (between
the view and the base data) and efficiency. A view can be refreshed in two modes:
immediate or deferred. With the immediate mode, a view is refreshed immediately
as part as the transaction that updates base data used by the view. If the view and the
base data are managed by different DBMSs, possibly at different sites, this requires
the use of a distributed transaction, for instance, using the two-phase commit (2PC)
protocol (see Chap. 5). The main advantages of immediate refreshment are that

3.1 View Management 97

the view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update both the
base data and the views within the same transactions. Furthermore, using distributed
transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed in
separate (refresh) transactions, thus without performance penalty on the transactions
that update the base data. The refresh transactions can be triggered at different
times: lazily, just before a query is evaluated on the view; periodically, at predefined
times, e.g., every day; or forcedly, after a predefined number of updates to the base
data. Lazy refreshment enables queries to see the latest consistent state of the base
data but at the expense of increased query time to include the refreshment of the
view. Periodic and forced refreshment allow queries to see views whose state is
not consistent with the latest state of the base data. The views managed with these
strategies are also called snapshots.

The second question (how to refresh a view) is an important efficiency issue.
The simplest way to refresh a view is to recompute it from scratch using the base
data. In some cases, this may be the most efficient strategy, e.g., if a large subset of
the base data has been changed. However, there are many cases where only a small
subset of view needs to be changed. In these cases, a better strategy is to compute
the view incrementally, by computing only the changes to the view. Incremental
view maintenance relies on the concept of differential relation. Let u be an update
of relation R. R+ and R− are differential relations of R by u, where R+ contains the
tuples inserted by u into R, and R− contains the tuples of R deleted by u. If u is an
insertion, R− is empty. If u is a deletion, R+ is empty. Finally, if u is a modification,
relation R can be obtained by computing (V − V−) ∪ V+. Computing the changes
to the view, i.e., V+ and V−, may require using the base relations in addition to
differential relations.

Example 3.7 Consider the view EG of Example 3.5 which uses relations EMP and
ASG as base data and assume its state is derived from that of Example 3.1, so that
EG has 9 tuples (see Fig. 3.4). Let EMP+ consist of one tuple 〈E9, B. Martin,
Programmer〉 to be inserted in EMP, and ASG+ consist of two tuples 〈E4, P3,
Programmer, 12〉 and 〈E9, P3, Programmer, 12〉 to be inserted in ASG. The changes
to the view EG can be computed as:

EG+ = (SELECT ENAME, RESP
FROM EMP NATURAL JOIN ASG+)

UNION
(SELECT ENAME, RESP
FROM EMP+ NATURAL JOIN ASG)

UNION
(SELECT ENAME, RESP
FROM EMP+ NATURAL JOIN ASG+)

which yields tuples 〈B. Martin, Programmer〉 and 〈J. Miller, Programmer〉. Note that
integrity constraints would be useful here to avoid useless work (see Sect. 3.3.2).
Assuming that relations EMP and ASG are related by a referential constraint that

98 3 Distributed Data Control

says that ENO in ASG must exist in EMP, the second SELECT statement is useless as
it produces an empty relation. �

Efficient techniques have been devised to perform incremental view maintenance
using both the materialized views and the base relations. The techniques essentially
differ in their views’ expressiveness, their use of integrity constraints, and the
way they handle insertion and deletion. They can be classified along the view
expressiveness dimension as nonrecursive views, views involving outerjoins, and
recursive views. For nonrecursive views, i.e., select-project-join (SPJ) views that
may have duplicate elimination, union, and aggregation, an elegant solution is the
counting algorithm. One problem stems from the fact that individual tuples in the
view may be derived from several tuples in the base relations, thus making deletion
in the view difficult. The basic idea of the counting algorithm is to maintain a count
of the number of derivations for each tuple in the view, and to increment (resp.
decrement) tuple counts based on insertions (resp. deletions); a tuple in the view of
which count is zero can then be deleted.

Example 3.8 Consider the view EG in Fig. 3.4. Each tuple in EG has one derivation
(i.e., a count of 1) except tuple 〈M. Smith, Analyst〉 which has two (i.e., a count of
2). Assume now that tuples 〈E2, P1, Analyst, 24〉 and 〈E3, P3, Consultant, 10〉 are
deleted from ASG. Then only tuple 〈A. Lee, Consultant〉 needs to be deleted from
EG. �

We now present the basic counting algorithm for refreshing a view V defined
over two relations R and S as a query q(R,S). Assuming that each tuple in V has an
associated derivation count, the algorithm has three main steps (see Algorithm 3.1).
First, it applies the view differentiation technique to formulate the differential views
V+ and V− as queries over the view, the base relations, and the differential relations.
Second, it computes V+ and V− and their tuple counts. Third, it applies the changes
V+ and V− in V by adding positive counts and subtracting negative counts, and
deleting tuples with a count of zero.

The counting algorithm is optimal since it computes exactly the view tuples
that are inserted or deleted. However, it requires access to the base relations. This
implies that the base relations be maintained (possibly as replicas) at the sites of the

ENAME RESP
J. Doe Manager
M. Smith Analyst
A. Lee Consultant
A. Lee Engineer
J. Miller Programmer
B. Casey Manager
L. Chu Manager
R. Davis Engineer
J. Jones Manager

Fig. 3.4 State of view EG

3.1 View Management 99

Algorithm 3.1: COUNTING
Input: V : view defined as q(R,S); R, S: relations; R+, R−: changes to R
begin

V+ = q+(V, R+, R, S)

V− = q−(V, R−, R, S)

compute V+ with positive counts for inserted tuples
compute V− with negative counts for deleted tuples
compute (V− V−) ∪ V+ by adding positive counts and subtracting negative counts

deleting each tuple in V with count = 0;
end

materialized view. To avoid accessing the base relations so the view can be stored
at a different site, the view should be maintainable using only the view and the
differential relations. Such views are called self-maintainable.

Example 3.9 Consider the view SYSAN in Example 3.1. Let us write the view
definition as SYSAN=q(EMP) meaning that the view is defined by a query q on
EMP. We can compute the differential views using only the differential relations,
i.e., SYSAN+ = q(EMP+) and SYSAN− = q(EMP−). Thus, the view SYSAN is
self-maintainable. �

Self-maintainability depends on the views’ expressiveness and can be defined
with respect to the update type (insertion, deletion, or modification). Most SPJ views
are not self-maintainable with respect to insertion but are often self-maintainable
with respect to deletion and modification. For instance, an SPJ view is self-
maintainable with respect to deletion of relation R if the key attributes of R are
included in the view.

Example 3.10 Consider the view EG of Example 3.5. Let us add attribute ENO
(which is key of EMP) in the view definition. This view is not self-maintainable
with respect to insertion. For instance, after an insertion of an ASG tuple, we need
to perform the join with EMP to get the corresponding ENAME to insert in the
view. However, this view is self-maintainable with respect to deletion on EMP.
For instance, if one EMP tuple is deleted, the view tuples having same ENO can
be deleted. �

We discuss two optimizations that can significantly reduce the maintenance
time of the COUNTING algorithm. The first optimization is to materialize views
representing subqueries of the input query. A view is constructed by removing a
subset of relations from the query. These views are increasingly smaller and build
a hierarchy. F-IVM method constructs such a hierarchy, called a view trie, with the
input query at the top, the relations at the leaves, and inner views defined by project-
join-aggregate queries over their children. Updates to a relation are propagated
bottom-up in this view trie. The views that are on the path from the updated
relation to the root are maintained using the delta processing from the COUNTING
algorithm. All other views remain unchanged; if they are materialized, then they
may speed up this delta processing. For a restricted class of acyclic queries, called

100 3 Distributed Data Control

q-hierarchical, such view trees allow for constant-time updates to any of the input
relations.

The second optimization exploits the skew in the data. Values that appear very
often in the database are deemed heavy, while all others are light. IVMε uses
evaluation strategies that are sensitive to the heavy/light skew in the data and that
use materialized views and delta computation like all aforementioned maintenance
algorithms.

We exemplify these two optimizations for a query that counts the number of
triangles in a graph. We would like to refresh this triangle count immediately and
incrementally under one update to the data graph, which can be an edge insertion
or deletion. Let us consider three copies R, S, and T of the binary edge relation of a
graph with N edges. We record the multiplicities of tuples in the input relations and
views, that is, the number of their derivations, in a separate column P. Assuming
the schemas of the relations are (A,B,P_R), (B,C,P_S), and (C,A,P_T), the
triangle count query is

CREATE VIEW Q(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM R NATURAL JOIN S NATURAL JOIN T

The insertion or deletion of an edge triggers updates to each of the three relation
copies. We discuss the case of updating R; the other two cases are treated similarly.
We model this update as a relation deltaR consisting of a single tuple (a, b, p),
where (a, b) defines the updated edge and p is the multiplicity. Following the
formalism of generalized multiset relations, we model both inserts and deletes
uniformly by allowing for multiplicities to be integers, that is, negative and positive
numbers. Then, for inserting or deleting the edge three times, we set the multiplicity
p to +3 or, respectively, to −3.

The COUNTING algorithm computes on the fly a delta query deltaQ that
represents the change to the query result: This query is the same as Q, where we
replace R by deltaR. This delta computation takes O(N) time since it needs to
intersect two lists of possibly O(N) many C-values that are paired with b in S and
with a in T (that is, the multiplicity of such pairs in S and T is nonzero).

The DBToaster approach speeds up the delta computation by precomputing three
auxiliary views representing the update-independent parts of the delta queries for
updates to the three relations:

CREATE VIEW V_ST(B, A, CNT) AS
SELECT B, A, SUM(P_S * P_T) as CNT
FROM S NATURAL JOIN T
GROUP BY B, A

CREATE VIEW V_TR(C, B, CNT) AS
SELECT C, B, SUM(P_T * P_R) as CNT
FROM T NATURAL JOIN R
GROUP BY C, B

3.1 View Management 101

CREATE VIEW V_RS(A, C, CNT) AS
SELECT A, C, SUM(P_R * P_S) as CNT
FROM R NATURAL JOIN S
GROUP BY A, C

The view V_ST allows to compute the delta query deltaQ in O(1) time, since
the join of deltaR and V_ST requires a constant-time lookup for 〈a, b〉 into V_ST.
However, maintaining the views V_RS and V_TR, which are defined using R, still
requires O(N) time.

The F-IVM method materializes only one of the three views, for instance,
V_ST. In this case, the maintenance under updates to R takes O(1) time, but the
maintenance of S and T under updates still takes O(N) time.

IVMε algorithm partitions the nodes in the graph depending on their degree, that
is, on the number of directly connected nodes: The heavy nodes have degree greater
than or equal to N1/2, while the light nodes have degree less than N1/2. This leads
to a partition of each of the three copies R, S, and T of the edge relation into a
heavy part R_h (S_h, T_h) and a light part R_l (S_l, T_l): a tuple 〈a, b, p〉 is in
R_h if a is heavy and in R_l otherwise; similarly, a tuple 〈b, c, p〉 is in S_h if b

is heavy and in S_l otherwise; finally, 〈c, a, p〉 is in T_h if c is heavy and in T_l
otherwise. We can rewrite Q by replacing each of the three relations with the union
of its two parts. The query Q is then equivalent to the union of eight skew-aware
views Q_r,s,t, where r, s, t ∈ {h, l}:

CREATE VIEW Q_r,s,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM R_r NATURAL JOIN S_s NATURAL JOIN T_t

Consider a single-tuple update deltaR_r = {(a, b, p)} to the part R_r of
relation R for r ∈ {h, l}. The delta computation for a view Q_r,s,t is then given
by the following simpler query:

CREATE VIEW deltaQ_r,s,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM deltaR_r NATURAL JOIN S_s NATURAL JOIN T_t
WHERE S_s.A = a AND T_t.B = b

IVMε adapts its maintenance strategy to each skew-aware view to achieve the
sublinear update time. While most of these views trivially achieve the O(N1/2)

upper bound, there is one exception. We next explain how to achieve this bound
for maintaining each of these views.

The delta computation for the four views Q_r,l,t (for r, t ∈ {h, l}) is
expressed as follows:

CREATE VIEW deltaQ_r,l,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM deltaR_r NATURAL JOIN S_l NATURAL JOIN T_t
WHERE S_l.A = a AND T_t.B = b

102 3 Distributed Data Control

It joins the parts S_l with T_t on C. Since the update deltaR_r sets B to b in
S_l and b can only be a light value in S_l, there are at most N1/2 C-values paired
with b in S_l. The intersection of the set of C-values in S_l and T_t can then take
at most O(N1/2) time.

The delta computation for the views Q_r,h,h is expressed similarly. Since all
C-values in T_h are heavy, each of them has at least N1/2 A-values. This also means
there are at most N1/2 heavy C-values. The intersection of the set of the heavy C-
values in T_h with the C-values in S_h can then take at most O(N1/2) time.

However, the delta computation for the views Q_r,h,l for r ∈ {h, l} needs
linear time, since it requires iterating over all the C-values c paired with b in S_h
and with a in T_l; the number of such C-values can be linear in the size of the
database. In this case, IVMε precomputes the update-independent parts of the delta
queries as auxiliary materialized views and then exploits these views to speed up the
delta evaluation:

CREATE VIEW V_ST(B, A, CNT) AS
SELECT B, A, SUM(P_S * P_T) as CNT
FROM S_h NATURAL JOIN T_l
GROUP BY B, A

We materialize similar views V_RS and V_TR in case of updates to T and,
respectively, S. Each of these views needs O(N3/2) space. We can now compute
deltaQ_r,h,l using V_ST as

CREATE VIEW deltaQ_r,h,l(CNT) AS
SELECT SUM(P_R * CNT) as CNT
FROM deltaR_r NATURAL JOIN V_ST
WHERE V_ST.B = b AND V_ST.A = a

This takes O(1) time since we only need a lookup in V_ST to fetch the multi-
plicity of the edge (a, b) followed by the multiplication with p from deltaR_r.

3.2 Access Control

Access control is an important aspect of data security, the function of a database
system that protects data against unauthorized access. Another important aspect
is data protection, to prevent unauthorized users from understanding the physical
content of data. This function is typically provided by file systems in the context of
centralized and distributed operating systems. The main data protection approach is
data encryption.

Access control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to
a large collection of data under the control of a single centralized or distributed
system. The centralized or distributed DBMS must thus be able to restrict the access

3.2 Access Control 103

of a subset of the database to a subset of the users. Access control has long been
provided by operating systems as services of the file system. In this context, a
centralized control is offered. Indeed, the central controller creates objects, and may
allow particular users to perform particular operations (read, write, execute) on these
objects. Also, objects are identified by their external names.

Access control in database systems differs in several aspects from that in
traditional file systems. Authorizations must be refined so that different users have
different rights on the same database objects. This requirement implies the ability
to specify subsets of objects more precisely than by name and to distinguish
between groups of users. In addition, the decentralized control of authorizations is of
particular importance in a distributed context. In relational systems, authorizations
can be uniformly controlled by database administrators using high-level constructs.
For example, controlled objects can be specified by predicates in the same way as is
a query qualification.

There are two main approaches to database access control. The first approach
is called discretionary access control (DAC) and has long been provided by
DBMS. DAC defines access rights based on the users, the type of access (e.g.,
SELECT, UPDATE), and the objects to be accessed. The second approach, called
mandatory access control (MAC) further increases security by restricting access
to classified data to cleared users. Support of MAC by major DBMSs is more
recent and stems from increased security threats coming from the Internet. Other
approaches go further into adding more semantics to access control, in partic-
ular, role-based access control, which considers users with different roles, and
purpose-based access control, e.g., hippocratic databases, which associates purpose
information with data, i.e., the reasons for data collection and access.

From solutions to access control in centralized systems, we derive those for
distributed DBMSs. However, there is the additional complexity which stems from
the fact that objects and users can be distributed. In what follows we first present
discretionary and mandatory access control in centralized systems and then the
additional problems and their solutions in distributed systems.

3.2.1 Discretionary Access Control

Three main actors are involved in DAC: the subject (e.g., users, groups of users) who
trigger the execution of application programs; the operations, which are embedded
in application programs; and the database objects, on which the operations are
performed. Authorization control consists of checking whether a given triple
(subject, operation, object) can be allowed to proceed (i.e., the user can execute
the operation on the object). An authorization can be viewed as a triple (subject,
operation type, object definition) which specifies that the subjects have the right
to perform an operation of operation type on an object. To control authorizations
properly, the DBMS requires the definition of subjects, objects, and access rights.

104 3 Distributed Data Control

The introduction of a subject in the system is typically done by a pair (user name,
password). The user name uniquely identifies the users of that name in the system,
while the password, known only to the users of that name, authenticates the users.
Both user name and password must be supplied in order to log in the system. This
prevents people who do not know the password from entering the system with only
the user name.

The objects to protect are subsets of the database. Relational systems provide
finer and more general protection granularity than do earlier systems. In a file
system, the protection granule is the file. In a relational system, objects can be
defined by their type (view, relation, tuple, attribute) as well as by their content using
selection predicates. Furthermore, the view mechanism as introduced in Sect. 3.1
permits the protection of objects simply by hiding subsets of relations (attributes or
tuples) from unauthorized users.

A right expresses a relationship between a subject and an object for a particular
set of operations. In an SQL-based relational DBMS, an operation is a high-level
statement such as SELECT, INSERT, UPDATE, or DELETE, and rights are defined
(granted or revoked) using the following statements:

GRANT 〈operation type(s)〉 ON 〈object〉 TO 〈subject(s)〉
REVOKE 〈operation type(s)〉 FROM 〈object〉 TO 〈subject(s)〉

The keyword public can be used to mean all users. Authorization control can
be characterized based on who (the grantors) can grant the rights. To ease database
administration, it is convenient to define user groups, as in operating systems, for
the purpose of authorization. Once defined, a user group can be used as subject in
GRANT and REVOKE statements.

In its simplest form, the control is centralized: a single user or user class, the
database administrators, has all privileges on the database objects and is the only
one allowed to use the GRANT and REVOKE statements. A more flexible form of
control is decentralized: the creator of an object becomes its owner and is granted
all privileges on it. In particular, there is the additional operation type GRANT, which
transfers all the rights of the grantor performing the statement to the specified
subjects. Therefore, the person receiving the right (the grantee) may subsequently
grant privileges on that object. Thus, access control is discretionary in the sense that
users with grant privilege can make access policy decisions. The revoking process
is complex as it must be recursive. For example, if A, who granted B who granted
C the GRANT privilege on object O, wants to revoke all the privileges of B on O, all
the privileges of C on O must also be revoked. To perform revocation, the system
must maintain a hierarchy of grants per object where the creator of the object is the
root.

The privileges of the subjects over objects are recorded in the catalog (directory)
as authorization rules. There are several ways to store the authorizations. The most
convenient approach is to consider all the privileges as an authorization matrix,
in which a row defines a subject, a column an object, and a matrix entry (for a pair
〈subject, object〉), the authorized operations. The authorized operations are specified
by their operation type (e.g., SELECT, UPDATE). It is also customary to associate

3.2 Access Control 105

with the operation type a predicate that further restricts the access to the object.
The latter option is provided when the objects must be base relations and cannot
be views. For example, one authorized operation for the pair 〈Jones, relation EMP〉
could be

SELECT WHERE TITLE = "Syst.Anal."

which authorizes Jones to access only the employee tuples for system analysts.
Figure 3.5 gives an example of an authorization matrix where objects are either
relations (EMP and ASG) or attributes (ENAME).

The authorization matrix can be stored in three ways: by row, by column, or by
element. When the matrix is stored by row, each subject is associated with the list of
objects that may be accessed together with the related access rights. This approach
makes the enforcement of authorizations efficient, since all the rights of the logged-
on user are together (in the user profile). However, the manipulation of access rights
per object (e.g., making an object public) is not efficient since all subject profiles
must be accessed. When the matrix is stored by column, each object is associated
with the list of subjects who may access it with the corresponding access rights.
The advantages and disadvantages of this approach are the reverse of the previous
approach.

The respective advantages of the two approaches can be combined in the third
approach, in which the matrix is stored by element, that is, by relation (subject,
object, right). This relation can have indices on both subject and object, thereby
providing fast-access right manipulation per subject and per object.

Directly managing relationships between many subjects and many objects
gets complicated for database administrators. Role-based access control (RBAC)
addresses this problem by adding roles, as a level of independence between subjects
and objects. Roles correspond to various job functions (e.g., clerk, analyst, manager,
etc.), users are assigned particular roles, and authorizations on objects are assigned
to specific roles. Thus, users no longer acquire authorizations directly, but only
through their roles. Since there are not that many roles, RBAC simplifies much
access control, in particular when adding or modifying user accounts.

EMP ENAME ASG

Casey UPDATE UPDATE UPDATE

Jones SELECT SELECT SELECT
WHERE RESP �= ”Manager”

Casey NONE SELECT NONE

Fig. 3.5 Example of authorization matrix

106 3 Distributed Data Control

3.2.2 Mandatory Access Control

DAC has some limitations. One problem is that a malicious user can access
unauthorized data through an authorized user. For instance, consider user A who
has authorized access to relations R and S and user B who has authorized access to
relation S only. If B somehow manages to modify an application program used by
A so it writes R data into S, then B can read unauthorized data without violating
authorization rules.

MAC answers this problem and further improves security by defining different
security levels for both subjects and data objects. Furthermore, unlike DAC, the
access policy decisions are under the control of a single administrator, i.e., users
cannot define their own policies and grant access to objects. MAC in databases
is based on the well-known Bell-LaPadula model designed for operating system
security. In this model, subjects are processes acting on a user’s behalf; a process
has a security level also called clearance derived from that of the user. In its simplest
form, the security levels are Top Secret (T S), Secret (S), Confidential (C), and
Unclassified (U), and ordered as T S > S > C > U , where “>” means “more
secure.” Access in read and write modes by subjects is restricted by two simple
rules:

1. A subject T is allowed to read an object of security level l only if level(T) ≥ l.
2. A subject T is allowed to write an object of security level l only if class(T) ≤ l.

Rule 1 (called “no read up”) protects data from unauthorized disclosure, i.e., a
subject at a given security level can only read objects at the same or lower security
levels. For instance, a subject with secret clearance cannot read top-secret data.
Rule 2 (called “no write down”) protects data from unauthorized change, i.e., a
subject at a given security level can only write objects at the same or higher security
levels. For instance, a subject with top-secret clearance can only write top-secret
data but cannot write secret data (which could then contain top-secret data).

In the relational model, data objects can be relations, tuples, or attributes. Thus,
a relation can be classified at different levels: relation (i.e., all tuples in the relation
have the same security level), tuple (i.e., every tuple has a security level), or attribute
(i.e., every distinct attribute value has a security level). A classified relation is thus
called multilevel relation to reflect that it will appear differently (with different data)
to subjects with different clearances. For instance, a multilevel relation classified
at the tuple level can be represented by adding a security level attribute to each
tuple. Similarly, a multilevel relation classified at attribute level can be represented
by adding a corresponding security level to each attribute. Figure 3.6 illustrates a
multilevel relation PROJ* based on relation PROJwhich is classified at the attribute
level. Note that the additional security level attributes may increase significantly the
size of the relation.

The entire relation also has a security level which is the lowest security level of
any data it contains. For instance, relation PROJ* has security level C. A relation
can then be accessed by any subject having a security level which is the same or

3.2 Access Control 107

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C 135000 S New York S
P3 S CAD/CAM S 250000 S New York S

PROJ∗

Fig. 3.6 Multilevel relation PROJ* classified at the attribute level

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C Null S Null S

PROJ∗C

Fig. 3.7 Confidential relation PROJ*C

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C 135000 S New York S
P3 S CAD/CAM S 250000 S New York S
P3 C Web Develop. C 200000 C Paris C

PROJ∗∗

Fig. 3.8 Multilevel relation with polyinstantiation

higher. However, a subject can only access data for which it has clearance. Thus,
attributes for which a subject has no clearance will appear to the subject as null
values with an associated security level which is the same as the subject. Figure 3.7
shows an instance of relation PROJ* as accessed by a subject at a confidential
security level.

MAC has strong impact on the data model because users do not see the same
data and have to deal with unexpected side-effects. One major side-effect is called
polyinstantiation, which allows the same object to have different attribute values
depending on the users’ security level. Figure 3.8 illustrates a multirelation with
polyinstantiated tuples. Tuple of primary key P3 has two instantiations, each one
with a different security level. This may result from a subject T with security level
C inserting a tuple with key=“P3” in relation PROJ* in Fig. 3.6. Because T (with
confidential clearance level) should ignore the existence of tuple with key=“P3”
(classified as secret), the only practical solution is to add a second tuple with same
key and different classification. However, a user with secret clearance would see
both tuples with key=“E3” and should interpret this unexpected effect.

108 3 Distributed Data Control

3.2.3 Distributed Access Control

The additional problems of access control in a distributed environment stem from
the fact that objects and subjects are distributed and that messages with sensitive data
can be read by unauthorized users. These problems are: remote user authentication,
management of discretionary access rules, handling of views and of user groups,
and enforcing MAC.

Remote user authentication is necessary since any site of a distributed DBMS
may accept programs initiated, and authorized, at remote sites. To prevent remote
access by unauthorized users or applications (e.g., from a site that is not part of the
distributed DBMS), users must also be identified and authenticated at the accessed
site. Furthermore, instead of using passwords that could be obtained from sniffing
messages, encrypted certificates could be used.

Three solutions are possible for managing authentication:

1. Authentication information is maintained at a central site for global users which
can then be authenticated only once and then accessed from multiple sites.

2. The information for authenticating users (user name and password) is replicated
at all sites in the catalog. Local programs, initiated at a remote site, must also
indicate the user name and password.

3. All sites of the distributed DBMS identify and authenticate themselves similar
to the way users do. Intersite communication is thus protected by the use of the
site password. Once the initiating site has been authenticated, there is no need for
authenticating their remote users.

The first solution simplifies password administration significantly and enables
single authentication (also called single sign on). However, the central authentica-
tion site can be a single point of failure and a bottleneck. The second solution is
more costly in terms of directory management given that the introduction of a new
user is a distributed operation. However, users can access the distributed database
from any site. The third solution is necessary if user information is not replicated.
Nevertheless, it can also be used if there is replication of the user information. In this
case it makes remote authentication more efficient. If user names and passwords are
not replicated, they should be stored at the sites where the users access the system
(i.e., the home site). The latter solution is based on the realistic assumption that
users are more static, or at least they always access the distributed database from the
same site.

Distributed authorization rules are expressed in the same way as centralized ones.
Like view definitions, they must be stored in the catalog. They can be either fully
replicated at each site or stored at the sites of the referenced objects. In the latter case
the rules are duplicated only at the sites where the referenced objects are distributed.
The main advantage of the fully replicated approach is that authorization can be
processed by query modification at compile time. However, directory management
is more costly because of data duplication. The second solution is better if locality
of reference is very high. However, distributed authorization cannot be controlled at
compile time.

3.2 Access Control 109

Views may be considered to be objects by the authorization mechanism. Views
are composite objects, that is, composed of other underlying objects. Therefore,
granting access to a view translates into granting access to underlying objects. If
view definition and authorization rules for all objects are fully replicated (as in many
systems), this translation is rather simple and can be done locally. The translation is
harder when the view definition and its underlying objects are all stored separately,
as is the case with site autonomy assumption. In this situation, the translation is
a totally distributed operation. The authorizations granted on views depend on the
access rights of the view creator on the underlying objects. A solution is to record
the association information at the site of each underlying object.

Handling user groups for the purpose of authorization simplifies distributed
database administration. In a centralized DBMS, “all users” can be referred to as
public. In a distributed DBMS, the same notion is useful, the public denoting all the
users of the system. However an intermediate level is often introduced to specify the
public at a particular site, e.g., denoted by public@site_s. More precise groups can
be defined by the command

DEFINE GROUP 〈group_id〉 AS 〈list of subject_ids〉

The management of groups in a distributed environment poses some problems
since the subjects of a group can be located at various sites and access to an
object may be granted to several groups, which are themselves distributed. If group
information and access rules are fully replicated at all sites, the enforcement of
access rights is similar to that of a centralized system. However, maintaining this
replication may be expensive. The problem is more difficult if site autonomy (with
decentralized control) must be maintained. One solution enforces access rights by
performing a remote query to the nodes holding the group definition. Another
solution replicates a group definition at each node containing an object that may
be accessed by subjects of that group. These solutions tend to decrease the degree
of site autonomy.

Enforcing MAC in a distributed environment is made difficult by the possibility
of indirect means, called covert channels, to access unauthorized data. For instance,
consider a simple distributed DBMS architecture with two sites, each managing its
database at a single security level, e.g., one site is confidential, while the other is
secret. According to the “no write down” rule, an update operation from a subject
with secret clearance could only be sent to the secret site. However, according to
the “no read up” rule, a read query from the same secret subject could be sent to
both the secret and the confidential sites. Since the query sent to the confidential
site may contain secret information (e.g., in a select predicate), it is potentially a
covert channel. To avoid such covert channels, a solution is to replicate part of the
database so that a site at security level l contains all data that a subject at level l can
access. For instance, the secret site would replicate confidential data so that it can
entirely process secret queries. One problem with this architecture is the overhead
of maintaining the consistency of replicas (see Chap. 6 on replication). Furthermore,
although there are no covert channels for queries, there may still be covert channels

110 3 Distributed Data Control

for update operations because the delays involved in synchronizing transactions
may be exploited. The complete support for MAC in distributed database systems,
therefore, requires significant extensions to transaction management techniques and
to distributed query processing techniques.

3.3 Semantic Integrity Control

Another important and difficult problem for a database system is how to guarantee
database consistency. A database state is said to be consistent if the database
satisfies a set of constraints, called semantic integrity constraints. Maintaining
a consistent database requires various mechanisms such as concurrency control,
reliability, protection, and semantic integrity control, which are provided as part of
transaction management. Semantic integrity control ensures database consistency
by rejecting update transactions that lead to inconsistent database states, or by
activating specific actions on the database state, which compensate for the effects
of the update transactions. Note that the updated database must satisfy the set of
integrity constraints.

In general, semantic integrity constraints are rules that represent the knowledge
about the properties of an application. They define static or dynamic application
properties that cannot be directly captured by the object and operation concepts of a
data model. Thus the concept of an integrity rule is strongly connected with that of
a data model in the sense that more semantic information about the application can
be captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural con-
straints and behavioral constraints. Structural constraints express basic semantic
properties inherent to a model. Examples of such constraints are unique key
constraints in the relational model, or one-to-many associations between objects
in the object-oriented model. Behavioral constraints, on the other hand, regulate
the application behavior. Thus they are essential in the database design process.
They can express associations between objects, such as inclusion dependency in the
relational model, or describe object properties and structures. The increasing variety
of database applications and the development of database design aid tools call for
powerful integrity constraints that can enrich the data model.

Integrity control appeared with data processing and evolved from procedural
methods (in which the controls were embedded in application programs) to declar-
ative methods. Declarative methods have emerged with the relational model to
alleviate the problems of program/data dependency, code redundancy, and poor
performance of the procedural methods. The idea is to express integrity constraints
using assertions of predicate calculus. Thus a set of semantic integrity assertions
defines database consistency. This approach allows one to easily declare and modify
complex integrity constraints.

3.3 Semantic Integrity Control 111

The main problem in supporting automatic semantic integrity control is that the
cost of checking for constraint violation can be prohibitive. Enforcing integrity
constraints is costly because it generally requires access to a large amount of data
that are not directly involved in the database updates. The problem is more difficult
when constraints are defined over a distributed database.

Various solutions have been investigated to design an integrity manager by
combining optimization strategies. Their purpose is to (1) limit the number of
constraints that need to be enforced, (2) decrease the number of data accesses to
enforce a given constraint in the presence of an update transaction, (3) define a
preventive strategy that detects inconsistencies in a way that avoids undoing updates,
(4) perform as much integrity control as possible at compile time. A few of these
solutions have been implemented, but they suffer from a lack of generality. Either
they are restricted to a small set of assertions (more general constraints would have
a prohibitive checking cost) or they only support restricted programs (e.g., single-
tuple updates).

In this section, we present the solutions for semantic integrity control first
in centralized systems and then in distributed systems. Since our context is the
relational model, we consider only declarative methods.

3.3.1 Centralized Semantic Integrity Control

A semantic integrity manager has two main components: a language for expressing
and manipulating integrity constraints, and an enforcement mechanism that per-
forms specific actions to enforce database integrity upon update transactions.

3.3.1.1 Specification of Integrity Constraints

Integrity constraints are manipulated by the database administrator using a high-
level language. In this section, we illustrate a declarative language for specifying
integrity constraints. This language is much in the spirit of the standard SQL
language, but with more generality. It allows one to specify, read, or drop integrity
constraints. These constraints can be defined either at relation creation time or at
any time, even if the relation already contains tuples. In both cases, however, the
syntax is almost the same. For simplicity and without lack of generality, we assume
that the effect of integrity constraint violation is to abort the violating transactions.
However, the SQL standard provides means to express the propagation of update
actions to correct inconsistencies, with the CASCADING clause within the constraint
declaration. More generally, triggers (event-condition-action rules) can be used to
automatically propagate updates, and thus to maintain semantic integrity. However,
triggers are quite powerful and thus more difficult to support efficiently than specific
integrity constraints.

112 3 Distributed Data Control

In relational database systems, integrity constraints are defined as assertions.
An assertion is a particular expression of tuple relational calculus, in which each
variable is either universally (∀) or existentially (∃) quantified. Thus an assertion
can be seen as a query qualification that is either true or false for each tuple in
the Cartesian product of the relations determined by the tuple variables. We can
distinguish between three types of integrity constraints: predefined, precondition, or
general constraints.

Predefined constraints are based on simple keywords. Through them, it is
possible to express concisely the more common constraints of the relational model,
such as nonnull attribute, unique key, foreign key, or functional dependency.
Examples 3.11–3.14 demonstrate predefined constraints.

Example 3.11 Employee number in relation EMP cannot be null.

ENO NOT NULL IN EMP

�
Example 3.12 The pair (ENO, PNO) is the unique key in relation ASG.

(ENO, PNO) UNIQUE IN ASG

�
Example 3.13 The project number PNO in relation ASG is a foreign key matching
the primary key PNO of relation PROJ. In other words, a project referred to in
relation ASG must exist in relation PROJ.

PNO IN ASG REFERENCES PNO IN PROJ

�
Example 3.14 The employee number functionally determines the employee name.

ENO IN EMP DETERMINES ENAME

�
Precondition constraints express conditions that must be satisfied by all

tuples in a relation for a given update type. The update type, which might be
INSERT, DELETE, or MODIFY, permits restricting the integrity control. To identify
in the constraint definition the tuples that are subject to update, two variables, NEW
and OLD, are implicitly defined. They range over new tuples (to be inserted) and
old tuples (to be deleted), respectively. Precondition constraints can be expressed
with the SQL CHECK statement enriched with the ability to specify the update type.
The syntax of the CHECK statement is

CHECK ON 〈relation name〉 WHEN 〈change type〉
(〈qualification over relation name〉)

3.3 Semantic Integrity Control 113

Examples of precondition constraints are the following:

Example 3.15 The budget of a project is between 500K and 1000K.

CHECK ON PROJ (BUDGET+ >= 500000 AND BUDGET <= 1000000)

�
Example 3.16 Only the tuples whose budget is 0 may be deleted.

CHECK ON PROJ WHEN DELETE (BUDGET = 0)

�
Example 3.17 The budget of a project can only increase.

CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET AND
NEW.PNO = OLD.PNO)

�
General constraints are formulas of tuple relational calculus where all variables

are quantified. The database system must ensure that those formulas are always
true. General constraints are more concise than precompiled constraints since the
former may involve more than one relation. For instance, at least three precompiled
constraints are necessary to express a general constraint on three relations. A general
constraint may be expressed with the following syntax:

CHECK ON list of 〈variable name〉:〈relation name〉,
(〈qualification〉)

Examples of general constraints are given below.

Example 3.18 The constraint of Example 3.8 may also be expressed as

CHECK ON e1:EMP, e2:EMP
(e1.ENAME = e2.ENAME IF e1.ENO = e2.ENO)

�
Example 3.19 The total duration for all employees in the CAD project is less than
100.

CHECK ON g:ASG, j:PROJ (SUM(g.DUR WHERE
g.PNO=j.PNO)<100 IF j.PNAME="CAD/CAM")

�

114 3 Distributed Data Control

3.3.1.2 Integrity Enforcement

We now focus on enforcing semantic integrity that consists of rejecting update
transactions that violate some integrity constraints. A constraint is violated when it
becomes false in the new database state produced by the update transaction. A major
difficulty in designing an integrity manager is finding efficient enforcement algo-
rithms. Two basic methods permit the rejection of inconsistent update transactions.
The first one is based on the detection of inconsistencies. The update transaction
u is executed, causing a change of the database state D to Du. The enforcement
algorithm verifies, by applying tests derived from these constraints, that all relevant
constraints hold in state Du. If state Du is inconsistent, the DBMS can try either to
reach another consistent state, D′

u, by modifying Du with compensation actions or to
restore state D by undoing u. Since these tests are applied after having changed the
database state, they are generally called posttests. This approach may be inefficient
if a large amount of work (the update of D) must be undone in the case of an integrity
failure.

The second method is based on the prevention of inconsistencies. An update
is executed only if it changes the database state to a consistent state. The tuples
subject to the update transaction are either directly available (in the case of insert)
or must be retrieved from the database (in the case of deletion or modification). The
enforcement algorithm verifies that all relevant constraints will hold after updating
those tuples. This is generally done by applying to those tuples tests that are derived
from the integrity constraints. Given that these tests are applied before the database
state is changed, they are generally called pretests. The preventive approach is more
efficient than the detection approach since updates never need to be undone because
of integrity violation.

The query modification algorithm is an example of a preventive method that
is particularly efficient at enforcing domain constraints. It adds the assertion
qualification to the query qualification by an AND operator so that the modified
query can enforce integrity.

Example 3.20 The query for increasing the budget of the CAD/CAM project by
10%, which would be specified as

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

will be transformed into the following query in order to enforce the domain
constraint discussed in Example 3.9.

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME= "CAD/CAM"
AND NEW.BUDGET ≥ 500000
AND NEW.BUDGET ≤ 1000000

�

3.3 Semantic Integrity Control 115

The query modification algorithm, which is well-known for its elegance, pro-
duces pretests at runtime by ANDing the assertion predicates with the update
predicates of each instruction of the transaction. However, the algorithm only
applies to tuple calculus formulas and can be specified as follows. Consider the
assertion (∀x ∈ R)F (x), where F is a tuple calculus expression in which x is the
only free variable. An update of R can be written as (∀x ∈ R)(Q(x) ⇒ update(x)),
where Q is a tuple calculus expression whose only free variable is x. Roughly
speaking, the query modification consists in generating the update (∀x ∈ R)((Q(x)

and F(x)) ⇒update(x)). Thus x needs to be universally quantified.

Example 3.21 The foreign key constraint of Example 3.13 that can be rewritten as

∀g ∈ ASG, ∃j ∈ PROJ : g.PNO = j.PNO

could not be processed by query modification because the variable j is not
universally quantified. �

To handle more general constraints, pretests can be generated at constraint
definition time, and enforced at runtime when updates occur. In the rest of this
section, we present a general method. This method is based on the production,
at constraint definition time, of pretests that are used subsequently to prevent the
introduction of inconsistencies in the database. This is a general preventive method
that handles the entire set of constraints introduced in the preceding section. It
significantly reduces the proportion of the database that must be checked when
enforcing assertions in the presence of updates. This is a major advantage when
applied to a distributed environment.

The definition of pretest uses differential relations, as defined in Sect. 3.1.3. A
pretest is a triple (R, U,C) in which R is a relation, U is an update type, and C is an
assertion ranging over the differential relation(s) involved in an update of type U .
When an integrity constraint I is defined, a set of pretests may be produced for the
relations used by I . Whenever a relation involved in I is updated by a transaction
u, the pretests that must be checked to enforce I are only those defined on I for the
update type of u. The performance advantages of this approach are twofold. First,
the number of assertions to enforce is minimized since only the pretests of type u

need be checked. Second, the cost of enforcing a pretest is less than that of enforcing
I since differential relations are, in general, much smaller than the base relations.

Pretests may be obtained by applying transformation rules to the original
assertion. These rules are based on a syntactic analysis of the assertion and quantifier
permutations. They permit the substitution of differential relations for base relations.
Since the pretests are simpler than the original ones, the process that generates them
is called simplification.

Example 3.22 Consider the modified expression of the foreign key constraint in
Example 3.15. The pretests associated with this constraint are

(ASG, INSERT, C1), (PROJ, DELETE, C2), and (PROJ, MODIFY, C3),

where C1 is

116 3 Distributed Data Control

∀ NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

C2 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− : g.PNO �= OLD.PNO

and C3 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− ∃ NEW ∈ PROJ+ : g.PNO �= OLD.PNO OR
OLD.PNO = NEW.PNO �

The advantage provided by such pretests is obvious. For instance, a deletion on
relation ASG does not incur any assertion checking.

The enforcement algorithm makes use of pretests and is specialized according
to the class of the assertions. Three classes of constraints are distinguished: single-
relation constraints, multirelation constraints, and constraints involving aggregate
functions.

Let us now summarize the enforcement algorithm. Recall that an update trans-
action updates all tuples of relation R that satisfy some qualification. The algorithm
acts in two steps. The first step generates the differential relations R+ and R− from
R. The second step simply consists of retrieving the tuples of R+ and R−, which do
not satisfy the pretests. If no tuples are retrieved, the constraint is valid. Otherwise,
it is violated.

Example 3.23 Suppose there is a deletion on PROJ. Enforcing (PROJ, DELETE,
C2) consists in generating the following statement:

result ← retrieve all tuples of PROJ− where ¬(C2)

Then, if the result is empty, the assertion is verified by the update and consistency
is preserved. �

3.3.2 Distributed Semantic Integrity Control

In this section, we present algorithms for ensuring the semantic integrity of
distributed databases. They are extensions of the simplification method discussed
previously. In what follows, we assume global transaction management capabilities,
as provided for homogeneous systems or multidatabase systems. Thus, the two main
problems of designing an integrity manager for such a distributed DBMS are the
definition and storage of constraints, and their enforcement. We will also discuss the
issues involved in integrity constraint checking when there is no global transaction
support.

3.3 Semantic Integrity Control 117

3.3.2.1 Definition of Distributed Integrity Constraints

An integrity constraint is supposed to be expressed in predicate calculus. Each
assertion is seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. Since
assertions can involve data stored at different sites, the storage of the constraints
must be decided so as to minimize the cost of integrity checking. There is a strategy
based on a taxonomy of integrity constraints that distinguishes three classes:

1. Individual constraints: single-relation single-variable constraints. They refer
only to tuples to be updated independently of the rest of the database. For
instance, the domain constraint of Example 3.15 is an individual assertion.

2. Set-oriented constraints: include single-relation multivariable constraints such
as functional dependency (Example 3.14) and multirelation multivariable con-
straints such as foreign key constraints (Example 3.13).

3. Constraints involving aggregates: require special processing because of the cost
of evaluating the aggregates. The assertion in Example 3.19 is representative of
a constraint of this class.

The definition of a new integrity constraint can be started at one of the sites
that store the relations involved in the assertion. Remember that the relations can
be fragmented. A fragmentation predicate is a particular case of assertion of class
1. Different fragments of the same relation can be located at different sites. Thus,
defining an integrity assertion becomes a distributed operation, which is done in
two steps. The first step is to transform the high-level assertions into pretests, using
the techniques discussed in the preceding section. The next step is to store pretests
according to the class of constraints. Constraints of class 3 are treated like those of
class 1 or 2, depending on whether they are individual or set-oriented.

Individual Constraints

The constraint definition is sent to all other sites that contain fragments of the
relation involved in the constraint. The constraint must be compatible with the
relation data at each site. Compatibility can be checked at two levels: predicate and
data. First, predicate compatibility is verified by comparing the constraint predicate
with the fragment predicate. A constraint C is not compatible with a fragment
predicate p if “C is true” implies that “p is false,” and is compatible with p

otherwise. If noncompatibility is found at one of the sites, the constraint definition
is globally rejected because tuples of that fragment do not satisfy the integrity
constraints. Second, if predicate compatibility has been found, the constraint is
tested against the instance of the fragment. If it is not satisfied by that instance,
the constraint is also globally rejected. If compatibility is found, the constraint is
stored at each site. Note that the compatibility checks are performed only for pretests
whose update type is “insert” (the tuples in the fragments are considered “inserted”).

118 3 Distributed Data Control

Example 3.24 Consider relation EMP, horizontally fragmented across three sites
using the predicates

p1 : 0 ≤ ENO < “E3”
p2 : “E3” ≤ ENO ≤ “E6”
p3 : ENO > “E6”

and the domain constraint C: ENO < “E4.” Constraint C is compatible with p1
(if C is true, p1 is true) and p2 (if C is true, p2 is not necessarily false), but not
with p3 (if C is true, then p3 is false). Therefore, constraint C should be globally
rejected because the tuples at site 3 cannot satisfy C, and thus relation EMP does not
satisfy C. �

Set-Oriented Constraints

Set-oriented constraints are multivariable; that is, they involve join predicates.
Although the assertion predicate may be multirelation, a pretest is associated with
a single relation. Therefore, the constraint definition can be sent to all the sites that
store a fragment referenced by these variables. Compatibility checking also involves
fragments of the relation used in the join predicate. Predicate compatibility is useless
here, because it is impossible to infer that a fragment predicate p is false if the
constraint C (based on a join predicate) is true. Therefore C must be checked for
compatibility against the data. This compatibility check basically requires joining
each fragment of the relation, say R, with all fragments of the other relation, say S,
involved in the constraint predicate. This operation may be expensive and, as any
join, should be optimized by the distributed query processor. Three cases, given in
increasing cost of checking, can occur:

1. The fragmentation of R is derived (see Chap. 2) from that of S based on a
semijoin on the attribute used in the assertion join predicate.

2. S is fragmented on join attribute.
3. S is not fragmented on join attribute.

In the first case, compatibility checking is cheap since the tuple of S matching a
tuple of R is at the same site. In the second case, each tuple of R must be compared
with at most one fragment of S, because the join attribute value of the tuple of R can
be used to find the site of the corresponding fragment of S. In the third case, each
tuple of R must be compared with all fragments of S. If compatibility is found for
all tuples of R, the constraint can be stored at each site.

Example 3.25 Consider the set-oriented pretest (ASG, INSERT, C1) defined in
Example 3.16, where C1 is

∀ NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

3.3 Semantic Integrity Control 119

Let us consider the following three cases:

1. ASG is fragmented using the predicate

ASG�PNO PROJi

where PROJI is a fragment of relation PROJ. In this case each tuple NEW
of ASG has been placed at the same site as tuple j such that NEW.PNO =
j .PNO. Since the fragmentation predicate is identical to that of C1, compatibility
checking does not incur communication.

2. PROJ is horizontally fragmented based on the two predicates

p1 : PNO < “P3”
p2 : PNO ≥ “P3”

In this case each tuple NEW of ASG is compared with either fragment PROJ1, if
NEW.PNO < “P3,” or fragment PROJ2, if NEW.PNO ≥ “P3.”

3. PROJ is horizontally fragmented based on the two predicates

p1 : PNAME = “CAD/CAM”
p2 : PNAME �= “CAD/CAM”

In this case each tuple of ASG must be compared with both fragments PROJ1
and PROJ2.

�

3.3.2.2 Enforcement of Distributed Integrity Constraints

Enforcing distributed integrity constraints is more complex than in centralized
DBMSs, even with global transaction management support. The main problem is to
decide where (at which site) to enforce the integrity constraints. The choice depends
on the class of the constraint, the type of update, and the nature of the site where the
update is issued (called the query master site). This site may, or may not, store the
updated relation or some of the relations involved in the integrity constraints. The
critical parameter we consider is the cost of transferring data, including messages,
from one site to another. We now discuss the different types of strategies according
to these criteria.

Individual Constraints

Two cases are considered. If the update transaction is an insert statement, all the
tuples to be inserted are explicitly provided by the user. In this case, all individual
constraints can be enforced at the site where the update is submitted. If the update
is a qualified update (delete or modify statements), it is sent to the sites storing the
relation that will be updated. The query processor executes the update qualification
for each fragment. The resulting tuples at each site are combined into one temporary

120 3 Distributed Data Control

relation in the case of a delete statement, or two, in the case of a modify statement
(i.e., R+ and R−). Each site involved in the distributed update enforces the assertions
relevant at that site (e.g., domain constraints when it is a delete).

Set-Oriented Constraints

We first study single-relation constraints by means of an example. Consider the
functional dependency of Example 3.14. The pretest associated with update type
INSERT is

(EMP, INSERT, C)

where C is

(∀e ∈ EMP)(∀NEW1 ∈ EMP)(∀NEW2 ∈ EMP) (1)

(NEW1.ENO = e.ENO ⇒ NEW1.ENAME = e.ENAME) ∧ (2)

(NEW1.ENO = NEW2.ENO ⇒ NEW1.ENAME = NEW2.ENAME (3)

The second line in the definition of C checks the constraint between the inserted
tuples (NEW1) and the existing ones (e), while the third checks it between the
inserted tuples themselves. That is why two variables (NEW1 and NEW2) are
declared in the first line.

Consider now an update of EMP. First, the update qualification is executed by
the query processor and returns one or two temporary relations, as in the case of
individual constraints. These temporary relations are then sent to all sites storing
EMP. Assume that the update is an INSERT statement. Then each site storing a
fragment of EMP will enforce constraint C described above. Because e in C is
universally quantified, C must be satisfied by the local data at each site. This is due
to the fact that ∀x ∈ {a1, . . . , an}f (x) is equivalent to [f (a1)∧f (a2)∧· · ·∧f (an)].
Thus the site where the update is submitted must receive for each site a message
indicating that this constraint is satisfied and that it is a condition for all sites. If the
constraint is not true for one site, this site sends an error message indicating that the
constraint has been violated. The update is then invalid, and it is the responsibility
of the integrity manager to decide if the entire transaction must be rejected using the
global transaction manager.

Let us now consider multirelation constraints. For the sake of clarity, we assume
that the integrity constraints do not have more than one tuple variable ranging over
the same relation. Note that this is likely to be the most frequent case. As with single-
relation constraints, the update is computed at the site where it was submitted. The
enforcement is done at the query master site, using the ENFORCE algorithm given
in Algorithm 3.2.

3.3 Semantic Integrity Control 121

Algorithm 3.2: ENFORCE
Input: U : update type; R: relation
begin

retrieve all compiled assertions (R, U, Ci)
inconsistent ← false
for each compiled assertion do

result ← all new (respectively, old), tuples of R where ¬(Ci)

end for
if card(result) �= 0 then

inconsistent ← true
end if
if ¬inconsistent then

send the tuples to update to all the sites storing fragments of R
else

reject the update
end if

end

Example 3.26 We illustrate this algorithm through an example based on the foreign
key constraint of Example 3.13. Let u be an insertion of a new tuple into ASG. The
previous algorithm uses the pretest (ASG, INSERT, C), where C is

∀NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

For this constraint, the retrieval statement is to retrieve all new tuples in ASG+,
where C is not true. This statement can be expressed in SQL as

SELECT NEW.*
FROM ASG+ NEW, PROJ
WHERE COUNT(PROJ.PNO WHERE NEW.PNO = PROJ.PNO)=0

Note that NEW.* denotes all the attributes of ASG+. �
Thus the strategy is to send new tuples to sites storing relation PROJ in order

to perform the joins, and then to centralize all results at the query master site. For
each site storing a fragment of PROJ, the site joins the fragment with ASG+ and
sends the result to the query master site, which performs the union of all results.
If the union is empty, the database is consistent. Otherwise, the update leads to
an inconsistent state and should be rejected, using the global transaction manager.
More sophisticated strategies that notify or compensate inconsistencies can also be
devised.

Constraints Involving Aggregates

These constraints are among the most costly to test because they require the calcula-
tion of the aggregate functions. The aggregate functions generally manipulated are
MIN, MAX, SUM, and COUNT. Each aggregate function contains a projection part and

122 3 Distributed Data Control

a selection part. To enforce these constraints efficiently, it is possible to produce
pretests that isolate redundant data which can be stored at each site storing the
associated relation. This data is what we called materialized views in Sect. 3.1.2.

3.3.2.3 Summary of Distributed Integrity Control

The main problem of distributed integrity control is that the communication and
processing costs of enforcing distributed constraints can be prohibitive. The two
main issues in designing a distributed integrity manager are the definition of the
distributed assertions and of the enforcement algorithms that minimize the cost
of distributed integrity checking. We have shown in this chapter that distributed
integrity control can be completely achieved, by extending a preventive method
based on the compilation of semantic integrity constraints into pretests. The method
is general since all types of constraints expressed in first-order predicate logic
can be handled. It is compatible with fragment definition and minimizes intersite
communication. A better performance of distributed integrity enforcement can
be obtained if fragments are defined carefully. Therefore, the specification of
distributed integrity constraints is an important aspect of the distributed database
design process.

The method described above assumes global transaction support. Without global
transaction support as in some loosely coupled multidatabase systems, the problem
is more difficult. First, the interface between the constraint manager and the
component DBMS is different since constraint checking can no longer be part of
the global transaction validation. Instead, the component DBMSs should notify
the integrity manager to perform constraint checking after some events, e.g., as a
result of local transactions’ commitments. This can be done using triggers whose
events are updates to relations involved in global constraints. Second, if a global
constraint violation is detected, since there is no way to specify global aborts,
specific correcting transactions should be provided to produce global database states
that are consistent. The solution is to have a family of protocols for global integrity
checking. The root of the family is a simple strategy, based on the computation
of differential relations (as in the previous method), which is shown to be safe
(correctly identifies constraint violations) but inaccurate (may raise an error event
though there is no constraint violation). Inaccuracy is due to the fact that producing
differential relations at different times at different sites may yield phantom states for
the global database, i.e., states that never existed. Extensions of the basic protocol
with either timestamping or using local transaction commands are proposed to solve
that problem.

3.5 Bibliographic Notes 123

3.4 Conclusion

Data control includes view management, access control, and semantic integrity
control. In relational DBMSs, these functions can be uniformly achieved by enforc-
ing rules that specify data manipulation control. Solutions initially designed for
handling these functions in centralized systems have been significantly extended and
enriched for distributed systems, in particular, support for materialized views and
group-based discretionary access control. Semantic integrity control has received
less attention and is generally not well supported by distributed DBMS products.

Full data control is more complex and costly in terms of performance in
distributed systems. The two main issues for efficiently performing data control are
the definition and storage of the rules (site selection) and the design of enforcement
algorithms which minimize communication costs. The problem is difficult since
increased functionality (and generality) tends to increase site communication. The
problem is simplified if control rules are fully replicated at all sites and harder if
site autonomy is to be preserved. In addition, specific optimizations can be done
to minimize the cost of data control but with extra overhead such as managing
materialized views or redundant data. Thus the specification of distributed data
control must be included in the distributed database design so that the cost of control
for update programs is also considered.

3.5 Bibliographic Notes

Data control is well-understood in centralized systems and all major DBMSs
provide extensive support for it. Research on data control in distributed systems
started in the mid-1980s with the R* project at IBM Research and has increased
much since then to address new important applications such as data warehousing or
data integration.

Most of the work on view management has concerned updates through views
and support for materialized views. The two basic papers on centralized view
management are [Chamberlin et al. 1975] and [Stonebraker 1975]. The first
reference presents an integrated solution for view and authorization management
in the System R project at IBM Research. The second reference describes the
query modification technique proposed in the INGRES project at UC Berkeley
for uniformly handling views, authorizations, and semantic integrity control. This
method was presented in Sect. 3.1.

Theoretical solutions to the problem of view updates are given in [Bancilhon
and Spyratos 1981, Dayal and Bernstein 1978, Keller 1982]. In the seminal paper
on view update semantics [Bancilhon and Spyratos 1981], the authors formalize
the view invariance property after updating, and show how a large class of views
including joins can be updated. Semantic information about the base relations is

124 3 Distributed Data Control

particularly useful for finding unique propagation of updates. However, the current
commercial systems are very restrictive in supporting updates through views.

Materialized views have received much attention in the context of data warehous-
ing. The notion of snapshot for optimizing view derivation in distributed database
systems is due to [Adiba and Lindsay 1980], and generalized in Adiba [1981] as a
unified mechanism for managing views and snapshots, as well as fragmented and
replicated data. Self-maintainability of materialized views with respect to the kind
of updates (insertion, deletion, or modification) is addressed in [Gupta et al. 1996].
A thorough paper on materialized view management can be found in Gupta and
Mumick [1999], with the main techniques to perform incremental maintenance of
materialized views. The counting algorithm which we presented in Sect. 3.1.3 was
proposed in [Gupta et al. 1993]. We introduced two recent important optimizations
that have been proposed to significantly reduce the maintenance time of the counting
algorithm, following the formalism of generalized multiset relations [Koch 2010].
The first optimization is to materialize views representing subqueries of the input
query [Koch et al. 2014, Berkholz et al. 2017, Nikolic and Olteanu 2018]. The
second optimization exploits the skew in the data [Kara et al. 2019].

Security in computer systems in general is presented in [Hoffman 1977]. Security
in centralized database systems is presented in [Lunt and Fernández 1990, Castano
et al. 1995]. Discretionary access control (DAC) in distributed systems has first
received much attention in the context of the R* project. The access control
mechanism of System R [Griffiths and Wade 1976] is extended in [Wilms and
Lindsay 1981] to handle groups of users and to run in a distributed environment.
Mandatory access control (MAC) for distributed DBMS has recently gained much
interest. The seminal paper on MAC is the Bell and LaPadula model originally
designed for operating system security [Bell and Lapuda 1976]. MAC for databases
is described in [Lunt and Fernández 1990, Jajodia and Sandhu 1991]. A good
introduction to multilevel security in relational DBMS can be found in [Rjaibi
2004]. Transaction management in multilevel secure DBMS is addressed in [Ray
et al. 2000, Jajodia et al. 2001]. Extensions of MAC for distributed DBMS are
proposed in [Thuraisingham 2001]. Role-based access control (RBAC) [Ferraiolo
and Kuhn 1992] extends DAC and MAC by adding roles, as a level of independence
between subjects and objects. Hippocratic databases [Sandhu et al. 1996] associate
purpose information with data, i.e., the reasons for data collection and access.

The content of Sect. 3.3 comes largely from the work on semantic integrity
control described in [Simon and Valduriez 1984, 1986, 1987]. In particular, [Simon
and Valduriez 1986] extend a preventive strategy for centralized integrity control
based on pretests to run in a distributed environment, assuming global transaction
support. The initial idea of declarative methods, that is, to use assertions of
predicate logic to specify integrity constraints, is due to [Florentin 1974]. The
most important declarative methods are in [Bernstein et al. 1980a, Blaustein 1981,
Nicolas 1982, Simon and Valduriez 1984, Stonebraker 1975]. The notion of concrete
views for storing redundant data is described in [Bernstein and Blaustein 1982].
Note that concrete views are useful in optimizing the enforcement of constraints
involving aggregates. Civelek et al. [1988], Sheth et al. [1988b], and Sheth et al.

Exercises 125

[1988a] describe systems and tools for data control, particularly view management.
Semantic integrity checking in loosely coupled multidatabase systems without
global transaction support is addressed in [Grefen and Widom 1997].

Exercises

Problem 3.1 Define in SQL-like syntax a view of the engineering database
V(ENO, ENAME, PNO, RESP), where the duration is 24. Is view V updatable?
Assume that relations EMP and ASG are horizontally fragmented based on access
frequencies as follows:

Site 1 Site 2 Site 3

EMP1 EMP2

ASG1 ASG2

where

EMP1 = σTITLE �=“Engineer”(EMP)

EMP2 = σTITLE = “Engineer”(EMP)

ASG1 = σ0<DUR<36(ASG)

ASG2 = σDUR≥36(ASG)

At which site(s) should the definition of V be stored without being fully
replicated, to increase locality of reference?

Problem 3.2 Express the following query: names of employees in view V who
work on the CAD/CAM project.

Problem 3.3 (*) Assume that relation PROJ is horizontally fragmented as

PROJ1 = σPNAME = “CAD/CAM” (PROJ)
PROJ2 = σPNAME�= “CAD/CAM” (PROJ)

Modify the query obtained in Problem 3.2 to a query expressed on the fragments.

Problem 3.4 (**) Propose a distributed algorithm to efficiently refresh a snapshot
at one site derived by projection from a relation horizontally fragmented at two
other sites. Give an example query on the view and base relations which produces
an inconsistent result.

Problem 3.5 (*) Consider the view EG of Example 3.5 which uses relations EMP
and ASG as base data and assume its state is derived from that of Example 3.1, so
that EG has 9 tuples (see Fig. 3.4). Assume that tuple 〈E3, P3, Consultant, 10〉 from
ASG is updated to 〈E3, P3, Engineer, 10〉. Apply the basic counting algorithm for

126 3 Distributed Data Control

refreshing the view EG. What projected attributes should be added to view EG to
make it self-maintainable?

Problem 3.6 Propose a relation schema for storing the access rights associated with
user groups in a distributed database catalog, and give a fragmentation scheme for
that relation, assuming that all members of a group are at the same site.

Problem 3.7 (**) Give an algorithm for executing the REVOKE statement in a
distributed DBMS, assuming that the GRANT privilege can be granted only to a group
of users where all its members are at the same site.

Problem 3.8 (**) Consider the multilevel relation PROJ** in Fig. 3.8. Assuming
that there are only two classification levels for attributes (S and C), propose
an allocation of PROJ** on two sites using fragmentation and replication that
avoids covert channels on read queries. Discuss the constraints on updates for this
allocation to work.

Problem 3.9 Using the integrity constraint specification language of this chapter,
express an integrity constraint which states that the duration spent in a project cannot
exceed 48 months.

Problem 3.10 (*) Define the pretests associated with integrity constraints covered
in Examples 3.11–3.14.

Problem 3.11 Assume the following vertical fragmentation of relations EMP, ASG,
and PROJ:

Site 1 Site 2 Site 3 Site 4

EMP1 EMP2

PROJ1 PROJ2

ASG1 ASG2

where

EMP1 = �ENO, ENAME(EMP)

EMP2 = �ENO, TITLE(EMP)

PROJ1 = �PNO, PNAME(PROJ)

PROJ2 = �PNO, BUDGET(PROJ)

ASG1 = �ENO, PNO, RESP(ASG)

ASG2 = �ENO, PNO, DUR(ASG)

Where should the pretests obtained in Problem 3.9 be stored?

Problem 3.12 (**) Consider the following set-oriented constraint:

CHECK ON e:EMP, a:ASG
(e.ENO = a.ENO AND (e.TITLE = "Programmer")
IF a.RESP = "Programmer")

Exercises 127

What does it mean? Assuming that EMP and ASG are allocated as in the previous
exercise, define the corresponding pretests and their storage. Apply algorithm
ENFORCE for an update of type INSERT in ASG.

Problem 3.13 (**) Assume a distributed multidatabase system with no global
transaction support. Assume also that there are two sites, each with a (different) EMP
relation and an integrity manager that communicates with the component DBMS.
Suppose that we want to have a global unique key constraint on EMP. Propose
a simple strategy using differential relations to check this constraint. Discuss the
possible actions when a constraint is violated.

Chapter 4
Distributed Query Processing

By hiding the low-level details about the physical organization of the data, relational
database languages allow the expression of complex queries in a concise and simple
manner. In particular, to construct the answer to the query, the user does not
precisely specify the procedure to follow; this procedure is actually devised by a
module, called a query processor. This relieves the user from query optimization, a
time-consuming task that is best handled by the query processor, since it can exploit
a large amount of useful information about the data.

Because it is a critical performance issue, query processing has received (and
continues to receive) considerable attention in the context of both centralized and
distributed DBMSs. However, the query processing problem is much more difficult
in distributed environments, because a larger number of parameters affect the per-
formance of distributed queries. In particular, the relations involved in a distributed
query may be fragmented and/or replicated, thereby inducing communication costs.
Furthermore, with many sites to access, query response time may become very high.

In this chapter, we give a detailed presentation of query processing in distributed
DBMSs. The context chosen is that of relational calculus and relational algebra,
because of their generality and wide use in distributed DBMSs. As we saw in
Chap. 2, distributed relations are implemented by fragments, with the objective
of increasing reference locality, and sometimes parallel execution for the most
important queries. The role of a distributed query processor is to map a high-level
query (assumed to be expressed in relational calculus) on a distributed database (i.e.,
a set of global relations) into a sequence of database operators (of relational algebra)
on relation fragments. Several important functions characterize this mapping. First,
the calculus query must be decomposed into a sequence of relational operators
called an algebraic query. Second, the data accessed by the query must be localized
so that the operators on relations are translated to bear on local data (fragments).
Finally, the algebraic query on fragments must be extended with communication
operators and optimized with respect to a cost function to be minimized. This

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_4

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_4

130 4 Distributed Query Processing

cost function typically refers to computing resources such as disk I/Os, CPUs, and
communication networks.

This chapter is organized as follows: Section 4.1 gives an overview of distributed
query processing. In Sect. 4.2, we describe data localization, with emphasis on
reduction and simplification techniques for the four following types of fragmen-
tation: horizontal, vertical, derived, and hybrid. In Sect. 4.3, we discuss the major
optimization issue, which deals with the join ordering in distributed queries. We
also examine alternative join strategies based on semijoin. In Sect. 4.4, we discuss
the distributed cost model. In Sect. 4.5, we illustrate the use of the techniques in
three basic distributed query optimization approaches: dynamic, static, and hybrid.
In Sect. 4.5, we discuss adaptive query processing.

We assume that the reader is familiar with basic query processing notions
in centralized DBMSs as covered in most undergraduate database courses and
textbooks.

4.1 Overview

This section introduces distributed query processing. First, in Sect. 4.1.1, we discuss
the query processing problem. Then, in Sect. 4.1.2, we introduce query optimization.
Finally, in Sect. 4.1.3, we introduce the different layers of query processing starting
from a distributed query down to the execution of operators on local sites.

4.1.1 Query Processing Problem

The main function of a query processor is to transform a high-level query (typically,
in relational calculus) into an equivalent lower-level query (typically, in some
variation of relational algebra). The low-level query actually implements the exe-
cution strategy for the query. The transformation must achieve both correctness and
efficiency. It is correct if the low-level query has the same semantics as the original
query, that is, if both queries produce the same result. The well-defined mapping
from relational calculus to relational algebra makes the correctness issue easy. But
producing an efficient execution strategy is more difficult. A relational calculus
query may have many equivalent and correct transformations into relational algebra.
Since each equivalent execution strategy can lead to very different consumptions
of computer resources, the main difficulty is to select the execution strategy that
minimizes resource consumption.

Example 4.1 We consider the following subset of the engineering database schema:

EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

4.1 Overview 131

and the following simple user query:

“Find the names of employees who are managing a project”

The expression of the query in relational calculus using the SQL syntax (with
natural join) is

SELECT ENAME
FROM EMP NATURAL JOIN ASG
WHERE RESP = "Manager"

Two equivalent relational algebra queries that are correct transformations of the
query above are

�ENAME(σRESP="Manager"∧EMP.ENO=ASG.ENO(EMP× ASG))

and

�ENAME(��ENO (σRESP="Manager"(ASG)))

It is intuitively obvious that the second query which avoids the Cartesian product
of EMP and ASG consumes much less computing resources than the first, and thus
should be retained. �

In a distributed system, relational algebra is not enough to express execution
strategies. It must be supplemented with operators for exchanging data between
sites. Besides the choice of ordering relational algebra operators, the distributed
query processor must also select the best sites to process data, and possibly the way
data should be transformed. This increases the solution space from which to choose
the distributed execution strategy, making distributed query processing significantly
more difficult than centralized query processing.

Example 4.2 This example illustrates the importance of site selection and commu-
nication for a chosen relational algebra query against a fragmented database. We
consider the following query of Example 4.1:

�ENAME(EMP ��ENO (σRESP="Manager"(ASG)))

We assume that relations EMP and ASG are horizontally fragmented as follows:

EMP1 = σENO≤"E3"(EMP)

EMP2 = σENO>"E3"(EMP)

ASG1 = σENO≤"E3"(ASG)

ASG2 = σENO>"E3"(ASG)

132 4 Distributed Query Processing

Fragments ASG1, ASG2, EMP1, and EMP2 are stored at sites 1, 2, 3, and 4,
respectively, and the result is expected at site 5.

For the sake of simplicity, we ignore the project operator in the following. Two
equivalent distributed execution strategies for the above query are shown in Fig. 4.1.
An arrow from site i to site j labeled with R indicates that relation R is transferred
from site i to site j . Strategy A exploits the fact that relations EMP and ASG are
fragmented the same way in order to perform the select and join operator in parallel.
Strategy B is a default strategy (always works) that simply centralizes all the operand
data at the result site before processing the query.

To evaluate the resource consumption of these two strategies, we use a very
simple cost model. We assume that a tuple access, denoted by tupacc, is 1 unit
(which we leave unspecified) and a tuple transfer, denoted tuptrans, is 10 units.
We assume that relations EMP and ASG have 400 and 1000 tuples, respectively,
and that there are 20 managers in relation ASG. We also assume that data is
uniformly distributed among sites. Finally, we assume that relations ASG and EMP
are locally clustered on attributes RESP and ENO, respectively. Therefore, there is
direct access to tuples of ASG (respectively, EMP) based on the value of attribute
RESP (respectively, ENO).

result = EMP1 ∪ EMP2
′ ′

Site 5

Site 3

EMP1
′

Site 4

EMP2
′

ASG1 = σRESP=”Manager” ASG1
′

Site 1
ASG1

′

ASG2 = σRESP=”Manager” ASG2
′

Site 2
ASG2

′

Site 5

Site 1

ASG1

Site 2

ASG2

Site 4

EMP2

Site 3

EMP1

EMP1 = EMP1 ENO ASG1
′ ′

result=(EMP1 ∪ EMP2) ENO (σRESP=”Manager”(ASG1 ∪ ASG2))

EMP2 = EMP2 ENO ASG2
′ ′

Fig. 4.1 Equivalent distributed execution strategies. (a) Strategy A. (b) Strategy B

4.1 Overview 133

The total cost of strategy A can be derived as follows:

1. Produce ASG′ by selecting ASG requires (10 + 10)∗
tupacc = 20

2. Transfer ASG′ to the sites of EMP requires (10 + 10)∗
tuptrans = 200

3. Produce EMP′ by joining ASG′ and EMP requires
(10 + 10) ∗ tupacc ∗ 2 = 40

4. Transfer EMP′ to result site requires (10 + 10)∗
tuptrans = 200

The total cost is 460

The cost of strategy B can be derived as follows:

1. Transfer EMP to site 5 requires 400 ∗ tuptrans = 4, 000

2. Transfer ASG to site 5 requires 1000 ∗ tuptrans = 10, 000

3. Produce ASG′ by selecting ASG requires 1000∗tupacc = 1, 000

4. Join EMP and ASG′ requires 400 ∗ 20 ∗ tupacc = 8, 000

The total cost is 23, 000

In strategy A, the join of ASG′ and EMP (step 3) can exploit the clustered index
on ENO of EMP. Thus, EMP is accessed only once for each tuple of ASG′. In strategy
B, we assume that the access methods to relations EMP and ASG based on attributes
RESP and ENO are lost because of data transfer. This is a reasonable assumption
in practice. We assume that the join of EMP and ASG′ in step 4 is done by the
default nested loop algorithm (that simply performs the Cartesian product of the
two input relations). Strategy A is better by a factor of 50, which is quite significant.
Furthermore, it provides better distribution of work among sites. The difference
would be even higher if we assumed slower communication and/or higher degree of
fragmentation. �

4.1.2 Query Optimization

Query optimization refers to the process of producing a query execution plan (QEP),
which represents an execution strategy for the query. This QEP minimizes an
objective cost function. A query optimizer, the software module that performs query
optimization, is usually seen as consisting of three components: a search space, a
cost model, and a search strategy.

4.1.2.1 Search Space

The search space is the set of alternative execution plans that represent the input
query. These plans are equivalent, in the sense that they yield the same result,

134 4 Distributed Query Processing

but they differ in the execution order of operators and the way these operators are
implemented, and therefore in their performance. The search space is obtained by
applying transformation rules, such as those for relational algebra.

4.1.2.2 Cost Model

The cost model is used to predict the cost of any given execution plan, and to
compare equivalent plans so as to choose the best one. To be accurate, the cost
model must have good knowledge about the distributed execution environment,
using statistics on the data and cost functions.

In a distributed database, statistics typically bear on fragments, and include
fragment cardinality and size as well as the size and number of distinct values of
each attribute. To minimize the probability of error, more detailed statistics such
as histograms of attribute values are sometimes used at the expense of higher
management cost. The accuracy of statistics is achieved by periodic updating.

A good measure of cost is the total cost that will be incurred in processing the
query. Total cost is the sum of all times incurred in processing the operators of the
query at various sites and in intersite communication. Another good measure is the
response time of the query, which is the time elapsed for executing the query. Since
operators can be executed in parallel at different sites, the response time of a query
may be significantly less than its total cost.

In a distributed database system, the total cost to be minimized includes CPU,
I/O, and communication costs. The CPU cost is incurred when performing operators
on data in main memory. The I/O cost is the time necessary for disk accesses.
This cost can be minimized by reducing the number of disk accesses through fast
access methods to the data and efficient use of main memory (buffer management).
The communication cost is the time needed for exchanging data between sites
participating in the execution of the query. This cost is incurred in processing
the messages (formatting/deformatting), and in transmitting the data over the
communication network.

The communication cost component is probably the most important factor
considered in distributed databases. Most of the early proposals for distributed
query optimization assumed that the communication cost largely dominates local
processing cost (I/O and CPU cost), and thus ignored the latter. However, modern
distributed processing environments have much faster communication networks,
whose bandwidth is comparable to that of disks. Therefore, the solution is to have
a weighted combination of these three cost components since they all contribute
significantly to the total cost of evaluating a query.

In this chapter, we consider relational algebra as a basis to express the output of
query processing. Therefore, the complexity of relational algebra operators, which
directly affects their execution time, dictates some principles useful to a query
processor. These principles can help in choosing the final execution strategy.

The simplest way of defining complexity is in terms of relation cardinalities
independent of physical implementation details such as fragmentation and storage

4.1 Overview 135

structures. Complexity is O(n) for unary operators, where n denotes the relation
cardinality, if the resulting tuples may be obtained independently of each other.
Complexity is O(n log n) for binary operators if each tuple of one relation must
be compared with each tuple of the other on the basis of the equality of selected
attributes. This complexity assumes that tuples of each relation must be sorted on
the comparison attributes. However, using hashing and enough memory to hold one
hashed relation can reduce the complexity of binary operators to O(n). Project with
duplicate elimination and grouping operators require that each tuple of the relation
be compared with each other tuple, and thus also have O(n log n) complexity.
Finally, complexity is O(n2) for the Cartesian product of two relations because each
tuple of one relation must be combined with each tuple of the other.

4.1.2.3 Search Strategy

The search strategy explores the search space and selects the best plan, using the
cost model. It defines which plans are examined and in which order. The details of
the distributed environment are captured by the search space and the cost model.

An immediate method for query optimization is to search the solution space,
exhaustively predict the cost of each strategy, and select the strategy with minimum
cost. Although this method is effective in selecting the best strategy, it may incur
a significant processing cost for the optimization itself. The problem is that the
solution space can be large; that is, there may be many equivalent strategies,
even when the query involves a small number of relations. The problem becomes
worse as the number of relations or fragments increases (e.g., becomes greater
than 10). Having high optimization cost is not necessarily bad, particularly if query
optimization is done once for many subsequent executions of the query.

The most popular search strategy used by query optimizers is dynamic program-
ming, which was first proposed in the System R project at IBM Research. It proceeds
by building plans, starting from base relations, joining one more relation at each
step until complete plans are obtained. Dynamic programming builds all possible
plans, breadth-first, before it chooses the “best” plan. To reduce the optimization
cost, partial plans that are not likely to lead to the optimal plan are pruned (i.e.,
discarded) as soon as possible.

For very complex queries, making the search space large, randomized strategies
such as Iterative Improvement and Simulated Annealing can be used. They try to
find a very good solution, not necessarily the best one, but with a good trade-off
between optimization time and execution time.

Another, complementary solution is to restrict the solution space so that only a
few strategies are considered. In both centralized and distributed systems, a common
heuristic is to minimize the size of intermediate relations. This can be done by
performing unary operators first, and ordering the binary operators by the increasing
sizes of their intermediate relations.

136 4 Distributed Query Processing

A query may be optimized at different times relative to the actual time of
query execution. Optimization can be done statically before executing the query
or dynamically as the query is executed. Static query optimization is done at query
compilation time. Thus the cost of optimization may be amortized over multiple
query executions. Therefore, this timing is appropriate for use with the exhaustive
search method. Since the sizes of the intermediate relations of a strategy are not
known until runtime, they must be estimated using database statistics. Errors in
these estimates can lead to the choice of suboptimal strategies.

Dynamic query optimization proceeds at query execution time. At any point of
execution, the choice of the best next operator can be based on accurate knowledge
of the results of the operators executed previously. Therefore, database statistics
are not needed to estimate the size of intermediate results. However, they may still
be useful in choosing the first operators. The main advantage over static query
optimization is that the actual sizes of intermediate relations are available to the
query processor, thereby minimizing the probability of a bad choice. The main
shortcoming is that query optimization, an expensive task, must be repeated for
each execution of the query. Therefore, this approach is best for ad hoc queries.

Hybrid query optimization attempts to provide the advantages of static query
optimization while avoiding the issues generated by inaccurate estimates. The
approach is basically static, but dynamic query optimization may take place
at runtime when a high difference between predicted sizes and actual size of
intermediate relations is detected.

4.1.3 Layers Of Query Processing

The problem of query processing can itself be decomposed into several subprob-
lems, corresponding to various layers. In Fig. 4.2, a generic layering scheme for
query processing is shown where each layer solves a well-defined subproblem. To
simplify the discussion, let us assume a static query processor that does not exploit
replicated fragments. The input is a query on global data expressed in relational
calculus. This query is posed on global (distributed) relations, meaning that data
distribution is hidden. Four main layers are involved in distributed query processing.
The first three layers map the input query into a distributed query execution
plan (distributed QEP) . They perform the functions of query decomposition,
data localization, and global query optimization. Query decomposition and data
localization correspond to query rewriting. The first three layers are performed by a
central control site and use schema information stored in the global directory. The
fourth layer performs distributed query execution by executing the plan and returns
the answer to the query. It is done by the local sites and the control site. In the
remainder of this section, we introduce these four layers.

4.1 Overview 137

Calculus query on
global relations

QUERY
DECOMPOSITION

Global
Schema

Algebraic query on
global relations

DATA
LOCALIZATION

Fragment
Schema

Fragment query

DISTRIBUTED
OPTIMIZATION

Allocation
Schema

Distributed query
execution plan

DISTRIBUTED
EXECUTION

CONTROL
SITE

LOCAL
SITES

Fig. 4.2 Generic layering scheme for distributed query processing

4.1.3.1 Query Decomposition

The first layer decomposes the calculus query into an algebraic query on global
relations. The information needed for this transformation is found in the global
conceptual schema describing the global relations. However, the information about
data distribution is not used here but in the next layer. The techniques used by
this layer are those of a centralized DBMS, so we only briefly remind them in this
chapter.

Query decomposition can be viewed as four successive steps. First, the calculus
query is rewritten in a normalized form that is suitable for subsequent manipulation.
Normalization of a query generally involves the manipulation of the query quanti-
fiers and of the query qualification by applying logical operator priority.

Second, the normalized query is analyzed semantically so that incorrect queries
are detected and rejected as early as possible. A query is semantically incorrect if
components of it do not contribute in any way to the generation of the result. In the
context of relational calculus, it is not possible to determine the semantic correctness
of general queries. However, it is possible to do so for a large class of relational
queries, i.e., those which do not contain disjunction and negation. This is based
on the representation of the query as a graph, called a query graph or connection
graph. We define this graph for the most useful kinds of queries involving selection,
projection, and join operators. In a query graph, one node indicates the result

138 4 Distributed Query Processing

relation, and any other node indicates an operand relation. An edge between two
nodes that are not results represents a join, whereas an edge whose destination node
is the result represents a project. Furthermore, a nonresult node may be labeled
by a selection or a self-join (join of the relation with itself) predicate. An important
subgraph of the query graph is the join graph, in which only the joins are considered.

Third, the correct query (still expressed in relational calculus) is simplified. One
way to simplify a query is to eliminate redundant predicates. Note that redundant
queries are likely to arise when a query is the result of system transformations
applied to the user query. As seen in Chap. 3, such transformations are used
for performing distributed data control (views, protection, and semantic integrity
control).

Fourth, the calculus query is restructured as an algebraic query. Recall from
Sect. 4.1.1 that several algebraic queries can be derived from the same calculus
query, and that some algebraic queries are “better” than others. The quality of
an algebraic query is defined in terms of expected performance. The traditional
way to do this transformation towards a “better” algebraic specification is to start
with an initial algebraic query and transform it in order to find a “good” one. The
initial algebraic query is derived immediately from the calculus query by translating
the predicates and the target statement into relational operators as they appear
in the query. This directly translated algebra query is then restructured through
transformation rules. The algebraic query generated by this layer is good in the
sense that the worse executions are typically avoided. For instance, a relation will
be accessed only once, even if there are several select predicates. However, this
query is generally far from providing an optimal execution, since information about
data distribution and fragment allocation is not used at this layer.

4.1.3.2 Data Localization

The input to the second layer is an algebraic query on global relations. The main role
of the second layer is to localize the query’s data using data distribution information
in the fragment schema. In Chap. 2 we saw that relations are fragmented and
stored in disjoint subsets, called fragments, each being stored at a different site.
This layer determines which fragments are involved in the query and transforms
the distributed query into a query on fragments. Fragmentation is defined through
fragmentation rules that can be expressed as relational operators. A global relation
can be reconstructed by applying the fragmentation rules, and then deriving a
program, called a materialization program, of relational algebra operators which
then acts on fragments. Localization involves two steps. First, the query is mapped
into a fragment query by substituting each relation by its materialization program.
Second, the fragment query is simplified and restructured to produce another “good”
query. Simplification and restructuring may be done according to the same rules
used in the decomposition layer. As in the decomposition layer, the final fragment
query is generally far from optimal because information regarding fragments is not
utilized.

4.1 Overview 139

4.1.3.3 Distributed Optimization

The input to the third layer is an algebraic query on fragments, i.e., a fragment query.
The goal of query optimization is to find an execution strategy for the query which is
close to optimal. An execution strategy for a distributed query can be described with
relational algebra operators and communication primitives (send/receive operators)
for transferring data between sites. The previous layers have already optimized
the query, for example, by eliminating redundant expressions. However, this
optimization is independent of fragment characteristics such as fragment allocation
and cardinalities. In addition, communication operators are not yet specified. By
permuting the ordering of operators within one query on fragments, many equivalent
queries may be found.

Query optimization consists of finding the “best” ordering of operators in the
query, including communication operators, that minimizes a cost function. The
cost function, often defined in terms of time units, refers to the use of computing
resources such as disk, CPU cost, and network. Generally, it is a weighted
combination of I/O, CPU, and communication costs. To select the ordering of
operators it is necessary to predict execution costs of alternative candidate orderings.
Determining execution costs before query execution (i.e., static optimization) is
based on fragment statistics and the formulas for estimating the cardinalities of
results of relational operators. Thus the optimization decisions depend on the
allocation of fragments and available statistics on fragments which are recorder in
the allocation schema.

An important aspect of query optimization is join ordering, since permutations
of the joins within the query may lead to improvements of orders of magnitude.
The output of the query optimization layer is an optimized algebraic query with
communication operators included on fragments. It is typically represented and
saved (for future executions) as a distributed QEP.

4.1.3.4 Distributed Execution

The last layer is performed by all the sites that have fragments involved in the
query. Each subquery executing at one site, called a local query, is optimized using
the local schema of the site and executed. At this time, the algorithms to perform
the relational operators may be chosen. Local optimization uses the algorithms of
centralized systems.

The classical implementation of relational operators in database systems is based
on the iterator model, which provides pipelined parallelism within operator trees. It
is a simple pull model that executes operators starting from the root operator node
(that produces the result) to the leaf nodes (that access the base relations). Thus,
the intermediate results of operators do not need to be materialized as tuples are
produced on demand and can be consumed by subsequent operators. However, it
requires operators to be implemented in pipeline mode, using an open-next-close
interface. Each operator must be implemented as an iterator with three functions:

140 4 Distributed Query Processing

1. Open(): initializes the operator’s internal state, e.g., allocate a hash table;
2. Next(): produces and returns the next result tuple or null;
3. Close(): cleans up all allocated resources, after all tuples have been processed.

Thus, an iterator provides the iteration component of a while loop, i.e., initial-
ization, increment, loop termination condition, and final cleaning. Executing a QEP
proceeds as follows. First, execution is initialized by calling Open() on the root
operator of the operator tree, which then forwards the Open() call through the entire
plan using the operators themselves. Then the root operator iteratively produces its
next result record by forwarding the Next() call through the operator tree as needed.
Execution terminates when the last Open() call returns “end” to the root operator.

To illustrate the implementation of a relational operator using the open-next-
close interface, let us consider the nested loop join operator that performs R �� S on
attribute A. The Open() and Next() functions are as follows:

Function Open()
R.Open() ;
S.Open() ;
r := R.Next() ;

Function Next()
while (r �= null) do

(while (s:=S.Next()) �= null) do
if r.A=s.A then return(r,s);

S.close() ;
S.open() ;
r:=R.next() ;)

return null;

It is not always possible to implement an operator in pipelined mode. Such
operators are blocking, i.e., need to materialize their input data in memory or disk
before they can produce any output. Examples of blocking operators are sorting and
hash join. If the data is already sorted, then merge-join, grouping, and duplicate
elimination can be implemented in pipelined mode.

4.2 Data Localization

Data localization translates an algebraic query on global relations into a fragment
query using information stored in the fragment schema. A naive way to do this is
to generate a query where each global relation is substituted by its materialization
program. This can be viewed as replacing the leaves of the operator trie of the dis-
tributed query with subtrees corresponding to the materialized programs. In general,
this approach is inefficient because important restructurings and simplifications of
the fragment query can still be made. In the remainder of this section, for each
type of fragmentation we present reduction techniques that generate simpler and

4.2 Data Localization 141

optimized queries. We use the transformation rules and the heuristics, such as
pushing unary operators down the trie.

4.2.1 Reduction for Primary Horizontal Fragmentation

The horizontal fragmentation function distributes a relation based on selection
predicates. The following example is used in the subsequent discussions.

Example 4.3 Relation EMP(ENO, ENAME, TITLE) can be split into three horizontal
fragments EMP1, EMP2, and EMP3, defined as follows:

EMP1 = σENO≤"E3"(EMP)

EMP2 = σ"E3"<ENO≤"E6"(EMP)

EMP3 = σENO>"E6"(EMP)

The materialization program for a horizontally fragmented relation is the union
of the fragments. In our example, we have

EMP = EMP1 ∪ EMP2 ∪ EMP3

Thus the materialized form of any query specified on EMP is obtained by
replacing it by (EMP1 ∪ EMP2 ∪ EMP3). �

The reduction of queries on horizontally fragmented relations consists primarily
of determining, after restructuring the subtrees, those that will produce empty
relations, and removing them. Horizontal fragmentation can be exploited to simplify
both selection and join operators.

4.2.1.1 Reduction with Selection

Selections on fragments that have a qualification contradicting the qualification of
the fragmentation rule generate empty relations. Given a relation R that has been
horizontally fragmented as R1,R2, . . . ,Rw, where Rj = σpj

(R), the rule can be
stated formally as follows:

Rule 1 σpi
(Rj) = φ if ∀x in R : ¬(pi(x) ∧ pj (x))

where pi and pj are selection predicates, x denotes a tuple, and p(x) denotes
“predicate p holds for x.”

For example, the selection predicate ENO="E1" conflicts with the predicates of
fragments EMP2 and EMP3 of Example 4.3 (i.e., no tuple in EMP2 and EMP3 can
satisfy this predicate). Determining the contradicting predicates requires theorem-

142 4 Distributed Query Processing

σENO=”E5”

∪

EMP1 EMP2 EMP3

σENO=”E5”

EMP2

(a) (b)

Fig. 4.3 Reduction for horizontal fragmentation (with selection). (a) Fragment query. (b) Reduced
query

proving techniques if the predicates are quite general. However, DBMSs generally
simplify predicate comparison by supporting only simple predicates for defining
fragmentation rules (by the database administrator).

Example 4.4 We now illustrate reduction by horizontal fragmentation using the
following example query:

SELECT *
FROM EMP
WHERE ENO = "E5"

Applying the naive approach to localize EMP using EMP1, EMP2, and EMP3 gives
the fragment query of Fig. 4.3a. By commuting the selection with the union operator,
it is easy to detect that the selection predicate contradicts the predicates of EMP1 and
EMP3, thereby producing empty relations. The reduced query is simply applied to
EMP2 as shown in Fig. 4.3b. �

4.2.2 Reduction with Join

Joins on horizontally fragmented relations can be simplified when the joined
relations are fragmented according to the join attribute. The simplification consists
of distributing joins over unions and eliminating useless joins. The distribution of
join over union can be stated as:

(R1 ∪ R2) �� S = (R1 �� S) ∪ (R2 �� S)

where Ri are fragments of R and S is a relation.
With this transformation, unions can be moved up in the operator trie so that

all possible joins of fragments are exhibited. Useless joins of fragments can be
determined when the qualifications of the joined fragments are contradicting, thus
yielding an empty result. Assuming that fragments Ri and Rj are defined, respec-

4.2 Data Localization 143

tively, according to predicates pi and pj on the same attribute, the simplification
rule can be stated as follows:

Rule 2 Ri �� Rj = φ if ∀x in Ri ,∀y in Rj : ¬(pi(x) ∧ pj (y))

The determination of useless joins and their elimination using rule 2 can thus
be performed by looking only at the fragment predicates. The application of this
rule allows the join of two relations to be implemented as parallel partial joins of
fragments. It is not always the case that the reduced query is better (i.e., simpler)
than the fragment query. The fragment query is better when there are a large
number of partial joins in the reduced query. This case arises when there are few
contradicting fragmentation predicates. The worst case occurs when each fragment
of one relation must be joined with each fragment of the other relation. This is
tantamount to the Cartesian product of the two sets of fragments, with each set
corresponding to one relation. The reduced query is better when the number of
partial joins is small. For example, if both relations are fragmented using the same
predicates, the number of partial joins is equal to the number of fragments of each
relation. One advantage of the reduced query is that the partial joins can be done in
parallel, and thus increase response time.

Example 4.5 Assume that relation EMP is fragmented as EMP1, EMP2, EMP3, as
above, and that relation ASG is fragmented as

ASG1 = σENO≤"E3"(ASG)

ASG2 = σENO>"E3"(ASG)

EMP1 and ASG1 are defined by the same predicate. Furthermore, the predicate
defining ASG2 is the union of the predicates defining EMP2 and EMP3. Now consider
the join query

SELECT *
FROM EMP NATURAL JOIN ASG

The equivalent fragment query is given in Fig. 4.4a. The query reduced by
distributing joins over unions and applying rule 2 can be implemented as a union
of three partial joins that can be done in parallel (Fig. 4.4b). �

4.2.3 Reduction for Vertical Fragmentation

The vertical fragmentation function distributes a relation based on projection
attributes. Since the reconstruction operator for vertical fragmentation is the join,
the materialization program for a vertically fragmented relation consists of the join
of the fragments on the common attribute. For vertical fragmentation, we use the
following example.

144 4 Distributed Query Processing

σENO=”E5”

∪

EMP1 EMP2 EMP3

∪

ASG1 ASG2

(a)

(b)

∪

ENO

EMP1 ASG1

ENO

EMP2 ASG2

ENO

EMP3 ASG2

Fig. 4.4 Reduction by horizontal fragmentation (with join). (a) Fragment query. (b) Reduced
query

Example 4.6 Relation EMP can be divided into two vertical fragments where the
key attribute ENO is duplicated:

EMP1 = �ENO,ENAME(EMP)

EMP2 = �ENO,TITLE(EMP)

The materialization program is

EMP = EMP1 ��ENO EMP2 �
Similar to horizontal fragmentation, queries on vertical fragments can be reduced

by determining the useless intermediate relations and removing the subtrees that
produce them. Projections on a vertical fragment that has no attributes in common
with the projection attributes (except the key of the relation) produce useless, though
not empty relations. Given a relation R, defined over attributes A = {A1, . . . ,An},
which is vertically fragmented as Ri = �A′(R), where A′ ⊆ A, the rule can be
formally stated as follows:

Rule 3 �D,K(Ri) is useless if the set of projection attributes D is not in A′

Example 4.7 Let us illustrate the application of this rule using the following
example query in SQL:

SELECT ENAME
FROM EMP

4.2 Data Localization 145

ENO

ΠENAME

EMP1 EMP2

ΠENAME

EMP1

(a) (b)

Fig. 4.5 Reduction for vertical fragmentation. (a) Fragment query. (b) Reduced query

The equivalent fragment query on EMP1 and EMP2 (as obtained in Example 4.4)
is given in Fig. 4.5a. By commuting the projection with the join (i.e., projecting on
ENO, ENAME), we can see that the projection on EMP2 is useless because ENAME
is not in EMP2. Therefore, the projection needs to apply only to EMP1, as shown in
Fig. 4.5b. �

4.2.4 Reduction for Derived Fragmentation

As we saw in previous sections, the join operator, which is probably the most
important operator because it is both frequent and expensive, can be optimized by
using primary horizontal fragmentation when the joined relations are fragmented
according to the join attributes. In this case the join of two relations is implemented
as a union of partial joins. However, this method precludes one of the relations
from being fragmented on a different attribute used for selection. Derived hori-
zontal fragmentation is another way of distributing two relations so that the joint
processing of selection and join is improved. Typically, if relation R is subject to
derived horizontal fragmentation due to relation S, the fragments of R and S that
have the same join attribute values are located at the same site. In addition, S can be
fragmented according to a selection predicate.

Since tuples of R are placed according to the tuples of S, derived fragmentation
should be used only for one-to-many (hierarchical) relationships of the form S → R,
where a tuple of S can match with n tuples of R, but a tuple of R matches with
exactly one tuple of S. Note that derived fragmentation could be used for many-
to-many relationships provided that tuples of S (that match with n tuples of R) are
replicated. For simplicity, we assume and advise that derived fragmentation be used
only for hierarchical relationships.

Example 4.8 Given a one-to-many relationship from EMP to ASG, relation
ASG(ENO, PNO, RESP, DUR) can be indirectly fragmented according to the
following rules:

ASG1 = ASG�ENO EMP1

ASG2 = ASG�ENO EMP2

146 4 Distributed Query Processing

Recall from Chap. 2 that EMP1 and EMP2 are fragmented as follows:

EMP1 = σTITLE="Programmer"(EMP)

EMP2 = σTITLE�="Programmer"(EMP)

The materialization program for a horizontally fragmented relation is the union
of the fragments. In our example, we have

ASG = ASG1 ∪ ASG2

�
Queries on derived fragments can also be reduced. Since this type of fragmenta-

tion is useful for optimizing join queries, a useful transformation is to distribute joins
over unions (used in the materialization programs) and to apply rule 2 introduced
earlier. Because the fragmentation rules indicate what the matching tuples are,
certain joins will produce empty relations if the fragmentation predicates conflict.
For example, the predicates of ASG1 and EMP2 conflict; thus, we have

ASG1 �� EMP2 = φ

Contrary to the reduction with join discussed previously, the reduced query is
always preferable to the fragment query because the number of partial joins usually
equals the number of fragments of R.

Example 4.9 The reduction by derived fragmentation is illustrated by applying it to
the following SQL query, which retrieves all attributes of tuples from EMP and ASG
that have the same value of ENO and the title "Mech. Eng.":

SELECT *
FROM EMP NATURAL JOIN ASG
WHERE TITLE = "Mech. Eng."

The fragment query on fragments EMP1, EMP2, ASG1, and ASG2 defined
previously is given in Fig. 4.6a. By pushing selection down to fragments EMP1
and EMP2, the query reduces to that of Fig. 4.6b. This is because the selection
predicate conflicts with that of EMP1, and thus EMP1 can be removed. In order to
discover conflicting join predicates, we distribute joins over unions. This produces
the trie of Fig. 4.6c. The left subtree joins two fragments, ASG1 and EMP2, whose
qualifications conflict because of predicates TITLE = "Programmer" in ASG1, and
TITLE �= "Programmer" in EMP2. Therefore the left subtree which produces an
empty relation can be removed, and the reduced query of Fig. 4.6d is obtained. The
resulting query is made simpler, illustrating the value of fragmentation in improving
the performance of distributed queries. �

4.2 Data Localization 147

ENO

ENO

ENO

ENO

ENO

∪

ASG1 ASG2

σTITLE=”Mech. Eng.”

∪

EMP1 EMP2

∪

ASG1 ASG2

σTITLE=”Mech. Eng.”

EMP2

∪

ASG1

σTITLE=”Mech. Eng.”

EMP2 ASG2

σTITLE=”Mech. Eng.”

EMP2

ASG1

σTITLE=”Mech. Eng.”

EMP2

(a)

(b)

(c)

(d)

Fig. 4.6 Reduction for indirect fragmentation. (a) Fragment query. (b) Query after pushing
selection down. (c) Query after moving unions up. (d) Reduced query after eliminating the left
subtree

148 4 Distributed Query Processing

4.2.5 Reduction for Hybrid Fragmentation

Hybrid fragmentation is obtained by combining the fragmentation functions dis-
cussed above. The goal of hybrid fragmentation is to support, efficiently, queries
involving projection, selection, and join. Note that the optimization of an operator or
of a combination of operators is always done at the expense of other operators. For
example, hybrid fragmentation based on selection–projection will make selection
only, or projection only, less efficient than with horizontal fragmentation (or vertical
fragmentation). The materialization program for a hybrid fragmented relation uses
unions and joins of fragments.

Example 4.10 Here is an example of hybrid fragmentation of relation EMP:

EMP1 = σENO≤"E4"(�ENO,ENAME(EMP))

EMP2 = σENO>"E4"(�ENO,ENAME(EMP))

EMP3 = �ENO,TITLE(EMP)

In our example, the materialization program is

EMP = (EMP1 ∪ EMP2) ��ENO EMP3

�
Queries on hybrid fragments can be reduced by combining the rules used,

respectively, in primary horizontal, vertical, and derived horizontal fragmentation.
These rules can be summarized as follows:

1. Remove empty relations generated by contradicting selections on horizontal
fragments.

2. Remove useless relations generated by projections on vertical fragments.
3. Distribute joins over unions in order to isolate and remove useless joins.

Example 4.11 The following example query in SQL illustrates the application of
rules (1) and (2) to the horizontal–vertical fragmentation of relation EMP into EMP1,
EMP2, and EMP3 given above:

SELECT ENAME
FROM EMP
WHERE ENO="E5"

The fragment query of Fig. 4.7a can be reduced by first pushing selection
down, eliminating fragment EMP1, and then pushing projection down, eliminating
fragment EMP3. The reduced query is given in Fig. 4.7b. �

4.3 Join Ordering in Distributed Queries 149

ΠENAME

σENO=”E5”

∪

EMP1 EMP2 EMP3

ΠENAME

σeno=”E5”

EMP2

ENO

(a) (b)

Fig. 4.7 Reduction for hybrid fragmentation. (a) Fragment query. (b) Reduced query

4.3 Join Ordering in Distributed Queries

Ordering joins is an important aspect of centralized query optimization. Join order-
ing in a distributed context is even more important since joins between fragments
may increase the communication time. Therefore, the search space investigated by
a distributed query optimizer concentrates on join trees (see next section). Two
basic approaches exist to order joins in distributed queries. One tries to optimize
the ordering of joins directly, whereas the other replaces joins by combinations of
semijoins in order to minimize communication costs.

4.3.1 Join Trees

QEPs are typically abstracted by means of operator trees, which define the order in
which the operators are executed. They are enriched with additional information,
such as the best algorithm chosen for each operator. For a given query, the search
space can thus be defined as the set of equivalent operator trees that can be
produced using transformation rules. To characterize query optimizers, it is useful
to concentrate on join trees, which are operator trees whose operators are join or
Cartesian product. This is because permutations of the join order have the most
important effect on performance of relational queries.

Example 4.12 Consider the following query:

SELECT ENAME, RESP
FROM EMP NATURAL JOIN ASG NATURAL JOIN PROJ

Figure 4.8 illustrates three equivalent join trees for that query, which are obtained
by exploiting the associativity of binary operators. Each of these join trees can be

150 4 Distributed Query Processing

EMP ASG PROJ

(a)

ASG PROJ EMP

(b)

×

PROJ EMP ASG

(c)

ENO

ENO ENO,PNOPNO

PNO

Fig. 4.8 Equivalent join trees

R1 R2

R3

R4

R5

(a)

R1 R2 R3 R4

R5

(b)

Fig. 4.9 The two major shapes of join trees. (a) Linear join trie. (b) Bushy join trie

assigned a cost based on the estimated cost of each operator. Join trie (c) which starts
with a Cartesian product may have a much higher cost than the other join trees. �

For a complex query (involving many relations and many operators), the number
of equivalent operator trees can be very high. For instance, the number of alternative
join trees that can be produced by applying the commutativity and associativity rules
is O(N !) for N relations. Investigating a large search space may make optimization
time prohibitive, sometimes much more expensive than the actual execution time.
Therefore, query optimizers typically restrict the size of the search space they
consider. The first restriction is to use heuristics. The most common heuristic
is to perform selection and projection when accessing base relations. Another
common heuristic is to avoid Cartesian products that are not required by the query.
For instance, in Fig. 4.8, operator trie (c) would not be part of the search space
considered by the optimizer.

Another important restriction is with respect to the shape of the join trie. Two
kinds of join trees are usually distinguished: linear versus bushy trees (see Fig. 4.9).
A linear trie is a trie such that at least one operand of each operator node is a base
relation. A left linear trie is a linear trie where the right subtree of a join node is
always a leaf node corresponding to a base relation. A bushy trie is more general
and may have operators with no base relations as operands (i.e., both operands are
intermediate relations). By considering only linear trees, the size of the search space

4.3 Join Ordering in Distributed Queries 151

is reduced to O(2N). However, in a distributed environment, bushy trees are useful
in exhibiting parallelism. For example, in join trie (b) of Fig. 4.9, operators R1 �� R2
and R3 �� R4 can be done in parallel.

4.3.2 Join Ordering

Some algorithms optimize the ordering of joins directly without using semijoins.
The purpose of this section is to stress the difficulty that join ordering presents and
to motivate the subsequent section, which deals with the use of semijoins to optimize
join queries.

A number of assumptions are necessary to concentrate on the main issues.
Since the query is expressed on fragments, we do not need to distinguish between
fragments of the same relation and fragments of different relations. To simplify
notation, we use the term relation to designate a fragment stored at a particular site.
Also, to concentrate on join ordering, we ignore local processing time, assuming that
reducers (selection, projection) are executed locally either before or during the join
(remember that doing selection first is not always efficient). Therefore, we consider
only join queries whose operand relations are stored at different sites. We assume
that relation transfers are done in a set-at-a-time mode rather than in a tuple-at-a-
time mode. Finally, we ignore the transfer time for producing the data at a result
site.

Let us first concentrate on the simpler problem of operand transfer in a single
join. The query is R �� S, where R and S are relations stored at different sites.
The obvious choice of the relation to transfer is to send the smaller relation to the
site of the larger one, which gives rise to two possibilities, as shown in Fig. 4.10.
To make this choice we need to evaluate the sizes of R and S (we assume there
is a function size()). We now consider the case where there are more than two
relations to join. As in the case of a single join, the objective of the join-ordering
algorithm is to transmit smaller operands. The difficulty stems from the fact that
the join operators may reduce or increase the size of the intermediate results. Thus,
estimating the size of join results is mandatory, but also difficult. A solution is to
estimate the communication costs of all alternative strategies and to choose the best
one. However, as discussed earlier, the number of strategies grows rapidly with
the number of relations. This approach makes optimization costly, although this
overhead is amortized rapidly if the query is executed frequently.

R S

if size(R) < size(S)

if size(R) > size(S)

Fig. 4.10 Transfer of operands in binary operator

152 4 Distributed Query Processing

ASG

Site 2

EMP

Site 1

ENO

PROJ

Site 3

PNO

Fig. 4.11 Join graph of distributed query

Example 4.13 Consider the following query expressed in relational algebra:

PROJ ��PNO ASG ��ENO EMP

This query can be represented by its join graph in Fig. 4.11. Note that we have
made certain assumptions about the locations of the three relations. This query
can be executed in at least five different ways. We describe these strategies by the
following programs, where (R → site j) stands for “relation R is transferred to
site j .”

1. EMP → site 2;
Site 2 computes EMP′ = EMP �� ASG;
EMP′ → site 3;
Site 3 computes EMP′

�� PROJ.
2. ASG → site 1;

Site 1 computes EMP′ = EMP �� ASG;
EMP′ → site 3;
Site 3 computes EMP′

�� PROJ.
3. ASG → site 3;

Site 3 computes ASG′ = ASG �� PROJ;
ASG′ → site 1;
Site 1 computes ASG′

�� EMP.
4. PROJ → site 2;

Site 2 computes PROJ′ = PROJ �� ASG;
PROJ′ → site 1;
Site 1 computes PROJ′

�� EMP.
5. EMP → site 2;

PROJ → site 2;
Site 2 computes EMP �� PROJ �� ASG

To select one of these programs, the following sizes must be known or predicted:
size(EMP), size(ASG), size(PROJ), size(EMP �� ASG), and size(ASG �� PROJ).
Furthermore, if it is the response time that is being considered, the optimization
must take into account the fact that transfers can be done in parallel with strategy 5.
An alternative to enumerating all the solutions is to use heuristics that consider only

4.3 Join Ordering in Distributed Queries 153

the sizes of the operand relations by assuming, for example, that the cardinality of
the resulting join is the product of operand cardinalities. In this case, relations are
ordered by increasing sizes and the order of execution is given by this ordering and
the join graph. For instance, the order (EMP, ASG, PROJ) could use strategy 1, while
the order (PROJ, ASG, EMP) could use strategy 4. �

4.3.3 Semijoin-Based Algorithms

The semijoin operator has the important property of reducing the size of the operand
relation. When the main cost component considered by the query processor is
communication, a semijoin is particularly useful for improving the processing of
distributed join operators as it reduces the size of data exchanged between sites.
However, using semijoins may result in an increase in the number of messages
and in the local processing time. The early distributed DBMSs, such as SDD-1,
which were designed for slow wide area networks, make extensive use of semijoins.
Nevertheless, semijoins are still beneficial in the context of fast networks when they
induce a strong reduction of the join operand. Therefore, some algorithms aim at
selecting an optimal combination of joins and semijoins.

In this section, we show how the semijoin operator can be used to decrease the
total time of join queries. We are making the same assumptions as in Sect. 4.3.2.
The main shortcoming of the join approach described in the preceding section is
that entire operand relations must be transferred between sites. The semijoin acts as
a size reducer for a relation much as a selection does.

The join of two relations R and S over attribute A, stored at sites 1 and 2,
respectively, can be computed by replacing one or both operand relations by a
semijoin with the other relation, using the following rules:

R ��A S ⇔ (R�A S) ��A S

⇔ R ��A (S�A R)

⇔ (R�A S) ��A (S�A R)

The choice between one of the three semijoin strategies requires estimating their
respective costs.

The use of the semijoin is beneficial if the cost to produce and send it to the
other site is less than the cost of sending the whole operand relation and of doing
the actual join. To illustrate the potential benefit of the semijoin, let us compare
the costs of the two alternatives: R ��A S versus (R �A S) ��A S, assuming that
size(R) < size(S).

The following program, using the notation of Sect. 4.3.2, uses the semijoin
operator:

1. �A(S) → site 1
2. Site 1 computes R′ = R�A S

154 4 Distributed Query Processing

3. R′ → site 2
4. Site 2 computes R′

��A S

For simplicity, let us ignore the constant TMSG in the communication time
assuming that the term TT R ∗ size(R) is much larger. We can then compare the
two alternatives in terms of the transmitted data size. The cost of the join-based
algorithm is that of transferring relation R to site 2. The cost of the semijoin-based
algorithm is the cost of steps 1 and 3 above. Therefore, the semijoin approach is
better if

size(�A(S)) + size(R�A S) < size(R)

The semijoin approach is better if the semijoin acts as a sufficient reducer, that
is, if a few tuples of R participate in the join. The join approach is better if almost
all tuples of R participate in the join, because the semijoin approach requires an
additional transfer of a projection on the join attribute. The cost of the projection
step can be minimized by encoding the result of the projection in bit arrays, thereby
reducing the cost of transferring the joined attribute values. It is important to
note that neither approach is systematically the best; they should be considered as
complementary.

More generally, the semijoin can be useful in reducing the size of the operand
relations involved in multiple join queries. However, query optimization becomes
more complex in these cases. Consider again the join graph of relations EMP,ASG,
and PROJ given in Fig. 4.11. We can apply the previous join algorithm using
semijoins to each individual join. Thus an example of a program to compute
EMP �� ASG �� PROJ is EMP′

�� ASG′
�� PROJ, where EMP′ = EMP � ASG

and ASG′ = ASG� PROJ.
However, we may further reduce the size of an operand relation by using more

than one semijoin. For example, EMP′ can be replaced in the preceding program by
EMP′′ derived as

EMP′′ = EMP� (ASG� PROJ)

since if size(ASG � PROJ) ≤ size(ASG), we have size(EMP′′) ≤ size(EMP′). In
this way, EMP can be reduced by the sequence of semijoins: EMP� (ASG�PROJ).
Such a sequence of semijoins is called a semijoin program for EMP. Similarly,
semijoin programs can be found for any relation in a query. For example, PROJ
could be reduced by the semijoin program PROJ� (ASG� EMP). However, not all
of the relations involved in a query need to be reduced; in particular, we can ignore
those relations that are not involved in the final joins.

For a given relation, there exist several potential semijoin programs. The number
of possibilities is in fact exponential in the number of relations. But there is one
optimal semijoin program, called the full reducer, which reduces each relation R
more than the others. The problem is to find the full reducer. A simple method is to

4.3 Join Ordering in Distributed Queries 155

evaluate the size reduction of all possible semijoin programs and to select the best
one. The problems with the enumerative method are twofold:

1. There is a class of queries, called cyclic queries, that have cycles in their join
graph and for which full reducers cannot be found.

2. For other queries, called tree queries, full reducers exist, but the number of
candidate semijoin programs is exponential in the number of relations, which
makes the enumerative approach NP-hard.

In what follows, we discuss solutions to these problems.

Example 4.14 Consider the following relations, where attribute CITY has been
added to relations EMP (renamed ET), PROJ (renamed PT), and ASG (renamed AT)
of the engineering database. Attribute CITY of AT corresponds to the city where
the employee is identified by ENO lives.

ET(ENO, ENAME, TITLE, CITY)
AT(ENO, PNO, RESP, DUR, CITY)
PT(PNO, PNAME, BUDGET, CITY)

The following SQL query retrieves the names of all employees living in the city
in which their project is located together with the project name.

SELECT ENAME, PNAME
FROM ET NATURAL JOIN AT NATURAL JOIN PT

NATURAL JOIN ET

As illustrated in Fig. 4.12a, this query is cyclic. �

AT

ET

ET.ENO=
AT.ENO

PT

AT.PNO=
PT.PNO

ET.CITY=
PT.CITY

(a)

AT

ET

ET.ENO=AT.ENO
and

ET.CITY=AT.CITY

PT

AT.PNO=PT.PNO
and

AT.CITY=PT.CITY

(b)

Fig. 4.12 Transformation of cyclic query. (a) Cyclic query. (b) Equivalent acyclic query

156 4 Distributed Query Processing

No full reducer exists for the query in Example 4.14. In fact, it is possible to
derive semijoin programs for reducing it, but the number of operators is multiplied
by the number of tuples in each relation, making the approach inefficient. One
solution consists of transforming the cyclic graph into a trie by removing one arc
of the graph and by adding appropriate predicates to the other arcs such that the
removed predicate is preserved by transitivity. In the example of Fig. 4.12b, where
the arc (ET, PT) is removed, the additional predicate ET.CITY = AT.CITY
and AT.CITY = PT.CITY imply ET.CITY = PT.CITY by transitivity. Thus
the acyclic query is equivalent to the cyclic query.

Although full reducers for trie queries exist, the problem of finding them is
NP-hard. However, there is an important class of queries, called chained queries,
for which a polynomial algorithm exists. A chained query has a join graph where
relations can be ordered, and each relation joins only with the next relation in the
order. Furthermore, the result of the query is at the end of the chain. For instance,
the query in Fig. 4.11 is a chain query. Because of the difficulty of implementing
an algorithm with full reducers, most systems use single semijoins to reduce the
relation size.

4.3.4 Join Versus Semijoin

Compared with the join, the semijoin induces more operators but possibly on smaller
operands. Figure 4.13 illustrates these differences with an equivalent pair of join
and semijoin strategies for the query whose join graph is given in Fig. 4.11. The
join EMP �� ASG is done by sending one relation, e.g., ASG, to the site of the other
one, e.g., EMP, to complete the join locally. When a semijoin is used, however, the

EMP ASG

PROJ

(a)

EMP

ASG

ΠENO

EMP

ΠPNO

PROJ

PROJ

(b)

Fig. 4.13 Join versus semijoin approaches. (a) Join approach. (b) Semijoin approach

4.4 Distributed Cost Model 157

transfer of relation ASG is avoided. Instead, it is replaced by the transfer of the join
attribute values of relation EMP to the site of relation ASG, followed by the transfer
of the matching tuples of relation ASG to the site of relation EMP, where the join
is completed. If the semijoin has good selectivity, then the semijoin approach can
result in significant savings in communication time. The semijoin approach may
also decrease the local processing time, by exploiting indices on the join attribute.
Let us consider again the join EMP �� ASG, assuming that there is a selection on ASG
and an index on the join attribute of ASG. Without semijoin, we would perform the
selection of ASG first, and then send the result relation to the site of EMP to complete
the join. Thus, the index on the join attribute of ASG cannot be used (because the join
takes place at the site of EMP). Using the semijoin approach, both the selection and
the semijoin ASG� EMP would take place at the site of ASG, and can be performed
efficiently using indices.

Semijoins can still be beneficial with fast networks if they have very good
selectivity and are implemented with bit arrays. A bit array BA[1 : n] is useful
in encoding the join attribute values present in one relation. Let us consider the
semijoin R� S. Then BA[i] is set to 1 if there exists a join attribute value A = val

in relation S such that h(val) = i, where h is a hash function. Otherwise, BA[i]
is set to 0. Such a bit array is much smaller than a list of join attribute values.
Therefore, transferring the bit array instead of the join attribute values to the site of
relation R saves communication time. The semijoin can be completed as follows.
Each tuple of relation R, whose join attribute value is val, belongs to the semijoin if
BA[h(val)] = 1.

4.4 Distributed Cost Model

An optimizer’s cost model includes cost functions to predict the cost of operators,
statistics and base data, and formulas to evaluate the sizes of intermediate results.
The cost is in terms of execution time, so a cost function represents the execution
time of a query.

4.4.1 Cost Functions

The cost of a distributed execution strategy can be expressed with respect to either
the total time or the response time. The total time is the sum of all time (also
referred to as cost) components, while the response time is the elapsed time from
the initiation to the completion of the query. A general formula for determining the
total time can be specified as follows:

T otal_t ime = TCPU ∗ #insts + TI/O ∗ #I/Os + TMSG ∗ #msgs + TT R ∗ #bytes

158 4 Distributed Query Processing

The first two components measure the local processing time, where TCPU is the
time of a CPU instruction and TI/O is the time of a disk I/O. The communication
time is depicted by the two last components. TMSG is the fixed time of initiating and
receiving a message, while TT R is the time it takes to transmit a data unit from one
site to another. The data unit is given here in terms of bytes (#bytes is the sum of
the sizes of all messages), but could be in different units (e.g., packets). A typical
assumption is that TT R is constant. This might not be true for wide area networks,
where some sites are farther away than others. However, this assumption greatly
simplifies query optimization. Thus the communication time of transferring #bytes

of data from one site to another is assumed to be a linear function of #bytes:

CT (#bytes) = TMSG + TT R ∗ #bytes

Costs are generally expressed in terms of time units, which in turn can be translated
into other units (e.g., dollars).

The relative values of the cost coefficients characterize the distributed database
environment. The topology of the network greatly influences the ratio between these
components. In a wide area network such as the Internet, the communication time
is generally the dominant factor. In local area networks, however, there is more of
a balance among the components. Thus, most early distributed DBMSs designed
for wide area networks have ignored the local processing cost and concentrated on
minimizing the communication cost. Distributed DBMSs designed for local area
networks, on the other hand, consider all three cost components. The new faster
networks (both wide area and local area) have improved the above ratios in favor
of communication cost when all things are equal. However, communication is still
the dominant time factor in wide area networks such as the Internet because of the
longer distances that data is retrieved from (or shipped to).

When the response time of the query is the objective function of the optimizer,
parallel local processing and parallel communications must also be considered. A
general formula for response time is

Response_t ime = TCPU ∗ seq_#insts + TI/O ∗ seq_#I/Os

+TMSG ∗ seq_#msgs + TT R ∗ seq_#bytes

where seq_#x, in which x can be instructions (insts), I/O, messages (msgs),
or bytes, is the maximum number of x which must be done sequentially for the
execution of the query. Thus any processing and communication done in parallel is
ignored.

Example 4.15 Let us illustrate the difference between total cost and response time
using the example of Fig. 4.14, which computes the answer to a query at site 3 with
data from sites 1 and 2. For simplicity, we assume that only communication cost is
considered.

4.4 Distributed Cost Model 159

Site 1

Site 2

Site 3

x units

y uni
ts

Fig. 4.14 Example of data transfers for a query

Assume that TMSG and TT R are expressed in time units. The total time of
transferring x data units from site 1 to site 3 and y data units from site 2 to site
3 is

T otal_t ime = 2 TMSG + TT R ∗ (x + y)

The response time of the same query can be approximated as

Response_t ime = max{TMSG + TT R ∗ x, TMSG + TT R ∗ y}

since the transfers can be done in parallel. �
Minimizing response time is achieved by increasing the degree of parallel

execution. This does not, however, imply that the total time is also minimized. On
the contrary, it can increase the total time, for example, by having more parallel local
processing and transmissions. Minimizing the total time implies that the utilization
of the resources improves, thus increasing the system throughput. In practice, a
compromise between the two is desired. In Sect. 4.5 we present algorithms that
can optimize a combination of total time and response time, with more weight on
one of them.

4.4.2 Database Statistics

The main factor affecting the performance of an execution strategy is the size of the
intermediate relations that are produced during the execution. When a subsequent
operator is located at a different site, the intermediate relation must be transmitted
over the network. Therefore, it is of prime interest to estimate the size of the
intermediate results of relational algebra operators in order to minimize the size
of data transfers. This estimation is based on statistical information about the base
relations and formulas to predict the cardinalities of the results of the relational
operators. There is a direct trade-off between the precision of the statistics and
the cost of managing them, the more precise statistics being the more costly. For
a relation R fragmented as R1, R2, . . . , Rr , the statistical data typically are the
following:

160 4 Distributed Query Processing

1. For each attribute A of relation R its length (in number of bytes), denoted by
length(A), the cardinality of its domain, denoted by card(dom[A]), which gives
the number of unique values in dom[A], and in the case the domain is defined
on a set of values that can be ordered (e.g., integers or reals), the minimum and
maximum possible values, denoted by min(A) and max(A)

2. For each attribute A of each fragment Ri , the number of distinct values of A, with
the cardinality of the projection of fragment Ri on A, denoted by card(�A(Ri)).

3. The number of tuples in each fragment Ri , denoted by card(Ri).

In addition, for each attribute A, there may be a histogram that approximates
the frequency distribution of the attribute within a number of buckets, each
corresponding to a range of values.

These statistics are useful to predict the size of intermediate relations. Remember
that in Chap. 2 we defined the size of an intermediate relation R as follows:

size(R) = card(R) ∗ length(R)

where length(R) is the length (in bytes) of a tuple of R, and card(R) is the number
of tuples in R.

The estimation of card(R) requires the use of formulas. Two simplifying
assumptions are commonly made about the database. The distribution of attribute
values in a relation is supposed to be uniform, and all attributes are independent,
meaning that the value of an attribute does not affect the value of any other attribute.
These two assumptions are often wrong in practice, but they make the problem
tractable. Based on these assumptions, we can use simple formulas for estimating
the cardinalities of the results of the basic relational algebra operators, based on their
selectivity. The selectivity factor of an operator, that is, the proportion of tuples of
an operand relation that participate in the result of that operation, is denoted by
SF(op), where op is the operation. It is a real value between 0 and 1. A low value
(e.g., 0.001) corresponds to a good (or high) selectivity, while a high value (e.g.,
0.5) to a bad (or low) selectivity.

Let us illustrate with the two major operators, i.e., selection and join. The
cardinality of selection is

card(σF (R)) = SF(σF (R)) ∗ card(R)

where SF(σF (R)) can be computed as follows for the basic predicates:

SF(σA=value(R)) = 1

card(�A(R))

SF (σA>value(R)) = max(A) − value

max(A) − min(A)

SF (σA<value(R)) = value − min(A)

max(A) − min(A)

4.5 Distributed Query Optimization 161

The cardinality of join is

card(R �� S) = SF(R ��A S) ∗ card(R) ∗ card(S)

There is no general way to estimate SF(R ��A S) without additional information.
Thus, a simple approximation is to use a constant, e.g., 0.01, which reflects the
known join selectivity. However, there is a case, which occurs frequently, where
the estimation is accurate. If relation R is equijoined with relation S over attribute
A where A is a key of R and a foreign key of S, the join selectivity factor can be
approximated as

SF(R ��A S) = 1

card(R)

because each tuple of S matches with at most one tuple of R.

4.5 Distributed Query Optimization

In this section, we illustrate the use of the techniques presented in earlier sections
within the context of three basic query optimization algorithms. First, we present
the dynamic and static approaches. Then, we present a hybrid approach.

4.5.1 Dynamic Approach

We illustrate the dynamic approach with the algorithm of Distributed INGRES.
The objective function of the algorithm is to minimize a combination of both the
communication time and the response time. However, these two objectives may be
conflicting. For instance, increasing communication time (by means of parallelism)
may well decrease response time. Thus, the function can give a greater weight
to one or the other. Note that this query optimization algorithm ignores the cost
of transmitting the data to the result site. The algorithm also takes advantage of
fragmentation, but only horizontal fragmentation is handled for simplicity.

Since both general and broadcast networks are considered, the optimizer takes
into account the network topology. In broadcast networks, the same data unit can be
transmitted from one site to all the other sites in a single transfer, and the algorithm
explicitly takes advantage of this capability. For example, broadcasting is used to
replicate fragments and then to maximize the degree of parallelism.

The input to the algorithm is a query expressed in tuple relational calculus (in
conjunctive normal form) and schema information (the network type, as well as the
location and size of each fragment). This algorithm is executed by the site, called
the master site, where the query is initiated. The algorithm, which we call Dynamic-
QOA, is given in Algorithm 4.1.

162 4 Distributed Query Processing

Algorithm 4.1: Dynamic-QOA
Input: MRQ: multirelation query
Output: result of the last multirelation query
begin

for each detachable ORQi in MRQ do {ORQ is monorelation query}
run(ORQi) (1)

end for
{MRQ replaced by n irreducible queries}
MRQ′_list ← REDUCE(MRQ) (2)
while n �= 0 do {n is the number of irreducible queries} (3)

{choose next irreducible query involving the smallest fragments}
MRQ′ ← SELECT_QUERY(MRQ′_list) (3.1)
{determine fragments to transfer and processing site for MRQ′}
Fragment-site-list ← SELECT_STRATEGY(MRQ′) (3.2)
{move the selected fragments to the selected sites}
for each pair (F, S) in Fragment-site-list do

move fragment F to site S (3.3)
end for
execute MRQ′ (3.4)
n ← n − 1

end while
{output is the result of the last MRQ′}

end

All monorelation queries (e.g., selection and projection) that can be detached
are first processed locally (step 1). Then the reduction algorithm is applied to
the original query (step 2). Reduction is a technique that isolates all irreducible
subqueries and monorelation subqueries by detachment. Monorelation subqueries
are ignored because they have already been processed in step 1. Thus the REDUCE
procedure produces a sequence of irreducible subqueries q1 → q2 → · · · → qn,
with at most one relation in common between two consecutive subqueries.

Based on the list of irreducible queries isolated in step 2 and the size of each
fragment, the next subquery, MRQ′, which hasat least two variables, is chosen
at step 3.1 and steps 3.2–3.4 are applied to it. Steps 3.1 and 3.2 are discussed
below. Step 3.2 selects the best strategy to process the query MRQ′. This strategy
is described by a list of pairs (F, S), in which F is a fragment to transfer to the
processing site S. Step 3.3 transfers all the fragments to their processing sites.
Finally, step 3.4 executes the query MRQ′. If there are remaining subqueries,
the algorithm goes back to step 3 and performs the next iteration. Otherwise, it
terminates.

Optimization occurs in steps 3.1 and 3.2. The algorithm has produced subqueries
with several components and their dependency order (similar to the one given by
a relational algebra trie). At step 3.1, a simple choice for the next subquery is
to take the next one having no predecessor and involving the smaller fragments.
This minimizes the size of the intermediate results. For example, if a query q has
the subqueries q1, q2, and q3, with dependencies q1 → q3, q2 → q3, and if the
fragments referred to by q1 are smaller than those referred to by q2, then q1 is

4.5 Distributed Query Optimization 163

selected. Depending on the network, this choice can also be affected by the number
of sites having relevant fragments.

The subquery selected must then be executed. Since the relation involved in a
subquery may be stored at different sites and even fragmented, the subquery may
nevertheless be further subdivided.

Example 4.16 Let us consider the following query:

“Names of employees working on the CAD/CAM project”

This query can be expressed in SQL by the following query q1 on the engineering
database:

q1 : SELECT EMP.ENAME
FROM EMP NATURAL JOIN ASG NATURAL JOIN PROJ
WHERE PNAME="CAD/CAM"

Assume that relations EMP, ASG, and PROJ are stored as follows, where relation
EMP is fragmented.

Site 1 Site 2
EMP1 EMP2

ASG PROJ

There are several possible strategies, including the following:

1. Execute the entire query (EMP �� ASG �� PROJ) by moving EMP1 and ASG to
site 2.

2. Execute (EMP �� ASG) �� PROJ by moving (EMP1 �� ASG) and ASG to site 2,
and so on.

The choice between the possible strategies requires an estimate of the size of the
intermediate results. For example, if size(EMP �� ASG) > size(EMP1), strategy 1
is preferred to strategy 2. Therefore, an estimate of the size of joins is required. �

At step 3.2, the next optimization problem is to determine how to execute the
subquery by selecting the fragments that will be moved and the sites where the
processing will take place. For an n-relation subquery, fragments from n−1 relations
must be moved to the site(s) of fragments of the remaining relation, say Rp, and
then replicated there. Also, the remaining relation may be further partitioned into
k “equalized” fragments in order to increase parallelism. This method is called
fragment-and-replicate and performs a substitution of fragments rather than of
tuples. The selection of the remaining relation and of the number of processing
sites k on which it should be partitioned is based on the objective function and
the topology of the network. Remember that replication is cheaper in broadcast
networks than in point-to-point networks. Furthermore, the choice of the number of
processing sites involves a trade-off between response time and total time. A larger

164 4 Distributed Query Processing

number of sites decreases response time (by parallel processing) but increases total
time, in particular increasing communication costs.

Formulas to minimize either communication time or processing time use as input
the location of fragments, their size, and the network type. They can minimize
both costs but with a priority to one. To illustrate these formulas, we give the
rules for minimizing communication time. The rule for minimizing response time
is even more complex. We use the following assumptions. There are n relations
R1,R2, . . . ,Rn involved in the query. Rj

i denotes the fragment of Ri stored at site j .
There are m sites in the network. Finally, CTk(#bytes) denotes the communication
time of transferring #bytes to k sites, with 1 ≤ k ≤ m. The rule for minimizing
communication time considers the types of networks separately. Let us first
concentrate on a broadcast network. In this case we have

CTk(#bytes) = CT1(#bytes)

The rule can be stated as

if maxj=1,m(
∑n

i=1 size(R
j
i
)) > maxi=1,n(size(Ri))

then
the processing site is the j with the

largest amount of data
else

Rp is the largest relation and
site of Rp is the processing site

If the inequality predicate is satisfied, one site contains an amount of data useful
to the query larger than the size of the largest relation. Therefore, this site should
be the processing site. If the predicate is not satisfied, one relation is larger than the
maximum useful amount of data at one site. Therefore, this relation should be the
Rp, and the processing sites are those which have its fragments.

Let us now consider the case of the point-to-point networks. In this case we have

CTk(#bytes) = k ∗ CT1(#bytes)

The choice of Rp that minimizes communication is obviously the largest relation.
Assuming that the sites are arranged by decreasing order of amounts of useful data
for the query, that is,

n∑

i=1

size(R
j
i) >

n∑

i=1

size(R
j+1
i)

the choice of k, the number of sites at which processing needs to be done, is given
as

4.5 Distributed Query Optimization 165

if
∑

i �=p(size(Ri) − size(R1
i
)) > size(R1

p)

then
k = 1

else

k is the largest j such that
∑

i �=p(size(Ri) − size(R
j
i
)) ≤ size(R

j
p)

This rule chooses a site as the processing site only if the amount of data it must
receive is smaller than the additional amount of data it would have to send if it were
not a processing site. Obviously, the then-part of the rule assumes that site 1 stores
a fragment of Rp.

Example 4.17 Let us consider the query PROJ �� ASG, where PROJ and ASG are
fragmented. Assume that the allocation of fragments and their sizes are as follows
(in kilobytes):

Site 1 Site 2 Site 3 Site 4
PROJ 1000 1000 1000 1000
ASG 2000

With a point-to-point network, the best strategy is to send each PROJi to site 3,
which requires a transfer of 3000 kbytes, versus 6000 kbytes if ASG is sent to sites
1, 2, and 4. However, with a broadcast network, the best strategy is to send ASG (in
a single transfer) to sites 1, 2, and 4, which incurs a transfer of 2000 kbytes. The
latter strategy is faster and maximizes response time because the joins can be done
in parallel. �

This dynamic query optimization algorithm is characterized by a limited search
of the solution space, where an optimization decision is taken for each step without
concerning itself with the consequences of that decision on global optimization.
However, the algorithm is able to correct a local decision that proves to be incorrect.

4.5.2 Static Approach

We illustrate the static approach with the algorithm of R*, which has been the
basis for many distributed query optimizers. This algorithm performs an exhaustive
search of all alternative strategies in order to choose the one with the least cost.
Although predicting and enumerating these strategies may be costly, the overhead
of exhaustive search is rapidly amortized if the query is executed frequently. Query
compilation is a distributed task, coordinated by a master site, where the query is
initiated. The optimizer of the master site makes all intersite decisions, such as
the selection of the execution sites and the fragments as well as the method for
transferring data. The apprentice sites, which are the other sites that have relations
involved in the query, make the remaining local decisions (such as the ordering of

166 4 Distributed Query Processing

Algorithm 4.2: Static*-QOA
Input: QT : query trie
Output: strat : minimum cost strategy
begin

for each relation Ri ∈ QT do
for each access path APij to Ri do

compute cost (APij)

end for
best_APi ← APij with minimum cost

end for
for each order (Ri1,Ri2, · · · ,Rin) with i = 1, · · · , n! do

build strategy (. . .((best APi1 �� Ri2) �� Ri3) �� . . . �� Rin)

compute the cost of strategy
end for
strat ← strategy with minimum cost
for each site k storing a relation involved in QT do

LSk ← local strategy (strategy, k)
send (LSk , site k) {each local strategy is optimized at site k}

end for
end

joins at a site) and generate local access plans for the query. The objective function
of the optimizer is the general total time function, including local processing and
communications costs.

We now summarize this query optimization algorithm. The input to the algorithm
is a fragment query expressed as a relational algebra trie (the query trie), the location
of relations, and their statistics. The algorithm is described by the procedure Static-
QOA in Algorithm 4.2.

The optimizer must select the join ordering, the join algorithm (nested-loop or
merge-join), and the access path for each fragment (e.g., clustered index, sequential
scan, etc.). These decisions are based on statistics and formulas used to estimate the
size of intermediate results and access path information. In addition, the optimizer
must select the sites of join results and the method of transferring data between sites.
To join two relations, there are three candidate sites: the site of the first relation, the
site of the second relation, or a third site (e.g., the site of a third relation to be joined
with). Two methods are supported for intersite data transfers.

1. Ship-whole. The entire relation is shipped to the join site and stored in a
temporary relation before being joined. If the join algorithm is merge-join, the
relation does not need to be stored, and the join site can process incoming tuples
in a pipeline mode, as they arrive.

2. Fetch-as-needed. The external relation is sequentially scanned, and for each tuple
the join value is sent to the site of the internal relation, which selects the internal
tuples matching the value and sends the selected tuples to the site of the external
relation. This method, also called bindjoin, is equivalent to the semijoin of the
internal relation with each external tuple.

4.5 Distributed Query Optimization 167

The trade-off between these two methods is obvious. Ship-whole generates a
larger data transfer but fewer messages than fetch-as-needed. It is intuitively better
to ship-whole relations when they are small. On the contrary, if the relation is
large and the join has good selectivity (only a few matching tuples), the relevant
tuples should be fetched as needed. The optimizer does not consider all possible
combinations of join methods with transfer methods since some of them are not
worthwhile. For example, it would be useless to transfer the external relation using
fetch-as-needed in the nested loop join algorithm, because all the outer tuples must
be processed anyway and therefore should be transferred as a whole.

Given the join of an external relation R with an internal relation S on attribute
A, there are four join strategies. In what follows we describe each strategy in detail
and provide a simplified cost formula for each, where LT denotes local processing
time (I/O + CPU time) and CT denotes communication time. For simplicity, we
ignore the cost of producing the result. For convenience, we denote by s the average
number of tuples of S that match one tuple of R:

s = card(S�A R)

card(R)

Strategy 1. Ship the entire external relation to the site of the internal relation. In
this case the external tuples can be joined with S as they arrive. Thus we have

T otal_t ime = LT (retrieve card(R) tuples from R)

+ CT (size(R))

+ LT (retrieve s tuples from S) ∗ card(R)

Strategy 2. Ship the entire internal relation to the site of the external relation. In
this case, the internal tuples cannot be joined as they arrive, and they need to be
stored in a temporary relation T. Thus we have

T otal_t ime = LT (retrieve card(S) tuples from S)

+ CT (size(S))

+ LT (store card(S) tuples in T)

+ LT (retrieve card(R) tuples from R)

+ LT (retrieve s tuples from T) ∗ card(R)

Strategy 3. Fetch tuples of the internal relation as needed for each tuple of the
external relation. In this case, for each tuple in R, the join attribute (A) value is sent

168 4 Distributed Query Processing

to the site of S. Then the s tuples of S which match that value are retrieved and sent
to the site of R to be joined as they arrive. Thus we have

T otal_t ime = LT (retrieve card(R) tuples from R)

+ CT (length(A)) ∗ card(R)

+ LT (retrieve s tuples from S) ∗ card(R)

+ CT (s ∗ length(S)) ∗ card(R)

Strategy 4. Move both relations to a third site and compute the join there. In this
case the internal relation is first moved to a third site and stored in a temporary
relation T. Then the external relation is moved to the third site and its tuples are
joined with T as they arrive. Thus we have

T otal_t ime = LT (retrieve card(S) tuples from S)

+ CT (size(S))

+ LT (store card(S) tuples in T)

+ LT (retrieve card(R) tuples from R)

+ CT (size(R))

+ LT (retrieve s tuples from T) ∗ card(R)

Example 4.18 Let us consider a query that consists of the join of relations PROJ,
the external relation, and ASG, the internal relation, on attribute PNO. We assume
that PROJ and ASG are stored at two different sites and that there is an index on
attribute PNO for relation ASG. The possible execution strategies for the query are
as follows:

1. Ship-whole PROJ to site of ASG.
2. Ship-whole ASG to site of PROJ.
3. Fetch ASG tuples as needed for each tuple of PROJ.
4. Move ASG and PROJ to a third site.

The optimization algorithm predicts the total time of each strategy and selects
the cheapest. Given that there is no operator following the join PROJ �� ASG,
strategy 4 obviously incurs the highest cost since both relations must be transferred.
If size(PROJ) is much larger than size(ASG), strategy 2 minimizes the commu-
nication time and is likely to be the best if local processing time is not too high
compared to strategies 1 and 3. Note that the local processing time of strategies 1
and 3 is probably much better than that of strategy 2 since they exploit the index on
the join attribute.

4.5 Distributed Query Optimization 169

If strategy 2 is not the best, the choice is between strategies 1 and 3. Local
processing costs in both of these alternatives are identical. If PROJ is large and
only a few tuples of ASG match, strategy 3 probably incurs the least communication
time and is the best. Otherwise, that is, if PROJ is small or many tuples of ASG
match, strategy 1 should be the best. �

Conceptually, the algorithm can be viewed as an exhaustive search among all
alternatives that are defined by the permutation of the relation join order, join
methods (including the selection of the join algorithm), result site, access path to the
internal relation, and intersite transfer mode. Such an algorithm has a combinatorial
complexity in the number of relations involved. Actually, the algorithm significantly
reduces the number of alternatives by using dynamic programming and the heuris-
tics. With dynamic programming, the trie of alternatives is dynamically constructed
and pruned by eliminating the inefficient choices.

Performance evaluation of the algorithm in the context of both high-speed net-
works (similar to local networks) and medium-speed wide area networks confirms
the significant contribution of local processing costs, even for wide area networks.
It is shown in particular that for the distributed join, transferring the entire internal
relation outperforms the fetch-as-needed method.

4.5.3 Hybrid Approach

Dynamic and static query optimization both have advantages and drawbacks.
Dynamic query optimization mixes optimization and execution and thus can make
accurate optimization choices at runtime. However, query optimization is repeated
for each execution of the query. Therefore, this approach is best for ad hoc
queries. Static query optimization, done at compilation time, amortizes the cost of
optimization over multiple query executions. The accuracy of the cost model is thus
critical to predict the costs of candidate QEPs. This approach is best for queries
embedded in stored procedures, and has been adopted by all commercial DBMSs.

However, even with a sophisticated cost model, there is an important problem
that prevents accurate cost estimation and comparison of QEPs at compile time.
The problem is that the actual bindings of parameter values in embedded queries
are not known until runtime. Consider, for instance, the selection predicate WHERE
R.A=$a, where $a is a parameter value. To estimate the cardinality of this selection,
the optimizer must rely on the assumption of uniform distribution of A values in R
and cannot make use of histograms. Since there is a runtime binding of the parameter
a, the accurate selectivity of σA=$a(R) cannot be estimated until runtime. Thus, it
can make major estimation errors that can lead to the choice of suboptimal QEPs. In
addition to unknown bindings of parameter values in embedded queries, sites may
become unavailable or overloaded at runtime. Furthermore, relations (or relation
fragments) may be replicated at several sites. Thus, site and copy selection should
be done at runtime to increase availability and load balancing of the system.

170 4 Distributed Query Processing

Hybrid query optimization attempts to provide the advantages of static query
optimization while avoiding the issues generated by inaccurate estimates. The
approach is basically static, but further optimization decisions may take place at
runtime. A general solution is to produce dynamic QEPs which include care-
fully selected optimization decisions to be made at runtime using “choose-plan”
operators. The choose-plan operator links two or more equivalent subplans of a
QEP that are incomparable at compile time because important runtime information
(e.g., parameter bindings) is missing to estimate costs. The execution of a choose-
plan operator yields the comparison of the subplans based on actual costs and the
selection of the best one. Choose-plan nodes can be inserted anywhere in a QEP.
This approach is general enough to incorporate site and copy selection decisions.
However, the search space of alternative subplans linked by choose-plan operators
becomes much larger and may result in heavy static plans and much higher startup
time. Therefore, several hybrid techniques have been proposed to optimize queries
in distributed systems. They essentially rely on the following two-step approach:

1. At compile time, generate a static plan that specifies the ordering of operators
and the access methods, without considering where relations are stored.

2. At startup time, generate an execution plan by carrying out site and copy selection
and allocating the operators to the sites.

Example 4.19 Consider the following query expressed in relational algebra:

σ(R1) �� R2 �� R3

Figure 4.15 shows a two-step plan for this query. The static plan shows the relational
operator ordering as produced by a centralized query optimizer. The runtime plan
extends the static plan with site and copy selection and communication between
sites. For instance, the first selection is allocated at site S1 on copy R11 of relation
R1 and sends its result to site S3 to be joined with R23 and so on. �

The first step can be done by a centralized query optimizer. It may also include
choose-plan operators so that runtime bindings can be used at startup time to make
accurate cost estimations. The second step carries out site and copy selection,
possibly in addition to choose-plan operator execution. Furthermore, it can optimize
the load balancing of the system. In the rest of this section, we illustrate this second
step.

We consider a distributed database system with a set of sites S = {S1, .., Sn}. A
query Q is represented as an ordered sequence of subqueries Q = {q1, .., qm}. Each
subquery qi is the maximum processing unit that accesses a single base relation and
communicates with its neighboring subqueries. For instance, in Fig. 4.15, there are
three subqueries, one for R1, one for R2, and one for R3. Each site Si has a load,
denoted by load(Si), which reflects the number of queries currently submitted. The
load can be expressed in different ways, e.g., as the number of I/O bound and CPU
bound queries at the site. The average load of the system is defined as:

4.5 Distributed Query Optimization 171

σ

R1

R2

R3

(a)

σ

R12

R23

R32

s2

s3

s1

se
nd

se
nd

(b)

Fig. 4.15 A two-step plan. (a) Static plan. (b) Runtime plan

Avg_load(S) =
∑n

i=1 load(Si)

n

The balance of the system for a given allocation of subqueries to sites can be
measured as the variance of the site loads using the following unbalance factor:

UF(S) = 1

n

n∑

i=1

(load(Si) − Avg_load(S))2

As the system gets balanced, its unbalance factor approaches 0 (perfect balance).
For example, with load(S1) = load(S2) = 0 , the unbalance factor of {S1, S2} =
100, while with load(S1) and load(S1), it is 0.

The problem addressed by the second step of two-step query optimization can be
formalized as the following subquery allocation problem. Given

1. a set of sites S = {S1, .., Sn} with the load of each site;
2. a query Q = {q1, .., qm}; and
3. for each subquery qi in Q, a feasible allocation set of sites Sq = {S1, . . . , Sk}

where each site stores a copy of the relation involved in qi ;

the objective is to find an optimal allocation on Q to S such that

1. UF(S) is minimized, and
2. the total communication cost is minimized.

172 4 Distributed Query Processing

There is an algorithm that finds near-optimal solutions in a reasonable amount
of time. The algorithm, which we describe in Algorithm 4.3 for linear join trees,
uses several heuristics. The first heuristic (step 1) is to start by allocating subqueries
with least allocation flexibility, i.e., with the smaller feasible allocation sets of sites.
Thus, subqueries with a few candidate sites are allocated earlier. Another heuristic
(step 2) is to consider the sites with least load and best benefit. The benefit of a site
is defined as the number of subqueries already allocated to the site and measures
the communication cost savings from allocating the subquery to the site. Finally, in
step 3 of the algorithm, the load information of any unallocated subquery that has a
selected site in its feasible allocation set is recomputed.

Example 4.20 Consider the following query Q expressed in relational algebra:

σ(R1) �� R2 �� R3 �� R4

Figure 4.16 shows the placement of the copies of the 4 relations at the 4 sites,
and the site loads. We assume that Q is decomposed as Q = {q1, q2, q3, q4}, where
q1 is associated with R1, q2 with R2 joined with the result of q1, q3 with R3 joined
with the result of q2, and q4 with R4 joined with the result of q3. The SQAllocation

Algorithm 4.3: SQAllocation
Input: Q: q1, . . . , qm

Feasible allocation sets: Fq1 , . . . , Fqm

Loads: load(F1), . . . , load(Fm)

Output: an allocation of Q to S

begin
for each q in Q do

compute(load(Fq))
end for
while Q not empty do

{select subquery a for allocation}
a ← q ∈ Q with least allocation flexibility (1)
{select best site b for a}
b ← f ∈ Fa with least load and best benefit (2)
Q ← Q − a

{recompute loads of remaining feasible allocation sets if necessary} (3)
for each q ∈ Q where b ∈ Fq do

compute(load(Fq)
end for

end while
end

Sites Load R1 R2 R3 R4
s1 1 R11 R31 R41
s2 2 R22
s3 2 R13 R33
s4 2 R14 R24

Fig. 4.16 Example data placement and load

4.6 Adaptive Query Processing 173

algorithm performs 4 iterations. In the first one, it selects q4 which has the least
allocation flexibility, allocates it to S1, and updates the load of S1 to 2. In the second
iteration, the next subqueries to be selected are either q2 or q3 since they have the
same allocation flexibility. Let us choose q2 and assume it gets allocated to S2 (it
could be allocated to S4 which has the same load as S2). The load of S2 is increased
to 3. In the third iteration, the next subquery selected is q3 and it is allocated to S1
which has the same load as S3 but a benefit of 1 (versus 0 for S3) as a result of the
allocation of q4. The load of S1 is increased to 3. Finally, in the last iteration, q1 gets
allocated to either S3 or S4 which have the least loads. If in the second iteration q2
was allocated to S4 instead of to S2, then the fourth iteration would have allocated
q1 to S4 because of a benefit of 1. This would have produced a better execution plan
with less communication. This illustrates that two-step optimization can still miss
optimal plans. �

This algorithm has reasonable complexity. It considers each subquery in turn,
considering each potential site, selects a current one for allocation, and sorts the
list of remaining subqueries. Thus, its complexity can be expressed as O(max(m ∗
n,m2 ∗ log2m)).

Finally, the algorithm includes a refining phase to further optimize join pro-
cessing and decide whether or not to use semijoins. Although it minimizes
communication given a static plan, two-step query optimization may generate
runtime plans that have higher communication cost than the optimal plan. This
is because the first step is carried out ignoring data location and its impact on
communication cost. For instance, consider the runtime plan in Fig. 4.15 and assume
that the third subquery on R3 is allocated to site S1 (instead of site S2). In this case,
the plan that does the join (or Cartesian product) of the result of the selection of R1
with R3 first at site S1 may be better since it minimizes communication. A solution
to this problem is to perform plan reorganization using operator trie transformations
at startup time.

4.6 Adaptive Query Processing

The underlying assumption so far is that the distributed query processor has
sufficient knowledge about query runtime conditions in order to produce an
efficient QEP and the runtime conditions remain stable during execution. This is
a fair assumption for queries with few database relations running in a controlled
environment. However, this assumption is inappropriate for changing environments
with large numbers of relations and unpredictable runtime conditions.

Example 4.21 Consider the QEP in Fig. 4.17 with relations EMP, ASG, PROJ, and
PAY at sites S1, S2, S3, S4, respectively. The crossed arrow indicates that, for some
reason (e.g., failure), site S2 (where ASG is stored) is not available at the beginning
of execution. Let us assume, for simplicity, that the query is to be executed according
to the iterator execution model, such that tuples flow from the left most relation.

174 4 Distributed Query Processing

ASG EMP

PROJ

PAY

Fig. 4.17 Query execution plan with a blocked relation

Because of the unavailability of S2, the entire pipeline is blocked, waiting for
ASG tuples to be produced. However, with some reorganization of the plan, some
other operators could be evaluated while waiting for S2, for instance, to evaluate the
join of EMP and PAY. �

This simple example illustrates that a typical static plan cannot cope with
unpredictable data source unavailability. More complex examples involve contin-
uous queries, expensive predicates, and data skew. The main solution is to have
some adaptive behavior during query processing, i.e., adaptive query processing.
Adaptive query processing is a form of dynamic query processing, with a feedback
loop between the execution environment and the query optimizer in order to react to
unforeseen variations of runtime conditions. A query processing system is defined as
adaptive if it receives information from the execution environment and determines
its behavior according to that information in an iterative manner.

In this section, we first provide a general presentation of the adaptive query
processing process. Then, we present the eddy approach that provides a powerful
framework for adaptive query processing.

4.6.1 Adaptive Query Processing Process

Adaptive query processing adds to the traditional query processing process the fol-
lowing activities: monitoring, assessing, and reacting. These activities are logically
implemented in the query processing system by sensors, assessment components,
and reaction components, respectively. Monitoring involves measuring some envi-
ronment parameters within a time window, and reporting them to the assessment
component. The latter analyzes the reports and considers thresholds to arrive at an
adaptive reaction plan. Finally, the reaction plan is communicated to the reaction
component that applies the reactions to query execution.

Typically, an adaptive process specifies the frequency with which each com-
ponent will be executed. There is a trade-off between reactiveness, in which
higher values lead to eager reactions, and the overhead caused by the adaptive
process. A generic representation of the adaptive process is given by the function

4.6 Adaptive Query Processing 175

fadapt (E, T) → Ad, where E is a set of monitored environment parameters, T

is a set of threshold values, and Ad is a possibly empty set of adaptive reactions.
The elements of E, T , and Ad, called adaptive elements, obviously may vary in a
number of ways depending on the application. The most important elements are the
monitoring parameters and the adaptive reactions. We now describe them.

4.6.1.1 Monitoring Parameters

Monitoring query runtime parameters involves placing sensors at key places of the
QEP and defining observation windows, during which sensors collect information.
It also requires the specification of a communication mechanism to pass collected
information to the assessment component. Examples of candidates for monitoring
are:

• Memory size. Monitoring available memory size allows, for instance, operators
to react to memory shortage or memory increase.

• Data arrival rates. Monitoring the variation on data arrival rates may enable the
query processor to do useful work while waiting for a blocked data source.

• Actual statistics. Database statistics in a distributed environment tend to be inac-
curate, if at all available. Monitoring the actual size of relations and intermediate
results may lead to important modifications in the QEP. Furthermore, the usual
data assumptions, in which the selectivity of predicates over attributes in a
relation is mutually independent, can be abandoned and real selectivity values
can be computed.

• Operator execution cost. Monitoring the actual cost of operator execution,
including production rates, is useful for better operator scheduling. Furthermore,
monitoring the size of the queues placed before operators may avoid overloading.

• Network throughput. Monitoring network throughput may be helpful to define
the block size to retrieve data. In a lower throughput network, the system may
react with larger block sizes to reduce network penalty.

4.6.1.2 Adaptive Reactions

Adaptive reactions modify query execution behavior according to the decisions
taken by the assessment component. Important adaptive reactions are:

• Change schedule: modifies the order in which operators in the QEP get sched-
uled. Query scrambling reacts by a change schedule of the plan to avoid stalling
on a blocked data source during query evaluation. Eddy adopts finer reaction
where operator scheduling can be decided on a tuple basis.

• Operator replacement: replaces a physical operator by an equivalent one. For
example, depending on the available memory, the system may choose between
a nested loop join or a hash join. Operator replacement may also change the
plan by introducing a new operator to join the intermediate results produced by

176 4 Distributed Query Processing

a previous adaptive reaction. Query scrambling, for instance, may introduce new
operators to evaluate joins between the results of change schedule reactions.

• Data refragmentation: considers the dynamic fragmentation of a relation. Static
partitioning of a relation tends to produce load imbalance between sites. For
example, information partitioned according to their associated geographical
region may exhibit different access rates during the day because of the time
differences in users’ locations.

• Plan reformulation: computes a new QEP to replace an inefficient one. The
optimizer considers actual statistics and state information, collected on the fly,
to produce a new plan.

4.6.2 Eddy Approach

Eddy is a general framework for adaptive query processing over distributed
relations. For simplicity, we only consider select-project-join (SPJ) queries. Select
operators can include expensive predicates. The process of generating a QEP from
an input SPJ query begins by producing an operator trie of the join graph G of the
input query. The choice among join algorithms and relation access methods favors
adaptiveness. A QEP can be modeled as a tuple Q = 〈D,P,C〉, where D is a set of
database relations, P is a set of query predicates with associated algorithms, and C
is a set of ordering constraints that must be followed during execution. Observe that
multiple valid operator trees can be derived from G that obey the constraints in C, by
exploring the search space with different predicate orders. There is no need to find
an optimal QEP during query compilation. Instead, operator ordering is done on the
fly on a tuple-per-tuple basis (i.e., tuple routing). The process of QEP compilation is
completed by adding the eddy operator which is an n-ary operator placed between
the relations in D and query predicates in P .

Example 4.22 Consider a three-relation query Q = (σp(R) �� S �� T), where joins
are equijoins. Assume that the only access method to relation T is through an index
on join attribute T.A, i.e., the second join can only be an index join over T.A.
Assume also that σp is an expensive predicate (e.g., a predicate over the results
of running a program over values of T.B). Under these assumptions, the QEP is
defined as D = {R,S,T}, P = {σp(R),R �� S,S �� T}, and C = {S ≺ T}. The
constraint ≺ imposes S tuples to probe T tuples, based on the index on T.A.

Figure 4.18 shows a QEP produced by the compilation of query Q with eddy. An
ellipse corresponds to a physical operator (i.e., either eddy operator or an algorithm
implementing a predicate p ∈ P). As usual, the bottom of the plan presents the
source relations. In the absence of a scan access method, the access to relation T is
wrapped by the join S �� T, thus does not appear as a source relation. The arrows
specify pipeline dataflow following a producer–consumer relationship. Finally, an
arrow departing from the eddy models the production of output tuples. �

4.7 Conclusion 177

eddy

S TR S σpR

R S

Fig. 4.18 A query execution plan with eddy

Eddy provides fine-grained adaptiveness by deciding on the fly how to route
tuples through predicates according to a scheduling policy. During query execution,
tuples in source relations are retrieved and staged into an input buffer managed by
the eddy operator. Eddy responds to relation unavailability by simply reading from
another relation and staging tuples in the buffer pool.

The flexibility of choosing the currently available source relation is obtained by
relaxing the fixed order of predicates in a QEP. In eddy, there is no fixed QEP and
each tuple follows its own path through predicates according to the constraints in
the plan and its own history of predicate evaluation.

The tuple-based routing strategy produces a new QEP topology. The eddy
operator together with its managed predicates forms a circular dataflow in which
tuples leave the eddy operator to be evaluated by the predicates, which in turn
bounce back output tuples to the eddy operator. A tuple leaves the circular dataflow
either when it is eliminated by a predicate evaluation or the eddy operator realizes
that the tuple has passed through all the predicates in its list. The lack of a fixed QEP
requires each tuple to register the set of predicates it is eligible for. For example, in
Fig. 4.18, S tuples are eligible for the two join predicates but are not eligible for
predicate σp(R).

4.7 Conclusion

In this chapter, we provided a detailed presentation of query processing in dis-
tributed DBMSs. We first introduced the problem of distributed query processing.
The main assumption is that the input query is expressed in relational calculus since
that is the case with most current distributed DBMS. The complexity of the problem
is proportional to the expressive power and the abstraction capability of the query
language.

The query processing problem is very difficult to understand in distributed
environments because many elements are involved. However, the problem may be
divided into several subproblems which are easier to solve individually. Therefore,
we have proposed a generic layering scheme for describing distributed query

178 4 Distributed Query Processing

processing. Four main functions have been isolated: query decomposition, data
localization, distributed optimization, and distributed execution. These functions
successively refine the query by adding more details about the processing environ-
ment.

Then, we described data localization, with emphasis on reduction and simplifi-
cation techniques for the four following types of fragmentation: horizontal, vertical,
derived, and hybrid. The query produced by the data localization layer is good in the
sense that the worse executions are avoided. However, the subsequent layers usually
perform important optimizations, as they add to the query increasing detail about
the processing environment.

Next, we discussed the major optimization issue, which deals with the join order-
ing in distributed queries, including alternative join strategies based on semijoin, and
the definition of a distributed cost model.

We illustrated the use of the join and semijoin techniques in three basic
distributed query optimization algorithms: dynamic, static, and hybrid. The static
and dynamic distributed optimization approaches have the same advantages and
disadvantages as in centralized systems. The hybrid approach is best in today’s
dynamic environments as it delays important decisions such as copy selection and
allocation of subqueries to sites at query startup time. Thus, it can better increase
availability and load balancing of the system. We illustrated the hybrid approach
with two-step query optimization which first generates a static plan that specifies the
operators ordering as in a centralized system and then generates an execution plan
at startup time, by carrying out site and copy selection and allocating the operators
to the sites.

Finally, we discussed adaptive query processing, to deal with the dynamic
behavior of the local DBMSs. Adaptive query processing addresses this problem
with a dynamic approach whereby the query optimizer communicates at runtime
with the execution environment in order to react to unforeseen variations of runtime
conditions.

4.8 Bibliographic Notes

There are several survey papers on query processing and query optimization in the
context of the relational model. Graefe [1993] provides a detailed survey.

The iterator execution model which has been the basis for many query processor
implementation was proposed in the context of the Volcano extensible query eval-
uation system [Graefe 1994]. The seminal paper on cost-based query optimization
[Selinger et al. 1979] was the first to propose a cost model with database statistics
(see Sect. 4.4.2) and the use of a dynamic programming search strategy (see
Sect. 4.1.1). Randomized strategies, such as Iterative Improvement [Swami 1989]
and Simulated Annealing [Ioannidis and Wong 1987] have been proposed to achieve
a good trade-off between optimization time and execution time.

The most complete survey on distributed query processing is by Kossmann
[2000] and deals with both distributed DBMSs and multidatabase systems. The

4.8 Bibliographic Notes 179

paper presents the traditional phases of query processing in centralized and dis-
tributed systems, and describes the various techniques for distributed query pro-
cessing. Distributed cost models are discussed in several papers such as [Lohman
et al., Khoshafian and Valduriez 1987].

Data localization is treated in detail by Ceri and Pelagatti [1983] for horizontally
partitioned relations which are referred to as multirelations. The formal properties
of horizontal and vertical fragmentation are used by Ceri et al. [1986] to characterize
distributed joins over fragmented relations.

The theory of semijoins and their value for distributed query processing has
been covered in [Bernstein and Chiu 1981], [Chiu and Ho 1980], and [Kambayashi
et al. 1982]. The semijoin-based approach to distributed query optimization was
proposed by Bernstein et al. [1981] for SDD-1 system [Wong 1977]. Full reducer
semijoin programs are investigated by Chiu and Ho [1980], Kambayashi et al.
[1982]. The problem of finding full reducers is NP-hard. However, for chained
queries, a polynomial algorithm exists [Chiu and Ho 1980, Ullman 1982]. The cost
of semijoins can be minimized by using bit arrays [Valduriez 1982]. Some other
query processing algorithms aim at selecting an optimal combination of joins and
semijoins [Özsoyoglu and Zhou 1987, Wah and Lien 1985].

The dynamic approach to distributed query optimization was first proposed for
Distributed INGRES [Epstein et al. 1978]. The algorithm takes advantage of the
network topology (general or broadcast networks) and uses the reduction algorithm
[Wong and Youssefi 1976] that isolates all irreducible subqueries and monorelation
subqueries by detachment.

The static approach to distributed query optimization was first proposed for R*
[Selinger and Adiba 1980]. It is one of the first papers to recognize the significance
of local processing on the performance of distributed queries. Experimental vali-
dation by Lohman et al. and Mackert and Lohman [1986a,b] have confirmed this
important statement. The method fetch-as-needed of R* is called bindjoin in [Haas
et al. 1997a].

A general hybrid approach to query optimization is to use choose-plan operators
[Cole and Graefe 1994]. Several hybrid approaches based on two-step query
optimization have been proposed for distributed systems [Carey and Lu 1986, Du
et al. 1995, Evrendilek et al. 1997]. The content of Sect. 4.5.3 is based on the seminal
paper on two-step query optimization by Carey and Lu [1986]. Du et al. [1995]
propose efficient operators to transform linear join trees (produced by the first step)
into bushy trees which exhibit more parallelism. Evrendilek et al. [1997] propose a
solution to maximize intersite join parallelism in the second step.

Adaptive query processing is surveyed in [Hellerstein et al. 2000, Gounaris et al.
2002]. The seminal paper on the eddy approach which we used to illustrate adaptive
query processing in Sect. 4.6 is [Avnur and Hellerstein 2000]. Other important
techniques for adaptive query processing are query scrambling [Amsaleg et al. 1996,
Urhan et al. 1998], ripple joins [Haas and Hellerstein 1999b], adaptive partitioning
[Shah et al. 2003], and cherry picking [Porto et al. 2003]. Major extensions to eddy
are state modules [Raman et al. 2003] and distributed eddies [Tian and DeWitt
2003].

180 4 Distributed Query Processing

Exercises

Problem 4.1 Assume that relation PROJ of the sample database is horizontally
fragmented as follows:

PROJ1 = σPNO≤"P2"(PROJ)

PROJ2 = σPNO>"P2"(PROJ)

Transform the following query into a reduced query on fragments:

SELECT ENO, PNAME
FROM PROJ NATURAL JOIN ASG
WHERE PNO = "P4"

Problem 4.2 (*) Assume that relation PROJ is horizontally fragmented as in
Problem 4.1, and that relation ASG is horizontally fragmented as

ASG1 = σPNO≤"P2"(ASG)

ASG2 = σ"P2"<PNO≤"P3"(ASG)

ASG3 = σPNO>"P3"(ASG)

Transform the following query into a reduced query on fragments, and determine
whether it is better than the fragment query:

SELECT RESP, BUDGET
FROM ASG NATURAL JOIN PROJ
WHERE PNAME = "CAD/CAM"

Problem 4.3 (**) Assume that relation PROJ is fragmented as in Problem 4.1.
Furthermore, relation ASG is indirectly fragmented as

ASG1 = ASG�PNO PROJ1

ASG2 = ASG�PNO PROJ2

and relation EMP is vertically fragmented as

EMP1 = �ENO,ENAME(EMP)

EMP2 = �ENO,TITLE(EMP)

vnine
Transform the following query into a reduced query on fragments:

SELECT ENAME
FROM EMP NATURAL JOIN ASG NATURAL JOIN PROJ
WHERE PNAME = "Instrumentation"

Exercises 181

Problem 4.4 Consider the join graph of Fig. 4.11 and the following information:
size(EMP) = 100, size(ASG) = 200, size(PROJ) = 300, size(EMP �� ASG) =
300, and size(ASG �� PROJ) = 200. Describe an optimal join program based on
the objective function of total transmission time.

Problem 4.5 Consider the join graph of Fig. 4.11 and make the same assumptions
as in Problem 4.4. Describe an optimal join program that minimizes response time
(consider only communication).

Problem 4.6 Consider the join graph of Fig. 4.11, and give a program (possibly not
optimal) that reduces each relation fully by semijoins.

Problem 4.7 (*) Consider the join graph of Fig. 4.11 and the fragmentation
depicted in Fig. 4.19. Also assume that size(EMP �� ASG) = 2000 and size(ASG ��

PROJ) = 1000. Apply the dynamic distributed query optimization algorithm
in Sect. 4.5.1 in two cases, general network and broadcast network, so that
communication time is minimized.

Problem 4.8 (**) Consider the following query on our engineering database:

SELECT ENAME,SAL
FROM PAY NATURAL JOIN EMP NATURAL JOIN ASG

NATURAL JOIN PROJ
WHERE (BUDGET>200000 OR DUR>24)
AND (DUR>24 OR PNAME = "CAD/CAM")

Assume that relations EMP, ASG, PROJ, and PAY have been stored at sites 1, 2,
and 3 according to the table in Fig. 4.20. Assume also that the transfer rate between
any two sites is equal and that data transfer is 100 times slower than data processing
performed by any site. Finally, assume that size(R �� S) = max(size(R), size(S))
for any two relations R and , and the selectivity factor of the disjunctive selection
of the query is 0.5. Compose a distributed program that computes the answer to the
query and minimizes total time.

Relation Site 1 Site 2 Site 3
EMP 1000 1000 1000
ASG 2000
PROJ 1000

Fig. 4.19 Fragmentation

Relation Site 1 Site 2 Site 3
EMP 2000
ASG 3000
PROJ 1000
PAY 500

Fig. 4.20 Fragmentation statistics

182 4 Distributed Query Processing

Problem 4.9 (**) In Sect. 4.5.3, we described Algorithm 4.3 for linear join trees.
Extend this algorithm to support bushy join trees. Apply it to the bushy join trie in
Fig. 4.9 using the data placement and site loads shown in Fig. 4.16.

Problem 4.10 (**) Consider three relations R(A,B), S(B,D) and T(D,E), and
query Q(σ 1

p(R) ��1 S ��2 T), where ��1 and ��2 are natural joins. Assume that S

has an index on attribute B and T has an index on attribute D. Furthermore, σ 1
p is

an expensive predicate (i.e., a predicate over the results of running a program over
values of R.A). Using the eddy approach for adaptive query processing, answer the
following questions:

(a) Propose the set C of constraints on Q to produce an eddy-based QEP.
(b) Give a join graph G for Q.
(c) Using C and G, propose an eddy-based QEP.
(d) Propose a second QEP that uses State Modules. Discuss the advantages

obtained by using state modules in this QEP.

Problem 4.11 (**) Propose a data structure to store tuples in the eddy buffer pool
to help choosing quickly the next tuple to be evaluated according to user-specified
preference, for instance, produce first results earlier.

Chapter 5
Distributed Transaction Processing

The concept of a transaction is used in database systems as a basic unit of
consistent and reliable computing. Thus, queries are executed as transactions once
their execution strategies are determined and they are translated into primitive
database operations. Transactions ensure that database consistency and durability
are maintained when concurrent access occurs to the same data item (with at least
one of these being an update) and when failures occur.

The terms consistent and reliable in transaction definition need to be defined
more precisely. We differentiate between database consistency and transaction
consistency.

A database is in a consistent state if it obeys all of the consistency (integrity)
constraints defined over it (see Chap. 3). State changes occur due to modifications,
insertions, and deletions (together called updates). Of course, we want to ensure
that the database never enters an inconsistent state. Note that the database can
be (and usually is) temporarily inconsistent during the execution of a transaction.
The important point is that the database should be consistent when the transaction
terminates (Fig. 5.1).

Transaction consistency, on the other hand, refers to the operations of concurrent
transactions. We would like the database to remain in a consistent state even if there
are a number of user requests that are concurrently accessing (reading or updating)
the database.

Reliability refers to both the resiliency of a system to various types of failures and
its capability to recover from them. A resilient system is tolerant of system failures
and can continue to provide services even when failures occur. A recoverable DBMS
is one that can get to a consistent state (by moving back to a previous consistent state
or forward to a new consistent state) following various types of failures.

Transaction management deals with the problems of always keeping the database
in a consistent state even when concurrent accesses and failures occur. The issues in
managing concurrent transactions are well-known in centralized DBMSs and can
be found in many textbooks. In this chapter, we investigate these issues within

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_5

184 5 Distributed Transaction Processing

Begin
Transaction T

End
Transaction T

Execution of transaction T

Database in a
consistent state

Database in a
consistent state

Database may be temporarily in an
inconsistent state during execution

Fig. 5.1 A transaction model

the context of distributed DBMSs focusing on distributed concurrency control and
distributed reliability and recovery. We expect that the reader has familiarity with
the basic transaction management concepts and techniques as commonly covered in
undergraduate database courses and books. We provide a brief refresher in Sect. 5.1.
More detailed discussion of the fundamental transaction processing concepts is
in Appendix C. For now, we ignore data replication issues; the following chapter
is devoted to that topic. DBMSs are typically classified as On-Line Transaction
Processing (OLTP) or On-Line Analytical Processing (OLAP). On-Line Transaction
Processing applications, such as airline reservation or banking systems, are high-
throughput transaction-oriented. They need extensive data control and availability,
high multiuser throughput and predictable, fast response times. In contrast, On-
line Analytical Processing applications, such as trend analysis or forecasting, need
to analyze historical, summarized data coming from a number of operational
databases. They use complex queries over potentially very large tables. Most OLAP
applications do not need the most current versions of the data, and thus do not need
direct access to most up-to-date operational data. In this chapter, we focus on OLTP
systems and consider OLAP systems in Chap. 7.

The organization of this chapter is as follows. In Sect. 5.1 we provide a quick
introduction to the basic terminology that is used in this chapter, and revisit the
architectural model defined in Chap. 1 to highlight the modifications that are neces-
sary to support transaction management. Section 5.2 provides an in-depth treatment
of serializability-based distributed concurrency control techniques, while Sect. 5.3
considers concurrency control under snapshot isolation. Section 5.4 discusses
distributed reliability techniques focusing on distributed commit, termination, and
recovery protocols.

5.1 Background and Terminology

Our objective in this section is to provide a very brief introduction to the concepts
and terminology that we use in the rest of the chapter. As mentioned previously, our

5.1 Background and Terminology 185

objective is not to provide a deep overview of the fundamental concepts—those can
be found in Appendix C—but to introduce the basic terminology that will be helpful
in the rest of the chapter. We also discuss how the system architecture needs to be
revised to accommodate transactions.

As indicated before, a transaction is a unit of consistent and reliable computation.
Each transaction begins with a Begin_transaction command, includes a series of
Read and Write operations, and ends with either a Commit or an Abort. Commit,
when processed, ensures that the updates that the transaction has made to the
database are permanent from that point on, while Abort undoes the transaction’s
actions so, as far as the database is concerned, it is as if the transaction has never
been executed. Each transaction is characterized by its read set (RS) that includes
the data items that it reads, and its write set (WS) of the data items that it writes. The
read set and write set of a transaction need not be mutually exclusive. The union of
the read set and write set of a transaction constitutes its base set (BS = RS ∪ WS).

Typical DBMS transaction services provide ACID properties:

1. Atomicity ensures that transaction executions are atomic, i.e., either all of the
actions of a transaction are reflected in the database or none of it are.

2. Consistency refers to a transaction being a correct execution (i.e., the transaction
code is correct and when it executes on a database that is consistent, it will leave
it in a consistent state).

3. Isolation indicates that the effects of concurrent transactions are shielded from
each other until they commit—this is how the correctness of concurrently
executing transactions are ensured (i.e., executing transactions concurrently does
not break database consistency).

4. Durability refers to that property of transactions that ensures that the effects of
committed transactions on the database are permanent and will survive system
crashes.

Concurrency control algorithms that we discuss in Sect. 5.2 enforce the isolation
property so that concurrent transactions see a consistent database state and leave the
database in a consistent state, while reliability measures we discuss in Sect. 5.4
enforce atomicity and durability. Consistency in terms of ensuring that a given
transaction does not do anything incorrect to the database is typically handled by
integrity enforcement as discussed in Chap. 3.

Concurrency control algorithms implement a notion of “correct concurrent
execution.” The most common correctness notion is serializability that requires that
the history generated by the concurrent execution of transactions is equivalent to
some serial history (i.e., a sequential execution of these transactions). Given that a
transaction maps one consistent database state to another consistent database state,
any serial execution order is, by definition, correct; if the concurrent execution
history is equivalent to one of these orders, it must also be correct. In Sect. 5.3,
we introduce a more relaxed correctness notion called snapshot isolation (SI).
Concurrency control algorithms are basically concerned with enforcing different
levels of isolation among concurrent transactions very efficiently.

186 5 Distributed Transaction Processing

When a transaction commits, its actions need to be made permanent. This
requires management of transaction logs where each action of a transaction is
recorded. The commit protocols ensure that database updates as well as logs are
saved into persistent storage so that they are made permanent. Abort protocols, on
the other hand, use the logs to erase all actions of the aborted transaction from the
database. When recovery from system crashes is needed, the logs are consulted to
bring the database to a consistent state.

The introduction of transactions to the DBMS workload along with read-only
queries requires revisiting the architectural model introduced in Chap. 1. The
revision is an expansion of the role of the distributed execution monitor.

The distributed execution monitor consists of two modules: a transaction
manager (TM) and a scheduler (SC). The transaction manager is responsible for
coordinating the execution of the database operations on behalf of an application.
The scheduler, on the other hand, is responsible for the implementation of a specific
concurrency control algorithm for synchronizing access to the database.

A third component that participates in the management of distributed transactions
is the local recovery managers (LRM) that exist at each site. Their function is to
implement the local procedures by which the local database can be recovered to a
consistent state following a failure.

Each transaction originates at one site, which we will call its originating site.
The execution of the database operations of a transaction is coordinated by the TM
at that transaction’s originating site. We refer to the TM at the originating site as the
coordinator or the coordinating TM.

A transaction manager implements an interface for the application programs
to the transaction commands identified earlier: Begin_transaction, Read, Write,
Commit, and Abort. The processing of each of these commands in a nonreplicated
distributed DBMS is discussed below at an abstract level. For simplicity, we
concentrate on the interface to the TM; the details are presented in the following
sections.

1. Begin_transaction. This is an indicator to the coordinating TM that a new trans-
action is starting. The TM does some bookkeeping by recording the transaction’s
name, the originating application, and so on, in a main memory log (called the
volatile log).

2. Read. If the data item is stored locally, its value is read and returned to the
transaction. Otherwise, the coordinating TM finds where the data item is stored
and requests its value to be returned (after appropriate concurrency control
measures are taken). The site where the data item is read inserts a log record
in the volatile log.

3. Write. If the data item is stored locally, its value is updated (in coordination with
the data processor). Otherwise, the coordinating TM finds where the data item
is located and requests the update to be carried out at that site (after appropriate
concurrency control measures are taken). Again, the site that executes the write
inserts a log record in the volatile log.

5.1 Background and Terminology 187

4. Commit. The TM coordinates the sites involved in updating data items on behalf
of this transaction so that the updates are made durable at every site. WAL
protocol is executed to move volatile log records to a log on disk (called the
stable log).

5. Abort. The TM makes sure that no effects of the transaction are reflected in any of
the databases at the sites where it updated data items. The log is used to execute
the undo (rollback) protocol.

In providing these services, a TM can communicate with SCs and data processors
at the same or at different sites. This arrangement is depicted in Fig. 5.2.

As we indicated in Chap. 1, the architectural model that we have described is
only an abstraction that serves a pedagogical purpose. It enables the separation
of many of the transaction management issues and their independent and isolated
discussion. In Sect. 5.2, as we discuss the scheduling algorithm, we focus on the
interface between a TM and an SC and between an SC and a data processor. In
Sect. 5.4 we consider the execution strategies for the commit and abort commands
in a distributed environment, in addition to the recovery algorithms that need to be
implemented for the recovery manager. In Chap. 6, we extend this discussion to
the case of replicated databases. We should point out that the computational model
that we described here is not unique. Other models have been proposed such as, for
example, using a private workspace for each transaction.

Transaction
Manager
(TM)

Distributed Execution
Monitor

Scheduler
(SC)

Scheduling
Descheduling
Requests

Begin-transaction,
Read, Write,

Commit, Abort Results

With other SCs

With other data
processors

With
other TMs

Fig. 5.2 Detailed model of the distributed execution monitor

188 5 Distributed Transaction Processing

5.2 Distributed Concurrency Control

As noted above, a concurrency control algorithm enforces a particular isolation
level. In this chapter, we mainly focus on serializability among concurrent trans-
actions. Serializability theory extends in a straightforward manner to the distributed
databases. The history of transaction execution at each site is called a local history.
If the database is not replicated and each local history is serializable, their union
(called the global history) is also serializable as long as local serialization orders
are identical.

Example 5.1 We give a very simple example to demonstrate the point. Consider
two bank accounts, x (stored at Site 1) and y (stored at Site 2), and the following
two transactions where T1 transfers $100 from x to y, while T2 simply reads the
balance of x and y:

T1: Read(x) T2: Read(x)
x ← x − 100 Read(y)
Write(x) Commit

Read(y)
y ← y + 100
Write(y)
Commit

Obviously, both of these transactions need to run at both sites. Consider the
following two histories that may be generated locally at the two sites (Hi is the
history at Site i and Rj and Wj are Read and Write operations, respectively, in
transaction Tj):

H1 ={R1(x),W1(x), R2(x)}
H2 ={R1(y),W1(y), R2(y)}

Both of these histories are serializable; indeed, they are serial. Therefore, each
represents a correct execution order. Furthermore, the serialization order for both
are the same T1 → T2. Therefore global history that is obtained is also serializable
with the serialization order T1 → T2.

However, if the histories generated at the two sites are as follows, there is a
problem:

H
′
1 ={R1(x),W1(x), R2(x)}

H
′
2 ={R2(y), R1(y),W1(y)}

Although each local history is still serializable, the serialization orders are
different: H

′
1 serializes T1 before T2 (T1 → T2) while H

′
2 serializes T2 before T1

(T2 → T1).Therefore, there can be no serializable global history. �

5.2 Distributed Concurrency Control 189

Concurrency control protocols are in charge of isolation. A protocol aims at
guaranteeing a particular isolation level such as serializability, snapshot isolation, or
read committed. There are different aspects or dimensions of concurrency control.
The first one is obviously the isolation level(s) aimed by the algorithm. The second
aspect is whether a protocol prevents the isolation to be broken (pessimistic) or
whether it allows it to be broken and then aborts one of the conflicting transactions
to preserve the isolation level (optimistic).

The third dimension is how transactions get serialized. They can be serialized
depending on the order of conflicting accesses or a predefined order, called times-
tamp order. The first case corresponds to locking algorithms where transactions get
serialized based on the order they try to acquire conflicting locks. The second case
corresponds to algorithms that order transactions according to a timestamp. The
timestamp can either be assigned at the start of the transaction (start timestamp)
when they are pessimistic or just before committing the transaction (commit
timestamp) if they are optimistic. The fourth dimension that we consider is how
updates are maintained. One possibility is to keep a single version of the data (that
it is possible in pessimistic algorithms). Another possibility is to keep multiple
versions of the data. The latter is needed for optimistic algorithms, but some
pessimistic algorithms rely on it as well for recovery purposes (basically, they
keep two versions: the latest committed one and the current uncommitted one). We
discuss replication in the next chapter.

Most combinations of these multiple dimensions have been explored. In the
remainder of this section, we focus on the seminal techniques for pessimistic
algorithms, locking (Sect. 5.2.1) and timestamp ordering (Sect. 5.2.2), and the
optimistic ones (Sect. 5.2.4). Understanding these techniques will also help the
reader to move on to more involved algorithms of this kind.

5.2.1 Locking-Based Algorithms

Locking-based concurrency control algorithms prevent isolation violation by main-
taining a “lock” for each lock unit and requiring each operation to obtain a
lock on the data item before it is accessed—either in read (shared) mode or in
write (exclusive) mode. The operation’s access request is decided based on the
compatibility of lock modes—read lock is compatible with another read lock, a
write lock is not compatible with either a read or a write lock. The system manages
the locks using the two-phase locking algorithm. The fundamental decision in
distributed locking-based concurrency control algorithms is where and how the
locks are maintained (usually called a lock table). The following sections provide
algorithms that make different decisions in this regard.

190 5 Distributed Transaction Processing

5.2.1.1 Centralized 2PL

The 2PL algorithm can easily be extended to the distributed DBMS environment
by delegating lock management responsibility to a single site. This means that only
one of the sites has a lock manager; the transaction managers at the other sites
communicate with it to obtain locks. This approach is also known as the primary
site 2PL algorithm.

The communication between the cooperating sites in executing a transaction
according to a centralized 2PL (C2PL) algorithm is depicted in Fig. 5.3 where the
order of messages is indicated. This communication is between the coordinating
TM, the lock manager at the central site, and the data processors (DP) at the other
participating sites. The participating sites are those that store the data items on which
the operation is to be carried out.

The centralized 2PL transaction management algorithm (C2PL-TM) that incor-
porates these changes is given at a very high level in Algorithm 5.1, while the
centralized 2PL lock management algorithm (C2PL-LM) is shown in Algorithm 5.2.
A highly simplified data processor algorithm (DP) is given in Algorithm 5.3, which
will see major changes when we discuss reliability issues in Sect. 5.4.

These algorithms use a 5-tuple for the operation they perform: Op : 〈Type =
{BT,R,W,A,C}, arg : Data item, val : Value, tid : Transaction identifier, res :
Result〉. For an operation o : Op, o.T ype ∈ {BT,R,W,A,C} specifies its type
where BT = Begin_transaction, R = Read, W = Write, A = Abort, and C = Commit,
arg is the data item that the operation accesses (reads or writes; for other operations
this field is null), val is the value that has been read or to be written for data item arg

Data processors at
participating sites Coordinating TM Participating TM

Lock Request
1

Lock G
ranted

2

Operati
on

3

End of Operation
4

Release Locks
5

Fig. 5.3 Communication structure of centralized 2PL

5.2 Distributed Concurrency Control 191

Algorithm 5.1: Centralized 2PL Transaction Manager (C2PL-TM)
Input: msg : a message
begin

repeat
wait for a msg

switch msg do
case transaction operation do

let op be the operation
if op.Type = BT then DP(op) {call DP with operation}
else C2PL-LM(op) {call LM with operation}

end case
case Lock Manager response do {lock request granted or locks released}

if lock request granted then
find site that stores the requested data item (say Hi)
DPSi (op) {call DP at site Si with operation}

else {must be lock release message}
inform user about the termination of transaction

end if
end case
case Data Processor response do {operation completed message}

switch transaction operation do
let op be the operation
case R do

return op.val (data item value) to the application
end case
case W do

inform application of completion of the write
end case
case C do

if commit msg has been received from all participants then
inform application of successful completion of transaction
C2PL-LM(op) {need to release locks}

else {wait until commit messages come from all}
record the arrival of the commit message

end if
end case
case A do

inform application of completion of the abort
C2PL-LM(op) {need to release locks}

end case
end switch

end case
end switch

until forever
end

192 5 Distributed Transaction Processing

Algorithm 5.2: Centralized 2PL Lock Manager (C2PL-LM)
Input: op : Op

begin
switch op.Type do

case R or W do {lock request; see if it can be granted}
find the lock unit lu such that op.arg ⊆ lu

if lu is unlocked or lock mode of lu is compatible with op.T ype then
set lock on lu in appropriate mode on behalf of transaction op.tid

send “Lock granted” to coordinating TM of transaction
else

put op on a queue for lu

end if
end case
case C or A do {locks need to be released}

foreach lock unit lu held by transaction do
release lock on lu held by transaction
if there are operations waiting in queue for lu then

find the first operation O on queue
set a lock on lu on behalf of O

send “Lock granted” to coordinating TM of transaction O.tid

end if
end foreach
send “Locks released” to coordinating TM of transaction

end case
end switch

end

(for other operations it is null), t id is the transaction that this operation belongs to
(strictly speaking, this is the transaction identifier), and res indicates the completion
code of operations requested of DP, which is important for reliability algorithms.

The transaction manager (C2PL-TM) algorithm is written as a process that
runs forever and waits until a message arrives from either an application (with a
transaction operation) or from a lock manager, or from a data processor. The lock
manager (C2PL-LM) and data processor (DP) algorithms are written as procedures
that are called when needed. Since the algorithms are given at a high level of
abstraction, this is not a major concern, but actual implementations may, naturally,
be quite different.

One common criticism of C2PL algorithms is that a bottleneck may quickly
form around the central site. The communication between the cooperating sites in
executing a transaction according to a centralized 2PL (C2PL) algorithm is depicted
in Fig. 5.3 where the order of messages is indicated. This communication is between
the coordinating TM, the lock manager at the central site, and the data processors
(DP) at the other participating sites. The participating sites are those that store the
data items on which the operation is to be carried out. Furthermore, the system may
be less reliable since the failure or inaccessibility of the central site would cause
major system failures.

5.2 Distributed Concurrency Control 193

Algorithm 5.3: Data Processor (DP)
Input: op : Op

begin
switch op.Type do {check the type of operation}

case BT do {details to be discussed in Sect. 5.4}
do some bookkeeping

end case
case R do

op.res ← READ(op.arg) ; {database READ operation}
op.res ← “Read done”

end case
case W do {database WRITE of val into data item arg}

WRITE(op.arg, op.val)
op.res ← “Write done”

end case
case C do

COMMIT ; {execute COMMIT }
op.res ← “Commit done”

end case
case A do

ABORT ; {execute ABORT }
op.res ← “Abort done”

end case
end switch
return op

end

5.2.1.2 Distributed 2PL

Distributed 2PL (D2PL) requires the availability of lock managers at each site. The
communication between cooperating sites that execute a transaction according to
the distributed 2PL protocol is depicted in Fig. 5.4.

The distributed 2PL transaction management algorithm is similar to the C2PL-
TM, with two major modifications. The messages that are sent to the central site
lock manager in C2PL-TM are sent to the lock managers at all participating sites in
D2PL-TM. The second difference is that the operations are not passed to the data
processors by the coordinating transaction manager, but by the participating lock
managers. This means that the coordinating transaction manager does not wait for
a “lock request granted” message. Another point about Fig. 5.4 is the following.
The participating data processors send the “end of operation” messages to the
coordinating TM. The alternative is for each DP to send it to its own lock manager
who can then release the locks and inform the coordinating TM. We have chosen to
describe the former since it uses an LM algorithm identical to the strict 2PL lock
manager that we have already discussed and it makes the discussion of the commit
protocols simpler (see Sect. 5.4). Owing to these similarities, we do not give the

194 5 Distributed Transaction Processing

Coordinating
TM

Participating
Schedulers

Participating
DMs

Operations (Lock Request)1
Operation

2

End of Operation

3

Release Lock
4

Fig. 5.4 Communication structure of distributed 2PL

distributed TM and LM algorithms here. Distributed 2PL algorithms have been used
in R*and in NonStop SQL.

5.2.1.3 Distributed Deadlock Management

Locking-based concurrency control algorithms may cause deadlocks; in the case
of distributed DBMSs, these could be distributed (or global) deadlocks due to
transactions executing at different sites waiting for each other. Deadlock detection
and resolution is the most popular approach to managing deadlocks in the distributed
setting. The wait-for graph (WFG) can be useful for detecting deadlocks; this is a
directed graph whose vertices are active transactions with an edge from Ti to Tj if
an operation in Ti is waiting to access a data item that is currently locked in an
incompatible mode by an operation in Tj . However, the formation of the WFG
is more complicated in a distributed setting due to the distributed execution of
transactions. Therefore, it is not sufficient for each site to form a local wait-for
graph (LWFG) and check it; it is also necessary to form a global wait-for graph
(GWFG), which is the union of all the LWFGs, and check it for cycles.

Example 5.2 Consider four transactions T1, T2, T3, and T4 with the following wait-
for relationship among them: T1 → T2 → T3 → T4 → T1. If T1 and T2 run
at site 1 while T3 and T4 run at site 2, the LWFGs for the two sites are shown in
Fig. 5.5a. Notice that it is not possible to detect a deadlock simply by examining the
two LWFGs independently, because the deadlock is global. The deadlock can easily
be detected, however, by examining the GWFG where intersite waiting is shown by
dashed lines (Fig. 5.5b). �

5.2 Distributed Concurrency Control 195

T1

T2

T4

T3

Site 1 Site 2

(a)

T1

T2

T4

T3

Site 1 Site 2

(b)

Fig. 5.5 Difference between LWFG and GWFG

The various algorithms differ in how they manage the GWFG. There are three
fundamental methods of detecting distributed deadlocks, referred as centralized,
distributed, and hierarchical deadlock detection. We discuss them below.

Centralized Deadlock Detection

In the centralized deadlock detection approach, one site is designated as the
deadlock detector for the entire system. Periodically, each lock manager transmits its
LWFG to the deadlock detector, which then forms the GWFG and looks for cycles in
it. The lock managers need only send changes in their graphs (i.e., the newly created
or deleted edges) to the deadlock detector. The length of intervals for transmitting
this information is a system design decision: the smaller the interval, the smaller
the delays due to undetected deadlocks, but the higher the deadlock detection and
communication overhead.

Centralized deadlock detection is simple and would be a very natural choice
if the concurrency control algorithm were centralized 2PL. However, the issues of
vulnerability to failure, and high communication overhead, must also be considered.

Hierarchical Deadlock Detection

An alternative to centralized deadlock detection is the building of a hierarchy of
deadlock detectors (see Fig. 5.6). Deadlocks that are local to a single site would be
detected at that site using the LWFG. Each site also sends its LWFG to the deadlock
detector at the next level. Thus, distributed deadlocks involving two or more sites
would be detected by a deadlock detector in the next lowest level that has control
over these sites. For example, a deadlock at site 1 would be detected by the local
deadlock detector (DD) at site 1 (denoted DD21, 2 for level 2, 1 for site 1). If,
however, the deadlock involves sites 1 and 2, then DD11 detects it. Finally, if the
deadlock involves sites 1 and 4, DD0x detects it, where x is one of 1, 2, 3, or 4.

196 5 Distributed Transaction Processing

DD0x

DD11

DD21 DD22

DD12

DD23 DD24

Site 1 Site 2 Site 3 Site 4

Fig. 5.6 Hierarchical deadlock detection

T1

T2

Site 1

T4

T3

Site 2

Fig. 5.7 Modified LWFGs

The hierarchical deadlock detection method reduces the dependence on the
central site, thus reducing the communication cost. It is, however, considerably more
complicated to implement and would involve nontrivial modifications to the lock
and transaction manager algorithms.

Distributed Deadlock Detection

Distributed deadlock detection algorithms delegate the responsibility of detecting
deadlocks to individual sites. Thus, as in the hierarchical deadlock detection, there
are local deadlock detectors at each site that communicate their LWFGs with one
another (in fact, only the potential deadlock cycles are transmitted). Among the
various distributed deadlock detection algorithms, the one implemented in System
R* is the more widely known and referenced, and we describe it below.

The LWFG at each site is formed and is modified as follows:

1. Since each site receives the potential deadlock cycles from other sites, these
edges are added to the LWFGs.

2. The edges in the LWFG that show that local transactions are waiting for
transactions at other sites are joined with edges in the LWFGs depicting that
remote transactions are waiting for local ones.

Example 5.3 Consider the example in Fig. 5.5. The local WFG for the two sites are
modified as shown in Fig. 5.7. �

5.2 Distributed Concurrency Control 197

Local deadlock detectors look for two things. If there is a cycle that does not
include the external edges, there is a local deadlock that can be handled locally. If,
on the other hand, there is a cycle involving these external edges, there is a potential
distributed deadlock and this cycle information has to be communicated to other
deadlock detectors. In the case of Example 5.3, the possibility of such a distributed
deadlock is detected by both sites.

A question that needs to be answered at this point is to whom to transmit the
information. Obviously, it can be transmitted to all deadlock detectors in the system.
In the absence of any more information, this is the only alternative, but it incurs a
high overhead. If, however, one knows whether the transaction is ahead or behind in
the deadlock cycle, the information can be transmitted forward or backward along
the sites in this cycle. The receiving site then modifies its LWFG as discussed above,
and checks for deadlocks. Obviously, there is no need to transmit along the deadlock
cycle in both the forward and backward directions. In the case of Example 5.3,
site 1 would send it to site 2 in both forward and backward transmission along the
deadlock cycle.

The distributed deadlock detection algorithms require uniform modification to
the lock managers at each site. This uniformity makes them easier to implement.
However, there is the potential for excessive message transmission. This happens,
for example, in the case of Example 5.3: site 1 sends its potential deadlock
information to site 2, and site 2 sends its information to site 1. In this case
the deadlock detectors at both sites will detect the deadlock. Besides causing
unnecessary message transmission, there is the additional problem that each site
may choose a different victim to abort. Obermarck’s algorithm solves the problem
by using transaction timestamps (monotonically increasing counter—see more
details in the next section) as well as the following rule. Let the path that has
the potential of causing a distributed deadlock in the local WFG of a site be
Ti → · · · → Tj . A local deadlock detector forwards the cycle information only
if timestamp of Ti is smaller than the timestamp of Tj . This reduces the average
number of message transmissions by one-half. In the case of Example 5.3, site 1
has a path T1 → T2 → T3, whereas site 2 has a path T3 → T4 → T1. Therefore,
assuming that the subscripts of each transaction denote their timestamp, only site 1
will send information to site 2.

5.2.2 Timestamp-Based Algorithms

Timestamp-based concurrency control algorithms select, a priori, a serialization
order and execute transactions accordingly. To establish this ordering, the transac-
tion manager assigns each transaction Ti a unique timestamp, ts(Ti), at its initiation.

198 5 Distributed Transaction Processing

Assignment of timestamps in a distributed DBMS requires some attention
since multiple sites will be assigning timestamps, and maintaining uniqueness
and monotonicity across the system is not easy. One method is to use a global
(system-wide) monotonically increasing counter. However, the maintenance of
global counters is a problem in distributed systems. Therefore, it is preferable that
each site autonomously assigns timestamps based on its local counter. To maintain
uniqueness, each site appends its own identifier to the counter value. Thus the
timestamp is a two-tuple of the form 〈local counter value, site identifier〉. Note that
the site identifier is appended in the least significant position. Hence it serves only
to order the timestamps of two transactions that might have been assigned the same
local counter value. If each system can access its own system clock, it is possible to
use system clock values instead of counter values.

Architecturally (see Fig. 5.2), the transaction manager is responsible for assign-
ing a timestamp to each new transaction and attaching this timestamp to each
database operation that it passes on to the scheduler. The latter component is
responsible for keeping track of read and write timestamps as well as performing
the serializability check.

5.2.2.1 Basic TO Algorithm

In the basic TO algorithm the coordinating TM assigns the timestamp to each
transaction Ti [ts(Ti)], determines the sites where each data item is stored, and
sends the relevant operations to these sites. It is a straightforward implementation
of the TO rule.

TO Rule Given two conflicting operations Oij and Okl belonging, respectively, to
transactions Ti and Tk , Oij is executed before Okl if and only if ts(Ti) < ts(Tk). In
this case Ti is said to be the older transaction and Tk is said to be the younger one.

A scheduler that enforces the TO rule checks each new operation against
conflicting operations that have already been scheduled. If the new operation
belongs to a transaction that is younger than all the conflicting ones that have already
been scheduled, the operation is accepted; otherwise, it is rejected, causing the entire
transaction to restart with a new timestamp.

To facilitate checking of the TO Rule, each data item x is assigned two
timestamps: a read timestamp [rts(x)], which is the largest of the timestamps of
the transactions that have read x, and a write timestamp [wts(x)], which is the
largest of the timestamps of the transactions that have written (updated) x. It is
now sufficient to compare the timestamp of an operation with the read and write
timestamps of the data item that it wants to access to determine if any transaction
with a larger timestamp has already accessed the same data item.

The basic TO transaction manager algorithm (BTO-TM) is depicted in Algo-
rithm 5.4. The histories at each site simply enforce the TO rule. The scheduler

5.2 Distributed Concurrency Control 199

Algorithm 5.4: Basic Timestamp Ordering (BTO-TM)
Input: msg : a message
begin

repeat
wait for a msg

switch msg type do
case transaction operation do {operation from application program }

let op be the operation
switch op.Type do

case BT do
S ← ∅ ; {S: set of sites where transaction executes }
assign a timestamp to transaction—call it ts(T)

DP(op) {call DP with operation}
end case
case R, W do

find site that stores the requested data item (say Si)
BTO-SCSi

(op, ts(T)) ; {send op and ts to SC at Si}
S ← S ∪ Si {build list of sites where transaction runs}

end case
case A, C do {send op to DPs that execute transaction }

DPS(op)

end case
end switch

end case
case SC response do {operation must have been rejected by a SC}

op.T ype ← A; {prepare an abort message}
BTO-SCS(op,−) ; {ask other participating SCs}
restart transaction with a new timestamp

end case
case DP response do {operation completed message}

switch transaction operation type do
let op be the operation
case R do return op.val to the application
case W do inform application of completion of the write
case C do

if commit msg has been received from all participants then
inform application of successful completion of transaction

else {wait until commit messages come from all}
record the arrival of the commit message

end if
end case
case A do

inform application of completion of the abort
BTO-SC(op) {need to reset read and write ts}

end case
end switch

end case
end switch

until forever
end

200 5 Distributed Transaction Processing

algorithm is given in Algorithm 5.5. The data manager is still the one given in
Algorithm 5.3. The same data structures and assumptions we used for centralized
2PL algorithms apply to these algorithms as well.

When an operation is rejected by a scheduler, the corresponding transaction is
restarted by the transaction manager with a new timestamp. This ensures that the
transaction has a chance to execute in its next try. Since the transactions never
wait while they hold access rights to data items, the basic TO algorithm never
causes deadlocks. However, the penalty of deadlock freedom is potential restart of
a transaction numerous times. There is an alternative to the basic TO algorithm that
reduces the number of restarts, which we discuss in the next section.

Another detail that needs to be considered relates to the communication between
the scheduler and the data processor. When an accepted operation is passed on to
the data processor, the scheduler needs to refrain from sending another conflicting,
but acceptable operation to the data processor until the first is processed and
acknowledged. This is a requirement to ensure that the data processor executes the
operations in the order in which the scheduler passes them on. Otherwise, the read
and write timestamp values for the accessed data item would not be accurate.

Algorithm 5.5: Basic Timestamp Ordering Scheduler (BTO-SC)
Input: op : Op; ts(T) : T imestamp

begin
retrieve rts(op.arg) and wts(arg)

save rts(op.arg) and wts(arg) ; {might be needed if aborted }
switch op.arg do

case R do
if ts(T) > wts(op.arg) then

DP(op) ; {operation can be executed; send it to DP}
rts(op.arg) ← ts(T)

else
send “Reject transaction” message to coordinating TM

end if
end case
case W do

if ts(T) > rts(op.arg) and ts(T) > wts(op.arg) then
DP(op) ; {operation can be executed; send it to DP}
rts(op.arg) ← ts(T)

wts(op.arg) ← ts(T)

else
send“Reject transaction” message to coordinating TM

end if
end case
case A do

forall op.arg that has been accessed by transaction do
reset rts(op.arg) and wts(op.arg) to their initial values

end forall
end case

end switch
end

5.2 Distributed Concurrency Control 201

Example 5.4 Assume that the TO scheduler first receives Wi(x) and then receives
Wj(x), where ts(Ti) < ts(Tj). The scheduler would accept both operations and
pass them on to the data processor. The result of these two operations is that
wts(x) = ts(Tj), and we then expect the effect of Wj(x) to be represented in
the database. However, if the data processor does not execute them in that order, the
effects on the database will be wrong. �

The scheduler can enforce the ordering by maintaining a queue for each data item
that is used to delay the transfer of the accepted operation until an acknowledgment
is received from the data processor regarding the previous operation on the same
data item. This detail is not shown in Algorithm 5.5.

Such a complication does not arise in 2PL-based algorithms because the lock
manager effectively orders the operations by releasing the locks only after the
operation is executed. In one sense the queue that the TO scheduler maintains may
be thought of as a lock. However, this does not imply that the history generated by
a TO scheduler and a 2PL scheduler would always be equivalent. There are some
histories that a TO scheduler would generate that would not be admissible by a 2PL
history.

Remember that in the case of strict 2PL algorithms, the releasing of locks is
delayed further, until the commit or abort of a transaction. It is possible to develop a
strict TO algorithm by using a similar scheme. For example, if Wi(x) is accepted and
released to the data processor, the scheduler delays all Rj (x) and Wj(x) operations
(for all Tj) until Ti terminates (commits or aborts).

5.2.2.2 Conservative TO Algorithm

We indicated in the preceding section that the basic TO algorithm never causes
operations to wait, but instead, restarts them. We also pointed out that even though
this is an advantage due to deadlock freedom, it is also a disadvantage, because
numerous restarts would have adverse performance implications. The conservative
TO algorithms attempt to lower this system overhead by reducing the number of
transaction restarts.

Let us first present a technique that is commonly used to reduce the probability of
restarts. Remember that a TO scheduler restarts a transaction if a younger conflicting
transaction is already scheduled or has been executed. Note that such occurrences
increase significantly if, for example, one site is comparatively inactive relative to
the others and does not issue transactions for an extended period. In this case its
timestamp counter indicates a value that is considerably smaller than the counters
of other sites. If the TM at this site then receives a transaction, the operations that
are sent to the histories at the other sites will almost certainly be rejected, causing
the transaction to restart. Furthermore, the same transaction will restart repeatedly
until the timestamp counter value at its originating site reaches a level of parity with
the counters of other sites.

202 5 Distributed Transaction Processing

The foregoing scenario indicates that it is useful to keep the counters at each site
synchronized. However, total synchronization is not only costly—since it requires
exchange of messages every time a counter changes—but also unnecessary. Instead,
each transaction manager can send its remote operations, rather than histories, to the
transaction managers at the other sites. The receiving transaction managers can then
compare their own counter values with that of the incoming operation. Any manager
whose counter value is smaller than the incoming one adjusts its own counter to one
more than the incoming one. This ensures that none of the counters in the system
run away or lag behind significantly. Of course, if system clocks are used instead of
counters, this approximate synchronization may be achieved automatically as long
as the clocks are synchronized with a protocol like Network Time Protocol (NTP).

Conservative TO algorithms execute each operation differently than basic TO.
The basic TO algorithm tries to execute an operation as soon as it is accepted; it
is therefore “aggressive” or “progressive.” Conservative algorithms, on the other
hand, delay each operation until there is an assurance that no operation with a
smaller timestamp can arrive at that scheduler. If this condition can be guaranteed,
the scheduler will never reject an operation. However, this delay introduces the
possibility of deadlocks.

The basic technique that is used in conservative TO is based on the following
idea: the operations of each transaction are buffered until an ordering can be
established so that rejections are not possible, and they are executed in that order.
We will consider one possible implementation of the conservative TO algorithm.

Assume that each scheduler maintains one queue for each transaction manager in
the system. The scheduler at site s stores all the operations that it receives from the
transaction manager at site t in queue Qt

s . Scheduler at site s has one such queue for
each site t . When an operation is received from a transaction manager, it is placed
in its appropriate queue in increasing timestamp order. The histories at each site
execute the operations from these queues in increasing timestamp order.

This scheme will reduce the number of restarts, but it will not guarantee that they
will be eliminated completely. Consider the case where at site s the queue for site
t (Qt

s) is empty. The scheduler at site s will choose an operation [say, R(x)] with the
smallest timestamp and pass it on to the data processor. However, site t may have
sent to s an operation [say, W(x)] with a smaller timestamp which may still be in
transit in the network. When this operation reaches site s, it will be rejected since it
violates the TO rule: it wants to access a data item that is currently being accessed
(in an incompatible mode) by another operation with a higher timestamp.

It is possible to design an extremely conservative TO algorithm by insisting that
the scheduler choose an operation to be sent to the data processor only if there
is at least one operation in each queue. This guarantees that every operation that
the scheduler receives in the future will have timestamps greater than or equal to
those currently in the queues. Of course, if a transaction manager does not have
a transaction to process, it needs to send dummy messages periodically to every
scheduler in the system, informing them that the operations that it will send in the
future will have timestamps greater than that of the dummy message.

5.2 Distributed Concurrency Control 203

The careful reader will realize that the extremely conservative timestamp order-
ing scheduler actually executes transactions serially at each site. This is very
restrictive. One method that has been employed to overcome this restriction is
to group transactions into classes. Transaction classes are defined with respect to
their read sets and write sets. It is therefore sufficient to determine the class that
a transaction belongs to by comparing the transaction’s read set and write set,
respectively, with the read set and write set of each class. Thus, the conservative
TO algorithm can be modified so that instead of requiring the existence, at each site,
of one queue for each transaction manager, it is only necessary to have one queue
for each transaction class. Alternatively, one might mark each queue with the class
to which it belongs. With either of these modifications, the conditions for sending
an operation to the data processor are changed. It is no longer necessary to wait until
there is at least one operation in each queue; it is sufficient to wait until there is at
least one operation in each class to which the transaction belongs. This and other
weaker conditions that reduce the waiting delay can be defined and are sufficient. A
variant of this method is used in the SDD-1 prototype system.

5.2.3 Multiversion Concurrency Control

The approaches we discussed above fundamentally address in-place updates: when
a data item’s value is updated, its old value is replaced with the new one in
the database. An alternative is to maintain the versions of data items as they
get updated. Algorithms in this class are called multiversion concurrency control
(MVCC). Then each transaction “sees” the value of a data item based on its isolation
level. Multiversion TO is another attempt at eliminating the restart overhead
of transactions by maintaining multiple versions of data items and scheduling
operations on the appropriate version of the data item. The availability of multiple
versions of the database also allows time travel queries that track the change of data
item values over time. A concern in MVCC is the proliferation of multiple versions
of updated data items. To save space, the versions of the database may be purged
from time to time. This should be done when the distributed DBMS is certain that it
will no longer receive a transaction that needs to access the purged versions.

Although the original proposal dates back to 1978, it has gained popularity in
recent years and is now implemented in a number of DBMSs such as IBM DB2,
Oracle, SQL Server, SAP HANA, BerkeleyDB, PostgreSQL as well as systems such
as Spanner. These systems enforce snapshot isolation that we discuss in Sect. 5.3.

MVCC techniques typically use timestamps to maintain transaction isolation
although proposals exist that build multiversioning on top of a locking-based
concurrency control layer. Here, we will focus on timestamp-based implementation
that enforces serializability. In this implementation, each version of a data item that
is created is labeled with the timestamp of the transaction that creates it. The idea
is that each read operation accesses the version of the data item that is appropriate
for its timestamp, thus reducing transaction aborts and restarts. This ensures that

204 5 Distributed Transaction Processing

Timestamps
xk xv xw

Ri

Timestamps
xa xb xd

Wi

xc

Rj

(a)

(b)

Fig. 5.8 Multiversion TO cases

each transaction operates on a state of the database that it would have seen if the
transaction were executed serially in timestamp order.

The existence of versions is transparent to users who issue transactions simply by
referring to data items, not to any specific version. The transaction manager assigns a
timestamp to each transaction, which is also used to keep track of the timestamps of
each version. The operations are processed by the histories as follows guaranteeing
a serializable history:

1. A Ri(x) is translated into a read on one version of x. This is done by finding a
version of x (say, xv) such that ts(xv) is the largest timestamp less than ts(Ti).
Ri(xv) is then sent to the data processor to read xv . This case is depicted in
Fig. 5.8a, which shows that Ri can read the version (xv) that it would have read
had it arrived in timestamp order.

2. A Wi(x) is translated into Wi(xw) so that ts(xw) = ts(Ti) and sent to the data
processor if and only if no other transaction with a timestamp greater than ts(Ti)

has read the value of a version of x (say, xr) such that ts(xr) > ts(xw). In other
words, if the scheduler has already processed a Rj (xr) such that

ts(Ti) < ts(xr) < ts(Tj)

then Wi(x) is rejected. This case is depicted in Fig. 5.8b, which shows that if
Wi is accepted, it would create a version (xc) that Rj should have read, but did
not since the version was not available when Rj was executed—it, instead, read
version xb, which results in the wrong history.

5.2 Distributed Concurrency Control 205

5.2.4 Optimistic Algorithms

Optimistic algorithms assume that transaction conflicts and contention for data will
not be predominant, and therefore allow transactions to execute without synchro-
nization until the very end when they are validated for correctness. Optimistic
concurrency control algorithms can be based on locking or timestamping, which
was the original proposal. In this section, we describe a timestamp-based distributed
optimistic algorithm.

Each transaction follows five phases: read (R), execute (E), write (W), validate
(V), and commit (C)—of course commit phase becomes abort if the transaction is
not validated. This algorithm assigns timestamps to transactions at the beginning
of their validation step rather than at the beginning of transactions as is done
with (pessimistic) TO algorithms. Furthermore, it does not associate read and write
timestamps with data items—it only works with transaction timestamps during the
validation phase.

Each transaction Ti is subdivided (by the transaction manager at the originating
site) into a number of subtransactions, each of which can execute at many sites.
Notationally, let us denote by T s

i a subtransaction of Ti that executes at site s. At the
beginning of the validation phase a timestamp is assigned to the transaction, which
is also the timestamp of its subtransactions. The local validation of T s

i is performed
according to the following rules, which are mutually exclusive.

Rule 1 At each site s, if all transactions T s
k where ts(T s

k) < ts(T s
i) have completed

their write phase before T s
i has started its read phase (Fig. 5.9a), validation succeeds,

because transaction executions are in serial order.

Ts
k

R E W V C

Ts
i

R E W V C

(a)

Ts
k

R E W V C

Ts
i

R E W V C

(b)

Ts
k

R E W V C

Ts
i

R E W V C

(c)

Fig. 5.9 Possible execution scenarios

206 5 Distributed Transaction Processing

Rule 2 At each site s, if there is any transaction T s
k such that ts(T s

k) < ts(T s
i),

and which completes its write phase while T s
i is in its read phase (Fig. 5.9b), the

validation succeeds if WS(Tk) ∩ RS(T s
i) = ∅.

Rule 3 At each site s, if there is any transaction T s
k such that ts(T s

k) < ts(T s
i), and

which completes its read phase before T s
i completes its read phase (Fig. 5.9c), the

validation succeeds if WS(T s
k) ∩ RS(T s

i) = ∅, and WS(T s
k) ∩ WS(T s

i) = ∅.

Rule 1 is obvious; it indicates that the transactions are actually executed serially
in their timestamp order. Rule 2 ensures that none of the data items updated by
T s

k are read by T s
i and that T s

k finishes writing its updates into the database (i.e.,
commits) before T s

i starts writing. Thus the updates of T s
i will not be overwritten

by the updates of T s
k . Rule 3 is similar to Rule 2, but does not require that T s

k finish
writing before T s

i starts writing. It simply requires that the updates of T s
k not affect

the read phase or the write phase of T s
i .

Once a transaction is locally validated to ensure that the local database consis-
tency is maintained, it also needs to be globally validated to ensure that the mutual
consistency rule is obeyed. This is done by ensuring that the above rules hold at
every participating site.

An advantage of optimistic concurrency control algorithms is the potential to
allow a higher level of concurrency. It has been shown that when transaction
conflicts are very rare, the optimistic mechanism performs better than locking.
A difficulty with optimistic approaches is the maintenance of the information
necessary for validation. To validate a subtransaction T s

i the read and write sets
of terminated transactions that were in progress when T s

i arrived at site s need to be
maintained.

Another problem is starvation. Consider a situation in which the validation phase
of a long transaction fails. In subsequent trials it is still possible that the validation
will fail repeatedly. Of course, it is possible to solve this problem by permitting
the transaction exclusive access to the database after a specified number of trials.
However, this reduces the level of concurrency to a single transaction. The exact
mix of transactions that would cause an intolerable level of restarts is an issue that
remains to be studied.

5.3 Distributed Concurrency Control Using Snapshot
Isolation

Up to this point, we have discussed algorithms that enforce serializability. Although
serializability is the most studied and discussed correctness criterion for concurrent
transaction execution, for some applications it may be considered too strict in
the sense that it disallows certain histories that might be acceptable. In particular,
serializability creates a bottleneck that prevents distributed databases from scaling
to large levels. The main reason is that it constrains transaction concurrency

5.3 Distributed Concurrency Control Using Snapshot Isolation 207

very heavily, since large read queries conflict with updates. This has led to the
definition of snapshot isolation (SI) as an alternative. SI has been widely adopted
in commercial systems, and a number of modern systems, such as Google Spanner
and LeanXcale, that have managed to scale to very large levels rely on it; we discuss
these approaches in Sect. 5.5. Snapshot isolation provides repeatable reads, but not
serializable isolation. Each transaction “sees” a consistent snapshot of the database
when it starts, and its reads and writes are performed on this snapshot—thus its
writes are not visible to other transactions and it does not see the writes of other
transactions once it starts executing.

Snapshot isolation is a multiversioning approach, allowing transactions to read
the appropriate snapshot (i.e., version). An important advantage of SI-based con-
currency control is that read-only transactions can proceed without significant
synchronization overhead. For update transactions, the concurrency control algo-
rithm (in centralized systems) is as follows:

S1. When a transaction Ti starts, it obtains a begin timestamp tsb(Ti).
S2. When Ti is ready to commit, it obtains a commit timestamp tsc(Ti) that is

greater than any of the existing tsb or tsc.
S3. Ti commits its updates if there is no other Tj such that tsc(Tj) ∈

[tsb(Ti), tsc(Ti)] (i.e., no other transaction has committed since Ti started);
otherwise Ti is aborted. This is known as the first committer wins rule, and it
prevents lost updates.

S4. When Ti is committed, its changes become available to all transactions Tk

where tsb(Tk) > tsc(Ti).

When SI is used as the correctness criterion in distributed concurrency control,
a problem that needs to be addressed is how to compute the consistent snapshot
(version) on which transaction Ti operates. If the read and write sets of the
transaction are known up-front, it may be possible to centrally compute the snapshot
(at the coordinating TM) by collecting information from the participating sites. This,
of course, is not realistic. What is needed is a global guarantee similar to the global
serializability guarantee we discussed earlier. In other words,

1. Each local history is SI, and
2. The global history is SI, i.e., the commitment orders of transactions at each site

are the same.

We now identify the conditions that need to be satisfied for the above guarantee
to be realized. We start with defining the dependence relationship between two
transactions, which is important in this context since the snapshot that a transaction
Ti reads should include only the updates of transactions on which it depends. A
transaction Ti at site s (T s

i) is dependent on T s
j , denoted as dependent (T s

i , T s
j), if

and only if (RS(T s
i) ∩ WS(T s

j) �= ∅) ∨ (WS(T s
i) ∩ RS(T s

j) �= ∅) ∨ (WS(T s
i) ∩

WS(T s
j) �= ∅). If there is any participating site where this dependence holds, then

dependent (Ti, Tj) holds.
Now we are ready to more precisely specify the conditions that need to hold

to ensure global SI as defined above. The conditions below are given for pairwise

208 5 Distributed Transaction Processing

transactions, but they transitively hold for a set of transactions. For a transaction Ti

to see a globally consistent snapshot, the following conditions have to hold for each
pair of transactions:

C1. If dependent (Ti, Tj) ∧ tsb(T
s
i) < tsc(T

s
j), then tsb(T

t
i) < tsc(T

t
j) at every

site t where Ti and Tj execute together.
C2. If dependent (Ti, Tj) ∧ tsc(T

s
i) < tsb(T

s
j), then tsc(T

t
i) < tsb(T

t
j) at every

site t where Ti and Tj execute together.
C3. If tsc(T

s
i) < tsc(T

s
j), then tsc(T

t
i) < tsb(T

t
j) at every site t where Ti and Tj

execute together.

The first two of these conditions ensure that dependent (Ti, Tj) is true at all the
sites, i.e., Ti always correctly sees this relationship across sites. The third condition
ensures commit order among transactions is the same at all participating sites, and
prevents two snapshots from including partial commits that are incompatible with
each other.

Before discussing the distributed SI concurrency control algorithm, let us identify
the information that each site s maintains:

• For any active transaction Ti , the set of active and committed transactions at s

are categorized into two groups: those that are concurrent with Ti (i.e., any Tj

where tsb(T
s
i) < tsc(T

s
j)), and those that are serial (i.e., any Tj where tsc(T

s
j) <

tsb(T
s
i))—note that serial is not the same as dependent; local history indicates

ordering in the local history at s without any statement on dependence.
• A monotonically increasing event clock.

The basic distributed SI algorithm basically implements step S3 of the centralized
algorithm presented earlier (although different implementations exist), i.e., it certi-
fies whether transaction Ti can be committed or needs to be aborted. The algorithm
proceeds as follows:

D1. The coordinating TM of Ti asks each participating site s to send its set of
transactions concurrent with Ti . It piggybacks to this message its own event
clock.

D2. Each site s responds to the coordinating TM with its local set of transactions
concurrent with Ti .

D3. The coordinating TM merges all of the local concurrent transaction sets into
one global concurrent transaction set for Ti .

D4. The coordinating TM sends this global list of concurrent transactions to all
of the participating sites.

D5. Each site s checks whether the conditions C1 and C2 hold. It does this by
checking whether there is a transaction Tj in the global concurrent transaction
list that is in local history serial list (i.e., in the local history of s, Tj has
executed before Ti), and on which Ti is dependent (i.e., dependent (T s

i , T s
j)

holds). If that is the case, Ti does not see a consistent snapshot at site s, so it
should be aborted. Otherwise Ti is validated at site s.

5.4 Distributed DBMS Reliability 209

D6. Each site s sends its positive or negative validation to the coordinating TM. If
a positive validation message is sent, then site s updates its own event clock to
the maximum of its own event clock and the event clock of the coordinating
TM that it received, and it piggybacks its new clock value to the response
message.

D7. If the coordinating TM receives one negative validation message, then Ti is
aborted, since there is at least one site where it does not see a consistent
snapshot. Otherwise, the coordinating TM globally certifies Ti and allows it
to commit its updates. If the decision is to globally validate, the coordinating
TM updates its own event clock to the maximum of the event clocks it
receives from the participating sites and its own clock.

D8. The coordinating TM informs all of the participating sites that Ti is validated
and can be committed. It also piggybacks its new event clock value, which
becomes tsc(Ti).

D9. Upon receipt of this message, each participant site s makes Ti’s updates
persistent, and also updates its own event clock as before.

In this algorithm, the certification of conditions C1 and C2 is done in step D5; the
other steps serve to collect the necessary information and coordinate the certification
check. The event clock synchronization among the sites serves to enforce condition
C3 by ensuring that the commit orders of dependent transactions are consistent
across sites so that the global snapshot will be consistent.

The algorithm we discussed is one possible approach to implementing SI in a
distributed DBMS. It guarantees global SI, but requires that the global snapshot
is computed upfront, thus introducing a number of scalability bottlenecks. For
instance, sending all concurrent transactions in step D2 obviously does not scale
since a system executing millions of concurrent transactions would have to send
millions of transactions on each check that would severely limit scalability. Fur-
thermore, it requires all transactions to follow the same certification process. This
can be optimized by separating single-site transactions that only access data at one
site, and, therefore, do not require the generation of a global snapshot from global
transactions that execute across a number of sites. One way to accomplish this is to
incrementally build the snapshot that a transaction Ti reads as the data are accessed
across different sites.

5.4 Distributed DBMS Reliability

In centralized DBMSs, three types of errors can occur: transaction failures (e.g.,
transaction aborts), site failures (that cause the loss of data in memory, but not in
persistent storage), and media failures (that may cause partial or total loss of data in
persistent storage). In the distributed setting, the system needs to cope with a fourth
failure type: communication failures. There are a number of types of communication
failures; the most common ones are the errors in the messages, improperly ordered

210 5 Distributed Transaction Processing

messages, lost (or undeliverable) messages, and communication line failures. The
first two errors are the responsibility of the computer network, and we will not
consider them further. Therefore, in our discussions of distributed DBMS reliability,
we expect the underlying computer network to ensure that two messages sent from
a process at some originating site to another process at some destination site are
delivered without error and in the order in which they were sent; i.e., we consider
each communication link to be a reliable FIFO channel.

Lost or undeliverable messages are typically the consequence of communication
line failures or (destination) site failures. If a communication line fails, in addition
to losing the message(s) in transit, it may also divide the network into two or more
disjoint groups. This is called network partitioning. If the network is partitioned, the
sites in each partition may continue to operate. In this case, executing transactions
that access data stored in multiple partitions becomes a major issue. In a distributed
system, it is generally not possible to differentiate failures of destination site versus
communication lines. In both cases, a source site sends a message but does not get
a response within an expected time; this is called a timeout. At that point, reliability
algorithms need to take action.

Communication failures point to a unique aspect of failures in distributed
systems. In centralized systems the system state can be characterized as all-or-
nothing: either the system is operational or it is not. Thus the failures are complete:
when one occurs, the entire system becomes nonoperational. Obviously, this is not
true in distributed systems. As we indicated a number of times before, this is their
potential strength. However, it also makes the transaction management algorithms
more difficult to design, since, if a message is undelivered, it is hard to know whether
the recipient site has failed or a network failure occurred that prevented the message
from being delivered.

If messages cannot be delivered, we assume that the network does nothing about
it. It will not buffer it for delivery to the destination when the service is reestablished
and will not inform the sender process that the message cannot be delivered. In short,
the message will simply be lost. We make this assumption because it represents the
least expectation from the network and places the responsibility of dealing with
these failures to the distributed DBMS. As a consequence, the distributed DBMS is
responsible for detecting that a message is undeliverable. The detection mechanism
is typically dependent on the characteristics of the communication system on which
the distributed DBMS is implemented. The details are beyond our scope; in this
discussion we will assume, as noted above, that the sender of a message will set a
timer and wait until the end of a timeout period when it will decide that the message
has not been delivered.

Distributed reliability protocols aim to maintain the atomicity and durability of
distributed transactions that execute over a number of databases. The protocols
address the distributed execution of the Begin_transaction, Read, Write, Abort, Com-
mit, and recover commands. The Begin_transaction, Read, and Write commands
are executed by Local Recovery Managers (LRMs) in the same way as they are in
centralized DBMSs. The ones that require special care in distributed DBMSs are the
Commit, Abort, and Read commands. The fundamental difficulty is to ensure that all

5.4 Distributed DBMS Reliability 211

of the sites that participate in the execution of a transaction reach the same decision
(abort or commit) regarding the fate of the transaction.

The implementation of distributed reliability protocols within the architectural
model we have adopted in this book raises a number of interesting and difficult
issues. We discuss these in Sect. 5.4.6 after we introduce the protocols. For the time
being, we adopt a common abstraction: we assume that at the originating site of
a transaction there is a coordinator process and at each site where the transaction
executes there are participant processes. Thus, the distributed reliability protocols
are implemented between the coordinator and the participants.

The reliability techniques in distributed database systems consist of commit,
termination, and recovery protocols—the commit and recovery protocols specify
how the Commit and the recover commands are executed, while the termination
protocols specify how the sites that are alive can terminate a transaction when they
detect that a site has failed. Termination and recovery protocols are two opposite
faces of the recovery problem: given a site failure, termination protocols address
how the operational sites deal with the failure, whereas recovery protocols deal with
the procedure that the process (coordinator or participant) at a failed site has to
go through to recover its state once the site is restarted. In the case of network
partitioning, the termination protocols take the necessary measures to terminate the
active transactions that execute at different partitions, while the recovery protocols
address how the global database consistency is reestablished following reconnection
of the partitions of the network.

The primary requirement of commit protocols is that they maintain the atomicity
of distributed transactions. This means that even though the execution of the
distributed transaction involves multiple sites, some of which might fail while
executing, the effects of the transaction on the distributed database is all-or-nothing.
This is called atomic commitment. We would prefer the termination protocols to
be nonblocking. A protocol is nonblocking if it permits a transaction to terminate
at the operational sites without waiting for recovery of the failed site. This would
significantly improve the response-time performance of transactions. We would also
like the distributed recovery protocols to be independent. Independent recovery
protocols determine how to terminate a transaction that was executing at the time of
a failure without having to consult any other site. Existence of such protocols would
reduce the number of messages that need to be exchanged during recovery. Note
that the existence of independent recovery protocols would imply the existence of
nonblocking termination protocols, but the reverse is not true.

5.4.1 Two-Phase Commit Protocol

Two-phase commit (2PC) is a very simple and elegant protocol that ensures the
atomic commitment of distributed transactions. It extends the effects of local atomic
commit actions to distributed transactions by insisting that all sites involved in the
execution of a distributed transaction agree to commit the transaction before its

212 5 Distributed Transaction Processing

INITIAL

WAIT

Commit
Prepare

ABORT

Vote-abort
Global-abort

COMMIT

Vote-commit
Global-commit

(a)

INITIAL

READY

Prepare
Vote-commit

ABORT

Global-abort
Ack

COMMIT

Global-commit
Ack

Prepare
Vote-abort

(b)

Fig. 5.10 State transitions in 2PC protocol. (a) Coordinator states. (b) Participant states

effects are made permanent. There are a number of reasons why such synchroniza-
tion among sites is necessary. First, depending on the type of concurrency control
algorithm that is used, some schedulers may not be ready to terminate a transaction.
For example, if a transaction has read a value of a data item that is updated by
another transaction that has not yet committed, the associated scheduler may not
want to commit the former. Of course, strict concurrency control algorithms that
avoid cascading aborts would not permit the updated value of a data item to be read
by any other transaction until the updating transaction terminates. This is sometimes
called the recoverability condition.

Another possible reason why a participant may not agree to commit is due to
deadlocks that require a participant to abort the transaction. Note that, in this case,
the participant should be permitted to abort the transaction without being told to do
so. This capability is quite important and is called unilateral abort. Another reason
for unilateral abort may be timeouts as discussed earlier.

A brief description of the 2PC protocol that does not consider failures is given
below. This discussion is facilitated by means of the state transition diagram of the
2PC protocol (Fig. 5.10). The states are denoted by circles and the edges represent
the state transitions. The terminal states are depicted by concentric circles. The
interpretation of the labels on the edges is as follows: the reason for the state
transition, which is a received message, is given at the top, and the message that
is sent as a result of state transition is given at the bottom.

1. Initially, the coordinator writes a begin_commit record in its log, sends a
“prepare” message to all participant sites, and enters the WAIT state.

2. When a participant receives a “prepare” message, it checks if it could commit
the transaction. If so, the participant writes a ready record in the log, sends a
“vote-commit” message to the coordinator, and enters READY state; otherwise,

5.4 Distributed DBMS Reliability 213

the participant writes an abort record and sends a “vote-abort” message to the
coordinator.

3. If the decision of the site is to abort, it can forget about that transaction, since an
abort decision serves as a veto (i.e., unilateral abort).

4. After the coordinator has received a reply from every participant, it decides
whether to commit or to abort the transaction. If even one participant has
registered a negative vote, the coordinator has to abort the transaction globally.
So it writes an abort record, sends a “global-abort” message to all participant
sites, and enters the ABORT state; otherwise, it writes a commit record, sends a
“global-commit” message to all participants, and enters the COMMIT state.

5. The participants either commit or abort the transaction according to the coor-
dinator’s instructions and send back an acknowledgment, at which point the
coordinator terminates the transaction by writing an end_of_transaction record
in the log.

Note the manner in which the coordinator reaches a global termination decision
regarding a transaction. Two rules govern this decision, which, together, are called
the global-commit rule:

1. If even one participant votes to abort the transaction, the coordinator has to reach
a global-abort decision.

2. If all the participants vote to commit the transaction, the coordinator has to reach
a global-commit decision.

The operation of the 2PC protocol between a coordinator and one participant in
the absence of failures is depicted in Fig. 5.11, where the circles indicate the states
and the dashed lines indicate messages between the coordinator and the participants.
The labels on the dashed lines specify the nature of the message.

A few important points about the 2PC protocol that can be observed from
Fig. 5.11 are as follows. First, 2PC permits a participant to unilaterally abort a
transaction until it has logged an affirmative vote. Second, once a participant votes
to commit or abort a transaction, it cannot change its vote. Third, while a participant
is in the READY state, it can move either to abort the transaction or to commit it,
depending on the nature of the message from the coordinator. Fourth, the global
termination decision is taken by the coordinator according to the global-commit
rule. Finally, note that the coordinator and participant processes enter certain states
where they have to wait for messages from one another. To guarantee that they can
exit from these states and terminate, timers are used. Each process sets its timer
when it enters a state, and if the expected message is not received before the timer
runs out, the process times out and invokes its timeout protocol (which will be
discussed later).

There are a number of different ways to implement a 2PC protocol. The one
discussed above and depicted in Fig. 5.11 is called a centralized 2PC since the
communication is only between the coordinator and the participants; the participants
do not communicate among themselves. This communication structure, which is the
basis of our subsequent discussions, is depicted more clearly in Fig. 5.12.

214 5 Distributed Transaction Processing

INITIAL

Coordinator

write
begin commit

WAIT

Any No?

write
commit

No

write
abort

Yes

COMMIT

ABORT

write
end of transaction

INITIAL

Participant

Ready to
Commit?

write
ready

Yes

write
abort

No

READY

Type of
msg

write
abort

Abort

write
commit

Commit

COMMIT
ABORT

(U
nilateral abort)

PREPARE

VOTE-ABORT

VOTE-COMMIT

GLOBAL-ABORT

GLOBAL-COMMIT

ACK

ACK

Fig. 5.11 2PC protocol actions

Another alternative is linear 2PC (also called nested 2PC) where participants
can communicate with one another. There is a possibly logical ordering between
the sites in the system for the purposes of communication. Let us assume that
the ordering among the sites that participate in the execution of a transaction are
1, . . . , N , where the coordinator is the first one in the order. The 2PC protocol is
implemented by a forward communication from the coordinator (number 1) to N ,
during which the first phase is completed, and by a backward communication from
N to the coordinator, during which the second phase is completed. Thus, linear 2PC
operates in the following manner.

5.4 Distributed DBMS Reliability 215

C

P

P

P

P

C

P

P

P

P

C

Ready? Yes/No

Phase 1 Phase 2

Commit/Abort Confirmation

Fig. 5.12 Centralized 2PC communication structure. C: Coordinator, P: Participant

The coordinator sends the “prepare” message to participant 2. If participant 2
is not ready to commit the transaction, it sends a “vote-abort” message (VA) to
participant 3 and the transaction is aborted at this point (unilateral abort by 2).
If, on the other hand, participant 2 agrees to commit the transaction, it sends a
“vote-commit” message (VC) to participant 3 and enters the READY state. As in
the centralized 2PC implementation, each site logs its decision before sending the
message to the next site. This process continues until a “vote-commit” vote reaches
participant N . This is the end of the first phase. If site N decides to commit, it sends
back to site (N − 1) “global-commit” (GC); otherwise, it sends a “global-abort”
message (GA). Accordingly, the participants enter the appropriate state (COMMIT
or ABORT) and propagate the message back to the coordinator.

Linear 2PC, whose communication structure is depicted in Fig. 5.13, incurs
fewer messages but does not provide any parallelism. Therefore, it suffers from
low response-time performance.

Another popular communication structure for implementation of the 2PC proto-
col involves communication among all the participants during the first phase of the
protocol so that they all independently reach their termination decisions with respect
to the specific transaction. This version, called distributed 2PC, eliminates the need
for the second phase of the protocol since the participants can reach a decision on
their own. It operates as follows. The coordinator sends the prepare message to all
participants. Each participant then sends its decision to all the other participants (and
to the coordinator) by means of either a “vote-commit” or a “vote-abort” message.
Each participant waits for messages from all the other participants and makes its
termination decision according to the global-commit rule. Obviously, there is no
need for the second phase of the protocol (someone sending the global-abort or
global-commit decision to the others), since each participant has independently

216 5 Distributed Transaction Processing

C P P P P

Prepare V-C/V-A V-C/V-A V-C/V-A

Phase 1

G-C/G-AG-C/G-AG-C/G-AG-C/G-A

Phase 2

Fig. 5.13 Linear 2PC communication structure. V-C: vote.commit; V-A: vote.abort; G-C:
global.commit; G-A: global.abort

C

P

P

P

P

C

P

P

P

P

Prepare
Vote-commit/

Vote-abort

Global
decision
made
independently

Fig. 5.14 Distributed 2PC communication structure

reached that decision at the end of the first phase. The communication structure
of distributed commit is depicted in Fig. 5.14.

In linear and distributed 2PC implementation, a participant has to know the
identity of either the next participant in the linear ordering (in case of linear 2PC)
or of all the participants (in case of distributed 2PC). This problem can be solved
by attaching the list of participants to the prepare message that is sent by the
coordinator. Such an issue does not arise in the case of centralized 2PC since the
coordinator clearly knows who the participants are.

The algorithm for the centralized execution of the 2PC protocol by the coordina-
tor and by the participants are given in Algorithms 5.6 and 5.7, respectively.

5.4 Distributed DBMS Reliability 217

Algorithm 5.6: 2PC Coordinator (2PC-C)
begin

repeat
wait for an event

switch event do
case Msg Arrival do

Let the arrived message be msg

switch msg do
case Commit do {commit command from scheduler}

write begin_commit record in the log
send “Prepared” message to all the involved participants
set timer

end case
case Vote-abort do {one participant has voted to abort; unilateral

abort}
write abort record in the log
send “Global-abort” message to the other involved participants
set timer

end case
case Vote-commit do

update the list of participants who have answered
if all the participants have answered then {all must have

voted to commit}
write commit record in the log
send “Global-commit” to all the involved participants
set timer

end if
end case
case Ack do

update the list of participants who have acknowledged
if all the participants have acknowledged then

write end_of_transaction record in the log
else

send global decision to the unanswering participants
end if

end case
end switch

end case
case Timeout do

execute the termination protocol
end case

end switch
until forever

end

5.4.2 Variations of 2PC

Two variations of 2PC have been proposed to improve its performance. This is
accomplished by reducing (1) the number of messages that are transmitted between
the coordinator and the participants, and (2) the number of times logs are written.

218 5 Distributed Transaction Processing

Algorithm 5.7: 2PC Participant (2PC-P)

begin
repeat

wait for an event

switch ev do
case Msg Arrival do

Let the arrived message be msg

switch msg do
case Prepare do {Prepare command from the coordinator}

if ready to commit then
write ready record in the log
send “Vote-commit” message to the coordinator
set timer

end if
else {unilateral abort}

write abort record in the log
send “Vote-abort” message to the coordinator
abort the transaction

end if
end case
case Global-abort do

write abort record in the log
abort the transaction

end case
case Global-commit do

write commit record in the log
commit the transaction

end case
end switch

end case
case Timeout do

execute the termination protocol
end case

end switch
until forever

end

These protocols are called presumed abort and presumed commit. Presumed abort is
a protocol that is optimized to handle read-only transactions as well as those update
transactions, some of whose processes do not perform any updates to the database
(called partially read-only). The presumed commit protocol is optimized to handle
the general update transactions. We will discuss briefly both of these variations.

5.4.2.1 Presumed Abort 2PC Protocol

In the presumed abort 2PC protocol, whenever a prepared participant polls the
coordinator about a transaction’s outcome and there is no information about it, the
response to the inquiry is to abort the transaction. This works since, in the case of

5.4 Distributed DBMS Reliability 219

a commit, the coordinator does not forget about a transaction until all participants
acknowledge, guaranteeing that they will no longer inquire about this transaction.

When this convention is used, it can be seen that the coordinator can forget about
a transaction immediately after it decides to abort it. It can write an abort record
and not expect the participants to acknowledge the abort command. The coordinator
does not need to write an end_of_transaction record after an abort record.

The abort record does not need to be forced, because if a site fails before
receiving the decision and then recovers, the recovery routine will check the log
to determine the fate of the transaction. Since the abort record is not forced, the
recovery routine may not find any information about the transaction, in which case
it will ask the coordinator and will be told to abort it. For the same reason, the abort
records do not need to be forced by the participants either.

Since it saves some message transmission between the coordinator and the
participants in case of aborted transactions, presumed abort 2PC is expected to be
more efficient.

5.4.2.2 Presumed Commit 2PC Protocol

Presumed commit 2PC is based on the premise that if no information about the
transaction exists, it should be considered committed. However, it is not an exact
dual of presumed abort 2PC, since an exact dual would require that the coordinator
forget about a transaction immediately after it decides to commit it, that commit
records (also the ready records of the participants) not be forced, and that commit
commands need not be acknowledged. Consider, however, the following scenario.
The coordinator sends prepared messages and starts collecting information, but fails
before being able to collect all of them and reach a decision. In this case, the
participants will wait until they timeout, and then turn the transaction over to their
recovery routines. Since there is no information about the transaction, the recovery
routines of each participant will commit the transaction. The coordinator, on the
other hand, will abort the transaction when it recovers, thus causing inconsistency.

Presumed commit 2PC solves the problem as follows. The coordinator, prior to
sending the prepare message, force-writes a collecting record, which contains the
names of all the participants involved in executing that transaction. The participant
then enters the COLLECTING state, following which it sends the “prepare” mes-
sage and enters the WAIT state. The participants, when they receive the “prepare”
message, decide what they want to do with the transaction, write an abort/ready
record accordingly, and respond with either a “vote-abort” or a “vote-commit”
message. When the coordinator receives decisions from all the participants, it
decides to abort or commit the transaction. If the decision is to abort, the coordinator
writes an abort record, enters the ABORT state, and sends a “global-abort”
message. If it decides to commit the transaction, it writes a commit record, sends
a “global-commit” command, and forgets the transaction. When the participants
receive a “global-commit” message, they write a commit record and update the
database. If they receive a “global-abort” message, they write an abort record and

220 5 Distributed Transaction Processing

acknowledge. The participant, upon receiving the abort acknowledgment, writes an
end_of_transaction record and forgets about the transaction.

5.4.3 Dealing with Site Failures

In this section, we consider the failure of sites in the network. Our aim is to develop
nonblocking termination and independent recovery protocols. As we indicated
before, the existence of independent recovery protocols would imply the existence
of nonblocking recovery protocols. However, our discussion addresses both aspects
separately. Also note that in the following discussion we consider only the standard
2PC protocol, not its two variants presented above.

Let us first set the boundaries for the existence of nonblocking termination and
independent recovery protocols in the presence of site failures. It has been proven
that such protocols exist when a single site fails. In the case of multiple site failures,
however, the prospects are not as promising. A negative result indicates that it is
not possible to design independent recovery protocols (and, therefore, nonblocking
termination protocols) when multiple sites fail. We first develop termination and
recovery protocols for the 2PC algorithm and show that 2PC is inherently blocking.
We then proceed to the development of atomic commit protocols which are
nonblocking in the case of single site failures.

5.4.3.1 Termination and Recovery Protocols for 2PC

Termination Protocols

The termination protocols serve the timeouts for both the coordinator and the
participant processes. A timeout occurs at a destination site when it cannot get an
expected message from a source site within the expected time period. In this section,
we consider that this is due to the failure of the source site.

The method for handling timeouts depends on the timing of failures as well as
on the types of failures. We therefore need to consider failures at various points of
2PC execution. In the following, we again refer to the 2PC state transition diagram
(Fig. 5.10).

Coordinator Timeouts

There are three states in which the coordinator can timeout: WAIT, COMMIT, and
ABORT. Timeouts during the last two are handled in the same manner. So we need
to consider only two cases:

5.4 Distributed DBMS Reliability 221

1. Timeout in the WAIT state. In the WAIT state, the coordinator is waiting for the
local decisions of the participants. The coordinator cannot unilaterally commit
the transaction since the global-commit rule has not been satisfied. However,
it can decide to globally abort the transaction, in which case it writes an abort
record in the log and sends a “global-abort” message to all the participants.

2. Timeout in the COMMIT or ABORT states. In this case the coordinator is not
certain that the commit or abort procedures have been completed by the local
recovery managers at all of the participant sites. Thus the coordinator repeatedly
sends the “global-commit” or “global-abort” commands to the sites that have not
yet responded, and waits for their acknowledgement.

Participant Timeouts

A participant can time out1 in two states: INITIAL and READY. Let us examine
both of these cases.

1. Timeout in the INITIAL state. In this state the participant is waiting for a
“prepare” message. The coordinator must have failed in the INITIAL state.
The participant can unilaterally abort the transaction following a timeout. If the
“prepare” message arrives at this participant at a later time, this can be handled
in one of two possible ways. Either the participant would check its log, find
the abort record, and respond with a “vote-abort,” or it can simply ignore the
“prepare” message. In the latter case the coordinator would time out in the WAIT
state and follow the course we have discussed above.

2. Timeout in the READY state. In this state the participant has voted to commit
the transaction but does not know the global decision of the coordinator. The
participant cannot unilaterally reach a decision. Since it is in the READY state,
it must have voted to commit the transaction. Therefore, it cannot now change its
vote and unilaterally abort it. On the other hand, it cannot unilaterally decide
to commit it, since it is possible that another participant may have voted to
abort it. In this case, the participant will remain blocked until it can learn from
someone (either the coordinator or some other participant) the ultimate fate of
the transaction.

Let us consider a centralized communication structure where the participants
cannot communicate with one another. In this case, the participant that is trying to
terminate a transaction has to ask the coordinator for its decision and wait until
it receives a response. If the coordinator has failed, the participant will remain
blocked. This is undesirable.

1In some discussions of the 2PC protocol, it is assumed that the participants do not use timers and
do not time out. However, implementing timeout protocols for the participants solves some nasty
problems and may speed up the commit process. Therefore, we consider this more general case.

222 5 Distributed Transaction Processing

If the participants can communicate with each other, a more distributed termina-
tion protocol may be developed. The participant that times out can simply ask all the
other participants to help it make a decision. Assuming that participant Pi is the one
that times out, each of the other participants (Pj) responds in the following manner:

1. Pj is in the INITIAL state. This means that Pj has not yet voted and may not
even have received the “prepare” message. It can therefore unilaterally abort the
transaction and reply to Pi with a “vote-abort” message.

2. Pj is in the READY state. In this state Pj has voted to commit the transaction but
has not received any word about the global decision. Therefore, it cannot help Pi

to terminate the transaction.
3. Pj is in the ABORT or COMMIT states. In these states, either Pj has unilaterally

decided to abort the transaction, or it has received the coordinator’s decision
regarding global termination. It can, therefore, send Pi either a “vote-commit” or
a “vote-abort” message.

Consider how the participant that times out (Pi) can interpret these responses.
The following cases are possible:

1. Pi receives “vote-abort” messages from all Pj . This means that none of the
other participants had yet voted, but they have chosen to abort the transaction
unilaterally. Under these conditions, Pi can proceed to abort the transaction.

2. Pi receives “vote-abort” messages from some Pj , but some other participants
indicate that they are in the READY state. In this case Pi can still go ahead and
abort the transaction, since according to the global-commit rule, the transaction
cannot be committed and will eventually be aborted.

3. Pi receives notification from all Pj that they are in the READY state. In this
case none of the participants knows enough about the fate of the transaction to
terminate it properly.

4. Pi receives “global-abort” or “global-commit” messages from all Pj . In this case
all the other participants have received the coordinator’s decision. Therefore, Pi

can go ahead and terminate the transaction according to the messages it receives
from the other participants. Incidentally, note that it is not possible for some
of the Pj to respond with a “global-abort” while others respond with “global-
commit” since this cannot be the result of a legitimate execution of the 2PC
protocol.

5. Pi receives “global-abort” or “global-commit” from some Pj , whereas others
indicate that they are in the READY state. This indicates that some sites have
received the coordinator’s decision while others are still waiting for it. In this
case Pi can proceed as in case 4 above .4.

These five cases cover all the alternatives that a termination protocol needs to
handle. It is not necessary to consider cases where, for example, one participant
sends a “vote-abort” message while another one sends “global-commit.” This cannot
happen in 2PC. During the execution of the 2PC protocol, no process (participant
or coordinator) is more than one state transition apart from any other process.
For example, if a participant is in the INITIAL state, all other participants are in

5.4 Distributed DBMS Reliability 223

either the INITIAL or the READY state. Similarly, the coordinator is either in the
INITIAL or the WAIT state. Thus, all the processes in a 2PC protocol are said to be
synchronous within one state transition.

Note that in case 3, the participant processes stay blocked, as they cannot
terminate a transaction. Under certain circumstances there may be a way to
overcome this blocking. If during termination all the participants realize that only
the coordinator site has failed, they can elect a new coordinator, which can restart the
commit process. There are different ways of electing the coordinator. It is possible
either to define a total ordering among all sites and elect the next one in order, or to
establish a voting procedure among the participants . This will not work, however,
if both a participant site and the coordinator site fail. In this case it is possible
for the participant at the failed site to have received the coordinator’s decision and
have terminated the transaction accordingly. This decision is unknown to the other
participants; thus if they elect a new coordinator and proceed, there is the danger
that they may decide to terminate the transaction differently from the participant at
the failed site. It is clear that it is not possible to design termination protocols for
2PC that can guarantee nonblocking termination. The 2PC protocol is, therefore,
a blocking protocol. Formally, the protocol is blocking because there is a state in
Fig. 5.10 that is adjacent to both the commit and abort state, and when there is a
coordinator failure participants are in the ready state. Therefore, it is impossible to
determine whether the coordinator went to the abort or commit state until it recovers.
The 3PC (three-phase commit) protocol solves this blocking situation by adding a
new state, PRECOMMIT, between the wait and commit states to avoid the situation
and preventing the blocking situation in the advent of a coordinator failure.

Since we had assumed a centralized communication structure in developing
the 2PC algorithms in Algorithms 5.6 and 5.7, we will continue with the same
assumption in developing the termination protocols. The portion of code that should
be included in the timeout section of the coordinator and the participant 2PC
algorithms is given in Algorithms 5.8 and 5.9, respectively.

Algorithm 5.8: 2PC Coordinator Terminate
begin

if in WAIT state then {coordinator is in ABORT state}
write abort record in the log
send “Global-abort” message to all the participants

else {coordinator is in COMMIT state}
check for the last log record
if last log record = abort then

send “Global-abort” to all participants that have not responded
else

send “Global-commit” to all the participants that have not responded
end if

end if
set timer

end

224 5 Distributed Transaction Processing

Algorithm 5.9: 2PC-Participant Terminate

begin
if in INITIAL state then

write abort record in the log
else

send “Vote-commit” message to the coordinator
reset timer

end if
end

Recovery Protocols

In the preceding section, we discussed how the 2PC protocol deals with failures
from the perspective of the operational sites. In this section, we take the opposite
viewpoint: we are interested in investigating protocols that a coordinator or partici-
pant can use to recover their states when their sites fail and then restart. Remember
that we would like these protocols to be independent. However, in general, it is
not possible to design protocols that can guarantee independent recovery while
maintaining the atomicity of distributed transactions. This is not surprising given
the fact that the termination protocols for 2PC are inherently blocking.

In the following discussion, we again use the state transition diagram of Fig. 5.10.
Additionally, we make two interpretive assumptions: (1) the combined action of
writing a record in the log and sending a message is assumed to be atomic, and
(2) the state transition occurs after the transmission of the response message. For
example, if the coordinator is in the WAIT state, this means that it has successfully
written the begin_commit record in its log and has successfully transmitted the “pre-
pare” command. This does not say anything, however, about successful completion
of the message transmission. Therefore, the “prepare” message may never get to the
participants, due to communication failures, which we discuss separately. The first
assumption related to atomicity is, of course, unrealistic. However, it simplifies our
discussion of fundamental failure cases. At the end of this section we show that the
other cases that arise from the relaxation of this assumption can be handled by a
combination of the fundamental failure cases.

Coordinator Site Failures

The following cases are possible:

1. The coordinator fails while in the INITIAL state. This is before the coordinator
has initiated the commit procedure. Therefore, it will start the commit process
upon recovery.

2. The coordinator fails while in the WAIT state. In this case, the coordinator has
sent the “prepare” command. Upon recovery, the coordinator will restart the

5.4 Distributed DBMS Reliability 225

commit process for this transaction from the beginning by sending the “prepare”
message one more time.

3. The coordinator fails while in the COMMIT or ABORT states. In this case, the
coordinator will have informed the participants of its decision and terminated
the transaction. Thus, upon recovery, it does not need to do anything if all the
acknowledgments have been received. Otherwise, the termination protocol is
involved.

Participant Site Failures

There are three alternatives to consider:

1. A participant fails in the INITIAL state. Upon recovery, the participant should
abort the transaction unilaterally. Let us see why this is acceptable. Note that
the coordinator will be in the INITIAL or WAIT state with respect to this
transaction. If it is in the INITIAL state, it will send a “prepare” message and
then move to the WAIT state. Because of the participant site’s failure, it will
not receive the participant’s decision and will time out in that state. We have
already discussed how the coordinator would handle timeouts in the WAIT state
by globally aborting the transaction.

2. A participant fails while in the READY state. In this case the coordinator has been
informed of the failed site’s affirmative decision about the transaction before the
failure. Upon recovery, the participant at the failed site can treat this as a timeout
in the READY state and hand the incomplete transaction over to its termination
protocol.

3. A participant fails while in the ABORT or COMMIT state. These states represent
the termination conditions, so, upon recovery, the participant does not need to
take any special action.

Additional Cases

Let us now consider the cases that may arise when we relax the assumption related to
the atomicity of the logging and message sending actions. In particular, we assume
that a site failure may occur after the coordinator or a participant has written a log
record but before it can send a message. For this discussion, the reader may wish to
refer to Fig. 5.11.

1. The coordinator fails after the begin_commit record is written in the log but
before the “prepare” command is sent. The coordinator would react to this as a
failure in the WAIT state (case 2 of the coordinator failures discussed above) and
send the “prepare” command upon recovery.

2. A participant site fails after writing the ready record in the log but before sending
the “vote-commit” message. The failed participant sees this as case 2 of the
participant failures discussed before.

226 5 Distributed Transaction Processing

3. A participant site fails after writing the Abort record in the log but before sending
the “vote-abort” message. This is the only situation that is not covered by the
fundamental cases discussed before. However, the participant does not need to
do anything upon recovery in this case. The coordinator is in the WAIT state and
will time out. The coordinator termination protocol for this state globally aborts
the transaction.

4. The coordinator fails after logging its final decision record (Abort or Commit),
but before sending its “global-abort” or “global-commit” message to the
participants. The coordinator treats this as its case 3, while the participants treat
it as a timeout in the READY state.

5. A participant fails after it logs an Abort or a Commit record but before it sends
the acknowledgment message to the coordinator. The participant can treat this
as its case 3. The coordinator will handle this by timeout in the COMMIT or
ABORT state.

5.4.3.2 Three-Phase Commit Protocol

As noted earlier, blocking commit protocols are undesirable. The three-phase
commit protocol (3PC) is designed as a nonblocking protocol when failures are
restricted to site failures. When network failures occur, things are complicated.

3PC is interesting from an algorithmic viewpoint, but it incurs high communica-
tion overhead in terms of latency, since it involves three rounds of messages with
forced writes to the stable log. Therefore, it has not been adopted in real systems—
even 2PC is criticized for its high latency due to the sequential phases with forced
writes to the log. Therefore, we summarize the approach without going into detailed
analysis.

Let us first consider the necessary and sufficient conditions for designing
nonblocking atomic commitment protocols. A commit protocol that is synchronous
within one state transition is nonblocking if and only if its state transition diagram
contains neither of the following:

1. No state that is “adjacent” to both a commit and an abort state.
2. No noncommittable state that is “adjacent” to a commit state.

The term adjacent here means that it is possible to go from one state to the other
with a single state transition.

Consider the COMMIT state in the 2PC protocol (see Fig. 5.10). If any process
is in this state, we know that all the sites have voted to commit the transaction.
Such states are called committable. There are other states in the 2PC protocol that
are noncommittable. The one we are interested in is the READY state, which is
noncommittable since the existence of a process in this state does not imply that all
the processes have voted to commit the transaction.

It is obvious that the WAIT state in the coordinator and the READY state in the
participant 2PC protocol violate the nonblocking conditions we have stated above.

5.4 Distributed DBMS Reliability 227

INITIAL

WAIT

Commit
Prepare

ABORT

Vote-abort
Global-abort

PRE-
COMMIT

Vote-commit
Prepare-to-commit

COMMIT

Ready-to-commit
Global-commit

(a)

INITIAL

READY

Prepare
Vote-commit

ABORT

Global-abort
Ack

PRE-
COMMIT

Prepare-to-commit
Ready-to-commit

COMMIT

Global-commit
Ack

Prepare
Vote-abort

(b)

Fig. 5.15 State transitions in 3PC protocol. (a) Coordinator states. (b) Participant states

Therefore, one might be able to make the following modification to the 2PC protocol
to satisfy the conditions and turn it into a nonblocking protocol.

We can add another state between the WAIT (and READY) and COMMIT
states which serves as a buffer state where the process is ready to commit (if
that is the final decision) but has not yet committed. The state transition diagrams
for the coordinator and the participant in this protocol are depicted in Fig. 5.15.
This is called the three-phase commit protocol (3PC) because there are three state
transitions from the INITIAL state to a COMMIT state. The execution of the
protocol between the coordinator and one participant is depicted in Fig. 5.16. Note
that this is identical to Fig. 5.11 except for the addition of the PRECOMMIT state.
Observe that 3PC is also a protocol where all the states are synchronous within one
state transition. Therefore, the foregoing conditions for nonblocking 2PC apply to
3PC.

5.4.4 Network Partitioning

In this section, we consider how the network partitions can be handled by the atomic
commit protocols that we discussed in the preceding section. Network partitions are
due to communication line failures and may cause the loss of messages, depending

228 5 Distributed Transaction Processing

INITIAL

Coordinator

write
begin commit

WAIT

Any No?

write
prepare to commit

No

PRE-
COMMIT

write commit

write abort
Yes

COMMIT

ABORT

write
end of transaction

INITIAL

Participant

Ready to
Commit?

write ready

Yes

write abort
No

READY

Type of
msg

write
prepare to commit

Prepare-
to-commitwrite abort

Abort

PRE-
COMMIT

write commit

COMMIT

ABORT

(U
nilateral abort)

PREPARE

VOTE-ABORT

VOTE-COMMIT

GLOBAL-ABORT

GLOBAL-COMMIT

PREPARE-TO-COMMIT

ACK

READY-TO-COMMIT

ACK

Fig. 5.16 3PC protocol actions

on the implementation of the communication network. A partitioning is called a
simple partitioning if the network is divided into only two components; otherwise,
it is called multiple partitioning.

The termination protocols for network partitioning address the termination of the
transactions that were active in each partition at the time of partitioning. If one can

5.4 Distributed DBMS Reliability 229

develop nonblocking protocols to terminate these transactions, it is possible for the
sites in each partition to reach a termination decision (for a given transaction) which
is consistent with the sites in the other partitions. This would imply that the sites in
each partition can continue executing transactions despite the partitioning.

Unfortunately, generally it is not possible to find nonblocking termination
protocols in the presence of network partitioning. Remember that our expectations
regarding the reliability of the communication network are minimal. If a message
cannot be delivered, it is simply lost. In this case it can be proven that no non-
blocking atomic commitment protocol exists that is resilient to network partitioning.
This is quite a negative result since it also means that if network partitioning
occurs, we cannot continue normal operations in all partitions, which limits the
availability of the entire distributed database system. A positive counter result,
however, indicates that it is possible to design nonblocking atomic commit protocols
that are resilient to simple partitions. Unfortunately, if multiple partitions occur, it
is again not possible to design such protocols.

In the remainder of this section we discuss a number of protocols that address
network partitioning in nonreplicated databases. The problem is quite different in
the case of replicated databases, which we discuss in the next chapter.

In the presence of network partitioning of nonreplicated databases, the major
concern is with the termination of transactions that were active at the time of
partitioning. Any new transaction that accesses a data item that is stored in
another partition is simply blocked and has to await the repair of the network.
Concurrent accesses to the data items within one partition can be handled by the
concurrency control algorithm. The significant problem, therefore, is to ensure that
the transaction terminates properly. In short, the network partitioning problem is
handled by the commit protocol, and more specifically, by the termination and
recovery protocols.

The absence of nonblocking protocols that would guarantee atomic commitment
of distributed transactions points to an important design decision. We can either
permit all the partitions to continue their normal operations and accept the fact that
database consistency may be compromised, or we guarantee the consistency of the
database by employing strategies that would permit operation in one of the partitions
while the sites in the others remain blocked. This decision problem is the premise
of a classification of partition handling strategies. The strategies can be classified
as pessimistic or optimistic. Pessimistic strategies emphasize the consistency of
the database, and would therefore not permit transactions to execute in a partition
if there is no guarantee that the consistency of the database can be maintained.
Optimistic approaches, on the other hand, emphasize the availability of the database
even if this would cause inconsistencies.

The second dimension is related to the correctness criterion. If serializability is
used as the fundamental correctness criterion, such strategies are called syntactic
since the serializability theory uses only syntactic information. However, if we
use a more abstract correctness criterion that is dependent on the semantics of the
transactions or the database, the strategies are said to be semantic.

230 5 Distributed Transaction Processing

Consistent with the correctness criterion that we have adopted in this book (seri-
alizability), we consider only syntactic approaches in this section. The following
two sections outline various syntactic strategies for nonreplicated databases.

All the known termination protocols that deal with network partitioning in the
case of nonreplicated databases are pessimistic. Since the pessimistic approaches
emphasize the maintenance of database consistency, the fundamental issue that
we need to address is which of the partitions can continue normal operations. We
consider two approaches.

5.4.4.1 Centralized Protocols

Centralized termination protocols are based on the centralized concurrency control
algorithms discussed in Sect. 5.2. In this case, it makes sense to permit the operation
of the partition that contains the central site, since it manages the lock tables.

Primary site techniques are centralized with respect to each data item. In this
case, more than one partition may be operational for different queries. For any given
query, only the partition that contains the primary site of the data items that are in
the write set of that transaction can execute that transaction.

Both of these are simple approaches that would work well, but they are dependent
on a specific concurrency control mechanism. Furthermore, they expect each site
to be able to differentiate network partitioning from site failures properly. This
is necessary since the participants in the execution of the commit protocol react
differently to the different types of failures. Unfortunately, in general this is not
possible.

5.4.4.2 Voting-Based Protocols

Voting can also be used for managing concurrent data accesses. A straightforward
voting with majority has been proposed as a concurrency control method for fully
replicated databases. The fundamental idea is that a transaction is executed if a
majority of the sites vote to execute it.

The idea of majority voting has been generalized to voting with quorums. Quo-
rum-based voting can be used as a replica control method (as we discuss in the next
chapter), as well as a commit method to ensure transaction atomicity in the presence
of network partitioning. In the case of nonreplicated databases, this involves the
integration of the voting principle with commit protocols. We present a specific
proposal along this line.

Every site in the system is assigned a vote Vi . Let us assume that the total number
of votes in the system is V , and the abort and commit quorums are Va and Vc,
respectively. Then the following rules must be obeyed in the implementation of the
commit protocol:

1. Va + Vc > V , where 0 ≤ Va, Vc ≤ V .

5.4 Distributed DBMS Reliability 231

2. Before a transaction commits, it must obtain a commit quorum Vc.
3. Before a transaction aborts, it must obtain an abort quorum Va .

The first rule ensures that a transaction cannot be committed and aborted at the
same time. The next two rules indicate the votes that a transaction has to obtain
before it can terminate one way or the other. The integration of quorum techniques
into commit protocols is left as an exercise.

5.4.5 Paxos Consensus Protocol

Up to this point, we have studied 2PC protocols for reaching agreement among
transaction managers as to the resolution of a distributed transaction and discovered
that it has the undesirable property of blocking when the coordinator is down as well
as one other participant. We discussed how to overcome this by using 3PC protocol,
which is expensive and is not resilient to network partitioning. Our treatment of
network partitioning considered voting to determine the partition where a “majority”
of transaction managers reside and terminate the transaction in that partition. These
may seem like piece-meal solutions to the fundamental problem of finding fault-
tolerant mechanisms for reaching an agreement (consensus) among transaction
managers about the fate of the transaction under consideration. As it turns out,
reaching a consensus among sites is a general problem in distributed computing
known as distributed consensus. A number of algorithms have been proposed for
addressing this problem; in this section, we discuss the Paxos family of algorithms
and point to others in Bibliographic Notes.

We will first discuss Paxos in the general setting in which it was originally
defined and then consider how it can be used in commit protocols. In the general
context, the algorithm achieves a consensus among sites about the value of a variable
(or decision). The important consideration is that a consensus is reached if a majority
of the sites agree on the value, not all of them. So, certain number of sites may fail,
but as long as a majority exists, consensus can be reached. It identifies three roles:
proposer who recommends a value for the variable, acceptor who decides whether
or not to accept he recommended value, and learner who discovers the agreed-upon
value by asking one of the learners (or the value is pushed to it by an acceptor). Note
that these are roles all of which can be colocated in one site, but each site can have
only one instance of each. The learners are not very important so we do not consider
them in any detail in our exposition.

Paxos protocol is simple if there is only one proposer, and it operates like the
2PC protocol: in the first round, the proposer suggests a value for the variable and
acceptors send their responses (accept/not accept). If the proposer gets accepts from
a majority of the acceptors, then it determines that particular value to be the value
of the variable and notifies the acceptors who now record that value the final one. A
learner can, at any point, ask an acceptor what the value of the variable is and learn
the latest value.

232 5 Distributed Transaction Processing

Of course, reality is not this simple and the Paxos protocol needs to be able to
deal with the following complications:

1. Since this is, by definition, a distributed consensus protocol, multiple proposers
can put forward a value for the same variable. Therefore, an acceptor needs to
pick one of the proposed values.

2. Given multiple proposals, it is possible to get split votes on multiple proposals
with no proposed value receiving a majority.

3. It is possible that some of the acceptors fail after they accept a value. If the
remaining acceptors who accepted that value do not constitute a majority, this
causes a problem.

Paxos deals with the first problem by using a ballot number so that acceptors
can differentiate different proposals as we discuss below. The second problem can
be addressed by running multiple consensus rounds—if no proposal achieves a
majority, then another round is run and this is repeated until one value achieves
majority. In some cases, this can go on for a number of iterations and this can
degrade its performance. Paxos deals with the problem by having a designated
leader to which every proposer sends its value proposal. The leader then picks
one value for each variable and seeks to obtain the majority. This reduces the
distributed nature of the consensus protocol. In different rounds of the protocol
execution, the leader could be different. The third problem is more serious. Again,
this could be treated as the second issue and a new round can be started. However,
the complication is that some learners may have learned the accepted value from
acceptors in the previous round, and if a different value is chosen in the new round
we have inconsistency. Paxos deals with this again by using ballot numbers.

We present below the steps of “basic Paxos” that focuses on determining the
value of a single variable (hence the omission of the variable name in the following).
Basic Paxos also simplifies the determination of ballot numbers: the ballot number
in this case only needs to be unique and monotonic for each proposer; there is no
attempt to make them globally unique since a consensus is reached when a majority
of the acceptors settle on some value for the variable regardless of who proposed it.
Below is the basic Paxos operation in the absence of failures:

S1. The proposer who wishes to start a consensus sends to all the acceptors a
“prepare” message with its ballot number [prepare(bal)].

S2. Each acceptor that receives the prepare message performs the following:
if it had not received any proposals before

it records prepare(bal) in its log and responds with ack(bal)
else if bal > any ballot number that it had received from any proposer
before

then it records prepare(bal) in its log and responds with the ballot number
(bal′) and value (val′) of the highest proposal number it had accepted
prior to this: ack(bal, bal′, val′);
else it ignores the prepare message.

5.4 Distributed DBMS Reliability 233

S3. When the proposer receives an ack message from an acceptor, it logs the
message.

S4. When the proposer has received acks from a majority of acceptors (i.e., it has
a quorum to establish a consensus) it sends an accept(nbal, val) message to
acceptors where nbal is the ballot number to accept and val is the value to
accept where nbal and val are determined as follows:
if all of the ack messages it received indicate that no acceptors have previously
accepted a value

then the proposed value val is set to what the proposer wanted to suggest
in the first place and nbal ← bal;
else val is set to the val′ in the return ack messages with the largest bal′
and nbal ← bal (so everyone converges to the value with the largest ballot
number);

the proposer now sends accept(bal, val) to all the acceptors (val is the
proposed value).

S5. Each acceptor performs the following upon receipt of the accept(nbal, val)
message:
if nbal = ack.bal (i.e., the ballot number of the accept message is the one it
had promised earlier)

then it records accepted(nbal, val)
else it ignores the message.

A number of points about the above protocol. First note that in step S2, an
acceptor ignores the prepare message if it has already received a prepare message
higher than the one it just received. Although the protocol works correctly in this
case, the proposer may continue to communicate with this acceptor later on (e.g., in
step S5) and this can be avoided if it were to send back a negative acknowledgement
so that the proposer can take it off of future consideration. The second point is that
when an acceptor acknowledges a prepare message, it is also acknowledging that the
proposer is the Paxos leader for this round. So, in a sense, leader selection is done as
part of the protocol. However, to deal with the second problem discussed earlier, it
is possible to have a designated leader, which then initiates the rounds. If this is the
chosen implementation, then the elected leader can choose which proposal it will
put forward if it receives multiple proposals. Finally, since the protocol advances
if a majority of participants (sites) are available, for a system with N sites, it can
tolerate N

2 − 1 simultaneous site failures.
Let us briefly analyze how Paxos deals with failures. The simplest case is when

some acceptors fail but there is still the quorum for reaching a decision. In this
case, the protocol proceeds as usual. If sufficient acceptors fail to eliminate the
possibility of a quorum, then this is handled naturally in the protocol by running
a new ballot (or multiple ballots) when a quorum can be achieved. The case that is
always challenging for consensus algorithms is the failure of the proposer (which is
also the leader); in this case Paxos chooses a new leader by some mechanism (there
are a number of proposals in literature for this) and the new leader initiates a new
round with a new ballot number.

234 5 Distributed Transaction Processing

Paxos has the multiround decision making characteristic of 2PC and 3PC and the
majority voting method of quorum algorithms; it generalizes these into one coherent
protocol to reach consensus in the presence of a set of distributed processes. It has
been pointed out that 2PC and 3PC (and other commit protocols) are special cases
of Paxos. In the following, we describe one proposal for running 2PC with Paxos in
order to achieve a nonblocking 2PC protocol, called Paxos 2PC.

In Paxos 2PC, the transaction managers act as leaders—this is basically noting
that what we called coordinator before is now called a leader. A main feature
of the protocol is for the leader to use a Paxos protocol to reach consensus and
record its decision in a replicated log. The first feature is important since the
protocol does not need to have all of the participants active and participating in the
decision—a majority will do and others can converge on the decided value when
they recover. The second is important because leader (coordinator) failures are no
longer blocking—if a leader fails, a new leader can get elected and the state of the
transaction decision is available in the replicated log at other sites.

5.4.6 Architectural Considerations

In the previous sections, we have discussed the atomic commit protocols at an
abstract level. Let us now look at how these protocols can be implemented within the
framework of our architectural model. This discussion involves specification of the
interface between the concurrency control algorithms and the reliability protocols.
In that sense, the discussions of this chapter relate to the execution of Commit, Abort,
and recover commands.

It is not straightforward to specify precisely the execution of these commands for
two reasons. First, a significantly more detailed model of the architecture than the
one we have presented needs to be considered for correct implementation of these
commands. Second, the overall scheme of implementation is quite dependent on
the recovery procedures that the local recovery manager implements. For example,
implementation of the 2PC protocol on top of a LRM that employs a no-fix/no-flush
recovery scheme is quite different from its implementation on top of a LRM that
employs a fix/flush recovery scheme. The alternatives are simply too numerous. We
therefore confine our architectural discussion to three areas: implementation of the
coordinator and participant concepts for the commit and replica control protocols
within the framework of the transaction manager-scheduler-local recovery manager
architecture, the coordinator’s access to the database log, and the changes that need
to be made in the local recovery manager operations.

One possible implementation of the commit protocols within our architectural
model is to perform both the coordinator and participant algorithms within the
transaction managers at each site. This provides some uniformity in executing
the distributed commit operations. However, it entails unnecessary communication
between the participant transaction manager and its scheduler; this is because

5.4 Distributed DBMS Reliability 235

the scheduler has to decide whether a transaction can be committed or aborted.
Therefore, it may be preferable to implement the coordinator as part of the
transaction manager and the participant as part of the scheduler. If the scheduler
implements a strict concurrency control algorithm (i.e., does not allow cascading
aborts), it will be ready automatically to commit the transaction when the prepare
message arrives. Proof of this claim is left as an exercise. However, even this
alternative of implementing the coordinator and the participant outside the data
processor has problems. The first issue is database log management. Recall that
the database log is maintained by the LRM and the buffer manager. However,
implementation of the commit protocol as described here requires the transaction
manager and the scheduler to access the log as well. One possible solution to
this problem is to maintain a commit log (which could be called the distributed
transaction log) that is accessed by the transaction manager and is separate from
the database log that the LRM and buffer manager maintain. The other alternative
is to write the commit protocol records into the same database log. This second
alternative has a number of advantages. First, only one log is maintained; this
simplifies the algorithms that have to be implemented in order to save log records on
stable storage. More important, the recovery from failures in a distributed database
requires the cooperation of the local recovery manager and the scheduler (i.e., the
participant). A single database log can serve as a central repository of recovery
information for both components.

A second problem associated with implementing the coordinator within the
transaction manager and the participant as part of the scheduler is integration with
the concurrency control protocols. This implementation is based on the schedulers
determining whether a transaction can be committed. This is fine for distributed
concurrency control algorithms where each site is equipped with a scheduler.
However, in centralized protocols such as the centralized 2PL, there is only one
scheduler in the system. In this case, the participants may be implemented as part of
the data processors (more precisely, as part of local recovery managers), requiring
modification to both the algorithms implemented by the LRM and, possibly, to the
execution of the 2PC protocol. We leave the details to exercises.

Storing the commit protocol records in the database log maintained by the LRM
and the buffer manager requires some changes to the LRM algorithms. This is the
third architectural issue we address. These changes are dependent on the type of
algorithm that the LRM uses. In general, the LRM algorithms have to be modified
to handle separately the prepare command and global-commit (or global-abort)
decisions. Furthermore, upon recovery, the LRM should be modified to read the
database log and to inform the scheduler as to the state of each transaction, in order
that the recovery procedures discussed before can be followed. Let us take a more
detailed look at this function of the LRM.

The LRM first has to determine whether the failed site is the host of the
coordinator or of a participant. This information can be stored together with the
Begin_transaction record. The LRM then has to search for the last record written

236 5 Distributed Transaction Processing

in the log record during execution of the commit protocol. If it cannot even find
a begin_commit record (at the coordinator site) or an abort or commit record (at
the participant sites), the transaction has not started to commit. In this case, the
LRM can continue with its recovery procedure. However, if the commit process has
started, the recovery has to be handed over to the coordinator. Therefore, the LRM
sends the last log record to the scheduler.

5.5 Modern Approaches to Scaling Out Transaction
Management

All algorithms presented above introduce bottlenecks at different points in the
transactional processing. Those implementing serializability severely limit the
potential concurrency due to conflicts between large queries that read many data
items and update transactions. For instance, an analytical query that makes a full
table scan with a predicate that is not based on the primary key causes a conflict
with any update on the table. All algorithms need a centralized processing step in
order to commit transactions one by one.

This creates a bottleneck since they cannot process transactions at a rate higher
than a single node is able to. Locking algorithms require deadlock management
and many use deadlock detection, which is difficult in a distributed setting as we
discussed earlier. The algorithm which we presented in the last section on snapshot
isolation performs centralized certification, which again introduces a bottleneck.

Scaling transaction execution to achieve high transaction throughput in a dis-
tributed or parallel system has been a topic of interest for a long time. In recent years
solutions have started to emerge; we discuss two approaches in this section: Google
Spanner and LeanXcale. Both of these implement each of the ACID properties in a
scalable and composable manner. In both approaches, a new technique is proposed
to serialize transactions that can support very high throughput rates (millions or
even billion transactions per second). Both approaches have a way to timestamp
the commit of transactions and use this commit timestamp to serialize transactions.
Spanner uses real time to timestamp transactions, while LeanXcale uses logical
time. Real time has the advantage that it does not require any communication, but
requires high accuracy and a highly reliable real-time infrastructure. The idea is to
use real time as timestamp and wait for the accuracy to elapse to make the result
visible to transactions.

LeanXcale adopts an approach in which transactions are timestamped with a
logical time and committed transactions are made visible progressively as gaps
in the serialization order are filled by newly committed transactions. Logical time
avoids having to rely on creating a real-time infrastructure.

5.5 Modern Approaches to Scaling Out Transaction Management 237

5.5.1 Spanner

Spanner uses traditional locking and 2PC and provides serializability as isolation
level. Since locking results in high contention between large queries and update
transactions, Spanner also implements multiversioning. In order to avoid the
bottleneck of centralized certification, updated data items are assigned timestamps
(using real time) upon commit. For this purpose, Spanner implements an internal
service called TrueTime that provides the current time and its current accuracy. In
order to make the TrueTime service reliable and accurate, it uses both atomic clocks
and GPS since they have different failures modes that can compensate each other.
For instance, atomic clocks they have a continuous drift, while GPS loses accuracy
in some meteorological conditions, when the antenna gets broken, etc. The current
time obtained through TrueTime is used to timestamp transactions that are going
to be committed. The reported accurate is used to compensate during timestamp
assignment: after obtaining the local time, there is a wait time for the length of
the inaccuracy, typically around 10 milliseconds. To deal with deadlocks, Spanner
adopts deadlock avoidance using a wound-and-wait approach (see Appendix C)
thereby eliminating the bottleneck that deadlock detection.

Storage management in Spanner is made scalable by leveraging Google Bigtable,
a key-value data store (see Chap. 11).

Multiversioning is implemented as follows. Private versions of the data items are
kept at each site until commitment. Upon commit, the 2PC protocol is started during
which buffered writes are propagated to each participant. Each participant sets locks
on the updated data items. Once all locks have been acquired, it assigns a commit
timestamp larger than any previously assigned timestamp. The coordinator also
acquires the write locks. Upon acquiring all write locks and receiving the prepared
message from all participants, the coordinator chooses a timestamp larger than the
current time plus the inaccuracy, and bigger than any other timestamps assigned
locally. The coordinator waits for the assigned timestamp to pass (recall waiting
due to inaccuracy) and then communicates the commit decision to the client.

Using multiversioning, Spanner also implements read-only transactions that read
over the snapshot at the current time.

5.5.2 LeanXcale

LeanXcale uses a totally different approach to scalable transactional management.
First, it uses logical time to timestamp transactions and to set visibility over
committed data. Second, it provides snapshot isolation. Third, all the functions that
are intensive in resource usage such as concurrency control, logging, storage and
query processing, are fully distributed and parallel, without any coordination.

For logical time, LeanXcale uses two services: the commit sequencer and the
snapshot server. The commit sequencer distributes commit timestamps and the

238 5 Distributed Transaction Processing

snapshot server regulates the visibility of committed data by advancing the snapshot
visible to transactions.

Since LeanXcale provides snapshot isolation, it only needs to detect write-write
conflicts. It implements a (possibly distributed) Conflict Manager. Each Conflict
Manager takes care of checking conflicts for a subset of the data items. Basically,
a Conflict Manager gets requests from LTMs to check whether a data item that is
going to be updated conflicts with any concurrent updates. If there is a conflict, then
the LTM will abort the transaction, otherwise it will be able to progress without
aborting.

The storage functionality is provided by a relational key-value data store called
KiVi. Tables are horizontally partitioned into units called regions. Each region is
stored at one KiVi server.

When a commit is started, it is managed by an LTM that starts the commit
processing as follows. First, the LTM takes a commit timestamp from the local
range and uses it to timestamp the writeset of the transaction that is then logged.
Logging is scaled by using multiple loggers. Each logger serves a subset of LTMs.
A logger replies to the LTM when the writeset is durable. LeanXcale implements
multiversioning at the storage layer. As in Spanner, private copies exist at each
site. When the writeset is durable, the updates are propagated to the corresponding
KiVi servers, timestamped with the commit timestamp. Once all updates have been
propagated, the transaction is readable if the right start timestamp is used (equal or
higher than the commit timestamp). However, it is still invisible. Then, the LTM
informs to the snapshot server that the transaction is durable and readable. The
snapshot server keeps track of the current snapshot, that is, the start timestamp that
will be used by new transactions. It also keeps track of transactions that are durable
and readable with a commit timestamp higher than the current snapshot. Whenever
there are no gaps between the current snapshot and a timestamp, the snapshot
server advances the snapshot to that timestamp. At that point, the committed data
with a commit timestamp lower than the current snapshot becomes visible to new
transactions since they will get a start timestamp at the current snapshot. Let us see
how it works with an example.

Example 5.5 Consider 5 transactions committing in parallel with commit times-
tamps 11 to 15. Let the current snapshot at the snapshot server be 10. The order
in which the LTMs report to the snapshot server that the transactions are durable
and readable is 11, 15, 14, 12, and 13. When the snapshot server is notified about
transaction with commit timestamp 11, it advances the snapshot from 10 to 11 since
there are no gaps. With transaction with commit timestamp 15, it cannot advance the
snapshot since otherwise new transactions could observe an inconsistent state that
misses updates from transactions with commit timestamps 12 to 14. Now transaction
with timestamp 14 reports that its updates are durable and readable. Again, the
snapshot cannot progress. But now transaction with commit timestamp 13 becomes
durable and readable and now the snapshot advances till 15 since there are no gaps
in the serialization order. �

5.6 Conclusion 239

Note that although the algorithm so far provides snapshot isolation, it does not
provide session consistency, which is a desirable feature for transactions within the
same session to be able to read the writes of previously committed transactions. To
provide session consistency, a new mechanism is added. Basically, when a session
commits a transaction that made updates, it will wait till the snapshot progresses
beyond the commit timestamp of the update transaction to start and then it will start
with a snapshot that guarantees that it observes its own writes.

5.6 Conclusion

In this chapter, we discussed issues around distributed transaction processing. A
transaction is an atomic unit of execution that transforms one consistent database
to another consistent database. The ACID properties of transactions also indicate
what the requirements for managing them are. Consistency requires a definition
of integrity enforcement (which we did in Chap. 3), as well as concurrency
control algorithms. Concurrency control also deals with the issue of isolation. The
distributed concurrency control mechanism of a distributed DBMS ensures that the
consistency of the distributed database is maintained and is therefore one of the
fundamental components of a distributed DBMS. We introduced distributed concur-
rency control algorithms of three types: locking-based, timestamp ordering-based,
and optimistic. We noted that locking-based algorithms can lead to distributed
(or global) deadlocks and introduced approach for detecting and resolving these
deadlocks.

Durability and atomicity properties of transactions require a discussion of
distributed DBMS reliability. Specifically, durability is supported by various commit
protocols and commit management, whereas atomicity requires the development
of appropriate recovery protocols. We introduced two commit protocols, 2PC and
3PC, which guarantee the atomicity and durability of distributed transactions even
when failures occur. One of these algorithms (3PC) can be made nonblocking, which
would permit each site to continue its operation without waiting for recovery of the
failed site. The performance of the distributed commit protocols with respect to the
overhead they add to the concurrency control algorithms is an interesting issue.

Achieving very high transaction throughput in distributed and parallel DBMSs
has been a long-standing topic of interest with some positive developments in recent
years. We discussed two approaches to achieving this objective as part of Spanner
and LeanXcale systems.

There are a few issues that we have omitted from this chapter:

1. Advanced transaction models. The transaction model that we used In this chapter,
is commonly referred to as the flat transaction model that have a single start point
(Begin_transaction) and a single termination point (End_transaction). Most of the
transaction management work in databases has concentrated on flat transactions.
However, there are more advanced transaction models. One of these is called the

240 5 Distributed Transaction Processing

nested transaction model where a transaction includes other transactions with
their own begin and end points. The transactions that are embedded in another
one are usually called subtransactions. The structure of a nested transaction
is a trie where the outermost transaction is the root with sub transactions
represented as the other nodes. These differ in their termination characteristics.
One category, called closed nested transactions commit in a bottom-up fashion
through the root. Thus, a nested subtransaction begins after its parent and finishes
before it, and the commitment of the subtransactions is conditional upon the
commitment of the parent. The semantics of these transactions enforce atomicity
at the topmost level. The alternative is open nesting, which relaxes the top-level
atomicity restriction of closed nested transactions. Therefore, an open nested
transaction allows its partial results to be observed outside the transaction. Sagas
and split transactions are examples of open nesting.

Even more advanced transactions are workflows. The term “workflow,”
unfortunately, does not have a clear and uniformly accepted meaning. A working
definition is a set of tasks with a partial order among them that collectively
perform some complicated process.

Although the management of these advanced transaction models is important,
they are outside our scope, so we have not considered them in this chapter.

2. Assumptions about transactions. In our discussions, we did not make any
distinction between read-only transactions and update transactions. It is possible
to improve significantly the performance of transactions that only read data items,
or of systems with a high ratio of read-only transactions to update transactions.
These issues are beyond the scope of this book.

We have also treated read and write locks in an identical fashion. It is possible
to differentiate between them and develop concurrency control algorithms that
permit “lock conversion,” whereby transactions can obtain locks in one mode
and then modify their lock modes as they change their requirements. Typically,
the conversion is from read locks to write locks.

3. Transaction execution models. The algorithms that we have described all assume
a computational model where the transaction manager at the originating site
of a transaction coordinates the execution of each database operation of that
transaction. This is called centralized execution. It is also possible to consider
a distributed execution model where a transaction is decomposed into a set of
subtransactions each of which is allocated to one site where the transaction
manager coordinates its execution. This is intuitively more attractive because
it may permit load balancing across the multiple sites of a distributed database.
However, the performance studies indicate that distributed computation performs
better only under light load.

4. Error types. We have considered only failures that are attributable to errors. In
other words, we assumed that every effort was made to design and implement
the systems (hardware and software), but that because of various faults in the
components, the design, or the operating environment, they failed to perform
properly. Such failures are called failures of omission. There is another class of
failures, called failures of commission, where the systems may not have been

5.7 Bibliographic Notes 241

designed and implemented so that they would work properly. The difference is
that in the execution of the 2PC protocol, for example, if a participant receives
a message from the coordinator, it treats this message as correct: the coordinator
is operational and is sending the participant a correct message to go ahead
and process. The only failure that the participant has to worry about is if the
coordinator fails or if its messages get lost. These are failures of omission. If,
on the other hand, the messages that a participant receives cannot be trusted,
the participant also has to deal with failures of commission. For example, a
participant site may pretend to be the coordinator and may send a malicious
message. We have not discussed reliability measures that are necessary to cope
with these types of failures. The techniques that address failures of commission
are typically called byzantine agreement.

In addition to these issues there is quite a volume of recent work on transaction
management in various environments (e.g., multicore, main-memory systems). We
do not discuss those in this chapter, that is focused on the fundamentals, but we
provide some pointers in the Bibliographic Notes.

5.7 Bibliographic Notes

Transaction management has been the topic of considerable study since DBMSs
have become a significant research area. There are two excellent books on the
subject: [Gray and Reuter 1993] and [Weikum and Vossen 2001]. Classical texts
that focus on these topics are [Hadzilacos 1988] and [Bernstein et al. 1987]. An
excellent companion to these is [Bernstein and Newcomer 1997] which provides
an in-depth discussion of transaction processing principles. It also gives a view
of transaction processing and transaction monitors which is more general than the
database-centric view that we provide in this book. A very important work is a set of
notes on database operating systems by Gray [1979]. These notes contain valuable
information on transaction management, among other things.

Distributed concurrency control is extensively covered in [Bernstein and Good-
man 1981], which is now out of print, but can be accessed online. The issues that
are addressed In this chapter, are discussed in much more detail in [Cellary et al.
1988, Bernstein et al. 1987, Papadimitriou 1986] and [Gray and Reuter 1993].

For the fundamental techniques we have discussed in the paper, centralized 2PL
was first proposed by Alsberg and Day [1976], hierarchical deadlock detection was
discussed by Menasce and Muntz [1979] while distributed deadlock detection is due
to Obermack [1982]. Our discussion of conservative TO algorithm is due to Herman
and Verjus [1979]. The original multiversion TO algorithm was proposed by Reed
[1978] with further formalization by Bernstein and Goodman [1983]. Lomet et al.
[2012] discuss how to implement multiversioning on top of a concurrency layer that
implements 2PL while Faleiro and Abadi [2015] do the same on top of one that
implements TO. There are also approaches that implement versioning as a generic

242 5 Distributed Transaction Processing

framework on top of any concurrency control technique [Agrawal and Sengupta
1993]. Bernstein et al. [1987] discuss how to implement locking-based optimistic
concurrency control algorithms while Thomas [1979] and Kung and Robinson
[1981] discuss timestamp-based implementations. Our discussion in Sect. 5.2.4
is due to Ceri and Owicki [1982]. The original snapshot isolation proposal is by
Berenson et al. [1995]. Our discussion of the snapshot isolation algorithm is due to
Chairunnanda et al. [2014]. Binnig et al. [2014] discuss the optimization that we
highlighted at the end of that section. The presumed abort and presumed commit
protocols were proposed by Mohan and Lindsay [1983] and Mohan et al. [1986].
Site failures and recoverability from them is the topic of [Skeen and Stonebraker
1983] and [Skeen 1981], the latter also proposes the 3PC algorithm along with
its analysis. Coordinator selection protocols that we discuss are due to Hammer
and Shipman [1980] and Garcia-Molina [1982]. An early survey of consistency in
the presence of network partitioning is by Davidson et al. [1985]. Thomas [1979]
proposed the original majority voting technique, and the nonreplicated version of
the protocol we discuss is due to Skeen [1982a]. Distributed transaction log idea in
Sect. 5.4.6 is due to Bernstein et al. [1987] and Lampson and Sturgis [1976].

The transaction management in System R* discussion is due to Mohan et al.
[1986]; NonStop SQL is presented in [Tandem 1987, 1988, Borr 1988]. Bernstein
et al. [1980b] discusses SDD-1 in detail. The more modern systems Spanner and
LeanXcale discussed in Sect. 5.5 are described in [Corbett et al. 2013] and [Jimenez-
Peris and Patiño Martinez 2011], respectively.

Advanced transaction models are discussed and various examples are given in
[Elmagarmid 1992]. Nested transactions are also covered in [Lynch et al. 1993].
Closed nested transactions are due to Moss [1985] while open nested transaction
model sagas are proposed by Garcia-Molina and Salem [1987], Garcia-Molina
et al. [1990] and split transactions by Pu [1988]. Nested transaction models and
their specific concurrency control algorithms have been the subjects of some study.
Specific results can be found in [Moss 1985, Lynch 1983b, Lynch and Merritt
1986, Fekete et al. 1987a,b, Goldman 1987, Beeri et al. 1989, Fekete et al. 1989]
and in [Lynch et al. 1993]. A good introduction to workflow systems is given by
Georgakopoulos et al. [1995] and the topic is covered in [Dogac et al. 1998] and
[van Hee 2002].

The work on transaction management with semantic knowledge is presented in
[Lynch 1983a, Garcia-Molina 1983], and [Farrag and Özsu 1989]. The processing of
read-only transactions is discussed in [Garcia-Molina and Wiederhold 1982]. Trans-
action groups [Skarra et al. 1986, Skarra 1989] also exploit a correctness criterion
called semantic patterns that is more relaxed than serializability. Furthermore, work
on the ARIES system [Haderle et al. 1992] is also within this class of algorithms.
In particular, [Rothermel and Mohan 1989] discusses ARIES within the context of
nested transactions. Epsilon serializability [Ramamritham and Pu 1995, Wu et al.
1997] and NT/PV model [Kshemkalyani and Singhal 1994] are other “relaxed”
correctness criteria. An algorithm based on ordering transactions using serialization
numbers is discussed in [Halici and Dogac 1989].

5.7 Bibliographic Notes 243

Two books focus on the performance of concurrency control mechanisms with
a focus on centralized systems [Kumar 1996, Thomasian 1996]. Kumar [1996]
focuses on the performance of centralized DBMSs; the performance of distributed
concurrency control methods are discussed in [Thomasian 1996] and [Cellary et al.
1988]. An early but comprehensive review of deadlock management is [Isloor and
Marsland 1980]. Most of the work on distributed deadlock management has been
on detection and resolution (see, e.g., [Obermack 1982, Elmagarmid et al. 1988]).
Surveys of the important algorithms are included in [Elmagarmid 1986], [Knapp
1987], and [Singhal 1989].

Snapshot isolation has received significant attention in recent years. Although
Oracle had implemented SI since its early versions, the concept was formally
defined in [Berenson et al. 1995]. One line of work that we did not cover In
this chapter, is to how to get serializable execution even when SI is used as the
correctness criterion. This line of work modifies the concurrency control algorithm
by detecting the anomalies that are caused by SI that lead to data inconsistency, and
preventing them [Cahill et al. 2009, Alomari et al. 2009, Revilak et al. 2011, Alomari
et al. 2008] and these techniques have started to be incorporated into systems, e.g.,
PostgreSQL [Ports and Grittner 2012]. The first SI concurrency control algorithm is
due to Schenkel et al. [2000], focusing on concurrency control on data integration
systems using SI. We based our discussion In this chapter, on the ConfluxDB system
[Chairunnanda et al. 2014]; other work in this direction is by Binnig et al. [2014],
where more refined techniques are developed.

Kohler [1981] presents a general discussion of the reliability issues in distributed
database systems. Hadzilacos [1988] gives a formalization of the reliability concept.
The reliability aspects of System R* are given in [Traiger et al. 1982], whereas
Hammer and Shipman [1980] describe the same for the SDD-1 system.

More detailed material on the functions of the local recovery manager can be
found in [Verhofstadt 1978, Härder and Reuter 1983]. Implementation of the local
recovery functions in System R is described in [Gray et al. 1981].

The two-phase commit protocol is first described in [Gray 1979]. Modifications
to it are presented in [Mohan and Lindsay 1983]. The definition of three-phase com-
mit is due to Skeen [1981, 1982b]. Formal results on the existence of nonblocking
termination protocols are due to Skeen and Stonebraker [1983].

Paxos was originally proposed by Lamport [1998]. This paper is considered hard
to read, which has resulted in a number of different papers describing the protocol.
Lamport [2001] gives a significantly simplified description, while Van Renesse and
Altinbuken [2015] provide a description that is perhaps between these two points
and is a good paper to study. The Paxos 2PC we briefly highlighted is proposed
by Gray and Lamport [2006]. For a discussion of how to engineer a Paxos-based
system, [Chandra et al. 2007] and [Kirsch and Amir 2008] are recommended. There
are many different versions of Paxos—too many to list here—that has resulted in
Paxos to be referred to it as a “family of protocols”. We do not provide references to
each of these. We also note that Paxos is not the only consensus algorithm; a number
of alternatives have been proposed particularly as blockchains have become popular
(see our discussion of blockchain in Chap. 9). This list is growing fast, which is why

244 5 Distributed Transaction Processing

we do not give references. One algorithm, Raft, has been proposed in response to
complexity and perceived difficulty in understanding Paxos. The original proposal
is by Ongaro and Ousterhout [2014] and it is described nicely in Chapter 23 of
[Silberschatz et al. 2019].

As noted earlier, we do not address Byzantine failures in this chapter. The Paxos
protocol also does not address these failures. A good description of how to deal with
these types of failures is discussed by Castro and Liskov [1999].

Regarding more recent relevant work, Tu et al. [2013] discuss scale-up trans-
action processing on a single multicore machine. Kemper and Neumann [2011]
discuss transaction management issues in a hybrid OLAP/OLTP environment within
the context of the HyPer main-memory system. Similarly, Larson et al. [2011]
discuss the same issue within the context of the Hekaton system. The E-store system
that we discussed in Chap. 2 as part of adaptive data partitioning also addresses
transaction management in partitioned distributed DBMSs. As noted there, E-
store uses Squall [Elmore et al. 2015] that considers transactions in deciding data
movement. Thomson and Abadi [2010] propose Calvin that combine a deadlock
avoidance technique with concurrency control algorithms to obtain histories that
are guaranteed to be equivalent to a predetermined serial ordering in replicated,
distributed DBMSs.

Exercises

Problem 5.1 Which of the following histories are conflict equivalent?

H1 ={W2(x),W1(x), R3(x), R1(x),W2(y), R3(y), R3(z), R2(x)}
H2 ={R3(z), R3(y),W2(y), R2(z),W1(x), R3(x),W2(x), R1(x)}
H3 ={R3(z),W2(x),W2(y), R1(x), R3(x), R2(z), R3(y),W1(x)}
H4 ={R2(z),W2(x),W2(y),W1(x), R1(x), R3(x), R3(z), R3(y)}

Problem 5.2 Which of the above histories H1 − H4 are serializable?

Problem 5.3 Give a history of two complete transactions which is not allowed by
a strict 2PL scheduler but is accepted by the basic 2PL scheduler.

Problem 5.4 (*) One says that history H is recoverable if, whenever transaction
Ti reads (some item x) from transaction Tj (i �= j) in H and Ci occurs in H , then
Cj ≺S Ci . Ti “reads x from” Tj in H if

1. Wj(x) ≺H Ri(x), and
2. Aj not ≺H Ri(x), and
3. if there is some Wk(x) such that Wj(x) ≺H Wk(x) ≺H Ri(x), then Ak ≺H

Ri(x).

Exercises 245

Which of the following histories are recoverable?

H1 ={W2(x),W1(x), R3(x), R1(x), C1,W2(y), R3(y), R3(z), C3, R2(x), C2}
H2 ={R3(z), R3(y),W2(y), R2(z),W1(x), R3(x),W2(x), R1(x), C1, C2, C3}
H3 ={R3(z),W2(x),W2(y), R1(x), R3(x), R2(z), R3(y), C3,W1(x), C2, C1}
H4 ={R2(z),W2(x),W2(y), C2,W1(x), R1(x), A1, R3(x), R3(z), R3(y), C3}

Problem 5.5 (*) Give the algorithms for the transaction managers and the lock
managers for the distributed two-phase locking approach.

Problem 5.6 (**) Modify the centralized 2PL algorithm to handle phantom read.
Phantom read occurs when two reads are executed within a transaction and the
result returned by the second read contains tuples that do not exist in the first one.
Consider the following example based on the airline reservation database discussed
early in this chapter: Transaction T1, during its execution, searches the FC table for
the names of customers who have ordered a special meal. It gets a set of CNAME
for customers who satisfy the search criteria. While T1 is executing, transaction T2
inserts new tuples into FC with the special meal request, and commits. If T1 were to
re-issue the same search query later in its execution, it will get back a set of CNAME
that is different than the original set it had retrieved. Thus, “phantom” tuples have
appeared in the database.

Problem 5.7 Timestamp ordering-based concurrency control algorithms depend on
either an accurate clock at each site or a global clock that all sites can access (the
clock can be a counter). Assume that each site has its own clock which “ticks”
every 0.1 second. If all local clocks are resynchronized every 24 hours, what is the
maximum drift in seconds per 24 hours permissible at any local site to ensure that a
timestamp-based mechanism will successfully synchronize transactions?

Problem 5.8 (**) Incorporate the distributed deadlock strategy described In this
chapter, into the distributed 2PL algorithms that you designed in Problem 5.5.

Problem 5.9 Explain the relationship between transaction manager storage
requirement and transaction size (number of operations per transaction) for a
transaction manager using an optimistic timestamp ordering for concurrency
control.

Problem 5.10 (*) Give the scheduler and transaction manager algorithms for the
distributed optimistic concurrency controller described in this chapter.

Problem 5.11 Recall from the discussion in Sect. 5.6 that the computational model
that is used in our descriptions in this chapter is a centralized one. How would
the distributed 2PL transaction manager and lock manager algorithms change if a
distributed execution model were to be used?

246 5 Distributed Transaction Processing

Problem 5.12 It is sometimes claimed that serializability is quite a restrictive
correctness criterion. Can you give examples of distributed histories that are correct
(i.e., maintain the consistency of the local databases as well as their mutual
consistency) but are not serializable?

Problem 5.13 (*) Discuss the site failure termination protocol for 2PC using a
distributed communication topology.

Problem 5.14 (*)
Design a 3PC protocol using the linear communication topology.

Problem 5.15 (*) In our presentation of the centralized 3PC termination protocol,
the first step involves sending the coordinator’s state to all participants. The
participants move to new states according to the coordinator’s state. It is possible
to design the termination protocol such that the coordinator, instead of sending its
own state information to the participants, asks the participants to send their state
information to the coordinator. Modify the termination protocol to function in this
manner.

Problem 5.16 (**) In Sect. 5.4.6 we claimed that a scheduler which implements a
strict concurrency control algorithm will always be ready to commit a transaction
when it receives the coordinator’s “prepare” message. Prove this claim.

Problem 5.17 (**) Assuming that the coordinator is implemented as part of the
transaction manager and the participant as part of the scheduler, give the transaction
manager, scheduler, and the local recovery manager algorithms for a nonreplicated
distributed DBMS under the following assumptions.

(a) The scheduler implements a distributed (strict) two-phase locking concurrency
control algorithm.

(b) The commit protocol log records are written to a central database log by the
LRM when it is called by the scheduler.

(c) The LRM may implement any of the protocols that have been discussed
(e.g., fix/no-flush or others). However, it is modified to support the distributed
recovery procedures as we discussed in Sect. 5.4.6.

Problem 5.18 (*) Write the detailed algorithms for the no-fix/no-flush local recov-
ery manager.

Problem 5.19 (**) Assume that

(a) The scheduler implements a centralized two-phase locking concurrency control,
(b) The LRM implements no-fix/no-flush protocol.

Give detailed algorithms for the transaction manager, scheduler, and local recovery
managers.

Chapter 6
Data Replication

As we discussed in previous chapters, distributed databases are typically replicated.
The purposes of replication are multiple:

1. System availability. As discussed in Chap. 1, distributed DBMSs may remove
single points of failure by replicating data, so that data items are accessible
from multiple sites. Consequently, even when some sites are down, data may
be accessible from other sites.

2. Performance. As we have seen previously, one of the major contributors to
response time is the communication overhead. Replication enables us to locate
the data closer to their access points, thereby localizing most of the access that
contributes to a reduction in response time.

3. Scalability. As systems grow geographically and in terms of the number of sites
(consequently, in terms of the number of access requests), replication allows for
a way to support this growth with acceptable response times.

4. Application requirements. Finally, replication may be dictated by the appli-
cations, which may wish to maintain multiple data copies as part of their
operational specifications.

Although data replication has clear benefits, it poses the considerable challenge
of keeping different copies synchronized. We will discuss this shortly, but let us first
consider the execution model in replicated databases. Each replicated data item x

has a number of copies x1, x2, . . . , xn. We will refer to x as the logical data item
and to its copies (or replicas)1 as physical data items. If replication transparency is
to be provided, user transactions will issue read and write operations on the logical
data item x. The replica control protocol is responsible for mapping these operations
to reads and writes on the physical data items x1, . . . , xn. Thus, the system behaves
as if there is a single copy of each data item—referred to as single system image or
one-copy equivalence. The specific implementation of the Read and Write interfaces

1In this chapter, we use the terms “replica,” “copy,” and “physical data item” interchangeably.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_6

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_6

248 6 Data Replication

of the transaction monitor differs according to the specific replication protocol, and
we will discuss these differences in the appropriate sections.

There are a number of decisions and factors that impact the design of replication
protocols. Some of these were discussed in previous chapters, while others will be
discussed here.

• Database design. As discussed in Chap. 2, a distributed database may be fully or
partially replicated. In the case of a partially replicated database, the number of
physical data items for each logical data item may vary, and some data items may
even be nonreplicated. In this case, transactions that access only nonreplicated
data items are local transactions (since they can be executed locally at one site)
and their execution typically does not concern us here. Transactions that access
replicated data items have to be executed at multiple sites and they are global
transactions.

• Database consistency. When global transactions update copies of a data item
at different sites, the values of these copies may be different at a given point in
time. A replicated database is said to be mutually consistent if all the replicas of
each of its data items have identical values. What differentiates different mutual
consistency criteria is how tightly synchronized replicas have to be. Some ensure
that replicas are mutually consistent when an update transaction commits; thus,
they are usually called strong consistency criteria. Others take a more relaxed
approach, and are referred to as weak consistency criteria.

• Where updates are performed. A fundamental design decision in designing
a replication protocol is where the database updates are first performed. The
techniques can be characterized as centralized if they perform updates first
on a master copy, versus distributed if they allow updates over any replica.
Centralized techniques can be further identified as single master when there is
only one master database copy in the system, or primary copy where the master
copy of each data item may be different.2

• Update propagation. Once updates are performed on a replica (master or
otherwise), the next decision is how updates are propagated to the others. The
alternatives are identified as eager versus lazy. Eager techniques perform all
of the updates within the context of the global transaction that has initiated
the write operations. Thus, when the transaction commits, its updates will
have been applied to all of the copies. Lazy techniques, on the other hand,
propagate the updates sometime after the initiating transaction has committed.
Eager techniques are further identified according to when they push each write
to the other replicas—some push each write operation individually, others batch
the writes and propagate them at the commit point.

2Centralized techniques are referred to, in the literature, as single master, while distributed ones
are referred to as multimaster or update anywhere. These terms, in particular “single master,”
are confusing, since they refer to alternative architectures for implementing centralized protocols
(more on this in Sect. 6.2.3). Thus, we prefer the more descriptive terms “centralized” and
“distributed.”

6.1 Consistency of Replicated Databases 249

• Degree of replication transparency. Certain replication protocols require each
user application to know the master site where the transaction operations are to be
submitted. These protocols provide only limited replication transparency to user
applications. Other protocols provide full replication transparency by involving
the TM at each site. In this case, user applications submit transactions to their
local TMs rather than the master site.

We discuss consistency issues in replicated databases in Sect. 6.1, and analyze
centralized versus distributed update application as well as update propagation
alternatives in Sect. 6.2. This will lead us to a discussion of the specific protocols
in Sect. 6.3. In Sect. 6.4, we discuss the use of group communication primitives
in reducing the messaging overhead of replication protocols. In these sections, we
will assume that no failures occur so that we can focus on the replication protocols.
We will then introduce failures and investigate how protocols are revised to handle
failures in Sect. 6.5.

6.1 Consistency of Replicated Databases

There are two issues related to consistency of a replicated database. One is mutual
consistency, as discussed above, that deals with the convergence of the values
of physical data items corresponding to one logical data item. The second is
transaction consistency as we discussed in Chap. 5. Serializability, which we
introduced as the transaction consistency criterion needs to be recast in the case of
replicated databases. In addition, there are relationships between mutual consistency
and transaction consistency. In this section, we first discuss mutual consistency
approaches and then focus on the redefinition of transaction consistency and its
relationship to mutual consistency.

6.1.1 Mutual Consistency

As indicated earlier, mutual consistency criteria for replicated databases can be
either strong or weak. Each is suitable for different classes of applications with
different consistency requirements.

Strong mutual consistency criteria require that all copies of a data item have the
same value at the end of the execution of an update transaction. This is achieved
by a variety of means, but the execution of 2PC at the commit point of an update
transaction is a common way to achieve strong mutual consistency.

Weak mutual consistency criteria do not require the values of replicas of a data
item to be identical when an update transaction terminates. What is required is that,
if the update activity ceases for some time, the values eventually become identical.
This is commonly referred to as eventual consistency, which refers to the fact that

250 6 Data Replication

replica values may diverge over time, but will eventually converge. It is hard to
define this concept formally or precisely, although the following definition by Saito
and Shapiro is probably as precise as one can hope to get:

A replicated [data item] is eventually consistent when it meets the following conditions,
assuming that all replicas start from the same initial state.

• At any moment, for each replica, there is a prefix of the [history] that is equivalent to
a prefix of the [history] of every other replica. We call this a committed prefix for the
replica.

• The committed prefix of each replica grows monotonically over time.
• All nonaborted operations in the committed prefix satisfy their preconditions.
• For every submitted operation α, either α or [its abort] will eventually be included in the

committed prefix.

It should be noted that this definition of eventual consistency is rather strong—in
particular the requirements that history prefixes are the same at any given moment
and that the committed prefix grows monotonically. Many systems that claim to
provide eventual consistency would violate these requirements.

Epsilon serializability (ESR) allows a query to see inconsistent data while
replicas are being updated, but requires that the replicas converge to a one-copy
equivalent state once the updates are propagated to all of the copies. It bounds
the error on the read values by an epsilon (ε) value, which is defined in terms
of the number of updates (write operations) that a query “misses.” Given a read-
only transaction (query) TQ, let TU be the set of all the update transactions that are
executing concurrently with TQ. If RS(TQ)

⋂
WS(TU) �= ∅ (TQ is reading some

copy of some data items while a transaction in TU is updating (possibly a different)
copy of those data items), then there is a read–write conflict and TQ may be reading
inconsistent data. The inconsistency is bounded by the changes performed by TU .
Clearly, ESR does not sacrifice database consistency, but only allows read-only
transactions (queries) to read inconsistent data. For this reason, it has been claimed
that ESR does not weaken database consistency, but “stretches” it.

Other looser bounds have also been discussed. It has even been suggested
that users should be allowed to specify freshness constraints that are suitable for
particular applications and the replication protocols should enforce these. The types
of freshness constraints that can be specified are the following:

• Time-bound constraints. Users may accept divergence of physical copy values
up to a certain time interval: xi may reflect the value of an update at time t , while
xj may reflect the value at t − 	 and this may be acceptable.

• Value-bound constraints. It may be acceptable to have values of all physical
data items within a certain range of each other. The user may consider the
database to be mutually consistent if the values do not diverge more than a certain
amount (or percentage).

• Drift constraints on multiple data items. For transactions that read multiple
data items, users may be satisfied if the time drift between the update timestamps
of two data items is less than a threshold (i.e., they were updated within that
threshold) or, in the case of aggregate computation, if the aggregate computed

6.1 Consistency of Replicated Databases 251

over a data item is within a certain range of the most recent value (i.e., even if the
individual physical copy values may be more out of sync than this range, as long
as a particular aggregate computation is within range, it may be acceptable).

An important criterion in analyzing protocols that employ criteria that allow
replicas to diverge is degree of freshness. The degree of freshness of a given replica
xi at time t is defined as the proportion of updates that have been applied at xi at
time t to the total number of updates.

6.1.2 Mutual Consistency Versus Transaction Consistency

Mutual consistency, as we have defined it here, and transactional consistency as
we discussed in Chap. 5 are related, but different. Mutual consistency refers to the
replicas converging to the same value, while transaction consistency requires that
the global execution history be serializable. It is possible for a replicated DBMS
to ensure that data items are mutually consistent when a transaction commits, but
the execution history may not be globally serializable. This is demonstrated in the
following example.

Example 6.1 Consider three sites (A, B, and C) and three data items (x, y, z) that
are distributed as follows: site A hosts x, site B hosts x, y, site C hosts x, y, z. We
will use site identifiers as subscripts on the data items to refer to a particular replica.

Now consider the following three transactions:

T1: x ← 20 T2: Read(x) T3: Read(x)
Write(x) y ← x + y Read(y)
Commit Write(y) z ← (x ∗ y)/100

Commit Write(z)
Commit

Note that T1’s Write has to be executed at all three sites (since x is replicated
at all three sites), T2’s Write has to be executed at B and C, and T3’s Write has
to be executed only at C. We are assuming a transaction execution model where
transactions can read their local replicas, but have to update all of the replicas.

Assume that the following three local histories are generated at the sites:

HA = {W1(xA), C1}
HB = {W1(xB), C1, R2(xB),W2(yB), C2}
HC = {W2(yC), C2, R3(xC), R3(yC),W3(zC), C3,W1(xC), C1}

The serialization order in HB is T1 → T2, while in HC it is T2 → T3 → T1.
Therefore, the global history is not serializable. However, the database is mutually
consistent. Assume, for example, that initially xA = xB = xC = 10, yB = yC =

252 6 Data Replication

15, and zC = 7. With the above histories, the final values will be xA = xB =
xC = 20, yB = yC = 35, zC = 3.5. All the physical copies (replicas) have indeed
converged to the same value. �

Of course, it is possible for the database to be mutually inconsistent and the
execution history to be globally nonserializable, as demonstrated in the following
example.

Example 6.2 Consider two sites (A and B), and one data item (x) that is replicated
at both sites (xA and xB). Further consider the following two transactions:

T1: Read(x) T2: Read(x)
x ← x + 5 x ← x ∗ 10
Write(x) Write(x)
Commit Commit

Assume that the following two local histories are generated at the two sites (again
using the execution model of the previous example):

HA = {R1(xA),W1(xA), C1, R2(xA),W2(xA), C2}
HB = {R2(xB),W2(xB), C2, R1(xB),W1(xB), C1}

Although both of these histories are serial, they serialize T1 and T2 in reverse
order; thus, the global history is not serializable. Furthermore, the mutual consis-
tency is violated as well. Assume that the value of x prior to the execution of these
transactions was 1. At the end of the execution of these schedules, the value of x

is 60 at site A, while it is 15 at site B. Thus, in this example, the global history is
nonserializable, and the databases are mutually inconsistent. �

Given the above observation, the transaction consistency criterion given in
Chap. 5 is extended in replicated databases to define one-copy serializability.One-
copy serializability (1SR) states that the effects of transactions on replicated data
items should be the same as if they had been performed one at-a-time on a single set
of data items. In other words, the histories are equivalent to some serial execution
over nonreplicated data items.

Snapshot isolation that we introduced in Chap. 5 has also been extended for repli-
cated databases and used as an alternative transactional consistency criterion within
the context of replicated databases. Similarly, a weaker form of serializability, called
relaxed concurrency (RC-)serializability has been defined that corresponds to read-
committed isolation level.

6.2 Update Management Strategies

As discussed earlier, the replication protocols can be classified according to when
the updates are propagated to copies (eager versus lazy) and where updates are

6.2 Update Management Strategies 253

allowed to occur (centralized versus distributed). These two decisions are generally
referred to as update management strategies. In this section, we discuss these
alternatives before we present protocols in the next section.

6.2.1 Eager Update Propagation

The eager update propagation approaches apply the changes to all the replicas within
the context of the update transaction. Consequently, when the update transaction
commits, all the copies have the same value. Typically, eager propagation techniques
use 2PC at commit point, but, as we will see later, alternatives are possible to achieve
agreement. Furthermore, eager propagation may use synchronous propagation of
each update by applying it on all the replicas at the same time (when the Write is
issued), or deferred propagation whereby the updates are applied to one replica
when they are issued, but their application on the other replicas is batched and
deferred to the end of the transaction. Deferred propagation can be implemented
by including the updates in the “Prepare-to-Commit” message at the start of 2PC
execution.

Eager techniques typically enforce strong mutual consistency criteria. Since all
the replicas are mutually consistent at the end of an update transaction, a subsequent
read can read from any copy (i.e., one can map a R(x) to R(xi) for any xi). However,
a W(x) has to be applied to all replicas (i.e., W(xi),∀xi). Thus, protocols that follow
eager update propagation are known as read-one/write-all (ROWA) protocols.

The advantages of eager update propagation are threefold. First, they typically
ensure that mutual consistency is enforced using 1SR; therefore, there are no
transactional inconsistencies. Second, a transaction can read a local copy of the
data item (if a local copy is available) and be certain that an up-to-date value is read.
Thus, there is no need to do a remote read. Finally, the changes to replicas are done
atomically; thus, recovery from failures can be governed by the protocols we have
already studied in the previous chapter.

The main disadvantage of eager update propagation is that a transaction has to
update all the copies before it can terminate. This has two consequences. First, the
response time performance of the update transaction suffers, since it typically has
to participate in a 2PC execution, and because the update speed is restricted by the
slowest machine. Second, if one of the copies is unavailable, then the transaction
cannot terminate since all the copies need to be updated. As discussed in Chap. 5,
if it is possible to differentiate between site failures and network failures, then one
can terminate the transaction as long as only one replica is unavailable (recall that
more than one site unavailability causes 2PC to be blocking), but it is generally not
possible to differentiate between these two types of failures.

254 6 Data Replication

6.2.2 Lazy Update Propagation

In lazy update propagation the replica updates are not all performed within the
context of the update transaction. In other words, the transaction does not wait until
its updates are applied to all the copies before it commits—it commits as soon as
one replica is updated. The propagation to other copies is done asynchronously from
the original transaction, by means of refresh transactions that are sent to the replica
sites some time after the update transaction commits. A refresh transaction carries
the sequence of updates of the corresponding update transaction.

Lazy propagation is used in those applications for which strong mutual consis-
tency may be unnecessary and too restrictive. These applications may be able to
tolerate some inconsistency among the replicas in return for better performance.
Examples of such applications are Domain Name Service (DNS), databases over
geographically widely distributed sites, mobile databases, and personal digital
assistant databases. In these cases, usually weak mutual consistency is enforced.

The primary advantage of lazy update propagation techniques is that they
generally have lower response times for update transactions, since an update
transaction can commit as soon as it has updated one copy. The disadvantages
are that the replicas are not mutually consistent and some replicas may be out-of-
date, and consequently, a local read may read stale data and does not guarantee
to return the up-to-date value. Furthermore, under some scenarios that we will
discuss later, transactions may not see their own writes, i.e., Ri(x) of an update
transaction Ti may not see the effects of Wi(x) that was executed previously. This
has been referred to as transaction inversion. Strong one-copy serializability (strong
1SR) and strong snapshot isolation (strong SI) prevent all transaction inversions at
1SR and SI isolation levels, respectively, but are expensive to provide. The weaker
guarantees of 1SR and global SI, while being much less expensive to provide
than their stronger counterparts, do not prevent transaction inversions. Session-level
transactional guarantees at the 1SR and SI isolation levels have been proposed that
address these shortcomings by preventing transaction inversions within a client
session but not necessarily across sessions. These session-level guarantees are
less costly to provide than their strong counterparts while preserving many of the
desirable properties of the strong counterparts.

6.2.3 Centralized Techniques

Centralized update propagation techniques require that updates are first applied at a
master copy and then propagated to other copies (which are called slaves). The site
that hosts the master copy is similarly called the master site, while the sites that host
the slave copies for that data item are called slave sites.

In some techniques, there is a single master for all replicated data. We refer to
these as single master centralized techniques. In other protocols, the master copy

6.3 Replication Protocols 255

for each data item may be different (i.e., for data item x, the master copy may be
xi stored at site Si , while for data item y, it may be yj stored at site Sj). These are
typically known as primary copy centralized techniques.

The advantages of centralized techniques are twofold. First, application of the
updates is easy since they happen at only the master site, and they do not require
synchronization among multiple replica sites. Second, there is the assurance that
at least one site—the site that holds the master copy—has up-to-date values for
a data item. These protocols are generally suitable in data warehouses and other
applications where data processing is centralized at one or a few master sites.

The primary disadvantage is that, as in any centralized algorithm, if there is
one central site that hosts all of the masters, this site can be overloaded and can
become a bottleneck. Distributing the master site responsibility for each data item
as in primary copy techniques is one way of reducing this overhead, but it raises
consistency issues, in particular with respect to maintaining global serializability in
lazy replication techniques, since the refresh transactions have to be executed at the
replicas in the same serialization order. We discuss these further in relevant sections.

6.2.4 Distributed Techniques

Distributed techniques apply the update on the local copy at the site where the
update transaction originates, and then the updates are propagated to the other
replica sites. These are called distributed techniques since different transactions
can update different copies of the same data item located at different sites. They
are appropriate for collaborative applications with distributive decision/operation
centers. They can more evenly distribute the load, and may provide the highest
system availability if coupled with lazy propagation techniques.

A serious complication that arises in these systems is that different replicas of a
data item may be updated at different sites (masters) concurrently. If distributed
techniques are coupled by eager propagation methods, then the distributed con-
currency control methods can adequately address the concurrent updates problem.
However, if lazy propagation methods are used, then transactions may be executed
in different orders at different sites causing non-1SR global history. Furthermore,
various replicas will get out of sync. To manage these problems, a reconciliation
method is applied involving undoing and redoing transactions in such a way that
transaction execution is the same at each site. This is not an easy issue since
reconciliation is generally application dependent.

6.3 Replication Protocols

In the previous section, we discussed two dimensions along which update manage-
ment techniques can be classified. These dimensions are orthogonal; therefore, four

256 6 Data Replication

combinations are possible: eager centralized, eager distributed, lazy centralized, and
lazy distributed. We discuss each of these alternatives in this section. For simplicity
of exposition, we assume a fully replicated database, which means that all update
transactions are global. We further assume that each site implements a 2PL-based
concurrency control technique.

6.3.1 Eager Centralized Protocols

In eager centralized replica control, a master site controls the operations on a
data item. These protocols are coupled with strong consistency techniques, so that
updates to a logical data item are applied to all of its replicas within the context
of the update transaction, which is committed using the 2PC protocol (although
non-2PC alternatives exist as we discuss shortly). Consequently, once the update
transaction completes, all replicas have the same values for the updated data items
(i.e., mutually consistent), and the resulting global history is 1SR.

The two design parameters that we discussed earlier determine the specific
implementation of eager centralized replica protocols: where updates are performed,
and degree of replication transparency. The first parameter, which was discussed in
Sect. 6.2.3, refers to whether there is a single master site for all data items (single
master), or different master sites for each, or, more likely, for a group of data items
(primary copy). The second parameter indicates whether each application knows
the location of the master copy (limited application transparency) or whether it can
rely on its local TM for determining the location of the master copy (full replication
transparency).

6.3.1.1 Single Master with Limited Replication Transparency

The simplest case is to have a single master for the entire database (i.e., for all
data items) with limited replication transparency so that user applications know the
master site. In this case, global update transactions (i.e., those that contain at least
one W(x) operation, where x is a replicated data item) are submitted directly to
the master site—more specifically, to the TM at the master site. At the master, each
R(x) operation is performed on the master copy (i.e., R(x) is converted to R(xM),
where M signifies master copy) and executed as follows: a read lock is obtained on
xM, the read is performed, and the result is returned to the user. Similarly, each W(x)

causes an update of the master copy [i.e., executed as W(xM)] by first obtaining a
write lock and then performing the write operation. The master TM then forwards
the Write to the slave sites either synchronously or in a deferred fashion (Fig. 6.1).
In either case, it is important to propagate updates such that conflicting updates are
executed at the slaves in the same order they are executed at the master. This can be
achieved by timestamping or by some other ordering scheme.

6.3 Replication Protocols 257

Master
Site

Slave
Site A

Slave
Site B

Slave
Site C

Update Transaction
Op(x) . . . Commit

Read-only Transaction.
Read(x) . . .

1

2

3 4

Fig. 6.1 Eager single master replication protocol actions. (1) A Write is applied on the master
copy; (2) Write is then propagated to the other replicas; (3) Updates become permanent at commit
time; (4) Read-only transaction’s Read goes to any slave copy

The user application may submit a read-only transaction (i.e., all operations are
Read) to any slave site. The execution of read-only transactions at the slaves can
follow the process of centralized concurrency control algorithms, such as C2PL
(Algorithms 5.1–5.3), where the centralized lock manager resides at the master
replica site. Implementations within C2PL require minimal changes to the TM at
the nonmaster sites, primarily to deal with the Write operations as described above,
and its consequences (e.g., in the processing of Commit command). Thus, when a
slave site receives a Read operation (from a read-only transaction), it forwards it to
the master site to obtain a read lock. The Read can then be executed at the master
and the result returned to the application, or the master can simply send a “lock
granted” message to the originating site, which can then execute the Read on the
local copy.

It is possible to reduce the load on the master by performing the Read on the
local copy without obtaining a read lock from the master site. Whether synchronous
or deferred propagation is used, the local concurrency control algorithm ensures that
the local read–write conflicts are properly serialized, and since the Write operations
can only be coming from the master as part of update propagation, local write–write
conflicts will not occur as the propagation transactions are executed in each slave
in the order dictated by the master. However, a Read may read data item values at
a slave either before an update is installed or after. The fact that a Read from one
transaction at one slave site may read the value of one replica before an update,
while another Read from another transaction reads another replica at another slave
after the same update is inconsequential from the perspective of ensuring global
1SR histories. This is demonstrated by the following example.

Example 6.3 Consider a data item x whose master site is at site A with slaves at
sites B and C. Consider the following three transactions:

T1: Write(x) T2: Read(x) T3: Read(x)
Commit Commit Commit

Assume that T2 is sent to slave at site B and T3 to slave at site C. Assume that
T2 reads x at B [R2(xB)] before T1’s update is applied at B, while T3 reads x at C

258 6 Data Replication

[R3(xC)] after T1’s update at C. Then the histories generated at the two slaves will
be as follows:

HB = {R2(x), C2,W1(x), C1}
HC = {W1(x), C1, R3(x), C3}

The serialization order at site B is T2 → T1, while at site C it is T1 → T3. The
global serialization order, therefore, is T2 → T1 → T3, which is fine. Therefore the
history is 1SR. �

Consequently, if this approach is followed, read transactions may read data that
are concurrently updated at the master, but the global history will still be 1SR.

In this alternative protocol, when a slave site Si receives a R(x), it obtains a local
read lock, reads from its local copy [i.e., R(xi)], and returns the result to the user
application; this can only come from a read-only transaction. When it receives a
W(x), if this is coming from the master site, then it performs it on the local copy
[i.e., Wi(xi)]. If it is from a user application, then it rejects W(x), since this is
obviously an error given that update transactions have to be submitted to the master
site.

These alternatives of a single master eager centralized protocol are simple to
implement. One important issue to address is how one recognizes a transaction as
“update” or “read-only”—it may be possible to do this by explicit declaration within
the Begin_transaction command.

6.3.1.2 Single Master with Full Replication Transparency

Single master eager centralized protocols require each user application to know the
master site, and they put significant load on the master that has to deal with (at least)
the Read operations within update transactions as well as acting as the coordinator
for these transactions during 2PC execution. These issues can be addressed, to some
extent, by involving, in the execution of the update transactions, the TM at the site
where the application runs. Thus, the update transactions are not submitted to the
master, but to the TM at the site where the application runs (since they do not need
to know the master). This TM can act as the coordinating TM for both update and
read-only transactions. Applications can simply submit their transactions to their
local TM, providing full transparency.

There are alternatives to implementing full transparency—the coordinating TM
may only act as a “router,” forwarding each operation directly to the master site. The
master site can then execute the operations locally (as described above) and return
the results to the application. Although this alternative implementation provides full
transparency and has the advantage of being simple to implement, it does not address
the overloading problem at the master. An alternative implementation may be as
follows:

6.3 Replication Protocols 259

1. The coordinating TM sends each operation, as it gets it, to the central (master)
site. This requires no change to the C2PL-TM algorithm (Algorithm 5.1).

2. If the operation is a R(x), then the centralized lock manager (C2PL-LM in
Algorithm 5.2) can proceed by setting a read lock on its copy of x (call it xM) on
behalf of this transaction and informs the coordinating TM that the read lock is
granted. The coordinating TM can then forward the R(x) to any slave site that
holds a replica of x [i.e., converts it to a R(xi)]. The read can then be carried out
by the data processor (DP) at that slave.

3. If the operation is a W(x), then the centralized lock manager (master) proceeds
as follows:

(a) It first sets a write lock on its copy of xM.
(b) It then calls its local DP to perform W(xM) on its own copy.
(c) Finally, it informs the coordinating TM that the write lock is granted.

The coordinating TM, in this case, sends the W(x) to all the slaves where a copy
of x exists; the DPs at these slaves apply the Write to their local copies.

The fundamental difference in this case is that the master site does not deal with
Read or with the coordination of the updates across replicas. These are left to the
TM at the site where the user application runs.

It is straightforward to see that this algorithm guarantees that the histories are
1SR since the serialization orders are determined at a single master (similar to
centralized concurrency control algorithms). It is also clear that the algorithm
follows the ROWA protocol, as discussed above—since all the copies are ensured to
be up-to-date when an update transaction completes, a Read can be performed on
any copy.

To demonstrate how eager algorithms combine replica control and concurrency
control, we show the Transaction Management algorithm for the coordinating
TM (Algorithm 6.1) and the Lock Management algorithm for the master site
(Algorithm 6.2). We show only the revisions to the centralized 2PL algorithms
(Algorithms 5.1 and 5.2 in Chap. 5).

Note that in the algorithm fragments that we have given, the LM simply
sends back a “Lock granted” message and not the result of the update operation.
Consequently, when the update is forwarded to the slaves by the coordinating TM,
they need to execute the update operation themselves. This is sometimes referred to
as operation transfer. The alternative is for the “Lock granted” message to include
the result of the update computation, which is then forwarded to the slaves who
simply need to apply the result and update their logs. This is referred to as state
transfer. The distinction may seem trivial if the operations are simply in the form
W(x), but recall that this Write operation is an abstraction; each update operation
may require the execution of an SQL expression, in which case the distinction is
quite important.

The above implementation of the protocol relieves some of the load on the master
site and alleviates the need for user applications to know the master. However,
its implementation is more complicated than the first alternative we discussed. In

260 6 Data Replication

Algorithm 6.1: Eager Single Master Modifications to C2PL-TM

begin
.
.
.

if lock request granted then
if op.Type = W then

S ← set of all sites that are slaves for the data item
else

S ← any one site which has a copy of data item
end if
DPS(op) {send operation to all sites in set S}

else
inform user about the termination of transaction

end if
.
.
.

end

Algorithm 6.2: Eager Single Master Modifications to C2PL-LM

begin
.
.
.

switch op.Type do
case R or W do {lock request; see if it can be granted}

find the lock unit lu such that op.arg ⊆ lu ;
if lu is unlocked or lock mode of lu is compatible with op.T ype then

set lock on lu in appropriate mode on behalf of transaction op.tid ;
if op.Type = W then

DPM(op) {call local DP (M for “master”) with operation}
send “Lock granted” to coordinating TM of transaction

else
put op on a queue for lu

end if
end case
.
.
.

end switch
end

particular, now the TM at the site where transactions are submitted has to act as the
2PC coordinator and the master site becomes a participant. This requires some care
in revising the algorithms at these sites.

6.3.1.3 Primary Copy with Full Replication Transparency

Let us now relax the requirement that there is one master for all data items; each
data item can have a different master. In this case, for each replicated data item, one
of the replicas is designated as the primary copy. Consequently, there is no single

6.3 Replication Protocols 261

master to determine the global serialization order, so more care is required. In the
case of fully replicated databases, any replica can be primary copy for a data item;
however, for partially replicated databases, limited replication transparency option
only makes sense if an update transaction accesses only data items whose primary
sites are at the same site. Otherwise, the application program cannot forward the
update transactions to one master; it will have to do it operation-by-operation,
and, furthermore, it is not clear which primary copy master would serve as the
coordinator for 2PC execution. Therefore, the reasonable alternative is the full
transparency support, where the TM at the application site acts as the coordinating
TM and forwards each operation to the primary site of the data item that it acts
on. Figure 6.2 depicts the sequence of operations in this case where we relax our
previous assumption of fully replication. Site A is the master for data item x and
sites B and C hold replicas (i.e., they are slaves); similarly data item y’s master is
site C with slave sites B and D.

Recall that this version still applies the updates to all the replicas within transac-
tional boundaries, requiring integration with concurrency control techniques. A very
early proposal is the primary copy two-phase locking (PC2PL) algorithm proposed
for the prototype distributed version of INGRES. PC2PL is a straightforward
extension of the single master protocol discussed above in an attempt to counter
the latter’s potential performance problems. Basically, it implements lock managers
at a number of sites and makes each lock manager responsible for managing the
locks for a given set of lock units for which it is the master site. The transaction
managers then send their lock and unlock requests to the lock managers that are
responsible for that specific lock unit. Thus the algorithm treats one copy of each
data item as its primary copy.

As a combined replica control/concurrency control technique, primary copy
approach demands a more sophisticated directory at each site, but it also improves
the previously discussed approaches by reducing the load of the master site without
causing a large amount of communication among the transaction managers and lock
managers.

Master(x)

Site A

Slave(x, y)

Site B

Master(y)
Slave(x)
Site C

Slave(y)

Site D

Transaction
Op(x) . . . Op(y) . . . Commit

1
2

1 2

3

3

Fig. 6.2 Eager primary copy replication protocol actions. (1) Operations (Read or Write) for each
data item are routed to that data item’s master and a Write is first applied at the master; (2) Write is
then propagated to the other replicas; (3) Updates become permanent at commit time

262 6 Data Replication

6.3.2 Eager Distributed Protocols

In eager distributed replica control, the updates can originate anywhere, and they are
first applied on the local replica, then the updates are propagated to other replicas.
If the update originates at a site where a replica of the data item does not exist, it is
forwarded to one of the replica sites, which coordinates its execution. Again, all of
these are done within the context of the update transaction, and when the transaction
commits, the user is notified and the updates are made permanent. Figure 6.3 depicts
the sequence of operations for one logical data item x with copies at sites A, B, C,
and D, and where two transactions update two different copies (at sites A and D).

As can be clearly seen, the critical issue is to ensure that concurrent conflicting
Write operations initiated at different sites are executed in the same order at every
site where they execute together (of course, the local executions at each site also
have to be serializable). This is achieved by means of the concurrency control
techniques that are employed at each site. Consequently, read operations can be
performed on any copy, but writes are performed on all copies within transactional
boundaries (e.g., ROWA) using a concurrency control protocol.

6.3.3 Lazy Centralized Protocols

Lazy centralized replication algorithms are similar to eager centralized replication
ones in that the updates are first applied to a master replica and then propagated
to the slaves. The important difference is that the propagation does not take place
within the update transaction, but after the transaction commits as a separate refresh
transaction. Consequently, if a slave site performs a R(x) operation on its local copy,
it may read stale (nonfresh) data, since x may have been updated at the master, but
the update may not have yet been propagated to the slaves.

Site A Site B Site C Site D

Transaction 1
Write (x) ... Commit Write (x) ... Commit

Transaction 2

1
2

12

2

3

3

Fig. 6.3 Eager distributed replication protocol actions. (1) Two Write operations are applied on
two local replicas of the same data item; (2) The Write operations are independently propagated to
the other replicas; (3) Updates become permanent at commit time (shown only for Transaction 1)

6.3 Replication Protocols 263

Master
Site

Slave
Site A

Slave
Site B

Slave
Site C

Transaction 1
Write (x) . . . Commit

Transaction 2
Read (x) . . .

1 2
3

4

Fig. 6.4 Lazy single master replication protocol actions. (1) Update is applied on the local replica;
(2) Transaction commit makes the updates permanent at the master; (3) Update is propagated to
the other replicas in refresh transactions; (4) Transaction 2 reads from local copy

6.3.3.1 Single Master with Limited Transparency

In this case, the update transactions are submitted and executed directly at the master
site (as in the eager single master); once the update transaction commits, the refresh
transaction is sent to the slaves. The sequence of execution steps is as follows: (1)
an update transaction is first applied to the master replica, (2) the transaction is
committed at the master, and then (3) the refresh transaction is sent to the slaves
(Fig. 6.4).

When a slave site receives a R(x), it reads from its local copy and returns the
result to the user. Notice that, as indicated above, its own copy may not be up-to-date
if the master is being updated and the slave has not yet received and executed the
corresponding refresh transaction. A W(x) received by a slave is rejected (and the
transaction aborted), as this should have been submitted directly to the master site.
When a slave receives a refresh transaction from the master, it applies the updates
to its local copy. When it receives a Commit or Abort (Abort can happen for only
locally submitted read-only transactions), it locally performs these actions.

The case of primary copy with limited transparency is similar, so we do not
discuss it in detail. Instead of going to a single master site, W(x) is submitted to the
primary copy of x; the rest is straightforward.

How can it be ensured that the refresh transactions can be applied at all of the
slaves in the same order? In this architecture, since there is a single master copy
for all data items, the ordering can be established by simply using timestamps. The
master site would attach a timestamp to each refresh transaction according to the
commit order of the actual update transaction, and the slaves would apply the refresh
transactions in timestamp order.

A similar approach may be followed in the primary copy, limited transparency
case. In this case, a site contains slave copies of a number of data items, causing
it to get refresh transactions from multiple masters. The execution of these refresh
transactions need to be ordered the same way at all of the involved slaves to ensure

264 6 Data Replication

that the database states eventually converge. There are a number of alternatives that
can be followed.

One alternative is to assign timestamps such that refresh transactions issued from
different masters have different timestamps (by appending the site identifier to a
monotonic counter at each site). Then the refresh transactions at each site can be
executed in their timestamp order. However, those that come out of order cause
difficulty. In traditional timestamp-based techniques discussed in Chap. 5, these
transactions would be aborted; however, in lazy replication, this is not possible
since the transaction has already been committed at the primary copy site. The
only possibility is to run a compensating transaction (which, effectively, aborts
the transaction by rolling back its effects) or to perform update reconciliation that
will be discussed shortly. The issue can be addressed by a more careful study of
the resulting histories. An approach is to use a serialization graph approach that
builds a replication graph whose nodes consist of transactions (T) and sites (S)

and an edge 〈Ti, Sj 〉 exists in the graph if and only if Ti performs a Write on a
(replicated) physical copy that is stored at Sj . When an operation (opk) is submitted,
the appropriate nodes (Tk) and edges are inserted into the replication graph, which
is checked for cycles. If there is no cycle, then the execution can proceed. If a cycle
is detected and it involves a transaction that has committed at the master, but whose
refresh transactions have not yet committed at all of the involved slaves, then the
current transaction (Tk) is aborted (to be restarted later) since its execution would
cause the history to be non-1SR. Otherwise, Tk can wait until the other transactions
in the cycle are completed (i.e., they are committed at their masters and their refresh
transactions are committed at all of the slaves). When a transaction is completed
in this manner, the corresponding node and all of its incident edges are removed
from the replication graph. This protocol is proven to produce 1SR histories. An
important issue is the maintenance of the replication graph. If it is maintained by
a single site, then this becomes a centralized algorithm. We leave the distributed
construction and maintenance of the replication graph as an exercise.

Another alternative is to rely on the group communication mechanism provided
by the underlying communication infrastructure (if it can provide it). We discuss
this alternative in Sect. 6.4.

Recall from Sect. 6.3.1 that, in the case of partially replicated databases, eager
primary copy with limited replication transparency approach makes sense if the
update transactions access only data items whose master sites are the same, since
the update transactions are run completely at a master. The same problem exists in
the case of lazy primary copy, limited replication approach. The issue that arises in
both cases is how to design the distributed database so that meaningful transactions
can be executed. This problem has been studied within the context of lazy protocols
and a primary site selection algorithm was proposed that, given a set of transactions,
a set of sites, and a set of data items, finds a primary site assignment to these data
items (if one exists) such that the set of transactions can be executed to produce a
1SR global history.

6.3 Replication Protocols 265

6.3.3.2 Single Master or Primary Copy with Full Replication
Transparency

We now turn to alternatives that provide full transparency by allowing (both read
and update) transactions to be submitted at any site and forwarding their operations
to either the single master or to the appropriate primary master site. This is tricky
and involves two problems: the first is that, unless one is careful, 1SR global history
may not be guaranteed; the second problem is that a transaction may not see its own
updates. The following two examples demonstrate these problems.

Example 6.4 Consider the single master scenario and two sites M and B, where M
holds the master copies of x and y and B holds their slave copies. Now consider the
following two transactions: T1 submitted at site B, while transaction T2 submitted
at site M:

T1: Read(x) T2: Write(x)
Write(y) Write(y)
Commit Commit

One way these would be executed under full transparency is as follows. T2 would
be executed at site M since it contains the master copies of both x and y. Sometime
after it commits, refresh transactions for its Write operations are sent to site B to
update the slave copies. On the other hand, T1 would read the local copy of x at site
B [R1(xB)], but its W1(x) would be forwarded to x’s master copy, which is at site
M. Some time after W1(x) is executed at the master site and commits there, a refresh
transaction would be sent back to site B to update the slave copy. The following is a
possible sequence of steps of execution (Fig. 6.5):

1. R1(x) is submitted at site B, where it is performed [R1(xB)];
2. W2(x) is submitted at site M, and it is executed [W2(xM)];
3. W2(y) is submitted at site M, and it is executed [W2(yB)];
4. T2 submits its Commit at site M and commits there;
5. W1(x) is submitted at site B; since the master copy of x is at site M, the Write is

forwarded to M;
6. W1(x) is executed at site M [W1(xM)]; and the confirmation is sent back to site B;
7. T1 submits Commit at site B, which forwards it to site M; it is executed there and

B is informed of the commit where T1 also commits;
8. Site M now sends refresh transaction for T2 to site B where it is executed and

commits;
9. Site M finally sends refresh transaction for T1 to site B (this is for T1’s Write that

was executed at the master), it is executed at B and commits.

The following two histories are now generated at the two sites where the
superscript r on operations indicates that they are part of a refresh transaction:

HB = {W2(xM),W2(yM), C2,W1(yM), C1}
HB = {R1(xB), C1,W

r
2 (xB),Wr

2 (yB), Cr
2,Wr

1 (xB), Cr
1}

266 6 Data Replication

Site B Site M

R1(x)

result

R1(x)
W2(x)

OK

W2(x)

W2(y)

OK

W2(y)

C2

OK

C2

W1(x)
W

1(x)

OK

W1(x)

OK

C1
C1

OK

C1

OK

Refresh(T2)

{W2 (x
),W2 (y

)}
R

R

Execute & Commit
Refresh (T2)

OK

OK
Refresh(T1)

{W1 (x
)}R

Execute & Commit
Refresh (T1)

OK

OK
Time

Fig. 6.5 Time sequence of executions of transactions

6.3 Replication Protocols 267

The resulting global history over the logical data items x and y is non-1SR. �
Example 6.5 Again consider a single master scenario, where site M holds the
master copy of x and site D holds its slave. Consider the following simple
transaction:

T3: Write(x)
Read(x)
Commit

Following the same execution model as in Example 6.4, the sequence of steps
would be as follows:

1. W3(x) is submitted at site D, which forwards it to site M for execution;
2. The Write is executed at M [W3(xM)] and the confirmation is sent back to site D;
3. R3(x) is submitted at site D and is executed on the local copy [R3(xD)];
4. T3 submits commit at D, which is forwarded to M, executed there and a

notification is sent back to site D, which also commits the transaction;
5. Site M sends a refresh transaction to site D for the W3(x) operation;
6. Site D executes the refresh transaction and commits it.

Note that, since the refresh transaction is sent to site D sometime after T3
commits at site M, at step 3 when it reads the value of x at site D, it reads the
old value and does not see the value of its own Write that just precedes Read. �

Because of these problems, there are not too many proposals for full transparency
in lazy replication algorithms. A notable exception is an algorithm that considers the
single master case and provides a method for validity testing by the master site, at
commit point, similar to optimistic concurrency control. The fundamental idea is
the following. Consider a transaction T that writes a data item x. At commit time
of transaction T , the master generates a timestamp for it and uses this timestamp
to set a timestamp for the master copy (xM) that records the timestamp of the
last transaction that updated it (last_modif ied(xM)). This is appended to refresh
transactions as well. When refresh transactions are received at slaves they also set
their copies to this same value, i.e., last_modif ied(xi) ← last_modif ied(xM).
The timestamp generation for T at the master follows the following rule:

The timestamp for transaction T should be greater than all previously issued timestamps
and should be less than the last_modif ied timestamps of the data items it has accessed. If
such a timestamp cannot be generated, then T is aborted.3

This test ensures that read operations read correct values. For example, in
Example 6.4, master site M would not be able to assign an appropriate timestamp

3The original proposal handles a wide range of freshness constraints, as we discussed earlier;
therefore, the rule is specified more generically. However, since our discussion primarily focuses
on 1SR behavior, this (more strict) recasting of the rule is appropriate.

268 6 Data Replication

to transaction T1 when it commits, since the last_modif ied(xM) would reflect the
update performed by T2. Therefore, T1 would be aborted.

Although this algorithm handles the first problem we discussed above, it does not
automatically handle the problem of a transaction not seeing its own writes (what
we referred to as transaction inversion earlier). To address this issue, it has been
suggested that a list be maintained of all the updates that a transaction performs
and this list is consulted when a Read is executed. However, since only the master
knows the updates, the list has to be maintained at the master and all the Read and
Write operations have to be executed at the master.

6.3.4 Lazy Distributed Protocols

Lazy distributed replication protocols are the most complex ones owing to the fact
that updates can occur on any replica and they are propagated to the other replicas
lazily (Fig. 6.6).

The operation of the protocol at the site where the transaction is submitted is
straightforward: both Read and Write operations are executed on the local copy,
and the transaction commits locally. Sometime after the commit, the updates are
propagated to the other sites by means of refresh transactions.

The complications arise in processing these updates at the other sites. When
the refresh transactions arrive at a site, they need to be locally scheduled, which
is done by the local concurrency control mechanism. The proper serialization of
these refresh transactions can be achieved using the techniques discussed in previous
sections. However, multiple transactions can update different copies of the same data
item concurrently at different sites, and these updates may conflict with each other.
These changes need to be reconciled, and this complicates the ordering of refresh

Site A Site B Site C Site D

Transaction 1
Write (x) . . . Commit

Transaction 2
Write (x) . . . Commit

1 2
3

1 2

3

Fig. 6.6 Lazy distributed replication protocol actions. (1) Two updates are applied on two local
replicas; (2) Transaction commit makes the updates permanent; (3) The updates are independently
propagated to the other replicas

6.4 Group Communication 269

transactions. Based on the results of reconciliation, the order of execution of the
refresh transactions is determined and updates are applied at each site.

The critical issue here is reconciliation. One can design a general purpose
reconciliation algorithm based on heuristics. For example, updates can be applied in
timestamp order (i.e., those with later timestamps will always win) or one can give
preference to updates that originate at certain sites (perhaps there are more important
sites). However, these are ad hoc methods and reconciliation is really dependent
upon application semantics. Furthermore, whatever reconciliation technique is used,
some of the updates are lost. Note that timestamp-based ordering will only work
if timestamps are based on local clocks that are synchronized. As we discussed
earlier, this is hard to achieve in large-scale distributed systems. Simple timestamp-
based approach, which concatenates a site number and local clock, gives arbitrary
preference between transactions that may have no real basis in application logic. The
reason timestamps work well in concurrency control and not in this case is because
in concurrency control we are only interested in determining some order; here we
are interested in determining a particular order that is consistent with application
semantics.

6.4 Group Communication

As discussed in the previous section, the overhead of replication protocols can be
high—particularly in terms of message overhead. A very simple cost model for
the replication algorithms is as follows. If there are n replicas and each transaction
consists of m update operations, then each transaction issues n ∗ m messages
(if multicast communication is possible, m messages would be sufficient). If the
system wishes to maintain a throughput of k transactions-per-second, this results
in k ∗ n ∗ m messages per second (or k ∗ m in the case of multicasting). One can
add sophistication to this cost function by considering the execution time of each
operation (perhaps based on system load) to get a cost function in terms of time.
The problem with many of the replication protocols discussed above (in particular
the distributed ones) is that their message overhead is high.

A critical issue in efficient implementation of these protocols is to reduce the
message overhead. Solutions have been proposed that use group communication
protocols together with nontraditional techniques for processing local transactions.
These solutions introduce two modifications: they do not employ 2PC at commit
time, but rely on the underlying group communication protocols to ensure agree-
ment, and they use deferred update propagation rather than synchronous.

Let us first review the group communication idea. A group communication
system enables a node to multicast a message to all nodes of a group with a delivery
guarantee, i.e., the message is eventually delivered to all nodes. Furthermore, it
can provide multicast primitives with different delivery orders only one of which
is important for our discussion: total order. In total ordered multicast, all messages

270 6 Data Replication

sent by different nodes are delivered in the same total order at all nodes. This is
important in understanding the following discussion.

We will demonstrate the use of group communication by considering two
protocols. The first one is an alternative eager distributed protocol, while the second
one is a lazy centralized protocol.

The group communication-based eager distributed protocol uses a local pro-
cessing strategy where Write operations are carried out on local shadow copies
where the transaction is submitted and utilizes total ordered group communication
to multicast the set of write operations of the transaction to all the other replica sites.
Total ordered communication guarantees that all sites receive the write operations
in exactly the same order, thereby ensuring identical serialization order at every
site. For simplicity of exposition, in the following discussion, we assume that the
database is fully replicated and that each site implements a 2PL concurrency control
algorithm.

The protocol executes a transaction Ti in four steps (local concurrency control
actions are not indicated):

I. Local processing phase. A Ri(x) operation is performed at the site where it is
submitted (this is the master site for this transaction). A Wi(x) operation is also
performed at the master site, but on a shadow copy (see the previous chapter
for a discussion of shadow paging).

II. Communication phase. If Ti consists only of Read operations, then it can be
committed at the master site. If it involves Write operations (i.e., if it is an update
transaction), then the TM at Ti’s master site (i.e., the site where Ti is submitted)
assembles the writes into one write message WMi

4 and multicasts it to all the
replica sites (including itself) using total ordered group communication.

III. Lock phase. When WMi is delivered at a site Sj , it requests all locks in WMi

in an atomic step. This can be done by acquiring a latch (lighter form of a
lock) on the lock table that is kept until all the locks are granted or requests are
enqueued. The following actions are performed:

1. For each W(x) in WMi (let xj refer to the copy of x that exists at site Sj),
the following are performed:

(a) If there are no other transactions that have locked xj , then the write lock
on xj is granted.

(b) Otherwise a conflict test is performed:

• If there is a local transaction Tk that has already locked xj , but
is in its local read or communication phases, then Tk is aborted.
Furthermore, if Tk is in its communication phase, a final decision
message “abort” is multicast to all the sites. At this stage, read/write
conflicts are detected and local read transactions are simply aborted.
Note that only local read operations obtain locks during the local

4What is being sent are the updated data items (i.e., state transfer).

6.4 Group Communication 271

execution phase, since local writes are only executed on shadow
copies. Therefore, there is no need to check for write/write conflicts
at this stage.

• Otherwise, Wi(xj) lock request is put on queue for xj .

2. If Ti is a local transaction (recall that the message is also sent to the site
where Ti originates, in which case j = i), then the site can commit the
transaction, so it multicasts a “commit” message. Note that the commit
message is sent as soon as the locks are requested and not after writes; thus,
this is not a 2PC execution.

IV. Write phase. When a site is able to obtain the write lock, it applies the
corresponding update (for the master site, this means that the shadow copy is
made the valid version). The site where Ti is submitted can commit and release
all the locks. Other sites have to wait for the decision message and terminate
accordingly.

Note that in this protocol, the important thing is to ensure that the lock phases of
the concurrent transactions are executed in the same order at each site; that is what
total ordered multicasting achieves. Also note that there is no ordering requirement
on the decision messages (step III.2) and these may be delivered in any order, even
before the delivery of the corresponding WM . If this happens, then the sites that
receive the decision message before WM simply register the decision, but do not
take any action. When WM message arrives, they can execute the lock and write
phases and terminate the transaction according to the previously delivered decision
message.

This protocol is significantly better, in terms of performance, than the naive one
discussed in Sect. 6.3.2. For each transaction, the master site sends two messages:
one when it sends the WM and the second one when it communicates the decision.
Thus, if we wish to maintain a system throughput of k transactions-per-second, the
total number of messages is 2k rather than k∗m, as is the case with the naive protocol
(assuming multicast in both cases). Furthermore, system performance is improved
by the use of deferred eager propagation since synchronization among replica sites
for all Write operations is done once at the end rather than throughout the transaction
execution.

The second example of the use of group communication that we will discuss
is in the context of lazy centralized algorithms. Recall that an important issue
in this case is to ensure that the refresh transactions are ordered the same way
at all the involved slaves so that the database states converge. If totally ordered
multicasting is available, the refresh transactions sent by different master sites would
be delivered in the same order at all the slaves. However, total order multicast
has high messaging overhead which may limit its scalability. It is possible to
relax the ordering requirement of the communication system and let the replication
protocol take responsibility for ordering the execution of refresh transactions. We
will demonstrate this alternative by means of a protocol that assumes FIFO ordered
multicast communication with a bounded delay for communication (call it Max),

272 6 Data Replication

and assumes that the clocks are loosely synchronized so that they may only be
out of sync by up to ε. It further assumes that there is an appropriate transaction
management functionality at each site. The result of the replication protocol at
each slave is to maintain a “running queue” that holds an ordered list of refresh
transactions, which is the input to the transaction manager for local execution. Thus,
the protocol ensures that the orders in the running queues at each slave site where a
set of refresh transactions run are the same.

At each slave site, a “pending queue” is maintained for each master site of this
slave (i.e., if the slave site has replicas of x and y whose master sites are S1 and S2,
respectively, then there are two pending queues, q1 and q2, corresponding to master
sites S1 and S2, respectively). When a refresh transaction RT k

i is created at a master
site sitek , it is assigned a timestamp ts(RTi) that corresponds to the real time value
at the commit time of the corresponding update transaction Ti . When RTi arrives
at a slave, it is put on queue qk . At each message arrival the top elements of all
pending queues are scanned and the one with the lowest timestamp is chosen as
the new RT (new_RT) to be handled. If the new_RT has changed since the last
cycle (i.e., a new RT arrived with a lower timestamp than what was chosen in the
previous cycle), then the one with the lower timestamp becomes the new_RT and
is considered for scheduling.

When a refresh transaction is chosen as the new_RT , it is not immediately put
on the “running queue” for the transaction manager; the scheduling of a refresh
transaction takes into account the maximum delay and the possible drift in local
clocks. This is done to ensure that any refresh transaction that may be delayed has a
chance of reaching the slave. The time when an RTi is put into the “running queue”
at a slave site is delivery_t ime = ts(new_RT)+Max + ε. Since the communica-
tion system guarantees an upper bound of Max for message delivery and since the
maximum drift in local clocks (that determine timestamps) is ε, a refresh transaction
cannot be delayed by more than the delivery_t ime before reaching all of the
intended slaves. Thus, the protocol guarantees that a refresh transaction is scheduled
for execution at a slave when the following holds: (1) all the write operations of
the corresponding update transaction are performed at the master, (2) according to
the order determined by the timestamp of the refresh transaction (which reflects the
commit order of the update transaction), and (3) at the earliest at real time equivalent
to its delivery_t ime. This ensures that the updates on secondary copies at the
slave sites follow the same chronological order in which their primary copies were
updated and this order will be the same at all of the involved slaves, assuming that
the underlying communication infrastructure can guarantee Max and ε. This is an
example of a lazy algorithm that ensures 1SR global history, but weak mutual con-
sistency, allowing the replica values to diverge by up to a predetermined time period.

6.5 Replication and Failures

Up to this point, we have focused on replication protocols in the absence of any
failures. What happens to mutual consistency concerns if there are system failures?

6.5 Replication and Failures 273

The handling of failures differs between eager replication and lazy replication
approaches.

6.5.1 Failures and Lazy Replication

Let us first consider how lazy replication techniques deal with failures. This case
is relatively easy since these protocols allow divergence between the master copies
and the replicas. Consequently, when communication failures make one or more
sites unreachable (the latter due to network partitioning), the sites that are available
can simply continue processing. Even in the case of network partitioning, one
can allow operations to proceed in multiple partitions independently and then
worry about the convergence of the database states upon repair using the conflict
resolution techniques discussed in Sect. 6.3.4. Before the merge, databases at
multiple partitions diverge, but they are reconciled at merge time.

6.5.2 Failures and Eager Replication

Let us now focus on eager replication, which is considerably more involved. As we
noted earlier, all eager techniques implement some sort of ROWA protocol, ensuring
that, when the update transaction commits, all of the replicas have the same value.
ROWA family of protocols is attractive and elegant. However, as we saw during the
discussion of commit protocols, it has one significant drawback. Even if one of the
replicas is unavailable, the update transaction cannot be terminated. So, ROWA fails
in meeting one of the fundamental goals of replication, namely providing higher
availability.

An alternative to ROWA, which attempts to address the low availability problem,
is the Read-One/Write-All Available (ROWA-A) protocol. The general idea is that
the write commands are executed on all the available copies and the transaction
terminates. The copies that were unavailable at the time will have to “catch up”
when they become available.

There have been various versions of this protocol, two of which we will discuss.
The first one is known as the available copies protocol. The coordinator of an
update transaction Ti (i.e., the master where the transaction is executing) sends each
Wi(x) to all the slave sites where replicas of x reside, and waits for confirmation of
execution (or rejection). If it times out before it gets acknowledgement from all the
sites, it considers those that have not replied as unavailable and continues with the
update on the available sites. The unavailable slave sites update their databases to
the latest state when they recover. Note, however, that these sites may not even be
aware of the existence of Ti and the update to x that Ti has made if they had become
unavailable before Ti started.

274 6 Data Replication

There are two complications that need to be addressed. The first one is the
possibility that the sites that the coordinator thought were unavailable were in fact
up and running and may have already updated x but their acknowledgement may
not have reached the coordinator before its timer ran out. Second, some of these
sites may have been unavailable when Ti started and may have recovered since
then and have started executing transactions. Therefore, the coordinator undertakes
a validation procedure before committing Ti :

1. The coordinator checks to see if all the sites it thought were unavailable are still
unavailable. It does this by sending an inquiry message to every one of these
sites. Those that are available reply. If the coordinator gets a reply from one
of these sites, it aborts Ti since it does not know the state that the previously
unavailable site is in: it could have been that the site was available all along
and had performed the original Wi(x) but its acknowledgement was delayed (in
which case everything is fine), or it could be that it was indeed unavailable when
Ti started but became available later on and perhaps even executed Wj(x) on
behalf of another transaction Tj . In the latter case, continuing with Ti would
make the execution schedule nonserializable.

2. If the coordinator of T does not get any response from any of the sites that it
thought were unavailable, then it checks to make sure that all the sites that were
available when Wi(x) executed are still available. If they are, then T can proceed
to commit. Naturally, this second step can be integrated into a commit protocol.

The second ROWA-A variant that we will discuss is the distributed ROWA-A
protocol. In this case, each site S maintains a set, VS , of sites that it believes to be
available; this is the “view” that S has of the system configuration. In particular,
when a transaction Ti is submitted, its coordinator’s view reflects all the sites that
the coordinator knows to be available (let us denote this as VC(Ti) for simplicity).
A Ri(x) is performed on any replica in VC(Ti) and a Wi(x) updates all copies in
VC(Ti). The coordinator checks its view at the end of Ti , and if the view has changed
since Ti’s start, then Ti is aborted. To modify V , a special atomic transaction is run
at all sites, ensuring that no concurrent views are generated. This can be achieved
by assigning timestamps to each V when it is generated and ensuring that a site only
accepts a new view if its version number is greater than the version number of that
site’s current view.

The ROWA-A class of protocols are more resilient to failures, including network
partitioning, than the simple ROWA protocol.

Another class of eager replication protocols are those based on voting. The
fundamental characteristics of voting were presented in the previous chapter when
we discussed network partitioning in nonreplicated databases. The general ideas
hold in the replicated case. Fundamentally, each read and write operation has to
obtain a sufficient number of votes to be able to commit. These protocols can be
pessimistic or optimistic. In what follows we discuss only pessimistic protocols.
An optimistic version compensates transactions to recover if the commit decision
cannot be confirmed at completion. This version is suitable wherever compensating
transactions are acceptable (see Chap. 5).

6.5 Replication and Failures 275

The earliest voting algorithm (known as Thomas’s algorithm) works on fully
replicated databases and assigns an equal vote to each site. For any operation of a
transaction to execute, it must collect affirmative votes from a majority of the sites.
This was revisited in Gifford’s algorithm, which also works with partially replicated
databases and assigns a vote to each copy of a replicated data item. Each operation
then has to obtain a read quorum (Vr) or a write quorum (Vw) to read or write a data
item, respectively. If a given data item has a total of V votes, the quorums have to
obey the following rules:

1. Vr + Vw > V

2. Vw > V/2

As the reader may recall from the preceding chapter, the first rule ensures that
a data item is not read and written by two transactions concurrently (avoiding the
read–write conflict). The second rule, on the other hand, ensures that two write
operations from two transactions cannot occur concurrently on the same data item
(avoiding write–write conflict). Thus the two rules ensure that serializability and
one-copy equivalence are maintained.

In the case of network partitioning, the quorum-based protocols work well since
they basically determine which transactions are going to terminate based on the
votes that they can obtain. The vote allocation and threshold rules given above
ensure that two transactions that are initiated in two different partitions and access
the same data cannot terminate at the same time.

The difficulty with this version of the protocol is that transactions are required
to obtain a quorum even to read data. This significantly and unnecessarily slows
down read access to the database. We describe below another quorum-based voting
protocol that overcomes this serious performance drawback.

The protocol makes certain assumptions about the underlying communication
layer and the occurrence of failures. The assumption about failures is that they are
“clean.” This means two things:

1. Failures that change the network’s topology are detected by all sites instanta-
neously.

2. Each site has a view of the network consisting of all the sites with which it can
communicate.

Based on the presence of a communication network that can ensure these two
conditions, the replica control protocol is a simple implementation of the ROWA-A
principle. When the replica control protocol attempts to read or write a data item,
it first checks if a majority of the sites are in the same partition as the site at which
the protocol is running. If so, it implements the ROWA rule within that partition: it
reads any copy of the data item and writes all copies that are in that partition.

Notice that the read or the write operation will execute in only one partition.
Therefore, this is a pessimistic protocol that guarantees one-copy serializability,
but only within that partition. When the partitioning is repaired, the database is
recovered by propagating the results of the update to the other partitions.

276 6 Data Replication

A fundamental question with respect to implementation of this protocol is
whether or not the failure assumptions are realistic. Unfortunately, they may not
be, since most network failures are not “clean.” There is a time delay between the
occurrence of a failure and its detection by a site. Because of this delay, it is possible
for one site to think that it is in one partition when in fact subsequent failures
have placed it in another partition. Furthermore, this delay may be different for
various sites. Thus two sites that were in the same partition but are now in different
partitions may proceed for a while under the assumption that they are still in the
same partition. The violations of these two failure assumptions have significant
negative consequences on the replica control protocol and its ability to maintain
one-copy serializability.

The suggested solution is to build on top of the physical communication layer
another layer of abstraction which hides the “unclean” failure characteristics of
the physical communication layer and presents to the replica control protocol
a communication service that has “clean” failure properties. This new layer of
abstraction provides virtual partitions within which the replica control protocol
operates. A virtual partition is a group of sites that have agreed on a common view of
who is in that partition. Sites join and depart from virtual partitions under the control
of this new communication layer, which ensures that the clean failure assumptions
hold.

The advantage of this protocol is its simplicity. It does not incur any overhead
to maintain a quorum for read accesses. Thus the reads can proceed as fast as they
would in a nonpartitioned network. Furthermore, it is general enough so that the
replica control protocol does not need to differentiate between site failures and
network partitions.

Given alternative methods for achieving fault-tolerance in the case of replicated
databases, a natural question is what the relative advantages of these methods are.
There have been a number of studies that analyze these techniques, each with vary-
ing assumptions. A comprehensive study suggests that ROWA-A implementations
achieve better scalability and availability than quorum techniques.

6.6 Conclusion

In this chapter, we discussed different approaches to data replication and presented
protocols that are appropriate under different circumstances. Each of the alternative
protocols we have discussed has their advantages and disadvantages. Eager central-
ized protocols are simple to implement, they do not require update coordination
across sites, and they are guaranteed to lead to one-copy serializable histories.
However, they put a significant load on the master sites, potentially causing them
to become bottlenecks. Consequently, they are harder to scale, in particular in the
single master site architecture—primary copy versions have better scalability prop-
erties since the master responsibilities are somewhat distributed. These protocols
result in long response times (the longest among the four alternatives), since the

6.7 Bibliographic Notes 277

access to any data has to wait until the commit of any transaction that is currently
updating it (using 2PC, which is expensive). Furthermore, the local copies are used
sparingly, only for read operations. Thus, if the workload is update-intensive, eager
centralized protocols are likely to suffer from bad performance.

Eager distributed protocols also guarantee one-copy serializability and provide
an elegant symmetric solution where each site performs the same function. How-
ever, unless there is communication system support for efficient multicasting, they
result in very high number of messages that increase network load and result in high
transaction response times. This also constrains their scalability. Furthermore, naive
implementations of these protocols will cause significant number of deadlocks since
update operations are executed at multiple sites concurrently.

Lazy centralized protocols have very short response times since transactions
execute and commit at the master, and do not need to wait for completion at the
slave sites. There is also no need to coordinate across sites during the execution of
an update transaction, thus reducing the number of messages. On the other hand,
mutual consistency (i.e., freshness of data at all copies) is not guaranteed as local
copies can be out of date. This means that it is not possible to do a local read and be
assured that the most up-to-date copy is read.

Finally, lazy multimaster protocols have the shortest response times and the
highest availability. This is because each transaction is executed locally, with no
distributed coordination. Only after they commit are the other replicas updated
through refresh transactions. However, this is also the shortcoming of these
protocols—different replicas can be updated by different transactions, requiring
elaborate reconciliation protocols and resulting in lost updates.

Replication has been studied extensively within the distributed computing
community as well as the database community. Although there are considerable
similarities in the problem definition in the two environments, there are also
important differences. Perhaps the two more important differences are the following.
Data replication focuses on data, while replication of computation is equally
important in distributed computing. In particular, concerns about data replication
in mobile environments that involve disconnected operation have received consid-
erable attention. Secondly, database and transaction consistency is of paramount
importance in data replication; in distributed computing, consistency concerns are
not as high on the list of priorities. Consequently, considerably weaker consistency
criteria have been defined.

Replication has been studied within the context of parallel database systems, in
particular within parallel database clusters. We discuss these separately in Chap. 8.
We also defer to Chap. 7 replication issues that arise in multidatabase systems.

6.7 Bibliographic Notes

Replication and replica control protocols have been the subject of significant
investigation since early days of distributed database research. This work is

278 6 Data Replication

summarized well in [Helal et al. 1997]. Replica control protocols that deal with
network partitioning are surveyed in [Davidson et al. 1985].

A landmark paper that defined a framework for various replication algorithms
and argued that eager replication is problematic (thus opening up a torrent of activity
on lazy techniques) is [Gray et al. 1996]. The characterization that we use in this
chapter is based on this framework. A more detailed characterization is given in
[Wiesmann et al. 2000].

Eventual consistency definition is from [Saito and Shapiro 2005], epsilon
serializability is due to Pu and Leff [1991] and also discussed by Ramamritham and
Pu [1995] and Wu et al. [1997]. A recent survey on optimistic (or lazy) replication
techniques is [Saito and Shapiro 2005]. The entire topic is discussed at length in
[Kemme et al. 2010].

Freshness, in particular for lazy techniques, has been a topic of some study.
Alternative techniques to ensure “better” freshness are discussed in [Pacitti et al.
1998, 1999, Pacitti and Simon 2000, Röhm et al. 2002, Pape et al. 2004, Akal et al.
2005, Bernstein et al. 2006].

Extension of snapshot isolation to replicated databases is due to Lin et al. [2005]
and its use in replicated databases is discussed in [Plattner and Alonso 2004, Daud-
jee and Salem 2006]. RC-serializability as another weaker form of serializability is
introduced by Bernstein et al. [2006]. Strong one-copy serializability is discussed
in [Daudjee and Salem 2004] and strong snapshot isolation in [Daudjee and Salem
2006]—these prevent transaction inversion.

An early eager primary copy replication protocol has been implemented in
distributed INGRES and described in [Stonebraker and Neuhold 1977].

In single master lazy replication approach, using a replication graph to dealing
with ordering of refresh transactions is due to Breitbart and Korth [1997]. Dealing
with deferred updates by finding appropriate primary site assignment for data items
is due to Chundi et al. [1996].

Bernstein et al. [2006] propose a lazy replication algorithm with full trans-
parency.

The use of group communication has been discussed in [Chockler et al. 2001,
Stanoi et al. 1998, Kemme and Alonso 2000a,b, Patiño-Martínez et al. 2000,
Jiménez-Peris et al. 2002]. The eager distributed protocol we discuss in Sect. 6.4
is due to Kemme and Alonso [2000b] and the lazy centralized one is due to Pacitti
et al. [1999].

The available copies protocol in Sect. 6.5.2 is due to Bernstein and Goodman
[1984] and Bernstein et al. [1987].

There are many different versions of quorum-based protocols. Some of these
are discussed in [Triantafillou and Taylor 1995, Paris 1986, Tanenbaum and van
Renesse 1988]. The initial voting algorithm was proposed by Thomas [1979] and
an early suggestion to use quorum-based voting for replica control is due to Gifford
[1979]. The algorithm we present in Sect. 6.5.2 that overcomes the performance
problems of Gifford’s algorithm is by El Abbadi et al. [1985]. The comprehensive
study we report in the same section that indicates the benefits of ROWA-A is
[Jiménez-Peris et al. 2003]. Besides the algorithms we have described here, some

Exercises 279

notable others are given in [Davidson 1984, Eager and Sevcik 1983, Herlihy 1987,
Minoura and Wiederhold 1982, Skeen and Wright 1984, Wright 1983]. These
algorithms are generally called static since the vote assignments and read/write
quorums are fixed a priori. An analysis of one such protocol (such analyses are rare)
is given in [Kumar and Segev 1993]. Examples of dynamic replication protocols are
in [Jajodia and Mutchler 1987, Barbara et al. 1986, 1989] among others. It is also
possible to change the way data is replicated. Such protocols are called adaptive and
one example is described in [Wolfson 1987].

An interesting replication algorithm based on economic models is described in
[Sidell et al. 1996].

Exercises

Problem 6.1 For each of the four replication protocols (eager centralized, eager
distributed, lazy centralized, lazy distributed), give a scenario/application where the
approach is more suitable than the other approaches. Explain why.

Problem 6.2 A company has several geographically distributed warehouses storing
and selling products. Consider the following partial database schema:

ITEM(ID, ItemName, Price, . . .)

STOCK(ID, Warehouse, Quantity, . . .)

CUSTOMER(ID, CustName, Address, CreditAmt, . . .)

CLIENT-ORDER(ID, Warehouse, Balance, . . .)

ORDER(ID, Warehouse, CustID, Date)

ORDER-LINE(ID, ItemID, Amount, . . .)

The database contains relations with product information (ITEM contains the
general product information, STOCK contains, for each product and for each
warehouse, the number of pieces currently on stock). Furthermore, the database
stores information about the clients/customers, e.g., general information about
the clients is stored in the CUSTOMER table. The main activities regarding the
clients are the ordering of products, the payment of bills, and general information
requests. There exist several tables to register the orders of a customer. Each order
is registered in the ORDER and ORDER-LINE tables. For each order/purchase,
one entry exists in the order table, having an ID, indicating the customer-id, the
warehouse at which the order was submitted, the date of the order, etc. A client can
have several orders pending at a warehouse. Within each order, several products can
be ordered. ORDER-LINE contains an entry for each product of the order, which
may include one or more products. CLIENT-ORDER is a summary table that lists,
for each client and for each warehouse, the sum of all existing orders.

280 6 Data Replication

(a) The company has a customer service group consisting of several employees
that receive customers’ orders and payments, query the data of local customers
to write bills or register paychecks, etc. Furthermore, they answer any type
of requests which the customers might have. For instance, ordering products
changes (update/insert) the CLIENT-ORDER, ORDER, ORDER-LINE, and
STOCK tables. To be flexible, each employee must be able to work with any
of the clients. The workload is estimated to be 80% queries and 20% updates.
Since the workload is query oriented, the management has decided to build a
cluster of PCs each equipped with its own database to accelerate queries through
fast local access. How would you replicate the data for this purpose? Which
replica control protocol(s) would you use to keep the data consistent?

(b) The company’s management has to decide each fiscal quarter on their product
offerings and sales strategies. For this purpose, they must continually observe
and analyze the sales of the different products at the different warehouses as
well as observe consumer behavior. How would you replicate the data for this
purpose? Which replica control protocol(s) would you use to keep the data
consistent?

Problem 6.3 (*) An alternative to ensuring that the refresh transactions can be
applied at all of the slaves in the same order in lazy single master protocols with
limited transparency is the use of a replication graph as discussed in Sect. 6.3.3.
Develop a method for distributed management of the replication graph.

Problem 6.4 Consider data items x and y replicated across the sites as follows:
Site 1 Site 2 Site 3 Site 4
x x x

y y y

(a) Assign votes to each site and give the read and write quorum.
(b) Determine the possible ways that the network can partition and for each specify

in which group of sites a transaction that updates (reads and writes) x can be
terminated and what the termination condition would be.

(c) Repeat (b) for y.

Chapter 7
Database Integration—Multidatabase
Systems

Up to this point, we considered distributed DBMSs that are designed in a top-
down fashion. In particular, Chap. 2 focuses on techniques for partitioning and
allocating a database, while Chap. 4 focuses on distributed query processing over
such a database. These techniques and approaches are suitable for tightly integrated,
homogeneous distributed DBMSs. In this chapter, we focus on distributed databases
that are designed in a bottom-up fashion—we referred to these as multidatabase
systems in Chap. 1. In this case, a number of databases already exist, and the design
task involves integrating them into one database. The starting point of bottom-up
design is the set of individual local conceptual schemas (LCSs). The process consists
of integrating local databases with their (local) schemas into a global database and
generating a global conceptual schema (GCS) (also called the mediated schema).
Querying over a multidatabase system is more complicated in that applications
and users can either query using the GCS (or views defined on it) or through the
LCSs since each existing local database may already have applications running on
it. Therefore, the techniques required for query processing require adjustments to the
approach we discussed in Chap. 4 although many of those techniques carry over.

Database integration, and the related problem of querying multidatabases, is only
one part of the more general interoperability problem, which includes nondatabase
data sources and interoperability at the application level in addition to the database
level. We separate this discussion into three pieces: in this chapter, we focus on the
database integration and querying issues, we discuss the concerns related to web
data integration and access in Chap. 12, and we discuss the more general issue of
integrating data from arbitrary data sources in Chap. 10 under the title data lakes.

This chapter consists of two main sections. In Sect. 7.1, we discuss database
integration—the bottom-up design process. In Sect. 7.2 we discuss approaches to
querying these systems.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_7

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_7

282 7 Database Integration—Multidatabase Systems

7.1 Database Integration

Database integration can be either physical or logical. In the former, the source
databases are integrated and the integrated database is materialized. These are
known as data warehouses. The integration is aided by extract–transform–load
(ETL) tools that enable extraction of data from sources, its transformation to match
the GCS, and its loading (i.e., materialization). This process is depicted in Fig. 7.1.
In logical integration, the global conceptual (or mediated) schema is entirely virtual
and not materialized.

These two approaches are complementary and address differing needs. Data
warehousing supports decision-support applications, which are commonly termed
Online Analytical Processing (OLAP). Recall from Chap. 5 that OLAP applications
analyze historical, summarized data coming from a number of operational databases
through complex queries over potentially very large tables. Consequently, data
warehouses gather data from a number of operational databases and materialize
it. As updates happen on the operational databases, they are propagated to the data
warehouse, which is known as materialized view maintenance.

By contrast, in logical data integration, the integration is only virtual and there is
no materialized global database (see Fig. 1.13). The data resides in the operational
databases and the GCS provides a virtual integration for querying over the multiple
databases. In these systems, GCS may either be defined up-front and local databases
(i.e., LCSs) mapped to it, or it may be defined bottom-up, by integrating parts of the
LCSs of the local databases. Consequently, it is possible for the GCS not to capture

Materialized
Global

Database

ETL
tools

Database 2Database 1 Database n· · ·

Fig. 7.1 Data warehouse approach

7.1 Database Integration 283

all of the information in each of the LCSs. User queries are posed over this global
schema, which are then decomposed and shipped to the local operational databases
for processing as is done in tightly integrated systems, with the main difference
being the autonomy and potential heterogeneity of the local systems. These have
important effects on query processing that we discuss in Sect. 7.2. Although there
is ample work on transaction management in these systems, supporting global
updates is quite difficult given the autonomy of the underlying operational DBMSs.
Therefore, they are primarily read-only.

Logical data integration and the resulting systems are known by a variety of
names; data integration and information integration are perhaps the most common
terms used in literature although these generally refer to more than database
integration and incorporate data from a variety of sources. In this chapter, we focus
on the integration of autonomous and (possibly) heterogeneous databases; thus, we
will use the term database integration or multidatabase systems (MDBSs).

7.1.1 Bottom-Up Design Methodology

Bottom-up design involves the process by which data from participating databases
can be (physically or logically) integrated to form a single cohesive global database.
As noted above, in some cases, the global conceptual (or mediated) schema is
defined first, in which case the bottom-up design involves mapping LCSs to this
schema. In other cases, the GCS is defined as an integration of parts of LCSs. In
this case, the bottom-up design involves both the generation of the GCS and the
mapping of individual LCSs to this GCS.

If the GCS is defined upfront, the relationship between the GCS and the LCSs
can be of two fundamental types: local-as-view and global-as-view. In local-as-
view (LAV) systems, the GCS definition exists, and each LCS is treated as a view
definition over it. In global-as-view systems (GAV), on the other hand, the GCS is
defined as a set of views over the LCSs. These views indicate how the elements
of the GCS can be derived, when needed, from the elements of LCSs. One way to
think of the difference between the two is in terms of the results that can be obtained
from each system . In GAV, the query results are constrained to the set of objects
that are defined in the GCS, although the local DBMSs may be considerably richer
(Fig. 7.2a). In LAV, on the other hand, the results are constrained by the objects
in the local DBMSs, while the GCS definition may be richer (Fig. 7.2b). Thus, in
LAV systems, it may be necessary to deal with incomplete answers. A combination
of these two approaches has also been proposed as global-local-as-view (GLAV)
where the relationship between GCS and LCSs is specified using both LAV and
GAV.

Bottom-up design occurs in two general steps (Fig. 7.3): schema translation
(or simply translation) and schema generation. In the first step, the component
database schemas are translated to a common intermediate canonical representation
(InS1, InS2,. . ., InSn). The use of a canonical representation facilitates the trans-

284 7 Database Integration—Multidatabase Systems

Objects
accessible
through

GSC

Objects
expressible as queries

over the source DBMSs

Source
DBMS

1

Source
DBMS

n
· · ·

Objects
expressible as queries

over the GCS

Fig. 7.2 GAV and LAV mappings (based on [Koch 2001])

Schema
Mapping

Schema
Integration

Schema
Matching

Schema Generator

GCS

InS2InS1 InSn· · ·

Translator 1 Translator 2 Translator n· · ·

Database 1
Schema

Database 2
Schema

Database n
Schema· · ·

Fig. 7.3 Database integration process

lation process by reducing the number of translators that need to be written. The
choice of the canonical model is important. As a principle, it should be one that
is sufficiently expressive to incorporate the concepts available in all the databases
that will later be integrated. Alternatives that have been used include the entity-
relationship model, object-oriented model, or a graph that may be simplified to a trie
or XML. In this chapter, we will simply use the relational model as our canonical
data model despite its known deficiencies in representing rich semantic concepts.
This choice does not affect in any fundamental way the discussion of the major

7.1 Database Integration 285

issues of data integration. In any case, we will not discuss the specifics of translating
various data models to relational; this can be found in many database textbooks.

Clearly, the translation step is necessary only if the component databases are
heterogeneous and local schemas are defined using different data models. There has
been some work on the development of system federation, in which systems with
similar data models are integrated together (e.g., relational systems are integrated
into one conceptual schema and, perhaps, object databases are integrated to another
schema) and these integrated schemas are “combined” at a later stage (e.g.,
AURORA project). In this case, the translation step is delayed, providing increased
flexibility for applications to access underlying data sources in a manner that is
suitable for their needs.

In the second step of bottom-up design, the intermediate schemas are used to
generate a GCS. The schema generation process consists of the following steps:

1. Schema matching to determine the syntactic and semantic correspondences
among the translated LCS elements or between individual LCS elements and
the predefined GCS elements (Sect. 7.1.2).

2. Integration of the common schema elements into a global conceptual (mediated)
schema if one has not yet been defined (Sect. 7.1.3).

3. Schema mapping that determines how to map the elements of each LCS to the
other elements of the GCS (Sect. 7.1.4).

It is also possible that the schema mapping step be divided into two phases: map-
ping constraint generation and transformation generation. In the first phase, given
correspondences between two schemas, a transformation function such as a query or
view definition over the source schema is generated that would “populate” the target
schema. In the second phase, an executable code is generated corresponding to this
transformation function that would actually generate a target database consistent
with these constraints. In some cases, the constraints are implicitly included in the
correspondences, eliminating the need for the first phase.

Example 7.1 To facilitate our discussion of global schema design in multidatabase
systems, we will use an example that is an extension of the engineering database we
have been using throughout the book. To demonstrate both phases of the database
integration process, we introduce some data model heterogeneity into our example.

Consider two organizations, each with their own database definitions. One is
the (relational) database example that we introduced in Chap. 2. We repeat that
definition in Fig. 7.4 for completeness. The second database also defines similar
data, but is specified according to the entity-relationship (E-R) data model as
depicted in Fig. 7.5.1

We assume that the reader is familiar with the entity-relationship data model.
Therefore, we will not describe the formalism, except to make the following points
regarding the semantics of Fig. 7.5. This database is similar to the relational

1In this chapter, we continue our notation of typesetting relation names in typewriter font, but
we will use normal font for E-R model components to be able to easily differentiate them.

286 7 Database Integration—Multidatabase Systems

Fig. 7.4 Relational engineering database representation

WORKER

Number Name

Title Salary

City WORKS IN
N

Responsibility

Duration

PROJECT
1

Number

Project
Name

Budget

Location

CONTRACTED BY

N

Contract
number

CLIENT

1

Client name Address

Fig. 7.5 Entity-relationship database

engineering database definition of Fig. 7.4, with one significant difference: it
also maintains data about the clients for whom the projects are conducted. The
rectangular boxes in Fig. 7.5 represent the entities modeled in the database,
and the diamonds indicate a relationship between the entities to which they are
connected. The relationship type is indicated around the diamonds. For example,
the CONTRACTED-BY relation is a many-to-one from the PROJECT entity to the
CLIENT entity (e.g., each project has a single client, but each client can have
many projects). Similarly, the WORKS-IN relationship indicates a many-to-many
relationship between the two connected relations. The attributes of entities and the
relationships are shown as ellipses. �

Example 7.2 The mapping of the E-R model to the relational model is given in
Fig. 7.6. Note that we have renamed some of the attributes in order to ensure name
uniqueness. �

7.1 Database Integration 287

Fig. 7.6 Relational mapping of E-R schema

7.1.2 Schema Matching

Given two schemas, schema matching determines for each concept in one schema
what concept in the other matches it. As discussed earlier, if the GCS has already
been defined, then one of these schemas is typically the GCS, and the task is to
match each LCS to the GCS. Otherwise, matching is done over two LCSs. The
matches that are determined in this phase are then used in schema mapping to
produce a set of directed mappings, which, when applied to the source schema,
would map its concepts to the target schema.

The matches that are defined or discovered during schema matching are specified
as a set of rules where each rule (r) identifies a correspondence (c) between two
elements, a predicate (p) that indicates when the correspondence may hold, and
a similarity value (s) between the two elements identified in the correspondence.
A correspondence may simply identify that two concepts are similar (which we
will denote by ≈) or it may be a function that specifies that one concept may be
derived by a computation over the other one (for example, if the budget value of
one project is specified in US dollars, while the other one is specified in Euros,
the correspondence may specify that one is obtained by multiplying the other one
with the appropriate exchange rate). The predicate is a condition that qualifies
the correspondence by specifying when it might hold. For example, in the budget
example specified above, p may specify that the rule holds only if the location of
one project is in US, while the other one is in the Euro zone. The similarity value
for each rule can be specified or calculated. Similarity values are real values in the
range [0,1]. Thus, a set of matches can be defined as M = {r}, where r = 〈c, p, s〉.

As indicated above, correspondences may either be discovered or specified. As
much as it is desirable to automate this process, there are many complicating factors.
The most important is schema heterogeneity, which refers to the differences in the
way real-world phenomena are captured in different schemas. This is a critically
important issue, and we devote a separate section to it (Sect. 7.1.2.1). Aside from
schema heterogeneity, other issues that complicate the matching process are the
following:

• Insufficient schema and instance information: Matching algorithms depend
on the information that can be extracted from the schema and the existing
data instances. In some cases there may be ambiguity due to the insufficient

288 7 Database Integration—Multidatabase Systems

information provided about these items. For example, using short names or
ambiguous abbreviations for concepts, as we have done in our examples, can
lead to incorrect matching.

• Unavailability of schema documentation: In most cases, the database schemas
are not well documented or not documented at all. Quite often, the schema
designer is no longer available to guide the process. The lack of these vital
information sources adds to the difficulty of matching.

• Subjectivity of matching: Finally, it is important to recognize that matching
schema elements can be highly subjective; two designers may not agree on
a single “correct” mapping. This makes the evaluation of a given algorithm’s
accuracy significantly difficult.

Nevertheless, algorithmic approaches have been developed to the matching
problem, which we discuss in this section. A number of issues affect the particular
matching algorithm. The more important ones are the following:

• Schema versus instance matching. So far in this chapter, we have been focusing
on schema integration; thus, our attention has naturally been on matching
concepts of one schema to those of another. A large number of algorithms
have been developed that work on schema elements. There are others, however,
that have focused instead on the data instances or a combination of schema
information and data instances. The argument is that considering data instances
can help alleviate some of the semantic issues discussed above. For example, if
an attribute name is ambiguous, as in “contact-info,” then fetching its data may
help identify its meaning; if its data instances have the phone number format,
then obviously it is the phone number of the contact agent, while long strings
may indicate that it is the contact agent name. Furthermore, there are a large
number of attributes, such as postal codes, country names, email addresses, that
can be defined easily through their data instances.

Matching that relies solely on schema information may be more efficient,
because it does not require a search over data instances to match the attributes.
Furthermore, this approach is the only feasible one when few data instances are
available in the matched databases, in which case learning may not be reliable.
However, in some cases, e.g., peer-to-peer systems (see Chap. 9), there may
not be a schema, in which case instance-based matching is the only appropriate
approach.

• Element-level vs. structure-level. Some matching algorithms operate on indi-
vidual schema elements, while others also consider the structural relationships
between these elements. The basic concept of the element-level approach is that
most of the schema semantics are captured by the elements’ names. However,
this may fail to find complex mappings that span multiple attributes. Match
algorithms that also consider structure are based on the belief that, normally,
the structures of matchable schemas tend to be similar.

• Matching cardinality. Matching algorithms exhibit various capabilities in terms
of cardinality of mappings. The simplest approaches use 1:1 mapping, which
means that each element in one schema is matched with exactly one element in

7.1 Database Integration 289

Individual matchers

Schema-based

Element-level

Linguistic Constraint-based

Structure-level

Constraint-based

Instance-based

Element-level

Linguistic Constraint-based Learning-based

Fig. 7.7 Taxonomy of schema matching techniques

the other schema. The majority of proposed algorithms belong to this category,
because problems are greatly simplified in this case. Of course there are many
cases where this assumption is not valid. For example, an attribute named
“Total price” could be mapped to the sum of two attributes in another schema
named “Subtotal” and “Taxes.” Such mappings require more complex matching
algorithms that consider 1:M and N:M mappings.

These criteria, and others, can be used to come up with a taxonomy of matching
approaches. According to this taxonomy (which we will follow in this chapter
with some modifications), the first level of separation is between schema-based
matchers versus instance-based matchers (Fig. 7.7). Schema-based matchers can
be further classified as element-level and structure-level, while for instance-based
approaches, only element-level techniques are meaningful. At the lowest level, the
techniques are characterized as either linguistic or constraint-based. It is at this
level that fundamental differences between matching algorithms are exhibited and
we focus on these algorithms in the remainder, discussing linguistic approaches
in Sect. 7.1.2.2, constraint-based approaches in Sect. 7.1.2.3, and learning-based
techniques in Sect. 7.1.2.4. These are referred as individual matcher approaches, and
their combinations are possible by developing either hybrid matchers or composite
matchers (Sect. 7.1.2.5).

7.1.2.1 Schema Heterogeneity

Schema matching algorithms deal with both structural heterogeneity and semantic
heterogeneity among the matched schemas. We discuss these in this section before
presenting the different match algorithms.

Structural conflicts occur in four possible ways: as type conflicts, dependency
conflicts, key conflicts, or behavioral conflicts. Type conflicts occur when the same
object is represented by an attribute in one schema and an entity (relation) in
another. Dependency conflicts occur when different relationship modes (e.g., one-
to-one versus many-to-many) are used to represent the same thing in different
schemas. Key conflicts occur when different candidate keys are available and
different primary keys are selected in different schemas. Behavioral conflicts are
implied by the modeling mechanism. For example, deleting the last item from one

290 7 Database Integration—Multidatabase Systems

database may cause the deletion of the containing entity (i.e., deletion of the last
employee causes the dissolution of the department).

Example 7.3 We have two structural conflicts in the running example of this
chapter. The first is a type conflict involving clients of projects. In the schema of
Fig. 7.5, the client of a project is modeled as an entity. In the schema of Fig. 7.4,
however, the client is included as an attribute of the PROJ entity.

The second structural conflict is a dependency conflict involving the WORKS_IN
relationship in Fig. 7.5 and the ASG relation in Fig. 7.4. In the former, the
relationship is many-to-one from the WORKER to the PROJECT, whereas in the
latter, the relationship is many-to-many. �

Structural differences among schemas are important, but their identification and
resolution is not sufficient. Schema matching has to take into account the (possibly
different) semantics of the schema concepts. This is referred to as semantic hetero-
geneity, which is a fairly loaded term without a clear definition. It basically refers to
the differences among the databases that relate to the meaning, interpretation, and
intended use of data. There are attempts to formalize semantic heterogeneity and to
establish its link to structural heterogeneity; we will take a more informal approach
and discuss some of the semantic heterogeneity issues intuitively. The following are
some of these problems that the match algorithms need to deal with.

• Synonyms, homonyms, hypernyms. Synonyms are multiple terms that all refer
to the same concept. In our database example, PROJ relation and PROJECT
entity refer to the same concept. Homonyms, on the other hand, occur when
the same term is used to mean different things in different contexts. Again, in
our example, BUDGET may refer to the gross budget in one database and it
may refer to the net budget (after some overhead deduction) in another, making
their simple comparison difficult. Hypernym is a term that is more generic than
a similar word. Although there is no direct example of it in the databases we
are considering, the concept of a Vehicle in one database is a hypernym for
the concept of a Car in another (incidentally, in this case, Car is a hyponym of
Vehicle). These problems can be addressed by the use of domain ontologies that
define the organization of concepts and terms in a particular domain.

• Different ontology: Even if domain ontologies are used to deal with issues in one
domain, it is quite often the case that schemas from different domains may need
to be matched. In this case, one has to be careful of the meaning of terms across
ontologies, as they can be highly domain dependent. For example, an attribute
called LOAD may imply a measure of resistance in an electrical ontology, but in
a mechanical ontology, it may represent a measure of weight.

• Imprecise wording: Schemas may contain ambiguous names. For example, the
LOCATION (from E-R) and LOC (from relational) attributes in our example
database may refer to the full address or just part of it. Similarly, an attribute
named “contact-info” may imply that the attribute contains the name of the
contact agent or his/her telephone number. These types of ambiguities are
common.

7.1 Database Integration 291

7.1.2.2 Linguistic Matching Approaches

Linguistic matching approaches, as the name implies, use element names and other
textual information (such as textual descriptions/annotations in schema definitions)
to perform matches among elements. In many cases, they may use external sources,
such as thesauri, to assist in the process.

Linguistic techniques can be applied in both schema-based approaches and
instance-based ones. In the former case, similarities are established among schema
elements, whereas in the latter, they are specified among elements of individual data
instances. To focus our discussion, we will mostly consider schema-based linguistic
matching approaches, briefly mentioning instance-based techniques. Consequently,
we will use the notation 〈SC1.element-1 ≈ SC2.element-2, p, s〉 to represent that
element-1 in schema SC1 corresponds to element-2 in schema SC2 if predicate p

holds, with a similarity value of s. Matchers use these rules and similarity values to
determine the similarity value of schema elements.

Linguistic matchers that operate at the schema element-level typically deal with
the names of the schema elements and handle cases such as synonyms, homonyms,
and hypernyms. In some cases, the schema definitions can have annotations (natural
language comments) that may be exploited by the linguistic matchers. In the case
of instance-based approaches, linguistic matchers focus on information retrieval
techniques such as word frequencies, key terms, etc. In these cases, the matchers
“deduce” similarities based on these information retrieval measures.

Schema linguistic matchers use a set of linguistic (also called terminological)
rules that can be handcrafted or may be “discovered” using auxiliary data sources
such as thesauri, e.g., WordNet. In the case of handcrafted rules, the designer needs
to specify the predicate p and the similarity value s as well. For discovered rules,
these may either be specified by an expert following the discovery, or they may be
computed using one of the techniques we will discuss shortly.

The handcrafted linguistic rules may deal with issues such as capitalization,
abbreviations, and concept relationships. In some systems, the handcrafted rules
are specified for each schema individually (intraschema rules) by the designer, and
interschema rules are then “discovered” by the matching algorithm. However, in
most cases, the rule base contains both intra and interschema rules.

Example 7.4 In the relational database of Example 7.2, the set of rules may have
been defined (quite intuitively) as follows where RelDB refers to the relational
schema and ERDB refers to the translated E-R schema:

〈uppercase names ≈ lower case names, true, 1.0)〉
〈uppercase names ≈ capitalized names, true, 1.0)〉
〈capitalized names ≈ lower case names, true, 1.0)〉
〈RelDB.ASG ≈ ERDB.WORKS_IN, true, 0.8〉
. . .

292 7 Database Integration—Multidatabase Systems

The first three rules are generic ones specifying how to deal with capitalizations,
while the fourth one specifies a similarity between the ASG of RelDB and the
WORKS_IN of ERDB. Since these correspondences always hold, p = true. �

As indicated above, there are ways of determining the element name similarities
automatically. For example, COMA uses the following techniques to determine
similarity of two element names:

• The affixes which are the common prefixes and suffixes between the two element
name strings are determined.

• The n-grams of the two element name strings are compared. An n-gram is a
substring of length n and the similarity is higher if the two strings have more
n-grams in common.

• The edit distance between two element name strings is computed. The edit
distance (also called the Levenshtein metric) determines the number of character
modifications (additions, deletions, insertions) that one has to perform on one
string to convert it to the second string.

• The soundex code of the element names is computed. This gives the phonetic
similarity between names based on their soundex codes. Soundex code of English
words is obtained by hashing the word to a letter and three numbers. This hash
value (roughly) corresponds to how the word would sound. The important aspect
of this code in our context is that two words that sound similar will have close
soundex codes.

Example 7.5 Consider matching the RESP and the RESPONSIBILITY attributes in
the two example schemas we are considering. The rules defined in Example 7.4
take care of the capitalization differences, so we are left with matching RESP with
RESPONSIBILITY. Let us consider how the similarity between the two strings can
be computed using the edit distance and the n-gram approaches.

The number of editing changes that one needs to do to convert one of these
strings to the other is 10 (either we add the characters “O,” “N,” “S,” “I,” “B,”
“I,” “L,” “I,” “T,” “Y,” to string “RESP” or delete the same characters from string
“RESPONSIBILITY”). Thus the ratio of the required changes is 10/14, which
defines the edit distance between these two strings; 1 − (10/14) = 4/14 = 0.29
is then their similarity.

For n-gram computation, we need to first fix the value of n. For this example,
let n = 3, so we are looking for 3-grams. The 3-grams of string “RESP” are
“RES” and “ESP.” Similarly, there are twelve 3-grams of “RESPONSIBILITY”:
“RES,” “ESP,” “SPO,” “PON,” “ONS,” “NSI,” “SIB,” “IBI,” “BIP,” “ILI,” “LIT,” and
“ITY.” There are two matching 3-grams out of twelve, giving a 3-gram similarity of
2/12 = 0.17. �

The examples we have covered in this section all fall into the category of 1:1
matches—we matched one element of a particular schema to an element of another
schema. As discussed earlier, it is possible to have 1:N (e.g., Street address, City,
and Country element values in one database can be extracted from a single Address
element in another), N:1 (e.g., Total_price can be calculated from Subtotal and Taxes

7.1 Database Integration 293

elements), or N:M (e.g., Book_title, Rating information can be extracted via a join
of two tables one of which holds book information and the other maintains reader
reviews and ratings). 1:1, 1:N, and N:1 matchers are typically used in element-level
matching, while schema-level matching can also use N:M matching, since, in the
latter case the necessary schema information is available.

7.1.2.3 Constraint-Based Matching Approaches

Schema definitions almost always contain semantic information that constrain the
values in the database. These are typically data type information, allowable ranges
for data values, key constraints, etc. In the case of instance-based techniques, the
existing ranges of the values can be extracted as well as some patterns that exist in
the instance data. These can be used by matchers.

Consider data types that capture a large amount of semantic information. This
information can be used to disambiguate concepts and also focus the match.
For example, RESP and RESPONSIBILITY have relatively low similarity values
according to calculations in Example 7.5. However, if they have the same data type
definition, this may be used to increase their similarity value. Similarly, the data type
comparison may differentiate between elements that have high lexical similarity. For
example, ENO in Fig. 7.4 has the same edit distance and n-gram similarity values to
the two NUMBER attributes in Fig. 7.5 (of course, we are referring to the names of
these attributes). In this case, the data types may be of assistance—if the data type of
both ENO and worker number (WORKER.NUMBER) is integer, while the data type
of project number (PROJECT.NUMBER) is a string, the likelihood of ENO matching
WORKER.NUMBER is significantly higher.

In structure-based approaches, the structural similarities in the two schemas can
be exploited to determine the similarity of the schema elements. If two schema
elements are structurally similar, this enhances our confidence that they indeed
represent the same concept. For example, if two elements have very different names
and we have not been able to establish their similarity through element matchers,
but they have the same properties (e.g., same attributes) that have the same data
types, then we can be more confident that these two elements may be representing
the same concept.

The determination of structural similarity involves checking the similarity of
the “neighborhoods” of the two concepts under consideration. Definition of the
neighborhood is typically done using a graph representation of the schemas where
each concept (relation, entity, attribute) is a vertex and there is a directed edge
between two vertices if and only if the two concepts are related (e.g., there is an
edge from a relation vertex to each of its attributes, or there is an edge from a foreign
key attribute vertex to the primary key attribute vertex it is referencing). In this
case, the neighborhood can be defined in terms of the vertices that can be reached
within a certain path length of each concept, and the problem reduces to checking
the similarity of the subgraphs in this neighborhood. Many of these algorithms
consider the trie rooted at the concept that is being examined and compute the

294 7 Database Integration—Multidatabase Systems

similarity of the concepts represented by the root vertices in the two trees. The
fundamental idea is that if the subgraphs (subtrees) are similar, this increases the
similarity of the concepts represented by the “root” vertex in the two graphs. The
similarity of the subgraphs is typically determined in a bottom-up process, starting
at the leaves whose similarity is determined using element matching (e.g., name
similarity to the level of synonyms or data type compatibility). The similarity of the
two subtrees is recursively determined based on the similarity of the vertices in the
subtree. The similarity of two subgraphs (subtrees) is then defined as the fraction of
leaves in the two subtrees that are strongly linked. This is based on the assumption
that leaf vertices carry more information and that the structural similarity of two
nonleaf schema elements is determined by the similarity of the leaf vertices in
their respective subtrees, even if their immediate children are not similar. These
are heuristic rules and it is possible to define others.

Another interesting approach to considering neighborhood in directed graphs
while computing similarity of vertices is similarity flooding. It starts from an initial
graph where the vertex similarities are already determined by means of an element
matcher, and propagates, iteratively, to determine the similarity of each vertex to
its neighbors. Hence, whenever any two elements in two schemas are found to be
similar, the similarity of their adjacent vertices increases. The iterative process stops
when the vertex similarities stabilize. At each iteration, to reduce the amount of
work, a subset of the vertices are selected as the “most plausible” matches, which
are then considered in the subsequent iteration.

Both of these approaches are agnostic to the edge semantics. In some graph
representations, there is additional semantics attached to these edges. For exam-
ple, containment edges from a relation or entity vertex to its attributes may be
distinguished from referential edges from a foreign key attribute vertex to the
corresponding primary key attribute vertex. Some systems (e.g., DIKE) exploit these
edge semantics.

7.1.2.4 Learning-Based Matching

A third alternative approach that has been proposed is to use machine learning
techniques to determine schema matches. Learning-based approaches formulate the
problem as one of classification where concepts from various schemas are classified
into classes according to their similarity. The similarity is determined by checking
the features of the data instances of the databases that correspond to these schemas.
How to classify concepts according to their features is learned by studying the data
instances in a training dataset.

The process is as follows (Fig. 7.8). A training set (τ) is prepared that consists
of instances of example correspondences between the concepts of two databases Di

and Dj . This training set can be generated after manual identification of the schema
correspondences between two databases followed by extraction of example training
data instances or by the specification of a query expression that converts data from
one database to another. The learner uses this training data to acquire probabilistic

7.1 Database Integration 295

τ = {DI .em ≈ Dj .en} Learner

Dk ,Dl Classifier

Probabilistic
knowledge

Classification
predictions

Fig. 7.8 Learning-based matching approach

information about the features of the datasets. The classifier, when given two other
database instances (Dk and Dl), then uses this knowledge to go through the data
instances in Dk and Dl and make predictions about classifying the elements of Dk

and Dl .
This general approach applies to all of the proposed learning-based schema

matching approaches. Where they differ is the type of learner that they use and
how they adjust this learner’s behavior for schema matching. Some have used
neural networks (e.g., SEMINT), others have used Naïve Bayesian learner/classifier
(Autoplex , LSD) and decision trees. We do not discuss the details of these learning
techniques.

7.1.2.5 Combined Matching Approaches

The individual matching techniques that we have considered so far have their strong
points and their weaknesses. Each may be more suitable for matching certain cases.
Therefore, a “complete” matching algorithm or methodology usually needs to make
use of more than one individual matcher.

There are two possible ways in which matchers can be combined: hybrid and
composite. Hybrid algorithms combine multiple matchers within one algorithm.
In other words, elements from two schemas can be compared using a number
of element matchers (e.g., string matching as well as data type matching) and/or
structural matchers within one algorithm to determine their overall similarity.
Careful readers will have noted that in discussing the constraint-based matching
algorithms that focused on structural matching, we followed a hybrid approach
since they were based on an initial similarity determination of, for example, the
leaf nodes using an element matcher, and these similarity values were then used in
structural matching. Composite algorithms, on the other hand, apply each matcher
to the elements of the two schemas (or two instances) individually, obtaining
individual similarity scores, and then they apply a method for combining these
similarity scores. More precisely, if si(C

k
j , Cm

l) is the similarity score using matcher

296 7 Database Integration—Multidatabase Systems

i (i = 1, . . . , q) over two concepts Cj from schema k and Cl from schema m, then
the composite similarity of the two concepts is given by s(Ck

j , Cm
l) = f (s1, . . . , sq),

where f is the function that is used to combine the similarity scores. This function
can be as simple as average, max, or min, or it can be an adaptation of more
complicated ranking aggregation functions that we will discuss further in Sect. 7.2.
Composite approach has been proposed in the LSD and iMAP systems for handling
1:1 and N:M matches, respectively.

7.1.3 Schema Integration

Once schema matching is done, the correspondences between the various LCSs have
been identified. The next step is to create the GCS, and this is referred to as schema
integration. As indicated earlier, this step is only necessary if a GCS has not already
been defined and matching was performed on individual LCSs. If the GCS was
defined upfront, then the matching step would determine correspondences between
it and each of the LCSs and there would be no need for the integration step. If the
GCS is created as a result of the integration of LCSs based on correspondences
identified during schema matching, then, as part of integration, it is important to
identify the correspondences between the GCS and the LCSs. Although tools have
been developed to aid in the integration process, human involvement is clearly
essential.

Example 7.6 There are a number of possible integrations of the two example LCSs
we have been discussing. Figure 7.9 shows one possible GCS that can be generated
as a result of schema integration. We use this in the remainder of this chapter. �

Integration methodologies can be classified as binary or n-ary mechanisms based
on the manner in which the local schemas are handled in the first phase (Fig. 7.10).
Binary integration methodologies involve the manipulation of two schemas at a
time. These can occur in a stepwise (ladder) fashion (Fig. 7.11a) where intermediate
schemas are created for integration with subsequent schemas, or in a purely binary
fashion (Fig. 7.11b), where each schema is integrated with one other, creating an
intermediate schema for integration with other intermediate schemas.

Fig. 7.9 Example integrated GCS (EMP is employee, PR is project, CL is client)

7.1 Database Integration 297

Integration process

Binary

Ladder Balanced

n-ary

One-shot Iterative

Fig. 7.10 Taxonomy of integration methodologies

(a)

(b)

Fig. 7.11 Binary integration methods. (a) Stepwise. (b) Pure binary

(a) (b)

Fig. 7.12 N -ary integration methods. (a) One-pass. (b) Iterative

N -ary integration mechanisms integrate more than two schemas at each iteration.
One-pass integration (Fig. 7.12a) occurs when all schemas are integrated at once,
producing the global conceptual schema after one iteration. Benefits of this approach
include the availability of complete information about all databases at integration
time. There is no implied priority for the integration order of schemas, and the
trade-offs, such as the best representation for data items or the most understandable
structure, can be made between all schemas rather than between a few. Difficulties
with this approach include increased complexity and difficulty of automation.

Iterative n-ary integration (Fig. 7.12b) offers more flexibility (typically, more
information is available) and is more general (the number of schemas can be varied
depending on the integrator’s preferences). Binary approaches are a special case of

298 7 Database Integration—Multidatabase Systems

iterative n-ary. They decrease the potential integration complexity and lead towards
automation techniques, since the number of schemas to be considered at each step is
more manageable. Integration by an n-ary process enables the integrator to perform
the operations on more than two schemas. For practical reasons, the majority of
systems utilize binary methodology, but a number of researchers prefer the n-ary
approach because complete information is available.

7.1.4 Schema Mapping

Once a GCS (or mediated schema) is defined, it is necessary to identify how the
data from each of the local databases (source) can be mapped to GCS (target) while
preserving semantic consistency (as defined by both the source and the target).
Although schema matching has identified the correspondences between the LCSs
and the GCS, it may not have identified explicitly how to obtain the global database
from the local ones. This is what schema mapping is about.

In the case of data warehouses, schema mappings are used to explicitly extract
data from the sources, and translate them to the data warehouse schema for
populating it. In the case of data integration systems, these mappings are used in
query processing phase by both the query processor and the wrappers (see Sect. 7.2).

There are two issues related to schema mapping that we will study: mapping
creation and mapping maintenance. Mapping creation is the process of creating
explicit queries that map data from a local database to the global one. Mapping
maintenance is the detection and correction of mapping inconsistencies resulting
from schema evolution. Source schemas may undergo structural or semantic
changes that invalidate mappings. Mapping maintenance is concerned with the
detection of broken mappings and the (automatic) rewriting of mappings such
that semantic consistency with the new schema and semantic equivalence with the
current mapping are achieved.

7.1.4.1 Mapping Creation

Mapping creation starts with a source LCS, the target GCS, and a set of schema
matches M and produces a set of queries that, when executed, will create GCS
data instances from the source data. In data warehouses, these queries are actually
executed to create the data warehouse (global database), while in data integration
systems, they are used in the reverse direction during query processing (Sect. 7.2).

Let us make this more concrete by referring to the canonical relational represen-
tation that we have adopted. The source LCS under consideration consists of a set
of relations Source = {O1, . . . ,Om}, the GCS consists of a set of global (or target)
relations T arget = {T1, . . . ,Tn}, and M consists of a set of schema match rules as
defined in Sect. 7.1.2. We are looking for a way to generate, for each Tk , a query

7.1 Database Integration 299

Qk that is defined on a (possibly proper) subset of the relations in Source such that,
when executed, it will generate data for Tk from the source relations.

This can be accomplished iteratively by considering each Tk in turn. It starts with
Mk ⊆ M (Mk is the set of rules that only apply to the attributes of Tk) and divides
it into subsets {M1

k , . . . ,Ms
k } such that each M

j
k specifies one possible way that

values of Tk can be computed. Each M
j
k can be mapped to a query q

j
k that, when

executed, would generate some of Tk’s data. The union of all of these queries gives
Qk(= ∪j q

j
k) that we are looking for.

The algorithm proceeds in four steps that we discuss below. It does not consider
the similarity values in the rules. It can be argued that the similarity values would
be used in the final stages of the matching process to finalize correspondences,
so that their use during mapping is unnecessary. Furthermore, by the time this
phase of the integration process is reached, the concern is how to map source
relation (LCS) data to target relation (GCS) data. Consequently, correspondences
are not symmetric equivalences (≈), but mappings (�→): attribute(s) from (possibly
multiple) source relations are mapped to an attribute of a target relation (i.e.,
(Oi .attributek,Oj .attributel) �→ Tw.attributez)).

Example 7.7 To demonstrate the algorithm, we will use a different example
database than what we have been working with, because it does not incorporate
all the complexities that we wish to demonstrate. Instead, we will use the following
abstract example.

Source relations (LCS):

O1(A1,A2)

O2(B1,B2,B3)

O3(C1,C2,C3)

O4(D1,D2)

Target relation (GCS):

T(W1,W2,W3,W4)

We consider only one relation in GCS since the algorithm iterates over target
relations one-at-a-time; this is sufficient to demonstrate the operation of the
algorithm.

The foreign key relationships between the attributes are as follows:

Foreign key Refers to

A1 B1

A2 B1

C1 B1

Assume that the following matches have been discovered for attributes of relation
T (these make up MT). In the subsequent examples, we will not be concerned with
the predicates, so they are not explicitly specified.

300 7 Database Integration—Multidatabase Systems

r1 = 〈A1 �→ W1, p〉
r2 = 〈A2 �→ W2, p〉
r3 = 〈B2 �→ W4, p〉
r4 = 〈B3 �→ W3, p〉
r5 = 〈C1 �→ W1, p〉
r6 = 〈C2 �→ W2, p〉
r7 = 〈D1 �→ W4, p〉

�
In the first step, Mk (corresponding to Tk) is partitioned into its subsets

{M1
k , . . . ,Mn

k } such that each M
j
k contains at most one match for each attribute

of Tk . These are called potential candidate sets, some of which may be complete
in that they include a match for every attribute of Tk , but others may not be. The
reasons for considering incomplete sets are twofold. First, it may be the case that
no match is found for one or more attributes of the target relation (i.e., none of
the match sets is complete). Second, for large and complex database schemas, it
may make sense to build the mapping iteratively so that the designer specifies the
mappings incrementally.

Example 7.8 MT is partitioned into fifty-three subsets (i.e., potential candidate
sets). The first eight of these are complete, while the rest are not. We show some
of these below. To make it easier to read, the complete rules are listed in the order
of the target attributes to which they map (e.g., the third rule in M1

T is r4, because
this rule maps to attribute W3):

M1
T = {r1, r2, r4, r3} M2

T = {r1, r2, r4, r7}
M3
T = {r1, r6, r4, r3} M4

T = {r1, r6, r4, r7}
M5
T = {r5, r2, r4, r3} M6

T = {r5, r2, r4, r7}
M7
T = {r5, r6, r4, r3} M8

T = {r5, r6, r4, r7}
M9
T = {r1, r2, r3} M10

T = {r1, r2, r4}
M11
T = {r1, r3, r4} M12

T = {r2, r3, r4}
M13
T = {r1, r3, r6} M14

T = {r3, r4, r6}
.

M47
T = {r1} M48

T = {r2}
M49
T = {r3} M50

T = {r4}
M51
T = {r5} M52

T = {r6}
M53
T = {r7}

�

7.1 Database Integration 301

In the second step, the algorithm analyzes each potential candidate set M
j
k to

see if a “good” query can be produced for it. If all the matches in M
j
k map values

from a single source relation to Tk , then it is easy to generate a query corresponding
to M

j
k . Of particular concern are matches that require access to multiple source

relations. In this case the algorithm checks to see if there is a referential connection
between these relations through foreign keys (i.e., whether there is a join path
through the source relations). If there is not, then the potential candidate set is
eliminated from further consideration. In case there are multiple join paths through
foreign key relationships, the algorithm looks for those paths that will produce the
most number of tuples (i.e., the estimated difference in size of the outer and inner
joins is the smallest). If there are multiple such paths, then the database designer
needs to be involved in selecting one (tools such as Clio, OntoBuilder, and others
facilitate this process and provide mechanisms for designers to view and specify
correspondences). The result of this step is a set Mk ⊆ Mk of candidate sets.

Example 7.9 In this example, there is no M
j
k where the values of all of T’s attributes

are mapped from a single source relation. Among those that involve multiple source
relations, rules that involve O1,O2, and O3 can be mapped to “good” queries since
there are foreign key relationships between them. However, the rules that involve
O4 (i.e., those that include rule r7) cannot be mapped to a “good” query since there
is no join path from O4 to the other relations (i.e., any query would involve a cross
product, which is expensive). Thus, these rules are eliminated from the potential
candidate set. Considering only the complete sets, M2

k ,M4
k ,M6

k , and M8
k are pruned

from the set. In the end, the candidate set (Mk) contains thirty-five rules (the readers
are encouraged to verify this to better understand the algorithm). �

In the third step, the algorithm looks for a cover of the candidate sets Mk . The
cover Ck ⊆ Mk is a set of candidate sets such that each match in Mk appears in
Ck at least once. The point of determining a cover is that it accounts for all of the
matches and is, therefore, sufficient to generate the target relation Tk . If there are
multiple covers (a match can participate in multiple covers), then they are ranked
in increasing number of the candidate sets in the cover. The fewer the number of
candidate sets in the cover, the fewer are the number of queries that will be generated
in the next step; this improves the efficiency of the mappings that are generated. If
there are multiple covers with the same ranking, then they are further ranked in
decreasing order of the total number of unique target attributes that are used in the
candidate sets constituting the cover. The point of this ranking is that covers with
higher number of attributes generate fewer null values in the result. At this stage,
the designer may need to be consulted to choose from among the ranked covers.

Example 7.10 First note that we have six rules that define matches in Mk that
we need to consider, since M

j
k that include rule r7 have been eliminated. There

are a large number of possible covers; let us start with those that involve M1
k to

demonstrate the algorithm:

302 7 Database Integration—Multidatabase Systems

C1
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r1, r6, r4, r3}
︸�����������︷︷�����������︸

M3
T

, {r2}
︸︷︷︸

M48
T

}

C2
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r2, r4, r3}
︸�����������︷︷�����������︸

M5
T

, {r6}
︸︷︷︸

M50
T

}

C3
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r4, r3}
︸�����������︷︷�����������︸

M7
T

}

C4
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r4}
︸������︷︷������︸

M12
T

}

C5
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r3}
︸������︷︷������︸

M19
T

}

C6
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6}
︸��︷︷��︸

M32
T

}

At this point we observe that the covers consist of either two or three candidate
sets. Since the algorithm prefers those with fewer candidate sets, we only need to
focus on those involving two sets. Furthermore, among these covers, we note that the
number of target attributes in the candidate sets differ. Since the algorithm prefers
covers with the largest number of target attributes in each candidate set, C3

T is the
preferred cover.

Note that due to the two heuristics employed by the algorithm, the only covers we
need to consider are those that involve M1

T,M
3
T,M

5
T, and M7

T. Similar covers can be
defined involving M3

T,M
5
T, and M7

T; we leave that as an exercise. In the remainder,
we will assume that the designer has chosen to use C3

T as the preferred cover. �

The final step of the algorithm builds a query q
j
k for each of the candidate sets

in the cover selected in the previous step. The union of all of these queries (UNION
ALL) results in the final mapping for relation Tk in the GCS.

Query q
j
k is built as follows:

• SELECT clause includes all correspondences (c) in each of the rules (ri
k) in

M
j
k .

• FROM clause includes all source relations mentioned in ri
k and in the join

paths determined in Step 2 of the algorithm.
• WHERE clause includes conjunct of all predicates (p) in ri

k and all join
predicates determined in Step 2 of the algorithm.

• If ri
k contains an aggregate function either in c or in p

• GROUP BY is used over attributes (or functions on attributes) in the
SELECT clause that are not within the aggregate;

7.1 Database Integration 303

• If aggregate is in the correspondence c, it is added to SELECT, else (i.e.,
aggregate is in the predicate p) a HAVING clause is created with the
aggregate.

Example 7.11 Since in Example 7.10 we have decided to use cover C3
T for the final

mapping, we need to generate two queries: q1
T and q7

T corresponding to M1
T and M7

T,
respectively. For ease of presentation, we list the rules here again:

r1 = 〈A1 �→ W1, p〉
r2 = 〈A2 �→ W2, p〉
r3 = 〈B2 �→ W4, p〉
r4 = 〈B3 �→ W3, p〉
r5 = 〈C1 �→ W1, p〉
r6 = 〈C2 �→ W2, p〉

The two queries are as follows:

q1
k : SELECT A1,A2,B2,B3

FROM O1,O2
WHERE p1 AND O1.A2 = O2.B1

q7
k : SELECT B2,B3,C1,C2

FROM O2,O3
WHERE p3 AND p4 AND p5 AND p6
AND O3.c1 = O2.B1

Thus, the final query Qk for target relation T becomes q1
k UNION ALL q7

k . �
The output of this algorithm after it is iteratively applied to each target relation

Tk is a set of queries Q = {Qk} that, when executed, produce data for the
GCS relations. Thus, the algorithm produces GAV mappings between relational
schemas—recall that GAV defines a GCS as a view over the LCSs and that is exactly
what the set of mapping queries do. The algorithm takes into account the semantics
of the source schema since it considers foreign key relationships in determining
which queries to generate. However, it does not consider the semantics of the target,
so that the tuples that are generated by the execution of the mapping queries are not
guaranteed to satisfy target semantics. This is not a major issue in the case when the
GCS is integrated from the LCSs; however, if the GCS is defined independent of the
LCSs, then this is problematic.

It is possible to extend the algorithm to deal with target semantics as well as
source semantics. This requires that interschema tuple-generating dependencies be
considered. In other words, it is necessary to produce GLAV mappings. A GLAV

304 7 Database Integration—Multidatabase Systems

mapping, by definition, is not simply a query over the source relations; it is a
relationship between a query over the source (i.e., LCS) relations and a query over
the target (i.e., GCS) relations. Let us be more precise. Consider a schema match v

that specifies a correspondence between attribute A of a source LCS relation R and
attribute B of a target GCS relation T (in the notation we used in this section we have
v = 〈R.A ≈ T.B, p, s〉). Then the source query specifies how to retrieve R.A and the
target query specifies how to obtain T.B. The GLAV mapping, then, is a relationship
between these two queries.

This can be accomplished by starting with a source schema, a target schema, and
M , and “discovering” mappings that satisfy both the source and the target schema
semantics. This algorithm is also more powerful than the one we discussed in this
section in that it can handle nested structures that are common in XML, object
databases, and nested relational systems.

The first step in discovering all of the mappings based on schema match
correspondences is semantic translation, which seeks to interpret schema matches
in M in a way that is consistent with the semantics of both the source and target
schemas as captured by the schema structure and the referential (foreign key)
constraints. The result is a set of logical mappings each of which captures the design
choices (semantics) made in both source and target schemas. Each logical mapping
corresponds to one target schema relation. The second step is data translation that
implements each logical mapping as a rule that can be translated into a query that
would create an instance of the target element when executed.

Semantic translation takes as inputs the source Source and target schemas
T arget , and M and performs the following two steps:

• It examines intraschema semantics within the Source and T arget separately and
produces for each a set of logical relations that are semantically consistent.

• It then interprets interschema correspondences M in the context of logical
relations generated in Step 1 and produces a set of queries into Q that are
semantically consistent with T arget .

7.1.4.2 Mapping Maintenance

In dynamic environments where schemas evolve over time, schema mappings can
be made invalid as the result of structural or constraint changes of the schemas.
Thus, the detection of invalid/inconsistent schema mappings and the adaptation of
such schema mappings to new schema structures/constraints are important.

In general, automatic detection of invalid/inconsistent schema mappings is
desirable as the complexity of the schemas and the number of schema mappings
used in database applications increase. Likewise, (semi-)automatic adaptation of
mappings to schema changes is also a goal. It should be noted that automatic
adaptation of schema mappings is not the same as automatic schema matching.
Schema adaptation aims to resolve semantic correspondences using known changes
in intraschema semantics, semantics in existing mappings, and detected semantic

7.1 Database Integration 305

inconsistencies (resulting from schema changes). Schema matching must take a
much more “from scratch” approach at generating schema mappings and does not
have the ability (or luxury) of incorporating such contextual knowledge.

Detecting Invalid Mappings

In general, detection of invalid mappings resulting from schema change can either
happen proactively or reactively. In proactive detection environments, schema
mappings are tested for inconsistencies as soon as schema changes are made by
a user. The assumption (or requirement) is that the mapping maintenance system is
completely aware of any and all schema changes, as soon as they are made. The
ToMAS system, for example, expects users to make schema changes through its
own schema editors, making the system immediately aware of any schema changes.
Once schema changes have been detected, invalid mappings can be detected by
doing a semantic translation of the existing mappings using the logical relations of
the updated schema.

In reactive detection environments, the mapping maintenance system is unaware
of when and what schema changes are made. To detect invalid schema mappings in
this setting, mappings are tested at regular intervals by performing queries against
the data sources and translating the resulting data using the existing mappings.
Invalid mappings are then determined based on the results of these mapping tests.

An alternative method that has been proposed is to use machine learning
techniques to detect invalid mappings (as in the Maveric system). What has been
proposed is to build an ensemble of trained sensors (similar to multiple learners
in schema matching) to detect invalid mappings. Examples of such sensors include
value sensors for monitoring distribution characteristics of target instance values,
trend sensors for monitoring the average rate of data modification, and layout and
constraint sensors that monitor translated data against expected target schema syntax
and semantics. A weighted combination of the findings of the individual sensors is
then calculated where the weights are also learned. If the combined result indicates
changes and follow-up tests suggest that this may indeed be the case, an alert is
generated.

Adapting Invalid Mappings

Once invalid schema mappings are detected, they must be adapted to schema
changes and made valid once again. Various high-level mapping adaptation
approaches have been proposed. These can be broadly described as fixed rule
approaches that define a remapping rule for every type of expected schema change,
map bridging approaches that compare original schema S and the updated schema
S′, and generate new mapping from S to S′ in addition to existing mappings,
and semantic rewriting approaches, which exploit semantic information encoded in
existing mappings, schemas, and semantic changes made to schemas to propose map

306 7 Database Integration—Multidatabase Systems

rewritings that produce semantically consistent target data. In most cases, multiple
such rewritings are possible, requiring a ranking of the candidates for presentation
to users who make the final decision (based on scenario- or business-level semantics
not encoded in schemas or mappings).

Arguably, a complete remapping of schemas (i.e., from scratch, using schema
matching techniques) is another alternative to mapping adaption. However, in most
cases, map rewriting is cheaper than map regeneration as rewriting can exploit
knowledge encoded in existing mappings to avoid computation of mappings that
would be rejected by the user anyway (and to avoid redundant mappings).

7.1.5 Data Cleaning

Errors in source databases can always occur, requiring cleaning in order to correctly
answer user queries. Data cleaning is a problem that arises in both data warehouses
and data integration systems, but in different contexts. In data warehouses where
data is actually extracted from local operational databases and materialized as a
global database, cleaning is performed as the global database is created. In the case
of data integration systems, data cleaning is a process that needs to be performed
during query processing when data is returned from the source databases.

The errors that are subject to data cleaning can generally be broken down into
either schema-level or instance-level concerns. Schema-level problems can arise
in each individual LCS due to violations of explicit and implicit constraints. For
example, values of attributes may be outside the range of their domains (e.g., 14th
month or negative salary value), attribute values may violate implicit dependencies
(e.g., the age attribute value may not correspond to the value that is computed as the
difference between the current date and the birth date), uniqueness of attribute values
may not hold, and referential integrity constraints may be violated. Furthermore,
in the environment that we are considering in this chapter, the schema-level
heterogeneities (both structural and semantic) among the LCSs that we discussed
earlier can all be considered problems that need to be resolved. At the schema level,
it is clear that the problems need to be identified at the schema match stage and fixed
during schema integration.

Instance level errors are those that exist at the data level. For example, the
values of some attributes may be missing although they were required, there could
be misspellings and word transpositions (e.g., “M.D. Mary Smith” versus “Mary
Smith, M.D.”) or differences in abbreviations (e.g., “J. Doe” in one source database,
while “J.N. Doe” in another), embedded values (e.g., an aggregate address attribute
that includes street name, value, province name, and postal code), values that were
erroneously placed in other fields, duplicate values, and contradicting values (the
salary value appearing as one value in one database and another value in another
database). For instance-level cleaning, the issue is clearly one of generating the
mappings such that the data is cleaned through the execution of the mapping
functions (queries).

7.2 Multidatabase Query Processing 307

The popular approach to data cleaning has been to define a number of operators
that operate either on schemas or on individual data. The operators can be composed
into a data cleaning plan. Example schema operators add or drop columns from
table, restructure a table by combining columns or splitting a column into two, or
define more complicated schema transformation through a generic “map” operator
that takes a single relation and produces one or more relations. Example data level
operators include those that apply a function to every value of one attribute, merging
values of two attributes into the value of a single attribute and its converse split
operator, a matching operator that computes an approximate join between tuples of
two relations, clustering operator that groups tuples of a relation into clusters, and a
tuple merge operator that partitions the tuples of a relation into groups and collapses
the tuples in each group into a single tuple through some aggregation over them, as
well as basic operators to find duplicates and eliminate them. Many of the data level
operators compare individual tuples of two relations (from the same or different
schemas) and decide whether or not they represent the same fact. This is similar to
what is done in schema matching, except that it is done at the individual data level
and what is considered are not individual attribute values, but entire tuples. However,
the same techniques we studied under schema matching (e.g., use of edit distance
or soundex value) can be used in this context. There have been proposals for special
techniques for handling this efficiently within the context of data cleaning such as
fuzzy matching that computes a similarity function to determine whether the two
tuples are identical or reasonably similar.

Given the large amount of data that needs to be handled, data level cleaning is
expensive and efficiency is a significant issue. The physical implementation of each
of the operators we discussed above is a considerable concern. Although cleaning
can be done off-line as a batch process in the case of data warehouses, for data
integration systems, cleaning may need to be done online as data is retrieved from
the sources. The performance of data cleaning is, of course, more critical in the latter
case.

7.2 Multidatabase Query Processing

We now turn our attention to querying and accessing an integrated database obtained
through the techniques discussed in the previous section—this is known as the
multidatabase querying problem. As previously noted, many of the distributed query
processing and optimization techniques that we discussed in Chap. 4 carry over to
multidatabase systems, but there are important differences. Recall from that chapter
that we characterized distributed query processing in four steps: query decompo-
sition, data localization, global optimization, and local optimization. The nature of
multidatabase systems requires slightly different steps and different techniques. The
component DBMSs may be autonomous and have different database languages and
query processing capabilities. Thus, an MDBS layer (see Fig. 1.12) is necessary
to communicate with component DBMSs in an effective way, and this requires

308 7 Database Integration—Multidatabase Systems

Query on
global relations

REWRITING Global
Schema

Query on
local relations

OPTIMIZATION &
EXECUTION

Allocation &
Capability Inf.

Distributed
query execution plan

TRANSLATION &
EXECUTION

Wrapper
Information

Results

MEDIATOR
SITE

WRAPPER
SITES

Fig. 7.13 Generic layering scheme for multidatabase query processing

additional query processing steps (Fig. 7.13). Furthermore, there may be many
component DBMSs, each of which may exhibit different behavior, thereby posing
new requirements for more adaptive query processing techniques.

7.2.1 Issues in Multidatabase Query Processing

Query processing in a multidatabase system is more complex than in a distributed
DBMS for the following reasons:

1. The computing capabilities of the component DBMSs may be different, which
prevents uniform treatment of queries across multiple DBMSs. For example,
some DBMSs may be able to support complex SQL queries with join and aggre-
gation, while some others cannot. Thus the multidatabase query processor should
consider the various DBMS capabilities. The capabilities of each component is
recorded in the directory along with data allocation information.

2. Similarly, the cost of processing queries may be different on different DBMSs,
and the local optimization capability of each DBMS may be quite different. This
increases the complexity of the cost functions that need to be evaluated.

3. The data models and languages of the component DBMSs may be quite differ-
ent, for instance, relational, object-oriented, semi-structured, etc. This creates
difficulties in translating multidatabase queries to component DBMS and in
integrating heterogeneous results.

7.2 Multidatabase Query Processing 309

4. Since a multidatabase system enables access to very different DBMSs that may
have different performance and behavior, distributed query processing techniques
need to adapt to these variations.

The autonomy of the component DBMSs poses problems. DBMS autonomy can
be defined along three main dimensions: communication, design, and execution.
Communication autonomy means that a component DBMS communicates with
others at its own discretion, and, in particular, it may terminate its services at
any time. This requires query processing techniques that are tolerant to system
unavailability. The question is how the system answers queries when a component
system is either unavailable from the beginning or shuts down in the middle of
query execution. Design autonomy may restrict the availability and accuracy of cost
information that is needed for query optimization. The difficulty of determining
local cost functions is an important issue. The execution autonomy of multidatabase
systems makes it difficult to apply some of the query optimization strategies
we discussed in previous chapters. For example, semijoin-based optimization of
distributed joins may be difficult if the source and target relations reside in different
component DBMSs, since, in this case, the semijoin execution of a join translates
into three queries: one to retrieve the join attribute values of the target relation and
to ship it to the source relation’s DBMS, the second to perform the join at the source
relation, and the third to perform the join at the target relation’s DBMS. The problem
arises because communication with component DBMSs occurs at a high level of the
DBMS API.

In addition to these difficulties, the architecture of a distributed multidatabase
system poses certain challenges. The architecture depicted in Fig. 1.12 points to
an additional complexity. In distributed DBMSs, query processors have to deal
only with data distribution across multiple sites. In a distributed multidatabase
environment, on the other hand, data is distributed not only across sites but also
across multiple databases, each managed by an autonomous DBMS. Thus, while
there are two parties that cooperate in the processing of queries in a distributed
DBMS (the control site and local sites), the number of parties increases to three
in the case of a distributed MDBS: the MDBS layer at the control site (i.e., the
mediator) receives the global query, the MDBS layers at the sites (i.e., the wrappers)
participate in processing the query, and the component DBMSs ultimately optimize
and execute the query.

7.2.2 Multidatabase Query Processing Architecture

Most of the work on multidatabase query processing has been done in the context
of the mediator/wrapper architecture (see Fig. 1.13). In this architecture, each
component database has an associated wrapper that exports information about the
source schema, data, and query processing capabilities. A mediator centralizes the
information provided by the wrappers in a unified view of all available data (stored

310 7 Database Integration—Multidatabase Systems

in a global data dictionary) and performs query processing using the wrappers
to access the component DBMSs. The data model used by the mediator can be
relational, object-oriented, or even semi-structured. In this chapter, for consistency
with the previous chapters on distributed query processing, we continue to use
the relational model, which is quite sufficient to explain the multidatabase query
processing techniques.

The mediator/wrapper architecture has several advantages. First, the specialized
components of the architecture allow the various concerns of different kinds of
users to be handled separately. Second, mediators typically specialize in a related
set of component databases with “similar” data, and thus export schemas and
semantics related to a particular domain. The specialization of the components
leads to a flexible and extensible distributed system. In particular, it allows seamless
integration of different data stored in very different components, ranging from full-
fledged relational DBMSs to simple files.

Assuming the mediator/wrapper architecture, we can now discuss the various
layers involved in query processing in distributed multidatabase systems as shown
in Fig. 7.13. As before, we assume the input is a query on global relations expressed
in relational calculus. This query is posed on global (distributed) relations, meaning
that data distribution and heterogeneity are hidden. Three main layers are involved in
multidatabase query processing. This layering is similar to that of query processing
in homogeneous distributed DBMSs (see Fig. 4.2). However, since there is no
fragmentation, there is no need for the data localization layer.

The first two layers map the input query into an optimized distributed query
execution plan (QEP). They perform the functions of query rewriting, query
optimization, and some query execution. The first two layers are performed by the
mediator and use metainformation stored in the global directory (global schema,
allocation, and capability information). Query rewriting transforms the input query
into a query on local relations, using the global schema. Recall that there are
two main approaches for database integration: global-as-view (GAV) and local-as-
view (LAV). Thus, the global schema provides the view definitions (i.e., mappings
between the global relations and the local relations stored in the component
databases) and the query is rewritten using the views.

Rewriting can be done at the relational calculus or algebra levels. In this chapter,
we will use a generalized form of relational calculus called Datalog that is well-
suited for such rewriting. Thus, there is an additional step of calculus to algebra
translation that is similar to the decomposition step in homogeneous distributed
DBMSs.

The second layer performs query optimization and (some) execution by con-
sidering the allocation of the local relations and the different query processing
capabilities of the component DBMSs exported by the wrappers. The allocation
and capability information used by this layer may also contain heterogeneous cost
information. The distributed QEP produced by this layer groups within subqueries
the operations that can be performed by the component DBMSs and wrappers.
Similar to distributed DBMSs, query optimization can be static or dynamic.
However, the lack of homogeneity in multidatabase systems (e.g., some component

7.2 Multidatabase Query Processing 311

DBMSs may have unexpectedly long delays in answering) makes dynamic query
optimization more critical. In the case of dynamic optimization, there may be
subsequent calls to this layer after execution by the subsequent layer as illustrated by
the arrow showing results coming from the translation and execution layer. Finally,
this layer integrates the results coming from the different wrappers to provide a
unified answer to the user’s query. This requires the capability of executing some
operations on data coming from the wrappers. Since the wrappers may provide very
limited execution capabilities, e.g., in the case of very simple component DBMSs,
the mediator must provide the full execution capabilities to support the mediator
interface.

The third layer performs query translation and execution using the wrappers.
Then it returns the results to the mediator that can perform result integration

from different wrappers and subsequent execution. Each wrapper maintains a
wrapper schema that includes the local export schema and mapping information
to facilitate the translation of the input subquery (a subset of the QEP) expressed in
a common language into the language of the component DBMS. After the subquery
is translated, it is executed by the component DBMS and the local result is translated
back to the common format.

The wrapper information describes how mappings from/to participating local
schemas and global schema can be performed. It enables conversions between
components of the database in different ways. For example, if the global schema
represents temperatures in Fahrenheit degrees, but a participating database uses
Celsius degrees, the wrapper information must contain a conversion formula to
provide the proper presentation to the global user and the local databases. If the
conversion is across types and simple formulas cannot perform the translation,
complete mapping tables could be used in the wrapper information stored in the
directory.

7.2.3 Query Rewriting Using Views

Query rewriting reformulates the input query expressed on global relations into a
query on local relations. It uses the global schema, which describes in terms of views
the correspondences between the global relations and the local relations. Thus, the
query must be rewritten using views. The techniques for query rewriting differ in
major ways depending on the database integration approach that is used, i.e., GAV
or LAV. In particular, the techniques for LAV (and its extension GLAV) are much
more involved. Most of the work on query rewriting using views has been done
using Datalog, which is a logic-based database language. Datalog is more concise
than relational calculus and thus more convenient for describing complex query
rewriting algorithms. In this section, we first introduce Datalog terminology. Then,
we describe the main techniques and algorithms for query rewriting in the GAV and
LAV approaches.

312 7 Database Integration—Multidatabase Systems

7.2.3.1 Datalog Terminology

Datalog can be viewed as an in-line version of domain relational calculus. Let us
first define conjunctive queries, i.e., select-project-join queries, which are the basis
for more complex queries. A conjunctive query in Datalog is expressed as a rule of
the form:

Q(t) : −R1(t1), . . . ,Rn(tn)

The atom Q(t) is the head of the query and denotes the result relation. The atoms
R1(t1), . . . ,Rn(tn) are the subgoals in the body of the query and denote database
relations. Q and R1, . . . ,Rn are predicate names and correspond to relation names.
t, t1, . . . , tn refer to the relation tuples and contain variables or constants. The
variables are similar to domain variables in domain relational calculus. Thus, the
use of the same variable name in multiple predicates expresses equijoin predicates.
Constants correspond to equality predicates. More complex comparison predicates
(e.g., using comparators such as �=, ≤, and <) must be expressed as other subgoals.
We consider queries that are safe, i.e., those where each variable in the head also
appears in the body. Disjunctive queries can also be expressed in Datalog using
unions, by having several conjunctive queries with the same head predicate.

Example 7.12 Let us consider GCS relations EMP and WORKS defined in Fig. 7.9.
Consider the following SQL query:

SELECT E#, TITLE, P#
FROM EMP NATURAL JOIN WORKS
WHERE TITLE = "Programmer" OR DUR = 24

The corresponding query in Datalog can be expressed as:

Q(E#,TITLE,P#) : −EMP(E#,ENAME, “Programmer”,CITY),

WORKS(E#,P#,RESP,DUR)

Q(E#,TITLE,P#) : −EMP(E#,ENAME,TITLE,CITY),

WORKS(E#,P#,RESP, 24)

�

7.2.3.2 Rewriting in GAV

In the GAV approach, the global schema is expressed in terms of the data sources
and each global relation is defined as a view over the local relations. This is similar
to the global schema definition in tightly integrated distributed DBMS. In particular,

7.2 Multidatabase Query Processing 313

the local relations (i.e., relations in a component DBMS) can correspond to
fragments. However, since the local databases preexist and are autonomous, it may
happen that tuples in a global relation do not exist in local relations or that a
tuple in a global relation appears in different local relations. Thus, the properties
of completeness and disjointness of fragmentation cannot be guaranteed. The lack
of completeness may yield incomplete answers to queries. The lack of disjointness
may yield duplicate results that may still be useful information and may not need to
be eliminated. Similar to queries, view definitions can use Datalog notation.

Example 7.13 Let us consider the global relations EMP and WORKS in Fig. 7.9,
with a slight modification: the default responsibility of an employee in a project
corresponds to its title, so that attribute TITLE is present in relation WORKS but
absent in relation EMP. Let us consider the local relations EMP1 and EMP2 each
with attributes E#, ENAME, TITLE, and CITY, and local relation WORKS1 with
attributes E#, P#, and DUR. The global relations EMP and WORKS can be simply
defined with the following Datalog rules:

EMP(E#,ENAME,CITY) : −EMP1(E#,ENAME,TITLE,CITY) (d1)

EMP(E#,ENAME,TITLE,CITY) : −EMP2(E#,ENAME,TITLE,CITY) (d2)

WORKS(E#,P#,TITLE,DUR) : −EMP1(E#,ENAME,TITLE,CITY),

WORKS1(E#,P#,DUR) (d3)

WORKS(E#,P#,TITLE,DUR) : −EMP2(E#,ENAME,TITLE,CITY)),

WORKS1(E#,P#,DUR) (d4)

�
Rewriting a query expressed on the global schema into an equivalent query on

the local relations is relatively simple and similar to data localization in tightly
integrated distributed DBMS (see Sect. 4.2). The rewriting technique using views is
called unfolding, and it replaces each global relation invoked in the query with its
corresponding view. This is done by applying the view definition rules to the query
and producing a union of conjunctive queries, one for each rule application. Since
a global relation may be defined by several rules (see Example 7.13), unfolding can
generate redundant queries that need to be eliminated.

Example 7.14 Let us consider the global schema in Example 7.13 and the following
query q that asks for assignment information about the employees living in Paris:

Q(e, p) : −EMP(e,ENAME, “Paris”),WORKS(e, p,TITLE,DUR).

314 7 Database Integration—Multidatabase Systems

Unfolding q produces q ′ as follows:

Q′(e, p) : −EMP1(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR). (q1)

Q′(e, p) : −EMP2(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR). (q2)

Q′ is the union of two conjunctive queries labeled as q1 and q2. q1 is obtained by
applying GAV rule d3 or both rules d1 and d3. In the latter case, the query obtained
is redundant with respect to that obtained with d3 only. Similarly, q2 is obtained by
applying rule d4 or both rules d2 and d4. �

Although the basic technique is simple, rewriting in GAV becomes difficult when
local databases have limited access patterns. This is the case for databases accessed
over the web where relations can be only accessed using certain binding patterns for
their attributes. In this case, simply substituting the global relations with their views
is not sufficient, and query rewriting requires the use of recursive Datalog queries.

7.2.3.3 Rewriting in LAV

In the LAV approach, the global schema is expressed independent of the local
databases and each local relation is defined as a view over the global relations. This
enables considerable flexibility for defining local relations.

Example 7.15 To facilitate comparison with GAV, we develop an example that is
symmetric to Example 7.13 with EMP and WORKS defined in that example as global
relations as. In the LAV approach, the local relations EMP1, EMP2, and WORKS1
can be defined with the following Datalog rules:

EMP1(E#,ENAME,TITLE,CITY) : −EMP(E#,ENAME,CITY),

WORKS(E#,P#,TITLE,DUR) (d5)

EMP2(E#,ENAME,TITLE,CITY) : −EMP(E#,ENAME,CITY),

WORKS(E#,P#,TITLE,DUR) (d6)

WORKS1(E#,P#,DUR) : −WORKS(E#,P#,TITLE,DUR) (d7)

�
Rewriting a query expressed on the global schema into an equivalent query

on the views describing the local relations is difficult for three reasons. First,
unlike in the GAV approach, there is no direct correspondence between the terms
used in the global schema, (e.g., EMP, ENAME) and those used in the views (e.g.,
EMP1, EMP2, ENAME). Finding the correspondences requires comparison with each
view. Second, there may be many more views than global relations, thus making
view comparison time consuming. Third, view definitions may contain complex
predicates to reflect the specific contents of the local relations, e.g., view EMP3

7.2 Multidatabase Query Processing 315

containing only programmers. Thus, it is not always possible to find an equivalent
rewriting of the query. In this case, the best that can be done is to find a maximally
contained query, i.e., a query that produces the maximum subset of the answer.
For instance, EMP3 could only return a subset of all employees, those who are
programmers.

Rewriting queries using views has received much attention because of its
relevance to both logical and physical data integration problems. In the context
of physical integration (i.e., data warehousing), using materialized views may be
much more efficient than accessing base relations. However, the problem of finding
a rewriting using views is NP-complete in the number of views and the number of
subgoals in the query. Thus, algorithms for rewriting a query using views essentially
try to reduce the numbers of rewritings that need to be considered. Three main
algorithms have been proposed for this purpose: the bucket algorithm, the inverse
rule algorithm, and the MinCon algorithm. The bucket algorithm and the inverse
rule algorithm have similar limitations that are addressed by the MinCon algorithm.

The bucket algorithm considers each predicate of the query independently to
select only the views that are relevant to that predicate. Given a query Q, the
algorithm proceeds in two steps. In the first step, it builds a bucket b for each subgoal
q of Q that is not a comparison predicate and inserts in b the heads of the views that
are relevant to answer q. To determine whether a view V should be in b, there must
be a mapping that unifies q with one subgoal v in V.

For instance, consider query Q in Example 7.14 and the views in Example 7.15.
The following mapping unifies the subgoal EMP(e, ENAME, “Paris”) of Q with the
subgoal EMP(E#, ENAME, CITY) in view EMP1:

e → E#, “Paris” → CITY

In the second step, for each view V of the Cartesian product of the nonempty
buckets (i.e., some subset of the buckets), the algorithm produces a conjunctive
query and checks whether it is contained in Q. If it is, the conjunctive query is kept
as it represents one way to answer part of Q from V. Thus, the rewritten query is a
union of conjunctive queries.

Example 7.16 Let us consider query Q in Example 7.14 and the views in Exam-
ple 7.15. In the first step, the bucket algorithm creates two buckets, one for each
subgoal of Q. Let us denote by b1 the bucket for the subgoal EMP(e, ENAME,
“Paris”) and by b2 the bucket for the subgoal WORKS(e, p, TITLE, DUR). Since
the algorithm inserts only the view heads in a bucket, there may be variables in a
view head that are not in the unifying mapping. Such variables are simply primed.
We obtain the following buckets:

b1 = {EMP1(E#,ENAME,TITLE′,CITY),

EMP2(E#,ENAME,TITLE′,CITY)}
b2 = {WORKS1(E#,P#,DUR′)}

316 7 Database Integration—Multidatabase Systems

In the second step, the algorithm combines the elements from the buckets, which
produces a union of two conjunctive queries:

Q′(e, p) : −EMP1(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR) (q1)

Q′(e, p) : −EMP2(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR) (q2)

�
The main advantage of the bucket algorithm is that, by considering the predicates

in the query, it can significantly reduce the number of rewritings that need to be
considered. However, considering the predicates in the query in isolation may yield
the addition of a view in a bucket that is irrelevant when considering the join with
other views. Furthermore, the second step of the algorithm may still generate a large
number of rewritings as a result of the Cartesian product of the buckets.

Example 7.17 Let us consider query Q in Example 7.14 and the views in Exam-
ple 7.15 with the addition of the following view that gives the projects for which
there are employees who live in Paris.

PROJ1(P#) : −EMP1(E#,ENAME, “Paris”),

WORKS(E#,P#,TITLE,DUR) (d8)

Now, the following mapping unifies the subgoal WORKS(e, p, TITLE, DUR) of
Q with the subgoal WORKS(E#, P#, TITLE, DUR) in view PROJ1:

p → PNAME

Thus, in the first step of the bucket algorithm, PROJ1 is added to bucket b2.
However, PROJ1 cannot be useful in a rewriting of Q since the variable ENAME
is not in the head of PROJ1 and thus makes it impossible to join PROJ1 on the
variable e of Q. This can be discovered only in the second step when building the
conjunctive queries. �

The MinCon algorithm addresses the limitations of the bucket algorithm (and
the inverse rule algorithm) by considering the query globally and considering how
each predicate in the query interacts with the views. It proceeds in two steps like the
bucket algorithm. The first step starts by selecting the views that contain subgoals
corresponding to subgoals of query Q. However, upon finding a mapping that unifies
a subgoal q of Q with a subgoal v in view V, it considers the join predicates in
Q and finds the minimum set of additional subgoals of Q that must be mapped to
subgoals in V. This set of subgoals of Q is captured by a MinCon description (MCD)
associated with V. The second step of the algorithm produces a rewritten query by
combining the different MCDs. In this second step, unlike in the bucket algorithm,
it is not necessary to check that the proposed rewritings are contained in the query

7.2 Multidatabase Query Processing 317

because the way the MCDs are created guarantees that the resulting rewritings will
be contained in the original query.

Applied to Example 7.17, the algorithm would create 3 MCDs: two for the views
EMP1 and EMP2 containing the subgoal EMP of Q and one for ASG1 containing the
subgoal ASG. However, the algorithm cannot create an MCD for PROJ1 because
it cannot apply the join predicate in Q. Thus, the algorithm would produce the
rewritten query Q′ of Example 7.16. Compared with the bucket algorithm, the
second step of the MinCon algorithm is much more efficient since it performs fewer
combinations of MCDs than buckets.

7.2.4 Query Optimization and Execution

The three main problems of query optimization in multidatabase systems are
heterogeneous cost modeling, heterogeneous query optimization (to deal with
different capabilities of component DBMSs), and adaptive query processing (to deal
with strong variations in the environment—failures, unpredictable delays, etc.). In
this section, we describe the techniques for the first two problems. In Sect. 4.6, we
presented the techniques for adaptive query processing. These techniques can be
used in multidatabase systems as well, provided that the wrappers are able to collect
information regarding execution within the component DBMSs.

7.2.4.1 Heterogeneous Cost Modeling

Global cost function definition, and the associated problem of obtaining cost-related
information from component DBMSs, is perhaps the most-studied of the three
problems. A number of possible solutions have emerged, which we discuss below.

The first thing to note is that we are primarily interested in determining the cost
of the lower levels of a query execution trie that correspond to the parts of the query
executed at component DBMSs. If we assume that all local processing is “pushed
down” in the trie, then we can modify the query plan such that the leaves of the trie
correspond to subqueries that will be executed at individual component DBMSs. In
this case, we are talking about the determination of the costs of these subqueries that
are input to the first level (from the bottom) operators. Cost for higher levels of the
query execution trie may be calculated recursively, based on the leaf node costs.

Three alternative approaches exist for determining the cost of executing queries
at component DBMSs:

1. Black-Box Approach. This approach treats each component DBMS as a black
box, running some test queries on it, and from these determines the necessary
cost information.

318 7 Database Integration—Multidatabase Systems

2. Customized Approach. This approach uses previous knowledge about the
component DBMSs, as well as their external characteristics, to subjectively
determine the cost information.

3. Dynamic Approach. This approach monitors the runtime behavior of compo-
nent DBMSs, and dynamically collects the cost information.

We discuss each approach, focusing on the proposals that have attracted the most
attention.

Black-Box Approach

In the black-box approach, the cost functions are expressed logically (e.g., aggregate
CPU and I/O costs, selectivity factors), rather than on the basis of physical
characteristics (e.g., relation cardinalities, number of pages, number of distinct
values for each column). Thus, the cost functions for component DBMSs are
expressed as

Cost = initialization cost + cost to f ind qualifying tuples

+ cost to process selected tuples

The individual terms of this formula will differ for different operators. However,
these differences are not difficult to specify a priori. The fundamental difficulty is the
determination of the term coefficients in these formulas, which change with different
component DBMSs. One way to deal with this is to construct a synthetic database
(called a calibrating database), run queries against it in isolation, and measure the
elapsed time to deduce the coefficients.

A problem with this approach is that the results obtained by using a synthetic
database may not apply well to real DBMSs. An alternative is based on running
probing queries on component DBMSs to determine cost information. Probing
queries can, in fact, be used to gather a number of cost information factors. For
example, probing queries can be issued to retrieve data from component DBMSs
to construct and update the multidatabase catalog. Statistical probing queries can
be issued that, for example, count the number of tuples of a relation. Finally,
performance measuring probing queries can be issued to measure the elapsed time
for determining cost function coefficients.

A special case of probing queries is sample queries. In this case, queries are
classified according to a number of criteria, and sample queries from each class
are issued and measured to derive component cost information. Query classification
can be performed according to query characteristics (e.g., unary operation queries,
two-way join queries), characteristics of the operand relations (e.g., cardinality,
number of attributes, information on indexed attributes), and characteristics of the
underlying component DBMSs (e.g., the access methods that are supported and the
policies for choosing access methods).

7.2 Multidatabase Query Processing 319

Classification rules are defined to identify queries that execute similarly, and
thus could share the same cost formula. For example, one may consider that two
queries that have similar algebraic expressions (i.e., the same algebraic trie shape),
but different operand relations, attributes, or constants, are executed the same way if
their attributes have the same physical properties. Another example is to assume that
join order of a query has no effect on execution since the underlying query optimizer
applies reordering techniques to choose an efficient join ordering. Thus, two queries
that join the same set of relations belong to the same class, whatever ordering is
expressed by the user. Classification rules are combined to define query classes. The
classification is performed either top-down by dividing a class into more specific
ones or bottom-up by merging two classes into a larger one. In practice, an efficient
classification is obtained by mixing both approaches. The global cost function
consists of three components: initialization cost, cost of retrieving a tuple, and cost
of processing a tuple. The difference is in the way the parameters of this function
are determined. Instead of using a calibrating database, sample queries are executed
and costs are measured. The global cost equation is treated as a regression equation,
and the regression coefficients are calculated using the measured costs of sample
queries. The regression coefficients are the cost function parameters. Eventually,
the cost model quality is controlled through statistical tests (e.g., F-test): if the tests
fail, the query classification is refined until quality is sufficient.

The above approaches require a preliminary step to instantiate the cost model
(either by calibration or sampling). This may not be always appropriate, because
it would slow down the system each time a new DBMS component is added. One
way to address this problem is to progressively learn the cost model from queries.
The assumption is that the mediator invokes the underlying component DBMSs by
a function call. The cost of a call is composed of three values: the response time to
access the first tuple, the whole result response time, and the result cardinality. This
allows the query optimizer to minimize either the time to receive the first tuple or
the time to process the whole query, depending on end-user requirements. Initially
the query processor does not know any statistics about component DBMSs. Then
it monitors ongoing queries: it collects processing time of every call and stores it
for future estimation. To manage the large amount of collected statistics, the cost
manager summarizes them, either without loss of precision or with less precision
at the benefit of lower space use and faster cost estimation. Summarization consists
of aggregating statistics: the average response time is computed for all the calls
that match the same pattern, i.e., those with identical function name and zero or
more identical argument values. The cost estimator module is implemented in a
declarative language. This allows adding new cost formulas describing the behavior
of a particular component DBMS. However, the burden of extending the mediator
cost model remains with the mediator developer.

The major drawback of the black-box approach is that the cost model, although
adjusted by calibration, is common for all component DBMSs and may not capture
their individual specifics. Thus it might fail to estimate accurately the cost of a query
executed at a component DBMS that exposes unforeseen behavior.

320 7 Database Integration—Multidatabase Systems

Customized Approach

The basis of this approach is that the query processors of the component DBMSs
are too different to be represented by a unique cost model as used in the black-
box approach. It also assumes that the ability to accurately estimate the cost of
local subqueries will improve global query optimization. The approach provides a
framework to integrate the component DBMSs’ cost model into the mediator query
optimizer. The solution is to extend the wrapper interface such that the mediator
gets some specific cost information from each wrapper. The wrapper developer is
free to provide a cost model, partially or entirely. Then, the challenge is to integrate
this (potentially partial) cost description into the mediator query optimizer. There
are two main solutions.

A first solution is to provide the logic within the wrapper to compute three cost
estimates: the time to initiate the query process and receive the first result item
(called reset_cost), the time to get the next item (called advance_cost), and the
result cardinality. Thus, the total query cost is

T otal_access_cost = reset_cost + (cardinality − 1) ∗ advance_cost

This solution can be extended to estimate the cost of database procedure calls. In that
case, the wrapper provides a cost formula that is a linear equation depending on the
procedure parameters. This solution has been successfully implemented to model a
wide range of heterogeneous components DBMSs, ranging from a relational DBMS
to an image server. It shows that a little effort is sufficient to implement a rather
simple cost model and this significantly improves distributed query processing over
heterogeneous sources.

A second solution is to use a hierarchical generic cost model. As shown in
Fig. 7.14, each node represents a cost rule that associates a query pattern with a
cost function for various cost parameters.

The node hierarchy is divided into five levels depending on the genericity of
the cost rules (in Fig. 7.14, the increasing width of the boxes shows the increased
focus of the rules). At the top level, cost rules apply by default to any DBMS. At
the underlying levels, the cost rules are increasingly focused on: specific DBMS,
relation, predicate, or query. At the time of wrapper registration, the mediator
receives wrapper metadata including cost information, and completes its built-
in cost model by adding new nodes at the appropriate level of the hierarchy.
This framework is sufficiently general to capture and integrate both general cost
knowledge declared as rules given by wrapper developers and specific information
derived from recorded past queries that were previously executed. Thus, through an
inheritance hierarchy, the mediator cost-based optimizer can support a wide variety
of data sources. The mediator benefits from specialized cost information about each
component DBMS, to accurately estimate the cost of queries and choose a more
efficient QEP.

Example 7.18 Consider the GCS relations EMP and WORKS (Fig. 7.9). EMP is
stored at component DBMS db1 and contains 1,000 tuples. ASG is stored at
component DBMS db2 and contains 10,000 tuples. We assume uniform distribution

7.2 Multidatabase Query Processing 321

select(Collection, Predicate)
CountObject = . . .
TotalSize = . . .
TotalTime = . . .
etc

Source 1:
select(Collection, Predicate)

TotalTime = . . .

Source 2:
select(Collection, Predicate)

TotalTime = . . .

select(PROJ, Predicate)
TotalSize = . . .

select(EMP, Predicate)
TotalTime = . . .

select(EMP,TITLE = value)
TotalTime = . . .

select(EMP,ENAME = value)
TotalTime = . . .

Collection-
scope rules

Predicate-
scope rules

Query-
specific rules

Wrapper-
scope rules

Default-scope
rules

Fig. 7.14 Hierarchical cost formula trie

of attribute values. Half of the WORKS tuples have a duration greater than 6. We
detail below some parts of the mediator generic cost model where R and S are
two relations, A is the join attribute and we use superscripts to indicate the access
method:

cost (R) = |R|

cost (σpredicate(R)) = cost (R) (access to R by sequential scan—by default)

cost (R ��
ind
A S) = cost (R)+|R| ∗ cost (σA=v(S)) (using an index based (ind)

join with the index on S.A)

cost (R ��
nl
A S) = cost (R) + |R| ∗ cost (S) (using a nested-loop (nl) join)

Consider the following global query Q:

SELECT *
FROM EMP NATURAL JOIN WORKS
WHERE WORKS.DUR>6

322 7 Database Integration—Multidatabase Systems

The cost-based query optimizer generates the following plans to process Q:

P1 = σDUR>6(EMP ��
ind
E# WORKS)

P2 = EMP ��
nl
E# σDUR>6(WORKS)

P3 = σDUR>6(WORKS) ��ind
E# EMP

P4 = σDUR>6(WORKS) ��nl
E# EMP

Based on the generic cost model, we compute their cost as:

cost (P1) = cost (σDUR>6(EMP ��
ind
E# WORKS)

= cost (EMP ��
ind
E# WORKS)

= cost (EMP) + |EMP| ∗ cost (σE#=v(WORKS))

= |EMP| + |EMP| ∗ |WORKS| = 10, 001, 000

cost (P2) = cost (EMP) + |EMP| ∗ cost (σDUR>6(WORKS))

= cost (EMP) + |EMP| ∗ cost (WORKS)

= |EMP | + |EMP| ∗ |WORKS| = 10, 001, 000

cost (P3) = cost (P4) = |WORKS| + |WORKS|
2

∗ |EMP|

= 5, 010, 000

Thus, the optimizer discards plans P1 and P2 to keep either P3 or P4 for processing
Q. Let us assume now that the mediator imports specific cost information about
component DBMSs. db1 exports the cost of accessing EMP tuples as:

cost (σA=v(R)) = |σA=v(R)|

db2 exports the specific cost of selecting WORKS tuples that have a given E# as:

cost (σE#=v(WORKS)) = |σE#=v(WORKS)|

The mediator integrates these cost functions in its hierarchical cost model, and can
now estimate more accurately the cost of the QEPs:

cost (P1) = |EMP| + |EMP| ∗ |σE#=v(WORKS)|
= 1, 000 + 1, 000 ∗ 10

7.2 Multidatabase Query Processing 323

= 11, 000

cost (P2) = |EMP| + |EMP| ∗ |σDUR>6(WORKS)|

= |EMP| + |EMP| ∗ |ASG|
2

= 5, 001, 000

cost (P3) = |WORKS| + |WORKS|
2

∗ |σE#=v(EMP)|

= 10, 000 + 5, 000 ∗ 1

= 15, 000

cost (P4) = |WORKS| + |WORKS|
2

∗ |EMP|

= 10, 000 + 5, 000 ∗ 1, 000

= 5, 010, 000

The best QEP is now P1 which was previously discarded because of lack of cost
information about component DBMSs. In many situations P1 is actually the best
alternative to process Q1. �

The two solutions just presented are well-suited to the mediator/wrapper archi-
tecture and offer a good trade-off between the overhead of providing specific cost
information for diverse component DBMSs and the benefit of faster heterogeneous
query processing.

Dynamic Approach

The above approaches assume that the execution environment is stable over time.
However, in most cases, the execution environment factors are frequently changing.
Three classes of environmental factors can be identified based on their dynamicity.
The first class for frequently changing factors (every second to every minute)
includes CPU load, I/O throughput, and available memory. The second class for
slowly changing factors (every hour to every day) includes DBMS configuration
parameters, physical data organization on disks, and database schema. The third
class for almost stable factors (every month to every year) includes DBMS type,
database location, and CPU speed. We focus on solutions that deal with the first two
classes.

One way to deal with dynamic environments where network contention, data
storage, or available memory changes over time is to extend the sampling method
and consider user queries as new samples. Query response time is measured

324 7 Database Integration—Multidatabase Systems

to adjust the cost model parameters at runtime for subsequent queries. This
avoids the overhead of processing sample queries periodically, but still requires
heavy computation to solve the cost model equations and does not guarantee that
cost model precision improves over time. A better solution, called qualitative,
defines the system contention level as the combined effect of frequently changing
factors on query cost. The system contention level is divided into several discrete
categories: high, medium, low, or no system contention. This allows for defining
a multicategory cost model that provides accurate cost estimates, while dynamic
factors are varying. The cost model is initially calibrated using probing queries. The
current system contention level is computed over time, based on the most significant
system parameters. This approach assumes that query executions are short, so the
environment factors remain rather constant during query execution. However, this
solution does not apply to long running queries, since the environment factors may
change rapidly during query execution.

To manage the case where the environment factor variation is predictable (e.g.,
the daily DBMS load variation is the same every day), the query cost is computed
for successive date ranges. Then, the total cost is the sum of the costs for each
range. Furthermore, it may be possible to learn the pattern of the available network
bandwidth between the MDBS query processor and the component DBMS. This
allows adjusting the query cost depending on the actual date.

7.2.4.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must
deal with the issue of the heterogeneous computing capabilities of component
DBMSs. For instance, one component DBMS may support only simple select oper-
ations, while another may support complex queries involving join and aggregate.
Thus, depending on how the wrappers export such capabilities, query processing
at the mediator level can be more or less complex. There are two main approaches
to deal with this issue depending on the kind of interface between mediator and
wrapper: query-based and operator-based.

1. Query-based. In this approach, the wrappers support the same query capability,
e.g., a subset of SQL, which is translated to the capability of the component
DBMS. This approach typically relies on a standard DBMS interface such as
Open Database Connectivity (ODBC) and its extensions for the wrappers or
SQL Management of External Data (SQL/MED). Thus, since the component
DBMSs appear homogeneous to the mediator, query processing techniques
designed for homogeneous distributed DBMS can be reused. However, if the
component DBMSs have limited capabilities, the additional capabilities must be
implemented in the wrappers, e.g., join queries may need to be handled at the
wrapper, if the component DBMS does not support join.

2. Operator-based. In this approach, the wrappers export the capabilities of the
component DBMSs through compositions of relational operators. Thus, there is

7.2 Multidatabase Query Processing 325

more flexibility in defining the level of functionality between the mediator and
the wrapper. In particular, the different capabilities of the component DBMSs
can be made available to the mediator. This makes wrapper construction easier
at the expense of more complex query processing in the mediator. In particular,
any functionality that may not be supported by component DBMSs (e.g., join)
will need to be implemented at the mediator.

In the rest of this section, we present, in more detail, the approaches to query
optimization in these systems.

Query-Based Approach

Since the component DBMSs appear homogeneous to the mediator, one approach
is to use a distributed cost-based query optimization algorithm (see Chap. 4) with
a heterogeneous cost model (see Sect. 7.2.4.1). However, extensions are needed
to convert the distributed execution plan into subqueries to be executed by the
component DBMSs and into subqueries to be executed by the mediator. The hybrid
two-step optimization technique is useful in this case (see Sect. 4.5.3): in the first
step, a static plan is produced by a centralized cost-based query optimizer; in the
second step, at startup time, an execution plan is produced by carrying out site
selection and allocating the subqueries to the sites. However, centralized optimizers
restrict their search space by eliminating bushy join trees from consideration.
Almost all the systems use left linear join orders. Consideration of only left linear
join trees gives good results in centralized DBMSs for two reasons: it reduces the
need to estimate statistics for at least one operand, and indexes can still be exploited
for one of the operands. However, in multidatabase systems, these types of join
execution plans are not necessarily the preferred ones as they do not allow any
parallelism in join execution. As we discussed in earlier chapters, this is also a
problem in homogeneous distributed DBMSs, but the issue is more serious in the
case of multidatabase systems, because we wish to push as much processing as
possible to the component DBMSs.

A way to resolve this problem is to somehow generate bushy join trees and
consider them at the expense of left linear ones. One way to achieve this is to apply
a cost-based query optimizer to first generate a left linear join trie, and then convert
it to a bushy trie. In this case, the left linear join execution plan can be optimal
with respect to total time, and the transformation improves the query response time
without severely impacting the total time. A hybrid algorithm that concurrently
performs a bottom-up and top-down sweep of the left linear join execution trie,
transforming it, step-by-step, to a bushy one is possible. The algorithm maintains
two pointers, called upper anchor nodes (UAN) on the trie. At the beginning, one
of these, called the bottom UAN (UANB), is set to the grandparent of the leftmost
root node (join with R3 in Fig. 4.9), while the second one, called the top UAN
(UANT), is set to the root (join with R5). For each UAN the algorithm selects a
lower anchor node (LAN). This is the node closest to the UAN and whose right

326 7 Database Integration—Multidatabase Systems

child subtree’s response time is within a designer-specified range, relative to that of
the UAN’s right child subtree. Intuitively, the LAN is chosen such that its right child
subtree’s response time is close to the corresponding UAN’s right child subtree’s
response time. As we will see shortly, this helps in keeping the transformed bushy
trie balanced, which reduces the response time.

At each step, the algorithm picks one of the UAN/LAN pairs (strictly speaking, it
picks the UAN and selects the appropriate LAN, as discussed above), and performs
the following translation for the segment between that LAN and UAN pair:

1. The left child of UAN becomes the new UAN of the transformed segment.
2. The LAN remains unchanged, but its right child vertex is replaced with a new

join node of two subtrees, which were the right child subtrees of the input UAN
and LAN.

The UAN mode that will be considered in that particular iteration is chosen
according to the following heuristic: choose UANB if the response time of its left
child subtree is smaller than that of UANT ’s subtree; otherwise, choose UANT . If
the response times are the same, choose the one with the more unbalanced child
subtree.

At the end of each transformation step, the UANB and UANT are adjusted.
The algorithm terminates when UANB = UANT , since this indicates that no
further transformations are possible. The resulting join execution trie will be almost
balanced, producing an execution plan whose response time is reduced due to
parallel execution of the joins.

The algorithm described above starts with a left linear join execution trie
that is generated by a centralized DBMS optimizer. These optimizers are able
to generate very good plans, but the initial linear execution plan may not fully
account for the peculiarities of the distributed multidatabase characteristics, such
as data replication. A special global query optimization algorithm can take these
into consideration. One proposed algorithm starts from an initial plan and checks
for different parenthesizations of this linear join execution order to produce a
parenthesized order that is optimal with respect to response time. The result is
an (almost) balanced join execution trie. This approach is likely to produce better
quality plans at the expense of longer optimization time.

Operator-Based Approach

Expressing the capabilities of the component DBMSs through relational operators
allows tight integration of query processing between the mediator and the wrappers.
In particular, the mediator/wrapper communication can be in terms of subplans.
We illustrate the operator-based approach via the planning functions proposed in
the Garlic project. In this approach, the capabilities of the component DBMSs
are expressed by the wrappers as planning functions that can be directly called
by a centralized query optimizer. It extends a rule-based optimizer with operators
to create temporary relations and retrieve locally stored data. It also creates the

7.2 Multidatabase Query Processing 327

PushDown operator that pushes a portion of the work to the component DBMSs
where it will be executed. The execution plans are represented, as usual, as operator
trees, but the operator nodes are annotated with additional information that specifies
the source(s) of the operand(s), whether the results are materialized, and so on. The
Garlic operator trees are then translated into operators that can be directly executed
by the execution engine.

Planning functions are considered by the optimizer as enumeration rules. They
are called by the optimizer to construct subplans using two main functions:
accessPlan to access a relation, and joinPlan to join two relations using the access
plans. These functions precisely reflect the capabilities of the component DBMSs
with a common formalism.

Example 7.19 We consider three component databases, each at a different site.
Component database db1 stores relation EMP(ENO, ENAME, CITY) and com-
ponent database db2 stores relation WORKS(ENO, PNAME, DUR). Component
database db3 stores only employee information with a single relation of schema
EMPASG(ENAME, CITY, PNAME, DUR), whose primary key is (ENAME, PNAME).
Component databases db1 and db2 have the same wrapper w1, whereas db3 has a
different wrapper w2.

Wrapper w1 provides two planning functions typical of a relational DBMS. The
accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
scan(R,A, P , db(R))

produces a scan operator that accesses tuples of R from its component database
db(R) (here we can have db(R) = db1 or db(R) = db2), applies select predicate P ,
and projects on the attribute list A. The joinPlan rule

joinPlan(R1,R2: relations, A: attribute list, P : join predicate) =
join(R1,R2,A, P)

condition: db(R1) �= db(R2)

produces a join operator that accesses tuples of relations R1 and R2 and applies join
predicate P and projects on attribute list A. The condition expresses that R1 and
R2 are stored in different component databases (i.e., db1 and db2). Thus, the join
operator is implemented by the wrapper.

Wrapper w2 also provides two planning functions. The accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
fetch(CITY=“c”)

condition: (CITY=“c”) ⊆ P

produces a fetch operator that directly accesses (entire) employee tuples in compo-
nent database db3 whose CITY value is “c.” The accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
scan(R,A, P)

328 7 Database Integration—Multidatabase Systems

Scan(CITY=“Paris”)

EMP

db1

Scan(DUR> 24)

WORKS

db2

Fetch(CITY=“Paris”)

EMPASG

db3

Join
w1

Scan(DUR> 24)
w2

Union
m

Fig. 7.15 Heterogeneous query execution plan

produces a scan operator that accesses tuples of relation R in the wrapper and applies
select predicate P and attribute project list A. Thus, the scan operator is implemented
by the wrapper, not the component DBMS.

Consider the following SQL query submitted to mediator m:

SELECT ENAME, PNAME, DUR
FROM EMPASG
WHERE CITY = "Paris" AND DUR > 24

Assuming the GAV approach, the global view EMPASG(ENAME, CITY, PNAME,
DUR) can be defined as follows (for simplicity, we prefix each relation by its
component database name):

EMPASG = (db1.EMP �� db2.WORKS) ∪ db3.EMPASG

After query rewriting in GAV and query optimization, the operator-based
approach could produce the QEP shown in Fig. 7.15. This plan shows that the
operators that are not supported by the component DBMS are to be implemented
by the wrappers or the mediator. �

Using planning functions for heterogeneous query optimization has several
advantages in MDBSs. First, planning functions provide a flexible way to express
precisely the capabilities of component data sources. In particular, they can be
used to model nonrelational data sources such as web sites. Second, since these
rules are declarative, so they make wrapper development easier. The only important
development for wrappers is the implementation of specific operators, e.g., the scan
operator of db3 in Example 7.19. Finally, this approach can be easily incorporated
in an existing, centralized query optimizer.

The operator-based approach has also been successfully used in DIMDBS,
an MDBS designed to access multiple databases over the web. DISCO uses the

7.2 Multidatabase Query Processing 329

GAV approach and supports an object data model to represent both mediator and
component database schemas and data types. This allows easy introduction of new
component databases, easily handling potential type mismatches. The component
DBMS capabilities are defined as a subset of an algebraic machine (with the usual
operators such as scan, join, and union) that can be partially or entirely supported
by the wrappers or the mediator. This gives much flexibility for the wrapper
implementors in deciding where to support component DBMS capabilities (in the
wrapper or in the mediator). Furthermore, compositions of operators, including
specific datasets, can be specified to reflect component DBMS limitations. However,
query processing is more complicated because of the use of an algebraic machine
and compositions of operators. After query rewriting on the component schemas,
there are three main steps:

1. Search space generation. The query is decomposed into a number of QEPs,
which constitutes the search space for query optimization. The search space is
generated using a traditional search strategy such as dynamic programming.

2. QEP decomposition. Each QEP is decomposed into a forest of n wrapper QEPs
and a composition QEP. Each wrapper QEP is the largest part of the initial QEP
that can be entirely executed by the wrapper. Operators that cannot be performed
by a wrapper are moved up to the composition QEP. The composition QEP
combines the results of the wrapper QEPs in the final answer, typically through
unions and joins of the intermediate results produced by the wrappers.

3. Cost evaluation. The cost of each QEP is evaluated using a hierarchical cost
model discussed in Sect. 7.2.4.1.

7.2.5 Query Translation and Execution

Query translation and execution is performed by the wrappers using the component
DBMSs. A wrapper encapsulates the details of one or more component databases,
each supported by the same DBMS (or file system). It also exports to the mediator
the component DBMS capabilities and cost functions in a common interface. One
of the major practical uses of wrappers has been to allow an SQL-based DBMS to
access non-SQL databases.

The main function of a wrapper is conversion between the common interface
and the DBMS-dependent interface. Figure 7.16 shows these different levels of
interfaces between the mediator, the wrapper, and the component DBMSs. Note
that, depending on the level of autonomy of the component DBMSs, these three
components can be located differently. For instance, in the case of strong autonomy,
the wrapper should be at the mediator site, possibly on the same server. Thus,
communication between a wrapper and its component DBMS incurs network cost.
However, in the case of a cooperative component database (e.g., within the same
organization), the wrapper could be installed at the component DBMS site, much

330 7 Database Integration—Multidatabase Systems

MEDIATOR

WRAPPER

Common Interface

COMPONENT
DBMS

DBMS-dependent
Interface

Fig. 7.16 Wrapper interfaces

like an ODBC driver. Thus, communication between the wrapper and the component
DBMS is much more efficient.

The information necessary to perform conversion is stored in the wrapper schema
that includes the local schema exported to the mediator in the common interface
(e.g., relational) and the schema mappings to transform data between the local
schema and the component database schema and vice versa. We discussed schema
mappings in Sect. 7.1.4. Two kinds of conversion are needed. First, the wrapper
must translate the input QEP generated by the mediator and expressed in a common
interface into calls to the component DBMS using its DBMS-dependent interface.
These calls yield query execution by the component DBMS that return results
expressed in the DBMS-dependent interface. Second, the wrapper must translate
the results to the common interface format so that they can be returned to the
mediator for integration. In addition, the wrapper can execute operations that are
not supported by the component DBMS (e.g., the scan operation by wrapper w2 in
Fig. 7.15).

As discussed in Sect. 7.2.4.2, the common interface to the wrappers can be query-
based or operator-based. The problem of translation is similar in both approaches.
To illustrate query translation in the following example, we use the query-based
approach with the SQL/MED standard that allows a relational DBMS to access
external data represented as foreign relations in the wrapper’s local schema. This
example illustrates how a very simple data source can be wrapped to be accessed
through SQL.

Example 7.20 We consider relation EMP(ENO, ENAME, CITY) stored in a very
simple component database, in server ComponentDB, built with Unix text files.
Each EMP tuple can then be stored as a line in a file, e.g., with the attributes
separated by “:”. In SQL/MED, the definition of the local schema for this relation
together with the mapping to a Unix file can be declared as a foreign relation with
the following statement:

CREATE FOREIGN TABLE EMP
ENO INTEGER,
ENAME VARCHAR(30),

7.2 Multidatabase Query Processing 331

CITY VARCHAR(20)
SERVER ComponentDB
OPTIONS (Filename ’/usr/EngDB/emp.txt’,

Delimiter ’:’)

Then, the mediator can send SQL statements to the wrapper that supports access to
this relation. For instance, the query

SELECT ENAME
FROM EMP

can be translated by the wrapper using the following Unix shell command to extract
the relevant attribute:

cut -d: -f2 /usr/EngDB/emp

Additional processing, e.g., for type conversion, can then be done using program-
ming code. �

Wrappers are mostly used for read-only queries, which makes query translation
and wrapper construction relatively easy. Wrapper construction typically relies on
tools with reusable components to generate most of the wrapper code. Furthermore,
DBMS vendors provide wrappers for transparently accessing their DBMS using
standard interfaces. However, wrapper construction is much more difficult if updates
to component databases are to be supported through wrappers (as opposed to
directly updating the component databases through their DBMS). A major problem
is due to the heterogeneity of integrity constraints between the common interface
and the DBMS-dependent interface. As discussed in Chap. 3, integrity constraints
are used to reject updates that violate database consistency. In modern DBMSs,
integrity constraints are explicit and specified as rules that are part of the database
schema. However, in older DBMSs or simpler data sources (e.g., files), integrity
constraints are implicit and implemented by specific code in the applications. For
instance, in Example 7.20, there could be applications with some embedded code
that rejects insertions of new lines with an existing ENO in the EMP text file. This
code corresponds to a unique key constraint on ENO in relation EMP but is not
readily available to the wrapper. Thus, the main problem of updating through a
wrapper is guaranteeing component database consistency by rejecting all updates
that violate integrity constraints, whether they are explicit or implicit. A software
engineering solution to this problem uses a tool with reverse engineering techniques
to identify within application code the implicit integrity constraints that are then
translated into validation code in the wrappers.

Another major problem is wrapper maintenance. Query translation relies heavily
on the mappings between the component database schema and the local schema. If
the component database schema is changed to reflect the evolution of the component
database, then the mappings can become invalid. For instance, in Example 7.20,
the administrator may switch the order of the fields in the EMP file. Using invalid
mappings may prevent the wrapper from producing correct results. Since the

332 7 Database Integration—Multidatabase Systems

component databases are autonomous, detecting and correcting invalid mappings
is important. The techniques to do so are those for mapping maintenance that we
discussed in this chapter.

7.3 Conclusion

In this chapter, we discussed the bottom-up database design process, which we
called database integration and how to execute queries over databases constructed
in this manner. Database integration is the process of creating a GCS (or a mediated
schema) and determining how each LCS maps to it. A fundamental separation is
between data warehouses where the GCS is instantiated and materialized, and data
integration systems where the GCS is merely a virtual view.

Although the topic of database integration has been studied extensively for a long
time, almost all of the work has been fragmented. Individual projects focus either on
schema matching, or data cleaning, or schema mapping. What is needed is an end-
to-end methodology for database integration that is semiautomatic with sufficient
hooks for expert involvement. One approach to such a methodology is the work of
Bernstein and Melnik [2007], which provides the beginnings of a comprehensive
“end-to-end” methodology.

A related concept that has received considerable discussion in literature is data
exchange, which is defined as “the problem of taking data structured under a
source schema and creating an instance of a target schema that reflects the source
data as accurately as possible” [Fagin et al. 2005]. This is very similar to the
physical integration (i.e., materialized) data integration, such as data warehouses,
that we discussed in this chapter. A difference between data warehouses and the
materialization approaches as addressed in data exchange environments is that
data warehouse data typically belongs to one organization and can be structured
according to a well-defined schema, while in data exchange environments data may
come from different sources and contain heterogeneity.

Our focus in this chapter has been on integrating databases. Increasingly,
however, the data that are used in distributed applications involve those that are
not in a database. An interesting new topic of discussion among researchers is the
integration of structured data that is stored in databases and unstructured data that
is maintained in other systems (web servers, multimedia systems, digital libraries,
etc.). We discuss these in Chap. 12 where we focus on the integration of data from
different web repositories and introduce the recent concept of data lakes.

Another issue that we ignored in this chapter is data integration when a GCS
does not exist or cannot be specified. The issue arises particularly in the peer-to-
peer systems where the scale and the variety of data sources make it quite difficult
(if not impossible) to design a GCS. We will discuss data integration in peer-to-peer
systems in Chap. 9.

7.3 Conclusion 333

The second part of this chapter focused on query processing in multidatabase
systems, which is significantly more complex than in tightly integrated and homo-
geneous distributed DBMSs. In addition to being distributed, component databases
may be autonomous, have different database languages and query processing
capabilities, and exhibit varying behavior. In particular, component databases may
range from full-fledged SQL databases to very simple data sources (e.g., text files).

In this chapter, we addressed these issues by extending and modifying the
distributed query processing architecture presented in Chap. 4. Assuming the
popular mediator/wrapper architecture, we isolated the three main layers by which
a query is successively rewritten (to bear on local relations) and optimized by
the mediator, and then translated and executed by the wrappers and component
DBMSs. We also discussed how to support OLAP queries in a multidatabase, an
important requirement of decision-support applications. This requires an additional
layer of translation from OLAP multidimensional queries to relational queries. This
layered architecture for multidatabase query processing is general enough to capture
very different variations. This has been useful to describe various query processing
techniques, typically designed with different objectives and assumptions.

The main techniques for multidatabase query processing are query rewriting
using multidatabase views, multidatabase query optimization and execution, and
query translation and execution. The techniques for query rewriting using mul-
tidatabase views differ in major ways depending on whether the GAV or LAV
integration approach is used. Query rewriting in GAV is similar to data localization
in homogeneous distributed database systems. But the techniques for LAV (and its
extension GLAV) are much more involved and it is often not possible to find an
equivalent rewriting for a query, in which case a query that produces a maximum
subset of the answer is necessary. The techniques for multidatabase query optimiza-
tion include cost modeling and query optimization for component databases with
different computing capabilities. These techniques extend traditional distributed
query processing by focusing on heterogeneity. Besides heterogeneity, an important
problem is to deal with the dynamic behavior of the component DBMSs. Adaptive
query processing addresses this problem with a dynamic approach whereby the
query optimizer communicates at runtime with the execution environment in order
to react to unforeseen variations of runtime conditions. Finally, we discussed the
techniques for translating queries for execution by the components DBMSs and for
generating and managing wrappers.

The data model used by the mediator can be relational, object-oriented, or others.
In this chapter, for simplicity, we assumed a mediator with a relational model that
is sufficient to explain the multidatabase query processing techniques. However,
when dealing with data sources on the Web, a richer mediator model such as
object-oriented or semistructured (e.g., XML- or RDF-based) may be preferred.
This requires significant extensions to query processing techniques.

334 7 Database Integration—Multidatabase Systems

7.4 Bibliographic Notes

A large volume of literature exists on the topic of this chapter. The work goes back
to early 1980s and which is nicely surveyed by Batini et al. [1986]. Subsequent
work is nicely covered by Elmagarmid et al. [1999] and Sheth and Larson [1990].
Another more recent good review of the field is by Jhingran et al. [2002].

The book by Doan et al. [2012] provides the broadest coverage of the subject.
There are a number of overview papers on the topic. Bernstein and Melnik [2007]
provide a very nice discussion of the integration methodology. It goes further by
comparing the model management work with some of the data integration research.
Halevy et al. [2006] review the data integration work in the 1990s, focusing on the
Information Manifold system [Levy et al. 1996a], that uses a LAV approach. The
paper provides a large bibliography and discusses the research areas that have been
opened in the intervening years. Haas [2007] takes a comprehensive approach to the
entire integration process and divides it into four phases: understanding that involves
discovering relevant information (keys, constraints, data types, etc.), analyzing it to
assess quality, and to determine statistical properties; standardization whereby the
best way to represent the integrated information is determined; specification that
involves the configuration of the integration process; and execution, which is the
actual integration. The specification phase includes the techniques defined in this
paper.

The LAV and GAV approaches are introduced and discussed by Lenzerini [2002],
Koch [2001], and Calì and Calvanese [2002]. The GLAV approach is discussed in
[Friedman et al. 1999] and [Halevy 2001]. A large number of systems have been
developed that have tested the LAV versus GAV approaches. Many of these focus
on querying over integrated systems. Examples of LAV approaches are described
in the papers [Duschka and Genesereth 1997, Levy et al. 1996b, Manolescu et al.
2001], while examples of GAV are presented in papers [Adali et al. 1996a, Garcia-
Molina et al. 1997, Haas et al. 1997b].

Topics of structural and semantic heterogeneity have occupied researchers for
quite some time. While the literature on this topic is quite extensive, some of the
interesting publications that discuss structural heterogeneity are [Dayal and Hwang
1984, Kim and Seo 1991, Breitbart et al. 1986, Krishnamurthy et al. 1991, Batini
et al. 1986] (Batini et al. [1986] also discuss the structural conflicts introduced
in this chapter) and those that focus on semantic heterogeneity are [Sheth and
Kashyap 1992, Hull 1997, Ouksel and Sheth 1999, Kashyap and Sheth 1996, Bright
et al. 1994, Ceri and Widom 1993, Vermeer 1997]. We should note that this list is
seriously incomplete.

Various proposals for the canonical model for the GCS exist. The ones we
discussed in this chapter and their sources are the ER model [Palopoli et al. 1998,
Palopoli 2003, He and Ling 2006], object-oriented model [Castano and Antonellis
1999, Bergamaschi 2001], graph model (which is also used for determining
structural similarity) [Palopoli et al. 1999, Milo and Zohar 1998, Melnik et al. 2002,

7.4 Bibliographic Notes 335

Do and Rahm 2002, Madhavan et al. 2001], trie model [Madhavan et al. 2001], and
XML [Yang et al. 2003].

Doan and Halevy [2005] provide a very good overview of the various schema
matching techniques, proposing a different, and simpler, classification of the
techniques as rule-based, learning-based, and combined. More works in schema
matching are surveyed by Rahm and Bernstein [2001], which gives a very nice
comparison of various proposals. The interschema rules we discussed in this chapter
are due to Palopoli et al. [1999]. The classical source for the ranking aggregation
functions used in matching is [Fagin 2002].

A number of systems have been developed demonstrating the feasibility of
various schema matching approaches. Among rule-based techniques, one can cite
DIKE [Palopoli et al. 1998, Palopoli 2003, Palopoli et al. 2003], DIPE, which is
an earlier version of this system [Palopoli et al. 1999], TranSCM [Milo and Zohar
1998], ARTEMIS [Bergamaschi 2001], similarity flooding [Melnik et al. 2002],
CUPID [Madhavan et al. 2001], and COMA [Do and Rahm 2002]. For learning-
based matching, Autoplex [Berlin and Motro 2001] implements a naïve Bayesian
classifier, which is also the approach proposed by Doan et al. [2001, 2003a] and
Naumann et al. [2002]. In the same class, decision trees are discussed in [Embley
et al. 2001, 2002], and iMAP in [Dhamankar et al. 2004].

Roth and Schwartz [1997], Tomasic et al. [1997], and Thiran et al. [2006] focus
on various aspects of wrapper technology. A software engineering solution to the
problem of wrapper creation and maintenance, considering integrity control, is
proposed in [Thiran et al. 2006].

Some sources for binary integration are [Batini et al. 1986, Pu 1988, Batini
and Lenzirini 1984, Dayal and Hwang 1984, Melnik et al. 2002], while n-ary
mechanisms are discussed in [Elmasri et al. 1987, Yao et al. 1982, He et al. 2004].
For some database integration tools the readers can consult [Sheth et al. 1988a],
[Miller et al. 2001] that discuss Clio, and [Roitman and Gal 2006] that describes
OntoBuilder.

Mapping creation algorithm in Sect. 7.1.4.1 is due to Miller et al. [2000],
Yan et al. [2001], and [Popa et al. 2002]. Mapping maintenance is discussed by
Velegrakis et al. [2004].

Data cleaning has gained significant interest in recent years as the integration
efforts opened up to data sources more widely. The literature is rich on this topic
and is well discussed in the book by Ilyas and Chu [2019]. In this context, the
distinction between schema-level and instance-level cleaning is due to Rahm and
Do [2000]. The data cleaning operators we discussed are column splitting [Raman
and Hellerstein 2001], map operator [Galhardas et al. 2001], and fuzzy match
[Chaudhuri et al. 2003].

Work on multidatabase query processing started in the early 1980s with the first
multidatabase systems (e.g., [Brill et al. 1984, Dayal and Hwang 1984] and [Landers
and Rosenberg 1982]). The objective then was to access different databases within
an organization. In the 1990s, the increasing use of the Web for accessing all kinds
of data sources triggered renewed interest and much more work in multidatabase
query processing, following the popular mediator/wrapper architecture [Wiederhold

336 7 Database Integration—Multidatabase Systems

1992]. A brief overview of multidatabase query optimization issues can be found
in [Meng et al. 1993]. Good discussions of multidatabase query processing can
be found in [Lu et al. 1992, 1993], in Chapter 4 of [Yu and Meng 1998] and in
[Kossmann 2000].

Query rewriting using views is discussed in [Levy et al. 1995] and surveyed in
[Halevy 2001]. In [Levy et al. 1995], the general problem of finding a rewriting
using views is shown to be NP-complete in the number of views and the number
of subgoals in the query. The unfolding technique for rewriting a query expressed
in Datalog in GAV was proposed in [Ullman 1997]. The main techniques for query
rewriting using views in LAV are the bucket algorithm [Levy et al. 1996b], the
inverse rule algorithm [Duschka and Genesereth 1997], and the MinCon algorithm
[Pottinger and Levy 2000].

The three main approaches for heterogeneous cost modeling are discussed in
[Zhu and Larson 1998]. The black-box approach is used in [Du et al. 1992, Zhu and
Larson 1994]; the techniques in this group are probing queries: [Zhu and Larson
1996a], sample queries (which are a special case of probing) [Zhu and Larson 1998],
and learning the cost over time as queries are posed and answered [Adali et al.
1996b]. The customized approach is developed in [Zhu and Larson 1996b, Roth
et al. 1999, Naacke et al. 1999]; in particular cost computation can be done within
the wrapper (as in Garlic) [Roth et al. 1999] or a hierarchical cost model can be
developed (as in Disco) [Naacke et al. 1999]. The dynamic approach is used in [Zhu
et al. 2000], [Zhu et al. 2003], and [Rahal et al. 2004] and also discussed by Lu
et al. [1992]. Zhu [1995] discusses a dynamic approaching sampling and Zhu et al.
[2000] present a qualitative approach.

The algorithm we described to illustrate the query-based approach to hetero-
geneous query optimization (Sect. 7.2.4.2) has been proposed in [Du et al. 1995]
and also discussed in [Evrendilek et al. 1997]. To illustrate the operator-based
approach, we described the popular solution with planning functions proposed in
the Garlic project [Haas et al. 1997a]. The operator-based approach has been also
used in DISCO, a multidatabase system to access component databases over the
web [Tomasic et al. 1996, 1998].

The case for adaptive query processing is made by a number of researchers in
a number of environments. Amsaleg et al. [1996] show why static plans cannot
cope with unpredictability of data sources; the problem exists in continuous queries
[Madden et al. 2002b], expensive predicates [Porto et al. 2003], and data skew [Shah
et al. 2003]. The adaptive approach is surveyed in [Hellerstein et al. 2000, Gounaris
et al. 2002]. The best-known dynamic approach is eddy (see Chap. 4), which is
discussed in [Avnur and Hellerstein 2000]. Other important techniques for adaptive
query processing are query scrambling [Amsaleg et al. 1996, Urhan et al. 1998],
Ripple joins [Haas and Hellerstein 1999b], adaptive partitioning [Shah et al. 2003],
and Cherry picking [Porto et al. 2003]. Major extensions to eddy are state modules
[Raman et al. 2003] and distributed Eddies [Tian and DeWitt 2003].

In this chapter, we focused on the integration of structured data captured in
databases. The more general problem of integrating both structured and unstructured
data is discussed by Halevy et al. [2003] and Somani et al. [2002]. A different

Exercises 337

generality direction is investigated by Bernstein and Melnik [2007], who propose
a model management engine that “supports operations to match schemas, compose
mappings, diff schemas, merge schemas, translate schemas into different data
models, and generate data transformations from mappings.”

In addition to the systems we noted above, in this chapter we referred to a number
of other systems. These and their main sources are the following: SEMINT [Li and
Clifton 2000, Li et al. 2000], ToMAS [Velegrakis et al. 2004], Maveric [McCann
et al. 2005], and Aurora [Yan 1997, Yan et al. 1997].

Exercises

Problem 7.1 Distributed database systems and distributed multidatabase systems
represent two different approaches to systems design. Find three real-life applica-
tions for which each of these approaches would be more appropriate. Discuss the
features of these applications that make them more favorable for one approach or
the other.

Problem 7.2 Some architectural models favor the definition of a global conceptual
schema, whereas others do not. What do you think? Justify your selection with
detailed technical arguments.

Problem 7.3 (*) Give an algorithm to convert a relational schema to an entity-
relationship one.

Problem 7.4 (**) Consider the two databases given in Figs. 7.17 and 7.18 and
described below. Design a global conceptual schema as a union of the two databases
by first translating them into the E-R model.

Figure 7.17 describes a relational race database used by organizers of road races
and Fig. 7.18 describes an entity-relationship database used by a shoe manufacturer.
The semantics of each of these database schemas is discussed below. Figure 7.17
describes a relational road race database with the following semantics:

DIRECTOR is a relation that defines race directors who organize races; we
assume that each race director has a unique name (to be used as the key), a phone
number, and an address.

Fig. 7.17 Road race database

338 7 Database Integration—Multidatabase Systems

LICENSES is required because all races require a governmental license, which is
issued by a CONTACT in a department who is the ISSUER, possibly contained
within another government department DEPT; each license has a unique LIC_NO
(the key), which is issued for use in a specific CITY on a specific DATE with a
certain COST.

RACER is a relation that describes people who participate in a race. Each person
is identified by NAME, which is not sufficient to identify them uniquely, so a
compound key formed with the ADDRESS is required. Finally, each racer may
have a MEM_NUM to identify him or her as a member of the racing fraternity, but
not all competitors have membership numbers.

SPONSOR indicates which sponsor is funding a given race. Typically, one sponsor
funds a number of races through a specific person (CONTACT), and a number of
races may have different sponsors.

RACE uniquely identifies a single race which has a license number (LIC_NO) and
race number (R_NO) (to be used as a key, since a race may be planned without
acquiring a license yet); each race has a winner in the male and female groups
(MAL_WIN and FEM_WIN) and a race director (DIR).

Figure 7.18 illustrates an entity-relationship schema used by the sponsor’s
database system with the following semantics:

DISTRIBUTOR

SIN

Name

Address

Contract
1

Cost

MANUFACTURER
N

Name Address

Makes

N

Prod cost

SHOES

M

Size Model

Sells

N

M

Cost

Employs

1Base sal

SALESPERSON

N

SIN

Commission

Name

Fig. 7.18 Sponsor database

Exercises 339

SHOES are produced by sponsors of a certain MODEL and SIZE, which forms
the key to the entity.

MANUFACTURER is identified uniquely by NAME and resides at a certain
ADDRESS.

DISTRIBUTOR is a person that has a NAME and ADDRESS (which are
necessary to form the key) and a SIN number for tax purposes.

SALESPERSON is a person (entity) who has a NAME, earns a COMMISSION,
and is uniquely identified by his or her SIN number (the key).

Makes is a relationship that has a certain fixed production cost (PROD_COST).
It indicates that a number of different shoes are made by a manufacturer, and that
different manufacturers produce the same shoe.

Sells is a relationship that indicates the wholesale COST to a distributor of shoes.
It indicates that each distributor sells more than one type of shoe, and that each
type of shoe is sold by more than one distributor.

Contract is a relationship whereby a distributor purchases, for a COST, exclusive
rights to represent a manufacturer. Note that this does not preclude the distributor
from selling different manufacturers’ shoes.

Employs indicates that each distributor hires a number of salespeople to sell the
shoes; each earns a BASE_SALARY.

Problem 7.5 (*) Consider three sources:

• Database 1 has one relation Area(Id, Field) providing areas of specializa-
tion of employees; the Id field identifies an employee.

• Database 2 has two relations, Teach(Professor, Course) and
In(Course, Field); Teach indicates the courses that each professor
teaches and In specifies possible fields that a course can belong to.

• Database 3 has two relations, Grant(Researcher, GrantNo) for grants
given to researchers, and For(GrantNo, Field) indicating which fields the
grants are for.

The objective is to build a GCS with two relations: Works(Id, Project)
stating that an employee works for a particular project, and Area(Project,
Field) associating projects with one or more fields.

(a) Provide a LAV mapping between Database 1 and the GCS.
(b) Provide a GLAV mapping between the GCS and the local schemas.
(c) Suppose one extra relation, Funds(GrantNo, Project), is added to

Database 3. Provide a GAV mapping in this case.

Problem 7.6 Consider a GCS with the following relation: Person(Name,
Age, Gender). This relation is defined as a view over three LCSs as follows:

CREATE VIEW Person AS
SELECT Name, Age, "male" AS Gender
FROM SoccerPlayer
UNION
SELECT Name, NULL AS Age, Gender

340 7 Database Integration—Multidatabase Systems

FROM Actor
UNION
SELECT Name, Age, Gender
FROM Politician
WHERE Age > 30

For each of the following queries, discuss which of the three local schemas
(SoccerPlayer, Actor, and Politician) contributes to the global
query result.

(a) SELECT Name FROM Person

(b) SELECT Name FROM Person WHERE Gender = "female"

(c) SELECT Name FROM Person WHERE Age > 25

(d) SELECT Name FROM Person WHERE Age < 25

(e) SELECT Name FROM Person WHERE Gender = "male"

AND Age = 40

Problem 7.7 A GCS with the relation Country(Name, Continent,
Population, HasCoast) describes countries of the world. The attribute
HasCoast indicates if the country has direct access to the sea. Three LCSs are
connected to the global schema using the LAV approach as follows:

CREATE VIEW EuropeanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Continent = "Europe"

CREATE VIEW BigCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Population >= 30000000

CREATE VIEW MidsizeOceanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE HasCoast = true AND Population > 10000000

(a) For each of the following queries, discuss the results with respect to their
completeness, i.e., verify if the (combination of the) local sources cover all
relevant results.

1. SELECT Name FROM Country

2. SELECT Name FROM Country WHERE Population > 40

3. SELECT Name FROM Country WHERE Population > 20

(b) For each of the following queries, discuss which of the three LCSs are necessary
for the global query result.

1. SELECT Name FROM Country

Exercises 341

2. SELECT Name FROM Country WHERE Population > 30

AND Continent = "Europe"

3. SELECT Name FROM Country WHERE Population < 30

4. SELECT Name FROM Country WHERE Population > 30

AND HasCoast = true

Problem 7.8 Consider the following two relations PRODUCT and ARTICLE that
are specified in a simplified SQL notation. The perfect schema matching correspon-
dences are denoted by arrows.

PRODUCT −→ ARTICLE

Id: int PRIMARY KEY −→ Key: varchar(255) PRIMARY KEY

Name: varchar(255) −→ Title: varchar(255)

DeliveryPrice: float −→ Price: real

Description: varchar(8000) −→ Information: varchar(5000)

(a) For each of the five correspondences, indicate which of the following match
approaches will probably identify the correspondence:

1. Syntactic comparison of element names, e.g., using edit distance string
similarity

2. Comparison of element names using a synonym lookup table
3. Comparison of data types
4. Analysis of instance data values

(b) Is it possible for the listed matching approaches to determine false correspon-
dences for these match tasks? If so, give an example.

Problem 7.9 Consider two relations S(a, b, c) and T(d, e, f). A match
approach determines the following similarities between the elements of S and T:

T.d T.e T.f

S.a 0.8 0.3 0.1

S.b 0.5 0.2 0.9

S.c 0.4 0.7 0.8

Based on the given matcher’s result, derive an overall schema match result with
the following characteristics:

• Each element participates in exactly one correspondence.
• There is no correspondence where both elements match an element of the

opposite schema with a higher similarity than its corresponding counterpart.

Problem 7.10 (*) Figure 7.19 illustrates the schema of three different data
sources:

342 7 Database Integration—Multidatabase Systems

MyGroup

RELATION Publication
Pub ID: INT PRIMARY KEY
VenueName: VARCHAR
Year: INT
Title: VARCHAR

RELATION AuthorOf
Pub ID FK: INT PRIMARY KEY
Member ID FK: INT PRIMARY KEY

RELATION GroupMember
Member ID: INT PRIMARY KEY
Name: VARCHAR
Email: VARCHAR

MyConference

RELATION ConfWorkshop
CW ID: INT PRIMARY KEY
Year: INT
Location: VARCHAR
Organizer: VARCHAR
AssociatedConf ID: INT

RELATION Paper

Pap ID: INT PRIMARY KEY
Title: VARCHAR
Authors: ARRAY[20] OF VARCHAR
CW ID FK: INT

MyPublisher

RELATION Journal
Journ ID: INT PRIMARY KEY
Name: VARCHAR
Volume: INT
Issue: INT
Year: INT

RELATION Article
Art ID: INT PRIMARY KEY
Title: VARCHAR
Journ ID: INT

RELATION Author
Art ID FK: INT PRIMARY KEY
Pers ID FK: INT PRIMARY KEY
Position: INT

RELATION Editor
Journ ID FK: INT PRIMARY KEY
Pers ID FK: INT PRIMARY KEY

RELATION Person
Pers ID: INT PRIMARY KEY
LastName VARCHAR
FirstName: VARCHAR
Affiliation: VARCHAR

Fig. 7.19 Figure for Exercise 7.10

• MyGroup contains publications authored by members of a working group;
• MyConference contains publications of a conference series and associated

workshops;
• MyPublisher contains articles that are published in journals.

The arrows show the foreign key-to-primary key relationships; note that we do
not follow the proper SQL syntax of specifying foreign key relationships to save
space—we resort to arrows.

The sources are defined as follows:
MyGroup

• Publication

• Pub_ID: unique publication ID
• VenueName: name of the journal, conference, or workshop
• VenueType: “journal,” “conference,” or “workshop”
• Year: year of publication
• Title: publication’s title

• AuthorOf

• many-to-many relationship representing “group member is author of publica-
tion”

• GroupMember

• Member_ID: unique member ID

Exercises 343

• Name: name of the group member
• Email: email address of the group member

MyConference

• ConfWorkshop

• CW_ID: unique ID for the conference/workshop
• Name: name of the conference or workshop
• Year: year when the event takes place
• Location: event’s location
• Organizer: name of the organizing person
• AssociatedConf_ID_FK: value is NULL if it is a conference, ID of

the associated conference if the event is a workshop (this is assuming that
workshops are organized in conjunction with a conference)

• Paper

• Pap_ID: unique paper ID
• Title: paper’s title
• Author: array of author names
• CW_ID_FK: conference/workshop where the paper is published

MyPublisher

• Journal

• Journ_ID: unique journal ID
• Name: journal’s name
• Year: year when the event takes place
• Volume: journal volume
• Issue: journal issue

• Article

• Art_ID: unique article ID
• Title: title of the article
• Journ_ID_FK: journal where the article is published

• Person

• Pers_ID: unique person ID
• LastName: last name of the person
• FirstName: first name of the person
• Affiliation: person’s affiliation (e.g., the name of a university)

• Author

• represents the many-to-many relationship for “person is author of article”
• Position: author’s position in the author list (e.g., first author has Position 1)

• Editor

344 7 Database Integration—Multidatabase Systems

RELATION Course
id: INT PRIMARY KEY
name: VARCHAR[255]
tutor id fk: INT

RELATION Tutor
id: INT PRIMARY KEY
lastname: VARCHAR[255]
firstname: VARCHAR[255]

RELATION Lecture
id: INT PRIMARY KEY
title: VARCHAR[255]
lecturer: VARCHAR[255]

Fig. 7.20 Figure for Exercise 7.11

• represents the many-to-many relationship for “person is editor of journal
issue”

(a) Identify all schema matching correspondences between the schema elements of
the sources. Use the names and data types of the schema elements as well as the
given description.

(b) Classify your correspondences along the following dimensions:

1. Type of schema elements (e.g., attribute–attribute or attribute–relation)
2. Cardinality (e.g., 1:1 or 1:N)

(c) Give a consolidated global schema that covers all information of the source
schemas.

Problem 7.11 (*) Figure 7.20 illustrates (using a simplified SQL syntax) two
sources Source1 and Source2. Source1 has two relations, Course and Tutor,
and Source2 has only one relation, Lecture. The solid arrows denote schema
matching correspondences. The dashed arrow represents a foreign key relationship
between the two relations in Source1.

The following are four schema mappings (represented as SQL queries) to
transform Source1’s data into Source2.

1. SELECT C.id, C.name as Title, CONCAT(T.lastname,

T.firstname) AS Lecturer

FROM Course AS C

JOIN Tutor AS T ON (C.tutor_id_fk = T.id)

2. SELECT C.id, C.name AS Title, NULL AS Lecturer

FROM Course AS C

UNION

SELECT T.id AS ID, NULL AS Title, T,

lastname AS Lecturer

FROM Course AS C

FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

3. SELECT C.id, C.name as Title, CONCAT(T.lastname,

T.firstname) AS Lecturer

FROM Course AS C

FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

Exercises 345

Discuss each of these schema mappings with respect to the following questions:

(a) Is the mapping meaningful?
(b) Is the mapping complete (i.e., are all data instances of O1 transformed)?
(c) Does the mapping potentially violate key constraints?

Problem 7.12 (*) Consider three data sources:

• Database 1 has one relation AREA(ID, FIELD) providing areas of specializa-
tion of employees where ID identifies an employee.

• Database 2 has two relations: TEACH(PROFESSOR, COURSE) and
IN(COURSE, FIELD) specifying possible fields a course can belong to.

• Database 3 has two relations: GRANT(RESEARCHER, GRANT#) for grants
given to researchers, and FOR(GRANT#, FIELD) indicating the fields that the
grants are in.

Design a global schema with two relations: WORKS(ID, PROJECT) that
records which projects employees work in, and AREA(PROJECT, FIELD) that
associates projects with one or more fields for the following cases:

(a) There should be a LAV mapping between Database 1 and the global schema.
(b) There should be a GLAV mapping between the global schema and the local

schemas.
(c) There should be a GAV mapping when one extra relation FUNDS(GRANT#,

PROJECT) is added to Database 3.

Problem 7.13 (**) Logic (first-order logic, to be precise) has been suggested as a
uniform formalism for schema translation and integration. Discuss how logic can be
useful for this purpose.

Problem 7.14 (**) Can any type of global optimization be performed on global
queries in a multidatabase system? Discuss and formally specify the conditions
under which such optimization would be possible.

Problem 7.15 (**) Consider the global relations EMP(ENAME, TITLE, CITY)
and ASG(ENAME, PNAME, CITY, DUR). CITY in ASG is the location of the
project of name PNAME (i.e., PNAME functionally determines CITY). Consider
the local relations EMP1(ENAME,TITLE, CITY), EMP2(ENAME, TITLE, CITY),
PROJ1(PNAME, CITY), PROJ2(PNAME, CITY), and ASG1(ENAME, PNAME,
DUR). Consider query Q which selects the names of the employees assigned to
a project in Rio de Janeiro for more than 6 months and the duration of their
assignment.

(a) Assuming the GAV approach, perform query rewriting.
(b) Assuming the LAV approach, perform query rewriting using the bucket algo-

rithm.
(c) Same as (b) using the MinCon algorithm.

346 7 Database Integration—Multidatabase Systems

Problem 7.16 (*) Consider relations EMP and ASG of Example 7.18. We denote by
|R| the number of pages to store R on disk. Consider the following statistics about
the data:

|EMP| = 100

|ASG| = 2 000

selectivity(ASG.DUR > 36) = 1%

The mediator generic cost model is

cost (σA=v(R)) = |R|
cost (σ (X)) = cost (X), where X contains at least one operator.

cost (R ��
ind
A S) = cost (R) + |R| ∗ cost (σA=v(S)) using an indexed join algorithm.

cost (R ��
nl
A S) = cost (R) + |R| ∗ cost (S) using a nested loop join algorithm.

Consider the MDBS input query Q:

SELECT *
FROM EMP NATURAL JOIN ASG
WHERE ASG.DUR>36

Consider four plans to process Q:

P1 = EMP ��
ind
ENO σDUR>36(ASG)

P2 = EMP ��
nl
ENO σDUR>36(ASG)

P3 = σDUR>36(ASG) ��ind
ENO EMP

P4 = σDUR>36(ASG) ��nl
ENO EMP

(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?

Problem 7.17 (*) Consider relations EMP and ASG of the previous exercise.
Suppose now that the mediator cost model is completed with the following cost
information issued from the component DBMSs.

The cost of accessing EMP tuples at db1 is

cost (σA=v(R)) = |σA=v(R)|
The specific cost of selecting ASG tuples that have a given ENO at db2 is

cost (σENO=v(ASG)) = |σENO=v(ASG)|
(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?

Exercises 347

Problem 7.18 (**) What are the respective advantages and limitations of the
query-based and operator-based approaches to heterogeneous query optimization
from the points of view of query expressiveness, query performance, development
cost of wrappers, system (mediator and wrappers) maintenance, and evolution?

Problem 7.19 (**) Consider Example 7.19 by adding, at a new site, component
database db4 which stores relations EMP(ENO, ENAME, CITY) and ASG(ENO,
PNAME, DUR). db4 exports through its wrapper w3 join and scan capabilities. Let us
assume that there can be employees in db1 with corresponding assignments in db4
and employees in db4 with corresponding assignments in db2.

(a) Define the planning functions of wrapper w3.
(b) Give the new definition of global view EMPASG(ENAME, CITY, PNAME,

DUR).
(c) Give a QEP for the same query as in Example 7.19.

Chapter 8
Parallel Database Systems

Many data-intensive applications require support for very large databases (e.g.,
hundreds of terabytes or exabytes). Supporting very large databases efficiently for
either OLTP or OLAP can be addressed by combining parallel computing and
distributed database management.

A parallel computer, or multiprocessor, is a form of distributed system made
of a number of nodes (processors, memories, and disks) connected by a very
fast network within one or more cabinets in the same room. There are two
kinds of multiprocessors depending on how these nodes are coupled: tightly
coupled and loosely coupled. Tightly coupled multiprocessors contain multiple
processors that are connected at the bus level with a shared-memory. Mainframe
computers, supercomputers, and the modern multicore processors all use tight-
coupling to boost performance. Loosely coupled multiprocessors, now referred to as
computer clusters, or clusters for short, are based on multiple commodity computers
interconnected via a high-speed network. The main idea is to build a powerful
computer out of many small nodes, each with a very good cost/performance ratio,
at a much lower cost than equivalent mainframe or supercomputers. In its cheapest
form, the interconnect can be a local network. However, there are now fast standard
interconnects for clusters (e.g., Infiniband and Myrinet) that provide high bandwidth
(e.g., 100 Gigabits/sec) with low latency for message traffic.

As already discussed in previous chapters, data distribution can be exploited to
increase performance (through parallelism) and availability (through replication).
This principle can be used to implement parallel database systems, i.e., database
systems on parallel computers. Parallel database systems can exploit the parallelism
in data management in order to deliver high-performance and high-availability
database servers. Thus, they can support very large databases with very high loads.

Most of the research on parallel database systems has been done in the context of
the relational model because it provides a good basis for parallel data processing. In
this chapter, we present the parallel database system approach as a solution to high-
performance and high-availability data management. We discuss the advantages and

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_8

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_8

350 8 Parallel Database Systems

disadvantages of the various parallel system architectures and we present the generic
implementation techniques.

Implementation of parallel database systems naturally relies on distributed
database techniques. However, the critical issues are data placement, parallel query
processing, and load balancing because the number of nodes may be much higher
than the number of sites in a distributed DBMS. Furthermore, a parallel computer
typically provides reliable, fast communication that can be exploited to efficiently
implement distributed transaction management and replication. Therefore, although
the basic principles are the same as in distributed DBMS, the techniques for parallel
database systems are fairly different.

This chapter is organized as follows: In Sect. 8.1, we clarify the objectives
of parallel database systems. In Sect. 8.2, we discuss architectures, in particular,
shared-memory, shared-disk, and shared-nothing. Then, we present the techniques
for data placement in Sect. 8.3, query processing in Sect. 8.4, load balancing in
Sect. 8.5, and fault-tolerance in Sect. 8.6. In Sect. 8.7, we present the use of parallel
data management techniques in database clusters, an important type of parallel
database system.

8.1 Objectives

Parallel processing exploits multiprocessor computers to run application programs
by using several processors cooperatively, in order to improve performance. Its
prominent use has long been in scientific computing to improve the response
time of numerical applications. The developments in both general-purpose parallel
computers using standard microprocessors and parallel programming techniques
have enabled parallel processing to break into the data processing field.

Parallel database systems combine database management and parallel processing
to increase performance and availability. Note that performance was also the
objective of database machines in the 1980s. The problem faced by conventional
database management has long been known as “I/O bottleneck,” induced by high
disk access time with respect to main memory access time (typically hundreds of
thousands times faster). Initially, database machine designers tackled this problem
through special-purpose hardware, e.g., by introducing data filtering devices within
the disk heads. However, this approach failed because of poor cost/performance
compared to the software solution, which can easily benefit from hardware progress
in silicon technology. The idea of pushing database functions closer to disk has
received renewed interest with the introduction of general-purpose microprocessors
in disk controllers, thus leading to intelligent disks. For instance, basic functions that
require costly sequential scan, e.g., select operations on tables with fuzzy predicates,
can be more efficiently performed at the disk level since they avoid overloading the
DBMS memory with irrelevant disk blocks. However, exploiting intelligent disks
requires adapting the DBMS, in particular, the query processor to decide whether

8.1 Objectives 351

to use the disk functions. Since there is no standard intelligent disk technology,
adapting to different intelligent disk technologies hurts DBMS portability.

An important result, however, is in the general solution to the I/O bottleneck. We
can summarize this solution as increasing the I/O bandwidth through parallelism.
For instance, if we store a database of size D on a single disk with throughput T ,
the system throughput is bounded by T . On the contrary, if we partition the database
across n disks, each with capacity D/n and throughput T ′ (hopefully equivalent to
T), we get an ideal throughput of n ∗ T ′ that can be better consumed by multiple
processors (ideally n). Note that the main memory database system solution, which
tries to maintain the database in main memory, is complementary rather than
alternative. In particular, the “memory access bottleneck” in main memory systems
can also be tackled using parallelism in a similar way. Therefore, parallel database
system designers have strived to develop software-oriented solutions in order to
exploit parallel computers.

A parallel database system can be loosely defined as a DBMS implemented
on a parallel computer. This definition includes many alternatives ranging from
the straightforward porting of an existing DBMS, which may require only rewrit-
ing the operating system interface routines, to a sophisticated combination of
parallel processing and database system functions into a new hardware/software
architecture. As always, we have the traditional trade-off between portability
(to several platforms) and efficiency. The sophisticated approach is better able
to fully exploit the opportunities offered by a multiprocessor at the expense of
portability. Interestingly, this gives different advantages to computer manufacturers
and software vendors. It is therefore important to characterize the main points in the
space of alternative parallel system architectures. In order to do so, we will make
precise the parallel database system solution and the necessary functions. This will
be useful in comparing the parallel database system architectures.

The objectives of parallel database systems are similar to those of distributed
DBMSs (performance, availability, extensibility), but have somewhat different focus
due to the tighter coupling of computing/storage nodes. We highlight these below.

1. High performance. This can be obtained through several complementary
solutions: parallel data management, query optimization, and load balancing.
Parallelism can be used to increase throughput and decrease transaction response
times. However, decreasing the response time of a complex query through large-
scale parallelism may well increase its total time (by additional communication)
and hurt throughput as a side-effect. Therefore, it is crucial to optimize and
parallelize queries in order to minimize the overhead of parallelism, e.g., by
constraining the degree of parallelism for the query. Load balancing is the
ability of the system to divide a given workload equally among all processors.
Depending on the parallel system architecture, it can be achieved statically by
appropriate physical database design or dynamically at runtime.

2. High availability. Because a parallel database system consists of many redun-
dant components, it can well increase data availability and fault-tolerance. In
a highly parallel system with many nodes, the probability of a node failure at

352 8 Parallel Database Systems

No. of Nodes

P
er

fo
rm

an
ce

Ide
al

(a)
No. of Nodes, DB Size, Load

P
er

fo
rm

an
ce

Ideal

(b)

Fig. 8.1 Extensibility metrics. (a) Linear speed-up. (b) Linear scale-up

any time can be relatively high. Replicating data at several nodes is useful to
support failover, a fault-tolerance technique that enables automatic redirection
of transactions from a failed node to another node that stores a copy of the data.
This provides uninterrupted service to users.

3. Extensibility. In a parallel system, accommodating increasing database sizes or
increasing performance demands (e.g., throughput) should be easier. Extensibil-
ity is the ability to expand the system smoothly by adding processing and storage
power to the system. Ideally, the parallel database system should demonstrate
two extensibility advantages: linear speed-up and linear scale-up (see Fig. 8.1).
Linear speed-up refers to a linear increase in performance for a constant database
size and load while the number of nodes (i.e., processing and storage power) is
increased linearly. Linear scale-up refers to a sustained performance for a linear
increase in both database size, load and number of nodes. Furthermore, extending
the system should require minimal reorganization of the existing database.

The increasing use of clusters in large-scale applications, e.g., web data man-
agement, has led to the use of the term scale-out versus scale-up. Figure 8.2 shows
a cluster with 4 servers, each with a number of processing nodes (“Ps”). In this
context, scale-up (also called vertical scaling) refers to adding more nodes to a
server and thus gets limited by the maximum size of the server. Scale-out (also
called horizontal scaling) refers to adding more servers, called “scale-out servers”
in a loosely coupled fashion, to scale almost infinitely.

8.2 Parallel Architectures

A parallel database system represents a compromise in design choices in order
to provide the aforementioned advantages with a good cost/performance. One
guiding design decision is the way the main hardware elements, i.e., processors,

8.2 Parallel Architectures 353

Scale-out (Horizontal Scaling)

Sc
al

e-
up

(V
er

ti
ca

l
Sc

al
in

g)
Pn

...

P2

P1

Pn

...

P2

P1

Pn

...

P2

P1

Pn

...

P2

P1

Switch Switch

Switch

Fig. 8.2 Scale-up versus scale-out

main memory, and disks, are connected through some interconnection network.
In this section, we present the architectural aspects of parallel database sys-
tems. In particular, we present and compare the three basic parallel architectures:
shared-memory, shared-disk, and shared-nothing. Shared-memory is used in tightly
coupled multiprocessors, while shared-nothing and shared-disk are used in clusters.
When describing these architectures, we focus on the four main hardware elements:
interconnect, processors (P), main memory modules (M), and disks. For simplicity,
we ignore other elements such as processor cache, processor cores, and I/O bus.

8.2.1 General Architecture

Assuming a client/server architecture, the functions supported by a parallel database
system can be divided into three subsystems much like in a typical DBMS. The
differences, though, have to do with implementation of these functions, which
must now deal with parallelism, data partitioning and replication, and distributed
transactions. Depending on the architecture, a processor node can support all
(or a subset) of these subsystems. Figure 8.3 shows the architecture using these
subsystems, which is based on the architecture of Fig. 1.11 with the addition of a
client manager.

1. Client manager. It provides support for client interactions with the parallel
database system. In particular, it manages the connections and disconnections
between the client processes, which run on different servers, e.g., application
servers, and the query processors. Therefore, it initiates client queries (which
may be transactions) at some query processors, which then become responsible
for interacting directly with the clients and perform query processing and
transaction management. The client manager also performs load balancing, using

354 8 Parallel Database Systems

User
Task 1

User
Task 2

· · · User
Task n

Client
Manager

connect

Query
Proc.
Task 1

Query
Proc.
Task 2

create

· · ·
Query
Proc.
Task n

Data Proc.
Task 1

Data Proc.
Task 2

· · · Data Proc.
Task m − 1

Data Proc.
Task m

Database Server

Fig. 8.3 General architecture of a parallel database system

a catalog that maintains information on processor nodes’ load and precompiled
queries (including data location). This allows triggering precompiled query
executions at query processors that are located close to the data that is accessed.
The client manager is a lightweight process, and thus not a bottleneck. However,
for fault-tolerance, it can be replicated at several nodes.

2. Query processor. It receives and manages client queries, such as compile query,
execute query, and start transaction. It uses the database directory that holds all
metainformation about data, queries, and transactions. The directory itself should
be managed as a database, which can be replicated at all query processor nodes.
Depending on the request, it activates the various compilation phases, including
semantic data control and query optimization and parallelization, triggers and
monitors query execution using the data processors, and returns the results as
well as error codes to the client. It may also trigger transaction validation at the
data processors.

3. Data processor. It manages the database’s data and system data (system log, etc.)
and provides all the low-level functions needed to execute queries in parallel, i.e.,
database operator execution, parallel transaction support, cache management,
etc.

8.2 Parallel Architectures 355

8.2.2 Shared-Memory

In the shared-memory approach, any processor has access to any memory module
or disk unit through an interconnect. All the processors are under the control of a
single operating system.

One major advantage is simplicity of the programming model based on shared
virtual memory. Since metainformation (directory) and control information (e.g.,
lock tables) can be shared by all processors, writing database software is not very
different than for single processor computers. In particular, interquery parallelism
comes for free. Intraquery parallelism requires some parallelization but remains
rather simple. Load balancing is also easy since it can be achieved at runtime using
the shared-memory by allocating each new task to the least busy processor.

Depending on whether physical memory is shared, two approaches are possible:
Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA),
which we present below.

8.2.2.1 Uniform Memory Access (UMA)

With UMA, the physical memory is shared by all processors, so access to memory
is in constant time (see Fig. 8.4). Thus, it has also been called symmetric multipro-
cessor (SMP). Common network topologies to interconnect processors include bus,
crossbar, and mesh.

The first SMPs appeared in the 1960s for mainframe computers and had a few
processors. In the 1980s, there were larger SMP machines with tens of processors.
However, they suffered from high cost and limited scalability. High cost was
incurred by the interconnect that requires fairly complex hardware because of the
need to link each processor to each memory module or disk. With faster and faster
processors (even with larger caches), conflicting accesses to the shared-memory

P P P

Interconnect

Shared Memory

Fig. 8.4 Shared-memory

356 8 Parallel Database Systems

increase rapidly and degrade performance. Therefore, scalability has been limited to
less than ten processors. Finally, since the memory space is shared by all processors,
a memory fault may affect most processors, thereby hurting data availability.

Multicore processors are also based on SMP, with multiple processing cores and
shared-memory on a single chip. Compared to the previous multichip SMP designs,
they improve the performance of cache operations, require much less printed circuit
board space, and consume less energy. Therefore, the current trend in multicore
processor development is towards an ever increasing number of cores, as processors
with hundreds of cores become feasible.

Examples of SMP parallel database systems include XPRS, DBS3, and Volcano.

8.2.2.2 Non-Uniform Memory Access (NUMA)

The objective of NUMA is to provide a shared-memory programming model and
all its benefits, in a scalable architecture with distributed memory. Each processor
has its own local memory module, which it can access efficiently. The term NUMA
reflects the fact that accesses to the (virtually) shared-memory have a different cost
depending on whether the physical memory is local or remote to the processor.

The oldest class of NUMA systems is Cache Coherent NUMA (CC-NUMA)
multiprocessors (see Fig. 8.5). Since different processors can access the same data in
a conflicting update mode, global cache consistency protocols are needed. In order
to make remote memory access efficient, one solution is to have cache consistency
done in hardware through a special consistent cache interconnect. Because shared-
memory and cache consistency are supported by hardware, remote memory access
is very efficient, only several times (typically up to 3 times) the cost of local access.

A more recent approach to NUMA is to exploit the Remote Direct Memory
Access (RDMA) capability that is now provided by low latency cluster interconnects
such as Infiniband and Myrinet. RDMA is implemented in the network card
hardware and provides zero-copy networking, which allows a cluster node to
directly access the memory of another node without any copying between operating
system buffers. This yields typical remote memory access at latencies of the order
of 10 times a local memory access. However, there is still room for improvement.

P M · · · P M

Cache-consistent Interconnect

Fig. 8.5 Cache coherent non-uniform memory architecture (CC-NUMA)

8.2 Parallel Architectures 357

For instance, the tighter integration of remote memory control into the node’s local
coherence hierarchy yields remote access at latencies that are within 4 times a
local access. Thus, RDMA can be exploited to improve the performance of parallel
database operations. However, it requires new algorithms that are NUMA aware in
order to deal with the remote memory access bottleneck. The basic approach is to
maximize local memory access by careful scheduling of DBMS tasks close to the
data and to interleave computation and network communication.

Modern multiprocessors use a hierarchical architecture that mixes NUMA and
UMA, i.e., a NUMA multiprocessor where each processor is a multicore processor.
In turn, each NUMA multiprocessor can be used as a node in a cluster.

8.2.3 Shared-Disk

In a shared-disk cluster (see Fig. 8.6), any processor has access to any disk unit
through the interconnect but exclusive (nonshared) access to its main memory. Each
processor–memory node, which can be a shared-memory node is under the control
of its own copy of the operating system. Then, each processor can access database
pages on the shared-disk and cache them into its own memory. Since different
processors can access the same page in conflicting update modes, global cache
consistency is needed. This is typically achieved using a distributed lock manager
that can be implemented using the techniques described in Chap. 5. The first
parallel DBMS that used shared-disk is Oracle with an efficient implementation of a
distributed lock manager for cache consistency. It has evolved to the Oracle Exadata
database machine. Other major DBMS vendors such as IBM, Microsoft, and Sybase
also provide shared-disk implementations, typically for OLTP workloads.

Shared-disk requires disks to be globally accessible by the cluster nodes. There
are two main technologies to share disks in a cluster: network-attached storage
(NAS) and storage-area network (SAN). A NAS is a dedicated device to shared-
disks over a network (usually TCP/IP) using a distributed file system protocol
such as Network File System (NFS). NAS is well-suited for low throughput
applications such as data backup and archiving from PC’s hard disks. However,
it is relatively slow and not appropriate for database management as it quickly

P M · · · P M

Interconnect

Fig. 8.6 Shared-disk architecture

358 8 Parallel Database Systems

becomes a bottleneck with many nodes. A storage-area network (SAN) provides
similar functionality but with a lower level interface. For efficiency, it uses a block-
based protocol, thus making it easier to manage cache consistency (at the block
level). As a result, SAN provides high data throughput and can scale up to large
numbers of nodes.

Shared-disk has three main advantages: simple and cheap administration, high
availability, and good load balance. Database administrators do not need to deal
with complex data partitioning, and the failure of a node only affects its cached
data while the data on disk is still available to the other nodes. Furthermore, load
balancing is easy as any request can be processed by any processor–memory node.
The main disadvantages are cost (because of SAN) and limited scalability, which is
caused by the potential bottleneck and overhead of cache coherence protocols for
very large databases. A solution is to rely on data partitioning as in shared-nothing,
at the expense of more complex administration.

8.2.4 Shared-Nothing

In a shared-nothing cluster (see Fig. 8.7), each processor has exclusive access to its
main memory and disk, using Directly Attached Storage (DAS).

Each processor–memory–disk node is under the control of its own copy of the
operating system. Shared-nothing clusters are widely used in practice, typically
using NUMA nodes, because they can provide the best cost/performance ratio and
scale up to very large configurations (thousands of nodes).

Each node can be viewed as a local site (with its own database and software) in
a distributed DBMS. Therefore, most solutions designed for those systems such as
database fragmentation, distributed transaction management, and distributed query
processing may be reused. Using a fast interconnect, it is possible to accommodate
large numbers of nodes. As opposed to SMP, this architecture is often called
Massively Parallel Processor (MPP).

By favoring the smooth incremental growth of the system by the addition of new
nodes, shared-nothing provides extensibility and scalability. However, it requires

P M · · · P M

Interconnect

Fig. 8.7 Shared-nothing architecture

8.3 Data Placement 359

careful partitioning of the data on multiple disks. Furthermore, the addition of
new nodes in the system presumably requires reorganizing and repartitioning the
database to deal with the load balancing issues. Finally, node fault-tolerance is
difficult (requires replication) as a failed node will make its data on disk unavailable.

Many parallel database system prototypes have adopted the shared-nothing
architecture, e.g., Bubba, Gamma, Grace, and Prisma/DB. The first major parallel
DBMS product was Teradata’s database machine. Other major DBMS companies
such as IBM, Microsoft, and Sybase and vendors of column-store DBMS such as
MonetDB and Vertica provide shared-nothing implementations for high-end OLAP
applications. Finally, NoSQL DBMSs and big data systems typically use shared-
nothing.

Note that it is possible to have a hybrid architecture, where part of the cluster is
shared-nothing, e.g., for OLAP workloads, and part is shared-disk, e.g., for OLTP
workloads. For instance, Teradata supports the concept of clique, i.e., a set of nodes
that share a common set of disks, to its shared-nothing architecture to improve
availability.

8.3 Data Placement

In the rest of this chapter, we consider a shared-nothing architecture because it is
the most general case and its implementation techniques also apply, sometimes in
a simplified form, to the other architectures. Data placement in a parallel database
system exhibits similarities with data fragmentation in distributed databases (see
Chap. 2). An obvious similarity is that fragmentation can be used to increase
parallelism. As noted in Chap. 2, parallel DBMSs mostly use horizontal partitioning,
although vertical fragmentation can also be used to increase parallelism and load
balancing much as in distributed databases and has been employed in column-
store DBMSs, such as MonetDB or Vertica. Another similarity with distributed
databases is that since data is much larger than programs, execution should occur,
as much as possible, where the data resides. As noted in Chap. 2, there are two
important differences with the distributed database approach. First, there is no
need to maximize local processing (at each node) since users are not associated
with particular nodes. Second, load balancing is much more difficult to achieve in
the presence of a large number of nodes. The main problem is to avoid resource
contention, which may result in the entire system thrashing (e.g., one node ends
up doing all the work, while the others remain idle). Since programs are executed
where the data resides, data placement is critical for performance.

The most common data partitioning strategies that are used in parallel DBMSs
are the round-robin, hashing, and range-partitioning approaches discussed in
Sect. 2.1.1. Data partitioning must scale with the increase in database size and
load. Thus, the degree of partitioning, i.e., the number of nodes over which a
relation is partitioned, should be a function of the size and access frequency of the
relation. Therefore, increasing the degree of partitioning may result in placement

360 8 Parallel Database Systems

reorganization. For example, a relation initially placed across eight nodes may have
its cardinality doubled by subsequent insertions, in which case it should be placed
across 16 nodes.

In a highly parallel system with data partitioning, periodic reorganizations for
load balancing are essential and should be frequent unless the workload is fairly
static and experiences only a few updates. Such reorganizations should remain
transparent to compiled queries that run on the database server. In particular, queries
should not be recompiled because of reorganization and should remain independent
of data location, which may change rapidly. Such independence can be achieved if
the runtime system supports associative access to distributed data. This is different
from a distributed DBMS, where associative access is achieved at compile time by
the query processor using the data directory.

One solution to associative access is to have a global index mechanism replicated
on each node. The global index indicates the placement of a relation onto a set of
nodes. Conceptually, the global index is a two-level index with a major clustering
on the relation name and a minor clustering on some attribute of the relation.
This global index supports variable partitioning, where each relation has a different
degree of partitioning. The index structure can be based on hashing or on a B-tree
like organization. In both cases, exact-match queries can be processed efficiently
with a single node access. However, with hashing, range queries are processed by
accessing all the nodes that contain data from the queried relation. Using a B-tree
index (usually much larger than a hash index) enables more efficient processing
of range queries, where only the nodes containing data in the specified range are
accessed.

Example 8.1 Figure 8.8 provides an example of a global index and a local index for
relation EMP(ENO, ENAME, TITLE) of the engineering database example we have
been using in this book.

Suppose that we want to locate the elements in relation EMP with ENO value
“E50.” The first-level index maps the name EMP onto the index on attribute ENO

global index on
ENO for relation EMP

node 1
(E1 to E20)

node j
(E31 to E60)

node n
(E71 to E80)

local index on
ENO for relation EMP

disk page 24
(E31 to E40)

disk page 91
(E51 to E60)

Fig. 8.8 Example of global and local indexes

8.3 Data Placement 361

for relation EMP. Then, the second-level index further maps the cluster value “E50”
onto node number j . A local index within each node is also necessary to map a
relation onto a set of disk pages within the node. The local index has two levels,
with a major clustering on relation name and a minor clustering on some attribute.
The minor clustering attribute for the local index is the same as that for the global
index. Thus, associative routing is improved from one node to another based on
(relation name, cluster value). This local index further maps the cluster value “E5”
onto page number 91. �

A serious problem in data placement is dealing with skewed data distributions
that may lead to nonuniform partitioning and hurt load balancing. A solution
is to treat nonuniform partitions appropriately, e.g., by further fragmenting large
partitions. This is easy with range partitioning, since a partition can be split as a
B-tree leaf, with some local index reorganization. With hashing, the solution is to
use a different hash function on a different attribute, The separation between logical
and physical nodes is useful here since a logical node may correspond to several
physical nodes.

A final complicating factor for data placement is data replication for high
availability, which we discussed at length in Chap. 6. In parallel DBMSs, simpler
approaches might be adopted, such as the mirrored disks architecture where two
copies of the same data are maintained: a primary and a backup copy. However, in
case of a node failure, the load of the node with the copy may double, thereby hurt-
ing load balance. To avoid this problem, several high-availability data replication
strategies have been proposed for parallel database systems. An interesting solution
is Teradata’s interleaved partitioning that further partitions the backup copy on a
number of nodes. Figure 8.9 illustrates the interleaved partitioning of relation R
over four nodes, where each primary copy of a partition, e.g., R1, is further divided
into three partitions, e.g., R1,1, R1,2, and R1,3, each at a different backup node. In
failure mode, the load of the primary copy gets balanced among the backup copy
nodes. But if two nodes fail, then the relation cannot be accessed, thereby hurting
availability. Reconstructing the primary copy from its separate backup copies may
be costly. In normal mode, maintaining copy consistency may also be costly.

An alternative solution is Gamma’s chained partitioning , which stores the
primary and backup copy on two adjacent nodes (Fig. 8.10). The main idea is that

Fig. 8.9 Example of interleaved partitioning

362 8 Parallel Database Systems

Fig. 8.10 Example of chained partitioning

the probability that two adjacent nodes fail is much lower than the probability that
any two nodes fail. In failure mode, the load of the failed node and the backup
nodes is balanced among all remaining nodes by using both primary and backup
copy nodes. In addition, maintaining copy consistency is cheaper. An open issue
is how to perform data placement taking into account data replication. Similar
to the fragment allocation in distributed databases, this should be considered an
optimization problem.

8.4 Parallel Query Processing

The objective of parallel query processing is to transform queries into execution
plans that can be efficiently executed in parallel. This is achieved by exploiting
parallel data placement and the various forms of parallelism offered by high-level
queries. In this section, we first introduce the basic parallel algorithms for data
processing. Then, we discuss parallel query optimization.

8.4.1 Parallel Algorithms for Data Processing

Partitioned data placement is the basis for the parallel execution of database queries.
Given a partitioned data placement, an important issue is the design of parallel
algorithms for efficient processing of database operators (i.e., relational algebra
operators) and database queries that combine multiple operators. This issue is
difficult because a good trade-off between parallelism and communication cost
must be reached since increasing parallelism involves more communication among
processors.

Parallel algorithms for relational algebra operators are the building blocks
necessary for parallel query processing. The objective of these algorithms is to
maximize the degree of parallelism. However, according to Amdahl’s law, only part
of an algorithm can be parallelized. Let seq be the ratio of the sequential part of a
program (a value between 0 and 1), i.e., which cannot be parallelized, and let p be
the number of processors. The maximum speed-up that can be achieved is given by
the following formula:

8.4 Parallel Query Processing 363

MaxSpeedup(seq, p) = 1

seq +
(

1−seq
p

)

For instance, with seq = 0 (the entire program is parallel) and p = 4, we obtain
the ideal speed-up, i.e., 4. But with seq = 0.3, the speed-up goes down to 2.1. And
even if we double the number of processors, i.e., p = 8, the speed-up increases
only slightly to 2.5. Thus, when designing parallel algorithms for data processing,
it is important to minimize the sequential part of an algorithm and to maximize the
parallel part, by exploiting intraoperator parallelism.

The processing of the select operator in a partitioned data placement context
is identical to that in a fragmented distributed database. Depending on the select
predicate, the operator may be executed at a single node (in the case of an exact-
match predicate) or, in the case of arbitrarily complex predicates, at all the nodes
over which the relation is partitioned. If the global index is organized as a B-tree-
like structure (see Fig. 8.8), a select operator with a range predicate may be executed
only by the nodes that store relevant data. In the rest of this section, we focus on the
parallel processing of the two major operators used in database queries, i.e., sort and
join.

8.4.1.1 Parallel Sort Algorithms

Sorting relations is necessary for queries that require an ordered result or involve
aggregation and grouping. And it is hard to do efficiently as any item needs
to be compared with every other item. One of the fastest single processor sort
algorithms is quicksort but it is highly sequential and thus, according to Amdahl’s
law, inappropriate for parallel adaptation. Several other centralized sort algorithms
can be made parallel. One of the most popular algorithms is the parallel merge sort
algorithm, because it is easy to implement and does not have strong requirements
on the parallel system architecture. Thus, it has been used in both shared-disk
and shared-nothing clusters. It can also be adapted to take advantage of multicore
processors.

We briefly review the b-way merge sort algorithm. Let us consider a set of n

elements to be sorted. A run is defined as an ordered sequence of elements; thus, the
set to be sorted contains n runs of one element. The method consists of iteratively
merging b runs of K elements into a sorted run of K ∗ b elements, starting with
K = 1. For pass i, each set of b runs of bi−1 elements is merged into a sorted run of
bi elements. Starting from i = 1, the number of passes necessary to sort n elements
is logbn.

We now describe the application of this method in a shared-nothing cluster. We
assume the popular master–worker model for executing parallel tasks, with one
master node coordinating the activities of the worker nodes, by sending them tasks
and data and receiving back notifications of tasks done.

364 8 Parallel Database Systems

Let us suppose we have to sort a relation of p disk pages partitioned over n nodes.
Each node has a local memory of b+1 pages, where b pages are used as input pages
and 1 is used as an output page. The algorithm proceeds in two stages. In the first
stage, each node locally sorts its fragment, e.g., using quicksort if the node is single
processor or a parallel b-way merge sort if the node is a multicore processor. This
stage is called the optimal stage since all nodes are fully busy. It generates n runs of
p/n pages, and if n equals b, one node can merge them in a single pass. However,
n can be very much greater than b, in which case the solution is for the master
node to arrange the worker nodes as a trie of order b during the last stage, called
the postoptimal stage. The number of necessary nodes is divided by b at each pass.
At the last pass, one node merges the entire relation. The number of passes for the
postoptimal stage is logbp. This stage degrades the degree of parallelism.

8.4.1.2 Parallel Join Algorithms

Assuming two arbitrary partitioned relations, there are three basic parallel algo-
rithms to join them: the parallel merge sort join algorithm , the parallel nested loop
(PNL) algorithm, and the parallel hash join (PHJ) algorithm. These algorithms are
variations of their centralized counterpart. The parallel merge sort join algorithm
simply sorts both relations on the join attribute using a parallel merge sort and joins
them using a merge like operation done by a single node. Although the last operation
is sequential, the result joined relation is sorted on the join attribute, which can be
useful for the next operation.

The other two algorithms are fully parallel. We describe them in more details
using a pseudoconcurrent programming language with three main constructs:
parallel-do, send, and receive. Parallel-do specifies that the following block of
actions is executed in parallel. For example,

for i from 1 to n in parallel-do action A

indicates that action A is to be executed by n nodes in parallel. The send and
receive constructs are basic data communication primitives: send sends data from
one node to one or more nodes, while receive gets the content of the data sent at
a particular node. In what follows we consider the join of two relations R and S
that are partitioned over m and n nodes, respectively. For the sake of simplicity, we
assume that the m nodes are distinct from the n nodes. A node at which a fragment
of R (respectively, S) resides is called an R-node (respectively, S-node).

Parallel Nested Loop Join Algorithm

The parallel nested loop algorithm is simple and general. It implements the
fragment-and-replicate method described in Sect. 4.5.1. It basically composes the

8.4 Parallel Query Processing 365

Algorithm 8.1: Parallel Nested Loop (PNL)

Input: R1,R2, . . . ,Rm: fragments of relation R
S1,S2, . . . ,Sn: fragments of relation S ;
JP : join predicate
Output: T1,T2, . . . ,Tn: result fragments
begin

for i from 1 to m in parallel do {send R entirely to each S-node}
send Ri to each node containing a fragment of S

end for
for j from 1 to n in parallel do {perform the join at each S-node}

R ← ⋃m
i=1 Ri ; {Ri from R-nodes; R is fully replicated at S-nodes}

Tj ← R ��JP Sj

end for
end

Cartesian product of relationsR and S in parallel. Therefore, arbitrarily complex
join predicates, not only equijoin, may be supported.

The algorithm performs two nested loops. One relation is chosen as the inner
relation, to be accessed in the inner loop, and the other relation as the outer relation,
to be accessed in the outer loop. This choice depends on a cost function with two
main parameters: relation sizes, which impacts communication cost, and presence
of indexes on join attributes, which impacts local join processing cost.

This algorithm is described in Algorithm 8.1, where the join result is produced
at the S-nodes, i.e., S is chosen as inner relation. The algorithm proceeds in two
phases.

In the first phase, each fragment of R is sent and replicated at each node that
contains a fragment of S (there are n such nodes). This phase is done in parallel by
m nodes; thus, (m ∗ n) messages are necessary.

In the second phase, each S-node j receives relation R entirely, and locally joins
R with fragment Sj . This phase is done in parallel by n nodes. The local join can
be done as in a centralized DBMS. Depending on the local join algorithm, join
processing may or may not start as soon as data is received. If a nested loop join
algorithm, possibly with an index on the join attribute of S , is used, join processing
can be done in a pipelined fashion as soon as a tuple of R arrives. If, on the other
hand, a sort-merge join algorithm is used, all the data must have been received before
the join of the sorted relations begins.

To summarize, the parallel nested loop algorithm can be viewed as replacing the
operator R �� S by ∪n

i=1(R �� Si).

Example 8.2 Figure 8.11 shows the application of the parallel nested loop algorithm
with m = n = 2. �

366 8 Parallel Database Systems

R1 R2

Node 1 Node 2

S1 S2

Node 3 Node 4

R1 R2 R2R1

Fig. 8.11 Example of parallel nested loop

Parallel Hash Join Algorithm

The parallel hash join algorithm shown in Algorithm 8.2 applies only in the case of
equijoin and does not require any particular partitioning of the operand relations. It
has been first proposed for the Grace database machine, and is known as the Grace
hash join.

The basic idea is to partition relations R and S into the same number p of
mutually exclusive sets (fragments) R1,R2, . . . ,Rp, and S1,S2, . . . ,Sp, such that

R �� S =
p⋃

i=1

(Ri �� Si)

The partitioning of R and S is based on the same hash function applied to the
join attribute. Each individual join (Ri �� Si) is done in parallel, and the join result
is produced at p nodes. These p nodes may actually be selected at runtime based on
the load of the system.

The algorithm can be divided into two main phases, a build phase and a probe
phase. The build phase hashes R used as inner relation, on the join attribute, sends
it to the target p nodes that build a hash table for the incoming tuples. The probe
phase sends S, the outer relation, associatively to the target p nodes that probe the
hash table for each incoming tuple. Thus, as soon as the hash tables have been built
for R the S tuples can be sent and processed in pipeline by probing the hash tables.

Example 8.3 Figure 8.12 shows the application of the parallel hash join algorithm
with m = n = 2. We assume that the result is produced at nodes 1 and 2. Therefore,
an arrow from node 1 to node 1 or node 2 to node 2 indicates a local transfer. �

8.4 Parallel Query Processing 367

Algorithm 8.2: Parallel Hash Join (PHJ)
Input: R1,R2, . . . ,Rm: fragments of relation R ;
S1,S2, . . . ,Sn: fragments of relation S ;
JP : join predicate R.A = S.B ;
h: hash function that returns an element of [1, p]
Output: T1,T2, . . . ,Tp: result fragments
begin

{Build phase}
for i from 1 to m in parallel do

Rj
i ← apply h(A) to Ri (j = 1, . . . , p); {hash R on A)}

send Rj
i to node j

end for
for j from 1 to p in parallel do

Rj ← ⋃m
i=1 R

i
j {receive Rj fragments from R-nodes}

build local hash table for Rj

end for
{Probe phase}
for i from 1 to n in parallel do

Sj
i ← apply h(B) to Si (j = 1, . . . , p); {hash S on B)}

send Sj
i to node j

end for
for j from 1 to p in parallel do

Sj ← ⋃n
i=1 S

i
j ; {receive Sj fragments from S-nodes}

Tj ← Rj ��JP Sj {probe Sj for each tuple of Rj }
end for

end

R11 R12 R21 R22 S11 S12 S21 S22
R1 R2 S1 S2

Node 1 Node 2 Node 3 Node 4

R11 R21 S11 S21 R12 R22 S12 S22

Node i Node j

Fig. 8.12 Example of parallel hash join

368 8 Parallel Database Systems

The parallel hash join algorithm is usually much more efficient than the parallel
nested loop join algorithm, since it requires less data transfer and less local join
processing in the probe phase. Furthermore, one relation, say R may already be
partitioned by hashing on the join attribute. In this case, no build phase is needed
and the S fragments are simply sent associatively to corresponding R nodes. It is
also generally more efficient than the parallel sort-merge join algorithm. However,
this later algorithm is still useful as it produces a result relation sorted on the join
attribute.

The problem with the parallel hash join algorithm and its many variants is that
the data distribution on the join attribute may be skewed, thus leading to load
unbalancing. We discuss solutions to this problem in Sect. 8.5.2.

Variants

The basic parallel join algorithms have been used in many variants, in particular
to deal with adaptive query processing or exploit main memories and multicore
processors. We discuss these extensions below.

When considering adaptive query processing (see Sect. 4.6), the challenge is to
dynamically order pipelined join operators at runtime, while tuples from different
relations are flowing in. Ideally, when a tuple of a relation participating in a join
arrives, it should be sent to a join operator to be processed on the fly. However, most
join algorithms cannot process some incoming tuples on the fly because they are
asymmetric with respect to the way inner and outer tuples are processed. Consider
PHJ, for instance: the inner relation is fully read during the build phase to construct
a hash table, whereas tuples in the outer relation can be pipelined during the probe
phase. Thus, an incoming inner tuple cannot be processed on the fly as it must be
stored in the hash table and the processing will be possible only when the entire
hash table is built. Similarly, the nested loop join algorithm is asymmetric as only
the inner relation must be read entirely for each tuple of the outer relation. Join
algorithms with some kind of asymmetry offer little opportunity for alternating input
relations between inner and outer roles. Thus, to relax the order in which join inputs
are consumed, symmetric join algorithms are needed, whereby the role played by
the relations in a join may change without producing incorrect results.

The earlier example of symmetric join algorithm is the symmetric hash join,
which uses two hash tables, one for each input relation. The traditional build and
probe phases of the basic hash join algorithm are simply interleaved. When a tuple
arrives, it is used to probe the hash table corresponding to the other relation and find
matching tuples. Then, it is inserted in its corresponding hash table so that tuples
of the other relation arriving later can be joined. Thus, each arriving tuple can be
processed on the fly. Another popular symmetric join algorithm is the ripple join,
which is a generalization of the nested loop join algorithm where the roles of inner
and outer relation continually alternate during query execution. The main idea is
to keep the probing state of each input relation, with a pointer that indicates the
last tuple used to probe the other relation. At each toggling point, a change of roles

8.4 Parallel Query Processing 369

between inner and outer relations occurs. At this point, the new outer relation starts
to probe the inner input from its pointer position onwards, to a specified number
of tuples. The inner relation, in turn, is scanned from its first tuple to its pointer
position minus 1. The number of tuples processed at each stage in the outer relation
gives the toggling rate and can be adaptively monitored.

Exploiting processors’ main memories is also important for the performance of
parallel join algorithms. The hybrid hash join algorithm improves on the Grace
hash join by exploiting the available memory to hold an entire partition (called
partition 0) during partitioning, thus avoiding disk accesses. Another variation is to
modify the built phase so that the resulting hash tables fit into the processor’s main
memory. This improves performance significantly as the number of cache misses
while probing the hash table is reduced. The same idea is used in the radix hash join
algorithm for multicore processors, where access to a core’s memory is much faster
than access to the remote shared-memory. A multipass partitioning scheme is used
to divide both input relations into disjoint partitions based on the join attribute, so
they fit into the cores’ memories. Then, hash tables are built over each partition of
the inner relation and probed using the data from the corresponding partition of the
outer relation. The parallel merge sort join, which is generally considered inferior
to the parallel hash join can also be optimized for multicore processors.

8.4.2 Parallel Query Optimization

Parallel query optimization exhibits similarities with distributed query processing.
However, it focuses much more on taking advantage of both intraoperator paral-
lelism (using the algorithms described above) and interoperator parallelism. As any
query optimizer, a parallel query optimizer has three components: a search space, a
cost model, and a search strategy. In this section, we describe the parallel techniques
for these components.

8.4.2.1 Search Space

Execution plans are abstracted by means of operator trees, which define the order
in which the operators are executed. Operator trees are enriched with annotations,
which indicate additional execution aspects, such as the algorithm of each operator.
In a parallel DBMS, an important execution aspect to be reflected by annotations
is the fact that two subsequent operators can be executed in pipeline. In this case,
the second operator can start before the first one is completed. In other words, the
second operator starts consuming tuples as soon as the first one produces them.
Pipelined executions do not require temporary relations to be materialized, i.e., a
trie node corresponding to an operator executed in pipeline is not stored.

Some operators and some algorithms require that one operand be stored. For
example, in PHJ (Algorithm 8.2), in the build phase, a hash table is constructed in

370 8 Parallel Database Systems

Build1 Probe1

R1 R2

Build2

Temp1

Probe2

R3

Build3

Temp2

Probe3

R4

Build3 Probe3

R4

Build2 Probe2

Temp2

R3

Build1 Probe1

Temp1

R1 R2

Fig. 8.13 Two hash join trees with a different scheduling. (a) No pipeline. (b) Pipeline of R2,
Temp1, and Temp2

parallel on the join attribute of the smallest relation. In the probe phase, the largest
relation is sequentially scanned and the hash table is consulted for each of its tuples.
Therefore, pipeline and stored annotations constrain the scheduling of execution
plans by splitting an operator trie into nonoverlapping subtrees, corresponding to
execution phases. Pipelined operators are executed in the same phase, usually called
pipeline chain, whereas a storing indication establishes the boundary between one
phase and a subsequent phase.

Example 8.4 Figure 8.13 shows two execution trees, one with no pipeline
(Fig. 8.13a) and one with pipeline (Fig. 8.13b). In Fig. 8.13a, the temporary relation
Temp1 must be completely produced and the hash table in Build2 must be built
before Probe2 can start consuming R3. The same is true for Temp2, Build3, and
Probe3. Thus, the trie is executed in four consecutive phases: (1) build R1’s hash
table, (2) probe it with R2 and build Temp1’s hash table, (3) probe it with R3 and
build Temp2’s hash table, (4) probe it with R3 and produce the result. Figure 8.13b
shows a pipeline execution. The trie can be executed in two phases if enough
memory is available to build the hash tables: (1) build the tables for R1 R3 and R4,
(2) execute Probe1, Probe2, and Probe3 in pipeline. �

The set of nodes where a relation is stored is called its home. The home of an
operator is the set of nodes where it is executed and it must be the home of its
operands in order for the operator to access its operand. For binary operators such
as join, this might imply repartitioning one of the operands. The optimizer might
even sometimes find that repartitioning both the operands is of interest. Operator
trees bear execution annotations to indicate repartitioning.

Figure 8.14 shows four operator trees that represent execution plans for a three-
way join. Operator trees may be linear, i.e., at least one operand of each join node
is a base relation or bushy. It is convenient to represent pipelined relations as the

8.4 Parallel Query Processing 371

R1 R2

R3

R4

(a)

R4

R3

R1 R2

(b)

R4

R1 R2

R3

(c)

R1 R2 R3 R4

(d)

Fig. 8.14 Execution plans as operator trees. (a) Left deep. (b) Right deep. (c) Zigzag. (d) Bushy

right-hand side input of an operator. Thus, right-deep trees express full pipelining,
while left-deep trees express full materialization of all intermediate results. Thus,
assuming enough memory to hold the left-hand side relations, long right-deep trees
are more efficient then corresponding left-deep trees. In a left-deep trie such as that
of Fig. 8.14a, only the last operator can consume its right input relation in pipeline
provided that the left input relation can be entirely stored in main memory.

Parallel trie formats other than left or right deep are also interesting. For example,
bushy trees (Fig. 8.14d) are the only ones to allow independent parallelism and
some pipeline parallelism. Independent parallelism is useful when the relations are
partitioned on disjoint homes. Suppose that the relations in Fig. 8.14d are partitioned
such that R1 and R2 have the same home h1 and R3 and R4 have the same home
h2 that is different than h1. Then, the two joins of the base relations could be
independently executed in parallel by the set of nodes that constitutes h1 and h2.

When pipeline parallelism is beneficial, zigzag trees, which are intermediate
formats between left-deep and right-deep trees, can sometimes outperform right-
deep trees due to a better use of main memory. A reasonable heuristic is to favor
right-deep or zigzag trees when relations are partially fragmented on disjoint homes
and intermediate relations are rather large. In this case, bushy trees will usually
need more phases and take longer to execute. On the contrary, when intermediate
relations are small, pipelining is not very efficient because it is difficult to balance
the load between the pipeline stages.

With the operator trees above, operators must capture parallelism, which
requires repartitioning input relations. This is exemplified in the PHJ algorithm
(see Sect. 8.4.1.2), where input relations are partitioned based on the same hash
function applied to the join attribute, followed by a parallel join on local partitions.

372 8 Parallel Database Systems

ΠB,C

A

R1 R2

(a)

ΠB,C

Xchg3

B

Xchg1

R1

Xchg2

R2

Xchg1: partition by h(A)

Xchg2: partition by h(A)

Xchg3: partition by h(B,C)

(b)

Fig. 8.15 Operator trie with exchange operators. (a) Sequential operator trie. (b) Parallel operator
trie

To ease navigation in the search space by the optimizer, data repartitioning can be
encapsulated in an exchange operator. Depending on how partitioning is done,
we can have different exchange operators such as hashed partitioning, range
partitioning, or replicating data to a number of nodes. Examples of uses of exchange
operators are:

• Parallel hash join: hashed partitioning of the input relations on join attribute
followed by local join;

• Parallel nested loop join: replicating the inner relation on the nodes where the
outer relation is partitioned, followed by local join;

• Parallel range sort: range partitioning followed by local sort.

Figure 8.15 shows an example of operator trie with exchange operators. The
join operation is done by hashed partitioning of the input relations on A (operators
Xchg1 and Xchg2) followed by local join. The project operations are done by
duplicate elimination by hashing (operator Xchg3), followed by local project.

8.4.2.2 Cost Model

Recall that the optimizer cost model is responsible for estimating the cost of a given
execution plan. It consists of two parts: architecture-dependent and architecture-
independent. The architecture-independent part is constituted by the cost functions
for operator algorithms, e.g., nested loop for join and sequential access for select.
If we ignore concurrency issues, only the cost functions for data repartitioning and
memory consumption differ and constitute the architecture-dependent part. Indeed,
repartitioning a relation’s tuples in a shared-nothing system implies transfers of data
across the interconnect, whereas it reduces to hashing in shared-memory systems.
Memory consumption in the shared-nothing case is complicated by interoperator
parallelism. In shared-memory systems, all operators read and write data through
a global memory, and it is easy to test whether there is enough space to execute

8.4 Parallel Query Processing 373

them in parallel, i.e., the sum of the memory consumption of individual operators
is less than the available memory. In shared-nothing, each processor has its own
memory, and it becomes important to know which operators are executed in parallel
on the same processor. Thus, for simplicity, we can assume that the set of processors
(home) assigned to operators do not overlap, i.e., either the intersection of the set of
processors is empty or the sets are identical.

The total time of a plan can be computed by a formula that simply adds all CPU,
I/O, and communication cost components as in distributed query optimization. The
response time is more involved as it must take pipelining into account.

The response time of plan p, scheduled in phases (each denoted by ph), is
computed as follows:

RT (p) =
∑

ph∈p

(maxOp∈ph(respT ime(Op) + pipe_delay(Op))

+ store_delay(ph))

where Op denotes an operator, respT ime(Op) is the response time of Op,
pipe_delay(Op) is the waiting period of Op necessary for the producer to deliver
the first result tuples (it is equal to 0 if the input relations of Op are stored),
store_delay(ph) is the time necessary to store the output result of phase ph (it
is equal to 0 if ph is the last phase, assuming that the results are delivered as soon
as they are produced).

To estimate the cost of an execution plan, the cost model uses database statistics
and organization information, such as relation cardinalities and partitioning, as with
distributed query optimization.

8.4.2.3 Search Strategy

The search strategy does not need to be different from either centralized or
distributed query optimization. However, the search space tends to be much
larger because there are more parameters that impact parallel execution plans, in
particular, pipeline and store annotations. Thus, randomized search strategies such
as Iterative Improvement and Simulated Annealing generally outperform traditional
deterministic search strategies in parallel query optimization. Another interesting,
yet simple approach to reduce the search space is the two phase optimization
strategy proposed for XPRS, a shared-memory parallel DBMS. First, at compile
time, the optimal query plan based on a centralized cost model is produced. Then,
at execution time, runtime parameters such as available buffer size and number of
free processors are considered to parallelize the query plan. This approach is shown
to almost always produce optimal plans.

374 8 Parallel Database Systems

8.5 Load Balancing

Good load balancing is crucial for the performance of a parallel system. The
response time of a set of parallel operators is that of the longest one. Thus,
minimizing the time of the longest one is important for minimizing response time.
Balancing the load of different nodes is also essential to maximize throughput.
Although the parallel query optimizer incorporates decisions on how to execute a
parallel execution plan, load balancing can be hurt by several problems incurring
at execution time. Solutions to these problems can be obtained at the intra and
interoperator levels. In this section, we discuss these parallel execution problems
and their solutions.

8.5.1 Parallel Execution Problems

The principal problems introduced by parallel query execution are initialization,
interference, and skew.

Initialization

Before the execution takes place, an initialization step is necessary. This step
is generally sequential and includes task (or thread) creation and initialization,
communication initialization, etc. The duration of this step is proportional to the
degree of parallelism and can actually dominate the execution time of simple
queries, e.g., a select query on a single relation. Thus, the degree of parallelism
should be fixed according to query complexity.

A formula can be developed to estimate the maximal speed-up reachable during
the execution of an operator and to deduce the optimal number of processors. Let
us consider the execution of an operator that processes N tuples with n processors.
Let c be the average processing time of each tuple and a the initialization time per
processor. In the ideal case, the response time of the operator execution is

ResponseT ime = (a ∗ n) + c ∗ N

n

By derivation, we can obtain the optimal number of processors nopt to allocate
and the maximal achievable speed-up (Speedmax).

nopt =
√

c ∗ N

a
Speedmax = nopt

2

The optimal number of processors (nopt) is independent of n and only depends
on the total processing time and initialization time. Thus, maximizing the degree of

8.5 Load Balancing 375

parallelism for an operator, e.g., using all available processors, can hurt speed-up
because of the overhead of initialization.

Interference

A highly parallel execution can be slowed down by interference. Interference occurs
when several processors simultaneously access the same resource, hardware, or
software. A typical example of hardware interference is the contention created
on the interconnect of a shared-memory system. When the number of processors
is increased, the number of conflicts on the interconnect increases, thus limiting
the extensibility of shared-memory systems. A solution to these interferences is to
duplicate shared resources. For instance, disk access interference can be eliminated
by adding several disks and partitioning the relations.

Software interference occurs when several processors want to access shared
data. To prevent incoherence, mutual exclusion variables are used to protect shared
data, thus blocking all but one processor that accesses the shared data. This is
similar to the locking-based concurrency control algorithms (see Chap. 5). However,
shared variables may well become the bottleneck of query execution, creating hot
spots. A typical example of software interference is the access of database internal
structures such as indexes and buffers. For simplicity, the earlier versions of database
systems were protected by a unique mutual exclusion variable, which incurred much
overhead.

A general solution to software interference is to partition the shared resource into
several independent resources, each protected by a different mutual exclusion vari-
able. Thus, two independent resources can be accessed in parallel, which reduces
the probability of interference. To further reduce interference on an independent
resource (e.g., an index structure), replication can be used. Thus, access to replicated
resources can also be parallelized.

Skew

Load balancing problems can arise with intraoperator parallelism (variation in
partition size), namely data skew, and interoperator parallelism (variation in the
complexity of operators).

The effects of skewed data distribution on a parallel execution can be classified
as follows: Attribute value skew (AVS) is skew inherent in the data (e.g., there are
more citizens in Paris than in Waterloo), while tuple placement skew (TPS) is the
skew introduced when the data is initially partitioned (e.g., with range partitioning).
Selectivity skew (SS) is introduced when there is variation in the selectivity of select
predicates on each node. Redistribution skew (RS) occurs in the redistribution step
between two operators. It is similar to TPS. Finally join product skew (JPS) occurs
because the join selectivity may vary between nodes. Figure 8.16 illustrates this
classification on a query over two relations R and S that are poorly partitioned.

376 8 Parallel Database Systems

Join1
AVS/TPS

S1

Res1

JPS

Scan1

RS/SS

AVS/TPS

R1

Join2
AVS/TPS

S2

Res1

JPS

Scan2

RS/SS

AVS/TPS

R2

Fig. 8.16 Data skew example

The boxes are proportional to the size of the corresponding partitions. Such poor
partitioning stems from either the data (AVS) or the partitioning function (TPS).
Thus, the processing times of the two instances Scan1 and Scan2 are not equal. The
case of the join operator is worse. First, the number of tuples received is different
from one instance to another because of poor redistribution of the partitions of R
(RS) or variable selectivity according to the partition of R processed (SS). Finally,
the uneven size of S partitions (AVS/TPS) yields different processing times for
tuples sent by the scan operator and the result size is different from one partition
to the other due to join selectivity (JPS).

8.5.2 Intraoperator Load Balancing

Good intraoperator load balancing depends on the degree of parallelism and the
allocation of processors for the operator. For some algorithms, e.g., PHJ, these
parameters are not constrained by the placement of the data. Thus, the home of the
operator (the set of processors where it is executed) must be carefully decided. The
skew problem makes it hard for the parallel query optimizer to make this decision
statically (at compile time) as it would require a very accurate and detailed cost
model. Therefore, the main solutions rely on adaptive or specialized techniques that
can be incorporated in a hybrid query optimizer. We describe below these techniques
in the context of parallel join processing, which has received much attention. For
simplicity, we assume that each operator is given a home as decided by the query
processor (either statically or just before execution).

8.5 Load Balancing 377

Adaptive Techniques

The main idea is to statically decide on an initial allocation of the processors
to the operator (using a cost model) and, at execution time, adapt to skew
using load reallocation. A simple approach to load reallocation is to detect the
oversized partitions and partition them again onto several processors (among the
processors already allocated to the operation) to increase parallelism. This approach
is generalized to allow for more dynamic adjustment of the degree of parallelism.
It uses specific control operators in the execution plan to detect whether the static
estimates for intermediate result sizes will differ from the runtime values. During
execution, if the difference between the estimate and the real value is sufficiently
high, the control operator performs relation redistribution in order to prevent join
product skew and redistribution skew. Adaptive techniques are useful to improve
intraoperator load balancing in all kinds of parallel architectures. However, most
of the work has been done in the context of shared-nothing where the effects of
load unbalance are more severe on performance. DBS3 has pioneered the use of an
adaptive technique based on relation partitioning (as in shared-nothing) for shared-
memory. By reducing processor interference, this technique yields excellent load
balancing for intraoperator parallelism.

Specialized Techniques

Parallel join algorithms can be specialized to deal with skew. One approach is to
use multiple join algorithms, each specialized for a different degree of skew, and
to determine, at execution time, which algorithm is best. It relies on two main
techniques: range partitioning and sampling. Range partitioning is used instead of
hash partitioning (in the parallel hash join algorithm) to avoid redistribution skew
of the building relation. Thus, processors can get partitions of equal numbers of
tuples, corresponding to different ranges of join attribute values. To determine the
values that delineate the range values, sampling of the building relation is used to
produce a histogram of the join attribute values, i.e., the numbers of tuples for each
attribute value. Sampling is also useful to determine which algorithm to use and
which relation to use for building or probing. Using these techniques, the parallel
hash join algorithm can be adapted to deal with skew as follows:

1. Sample the building relation to determine the partitioning ranges.
2. Redistribute the building relation to the processors using the ranges. Each

processor builds a hash table containing the incoming tuples.
3. Redistribute the probing relation using the same ranges to the processors. For

each tuple received, each processor probes the hash table to perform the join.

This algorithm can be further improved to deal with high skew using additional
techniques and different processor allocation strategies. A similar approach is to
modify the join algorithms by inserting a scheduling step that is in charge of
redistributing the load at runtime.

378 8 Parallel Database Systems

8.5.3 Interoperator Load Balancing

In order to obtain good load balancing at the interoperator level, it is necessary
to choose, for each operator, how many and which processors to assign for its
execution. This should be done taking into account pipeline parallelism, which
requires interoperator communication. This is harder to achieve in shared-nothing
for the following reasons: First, the degree of parallelism and the allocation of
processors to operators, when decided in the parallel optimization phase, are based
on a possibly inaccurate cost model. Second, the choice of the degree of parallelism
is subject to errors because both processors and operators are discrete entities.
Finally, the processors associated with the latest operators in a pipeline chain may
remain idle a significant time. This is called the pipeline delay problem.

The main approach in shared-nothing is to determine dynamically (just before the
execution) the degree of parallelism and the localization of the processors for each
operator. For instance, the rate match algorithm uses a cost model in order to match
the rate at which tuples are produced and consumed. It is the basis for choosing the
set of processors that will be used for query execution (based on available memory,
CPU, and disk utilization). Many other algorithms are possible for the choice of
the number and localization of processors, for instance, by maximizing the use of
several resources, using statistics on their usage.

In shared-disk and shared-memory, there is more flexibility since all processors
have equal access to the disks. Since there is no need for physical relation partition-
ing, any processor can be allocated to any operator. In particular, a processor can
be allocated all the operators in the same pipeline chain, thus, with no interoperator
parallelism. However, interoperator parallelism is useful for executing independent
pipeline chains. The approach proposed in XPRS for shared-memory allows the
parallel execution of independent pipeline chains, called tasks. The main idea is to
combine I/O-bound and CPU-bound tasks to increase system resource utilization.
Before execution, a task is classified as I/O-bound or CPU-bound using cost model
information as follows. Let us suppose that, if executed sequentially, task t generates
disk accesses at rate IOrate(t), e.g., in numbers of disk accesses per second. Let us
consider a shared-memory system with n processors and a total disk bandwidth
of B (numbers of disk accesses per second). Task t is defined as I/O-bound if
IOrate(t) > B/n and CPU-bound otherwise. CPU-bound and I/O-bound talks can
then be run in parallel at their optimal I/O-CPU balance point. This is accomplished
by dynamically adjusting the degree of intraoperator parallelism of the tasks in order
to reach maximum resource utilization.

8.5.4 Intraquery Load Balancing

Intraquery load balancing must combine intra and interoperator parallelism. To
some extent, given a parallel architecture, the techniques for either intra or
interoperator load balancing we just presented can be combined. However, in
shared-nothing clusters with shared-memory nodes (or multicore processors), the

8.5 Load Balancing 379

R1 R2 R3 R4

(a)

Build2

Probe1

Scan(R2)
Build1

Scan(R1)

Probe3

Probe2

Scan(R4)

Build3

Scan(R3)

(b)

Fig. 8.17 A join trie and associated operator trie. (a) Join trie. (b) Operator trie (ellipses are
pipeline chains)

problems of load balancing are exacerbated because they must be addressed at
two levels, locally among the processors or cores of each shared-memory node
(SM-node) and globally among all nodes. None of the approaches for intra and
interoperator load balancing just discussed can be easily extended to deal with this
problem. Load balancing strategies for shared-nothing would experience even more
severe problems worsening (e.g., complexity and inaccuracy of the cost model). On
the other hand, adapting dynamic solutions developed for shared-memory systems
would incur high communication overhead.

A general solution to load balancing is the execution model called Dynamic
Processing (DP). The fundamental idea is that the query is decomposed into self-
contained units of sequential processing, each of which can be carried out by any
processor. Intuitively, a processor can migrate horizontally (intraoperator paral-
lelism) and vertically (interoperator parallelism) along the query operators. This
minimizes the communication overhead of internode load balancing by maximizing
intra and interoperator load balancing within shared-memory nodes. The input to
the execution model is a parallel execution plan as produced by the optimizer, i.e.,
an operator trie with operator scheduling and allocation of computing resources to
operators. The operator scheduling constraints express a partial order among the
operators of the query: Op1 ≺ Op2 indicates that operator Op1 cannot start before
operator Op2.

Example 8.5 Figure 8.17 shows a join trie with four relations R1, R2, R3, and
R4, and the corresponding operator trie with the pipeline chains clearly identified.
Assuming that parallel hash join is used, the operator scheduling constraints are
between the associated build and probe operators:

Build1 ≺ Probe1
Build2 ≺ Probe3
Build3 ≺ Probe2

380 8 Parallel Database Systems

There are also scheduling heuristics between operators of different pipeline
chains that follow from the scheduling constraints :

Heuristic1: Build1 ≺ Scan(R2) Build3 ≺ Scan(R4), Build2 ≺ Scan(R3)
Heuristic2: Build2 ≺ Scan(R3)

Assuming three SM-nodes i, j , and k with R1 stored at node i, R2 and R3 at node
j , and R4 at node k, we can have the following operator homes:

home (Scan(R1)) = i

home (Build1, Probe1, Scan(R2), Scan(R3)) = j

home (Scan(R4)) = k

home (Build2, Build3, Probe2, Probe3) = j and k

�
Given such an operator trie, the problem is to produce an execution that

minimizes response time. This can be done by using a dynamic load balancing
mechanism at two levels: (i) within an SM-node, load balancing is achieved via
fast interprocess communication; (ii) between SM-nodes, more expensive message-
passing communication is needed. Thus, the problem is to come up with an
execution model so that the use of local load balancing is maximized, while the
use of global load balancing (through message passing) is minimized.

We call activation the smallest unit of sequential processing that cannot be
further partitioned. The main property of the DP model is to allow any processor to
process any activation of its SM-node. Thus, there is no static association between
threads and operators. This yields good load balancing for both intraoperator and
interoperator parallelism within an SM-node, and thus reduces to the minimum the
need for global load balancing, i.e., when there is no more work to do in an SM-
node.

The DP execution model is based on a few concepts: activations, activation
queues, and threads.

Activations

An activation represents a sequential unit of work. Since any activation can be
executed by any thread (by any processor), activations must be self-contained
and reference all information necessary for their execution: the code to execute
and the data to process. Two kinds of activations can be distinguished: trigger
activations and data activations. A trigger activation is used to start the execution
of a leaf operator, i.e., scan. It is represented by an (Operator, Partition) pair
that references the scan operator and the base relation partition to scan. A data
activation describes a tuple produced in pipeline mode. It is represented by an
(Operator, T uple, Partition) triple that references the operator to process. For
a build operator, the data activation specifies that the tuple must be inserted in the
hash table of the bucket and for a probe operator, that the tuple must be probed with

8.5 Load Balancing 381

the partition’s hash table. Although activations are self-contained, they can only be
executed on the SM-node where the associated data (hash tables or base relations)
are.

Activation Queues

Moving data activations along pipeline chains is done using activation queues
associated with operators. If the producer and consumer of an activation are on
the same SM-node, then the move is done via shared-memory. Otherwise, it
requires message passing. To unify the execution model, queues are used for trigger
activations (inputs for scan operators) as well as tuple activations (inputs for build
or probe operators). All threads have unrestricted access to all queues located on
their SM-node. Managing a small number of queues (e.g., one for each operator)
may yield interference. To reduce interference, one queue is associated with each
thread working on an operator. Note that a higher number of queues would likely
trade interference for queue management overhead. To further reduce interference
without increasing the number of queues, each thread is given priority access to a
distinct set of queues, called its primary queues. Thus, a thread always tries to first
consume activations in its primary queues. During execution, operator scheduling
constraints may imply that an operator is to be blocked until the end of some other
operators (the blocking operators). Therefore, a queue for a blocked operator is also
blocked, i.e., its activations cannot be consumed but they can still be produced if
the producing operator is not blocked. When all its blocking operators terminate,
the blocked queue becomes consumable, i.e., threads can consume its activations.
This is illustrated in Fig. 8.18 with an execution snapshot for the operator trie of
Fig. 8.17.

Threads

A simple strategy for obtaining good load balancing inside an SM-node is to allocate
a number of threads that is much higher than the number of processors and let the
operating system do thread scheduling. However, this strategy incurs high numbers
of system calls due to thread scheduling and interference. Instead of relying on
the operating system for load balancing, it is possible to allocate only one thread
per processor per query. This is made possible by the fact that any thread can
execute any operator assigned to its SM-node. The advantage of this one thread per
processor allocation strategy is to significantly reduce the overhead of interference
and synchronization, provided that a thread is never blocked.

382 8 Parallel Database Systems

T T

Node i

Scan(R1)
Build1
Scan(R2)
Probe1
Build2
Scan(R3)
Build3
Scan(R4)
Probe2
Probe3

T T T

Node j

T T

Node k

Primary queue T Thread

Terminated queue
Blocked queue
Active queue

Fig. 8.18 Snapshot of an execution

Load balancing within an SM-node is obtained by allocating all activation queues
in a segment of shared-memory and by allowing all threads to consume activations
in any queue. To limit thread interference, a thread will consume as much as possible
from its set of primary queues before considering the other queues of the SM-
node. Therefore, a thread becomes idle only when there is no more activation of
any operator, which means that there is no more work to do on its SM-node that is
starving.

When an SM-node starves, we share the load of another SM-node by acquiring
some of its workload. However, acquiring activations (through message passing)
incurs communication overhead. Furthermore, activation acquisition is not sufficient
since associated data, i.e., hash tables, must also be acquired. Thus, the benefit of
acquiring activations and data should be dynamically estimated.

The amount of load balancing depends on the number of operators that are
concurrently executed, which provides opportunities for finding some work to share
in case of idle times. Increasing the number of concurrent operators can be done by
allowing concurrent execution of several pipeline chains or by using nonblocking
hash join algorithms, which allows the concurrent execution of all the operators
of the bushy trie. On the other hand, executing more operators concurrently can
increase memory consumption. Static operator scheduling as provided by the
optimizer should avoid memory overflow and solve this trade-off.

8.6 Fault-Tolerance 383

8.6 Fault-Tolerance

In this section, we discuss what happens in the advent of failures. There are several
issues raised by failures. The first is how to maintain consistency despite failures.
Second, for outstanding transactions, there is the issue of how to perform failover.
Third, when a failed replica is reintroduced (following recovery), or a fresh replica
is introduced in the system, the current state of the database needs to be recovered.
The main concern is how to cope with failures. To start with, failures need to be
detected. In group communication based approaches (see Chap. 6), failure detection
is provided by the underlying group communication (typically based on some
kind of heartbeat mechanism). Membership changes are notified as events.1 By
comparing the new membership with the previous one, it becomes possible to
learn which replicas have failed. Group communication also guarantees that all
the connected replicas share the same membership notion. For approaches that are
not based on group communication failure detection can be either delegated to the
underlying communication layer (e.g., TCP/IP) or implemented as an additional
component of the replication logic. However, some agreement protocol is needed
to ensure that all connected replicas share the same membership notion of which
replicas are operational and which ones are not. Otherwise, inconsistencies can
arise.

Failures should also be detected at the client side by the client API. Clients
typically connect through TCP/IP and can suspect of failed nodes via broken
connections. Upon a replica failure, the client API must discover a new replica,
reestablish a new connection to it, and, in the simplest case, retransmit the
last outstanding transaction to the just connected replica. Since retransmissions
are needed, duplicate transactions might be delivered. This requires a duplicate
transaction detection and removal mechanism. In most cases, it is sufficient to have
a unique client identifier, and a unique transaction identifier per client. The latter is
incremented for each new submitted transaction. Thus, the cluster can track whether
a client transaction has already been processed and if so, discard it.

Once a replica failure has been detected, several actions should be taken. These
actions are part of the failover process, which must redirect the transactions from a
failed node to another replica node, in a way that is as transparent as possible for the
clients. Failover highly depends on whether or not the failed replica was a master.
If a nonmaster replica fails, no action needs to be taken on the cluster side. Clients
with outstanding transactions connect to a new replica node and resubmit the last
transactions. However, the interesting question is which consistency definition is
provided. Recall from Sect. 6.1 that, in a replicated database, one-copy serializabil-
itycan be violated as a result of serializing transactions at different nodes in reverse
order. Due to failover, the transactions may also be processed in such a way that
one-copy serializability is compromised.

1Group communication literature uses the term view change to denote the event of a membership
change. Here, we will not use the term to avoid confusion with the database view concept.

384 8 Parallel Database Systems

In most replication approaches, failover is handled by aborting all ongoing
transactions to prevent these situations. However, this way of handling failures
has an impact on clients that must resubmit the aborted transactions. Since clients
typically do not have transactional capabilities to undo the results of a conversational
interaction, this can be very complex. The concept of highly available transactions
makes failures totally transparent to clients so they do not observe transaction aborts
due to failures.

The actions to be taken in the case of a master replica failure are more involved
as a new master should be appointed to take over the failed master. The appointment
of a new master should be agreed upon by all the replicas in the cluster. In group-
based replication, thanks to the membership change notification, it is enough to
apply a deterministic function over the new membership to assign masters (all nodes
receive exactly the same list of up and connected nodes).

Another essential aspect of fault-tolerance is recovery after failure. High avail-
ability requires to tolerate failures and continue to provide consistent access to
data despite failures. However, failures diminish the degree of redundancy in the
system, thereby degrading availability and performance. Hence, it is necessary to
reintroduce failed or fresh replicas in the system to maintain or improve availability
and performance. The main difficulty is that replicas do have state and a failed
replica may have missed updates while it was down. Thus, a recovering failed
replica needs to receive the lost updates before being able to start processing new
transactions. A solution is to stop transaction processing. Thus, a quiescent state
is directly attained that can be transferred by any of the working replicas to the
recovering one. Once the recovering replica has received all the missed updates,
transaction processing can resume and all replicas can process new transactions.

8.7 Database Clusters

A parallel database system typically implements the parallel data management
functions in a tightly coupled fashion, with all homogeneous nodes under the full
control of the parallel DBMS. A simpler (yet not as efficient) solution is to use a
database cluster, which is a cluster of autonomous databases, each managed by an
off-the-shelf DBMS. A major difference with a parallel DBMS implemented on a
cluster is the use of a “black-box” DBMS at each node. Since the DBMS source code
is not necessarily available and cannot be changed to be “cluster-aware,” parallel
data management capabilities must be implemented via middleware. This approach
has been successfully adopted in the MySQL or PostgreSQL clusters.

Much research has been devoted to take full advantage of the cluster environment
(with fast, reliable communication) in order to improve performance and availability
by exploiting data replication. The main results of this research are new techniques
for replication, load balancing, and query processing. In this section, we present
these techniques after introducing a database cluster architecture.

8.7 Database Clusters 385

DBcluster
middleware

DBMS
· · ·

DBcluster
middleware

DBMS

Interconnect

Fig. 8.19 A shared-nothing database cluster

8.7.1 Database Cluster Architecture

Figure 8.19 illustrates a database cluster with a shared-nothing architecture. Parallel
data management is done by independent DBMSs orchestrated by a middleware
replicated at each node. To improve performance and availability, data can be
replicated at different nodes using the local DBMS. Client applications interact
with the middleware in a classical way to submit database transactions, i.e.,
ad hoc queries, transactions, or calls to stored procedures. Some nodes can be
specialized as access nodes to receive transactions, in which case they share a global
directory service that captures information about users and databases. The general
processing of a transaction to a single database is as follows. First, the transaction
is authenticated and authorized using the directory. If successful, the transaction is
routed to a DBMS at some, possibly different, node to be executed. We will see
in Sect. 8.7.4 how this simple model can be extended to deal with parallel query
processing, using several nodes to process a single query.

As in a parallel DBMS, the database cluster middleware has several software
layers: transaction load balancer, replication manager, query processor, and fault-
tolerance manager. The transaction load balancer triggers transaction execution at
the best node, using load information obtained from node probes. The “best” node
is defined as the one with lightest transaction load. The transaction load balancer
also ensures that each transaction execution obeys the ACID properties, and then
signals to the DBMS to commit or abort the transaction. The replication manager
manages access to replicated data and assures strong consistency in such a way
that transactions that update replicated data are executed in the same serial order
at each node. The query processor exploits both inter and intraquery parallelism.
With interquery parallelism, the query processor routes each submitted query to one
node and, after query completion, sends results to the client application. Intraquery
parallelism is more involved. As the black-box DBMSs are not cluster-aware, they
cannot interact with one another in order to process the same query. Then, it is
up to the query processor to control query execution, final result composition, and

386 8 Parallel Database Systems

load balancing. Finally, the fault-tolerance manager provides online recovery and
failover.

8.7.2 Replication

As in distributed DBMSs, replication can be used to improve performance and
availability. In a database cluster, the fast interconnect and communication system
can be exploited to support one-copy serializability while providing scalability
(to achieve performance with large numbers of nodes) and autonomy (to exploit
black-box DBMS). A cluster provides a stable environment with little evolution
of the topology (e.g., as a result of added nodes or communication link failures).
Thus, it is easier to support a group communication system that manages reliable
communication between groups of nodes. Group communication primitives (see
Sect. 6.4) can be used with either eager or lazy replication techniques as a means to
attain atomic information dissemination (i.e., instead of the expensive 2PC).

We present now another protocol, called preventive replication, which is lazy
and provides support for one-copy serializability and scalability. Preventive repli-
cation also preserves DBMS autonomy. Instead of using total ordered multicast,
it uses FIFO reliable multicast that is simpler and more efficient. The principle
is the following. Each incoming transaction T to the system has a chronological
timestamp ts(T) = C, and is multicast to all other nodes where there is a copy.
At each node, a time delay is introduced before starting the execution of T . This
delay corresponds to the upper bound of the time needed to multicast a message (a
synchronous system with bounded computation and transmission time is assumed).
The critical issue is the accurate computation of the upper bounds for messages (i.e.,
delay). In a cluster system, the upper bound can be computed quite accurately. When
the delay expires, all transactions that may have committed before C are guaranteed
to be received and executed before T , following the timestamp order (i.e., total
order). Hence, this approach prevents conflicts and enforces strong consistency
in database clusters. Introducing delay times has also been exploited in several
lazy centralized replication protocols for distributed systems. The validation of the
preventive replication protocol using experiments with the TPC-C benchmark over
a cluster of 64 nodes running the PostgreSQL DBMS have shown excellent scale-up
and speed-up.

8.7.3 Load Balancing

In a database cluster, replication offers good load balancing opportunities. With
eager or preventive replication (see Sect. 8.7.2), query load balancing is easy to
achieve. Since all copies are mutually consistent, any node that stores a copy of
the transaction data, e.g., the least loaded node, can be chosen at runtime by a

8.7 Database Clusters 387

conventional load balancing strategy. Transaction load balancing is also easy in
the case of lazy distributed replication since all master nodes need to eventually
perform the transaction. However, the total cost of transaction execution at all nodes
may be high. By relaxing consistency, lazy replication can better reduce transaction
execution cost and thus increase performance of both queries and transactions. Thus,
depending on the consistency/performance requirements, eager and lazy replication
are both useful in database clusters.

8.7.4 Query Processing

In a database cluster, parallel query processing can be used successfully to yield
high performance. Interquery parallelism is naturally obtained as a result of load
balancing and replication as discussed in the previous section. Such parallelism
is primarily useful to increase the throughput of transaction-oriented applications
and, to some extent, to reduce the response time of transactions and queries. For
OLAP applications that typically use ad hoc queries, which access large quantities of
data, intraquery parallelism is essential to further reduce response time. Intraquery
parallelism consists of processing the same query on different partitions of the
relations involved in the query.

There are two alternative solutions for partitioning relations in a database cluster:
physical and virtual. Physical partitioning defines relation partitions, essentially as
horizontal fragments, and allocates them to cluster nodes, possibly with replication.
This resembles fragmentation and allocation design in distributed databases (see
Chap. 2) except that the objective is to increase intraquery parallelism, not locality
of reference. Thus, depending on the query and relation sizes, the degree of
partitioning should be much finer. Physical partitioning in database clusters for
decision-support can use small grain partitions. Under uniform data distribution, this
solution is shown to yield good intraquery parallelism and outperform interquery
parallelism. However, physical partitioning is static and thus very sensitive to data
skew conditions and the variation of query patterns that may require periodic
repartitioning.

Virtual partitioning avoids the problems of static physical partitioning using a
dynamic approach and full replication (each relation is replicated at each node).
In its simplest form, which we call simple virtual partitioning (SVP) , virtual
partitions are dynamically produced for each query and intraquery parallelism
is obtained by sending subqueries to different virtual partitions. To produce the
different subqueries, the database cluster query processor adds predicates to the
incoming query in order to restrict access to a subset of a relation, i.e., a virtual
partition. It may also do some rewriting to decompose the query into equivalent
subqueries followed by a composition query. Then, each DBMS that receives a
subquery is forced to process a different subset of data items. Finally, the partitioned
result needs to be combined by an aggregate query.

388 8 Parallel Database Systems

Example 8.6 Let us illustrate SVP with the following query Q:

SELECT PNO, AVG(DUR)
FROM WORKS
WHERE SUM(DUR) > 200
GROUP BY PNO

A generic subquery on a virtual partition is obtained by adding to Q’s
where clause the predicate “and PNO >= ‘P1’ and PNO < ‘P2’.” By binding
[‘P1’, ‘P2’] to n subsequent ranges of PNO values, we obtain n subqueries, each
for a different node on a different virtual partition of WORKS. Thus, the degree of
intraquery parallelism is n. Furthermore, the AVG(DUR) operation must be rewritten
as SUM(DUR), COUNT(DUR) in the subquery. Finally, to obtain the correct result for
AVG(DUR), the composition query must perform SUM(DUR)/SUM(COUNT(DUR))

over the n partial results.
The performance of each subquery’s execution depends heavily on the access

methods available on the partitioning attribute (PNO). In this example, a clustered
index on PNO would be best. Thus, it is important for the query processor to know
the access methods available to decide, according to the query, which partitioning
attribute to use. �

SVP allows great flexibility for node allocation during query processing since
any node can be chosen for executing a subquery. However, not all kinds of queries
can benefit from SVP and be parallelized. We can classify OLAP queries such that
queries of the same class have similar parallelization properties. This classification
relies on how the largest relations, called fact tables in a typical OLAP application,
are accessed. The rationale is that the virtual partitioning of such relations yields
higher intraoperator parallelism. Three main classes are identified:

1. Queries without subqueries that access a fact table.
2. Queries with a subquery that are equivalent to a query of Class 1.
3. Any other queries.

Queries of Class 2 need to be rewritten into queries of Class 1 in order for SVP
to apply, while queries of Class 3 cannot benefit from SVP.

SVP has some limitations. First, determining the best virtual partitioning
attributes and value ranges can be difficult since assuming uniform value distribution
is not realistic. Second, some DBMSs perform full table scans instead of indexed
access when retrieving tuples from large intervals of values. This reduces the
benefits of parallel disk access since one node could read an entire relation to access
a virtual partition. This makes SVP dependent on the underlying DBMS query
capabilities. Third, as a query cannot be externally modified while being executed,
load balancing is difficult to achieve and depends on the initial partitioning.

Fine-grained virtual partitioning addresses these limitations by using a large
number of subqueries instead of one per DBMS. Working with smaller subqueries
avoids full table scans and makes query processing less vulnerable to DBMS
idiosyncrasies. However, this approach must estimate the partition sizes, using

8.7 Database Clusters 389

database statistics and query processing time estimates. In practice, these estimates
are hard to obtain with black-box DBMSs.

Adaptive virtual partitioning (AVP) solves this problem by dynamically tuning
partition sizes, thus without requiring these estimates. AVP runs independently at
each participating cluster node, avoiding internode communication (for partition
size determination). Initially, each node receives an interval of values to work with.
These intervals are determined exactly as for SVP. Then, each node performs the
following steps:

1. Start with a very small partition size beginning with the first value of the received
interval.

2. Execute a subquery with this interval.
3. Increase the partition size and execute the corresponding subquery while the

increase in execution time is proportionally smaller than the increase in partition
size.

4. Stop increasing. A stable size has been found.
5. If there is performance degradation, i.e., there were consecutive worse execu-

tions, decrease size and go to Step 2.

Starting with a very small partition size avoids full table scans at the very
beginning of the process. This also avoids having to know the threshold after
which the DBMS does not use clustered indices and starts performing full table
scans. When partition size increases, query execution time is monitored allowing
determination of the point after which the query processing steps that are data size
independent do not influence too much total query execution time. For example, if
doubling the partition size yields an execution time that is twice the previous one,
this means that such a point has been found. Thus the algorithm stops increasing
the size. System performance can deteriorate due to DBMS data cache misses or
overall system load increase. It may happen that the size being used is too large and
has benefited from previous data cache hits. In this case, it may be better to shrink
partition size. That is precisely what step 5 does. It gives a chance to go back and
inspect smaller partition sizes. On the other hand, if performance deterioration was
due to a casual and temporary increase of system load or data cache misses, keeping
a small partition size can lead to poor performance. To avoid such a situation, the
algorithm goes back to Step 2 and restarts increasing sizes.

AVP and other variants of virtual partitioning have several advantages: flexibility
for node allocation, high availability because of full replication, and opportunities
for dynamic load balancing. But full replication can lead to high cost in disk usage.
To support partial replication, hybrid solutions have been proposed to combine
physical and virtual partitioning. The hybrid design uses physical partitioning for
the largest and most important relations and fully replicates the small tables. Thus,
intraquery parallelism can be achieved with lesser disk space requirements. The
hybrid solution combines AVP with physical partitioning. It solves the problem of
disk usage while keeping the advantages of AVP, i.e., full table scan avoidance and
dynamic load balancing.

390 8 Parallel Database Systems

8.8 Conclusion

Parallel database systems have been exploiting multiprocessor architectures to
provide high-performance, high-availability, extensibility, and scalability with a
good cost/performance ratio. Furthermore, parallelism is the only viable solution
for supporting very large databases and applications within a single system.

Parallel database system architectures can be classified as shared-memory,
shared-disk, and shared-nothing. Each architecture has its advantages and lim-
itations. Shared-memory is used in tightly coupled NUMA multiprocessors or
multicore processors, and can provide the highest performance because of fast
memory access and great load balancing. However, it has limited extensibility
and scalability. Shared-disk and shared-nothing are used in computer clusters,
typically using multicore processors. With low latency networks (e.g., Infiniband
and Myrinet), they can provide high performance and scale up to very large
configurations (with thousands of nodes). Furthermore, the RDMA capability of
those networks can be exploited to make cost-effective NUMA clusters. Shared-disk
is typically used for OLTP workloads as it is simpler and has good load balancing.
However, shared-nothing remains the only choice for highly scalable systems, as
need in OLAP or big data, with the best cost/performance ratio.

Parallel data management techniques extend distributed database techniques.
However, the critical issues for such architectures are data partitioning, replication,
parallel query processing, load balancing, and fault-tolerance. The solutions to these
issues are more involved than in distributed DBMS because they must scale to high
numbers of nodes. Furthermore, recent advances in hardware/software such as low
latency interconnect, multicore processor nodes, large main memory, and RDMA
provide new opportunities for optimization. In particular, parallel algorithms for the
most demanding operators such as join and sort need be made NUMA-aware.

A database cluster is an important kind of parallel database system that uses
a black-box DBMS at each node. Much research has been devoted to take full
advantage of the cluster stable environment in order to improve performance and
availability by exploiting data replication. The main results of this research are new
techniques for replication, load balancing, and query processing.

8.9 Bibliographic Notes

The earlier proposal of a database machine dates back to [Canaday et al. 1974],
mainly to address the “I/O bottleneck” [Boral and DeWitt 1983], induced by high
disk access time with respect to main memory access time. The main idea was to
push database functions closer to disk. CAFS-ISP is an early example of hardware-
based filtering device [Babb 1979] that was bundled within disk controllers for
fast associative search. The introduction of general-purpose microprocessors in disk
controllers also led to intelligent disks [Keeton et al. 1998].

8.9 Bibliographic Notes 391

The first parallel database system products were Teradata and Tandem Non-
StopSQL in the early 1980s. Since then, all major DBMS players have delivered
a parallel version of their product. Today, the field is still the subject of intensive
research to deal with big data and exploit new hardware capabilities, e.g., low
latency interconnects, multicore processor nodes, and large main memories.

Comprehensive surveys of parallel database systems are provided in [DeWitt and
Gray 1992, Valduriez 1993, Graefe 1993]. Parallel database system architectures
are discussed in [Bergsten et al. 1993, Stonebraker 1986, Pirahesh et al. 1990], and
compared using a simple simulation model in [Breitbart and Silberschatz 1988]. The
first NUMA architectures are described in [Lenoski et al. 1992, Goodman and Woest
1988]. A more recent approach based on Remote Direct Memory Access (RDMA)
is discussed in [Novakovic et al. 2014, Leis et al. 2014, Barthels et al. 2015].

Examples of parallel database system prototypes are Bubba [Boral et al. 1990],
DBS3 [Bergsten et al. 1991], Gamma [DeWitt et al. 1986], Grace [Fushimi et al.
1986], Prisma/DB [Apers et al. 1992], Volcano [Graefe 1990], and XPRS [Hong
1992].

Data placement, including replication, in a parallel database system is treated
in [Livny et al. 1987, Copeland et al. 1988, Hsiao and DeWitt 1991]. A scalable
solution is Gamma’s chained partitioning [Hsiao and DeWitt 1991], which stores
the primary and backup copy on two adjacent nodes. Associative access to a
partitioned relation using a global index is proposed in [Khoshafian and Valduriez
1987].

Parallel query optimization is treated in [Shekita et al. 1993], [Ziane et al. 1993],
and [Lanzelotte et al. 1994]. Our discussion of cost model in Sect. 8.4.2.2 is based
on [Lanzelotte et al. 1994]. Randomized search strategies are proposed in [Swami
1989, Ioannidis and Wong 1987]. XPRS uses a two phase optimization strategy
[Hong and Stonebraker 1993]. The exchange operator, which is the basis for parallel
repartitioning in parallel query processing, was proposed in the context of the
Volcano query evaluation system [Graefe 1990].

There is an extensive literature on parallel algorithms for database operators, in
particular sort and join. The objective of these algorithms is to maximize the degree
of parallelism, following Amdahl’s law [Amdahl 1967] that states that only part of
an algorithm can be parallelized. The seminal paper by [Bitton et al. 1983] proposes
and compares parallel versions of merge sort, nested loop join, and sort-merge join
algorithms. Valduriez and Gardarin [1984] propose the use of hashing for parallel
join and semijoin algorithms. A survey of parallel sort algorithms can be found in
[Bitton et al. 1984]. The specification of two main phases, build and probe, [DeWitt
and Gerber 1985] has been useful to understand parallel hash join algorithms. The
Grace hash join [Kitsuregawa et al. 1983], the hybrid hash join algorithm [DeWitt
et al. 1984, Shatdal et al. 1994], and the radix hash join [Manegold et al. 2002] have
been the basis for many variations in particular to exploit multicore processors and
NUMA [Barthels et al. 2015]. Other important join algorithms are the symmetric
hash join [Wilschut and Apers 1991] and the Ripple join [Haas and Hellerstein
1999b]. In [Barthels et al. 2015], the authors show that a radix hash join can perform
very well in large-scale shared-nothing clusters using RDMA.

392 8 Parallel Database Systems

The parallel sort-merge join algorithm is gaining renewed interest in the context
of multicore and NUMA systems [Albutiu et al. 2012, Pasetto and Akhriev 2011].

Load balancing in parallel database systems has been extensively studied both in
the context of shared-memory and shared-disk [Lu et al. 1991, Shekita et al. 1993]
and shared-nothing [Kitsuregawa and Ogawa 1990, Walton et al. 1991, DeWitt
et al. 1992, Shatdal and Naughton 1993, Rahm and Marek 1995, Mehta and DeWitt
1995, Garofalakis and Ioannidis 1996]. The presentation of the Dynamic Processing
execution model in Sect. 8.5 is based on [Bouganim et al. 1996, 1999]. The rate
match algorithm is described in [Mehta and DeWitt 1995].

The effects of skewed data distribution on a parallel execution are introduced in
[Walton et al. 1991]. A general adaptive approach to dynamically adjust the degree
of parallelism using control operators is proposed in [Biscondi et al. 1996]. A good
approach to deal with data skew is to use multiple join algorithms, each specialized
for a different degree of skew, and to determine, at execution time, which algorithm
is best [DeWitt et al. 1992].

The content of Sect. 8.6 on fault-tolerance is based on [Kemme et al. 2001,
Jiménez-Peris et al. 2002, Perez-Sorrosal et al. 2006].

The concept of database cluster is defined in [Röhm et al. 2000, 2001].
Several protocols for scalable eager replication in database clusters using group
communication are proposed in [Kemme and Alonso 2000b,a, Patiño-Martínez et al.
2000, Jiménez-Peris et al. 2002]. Their scalability has been studied analytically in
[Jiménez-Peris et al. 2003]. Partial replication is studied in [Sousa et al. 2001].
The presentation of preventive replication in Sect. 8.7.2 is based on [Pacitti et al.
2005]. Load balancing in database clusters is addressed in [Milán-Franco et al. 2004,
Gançarski et al. 2007].

Most of the content of Sect. 8.7.4 is based on the work on adaptive virtual
partitioning [Lima et al. 2004] and hybrid partitioning [Furtado et al. 2008]. Physical
partitioning in database clusters for decision-support is addressed by [Stöhr et al.
2000], using small grain partitions. Akal et al. [2002] propose a classification
of OLAP queries such that queries of the same class have similar parallelization
properties.

Exercises

Problem 8.1 (*) Consider a shared-disk cluster and very big relations that need
to be partitioned across several disk units. How you would adapt the various
partitioning and replication techniques in Sect. 8.3 to take advantage of shared-disk?
Discuss the impact on query performance and fault-tolerance.

Problem 8.2 (**) Order-preserving hashing [Knuth 1973] could be used to parti-
tion a relation on an attribute A, so that the tuples in any partition i+1 have A values
higher than those of the tuples in partition i. Propose a parallel sort algorithm that
exploits order-preserving hashing. Discuss it advantages and limitations, compared
with the b-way merge sort algorithm in Sect. 8.4.1.1.

Exercises 393

Problem 8.3 Consider the parallel hash join algorithm in Sect. 8.4.1.2. Explain
what the build phase and probe phase are. Is the algorithm symmetric with respect
to its input relations?

Problem 8.4 (*) Consider the join of two relations R and S in a shared-nothing
cluster. Assume that S is partitioned by hashing on the join attribute. Modify the
parallel hash join algorithm in Sect. 8.4.1.2 to take advantage of this case. Discuss
the execution cost of this algorithm.

Problem 8.5 (**) Consider a simple cost model to compare the performance of
the three basic parallel join algorithms (nested loop join, sort-merge join, and hash
join). It is defined in terms of total communication cost (CCOM) and processing cost
(CPRO). The total cost of each algorithm is therefore

Cost (Alg.) = CCOM(Alg.) + CPRO(Alg.)

For simplicity, CCOM does not include control messages, which are necessary to
initiate and terminate local tasks. We denote by msg(#tup) the cost of transferring a
message of #tup tuples from one node to another. Processing costs (that include total
I/O and CPU cost) are based on the function CLOC(m, n) that computes the local
processing cost for joining two relations with cardinalities m and n. Assume that the
local join algorithm is the same for all three parallel join algorithms. Finally, assume
that the amount of work done in parallel is uniformly distributed over all nodes
allocated to the operator. Give the formulas for the total cost of each algorithm,
assuming that the input relations are arbitrary partitioned. Identify the conditions
under which an algorithm should be used.

Problem 8.6 Consider the following SQL query:

SELECT ENAME, DUR
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND RESP="Manager"
AND PNAME="Instrumentation"

Give four possible operator trees: right-deep, left-deep, zigzag, and bushy. For
each one, discuss the opportunities for parallelism.

Problem 8.7 Consider a nine way join (ten relations are to be joined), calculate
the number of possible right-deep, left-deep, and bushy trees, assuming that each
relation can be joined with anyone else. What do you conclude about parallel
optimization?

Problem 8.8 (**) Propose a data placement strategy for a NUMA cluster (using
RDMA) that maximizes a combination of intranode parallelism (intraoperator
parallelism within shared-memory nodes) and internode parallelism (interoperator
parallelism across shared-memory nodes).

394 8 Parallel Database Systems

Problem 8.9 (**) How should the DP execution model presented in Sect. 8.5.4 be
changed to deal with interquery parallelism?

Problem 8.10 (**) Consider a multiuser centralized database system. Describe the
main change to allow interquery parallelism from the database system developer and
administrator’s points of view. What are the implications for the end-user in terms
of interface and performance?

Problem 8.11 (*) Consider the database cluster architecture in Fig. 8.19. Assum-
ing that each cluster node can accept incoming transactions, make precise the
database cluster middleware box by describing the different software layers, and
their components and relationships in terms of data and control flow. What kind of
information need be shared between the cluster nodes? how?

Problem 8.12 (**) Discuss the issues of fault-tolerance for the preventive replica-
tion protocol (see Sect. 8.7.2).

Problem 8.13 (**) Compare the preventive replication protocol with the eager
replication protocol (see Chap. 6) in the context of a database cluster in terms
of: replication configurations supported, network requirements, consistency, perfor-
mance, fault-tolerance.

Problem 8.14 (**) Consider two relations R(A,B,C,D,E) and S(A,F,G,H). Assume
there is a clustered index on attribute A for each relation. Assuming a database
cluster with full replication, for each of the following queries, determine whether
Virtual Partitioning can be used to obtain intraquery parallelism and, if so, write the
corresponding subquery and the final result composition query.

(a) SELECT B, COUNT(C)
FROM R
GROUP BYB

(b) SELECT C, SUM(D), AVG(E)
FROM R
WHERE B=:v1
GROUP BY C

(c) SELECT B, SUM(E)
FROM. R, S
WHERE. R.A=S.A
GROUP BY B
HAVING COUNT(*) > 50

(d) SELECT B, MAX(D)
FROM+. R, S
WHERE C = (SELECT SUM(G) FROM S WHERE S.A=R.A)
GROUP BY B

(e) SELECT B, MIN(E)
FROM. R
WHERE D > (SELECT MAX(H) FROM S WHERE G >= :v1)
GROUP BY B

Chapter 9
Peer-to-Peer Data Management

In this chapter, we discuss the data management issues in the “modern” peer-to-
peer (P2P) data management systems. We intentionally use the phrase “modern”
to differentiate these from the early P2P systems that were common prior to
client/server computing. As indicated in Chap. 1, early work on distributed DBMSs
had primarily focused on P2P architectures where there was no differentiation
between the functionality of each site in the system. So, in one sense, P2P data
management is quite old—if one simply interprets P2P to mean that there are
no identifiable “servers” and “clients” in the system. However, the “modern” P2P
systems go beyond this simple characterization and differ from the old systems that
are referred to by the same name in a number of important ways, as mentioned in
Chap. 1.

The first difference is the massive distribution in current systems. While the early
systems focused on a few (perhaps at most tens of) sites, current systems consider
thousands of sites. Furthermore, these sites are geographically very distributed, with
possible clusters forming at certain locations.

The second is the inherent heterogeneity of every aspect of the sites and
their autonomy. While this has always been a concern of distributed databases,
coupled with massive distribution, site heterogeneity and autonomy take on added
significance, disallowing some of the approaches from consideration.

The third major difference is the considerable volatility of these systems.
Distributed DBMSs are well-controlled environments, where additions of new sites
or the removal of existing sites are done very carefully and rarely. In modern P2P
systems, the sites are (quite often) people’s individual machines and they join and
leave the P2P system at will, creating considerable hardship in the management of
data.

In this chapter, we focus on this modern incarnation of P2P systems. In these
systems, the following requirements are:

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_9

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_9

396 9 Peer-to-Peer Data Management

• Autonomy. An autonomous peer should be able to join or leave the system at
any time without restriction. It should also be able to control the data it stores
and which other peers can store its data (e.g., some other trusted peers).

• Query expressiveness. The query language should allow the user to describe the
desired data at the appropriate level of detail. The simplest form of query is key
lookup, which is only appropriate for finding files. Keyword search with ranking
of results is appropriate for searching documents, but for more structured data,
an SQL-like query language is necessary.

• Efficiency. The efficient use of the P2P system resources (bandwidth, computing
power, storage) should result in lower cost, and, thus, higher throughput of
queries, i.e., a higher number of queries can be processed by the P2P system
in a given time interval.

• Quality of service. This refers to the user-perceived efficiency of the system,
such as completeness of query results, data consistency, data availability, and
query response time.

• Fault-tolerance. Efficiency and quality of service should be maintained despite
the failures of peers. Given the dynamic nature of peers that may leave or fail at
any time, it is important to properly exploit data replication.

• Security. The open nature of a P2P system gives rise to serious security chal-
lenges since one cannot rely on trusted servers. With respect to data management,
the main security issue is access control which includes enforcing intellectual
property rights on data contents.

A number of different uses of P2P systems have been developed for sharing
computation (e.g., SETI@home), communication (e.g., ICQ), or data (e.g., Bit-
Torrent, Gnutella, and Kazaa). Our interest, naturally, is on data sharing systems.
Popular systems such as BitTorrent, Gnutella, and Kazaa are quite limited when
viewed from the perspective of database functionality. First, they provide only file
level sharing with no sophisticated content-based search/query facilities. Second,
they are single-application systems that focus on performing one task, and it is
not straightforward to extend them for other applications/functions. In this chapter,
we discuss the research activities towards providing proper database functionality
over P2P infrastructures. Within this context, data management issues that must be
addressed include the following:

• Data location: peers must be able to refer to and locate data stored in other peers.
• Query processing: given a query, the system must be able to discover the peers

that contribute relevant data and efficiently execute the query.
• Data integration: when shared data sources in the system follow different

schemas or representations, peers should still be able to access that data, ideally
using the data representation used to model their own data.

• Data consistency: if data is replicated or cached in the system, a key issue is to
maintain the consistency between these duplicates.

Figure 9.1 shows a reference architecture for a peer participating in a data sharing
P2P system. Depending on the functionality of the P2P system, one or more of the

9 Peer-to-Peer Data Management 397

Query
Manager

Update
Manager

Cache
Manager

Data Management Layer

Semantic
Mappings

Remote
Data Cache

Local Data
Source

Wrapper

P
2P

N
et

w
or

k
Su

bl
ay

er

D
at

a
M

an
ag

em
en

t
A
P
I

U
se

r
In

te
rf
ac

e

Peer

local query

global query

answer

Peer

Peer Peer

Fig. 9.1 Peer reference architecture

components in the reference architecture may not exist, may be combined together,
or may be implemented by specialized peers. The key aspect of the proposed
architecture is the separation of the functionality into three main components: (1) an
interface used for submitting the queries; (2) a data management layer that handles
query processing and metadata information (e.g., catalogue services); and (3) a P2P
infrastructure, which is composed of the P2P network sublayer and P2P network. In
this chapter, we focus on the P2P data management layer and P2P infrastructure.

Queries are submitted using a user interface or data management API and
handled by the data management layer. They may refer to data stored locally or
globally in the system. The query request is processed by a query manager module
that retrieves semantic mapping information from a repository when the system
integrates heterogeneous data sources. This semantic mapping repository contains
metainformation that allows the query manager to identify peers in the system
with data relevant to the query and to reformulate the original query in terms that
other peers can understand. Some P2P systems may store the semantic mapping
in specialized peers. In this case, the query manager will need to contact these
specialized peers or transmit the query to them for execution. If all data sources
in the system follow the same schema, neither the semantic mapping repository nor
its associated query reformulation functionality is required.

Assuming a semantic mapping repository, the query manager invokes services
implemented by the P2P network sublayer to communicate with the peers that will
be involved in the execution of the query. The actual execution of the query is
influenced by the implementation of the P2P infrastructure. In some systems, data
is sent to the peer where the query was initiated and then combined at this peer.
Other systems provide specialized peers for query execution and coordination. In
either case, result data returned by the peers involved in the execution of the query

398 9 Peer-to-Peer Data Management

may be cached locally to speed up future executions of similar queries. The cache
manager maintains the local cache of each peer. Alternatively, caching may occur
only at specialized peers.

The query manager is also responsible for executing the local portion of a global
query when data is requested by a remote peer. A wrapper may hide data, query
language, or any other incompatibilities between the local data source and the
data management layer. When data is updated, the update manager coordinates the
execution of the update between the peers storing replicas of the data being updated.

The P2P network infrastructure, which can be implemented as either structured
or unstructured network topology, provides communication services to the data
management layer.

In the remainder of this chapter, we will address each component of this reference
architecture, starting with infrastructure issues in Sect. 9.1. The problems of data
mapping and the approaches to address them are the topics of Sect. 9.2. Query
processing is discussed in Sect. 9.3. Data consistency and replication issues are
discussed in Sect. 9.4. In Sect. 9.5, we introduce Blockchain, a P2P infrastructure
for recording transactions efficiently, safely, and permanently.

9.1 Infrastructure

The infrastructure of all P2P systems is a P2P network, which is built on top of
a physical network (usually the Internet); thus, it is commonly referred to as the
overlay network. The overlay network may (and usually does) have a different
topology than the physical network and all the algorithms focus on optimizing
communication over the overlay network (usually in terms of minimizing the
number of “hops” that a message needs to go through from a source node to a
destination node—both in the overlay network). The distinction between the overlay
network and the physical network may be a problem in that two nodes that are
neighbors in the overlay network may, in some cases, be considerably far apart
in the physical network. Therefore, the cost of communication within the overlay
network may not reflect the actual cost of communication in the physical network.
We address this issue at the appropriate points during the infrastructure discussion.

Overlay networks can be of two general types: pure and hybrid. Pure overlay
networks (more commonly referred to as pure P2P networks) are those where there
is no differentiation between any of the network nodes—they are all equal. In hybrid
P2P networks, on the other hand, some nodes are given special tasks to perform.
Hybrid networks are commonly known as superpeer systems, since some of the
peers are responsible for “controlling” a set of other peers in their domain. The
pure networks can be further divided into structured and unstructured networks.
Structured networks tightly control the topology and message routing, whereas in
unstructured networks each node can directly communicate with its neighbors and
can join the network by attaching themselves to any node.

9.1 Infrastructure 399

Fig. 9.2 Unstructured P2P network

9.1.1 Unstructured P2P Networks

Unstructured P2P networks refer to those with no restriction on data placement in
the overlay topology. The overlay network is created in a nondeterministic (ad hoc)
manner and the data placement is completely unrelated to the overlay topology. Each
peer knows its neighbors, but does not know the resources that they have. Figure 9.2
shows an example unstructured P2P network.

Unstructured networks are the earliest examples of P2P systems whose core
functionality remains file sharing. In these systems, replicated copies of popular
files are shared among peers, without the need to download them from a centralized
server. Examples of these systems are Gnutella, Freenet, Kazaa, and BitTorrent.

A fundamental issue in all P2P networks is the type of index to the resources that
each peer holds, since this determines how resources are searched. Note that what is
called “index management” in the context of P2P systems is very similar to catalog
management that we studied in Chap. 2. Indexes are stored metadata that the system
maintains. The exact content of the metadata differs in different P2P systems. In
general, it includes, at a minimum, information on the resources and sizes.

There are two alternatives to maintaining indices: centralized, where one peer
stores the metadata for the entire P2P system, and distributed, where each peer
maintains metadata for resources that it holds. Again, the alternatives are identical
to those for directory management.

The type of index supported by a P2P system (centralized or distributed) impacts
how resources are searched. Note that we are not, at this point, referring to running
queries; we are merely discussing how, given a resource identifier, the underlying
P2P infrastructure can locate the relevant resource. In systems that maintain a
centralized index, the process involves consulting the central peer to find the location

400 9 Peer-to-Peer Data Management

Peer n

Directory
Server

(1) Resource X?

(2) Peer n

(3
)

R
eq

ue
st

X

(4
)

X

Fig. 9.3 Search over a centralized index. (1) A peer asks the central index manager for resource,
(2) The response identifies the peer with the resource, (3) The peer is asked for the resource, (4) It
is transferred

of the resource, followed by directly contacting the peer where the resource is
located (Fig. 9.3). Thus, the system operates similar to a client/server one up to
the point of obtaining the necessary index information (i.e., the metadata), but from
that point on, the communication is only between the two peers. Note that the
central peer may return a set of peers who hold the resource and the requesting
peer may choose one among them, or the central peer may make the choice
(taking into account loads and network conditions, perhaps) and return only a single
recommended peer.

In systems that maintain a distributed index, there are a number of search
alternatives. The most popular one is flooding, where the peer looking for a resource
sends the search request to all of its neighbors on the overlay network. If any of
these neighbors have the resource, they respond; otherwise, each of them forwards
the request to its neighbors until the resource is found or the overlay network is fully
spanned (Fig. 9.4).

Naturally, flooding puts very heavy demands on network resources and is not
scalable—as the overlay network gets larger, more communication is initiated. This
has been addressed by establishing a Time-to-Live (TTL) limit that restricts the
number of hops that a request message makes before it is dropped from the network.
However, TTL also restricts the number of nodes that are reachable.

There have been other approaches to address this problem. A straightforward
method is for each peer to choose a subset of its neighbors and forward the request
only to those. There are different ways to determine this subset. For example, the
concept of random walks can be used where each peer chooses a neighbor at random

9.1 Infrastructure 401

Peer n

(1)
Resou

rce
X?

(1)
Resource

X? (1
)

R
es

ou
rc

e
X
?

(2
)

R
es

ou
rc

e
X
?

(2
)
R
es

ou
rc

e
X
?

(2) Resource X?

X

Fig. 9.4 Search over a Decentralized Index. (1) A peer sends the request for resource to all its
neighbors, (2) Each neighbor propagates to its neighbors if it does not have the resource, (3) The
peer who has the resource responds by sending the resource

and propagates the request only to it. Alternatively, each neighbor can maintain not
only indices for local resources, but also for resources that are on peers within a
radius of itself and use the historical information about their performance in routing
queries. Still another alternative is to use similar indices based on resources at each
node to provide a list of neighbors that are most likely to be in the direction of the
peer holding the requested resources. These are referred to as routing indices and
are used more commonly in structured networks, where we discuss them in more
detail.

Another approach is to exploit gossip protocols, also known as epidemic
protocols. Gossiping has been initially proposed to maintain the mutual consistency
of replicated data by spreading replica updates to all nodes over the network. It
has since been successfully used in P2P networks for data dissemination. Basic
gossiping is simple. Each node in the network has a complete view of the network
(i.e., a list of all nodes’ addresses) and chooses a node at random to spread the
request. The main advantage of gossiping is robustness over node failures since,
with very high probability, the request is eventually propagated to all the nodes in
the network. In large P2P networks, however, the basic gossiping model does not
scale as maintaining the complete view of the network at each node would generate
very heavy communication traffic. A solution to scalable gossiping is to maintain at
each node only a partial view of the network, e.g., a list of tens of neighbor nodes.
To gossip a request, a node chooses, at random, a node in its partial view and sends it

402 9 Peer-to-Peer Data Management

the request. In addition, the nodes involved in a gossip exchange their partial views
to reflect network changes in their own views. Thus, by continuously refreshing
their partial views, nodes can self-organize into randomized overlays that scale up
very well.

The final issue that we would like to discuss with respect to unstructured
networks is how peers join and leave the network. The process is different for
centralized versus distributed index approaches. In a centralized index system, a
peer that wishes to join simply notifies the central index peer and informs it of the
resources that it wishes to contribute to the P2P system. In the case of a distributed
index, the joining peer needs to know one other peer in the system to which it
“attaches” itself by notifying it and receiving information about its neighbors. At
that point, the peer is part of the system and starts building its own neighbors. Peers
that leave the system do not need to take any special action, they simply disappear.
Their disappearance will be detected in time, and the overlay network will adjust
itself.

9.1.2 Structured P2P Networks

Structured P2P networks have emerged to address the scalability issues faced by
unstructured P2P networks. They achieve this goal by tightly controlling the overlay
topology and the placement of resources. Thus, they achieve higher scalability at the
expense of lower autonomy as each peer that joins the network allows its resources
to be placed on the network based on the particular control method that is used.

As with unstructured P2P networks, there are two fundamental issues to be
addressed: how are the resources indexed, and how are they searched. The most
popular indexing and data location mechanism that is used in structured P2P
networks is a distributed hash table (DHT). DHT-based systems provide two APIs:
put(key, data) and get(key), where key is an object identifier. Each key (ki) is hashed
to generate a peer id (pi), which stores the data corresponding to object contents
(Fig. 9.5).

h(k1) =p1 h(k2) =p4 h(k3) =p6
DHT overlay
routing

value(k1)

p1

value(k2)

p4

value(k3)

p6

Peers

Fig. 9.5 DHT network

9.1 Infrastructure 403

A straightforward approach could be to use the URI of the resource as the IP
address of the peer that would hold the resource. However, one of the important
design requirements is to provide a uniform distribution of resources over the
overlay network and URIs/IP addresses do not provide sufficient flexibility. Con-
sequently, consistent hashing techniques that provide uniform hashing of values are
used to evenly place the data on the overlay. Although many hash functions may
be employed for generating virtual address mappings for the resource, SHA-1 has
become the most widely accepted base1 hash function that supports both uniformity
and security (by supporting data integrity for the keys). The actual design of the hash
function may be implementation dependent and we will not discuss that issue any
further.

Search (commonly called “lookup”) over a DHT-based structured P2P network
also involves the hash function: the key of the resource is hashed to get the id of
the peer in the overlay network that is responsible for that key. The lookup is then
initiated on the overlay network to locate the target node in question. This is referred
to as the routing protocol, and it differs between different implementations and is
closely associated with the overlay structure used. We will discuss one example
approach shortly.

While all routing protocols aim to provide efficient lookups, they also try
to minimize the routing information (also called routing state) that needs to be
maintained in a routing table at each peer in the overlay. This information differs
between various routing protocols and overlay structures, but it needs to provide
sufficient directory-type information to route the put and get requests to the
appropriate peer on the overlay. All routing table implementations require the use of
maintenance algorithms in order to keep the routing state up-to-date and consistent.
In contrast to routers on the Internet that also maintain routing databases, P2P
systems pose a greater challenge since they are characterized by high node volatility
and undependable network links. Since DHTs also need to support perfect recall
(i.e., all the resources that are accessible through a given key have to be found),
routing state consistency becomes a key challenge. Therefore, the maintenance of
consistent routing state in the face of concurrent lookups and during periods of high
network volatility is essential.

Many DHT-based overlays have been proposed. These can be categorized
according to their routing geometry and routing algorithm. Routing geometry
essentially defines the manner in which neighbors and routes are arranged. The
routing algorithm corresponds to the routing protocol discussed above and is defined
as the manner in which next-hops/routes are chosen on a given routing geometry.
The more important existing DHT-based overlays can be categorized as follows:

• Tree. In the trie approach, the leaf nodes correspond to the node identifiers that
store the keys to be searched. The height of the trie is log n, where n is the
number of nodes in the trie. The search proceeds from the root to the leaves

1A base hash function is defined as a function that is used as a basis for the design of another hash
function.

404 9 Peer-to-Peer Data Management

by doing a longest prefix match at each of the intermediate nodes until the target
node is found. Therefore, in this case, matching can be thought of as correcting
bit values from left-to-right at each successive hop in the trie. A popular DHT
implementation that falls into this category is Tapestry, which uses surrogate
routing in order to forward requests at each node to the closest digit in the routing
table. Surrogate routing is defined as routing to the closest digit when an exact
match in the longest prefix cannot be found. In Tapestry, each unique identifier
is associated with a node that is the root of a unique spanning trie used to route
messages for the given identifier. Therefore, lookups proceed from the base of
the spanning trie all the way to the root node of the identifier. Although this is
somewhat different from traditional trie structures, Tapestry routing geometry is
very closely associated with a trie structure and we classify it as such.

In trie structures, a node in the system has 2i−1 nodes to choose from as its
neighbor from the subtree with whom it has log(n − i) prefix bits in common.
The number of potential neighbors increases exponentially as we proceed further
up in the trie. Thus, in total there are nlog n/2 possible routing tables per node
(note, however that, only one such routing table can be selected for a node).
Therefore, the trie geometry has good neighbor selection characteristics that
would provide it with fault-tolerance. However, routing can only be done through
one neighboring node when sending to a particular destination. Consequently, the
trie-structured DHTs do not provide any flexibility in the selection of routes.

• Hypercube. The hypercube routing geometry is based on d-dimensional Carte-
sian coordinate space that is partitioned into an individual set of zones such that
each node maintains a separate zone of the coordinate space. An example of
hypercube-based DHT is the Content Addressable Network (CAN). The number
of neighbors that a node may have in a d-dimensional coordinate space is 2d (for
the sake of discussion, we consider d = log n). If we consider each coordinate to
represent a set of bits, then each node identifier can be represented as a bit string
of length log n. In this way, the hypercube geometry is very similar to the trie
since it also simply fixes the bits at each hop to reach the destination. However, in
the hypercube, since the bits of neighboring nodes only differ in exactly one bit,
each forwarding node needs to modify only a single bit in the bit string, which
can be done in any order. Thus, if we consider the correction of the bit string,
the first correction can be applied to any log n nodes, the next correction can be
applied to any (log n) − 1 nodes, etc. Therefore, we have (log n)! possible routes
between nodes, which provides high route flexibility in the hypercube routing
geometry. However, a node in the coordinate space does not have any choice over
its neighbors’ coordinates since adjacent coordinate zones in the coordinate space
cannot change. Therefore, hypercubes have poor neighbor selection flexibility.

• Ring. The ring geometry is represented as a one-dimensional circular identifier
space where the nodes are placed at different locations on the circle. The
distance between any two nodes on the circle is the numeric identifier difference
(clockwise) around the circle. Since the circle is one-dimensional, the data
identifiers can be represented as single decimal digits (represented as binary bit
strings) that map to a node that is closest in the identifier space to the given

9.1 Infrastructure 405

decimal digit. Chord is a popular example of the ring geometry. Specifically,
in Chord, a node whose identifier is a maintains information about log n other
neighbors on the ring where the ith neighbor is the node closest to a + 2i−1 on
the circle. Using these links (called fingers), Chord is able to route to any other
node in log n hops.

A careful analysis of Chord’s structure reveals that a node does not necessarily
need to maintain the node closest to a + 2i−1 as its neighbor. In fact, it can
still maintain the log n lookup upper bound if any node from the range [(a +
2i−1), (a + 2i)] is chosen. Therefore, in terms of route flexibility, it is able to
select between nlog n/2 routing tables for each node. This provides a great deal
of neighbor selection flexibility. Moreover, for routing to any node, the first hop
has log n neighbors that can route the search to the destination and the next node
has (log n) − 1 nodes, and so on. Therefore, there are typically (log n)! possible
routes to the destination. Consequently, ring geometry also provides good route
selection flexibility.

In addition to these most popular geometries, there have been many other DHT-
based structured overlays that use different topologies.

DHT-based overlays are efficient in that they guarantee finding the node on
which to place or find the data in log n hops, where n is the number of nodes
in the system. However, they have several problems, in particular when viewed
from the data management perspective. One of the issues with DHTs that employ
consistent hashing functions for better distribution of resources is that two peers that
are “neighbors” in the overlay network because of the proximity of their hash values
may be geographically quite apart in the actual network. Thus, communicating with
a neighbor in the overlay network may incur high transmission delays in the actual
network. There have been studies to overcome this difficulty by designing proximity-
aware or locality-aware hash functions. Another difficulty is that they do not provide
any flexibility in the placement of data—a data item has to be placed on the node
that is determined by the hash function. Thus, if there are P2P nodes that contribute
their own data, they need to be willing to have data moved to other nodes. This is
problematic from the perspective of node autonomy. The third difficulty is in that it
is hard to run range queries over DHT-based architectures since, as is well-known, it
is hard to run range queries over hash indices. There have been studies to overcome
this difficulty that we discuss later.

These concerns have caused the development of structured overlays that do not
use DHT for routing. In these systems, peers are mapped into the data space rather
than the hash key space. There are multiple ways to partition the data space among
multiple peers.

• Hierarchical structure. Many systems employ hierarchical overlay structures,
including trie, balanced trees, randomized balance trees (e.g., skip list), and
others. Specifically PHT and P-Grid employ a binary trie structure, where peers
whose data share common prefixes cluster under common branches. Balanced
trees are also widely used due to their guaranteed routing efficiency (the expected
“hop length” between arbitrary peers is proportional to the trie height). For

406 9 Peer-to-Peer Data Management

instance, BATON, VBI-tree, and BATON* employ k-way balanced trie structure
to manage peers, and data is evenly partitioned among peers at the leaf-level. In
comparison, P-Tree uses a B-tree structure with better flexibility on trie structural
changes. SkipNet and Skip Graph are based on the skip list, and they link
peers according to a randomized balanced trie structure where the node order
is determined by each node’s data values.

• Space-filling curve. This architecture is usually used to linearize sort data in
multidimensional data space. Peers are arranged along the space-filling curve
(e.g., Hilbert curve) so that sorted traversal of peers according to data order is
possible.

• Hyperrectangle structure. In these systems, each dimension of the hyperrectan-
gle corresponds to one attribute of the data according to which an organization is
desired. Peers are distributed in the data space either uniformly or based on data
locality (e.g., through data intersection relationship). The hyperrectangle space
is then partitioned by peers based on their geometric positions in the space, and
neighboring peers are interconnected to form the overlay network.

9.1.3 Superpeer P2P Networks

Superpeer P2P systems are hybrid between pure P2P systems and the traditional
client–server architectures. They are similar to client–server architectures in that not
all peers are equal; some peers (called superpeers) act as dedicated serves for some
other peers and can perform complex functions such as indexing, query processing,
access control, and metadata management. If there is only one superpeer in the
system, then this reduces to the client–server architecture. They are considered
P2P systems, however, since the organization of the superpeers follows a P2P
organization, and superpeers can communicate with each other in sophisticated
ways. Thus, unlike client–server systems, global information is not necessarily
centralized and can be partitioned or replicated across superpeers.

In a superpeer network, a requesting peer sends the request, which can be
expressed in a high-level language, to its responsible superpeer. The superpeer can
then find the relevant peers either directly through its index or indirectly using its
neighbor superpeers. More precisely, the search for a resource proceeds as follows
(see Fig. 9.6):

1. A peer, say Peer 1, asks for a resource by sending a request to its superpeer.
2. If the resource exists at one of the peers controlled by this superpeer, it notifies

Peer 1, and the two peers then communicate to retrieve the resource. Otherwise,
the superpeer sends the request to the other superpeers.

3. If the resource does not exist at one of the peers controlled by this superpeer, the
superpeer asks the other superpeers. The superpeer of the node that contains the
resource (say Peer n) responds to the requesting superpeer.

9.1 Infrastructure 407

Peer 1

Super-peer 2

Directory
Server

Super-peer 1

Directory
Server

Super-peer 3
Directory
Server

(1) Resource X?

(2
)

R
es

ou
rc

e
X
?

(2) Resource X?
(3) Peer n

(4) Peer n

Fig. 9.6 Search over a superpeer system. (1) A peer sends the request for resource to all its
superpeer, (2) The superpeer sends the request to other superpeers if necessary, (3) The superpeer
one of whose peers has the resource responds by indicating that peer, (4) The superpeer notifies
the original peer

4. Peer n’s identity is sent to Peer 1, after which the two peers can communicate
directly to retrieve the resource.

The main advantages of superpeer networks are efficiency and quality of service
(e.g., completeness of query results, query response time). The time needed to
find data by directly accessing indices in a superpeer is very small compared with
flooding. In addition, superpeer networks exploit and take advantage of peers’
different capabilities in terms of CPU power, bandwidth, or storage capacity as
superpeers take on a large portion of the entire network load. Access control can
also be better enforced since directory and security information can be maintained
at the superpeers. However, autonomy is restricted since peers cannot log in freely to
any superpeer. Fault-tolerance is typically lower since superpeers are single points
of failure for their subpeers (dynamic replacement of superpeers can alleviate this
problem).

Examples of superpeer networks include Edutella and JXTA.

408 9 Peer-to-Peer Data Management

Requirements Unstructured Structured Superpeer
Autonomy Low Low Moderate
Query expressiveness High Low High
Efficiency Low High High
QoS Low High High
Fault-tolerance High High Low
Security Low Low High

Fig. 9.7 Comparison of approaches

9.1.4 Comparison of P2P Networks

Figure 9.7 summarizes how the requirements for data management (autonomy,
query expressiveness, efficiency, quality of service, fault-tolerance, and security)
are possibly attained by the three main classes of P2P networks. This is a rough
comparison to understand the respective merits of each class. Obviously, there is
room for improvement in each class of P2P networks. For instance, fault-tolerance
can be improved in superpeer systems by relying on replication and fail-over
techniques. Query expressiveness can be improved by supporting more complex
queries on top of structured networks.

9.2 Schema Mapping in P2P Systems

We discussed the importance of, and the techniques for, designing database
integration systems in Chap. 7. Similar issues arise in data sharing P2P systems.

Due to specific characteristics of P2P systems, e.g., the dynamic and autonomous
nature of peers, the approaches that rely on centralized global schemas no longer
apply. The main problem is to support decentralized schema mapping so that a query
expressed on one peer’s schema can be reformulated to a query on another peer’s
schema. The approaches which are used by P2P systems for defining and creating
the mappings between peers’ schemas can be classified as follows: pairwise schema
mapping, mapping based on machine learning techniques, common agreement
mapping, and schema mapping using information retrieval (IR) techniques.

9.2.1 Pairwise Schema Mapping

In this approach, each user defines the mapping between the local schema and the
schema of any other peer that contains data that are of interest. Relying on the
transitivity of the defined mappings, the system tries to extract mappings between
schemas that have no defined mapping.

9.2 Schema Mapping in P2P Systems 409

MSR

IBM

Stanford

UW

UPenn

DBLP

CiteSeer

ACM

SIGMOD

PODS

Fig. 9.8 An example of pairwise schema mapping in piazza

Piazza follows this approach (see Fig. 9.8). The data is shared as XML docu-
ments, and each peer has a schema that defines the terminology and the structural
constraints of the peer. When a new peer (with a new schema) joins the system for
the first time, it maps its schema to the schema of some other peers in the system.
Each mapping definition begins with an XML template that matches some path
or subtree of an instance of the target schema. Elements in the template may be
annotated with query expressions that bind variables to XML nodes in the source.

The Local Relational Model (LRM) is another example that follows this
approach. LRM assumes that the peers hold relational databases, and each
peer knows a set of peers with which it can exchange data and services. This
set of peers is called peer’s acquaintances. Each peer must define semantic
dependencies and translation rules between its data and the data shared by each
of its acquaintances. The defined mappings form a semantic network, which is used
for query reformulation in the P2P system.

Hyperion generalizes this approach to deal with autonomous peers that form
acquaintances at runtime, using mapping tables to define value correspondences
among heterogeneous databases. Peers perform local querying and update process-
ing, and also propagate queries and updates to their acquainted peers.

PGrid also assumes the existence of pairwise mappings between peers, initially
constructed by skilled experts. Relying on the transitivity of these mappings and
using a gossip algorithm, PGrid extracts new mappings that relate the schemas of
the peers between which there is no predefined schema mapping.

9.2.2 Mapping Based on Machine Learning Techniques

This approach is generally used when the shared data is defined based on ontologies
and taxonomies as proposed for the semantic web. It uses machine learning

410 9 Peer-to-Peer Data Management

techniques to automatically extract the mappings between the shared schemas.
The extracted mappings are stored over the network, in order to be used for
processing future queries. GLUE uses this approach. Given two ontologies, for each
concept in one, GLUE finds the most similar concept in the other. It gives well-
founded probabilistic definitions to several practical similarity measures, and uses
multiple learning strategies, each of which exploits a different type of information
either in the data instances or in the taxonomic structure of the ontologies. To
further improve mapping accuracy, GLUE incorporates commonsense knowledge
and domain constraints into the schema mapping process. The basic idea is to
provide classifiers for the concepts. To decide the similarity between two concepts
X and Y, the data of concept Y is classified using X’s classifier and vice versa.
The number of values that can be successfully classified into X and Y represent the
similarity between X and Y.

9.2.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common
schema description for data sharing. The common schema is usually prepared and
maintained by expert users. The APPA P2P system makes the assumption that peers
wishing to cooperate, e.g., for the duration of an experiment, agree on a Common
Schema Description (CSD). Given a CSD, a peer schema can be specified using
views. This is similar to the LAV approach in data integration systems, except that
queries at a peer are expressed in terms of the local views, not the CSD. Another
difference between this approach and LAV is that the CSD is not a global schema,
i.e., it is common to a limited set of peers with a common interest (see Fig. 9.9).
Thus, the CSD does not pose scalability challenges. When a peer decides to share
data, it needs to map its local schema to the CSD.

Example 9.1 Given two CSD relation definitions R1 and R2, an example of peer
mapping at peer p is

p : R(A,B,D) ⊆ csd : R1(A,B,C), csd : R2(C,D,E)

CSD1

P P · · · P

Community 1

CSD2

P P · · · P

Community 2

Fig. 9.9 Common agreement schema mapping in APPA

9.3 Querying Over P2P Systems 411

In this example, the relation R(A,B,D) that is shared by peer p is mapped to
relations R1(A,B,C), R2(C,D,E) both of which are involved in the CSD. In APPA,
the mappings between the CSD and each peer’s local schema are stored locally at
the peer. Given a query Q on the local schema, the peer reformulates Q to a query
on the CSD using locally stored mappings. �

9.2.4 Schema Mapping Using IR Techniques

This approach extracts the schema mappings at query execution time using IR
techniques by exploring the schema descriptions provided by users. PeerDB follows
this approach for query processing in unstructured P2P networks. For each relation
that is shared by a peer, the description of the relation and its attributes is maintained
at that peer. The descriptions are provided by users upon creation of relations, and
serve as a kind of synonymous names of relation names and attributes. When a query
is issued, a request to find out potential matches is produced and flooded to the peers
that return the corresponding metadata. By matching keywords from the metadata
of the relations, PeerDB is able to find relations that are potentially similar to the
query relations. The relations that are found are presented to the issuer of the query
who decides whether or not to proceed with the execution of the query at the remote
peer that owns the relations.

Edutella also follows this approach for schema mapping in superpeer networks.
Resources in Edutella are described using the RDF metadata model, and the
descriptions are stored at superpeers. When a user issues a query at a peer p, the
query is sent to p’s superpeer where the stored schema descriptions are explored
and the addresses of the relevant peers are returned to the user. If the superpeer
does not find relevant peers, it sends the query to other superpeers such that they
search relevant peers by exploring their stored schema descriptions. In order to
explore stored schemas, superpeers use the RDF-QEL query language, which is
based on Datalog semantics and thus compatible with all existing query languages,
supporting query functionalities that extend the usual relational query languages.

9.3 Querying Over P2P Systems

P2P networks provide basic techniques for routing queries to relevant peers and
this is sufficient for supporting simple, exact-match queries. For instance, as noted
earlier, a DHT provides a basic mechanism to efficiently look up data based on a
key-value. However, supporting more complex queries in P2P systems, particularly
in DHTs, is difficult and has been the subject of much recent research. The main
types of complex queries which are useful in P2P systems are top-k queries, join
queries, and range queries. In this section, we discuss the techniques for processing
them.

412 9 Peer-to-Peer Data Management

9.3.1 Top-k Queries

Top-k queries have been used in many domains such as network and system
monitoring, information retrieval, and multimedia databases. With a top-k query,
the user requests k most relevant answers to be returned by the system. The degree
of relevance (score) of the answers to the query is determined by a scoring function.
Top-k queries are very useful for data management in P2P systems, in particular
when the complete answer set is very large.

Example 9.2 Consider a P2P system with medical doctors who want to share some
(restricted) patient data for an epidemiological study. Assume that all doctors agreed
on a common Patient description in relational format. Then, one doctor may want to
submit the following query to obtain the top 10 answers ranked by a scoring function
over height and weight:

SELECT *
FROM Patient P
WHERE P.disease = "diabetes"
AND P.height < 170
AND P.weight > 160
ORDER BY scoring-function(height,weight)
STOP AFTER 10

The scoring function specifies how closely each data item matches the conditions.
For instance, in the query above, the scoring function could compute the ten most
overweight people. �

Efficient execution of top-k queries in P2P systems is difficult because of the
scale of the network. In this section, we first discuss the most efficient techniques
proposed for top-k query processing in distributed systems. Then, we present the
techniques proposed for P2P systems.

9.3.1.1 Basic Techniques

An efficient algorithm for top-k query processing in centralized and distributed
systems is the Threshold Algorithm (TA) . TA is applicable for queries where the
scoring function is monotonic, i.e., any increase in the value of the input does not
decrease the value of the output. Many of the popular aggregation functions such as
Min, Max, and Average are monotonic. TA has been the basis for several algorithms,
and we discuss these in this section.

9.3 Querying Over P2P Systems 413

Threshold Algorithm (TA)

TA assumes a model based on lists of data items sorted by their local scores. The
model is as follows. Suppose we have m lists of n data items such that each data
item has a local score in each list and the lists are sorted according to the local
scores of their data items. Furthermore, each data item has an overall score that is
computed based on its local scores in all lists using a given scoring function. For
example, consider the database (i.e., three sorted lists) in Fig. 9.10. Assuming the
scoring function computes the sum of the local scores of the same data item in all
lists, the overall score of item d1 is 30 + 21 + 14 = 65.

Then the problem of top-k query processing is to find the k data items whose
overall scores are the highest. This problem model is simple and general. Suppose
we want to find the top-k tuples in a relational table according to some scoring
function over its attributes. To answer this query, it is sufficient to have a sorted
(indexed) list of the values of each attribute involved in the scoring function, and
return the k tuples whose overall scores in the lists are the highest. As another
example, suppose we want to find the top-k documents whose aggregate rank is
the highest with respect to some given set of keywords. To answer this query, the
solution is to have, for each keyword, a ranked list of documents, and return the k

documents whose aggregate rank over all lists are the highest.
TA considers two modes of access to a sorted list. The first mode is sorted (or

sequential) access that accesses each data item in their order of appearance in the
list. The second mode is random access by which a given data item in the list is
directly looked up, for example, by using an index on item id.

Given m sorted lists of n data items, TA (see Algorithm 9.1) goes down the sorted
lists in parallel, and, for each data item, retrieves its local scores in all lists through
random access and computes the overall score. It also maintains in a set Y , the k data

Position

1
2
3
4
5
6
7
8
9
10
. . .

List 1
Data Local
Item score

s1
d1 30
d4 28
d9 27
d3 26
d7 25
d8 23
d5 17
d6 14
d2 11
d11 10
.

List 2
Data Local
Item score

s2
d2 28
d6 27
d7 25
d5 24
d9 23
d1 21
d8 20
d3 14
d4 13
d14 12
.

List 3
Data Local
Item score

s3
d3 30
d5 29
d8 28
d4 25
d2 24
d6 19
d13 15
d1 14
d9 12
d7 11
.

Fig. 9.10 Example database with 3 sorted lists

414 9 Peer-to-Peer Data Management

Algorithm 9.1: Threshold Algorithm (TA)

Input: L1, L2, . . . , Lm: m sorted lists of n data items
f : scoring function
Output: Y : list of top-k data items
begin

j ← 1
threshold ← 1
min_overall_score ← 0
while j �= n + 1 and min_overall_score < threshold do

{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do

{Process each data item at position j}
for each data item d at position j in Li do

{access the local scores of d in the other lists through random access}
overall_score(d) ← f (scores of d in each Li)

end for
end for
Y ← k data items with highest score so far
min_overall_score ← smallest overall score of data items in Y

threshold ← f (local scores at position j in each Li)
j ← j + 1

end while
end

items whose overall scores are the highest so far. The stopping mechanism of TA
uses a threshold that is computed using the last local scores seen under sorted access
in the lists. For example, consider the database in Fig. 9.10. At position 1 for all lists
(i.e., when only the first data items have been seen under sorted access) assuming
that the scoring function is the sum of the scores, the threshold is 30 + 28 + 30. At
position 2, it is 84. Since data items are sorted in the lists in decreasing order of local
score, the threshold decreases as one moves down the list. This process continues
until k data items are found whose overall scores are greater than a threshold.

Example 9.3 Consider again the database (i.e., three sorted lists) shown in Fig. 9.10.
Assume a top-3 query Q (i.e., k = 3), and suppose the scoring function computes
the sum of the local scores of the data item in all lists. TA first looks at the data
items which are at position 1 in all lists, i.e., d1, d2, and d3. It looks up the local
scores of these data items in other lists using random access and computes their
overall scores (which are 65, 63, and 70, respectively). However, none of them
has an overall score that is as high as the threshold of position 1 (which is 88).
Thus, at position 1, TA does not stop. At this position, we have Y = {d1, d2, d3},
i.e., the k highest scored data items seen so far. At positions 2 and 3, Y is set to
{d3, d4, d5} and {d3, d5, d8}, respectively. Before position 6, none of the data items
involved in Y has an overall score higher than or equal to the threshold value. At
position 6, the threshold value is 63, which is less than the overall score of the
three data items involved in Y , i.e., Y = {d3, d5, d8}. Thus, TA stops. Note that the
contents of Y at position 6 are exactly the same as at position 3. In other words,

9.3 Querying Over P2P Systems 415

at position 3, Y already contains all top-k answers. In this example, TA does three
additional sorted accesses in each list that do not contribute to the final result. This
is a characteristic of TA algorithm in that it has a conservative stopping condition
that causes it to stop later than necessary—in this example, it performs 9 sorted
accesses and 18 = (9 ∗ 2) random accesses that do not contribute to the final
result. �

TA-Style Algorithms

Several TA-style algorithms, i.e., extensions of TAThreshold Algorithm, have been
proposed for distributed top-k query processing. We illustrate these by means of the
Three Phase Uniform Threshold (TPUT) algorithm that executes top-k queries in
three round trips, assuming that each list is held by one node (which we call the list
holder) and that the scoring function is sum. The TPUT algorithm executed by the
query originator is detailed in Algorithm 9.2.

TPUT works as follows:

1. The query originator first gets from each list holder its k top data items. Let f

be the scoring function, d be a received data item, and si(d) be the local score
of d in list Li . Then the partial sum of d is defined as psum(d) = ∑m

i=1 s
′
i (d),

where s′
i (d) = si(d) if d has been sent to the coordinator by the holder of Li ,

else s′
i (d) = 0. The query originator computes the partial sums for all received

data items and identifies the items with the k highest partial sums. The partial
sum of the k−th data item (called phase-1 bottom) is denoted by λ1.

2. The query originator sends a threshold value τ = λ1/m to every list holder. In
response, each list holder sends back all its data items whose local scores are not
less than τ . The intuition is that if a data item is not reported by any node in this
phase, its score must be less than λ1, so it cannot be one of the top-k data items.
Let Y be the set of data items received from list holders. The query originator
computes the new partial sums for the data items in Y , and identifies the items
with the k highest partial sums. The partial sum of the k-th data item (called
phase-2 bottom) is denoted by λ2. Let the upper bound score of a data item d be
defined as u(d) = ∑m

i=1 ui(d), where ui(d) = si(d) if d has been received, else
ui(d) = τ . For each data item d ∈ D, if u(d) is less than λ2, it is removed from
Y . The data items that remain in Y are called top-k candidates because there may
be some data items in Y that have not been obtained from all list holders. A third
phase is necessary to retrieve those.

3. The query originator sends the set of top-k candidate data items to each list holder
that returns their scores. Then, it computes the overall score, extracts the k data
items with highest scores, and returns the answer to the user.

Example 9.4 Consider the first two sorted lists (List 1 and List 2) in Fig. 9.10.
Assume a top-2 query Q, i.e., k = 2, where the scoring function is sum. Phase 1

416 9 Peer-to-Peer Data Management

Algorithm 9.2: Three Phase Uniform Threshold (TPUT)
Input: L1, L2, . . . , Lm: m sorted lists of n data items, each at a different list holder
f : scoring function
Output: Y : list of top-k data items
begin

{Phase 1}
for i from 1 to m in parallel do

Y ← receive top-k data items from Li holder
end for
Z ← data items with the k highest partial sum in Y

λ1 ←partial sum of k-th data item in Z

{Phase 2}
for i from 1 to m in parallel do

send λ1/m to Li ’s holder
Y ← all data items from Li ’s holder whose local scores are not less than λ1/m

end for
Z ← data items with the k highest partial sum in Y

λ2 ← partial sum of k-th data item in Z

Y ← Y − {data items in Y whose upper bound score is less than λ2}
{Phase 3}
for i from 1 to m in parallel do

send Y to Li holder
Z ← data items from Li ’s holder that are in both Y and Li

end for
Y ← k data items with highest overall score in Z

end

produces the sets Y = {d1, d2, d4, d6} and Z = {d1, d2}. The k−th (i.e., second)
data item is d2, whose partial sum is 28. Thus we get λ1/2 = 28/2 = 14. Let us
now denote each data item d in Y as (d, score in List 1, score in List 2). Phase 2
produces

Y = {(d1, 30, 21), (d2, 0, 28), (d3, 26, 14), (d4, 28, 0), (d5, 17, 24), (d6, 14, 27),

(d7, 25, 25), (d8, 23, 20), (d9, 27, 23)} and Z = {(d1, 30, 21), (d7, 25, 25)}. Note
that d9 could also have been picked instead of d7 because it has same partial sum.
Thus we get λ2/2=50. The upper bound scores of the data items in Y are obtained
as:

u(d1) = 30 + 21 = 51
u(d2) = 14 + 28 = 42
u(d3) = 26 + 14 = 40
u(d4) = 28 + 14 = 42
u(d5) = 17 + 24 = 41
u(d6) = 14 + 27 = 41
u(d7) = 25 + 25 = 50
u(d8) = 23 + 20 = 43
u(d9) = 27 + 23 = 50

9.3 Querying Over P2P Systems 417

After removal of the data items in Y whose upper bound score is less than λ2, we
have Y = {d1, d7, d9}. The third phase is not necessary in this case as all data items
have all their local scores. Thus the final result is Y = {d1, d7} or Y = {d1, d9}. �

When the number of lists (i.e., m) is high, the response time of TPUT is much
better than that of the basic TA algorithm.

Best Position Algorithm (BPA)

There are many database instances over which TA keeps scanning the lists although
it has seen all top-k answers (as in Example 9.3). Thus, it is possible to stop much
sooner. Based on this observation, best position algorithms (BPA) that execute top-k
queries much more efficiently than TA have been proposed. The key idea of BPA is
that the stopping mechanism takes into account special positions in the lists, called
the best positions. Intuitively, the best position in a list is the highest position such
that any position before it has also been seen. The stopping condition is based on
the overall score computed using the best positions in all lists.

The basic version of BPA (see Algorithm 9.3) works like TA, except that it keeps
track of all positions that are seen under sorted or random access, computes best
positions, and has a different stopping condition. For each list Li , let Pi be the set of
positions that are seen under sorted or random access in Li . Let bpi , the best position
in Li , be the highest position in Pi such that any position of Li between 1 and bpi

is also in Pi . In other words, bpi is best because we are sure that all positions of Li

between 1 and bpi have been seen under sorted or random access. Let si(bpi) be the
local score of the data item that is at position bpi in list Li . Then, BPA’s threshold
is f (s1(bp1), s2(bp2), . . . , sm(bpm)) for some function f .

Example 9.5 To illustrate basic BPA, consider again the three sorted lists shown in
Fig. 9.10 and the query Q in Example 9.3.

1. At position 1, BPA sees the data items d1, d2, and d3. For each seen data item,
it does random access and obtains its local score and position in all the lists.
Therefore, at this step, the positions that are seen in list L1 are positions 1, 4,
and 9, which are, respectively, the positions of d1, d3, and d2. Thus, we have
P1 = {1, 4, 9} and the best position in L1 is bp1 = 1 (since the next position is
4 meaning that positions 2 and 3 have not been seen). For L2 and L3 we have
P2 = {1, 6, 8} and P3 = {1, 5, 8}, so bp2 = 1 and bp3 = 1. Therefore, the best
positions overall score is λ = f (s1(1), s2(1), s3(1)) = 30 + 28 + 30 = 88. At
position 1, the set of the three highest scored data items is Y = {d1, d2, d3}, and
since the overall score of these data items is less than λ , BPA cannot stop.

2. At position 2, BPA sees d4, d5, and d6. Thus, we have P1 = {1, 2, 4, 7, 8, 9},
P2 = {1, 2, 4, 6, 8, 9}, and P3 = {1, 2, 4, 5, 6, 8}. Therefore, we have bp1 = 2,
bp2 = 2, and bp3 = 2, so λ = f (s1(2), s2(2), s3(2)) = 28 + 27 + 29 = 84.
The overall score of the data items involved in Y = {d3, d4, d5} is less than 84,
so BPA does not stop.

418 9 Peer-to-Peer Data Management

Algorithm 9.3: Best Position Algorithm (BPA)

Input: L1, L2, . . . , Lm: m sorted lists of n data items
f : scoring function
Output: Y : list of top-k data items
begin

j ← 1
threshold ← 1
min_overall_score ← 0
for i from 1 to m in parallel do

Pi ← ∅
end for
while j �= n + 1 and min_overall_score < threshold do

{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do

{Process each data item at position j}
for each data item d at position j in Li do

{access the local scores of d in the other lists through random access}
overall_score(d) ← f (scores of d in each Li)

end for
Pi ← Pi∪ {positions seen under sorted or random access}
bpi ← best position in Li

end for
Y ← k data items with highest score so far
min_overall_score ← smallest overall score of data items in Y

threshold ← f (local scores at position bpi in each Li)
j ← j + 1

end while
end

3. At position 3, BPA sees d7, d8, and d9. Thus, we have P1 = P2 = {1, 2, 3, 4, 5,

6, 7, 8, 9} and P3 = {1, 2, 3, 4, 5, 6, 7, 8, 10}. Thus, we have bp1 = 9, bp2 = 9,
and bp3 = 8. The best positions overall score is λ = f (s1(9), s2(9), s3(8)) =
11+13+14 = 38. At this position, we have Y = {d3, d5, d8}. Since the score of
all data items involved in Y is higher than λ, BPA stops, i.e., exactly at the first
position where BPA has all top-k answers.

Recall that over this database, TA stops at position 6. �
It has been proven that, for any set of sorted lists, BPA stops as early as TA, and

its execution cost is never higher than TA. It has also been shown that the execution
cost of BPA can be (m − 1) times (where m is the number of sorted lists) lower
than that of TA. Although BPA is quite efficient, it still does redundant work. One
of the redundancies with BPA (and also TA) is that it may access some data items
several times under sorted access in different lists. For example, a data item that
is accessed at a position in a list through sorted access and thus accessed in other
lists via random access may be accessed again in the other lists by sorted access at
the next positions. An improved algorithm, BPA2, avoids this and is therefore much
more efficient than BPA. It does not transfer the seen positions from list owners to

9.3 Querying Over P2P Systems 419

the query originator. Thus, the query originator does not need to maintain the seen
positions and their local scores. It also accesses each position in a list at most once.
The number of accesses to the lists done by BPA2 can be about (m− 1) times lower
than that of BPA.

9.3.1.2 Top-k Queries in Unstructured Systems

One possible approach for processing top-k queries in unstructured systems is to
route the query to all the peers, retrieve all available answers, score them using the
scoring function, and return to the user the k highest scored answers. However, this
approach is not efficient in terms of response time and communication cost.

The first efficient solution that has been proposed is that of PlanetP, which is
an unstructured P2P system. In PlanetP, a content-addressable publish/subscribe
service replicates data across P2P communities of up to ten thousand peers. The
top-k query processing algorithm works as follows. Given a query Q, the query
originator computes a relevance ranking of peers with respect to Q, contacts them
one by one in decreasing rank order, and asks them to return a set of their top-scored
data items together with their scores. To compute the relevance of peers, a global
fully replicated index is used that contains term-to-peer mappings. This algorithm
has very good performance in moderate-scale systems. However, in a large P2P
system, keeping the replicated index up-to-date may hurt scalability.

We describe another solution that was developed within the context of APPA,
which is a P2P network-independent data management system. A fully distributed
framework to execute top-k queries has been proposed that also addresses the
volatility of peers during query execution, and deals with situations where some
peers leave the system before finishing query processing. Given a top-k query Q

with a specified TTL, the basic algorithm called Fully Decentralized Top-k (FD)
proceeds as follows (see Algorithm 9.4):

1. Query forward. The query originator forwards Q to the accessible peers whose
hop-distance from the query originator is less than TTL.

2. Local query execution and wait. Each peer p that receives Q executes it locally:
it accesses the local data items that match the query predicate, scores them using
a scoring function, selects the k top data items, and saves them as well as their
scores locally. Then p waits to receive its neighbors’ results. However, since
some of the neighbors may leave the P2P system and never send a score-list to
p, the wait time has a limit that is computed for each peer based on the received
TTL, network parameters, and peer’s local processing parameters.

3. Merge-and-backward. In this phase, the top scores are bubbled up to the query
originator using a trie-based algorithm as follows. After its wait time has expired,
p merges its k local top scores with those received from its neighbors and sends
the result to its parent (the peer from which it received Q) in the form of a score-
list. In order to minimize network traffic, FD does not bubble up the top data

420 9 Peer-to-Peer Data Management

Algorithm 9.4: Fully Decentralized Top-k (FD)

Input: Q: top-k query
f : scoring function
T T L: time to live
w: wait time
Output: Y : list of top-k data items
begin

At query originator peer
begin

send Q to neighbors
Final_score_list ← merge local score lists received from neighbors
for each peer p in Final_score_list do

Y ← retrieve top-k data items in p

end for
end
for each peer that receives Q from a peer p do

T T L ← T T L − 1
if T T L > 0 then

send Q to neighbors
end if
Local_score_list ← extract top-k local scores
Wait a time w

Local_score_list ← Local_score_list ∪ top-k received scores
Send Local_score_list to p

end for
end

items (which could be large), only their scores and addresses. A score-list is
simply a list of k pairs (a, s), where a is the address of the peer owning the data
item and s its score.

4. Data retrieval. After receiving the score-lists from its neighbors, the query
originator forms the final score-list by merging its k local top scores with the
merged score-lists received from its neighbors. Then it directly retrieves the k

top data items from the peers that hold them.

The algorithm is completely distributed and does not depend on the existence
of certain peers, and this makes it possible to address the volatility of peers
during query execution. In particular, the following problems are addressed: peers
becoming inaccessible in the merge-and-backward phase; peers that hold top data
items becoming inaccessible in the data retrieval phase; late reception of score-lists
by a peer after its wait time has expired. The performance evaluation of FD shows
that it can achieve major performance gains in terms of communication cost and
response time.

9.3 Querying Over P2P Systems 421

9.3.1.3 Top-k Queries in DHTs

As we discussed earlier, the main functionality of a DHT is to map a set of keys
to the peers of the P2P system and lookup efficiently the peer that is responsible
for a given key. This offers efficient and scalable support for exact-match queries.
However, supporting top-k queries on top of DHTs is not easy. A simple solution is
to retrieve all tuples of the relations involved in the query, compute the score of each
retrieved tuple, and finally return the k tuples whose scores are the highest. However,
this solution cannot scale up to a large number of stored tuples. Another solution is
to store all tuples of each relation using the same key (e.g., relation’s name), so
that all tuples are stored at the same peer. Then, top-k query processing can be
performed at that central peer using well-known centralized algorithms. However,
the peer becomes a bottleneck and a single point of failure.

A solution has been proposed as part of APPA project that is based on TA
(see Sect. 9.3.1.1) and a mechanism that stores the shared data in the DHT in a
fully distributed fashion. In APPA, peers can store their tuples in the DHT using
two complementary methods: tuple storage and attribute value storage. With tuple
storage, each tuple is stored in the DHT using its identifier (e.g., its primary key)
as the storage key. This enables looking up a tuple by its identifier similar to a
primary index. Attribute value storage individually stores in the DHT the attributes
that may appear in a query’s equality predicate or in a query’s scoring function.
Thus, as in secondary indices, it allows looking up the tuples using their attribute
values. Attribute value storage has two important properties: (1) after retrieving an
attribute value from the DHT, peers can retrieve easily the corresponding tuple of
the attribute value; (2) attribute values that are relatively “close” are stored at the
same peer. To provide the first property, the key, which is used for storing the entire
tuple, is stored along with the attribute value. The second property is provided using
the concept of domain partitioning as follows. Consider an attribute a and let Da

be its domain of values. Assume that there is a total order ≺ on Da (e.g., Da is
numeric). Da is partitioned into n nonempty subdomains d1, d2, . . . , dn such that
their union is equal to Da , the intersection of any two different subdomains is empty,
and for each v1 ∈ di and v2 ∈ dj , if i < j , then we have v1 ≺ v2. The hash
function is applied on the subdomain of the attribute value. Thus, for the attribute
values that fall in the same subdomain, the storage key is the same and they are
stored at the same peer. To avoid attribute storage skew (i.e., skewed distribution
of attribute values within subdomains), domain partitioning is done in such a way
that attribute values are uniformly distributed in subdomains. This technique uses
histogram-based information that describes the distribution of values of the attribute.

Using this storage model, the top-k query processing algorithm, called DHTop
(see Algorithm 9.5), works as follows. Let Q be a given top-k query, f be its scoring
function, and p0 be the peer at which Q is issued. For simplicity, let us assume that
f is a monotonic scoring function. Let scoring attributes be the set of attributes that
are passed to the scoring function as arguments. DHTop starts at p0 and proceeds
in two phases: first it prepares ordered lists of candidate subdomains, and then it

422 9 Peer-to-Peer Data Management

Algorithm 9.5: DHT Top-k (DHTop)
Input: Q: top-k query;
f : scoring function;
A: set of m attributes used in f

Output: Y : list of top-k tuples
begin

{Phase 1: prepare lists of attributes’ subdomains}
for each scoring attribute Ai in A do

LAi
← all subdomains of Ai

LAi
← LAi

− subdomains which do not satisfy Q’s condition
Sort LAi

in descending order of its subdomains
end for
{Phase 2: continuously retrieve attribute values and their tuples until finding k top

tuples}
Done ← false
for each scoring attribute Ai in A in parallel do

i ← 1
while (i < number of subdomains of A) and not Done do

send Q to peer p that maintains the attribute values of subdomain i in LAi

Z ← Ai values (in descending order) from p that satisfy Q’s condition,
along with their corresponding data storage keys

for each received value v do
get the tuple of v

Y ← k tuples with highest score so far
threshold ← f (v1, v2, . . . , vm) such that vi is the last value received

for attribute Ai in A
min_overall_score ← smallest overall score of tuples in Y

if min_overall_score ≤ threshold then
Done ← true

end if
i ← i + 1

end for
end while

end for
end

continuously retrieves candidate attribute values and their tuples until it finds k top
tuples. The details of the two steps are as follows:

1. For each scoring attribute Ai , p0 prepares the list of subdomains and sorts them in
descending order of their positive impact on the scoring function. For each list,
p0 removes from the list the subdomains in which no member can satisfy Q’s
conditions. For instance, if there is a condition that enforces the scoring attribute
to be equal to a constant, (e.g., Ai = 10), then p0 removes from the list all the
subdomains except the subdomain to which the constant value belongs. Let us
denote by LAi

the list prepared in this phase for a scoring attribute Ai .
2. For each scoring attribute Ai , in parallel, p0 proceeds as follows. It sends Q

and Ai to the peer, say p, that is responsible for storing the values of the first
subdomain of LAi

, and requests it to return the values of Ai at p. The values are

9.3 Querying Over P2P Systems 423

returned to p0 in order of their positive impact on the scoring function. After
receiving each attribute value, p0 retrieves its corresponding tuple, computes its
score, and keeps it if the score is one of the k highest scores yet computed. This
process continues until k tuples are obtained whose scores are higher than a
threshold that is computed based on the attribute values retrieved so far. If the
attribute values that p returns to p0 are not sufficient for determining the k top
tuples, p0 sends Q and Ai to the site that is responsible for the second subdomain
of LAi

and so on until k top tuples are found.

Let A1,A2, . . . ,Am be the scoring attributes and v1, v2, . . . , vm be the last
values retrieved, respectively, for each of them. The threshold is defined to be
τ = f (v1, v2, . . . , vm). A main feature of DHTop is that after retrieving each new
attribute value, the value of the threshold decreases. Thus, after retrieving a certain
number of attribute values and their tuples, the threshold becomes less than k of
the retrieved data items and the algorithm stops. It has been analytically proven that
DHTop works correctly for monotonic scoring functions and also for a large group
of nonmonotonic functions.

9.3.1.4 Top-k Queries in Superpeer Systems

A typical algorithm for top-k query processing in superpeer systems is that of
Edutella. In Edutella, a small percentage of nodes are superpeers and are assumed
to be highly available with very good computing capacity. The superpeers are
responsible for top-k query processing and the other peers only execute the queries
locally and score their resources. The algorithm is quite simple and works as
follows. Given a query Q, the query originator sends Q to its superpeer, which
then sends it to the other superpeers. The superpeers forward Q to the relevant peers
connected to them. Each peer that has some data items relevant to Q scores them
and sends its maximum scored data item to its superpeer. Each superpeer chooses
the overall maximum scored item from all received data items. For determining the
second best item, it only asks one peer, the one that has returned the first top item,
to return its second top-scored item. The superpeer selects the overall second top
item from the previously received items and the newly received item. Then, it asks
the peer which has returned the second top item and so on until all k top items are
retrieved. Finally the superpeers send their top items to the superpeer of the query
originator, to extract the overall k top items, and send them to the query originator.
This algorithm minimizes communication between peers and superpeers since, after
having received the maximum scored data items from each peer connected to it, each
superpeer asks only one peer for the next top item.

424 9 Peer-to-Peer Data Management

9.3.2 Join Queries

The most efficient join algorithms in distributed and parallel databases are hash-
based. Thus, the fact that a DHT relies on hashing to store and locate data can
be naturally exploited to support join queries efficiently. A basic solution has
been proposed in the context of the PIER P2P system that provides support for
complex queries on top of DHTs. The solution is a variation of the parallel hash join
algorithm (PHJ) (see Sect. 8.4.1) which we call PIERjoin. As in the PHJ algorithm,
PIERjoin assumes that the joined relations and the result relations have a home
(called namespace in PIER), which are the nodes that store horizontal fragments of
the relation. Then it makes use of the put method for distributing tuples onto a set of
peers based on their join attribute so that tuples with the same join attribute values
are stored at the same peers. To perform joins locally, PIER implements a version of
the symmetric hash join algorithm (see Sect. 8.4.1.2) that provides efficient support
for pipelined parallelism. In symmetric hash join, with two joining relations, each
node that receives tuples to be joined maintains two hash tables, one per relation.
Thus, upon receiving a new tuple from either relation, the node adds the tuple into
the corresponding hash table and probes it against the opposite hash table based on
the tuples received so far. PIER also relies on the DHT to deal with the dynamic
behavior of peers (joining or leaving the network during query execution) and thus
does not give guarantees on result completeness.

For a binary join query Q (which may include select predicates), PIERjoin works
in three phases (see Algorithm 9.6): multicast, hash, and probe/join.

1. Multicast phase. The query originator peer multicasts Q to all peers that store
tuples of the join relations R and S, i.e., their homes.

2. Hash phase. Each peer that receives Q scans its local relation, searching for the
tuples that satisfy the select predicate (if any). Then, it sends the selected tuples
to the home of the result relation, using put operations. The DHT key used in
the put operation is calculated using the home of the result relation and the join
attribute.

3. Probe/join phase. Each peer in the home of the result relation, upon receiving
a new tuple, inserts it in the corresponding hash table, probes the opposite hash
table to find tuples that match the join predicate (and a select predicate if any),
and constructs the result joined tuples. Recall that the “home” of a (horizontally
partitioned) relation was defined in Chap. 4 as a set of peers where each peer
has a different partition. In this case, the partitioning is by hashing on the join
attribute. The home of the result relation is also a partitioned relation (using put
operations) so it is also at multiple peers.

This basic algorithm can be improved in several ways. For instance, if one of
the relations is already hashed on the join attributes, we may use its home as
result home, using a variation of the parallel associative join algorithm (PAJ) (see
Sect. 8.4.1), where only one relation needs to be hashed and sent over the DHT.

9.3 Querying Over P2P Systems 425

Algorithm 9.6: PIERjoin
Input: Q: join query over relations R and S on attribute A;
h: hash function;
HR, HS: homes of R and S
Output: T : join result relation;
HT: home of T
begin

{Multicast phase}
At query originator peer send Q to all peers in HR and HS

{Hash phase}
for each peer p in HR that received Q in parallel do

for each tuple r in Rp that satisfies the select predicate do
place r using h(HT,A)

end for
end for
for each peer p in HS that received Q in parallel do

for each tuple s in Sp that satisfies the select predicate do
place s using h(HT,A)

end for
end for
{Probe/join phase}
for each peer p in HT in parallel do

if a new tuple i has arrived then
if i is an r tuple then

probe s tuples in Sp using h(A)

else
probe r tuples in Rp using h(A)

end if
Tp ← r �� s

end if
end for

end

9.3.3 Range Queries

Recall that range queries have a WHERE clause of the form “attribute A in range
[a, b],” with a and b being numerical values. Structured P2P systems, in particular,
DHTs are very efficient at supporting exact-match queries (of the form “A = a”)
but have difficulties with range queries. The main reason is that hashing tends to
destroy the ordering of data that is useful in finding ranges quickly.

There are two main approaches for supporting range queries in structured P2P
systems: extend a DHT with proximity or order-preserving properties, or maintain
the key ordering with a trie-based structure. The first approach has been used in
several systems. Locality sensitive hashing is an extension to DHTs that hashes
similar ranges to the same DHT node with high probability. However, this method
can only obtain approximate answers and may cause unbalanced loads in large
networks.

426 9 Peer-to-Peer Data Management

The Prefix Hash Tree (PHT) is a trie-based distributed data structure that supports
range queries over a DHT, by simply using the DHT lookup operation. The data
being indexed are binary strings of length D. Each node has either 0 or 2 children,
and a key k is stored at a leaf node whose label is a prefix of k. Furthermore, leaf
nodes are linked to their neighbors. PHT’s lookup operation on key k must return
the unique leaf node leaf (k) whose label is a prefix of k. Given a key k of length
D, there are D + 1 distinct prefixes of k. Obtaining leaf (k) can be performed by
a linear scan of these potential D + 1 nodes. However, since a PHT is a binary
trie, the linear scan can be improved using a binary search on prefix length. This
reduces the number of DHT lookups from (D + 1) to (log D). Given two keys a

and b such as a ≤ b, two algorithms for range queries are supported, using PHT’s
lookup. The first one is sequential: it searches leaf (a) and then scans sequentially
the linked list of leaf nodes until the node leaf (b) is reached. The second algorithm
is parallel: it first identifies the node which corresponds to the smallest prefix range
that completely covers the range [a, b]. To reach this node, a simple DHT lookup is
used and the query is forwarded recursively to those children that overlap with the
range [a, b].

As in all hashing schemes, the first approach suffers from data skew that can
result in peers with unbalanced ranges, which hurts load balancing. To overcome this
problem, the second approach exploits trie-based structures to maintain balanced
ranges of keys. The first attempt to build a P2P network based on a balanced trie
structure is BATON (BAlanced Tree Overlay Network). We now present BATON
and its support for range queries in more detail.

BATON organizes peers as a balanced binary trie (each node of the trie is
maintained by a peer). The position of a node in BATON is determined by a (level,
number) tuple, with level starting from 0 at the root, number starting from 1 at the
root and sequentially assigned using in-order traversal. Each trie node stores links
to its parent, children, adjacent nodes, and selected neighbor nodes that are nodes
at the same level. Two routing tables: a left routing table and a right routing table
store links to the selected neighbor nodes. For a node numbered i, these routing
tables contain links to nodes located at the same level with numbers that are less
(left routing table) and greater (right routing table) than i by a power of 2. The
j th element in the left (right) routing table at node i contains a link to the node
numbered i − 2j−1 (respectively, i + 2j−1) at the same level in the trie. Figure 9.11
shows the routing table of node 6.

In BATON, each leaf and internal node (or peer) is assigned a range of values.
For each link this range is stored at the routing table and when its range changes,
the link is modified to record the change. The range of values managed by a peer is
required to be to the right of the range managed by its left subtree and less than the
range managed by its right subtree (see Fig. 9.12). Thus, BATON builds an effective
distributed index structure. The joining and departure of peers are processed such
that the trie remains balanced by forwarding the request upward in the trie for joins

9.3 Querying Over P2P Systems 427

1

2

4

8 9

5

10

3

6 7

Level 3

Level 2

Level 1

Level 0

Node 6: level 2, number=3
parent=3, leftchild=null, rightchild=null
leftadjacent=1, rightadjacent=3

Left routing table

Node Left
Child

Right
Child

Lower
Bound

Upper
Bound

0 5 10 null LB5 UB5
1 4 8 9 LB4 UB4

Right routing table

Node Left
Child

Right
Child

Lower
Bound

Upper
Bound

0 7 null null LB7 UB7

Fig. 9.11 BATON structure-tree index and routing table of node 6

1

[35,40)

2[15,20)

4

[5,10)

8

[0,5)

9

[10,15)

5

[27,35)

10

[20,27)

3

[46,50)

6

[40,46)

7

[50,55)

Q=[7,45]

Fig. 9.12 Range query processing in BATON

and downward in the trie for leaves, thus with no more than O(log n) steps for a
trie of n nodes.

A range query is processed as follows (Algorithm 9.7). For a range query Q with
range [a, b] submitted by node i, it looks for a node that intersects with the lower
bound of the searched range. The peer that stores the lower bound of the range
checks locally for tuples belonging to the range and forwards the query to its right
adjacent node. In general, each node receiving the query checks for local tuples and
contacts its right adjacent node until the node containing the upper bound of the
range is reached. Partial answers obtained when an intersection is found are sent to
the node that submits the query. The first intersection is found in O(log n) steps
using an algorithm for exact-match queries. Therefore, a range query with X nodes
covering the range is answered in O(log n + X) steps.

428 9 Peer-to-Peer Data Management

Algorithm 9.7: BatonRange
Input: Q: a range query in the form [a, b]
Output: T: result relation
begin

{Search for the peer storing the lower bound of the range}
At query originator peer
begin

find peer p that holds value a

send Q to p

end
for each peer p that receives Q do

Tp ← Range(p) ∩ [a, b]
send Tp to query originator
if Range(RightAdjacent (p)) ∩ [a, b] �= ∅ then

let p be right adjacent peer of p

send Q to p

end if
end for

end

Example 9.6 Consider the query Q with range [7, 45] issued at node 7 in Fig. 9.12.
First, BATON executes an exact-match query looking for a node containing the
lower bound of the range (see dashed line in the figure). Since the lower bound is
in the range assigned to node 4, it checks locally for tuples belonging to the range
and forwards the query to its adjacent right node (node 9). Node 9 checks for local
tuples belonging to the range and forwards the query to node 2. Nodes 10, 5, 1,
and 6 receive the query, they check for local tuples and contact their respective
right adjacent node until the node containing the upper bound of the range is
reached. �

9.4 Replica Consistency

To increase data availability and access performance, P2P systems replicate data.
However, different P2P systems provide very different levels of replica consistency.
The earlier, simple P2P systems such as Gnutella and Kazaa deal only with static
data (e.g., music files) and replication is “passive” as it occurs naturally as peers
request and copy files from one another (basically, caching data). In more advanced
P2P systems where replicas can be updated, there is a need for proper replica
management techniques. Unfortunately, most of the work on replica consistency
has been done only in the context of DHTs. We can distinguish three approaches
to deal with replica consistency: basic support in DHTs, data currency in DHTs,
and replica reconciliation. In this section, we introduce the main techniques used in
these approaches.

9.4 Replica Consistency 429

9.4.1 Basic Support in DHTs

To improve data availability, most DHTs rely on data replication by storing
(key, data) pairs at several peers by, for example, using several hash functions.
If one peer is unavailable, its data can still be retrieved from the other peers that
hold a replica. Some DHTs provide basic support for the application to deal with
replica consistency. In this section, we describe the techniques used in two popular
DHTs: CAN and Tapestry.

CAN provides two approaches for supporting replication. The first one is to use
m hash functions to map a single key onto m points in the coordinate space, and,
accordingly, replicate a single (key, data) pair at m distinct nodes in the network.
The second approach is an optimization over the basic design of CAN that consists
of a node proactively pushing out popular keys towards its neighbors when it finds
it is being overloaded by requests for these keys. In this approach, replicated keys
should have an associated TTL field to automatically undo the effect of replication
at the end of the overloaded period. In addition, the technique assumes immutable
(read-only) data.

Tapestry is an extensible P2P system that provides decentralized object location
and routing on top of a structured overlay network. It routes messages to logical
endpoints (i.e., endpoints whose identifiers are not associated with physical loca-
tion), such as nodes or object replicas. This enables message delivery to mobile or
replicated endpoints in the presence of instability of the underlying infrastructure. In
addition, Tapestry takes latency into account to establish each node’s neighborhood.
The location and routing mechanisms of Tapestry work as follows. Let o be an object
identified by id(o); the insertion of o in the P2P network involves two nodes: the
server node (noted ns) that holds o and the root node (noted nr) that holds a mapping
in the form (id(o), ns) indicating that the object identified by id(o) is stored at node
ns . The root node is dynamically determined by a globally consistent deterministic
algorithm. Figure 9.13a shows that when o is inserted into ns , ns publishes id(o) at
its root node by routing a message from ns to nr containing the mapping (id(o), ns).
This mapping is stored at all nodes along the message path. During a location query,
e.g., “id(o)?” in Fig. 9.13a, the message that looks for id(o) is initially routed
towards nr , but it may be stopped before reaching it once a node containing the
mapping (id(o), ns) is found. For routing a message to id(o)’s root, each node
forwards this message to its neighbor whose logical identifier is the most similar
to id(o).

Tapestry offers the entire infrastructure needed to take advantage of replicas,
as shown in Fig. 9.13b. Each node in the graph represents a peer in the P2P
network and contains the peer’s logical identifier in hexadecimal format. In this
example, two replicas O1 and O2 of object O (e.g., a book file) are inserted into
distinct peers (O1 → peer 4228 and O2 → peer AA93). The identifier of O1
is equal to that of O2 (i.e., 4378 in hexadecimal) as O1 and O2 are replicas of
the same object O. When O1 is inserted into its server node (peer 4228), the
mapping (4378, 4228) is routed from peer 4228 to peer 4377 (the root node for

430 9 Peer-to-Peer Data Management

ns
insert(id, O)

nr

(id, ns) (id, ns)

(id, ns)

nsid?

id?
Obj ID
O id

(a)

4228

insert(4378,O1)

43FE 437A

4664

4361

4377

4A6D AA93

insert(4378,O2)

4B4FE791
4378

57EC

β β

α
β

AA934378

4378

AA93

αα

αObj ID
O1 4378

Obj ID
4378

α (AA93,4378)
β (4228,4378)

(b)

O2

Fig. 9.13 Tapestry. (a) Object publishing. (b) Replica management

O1’s identifier). As the message approaches the root node, the object and the node
identifiers become increasingly similar. In addition, the mapping (4378, 4228) is
stored at all peers along the message path. The insertion of O2 follows the same
procedure. In Fig. 9.13b, if peer E791 looks for a replica of O, the associated
message routing stops at peer 4361. Therefore, applications can replicate data across
multiple server nodes and rely on Tapestry to direct requests to nearby replicas.

9.4 Replica Consistency 431

9.4.2 Data Currency in DHTs

Although DHTs provide basic support for replication, the mutual consistency of the
replicas after updates can be compromised as a result of peers leaving the network
or concurrent updates. Let us illustrate the problem with a simple update scenario
in a typical DHT.

Example 9.7 Let us assume that the operation put(k, d0) (issued by some peer) maps
onto peers p1 and p2 both of which get to store data d0. Now consider an update
(from the same or another peer) with the operation put(k, d1) that also maps onto
peers p1 and p2. Assuming that p2 cannot be reached (e.g., because it has left the
network), only p1 gets updated to store d1. When p2 rejoins the network later on,
the replicas are not consistent: p1 holds the current state of the data associated with
k, while p2 holds a stale state.

Concurrent updates also cause problems. Consider now two updates put(k, d2)
and put(k, d3) (issued by two different peers) that are sent to p1 and p2 in reverse
order, so that p1’s last state is d2, while p2’s last state is d3. Thus, a subsequent
get(k) operation will return either stale or current data depending on which peer is
looked up, and there is no way to tell whether it is current or not. �

For some applications (e.g., agenda management, bulletin boards, cooperative
auction management, reservation management, etc.) that could take advantage of a
DHT, the ability to get the current data is very important. Supporting data currency
in replicated DHTs requires the ability to return a current replica despite peers
leaving the network or concurrent updates. Of course, replica consistency is a more
general problem, as discussed in Chap. 6, but the issue is particularly difficult and
important in P2P systems, since there is considerable dynamism in the peers joining
and leaving the system.

A solution has been proposed that considers both data availability and data
currency. To provide high data availability, data is replicated in the DHT using a set
of independent hash functions Hr , called replication hash functions. The peer that
is responsible for key k with respect to hash function h at the current time is denoted
by rsp(k, h). To be able to retrieve a current replica, each pair (k, data) is stamped
with a logical timestamp, and for each h ∈ Hr , the pair (k, newData) is replicated
at rsp(k, h), where newData = {data, timestamp}, i.e., newdata is composed of
the initial data and the timestamp. Upon a request for the data associated with a key,
we can return one of the replicas that are stamped with the latest timestamp. The
number of replication hash functions, i.e., Hr , can be different for different DHTs.
For instance, if in a DHT the availability of peers is low, a high value of Hr (e.g.,
30) can be used to increase data availability.

This solution is the basis for a service called Update Management Service
(UMS) that deals with efficient insertion and retrieval of current replicas based
on timestamping. Experimental validation has shown that UMS incurs very little
overhead in terms of communication cost. After retrieving a replica, UMS detects

432 9 Peer-to-Peer Data Management

whether it is current or not, i.e., without having to compare with the other replicas,
and returns it as output. Thus, UMS does not need to retrieve all replicas to find a
current one; it only requires the DHT’s lookup service with put and get operations.

To generate timestamps, UMS uses a distributed service called Key-based
Timestamping Service (KTS). The main operation of KTS is gen_ts(k), which, given
a key k, generates a real number as a timestamp for k. The timestamps generated
by KTS are monotonic such that if tsi and tsj are two timestamps generated for the
same key at times ti and tj , respectively, tsj > tsi if tj is later than ti . This property
allows ordering the timestamps generated for the same key according to the time at
which they have been generated. KTS has another operation denoted by last_ts(k),
which, given a key k, returns the last timestamp generated for k by KTS. At any
time, gen_ts(k) generates at most one timestamp for k, and different timestamps for
k are monotonic. Thus, in the case of concurrent calls to insert a pair (k, data), i.e.,
from different peers, only the one that obtains the latest timestamp will succeed to
store its data in the DHT.

9.4.3 Replica Reconciliation

Replica reconciliation goes one step further than data currency by enforcing mutual
consistency of replicas. Since a P2P network is typically very dynamic, with peers
joining or leaving the network at will, eager replication solutions (see Chap. 6)
are not appropriate; lazy replication is preferred. In this section, we describe the
reconciliation techniques used in OceanStore, P-Grid, and APPA to provide a
spectrum of proposed solutions.

9.4.3.1 OceanStore

OceanStore is a data management system designed to provide continuous access to
persistent information. It relies on Tapestry and assumes an infrastructure composed
of untrusted powerful servers that are connected by high-speed links. For security
reasons, data is protected through redundancy and cryptographic techniques. To
improve performance, data is allowed to be cached anywhere in the network.

OceanStore allows concurrent updates on replicated objects and relies on
reconciliation to assure data consistency. A replicated object can have multiple
primary replicas and secondary replicas at different nodes. The primary replicas are
all linked and cooperate among themselves to achieve replica mutual consistency
by ordering updates. Secondary replicas provide a lesser degree of consistency in
order to gain performance and availability. Thus, secondary replicas may be less
up-to-date and can be in higher numbers than primary replicas. Secondary replicas
communicate among themselves and primary replicase via an epidemic algorithm.

Figure 9.14 illustrates update management in OceanStore. In this example, R is
the (only) replicated object, whereas R and Rsec denote, respectively, a primary and

9.4 Replica Consistency 433

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(a)

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(b)

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(c)

Fig. 9.14 OceanStore reconciliation. (a) Nodes n1 and n2 send updates to the master group of
R and to several random secondary replicas. (b) The master group of R orders updates while
secondary replicas propagate them epidemically. (c) After the master group agreement, the result
of updates is multicast to secondary replicas

a secondary copy of R. The four nodes holding a primary copy are linked to each
other (not shown in the figure). Dotted lines represent links between nodes holding
primary or secondary replicas. Nodes n1 and n2 are concurrently updating R. Such
updates are managed as follows. Nodes that hold primary copies of R, called the
master group of R, are responsible for ordering updates. So, n1 and n2 perform
tentative updates on their local secondary replicas and send these updates to the
master group of R as well as to other random secondary replicas (see Fig. 9.14a).
The tentative updates are ordered by the master group based on timestamps assigned
by n1 and n2; at the same time, these updates are epidemically propagated among
secondary replicas (Fig. 9.14b). Once the master group obtains an agreement, the

434 9 Peer-to-Peer Data Management

result of updates is multicast to secondary replicas (Fig. 9.14c), which contain both
tentative2 and committed data.

Replica management adjusts the number and location of replicas in order to serve
requests more efficiently. By monitoring the system load, OceanStore detects when
a replica is overwhelmed and creates additional replicas on nearby nodes to alleviate
load. Conversely, these additional replicas are eliminated when they are no longer
needed.

9.4.3.2 P-Grid

P-Grid is a structured P2P network based on a binary trie structure. A decentralized
and self-organizing process builds P-Grid’s routing infrastructure which is adapted
to a given distribution of data keys stored by peers. This process addresses
uniform load distribution of data storage and uniform replication of data to support
availability.

To address updates of replicated objects, P-Grid employs gossiping, without
strong consistency guarantees. P-Grid assumes that quasiconsistency of replicas
(instead of full consistency which is too hard to provide in a dynamic environment)
is enough.

The update propagation scheme has a push phase and a pull phase. When a peer
p receives a new update to a replicated object R, it pushes the update to a subset
of peers that hold replicas of R, which, in turn, propagate it to other peers holding
replicas of R, and so on. Peers that have been disconnected and get connected again,
peers that do not receive updates for a long time, or peers that receive a pull request
but are not sure whether they have the latest update, enter the pull phase to reconcile.
In this phase, multiple peers are contacted and the most up-to-date among them is
chosen to provide the object content.

9.4.3.3 APPA

APPA provides a general lazy distributed replication solution that assures eventual
consistency of replicas. It uses the IceCube action-constraint framework to capture
the application semantics and resolve update conflicts.

The application semantics is described by means of constraints between update
actions. An action is defined by the application programmer and represents an
application-specific operation (e.g., a write operation on a file or document, or a
database transaction). A constraint is the formal representation of an application
invariant. For instance, the predSucc(a1, a2) constraint establishes causal ordering
between actions (i.e., action a2 executes only after a1 has succeeded); the mutual-
lyExclusive(a1, a2) constraint states that either a1 or a2 can be executed. The aim of

2Tentative data is data that the primary replicas have not yet committed.

9.4 Replica Consistency 435

reconciliation is to take a set of actions with the associated constraints and produce
a schedule, i.e., a list of ordered actions that do not violate constraints. In order to
reduce the schedule production complexity, the set of actions to be ordered is divided
into subsets called clusters. A cluster is a subset of actions related by constraints
that can be ordered independently of other clusters. Therefore, the global schedule
is composed by the concatenation of clusters’ ordered actions.

Data managed by the APPA reconciliation algorithm are stored in data structures
called reconciliation objects. Each reconciliation object has a unique identifier in
order to enable its storage and retrieval in the DHT. Data replication proceeds
as follows. First, nodes execute local actions to update a replica of an object
while respecting user-defined constraints. Then, these actions (with the associated
constraints) are stored in the DHT based on the object’s identifier. Finally, reconciler
nodes retrieve actions and constraints from the DHT and produce the global
schedule, by reconciling conflicting actions based on the application semantics. This
schedule is locally executed at every node, thereby assuring eventual consistency.

Any connected node can try to start reconciliation by inviting other available
nodes to engage with it. Only one reconciliation can run at-a-time. The reconcilia-
tion of update actions is performed in 6 distributed steps as follows. Nodes at step 2
start reconciliation. The outputs produced at each step become the input to the next
one.

• Step 1—node allocation: a subset of connected replica nodes is selected to
proceed as reconcilers based on communication costs.

• Step 2—action grouping: reconcilers take actions from the action logs and put
actions that try to update common objects into the same group since these actions
are potentially in conflict. Groups of actions that try to update object R are stored
in the action log R reconciliation object (LR).

• Step 3—cluster creation: reconcilers take action groups from the action logs
and split them into clusters of semantically dependent conflicting actions: two
actions a1 and a2 are semantically independent if the application judges it safe
to execute them together, in any order, even if they update a common object;
otherwise, a1 and a2 are semantically dependent. Clusters produced in this step
are stored in the cluster set reconciliation object.

• Step 4—clusters extension: user-defined constraints are not taken into account
in cluster creation. Thus, in this step, reconcilers extend clusters by adding to
them new conflicting actions, according to user-defined constraints.

• Step 5—cluster integration: cluster extensions lead to cluster overlapping (an
overlap occurs when the intersection of two clusters results in a nonnull set
of actions). In this step, reconcilers bring together overlapping clusters. At
this point, clusters become mutually independent, i.e., there are no constraints
involving actions of distinct clusters.

• Step 6—cluster ordering: in this step, reconcilers take each cluster from the
cluster set and order the cluster’s actions. The ordered actions associated with
each cluster are stored in the schedule reconciliation object. The concatenation

436 9 Peer-to-Peer Data Management

of all clusters’ ordered actions makes up the global schedule that is executed by
all replica nodes.

At every step, the reconciliation algorithm takes advantage of data parallelism,
i.e., several nodes perform simultaneously independent activities on a distinct subset
of actions (e.g., ordering of different clusters).

9.5 Blockchain

Popularized by bitcoin and other cryptocurrencies, blockchain is a recent P2P
infrastructure that can record transactions between two parties efficiently and safely.
It has become a hot topic, subject to much hype and controversy. On the one hand,
we find enthusiastic proponents such as Ito, Narula, and Ali claiming in 2017 that
blockchain is a disruptive technology that “will do to the financial system what the
Internet did to media.” On the other hand, we find strong opponents, e.g., famous
economist N. Roubini who calls blockchain in 2018 the most “overhyped and least
useful technology in human history.” As always, the truth is probably somewhere in
between.

Blockchain was invented for bitcoin to solve the double spending problem of
previous digital currencies without the need of a trusted, central authority. On
January 3, 2009, Satoshi Nakamoto3 created the first source block with a unique
transaction of 50 bitcoins to himself. Since then, there have been many other
blockchains such as Ethereum in 2013 and Ripple in 2014. The success has
been significant and cryptocurrencies have been used a lot for money transfer or
high-risk investment, e.g., initial coin offerings (ICOs) as an alternative to initial
public offerings (IPOs). The potential advantages of using a blockchain-based
cryptocurrency are the following:

• Low transaction fee (set by the sender to speed up processing), which is
independent of the amount of money transferred;

• Fewer risks for merchants (no fraudulent chargebacks);
• Security and control (e.g., protection from identity theft);
• Trust through the blockchain, without any central authority.

However, cryptocurrencies have also been used a lot for scams and illegal
activities (purchases on the dark web, money laundering, theft, etc.), which has
triggered warnings from market authorities and beginning of regulation in some
countries. Other problems are that it is:

• unstable: as there is no backing by a state or federal bank (unlike strong
currencies like Dollar or Euro);

3Pseudo for the person or people who developed bitcoin, which generated much speculation about
their true identity.

9.5 Blockchain 437

• unrelated to real economy, which fosters speculation;
• highly volatile, e.g., the exchange rate with a real currency (as set by cryptocur-

rency marketplaces) can greatly vary in a few hours;
• subject to severe crypto-bubble bursts, as in 2017.

Thus, there are pros and cons to blockchain-based cryptocurrencies. However, we
should avoid restricting the blockchain to cryptocurrency, as there are many other
useful applications. The original blockchain is a public, distributed ledger that can
record and share transactions among a number of computers in a secure and per-
manent way. It is a complex distributed database infrastructure, combining several
technologies such as P2P, data replication, consensus, and public key encryption.
The term Blockchain 2.0 refers to new applications that can be programmed
into the blockchain to go beyond transactions and enable exchange of assets
without powerful intermediaries. Examples of such applications are smart contracts,
persistent digital ids, intellectual property rights, blogging, voting, reputation, etc.

9.5.1 Blockchain Definition

Recording financial transactions between two parties has been traditionally done
using an intermediary centralized ledger, i.e., a database of all transactions, con-
trolled by a trusted authority, e.g., a clearing house. In a digital world, this
centralized approach has several problems. First, it creates single points of failure
and makes it an attractive target for attackers. Second, it favors concentration of
actors such as big financial institutions. Third, complex transactions that require
multiple intermediaries, typically with heterogeneous systems and rules, may be
difficult and take time to execute.

A blockchain is essentially a distributed ledger shared among a number of
participant nodes in a P2P network. It is organized as an append-only, replicated
database of blocks. Blocks are digital containers for transactions and are secured
through public key encryption. The code of each new block is built on that of the
preceding block, which guarantees that it cannot be tampered with. The blockchain
is viewed by all participants that maintain database copies in multimaster mode (see
Chap. 6) and collaborate through consensus in validating the transactions in the
blocks. Once validated and recorded in a block, a transaction cannot be modified
or deleted, making the blockchain tamper-proof. The participant nodes may not
fully trust each other and some may even behave in malicious (Byzantine) manner,
i.e., give different values to different observer nodes. Thus, in the general case, i.e.,
public blockchain as in bitcoin, the blockchain must tolerate Byzantine failures.

Note that the objective of a typical P2P data structure such as a DHT is to provide
fast and scalable lookup. The purpose of a blockchain is quite different, i.e., to
manage a continuously growing list of blocks in a secure and tamper-proof manner.
But scalability is not an objective as the blockchain is not partitioned across P2P
nodes.

438 9 Peer-to-Peer Data Management

Compared with the centralized ledger approach, the blockchain can bring the
following advantages:

• Increased trust in transactions and value exchange, by trusting the data, not the
participants.

• Increased reliability (no single point of failure) through replication.
• Built-in security through chaining of blocks and public key encryption.
• Efficient and cheaper transactions between participants, in particular, compared

with relying on a long chain of intermediaries.

Blockchains can be used in two different kinds of markets: public, e.g., cryp-
tocurrency, public auction, where anybody can join in, and private, e.g., supply
chain management, healthcare, where participants are known. Thus, an important
distinction to make is between public and private (also called permissioned)
blockchains.

A public blockchain (like bitcoin) is an open P2P nonpermissioned network and
can be very large scale. Participants are unknown and untrusted, and can join and
leave the network without notification. They are typically pseudonymized which
makes it possible to track a participant’s entire transaction history and sometimes
even to identify the participant.

A private blockchain is a closed permissioned network, so its scale is typically
much smaller than a public blockchain. Control is regulated to ensure that only
identified, approved participants can validate transactions. Access to blockchain
transactions can be restricted to authorized participants, which increases data pro-
tection. Although the underlying infrastructure can be the same, the main difference
between public and private blockchain is who (person, group, or company) is
allowed to participate in the network and who controls it.

9.5.2 Blockchain Infrastructure

In this section, we introduce the blockchain infrastructure as originally proposed
for bitcoin, focusing on the process of transaction processing. Participant nodes are
called full nodes to distinguish from other nodes, e.g., lightweight client nodes that
handle digital wallets. When a new full node joins the network, it synchronizes
with known nodes using Domain Name System (DNS) to obtain a copy of the
blockchain. Then, it can create transactions and become a “miner,” i.e., participate
in the validation of blocks called “mining” process.

Transaction processing is done in three main steps:

1. Creating a transaction after two users have agreed on transaction information
exchange: wallet addresses, public keys, etc.

2. Grouping of transactions in a block and linking with a previous block.
3. Validation of the block (and of the transactions) using “mining,” addition of the

validated block in the blockchain and replication in the network.

In the rest of this section, we present each step in more detail.

9.5 Blockchain 439

PKi

h

H-val signed
with SKi−1

Transaction

Owneri−1

PKi+1

h

H-val signed
with SKi

Transaction

Owneri

PKj

h

H-val signed
with SKi+1

Transaction

Owneri+1

Fig. 9.15 Chaining of transactions

9.5.2.1 Creating a Transaction

Let us consider a bitcoin transaction between a coin owner and a coin recipient
that receives the money. The transaction is secured with public key encryption and
digital signature. Each owner has a public and private key. The coin owner signs the
transaction by

• creating a hash digest of a combination of the previous transaction (with which
it receives the coins) and of the public key of the next owner;

• signing the hash digest with its private key.

This signature is then appended to the end of the transaction, thus making a chain
of transactions between all owners (see Fig. 9.15). Then, the coin owner publishes
the transaction in the network by multicasting it to all other nodes. Given the public
key of the coin owner who created the transaction, any node in the network can
verify the transaction’s signature.

9.5.2.2 Grouping Transactions into Blocks

Double spending is a potential flaw in a digital cash scheme in which the same
single digital token can be spent more than once. Unlike physical cash, a digital
token consists of a digital file that can be duplicated or falsified.

Each miner node (which maintains a copy of the blockchain) receives the
transactions that get published, validates them, and groups them into blocks. To
accept a transaction and include it in a block, the miners follow some rules such as
checking that the inputs are valid and that a coin is not double-spent (spent more
than once) as a result of an attack (see 51% attack next). It may be possible that
a malicious miner tries to accept a transaction that violates some rules and include
it in a block. In this case, the block will not obtain the consensus of other miners

440 9 Peer-to-Peer Data Management

T T · · · T

H-value nonce

Block

T T · · · T

H-value nonce

Block

Fig. 9.16 Chaining of blocks

Block 5 Block 6a Block 7a Block 8a

Block 6b

Fig. 9.17 Longest chain rule

that follow the rules and will not be accepted and included in the blockchain. Thus,
if a majority of miners follow the rule, the system works. As shown in Fig. 9.16,
each new block is built on a previous block of the chain by producing a hash
digest (h−value) of the previous block’s address, thus protecting the block from
tampering or change. The current size of a bitcoin block is 1 Megabyte, reflecting a
compromise between efficiency and security.

A problem that can arise is an accidental or intentional fork. As different blocks
are validated in parallel by different nodes, one node can see several candidate
chains at any time. For instance, in Fig. 9.17, a node may see blocks 7a and 6b,
both originated from block 5. The solution is to apply the longest chain rule, i.e.,
choose the block which is in the longest chain. In the example of Fig. 9.17, the
block 7a will be chosen to build the next block 7b. The rationale for this rule is
to minimize the number of transactions that need to be resubmitted. For instance,
transactions in Block 6b have to be resubmitted by the client (who will see that
the block has not been validated). Thus, transactions in a validated block are only
provisionally validated and confirmation must be awaited. Each new block accepted
in the chain after the validation of the transaction is considered as a confirmation.
Bitcoin considers a transaction mature after 6 confirmations (1 hour on average). In
Fig. 9.17, transaction maturity is illustrated by the darkness of the boxes (Block 6b
is lighter because its transactions will not be confirmed).

In addition to accidental forks, there are also intentional forks, which are useful
to add new features to the blockchain code base (protocol changes) or to reverse
the effects of hacking or catastrophic bugs. Two kinds of fork are possible: soft fork
versus hard fork. A soft fork is backward compatible: the old software recognizes
blocks created with new rules as valid. However, it makes it easy for attackers. A
famous occurrence of a hard fork is that of the Ethereum blockchain in 2016, after

9.5 Blockchain 441

an attack against a complex smart contract for venture capital. Ethereum forked but
without momentum from the community managing the software, thus leading to two
blockchains: (new) Ethereum and (old) Ethereum Classic. Note that the battle has
been more philosophical and ethical than technical.

9.5.2.3 Block Validation by Consensus

Since blocks are being produced in parallel by competing nodes, a consensus is
needed to validate and add them to the blockchain. Note that in the general case
of the public blockchain where participants are unknown, traditional consensus
protocols such as Paxos (see Sect. 5.4.5) are not applicable. The consensus protocol
of the bitcoin blockchain is based on mining.4 We can summarize the consensus
protocol as follows:

1. Miner nodes compete (as in a lottery) to produce new blocks. Using much
computing power, each miner tries to produce a nonce (number used once) for
the block (see Fig. 9.16).

2. Once a miner has found the nonce, it adds the block to the blockchain and
multicasts it to all network nodes.

3. Other nodes verify the new block, by checking the nonce (which is easy).
4. Since many nodes try to be the first to add a block to the blockchain, a lottery-

based reward system selects one of the competing blocks, based on some
probability, and the winner gets paid, e.g., 12.5 bitcoins today (originally 50).
This increases the money supply.

Mining is designed to be difficult. The more mining power the network has,
the harder it is to compute the nonce. This allows controlling the injection of new
blocks (“inflation”) in the system, on average 1 block every 10 minutes. The mining
difficulty consists in producing a Proof of Work (PoW), i.e., a piece of data that
is difficult to calculate but easy to verify, to calculate the nonce. PoW was first
proposed to prevent DoS attacks. The bitcoin blockchain uses the Hashcash PoW,
which is based on the SHA-256 hash function. The goal is to produce a value v such
that h(f (block, v)) < T , where

1. h is the SHA-256 hash function;
2. f is a function that combines v with information in the block, so the nonce cannot

be precomputed;
3. T is a target value shared by all nodes and reflects the size of the network;
4. v is a 256-bit number starting with n zero bits.

The average effort to produce the PoW is exponential in the number of zero bits
required, i.e., the probability of success is low and can be approximated as 1/2n.

4The term is used by analogy to gold mining as the process of bringing out coins that exist in the
protocol’s design.

442 9 Peer-to-Peer Data Management

This advantages powerful nodes, which now use big clusters of GPUs. However,
verification is very simple and can be done by executing a single hash function.

A potential problem with PoW based mining is the 51% attack, which enables
the attacker to invalidate valid transactions and double spend funds. To do so,
the attacker (a miner or miner coalition) must hold more than 50% of the total
computing power for mining. It then becomes possible to modify a received chain
(e.g., by removing a transaction) and produce a longer chain that will be selected by
the majority according to the longest chain rule.

9.5.3 Blockchain 2.0

The first generation blockchain, pioneered by bitcoin, enables recording of
transactions and exchange of cryptocurrencies without powerful intermediaries.
Blockchain 2.0 is a major evolution of the paradigm to go beyond transactions and
enable exchange of all kinds of assets. Pioneered by Etherum, it makes blockchain
programmable, allowing application developers to build APIs and services directly
on the blockchain.

Critical characteristics of the applications are that asset and value are exchanged
(through transactions), there are multiple participants, possibly unknown to each
other, and trust (in the data) is critical. There are many applications of Blockchain
2.0 in many industries, e.g., financial services and micropayments, digital rights,
supply chain management, healthcare record keeping, Internet of Things (IoT), food
provenance. Most of these applications can be supported by a private blockchain. In
this case, the major advantages are increased privacy and control, and more efficient
transaction validation since participants are trusted and there is no need to produce
a PoW.

An important capability that can be supported in Blockchain 2.0 is smart
contracts. A smart contract is a self-executing contract, with code that embeds
the terms and conditions of a contract. An example of simple smart contract
is a service contract between two parties, one that requests the service with an
associated payment, and the other that fulfills the service and once executed gets the
payment. In a blockchain, contracts can be partially or fully executed without human
interaction and involve many participants, e.g., IoT devices. A major advantage of
having smart contracts in the blockchain is that the code, which implements the
contract, becomes visible to all for verification. However, once on a blockchain the
contract cannot be changed. From a technical point of view, the main challenge is
to produce bug-free code, which would best be done using code verification.

An important collaborative initiative to produce open source blockchains and
related tools is the Hyperledger project of the Linux Foundation that was started in
2015 by IBM, Intel, Cisco, and others. The major frameworks are:

• Hyperledger Fabric (IBM, digital Asset): a permissioned blockchain infrastruc-
ture with smart contracts, configurable consensus, and membership services.

9.5 Blockchain 443

• Sawtooth (Intel): a novel consensus mechanism, “Proof of Elapsed Time,” that
builds on trusted execution environments.

• Hyperledger Iroha (Soramitsu): based on Hyperledger Fabric, with a focus on
mobile applications.

9.5.4 Issues

Blockchain is often advertised as a disruptive technology for recording transactions
and verifying records, with much impact on the finance industry. In particular,
the ability to program applications and business logic in the blockchain opens up
many possibilities for developers, e.g., smart contracts. Some proponents, e.g.,
cypherpunk activists, even consider it as a potential disruptive power that will
establish a sense of democracy and equality, where individuals and small businesses
will be able to compete with corporate powers.

However, there are important limitations, in particular in the case of the public
blockchain, as is the most general infrastructure. The limitations are:

• Complexity and scalability, in particular, difficult evolution of operating rules
that require forking the blockchain.

• Ever increasing chain size and high energy consumption (with PoW).
• Potential for a 51% attack.
• Low privacy as users are only pseudonymized. For instance, making a transaction

with a user may reveal all its other transactions.
• Unpredictable duration of transactions, from a few minutes to days.
• Lack of control and regulation, which makes it hard for states to watch and tax

transactions.
• Security concerns: if a private key is lost or stolen, an individual has no recourse.

To address these limitations, several research issues in distributed systems,
software engineering, and data management can be identified:

• Scalability and security of the public blockchain. This issue has triggered
renewed interest on consensus protocols, with more efficient alternatives to PoW:
proof-of-stake, proof-of-hold, proof-of-use, proof-of-stake/time. Furthermore,
there are other performance bottlenecks beside consensus. However, a major
issue remains the trade-off between performance and security. Bitcoin-NG is a
new generation blockchain with two types of blocks: key blocks that include
PoW, a reference to previous block, and mining reward, which makes PoW
computing more efficient; and microblocks that include transactions, but no PoW.

• Smart contract management, including code certification and verification, con-
tract evolution (change propagation), optimization, and execution control.

• Blockchain and data management. As a blockchain is merely a distributed
database structure, it can be improved by drawing from design principles of
database systems. For instance, a declarative language could make it easier

444 9 Peer-to-Peer Data Management

to define, verify, and optimize complex smart contracts. BigchainDB is a
new DBMS that applies distributed database concepts, in particular, a rich
transaction model, role-based access control, and queries, to support a scalable
blockchain. Understanding the performance bottlenecks also requires bench-
marking. BLOCKBENCH is a benchmarking framework for understanding the
performance of private blockchains against data processing workloads.

• Blockchain interoperability. There are many blockchains, each with different
protocols and APIs. The Blockchain Interoperability Alliance (BIA) has been
established to define standards in order to promote cross-blockchain transactions.

9.6 Conclusion

By distributing data storage and processing across autonomous peers in the network,
P2P systems can scale without the need for powerful servers. Today, major data
sharing applications such as BitTorrent, eDonkey, or Gnutella are used daily by
millions of users. P2P has also been successfully used to scale data management
in the cloud, e.g., DynamoDB key-value store (see Sect. 11.2.1). However, these
applications remain limited in terms of database functionality.

Advanced P2P applications such as collaborative consumption (e.g., car sharing)
must deal with semantically rich data (e.g., XML or RDF documents, relational
tables, etc.). Supporting such applications requires significant revisiting of dis-
tributed database techniques (schema management, access control, query process-
ing, transaction management, consistency management, reliability, and replication).
When considering data management, the main requirements of a P2P data manage-
ment system are autonomy, query expressiveness, efficiency, quality of service, and
fault-tolerance. Depending on the P2P network architecture (unstructured, struc-
tured DHT, or superpeer), these requirements can be achieved to varying degrees.
Unstructured networks have better fault-tolerance but can be quite inefficient
because they rely on flooding for query routing. Hybrid systems have better potential
to satisfy high-level data management requirements. However, DHT systems are
best for key-based search and could be combined with superpeer networks for more
complex searching.

Most of the work on data sharing in P2P systems has initially focused on schema
management and query processing, in particular to deal with semantically rich data.
However, more recently with blockchain, there has been much more work on update
management, replication, transactions, and access control, yet over relatively simple
data. P2P techniques have also received some attention to help scaling up data
management in the context of Grid Computing or to help protecting data privacy
in the context of information retrieval or data analytics.

Research on P2P data management is having renewed interest in two major
contexts: blockchain and edge computing. In the context of blockchain, the major
research issues, which we discussed at length at the end of Sect. 9.5, have to do with
scalability and security of the public blockchain (e.g., consensus protocols), smart

9.7 Bibliographic Notes 445

contract management, in particular, using declarative query languages, benchmark-
ing, and blockchain interoperability. In the context of edge computing, typically
with IoT devices, mobile edge servers could be organized as a P2P network to
offload data management tasks. Then, the issues are at the crossroads of mobile
and P2P computing.

9.7 Bibliographic Notes

Data management in “modern” P2P systems is characterized by massive distribu-
tion, inherent heterogeneity, and high volatility. The topic is fully covered in several
books including [Vu et al. 2009, Pacitti et al. 2012]. A shorter survey can be found
in [Ulusoy 2007]. Discussions on the requirements, architectures, and issues faced
by P2P data management systems are provided in [Bernstein et al. 2002, Daswani
et al. 2003, Valduriez and Pacitti 2004]. A number of P2P data management systems
are presented in [Aberer 2003].

In unstructured P2P networks, the problem of flooding is handled using one of
two methods as noted. Selecting a subset of neighbors to forward requests is due
to Kalogeraki et al. [2002]. The use of random walks to choose the neighbor set is
proposed by Lv et al. [2002], using a neighborhood index within a radius is due to
Yang and Garcia-Molina [2002], and maintaining a resource index to determine the
list of neighbors most likely to be in the direction of the searched peer is proposed by
Crespo and Garcia-Molina [2002]. The alternative proposal to use epidemic protocol
is discussed in [Kermarrec and van Steen 2007] based on gossiping that is discussed
in [Demers et al. 1987]. Approaches to scaling gossiping are given in [Voulgaris
et al. 2003].

Structured P2P networks are discussed in [Ritter 2001, Ratnasamy et al. 2001,
Stoica et al. 2001]. Similar to DHTs, dynamic hashing has also been successfully
used to address the scalability issues of very large distributed file structures [Devine
1993, Litwin et al. 1993]. DHT-based overlays can be categorized according
to their routing geometry and routing algorithm [Gummadi et al. 2003]. We
introduced in more details the following DHTs: Tapestry[Zhao et al. 2004], CAN
[Ratnasamy et al. 2001], and Chord [Stoica et al. 2003]. Hierarchical structured P2P
networks that we discussed and their source publications are the following: PHT
[Ramabhadran et al. 2004], P-Grid [Aberer 2001, Aberer et al. 2003a], BATON
[Jagadish et al. 2005], BATON* [Jagadish et al. 2006], VBI-tree [Jagadish et al.
2005], P-Tree [Crainiceanu et al. 2004], SkipNet [Harvey et al. 2003], and Skip
Graph [Aspnes and Shah 2003]. Schmidt and Parashar [2004] describe a system that
uses space-filling curves for defining structure, and Ganesan et al. [2004] propose
one based on hyperrectangle structure.

Examples of superpeer networks include Edutella [Nejdl et al. 2003] and JXTA.
A good discussion of the issues of schema mapping in P2P systems can be found

in [Tatarinov et al. 2003]. Pairwise schema mapping is used in Piazza [Tatarinov
et al. 2003], LRM [Bernstein et al. 2002], Hyperion [Kementsietsidis et al. 2003],

446 9 Peer-to-Peer Data Management

and PGrid [Aberer et al. 2003b]. Mapping based on machine learning techniques is
used in GLUE [Doan et al. 2003b]. Common agreement mapping is used in APPA
[Akbarinia et al. 2006, Akbarinia and Martins 2007] and AutoMed [McBrien and
Poulovassilis 2003]. Schema mapping using IR techniques is used in PeerDB [Ooi
et al. 2003] and Edutella [Nejdl et al. 2003]. Semantic query reformulation using
pairwise schema mappings in social P2P systems is addressed in [Bonifati et al.
2014].

An extensive survey of query processing in P2P systems is provided in
[Akbarinia et al. 2007b] and has been the basis for writing Sections 9.2 and 9.3.
An important kind of query in P2P systems is top-k queries. A survey of top-k
query processing techniques in relational database systems is provided in [Ilyas
et al. 2008]. An efficient algorithm for top-k query processing is the Threshold
Algorithm (TA) which was proposed independently by several researchers [Nepal
and Ramakrishna 1999, Güntzer et al. 2000, Fagin et al. 2003]. TA has been the
basis for several algorithms in P2P systems, in particular in DHTs [Akbarinia
et al. 2007a]. A more efficient algorithm than TA is the Best Position Algorithm
[Akbarinia et al. 2007c]. Several TA-style algorithms have been proposed for
distributed top-k query processing, e.g., TPUT[Cao and Wang 2004].

Top-k query processing in P2P systems has received much attention: in unstruc-
tured systems, e.g., PlanetP [Cuenca-Acuna et al. 2003] and APPA [Akbarinia et al.
2006]; in DHTs, e.g., APPA [Akbarinia et al. 2007a]; and in superpeer systems, e.g.,
Edutella [Balke et al. 2005]. Solutions to P2P join query processing are proposed in
PIER [Huebsch et al. 2003]. Solutions to P2P range query processing are proposed
in locality sensitive hashing [Gupta et al. 2003], PHT [Ramabhadran et al. 2004],
and BATON [Jagadish et al. 2005].

The survey of replication in P2P systems by Martins et al. [2006b] has been the
basis for Sect. 9.4. A complete solution to data currency in replicated DHTs, i.e.,
providing the ability to find the most current replica, is given in [Akbarinia et al.
2007d]. Reconciliation of replicated data is addressed in OceanStore [Kubiatowicz
et al. 2000], P-Grid [Aberer et al. 2003a], and APPA [Martins et al. 2006a, Martins
and Pacitti 2006, Martins et al. 2008]. The action-constraint framework has been
proposed for IceCube [Kermarrec et al. 2001].

P2P techniques have also received attention to help scaling up data management
in the context of Grid Computing [Pacitti et al. 2007] or edge/mobile computing
[Tang et al. 2019], or to help protecting data privacy in data analytics [Allard et al.
2015].

Blockchain is a relatively recent, polemical topic, featuring enthusiastic propo-
nents [Ito et al. 2017] and strong opponents, e.g., famous economist N. Roubini
[Roubini 2018]. The concepts are defined in the pioneering paper on the bit-
coin blockchain [Nakamoto 2008]. Since then, many other blockchains for other
cryptocurrencies have been proposed, e.g., Etherum and Ripple. Most of the
initial contributions have been made by developers, outside the academic world.
Thus, the main source of information is on web sites, white papers, and blogs.
Academic research on blockchain has recently started. In 2016, Ledger, the first
academic journal dedicated to various aspects (computer science, engineering, law,

Exercises 447

economics, and philosophy) related to blockchain technology was launched. In
the distributed system community, the focus has been on improving the security
or performance of the protocols, e.g., Bitcoin-NG [Eyal et al. 2016]. In the data
management community, we can find useful tutorials in major conferences, e.g.,
[Maiyya et al. 2018], survey papers, e.g., [Dinh et al. 2018], and system designs
such as BigchainDB. Understanding the performance bottlenecks also requires
benchmarking, as shown in BLOCKBENCH [Dinh et al. 2018].

Exercises

Problem 9.1 What is the fundamental difference between P2P and client–server
architectures? Is a P2P system with a centralized index equivalent to a client–server
system? List the main advantages and drawbacks of P2P file sharing systems from
different points of view:

• end-users;
• file owners;
• network administrators.

Problem 9.2 (**) A P2P overlay network is built as a layer on top of a physical
network, typically the Internet. Thus, they have different topologies and two nodes
that are neighbors in the P2P network may be far apart in the physical network.
What are the advantages and drawbacks of this layering? What is the impact of
this layering on the design of the three main types of P2P networks (unstructured,
structured, and superpeer)?

Problem 9.3 (*) Consider the unstructured P2P network in Fig. 9.4 and the bottom-
left peer that sends a request for resource. Illustrate and discuss the two following
search strategies in terms of result completeness:

• flooding with TTL=3;
• gossiping with each peer has a partial view of at most 3 neighbors.

Problem 9.4 (*) Consider Fig. 9.7, focusing on structured networks. Refine the
comparison using the scale 1–5 (instead of low, moderate, high) by considering the
three main types of DHTs: trie, hypercube, and ring.

Problem 9.5 (**) The objective is to design a P2P social network application, on
top of a DHT. The application should provide basic functions of social networks:
register a new user with her profile; invite or retrieve friends; create lists of friends;
post a message to friends; read friends’ messages; post a comment on a message.
Assume a generic DHT with put and get operations, where each user is a peer in the
DHT.

Problem 9.6 (**) Propose a P2P architecture of the social network application,
with the (key, data) pairs for the different entities which need be distributed.

448 9 Peer-to-Peer Data Management

Describe how the following operations: create or remove a user; create or remove
a friendship; read messages from a list of friends. Discuss the advantages and
drawbacks of the design.

Problem 9.7 (**) Same question, but with the additional requirement that private
data (e.g., user profile) must be stored at the user peer.

Problem 9.8 Discuss the commonalities and differences of schema mapping in
multidatabase systems and P2P systems. In particular, compare the local-as-view
approach presented in Chap. 7 with the pairwise schema mapping approach in
Sect. 9.2.1.

Problem 9.9 (*) The FD algorithm for top-k query processing in unstructured P2P
networks (see Algorithm 9.4) relies on flooding. Propose a variation of FD where,
instead of flooding, random walk or gossiping is used. What are the advantages and
drawbacks?

Problem 9.10 (*) Apply the TPUT algorithm (Algorithm 9.2) to the three lists
of the database in Fig. 9.10 with k=3. For each step of the algorithm, show the
intermediate results.

Problem 9.11 (*) Same question applied to Algorithm DHTop (see Algo-
rithm 9.5).

Problem 9.12 (*) Algorithm 9.6 assumes that the input relations to be joined are
placed arbitrarily in the DHT. Assuming that one of the relations is already hashed
on the join attributes, propose an improvement of Algorithm 9.6.

Problem 9.13 (*) To improve data availability in DHTs, a common solution is
to replicate (k, data) pairs at several peers using several hash functions. This
produces the problem illustrated in Example 9.7. An alternative solution is to use
a nonreplicated DHT (with a single hash function) and have the nodes replicating
(k, data) pairs at some of their neighbors. What is the effect on the scenario in
Example 9.7? What are the advantages and drawbacks of this approach, in terms of
availability and load balancing?

Problem 9.14 (*) Discuss the commonalities and differences of public versus
private (permissioned) blockchain. In particular, analyze the properties that need
be provided by the transaction validation protocol.

Chapter 10
Big Data Processing

The past decade has seen an explosion of “data-intensive” or “data-centric”
applications where the analysis of large volumes of heterogeneous data is the basis
of solving problems. These are commonly known as big data applications and
special systems have been investigated to support the management and processing of
this data—commonly referred to as big data processing systems. These applications
arise in many domains, from health sciences to social media to environmental
studies and many others. Big data is a major aspect of data science, which combines
various disciplines such as data management, data analysis and statistics, machine
learning, and others to produce new knowledge from data. The more the data, the
better the results of data science can be with the attendant challenges in managing
and processing these data.

There is no precise definition of big data applications or systems, but they are
typically characterized by the “four Vs” (although others have also been specified,
such as value, validity, etc.):

1. Volume. The datasets that are used in these applications are very large, typically
in the petabyte (PB; 1015bytes) range and with the growth of Internet-of-Things
applications soon to reach zettabytes (ZB; 1021bytes). To put this in perspective,
Google has reported that in 2016, user uploads to YouTube required 1PB of
new storage capacity per day. They expect this to grow exponentially, with 10×
increase every five years (so by the time you read this book, their daily storage
addition may be 10PB). Facebook stores about 250 billion images (as of 2018)
requiring exabytes of storage. Alibaba has reported that during a heavy period
in 2017, 320 PB of log data was generated in a six hour period as a result of
customer purchase activity.

2. Variety. Traditional (usually meaning relational) DBMSs are designed to work
on well-structured data—that is what the schema describes. In big data appli-
cations, this is no longer the case, and multimodal data has to be managed and
processed. In addition to structured, the data may include images, text, audio, and
video. It has been claimed that 90% of generated data today is unstructured. The

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_10

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_10

450 10 Big Data Processing

big data systems need to be able to manage and process all of these data types
seamlessly.

3. Velocity. An important aspect of big data applications is that they sometimes
deal with data that is arriving at the system at high-speed requiring systems to be
able to process the data as they arrive. Following the examples we gave above for
volume, Facebook has to process 900 million photos that users upload per day;
Alibaba has reported that during a peak period, they had to process 470 million
event logs per second. These numbers do not normally allow systems to store the
data before processing, requiring real-time capabilities.

4. Veracity. The data used by big data applications comes from many sources, each
of which may not be entirely reliable or trustworthy—there could be noise, bias,
inconsistencies among the different copies and deliberate misinformation. This
is commonly referred to as “dirty data” and it is unavoidable as the data sources
grow along with the volume. It is claimed that dirty data costs upwards of $3
billion per year in US economy alone. Big data systems need to “clean” the
data and maintain their provenance in order to reason about their trustworthiness.
Another important dimension of veracity is “truthfulness” of the data to ensure
that the data is not altered by noise, biases, or intentional manipulation. The
fundamental point is that the data needs to be trustable.

These characteristics are quite different than the data that traditional DBMSs
(which we have focused on up to this point) have to deal with—they require new
systems, methodologies, and approaches. Perhaps it can be argued that parallel
DBMSs (Chap. 8) handle volume reasonably well as there are very large datasets
managed by these systems; however, the systems that can address all of the
dimensions highlighted above require attention. These are topics of active research
and development and our objective in this chapter and the next is to highlight the
system infrastructure approaches that are currently being considered to address the
first three points; veracity can be considered orthogonal to our discussion and is
a complete topic in itself, and we will not consider it further. In the Bibliographic
Notes, we will point to some of the literature in that area. Readers will recall that we
briefly discussed it in Chap. 7 (specifically in Sect. 7.1.5); we will also address the
issue in the context of web data management in Chap. 12 (specifically, Sect. 12.6.3).

Compared to traditional DBMSs, big data management uses a different software
stack with the following layers (see Fig. 10.1). Big data management relies on
a distributed storage layer, whereby data is typically stored in files or objects
distributed over the nodes of a shared-nothing cluster. Data stored in distributed
files is accessed directly by a data processing framework that enables programmers
to express parallel processing code without an intervening DBMS. There could be
scripting and declarative (SQL-like) querying tools on top of the data processing
frameworks. For the management of multimodal data, typically NoSQL systems are
deployed as part of the data access layer, or a streaming engine may be used, or even
search engines can be employed. Finally, at the top various tools are provided that
can be used to build more complex big data analytics, including machine learning
(ML) tools. This software stack, as exemplified by Hadoop that we discuss shortly,

10.1 Distributed Storage Systems 451

DataData

Data Storage

Data Processing
Framework

Script, SQLNoSQL
Search

Streaming

Data Analysis

Resource
Management

Data

Fig. 10.1 Big data management software stack

fosters the integration of loosely-coupled (typically open source) components. For
instance, a NoSQL DBMS typically supports different storage systems (e.g., HDFS,
etc.). These systems are commonly deployed in a public or private cloud computing
environment. This software stack architecture will guide our discussion in this and
the following chapter.

The rest of this chapter is focused on components of this architecture going
bottom-up, and, in the process, we address two of the V’s that characterize big
data systems. Section (10.1) focuses on distributed storage systems. Section 10.2,
covers two important big data processing frameworks, focusing on MapReduce and
Spark. Together with Sect. 10.1, this section addresses scalability concerns, i.e., the
“volume” dimension. In Sect. 10.3 we discuss data processing for stream data—this
addresses the “velocity” dimension. In Sect. 10.4 we cover graph systems focusing
on graph analytics, addressing some of the “variety” issues. Variety issues are also
addressed in Sect. 10.5 where we discuss the emerging field of data lakes. Data lakes
integrate data from many sources that may or may not be structured. We leave the
NoSQL side of this architecture to the next chapter (Chap. 11).

10.1 Distributed Storage Systems

Big data management relies on a distributed storage layer, whereby data is typically
stored in files or objects distributed over the nodes of a shared-nothing cluster. This
is one major difference with the software stack of current DBMSs that relies on
block storage. The history of DBMSs is interesting to understand the evolution of
this software stack. The very first DBMSs, based on the hierarchical or network
models, were built as extensions of a file system, such as COBOL, with inter-file

452 10 Big Data Processing

links, and the first relational DBMSs too were built on top of a file system. For
instance, the famous INGRES DBMS was implemented atop the Unix file system.
But using a general-purpose file system was making data access quite inefficient, as
the DBMS could have no control over data clustering on disk or cache management
in main memory. The main criticism for this file-based approach was the lack of
operating system support for database management (at that time). As a result, the
architecture of relational DBMSs evolved from file-based to block-based, using
a raw disk interface provided by the operating system. A block-based interface
provides direct, efficient access to disk blocks (the unit of storage allocation on
disks). Today all relational DBMSs are block-based, and thus have full control over
disk management. The evolution towards parallel DBMSs kept the same approach,
primarily to ease the transition from centralized systems. A primary reason for the
return to the use of a file system is that the distributed storage can be made fault-
tolerant and scalable, which makes it easier to build the upper data management
layers.

Within this context, the distributed storage layer typically provides two solutions
to store data, objects, or files, distributed over cluster nodes. These two solutions are
complementary, as they have different purposes and can be combined.

Object storage manages data as objects. An object includes its data along with
a variable amount of metadata, and a unique identifier (oid) in a flat object space.
Thus, an object can be represented as a triple 〈oid, data, metadata〉, and once created,
it can be directly accessed by its oid. The fact that data and metadata are bundled
within each object makes it easy to move objects between distributed locations.
Unlike in file systems where the type of metadata is the same for all files, objects
can have variable amounts of metadata. This allows much user flexibility to express
how objects are protected, how they can be replicated, when they can be deleted,
etc. Using a flat object space allows managing massive amounts (e.g., billions or
trillions) of unstructured data objects. Finally, objects can be easily accessed with
a simple REST-based API with put and get commands easy to use on Internet
protocols. Object stores are particularly useful to store a very high number of
relatively small data objects, such as photos, mail attachments, etc. Therefore, this
approach has been popular with most cloud providers who serve these applications.

File storage manages data within unstructured files (i.e., sequences of bytes) on
top of which data can be organized as fixed-length or variable-length records. A
file system organizes files in a directory hierarchy and maintains for each file its
metadata (file name, folder position, owner, length of the content, creation time, last
update time, access permissions, etc.), separate from the content of the file. Thus, the
file metadata must first be read to locate the file’s content. Because of such metadata
management, file storage is appropriate for sharing files locally within a data center
and when the number of files are limited (e.g., in the hundreds of thousands). To
deal with big files that may contain high numbers of records, files need to be split
and distributed on multiple cluster nodes, using a distributed file system. One of the
most influential distributed file systems is Google File System (GFS). In the rest of
this section, we describe GFS. We also discuss the combination of object storage
and file storage, which is typically useful in the cloud.

10.1 Distributed Storage Systems 453

10.1.1 Google File System

GFS has been developed by Google for its internal use and is used by many Google
applications and systems, such as Bigtable.

Similar to other distributed file systems, GFS aims at providing performance,
scalability, fault-tolerance, and availability. However, the targeted systems, shared-
nothing clusters, are challenging as they are made of many (e.g., thousands of)
servers built from inexpensive hardware. Thus, the probability that any server fails
at a given time is high, which makes fault-tolerance difficult. GFS addresses this
problem through replication and failover as we discuss later. It is also optimized
for Google data-intensive applications such as search engine or data analysis.
These applications have the following characteristics. First, their files are very
large, typically several gigabytes, containing many objects such as web documents.
Second, workloads consist mainly of read and append operations, while random
updates are rare. Read operations consist of large reads of bulk data (e.g., 1 MB)
and small random reads (e.g., a few KBs). The append operations are also large
and there may be many concurrent clients that append the same file. Third, because
workloads consist mainly of large read and append operations, high throughput is
more important than low latency.

GFS organizes files as a trie of directories and identifies them by pathnames. It
provides a file system interface with traditional file operations (create, open, read,
write, close, and delete file) and two additional operations: snapshot, which allows
creating a copy of a file or of a directory trie, and record append, which allows
appending data (the “record”) to a file by concurrent clients in an efficient way.

A record is appended atomically, i.e., as a continuous byte string, at a byte
location determined by GFS. This avoids the need for distributed lock management
that would be necessary with the traditional write operation (which could be used to
append data).

The architecture of GFS is illustrated in Fig. 10.2. Files are divided into fixed-
size partitions, called chunks, of large size, i.e., 64 MB. The cluster nodes consist of
GFS clients that provide the GFS interface to applications, chunk servers that store
chunks, and a single GFS master that maintains file metadata such as namespace,

Application

GFS Client
Master

Chunk Server Chunk Server

Get chunk location

Get chunk

Fig. 10.2 GFS Architecture

454 10 Big Data Processing

access control information, and chunk placement information. Each chunk has a
unique id assigned by the master at creation time and, for reliability reasons, is
replicated on at least three chunk servers. To access chunk data, a client must first
ask the master for the chunk locations, needed to answer the application file access.
Then, using the information returned by the master, the client can request the chunk
data to one of the replicas.

This architecture using single master is simple, and since the master is mostly
used for locating chunks and does not hold chunk data, it is not a bottleneck.
Furthermore, there is no data caching at either clients or chunk servers, since
it would not benefit large reads. Another simplification is a relaxed consistency
model for concurrent writes and record appends. Thus, the applications must deal
with relaxed consistency using techniques such as checkpointing and writing self-
validating records. Finally, to keep the system highly available in the face of
frequent node failures, GFS relies on replication and automatic failover. Each
chunk is replicated at several servers (by default, GFS stores three replicas). The
master periodically sends each chunk server heartbeat messages. Then, upon a
chunk server’s failure, the master performs automatic failover, by redirecting all file
accesses to an alive server that holds a replica. GFS also replicates all the master’s
data to a shadow master, so that in case of a master’s failure, the shadow master
automatically takes over.

There are open source implementations of GFS, such as Hadoop Distributed
File System (HDFS), which we discuss in Sect. 10.2.1. There are other important
open source distributed file systems for cluster systems, such as GlusterFS for
shared-nothing and Global File System 2 (GFS2) for shared-disk, both being now
developed by Red Hat for Linux.

10.1.2 Combining Object Storage and File Storage

An important trend is to combine object and file storage in a single system, in
order to support both high numbers of objects and large files. The first system that
combined object and file storage is Ceph. Ceph is an open source software storage
platform, now developed by Red Hat in a shared-nothing cluster at exabyte scale.
Ceph decouples data and metadata operations by eliminating file allocation tables
and replacing them with data distribution functions designed for heterogeneous and
dynamic clusters of unreliable object storage devices (OSDs). This allows Ceph to
leverage the intelligence present in OSDs to distribute the complexity surrounding
data access, update serialization, replication and reliability, failure detection, and
recovery. Ceph and GlusterFS are now the two major storage platforms offered by
Red Hat for shared-nothing clusters.

HDFS, on the other hand, has become the de facto standard for scalable and
reliable file system management for big data. Thus, there is much incentive to add
object storage capabilities to HDFS, in order to make data storage easier for cloud
providers and users. In Azure HDInsight, Microsoft’s Hadoop-based solution for

10.2 Big Data Processing Frameworks 455

big data management in the cloud, HDFS is integrated with Azure Blob Storage, the
object storage manager, to operate directly on structured or unstructured data. Blob
storage containers store data as key-value pairs, and there is no directory hierarchy.

10.2 Big Data Processing Frameworks

An important class of big data applications requires data management without the
overhead of full database management, and cloud services require scalability for
applications that are easy to partition into a number of parallel but smaller tasks—
the so-called embarrassingly parallelizable applications. For these cases where
scalability is more important than declarative querying, transaction support, and
database consistency, a parallel processing platform called MapReduce has been
proposed. The fundamental idea is to simplify parallel processing using a distributed
computing platform that offers only two interfaces: map and reduce. Programmers
implement their own map and reduce functions, while the system is responsible for
scheduling and synchronizing the map and reduce tasks. This architecture is further
optimized in Spark, so much of the following discussion applies to both frameworks.
We start discussing basic MapReduce (Sect. 10.2.1), and then introduce Spark
optimizations (Sect. 10.2.2).

The commonly cited advantages of this type of processing framework are as
follows:

1. Flexibility. Since the code for map and reduce functions is written by the user,
there is considerable flexibility in specifying the exact processing that is required
over the data rather than specifying it using SQL. Programmers can write simple
map and reduce functions to process large volumes of data on many machines
(or nodes, as is commonly used in parallel DBMSs)1 without the knowledge of
how to parallelize the processing of a MapReduce job.

2. Scalability. A major challenge in many existing applications is to be able
to scale with increasing data volumes. In particular, in cloud applications
elastic scalability is desired, which requires the system to be able to scale its
performance up and down dynamically as the computation requirements change.
Such a “pay-as-you-go” service model is now widely adopted by the cloud
computing service providers, and MapReduce can support it seamlessly through
data parallel execution.

3. Efficiency. MapReduce does not need to load data into a database, avoiding the
high cost of data ingest. It is, therefore, very efficient for applications that require
processing the data only once (or only a few times).

1In MapReduce literature, these are commonly referred as workers, while we use the term node
in our discussions in the parallel DBMS chapter and the following chapter on NoSQL. The reader
should note that we use the terms interchangeably.

456 10 Big Data Processing

4. Fault-tolerance. In MapReduce, each job is divided into many small tasks that
are assigned to different machines. Failure of a task or a machine is compensated
by assigning the task to a machine that is able to handle the load. The input of a
job is stored in a distributed file system where multiple replicas are kept to ensure
high availability. Thus, the failed map task can be repeated correctly by reloading
the replica. The failed reduce task can also be repeated by repulling the data from
the completed map tasks.

The criticisms of MapReduce center on its reduced functionality, requiring
considerable amount of programming effort, and its unsuitability for certain types
of applications (e.g., those that require iterative computations). MapReduce does
not require the existence of a schema and does not provide a high-level language
such as SQL. The flexibility advantage mentioned above comes at the expense
of considerable (and usually sophisticated) programming on the part of the user.
Consequently, a job that can be performed using relatively simple SQL commands
may require considerable amount of programming in MapReduce, and this code is
generally not reusable. Moreover, MapReduce does not have built-in indexing and
query optimization support, always resorting to scans (this is highlighted both as an
advantage and as a disadvantage depending on the viewpoint).

10.2.1 MapReduce Data Processing

As noted above, MapReduce is a simplified parallel data processing approach
for execution on a computer cluster. It enables programmers to express in a
simple, functional style their computations on large datasets and hides the details
of parallel data processing, load balancing, and fault-tolerance. Its programming
model consists of two user-defined functions, map() and reduce() with the following
semantics:

map (k1, v1) → list (k2, v2)

reduce (k2, list (v2)) → list (v3)

The map function is applied to each record in the input dataset to compute zero
or more intermediate (key,value) pairs. The reduce function is applied to all the
values that share the same unique key in order to compute a combined result. Since
they work on independent inputs, map and reduce can be automatically processed
in parallel, on different data partitions using many cluster nodes.

Figure 10.3 gives an overview of MapReduce execution in a cluster. The inputs of
the map function are a set of key/value pairs. When a MapReduce job is submitted
to the system, the map tasks (which are processes that are referred to as mappers)
are started on the compute nodes and each map task applies the map function to
every key/value pair (k1, v1) that is allocated to it. Zero or more intermediate

10.2 Big Data Processing Frameworks 457

...In
pu

t
da

ta
se

t

Map

Map

Map

Map

(k1, v)

(k2, v)
(k2, v)

(k2, v)

(k1, v)

(k1, v)

(k2, v)

Group by k

Group by k

(k1, (v, v, v))

(k2, (v, v, v, v)) Reduce

Reduce

O
ut

pu
t

da
ta

se
t

Fig. 10.3 Overview of MapReduce Execution

key/value pairs (list (k2, v2)) can be generated for the same input key/value pair.
These intermediate results are stored in the local file system and sorted by the keys.
After all the map tasks complete, the MapReduce engine notifies the reduce tasks
(which are also processes that are referred to as reducers) to start their processing.
The reducers will pull the output files from the map tasks in parallel, and merge-
sort the files obtained from the map tasks to combine the key/value pairs into a set
of new key/value pair (k2, list (v2)), where all values with the same key k2 are
grouped into a list and used as the input for the reduce function—this is commonly
known as the shuffle process, which is, in effect, a parallel sort. The reduce function
applies the user-defined processing logic to process the data. The results, normally
a list of values, are written back to the storage system.

In addition to writing the map and reduce functions, programmers can exert
further control (e.g., input/output formats and partitioning function) by means of
user-defined functions (UDFs) that these systems provide.

Example 10.1 Let us consider relation EMP(ENO, ENAME, TITLE, CITY) and the
following SQL query that returns for each city, the number of employees whose
name contains “Smith.”

SELECT CITY, COUNT(*)
FROM EMP
WHERE ENAME LIKE "%Smith"
GROUP BY CITY

Processing this query with MapReduce can be done with the following Map and
Reduce functions (which we give in pseudo code).

Map (Input: (TID,EMP), Output: (CITY,1))
if EMP.ENAME like ‘‘\%Smith’’ return (CITY,1)

Reduce (Input: (CITY,list(1)), Output: (CITY, SUM(list(1)))
return (CITY,SUM(1))

map is applied in parallel to every tuple in EMP. It takes one pair (TID,EMP), where
the key is the EMP tuple identifier (TID) and the value being the EMP tuple, and,

458 10 Big Data Processing

if applicable, returns one pair (CITY,1). Note that the parsing of the tuple format
to extract attributes needs to be done by the map function. Then all (CITY,1) pairs
with the same CITY are grouped together and a pair (CITY,list(1)) is created for
each CITY. reduce is then applied in parallel to compute the count for each CITY
and produce the result of the query. �

10.2.1.1 MapReduce Architecture

In discussing specifics of MapReduce, we will focus on one particular implemen-
tation: Hadoop. The Hadoop stack is shown in Fig. 10.4, which is a particular
realization of the big data architecture depicted in Fig. 10.1. Hadoop uses Hadoop
Distributed File System (HDFS) as its storage, although it can be deployed on
different storage systems. HDFS and the Hadoop processing engine are loosely
connected; they can either share the same set of compute nodes, or be deployed
on different nodes. In HDFS, two types of nodes are created: name node and data
node. The name node records how data is partitioned, and monitors the status of
data nodes in HDFS. Data imported into HDFS is split into equal-size chunks and
the name node distributes the data chunks to different data nodes that store and
manage the chunks assigned to them. The name node also acts as the dictionary
server, providing partitioning information to applications that search for a specific
chunk of data.

The decoupling of the Hadoop processing engine from the underlying storage
system allows the processing and the storage layers to scale up and down indepen-
dently as needed. In Sect. 10.1, we discussed different approaches to distributed
storage system design and gave examples. Each data chunk that is stored at each
machine in the cluster is an input to one mapper. Therefore, if the dataset is
partitioned into k chunks, Hadoop will create k mappers to process the data (or
vice versa).

Hadoop processing engine has two types of nodes, the master node and the
worker nodes, as shown in Fig. 10.5. The master node controls the execution flow

Hadoop Distributed File System (HDFS)

Hadoop
(MapReduce engine)

Hive & HiveQL

Hbase

Third party analysis tools
R (statistics), Mahout (machine learning), . . .

Yarn

Fig. 10.4 Hadoop stack

10.2 Big Data Processing Frameworks 459

Scheduler

Master

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

Fig. 10.5 Master-Worker Architecture of MapReduce

of the tasks at the worker nodes via the scheduler module (in Hadoop, this is known
as the job tracker). Each worker node is responsible for a map or reduce task. The
basic implementation of MapReduce engine needs to include the following modules
the first three of which are essential modules; the remaining ones are extensions:

1. Scheduler. The scheduler is responsible for assigning the map and reduce tasks to
the worker nodes based on data locality, network state, and other statistics of the
worker nodes. It also controls fault-tolerance by rescheduling a failed process to
other worker nodes (if possible). The design of the scheduler significantly affects
the performance of the MapReduce system.

2. Map module. The map module scans a data chunk and invokes the user-defined
map() function to process the input data. After generating the intermediate results
(a set of key/value pairs), it groups the results based on the partition keys, sorts
the tuples in each partition, and notifies the master node about the positions of
the results.

3. Reduce module. The reduce module pulls data from the mappers after receiving
the notification from the master. Once all intermediate results are obtained from
the mappers, the reducer merges the data by keys and all values with the same
key are grouped together. Finally, the user-defined function is applied to each
key/value pair, and the results are output to distributed storage.

4. Input and Output modules. The input module is responsible for recognizing the
input data with different input formats, and splitting the input data into key/value
pairs. This module allows the processing engine to work with different storage
systems by allowing different input formats to be used to parse different data

460 10 Big Data Processing

sources, such as text files, binary files, and even database files. The output module
similarly specifies the output format of mappers and reducers.

5. Combine module. The purpose of this module is to reduce the shuffling cost
by performing a local reduce process for the key/value pairs generated by the
mapper.

6. Partition module. This is used to specify how to shuffle the key/value pairs from
mappers to reducers. The default partition function is defined as f (key) =
h(key)%numOf Reducer , where % indicates the mod operator and h(key) is
the hash value of the key. A key/value pair (k, v) is sent to the f (k)-th reducer.
Users can define different partition functions to support more sophisticated
behavior.

7. Group module. Group module specifies how to merge the data received from
different map processes into one sorted run in the reduce phase. By specifying
the group function, which is a function of the map output key, the data can be
merged more flexibly. For example, if the map output key is a composition of
several attributes (sourceIP,destURL), the group function can only compare a
subset of the attributes (sourceIP). As a result, in the reducer module, the reduce
function is applied to the key/value pairs with the same sourceIP.

Given its stated purpose of scaling over a large number of processing nodes,
a MapReduce system needs to support fault-tolerance efficiently. When a map or
reduce task fails, another task on a different machine is created to reexecute the
failed task. Since the mapper stores the results locally, even a completed map task
needs to be reexecuted in case of a node failure. In contrast, since the reducer stores
the results in the distributed storage, a completed reduce task does not need to be
reexecuted when a node failure occurs.

10.2.1.2 High-Level Languages for MapReduce

The design philosophy of MapReduce is to provide a flexible framework that
can be exploited to solve different problems. Therefore, MapReduce does not
provide a query language, expecting the users to implement their customized map()
and reduce() functions. While this provides considerate flexibility, it adds to the
complexity of application development. To make MapReduce easier to use, a
number of high-level languages have been developed, some of which are declarative
(HiveQL, Tenzing, JAQL), others are data flow languages (Pig Latin), procedural
languages (Sawzall), Java library (FlumeJava), and still others are declarative
machine learning languages (SystemML). From a database system perspective,
perhaps the declarative languages are of more interest. Although these languages
are different, they generally follow a similar architecture, as shown in Fig. 10.6. The
upper level consists of multiple query interfaces such as command line interface,
web interface, or JDBC/ODBC server. Currently, only Hive supports all these query
interfaces. After a query is issued from one of the interfaces, the query compiler
parses this query to generate a logical plan using the metadata. Then, the rule

10.2 Big Data Processing Frameworks 461

Command
Line

Interface

Web
Interface

JDBC/
ODBC
Server

Query Compiler

Query Optimizer

Query Executor

Meta
Data

Upper Level System

Master

Slave ... Slave

Hadoop

Fig. 10.6 Architecture of Declarative Query Implementations

based optimization, such as pushing projection down, is applied to optimize the
logical plan. Finally, the plan is transformed into a directed acyclic graph (DAG)
of MapReduce jobs, which are subsequently submitted to the execution engine one-
by-one.

10.2.1.3 MapReduce Implementation of Database Operators

If MapReduce implementations such as Hadoop are to be used for data management
going beyond the “embarrassingly parallelizable” applications, it is important to
implement typical database operators in these systems, and this has been the
subject of some research. Simple operators such as select and project can be
easily supported in the map function, while complex ones, such as theta-join,
equijoin, multiway join require significant effort. In this section, we discuss these
implementations.

The projection and selection can be easily implemented by adding a few
conditions to the map function to filter the unnecessary columns and tuples.
The implementation of aggregation can be easily achieved using the map() and
reduce() functions; Fig. 10.7 illustrates the data flow of the MapReduce job
for the aggregation operator. The mapper extracts an aggregation key (Aid) for
each incoming tuple (transformed into key/value pair). The tuples with the same
aggregation key are shuffled to the same reducers, and the aggregation function
(e.g., sum, min) is applied to these tuples.

Join operator implementations have attracted by far the most attention, as it is one
of the more expensive operators, and a better implementation may potentially lead to

462 10 Big Data Processing

Key Value
1 R1

2 R2

m
ap

Aid Value
1 R1

2 R2

Mapper 1

R

Extracting aggrega-
tion attribute (Aid)

Key Value
3 R3

4 R4

m
ap

Aid Value
1 R3

2 R4

Mapper 2

R

Map Phase

P
ar

ti
ti
on

in
g

by
A
id

(R
ou

nd
R
ob

in
)

Aid Value

1
R1

R3 re
du

ce Result

1, f (R1, R3)

Reducer 1

Grouping
by Aid

Applying the aggregation function
for the tuples with the same Aid

Aid Value

2
R2

R4

re
du

ce Result

2, f (R2, R4)

Reducer 2

Reduce Phase

Fig. 10.7 Data flow of aggregation

MapReduce join implementations

θ-join

Equijoin

Repartition join Semi-join Map-only join

Broadcast join Trojan join

Similarity join Multiway join

Multiple
MapReduce

jobs
Replicated join

Fig. 10.8 Join implementations on MapReduce

significant performance improvement. The existing join algorithms are summarized
in Fig. 10.8. We will describe theta-join and equijoin implementations as examples.

Recall that theta-join (θ -join) is a join operator where the join condition θ is one
of {<,≤,=,≥,>, �=}. A binary (natural) join of relations R(A,B) and S(B,C) can
be performed using MapReduce in the following manner. Relation R is partitioned
and each partition is assigned to a set of mappers. Each mapper takes tuples 〈a,b〉
and converts them to a list of key/value pairs of the form (b, 〈a,R〉), where the key
is the join attribute and the value includes the relation name R. These key/value pairs
are shuffled and sent to the reducers so that all pairs with the same join key value
are collected at the same reducer. The same process is applied to S. Each reducer
then joins tuples of R with tuples of S (the inclusion of relation name in the value
ensures that tuples of R or S are not joined with each other).

10.2 Big Data Processing Frameworks 463

1

1

1
2

2

2

3

3

3
4

4

4

R S

Fig. 10.9 Matrix-to-Reducer Mapping for Cross Product

To efficiently implement theta-join on MapReduce, the |R| × |S| tuples should
be evenly distributed on the R reducers, so that each reducer generates about the
same number of results: |R|×|S|

r
. 1-Bucket-Theta algorithm achieves this by evenly

partitioning the join matrix into buckets (Fig. 10.9) and assigning each bucket to
only one reducer to eliminate duplicate computation. This algorithm, at the same
time, ensures that all the reducers are assigned the same number of buckets to
balance the load. In Fig. 10.9, both tables R and S are evenly partitioned into 4
parts, resulting in a matrix with 16 buckets that are grouped into 4 regions. Each
region is assigned to a reducer.

Figure 10.10 illustrates the data flow of the theta-join when θ equals “�=” for
the case depicted in Fig. 10.9. The map and reduce phases are implemented as
follows:

1. Map. On the map side, for each tuple from R or S, a row id or column id (call it
Bid) between 1 and the number of regions (4 in the above example) is randomly
selected as the map output key, and the tuple is concatenated with a tag indicating
the origin of the tuple as the map output value. The Bid specifies which row or
column in the matrix (of Fig. 10.9) the tuple belongs to, and the output tuples of
the map() function are shuffled to all the reducers (each reducer corresponds to
one region) that intersect with the row or column.

2. Reduce. On the reduce side, the tuples from the same table are grouped together
based on the tags. The local theta-join computation is then applied to the two
partitions. The qualified results (R.key �= S.key) are output to storage. Since
each bucket is assigned to only one reducer, no redundant results are generated.

In Fig. 10.9 there are 16 buckets organized into 4 regions; there are 4 reducers
in Fig. 10.10, each responsible for one region. Since Reducer 1 is in charge of
region 1, all R tuples where Bid = 1 or 2 and S tuples with Bid = 1 or 2 are sent
to it. Similarly, Reducer 2 gets R tuples with Bid = 1 or 2 and S tuples with Bid
= 3 or 4. Each reducer partitions the tuples it receives into two parts based on
the origins, and joins these parts.

Let us now consider equijoin, which is a special case of θ -join where θ is “=”.
There are three variations of equijoin implementations: repartition join, semijoin-
based join, and map-only join. We discuss repartition join in some detail below.
Semijoin-based implementation consists of three MapReduce jobs: The first is a full

464 10 Big Data Processing

Key Value
1 R1

2 R2

3 R3

4 R4

m
ap

Bid Tuple
1 ‘R’,1,R1

4 ‘R’,2,R2

3 ‘R’,3,R3

2 ‘R’,4,R4

Mapper 1

R

Randomly assign-
ing bucket ID (Bid)

Key Value
1 S1

2 S2

3 S3

4 S4

m
ap

Bid Tuple
4 ‘S’,1,S1

2 ‘S’,2,S2

3 ‘S’,3,S3

1 ‘S’,4,S4

Mapper 2

S

Map Phase

P
ar

ti
ti
on

in
g

by
B
id

(R
ou

nd
R
ob

in
)

Bid Tuple

1
‘R’,1,R1

‘S’,4,S4

2
‘R’,4,R4

‘S’,2,S2

re
du

ce

Origin Tuple
‘R’ 1,R1

‘R’ 4,R4

Origin Tuple
‘S’ 2,S2

‘S’ 4,S4

Result
R1 S2

R1 S4

R4 S2

Reducer 1

Grouping
by Bid

Aggregate tuples
based on origins

Local θ-join
(θ is ‘ �=′)

Bid Tuple
1 ‘R’,1,R1

2 ‘R’,4,R4

3 ‘S’,3,S3

4 ‘S’,1,S1

re
du

ce

Origin Tuple
‘R’ 1,R1

‘R’ 4,R4

Origin Tuple
‘S’ 1,S1

‘S’ 3,S3

Result
R1 S3

R4 S1

R4 S3

Reducer 2

Reducer 3

Reducer 4

Reduce Phase

Fig. 10.10 Data flow of theta-join (theta equals “�=”)

MapReduce job that extracts the unique join keys from one of the relations, say R,
where the map task extracts the join key of each tuple and shuffles the identical keys
to the same reducer, and the reduce task eliminates the duplicate keys and stores
the results in DFS as a set of files (u0, u1, . . . , uk). The second job is a map-only
job that produces the semijoin results S′ = S � R. In this job, since the files that
store the unique keys of R are small, they are broadcast to each mapper and locally
joined with the part of S (called data chunk) assigned to that mapper. The third job
is also a map-only job where S′ is broadcast to all the mappers and locally joined
with R. Map-only join requires only map side processing. If the inner relation is
much smaller than the outer relation, then shuffling can be avoided (as proposed
in broadcast join) by using a map task similar to the third job of semijoin-based
algorithm. Assuming S is the inner and R is the outer relation, each mapper loads
the full S table to build an in-memory hash and scans its assigned data chunk of R
(i.e., Ri). The local hash join is performed between S and Ri .

Repartition join is the default join algorithm for MapReduce in Hadoop. The
two tables are partitioned in the map phase, followed by shuffling the tuples with
the same key to the same reducer that joins the tuples. As shown in Fig. 10.11,
repartition join can be implemented as one MapReduce job.

1. Map. Two types of mappers are created in the map phase, each of which is
responsible for processing one of the tables. For each tuple of the table, the

10.2 Big Data Processing Frameworks 465

Key Value
1 R1

2 R2

3 R3

4 R4

m
ap

Key Value
1 ‘R’,R1

2 ‘R’,R2

3 ‘R’,R3

4 ‘R’,R4

Mapper 1

R

Tagging origins

Key Value
1 S1

2 S2

3 S3

4 S4

m
ap

Key Value
1 ‘S’,S1

2 ‘S’,S2

3 ‘S’,S3

4 ‘S’,S4

Mapper 1

S

Map Phase

P
ar

ti
ti
on

in
g

by
ke

y
(R

ou
nd

R
ob

in
) Key Tuple

1
‘R’,R1

‘S’,S1

3
‘R’,R3

‘S’,S3

re
du

ce

Result
R1 S1

R3 S3

Reducer 1

Grouping by keys Local join

Key Tuple

2
‘R’,R2

‘S’,S2

4
‘R’,R4

‘S’,S4

re
du

ce

Result
R2 S2

R4 S4

Reducer 2

Reduce Phase

Fig. 10.11 Data flow of repartition join

mapper outputs a key/value pair (k, 〈t, v〉), where k is the join attribute value, v

is the entire tuple, and t is the tag indicating the source relation of the key/value
pair. More specifically, the map phase consists of the following steps:

(a) Scanning the data from HDFS and generating the key/value pair.
(b) Sorting the map output (i.e., set of key/value pairs). On the map side, the

output of each mapper needs to be sorted before being shuffled to the
reducers.

2. Shuffle. After the map tasks are finished, the generated data is shuffled to the
reduce tasks.

3. Reduce. The reduce phase includes the following steps:

(a) Merge. Each reducer merges the data that it receives using the sort-merge
algorithm. Assume that the memory is sufficient for processing all sorted
runs together. Then the reducer only needs to read and write data into local
file systems once.

(b) Join. After the sorted runs are merged, the reducer needs two phases to
complete the join. First, the tuples with the same key are split into two
parts based on the tag indicating its source relation. Second, the two parts
are joined locally. Assuming that the number of tuples for the same key are
small and can fit in memory, this step only needs to scan the sorted run once.

(c) Write to HDFS. Finally, the results generated by the reducer should be
written back to the HDFS.

466 10 Big Data Processing

Job 1 Job 2 Job 3

Check
Fixpoint

Check
Fixpoint

Check
Fixpoint

DFS: Invariant Files

Job 1 Result

Job 2 Result

Job 3 Result

DFS: Variant Files

continue continue
end

Fig. 10.12 MapReduce Processing for Iterative Computation

10.2.2 Data Processing Using Spark

Basic MapReduce, as discussed in the previous section, is not well suited for a
class of data-intensive applications that are characterized by iterative computation
requiring a chain of (i.e., multiple) MapReduce jobs (e.g., data mining) or online
aggregation. In this section, we discuss an important extension of MapReduce to
deal with this class of applications—this extension is the Spark system. We first
start by discussing how iterative computing can be performed in a basic MapReduce
system and why this is problematic.

Figure 10.12 shows an iterative job with three iterations that have two features:
(1) the data source of each iteration consists of a variant part and an invariant part—
the variant part consists of the files generated from the previous MapReduce jobs
(the gray arrows in Fig. 10.12), and the invariant part is the original input file (the
black arrows in Fig. 10.12); (2) a progress check might be needed at the end of each
iteration to detect whether a fixpoint has been reached. The fixpoint has different
meanings in different applications; in the k-means clustering algorithm that we
discuss in Example 10.2, it may reflect whether the within-cluster sum-of-squares
is minimized, or in the PageRank computation discussed in Example 10.4 it might
reflect that the rank computation of each vertex has converged. This figure identifies
three important issues in using MapReduce for these types of tasks. The first is
that after each job (i.e., iteration), the intermediate results have to be written to
the distributed file system (e.g., HDFS) and read again at the start of the next job
(iteration). The second point is that there are no guarantees for subsequent jobs to
be assigned to the same machines. Consequently, invariant data that do not change
between iterations cannot be kept at the worker nodes and may have to be reread.

10.2 Big Data Processing Frameworks 467

The third point is that an additional job is needed at the end of each iteration to
compare the results generated between the current job and the previous one (i.e.,
check for convergence). All of these have high overhead, making it inefficient to
use MapReduce for these applications. There have been a number of approaches to
address these problems, some of which are task-specific, such as graph analytics
that we discuss in the next section, while others, such as Spark, are more general.

An example of a workload that is problematic in MapReduce is the k-means
clustering algorithm that is used quite frequently in big data analysis. We present
this workload in Example 10.2 and discuss the difficulties in accomplishing it using
MapReduce.

Example 10.2 The k-means algorithm takes a set X of values and partitions them in
k clusters by placing each value xi ∈ X in cluster Cj whose centroid has the lowest
distance to xi . The centroid of a cluster is the mean of the values in that cluster. The
distance computation is the within-cluster-sum-of-squares, i.e.,

∑k
j=1

∑
xi∈Cj

(xi −
μj)

2 where μj is the centroid of cluster Cj . So, we are trying to find the allocation
that minimizes this function for each xi .

The standard k-means algorithm takes as input the value set X =
{x1, x2, . . . , xr }, and an initial set of centroids M = {μ1, μ2, . . . , μm} (usually
r � m) and iteratively performs the following three steps:

1. Compute the distance of each xi ∈ X to every centroid μj ∈ M and assign xi to
cluster Cz if μz minimizes the above function.

2. Calculate a new set of centroids M according to the new value assignment to
clusters.

3. For each of the clusters in C, check if the new and old centroid values are
the same; if they are, convergence has been reached and the algorithms stops.
Otherwise another iteration is needed with the new centroid values.

The implementation of this algorithm in MapReduce is straightforward: the
first step is performed during map phase with each worker (mapper) performing
the computation on a subset of X, while the second step is performed during
reduce phase. The third step, checking for convergence, is another job as discussed
above. One thing to note is that all of the mappers need the full set of centroids
M; therefore, the convergence-checking job (step 3) needs to broadcast the new
centroids if convergence has not been reached.

The problems with implementing iterative jobs using MapReduce are exhibited
in this example: the results of computation at the end of each iteration (i.e., the
newly computed centroids M and the current configuration of the clusters C) have
to be written to HDFS so that they can be read by the mappers and reducers in the
next iteration; since the assignment of the subsequent iteration job can go to any
machine, the invariant data (i.e., X) has to be repartitioned and read again; and there
is an extra convergence-check job at the end of each iteration. �

Spark addresses this shortcoming of MapReduce by providing an abstraction for
sharing data across multiple stages of an iterative computation. The abstraction is

468 10 Big Data Processing

called resilient distributed dataset (RDD). It accomplishes efficient sharing in two
ways: the first is that it ensures that the partitions that are assigned to each worker
node are maintained between iterations to avoid shuffling data; the second is that
it avoids writing and reading from HDFS in between iteration jobs by keeping the
RDDs in memory—since the assignment to workers is maintained from one iteration
to the next, this is feasible.

An RDD is a data structure that users can create, decide how it is partitioned
among the worker nodes of a cluster, and explicitly decide whether it is stored
on disk or kept in memory. If it is kept in memory, it serves as the working set
cache of the application. An RDD is immutable (i.e., read-only) collection of data
records; performing an update over an RDD is accomplished by a transformation
(e.g., map(), filter(), groupByKey()) that results in the generation of a new RDD.
Thus, an RDD can be created either from the data read from the file system or from
another RDD through a transformation.

Example 10.3 Let us consider the implementation of k-means clustering (Exam-
ple 10.2) in Spark. We will not give the full algorithm here2 but will highlight how
it addresses the issues:

1. Create an RDD for the invariant data (set X), and cache it in memory to bypass
the I/O that has to be performed in between each iteration.

2. Create an RDD for variant data (chosen centroids M).
3. Compute the distance between xi ∈ X and each μj ∈ M; save these distances as

an RDD D.
4. Create a new RDD that includes each xi and the μj with minimum distance from

D.
5. Create an RDD Mnew that includes the mean value of xi assigned to each μj .
6. Compare M and Mnew, and decide if convergence has been achieved (check

fixpoint).
7. If not converged yet, then M ← Mnew. There is no need to reload invariant data

again, Spark can proceed to step 10.3.

�
An important aspect of an RDD is whether it persists across iterations (or

MapReduce jobs). If this is desired, then one of the two transforms have to be
applied to the RDD: cache or persist. If it is desired for the RDD to remain in main
memory across jobs, then cache is used; if flexibility is needed in specifying the
“storage level” (e.g., disk only, disk and memory, etc.), then persist is used with the
appropriate options with the default being persistence in memory.

Computation of RDDs is done lazily, when the program requires an action.
Actions (e.g., collect(), count()) are different than transforms in that they materialize

2The full implementation of a variant of the algorithm we discussed above can
be found at https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/
mllib/clustering/KMeans.scala (accessed January 2018).

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala

10.2 Big Data Processing Frameworks 469

Create RDD

· · ·

RDD

Cache? Cache
Yes

Transform
RDD?

No

Transform
Yes

Process

No

Done
No

Yes

Each transform generates a new RDD
that may also be cached or processed

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;
Subsequent processing of the same RDD from cache

HDFS

HDFS

Fig. 10.13 Spark Program Flow

the RDD when the first action is performed, and the specified action is executed
on the RDD at all the nodes where it is partitioned. We will discuss the execution
aspect later.

Let us now look at the workflow of a Spark program execution—this is depicted
in Fig. 10.13. The first thing that the program does is to create an RDD from the
raw data on HDFS. Then, based on the user decision as to whether to cache/persist
the RDD, the system takes appropriate preparations. Then, there may be additional
transforms to generate other RDDs and, for each, cache/persist decision is specified.
Finally, the processing starts with the actions indicated in the program. As noted
above, the first action on an RDD materializes it, and then applies the action. The
processing iterates over multiple actions and jobs.

Let us now discuss Spark support for executing programs written using the
RDD concept. Spark expects to have a controller machine that executes the driver
software. The driver generates the RDDs indicated in the program, and upon the
first action on an RDD, materializes it, partitions it across the worker nodes, and
then executes the action on the workers. The controller corresponds to the master

470 10 Big Data Processing

node in MapReduce while the driver performs the schedule function. Based on
the cache/persist decision for each RDD, the driver instructs the workers to take
appropriate action. When the workers indicate that the execution of the action is
completed, the driver initiates the subsequent action. There are usual optimizations
with respect to how RDDs are managed, how to deal with straggler workers, etc.,
but these are outside our scope.

Spark adds to standard MapReduce fault-tolerance by maintaining the lineage
of the RDDs. In other words, it maintains a graph of how each RDD is generated
from other RDDs. The lineage is constructed as an object and stored persistently
for recovery. When a failure occurs and an RDD is lost, it can be recomputed based
on the lineage. Furthermore, as discussed below, each RDD is partitioned across
worker machines, so it is likely that the loss is restricted to some partitions of an
RDD, and the recomputation can be restricted to those.

An important objective of Spark is to implement the reference architecture we
discussed in a uniform way but providing a common ecosystem. This has resulted in
the development of a relational DBMS on top of Spark (Spark SQL), a data stream
system (Spark Streaming), and a graph processing system (GraphX). We discuss
Spark Stream and GraphX in subsequent sections.

10.3 Stream Data Management

The traditional data management systems that we have been considering until now
consist of a set of unordered objects that are relatively static, with insertions,
updates, and deletions occurring less frequently than queries. They are sometimes
called snapshot databases since they show a snapshot of the values of data objects at
a given point in time.3 Queries over these systems are executed when posed and the
answer reflects the current state of the database. The typical paradigm is executing
transient queries over persistent data.

A class of applications has emerged that does not fit this data model and
querying paradigm. These include, among others, sensor networks, network traffic
analysis, Internet-of-Things (IoT), financial tickers, on-line shopping and auctions,
and applications that analyze transaction logs (such as web usage logs and telephone
call records). In these applications, data is generated in real time, taking the form of
an unbounded sequence (stream) of values. These are referred to as the data stream
applications. In this section, we discuss systems that support these applications. Data
stream applications are reflective of the velocity characteristic of big data.

Systems that process data streams usually come in two flavors: data stream
management systems (DSMSs) that provide the functionalities of a typical DBMS

3Recall from our earlier discussion that data warehouses typically store historical data to allow
analysis over time. Most systems we have been considering are OLTP ones, which deal with
snapshots.

10.3 Stream Data Management 471

including a query language (declarative or data flow-based), and data stream
processing systems (DSPSs) that do not claim to embody full DBMS functionality.
Early systems were typically DSMSs, some of which had declarative languages
(e.g., STREAM, Gigascope, TelegraphCQ) whereas others (e.g., Aurora and its
distributed version Borealis) had a data flow language. More recent ones are
typically in the DSPS class (e.g., Apache Storm, Heron, Spark Streaming, Flink,
MillWheel, TimeStream). Many of the early DSMSs were single machine systems
(except Borealis), while the more recent DSPSs are all distributed/parallel systems.

A fundamental assumption of the data stream model is that new data is generated
continually and in a fixed order, although the arrival rates may vary across
applications from millions of items per second (e.g., Internet traffic monitoring)
down to several items per hour (e.g., temperature and humidity readings from a
weather monitoring station). The ordering of streaming data may be implicit (by
arrival time at the processing site) or explicit (by generation time, as indicated
by a timestamp appended to each data item by the source). As a result of these
assumptions, data stream systems (DSSs)4 face the following requirements.

1. Much of the computation performed by a DSS is push-based, or data-driven.
Newly arrived stream items are continually (or periodically) pushed into the
system for processing. On the other hand, a traditional DBMS employs a mostly
pull-based, or query-driven computation model, where processing is initiated
when a query is posed.

2. As a consequence of the above, DSS queries and workloads are usually persistent
(also referred to as continuous, long-running, or standing queries) in that they are
issued once, but remain active in the system for possibly a long period of time.
This means that a stream of updated results must be produced over time. These
systems may, of course, accept and run transient ad-hoc queries as a traditional
DBMS, but the persistent queries are their identifying characteristic.

3. A data stream is assumed to have unbounded, or at least unknown, length.
Therefore, it is not possible to follow the usual approach and store the data
completely before executing the queries; queries need to be executed as the data
arrives at the system. Some systems employ continuous processing model where
each new data item is processed as soon as it arrives in the system (e.g., Apache
Storm, Heron). Others employ windowed processing model where incoming data
items are batched and processed as a batch (e.g., , STREAM, Spark Streaming).
From the user’s point of view, recently arrived data may be more interesting
and useful, leading to window definitions at the application level. Systems that
follow a continuous processing model may (and usually do) provide windowing
in their API. Therefore, from a user’s perspective, they do both. Systems may also
implement windows internally to overcome blocking operations as we discuss
shortly.

4We will use this more general term when the separation between DSMS and DSPS is not
important for the discussion.

472 10 Big Data Processing

Working
Storage

Summary
Storage

Static Storage

Updates to
Static Data

Query
Repository

User Queries

Query
ProcessorInput

Monitor
Output
Buffer

Fig. 10.14 Abstract reference architecture for a data stream management system

4. The system conditions may not be stable during the lifetime of a persistent query.
For example, the stream arrival rates may fluctuate and the query workload may
change.

An abstract single-node reference architecture for DSSs is shown in Fig. 10.14.
Data arrives from one or more external sources. An input monitor regulates the input
rates, perhaps by dropping items if the system is unable to keep up data is typically
stored in three partitions: temporary working storage (e.g., for window queries that
will be discussed shortly), summary storage for stream synopses (which is optional
since some systems do not expose stream state to applications and therefore do not
need this), and static storage for metadata (e.g., physical location of each source).
Long-running queries are registered in the query repository and placed into groups
for shared processing, though one-time queries over the current state of the stream
may also be posed. The query processor communicates with the input monitor and
may reoptimize the query plans in response to changing input rates. Results are
streamed to the users or temporarily buffered. Users may then refine their queries
based on the latest results. In a distributed/parallel DSS, this architecture would be
replicated at each node and additional components are added for communication
and distributed data management.

10.3.1 Stream Models, Languages, and Operators

We now focus on the fundamental model issues of stream systems. There is rich
literature on this subject that we will point to in the Bibliographic Notes; our

10.3 Stream Data Management 473

objective at this point is to highlight and explain the fundamental concepts to
understand the subsequent discussion.

10.3.1.1 Data Models

A data stream is an append-only sequence of timestamped items that arrive in
some order. While this is the commonly accepted definition, there are more relaxed
versions; for example, revision tuples, which are understood to replace previously
reported (presumably erroneous) data, may be considered so that the sequence is not
append-only. In publish/subscribe systems, where data is produced by some sources
and consumed by those who subscribe to those data feeds, a data stream may be
thought of as a sequence of events that are being reported continually. Since items
may arrive in bursts, a stream may instead be modeled as a sequence of sets (or bags)
of elements, with each set storing elements that have arrived during the same unit
of time (no order is specified among data items that have arrived at the same time).
In relation-based stream models (e.g., STREAM), individual items take the form
of relational tuples such that all tuples arriving on the same stream have the same
schema. In object-based models (e.g., COUGAR and Tribeca), sources and item
types may be instantiations of (hierarchical) data types with associated methods.
In more recent systems such as Apache Storm, Spark Streaming and others, data
items can be any application-specific data—so, sometimes the generic term payload
is used. Stream items may contain explicit source-assigned timestamps or implicit
timestamps assigned by the DSMS upon arrival, so each data item is a tuple
〈timestamp, payload〉. In either case, the timestamp attribute may or may not be part
of the stream schema, and therefore may or may not be visible to users. Stream items
may arrive out-of-order (if explicit timestamps are used) and/or in preprocessed
form. For instance, rather than propagating the header of each IP packet, one value
(or several partially preaggregated values) may be produced to summarize the length
of a connection between two IP addresses and the number of bytes transmitted.

A number of different classifications of window models have been defined, but
two criteria are the most important and prevalent:

1. Direction of movement of the endpoints: Two fixed endpoints define a fixed
window, two sliding endpoints (either forward or backward, replacing old items
as new items arrive) define a sliding window, and one fixed endpoint and one
moving endpoint (forward or backward) define a landmark window,.

2. Definition of window size: Logical or time-based windows are defined in terms
of a time interval, whereas physical (also known as count-based) windows are
defined in terms of the number of data items. Moreover, partitioned windows
may be defined by splitting a window into groups and defining a separate count-
based window on each group. The most general type is a predicate window, in
which an arbitrary predicate specifies the contents of the window; e.g., all the
packets from TCP connections that are currently open. A predicate window is

474 10 Big Data Processing

analogous to a materialized view and are also called session windows or user-
defined windows.

Using this classification, the more important window models are time-based and
count-based sliding windows. These have attracted the most attention and most of
our discussions will focus on them.

10.3.1.2 Stream Query Models and Languages

An important issue is what the semantics of persistent (continuous) queries are,
i.e., how do they generate answers. Persistent queries may be monotonic or non-
monotonic. A monotonic query is one whose results can be updated incrementally.
That is, it is sufficient to reevaluate the query over newly arrived items and append
qualifying tuples to the result. Consequently, the answer of a monotonic persistent
query is a continuous, append-only stream of results. Optionally, the output may be
periodically updated by appending a batch of new results. Non-monotonic queries
may produce results that cease to be valid as new data is added and existing data
changed (or deleted). Consequently, they may need to be recomputed from scratch
during every reevaluation.

As noted earlier, DSMSs provide a query language for access. Two fundamental
querying paradigms can be identified: declarative and procedural. Declarative
languages have SQL-like syntax, but stream-specific semantics. The languages in
this class include CQL, GSQL, and StreaQuel. Procedural languages construct
queries by defining an acyclic graph of operators (e.g., Aurora).

Languages that support windowed execution provide two language primitives:
size and slide. The first specifies the length of the window and the second
specifies how frequently the window moves. For example, for a time-based sliding
window query, size=10min, slide=5sec would mean that we are interested
in operating on data in a window that is 10 minutes long, and the window “moves”
every 5 seconds. These have an impact on the way the content of the window is
managed and we discuss the issue in Sect. 10.3.2.1.

10.3.1.3 Streaming Operators and Their Implementation

The applications that generate data streams also have similarities in the type
of operations they perform. We list below a set of fundamental operations over
streaming data.

• Selection: All streaming applications require support for complex filtering.
• Complex aggregation: Complex aggregates, including nested aggregates (e.g.,

comparing a minimum with a running average), frequent item queries, etc. are
needed to compute trends in the data.

10.3 Stream Data Management 475

Str1 Str2

f

a

b

d
a
c

e

f
g

d

b

��

f

insert

probe

generate result

(b)

Str1

a
b

σa
pass or
drop

aoutput

(a)

Fig. 10.15 Continuous query operators: (a) Selection, (b) Join

• Multiplexing and demultiplexing: Physical streams may need to be decom-
posed into a series of logical streams and conversely logical streams may need to
be fused into one physical stream (similar to group-by and union, respectively).

• Stream mining: Operations such as pattern matching, similarity searching, and
forecasting are needed for on-line mining of streaming data.

• Joins: Support should be included for multistream joins and joins of streams with
static metadata.

• Windowed queries: All of the above query types may be constrained to return
results inside a window (e.g., the last 24 hours or the last one hundred packets).

While these look, by and large, as ordinary relational query operators, their
implementation and optimization present novel challenges that we discuss below.

Some of these operators are stateless (e.g., projection and selection) and their
relational implementations may be used in streaming queries without significant
modifications. Figure 10.15(a) depicts the implementation of selection operator as
an example. Incoming tuples are simply filtered based on the select condition.

However, stateful operators (e.g., joins) have blocking behavior in their relational
implementations that is not suitable in DSSs. For instance, prior to returning the next
tuple, the Nested Loops Join (NLJ) may potentially scan the entire inner relation
and compare each tuple therein with the current outer tuple. Given the unbounded
nature of streaming data, such blocking is problematic. It has been proven that a
query is monotonic if and only if it is non-blocking, which means that it does not
need to wait until the end-of-input marker before producing results. Some operators

476 10 Big Data Processing

have non-blocking counterparts, such as joins and simple aggregates. For example,
a non-blocking pipelined symmetric hash join (of two character streams, Str1 and
Str2) builds hash tables on the fly for each of Str1 and Str2 (see Fig. 10.15(b)).
Hash tables are stored in main memory and when a tuple from one of the relations
arrives, it is inserted into its table and the other tables are probed for matches to
generate results involving the new tuple, if any. Joins of more than two streams and
joins of streams with a static relation are straightforward extensions. In the former,
for each arrival on one input, the states of all the other inputs are probed in some
order. In the latter, new arrivals on the stream trigger the probing of the relation.
Since maintaining hash tables on unbounded streams is not practical, most DSMSs
only support window joins, where the windows over each input stream are defined
and joins are computed over the data in these windows based on the specific window
semantics.

Unblocking a query operator may be accomplished by reimplementing it in an
incremental form, restricting it to operate over a window, and exploiting stream
constraints such as punctuations, which are constraints (encoded as data items)
that specify conditions for all future items. We return to punctuations soon. Sliding
window operators process two types of events: arrivals of new data and expirations
of old data. We discuss this at length in the next section when we discuss query
processing issues.

10.3.2 Query Processing over Data Streams

With some modifications, the query processing methodology over streaming data
is similar to its relational counterpart: declarative queries are translated into
execution plans that map logical operators specified in the query into physical
implementations. However, a number of differences arise in the details.

An important difference is the introduction of persistent queries and the fact that
operations consume data pushed into the plan by the sources, rather than pulling
data from sources as in a traditional DBMS. Furthermore, as discussed above, the
operations may be (and often are) more complicated than relational operators and
involve UDFs. Queues allow sources to push data into the query plan and operations
to retrieve data as needed. A simple scheduling strategy allocates a time slice to each
operation, during which it extracts tuples from its input queue(s), processes them in
timestamp order, and deposits output tuples into the next operation’s input queue
(Fig. 10.16).

As noted earlier, DSSs can follow either the continuous processing model or
the windowed execution model. A fundamental concern in the latter case is how
the windows are managed—specifically, the addition and deletion of data items
to/from the current window. This represents another distinction from relational
DBMSs and we discuss it in Sect. 10.3.2.1. Two other issues arise in stream
systems that we discuss: load management when data arrival rate exceeds the
system’s processing capacity (Sect. 10.3.2.2), and dealing with out-of-order data

10.3 Stream Data Management 477

Data
Source

Operation

Operation

Operation

Operation

Output

st
re
am

stream

stream

stream

stream

strea
m

stream

stream

Data
Source

Fig. 10.16 Stream query plan example

items (Sect. 10.3.2.3). Finally, persistent queries provide additional opportunities
for multiquery processing, and we discuss this topic in Sect. 10.3.2.4.

Distributed and parallel DSSs follow different paths, similar to their relational
counterparts. In the distributed case, the fundamental technique is partitioning the
query plan across multiple processing nodes on data that reside on those nodes.
Partitioning the query plan involves assigning query operators to nodes and may
require rebalancing over time. The issues here are analogous to distributed DBMSs
that we have discussed at length earlier in the book. In parallel systems, data-
parallel processing is typically followed where the stream data is partitioned and
each processing node executes the same query on a subset of the data. Most modern
systems follow the latter approach so we discuss those further in Sect. 10.3.2.5.

10.3.2.1 Windowed Query Execution

We noted earlier that in windowed execution, the system has to deal with the arrival
of new data and expiration of old data. The actions taken upon arrival and expiration
vary across operators. A new data item may generate new results (e.g., join) or
remove previously generated results (e.g., negation). Furthermore, an expired data
item may cause removal of data items from the result (e.g., aggregation) or addition
of new data to the result (e.g., duplicate elimination and negation). Note that we
are not discussing here the case where an application deletes a data item. This
discussion is about removal of data items from query results as a consequence of
window operations.

Consider, for example, the sliding window join: a newly arrived data on one of
the inputs probes the state of the other input, as in a join of unbounded streams.
Additionally, expired data is removed from the state.

478 10 Big Data Processing

Expiration from an individual time-based window is simple: a data item expires
if its timestamp falls out of the range of the window.

In a count-based window, the number of data items remains constant over time.
Therefore, expiration can be implemented by overwriting the oldest data item with a
newly arrived one. However, if an operator stores state corresponding to the output
of a count-based window join, then the number of data items in the state may change,
depending upon the join attribute values of new tuples.

In general, there are two techniques for sliding window query processing and
state maintenance: the negative tuple approach and the direct approach. In the
negative tuple approach, each window referenced in the query is assigned an
operator that explicitly generates a negative tuple for every expiration, in addition
to pushing newly arrived tuples into the query plan. Thus, each window must be
materialized so that the appropriate negative tuples are produced. Negative tuples
propagate through the query plan and are processed by operators in a similar way as
regular tuples, but they also cause operators to remove corresponding “real” tuples
from their state. The negative tuple approach can be implemented efficiently using
hash tables as operator state so that expired tuples can be looked up quickly in
response to negative tuples. The downside is that twice as many tuples must be
processed by the query because every tuple eventually expires from its window and
generates a corresponding negative tuple. Furthermore, additional operators must be
present in the plan to generate negative tuples as the window slides forward.

Direct approach handles negation-free queries over time-based windows. These
queries have the property that the expiration times of base tuples and intermediate
results can be determined via their expiry timestamps, which is the arrival time
plus the window length. Hence, operators can access their state directly and find
expired tuples without the need for negative tuples. The direct approach does not
incur the overhead of negative tuples and does not have to store the base windows
referenced in the query. However, it may be slower than the negative tuple approach
for queries over multiple windows since state buffers may require a sequential scan
during insertions or deletions.

10.3.2.2 Load Management

The stream arrival rates may be so high that not all tuples can be processed,
regardless of the (static or run-time) optimization techniques used. In this case, two
types of load shedding may be applied: random or semantic, with the latter making
use of stream properties or quality-of-service parameters to drop tuples believed to
be less significant than others. For an example of semantic load shedding, consider
performing an approximate sliding window join with the objective of attaining the
maximum result size. The idea is that tuples that are about to expire or tuples that are
not expected to produce many join results should be dropped (in case of memory
limitations), or inserted into the join state but ignored during the probing step (in
case of CPU limitations). Note that other objectives are possible, such as obtaining
a random sample of the join result.

10.3 Stream Data Management 479

In general, it is desirable to shed load in such a way as to minimize the drop in
accuracy. This problem becomes more difficult when multiple queries with many
operators are involved, as it must be decided where in the query plan the tuples
should be dropped. Clearly, dropping tuples early in the plan is effective because
all of the subsequent operators enjoy reduced load. However, this strategy may
adversely affect the accuracy of many queries if parts of the plan are shared. On
the other hand, load shedding later in the plan, after the shared subplans have been
evaluated and the only remaining operators are specific to individual queries, may
have little or no effect in reducing the overall system load.

One issue that arises in the context of load shedding and query plan generation
is whether an optimal plan chosen without load shedding is still optimal if load
shedding is used. It has been shown that this is indeed the case for sliding window
aggregates, but not for queries involving sliding window joins.

Note that instead of dropping tuples during periods of high load, it is also possible
to put them aside (e.g., spill to disk) and process them when the load has subsided.
Finally, note that in the case of periodic reexecution of persistent queries, increasing
the reexecution interval may be thought of as a form of load shedding.

10.3.2.3 Out-of-Order Processing

Our discussion so far has assumed that the DSS processes incoming data items
in-order, usually in timestamp order. However, this is not always realistic. Since
the data arrives from external sources, some items may arrive late, or out-of-order
with respect to their generation time. Furthermore, no data may be received from
a source (e.g., a remote sensor or a router) for some time, which could mean that
there are no new data to report, or that the source is down. Particularly in distributed
systems, this should be considered the normal operating condition due to network
disconnections, length of recovery, etc. Consequently, out-of-order processing needs
to be considered.

One early approach to deal with this issue is to build in a “slack” that establishes
an upper bound on how much unordered the data can be. This is followed in Aurora
that has, for example, a buffered sort operator where the incoming stream is buffered
for this slack time before being processed. The operator outputs the stream in sorted
order on some attribute. Data that arrives later than the slack time units are dropped.
Truviso introduces the concept of “drift” to accommodate the case where streams
from the same data source are ordered within themselves, but delays may occur in
data feed from some sources. When the input monitor detects this, it starts a drift
period during which it buffers data from other sources. The difference between the
two is that Aurora can define slack on a per-operator basis whereas Truviso has drift
management at the input monitor.

Another solution is to use punctuations introduced previously. In this case, a
punctuation is a special tuple that contains a predicate that is guaranteed to be
satisfied by the remainder of the data stream. For instance, a punctuation with
the predicate timestamp > 1262304000 guarantees that no more tuples will

480 10 Big Data Processing

Str1 Str2

σ1 σ2

��

Q1

Str1 Str2

σ3 σ4

��

Q2

Str1 Str2

��

σ1 and σ2 σ3 and σ4

Q1 Q2

Str1 Str2

σ1 or σ3 σ2 or σ4

��

σ1 and σ2 σ3 and σ4

Q1 Q2

Fig. 10.17 Separate and shared query plans for Q1 and Q2

arrive with timestamps below the given Unix time; of course, if this punctuation is
generated by the source, then it is useful only if tuples arrive in timestamp order.
Punctuations that govern the timestamps of future tuples are typically referred to as
heartbeats.

10.3.2.4 Multiquery Optimization

Database queries may share parts that are identical and techniques for optimizing
a batch of queries have long been of interest and this is referred to as multiquery
optimization. In streaming systems that support persistent queries, there is more
opportunity to detect and exploit shared components and state in processing
them. For example, aggregate queries over different window lengths and possibly
different SLIDE intervals may share state and data structures. Similarly, state and
computation may be shared across similar predicates and joins. Therefore, a DSS
may group similar queries and run a single query plan per group.

Figure 10.17 shows some of the issues involved in shared query plans. The first
two plans correspond to executing queries Q1 and Q2 separately, in which selections
are evaluated before joins. The third plan executes both queries and evaluates the
join first, then the selections (note that the join operator effectively creates two
copies of its output stream). Despite sharing work across two queries, the third plan
may be less efficient than separate execution if only a small fraction of the join
result satisfies the selection predicates σ1 through σ4. If so, then the join operator
will perform a great deal of unnecessary work over time. The fourth plan addresses
this problem by “prefiltering” the streams before they are joined.

10.3 Stream Data Management 481

10.3.2.5 Parallel Data Stream Processing

Most of the modern DSSs run on large-scale parallel clusters; so, these are
parallel data stream processing systems (PDSPS). These systems have significant
similarities to parallel databases we discussed in Chap. 8 and, perhaps more
importantly to the big data processing frameworks in Sect. 10.2 of this chapter.
Therefore in the following discussion we rely on those discussions and appeal to the
specific characteristics of data stream systems discussed earlier.

The typical execution environment in these systems can be characterized as
parallel execution of continuous operators. Referring to Fig. 10.16, each vertex is
a different continuous operation that is assigned to a number of worker nodes. To
simplify the discussion, let us assume that each worker only executes one operation.
In this context, each worker machine executes the operation assigned to it on a
partition of the data stream and produces results that are streamed to the workers
that execute the subsequent operation in the query plan. The important point to note
here is that partitioning of the stream happens in between each pair of operations.
So, the execution of each operation follows three steps:

1. Partitioning of the incoming stream;
2. Execution of the operation on the partition; and
3. (Optionally) aggregation of the results from the workers.

Stream Partitioning

As with all parallel systems, a particular objective of partitioning is to obtain a bal-
anced load across the workers to avoid stragglers. The differentiating characteristic
here is that the dataset that is assigned to each worker arrives in a streaming fashion;
therefore the partitioning of the data (according to a key attribute) to multiple
workers needs to be done on the fly rather than as an offline process as in the systems
discussed in Sect. 10.2.

The simplest load balancing approach in distributed systems is to randomly
distribute the load among workers. Shuffle partitioning routes incoming data items
among the workers in a round-robin fashion (hence, it is also referred to as round-
robin partitioning). Such partitioning results in a perfectly balanced workload. For
stateless applications, this works well, but stateful ones require more care. Since
data items with the same key may be assigned to different workers, an aggregation
step is required for stateful operations to combine the partial results of each worker
for each key at each step of the execution (more on this in Sect. 10.3.2.5). The
aggregation is expensive and needs to be taken into account. Additionally, shuffle
partitioning also has high space demands for stateful operations as each worker has
to maintain the state of each key.

The other extreme is hash partitioning—a technique we have seen a number of
times. Hashing ensures that data items with the same key are assigned to one worker,
eliminating the expensive aggregation step, and minimizing space requirements

482 10 Big Data Processing

since only one worker maintains the state for each key value. However, it may result
in heavily imbalanced load distribution, particularly for skewed (in terms of key
values) data streams.

For stateful applications, shuffle and hash partitioning constitute upper-bounds
for key splitting cost and load imbalance, respectively. Most recent work has
focused on finding partitioning algorithms within these extremes. An approach that
is promising is key-splitting, whereby hash partitioning is followed by splitting each
key among a small number of workers to reduce the load imbalance. The objective is
to reduce the overhead of aggregation while also reducing imbalance, particularly in
skewed data streams. Partial Key Grouping (PKG) algorithm aims to reduce the load
imbalance of hash partitioning by adapting key splitting. PKG utilizes the “power
of two choices” by allowing each key to be split between two workers. That enables
PKG to achieve significantly better load balance compared to hash partitioning and
bounds the replication factor and the aggregation cost. For heavily skewed data,
PKG has been extended to use more than two choices for the head of the distribution.
Although it is shown to further improve load balance, its replication factor is upper
bounded by the number of worker nodes in the worst case. Another approach to deal
with heavily skewed data is to use a hybrid partitioning technique where the tuples
in the head (frequent) and tail (less frequent) of the key distribution are treated
differently, perhaps with a preference for well-balanced assignment of the heavy
hitters from the head.

Parallel Stream Workload Execution

Let us first focus on the execution of individual operations. For stateless operations
there are no specific issues raised as a consequence of streaming and the aggregation
step is unnecessary. Stateful operations require more care and that is what we discuss
below.

If shuffle partitioning is used for a stateful operation, as discussed above, data
items with the same key may be located on different workers each of which will
store only partial results. Therefore, shuffle partitioning requires an aggregation
step to produce the final results. As an example, Fig. 10.18 depicts a counting
operation over three workers where different colors indicate different keys. As can
be observed, data items with the same keys may go to different workers, each of
which maintain the count for each key (state) that are aggregated at the end.

If hash partitioning is used for a stateful operation, all data items with identical
keys are assigned to the same worker, so there is no aggregation step. Figure 10.19
demonstrates hash partitioning for the same counting example we used earlier.

When these points are incorporated into the query plan, each operation is
typically treated individually, with partitioning decisions performed for each as in
Apache Storm and Heron. Consequently, the example query plan given in Fig. 10.16
takes the shape of Fig. 10.20.

An issue that arises is in terms of highly skewed data streams. As we discussed
in Sect. 10.3.2.5, the commonly accepted current approach is to use key-splitting

10.3 Stream Data Management 483

possibly with certain optimizations for highly skewed data. Another approach is
stream repartitioning in between operations in the query plan. The fundamental
issue here is to reroute the dataflow between operations in the query plan, which
also requires state migration (since another worker will be taking over parts of
the stream). A number of alternative strategies have been developed, but the
seminal work on this is Flux, and we use that as an exemplar to discuss how
this repartitioning works. Flux is a dataflow operator that is placed between two
operations in the query plan; it monitors the worker loads and dynamically reroutes
data and migrates state from one worker to another. This process has two phases:
rerouting the data and migrating the state. Rerouting requires update to internal
routing tables. State migration requires more care since the state that is maintained
at the “old” worker with respect to that partition has to be marshaled and moved
to the “new” worker. This involves the following steps: stopping new tuples from
being accepted into the partition; marshaling the state at the “old” worker, which
involves extracting this information from internal data structures; moving the state
to the “new” worker; unmarshaling the state and installing it by populating the data
structures of the “new” machine; and restarting the receipt of data to the stream.
This state migration needs to be fast, obviously, but it is a heavyweight task that
involves complex synchronization protocols. That is one reason modern systems do
not typically provide built-in support for state migration.

10.3.3 DSS Fault-Tolerance

Distributed/parallel DSS reliability has similarity to the relational DBMSs, but the
issues are exacerbated by the fact that it is necessary to deal with streams flowing

P
Worker

2

Worker
1

Worker
3

A

1
2

1
1
1

2
1

1
3
5

Fig. 10.18 Round-robin stream partitioning

484 10 Big Data Processing

P Worker
2

Worker
1

Worker
3

5

3

1

Fig. 10.19 Hash-based stream partitioning

Data
Source P

W4

W5

Operation 2

P W2

W1

W3

A

Operation 1

P

W6

W7

Operation 3

P

W8

W9

A

P

P

Operation 4

Output

Fig. 10.20 Parallel stream query plan example

through the query plans. Let us first revisit the distinction that we made earlier
between systems that partition the query plan and execute each part on a different
server node and those that partition the data and replicate the query plan at each node
(i.e., the data parallel execution). In the latter, failures can be handled by worker
replication techniques that we discussed in Sect. 10.2.1. However, in the former
case, the servers are “connected” as they execute parts of the query plan and data
flows from upstream servers to downstream ones. A failure of a node can, therefore,

10.3 Stream Data Management 485

disrupt query execution due to the loss of significant (transient) state information
and halting the downstream servers that no longer receive data. Consequently, these
systems need to implement strong availability techniques.

An important issue is the query execution semantics a system provides as
data flows through the network of servers (or through the query plan). There
are three alternatives: at-least-once, at-most-once, and exactly-once. At-least-once
semantics (also called rollback recovery) indicates that the system guarantees to
process each data item at least once, but makes no guarantees about duplicates. So,
if, a data item is forwarded again by a failed node after recovery, that data item
may be processed again and produce a duplicate output. In contrast, if at-most-once
semantics (also called gap recovery) is adopted, the system guarantees that duplicate
data items would be detected and not processed, but certain data items may not be
executed at all. This can be due to load management as discussed earlier, or as a
result of the failure of a node that ignores, upon recovery, all the data items that it
might have received while it was down. Finally, exactly-once semantics (also called
precise recovery) means that the system executes each data item exactly once—
so nothing gets dropped and nothing gets executed more than once. Each of these
require different system functionality obviously. Each of these are supported in the
existing systems: Apache Storm and Heron provide applications with a choice of
at-least-once and at-most-once semantics, whereas Spark Streaming, Apache Flink,
and MillWheel enforce exactly-once semantics.

The types of recovery techniques for DSSs can be classified into two main
approaches: replication and upstream backup. In the case of replication, for each
node that executes a portion of the query plan there is a replica node that is
also responsible for that portion of the query plan. This is a primary-secondary
arrangement where the primary node services the query plan as long as it is
operational, and the secondary node picks up the work if the primary fails. The
arrangement between the two could be active standby where both the primary and
the secondary get data items from upstream nodes and process them at the same
time with only the primary sending outputs downstream, or passive standby where
the primary periodically sends the delta difference in its state to the secondary and
the secondary updates its state accordingly. Both can be supported by checkpointing
to speed up recovery. This approach has been proposed as part of the Flux operator
discussed above and used in Borealis. The other alternative is upstream backup
where upstream nodes buffer the data items that they flow to the downstream nodes
until they are processed. If a downstream node fails and recovers, it obtains the
buffered data items from its upstream node and reprocesses them. A design difficulty
is determining how big these buffers should be to accommodate data that is gathered
during failure and recovery. This is complicated because it is affected by data arrival
rate as well as other considerations. Systems such as Apache Storm and TimeStream
adopt this approach.

486 10 Big Data Processing

10.4 Graph Analytics Platforms

Graph data is of growing importance in many applications. In this section, we
discuss property graph, which are graphs that have attributes associated with
vertices and edges. Another type of graph is Resource Description Framework graph
(RDF graph) that we discuss in Chap. 12. Property graphs are used to model entities
and relationships in many domains such as bioinformatics, software engineering, e-
commerce, finance, trading, and social networks. A graph G = (V ,E,Dv,DE) is
defined by a set of vertices V and a set of edges E,5 DV and DE are defined below.
The distinguishing characteristics of property graphs are the following:

• Each vertex in the graph represents an entity, and each edge between a pair of
vertices represents a relationship between those two entities. For example, in a
social network graph representing Facebook, each vertex might represent a user
and each edge might represent the “friendship” relationship.

• It is possible to have multiple edges between a pair of vertices, each representing
a different relationship; these graphs are commonly called multigraphs.

• Edges may have weights attached to them (weighted graphs), where the weight
of an edge might have different semantics in different graphs.

• The graphs can be directed or undirected. For example Facebook graph is
normally undirected, representing the symmetric friendship relationship between
two users: if user A is friend of user B, then user B is a friend of user A. However,
a Twitter graph, where the edges represent “follows” relationship, is directed
representing that user A is following user B, but the inverse may not necessarily
be true. As you will recall, RDF graphs are directed by definition.

• As noted, each vertex and each edge may have a set of attributes (properties)
to encode the properties of the entity (in case of vertex) or the relationship (in
case of edge). If edges have properties, these graphs are usually called edge-
labeled graphs. DV and DE in the graph definition given above represent the set
of vertex and edge properties, respectively. Each vertex/edge may have different
properties, and when we refer to the properties of the graph in general, we will
write D or DG.

Real-life graphs that are the subject of graph analytics (such as social network
graphs, road network graphs, as well as web graphs we discussed earlier) have a
number of properties that are important and affect many aspects of system design:

1. These graphs are very large, some with billions of vertices and edges. Processing
graphs with this number of vertices and, especially, edges, requires care.

2. Many of these graphs are known as the power-law or scale-free graphs in which
there is significant variation in vertex degrees (known as degree distribution

5In this section, when necessary, we will write VG and EG to specifically refer to the vertices and
edges, respectively, of graph G, but, we will omit the subscripts when it is obvious.

10.4 Graph Analytics Platforms 487

skew). For example, while the average vertex degree in Twitter graph is 35, the
“supernodes” in that graph have maximum degree of 2.9 million.6

3. Following the point above, the average vertex degree in many real-world graphs
is quite high with high-density cores. For example, the average vertex degree in
Friendster graph is about 55 and in Facebook graph is 190.

4. Some of the real-world graphs have very large diameters (i.e., the number of
hops between two farthest vertices). These include the spatial graphs (e.g., the
road network graphs) and web graphs: the web graph diameters can be in the
hundreds, while some road networks are much larger. The graph diameter affects
graph analytics algorithms that depend on visiting and doing computation on
each vertex iteratively (we discuss this further below).

Efficiently running workloads on these graphs is an essential part of big data
platforms. As with many big data frameworks, these are mostly parallel/distributed
(scale-out) platforms that rely on the data graph being partitioned across nodes of a
cluster or sites of a distributed system.

Graph workloads are typically separated into two classes. The first is analytical
queries (or analytical workloads) whose evaluation typically requires processing
each vertex in the graph over multiple iterations until a fixpoint is reached. Exam-
ples of analytical workloads include PageRank computation (see Example 10.4),
clustering, finding connected components (see Example 10.5), and many machine
learning algorithms that utilize graph data (e.g., belief propagation). We focus on
the different computational approaches that have been developed for these tasks,
and the systems that have been built to support them. These are the specialized
iterative computation platforms that we referred to when we discussed Spark in the
previous section. They are our focus in this section. The second class of workloads
is online queries (or online workloads), which are not iterative and usually require
access to a portion of the graph and whose execution can be assisted by properly
designed auxiliary data structures such as indexes. Examples of online workloads
are reachability queries (e.g., whether a target vertex is reachable from a given
source vertex), single-source shortest path (finding the shortest path between two
vertices), and subgraph matching (graph isomorphism). We postpone the treatment
of these workloads to Chap. 11 where we discuss graph DBMSs.

Example 10.4 PageRank is a well-known algorithm for computing the importance
of web pages. It is based on the principle that the importance of a page is determined
by the number and quality of other pages pointing to it. Quality, in this case, is
measured as the PageRank of a page (hence the recursive definition). Each web
page is represented as a vertex in the web graph (see Fig. 10.21), with each directed
edge representing a “pointing to” relationship. Thus, the PageRank of a web page
Pi , denoted PR(Pi) is the summation of the PageRank of all the pages Pj pointing
to it, normalized by the number of pages that each Pj points to. The idea is that if

6We caution that these values change as the graphs evolve over time. They should be taken as
indicative of the point we are making rather than as definitive values.

488 10 Big Data Processing

P1 P2

P3

P5P6

P4

Fig. 10.21 Web Graph Representation for PageRank Computation

a page Pi points to n pages (one of which is Pi), its PageRank contributes to the
PageRank computation of n pages equally. The PageRank formula also includes a
damping factor based on the theory of random walks: if a user starts from a web
page and continues clicking on the links to reach other web pages, this “walk” will
eventually stop. So, when the user is at page Pi , there is a probability d that the
user will continue clicking and (1 − d) that the walk will stop; the typical value
for d is 0.85 determined as a result of empirical studies. Therefore, if the set of in-
neighbors of Pi is BPi

(these are Pi’s backward links), and the set of out-neighbors
is FPi

(forward links), the PageRank formula is

PR(PI) = (1 − d) + d
∑

Pj ∈BPi

PR(Pj)

|FPj
| .

We discuss PageRank in more detail in Chap. 12 when we consider web data
management. For the time being, we will simply focus on the computation of the
values using Fig. 10.21 as an example. Let us consider page P2; the PageRank of
this page is PR(P2) = 0.15 + 0.85(

PR(P1)
2 + PR(P3)

3). Clearly, this is a recursive
formula since it depends on the computation of the PageRank values for P1 and P3.
The computation typically starts with assigning each vertex equal PageRank values
(in this case 1/6 since there are 6 vertices), and iterates to compute the values of
each node until a fixpoint is reached (i.e., the values no longer change). Therefore,
PageRank computation exhibits both of the properties we identified for analytical
workloads: iterative computation, and involvement of each vertex at each iteration.7

�

7There are various optimizations that have been developed for PageRank computation, but we
ignore them in this discussion.

10.4 Graph Analytics Platforms 489

Example 10.5 As a second example, let us consider the computation of connected
components of a graph. First some basics. A graph is said to be connected if there
is a path between every pair of vertices. A maximal connected subgraph of the
graph is called a connected component—every vertex in this component is reachable
from every other vertex. Finding the set of connected components in a graph is an
important graph analytics problem that can be used for a number of applications
such as clustering. If the graph is directed, then a subgraph where there is a directed
path from every pair of vertices in both directions (i.e., a path from vertex v to u

and a path from u to v) is called a strongly connected component. For example, in
Fig. 10.21, {P1, P3} and {P4, P5, P6} are two strongly connected components. If all
directed edges in this graph are replaced by undirected edges, and then the maximal
connected components are determined, this produces the set of weakly connected
components. The entire graph in Fig. 10.21 is one weakly connected component (in
this case, the graph is said to be weakly connected).

Finding weakly connected component is an iterative algorithm that uses depth-
first search (DFS). Given a graph G = (V ,E) for each v ∈ V , one conducts DFS to
determine the component in which v is in. �

10.4.1 Graph Partitioning

As noted earlier, most graph analytics systems are parallel, requiring the data graph
to be partitioned and assigned to worker nodes. We have dealt with data partitioning
earlier, considering it within the context of distributed relational systems in Chap. 2,
and in the context of parallel database systems in Chap. 8. Partitioning graphs is
different, because of the connections among the vertices; this is, in some sense,
similar to worrying about cross-fragment integrity constraints in distribution design,
but graphs require more care due to the heavy communication between vertices,
as we will discuss in the upcoming sections. Thus, special algorithms have been
designed for graph partitioning, and the literature on this topic is very rich.

Graph partitioning can follow either the edge-cut approach (also known as vertex-
disjoint) or the vertex-cut approach (also called edge-disjoint). In the former, each
vertex is assigned to a partition, but edges may be replicated among partitions if
they connect boundary vertices. In the latter, each edge is assigned to a partition,
but vertices may be replicated among partitions if they are incident to edges that
are allocated to different partitions. In both of these approaches, three objectives are
pursued: (1) allocate each vertex or edge to partitions such that the partitions are
mutually exclusive, (2) ensure that the partitions are balanced, and (3) minimize the
cuts (either edge-cuts or vertex-cuts) so as to minimize the communication between
machines to which each partition is assigned. Balancing these requirements is the
difficult part; if, for example, we only had to worry about balancing the workload
while getting mutually exclusive partitions, a round-robin allocation of vertices (or
edges) to machines might be sufficient. However, there is no guarantee that this
would not cause large number of cuts.

490 10 Big Data Processing

Partitioning can be formulated as an optimization problem as follows. Given
a graph G(V,E) (ignoring properties for the time being), we wish to obtain a
partitioning P = {P1, . . . , Pk} of G into k partitions where the sizes of Pi are
balanced, which can be formulated as the following optimization problem:

minimize C(P)

subject to:

w(Pi) ≤ β ∗
∑k

j=1 w(Pj)

k
,∀i ∈ {1 . . . k}.

where C(P) represents the total communication cost of partitioning, and w(Pi)

is the abstract overhead of processing partition Pi . The two approaches (vertex-
cut and edge-cut) differ in the definition of C(P) and w(Pi), as we discuss
below. In the above formulation β is introduced as a slackness parameter to allow
partitioning that is not exactly balanced; if β = 1, then the solution is an exactly
balanced partitioning, and the problem is known as k-balanced graph partitioning
optimization problem; if β > 1, then some deviation from exact balance is allowed,
and this is known as the (k, β)-balanced graph partitioning optimization problem.
This problem has been proven to be NP-hard, and researchers have proposed
heuristics methods to achieve an approximate solution.

The heuristics for edge-cut (vertex-disjoint) approach attempt to achieve a
balanced allocation of vertices to partitions while minimizing edge-cuts; thus each
Pi contains a set of vertices. In these approaches, w(Pi) is defined in terms of the
number of vertices per partition (i.e., w(Pi) = |Pi |) while the communication cost
is computed as a fraction of edge-cuts:

C(P) =
∑k

i=1 |e(Pi, V \ Pi)|
|E| .

where |e(Pi, Pj)| is the number of edges between partitions Pi and Pj .
The best-known vertex-disjoint heuristic algorithm is METIS, which provides

near-optimal partitioning. It consists of three steps:

1. Given a graph G0 = (V ,E) a hierarchy of successively coarsened graphs
G1, . . . ,Gn are produced such that |V (Gi)| > |V (Gj)| for i < j . There are
a number of possible ways of coarsening, but the most popular is what is called
contraction where a set of vertices in Gi are replaced by a single vertex in Gj

(i < j). The coarsening usually stops when Gn is sufficiently small that a high-
cost partitioning algorithm can still be applied. A graph Gi is coarsened to Gi+1
by finding the maximal match, which is the set of edges where no two edges share
a vertex. Then the endpoints of each of these edges are represented by a vertex
in Gi+1.

10.4 Graph Analytics Platforms 491

2. Gn is partitioned using some partitioning algorithm—as noted above, Gn should
by now be sufficiently small to use any desired partitioning algorithm regardless
of its computational cost.

3. Gn is iteratively uncoarsened to G0, and at each step:

(a) the partitioning solution on graph Gj is projected to graph Gj−1 (note that
the smaller subscript indicates finer granularity of the graph) and

(b) the partitioning of Gj−1 is improved by various techniques.

Although METIS and related algorithms improve graph analytics workload
processing times considerably, they are not practical for even medium-sized graphs
because of their high computation cost. The partitioning overhead is an important
consideration in graph analytic systems, as the loading and partitioning time of a
graph can account for a large portion of the processing time.

A simple vertex-disjoint partitioning heuristic based on hashing is incorporated
in the repertoire of most graph analytics systems we discuss below. In this case,
a vertex is assigned to the partition to which its identifier hashes. This is simple,
and very fast, and would work reasonably well, in terms of balancing the load,
in graphs with uniform degree distribution. However, in real-life graphs that have
degree skew as discussed above, the result may be unbalanced workload. Edge-cut
partitioning models distribute the load in terms of vertices, but for some algorithms
the load is proportional to the number of edges, which would not be balanced for
skewed graphs. For these cases more sophisticated heuristics that pay attention to
the structure of the graph would be appropriate.

One such approach is label propagation, where one starts with each vertex having
its own label that it iteratively exchanges with its neighbors. At each iteration, each
vertex assumes the most frequent label of its “neighborhood”; when the frequencies
are identical, a method is used to select the label. This iterative process stops when
vertex labels no longer change. This technique is sensitive to the graph structure,
but is not guaranteed to produce a balanced partitioning. One way to achieve
balance is to start with a non-balanced partitioning, and then use a greedy label
propagation algorithm to relocate vertices to achieve balance (or near balance). The
greedy algorithm moves vertices to maximize a relocation utility function subject
to constraints for balance. The utility function might be, for example, the number
of neighbors of the graph that are going to be in the same partition. It is possible to
combine METIS with label propagation by incorporating the latter in the coarsening
phase. Again, the problem is modeled as a constrained partitioning problem that
maximizes a utility function that pays attention to the vertex neighborhood to
minimize edge-cuts.

Example 10.6 Consider the graph in Fig. 10.22a. A vertex-disjoint partitioning of
this graph is shown in Fig. 10.22(b), where the edge-cuts are shown by dashed
lines. This partitioning was achieved by hashing as described above. Notice that
this causes 10 out of 12 total edges to be cut. This example demonstrates the
difficulty of partitioning graphs with high-degree vertices (in this graph vertices
v3, and in particular v4 are high degree), leading to high edge-cuts. METIS does
better on this graph, but it cannot generate three partitions, and instead produces

492 10 Big Data Processing

1

4

5

9

6

2

3

7

8

(a)

1

4

7

P1

5

2

8

P2

3

6 9

P3

(b)

Fig. 10.22 Partitioning example. (a) Example graph. (b) Vertex-disjoint (edge-cut) partitioning

two: {v1, v3, v4, v7, v9} and {v2, v5, v6, v8} resulting in five edge-cuts (a two-way
partitioning based on hashing results in 8 edge-cuts). �

It has been demonstrated that edge-cut heuristics perform well for graphs with
low-degree vertices, but perform poorly on power-law graphs causing high number
of edge-cuts. METIS has been modified to deal with this particular problem, but
its performance in dealing with very large graphs remains an issue. It is generally
accepted that vertex-cut approaches that allocate edges to individual partitions while
partitioning (replicating) the vertices incident to these edges handle power-law
graphs more easily (i.e., each Pi contains a set of edges). The definition of w(Pi),
in this case, is the number of edges in partition Pi , i.e., w(Pi) = |e(Pi)|. For these
heuristics, the communication C(P) is going to be affected by the replication factor
of each vertex (defined as the number of partitions to which that vertex is assigned);
this can be formulated as follows:

C(P) =
∑

v∈V |A(v)|
|V | .

where A(v) ⊆ {P1, . . . , Pk} represent the set of partitions in which vertex v is
assigned.

Hashing is also an option as a vertex-cut heuristic: in this case the hashing is
done on the ids of the two vertices incident on an edge. It is simple, fast (since it can
be easily parallelized), and would provide a good balanced partitioning. However,
it may lead to high vertex replication. It is possible to use hashing, but control the

10.4 Graph Analytics Platforms 493

replication factor. One approach that has been proposed is to define, for edge eu,v ,
constraint sets Cu and Cv , respectively, for its incident vertices u and v. These are
the sets of partitions over which u and v can be replicated. Obviously, edge eu,v has
to be assigned to a partition that is common to the constraint sets of both u and v,
i.e., Cu∩Cu. The constraint sets a limit on the number of partitions to which a vertex
can be assigned, thereby controlling the upper bound of the replication factor. One
way to generate these constraint sets is to define a square matrix of partitions, and
assign as Su (similarly Sv) by hashing u (similarly v) to one of the partitions (say
Pi), and taking the partitions that lie on the same row and column as Pi .

Vertex-cut heuristics that are cognizant of the graph characteristics have also been
designed. A greedy algorithm decides how to allocate (I + 1)-st edge to a partition
such that the replication factor is minimized. Of course, the allocation of (I + 1)-st
edge is dependent on the allocation of the first R edges, so past history is important.
The location of edge eu,v is decided using the following heuristic rules:

1. If the intersection of A(u) and A(v) is not empty (i.e., there are some partitions
that contain both u and v), then assign eu,v to one of the partitions in the
intersection.

2. If the intersection of A(u) and A(v) is empty, but if A(u) and A(v) are not
individually empty, then assign eu,v to one of the partitions in A(u) ∪ A(v) with
the most unassigned edges.

3. If only one of A(u) and A(v) is not empty (i.e., only one of u or v has been
assigned to partitions), then assign eu,v to one of the partitions of the assigned
vertex.

4. If both A(u) and A(v) are empty, then assign eu,v to the smallest partition.

This algorithm takes the graph structure into account, but is hard to parallelize
for high performance, since it relies on past history. Parallelizing requires either
the maintenance of a global state that is periodically updated, or an approximation
where each machine only considers its local state history without maintaining a
global one.

It is also possible to use both vertex-cut and edge-cut approaches within one
partitioning algorithm. PowerLyra, for example, uses an edge-cut algorithm for
lower-degree vertices, and a vertex-cut algorithm for high-degree ones. Specifically,
given a directed edge eu,v , if the degree of v is low, then it hashes on v, and if it is
high, then it hashes on u.

Example 10.7 Again consider the graph in Fig. 10.22a. An edge-disjoint partition-
ing of this graph is shown in Fig. 10.23, where the replicated vertices are shown by
dotted circles. This partitioning was achieved by hashing as described above. Notice
that this causes 6 out of 9 vertices to be replicated. �

494 10 Big Data Processing

1

4

7

9

3

P1

2

5

8

3 4

P2

3

6

9

4 2

P3

Fig. 10.23 Edge-disjoint (vertex-cut) partitioning

10.4.2 MapReduce and Graph Analytics

It is possible to use a MapReduce system such as Hadoop for graph processing
and analytics. However, as noted in Sect. 10.2.1, MapReduce systems do not deal
with iterative computation particularly well and we discussed the main issues
in that section. In graph systems, there is the additional problem of balanced
assignment of vertices across the workers due to the skewed degree distribution
in many real-life graphs, as discussed in Sect. 10.4.1, that leads to variations in
the communication overhead among worker nodes. All of these cause significant
overhead that negatively impacts the performance of MapReduce systems for graph
analytics. However, most of the special-purpose graph analytics systems that we
discuss in the next section require the entire graph to be maintained in memory;
when this is not possible, MapReduce might be a reasonable alternative, and there
are studies that look at its use for various workloads, as well as modifications that
would allow better scalability. There are also systems that modify MapReduce
to better fit iterative graph analytics workloads. As noted earlier, Spark is an
improvement of MapReduce to deal with iteration, and GraphX has been developed
as a graph processing system on top of Spark. Another MapReduce variant for
graph processing is exemplified by the HaLoop system. Both of these separate the
state that changes over iterations from the invariant data that does not and cache
the invariant data to avoid unnecessary I/O. They also modify the scheduler to
ensure that the same data gets mapped to the same workers in multiple iterations.
The approaches to implementing these obviously differ with HaLoop modifying
the Hadoop task scheduler at the master and task tracker in workers and by
implementing a loop control in the master to check for fixpoint. GraphX, on the
other hand, uses modifications incorporated into Spark to better deal with iterative
workloads. It performs an edge-disjoint partitioning of the graph and creates vertex
tables and edge tables at each worker. Each entry in the vertex table includes the
vertex identifier along with the vertex properties, while each entry in the edge table
includes the endpoints of each edge as well as the edge properties. These tables
are realized as Spark RDDs. Any graph computation involves a two-step process
(with iteration): join vertex and edge tables, and performs an aggregation. The join
involves moving vertex tables to the workers that hold the appropriate edge tables,
since the number of vertices are smaller than the number of edges. In order to avoid

10.4 Graph Analytics Platforms 495

broadcasting each vertex table to all of the edge table worker nodes, GraphX creates
a routing table that specifies, for each vertex, the edge tables worker nodes where it
exists; this is implemented as an RDD as well.

10.4.3 Special-Purpose Graph Analytics Systems

We now turn our attention to systems that have been specifically developed for graph
analytics. These systems can be characterized along their programming models
and their computation models. Programming models specify how an application
developer would write the algorithms to execute on a system, while computation
models indicate how the underlying system would execute these algorithms.

There are three fundamental programming models: vertex-centric, partition-
centric, and edge-centric:

• Vertex-centric model
Vertex-centric approach requires the programmer to focus on the computation
to be performed on each vertex. Therefore, this is commonly referred to as
“think-like-a-vertex” approach. A vertex v bases its computation only on its own
state and the states of its neighbor vertices. For example, in the computation of
PageRank, each vertex is programmed to receive the rank computation from its
neighbors, and to calculate its own rank based on these. The results of the state
computation is then available to neighbor vertices so that they can perform their
computation.

• Partition-centric model
In systems that follow this programming model, the programmer is expected to
specify the computation that is to be performed on an entire partition rather than
on each vertex. This is also referred to as block-centric, since computation is
over blocks of vertices. The approach is also known as “think-like-a-block” or
“think-like-a-graph.”

Partition-centric approach typically uses a serial algorithm within each block
and only relies on the states of entire neighbor blocks rather than states of
individual vertices. This characteristic of using separate computation algorithms
within a partition and across partitions (for the vertices at the boundaries) may
result in more complicated algorithms, but reduces dependence on neighbor
states and communication overhead.

• Edge-centric model
A third approach is the dual of vertex-centric model in that the operations are
specified for each edge rather than each vertex. In this case, the principle object
of attention is an edge rather than a vertex. Following the same naming scheme,
this can be called “think-like-an-edge.”

The computation models are bulk synchronous parallel (BSP), asynchronous
parallel (AP), and gather-apply-scatter (GAS):

496 10 Big Data Processing

Worker 1

Worker 2

Worker 3

Superstep 1

Worker 1

Worker 2

Worker 3

Superstep 2

Worker 1

Worker 2

Worker 3

Superstep 3

Fig. 10.24 BSP Computation Model

• Bulk Synchronous Parallel
Bulk synchronous parallel (BSP) is a parallel computation model in which a com-
putation is divided into a series of supersteps separated by global barriers. At each
superstep, all of the processing nodes (i.e., the worker machines) perform the
computation in parallel, and at the end of the superstep, they synchronize before
starting the next superstep. Synchronization involves sharing state computed in
that superstep with others so that this state can be used by all the worker nodes in
the following superstep. The computation proceeds in multiple supersteps until
a fixpoint is reached. Figure 10.24 shows an example BSP computation that
reaches fixpoint in three supersteps involving three processor nodes.

Since most of these systems run on parallel clusters, the communication is
usually in terms of message passing (this is true for all computational models
that we discuss). The BSP model implements a push-based communication
approach: messages are pushed by the sender and buffered at the receiver. The
receipt of a message at the end of one superstep causes the receiver to be
automatically scheduled for execution in the next superstep. The BSP model
simplifies parallel computation, but it requires care in task partitioning so that
the worker machines are reasonably balanced to avoid stragglers. It also incurs
synchronization overhead at the end of each superstep.

• Asynchronous Parallel
The asynchronous parallel (AP) model removes the restriction of the BSP model
that requires synchronization between worker machines at the global barrier—
states computed at superstep k are available to be used in computation in
superstep k + 1 even if they arrive at the destination within superstep k. The
AP model retains global barriers to separate supersteps, but allows the received
states to be seen and used immediately. Therefore, computation in state k may be
based on the states of neighbors that were computed in superstep k − 1 but were
delayed and not received until the end of superstep k − 1, or in superstep k.

The fact that computation of state in one superstep may overlap with the
receipt of states from neighbors gives rise to consistency concerns: state changes
and state reads require careful control. This is usually handled by the application
of locks on states while they are being read or written; given that the states are

10.4 Graph Analytics Platforms 497

distributed over multiple worker nodes, there is a need to have distributed locking
solutions.

An important objective of the AP model is to improve performance by
allowing faster’ processing units to continue their processing without having
to wait until the synchronization barrier.8 This may result in fewer number
of supersteps. However, since it still retains the synchronization barriers, the
synchronization and communication overheads are not completely eliminated.

• Gather-Apply-Scatter
As its name suggests, the gather-apply-scatter (GAS) model consists of three
phases: In the gather phase, a graph element (vertex, block, or edge) receives
(or pulls) information about its neighborhood; in the apply phase, it uses the
gathered data to compute its own state; and in the scatter phase, it updates the
states of its neighborhood. An important differentiating characteristic of GAS
is the separation of state update from activation. In both BSP and AP, when a
state update is communicated to neighbors, they are automatically activated (i.e.,
scheduled for execution), whereas in GAS, the two actions are separate. This
separation is important as it allows the scheduler to make its own decisions as to
which graph elements to execute next (perhaps based on priorities).

GAS can be synchronous or asynchronous. Synchronous GAS is similar to the
BSP model in that the global barriers are maintained, but there is one important
difference: in BSP, each graph element pushes its state to its neighbors at the end
of a superstep, while in GAS, a graph element that is activated pulls the state of
its neighbors at the beginning of a superstep.

The asynchronous GAS removes the global barriers, and therefore has the
same consistency issue as the AP model that is addressed by distributed locking.
However, it is different than the AP model, since it does not have any notion
of supersteps in the same sense as the BSP model. It executes by iteratively
scheduling a graph element for execution, gathering its neighbor states (called
scope), computing its state, and updating the scope and the list of graph elements
that require scheduling. The computation ends when there are no more graph
elements that await scheduling.

Combination of programming and computation models define the design space
with nine alternatives. However, systems have not been built, as of now, for each of
the design alternatives. Most of the research and development efforts have focused
on vertex-centric BSP systems (Sect. 10.4.4); consequently our discussion of this
class will be more in-depth than the others. For those cases where there are no
known actual systems, we briefly indicate how one might look like.

8We use the terms global barrier, global synchronization barrier, and synchronization barrier
interchangeably.

498 10 Big Data Processing

Active Inactive

Vote to halt

Message received

Fig. 10.25 Vertex States in Vertex-Centric Systems

10.4.4 Vertex-Centric Block Synchronous

As noted above, vertex-centric systems require the programmer to focus on the
computation that is to be done on each vertex; edges are not first-class objects in
these systems since there is no computation performed on them. When coupled with
BSP computation model, these systems perform the computation iteratively (i.e., in
supersteps) such that at each iteration, each vertex v accesses the state contained in
the messages sent to it in the previous iteration, computes its new state based on
these messages, and communicates its state to its neighbors (who will read the state
in the subsequent superstep). The system then waits until all of the worker machines
complete computation in that iteration (the global barrier) before starting the next
iteration.

Each vertex is in either an “active” or “inactive” state. The computation starts
with all vertices in active state and continues until all vertices reach fixpoint and
enter inactive state and there are no pending messages in the system (Fig. 10.25). As
each vertex reaches fixpoint it sends a “vote halt” message before it enters inactive
state; once inactive, the vertex stays in that state unless it receives an external
message to become active again.

This category has been the most popular one for system builders, as we noted
earlier. The classical systems are Pregel and its open source counterpart Apache
Giraph. Some of the others are GPS, Mizan, LFGraph, Pregelix, and Trinity. We
focus on Pregel as an exemplar of this class of systems in discussing a number of
details (these systems are commonly referred to as “Pregel-like”).

To facilitate vertex-centric computation, a Compute() function is provided for
each vertex, and the programmer needs to specify the computation that needs to
be performed based on the application semantics. The system provides built-in
functions such as GetValue() and WriteValue() to read the state associated with
a vertex and modify the state of a vertex, as well as a SendMsg() function to
push the vertex state updates to neighbor vertices. These are provided as the basic
functionality and the programmer can focus on the computation that needs to be
performed at each vertex. In this sense, the approach is similar to MapReduce where
the programmer is expected to supply the specific codes for the map() and reduce()
functions while the underlying system provides the execution and communication
mechanism.

10.4 Graph Analytics Platforms 499

The Compute() function is quite general; in addition to computing a new state
for the vertex, it can cause changes to the graph topology (called mutations) if
the system supports this. For example, a clustering algorithm may replace a set
of vertices with a single vertex. The mutations that are performed in one superstep
are effective at the beginning of the following superstep. Naturally, conflicts can
arise when multiple vertices require the same mutation, such as the addition of the
same node with different values. These conflicts are resolved by partial ordering of
the operations and by implementing user-defined handlers. The partial ordering of
operations imposes the following order: edge removals are performed first, followed
by vertex removals, followed by vertex additions, and, finally, edge additions. All of
these mutations precede the call to the Compute() function.

Example 10.8 To demonstrate the vertex-centric BSP computation approach, we
will compute the connected components of the graph given in Fig. 10.26a. For
this example, we choose a simpler graph than the one we used for partitioning
(Fig. 10.22a) to demonstrate the computation steps easily.

Note that, since this graph is directed, computing the connected component
reduces to computing weakly connected component (WCC), where the directions
are ignored (see Example 10.5). Furthermore, since this graph is fully connected, all
of the vertices should be in one group, so we use that fact to check the correctness
of the computation.

The vertex-centric BSP version of the WCC algorithm is as follows. Each vertex
keeps information about the group it is in, and, in each superstep, it shares this
information with its neighbors. At the beginning of the subsequent superstep each
vertex gets these group ids from its neighbors and selects the smallest group id
as its new group id—the Compute() = min{neighbor group ids, selfgroup id}. If
its group id has not changed from the previous superstep, then the vertex enters
inactive state (recall that inactive state represents that the vertex value has reached
fixpoint). Otherwise, it pushes its new group id to its neighbors. When a vertex
enters inactive state, it does not send any further messages to its neighbors, but it
will receive messages from its active neighbors to determine if it should become
active again. The computation continues in this fashion over multiple supersteps.

This execution is depicted in Fig. 10.26b. In the initialization step, the algorithm
initializes by assigning each vertex to its own group identified by the vertex id (e.g.,
vertex v1 is in group 1). Each vertex’s value is the state at the end of the labeled
superset. Then this group id is pushed to its neighbors. Each arrow shows when a
message gets consumed by the recipient worker—so pointing to the next superset
means the message is not accessed until then regardless of when it is delivered or
received. In superstep 1, notice that vertices v4, v7, v5, v8, v6, and v9 change their
group ids, while vertices v1, v2, and v3 do not change their values and enter inactive
state. The entire computation takes 9 supersteps in this example.

Notice that in some cases, vertices that are in inactive state become active as a
result of messages they receive from neighbors. For example, vertex v2 that becomes
inactive in superstep 2 becomes active in superstep 4 when it receives a group id 1
from v7 that causes it to update its own group id. This is a characteristic of this class
of computation as discussed above. �

500 10 Big Data Processing

v9

v6

v3 v8

v5

v2 v7

v4

v1

(a)

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

Superstep 5:

Superstep 6:

Superstep 7:

Superstep 8:

Superstep 9:

Superstep 10:

1 4 7 2 5 8 3 6 9
v1 v2 v3v4 v5 v6v7 v8 v9

Worker 1 Worker 2 Worker 3

1 1 2 2 2 3 3 3 6

1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 3 3

1 1 1 1 1 2 2 2 3

1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

(b)

Fig. 10.26 Vertex-centric BSP example. (a) Example graph. (b) Vertex-centric BSP computation
of WCC (gray vertices are inactive, blue vertices are active)

Recall that these systems perform parallel computations over a cluster where
there is a master node and a number of worker nodes, with each worker hosting
a set of graph vertices and implementing the Compute() function. In some systems
(e.g., GPS and Giraph), there is an additional Master.Compute() function that allows
for some parts of the algorithm to be executed serially at the master. The existence of
these functions provides further flexibility for algorithm implementation and some
optimizations (as we discuss below).

For some algorithms, it is important to capture the global state of the graph. To
facilitate this, an aggregator can be implemented. Each vertex contributes a value to
the aggregator, and the result of the aggregation is made available to all the vertices
at the following superstep. Systems typically provide a number of basic aggregators
such as min, max, and sum.

The performance of systems in this category is affected by two factors: commu-
nication cost and the number of supersteps. The properties of real-life graphs that
we have discussed earlier impact the two cost factors mentioned above:

1. Power-law graphs with degree distribution skew: The problem with degree
distribution skew is that the workers that hold these high-degree vertices receive
and have to process far more messages than others, leading to load imbalances
across workers that cause the straggler problem discussed earlier.

2. High average vertex degree: This results in each vertex having to deal with a high
number of incoming messages, and having to communicate with a high number
of neighbor vertices, leading to heavy communication overhead.

3. Large diameters: If, in the BSP computation, each superstep corresponds to one
hop (i.e., one message) between vertices, these computations are going to take
a large number of supersteps— proportional to the graph diameter. Although a
few hundred hops as a graph diameter may not seem excessive, keep in mind that
many of the analytics workloads require multiple passes over all the vertices in

10.4 Graph Analytics Platforms 501

these graphs, leading to high algorithmic cost. It has been reported, for example,
that running strongly connected component algorithm over a graph of diameter
20 requires over 4,500 supersteps (without optimization).

A system optimization that can be implemented to reduce communication
overhead between worker nodes is a combiner that combines the messages that are
destined to vertex v based on application-defined semantics (e.g., if v only needs
the sum of values from neighbors). This cannot be done automatically, since it is not
possible for the system to determine when and how this aggregation is appropriate;
instead, the system provides a Combine() function whose code the programmer
needs to specify.

System-level optimizations to deal with skew include the implementation of
graph partitioning algorithms that are sensitive to this skew. The partition-based
systems we discuss in Sections 10.4.7–10.4.9 also address these issues by taking a
dramatically different system design.

There have been proposals for algorithmic optimizations to deal with these
problems as well, but these require modifications to the implementation of the
workload algorithms. Although we will not get into these in any detail, we highlight
one as an example. Some analytics workload algorithms may result in a small
portion of the graph vertices to remain active after the others have become inactive,
leading to many more supersteps before convergence. In this optimization, if the
“active” part of the graph is sufficiently small, the computation is moved to the
master node and executed serially using the Master.Compute() function. It has been
shown experimentally that this can reduce the number of supersteps between 20%
and 60%.

10.4.5 Vertex-Centric Asynchronous

These systems follow the same programming model as the previous case, but relax
the synchronous execution model while maintaining synchronization barriers at the
end of each superstep. Consequently, the Compute() function for each vertex is
executed at each superstep as above, and the results are pushed to the neighbor
vertices, but the messages available as input to the function are not restricted to
those that were sent in the previous superstep; a vertex may see the messages it
receives within the same superstep that it was sent. Messages that are not available
at the time Compute() is executed are picked up at the beginning of the subsequent
superstep as in BSP. This approach addresses an important problem with the BSP
model, while maintaining the ease of vertex-centric programming: a vertex may see
fresher messages that are not delayed until the subsequent superstep. This usually
results in faster convergence than in BSP-based systems. GRACE and GiraphUC
follow this approach.

Example 10.9 To demonstrate vertex-centric AP systems, we use the weakly
connected component example from the previous section (Example 10.8). To

502 10 Big Data Processing

Initialization:

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

1 4 7 2 5 8 3 6 9

v01 v02 v03v04 v05 v06v07 v08 v09

Worker 1 Worker 2 Worker 3

1 1 1 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Fig. 10.27 Vertex-centric AP example

simplify matters, we assume that all the messages between vertices arrive to their
destinations within the same superstep, and that the computation at each worker is
also completed in the same superstep. Furthermore, we assume a single-threaded
execution where each worker runs the Compute() on the vertices one-at-a-time.
Under these assumptions, the calculation of the WCC over the graph in Fig. 10.26a
is shown in Fig. 10.27. Note, for example, that during initialization step, v1 pushes
its group id (1) to v4, and v4 pushes its group id (4) to v1 and v7. Since we
assume a single threaded execution, v4.Compute is executed to change v4’s group
id to 1, which is also pushed to v7 in the same superstep (superset 1). So, when
v7.Compute() is executed, v7’s group id is set to 1. The access to the vertex states
within the same superstep is the distinguishing feature of AP model. �

As noted earlier, asynchronous execution requires consistency control by dis-
tributed locking. This exhibits itself in this class of systems in the following way.
The state of a vertex may be accessed by other vertices while they execute their
Compute() functions—vertex vi may be executing its Compute() function while its
neighbor vertex vj is pushing its updates to vi . To avoid this, locks are placed
on each vertex. Since vertices are distributed across worker nodes, this requires a
distributed locking mechanism to ensure state consistency.

Another issue with the AP approach is that it breaks a different type of consistent
execution guarantee provided by BSP. Each vertex executes Compute() with all
the message it has received since the last execution, and this will be a mix of
old messages (from the previous superstep) and new messages (from the current
superstep). Therefore, it is not possible to argue that, at each superstep, each vertex
consistently computes a new state based on the states of the neighbor vertices at the
end of the previous superstep. However, this relaxation allows a vertex to execute
its Compute() function as soon as it receives a high priority message, for example.

Although the AP model addresses the message staleness problem of BSP, it still
has performance bottlenecks due to the existence of global synchronization barriers,
namely it has high communication overhead and it has to deal with stragglers. These
can be overcome by eliminating some of the barriers as proposed in the barrierless
asynchronous parallel (BAP) model of GiraphUC. BAP maintains global barriers
between global supersteps when the worker nodes globally synchronize, but it

10.4 Graph Analytics Platforms 503

W1
LSS 1

W1
LSS 2

W1
LSS 3

W1
LSS 4

W2
LSS 1

W2
LSS 2

W3
LSS 1

W3
LSS 2

W3
LSS 3

GSS 1

Local barrier Global barrier

W1

W2

W3

GSS 2

Fig. 10.28 BAP Model Over Three Worker Nodes

divides each global superstep into logical supersteps separated by very lightweight
local barriers. This allows fast workers to execute Compute() function multiple
times (once in each logical superstep) before it needs to globally synchronize with
slower worker nodes. As in AP, vertices can immediately read the local and remote
messages they have received, and this reduces the message staleness. Figure 10.28
demonstrates BAP over three worker nodes; the first worker (W1) has four logical
supersteps (LSS) within the first global superstep (GSS), the second worker has two,
and the third worker has three. The dotted arrows represent messages received and
processed in the same logical superstep, while solid arrows are messages that are
picked up in the subsequent global superstep.

The BAP model requires care in determining termination. Recall that in both
the BSP and AP models, the termination is checked at each synchronization barrier
by checking that all the vertices are in inactive state and there are no messages in
transmission. Since there is now a separation of local and global barriers, this check
needs to occur at both the local and the global barriers. A simple approach is to
check, at a local barrier, whether there are any more local or remote messages to
process; if there are not, then there is no more work to do, and the vertices at this
worker node arrive at the global barrier. When all the vertices in the graph arrive at
the global barrier, a second check is performed, which is the same as in BSP and
AP: the computation globally terminates if all vertices are inactive and there are no
more messages.

10.4.6 Vertex-Centric Gather-Apply-Scatter

This category is characterized by GraphLab that combines vertex-centric program-
ming model with the pull-based GAS computation model. As noted earlier, there
can be a synchronous version of this approach (as implemented in GraphLab Sync)
that is practically the same as vertex-centric BSP (except the pull aspect), so we will

504 10 Big Data Processing

not discuss that further. The asynchronous version is different: in the gather phase,
a vertex pulls data from its neighbors rather than the neighbors pushing their data.9

For each vertex v a scope is defined [Scope(v)] that consists of the data stored in
all adjacent edges and vertices as well as the data in v. The Compute() function
(in GraphLab this is called the Update function) takes as input v and Scope(v)

and returns the updated Scope′(v) as well as a set of vertices V ′ whose states
have changed, and are candidates for scheduling. The execution follows three steps,
taking as input a graph G and an initial set of vertices V ′:

1. Remove a vertex from V ′ according to the scheduling decision,
2. Execute the Compute() function and compute Scope′(v) and V ′,
3. V ′ ← V ∪ V ′.

These three steps are executed iteratively until there are no more vertices in V .
The separation of state updates in Scope′(v) (i.e., states of neighbors) from the
scheduling of vertex computations is a major distinction of GAS from the AP
approach where the messages that update vertex states also schedule those vertices
for computation. This separation allows flexibility in choosing the order of vertex
computations, e.g., based on priorities or on load balancing. Furthermore, note that
there is no explicit SendMsg() function in GAS execution; sharing state changes is
done in the gather phase.

Since a vertex v can directly read data from its Scope(v), inconsistency can arise
as multiple vertex computations may cause conflicting updates of state, as noted
earlier, requiring the deployment of distributed locking mechanisms. When vertex
v is executing Compute, obtains locks over its Scope(v), performs its computation,
updates Scope(v) and then releases its locks. In GraphLab, this is referred to as
full consistency. In that particular system, two more relaxed consistency levels are
provided to better accommodate applications whose semantics may not require
full mutual exclusion: edge consistency and vertex consistency. Edge consistency
ensures that v has read/write access to its own data and the data of its adjacent
edges, but only read access to its neighboring vertices. For example, PageRank
computation would only require edge consistency, since it only reads the ranks of
the neighboring vertices. Vertex consistency simply ensures that while v is executing
its Compute() function, no other vertex will be accessing it. Edge and vertex
consistency allow application semantics to be taken into account for consistency.

10.4.7 Partition-Centric Block Synchronous Processing

As we noted in Sect. 10.4.4, many real-life graphs exhibit properties that are
challenging for vertex-centric systems, and a number of optimizations have been

9GraphLab also differentiates itself by its distributed shared memory implementation, but that is
not important in this discussion.

10.4 Graph Analytics Platforms 505

developed to deal with the issues that are raised. Partition-centric BSP systems
constitute a different approach to deal with these problems. These systems exploit
the partitioning of the graph over worker nodes so that, instead of each vertex
communicating with others using message passing as in the vertex-centric approach,
communication is limited to messages across blocks (partitions) with a simpler,
serial algorithm implemented within each partition. The computation follows BSP,
so multiple iterations are performed as supersteps until the system converges. This
approach is exemplified by Blogel and Giraph++.

The critical point of these systems is they execute a serial algorithm within
blocks, and only communicate between blocks. One way to reason about this is that
given a graph G = (V ,E), after partitioning, we have a graph G′ = (B,E′) where
B is the set of blocks, and E′ is the set of edges between blocks. In partition-centric
algorithms, the communication overhead is bounded by |E′|, which is significantly
smaller than |E|; therefore, graphs with high density have low communication
overhead. For example, an experiment conducted on the Friendster graph to compute
connected components show that a vertex-centric system takes 372 times more
messages and 48 times longer computation time than a partition-centric system.
Partition-based systems also reduce the diameter of the graphs since each block is
represented by one vertex in G′, and this results in a significantly reduced number
of supersteps in BSP computation. A similar experiment for computing connected
components over the USA road network graph (which has a diameter of about 9,000)
demonstrates that the number of supersteps are reduced from over 6,000 to 22.
Finally, dealing with skew in degree distribution is handled by the graph partitioning
algorithm that ensures a balanced number of vertices in each block. Since a serial
algorithm is executed within each block, higher degree vertices do not necessarily
cause high number of messages—again the argument is that vertex-centric systems
work on G while partition-centric systems work on the significantly smaller G′.

Example 10.10 Let us consider how the WCC computation we have been dis-
cussing would be performed in a partition-centric BSP system. The computation
steps are shown in Fig. 10.29 where the graph segment at each worker is a partition
denoted by shading. Since a serial algorithm is used within each partition, the
algorithm we have been discussing, namely where each vertex starts out in its own
group is not necessarily the one that might be used, but for comparison to previous
approaches, we will assume the same algorithm. In superstep 1, each worker node
performs a serial computation to determine the group ids for the vertices in its
partition—for worker 1 the smallest group id is 1, so that becomes the group id
of vertices v1, v4, and v7. Similar computation takes places at other workers. At the
end of the superstep, each worker pushes its group id to the other workers, and the
computation repeats.

Notice that the number of supersteps in this case is the same as the vertex-centric
AP (Example 10.9); in general, it could be lower, but this is not the main point. The
savings is in the number of messages that are exchanged: partition-centric approach
exchanges only 6 messages whereas vertex-centric AP exchanges 20 messages. The

506 10 Big Data Processing

Initialization:

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

1 4 7 2 5 8 3 6 9

v1 v2 v3v4 v5 v6v7 v8 v9

Worker 1 Worker 2 Worker 3

1 1 1 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Fig. 10.29 Partition-centric BSP example

example graph we are using in these examples are not densely connected; if it were,
the savings would have been more substantial. �

10.4.8 Partition-Centric Asynchronous

Systems in this category would partition the graph among worker nodes as in
Sect. 10.4.7 and execute a serial algorithm within each partition, but communicate
among workers asynchronously when inter-partition messages are sent. As noted
earlier, the asynchronous communication is usually implemented using distributed
locking. In that sense, these systems would be very similar to distributed DBMSs
that we have been discussing in this book, if one treats each worker partition as a
data fragment. At this point in time, there are no systems that have been developed
in this category.

10.4.9 Partition-Centric Gather-Apply-Scatter

The only difference in this case to the partition-centric BSP described in Sect. 10.4.7
is the use of pull-based GAS rather than push-based BSP. Again, this class of
systems are very similar to distributed DBMSs with appropriate changes to the data
transfer operations in the query plans. So far, there are no systems that have been
developed in this category.

10.4 Graph Analytics Platforms 507

10.4.10 Edge-Centric Block Synchronous Processing

Edge-centric systems focus on each edge as the primary object of interest; in this
sense they are duals of vertex-centric approaches. The computation is done on each
edge and iterates using supersteps until the fixpoint is reached. Note, however, that
an edge in a graph is identified with its two incident vertices. Therefore, executing
Compute() on an edge requires executing on that edge’s incident vertices. The real
difference, therefore, is that the system handles one edge at-a-time, rather than one
vertex at-a-time as in the vertex-centric approach.

A natural question is why this would be preferable given that most graphs have
far more edges than vertices. At first glance, it may seem that edge-centric approach
would cause more computation. However, recall that the larger number of edges
result in high messaging cost in vertex-centric systems. Furthermore, in vertex-
centric systems, the edges are typically sorted by their originating vertex and an
index is built upon them for easier access. When state updates are propagated to
neighbor vertices, this index is then randomly accessed to locate edges incident to
that vertex; this random access is expensive. Edge-centric systems aim to counter
these problems by operating on unsorted sequence of edges where each edge
identifies its source and target vertices—there is no random access to an index and
when messages are pushed following computation on an edge, there is only one
target vertex. Since we are considering BSP computation model, the updates that are
computed at one superstep are available at the start of the subsequent superstep. X-
Stream follows this approach over a shared memory parallel system and implements
optimizations for both in-memory and disk-based graph processing.

10.4.11 Edge-Centric Asynchronous

The systems in this category would be modifications of vertex-centric asynchronous
ones (Sect. 10.4.5) where the concern is on the consistent execution over each edge
rather than over each vertex. Therefore, locks would be implemented on edges rather
than on vertices. Currently, there are no known systems in this category.

10.4.12 Edge-Centric Gather-Apply-Scatter

Combining edge-centric programming with GAS computation model would entail
changes to edge-centric BSP systems (Sect. 10.4.10) in the same way that vertex-
centric GAS systems modify vertex-centric BSP systems. This would mean that the
gather, apply, and scatter functions are implemented on edges with pull-based state
read performed during the gather phase. At this point, there are no known systems
that follow this approach.

508 10 Big Data Processing

10.5 Data Lakes

Big data technologies enable the storage and analysis of many different kinds
of data, which can be structured, semistructured, or unstructured, in its natural
format. This provides the opportunity to address in a new way the old problem
of physical data integration (see Chap. 7, which has been typically solved using
data warehouses. A data warehouse integrates data from different enterprises’ data
sources using a common format, usually the relational model, which requires data
transformation. By contrast, a data lake stores data in its native format, using a big
data store, such as Hadoop HDFS. Each data element can be directly stored, with
a unique identifier and associated metadata (e.g., data source, format, etc.). Thus,
there is no need for data transformation. The promise is that, for each business
question, one can quickly find the relevant dataset to analyze it.

The term data lake was introduced to contrast with data warehouses and data
marts. It is often associated with the Hadoop software ecosystem. It has become a
hot, yet controversial, topic, in particular, in comparison with data warehouse.

In the rest of this section, we discuss in more details data lake versus data
warehouse. Then, we introduce the principles and architecture of a data lake. Finally,
we end with open issues.

10.5.1 Data Lake Versus Data Warehouse

As discussed in Chap. 7, a data warehouse follows physical database integration. It
is central to OLAP and business analytics applications. Thus, it is generally at the
heart of an enterprise’s data-oriented strategy. When data warehousing started (in
the 1980s), such enterprise data was located in OLTP operational databases. Today,
more and more useful data is coming from many other big data sources, such as
web logs, social networks, and emails. As the result, the traditional data warehouse
suffers from several problems:

• Long development process. Developing a data warehouse is typically a long,
multiyear process. The main reason is that it requires upfront a precise definition
and modeling of the data that is needed. Once the needed data is found, often
in enterprise information silos, a global schema and associated metadata need
be carefully defined and data cleaning and transformation procedures must be
designed.

• Schema-on-write. A data warehouse typically relies on a relational DBMS to
manage the data, which is structured according to a relational schema. Relational
DBMSs adopt what has been recently called a schema-on-write approach, to
contrast with schema-on-read (discussed shortly). With schema-on-write, the
data is written to the database with a fixed format, as defined by the schema. This
helps enforce database consistency. Then, users can express queries based on the

10.5 Data Lakes 509

schema to retrieve the data, which is already in the right format. Query processing
is efficient in this case, as there is no need to parse the data at runtime. However,
this is at the expense of difficult and costly evolution to adapt to changes in
the business environment. For instance, introducing new data may imply schema
modifications (e.g., adding new columns), which in turn may imply changes in
applications and predefined queries.

• OLAP workload data processing. A data warehouse is typically optimized
for OLAP workloads only, where data analysts can interactively query the data
across different dimensions, e.g., through data cubes. Most OLAP applications,
such as trend analysis and forecasting, need to analyze historical data and do
not need the most current versions of the data. However, more recent OLAP
applications may need real-time access to the operational data, which is hard to
support in a data warehouse.

• Complex development with ETL. The integration of heterogeneous data
sources through a global schema requires developing complex ETL programs, to
deal with data cleaning, data transformation and manage data refreshment. With
more and more diverse data sources to integrate, ETL development becomes even
more difficult.

A data lake is a central repository of all the enterprise data in its natural format.
Like a data warehouse, it can be used for OLAP and business analytics applications,
as well as for batch or realtime data analysis using big data technologies. Compared
with data warehouse, a data lake can provide the following advantages.

• Schema-on-read. Schema-on-read refers to the “load-first” approach to big data
analysis, as exemplified by Hadoop. With schema-on-read, the data is loaded as
is, in its native format, e.g., in Hadoop HDFS. Then, when the data is read, a
schema is applied to identify the data fields of interest. Thus, the data can be
queried in its native format. This provides much flexibility as new data can be
added at any time in the data lake. However, more work is necessary to write the
code that applies the schema to the data, for instance, as part of the Map function
in MapReduce. Furthermore, data parsing is performed during query execution.

• Multiworkload data processing. The big data management software stack (see
Fig. 10.1) provides support for multiple access methods to the same data, e.g.,
batch analysis with a framework like MapReduce, interactive OLAP, or business
analytics with a framework like Spark, realtime analysis with a data streaming
framework. Thus, by assembling these different frameworks, a data lake can
support multiworkload data processing.

• Cost-effective architecture. By relying on open source technologies to imple-
ment the big data management software stack and shared-nothing clusters, a data
lake provides excellent cost/performance ratio and return on investment.

510 10 Big Data Processing

DataData Data

Data Storage

Data Access

Data Analysis

Resource
Management

Presentations & Applications

Governance
Security

Operations

Platform
Management

External
Data Sources

DW

RDB

Fig. 10.30 Data Lake Architecture

10.5.2 Architecture

A data lake should provide the following main capabilities:

• Collect all useful data: raw data, transformed data, data coming from external
data sources, etc.;

• Allow users from different business units to explore the data and enrich it with
metadata;

• Access shared data through different methods: batch, interactive, realtime, etc.
• Govern, secure, and manage data and tasks.

Figure 10.30 shows the data lake architecture, with its main components.
At the center of the architecture is the big data management components (data

storage, data access, data analysis, and resource management), on top of which
different presentations and applications can be built. These components are those
of the big data management software stack and can be found as Apache open source
software. Note that many BI tools are now available to work with Hadoop, where we
can distinguish new tools or extensions of traditional BI tools for RDBMSs. We can
also distinguish between two approaches (which can be combined in one tool):

1. SQL-on-Hadoop, i.e., using an Hadoop SQL driver such as HiveQL or Spark
SQL. Examples of tools are Tableau, Platfora, Pentaho, Power BI, and DB2
BigSQL.

2. Function library that provides HDFS access through high-level operators. Exam-
ples of tools are Datameer, Power BI, and DB2 BigSQL.

At the left-hand side of the architecture is platform management, which includes
data governance, data security, and task operations. These components supplement

10.5 Data Lakes 511

big data management with functions that are critical to share data at the enterprise’s
scale (across multiple business units). Data governance has growing importance
in a data lake as it is necessary to manage the data according to the enterprise’s
policy, with special attention to data privacy laws, e.g., the famous General Data
Protection Regulation (GDPR) adopted by the European Union in May 2018). This
policy is typically supervised by a data governance committee and implemented
by data stewards, who are in charge of organizing data for business needs. Data
security includes user authentication, access control, and data protection. Task
operations include provisioning, monitoring, and scheduling of tasks (typically in
a SN cluster). Like for the BI tools for big data, one can now find Apache tools
for data governance, e.g., Falcon, data security, e.g., Ranger and Sentry, and task
operations, e.g., Ambari and Zookeeper.

Finally, the right-hand side of the architecture shows that different kinds of
external data sources, e.g., SQL, NoSQL, etc., can be integrated, typically using
the wrappers of the tools for data access, e.g., Spark connectors.

10.5.3 Challenges

Building and operating a data lake remain challenging, both for methodological and
technical reasons. The methodology for a data warehouse is now well-understood.
It consists of a combination of prescriptive data modeling (schema-on-write),
metadata management, and data governance, which altogether yield strong data
consistency. Then, with powerful OLAP or business analytics tools, different users,
even with limited data analysis skills can get value out of the data. In particular, a
data mart will make it easier to analyze data that is specific to a business need.

In contrast, a data lake lacks data consistency, which makes data analysis at the
enterprise’s scale much more difficult. This is the main reason skilled data scientists
and data stewards are needed. Another reason is that the big data technology
landscape is complex and keeps changing. Therefore, the following methodology
and best practices to build a data lake should be considered:

• Set a list of priorities and business added values, in comparison with the enter-
prise’s data warehouse. This should include the definition of precise business
objectives, and the corresponding data requirements for the data lake.

• Have a global vision of the data lake architecture which should be extensible (to
accommodate technical evolutions) and include data governance and metadata
management.

• Define a security and privacy policy, which is critical if data is shared between
business lines.

• Define a compute/storage model that supports the global vision. In particular, the
extensibility and scalability aspects will drive the technical choices.

• Define an operational plan with service level agreements (SLAs) in terms of
uptime, volume, variety, velocity, and veracity.

512 10 Big Data Processing

The technical reasons that make a data lake challenging are due to the issues of
data integration and data quality. Traditional data integration (see Chap. 7) focuses
on the problem of schema integration, including schema matching and mapping,
in order to produce a global schema. In the context of big data integration, the
problem of schema integration, with many heterogeneous data sources, gets more
difficult. The data lake approach simply avoids the problem of schema integration,
by managing schemaless data. However, as data lakes mature the issue of schema
integration may arise, in order to improve data consistency. Then, an interesting
solution is the automatic extraction of metadata and schema information from many
related data items, e.g., within the same dataset. One way to do this is by combining
techniques from machine learning, matching, and clustering.

10.6 Conclusion

Big data and its role in data science have become important topics in data
management, although they are hard to define precisely. Consequently, there is no
unifying framework within which developments in this area can be presented—
perhaps the reference architecture we provided in Fig. 10.1 is the best that can
be done. Therefore, in this chapter, we focused on the properties that characterize
these systems and focused on the fundamental platforms that have been proposed
to address them. To summarize, we discussed distributed storage systems and
MapReduce and Spark processing platforms that address the issues with managing
and processing large volumes of data; we discussed data streams that deal with
the velocity property associated with big data applications; and we discussed graph
analytics that, together with data streams, highlight the issues of variety. Data lakes
discussion addresses the variety and scale issues in terms of data integration, and it
highlights the data quality problems (veracity) and the need for data cleaning when
the source data is not well-curated to begin with.

It is unavoidable that the topics covered in this chapter will continue to evolve
and change—this is an area where technology moves fast. We have covered the
fundamentals and have pointed to the foundational publications. We give more
references in the following section, but the reader would be well-advised to monitor
publications for developments.

10.7 Bibliographic Notes

Statistics about big data are scattered and there is no single publication that reports
comprehensive statistics. YouTube statistics are from [Brewer et al. 2016] while
Alibaba statistics are from personal correspondence. Many more numbers are
reported in various blogs and web publications.

10.7 Bibliographic Notes 513

A good early discussion of problems with operating system support for DBMSs
is Stonebraker [1981] which also explains why early DBMSs moved from file
system based storage to block storage. Among the more recent storage systems that
we discussed, Google File System is described in [Ghemawat et al. 2003] and Ceph
in [Weil et al. 2006].

Our discussion on big data processing platforms (in particular MapReduce) is
based primarily on Li et al. [2014]. Sakr et al. [2013] and Lee et al. [2012] also
provide overviews of the topic. The original MapReduce proposal is in [Dean and
Ghemawat 2004, 2010]. Criticism of MapReduce are discussed in [DeWitt et al.
2008, Dewitt and Stonebraker 2009, Pavlo et al. 2009, Stonebraker et al. 2010].
Sources for MapReduce languages are as follows: HiveQL [Thusoo et al. 2009],
Tenzing [Chattopadhyay et al. 2011], JAQL [Beyer et al. 2009], Pig Latin [Olston
et al. 2008], Sawzall [Pike et al. 2005]), FlumeJava [Chambers et al. 2010], and
SystemML [Ghoting et al. 2011]. The MapReduce join implementation 1-Bucket-
Theta algorithm is due to Okcan and Riedewald [2011], broadcast join is due to
Blanas et al. [2010], and repartition join is proposed by Blanas et al. [2010].

Spark is proposed in [Zaharia et al. 2010, Zaharia 2016]. As part of the Spark
ecosystem, Spark SQL is discussed in [Armbrust et al. 2015], Spark Streaming in
[Zaharia et al. 2013], and GraphX in [Gonzalez et al. 2014].

On data stream systems, the rich literature is covered in a number of books. Golab
and Özsu [2010] mostly focus on the earlier systems and data and query modeling
issues. The book also discusses stream warehouses. Aggarwal [2007] contains a
wide range of topics (including stream mining that we omitted) focusing on earlier
work. More discussion on stream mining can be found in [Bifet et al. 2018].
Muthukrishnan [2005] focuses on the theoretical foundations of these systems.
Generalization of data stream systems to event processing is another direction that
has been followed; although we have not discussed this issue in this chapter, Etzion
and Niblett [2010] is a good starting point to investigate this direction. In addition to
the systems that we discuss, there are DSS deployments in the cloud, as exemplified
by StreamCloud[Gulisano et al. 2010, 2012].

The definition of a data stream as an append-only sequence of timestamped
items that arrive in some order [Guha and McGregor 2006]. Other definitions of
a data stream are given in [Wu et al. 2006, Tucker et al. 2003]. The concept of
revision tuples are introduced in data streams by Ryvkina et al. [2006]. Streaming
query semantics are discussed by Arasu et al. [2006] within the context of CQL
language and more generally by Law et al. [2004]. These languages are classified
as either declarative (QL [Arasu et al. 2006, Arasu and Widom 2004], GSQL
[Cranor et al. 2003], and StreaQuel [Chandrasekaran et al. 2003]) or procedural
(Aurora [Abadi et al. 2003]). Operator executions in stream systems are important
due to their non-blocking requirements. Non-blocking joins are topics of [Haas
and Hellerstein 1999a, Urhan and Franklin 2000, Viglas et al. 2003, Wilschut and
Apers 1991] and aggregation of [Hellerstein et al. 1997, Wang et al. 2003]. Joins of
more than two streams (multistream joins) are discussed in [Golab and Özsu 2003,
Viglas et al. 2003] and joins of streams with static data is the topic of [Balazinska
et al. 2007]. The topic of punctuations as a means of unblocking is presented by

514 10 Big Data Processing

Tucker et al. [2003]. Punctuations can also be used to reduce the amount of state
that operators need to support [Ding and Rundensteiner 2004, Ding et al. 2004,
Fernández-Moctezuma et al. 2009, Li et al. 2006, 2005]. Heartbeats which are
punctuations that govern the timestamps of future tuples are discussed in [Johnson
et al. 2005, Srivastava and Widom 2004a].

Query processing over data streams is the topic of [Abadi et al. 2003, Adamic
and Huberman 2000, Arasu et al. 2006, Madden and Franklin 2002, Madden
et al. 2002a]. Windowed query processing is discussed in [Golab and Özsu 2003,
Hammad et al. 2003a, 2005, Kang et al. 2003, Wang et al. 2004, Arasu et al.
2006, Hammad et al. 2003b, 2004]. Load management approaches when stream
rate exceeds processing capacity are presented in [Tatbul et al. 2003, Srivastava and
Widom 2004b, Ayad and Naughton 2004, Liu et al. 2006, Reiss and Hellerstein
2005, Babcock et al. 2002, Cammert et al. 2006, Wu et al. 2005].

There have been a number of stream processing systems proposed and developed
as prototypes and production systems. We classified some of these as Data Stream
Management Systems (DSMS): STREAM [Arasu et al. 2006], Gigascope [Cranor
et al. 2003], TelegraphCQ [Chandrasekaran et al. 2003], COUGAR [Bonnet et al.
2001], Tribeca [Sullivan and Heybey 1998], Aurora [Abadi et al. 2003], Bore-
alis [Abadi et al. 2005]. We classified others as Data Stream Processing Systems
(DSPS): Apache Storm [Toshniwal et al. 2014], Heron [Kulkarni et al. 2015], Spark
Streaming [Zaharia et al. 2013], Flink [Carbone et al. 2015], MillWheel [Akidau
et al. 2013], and TimeStream [Qian et al. 2013]. As noted, all DSMSs except Bore-
alis were single machine systems, while all of the DSPSs are distributed/parallel.

Partitioning streaming data in parallel/distributed systems is discussed in [Xing
et al. 2006] and [Johnson et al. 2008]. Key-splitting is proposed by Azar et al.
[1999], Partial Key Grouping (PKG) by Nasir et al. [2015] (the “power of two
choices” that PKG is based on is discussed in [Mitzenmacher 2001]). PKG has been
extended to use more than two choices for the head of the distribution [Nasir et al.
2016]. Hybrid partitioning to deal with skewed data is given in [Gedik 2014, Pacaci
and Özsu 2018]. Repartitioning in between operations in the query plan is discussed
in [Zhu et al. 2004, Elseidy et al. 2014, Heinze et al. 2015, Fernandez et al. 2013,
Heinze et al. 2014]. In this context, the seminal work flux is proposed by Shah et al.
[2003].

Recovery semantics of parallel/distributed stream systems is the topic of [Hwang
et al. 2005].

There are many books that focus on the specific aspects of graph analytics
platforms, and these typically address how to perform analytics using one of the
platforms that we discuss. For a more general book on graph processing, [Desh-
pande and Gupta 2018] is a good source. Graph analytics is discussed in an extensive
survey [Yan et al. 2017]. The survey by Larriba-Pey et al. [2014] is also a very good
reference. The real challenges in graph processing is discussed by Lumsdaine et al.
[2007]. McCune et al. [2015] provide a good survey of vertex-centric systems.

Graph characteristics, in particular skew in degree distribution, plays a significant
role in graph processing. This is discussed in [Newman et al. 2002]. An important
first step in parallel/distributed graph processing is graph partitioning, which takes

10.7 Bibliographic Notes 515

up a large portion of processing time [Verma et al. 2017] and is computationally
expensive [Andreev and Racke 2006]. Graph partitioning techniques can be of
two classes: vertex-disjoint (edge-cut) and edge-disjoint (vertex-cut). The main
algorithm in the first class is METIS [Karypis and Kumar 1995] whose computation
cost is analyzed by McCune et al. [2015].Hashing is another possibility when
vertices are hashed to different partitions. These techniques distribute vertices in
a balanced way, but they do not deal well with power-law graphs. Extensions to
METIS have developed for this case [Abou-Rjeili and Karypis 2006]. Alternatively,
label propagation Ugander and Backstrom [2013] is an alternative approach to deal
with this problem. Combining METIS with label propagation by incorporating the
latter in the coarsening phase of METIS has also been proposed [Wang et al. 2014].
Another alternative is to start from an unbalanced partitioning and incrementally
achieving balance [Ugander and Backstrom 2013]. For edge-disjoint partitioning,
hashing can be possible. It is also possible to combine both vertex-disjoint and edge-
disjoint approaches as in PowerLyra [Chen et al. 2015].

MapReduce has been proposed as a possible approach to process graphs [Cohen
2009, Kiveris et al. 2014, Rastogi et al. 2013, Zhu et al. 2017] as well as
modifications that would allow better scalability [Qin et al. 2014]. HaLoop system
[Bu et al. 2010, 2012] is a specially tailored MapReduce approach to graph
analytics. GraphX [Gonzalez et al. 2014] is a Spark-based system that follows the
MapReduce approach.

In native graph analytics systems, the classification we discussed in Sect. 10.4.3
is based on [Han 2015, Corbett et al. 2013]. Bulk synchronous parallel (BSP)
computation model is due to Valiant [1990]. Vertex-centric BSP systems include
Pregel [Malewicz et al. 2010] and its open source counterpart Apache Giraph
[Apache], GPS [Salihoglu and Widom 2013], Mizan [Khayyat et al. 2013], LFGraph
[Hoque and Gupta 2013], Pregelix [Bu et al. 2014], and Trinity [Shao et al. 2013].
System-level optimizations to deal with skew are discussed in [Lugowski et al. 2012,
Salihoglu and Widom 2013, Gonzalez et al. 2012]. Some algorithmic optimizations
are presented in [Salihoglu and Widom 2014]. Vertex-centric asynchronous systems
include GRACE [Wang et al. 2013] and GiraphUC [Han and Daudjee 2015]. The
primary example of vertex-centric gather-apply-scatter systems is GraphLab [Low
et al. 2012, 2010]. Blogel [Yan et al. 2014] and Giraph++ [Tian et al. 2013] follow
the partition-centric BSP approach. X-Stream [Roy et al. 2013] is the only edge-
centric BSP system that has been developed so far.

Data lake is a new topic and, thus, it is too early to see many technical books
on the topic. Pasupuleti and Purra [2015] provide a good introduction to data
lake architectures, with a focus on data governance, security, and data quality.
One can also find useful information in white papers, e.g., [Hortonworks 2014]
from companies that provide data lake components and services. Some of the
challenges facing data lakes are in big data integration. Dong and Srivastava Dong
and Srivastava [2015] provide an excellent survey of the recent techniques for big
data integration. The broader issue of big data integration, which includes the web,
is the topic of [Dong and Srivastava 2015]. Within this context, [Coletta et al. 2012]

516 10 Big Data Processing

suggest combining techniques from machine learning, matching, and clustering to
address integration issues in data lakes.

Exercises

Problem 10.1 Compare and contrast the different approaches to storage system
design in terms of scalability, ease of use (ingesting data, etc.), architecture (shared,
shared-nothing, etc.), consistency scheme, fault-tolerance, meta-data management.
Try to generate a comparison table in addition to a short discussion.

Problem 10.2 (*) Consider the big data management software stack (Fig. 10.1) and
compare it with the traditional relational DBMS software stack, for instance, based
on that in Fig. 1.9. In particular, discuss the main differences in terms of storage
management.

Problem 10.3 (*) In the distributed storage layer of the big data management
software stack, data is typically stored in files or objects. Discuss when to use
object storage versus object storage based on the characteristics of the data, e.g.,
large size or small objects, high number of objects, similar records, and application
requirements, e.g., easy to move across machines, scalability, fault-tolerance.

Problem 10.4 (*) In a distributed file system like GFS or HDFS, the files are
divided into fixed-size partitions, called chunks. Explain the differences between
the concept of chunk and horizontal partition as defined in Chap. 2.

Problem 10.5 Consider the various MapReduce implementations for equijoin
given in Sect. 10.2.1.3. Compare broadcast join and repartition join in terms of
generality and shuffling cost.

Problem 10.6 (*) Section 10.2.1.1 describes how the combine module is used to
reduce the shuffling cost.

(a) Provide pseudo-code of such combiner function for the SQL query example
given in Example 10.1.

(b) Describe how it would reduce the shuffling cost.

Problem 10.7 Consider the MapReduce implementation of the theta-join operator
and its dataflow given in Fig. 10.10. Discuss the performance implication of such
dataflow for equijoin (where θ is =).

Problem 10.8 Consider the Spark implementation of the k-means clustering algo-
rithm presented in Example 10.3. Describe which steps of the algorithms result in
shuffling of data across multiple workers.

Problem 10.9 We discussed PageRank computation in Example 10.4. A version,
called personalized PageRank, computes the value of a page around a user-selected
set of pages by assigning more importance to edges in the neighborhood of certain

Exercises 517

pages that the user has identified. In this question, assume that the set of pages
that the user has identified is a single page, called the source. It is with respect
to this source page that the computation is conducted. The differences from usual
PageRank are as follows:

• Recall that in PageRank when the random walk lands on a page, with probably
d the walk jumps to a random page in the graph. In personalized PageRank, the
jump is not to a random page, but always to the source page, i.e., with probability
d, the walk jumps back to the source.

• When computation is initialized, instead of assigning equal PageRank values to
all of the vertices of the graph, source is assigned a rank of 1, the rest of the pages
are assigned a rank of 0.

Compute (by hand) the personalized PageRank of the web graph shown in
Fig. 10.21.

Problem 10.10 (**) Implement personalized PageRank as defined in Problem 10.9
in MapReduce (use Hadoop).

Problem 10.11 (**) Implement personalized PageRank as defined in Problem 10.9
in Spark.

Problem 10.12 (**) Consider a DSPS as described in Sect. 10.3. Describe an
algorithm to implement at-least-once delivery semantics.

Problem 10.13 (**) Consider the DSS as described in Sect. 10.3.

(a) Design an intra-operator parallel version of the filter streaming operator.
(b) Design an intra-operator parallel version of the aggregate operator. Hint: Unlike

the filter operator above, the aggregate operator is stateful. What do you need
to take into account that was not necessary for the (stateless) filter operator?
How is data split across instances of the operator? What shall be done at the
output of the previous operator to guarantee each streaming tuple goes to the
right instance?

Problem 10.14 (**) Design a sliding window join operator for two streams. Is it
deterministic? Why not? Can you propose an alternative design of the operator that
guarantees determinism independently of the relative speed/interleaving of the input
streams?

Problem 10.15 Consider the vertex-centric programming model for graph process-
ing as described in Sect. 10.4.3. Compare BSP and GAS computation models in
terms of

(a) generality and expressiveness of graph algorithms and
(b) performance optimizations

Problem 10.16 (**) Give an algorithm for personalized PageRank as defined in
Problem 10.9 using vertex-centric BSP model.

518 10 Big Data Processing

Problem 10.17 (*) Example 10.8 describes an iterative label-propagation based
algorithm for finding connected components of the input graph in the vertex-
centric programming model. Consider a streaming application where each incoming
tuple in the stream represents an undirected edge of the input graph. Design an
incremental algorithm that finds connected components of the graph that is formed
by the edges in the stream.

Problem 10.18 (*) Consider the greedy vertex-cut edge placement heuristics
defined in Sect. 10.4.10. Such greedy partitioning heuristics are known to suffer
from load-imbalance if the edge steam is presented in some adversarial order.

(a) Create an ordering of the vertices in Fig. 10.23 such that the described heuristics
results in highly imbalanced partitioning, i.e., entire set of edges is assigned to
a single partition.

(b) Propose a strategy to mitigate the load imbalance in case of such adversarial
stream ordering.

Problem 10.19 (*) A data lake resembles a data warehouse (see Chap. 7), but for
unstructured schemaless data, e.g., stored in HDFS. Consider the Spark big data
system, which provides SQL access to HDFS data (through SparkSQL) and many
other data sources. Is Spark sufficient to build a data lake? What functionality would
be missing?

Problem 10.20 (**) Recent parallel DBMSs used in modern data warehousing
have added support for external tables (see, for instance, Polybase in Chap. 11),
which make the correspondence with the HDFS files and can be manipulated
together with native relational tables using SQL queries. On the other hand, data
lakes provide access to external data sources, e.g., SQL, NoSQL, etc., using
wrappers, e.g., Spark connectors. Compare the two approaches (data lake and
modern data warehouse) from the point of view of data integration. What is similar?
What is different?

Chapter 11
NoSQL, NewSQL, and Polystores

For managing data in the cloud, one can always rely on a relational DBMS. All
relational DBMSs have a distributed version, and most of them operate in the cloud.
However, these systems have been criticized for their “one size fits all” approach.
Although they have been able to integrate support for all kinds of data (e.g.,
multimedia objects, documents) and new functions, this has resulted in a loss of per-
formance, simplicity, and flexibility for applications with specific, tight performance
requirements. Therefore, it has been argued that more specialized DBMS engines
are needed. For instance, column-oriented DBMSs which store column data together
rather than rows in traditional row-oriented relational DBMSs have been shown to
perform more than an order of magnitude better on OLAP workloads. Similarly,
data stream management systems (see Sect. 10.3) are specifically architected to deal
efficiently with data streams.

Thus, many different data management solutions have been proposed, specialized
for different kinds of data and tasks, and able to perform orders of magnitude better
than traditional relational DBMSs. Examples of new data management technologies
include distributed file systems and parallel data processing frameworks for big data
(see Chap. 10).

An important kind of new data management technology is NoSQL, meaning
“Not Only SQL” to contrast with the “one size fits all” approach of relational
DBMS. NoSQL systems are specialized data stores that address the requirements
of web and cloud data management. The term data store is often used as it is quite
general, including not only DBMSs but also simpler file systems or directories. As
an alternative to relational DBMSs, NoSQL systems support different data models
and different languages other than standard SQL. They also emphasize scalability,
fault-tolerance, and availability, sometimes at the expense of consistency. There are
different types of NoSQL systems, including key-value, document, wide column,
and graph, as well as hybrid (multimodel or NewSQL).

These new data management technologies have led to a rich offering of services
that can be used to build cloud data-intensive applications that can scale and exhibit

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_11

519

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_11

520 11 NoSQL, NewSQL, and Polystores

high performance. However, this has also led to a wide diversification of data store
interfaces and the loss of a common programming paradigm. Thus, this makes
it very hard for a user to build applications that use multiple data stores, e.g.,
distributed file system, relational DBMS, and NoSQL DBMS. This has motivated
the design of polystores, also called multistore systems, that provide integrated
access to a number of cloud data stores through one or more query languages.

This chapter is organized as follows: Section 11.1 discusses the motivations for
NoSQL systems, in particular, the CAP theorem that helps to understand the trade-
off between different properties. We then introduce the different types of NoSQL
systems: key-value in Sect. 11.2, document in Sect. 11.3, wide column in Sect. 11.4,
graph in Sect. 11.5. Section 11.6 presents the hybrid systems, i.e., multimodel
NoSQL systems and NewSQL DBMSs. Section 11.7 discusses the polystores.

11.1 Motivations for NoSQL

There are several (complementary) reasons that have motivated the need for NoSQL
systems. The first obvious one is the “one size fits all” limitation of relational
DBMSs, which we discussed above.

A second reason is the limited scalability and availability of the early database
architecture that has been used in the cloud. This architecture is a traditional 3-tier
architecture with web clients accessing a data center that features a load balancer,
web/application servers, and database servers. The data center typically uses a
shared-nothing cluster, which is the most cost-effective solution for the cloud. For a
given application, there is one database server, typically a relational DBMS, which
provides fault-tolerance and data availability through replication. As the number of
web clients increases, it is relatively easy to add web/application servers, typically
using virtual machines, to absorb the incoming load and scale up. However, the
database server becomes the bottleneck, and adding new database servers would
require to replicate the entire database, which would take much time. In a shared-
nothing cluster, a solution could be to use a parallel relational DBMS to provide
scalability. However, this solution would be appropriate only for OLAP (read-
intensive) workloads (see Sect. 8.2) and not cost-effective as parallel relational
DBMSs are high-end products.

A third reason that has been used to motivate the need for NoSQL systems is that
supporting strong database consistency as relational DBMSs do, i.e., through ACID
transactions, hurts scalability. Therefore, some NoSQL systems have relaxed strong
database consistency in favor of scalability. An argument to support this approach
has been the famous CAP theorem from distributed systems theory. However, the
argument is simply wrong as the CAP theorem has nothing to do with database
scalability: it is related to replication consistency in the presence of network
partitioning. Furthermore, it is quite possible to provide both strong database
consistency and scalability, as some NewSQL systems do (see Sect. 11.6.2).

11.2 Key-Value Stores 521

The CAP theorem states that a distributed data store with replication can only
provide two out of the following three properties: (C) consistency, (A) availability,
and (P) partition tolerance. Note there is no (S) scalability. These properties are
defined as follows:

• Consistency: all nodes see the same data values at the same time, i.e., each read
request returns the last written value. This property corresponds to linearizability
(consistency over individual operations) and not serializability (consistency over
groups of operations).

• Availability: any replica has to reply to any received request.
• Partition tolerance: the system continues to operate despite a partitioning of the

network due to a failure.

A common misunderstanding of the CAP theorem is that one of these properties
needs to be abandoned. However, only in the case of a network partitioning does
one have to choose between consistency and availability.

NoSQL (Not Only SQL) is an overloaded term, which leaves much room for
interpretation and definition. For instance, it can be applied to the early hierarchical
and network DBMS, or the object or XML DBMSs. However, the term first
appeared in the late 1990s for the new data stores built to address the requirements
of web and cloud data management. As an alternative to relational databases,
they support different data models and languages other than standard SQL. These
systems typically emphasize scalability, fault-tolerance, and availability, sometimes
at the expense of consistency.

In this chapter, we introduce the four main categories of NoSQL systems based
on the underlying data model, i.e., key-value, wide column, document, and graph.
We also consider the hybrid data stores: multimodel, to combine multiple data
models in one system, and NewSQL, to combine the scalability of NoSQL with
the strong consistency of relational DBMS. For each category, we illustrate with a
representative system.

11.2 Key-Value Stores

In the key-value data model, all data is represented as key-value pairs, where the key
uniquely identifies the value. Key-values stores are schemaless, which yields great
flexibility and scalability. They typically provide a simple interface such as put (key,
value), value=get (key), delete (key).

An extended form of key-value store is able to store records, as lists of attribute-
value pairs. The first attribute is called major key or primary key, e.g., a social
security number, and uniquely identifies the record among a collection of records,
e.g., people. The keys are usually sorted, which enables range queries as well as
ordered processing of keys.

A popular key-value store is Amazon DynamoDB, which we introduce below.

522 11 NoSQL, NewSQL, and Polystores

11.2.1 DynamoDB

DynamoDB is used by some of Amazon’s core services that need high availability
and key-based data access. Examples of services are those that provide shopping
carts, seller lists, customer preferences, and product catalogs. To achieve scalability
and availability, Dynamo sacrifices consistency under some failure scenarios and
uses a synthesis of well-known P2P techniques (see Chap. 9) in a shared-nothing
cluster.

DynamoDB stores data as database tables, which are collections of individual
items. Each item is a list of attribute-value pairs. An attribute value can be of type
scalar, set, or JSON. The items are analogous to rows in a relational table, and the
attributes are analogous to columns. However, since attributes are self-describing,
there is no need for a relational schema. Furthermore, items may be heterogeneous,
i.e., with different attributes.

The original design of DynamoDB provides the P2P distributed hash table (DHT)
abstraction (see Sect. 9.1.2). The primary key (the first attribute) is hashed over the
different partitions, which allows efficient key-based read and write operations to
an item as well as load balancing. More recently, DynamoDB has been extended to
support composite primary keys, which are made of two attributes. The first attribute
is the hash key and is not necessarily unique. The second attribute is the range key
and allows range operations within the hash partition corresponding to the hash
key. To access database tables, DynamoDB provides a Java API with the following
operations:

• PutItem, UpdateItem, DeleteItem: adds, updates, or deletes an item in a table
based on its primary key (either a hash primary key or a composite primary key).

• GetItem: returns an item based on its primary key in a table.
• BatchGetItem: returns all items that have the same primary key, but in several

tables.
• Scan: returns all items in a table.
• Range query: returns all items based on a hash key and a range on the range key.
• Indexed query: returns all items based on an indexed attribute.

Example 11.1 Consider table Forum_Thread in Fig. 11.1. This table is made of
homogeneous items that have four attributes: Forum, Subject, Date of last post, and
Tags. It has a composite key, made of a hash key (Forum) and a range key (Subject).
An example of primary key access is

GetItem(Forum=“EC2,” Subject=“xyz”)

which returns the last item. An example of range query is

Query(Forum=“S3,” Subject >“ac”)

which returns the second and third items. �
DynamoDB builds an unordered hash index on the hash key, i.e., a DHT, and a

sorted range index on the range (ordered) key. Furthermore, DynamoDB provides

11.2 Key-Value Stores 523

“S3” “abc” “2017 . . . ” “a” “b”
“S3” “acd” “2017 . . . ” “c”
“S3” “cbd” “2017 . . . ” “d” “e”

“RDS” “xyz” “2017 . . . ” “f”

“EC2” “abc” “2017 . . . ” “a” “e”
“EC2” “xyz” “2017 . . . ” “f”

Forum Subject
Date of
last post

Tags

Hash
key

Range
key

Table: Forum Thread

Fig. 11.1 DynamoDB table example

two kinds of secondary indexes to allow fast access to items based on nonkey
attributes: local secondary indexes, to retrieve items within a hash partition, i.e.,
items that have the same value in their hash key, and global secondary indexes, to
retrieve items in the whole DynamoDB table.

Data is partitioned and replicated across multiple cluster nodes in several data
centers, which provides both load balancing and high availability. Data partitioning
relies on consistent hashing , a popular hashing scheme that has been used in DHTs
with ring geometry, e.g., Chord (see Sect. 9.1.2). The DHT is represented as a one-
dimensional circular identifier space, i.e., a “ring,” where each node in the system is
assigned a random value within this space which represents its position on the ring.
Each item is assigned to a node by hashing the item’s key to yield its position on the
ring, and then finding the first node clockwise with a position higher than the item
position. Thus, each node becomes responsible for the interval in the ring between
its predecessor node and itself. The main advantage of consistent hashing is that
the addition (joins) and removal (leaves/failures) of nodes only affect the nodes’
immediate neighbor, with no impact on other nodes.

DynamoDB also exploits consistent hashing to provide high availability, by
replicating each item at n nodes, n being a system-configured parameter. Each item
is assigned a coordinator node, as described above, and is replicated on the n − 1
clockwise successor nodes. Thus, each node is responsible for the interval of the
ring between its nth predecessor and itself.

Example 11.2 Figure 11.2 shows a ring with 6 nodes, each named by its position
(hash value). For instance, node B is responsible for the hash value interval (A,B]
and node A for the interval (F,A]. The put(c,v) operation yields a hash value for
key c between A and B, so node B becomes responsible for the item. In addition,
assuming replication parameter n = 3, the item would be replicated at nodes C and

524 11 NoSQL, NewSQL, and Polystores

B

AF

E

D C

h(c)

put(c, v)

Fig. 11.2 DynamoDB consistent hashing. Node B is responsible for the hash value interval (A,B].
Thus, item (c,v) is assigned to node B

D. Thus, node D will store the items whose keys fall in the intervals (A, B], (B, C],
and (C, D]. �

DynamoDB trades strong data consistency for scalability and availability, but
with different ways of controlling consistency. It provides eventual consistency of
replicas (see Sect. 6.1.1), which is achieved by an asynchronous update propagation
protocol and a gossip-based distributed failure detection protocol.

Write consistency in a concurrent multiuser environment can be controlled
through conditional writes. By default, the write operations (PutItem, UpdateItem,
DeleteItem) will overwrite an existing item that has the given primary key. A
conditional write specifies a condition over the item’s attributes to succeed. For
instance, a condition for a PutItem to succeed is that there is not already an item
with the same primary key. Thus, conditional writes are useful in case of concurrent
updates.

DynamoDB supports eventually consistent and strongly consistent reads. By
default, reads are eventually consistent, i.e., may not return the latest data which
is being asynchronously replicated. Strongly consistent reads return the most up-to-
date data, which may not be possible in the case of network failures, because not all
replica updates have been propagated.

11.2.2 Other Key-Value Stores

Other popular key-value stores are Cassandra, Memcached, Riak, Redis, Amazon
SimpleDB, and Oracle NoSQL Database. Many systems provide further extensions

11.3 Document Stores 525

so that we can see a smooth transition to wide column store and document stores,
which we discuss next.

11.3 Document Stores

Document stores are advanced key-value stores, where keys are mapped to values of
document type, such as JSON, YAML, or XML. Documents are typically grouped
into collections, which play a role similar to relational tables. However, documents
are different from relational tuples. Documents are self-describing, storing data and
metadata (e.g., markups in XML, field names in JSON objects) altogether and can be
different from one another within a collection. Furthermore, the document structures
are hierarchical, using nested constructs, e.g., nested objects and arrays in JSON.
Thus, modeling a database using documents requires fewer collections than with
(flat) relational tables, and also avoids expensive join operations.

In addition to the simple key-value interface to retrieve documents, document
stores offer an API or query language that retrieve documents based on their
contents. Document stores make it easier to deal with change and optional values,
and to map into program objects. This makes them attractive for modern web
applications, which are subject to continual change, and where speed of deployment
is important.

A popular NoSQL document store is MongoDB, which we introduce below.

11.3.1 MongoDB

MongoDB is an open source system written in C++. It provides a JSON-based
data model for documents, schema flexibility, high availability, fault-tolerance, and
scalability in shared-nothing clusters.

MongoDB stores data as documents in BSON (Binary JSON), a binary encoded
serialization of JSON to include additional types such as binary, int, long, and
floating point. BSON documents contain one or more fields, and each field has a
name and contains a value of a specific data type, including arrays, binary data,
and subdocuments. Each document is a BSON object, i.e., with multiple fields, and
uniquely identified by its first field of type ObjectId, whose value is automatically
generated by MongoDB.

Documents that have a similar structure are organized as collections, like
relational tables, document fields being similar to columns. However, documents in
the same collection can have different structures, since there is no imposed schema.

MongoDB provides a rich query language to update and retrieve BSON data
using functions expressed in JSON. Representing queries as JSON allows unifying
both the way data is stored and manipulated. The query language can be used with
APIs in various programming languages, such as Java, PHP, JavaScript, and Scala.

526 11 NoSQL, NewSQL, and Polystores

Since queries are implemented as methods or functions within the API of a specific
programming language, the integration within application programs is natural and
simple for developers.

MongoDB supports many kinds of queries to insert, update, delete, and retrieve
documents. A query may return documents, subsets of specific fields within
documents, or complex aggregations of values from many documents. Queries can
also include user-defined JavaScript functions. The general form of a query is

db.collection.function (JSON expression)

where db is a global variable corresponding to the database connection, and
f unction is the database operation applied to the collection. The JSON expression
can be arbitrary and used as a criterion to select data. The different kinds of queries
are

• Insert, delete, and update operations on documents. For delete and update
operations, the JSON expression specifies the criteria to select the documents.

• Exact-match queries return results based on the equality of a value for a field in
the documents, typically the primary key.

• Range queries return results based on values of a field in a given range.
• Geospatial queries return results based on proximity, intersection, and inclusion

of geographical objects, such as point, line, circle, or polygon in GeoJSON
format.

• Text search queries return results in relevance order based on text arguments
using Boolean operators.

• Aggregation queries return aggregated values from a collection with operators
such as count, min, max, and average. Furthermore, documents from two
collections can be combined using a left outer join operation.

Example 11.3 Consider collection Posts in Fig. 11.3. Each post item in the collec-
tion is uniquely identified by its key of type ObjectId (generated by MongoDB) and
its value is a JSON object, with nested arrays such as tags and comments. Examples
of update operations are

db.posts.insert(author:“alex,” title:“No Free Lunch”)
db.posts.update(author:“alex,” $set:age:30)
db.posts.update(author:“alex,” $push:tags:“music”)

id: ObjectId(“abc”) author: “alex”, title: “No Free Lunch”, text: “This is . . .”,
tags: [“business”,“ramblings”],
comments: [{who:“jane”, what:“I agree.”},{who:“joe”, what:“No. . .”}]

id: ObjectId(“abd”) A post by X
id: ObjectId(“acd”) A post by Y

Unique key generated
by MongoDB

Value = JSON object with nested arrays

Fig. 11.3 MongoDB posts collection example

11.3 Document Stores 527

where $set (sets a specified value for a field) and $push (appends a specified value
to an array) are MongoDB instructions within JSON.

The following queries:

db.posts.find(author:“alex”)
db.posts.find(comments.who:“jane”)

are exact-match queries. The first one returns all the posts from Alex, while the
second one returns all the posts for which Jane made a comment �

To provide efficient access to data, MongoDB includes support for many kinds
of secondary indexes that can be declared on any field in the document, including
fields within arrays. The different kinds of indexes are:

• Unique indexes, where the value of the indexed field is enforced to be unique.
• Multikey (compound) indexes on multiple fields.
• Array indexes for array fields, with a separate index entry for each array value.
• TTL indexes that should expire automatically after a certain Time-to-Live (TTL).
• Geospatial indexes to optimize queries based on proximity, intersection, and

inclusion of geographical objects, such as point, line, circle, or polygon.
• Partial indexes that are created for a subset of documents that satisfy a condition

specified by the user.
• Sparse indexes that index only documents that contain the specified field.
• Text search indexes use language-specific linguistic rules to optimize text search

queries.

To scale out in shared-nothing clusters, MongoDB supports different kinds of
data partitioning (or sharding) schemes: hash-based, range-based, and location-
aware (whereby the user specifies key-ranges and associated nodes). High avail-
ability is provided through a variation of primary-copy replication, called replica
sets, with asynchronous update propagation. If a master goes down, one of the
replicas becomes the new master and continues to accept update operations. A
MongoDB cluster consists of: shards (data partitions) where each shard can be a
unit of replication (a replica set); mongos that act as query processors between
client applications and the cluster; and configuration servers that store metadata
and configuration settings for the cluster. Applications can optionally read from
secondary replicas, where data is eventually consistent.

MongoDB has recently introduced support for ACID transactions on multiple
documents, in addition to single document transactions. This is achieved through
snapshot isolation. One or more fields in a document may be written in a single
transaction, including updates to multiple subdocuments and elements of an array.
Multidocument transactions can be used across multiple collections, databases,
documents, and shards.

MongoDB also provides an option called write concern that allows users to
specify a guarantee level for reporting the success of a write operation, i.e., with
a desired trade-off between level of persistence and performance, on database
replicas. There are four guarantee levels for clients to adjust the control of a

528 11 NoSQL, NewSQL, and Polystores

id:ObjectId(“abc”) author: “alex”, title: “No Free Lunch”, text: “This is”,
tags : [“business”, “ramblings”],
comments: [who: “jane”, what: “I agree.”, who: “joe”, what: “No. . . ”]

id: ObjectId(“abd”) A post by X
id: ObjectId(“acd”) A post by Y

Unique key generated
by MongoDB

Value = JSON object with nested arrays

Fig. 11.4 MongoDB architecture

write operation, in order from weakest to strongest. These are unacknowledged (no
guarantee), acknowledged (the write to disk has been done), journaled (the write has
been recorded in the log), and replica acknowledged (the write has been propagated
to replicas).

MongoDB’s architecture fits in the big data management software stack (see
Fig. 10.1). It supports pluggable storage engines, e.g., HDFS, or in-memory, for
dealing with unique application demands, interfaces with big data frameworks like
MapReduce and Spark, and supports third-party tools for analytics, IoT, mobile
applications, etc. (see Fig. 11.4). It makes extensive use of main memory to speed up
database operations and native compression, using its storage engine (WiredTiger).

11.3.2 Other Document Stores

Other popular document stores are AsterixDB, Couchbase, CouchDB, and
RavenDB , which all support the JSON data model in a scalable shared-nothing
cluster architecture. However, AsterixDB and Couchbase support a dialect of
SQL++, an elegant extension of SQL with a few simple features to query JSON
data. Couchbase’s SQL++ dialect is called N1QL (Non-first normal form Query
Language, pronounced “nickel”). Couchbase supports restricted transactions
(atomic document writes) and allows to trade some properties for performance,
e.g., relaxing durability by acknowledging write operations done in memory and
then asynchronously writing to disk. In addition to the Couchbase server, which is
used for queries and transactions, the Couchbase platform has an analytics service
that allows online data analytics, without hurting transaction performance, and also
without requiring a different data model or (as a result) ETL. This is kind of Hybrid
Transaction and Analytics Processing (HTAP) for NoSQL (see the introduction
of HTAP in Sect. 11.6.2). The implementation of this analytics service is based
on AsterixDB’s storage engine and parallel query processor. AsterixDB is a high-
performance JSON document store with a combination of techniques from parallel
databases and document databases.

11.4 Wide Column Stores 529

11.4 Wide Column Stores

Wide column stores combine some of the nice properties of relational databases
(e.g., representing data as tables) with the flexibility of key-value stores (e.g.,
schemaless data within columns). Each row in a wide column table is uniquely
identified by a key and has a number of named columns. But unlike in a relational
table, where columns can only contain atomic values, a column can be wide and
contain multiple key-value pairs.

Wide column stores extend the key-value store interface with more declarative
constructs that allow scans, exact-match and range queries over column families.
They typically provide an API for these constructs to be used in a programming
language. Some systems also provide an SQL-like query language, e.g., Cassandra
Query Language (CQL).

At the origin of the wide column stores is Google Bigtable, which we introduce
below.

11.4.1 Bigtable

Bigtable is a wide column store for shared-nothing clusters. Bigtable uses Google
File System (GFS) for storing structured data in distributed files, which provides
fault-tolerance and availability (see Sect. 10.1 on block-based distributed file
systems). It also uses a form of dynamic data partitioning for scalability. Like GFS,
it is used by popular Google applications, such as Google Earth, Google Analytics,
and Google+.

Bigtable supports a simple data model that resembles the relational model, with
multivalued, timestamped attributes. We briefly describe this model as it is the basis
for Bigtable implementation that combines aspects of row-store and column-store
DBMS. For consistency with the concepts we have used so far, we present the
Bigtable data model as a slightly extended relational model.1

A Bigtable instance is a collection of (key, value) pairs where the key identifies
a row and the value is the set of columns, organized as column families. Bigtable
sorts its data by keys, which helps clustering rows of the same range in the same
cluster node.

Each row in a Bigtable is uniquely identified by a row key, which is an arbitrary
string (of up to 64KB in the original system). Thus, a row key is like a single attribute
key in a relation. A Bigtable is always sorted by row keys, A row can have multiple
column families, which form the unit of access control and storage. A column family
is a set of columns of the same type. To create a Bigtable, only the table name and
the column family names need to be specified. However, within a column family,
arbitrary columns (of same type) can be dynamically added.

1In the original proposal, a Bigtable is defined as a multidimensional map, indexed by a row key, a
column key, and a timestamp, each cell of the map being a single value (a string).

530 11 NoSQL, NewSQL, and Polystores

Row key Name Email Web page

100 “Prefix”: “Dr.” “email: gmail.com”:
<!DOCTYPE html PUBLIC. . . >“Last”: “Dobb” “dobb@gmail.com”

101

“First”: “Alice” “email: gmail.com”:

<!DOCTYPE html PUBLIC. . . >
“amartin@gmail.com”

“Last”: “Martin” “email: free.fr”:
“amartin@free.fr”

Fig. 11.5 A Bigtable with 3 column families and 2 rows

To access data in a Bigtable, it is necessary to identify columns within column
families using column keys. A column key is a fully qualified name of the form
column-family-name:column-name. The column family name is like a relation
attribute name. The column name is like a relation attribute value, but used as a name
as part of the column key to represent a single item. This allows the equivalent of
multivalued attributes within a relation. In addition, the data identified by a column
key within a row can have multiple versions, each identified by a timestamp (a 64
bit integer).

Example 11.4 Figure 11.5 shows an example of a Bigtable with 3 column families
and 2 rows, as a relational style representation. The Name and EMail column
families have heterogeneous columns. To access a column value, the row key
and column key must be specified, e.g., row key = “111” and column key =
“Email:gmail.com” which yields “am@gmail.com.” �

Bigtable provides a basic API for defining and manipulating tables, within a
programming language such as C++. It also provides functions for changing table,
and column family metadata, such as access control rights. The API offers various
operators to write and update values, and to iterate over subsets of data, produced
by a scan operator. There are various ways to restrict the rows, columns, and
timestamps produced by a scan, as in a relational select operator. However, there are
no complex operators such as join or union, which need to be programmed using
the scan operator.

Transactional atomicity is supported for single row updates only. Thus, for more
complex multiple row updates, it is up to the programmer to write the appropriate
code to control atomicity using an interface for batching writes across row keys at
the clients.

To store a table in GFS, Bigtable uses range partitioning on the row key. Each
table is divided into partitions called tablets, each corresponding to a row range.
Partitioning is dynamic, starting with one tablet (the entire table range) that is
subsequently split into multiple tablets as the table grows. To locate the (user)
tablets in GFS, Bigtable uses a metadata table, which is itself partitioned in metadata
tablets, with a single root tablet stored at a master server, similar to GFS’s master.
In addition to exploiting GFS for scalability and availability, Bigtable uses various
techniques to optimize data access and minimize the number of disk accesses, such
as compression of column families, grouping of column families with high locality
of access, and aggressive caching of metadata information by clients.

11.5 Graph DBMSs 531

Bigtable relies on a highly available and persistent distributed lock service called
Chubby . A Chubby service consists of five active replicas, one of which is elected
to be the master and actively serves requests. Bigtable uses Chubby for several
tasks: to ensure that there is at most one active master at any time; to store the
bootstrap location of Bigtable data; to discover tablet servers and finalize tablet
server removals; and to store Bigtable schemas. If Chubby becomes unavailable for
an extended period of time, Bigtable becomes unavailable.

11.4.2 Other Wide Column Stores

There are popular open source implementations of Bigtable, such as Hadoop Hbase,
a popular Java implementation that runs on top of HDFS, and Cassandra that
combines techniques from Bigtable and DynamoDB.

11.5 Graph DBMSs

We introduced graph analytics in Chap. 10, where the entire graph can be processed
multiple time until a fixpoint is reached. In contrast, graph DBMSs support queries
that are not iterative and might access only a portion of the graph, allowing indexes
to be effective. Graph databases represent and store data directly as graphs which
allows easy expression and fast processing of graph-like queries, e.g., computing
the shortest path between two elements in the graph. This is much more efficient
than with a relational database where graph data need be stored as separated tables
and graph-like queries require repeated, expensive join operations. Graph DBMSs
typically provide a powerful graph query language. They have become popular with
data-intensive web-based applications such as social networks and recommender
systems.

Graph DBMSs can provide a flexible schema by specifying vertex and edge types
with their properties. This facilitates the definition of indexes to provide fast access
to vertices, based on some property value, e.g., a city name, in addition to structural
indexes. Graph queries can be expressed using graph operators through a specific
API or a declarative query language.

As we have seen above, in order to scale up to very large databases, key-value,
document, and wide column stores partition data across a number of cluster nodes.
The reason that such data partitioning works well is that it deals with individual
items. However, graph data partitioning is much more difficult since the problem
of optimally partitioning a graph is NP-complete (see Sect. 10.1). In particular,
recall that we may get items in different partitions that are connected by edges.
Traversing such interpartition edges incurs communication overhead which hurts
the performance of graph traversal operations. Thus, the number of interpartition
edges should be minimized. But, at the same time, this may produce unbalanced
partitions.

532 11 NoSQL, NewSQL, and Polystores

In the following, we illustrate graph DBMSs with Neo4j, which is a popular one
with many deployments.

11.5.1 Neo4j

Neo4j is a commercial open source system introduced as a scalable and high-
performance graph DBMS with native graph storage and processing in shared-
nothing clusters. It provides a rich graph data model with integrity constraints,
a powerful query language, called Cypher, with indexes, ACID transactions, and
support for high availability and load balancing.

The data model is based on directed graphs, with separated storage for edges
(called relationships), vertices (called nodes), or attributes (called properties). Each
node can have any number of properties, in the form of (attribute, value) pairs. A
relationship must have a type, which gives semantics, and a direction from one node
to another (or to itself). An important capability of Neo4j is that relationships can be
traversed in both directions with the same performance. This simplifies the modeling
of graph DBMSs since there is no need to create two different relationships between
nodes, if one implies the other, e.g., a mutual relationship such as friend (whose
reverse is also friend) or a 1-1 relationship such as owns (whose reverse is owned-
by).

Updating a graph involves updating nodes, relationships, and properties, which
needs to be done in a consistent manner. This is done using ACID transactions.

Example 11.5 Figure 11.6 shows an example of a simple graph for a social network.
The friend relationship from Bob to Mary (meaning “Bob is a friend of Mary”) is
sufficient to represent the mutual relationship (hopefully, Mary is also a friend of
Bob). It could have also been represented the other way (from Mary to Bob). This
makes the graph model simple.

The following transaction, using the Java API, creates nodes Bob and Mary, their
properties, and the friend relationship from Bob to Mary.

Transaction tx = neo.beginTx();
Node n1 = neo.CreateNode();
n1.setProperty(’’name’’, ’’Bob’’);
n1.setProperty(’’age’’, 35);
Node n2 = neo.createNode();
n2.setProperty(’’name’’, ’’Mary’’);
n1.setProperty(’’age’’, 29);
n1.setProperty(’’job’’, ’’engineer’’);
n1.createRelationshipTo(n2, RelTypes.friend);
tx.Commit();

�

11.5 Graph DBMSs 533

Bob
35

Mary
29

Eng.

friend

Group
Tennis

member-of likes

Fig. 11.6 Example of Neo4j graph

Neo4j imposes no schema on the graph, which provides much flexibility in
allowing data to be created without having to fully understand upfront the way data
will be used. However, schemas in other data models (relational, object, XML, etc.)
have proved to be useful for database consistency and efficient query processing.
Therefore, Neo4j introduces an optional schema based on the concept of labels and
a data definition language to manipulate it. A label is like a tag, useful to group
similar nodes. A node may be assigned any number of labels, e.g., person, student,
and user. This allows Neo4j to query only some subset of the graph, e.g., the students
in a given city. Labels are used when defining integrity constraints and indexes.
Integrity constraints can be defined on nodes and relationships, e.g., unique node
property, node property existence, or relationship property existence.

Indexes can be created based on labels and combinations of properties. They
provide efficient node lookup, which is an important operation used to start graph
traversals at specific nodes based on predicates that involve labels and properties.
The Neo4j-spatial library also provides n-dimensional polygon indexes to optimize
geospatial queries.

To query and manipulate graph data, Neo4j provides a Java API and a query
language, called Cypher. The Java API gives the Java programmer access to
the graph operations of nodes, relationships, properties, and labels, with ACID
transactions. This API provides tight integration with the programming language.

Cypher is a powerful graph DBMS query language with SQL flavor. It can be
used to manipulate graph data. For instance, the transaction in Example 11.5 could
be simply written by the following CREATE statement:

CREATE (:Person {name:’’Bob’’, age:35}) <- [:FRIEND]
-(:Person {name:’’Mary’’, age:29, job:’’engineer’’})

Cypher is easy to use through graph pattern matching: the user specifies
a graph pattern as when drawing a diagram and queries the database to

534 11 NoSQL, NewSQL, and Polystores

find the data that matches the pattern. Cypher provides clauses such as
MATCH, MERGE, WHERE, RETURN, which can manipulate node variables (like
tuple variables in SQL) and a few others. MATCH does graph pattern matching.
Nodes are expressed with parentheses, and relationships using pairs of dashes
with greater-than or less-than signs to indicate relationship direction. Node and
relationship property key-value pairs are then specified within curly braces. MERGE
is useful to create or match graphs. WHERE specifies a predicate on nodes and
RETURN the result nodes, relationships, and properties to be returned.

Example 11.6 The following Cypher query returns all direct and indirect friends of
Bob whose name starts with “M.” The MATCH expression defines a recursive pattern
for the friend-of-friend relationship with the node variables bob and follower. The
WHERE expression looks up the node whose name is “Bob,” which may be done
through an index, and selects its follower nodes of whose name starts with “M.”
The RETURN expressions return all pairs of nodes bound to the bob and follower
variables.

MATCH bob-[:FRIEND]-> ()-[:FRIEND] -> follower
WHERE bob.name = ‘‘Bob’’ AND follower.name =~ ‘‘M.*’’
RETURN bob, follower.name

�
Neo4j provides a cost-based query compiler that produces optimized query plans

for Cypher queries, both read-only and update queries. The compiler first performs
logical rewriting of the query plan using unnesting, merging, and simplification
of various parts of the query. Then, based on statistical information on index and
label selectivity, it chooses the best access methods for operators and produces the
query execution plan, using nested iterators to be executed in a pipelined, top-down
fashion.

Neo4j provides extensive support for high availability through full replication
both at the cluster level and across data centers. Within a cluster, a variation of
multimaster replication (see Chap. 6), called causal clustering, is used to scale out
to large configurations. Causal clustering supports causal consistency, a consistency
model that guarantees that causally related operations are seen in the same order by
all client applications. Thus, a client application is guaranteed to read its own writes.
Causal clustering architecture is shown in Fig. 11.7, with three kinds of cluster
nodes: application server, core server, and read server. Application servers execute
application code, and issue write transactions to core servers and read queries
to read servers. The core servers replicate all transactions asynchronously using
the Raft protocol. Raft ensures transaction durability using a majority of the core
servers to acknowledge a write before it is safely committed. Core servers replicate
transactions to read servers by shipping transaction logs. The Raft protocol is also
used to implement various replication architectures across data centers to support
disaster recovery.

11.6 Hybrid Data Stores 535

Asynchronous
replication

Application
server

Write
transactions

Read
queries

Fig. 11.7 Neo4j causal clustering architecture

In addition to high availability, causal clustering allows scaling out graph queries
using many read servers. To optimize RAM memory utilization, Neo4j employs
cache-based sharding, which mandates that all queries from the same user always
be sent to the same read server. This naturally improves locality of reference at each
read server, and allows scaling to very large graphs.

From the discussion above, it follows that the maximum size of a database graph
is constrained to that of a core server disk. This constraint makes it possible to
provide linear performance for path traversals while at the same time requiring to
push compact graph storage to the limits. Neo4j uses dynamic pointer compression
to expand the available address space as needed while allowing locating a node’s
adjacent nodes and relationships via a pointer hop. Finally, Neo4j’s separation of
storage for nodes, relationships, and properties allows further optimization. This
allows the first two stores to keep only basic information and have fixed size node
and relationship records, which yields efficient O(1) path traversals. The property
store allows for dynamic length records.

11.5.2 Other Graph Databases

Other popular graph DBMSs are Infinite Graph, Titan, GraphBase, Trinity, and
Sparksee.

11.6 Hybrid Data Stores

Hybrid data stores combine capabilities typically found in different data stores
and DBMS. We distinguish between multimodel NoSQL systems and NewSQL
DBMSs.

536 11 NoSQL, NewSQL, and Polystores

11.6.1 Multimodel NoSQL Stores

Multimodel NoSQL systems are designed to reduce the need to deal with multiple
systems when building complex applications. We illustrate multimodel NoSQL
stores with OrientDB, a popular NoSQL data store that combines concepts from
object-oriented and NoSQL document and graph data models. Other popular
multimodel systems are ArangoDB and Microsoft Azure Cosmos DB.

OrientDB originated as a Java implementation of the storage layer of the Orient
Object-Oriented DBMS (initially written in C++) for shared-nothing clusters. It
provides a rich data model with schemas, a powerful SQL-based query language,
optimistic ACID transactions, and support for high availability and load balancing.

The data model is a graph data model, with direct connections between records.
There are four types of records: Document, RecordBytes (binary data), Vertex, and
Edge. When OrientDB generates a record, which is the smallest unit of storage, it
assigns it a unique identifier, called Record ID.

The query language is an extension of SQL with graph path traversals. It supports
different kinds of indexes: SB-Tree, which is the default index; hashed index for
efficient exact-match queries; Lucene full-text index for text-based search; and
Lucene spatial index for spatial queries.

Schema management follows from the object-orientation with class inheritance.
A class defines a set of similar records and can be schemaless, schema-full (as
in object-oriented databases), or schema-hybrid. The schema-hybrid mode enables
classes to define some attributes, but some records can have specific attributes. Class
inheritance is based on structure, i.e., a subclass extends a parent class, inheriting
all of its attributes.

Classes are the basis for clustering and partitioning records on multiple nodes.
Each class can have one or more partitions, called clusters. When inserting a new
record in a class, OrientDB selects the cluster to store it in using one of the following
preconfigured strategies:

• default: selects the cluster using a default cluster identifier specified in the class;
• round-robin: arranges the clusters for the class into sequence and assigns each

new record to the next cluster in order;
• balanced: checks the number of records in the clusters for the class and assigns

the new record to the smallest cluster;
• local: when the database is replicated, it selects the master cluster on the current

node (that is processing the insertion).

OrientDB supports multimaster replication, i.e., all nodes of the shared-nothing
cluster can write to the database in parallel. Transactions are processed using
optimistic multiversion concurrency control, based on the assumption that there
are few update conflicts. So transactions proceed without any looking until commit
time. When a transaction commits, each record version is checked to see if there
are conflicting updates from another transaction, which may yield to aborting some
transactions.

11.6 Hybrid Data Stores 537

11.6.2 NewSQL DBMSs

NewSQL is a recent class of DBMS that seeks to combine the scalability of
NoSQL systems with the strong consistency and usability of relational DBMSs. The
main objective is to address the requirements of enterprise information systems,
which have been supported by traditional relational DBMS, but also need to be
able to scale. NoSQL systems provide scalability, as well as availability, flexible
schemas, and practical APIs for programming complex data-intensive applications.
As we have seen in the previous sections, this is typically achieved by exploiting
data partitioning in shared-nothing clusters of commodity servers and relaxing
database consistency. On the other hand, relational DBMSs provide strong database
consistency with ACID transactions and make it easy for tools and applications
to use with standard SQL. They can also scale, using their parallel version, but
typically at a high price, even using a shared-nothing cluster.

An important class of NewSQL is Hybrid Transaction and Analytics Processing
(HTAP) whose objective is to perform OLAP and OLTP on the same data.
HTAP allows performing real-time analysis on operational data, thus avoiding the
traditional separation between operational database and data warehouse and the
complexity of dealing with ETL.

NewSQL systems are recent and have different architectures. However, we can
identify the following common features: relational data model and standard SQL;
ACID transactions; scalability using data partitioning in shared-nothing clusters;
and availability using data replication.

In the rest of this section, we illustrate NewSQL with Google F1 and LeanX-
cale. Other kinds of NewSQL systems are Apache Ignite, CockroachDB, Esgyn,
GridGain, MemSQL, NuoDB, Splice Machine, VoltDB, and SAP HANA.

11.6.2.1 F1

F1 is a NewSQL system from Google that combines the scalability of Bigtable and
the consistency and usability of relational DBMSs. It has been built to support the
AdWords application, which is a very large-scale update-intensive application. F1
provides a relational data model with some extensions, full SQL query support,
with indexes and ad hoc querying, and optimistic transactions. It is built on top of
Spanner, a scalable data storage system for shared-nothing clusters (see Sect. 5.5.1).

The F1 data model is the relational model, with a hierarchical implementation
inspired from Bigtable. Several relational tables, with foreign key dependencies, can
be organized as a nested relation, where the rows of each child table are clustered
with the rows from their parent table based on the join key. This makes updates
of multiple rows of same foreign key efficient and speeds up join processing. F1
also supports table columns with structured data types using protocol buffers, which
is Google’s language-neutral extensible mechanism for serializing structured data.

538 11 NoSQL, NewSQL, and Polystores

Using protocol buffers makes it easy to write transformations between database rows
and in-memory data structures.

The primary interface is SQL, which is used for both OLTP transactions and
large OLAP queries. It extends standard SQL with constructs for accessing data
stored in Protocol Buffer columns. F1 also provides support for joining Spanner
data with other data sources including Bigtable and CSV files. F1 supports a NoSQL
key/value interface with fast access to rows, through exact-match and range queries,
and updates based on primary key. Secondary indexes are stored in Spanner tables,
keyed by a concatenation of the index key and the indexed table’s primary key.
F1 indexes can be local or global. Local indexes are local to a table hierarchy and
include in their index keys the root row primary key as a prefix. Their index entries
are colocated with the rows they index, which makes index updates efficient. In
contrast, global indexes are global to multiple tables and do not include the root row
primary key as a prefix. Thus, they cannot be colocated with the rows they index.

F1 supports both centralized and distributed query execution. Centralized exe-
cution is used for short OLTP queries, where an entire query runs on one F1
server node. Distributed execution is used for OLAP queries, with a high degree
of parallelism, using hash-based repartitioning and streaming techniques.

In Sect. 5.5.1, we introduced Spanner’s approach to scale out transaction manage-
ment. Spanner also provides fault-tolerance, data partitioning within data centers,
geographical synchronous replication across data centers, and ACID transactions.
In Spanner, every transaction is assigned a commit timestamp that is used for the
global total ordering of commits. F1 supports three types of transactions, on top of
Spanner’s strong transaction support:

• Snapshot transactions, for read-only transactions with snapshot isolation seman-
tics, using Spanner snapshot timestamps.

• Pessimistic transactions, using ACID locking-based transactions provided by
Spanner.

• Optimistic transactions, with a read phase that does not take locks, and then a
validation phase that detects row-level conflicts, using rows’ last modification
timestamps, to decide whether to commit or abort.

11.6.2.2 LeanXcale

LeanXcale is a NewSQL/HTAP system with full SQL and polystore support in a
shared-nothing cluster. It has three main subsystems: storage engine, query engine,
and transactional engine, all three distributed and highly scalable (i.e., to 100s of
nodes).

LeanXcale provides full SQL functionality over relational tables with JSON
columns. Clients can access LeanXcale with any analytics tool using a JDBC
driver. An important capability of LeanXcale is polystore access using the scripting
mechanism of the CloudMdsQL query language (see Sect. 11.7.3.2). The data stores
that can be accessed range from distributed raw data files (e.g., HDFS) through

11.6 Hybrid Data Stores 539

parallel SQL databases, to NoSQL databases (e.g., MongoDB, where queries can
be expressed as JavaScript programs).

The storage engine is a proprietary relational key-value store, KiVi, which allows
for efficient horizontal partitioning of tables and indexes, based on the primary key
or index key. Each table is stored as a KiVi table, where the key corresponds to the
primary key of the LeanXcale table and all the columns are stored as they are in KiVi
columns. Indexes are also stored as KiVi tables, where the index keys are mapped to
the corresponding primary keys. This model enables high scalability of the storage
layer by partitioning tables and indexes across KiVi data nodes. KiVi provides
the typical put and get operations of key-value stores as well as all single table
operations such as predicate-based selection, aggregation, grouping, and sorting,
i.e., any algebraic operator but join. Multitable operations, i.e., joins, are performed
by the query engine and any algebraic operator above the join in the query plan.
Thus, all algebraic operators below a join are pushed down to the KiVi storage
engine.

The query engine processes OLAP workloads over operational data, so that
analytical queries are answered over real-time data. The parallel implementation of
the query engine follows the single-program multiple data (SPMD) approach, which
combines interquery and intraoperator parallelism. With SPMD, multiple symmetric
workers (threads) on different query instances execute the same query/operator, but
each of them deals with different portions of the data.

The query engine optimizes queries using two-step optimization. As queries
are received, query plans are broadcast and processed by all workers. For parallel
execution, an optimization step is added, which transforms a generated sequential
query plan into a parallel one. This transformation involves replacing table scans
with parallel table scans, and adding shuffle operators to make sure that, in stateful
operators (such as group by or join), related rows are handled by the same worker.
Parallel table scans divide the rows from the base tables among all workers, i.e., each
worker will retrieve a disjoint subset of the rows during table scan. This is done by
dividing the rows and scheduling the obtained subsets to the different query engine
instances. Each worker then processes the rows obtained from subsets scheduled
to its query engine instance, exchanging rows with other workers as determined by
the shuffle operators added to the query plan. To process joins, the query engine
supports two strategies for data exchange (shuffle and broadcast) and various join
methods (hash, nested loop, etc.), performed locally at each worker after the data
exchange takes place.

The query engine is designed to integrate with arbitrary data stores, where data
resides in its natural format and can be retrieved (in parallel) by running specific
scripts or declarative queries. This makes it a powerful polystore that can process
data from its original format, taking full advantage of both expressive scripting and
massive parallelism. Moreover, joins across any native datasets, such as HDFS or
MongoDB, including LeanXcale tables, can be applied, exploiting efficient parallel
join algorithms. To enable ad hoc querying of an arbitrary dataset, the query engine
processes queries in the CloudMdsQL query language, where scripts are wrapped
as native subqueries (Sect. 11.7.3.2).

540 11 NoSQL, NewSQL, and Polystores

In Sect. 5.5.2, we introduced LeanXcale’s approach to scale out transaction
management. LeanXcale scales out transactional management by decomposing
the ACID properties and scaling each of them independently but in a compos-
able manner. The transactional engine provides strong consistency with snapshot
isolation. Thus, reads are not blocked by writes, using multiversion concurrency
control. It supports timestamp-based ordering and conflict detection just before
commit. The distributed algorithm for providing transactional consistency is able
to commit transactions fully in parallel without any coordination by making a smart
separation of concerns. Thus, the visibility of the committed data is separated from
the commit processing. In this way, commit processing can adopt a fully parallel
approach without compromising consistency that is regulated by the visibility of
the committed updates. Thus, commits happen in parallel, and whenever there is
a longer prefix of committed transactions without gaps the current snapshot is
advanced to that point.

11.7 Polystores

Polystores provide integrated access to multiple cloud data stores such as NoSQL,
relational DBMS, or HDFS. They typically support only read-only queries, as sup-
porting distributed transactions across heterogeneous data stores is a hard problem.
We can divide polystores based on the level of coupling with the underlying data
stores: loosely coupled, tightly coupled, and hybrid. In this section, we introduce
for each class a set of representative systems, with their architecture and query
processing. We end the section with some remarks.

11.7.1 Loosely Coupled Polystores

Loosely coupled polystores are reminiscent of multidatabase systems in that they
can deal with autonomous data stores, which can be accessed through the polystore
common interface as well as separately through their local API. They follow the
mediator-wrapper architecture with several data stores (e.g., NoSQL and relational
DBMS) as depicted in Fig. 11.8. Each data store is autonomous, i.e., locally
controlled, and can be accessed by other applications. The mediator-wrapper
architecture, which has been used in data integration systems, can scale to a high
number of data stores.

There are two main modules: one query processor and one wrapper per data
store. The query processor has a catalog of data stores, and each wrapper has a
local catalog of its data store. After the catalogs and wrappers have been built, the
query processor can start processing input queries from the users, by interacting
with wrappers. The typical query processing is as follows:

11.7 Polystores 541

RDBMS

Query decomposition
and optimization
Query execution

Global
catalog

Query Processor

User/App/GUI
SQL query

Query result

Local
catalog

Query translation
Result transformation

Wrapper 1

· · · Local
catalog

Query translation
Result transformation

Wrapper n

Common Interface

NoSQL
System

Interface 1 Interface n

Fig. 11.8 Loosely coupled polystore architecture

1. Analyze the input query and translate it into subqueries (one per data store), each
expressed in a common language, and an integration subquery.

2. Send the subqueries to the relevant wrappers, which trigger execution at the
corresponding data stores and translate the results into the common language
format.

3. Integrate the results from the wrappers (which may involve executing operators
such as union and join), and return the results to the user. We describe below
three loosely coupled polystores: BigIntegrator, Forward, and QoX.

11.7.1.1 BigIntegrator

BigIntegrator supports SQL-like queries and combines data in Bigtable data stores
in the cloud with data in relational DBMS (not necessarily in the cloud). Bigtable
is accessed through the Google Query Language (GQL), which has very limited
query expressions, e.g., no join and only basic select predicates. To capture GQL’s
limited capabilities, BigIntegrator provides a query processing mechanism based on
plugins, called absorber and finalizer, which enable to pre and postprocess those
operations that cannot be done by Bigtable. For instance, a “LIKE” select predicate
on a Bigtable or a join of two Bigtables will be processed through operations in
BigIntegrator’s query processor.

BigIntegrator uses the Local-As-View (LAV) approach (see Sect. 7.1.1) for defin-
ing the global schema of the Bigtable and relational data sources as flat relational
tables. Each Bigtable or relational data source can contain several collections, each
represented as a source table of the form “table-name_source-name,” where table-
name is the name of the table in the global schema and source-name is the name

542 11 NoSQL, NewSQL, and Polystores

RDBMS

Absorber
manager

Query
optimizer

Finalizer
manager

Global
catalog

BigIntegrator Query Processor

User/App/GUI

SQL query

Query result

Local
catalog

Absorber
Finalizer

RDBMS Wrapper

· · · Local
catalog

Absorber
Finalizer

Bigtable Wrapper

Common Interface

Local Interface (SQL)

Bigtable

Local Interface (GQL)

Fig. 11.9 BigIntegrator architecture

of the data source. For instance, “Employees_A” represents an Employees table at
source A, i.e., a local view of Employees. The source tables are referenced as tables
in the SQL queries.

Figure 11.9 illustrates the architecture of BigIntegrator with two data sources,
one relational database and one Bigtable data store. Each wrapper has an importer
module and absorber and finalizer plugins. The importer creates the source tables
and stores them in the local catalog. The absorber extracts a subquery, called access
filter, from a user query that selects data from a particular source table, based on the
capabilities of the source. It translates each access filter (produced by the absorber)
into an operator called interface function, specific for each kind of source. The
interface function is used to send a query to the data source (i.e., a GQL or SQL
query).

Query processing is performed in three steps, using an absorber manager, a query
optimizer, and a finalizer manager. The absorber manager takes the (parsed) user
query and, for each source table referenced in the query, calls the corresponding
absorber of its wrapper. In order to replace the source table with an access filter, the
absorber collects from the query the source tables and the possible other predicates,
based on the capabilities of the data source. The query optimizer reorders the access
filters and other predicates to produce an algebra expression that contains calls
to both access filters and other relational operators. It also performs traditional
transformations such as select push down and bind join. The finalizer manager takes
the algebra expression and, for each access filter operator in the algebra expression,

11.7 Polystores 543

calls the corresponding finalizer of its wrapper. The finalizer transforms the access
filters into interface function calls.

Finally, query execution is performed by the query processor that interprets
the algebra expression, by calling the interface functions to access the different
data sources and executing the subsequent relational operations, using in-memory
techniques.

11.7.1.2 Forward

Forward supports SQL++, an SQL-like language designed to unify the data model
and query language capabilities of NoSQL and relational databases. SQL++ has a
powerful, semistructured data model that extends both the JSON and relational data
models. Forward also provides a rich web development framework, which exploits
its JSON compatibility to integrate visualization components (e.g., Google Maps).

The design of SQL++ is based on the observation that the concepts are similar
across both data models, e.g., a JSON array is similar to an SQL table with order,
and an SQL tuple to a JSON object literal. Thus, an SQL++ collection is an array
or a bag, which may contain duplicate elements. An array is ordered (similar to a
JSON array) and each element is accessible by its ordinal position while a bag is
unordered (similar to an SQL table). Furthermore, SQL++ extends the relational
model with arbitrary composition of complex values and element heterogeneity. As
in nested data models, a complex value can be either a tuple or collection. Nested
collections can be accessed by nesting SELECT expressions in the SQL FROM clause
or composed using the GROUP BY operator. They can also be unnested using the
FLATTEN operator. And unlike an SQL table that requires all tuples to have the
same attributes, an SQL++ collection may also contain heterogeneous elements
comprising a mix of tuples, scalars, and nested collections.

Forward uses the Global-As-View (GAV) approach (see Sect. 7.1.1), where
each data source (SQL or NoSQL) appears to the user as an SQL++ virtual view,
defined over SQL++ collections. Thus, the user can issue SQL++ queries involving
multiple virtual views. The Forward architecture is that of Fig. 11.8, with a query
processor and one wrapper per data source. The query processor performs SQL++
query decomposition, by exploiting the underlying data store capabilities as much
as possible. However, given an SQL++ query that is not directly supported by the
underlying data source, Forward will decompose it into one or more native queries
that are supported and combine the native query results in order to compensate for
the semantics or capabilities gap between SQL++ and the underlying data source.
Cost-based optimization of SQL++ queries is possible, by reusing techniques from
multidatabase systems when dealing with flat collections. However, it would be
much harder considering the nesting and element heterogeneity capabilities of
SQL++.

544 11 NoSQL, NewSQL, and Polystores

11.7.1.3 QoX

QoX is a special kind of loosely coupled polystore, where queries are analytical
data-driven workflows (or data flows) that integrate data from relational databases,
and various execution engines such as MapReduce or ETL tools. A typical data
flow may combine unstructured data (e.g., tweets) with structured data and use
both generic data flow operations like filtering, join, aggregation, and user-defined
functions like sentiment analysis and product identification. A novel approach to
ETL design incorporates a suite of quality metrics, termed QoX, at all stages of
the design process. The QoX Optimizer deals with the QoX performance metrics,
with the objective of optimizing the execution of dataflows that integrate both the
back-end ETL integration pipeline and the front-end query operations into a single
analytics pipeline.

The QoX Optimizer uses xLM, a proprietary XML-based language to represent
data flows, typically created with some ETL tool. xLM allows capturing the flow
structure, with nodes showing operations and data stores and edges interconnecting
these nodes, and important operation properties such as operation type, schema,
statistics, and parameters. Using appropriate wrappers to translate xLM to a tool-
specific XML format and vice versa, the QoX Optimizer may connect to external
ETL engines and import or export dataflows to and from these engines.

Given a data flow for multiple data stores and execution engines, the QoX
Optimizer evaluates alternative execution plans, estimates their costs, and generates
a physical plan (executable code). The search space of equivalent execution plans is
defined by data flow transformations that model data shipping (moving the data to
where the operation will be executed), function shipping (moving the operation to
where the data is), and operation decomposition (into smaller operations). The cost
of each operation is estimated based on statistics (e.g., cardinalities, selectivities).
Finally, the QoX Optimizer produces SQL code for relational database engines,
Pig and Hive code for MapReduce engines, and creates Unix shell scripts as
the necessary glue code for orchestrating different subflows running on different
engines. This approach could be extended to access NoSQL engines as well,
provided the availability of SQL-like interfaces and wrappers.

11.7.2 Tightly Coupled Polystores

Tightly coupled polystores aim at efficient querying of structured and unstructured
data for (big) data analytics. They may also have a specific objective, such as self-
tuning or integration of HDFS and relational DBMS data. However, they all trade
autonomy for performance, typically in a shared-nothing cluster, so that data stores
can only be accessed through the polystore.

Like loosely coupled systems, they provide a single language for querying of
structured and unstructured data. However, the query processor directly uses the
data store local interfaces (see Fig. 11.10), or in the case of HDFS, can interface

11.7 Polystores 545

Query decomposition
and optimization
Query execution

Global
catalog

Mediator

User/App/GUI

SQL query

Query result

MongoDB

Interface 1

RDBMS

Interface 2

Data processing
framework

Interface 3

HDFS

Fig. 11.10 Tightly coupled polystore architecture

a data processing framework such as MapReduce or Spark. Thus, during query
execution, the query processor directly accesses the data stores. This allows efficient
data movement across data stores. However, the number of data stores that can be
interfaced is typically very limited.

In the rest of this section, we describe three representative tightly coupled
polystores: Polybase, HadoopDB, and Estocada. Three other interesting systems
are Redshift Spectrum, Odyssey, and JEN. Amazon Redshift Spectrum is a feature
of Amazon’s Redshift data warehouse product in the cloud platform Amazon Web
Services (AWS). This feature enables running SQL queries against big unstructured
data residing in Amazon Simple Storage Service (S3). Odyssey is a polystore
that can work with different analytic engines, such as parallel OLAP system or
Hadoop. It enables storing and querying data within HDFS and relational DBMS,
using opportunistic materialized views, based on MISO, a method for tuning the
physical design of a polystore (Hive/HDFS and relational DBMS), i.e., deciding
in which data store the data should reside, in order to improve the performance of
big data query processing. The intermediate results of query execution are treated
as opportunistic materialized views, which can then be placed in the underlying
stores to optimize the evaluation of subsequent queries. JEN is a component on
top of HDFS to provide tight-coupling with a parallel relational DBMS. It allows
joining data from two data stores, HDFS and relational DBMS, with parallel join
algorithms, in particular, an efficient zigzag join algorithm, and techniques to
minimize data movement. As the data size grows, executing the join on the HDFS
side appears to be more efficient.

546 11 NoSQL, NewSQL, and Polystores

11.7.2.1 Polybase

Polybase is a feature of Microsoft SQL Server Parallel Data Warehouse (PDW),
which allows users to query unstructured (HDFS) data stored in a Hadoop cluster
using SQL and integrate them with relational data in PDW. The HDFS data can
be referenced in Polybase as external tables, which make the correspondence with
the HDFS file on the Hadoop cluster, and thus be manipulated together with PDW
native tables using SQL queries. Polybase leverages the capabilities of PDW, a
shared-nothing parallel DBMS. Using the PDW query optimizer, SQL operators
on HDFS data are translated into MapReduce jobs to be executed directly on the
Hadoop cluster. Furthermore, the HDFS data can be imported/exported to/from
PDW in parallel, using the same PDW service that allows shuffling PDW data
among compute nodes.

The architecture of Polybase, which is integrated within PDW, is shown in
Fig. 11.11. Polybase takes advantage of PDW’s Data Movement Service (DMS),
which is responsible for shuffling intermediate data across PDW nodes, e.g., to
repartition tuples, so that any matching tuples of an equijoin be collocated at the
same computing node that performs the join. DMS is extended with an HDFS
Bridge component, which is responsible for all communications with HDFS. The

Query processor
Polybase extensions SQL Server

Data Movement Service (DMS)
Polybase HDFS Bridge Relational

data

SQL Server Parallel Data Warehouse (PDW)

User/App/GUI

SQL query

Query result

MapReduce

Local Interface

HDFS

Fig. 11.11 Polybase architecture

11.7 Polystores 547

HDFS Bridge enables DMS instances to also exchange data with HDFS in parallel
(by directly accessing HDFS splits).

Polybase relies on the PDW cost-based query optimizer to determine when it
is advantageous to push SQL operations on HDFS data to the Hadoop cluster for
execution. Thus, it requires detailed statistics on external tables, which are obtained
by exploring statistically significant samples of HDFS tables. The query optimizer
enumerates the equivalent QEPs and selects the one with the least cost. The search
space is obtained by considering the different decompositions of the query into two
parts: one to be executed as MapReduce jobs at the Hadoop cluster and the other
as regular relational operators at the PDW side. MapReduce jobs can be used to
perform select and project operations on external tables, as well as joins of two
external tables. The data produced by the MapReduce jobs can then be exported to
PDW to be joined with relational data, using parallel hash-based join algorithms.

One strong limitation of pushing operations on HDFS data as MapReduce jobs
is that even simple lookup queries have long latencies. A solution proposed for
Polybase is to exploit an index built on the external HDFS data using a B+-tree that
is stored inside PDW. This method leverages the robust and efficient indexing code
in PDW without forcing a dramatic increase in the space that is required to store
or cache the entire (large) HDFS data inside PDW. Thus, the index can be used as
a prefilter by the query optimizer to reduce the amount of work that is carried out
as MapReduce jobs. To keep the index synchronized with the data that is stored in
HDFS, an incremental approach is used which records that the index is out-of-date,
and lazily rebuilds it. Queries posed against the index before the rebuilding process
is completed can be answered using a method that carefully executes parts of the
query using the index in PDW, and the remaining part of the query is executed as
a MapReduce job on just the changed data in HDFS. Apache AsterixDB uses a
similar approach to accessing and indexing external data that lives in HDFS and
allowing users’ queries to span data that AsterixDB manages as well as external
data in HDFS.

11.7.2.2 HadoopDB

The objective of HadoopDB is to provide the best of both parallel DBMS (high-
performance data analysis over structured data) and MapReduce-based systems
(scalability, fault-tolerance, and flexibility to handle unstructured data) with an
SQL-like language (HiveQL) and a relational data model. To do so, HadoopDB
tightly couples the Hadoop framework, including MapReduce and HDFS, with
multiple single-node relational DBMS deployed across a cluster, as in a shared-
nothing parallel DBMS.

HadoopDB extends the Hadoop architecture with four components: database
connector, catalog, data loader, and SQL-MapReduce-SQL (SMS) planner. The
database connector provides the wrappers to the underlying relational DBMS, using
JDBC drivers. The catalog maintains information about the databases as an XML
file in HDFS, and is used for query processing. The data loader is responsible for

548 11 NoSQL, NewSQL, and Polystores

(re)partitioning (key, value) data collections using hashing on a key and loading the
single-node databases with the partitions (or chunks). The SMS planner extends
Hive, a Hadoop component that transforms HiveQL into MapReduce jobs that
connect to tables stored as files in HDFS. This architecture yields a cost-effective
parallel relational DBMS, where data is partitioned both in relational DBMS tables
and in HDFS files, and the partitions can be collocated at cluster nodes for efficient
parallel processing.

Query processing is simple, relying on the SMS planner for translation and
optimization, and MapReduce for execution. The optimization consists in pushing
as much work as possible into the single-node databases, and repartitioning data
collections whenever needed. The SMS planner decomposes a HiveQL query to
a QEP of relational operators. Then the operators are translated to MapReduce
jobs, while the leaf nodes are again transformed into SQL to query the underlying
relational DBMS instances. In MapReduce, repartitioning should take place before
the reduce phase. However, if the optimizer detects that an input table is partitioned
on a column used as aggregation key for Reduce, it will simplify the QEP by turning
it to a single Map-only job, leaving all the aggregation to be done by the relational
DBMS nodes. Similarly, repartitioning is avoided for equijoins as well, if both sides
of the join are partitioned on the join key.

11.7.2.3 Estocada

Estocada is a self-tuning polystore with the goal of optimizing the performance of
applications that must deal with data in multiple data models, including relational,
key-value, document, and graph. To obtain the best possible performance from
the available data stores, Estocada automatically distributes and partitions the data
across the different data stores, which are entirely under its control and hence not
autonomous. Hence, it is a tightly coupled polystore.

Data distribution is dynamic and decided based on a combination of heuristics
and cost-based decisions, taking into account data access patterns as they become
available. Each data collection is stored as a set of partitions, whose content may
overlap, and each partition may be stored in any of the underlying data stores. Thus,
it may happen that a partition is stored in a data store that has a different data model
than its native one. To make Estocada applications independent of the data stores,
each data partition is internally described as a materialized view over one or several
data collections. Thus, query processing involves view-based query rewriting.

Estocada supports two kinds of requests, for storing data and querying, with
four main modules: storage advisor, catalog, query processor and execution engine.
These components can directly access the data stores through their local interface.
The query processor deals with single model queries only, each expressed in the
query language of the corresponding data source. However, to integrate various data
sources, one would need a common data model and language on top of Estocada.
The storage advisor is responsible for partitioning data collections and delegating
the storage of partitions to the data stores. For self-tuning the applications, it may

11.7 Polystores 549

also recommend repartitioning or moving data from one data store to the other,
based on access patterns. Each partition is defined as a materialized view expressed
as a query over the collection in its native language. The catalog keeps track of
information about partitions, including some cost information about data access
operations by means of binding patterns which are specific to the data stores.

Using the catalog, the query processor transforms a query on a data collection
into a logical QEP on possibly multiple data stores (if there are partitions of the
collection in different stores). This is done by rewriting the initial query using
the materialized views associated with the data collection, and selecting the best
rewriting, based on the estimated execution costs. The execution engine translates
the logical QEP into a physical QEP which can be directly executed by dividing
the work between the data stores and Estocada’s runtime engine, which provides its
own operators (select, join, aggregate, etc.).

11.7.3 Hybrid Systems

Hybrid systems try to combine the advantages of loosely coupled systems (e.g.,
accessing many different data stores) and tightly coupled systems, e.g., accessing
efficiently some data stores directly through their local interfaces. Therefore, the
architecture (see Fig. 11.12) follows the mediator-wrapper architecture, while the
query processor can also directly access some data stores, e.g., HDFS through
MapReduce or Spark.

We describe below three hybrid polystores: Spark SQL, CloudMdsQL, and
BigDAWG.

Query processorUser/App/GUI
SQL query

Query result

Wrapper 1

NoSQL
System

Common
interface

Interface 1

· · · Wrapper n

RDBMS

Interface n

Data processing
framework

Local
interface

HDFS

Fig. 11.12 Hybrid polystore architecture

550 11 NoSQL, NewSQL, and Polystores

11.7.3.1 Spark SQL

Spark SQL is a module in Apache Spark that integrates relational data processing
with Spark’s functional programming API. It supports SQL-like queries that can
integrate HDFS data accessed through Spark and external data sources (e.g.,
relational databases) accessed through a wrapper. Thus, it is a hybrid polystore with
tight-coupling of Spark/HDFS and loose-coupling of external data sources.

Spark SQL has a nested relational data model. It supports all major SQL data
types, as well as user-defined types and complex data types (structs, arrays, maps,
and unions), which can be nested together. It also supports DataFrames, which
are distributed collections of rows with the same schema, like a relational table.
A DataFrame can be constructed from a table in an external data source or from
an existing Spark Resilient Distributed Dataset (RDD) of native Java or Python
objects. Once constructed, DataFrames can be manipulated with various relational
operators, such as WHERE and GROUPBY, which take expressions in procedural
Spark code.

Figure 11.13 shows the architecture of Spark SQL, which runs as a library on top
of Spark. The query processor directly accesses the Spark engine through the Spark
Java interface, while it accesses external data sources (e.g., a relational DBMS or a
key-value store) through the Spark SQL common interface supported by wrappers
(JDBC drivers). The query processor includes two main components: the DataFrame
API and the Catalyst query optimizer. The DataFrame API offers tight integration
between relational and procedural processing, allowing relational operations to be
performed on both external data sources and RDDs. It is integrated into Spark’s
supported programming languages (Java, Scala, Python) and supports easy inline

Dataframe interface

Catalyst

Global
catalog

Query Processor

JDBC Driver

RDBMS

Spark SQL

Interface 1

JDBC Driver

NoSQL
System

Interface 2

Spark

Spark Java
interface

HDFS

Fig. 11.13 Spark SQL architecture

11.7 Polystores 551

definition of user-defined functions, without the complicated registration process
typically found in other database systems. Thus, the DataFrame API lets developers
seamlessly mix relational and procedural programming, e.g., to perform advanced
analytics (which is cumbersome to express in SQL) on large data collections
(accessed through relational operations).

Catalyst is an extensible query optimizer that supports both rule-based and cost-
based optimization. The motivation for an extensible design is to make it easy to
add new optimization techniques, e.g., to support new features of Spark SQL, as
well as to enable developers to extend the optimizer to deal with external data
sources, e.g., by adding data source specific rules to push down select predicates.
Although extensible query optimizers have been proposed in the past, they have
typically required a complex language to specify rules and a specific compiler to
translate the rules into executable code. In contrast, Catalyst uses standard features
of the Scala functional programming language, such as pattern matching, to make it
easy for developers to specify rules, which can be compiled to Java code.

Catalyst provides a general transformation framework for representing query
trees and applying rules to manipulate them. This framework is used in four phases:
(1) query analysis, (2) logical optimization, (3) physical optimization, and (4) code
generation. Query analysis resolves name references using a catalog (with schema
information) and produces a logical plan. Logical optimization applies standard
rule-based optimizations to the logical plan, such as predicate pushdown, null
propagation, and Boolean expression simplification. Physical optimization takes
a logical plan and enumerates a search space of equivalent physical plans, using
physical operators implemented in the Spark execution engine or in the external
data sources. It then selects a plan using a simple cost model, in particular, to select
the join algorithms. Code generation relies on the Scala language, in particular, to
ease the construction of abstract syntax trees (ASTs) in the Scala language. ASTs
can then be fed to the Scala compiler at runtime to generate Java bytecode to be
directly executed by compute nodes.

To speed up query execution, Spark SQL exploits in-memory caching of hot data
using a column-based storage (i.e., storing data collections as sections of columns of
data rather than as rows of data). Compared with Spark’s native cache, which simply
stores data as Java native objects, this column-based cache can reduce memory
footprint by an order of magnitude by applying column compression schemes (e.g.,
dictionary encoding and run-length encoding). Caching is particularly useful for
interactive queries and for the iterative algorithms common in machine learning.

11.7.3.2 CloudMdsQL

CloudMdsQL supports a powerful functional SQL-like language, designed for
querying multiple heterogeneous data sources (e.g., relational and NoSQL). A
CloudMdsQL query may contain nested subqueries, and each subquery addresses
directly a particular data store and may contain embedded invocations to the data
store native query interface. Thus, the major innovation is that a CloudMdsQL query

552 11 NoSQL, NewSQL, and Polystores

can exploit the full power of local data stores, by simply allowing some local data
store native queries (e.g., a breadth-first search query against a graph database)
to be called as functions. CloudMdsQL has been extended to address distributed
processing frameworks such as Apache Spark by enabling the ad hoc usage of user-
defined map/filter/reduce operators as subqueries.

The CloudMdsQL language is SQL-based with extended capabilities for embed-
ding subqueries expressed in terms of each data store’s native query interface. The
common data model is table-based, with support of rich data types that can capture a
wide range of the underlying data store data types, such as arrays and JSON objects,
in order to handle nonflat and nested data, with basic operators over such composite
data types. CloudMdsQL allows named table expressions to be defined as Python
functions, which is useful for querying data stores that have only API-based query
interface. A CloudMdsQL query is executed in the context of an ad hoc schema,
formed by all named table expressions within the query. This approach fills the gap
produced by the lack of a global schema and allows the query compiler to perform
semantic analysis of the query.

The design of the CloudMdsQL query engine takes advantage of the fact that it
operates in a cloud platform, with full control over where the system components
can be installed. The architecture of the query engine is fully distributed, so that
query engine nodes can directly communicate with each other, by exchanging code
(query plans) and data. This distributed architecture yields important optimization
opportunities, e.g., minimizing data transfers by moving the smallest intermediate
data for subsequent processing by one particular node. Each query engine node
consists of two parts (master and worker) and is collocated at each data store node
in a computer cluster. Each master or worker has a communication processor that
supports send and receive operators to exchange data and commands between nodes.
A master takes as input a query and produces, using a query planner and catalog
(with metadata and cost information on data sources) a query plan, which it sends to
one chosen query engine node for execution. Each worker acts as a lightweight
runtime database processor atop a data store and is composed of three generic
modules (i.e., same code library)—query execution controller, operator engine, and
table storage—and one wrapper module that is specific to a data store.

The query planner performs cost-based optimization. To compare alternative
rewritings of a query, the optimizer uses a simple catalog, which provides basic
information about data store collections such as cardinalities, attribute selectivities
and indexes, and a simple cost model. Such information can be exposed by
the wrappers in the form of cost functions or database statistics. The query
language also provides a possibility for the user to define cost and selectivity
functions whenever they cannot be derived from the catalog, mostly in the case
of using native subqueries. The search space of alternative plans is obtained using
traditional transformations, e.g., by pushing down select predicates, using bind join,
performing join ordering, or planning intermediate data shipping.

11.7 Polystores 553

11.7.3.3 BigDAWG

Like multidatabase systems, all the polystores we have seen so far provide trans-
parent access across multiple data stores with the same data model and language.
BigDAWG (Big Data Analytics Working Group) takes a different path, with the
goal of unifying querying over a variety of data models and languages, Thus, there
is no common data model and language. A key user abstraction in BigDAWG is
an island of information, which is a collection of data stores accessed with a single
query language. And there can be a variety of islands, including relational DBMSs,
array DBMS, NoSQL, and data stream systems (DSSs). Within an island, there is
loose-coupling of the data stores, which need to provide a wrapper (called a shim) to
map the island language to their native one. When a query accesses more than one
data store, objects may have to be copied between local databases, using a CAST

operation, which provides a form of tight-coupling. This is why BigDAWG can be
viewed as a hybrid polystore.

The architecture of BigDAWG is highly distributed, with a thin layer that
interfaces the tools (e.g., visualization) and applications, with the islands of
information. Since there is no common data model and language, there is no
common query processor either. Instead, each island has its specific query processor.
Query processing within an island is similar to that in multidatabase systems: most
of the processing is pushed to the data stores and the query processor only integrates
the results. The query optimizer does not use a cost model, but heuristics and some
knowledge of the high performance of some data stores. For simple queries, e.g.,
select-project-join, the optimizer will use function shipping, in order to minimize
data movement and network traffic among data stores. For complex queries, e.g.,
analytics, the optimizer may consider data shipping, to move the data to a data store
that provides a high-performance implementation.

A query submitted to an island may involve multiple islands. In this case, the
query must be expressed as multiple subqueries, each in a specific island language.
To specify the island for which a subquery is intended, the user encloses the
subquery in a SCOPE specification. Thus, a multiisland query will have multiple
scopes to indicate the expected behavior of its subqueries. Furthermore, the user
may insert CAST operations to move intermediate datasets between islands in an
efficient way. Thus, the multiisland query processing is dictated by the way the
subqueries, SCOPE, and CAST operations are specified by the user.

11.7.4 Concluding Remarks

Although all polystores share the same overall goal of querying multiple data
stores, there are many different paths towards this goal, depending on the functional
objective to be achieved. And this objective has important impact on the design
choices. The major trend that dominates is the ability to integrate relational data
(stored in relational DBMS) with other kinds of data in different data stores, such

554 11 NoSQL, NewSQL, and Polystores

as HDFS (Polybase, HadoopDB, Spark SQL, JEN) or NoSQL (Bigtable only for
BigIntegrator, document stores for Forward). Thus, an important difference lies in
the kind of data stores that are supported. For instance, Estocada, BigDAWG, and
CloudMdsQL can support a wide variety of data stores, while Polybase and JEN
target the integration of relational DBMS with HDFS only. We can also note the
growing importance of accessing HDFS within Hadoop, in particular, with MapRe-
duce or Spark, which corresponds to major use cases in structured/unstructured data
integration.

Another trend is the emergence of self-tuning polystores, such as Estocada and
Odyssey, with the objective of leveraging the available data stores for performance.
In terms of data model and query language, most systems provide a relational SQL-
like abstraction. However, QoX has a more general graph abstraction to capture
analytic data flows. And both Estocada and BigDAWG allow the data stores to be
directly accessed with their native (or island) languages. CloudMdsQL also allows
native queries, but as subqueries within an SQL-like language.

Most polystores provide some support for managing a global schema, using
either the GAV or LAV approaches, with some variations, e.g., BigDAWG uses
GAV within (single model) islands of information. However, QoX, Estocada, Spark
SQL, and CloudMdsQL do not support global schemas, although they provide some
way to deal with the data stores’ local schemas.

The query processing techniques are extensions of known techniques from dis-
tributed database systems, e.g., data/function shipping, query decomposition (based
on the data stores’ capabilities, bind join, select pushdown). Query optimization is
also generally supported, with either a (simple) cost model or heuristics.

11.8 Conclusion

Compared with traditional relational DBMSs, these new technologies promise better
scalability, performance, and ease of use. They are also complementary to the new
data management technologies for big data (see Chap. 10).

The main motivation for NoSQL is to address three major limitations of relational
DBMSs: “one size fits all” approach for all kinds of data and applications;
limited scalability and availability of the database architecture in the cloud; and,
as shown by the CAP theorem, the trade-off between strong database consistency
and service availability. The four main categories of NoSQL systems are based on
their underlying data model, i.e., key-value, wide column, document, and graph.
For each category, we illustrated with a representative system: DynamoDB (key-
value), Bigtable (wide column), MongoDB (document), and Neo4j (graph). We also
illustrated multimodel NoSQL systems with OrientDB, which combines concepts
from object-oriented and NoSQL document and graph data models.

NoSQL systems provide scalability, as well as availability, flexible schemas,
and practical APIs, but this is generally achieved by relaxing strong database
consistency. NewSQL is a recent class of DBMS that seeks to combine the

11.9 Bibliographic Notes 555

scalability of NoSQL systems with the strong consistency and usability of relational
DBMS. The goal is to address the requirements of enterprise information systems,
which have been supported by traditional relational DBMS, but also need to be able
to scale. We illustrated NewSQL with the Google F1 and LeanXcale DBMSs.

Building cloud data-intensive applications often requires using multiple data
stores (NoSQL, HDFS, relational DBMS, NewSQL), each optimized for one kind
of data and tasks. In particular, many use cases exhibit the need to combine loosely
structured data (e.g., log files, tweets, web pages) which are best supported by
HDFS or NoSQL with more structured data in relational DBMS. Polystores provide
integrated or transparent access to a number of cloud data stores through one or
more query languages. We divided polystores based on the level of coupling with
the underlying data stores, i.e., loosely coupled, tightly coupled, and hybrid. Then,
we presented three representative polystores for each class: BigIntegrator, Forward,
and QoX (loosely coupled); Polybase, HadoopDB, and Estocada (tightly coupled);
Spark SQL, CloudMdsQL, and BigDAWG (hybrid).

The major trend that dominates is the ability to integrate relational data (stored
in relational DBMS) with other kinds of data in different data stores, such as HDFS
or NoSQL. However, an important difference between polystores lies in the kind of
data stores that are supported. We also note the growing importance of accessing
HDFS within Hadoop, in particular, with big data processing frameworks like
MapReduce or Spark. Another trend is the emergence of self-tuning polystores, with
the objective of leveraging the available data stores for performance. In terms of data
model and query language, most systems provide a relational/ SQL-like abstraction.
However, QoX has a more general graph abstraction to capture analytic data flows.
And both Estocada and BigDAWG allow the data stores to be directly accessed with
their native languages. The query processing techniques are extensions of known
techniques from distributed database systems (see Chap. 4).

11.9 Bibliographic Notes

The landscape in NoSQL, NewSQL, and polystores keeps changing and lacks
standards, which makes it difficult to come up with a good, up-to-date bibliography.
There are many books and research papers on the topic but they become quickly
outdated. Additional, up-to-date information can be found in systems’ web sites
and blogs. In this chapter, we focused on the systems’ principles and architectures,
rather than implementation details that may change over time.

An often cited motivation for NoSQL is the CAP theorem which helps under-
standing the trade-off between (C) consistency, (A) availability, and (P) partition
tolerance. It started as a conjecture by [Brewer 2000], and was made a theorem
by [Gilbert and Lynch 2002]. Although the CAP theorem says nothing about
scalability, some NoSQL have used it to justify the lack of support for ACID
transactions.

556 11 NoSQL, NewSQL, and Polystores

There are several books that introduce the NoSQL movement, in particular
[Strauch 2011, Redmond and Wilson 2012], which illustrate well the topic with
several representative systems presented in this chapter. There are also good books
on particular systems. The presentation of the MongoDB document store is based
on the book [Plugge et al. 2010] and other information on the MongoDB web site.
AsterixDB [Alsubaiee et al. 2014] and Couchbase [Borkar et al. 2016] are JSON
document stores that support a dialect of SQL++, initially proposed in [Ong et al.
2014]. There is also an excellent, practical book on SQL++ [Chamberlin 2018]
written by Don Chamberlin, the coinventor of the original SQL language. Aster-
ixDB’s external data access and indexing mechanism is in [Alamoudi et al. 2015].
There are also good descriptions of DynamoDB [DeCandia et al. 2007] and Bigtable
[Chang et al. 2008]. For an introduction to graph databases and Neo4j, there is the
excellent book from the Neo4j team [Robinson et al. 2015]. Neo4j uses the causal
consistency model [Elbushra and Lindström 2015] for multimaster replication and
the Raft protocol for transaction durability [Ongaro and Ousterhout 2014].

The section on NewSQL systems is based on the description of the F1 DBMS
[Shute et al. 2013] and the LeanXcale HTAP DBMS [Jimenez-Peris and Patiño
Martinez 2011, Kolev et al. 2018].

A good motivation for polystores, or multistore systems, can be found in [Duggan
et al. 2015, Kolev et al. 2016b]. The section on polystores is based on our survey
paper on query processing in multistore systems [Bondiombouy and Valduriez
2016]. This paper identifies three classes of systems (1) loosely coupled, (2)
tightly coupled, and (3) hybrid and illustrates each class with three representative
systems: (1) BigIntegrator [Zhu and Risch 2011], Forward [Fu et al. 2014], and
QoX [Simitsis et al. 2009, 2012]; (2) Polybase [DeWitt et al. 2013, Gankidi et al.
2014], HadoopDB [Abouzeid et al. 2009], and Estocada [Bugiotti et al. 2015];
(3) Spark SQL [Armbrust et al. 2015], BigDAWG [Gadepally et al. 2016], and
CloudMdsQL [Bondiombouy et al. 2016, Kolev et al. 2016b,a]. Other important
polystores are Amazon Redshift Spectrum, AsterixDB, AWESOME [Dasgupta et al.
2016], Odyssey [Hacigümüs et al. 2013], and JEN [Tian et al. 2016]. Odyssey uses
opportunistic materialized views, based on MISO [LeFevre et al. 2014], a method
for tuning the physical design of a polystore.

Exercises

Problem 11.1 Recall and discuss the motivations for NoSQL, in particular com-
pared with relational DBMS.

Problem 11.2 (*) Explain why the CAP theorem is important. Consider a dis-
tributed architecture with multimaster replication (see Chap. 6). Assume a network
partitioning in with asynchronous replication.

(a) Which of the CAP properties are preserved?
(b) What kind of consistency is achieved?

Exercises 557

Same questions assuming synchronous replication.

Problem 11.3 (**) In this chapter, we divided NoSQL systems into four categories,
i.e., key-value, wide column, document, and graph.

(a) Discuss the main similarities and differences in terms of data model, query
language and interfaces, architectures, and implementation techniques.

(b) Identify the best use cases for each category of system.

Problem 11.4 (**) Consider the following simplified order-entry database schema
(in nested relational format), with primary key attributes underlined:

CUSTOMERS(CID, NAME, ADDRESS (STREET, CITY, STATE,
COUNTRY), PHONES)

ORDERS(OID, CID, O-DATE, O-TOTAL)
ORDER-ITEMS(OID, LINE-ID, PID, QTY)
PRODUCTS(PID, P-NAME, PRICE)

(a) Give the corresponding schemas in the four kinds of NoSQL systems (key-
value, wide column, document, and graph). Discuss the respective advantages
and disadvantages of each design in terms of ease of use, database administra-
tion, query complexity, and update performance.

(b) Consider now that a product can be made of several products, e.g., a six pack
beer. Reflect this on the database schemas, and discuss the implications using
the four kinds of NoSQL systems.

Problem 11.5 (**) As discussed in Chap. 10, there is no optimal solution for graph
database partitioning. Elaborate on the impact on the scalability of graph databases?
Propose ways around.

Problem 11.6 (**) Compare the F1 NewSQL system with a standard parallel
relational DBMS, e.g., MySQL Cluster, in terms of data model, query language
and interfaces, consistency, scalability, and availability.

Problem 11.7 Polystores provide integrated access through queries to multiple
data stores such as NoSQL, relational DBMS, or HDFS. Compare polystores with
the data integration systems we presented in Chap. 7.

Problem 11.8 (***) Polystores typically support only read-only queries, which
satisfies the requirements of analytics. However, as more and more complex cloud
data-intensive are built, the need for updating data across data stores will become
important. Thus, the need for distributed transactions will arise. However, the
transaction models of the data stores may be very different. In particular, most
NoSQL systems do not provide ACID transaction support. Discuss the issue and
propose directions for solutions.

Chapter 12
Web Data Management

The World Wide Web (“WWW” or “web” for short) has become a major repository
of data and documents. Although measurements differ and change, the web has
grown at a phenomenal rate.1 Besides its size, the web is very dynamic and changes
rapidly. For all practical purposes, the web represents a very large, dynamic, and
distributed data store and there are the obvious distributed data management issues
in accessing web data.

The web, in its present form, can be viewed as two distinct yet related compo-
nents. The first of these components is what is known as the publicly indexable web
(PIW) that is composed of all static (and cross-linked) web pages that exist on web
servers. These can be easily searched and indexed. The other component, which
is known as the deep web (or the hidden web), is composed of a huge number of
databases that encapsulate the data, hiding it from the outside world. The data in the
hidden web are usually retrieved by means of search interfaces where the user enters
a query that is passed to the database server, and the results are returned to the user
as a dynamically generated web page. A portion of the deep web has come to be
known as the “dark web,” which consists of encrypted data and requires a particular
browser such as Tor to access.

The difference between the PIW and the hidden web is basically in the way
they are handled for searching and/or querying. Searching the PIW depends mainly
on crawling its pages using the link structure between them, indexing the crawled
pages, and then searching the indexed data (as we discuss at length in Sect. 12.2).
This may be either through the well-known keyword search or via question
answering (QA) systems (Sect. 12.4). It is not possible to apply this approach to
the hidden web directly since it is not possible to crawl and index those data (the
techniques for searching the hidden web are discussed in Sect. 12.5).

Research on web data management has followed different threads in two separate
but overlapping communities. Most of the earlier work in the web search and

1See http://www.worldwidewebsize.com/.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_12

559

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_12&domain=pdf
http://www.worldwidewebsize.com/
https://doi.org/10.1007/978-3-030-26253-2_12

560 12 Web Data Management

information retrieval community focused on keyword search and search engines.
Subsequent work in this community focused on QA systems. The work in the
database community focused on declarative querying of web data. There is an
emerging trend that combines search/browse mode of access with declarative
querying, but this work has not yet reached its full potential. In the 2000s, XML
emerged as an important data format for representing and integrating data on the
web. Thus, XML data management was a topic of significant interest. Although
XML is still important in a number of application areas, its use in web data
management has waned, mostly due to its perceived complexity. More recently,
RDF has emerged as a common representation for Web data representation and
integration.

The result of these different threads of development is that there is little in the
way of a unifying architecture or framework for discussing web data management,
and the different lines of research have to be considered somewhat separately.
Furthermore, the full coverage of all the web-related topics requires far deeper and
far more extensive treatment than is possible within a chapter. Therefore, we focus
on issues that are directly related to data management.

We start by discussing how web data can be modeled as a graph. Both the
structure of this graph and its management are important. This is discussed in
Sect. 12.1. Web search is discussed in Sect. 12.2 and web querying is covered in
Sect. 12.3. Section 12.4 summarizes question answering systems, and searching and
querying the deep/hidden web is covered in Sect. 12.5. We then discuss web data
integration in Sect. 12.6, focusing both on the fundamental problems and some of
the representation approaches (e.g., web tables, XML, and RDF) that can assist with
the task.

12.1 Web Graph Management

The web consists of “pages” that are connected by hyperlinks, and this structure
can be modeled as a directed graph that reflects the hyperlink structure. In this
graph, commonly referred to as the web graph, static HTML web pages are the
vertices and the links between the pages are represented as directed edges. The
characteristics of the web graph is important for studying data management issues
since the graph structure is exploited in web search, categorization and classification
of web content, and other web-related tasks. In addition, RDF representation that we
discuss in Sect. 12.6.2.2 formalizes the web graph using a particular notation. The
important characteristics of the web graph are the following:

(a) It is quite volatile. We already discussed the speed with which the graph is
growing. In addition, a significant proportion of the web pages experience
frequent updates.

(b) It is sparse. A graph is considered sparse if its average degree (i.e., the average
of the degrees of all of its vertices) is less than the number of vertices. This

12.1 Web Graph Management 561

means that the each vertex of the graph has a limited number of neighbors, even
if the vertices are in general connected. The sparseness of the web graph implies
an interesting graph structure that we discuss shortly.

(c) It is “self-organizing.” The web contains a number of communities, each
of which consists of a set of pages that focus on a particular topic. These
communities get organized on their own without any “centralized control,” and
give rise to the particular subgraphs in the web graph.

(d) It is a “small-world graph.” This property is related to sparseness—each node
in the graph may not have many neighbors (i.e., its degree may be small), but
many nodes are connected through intermediaries. Small-world networks were
first identified in social sciences where it was noted that many people who are
strangers to each other are connected by intermediaries. This holds true in web
graphs as well in terms of the connectedness of the graph.

(e) It is a power law graph. The in- and out-degree distributions of the web graph
follow power law distributions. This means that the probability that a vertex has
in- (out-) degree i is proportional to 1/iα for some α > 1. The value of α is
about 2.1 for in-degree and about 7.2 for out-degree.

This brings us to a discussion of the structure of the web graph, which has a
“bowtie” shape (Fig. 12.1). It has a strongly connected component (the knot in
the middle) in which there is a path between each pair of pages. The numbers we
give below are from a study in 2000; while these numbers have possibly changed,
the structure depicted in the figure has persisted. Readers should treat numbers
as indicative of relative size and not as absolute values. The strongly connected
component (SCC) accounts for about 28% of the web pages. A further 21% of the
pages constitute the “IN” component from which there are paths to pages in SCC,
but to which no paths exist from pages in SCC. Symmetrically, “OUT” component
has pages to which paths exist from pages in SCC but not vice versa, and these
also constitute 21% of the pages. What is referred to as “tendrils” consist of pages
that cannot be reached from SCC and from which SCC pages cannot be reached

SCCIN OUT

Tubes

Tendrils

Disconnected components

Fig. 12.1 The structure of the web as a bowtie (based on [Kumar et al. 2000])

562 12 Web Data Management

either. These constitute about 22% of the web pages. These are pages that have not
yet been “discovered” and have not yet been connected to the better known parts
of the web. Finally, there are disconnected components that have no links to/from
anything except their own small communities. This makes up about 8% of the web.
This structure is interesting in that it determines the results that one gets from web
searches and from querying the web. Furthermore, this graph structure is different
than many other graphs that are normally studied, requiring special algorithms and
techniques for its management.

12.2 Web Search

Web search involves finding “all” the web pages that are relevant (i.e., have content
related) to keyword(s) that a user specifies. Naturally, it is not possible to find all the
pages, or even to know if one has retrieved all the pages; thus the search is performed
on a database of web pages that have been collected and indexed. Since there are
usually multiple pages that are relevant to a query, these pages are presented to the
user in ranked order of relevance as determined by the search engine.

The abstract architecture of a generic search engine is shown in Fig. 12.2. We
discuss the components of this architecture in some detail.

In every search engine the crawler plays one of the most crucial roles. A crawler
is a program used by a search engine to scan the web on its behalf and collect
data about web pages. A crawler is given a starting set of pages—more accurately,
it is given a set of Uniform Resource Locators (URLs) that identify these pages.
The crawler retrieves and parses the page corresponding to that URL, extracts any

WWW

Crawler(s)

Indexer
Module

Collection
Analysis
Module

Query
Engine Ranking

Client

Queries Results

Indexes

Crawl
Control

Usage feedback

Page
Repository

Text Utility

Fig. 12.2 Search engine architecture (based on [Arasu et al. 2001])

12.2 Web Search 563

URLs in it, and adds these URLs to a queue. In the next cycle, the crawler extracts
a URL from the queue (based on some order) and retrieves the corresponding page.
This process is repeated until the crawler stops. A control module is responsible for
deciding which URLs should be visited next. The retrieved pages are stored in a
page repository. Section 12.2.1 examines crawling operations in more detail.

The indexer module is responsible for constructing indexes on the pages that have
been downloaded by the crawler. While many different indexes can be built, the two
most common ones are text indexes and link indexes. In order to construct a text
index, the indexer module constructs a large “lookup table” that can provide all the
URLs that point to the pages where a given word occurs. A link index describes the
link structure of the web and provides information on the in-link and out-link state
of pages. Section 12.2.2 explains current indexing technology and concentrates on
ways indexes can be efficiently stored.

The ranking module is responsible for sorting a large number of results so that
those that are considered to be most relevant to the user’s search are presented
first. The problem of ranking has drawn increased interest in order to go beyond
traditional information retrieval (IR) techniques to address the special characteristics
of the web—web queries are usually small and they are executed over a vast amount
of data. Section 12.2.3 introduces algorithms for ranking and describes approaches
that exploit the link structure of the web to obtain improved ranking results.

12.2.1 Web Crawling

As indicated above, a crawler scans the web on behalf of a search engine to extract
information about the visited web pages. Given the size of the web, the changing
nature of web pages, and the limited computing and storage capabilities of crawlers,
it is impossible to crawl the entire web. Thus, a crawler must be designed to visit
“most important” pages before others. The issue, then, is to visit the pages in some
ranked order of importance.

There are a number of issues that need to be addressed in designing a crawler.
Since the primary goal is to access more important pages before others, there needs
to be some way of determining the importance of a page. This can be done by
means of a measure that reflects the importance of a given page. These measures
can be static, such that the importance of a page is determined independent of
retrieval queries that will run against it, or dynamic in that they take the queries into
consideration. Examples of static measures are those that determine the importance
of a page Pi with respect to the number of pages that point to Pi (referred to as
backlink), or those that additionally take into account the importance of the backlink
pages as is done in the popular PageRank metric that is used by Google and others.
A possible dynamic measure may be one that calculates the importance of a page
Pi with respect its textual similarity to the query that is being evaluated using some
of the well-known information retrieval similarity measures.

564 12 Web Data Management

We had introduced PageRank in the Chap. 10 (Example 10.4). Recall that the
PageRank of a page Pi , denoted PR(Pi), is simply the normalized sum of the
PageRank of all Pi’s backlink pages (denoted as BPi

) where the normalization for
each Pj ∈ BPi

is over all of Pj ’s forward links FPj
:

PR(Pi) =
∑

Pj ∈BPi

PR(Pj)

|FPj
|

Recall also that this formula calculates the rank of a page based on the backlinks,
but normalizes the contribution of each backlinking page Pj using the number of
forward links that Pj has. The idea here is that it is more important to be pointed
at by pages conservatively link to other pages than by those who link to others
indiscriminately, but the “contribution” of a link from such a page needs to be
normalized over all the pages that it points to.

A second issue is how the crawler chooses the next page to visit once it has
crawled a particular page. As noted earlier, the crawler maintains a queue in which
it stores the URLs for the pages that it discovers as it analyzes each page. Thus,
the issue is one of ordering the URLs in this queue. A number of strategies are
possible. One possibility is to visit the URLs in the order in which they were
discovered; this is referred to as the breadth-first approach. Another alternative is
to use random ordering whereby the crawler chooses a URL randomly from among
those that are in its queue of unvisited pages. Other alternatives are to use metrics
that combine ordering with importance ranking discussed above, such as backlink
counts or PageRank.

Let us discuss how PageRank can be used for this purpose. A slight revision is
required to the PageRank formula given above. We are now modeling a random
surfer: when landed on a page P , a random surfer is likely to choose one of the
URLs on this page as the next one to visit with some (equal) probability d or will
jump to a random page with probability 1−d. Then the above formula for PageRank
is revised as follows:

PR(Pi) = (1 − d) + d
∑

Pj ∈BPi

PR(Pj)

|FPj
|

The ordering of the URLs according to this formula allows the importance of a
page to be incorporated into the order in which the corresponding page is visited. In
some formulations, the first term is normalized with respect to the total number of
pages in the web.

Example 12.1 Consider the web graph in Fig. 12.3 where each web page Pi is a
vertex and there is a directed edge from Pi to Pj if Pi has a link to Pj . Assuming the
commonly accepted value of d = 0.85, the PageRank of P2 is PR(P2) = 0.15 +
0.85(

PR(P1)
2 + PR(P3)

3). This is a recursive formula that is evaluated by initially
assigning to each page equal PageRank values (in this case 1

6 since there are 6

12.2 Web Search 565

P1 P2

P3

P5P6

P4

Fig. 12.3 Web graph representation for PageRank computation

pages) and iterating to compute each PR(Pi) until a fixpoint is reached (i.e., the
values no longer change). �

Since many web pages change over time, crawling is a continuous activity
and pages need to be revisited. Instead of restarting from scratch each time, it is
preferable to selectively revisit web pages and update the gathered information.
Crawlers that follow this approach are called incremental crawlers. They ensure that
the information in their repositories are as fresh as possible. Incremental crawlers
can determine the pages that they revisit based on the change frequency of the pages
or by sampling a number of pages. Change frequency-based approaches use an
estimate of the change frequency of a page to determine how frequently it should
be revisited. One might intuitively assume that pages with high change frequency
should be visited more often, but this is not always true—any information extracted
from a page that changes frequently is likely to become obsolete quickly, and it may
be better to increase revisit interval to that page. It is also possible to develop an
adaptive incremental crawler such that the crawling in one cycle is affected by the
information collected in the previous cycle. Sampling-based approaches focus on
web sites rather than individual web pages. A small number of pages from a web
site are sampled to estimate how much change has happened at the site. Based on
this sampling estimate, the crawler determines how frequently it should visit that
site.

Some search engines specialize in searching pages belonging to a particular
topic. These engines use crawlers optimized for the target topic, and are referred
to as focused crawlers. A focused crawler ranks pages based on their relevance
to the target topic, and uses them to determine which pages it should visit next.
Classification techniques that are widely used in information retrieval are used
in evaluating relevance; learning techniques are used to identify the topic of a
given page. These techniques are beyond our scope, but a number of them have
been developed for this purpose, such as naïve Bayes classifier, and its extensions,
reinforcement learning, and others.

566 12 Web Data Management

To achieve reasonable scale-up, crawling can be parallelized by running parallel
crawlers. Any design for parallel crawlers must use schemes to minimize the
overhead of parallelization. For instance, two crawlers running in parallel may
download the same set of pages. Clearly, such overlap needs to be prevented
through coordination of the crawlers’ actions. One method of coordination uses a
central coordinator to dynamically assign each crawler a set of pages to download.
Another coordination scheme is to logically partition the web. Each crawler knows
its partition, and there is no need for central coordination. This scheme is referred
to as the static assignment.

12.2.2 Indexing

In order to efficiently search the crawled pages and the gathered information, a
number of indexes are built as shown in Fig. 12.2. The two more important indexes
are the structure (or link) index and a text (or content) index.

12.2.2.1 Structure Index

The structure index is based on the graph model that we discussed in Sect. 12.1,
with the graph representing the structure of the crawled portion of the web. The
efficient storage and retrieval of these pages is important and two techniques to
address these issues were discussed in Sect. 12.1. The structure index can be used
to obtain important information about the linkage of web pages such as information
regarding the neighborhood of a page and the siblings of a page.

12.2.2.2 Text Index

The most important and mostly used index is the text index. Indexes to support text-
based retrieval can be implemented using any of the access methods traditionally
used to search over text document collections. Examples include suffix arrays,
inverted files or inverted indexes, and signature files. Although a full treatment of all
of these indexes is beyond our scope, we will discuss how inverted indexes are used
in this context since these are the most popular text indexes.

An inverted index is a collection of inverted lists, where each list is associated
with a particular word. In general, an inverted list for a given word is a list of
document identifiers in which that particular word occurs. The location of the word
on a particular page can also be saved as part of the inverted list. This information
is usually needed in proximity queries and query result ranking. Search algorithms
also often make use of additional information about the occurrence of terms in a
web page. For example, terms occurring in bold face (within 〈strong〉 tags), in
section headings (within 〈H1〉 or 〈H2〉 tags in HTML), or as anchor text might be
weighted differently in the ranking algorithms.

12.2 Web Search 567

In addition to the inverted list, many text indexes also keep a lexicon, which is a
list of all terms that occur in the index. The lexicon can also contain some term-level
statistics that can be used by ranking algorithms.

Constructing and maintaining an inverted index has three major difficulties:

1. In general, building an inverted index involves processing each page, reading all
the words and storing the location of each word. In the end, the inverted files
are written to disk. This process, while trivial for small and static collections,
becomes hard to manage when dealing with a vast and nonstatic collection like
the web.

2. The rapid change of the web poses a challenge for maintaining the “freshness”
of the index. Although we argued in the previous section that incremental
crawlers should be deployed to ensure freshness, periodic index rebuilding is
still necessary because most incremental update techniques do not perform well
when dealing with the large changes often observed between successive crawls.

3. Storage formats of inverted indexes must be carefully designed. There is a
tradeoff between a performance gain through a compressed index that allows
portions of the index to be cached in memory and the overhead of decompression
at query time. Achieving the right balance becomes a major concern when
dealing with web-scale collections.

Addressing these challenges and developing a highly scalable text index can be
achieved by distributing the index by either building a local inverted index at each
machine where the search engine runs or building a global inverted index that is then
shared. We do not discuss these further, as the issues are similar to the distributed
data and directory management issues we have already covered in previous chapters.

12.2.3 Ranking and Link Analysis

A typical search engine returns a large number of web pages that are expected to
be relevant to a user query. However, these pages are likely to be different in terms
of their quality and relevance. The user is not expected to browse through this large
collection to find a high-quality page. Clearly, there is a need for algorithms to rank
these pages such that higher quality web pages appear as part of the top results.

Link-based algorithms can be used to rank a collection of pages. To repeat what
we discussed earlier, the intuition is that if a page Pj contains a link to page Pi ,
then it is likely that the authors of page Pj think that page Pi is of good quality.
Thus, a page that has a large number of incoming links is likely of high quality, and
hence the number of incoming links to a page can be used as a ranking criterion.
This intuition is the basis of ranking algorithms, but, of course, each specific
algorithm implements this intuition in a different way. We already discussed the
PageRank algorithm, and it is used for ranking of results in addition to crawling.
We will discuss an alternative algorithm called HITS to highlight different ways of
approaching the issue.

568 12 Web Data Management

HITS is also a link-based algorithm. It is based on identifying “authorities” and
“hubs.” A good authority page receives a high rank. Hubs and authorities have a
mutually reinforcing relationship: a good authority is a page that is linked to by
many good hubs, and a good hub is a document that links to many authorities. Thus,
a page pointed to by many hubs (a good authority page) is likely to be of high
quality.

Let us start with a web graph, G = (V ,E), where V is the set of pages and E is
the set of links among them. Each page Pi in V has a pair of nonnegative weights
(aPi

, hPi
) that represent the authoritative and hub values of Pi respectively.

The authoritative and hub values are updated as follows. If a page Pi is pointed
to by many good hubs, then aPi

is increased to reflect all pages Pj that link to it (the
notation Pj → Pi means that page Pj has a link to page Pi):

aPi
=

∑

{Pj |Pj →Pi }
hPj

hPi
=

∑

{Pj |Pj →Pi }
aPj

Thus, the authoritative value (hub value) of page Pi , is the sum of the hub values
(authority values) of all the backlink pages to Pi .

12.2.4 Evaluation of Keyword Search

Keyword-based search engines are the most popular tools to search information on
the web. They are simple, and one can specify fuzzy queries that may not have
an exact answer, but may only be answered approximately by finding facts that
are “similar” to the keywords. However, there are obvious limitations as to how
much one can do by simple keyword search. The obvious limitation is that keyword
search is not sufficiently powerful to express complex queries. This can be (partially)
addressed by employing iterative queries where previous queries by the same user
can be used as the context for the subsequent queries. A second limitation is that
keyword search does not offer support for a global view of information on the web
the way that database querying exploits database schema information. It can, of
course, be argued that a schema is meaningless for web data, but the lack of an
overall view of the data is an issue nevertheless. A third problem is that it is difficult
to capture user’s intent by simple keyword search—errors in the choice of keywords
may result in retrieving many irrelevant answers.

Category search addresses one of the problems of using keyword search, namely
the lack of a global view of the web. Category search is also known as web directory,
catalogs, yellow pages, and subject directories. There are a number of public web

12.3 Web Querying 569

directories available such as World Wide Web Virtual Library (http://vlib.org).2

The web directory is a hierarchical taxonomy that classifies human knowledge.
Although, the taxonomy is typically displayed as a trie, it is actually a directed
acyclic graph since some categories are cross referenced.

If a category is identified as the target, then the web directory is a useful tool.
However, not all web pages can be classified, so the user can use the directory
for searching. Moreover, natural language processing cannot be 100% effective for
categorizing web pages. We need to depend on human resource for judging the
submitted pages, which may not be efficient or scalable. Finally, some pages change
over time, so keeping the directory up-to-date involves significant overhead.

There have also been some attempts to involve multiple search engines in
answering a query to improve recall and precision. A metasearcher is a web service
that takes a given query from the user and sends it to multiple heterogeneous
search engines. The metasearcher then collects the answers and returns a unified
result to the user. It has the ability to sort the result by different attributes such
as host, keyword, date, and popularity. Examples include Dogpile (http://www.
dogpile.com/), MetaCrawler (http://www.metacrawler.com/), and lxQuick (http://
www.ixquick.com/). Different metasearchers have different ways to unify results
and translate the user query to the specific query languages of each search engines.
The user can access a metasearcher through client software or a web page. Each
search engine covers a smaller percentage of the web. The goal of a metasearcher is
to cover more web pages than a single search engine by combining different search
engines together.

12.3 Web Querying

Declarative querying and efficient execution of queries have been a major focus of
database technology. It would be beneficial if the database techniques can be applied
to the web. In this way, accessing the web can be treated, to a certain extent, similar
to accessing a large database. We will discuss a number of the proposed approaches
in this section.

There are difficulties in carrying over traditional database querying concepts
to web data. Perhaps the most important difficulty is that database querying
assumes the existence of a strict schema. As noted above, it is hard to argue that
there is a schema for web data similar to databases.3 At best, the web data are
semistructured—data may have some structure, but this may not be as rigid, regular,
or complete as that of databases, so that different instances of the data may be similar

2A list of these libraries is given in https://en.wikipedia.org/wiki/List_of_web_directories.
3We are focusing on the “open” web here; deep web data may have a schema, but it is usually not
accessible to users.

http://vlib.org
http://www.dogpile.com/
http://www.dogpile.com/
http://www.metacrawler.com/
http://www.ixquick.com/
http://www.ixquick.com/
https://en.wikipedia.org/wiki/List_of_web_directories

570 12 Web Data Management

but not identical (there may be missing or additional attributes or differences in
structure). There are, obviously, inherent difficulties in querying schema-less data.

A second issue is that the web is more than the semistructured data (and
documents). The links that exist between web data entities (e.g., pages) are
important and need to be considered. Similar to search that we discussed in the
previous section, links may need to be followed and exploited in executing web
queries. This requires links to be treated as first-class objects.

A third major difficulty is that there is no commonly accepted language, similar
to SQL, for querying web data. As we noted in the previous section, keyword search
has a very simple language, but this is not sufficient for richer querying of web data.
Some consensus on the basic constructs of such a language has emerged (e.g., path
expressions), but there is no standard language. However, standardized languages
for data models such as XML and RDF have emerged (XQuery for XML and
SPARQL for RDF). We postpone discussion of these to Sect. 12.6 where we focus
on web data integration

12.3.1 Semistructured Data Approach

One way to approach querying the web data is to treat it as a collection of
semistructured data. Then, models and languages that have been developed for this
purpose can be used to query the data. Semistructured data models and languages
were not originally developed to deal with web data; rather they addressed the
requirements of growing data collections that did not have as strict a schema as
their relational counterparts. However, since these characteristics are also common
to web data, later studies explored their applicability in this domain. We demonstrate
this approach using a particular model (OEM) and a language (Lorel), but other
approaches such as UnQL are similar.

OEM (Object Exchange Model) is a self-describing semistructured data model.
Self-describing means that each object specifies the schema that it follows.

An OEM object is defined as a four-tuple 〈label, type, value, oid〉,
where label is a character string describing what the object represents, type
specifies the type of the object’s value, value is obvious, and oid is the object
identifier that distinguishes it from other objects. The type of an object can be
atomic, in which case the object is called an atomic object, or complex, in which
case the object is called a complex object. An atomic object contains a primitive
value such as an integer, a real, or a string, while a complex object contains a set of
other objects, which can themselves be atomic or complex. The value of a complex
object is a set of oids.

Example 12.2 Let us consider a bibliographic database that consists of a number
of documents. A snapshot of an OEM representation of such a database is given
in Fig. 12.4. Each line shows one OEM object and the indentation is provided
to simplify the display of the object structure. For example, the second line

12.3 Web Querying 571

Fig. 12.4 An example OEM specification

<doc, complex, &o3, &o6, &o7, &o20, &o21, &o2> defines an
object whose label is doc, type is complex, oid is &o2, and whose value consists
of objects whose oids are &o3, &o6, &o7, &o20, and &o21.

This database contains three documents (&o2, &o22, &o34); the first and
third are books and the second is an article. There are commonalities among the two
books (and even the article), but there are differences as well. For example, &o2 has

572 12 Web Data Management

the price information that &o34 does not have, while &o34 has ISBN and publisher
information that t&o2 does not have. . �

As noted earlier, OEM data are self-describing, where each object identifies itself
through its type and its label. It is easy to see that the OEM data can be represented as
a vertex-labeled graph where the vertices correspond to OEM objects and the edges
correspond to the subobject relationship. The label of a vertex is the oid and the
label of the corresponding object vertex. However, it is quite common in literature
to model the data as an edge-labeled graph: if object oj is a subobject of object oi ,
then oj ’s label is assigned to the edge connecting oi to oj , and the oids are omitted
as vertex labels. In Example 12.3, we use a vertex and edge-labeled representation
that shows oids as vertex labels and assigns edge labels as described above.

Example 12.3 Figure 12.5 depicts the vertex and edge-labeled graph representation
of the example OEM database given in Example 12.2. Normally, each terminal
vertex (i.e., no outgoing edges) also contains the value of that object. To simplify
exposition of the idea, we do not show the values. �

The semistructured approach fits reasonably well for modeling web data since
it can be represented as a graph. Furthermore, it accepts that data may have some
structure, but this may not be as rigid, regular, or complete as that of traditional
databases. The users do not need to be aware of the complete structure when they
query the data. Therefore, expressing a query should not require full knowledge of
the structure. These graph representations of data at each data source are generated
by wrappers that we discussed in Sect. 7.2.

&o1

bib

&o2

&o3

&o4

au
th

or

&o5

author

aut
hor

s

&o6

tit
le

&o7

&o8

&o9

he
ad

in
g

&o10

body

ch
ap

te
r

&o17

&o18

he
ad

in
g

&o19

body

chapter

chapters

&o20

what

&o21

price

doc

&o22

&o23

&o24

author

aut
hor

s

&o25

tit
le

&o26

venue

&o27

year

&o28

&o29

se
ct

io
n

&o33

section

sections

doc

&o34

&o35

aut
hor

&o36

tit
le

&o37

ISB
N

&o38

&o39

&o40

he
ad

in
g

&o41

body

ch
ap

te
r

&o45

&o46

he
ad

in
g

&o47

body

chapter

chapters

&o48

publisher

doc

.

author
what

Fig. 12.5 The corresponding OEM graph for the OEM database of Example 12.2

12.3 Web Querying 573

A number of languages have been developed to query semistructured data. As
noted above, we will focus our discussion by considering a particular language,
Lorel, but other languages are similar in their basic approaches.

Lorel has the familiar SELECT-FROM-WHERE structure, but allows path expres-
sions in the SELECT, FROM and WHERE clauses. The fundamental construct in
forming Lorel queries is, therefore, a path expression. In its simplest form, a
path expression in Lorel is a sequence of labels starting with an object name
or a variable denoting an object. For example, bib.doc.title is a path
expression whose interpretation is to start at bib and follow the edge-labeled
doc and then follow the edge-labeled title. Note that there are three paths in
Fig. 12.5 that would satisfy this expression: (i) &o1.doc:&o2.title:&o6,
(ii) &o1.doc:&o22.title:&o25, and (iii) &o1.doc:&o34.title:&o36.
Each of these is called a data path. In Lorel, path expressions can be more complex
regular expressions such that what follows the object name or variable is not only
a label, but more general expressions that can be constructed using conjunction,
disjunction (|), iteration (? to mean 0 or 1 occurrences, + to mean 1 or more, and ∗
to mean 0 or more), and wildcards (#).

Example 12.4 The following are examples of acceptable path expressions in
Lorel:

(a) bib.doc(.authors)?.author : start from bib, follow doc edge and
the author edge with an optional authors edge in between.

(b) bib.doc.#.author : start from bib, follow doc edge, then an arbitrary
number of edges with unspecified labels (using the wildcard #), and follow the
author edge.

(c) bib.doc.%price : start from bib, follow doc edge, then an edge whose
label has the string “price” preceded by some characters.

�
Example 12.5 The following are example Lorel queries that use some of the path
expressions given in Example 12.4:

(a) Find the titles of documents written by Patrick Valduriez.

SELECT D.title
FROM bib.doc D
WHERE bib.doc(.authors)?.author =

"Patrick Valduriez"

In this query, the FROM clause restricts the scope to documents (doc), and
the SELECT clause specifies the nodes reachable from documents by following
the title label. We could have specified the WHERE predicate as

D(.authors)?.author = "Patrick Valduriez".

574 12 Web Data Management

(b) Find the authors of all books whose price is under $100.

SELECT D(.authors)?.author
FROM bib.doc D
WHERE D.what = "Books" AND D.price < 100

�
Semistructured data approach to modeling and querying web data is simple

and flexible. It also provides a natural way to deal with containment structure
of web objects, thereby supporting, to some extent, the link structure of web
pages. However, there are also deficiencies of this approach. The data model is too
simple—it does not include a record structure (each vertex is a simple entity) nor
does it support ordering as there is no imposed ordering among the vertices of an
OEM graph. Furthermore, the support for links is also relatively rudimentary, since
the model or the languages do not differentiate between different types of links. The
links may show either subpart relationships among objects or connections between
different entities that correspond to vertices. These cannot be separately modeled,
nor can they be easily queried.

Finally, the graph structure can get quite complicated, making it difficult to
query. Although Lorel provides a number of features (such as wildcards) to make
querying easier, the examples above indicate that a user still needs to know the
general structure of the semistructured data. The OEM graphs for large databases
can become quite complicated, and it is hard for users to form the path expressions.
The issue, then, is how to “summarize” the graph so that there might be a reasonably
small schema-like description that might aid querying. For this purpose, a construct
called a DataGuide has been proposed. A DataGuide is a graph where each path in
the corresponding OEM graph occurs only once. It is dynamic in that as the OEM
graph changes, the corresponding DataGuide is updated. Thus, it provides concise
and accurate structural summaries of semistructured databases and can be used as a
lightweight schema, which is useful for browsing the database structure, formulating
queries, storing statistical information, and enabling query optimization.

Example 12.6 The DataGuide corresponding to the OEM graph in Example 12.3 is
given in Fig. 12.6. �

12.3.2 Web Query Language Approach

The approaches in this category are aimed to directly address the characteristics of
web data, particularly focusing on handling links properly. Their starting point is to
overcome the shortcomings of keyword search by providing proper abstractions for
capturing the content structure of documents (as in semistructured data approaches)

12.3 Web Querying 575

bib

author

autho
rs title what pri

ce

ve
nu

e year

author
ISBN

publisher
price

Fig. 12.6 The DataGuide corresponding to the OEM graph of Example 12.3

as well as the external links. They combine the content-based queries (e.g., keyword
expressions) and structure-based queries (e.g., path expressions).

A number of languages have been proposed specifically to deal with web
data, and these can be categorized as first generation and second generation. The
first generation languages model the web as interconnected collection of atomic
objects. Consequently, these languages can express queries that search the link
structure among web objects and their textual content, but they cannot express
queries that exploit the document structure of these web objects. The second
generation languages model the web as a linked collection of structured objects,
allowing them to express queries that exploit the document structure similar to
semistructured languages. First generation approaches include WebSQL , W3QL,
and WebLog, while second generation approaches include WebOQL and StruQL.
We will demonstrate the general ideas by considering one first generation language
(WebSQL) and one second generation language (WebOQL).

WebSQL is one of the early query languages that combines searching and
browsing. It directly addresses web data as captured by web documents (usually
in HTML format) that have some content and may include links to other pages
or other objects (e.g., PDF files or images). It treats links as first-class objects, and
identifies a number of different types of links that we will discuss shortly. As before,
the structure can be represented as a graph, but WebSQL captures the information
about web objects in two virtual relations:

DOCUMENT(URL, TITLE, TEXT, TYPE, LENGTH, MODIF)

LINK(BASE, HREF, LABEL)

DOCUMENT relation holds information about each web document where URL

identifies the web object and is the primary key of the relation, TITLE is the title of
the web page, TEXT is its text content of the web page, TYPE is the type of the web
object (HTML document, image, etc.), LENGTH is self-explanatory, and MODIF is
the last modification date of the object. Except URL, all other attributes can have null
values. LINK relation captures the information about links where BASE is the URL

576 12 Web Data Management

of the HTML document that contains the link, HREF is the URL of the document
that is referenced, and LABEL is the label of the link as defined earlier.

WebSQL defines a query language that consists of SQL plus path expressions.
The path expressions are more powerful than their counterparts in Lorel; in
particular, they identify different types of links:

(a) interior link that exists within the same document (#>)
(b) local link that is between documents on the same server (->)
(c) global link that refers to a document on another server (=>)
(d) null path (=)

These link types form the alphabet of the path expressions. Using them, and
the usual constructors of regular expressions, different paths can be specified as in
Example 12.7.

Example 12.7 The following are examples of possible path expressions that can be
specified in WebSQL.

(a) -> | =>: a path of length one, either local or global
(b) ->*: local path of any length
(c) =>->*: as above, but in other servers
(d) (-> |=>)*: the reachable portion of the web

�
In addition to path expressions that can appear in queries, WebSQL allows

scoping within the FROM clause in the following way:

FROM Relation SUCH THAT domain-condition

where domain-condition can be either a path expression, or can specify a text
search using MENTIONS, or can specify that an attribute (in the SELECT clause)
is equal to a web object. Of course, following each relation specification, there
could be a variable ranging over the relation—this is standard SQL. The following
example queries (taken from with minor modifications) demonstrate the features of
WebSQL.

Example 12.8 Following are some examples of WebSQL:

(a) The first example we consider simply searches for all documents about
“hypertext” and demonstrates the use of MENTIONS to scope the query.

SELECT D.URL, D.TITLE
FROM DOCUMENT D

SUCH THAT D MENTIONS "hypertext"
WHERE D.TYPE = "text/html"

(b) The second example demonstrates two scoping methods as well as a search for
links. The query is to find all links to applets from documents about “Java.”

12.3 Web Querying 577

SELECT A.LABEL, A.HREF
FROM DOCUMENT D SUCH THAT D MENTIONS "Java"

ANCHOR A SUCH THAT BASE=X
WHERE A.LABEL = "applet"

(c) The third example demonstrates the use of different link types. It searches
for documents that have the string “database” in their title that are reachable
from the ACM Digital Library home page through paths of length two or less
containing only local links.

SELECT D.URL, D.TITLE
FROM DOCUMENT D SUCH THAT

"http://www.acm.org/dl"=|->|->-> D
WHERE D.TITLE CONTAINS "database"

(d) The final example demonstrates the combination of content and structure
specifications in a query. It finds all documents mentioning “Computer Science”
and all documents that are linked to them through paths of length two or less
containing only local links.

SELECT D1.URL, D1.TITLE, D2.URL, D2.TITLE
FROM DOCUMENT D1 SUCH THAT

D1 MENTIONS "Computer Science",
DOCUMENT D2 SUCH THAT D1=|->|->-> D2

�
WebSQL can query web data based on the links and the textual content of

web documents, but it cannot query the documents based on their structure. This
limitation is the consequence of its data model that treats the web as a collection of
atomic objects.

The second generation languages, such as WebOQL, address this shortcoming
by modeling the web as a graph of structured objects. In a way, they combine some
features of semistructured data approaches with those of first generation web query
models.

WebOQL’s main data structure is a hypertree, which is an ordered edge-labeled
trie with two types of edges: internal and external. An internal edge represents the
internal structure of a web document, while an external edge represents a reference
(i.e., hyperlink) among objects. Each edge is labeled with a record that consists of
a number of attributes (fields). An external edge has to have a URL attribute in its
record and cannot have descendants (i.e., they are the leaves of the hypertree).

Example 12.9 Let us revisit Example 12.2 and assume that instead of modeling
the documents in a bibliography, it models the collection of documents about data
management over the web. A possible (partial) hypertree for this example is given

578 12 Web Data Management

[label: heading
text: . . .]

[label:body
URL:http://. . .]

[label:chapter#1] [label:chapter#4]

[label: chapters]
[label:abstract

URL:http://. . .]

record 1

. . .

[Group:Distributed DB]

[label:section#1
URL:http://. . .]

[label:section#5
URL:http://. . .]

[label:sections]
[label:abstract

URL:http://. . .]

record 2

[Group:Data Streams]

record 3 . . .

[Group: Web]

· · · · · ·

record 1:
[authors: M. Tamer Ozsu, Patrick Valduriez
title: Principles of Distributed . . .
what: Book,
price:98.50]

record 2:
[authors: Lingling Yan, M. Tamer Ozsu
title: Mining Data Streams . . .
venue: CIKM,
year:2009]

record 3:
[author: Anthony Bonato
title: A Course on the Web Graph
what: Book,
ISBN: TK5105.888.B667
publisher:AMS]

Fig. 12.7 The hypertree example

in Fig. 12.7. Note that we have made one revision to facilitate some of the queries
to be discussed later: we added an abstract to each document.

In Fig. 12.7, the documents are first grouped along a number of topics as
indicated in the records attached to the edges from the root. In this representation,
the internal links are shown as solid edges and external links as dashed edges.
Recall that in OEM (Fig. 12.5), the edges represent both attributes (e.g., author)
and document structure (e.g., chapter). In the WebOQL model, the attributes are
captured in the records that are associated with each edge, while the (internal) edges
represent the document structure. �

Using this model, WebOQL defines a number of operators over trees:

Prime: returns the first subtree of its argument (denoted ’).
Peek: extracts a field from the record that labels the first outgoing edges of its

document. For example, if x points to the root of the subtree reached from the
“Groups = Distributed DB” edge, x.authors would retrieve “M. Tamer Ozsu,
Patrick Valduriez.”

Hang: builds an edge-labeled trie with a record formed with the arguments
(denoted as []).

Example 12.10 Let us assume that the trie depicted in Fig. 12.8a is retrieved as a
result of a query (call it Q1). Then the expression [“Label: “Papers by Ozsu” / Q1]
results in the trie depicted in Fig. 12.8b. �

Concatenate: combines two trees (denoted +).

12.3 Web Querying 579

[title:Principles of Distributed . . .
abstract:http://. . .]

[title:Mining Data Streams . . .
abstract:http://. . .]

(a)

[title:Principles of Distributed . . .
abstract:http://. . .]

[title:Mining Data Streams . . .
abstract:http://. . .]

[label:Papers by Ozsu]

(b)

[title:Principles of Distributed . . .
abstract:http://. . .]

[title:Mining Data Streams . . .
abstract:http://. . .]

[title:Principles of Distributed . . .
abstract:http://. . .]

[title:Mining Data Streams . . .
abstract:http://. . .]

(c)

Fig. 12.8 Examples of Hang and Concatenate operators

Example 12.11 Again, assuming that the trie depicted in Fig. 12.8a is retrieved as
a result of query Q1, Q1+Q2 produces trie in Fig. 12.8c. �

Head: returns the first simple trie of a trie (denoted &). A simple trie of a trie t are
the trees composed of one edge followed by a (possibly null) trie that originates
from t’s root.

Tail: returns all but the first simple trie of a trie (denoted !).

In addition to these, WebOQL introduces a string pattern matching operator
(denoted ∼) whose left argument is a string and right argument is a string pattern.
Since the only data type supported by the language is string, this is an important
operator.

WebOQL is a functional language, so complex queries can be composed by
combining these operators. In addition, it allows these operators to be embedded
in the usual SQL (or OQL) style queries as demonstrated by the following example.

Example 12.12 Let dbDocuments denote the documents in the database shown
in Fig. 12.7. Then the following query finds the titles and abstracts of all documents
authored by “Ozsu” producing the result depicted in Fig. 12.8a.

SELECT y.title, y′.URL
FROM x IN dbDocuments, y IN x′
WHERE y.authors ∼ "Ozsu"

The semantics of this query is as follows: The variable x ranges over the simple
trees of dbDocuments, and, for a given x value, y iterates over the simple trees
of the single subtree of x. It peeks into the record of the edge and if the authors
value matches “Ozsu” (using the string matching operator ∼), then it constructs a

580 12 Web Data Management

trie whose label is the title attribute of the record that y points to and the URL
attribute value of the subtree. �

The web query languages discussed in this section adopt a more powerful
data model than the semistructured approaches. The model can capture both the
document structure and the connectedness of web documents. The languages can
then exploit these different edge semantics. Furthermore, as we have seen from the
WebOQL examples, the queries can construct new structures as a result. However,
formation of these queries still requires some knowledge about the graph structure.

12.4 Question Answering Systems

In this section, we discuss an interesting and unusual (from a database perspective)
approach to accessing web data: question answering (QA) systems. These systems
accept natural language questions that are then analyzed to determine the specific
query that is being posed. They then conduct a search to find the appropriate answer.

Question answering systems have grown within the context of IR systems where
the objective is to determine the answer to posed queries within a well-defined
corpus of documents. These are usually referred to as closed domain systems. They
extend the capabilities of keyword search queries in two fundamental ways. First,
they allow users to specify complex queries in natural language that may be difficult
to specify as simple keyword search requests. In the context of web querying, they
also enable asking questions without a full knowledge of the data organization.
Sophisticated natural language processing (NLP) techniques are then applied to
these queries to understand the specific query. Second, they search the corpus of
documents and return explicit answers rather than links to documents that may be
relevant to the query. This does not mean that they return exact answers as traditional
DBMSs do, but they may return a (ranked) list of explicit responses to the query,
rather than a set of web pages. For example, a keyword search for “President of
USA” using a search engine would return the (partial) result in Fig. 12.9. The user
is expected to find the answer within the pages whose URLs and short descriptions
(called snippets) are included on this page (and several more). On the other hand,
a similar search using a natural language question “Who is the president of USA?”
might return a ranked list of presidents’ names (the exact type of answer differs
among different systems).

Question answering systems have been extended to operate on the web. In these
systems, the web is used as the corpus (hence they are called open domain systems).
The web data sources are accessed using wrappers that are developed for them to
obtain answers to questions. A number of question answering systems have been
developed with different objectives and functionalities, such as Mulder, WebQA,
Start, and Tritus. There are also commercial systems with varying capabilities (e.g.,
Wolfram Alpha http://www.wolframalpha.com/).

http://www.wolframalpha.com/

12.4 Question Answering Systems 581

Fig. 12.9 Keyword search example

We describe the general functionality of these systems using the reference
architecture given in Fig. 12.10. Preprocessing, which is not employed in all
systems, is an offline process to extract and enhance the rules that are used by the
systems. In many cases, these are analyses of documents extracted from the web or
returned as answers to previously asked questions in order to determine the most
effective query structures into which a user question can be transformed. These
transformation rules are stored in order to use them at runtime while answering the
user questions. For example, Tritus employs a learning-based approach that uses

582 12 Web Data Management

Preprocessing

Rules

Question
Analysis

Rules

Question

Candidate
Selection

Queries

Queries

Documents

Documents

Anchor
ExtractionDocuments

Queries

Response

Rules

Fig. 12.10 General architecture of QA systems

a collection of frequently asked questions and their correct answers as a training
dataset. In a three-stage process, it attempts to guess the structure of the answer
by analyzing the question and searching for the answer in the collection. In the
first stage, the question is analyzed to extract the question phrase (e.g., in the
question “What is a hard disk?,” “What is a” is a question phrase). This is used
to classify the question. In the second phase, it analyzes the question-answer pairs
in the training data and generates candidate transforms for each question phrase
(e.g., for the question phrase “What is a,” it generates “refers to,” “stands for,” etc.).
In the third stage, each candidate transform is applied to the questions in the training
dataset, and the resulting transformed queries are sent to different search engines.
The similarities of the returned answers with the actual answers in the training data
are calculated, and, based on these, a ranking is done for candidate transforms. The
ranked transformation rules are stored for later use during runtime execution of
questions.

The natural language question that is posed by a user first goes through the
question analysis process. The objective is to understand the question issued by the
user. Most of the systems try to guess the type of the answer in order to categorize
the question, which is used in translating the question into queries and also in
answer extraction. If preprocessing has been done, the transformation rules that
have been generated are used to assist the process. Although the general goals are
the same, the approaches used by different systems vary considerably depending
on the sophistication of the NLP techniques employed by the systems (this phase
is usually all about NLP). For example, question analysis in Mulder incorporates
three phases: question parsing, question classification, and query generation. Query

12.4 Question Answering Systems 583

parsing generates a parse trie that is used in query generation and in answer
extraction. Question classification, as its name implies, categorizes the question in
one of a number of classes: e.g., nominal is for nouns, numerical is for numbers,
and temporal is for dates. This type of categorization is done in most of the QA
systems because it eases the answer extraction. Finally, query generation phase uses
the previously generated parse trie to construct one or more queries that can be
executed to obtain the answers to the question. Mulder uses four different methods
in this phase.

• Verb conversion: Auxiliary and main verb is replaced by the conjugated verb
(e.g., “When did Nixon visit China?” is converted to “Nixon visited China”).

• Query expansion: Adjective in the question phrase is replaced by its attribute
noun (e.g., “How tall is Mt. Everest?” is converted to “The height of Everest is”).

• Noun phrase formation: Some noun phrases are quoted in order to give them
together to the search engine in the next stage.

• Transformation: Structure of the question is transformed into the structure of the
expected answer type (“Who was the first American in space?” is converted to
“The first American in space was”).

Mulder is an example of a system that uses a sophisticated NLP approach to
question analysis. At the other end of the spectrum is WebQA, which follows a
lightweight approach in question parsing.

Once the question is analyzed and one or more queries are generated, the next
step is to generate candidate answers. The queries that were generated at question
analysis stage are used at this step to perform keyword search for relevant docu-
ments. Many of the systems simply use the general-purpose search engines in this
step, while others also consider additional data sources that are available on the web.
For example, CIA’s World Factbook (https://www.cia.gov/library/publications/the-
world-factbook/) is a very popular source for reliable factual data about countries.
Similarly, weather information may be obtained very reliably from a number of
weather data sources such as the Weather Network (http://www.theweathernetwork.
com/) or Weather Underground (http://www.wunderground.com/). These additional
data sources may provide better answers in some cases and different systems
take advantage of these to differing degrees. Since different queries can be better
answered by different data sources (and, sometimes, even by different search
engines), an important aspect of this processing stage is the choice of the appropriate
search engine(s)/data source(s) to consult for a given query. The naive alternative
of submitting the queries to all search engines and data sources is not a wise
decision, since these operations are quite costly over the web. Usually, the category
information is used to assist the choice of the appropriate sources, along with a
ranked listing of sources and engines for different categories. For each search engine
and data source, wrappers need to be written to convert the query into the format
of that data source/search engine and convert the returned result documents into a
common format for further analysis.

In response to queries, search engines return links to the documents together
with short snippets, while other data sources return results in a variety of formats.

https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
http://www.theweathernetwork.com/
http://www.theweathernetwork.com/
http://www.wunderground.com/

584 12 Web Data Management

The returned results are normalized into “records.” The direct answers need to
be extracted from these records, which is the function of the answer extraction
phase. Various text processing techniques can be used to match the keywords
to (possibly parts of) the returned records. Subsequently, these results need to
be ranked using various information retrieval techniques (e.g., word frequencies,
inverse document frequency). In this process, the category information that is
generated during question analysis is used. Different systems employ different
notions of the appropriate answer. Some return a ranked list of direct answers (e.g., if
the question is “Who invented the telephone,” they would return “Alexander Graham
Bell” or “Graham Bell” or “Bell,” or all of them in ranked order4), while others
return a ranked order of the portion of the records that contain the keywords in the
query (i.e., a summary of the relevant portion of the document).

Question answering systems are very different than the other web querying
approaches we have discussed in previous sections. They are more flexible in what
they offer users in terms of querying without any knowledge of the organization
of web data. On the other hand, they are constrained by idiosynchrocies of natural
language, and the difficulties of natural language processing.

12.5 Searching and Querying the Hidden Web

Currently, most general-purpose search engines only operate on the PIW while a
considerable amount of the valuable data are kept in hidden databases, either as
relational data, as embedded documents, or in many other forms. The current trend
in web search is to find ways to search the hidden web as well as the PIW, for two
main reasons. First is the size—the size of the hidden web (in terms of generated
HTML pages) is considerably larger than the PIW, therefore the probability of
finding answers to users’ queries is much higher if the hidden web can also be
searched. The second is in data quality—the data stored in the hidden web are
usually of much higher quality than those found on public web pages since they are
properly curated. If they can be accessed, the quality of answers can be improved.

However, searching the hidden web faces many challenges, the most important
of which are the following:

1. Ordinary crawlers cannot be used to search the hidden web, since there are
neither HTML pages, nor hyperlinks to crawl.

2. Usually, the data in hidden databases can be only accessed through a search
interface or a special interface, requiring access to this interface.

3. In most (if not all) cases, the underlying structure of the database is unknown,
and the data providers are usually reluctant to provide any information about
their data that might help in the search process (possibly due to the overhead

4The inventor of the telephone is a subject of controversy, with multiple claims to the invention.
We’ll go with Bell in this example since he was the first one to patent the device.

12.5 Searching and Querying the Hidden Web 585

of collecting this information and maintaining it). One has to work through the
interfaces provided by these data sources.

In the remainder of this section, we discuss these issues as well as some proposed
solutions.

12.5.1 Crawling the Hidden Web

One approach to address the issue of searching the hidden web is to try crawling
in a manner similar to that of the PIW. As already mentioned, the only way to deal
with hidden web databases is through their search interfaces. A hidden web crawler
should be able to perform two tasks: (a) submit queries to the search interface of the
database, and (b) analyze the returned result pages and extract relevant information
from them.

12.5.1.1 Querying the Search Interface

One approach is to analyze the search interface of the database, and build an internal
representation for it. This internal representation specifies the fields used in the
interface, their types (e.g., text boxes, lists, checkboxes, etc.), their domains (e.g.,
specific values as in lists, or just free text strings as in text boxes), and also the labels
associated with these fields. Extracting these labels requires an exhaustive analysis
of the HTML structure of the page.

Next, this representation is matched with the system’s task-specific database. The
matching is based on the labels of the fields. When a label is matched, the field is
then populated with the available values for this field. The process is repeated for all
possible values of all fields in the search form, and the form is submitted with every
combination of values and the results are retrieved.

Another approach is to use agent technology. In this case, hidden web agents
are developed that interact with the search forms and retrieve the result pages. This
involves three steps: (a) finding the forms, (b) learning to fill the forms, and (c)
identifying and fetching the target (result) pages.

The first step is accomplished by starting from a URL (an entry point), traversing
links, and using some heuristics to identify HTML pages that contain forms,
excluding those that contain password fields (e.g., login, registration, purchase
pages). The form filling task depends on identifying labels and associating them
with form fields. This is achieved using some heuristics about the location of the
label relative to the field (on the left or above it). Given the identified labels, the
agent determines the application domain that the form belongs to, and fills the fields
with values from that domain in accordance with the labels (the values are stored in
a repository accessible to the agent).

586 12 Web Data Management

12.5.1.2 Analyzing the Result Pages

Once the form is submitted, the returned page has to be analyzed, for example, to
see if it is a data page or a search-refining page. This can be achieved by matching
values in this page with values in the agent’s repository. Once a data page is found,
it is traversed, as well as all pages that it links to (especially pages that have more
results), until no more pages can be found that belong to the same domain.

However, the returned pages usually contain a lot of irrelevant data, in addition
to the actual results, since most of the result pages follow some template that has
a considerable amount of text used only for presentation purposes. A method to
identify web page templates is to analyze the textual contents and the adjacent
tag structures of a document in order to extract query-related data. A web page
is represented as a sequence of text segments, where a text segment is a piece of tag
encapsulated between two tags. The mechanism to detect templates is as follows:

1. Text segments of documents are analyzed based on textual contents and their
adjacent tag segments.

2. An initial template is identified by examining the first two sample documents.
3. The template is then generated if matched text segments along with their adjacent

tag segments are found from both documents.
4. Subsequent retrieved documents are compared with the generated template. Text

segments that are not found in the template are extracted for each document to
be further processed.

5. When no matches are found from the existing template, document contents are
extracted for the generation of future templates.

12.5.2 Metasearching

Metasearching is another approach for querying the hidden web. Given a user query,
a metasearcher performs the following tasks:

1. Database selection: selecting the databases(s) that are most relevant to the user’s
query. This requires collecting some information about each database. This
information is known as a content summary, which is statistical information,
usually including the document frequencies of the words that appear in the
database.

2. Query translation: translating the query to a suitable form for each database (e.g.,
by filling certain fields in the database’s search interface).

3. Result merging: collecting the results from the various databases, merging them
(and most probably, ordering them), and returning them to the user.

We discuss the important phases of metasearching in more detail below.

12.5 Searching and Querying the Hidden Web 587

12.5.2.1 Content Summary Extraction

The first step in metasearching is to compute content summaries. In most of the
cases, the data providers are not willing to go through the trouble of providing this
information. Therefore, the metasearcher itself extracts this information.

A possible approach is to extract a document sample set from a given database D

and compute the frequency of each observed word w in the sample, SampleDF(w).
The technique works as follows:

1. Start with an empty content summary where SampleDF(w) = 0 for each word
w, and a general (i.e., not specific to D), comprehensive word dictionary.

2. Pick a word and send it as a query to database D.
3. Retrieve the top-k documents from among the returned documents.
4. If the number of retrieved documents exceeds a prespecified threshold, stop.

Otherwise continue the sampling process by returning to Step 2.

There are two main versions of this algorithm that differ in how Step 2 is
executed. One of the algorithms picks a random word from the dictionary. The
second algorithm selects the next query from among the words that have been
already discovered during sampling. The first constructs better profiles, but is more
expensive.

An alternative is to use a focused probing technique that can actually classify
the databases into a hierarchical categorization. The idea is to preclassify a set of
training documents into some categories, and then extract different terms from these
documents and use them as query probes for the database. The single-word probes
are used to determine the actual document frequencies of these words, while only
sample document frequencies are computed for other words that appear in longer
probes. These are used to estimate the actual document frequencies for these words.

Yet another approach is to start by randomly selecting a term from the search
interface itself, assuming that, most probably, this term will be related to the contents
of the database. The database is queried for this term, and the top-k documents
are retrieved. A subsequent term is then randomly selected from terms extracted
from the retrieved documents. The process is repeated until a predefined number
of documents are retrieved, and then statistics are calculated based on the retrieved
documents.

12.5.2.2 Database Categorization

A good approach that can help the database selection process is to categorize the
databases into several categories (for example, as Yahoo directory). Categorization
facilitates locating a database given a user’s query, and makes most of the returned
results relevant to the query.

If the focused probing technique is used for generating content summaries, then
the same algorithm can probe each database with queries from some category and

588 12 Web Data Management

count the number of matches. If the number of matches exceeds a certain threshold,
the database is said to belong to this category.

Database Selection

Database selection is a crucial task in the metasearching process, since it has a
critical impact on the efficiency and effectiveness of query processing over multiple
databases. A database selection algorithm attempts to find the best set of databases,
based on information about the database contents, on which a given query should
be executed. Usually, this information includes the number of different documents
that contain each word (known as the document frequency), as well as some other
simple related statistics, such as the number of documents stored in the database.
Given these summaries, a database selection algorithm estimates how relevant each
database is for a given query (e.g., in terms of the number of matches that each
database is expected to produce for the query).

GlOSS is a simple database selection algorithm that assumes that query words
are independently distributed over database documents to estimate the number of
documents that match a given query. GlOSS is an example of a large family of
database selection algorithms that rely on content summaries. Furthermore, database
selection algorithms expect such content summaries to be accurate and up-to-date.

The focused probing algorithm discussed above exploits the database categoriza-
tion and content summaries for database selection. This algorithm consists of two
basic steps: (1) propagate the database content summaries to the categories of the
hierarchical classification scheme, and (2) use the content summaries of categories
and databases to perform database selection hierarchically by zooming in on the
most relevant portions of the topic hierarchy. This results in more relevant answers
to the user’s query since they only come from databases that belong to the same
category as the query itself.

Once the relevant databases are selected, each database is queried, and the
returned results are merged and sent back to the user.

12.6 Web Data Integration

In Chap. 7 we discussed the integration of databases, each of which have well-
defined schemas. The techniques discussed in that chapter are mostly appropriate
when enterprise data is considered. When we wish to provide integrated access to
web data sources, the problem becomes more complex—all the characteristics of
“big data” play a role. In particular, the data may not have a proper schema, and if
it does, the data sources are so varied that the schemas are widely different, making
schema matching a real challenge. In addition, the amount of data and even the
number of data sources are significantly higher than in an enterprise environment,
making manual curation all but impossible. The quality of the data on the web is also

12.6 Web Data Integration 589

far more suspect than the enterprise data collections that we considered previously,
and this increases the importance of data cleaning solutions.

An appropriate approach to web data integration is what is called pay-as-you-go
integration where the up-front investment to integrate data is significantly reduced,
eliminating some of the stages discussed in Chap. 7. Instead, a framework and basic
infrastructure is provided for data owners to easily integrate their datasets into a
federation. One proposal for the pay-as-you-go approach to web data integration is
data spaces, which advocates that there should be lightweight integration platform
with perhaps rudimentary access opportunities (e.g., keyword search) to start with,
and ways to improve the value of the integration over time by providing the
opportunity to develop tools for more sophisticated use. Perhaps the data lakes
that have started to receive attention and that we discussed in Chap. 10, are more
advanced versions of the data space proposal.

In this section, we cover some of the approaches that have been developed to
address these challenges. In particular, we will look at web tables and fusion tables
(Sect. 12.6.1) as a low-overhead integration approach for tabular structured data. We
then look at the semantic web and the Linked Open Data (LOD) approach to web
data integration (Sect. 12.6.2.3). Finally, we discuss the issues of data cleaning and
the use of machine learning techniques in data integration and cleaning at web-scale
integration in Sect. 12.6.3.

12.6.1 Web Tables/Fusion Tables

Two popular approaches to lightweight web data integration are web portals and
mashups that aggregate web and other data on specific topics such as travel, hotel
bookings, etc. The two differ in the technologies that they use, but that is not
important for our discussion. These are examples of “vertically integrated” systems
where each mashup or portal targets one domain.

A first question that comes up in developing a mashup is how to find the relevant
web data. Web tables project is an early attempt at finding data on the web that
has relational table structure and provide access over these tables (the so-called
“database-like” tables). The focus is on the open web, and tables in the deep web
are not considered as their discovery is a much more difficult problem. Even finding
the database-like tables in the open web is not easy since the usual relational table
structures (i.e., attribute names) may not exist. Web tables employ a classifier that
can group HTML tables as relational and nonrelational. It then provides tools to
extract a schema and maintain statistics about the schemas that can be used in search
over these tables. Join opportunities across tables are introduced to allow more
sophisticated navigation across the discovered tables. Web tables can be viewed as
a method to retrieve and query web data, but they also serve as a virtual integration
framework for web data with global schema information.

Fusion tables project at Google takes web tables a step further by allowing
users to upload their own tables (in various formats) in addition to the discovered

590 12 Web Data Management

Fig. 12.11 Web tables/fusion tables example

web tables. The fusion table’s infrastructure can automatically discover the join
attribute across tables and produce integration opportunities. An example is given in
Fig. 12.11 which depicts two datasets contributed by two different owners, one on
eateries and the other about the scores and grades given to these eateries as a result
of inspection. The system would determine that the two datasets can be joined over
a common attribute and provide integrated access. Although in this case both tables
were contributed by users, in other cases one or both of the tables can be discovered
from the web by using the techniques developed by web tables project.

12.6.2 Semantic Web and Linked Open Data

A fundamental contribution of the web is to produce a repository of machine pro-
cessable data. Semantic!web aims to convert this data into machine understandable
form by integrating both structured and unstructured data on the web and marking
it up semantically. The original semantic web vision includes three components:

• Markup web data so that metadata is captured as annotations;
• Use ontologies for making different data collections understandable; and
• Use logic-based technologies to access both the metadata and the ontologies.

12.6 Web Data Integration 591

Linked Open Data (LOD) was introduced in 2006 as a clarification of this vision
emphasizing the linkages among the data that is part of the semantic web. It set out
guidelines for how data should be published on the web to achieve the vision of
the semantic web. Thus, the semantic web is a web data integration vision realized
through LOD. LOD requirements for publishing (and hence integrating) data on the
web are based on four principles:

• All web resources (data) are locally identified by their URIs that serve as names;
• These names are accessible by HTTP;
• Information about web resources/entities are encoded as RDF (Resource

Description Framework) triples. In other words, RDF is the semantic web data
model (and we discuss it below);

• Connections among datasets are established by data links and publishers of
datasets should establish these links so that more data is discoverable.

The LOD, therefore, generates a graph where the vertices are web resources
and the edges are the relationships. A simplified form of “LOD graph" as of
2018 is shown in Fig. 12.12 where each vertex represents a dataset (not a web
resource) categorized according to by color (e.g., publications, life sciences, social
networking) and the size of each vertex represents its in-degree. At that time, LOD
consisted of 1,234 datasets with 16,136 links.5 We will come back to LOD and the
LOD graph shortly.

Semantic!web consists of a number of technologies that build upon each other
(Fig. 12.13). At the bottom layer, XML provides the language for writing structured
web documents and exchanging them easily. On top of this is the RDF that, as noted
above, establishes the data model. Although it is not necessary, if a schema over this
data is specified, the RDF Schema provides the necessary primitives. Ontologies
extend RDF schema with more powerful constructs to specify the relationships
among web data. Finally, logic-based declarative rule languages allow applications
to define their own rules.

In the remainder we discuss the technologies in the lower layers as these are the
minimal requirements.

12.6.2.1 XML

The predominant encoding for web documents has been HTML (which stands for
HyperText Markup Language). A web document encoded in HTML consists of
HTML elements encapsulated by tags as discussed in Sect. 12.6.1 where we also
presented approaches to discover structured data in HTML-encoded web documents
and integrating them. As noted above, within the context of semantic web, the
preferred representation for encoding and exchanging web documents is XML

5Statistics obtained from https://lod-cloud.net, which should be consulted for up-to-date statistics.

https://lod-cloud.net

592 12 Web Data Management

Fig. 12.12 LOD graph as of 2018

XML

RDF

RDF Schema

Ontology Languages

Declarative
Rule Languages

Fig. 12.13 Semantic web technologies. Simplified from [Antoniou and Plexousakis 2018]

12.6 Web Data Integration 593

(which stands for Extensive Markup Language) proposed by the World Wide Web
Consortium (W3C).

XML tags (also called markups) divide data into pieces called elements, with
the objective to provide more semantics to the data. Elements can be nested but
they cannot be overlapped. Nesting of elements represents hierarchical relationships
between them. As an example, Fig. 12.14 is the XML representation, with slight
revisions, of the bibliography data that we had given earlier.

An XML document can be represented as a trie that contains a root element,
which has zero or more nested subelements (or child elements), which can recur-
sively contain subelements. For each element, there are zero or more attributes with
atomic values assigned to them. An element also contains an optional value. Due
to the textual representation of the trie, a total order, called document order, is
defined on all elements corresponding to the order in which the first character of
the elements occurs in the document.

For instance, the root element in Fig. 12.4 is bib, which has three child elements:
two book and one article. The first book element has an attribute year
with atomic value “1999", and also contains subelements (e.g., the title ele-
ment). An element can contain a value (e.g., “Principles of Distributed
Database Systems" for the element title).

Standard XML document definition is a bit more complicated: it can contain
ID-IDREFs, which define references between elements in the same document or
in another document. In that case, the document representation becomes a graph.
However, it is quite common to use the simpler trie representation, and we’ll assume
the same in this section and we define it more precisely below.6

An XML document is modeled as an ordered, node-labeled trie T = (V ,E),
where each node v ∈ V corresponds to an element or attribute and is characterized
by:

• a unique identifier denoted by ID(v);
• a unique kind property, denoted as kind(v), assigned from the set {element,
attribute, text};

• a label, denoted by label(v), assigned from some alphabet ;
• a content, denoted by content (v), which is empty for nonleaf nodes and is a

strong for leaf nodes.

A directed edge e = (u, v) is included in E if and only if:

• kind(u) = kind(v) = element, and v is a subelement of u; or
• kind(u) = element ∧ kind(v) = attribute, and v is an attribute of u.

Now that an XML document trie is properly defined, we can define an instance of
XML data model as an ordered collection (sequence) of XML document trie nodes
or atomic values. A schema may or may not be defined for an XML document,
since it is a self-describing format. If a schema is defined for a collection of

6In addition, we omit the comment nodes, namespace nodes, and PI nodes from the model.

594 12 Web Data Management

Fig. 12.14 An example XML document

12.6 Web Data Integration 595

XML documents, then each document in this collection conforms to that schema;
however, the schema allows for variations in each document, since not all elements
or attributes may exist in each document. XML schemas can be defined either using
the Document Type Definition (DTD) or XMLSchema. In this section, we will use
a simpler schema definition that exploits the graph structure of XML documents as
defined above.

An XML schema graph is defined as a 5-tuple 〈,�, s,m, ρ〉 where is an
alphabet of XML document node types, ρ is the root node type, � ⊆ × is a
set of edges between node types, s : � → {ONCE, OPT, MULT} and m : →
{string}. The semantics of this definition are as follows: An edge ψ = (σ1, σ2) ∈
� denotes that an item of type σ1 may contain an item of type σ2. s(ψ) denotes the
cardinality of the containment represented by this edge: If s(ψ) = ONCE, then an
item of type σ1 must contain exactly one item of σ2. If s(ψ) = OPT, then an item
of type σ1 may or may not contain an item of type σ2. If s(ψ) = MULT, then an
item of type σ1 may contain multiple items of type σ2. m(σ) denotes the domain of
the text content of an item of type σ , represented as the set of all strings that may
occur inside such an item.

Using the definition of XML data model and instances of this data model, it is
now possible to define the query languages. Expressions in XML query languages
take an instance of XML data as input and produce an instance of XML data as
output. XPath and XQuery are two query languages proposed by the W3C. Path
expressions, that we introduced earlier, are present in both query languages and
are arguably the most natural way to query the hierarchical XML data. XQuery
defines for more powerful constructs. Although XQuery was the subject of intense
research and development efforts in the 2000s, it is not widely used any longer.
It is complicated, hard to formulate by users and difficult to optimize by systems.
JSON has replaced both XML and XQuery for many applications, as we discussed
in Chap. 11, although XML representation remains important for the semantic web
(but not XQuery).

12.6.2.2 RDF

RDF is the data model on top of XML and forms a fundamental building block
of the semantic web (Fig. 12.13). Although it was originally proposed by W3C as
a component of the semantic web, its use is now wider. For example, Yago and
DBPedia extract facts from Wikipedia automatically and store them in RDF format
to support structural queries over Wikipedia; biologists encode their experiments
and results using RDF to communicate among themselves leading to RDF data col-
lections, such as Bio2RDF (bio2rdf.org) and Uniprot RDF (dev.isb-sib.ch/projects/
uniprot-rdf). Related to semantic web, LOD project builds a RDF data cloud by
linking a large number of datasets, as noted earlier.

RDF models each “fact” as a set of triples (subject, property (or predicate),
object), denoted as 〈s, p, o〉, where subject is an entity, class or blank node, a

http://bio2rdf.org
http://dev.isb-sib.ch/projects/uniprot-rdf

596 12 Web Data Management

property7 denotes one attribute associated with one entity, and object is an entity,
a class, a blank node, or a literal value. According to the RDF standard, an
entity is denoted by a URI (Uniform Resource Identifier) that refers to a named
resource in the environment that is being modeled. Blank nodes, by contrast, refer
to anonymous resources that do not have a name.8 Thus, each triple represents a
named relationship; those involving blank nodes simply indicate that “something
with the given relationship exists, without naming it.”

It is appropriate at this point to briefly talk about the next layer in the semantic
web technology stack (Fig. 12.13), namely the RDF Schema (RDFS). It is possible
to annotate RDF data with semantic metadata using RDFS, which is also a W3C
standard.9 This annotation primarily enables reasoning over the RDF data (called
entailment), and also impacts data organization in some cases, and the metadata can
be used for semantic query optimization. We illustrate the fundamental concepts
by simple examples using RDFS, which allows the definition of classes and class
hierarchies. RDFS has built-in class definitions—the more important ones being
rdfs:Class and rdfs:subClassOf that are used to define a class and a subclass,
respectively (another one, rdfs:label is used in our query examples below). To
specify that an individual resource is an element of the class, a special property,
rdf:type is used.

Example 12.13 For example, if we wanted to define a class called Movies and
two subclasses ActionMovies and Dramas, this would be accomplished in the
following way:

Movies rdf:type rdfs:Class .
ActionMovies rdfs:subClassOf Movies .
Dramas rdfs:subClassOf Movies .

�
Formally, a RDF dataset can be defined as follows. Let U,B,L, and V denote the

sets of all URIs, blank nodes, literals, and variables, respectively. A tuple (s, p, o) ∈
(U ∪ B) × U × (U ∪ B ∪ L) is an RDF triple. A set of RDF triples form a RDF
dataset.

Example 12.14 An example RDF dataset is shown in Fig. 12.15 where the data
comes from a number of sources as defined by the URI prefixes.

�

7In literature, the terms “property” and “predicate” are used interchangeably; in this paper, we will
use “property” consistently.
8In much of the research, blank nodes are ignored. Unless explicitly stated otherwise, we will
ignore them in this paper as well.
9The same annotation can also be done using the ontology languages such as OWL (also a W3C
standard) but we will not discuss that topic further.

12.6 Web Data Integration 597

Prefixes:
mdb=http://data.linkedmdb.org/resource/geo=http://sws.geonames.org/

bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
exvo=http://lexvo.org/id/

wp=http://en.wikipedia.org/wiki/

Fig. 12.15 Example RDF dataset. Prefixes are used to identify the data sources

RDF data can be modeled as an RDF graph as follows. A RDF graph is a six-
tuple G = 〈V,LV , fV ,E,LE, fE〉, where

1. V = Vc ∪ Ve ∪ Vl is a collection of vertices that correspond to all subjects and
objects in RDF data, where Vc, Ve, and Vl are collections of class vertices, entity
vertices, and literal vertices, respectively.

2. LV is a collection of vertex labels.
3. A vertex labeling function fV : V → LV is an bijective function that assigns to

each vertex a label. The label of a vertex u ∈ Vl is its literal value, and the label
of a vertex u ∈ Vc ∪ Ve is its corresponding URI.

4. E = {−−−→
u1, u2} is a collection of directed edges that connect the corresponding

subjects and objects.
5. LE is a collection of edge labels.

http://data.linkedmdb.org/resource/ geo=http://sws.geonames.org/
http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
http://lexvo.org/id/
http://en.wikipedia.org/wiki/

598 12 Web Data Management

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
rdfs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

rdfs:label

mdb:film/1267

“The Last Tycoon”

rdfs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

rdfs:label

mdb:film/424

“Spartacus”

rdfs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Fig. 12.16 RDF graph corresponding to the dataset in Fig. 12.15

6. An edge labeling function fE : E → LE is an bijective function that assigns to
each edge a label. The label of an edge e ∈ E is its corresponding property.

An edge −−−→
u1, u2 is an attribute property edge if u2 ∈ Vl ; otherwise, it is a link edge.

Note that RDF graph structure is different than the property graphs we discussed
in Chap. 10. As you will recall, property graphs have attributes attached to vertices
and edges allowing sophisticated value-based predicates to be specified in queries.
In RDF graphs, the only attribute of a vertex or an edge is the vertex/edge label.
What would be vertex attributes in a property graph become edges whose labels
are the attribute names. Therefore, RDF graphs are simpler and more regular, but
generally larger in terms of the number of vertices and edges.

Figure 12.16 shows an example of an RDF graph. The vertices that are denoted
by boxes are entity or class vertices, and the others are literal vertices.

The W3C standard language for RDF is SPARQL, which can be defined as
follows [Hartig 2012]. Let U,B,L, and V denote the sets of all URIs, blank
nodes, literals, and variables, respectively. A SPARQL expression is expressed
recursively

1. A triple pattern (U∪B∪V)×(U∪V)×(U∪B∪L∪V) is a SPARQL expression,
2. (optionally) If P is a SPARQL expression, then P FILT ER R is also a

SPARQL expression where R is a built-in SPARQL filter condition,

12.6 Web Data Integration 599

3. (optionally) If P1 and P2 are SPARQL expressions, then P1 AND|OPT |OR P2
are also SPARQL expressions.

A set of triple patterns is called basic graph pattern (BGP) and SPARQL
expressions that only contain these are called BGP queries. These are the subject
of most of the research in SPARQL query evaluation.

Example 12.15 An example SPARQL query that finds the names of the movies
directed by “Stanley Kubrick” and have a related book that has a rating greater than
4.0 is specified as follows:

SELECT ?name
WHERE {
?m rdfs:label ?name. ?m movie:director ?d.
?d movie:director_name "Stanley Kubrick".
?m movie:relatedBook ?b. ?b rev:rating ?r.
FILTER(?r > 4.0)
}

In this query, the first three lines in the WHERE clause form a BGP consisting of
five triple patterns. All triple patterns in this example have variables, such as “?m”,
“?name” and “?r”, and “?r” has a filter: FILTER(?r > 4.0).

�
A SPARQL query can also be represented as a query graph. A query graph is a

seven-tuple Q = 〈V Q, L
Q
V ,EQ,L

Q
E , f

Q
V , f

Q
E , FL〉, where

1. V Q = V
Q
c ∪ V

Q
e ∪ V

Q
l ∪ V

Q
p is a collection of vertices that correspond to all

subjects and objects in a SPARQL query, where V
Q
p is a collection of variable

vertices (corresponding to variables in the query expression), and V
Q
c and V

Q
e

and V
Q
l are collections of class vertices, entity vertices, and literal vertices in the

query graph Q, respectively.
2. EQ is a collection of edges that correspond to properties in a SPARQL query.
3. L

Q
V is a collection of vertex labels in Q and L

Q
E is the edge labels in EQ.

4. f
Q
V : V Q → L

Q
V is a bijective vertex labeling function that assigns to each

vertex in Q a label from L
Q
V . The label of a vertex v ∈ V

Q
p is the variable; that

of a vertex v ∈ V
Q
l is its literal value; and that of a vertex v ∈ V

Q
c ∪ V

Q
e is its

corresponding URI.
5. f

Q
E : V Q → L

Q
E is a bijective vertex labeling function that assigns to each edge

in Q a label from L
Q
V . An edge label can be a property or an edge variable.

6. FL are constraint filters.

The query graph for Q1 is given in Fig. 12.17.
The semantics of SPARQL query evaluation can, therefore, be defined as

subgraph matching using graph homomorphism whereby all subgraphs of an RDF
graph G are found that are homomorphic to the SPARQL query graph Q.

600 12 Web Data Management

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

Fig. 12.17 SPARQL query graph corresponding to query Q1

?x

?y

A

?y

?z

?b

?a

?z

C

?a

?x

A

?a

?y

B

?f

?g

E

?f

?h

E

?f

?x

D

?x

?b

D

?x

?c

D

?a

?x

A

?a

?z

C

?a

?y

B

?y

?d

D

?y

?e

D

Fig. 12.18 Sample SPARQL query shapes. (a) QL. (b) QS . (c) QK

It is usual to talk about SPARQL query types based on the shape of the query
graph (we will refer to these types in the following discussion). Typically, three
query types are observed: (i) linear (Fig. 12.18a), where the variable in the object
field of one triple pattern appears in the subject of another triple pattern (e.g., ?y
in QL) (ii) star-shaped (Fig. 12.18b), where the variable in the object field of one
triple pattern appears in the subject of multiple other triple patterns (e.g., ?a in QS),
and (iii) snowflake-shaped (Fig. 12.18c), which is a combination of multiple star
queries.

A number of RDF data management systems have been developed. These can
be broadly classified into five groups: those that map the RDF data directly into a
relational system, those that use a relational schema with extensive indexing (and
a native storage system), those that denormalize the triples table into clustered
properties, those that use column-store organization, and those that exploit the native
graph pattern matching semantics of SPARQL.

12.6 Web Data Integration 601

Direct Relational Mapping

Direct relational mapping systems take advantage of the fact that RDF triples have a
natural tabular structure. Therefore, they create a single table with three columns
(Subject, Property, Object) that holds the triples (there usually are additional
auxiliary tables, but we ignore them here). The SPARQL query can then be
translated into SQL and executed on this table. It has been shown that SPARQL
1.0 can be full translated to SQL; whether the same is true for SPARQL 1.1 with
its added features is still open. This approach aims to exploit the well-developed
relational storage, query processing and optimization techniques in executing
SPARQL queries. Systems such as Sesame SQL92SAIL10 and Oracle follow this
approach.

Example 12.16 Assuming that the table given in Fig. 12.15 is a relational table, the
example SPARQL query in Example 12.15 can be translated to the following SQL
query (where s,p,o correspond to column names: Subject, Property, Object):

SELECT T1.object
FROM T AS T1, T AS T2, T AS T3,
T AS T4, T AS T5
WHERE T1.p="rdfs:label"
AND T2.p="movie:relatedBook"
AND T3.p="movie:director"
AND T4.p="rev:rating"
AND T5.p="movie:director_name"
AND T1.s=T2.s
AND T1.s=T3.s
AND T2.o=T4.s
AND T3.o=T5.s
AND T4.o > 4.0
AND T5.o="Stanley Kubrick"

�
As can be seen from this example, this approach results in a high number of self-

joins that are not easy to optimize. Furthermore, in large datasets, this single triples
table becomes very large, further complicating query processing.

10Sesame is built to interact with any storage system since it implements a Storage and Inference
Layer (SAIL) to interface with the particular storage system on which it sits. SQL92SAIL is the
specific instantiation to work on relational systems.

602 12 Web Data Management

Single Table Extensive Indexing

One alternative to the problems created by direct relational mapping is to develop
native storage systems that allow extensive indexing of the triple table. Hexastore
and RDF-3X are examples of this approach. The single table is maintained, but
extensively indexed. For example, RDF-3X creates indexes for all six possible
permutations of the subject, property, and object: (spo, sop,ops,ops,sop,pos). Each
of these indexes is sorted lexicographically by the first column, followed by the
second column, followed by the third column. These are then stored in the leaf
pages of a clustered B+-tree.

The advantage of this type of organization is that SPARQL queries can be
efficiently processed regardless of where the variables occur (subject, property,
object) since one of the indexes will be applicable. Furthermore, it allows for index-
based query processing that eliminates some of the self-joins—they are turned
into range queries over the particular index. Even when joins are required, fast
merge-join can be used since each index is sorted on the first column. The obvious
disadvantages are, of course, the space usage, and the overhead of updating the
multiple indexes if data is dynamic.

Property Tables

Property tables approach exploits the regularity exhibited in RDF datasets where
there are repeated occurrence of patterns of statements. Consequently, it stores
“related” properties in the same table. The first system that proposed this approach
is Jena; IBM’s DB2RDF also follows the same strategy. In both of these cases, the
resulting tables are mapped to a relational system and the queries are converted to
SQL for execution.

Jena defines two types of property tables. The first type, which can be called
clustered property table, group together the properties that tend to occur in the same
(or similar) subjects. It defines different table structures for single-valued properties
versus multivalued properties. For single-valued properties, the table contains the
subject column and a number of property columns (Fig. 12.19a). The value for
a given property may be null if there is no RDF triple that uses the subject and
that property. Each row of the table represents a number of RDF triples—the same
number as the nonnull property values. For these tables, the subject is the primary
key. For multivalued properties, the table structure includes the subject and the
multivalued property (Fig. 12.19b). Each row of this table represents a single RDF
triple; the key of the table is the compound key (subject, property). The mapping of
the single triple table to property tables is a database design problem that is done by
a database administrator.

Jena also defines a property class table that cluster the subjects with the same
type of property into one property table (Fig. 12.19c). In this case, all members of a
class (recall our discussion of class structure within the context of RDFS) together

12.6 Web Data Integration 603

Subject Property Property . . . Property

(a)

Subject Property

(b)

Subject Property Property . . . Property Type

(c)

Fig. 12.19 Clustered property table design

Subject Spill Prop1 val1 Prop2 val2 . . . Propk valk

(a)

l id value

(b)

Fig. 12.20 DB2RDF table design. (a) DPH. (b) DS

in one table. The “Type” column is the value of rdf:type for each property in that
row.

Example 12.17 The example dataset in Example 12.14 may be organized to create
one table that includes the properties of subjects that are films, one table for
properties of directors, one table for properties of actors, one table for properties
of books and so on. �

IBM DB2RDF also follows the same strategy, but with a more dynamic table
organization (Fig. 12.20). The table, called direct primary hash (DPH) is organized
by each subject, but instead of manually identifying “similar” properties, the table
accommodates k property columns, each of which can be assigned a different
property in different rows. Each property column is, in fact, two columns: one
that holds the property label, and the other that holds the value. If the number
of properties for a given subject is greater than k, then the extra properties
are spilled onto a second row and this is marked on the “spill” column. For
multivalued properties, a direct secondary hash (DSH) table is maintained—the
original property value stores a unique identifier l_id, which appears in the DS
table along with the values.

The advantage of property table approach is that joins in star queries (i.e., subject-
subject joins) become single table scans. Therefore, the translated query has fewer
joins. The disadvantages are that in either of the two forms discussed above, there
could be a significant number of null values in the tables (see the number of
NULLs in Fig. 12.19), and dealing with multivalued properties requires special care.
Furthermore, although star queries can be handled efficiently, this approach may
not help much with other query types. Finally, when manual assignment is used,
clustering “similar” properties is nontrivial and bad design decisions exacerbate the
null value problem.

604 12 Web Data Management

Binary Tables

Binary tables approach follows column-oriented database schema organization and
defines a two-column table for each property containing the subject and object. This
results in a set of tables each of which is ordered by the subject. This is a typical
column-oriented database organization and benefits from the usual advantages of
such systems such as reduced I/O due to reading only the needed properties and
reduced tuple length, compression due to redundancy in the column values, etc. In
addition, it avoids the null values that is experienced in property tables as well as
the need for manual or automatic clustering algorithms for “similar” properties, and
naturally supports multivalued properties—each becomes a separate row as in the
case of Jena’s DS table. Furthermore, since tables are ordered on subjects, subject-
subject joins can be implemented using efficient merge-joins. The shortcomings are
that the queries require more join operations some of which may be subject-object
joins that are not helped by the merge-join operation. Furthermore, insertions into
the tables have higher overhead since multiple tables need to be updated. It has
been argued that the insertion problem can be mitigated by batch insertions, but in
dynamic RDF repositories the difficulty of insertions is likely to remain a significant
problem. The proliferation of the number of tables may have a negative impact on
the scalability (with respect to the number of properties) of binary tables approach.

Example 12.18 For example, the binary table representation of the dataset given in
Example 12.14 would create one table for each unique property—there are 18 of
them. Two of these tables are shown in Fig. 12.21. �

Graph-Based Processing

Graph-based RDF processing approaches fundamentally implement the semantics
of RDF queries as defined at the beginning of this section. In other words, they
maintain the graph structure of the RDF data (using some representation such as
adjacency lists), convert the SPARQL query to a query graph, and do subgraph

Subject Object
film/2014 “The Shining”
film/2685 “A Clockwork Orange”
film/424 “Spartacus”
film/1267 “The Last Tycoon”
film/3418 “The Passenger”
iso639-3/eng “English”

(a)

Subject Object
film/2014 actor/29704
film/2014 actor/30013
film/1267 actor/29704
film/3418 actor/29704

(b)

Fig. 12.21 Binary table organization of properties (a) “rdfs:label” and (b) “movie:actor” from the
example dataset (prefixes are removed)

12.6 Web Data Integration 605

matching using homomorphism to evaluate the query against the RDF graph.
Systems such as gStore, and chameleon-db follow this approach.

The advantage of this approach is that it maintains the original representation of
the RDF data and enforces the intended semantics of SPARQL. The disadvantage is
the cost of subgraph matching—graph homomorphism is NP-complete. This raises
issues with respect to the scalability of this approach to large RDF graphs; typical
database techniques including indexing can be used to address this issue. In the
remainder, we present the approach within the context of the gStore system to
highlight the issues.

gStore uses adjacency list representation of graphs. It encodes each entity
and class vertex into a fixed length bit string that captures the “neighborhood”
information for each vertex and exploits this during graph matching. This results
is the generation of a data signature graph G∗, in which each vertex corresponds to
a class or an entity vertex in the RDF graph G. Specifically, G∗ is induced by all
entity and class vertices in the original RDF graph G together with the edges whose
endpoints are either entity or class vertices. Figure 12.22a shows the data signature
graph G∗ that corresponds to RDF graph G in Fig. 12.16. An incoming SPARQL
query is also represented as a query graph Q that is similarly encoded into a query

0010 1000

0100 0001

00001

1000 0001
00010

0000 0100

10000

0000 1000

10000

0000 0010

10000

0000 1001

00100

0001 0001
01000

0100 1000

01000

1001 1000

01000

0001 0100

01000

(a)

0100 0000 1000 0000
00010

0000 0100
10000

(b)

Fig. 12.22 Signature graphs. (a) Data signature graph G∗. (b) Query signature graph Q∗

606 12 Web Data Management

signature graph Q∗. The encoding of query graph depicted in Fig. 12.17 into a query
signature graph Q∗

2 is shown in Fig. 12.22b.
The problem now turns into finding matches of Q∗ over G∗. Although both

the RDF graph and the query graph are smaller as a result of encoding, the NP-
completeness of the problem remains. Therefore, gStore uses a filter-and-evaluate
strategy to reduce the search space over which matching is applied. The objective
is to first use a false-positive pruning strategy to find a set of candidate subgraphs
(denoted as CL), and then validate these using the adjacency list to find answers
(denoted as RS). Accordingly, two issues need to be addressed. First, the encoding
technique should guarantee that RS ⊆ CL—the encoding described above provably
achieves this. Second, an efficient subgraph matching algorithm is required to find
matches of Q∗ over G∗. For this, gStore uses an index structure called VS∗-tree that
is a summary graph of G∗. VS∗-tree is used to efficiently process queries using a
pruning strategy to reduce the search space for finding matches of Q∗ over G∗.

Distributed and Federated SPARQL Execution

As RDF collections grow, scale-out solutions to scaling have been developed
involving parallel and distributed processing. Many of these solutions divide an
RDF graph G into several fragments and place each at a different site in a
parallel/distributed system. Each site hosts a centralized RDF store of some kind.
At runtime, a SPARQL query Q is decomposed into several subqueries such
that each subquery can be answered locally at one site, and the results are then
aggregated. Each of these papers proposes its own data partitioning strategy, and
different partitioning strategies result in different query processing methods. Some
of the approaches use MapReduce-based solutions where RDF triples are stored
in HDFS and each triple pattern is evaluated by scanning the HDFS files followed
by a MapReduce join implementation. Other approaches follow more or less the
distributed/parallel query processing methodologies described in detail in various
chapters of this book whereby the query is partitioned into subqueries and evaluated
across the sites.

An alternative that has been proposed is to use partial query evaluation for
executing distributed SPARQL queries. Partial function evaluation is a well-known
programming language strategy whose basic idea is the following: given a function
f (s, d), where s is the known input and d is the yet unavailable input, the part of f ’s
computation that depends only on s generates a partial answer. In this approach, data
is partitioned, but queries are not—each site receives the full SPARQL query Q and
executes it on the local RDF graph fragment providing data parallel computation.
In this particular setting, the partial evaluation strategy is applied as follows: each
site Si treats fragment Fi as the known input in the partial evaluation stage; the
unavailable input is the rest of the graph (G = G \ Fi). There are two important
issues to be addressed in this framework. The first is to compute the partial
evaluation results at each site Si given a query graph Q—in other words, addressing
the graph homomorphism of Q over Fi ; this is called the local partial match since

12.6 Web Data Integration 607

it finds the matches internal to fragment Fi . Since ensuring edge disjointness is
not possible in vertex-disjoint partitioning, there will be crossing edges between
graph fragments. The second task is the assembly of these local partial matches to
compute crossing matches. This assembly task can be executed either on a control
site or similar to distributed join.

The above approaches take a centralized RDF dataset and partition it for dis-
tributed/parallel execution. In many RDF settings, concerns arise similar to what we
discussed in database integration requiring a federated solution. In the RDF world,
some of the sites that host RDF data also have the capability to process SPARQL
queries; these are called SPARQL endpoints. A typical example is LOD, where
different RDF repositories are interconnected, providing a virtually integrated
distributed database. A common technique in federated RDF environments is to
precompute metadata for each individual SPARQL endpoint. The metadata can
specify the capabilities of the end point or a description of the triple patterns
(i.e., property) that can be answered at that endpoint, or other information that the
particular algorithm uses. Based on the metadata, the original SPARQL query is
decomposed into several subqueries, where each subquery is sent to its relevant
SPARQL endpoints. The results of subqueries are then joined together to answer
the original SPARQL query.

An alternative to precomputing metadata is to make use of SPARQL ASK queries
to gather information about each endpoint and to construct the metadata on the
fly. Based on the results of these queries, a SPARQL query is decomposed into
subqueries and assigned to endpoints.

12.6.2.3 Navigating and Querying the LOD

LOD consists of a set of web documents. The starting point, therefore, is a
web document with embedded RDF triples that encode web resources. The RDF
triples contain data links to other documents that allow web documents to be
interconnected to get the graph structure.

The semantics of SPARQL queries over the LOD becomes tricky. One possibility
is to adopt full web semantics that specifies the scope of evaluating a SPARQL
query expression to be all linked data. There is no known (terminating) query
execution algorithm that can guarantee result completeness under this semantics.
The alternative is a family of reachability-based semantics that define the scope of
evaluating a SPARQL query in terms of the documents that can be reached: given a
set of seed URIs and a reachability condition, the scope is all data along the paths of
the data links from the seeds and that satisfy the reachability condition. The family is
defined by different reachability conditions. In this case, there are computationally
feasible algorithms.

There are three approaches to SPARQL query execution over LOD: traversal-
based, index-based, and hybrid. Traversal approaches basically implement a
reachability-based semantics: starting from seed URIs, they recursively discover
relevant URIs by traversing specific data links at query execution runtime. For these

608 12 Web Data Management

algorithms, the selection of the seed URIs is critical for performance. The advantage
of traversal approaches is their simplicity (to implement) since they do not need to
maintain any data structures (such as indexes). The disadvantages are the latency
of query execution since these algorithms “browse” web documents, and repeated
data retrieval from each document introduces significant latency. They also have
limited possibility for parallelization—they can be parallelized to the same extent
that crawling algorithms can.

The index-based approaches use an index to determine relevant URIs, thereby
reducing the number of linked documents that need to be accessed. A reasonable
index key is triple patterns in which case the “relevant” URIs for a given query
are determined by accessing the index, and the query is evaluated over the data
retrieved by accessing those URIs. In these approaches, data retrieval can be fully
parallelized, which reduces the negative impact of data retrieval on query execution
time. The disadvantages of the approach are the dependence on the index—both in
terms of the latency that index construction introduces and in terms of the restriction
the index imposes on what can be selected—and the freshness issues that result from
the dynamicity of the web and the difficulty of keeping the index up-to-date.

Hybrid approaches perform a traversal-based execution using prioritized listing
of URIs for look-up. The initial seeds come from a prepopulated index; new
discovered URIs that are not in the index are ranked according to number of
referring documents.

12.6.3 Data Quality Issues in Web Data Integration

In Chap. 7 (specifically in Sect. 7.1.5) we discussed data quality and data cleaning
issues in the case of database integration (mainly data warehousing) systems. Data
quality issues in web data are only more severe due to the sheer number of web
data sources, the uncontrolled data entry process of web information sources, and
the increased data diversity. Data quality encompasses both data consistency and
veracity (authenticity and conformity of data with reality). In a data warehouse,
data consistency is obtained through data cleaning, which deals with detecting and
removing errors and inconsistencies from data. Data cleaning in the web context
(and also in data lakes) is made difficult by the lack of schema information and the
limited number of integrity constraints that can be defined without a schema.

Checking for data veracity remains a big challenge. However, if many different
data sources overlap, as it is often the case with data coming from the web for
instance, there will be a high-level of redundancy. It may be possible to use efficient
data fusion techniques (to be discussed shortly) to detect the correct values for the
same data items, and thus discover the truth.

In this section, we highlight some of the main data quality and data cleaning
issues in web data and discuss current solutions for addressing them.

12.6 Web Data Integration 609

12.6.3.1 Cleaning Structured Web Data

Structured data represents an important category of data on the web, and they
suffer from numerous data quality issues. In the following, we first summarize the
techniques proposed in cleaning structured data in general. Then, we point out the
unique challenges in cleaning structured data on the web.

Figure 12.23 shows a typical workflow for cleaning structured data, consisting
of an optional discovery and profiling step, an error detection step, and an error
repair step. To clean a dirty dataset, we often need to model various aspects of
this data (metadata), e.g., schema, patterns, probability distributions, and other
metadata. One way to obtain such metadata is by consulting domain experts, which
is usually a costly and a time-consuming process, hence a discovery and profiling
step is often used to discover these metadata automatically. Given a dirty dataset
and the associated metadata, the error detection step finds part of the data that
do not conform to the metadata, and declares this subset to contain errors. The
errors surfaced by the error detection step can be in various forms, such as outliers,
violations of integrity constraints, and duplicates. Finally, the error repair step
produces data updates that are applied to the dirty dataset to remove detected errors.
Since there are many uncertainties in the data cleaning process, external sources
such as knowledge bases and human experts are consulted whenever possible to
ensure the accuracy of the cleaning workflow.

The above process works well for structured tables that have a rich set of
metadata, e.g., large schema with enough constraints to model columns and rows
interactions. Also, the cleaning and error detection process works better when there
are enough examples (tuples) for automatic algorithms to compare various instances
to detect possible errors, and to leverage the redundancy in the data to correct these

Knowledge-
bases

External Sources

PDFs, Rules,
Patterns, etc.

Discovery Error
Detection

Errors
Error
Repair

Data

Fig. 12.23 A typical workflow for cleaning structured data

610 12 Web Data Management

Sevilla - Jerez de la
Frontera-Cádiz

1861

agaláM-abodróC 1865.
Bobadilla - Granada 1874

zemléB-abodróC 1874
Osuna La Roda

(a)

Polaco 15.04.1983 194 84
Vini 29.09.1982 N/A N/A

Caiao 30/11/1982 N/A N/A
Jairo 17.02.1990 N/A N/A

Michael 20.04.1983 N/A N/A
Ricardinho 19.11.1975 192 94

(b)

2002[12] 10.300 oz 899,500 oz
2005[13] 25.272 2.174.620 oz
2006[13] 49.354 oz 3.005.611 oz
2007[13] 48.807 oz 3.165408 oz
2008[9] 47.755 oz 3.157.837 oz
20092 0.9 million oz 818.050 oz

(c)

WARRIORS@Susses Thunder 13-28 —
WARRIORS@Hampshire
Thrashers

42-13 —

Essex Spartans@WARRIORS P-P Postponed
WARRIORS@Cambridgeshire
Cats

36-44 —

East Kent Maver-
icks@WARRIORS

12-18 —

WARRIORS@East Kent Mav-
ericks

15-17 —

(d)

Fig. 12.24 Data quality issues on structured web data (erroneous data is marked in red cells).
Adapted from [Huang and He 2018]. (a) Extra dot. (b) Mixed dates. (c) Inconsistent weights. (d)
Score placeholder

errors. However, in web tables, both of these premises are not satisfied, as most of
the tables are short (few tuples) and skinny (limited number of attributes). o make
matters worse, the number of web tables is far greater than the number of tables in a
data warehouse. This means that manual cleaning, though relatively for a single web
table, is not feasible for all structured web tables. Figure 12.24 shows some sample
errors found on Wikipedia tables, and there is an estimated 300K such errors.

12.6.3.2 Web Data Fusion

A common problem that arises often in web data integration is data fusion, namely
deciding what is the correct value for an item that has different representations
from multiple web sources. The problem is that different web sources can provide
conflicting representations, and thus making data fusion hard. There are two types
of data conflicts: uncertainty and contradiction. Uncertainty is a conflict between a
nonnull value and one or more null values that are used to describe the same property
of a real world entity. Uncertainty is caused by missing information, usually
represented by null values in a source. Contradiction is a conflict between two or
more different nonnull values that represent different values of the same property of
a real world entity. Contradiction is caused by different sources providing different
values for the same attribute.

Automatic cleaning of web tables is thus particularly challenging. While cleaning
techniques developed in the context of data warehouse can be applied to clean some

12.6 Web Data Integration 611

conflict handling
strategies

conflict
ignorance

conflict
avoidance

instance
based

metadata
based

conflict
resolution

instance
based

deciding mediating

metadata
based

deciding mediating

Fig. 12.25 Classification of strategies for data fusion. From [Bleiholder and Naumann 2009]

errors, cleaning web tables deserve more dedicated techniques. Auto-Detect is a
recent proposal that aims at detecting such errors on web tables. Auto-Detect is a
data-driven statistics-based techniques that leverage value co-occurrence statistics
from large corpora for error detection. The main assumption is that if a certain value
combination is extremely rare (quantified using point-wise mutual information),
then it suggests a potential error. While Auto-Detect is able to detect many errors, it
does not suggest data fixes. We have yet to see proposals that automatically repair
errors (or even suggest fixes) in web table.

Figure 12.25 shows the classification of different data fusing strategies. Conflict
ignorance strategies ignore the conflicts and simply pass the conflicts to the users or
applications. Conflict avoidance strategies acknowledge the existence of conflicting
representations, and apply a simple rule to take a unique decision based on either
the data instance or the metadata. An example of instance based conflict avoidance
strategy is to prefer nonnull values over null values. An example of metadata
based conflict avoidance strategy is to prefer values from one source over values
from another. Conflict resolution strategies resolve the conflicts, by picking a value
from the already present values (deciding) or by choosing a value that does not
necessarily exist among present values (mediating). An example of instance based,
deciding conflict resolution strategy is to take the most frequent value. An example
of instance based, mediating conflict resolution strategy is to take the average of all
present values.

12.6.3.3 Web Source Quality

These basic conflict resolution strategies described above mostly rely on partici-
pating values to resolve conflicts, and they can fall short in the following three
aspects. First, web sources have different qualities; data values provided by more
accurate web sources are usually more accurate. However, more accurate web

612 12 Web Data Management

sources can also provide incorrect values, therefore, an advanced resolution strategy
is often needed to take source quality into consideration when predicting the correct
value. Second, web sources can copy from each other, and ignoring these kinds
of dependencies between web sources can cause wrong resolution decisions. For
example, the majority vote strategy to resolve conflicts would be affected if some
data items in a source are copied. Third, the correct value for a data item may
evolve over time as well (e.g., a person’s affiliation), hence, it is therefore crucial
to distinguish between incorrect value and outdated value when evaluating source
accuracies and making resolution decisions.

The building block of advanced data fusion strategies is to evaluate the trustwor-
thiness or quality of a source. In this section, we discuss how the accuracy of a data
source is modeled, and we mention how that model is extended to handle source
dependencies and source freshness.

Source Accuracy

The accuracy of a source can be measured as the fraction of true values provided by
a source. The accuracy of a source S is denoted by A(S), which can be considered
as the probability that a value provided by S is the true value. Let V (S) denote the
values provided by S. For each v ∈ V (S), let Pr(v) denote the probability that v is
the true value. Then A(S) is computed as follows:

A(S) = Avgv∈V (S)P r(v)

Consider a data item D. Let Dom(D) be the domain of D, including one true
value and n false values. Let SD be the set of sources that provide a value for D,
and let SD(v) ⊆ SD be the set of sources that provide the value v for D. Let �(D)

denote the observation of which value each S ∈ SD provides for D. The probability
Pr(v) can be computed as follows:

Pr(v) = Pr(v is true value|�(D)) ∝ Pr(�(D)|v is true value)

Assume that sources are independent and that the n false values are equally likely
to happen, Pr(�(D)|v is true value) can be computed as follows:

Pr(�(D)|v is true value) =
∏

S∈SD(v)

A(S)
∏

S∈SD\SD(v)

1 − A(S)

n

which can be rewritten as

Pr(�(D)|v is true value) =
∏

S∈SD(v)

nA(S)

1 − A(S)

∏

S∈SD

1 − A(S)

n

12.6 Web Data Integration 613

Since
∏

S∈SD

1−A(S)
n

is the same for all values, we have

Pr(�(D)|v is true value) ∝
∏

S∈SD(v)

nA(S)

1 − A(S)

Accordingly, the vote count of a data source S is defined as:

C(S) = ln
nA(S)

1 − A(S)

The vote count of a value v is defined as:

C(v) =
∑

S inSD(v)

C(S)

Intuitively, a source with a higher vote count is more accurate and a value with
a higher vote count is more likely to be true. Combining the above analysis, the
probability of each value v can be computed as follows:

Pr(v) = exp(C(v))∑
v0 inDom(v) exp(C(v0))

Obviously, for a data item D, the value v ∈ Dom(D) with the highest probability
Pr(v) would be selected as the true value. As we can see, the computation of the
source accuracy A(S) depends on the probability Pr(v), and the computation of the
probability Pr(v) depends on the source accuracy A(S). An algorithm is possible
that starts with the same accuracy for every source and the same probability for
every value, and iteratively computes probabilities for all sources and probabilities
for all values until convergence. The convergence criteria is set to be when there is
no change in source accuracies and no oscillation in decided true values.

Source Dependency

The above computation for source accuracy assumes that sources are independent.
In reality, sources copy from each other, which creates dependencies. There are
two intuitions for copy detection between sources. First, for a particular data item,
there is only one true value, but there are usually multiple false values. Two sources
sharing the same true value does not necessarily imply dependency; however, two
sources sharing the same false value is typically a rare event, and thus would more
likely imply source dependency. Second, a random subset of values provided by a
data source would typically have similar accuracies as the full set of values provided
by the data source. However, for a copier data source, the subset of values it copies
may have different accuracies than the rest of the values it provides independently.

614 12 Web Data Management

Thus, between two dependent sources where one copies another, the source whose
own data values’ accuracies differ significantly from the values shared with the other
source is more likely to be the copier. Based on these intuitions, a Bayesian model
can be developed to compute the probability of copying between two sources S1
and S2 given the observations � on all data items; this probability is then used to
adjust the computation of the vote count for a value C(v) to account for source
dependencies.

Source Freshness

We have so far assumed that data fusion is done on a static snapshot of the data.
However, in reality, data evolves over time and the true value for an item might
change as well. For example, the scheduled departure time for a flight might change
in different months; a person’s affiliation might change over time; and the CEO
of a company could also change. To capture such changes, data sources will need
to update their data. In this dynamic setting, data errors occur for these several
reasons: (1) the sources may provide wrong values, similar to the static setting;
(2) the sources may fail to update their data at all; and (3) some sources may not
update their data in time. Data fusion, in this context, aims at finding all correct
values and their valid periods in the history, when the true values evolve over time.
While the source quality can be capture by accuracy in the static case, the metrics
for evaluating source quality are more complicated in the dynamic setting—a high-
quality source should provide a new value for a data item if and only if, and right
after the value becomes the true value. Three metrics can be used to capture this
intuition: the coverage of a source measures the transitions of different data items
that it captures; the exactness measures the percentage of transitions a source mis-
captures (by providing a wrong value); and the freshness measures how quickly
a value change is captured by a source. Again, it is possible to rely on Bayesian
analysis to decide both the time and the value of each transition for a data item.

Machine learning and probabilistic models have also been used in data fusion and
modeling data source quality. In particular, SLiMFast is a framework that expresses
data fusion as a statistical learning problem over discriminative probabilistic mod-
els. In contrast to previous learning-based fusion approaches, SLiMFast provides
quality guarantees for the fused results, and it can also incorporate available domain
knowledge in the fusion process. Figure 12.26 provides the system overview of
SLiMFast. The input to SLiMFast includes (1) a collection of source observations,
namely the possibly conflicting values provided for different objects by different
sources; (2) an optional set of labeled ground truth, namely the true values for a
subset of objects; and (3) some domain knowledge about sources that users deem
to be informative of the accuracies of data sources. SLiMFast takes all of these
information, and compiles them into a probabilistic graphical model for holistic
learning and inference. Depending on the how much ground truth data is available,
SLiMFast will decide which algorithm (expectation-maximization or empirical loss
minimization) to use for learning the parameters of the graphical models. The

12.7 Bibliographic Notes 615

Source Observations
Source Object ID Value

A1 GIGYF2, Parkinson False
A1 GBA, Parkinson True
A2 GIGYF2, Parkinson True
A3 GIGYF2, Parkinson False
A3 GBA, Parkinson True

Domain Features
Source Feature

A1 PubYear=2009
A1 Citations=34
A2 PubYear=2008
A2 Citations=128
A3 Study=GWAS

Ground Truth
Object ID Value

GBA, Parkinson True

User-specified Input

1. Compilation
Convert input to

probabilistic model

2. Optimizer
Analyze ground truth,

observations, and
select between EM &

ERM for learning

Learning

Inference

3. Data Fusion

SLIMFast Framework

Truth Discovery
ObjectID Value

GIGYF2, Parkinson False
GBA, Parkinson True

Source Accuracy
Source Feature

A1 0.94
A2 0.71
A3 0.85

Source Accuracy Analysis

Regularization Penalty
Fe

at
ur
e
W

ei
gh

t

Output

Fig. 12.26 Overview of SLiMFast. From [Rekatsinas et al. 2017]

learned model is then used for inferring both the value of objects and the source
accuracies, as shown in the output.

12.7 Bibliographic Notes

There are a number of good sources on web topics, each with a slightly different
focus. Abiteboul et al. [2011] focus on the use of XML and RDF for web data
modeling and also contain discussions of search, and big data technologies such
as MapReduce. A web data warehousing perspective is given in [Bhowmick et al.
2004]. Bonato [2008] primarily focuses on the modeling of the web as a graph
and how this graph can be exploited. Early work on the web query languages and
approaches are discussed in [Abiteboul et al. 1999].

A very good overview of web search issues is [Arasu et al. 2001], which we also
follow in Sect. 12.2. Additionally, Lawrence and Giles [1998] provides an earlier
discussion on the same topic focusing on the open web. Florescu et al. [1998] survey
web search issues from a database perspective. Deep (hidden) web is the topic of
[Raghavan and Garcia-Molina 2001]. Lage et al. [2002] and Hedley et al. [2004b]
also discuss search over the deep web and the analysis of the results. Metasearch
for accessing the deep web is discussed in [Ipeirotis and Gravano 2002, Callan
and Connell 2001, Callan et al. 1999, Hedley et al. 2004a]. The metasearch-related
problem of database selection is discussed by Ipeirotis and Gravano [2002] and
Gravano et al. [1999] (GlOSS algorithm).

Statistics about the open web are taken from [Bharat and Broder 1998, Lawrence
and Giles 1998, 1999, Gulli and Signorini 2005] and those related to the deep web
are due to [Hirate et al. 2006] and [Bergman 2001].

616 12 Web Data Management

The graph structure of the web and using graphs to model and query the web is
the topic of many publications: [Kumar et al. 2000, Raghavan and Garcia-Molina
2003, Kleinberg et al. 1999] discuss web graph modeling, [Kleinberg et al. 1999,
Brin and Page 1998, Kleinberg 1999] focus on graphs for search, and [Chakrabarti
et al. 1998] for categorization and classification of web content. The discussion on
the characteristics of the web graph and its bow-tie structure are due to Bonato
[2008], Broder et al. [2000] and Kumar et al. [2000]. We did not discuss the
important issues related to the management of the very large, dynamic, and volatile
web graph. These are beyond the scope of this chapter, but two lines of research
can be identified. The first one compresses the web graph for more efficient storage
and manipulation [Adler and Mitzenmacher 2001], while the second one suggests
a special representation for the web graph called S-nodes [Raghavan and Garcia-
Molina 2003].

Issues on web crawling are the subject of [Cho et al. 1998, Najork and Wiener
2001] and [Page et al. 1998], the latter being the classical paper on PageRank whose
revised form as discussed in this chapter is due to Langville and Meyer [2006].
Alternative crawling approaches are the subjects of [Cho and Garcia-Molina 2000]
(change frequency-based), [Cho and Ntoulas 2002] (sampling-based) and [Edwards
et al. 2001] (incremental). Classification techniques for evaluating relevance are
discussed by [Mitchell 1997, Chakrabarti et al. 2002] (naïve Bayes), Passerini et al.
[2001], Altingövde and Ulusoy [2004] (extensions of Beyesian), and by McCallum
et al. [1999], Kaelbling et al. [1996] (reinforcement learning).

Web indexing is an important issue that we discussed in Sect. 12.2.2. Various text
indexing methods are discussed in [Manber and Myers 1990] (suffix arrays), [Hersh
2001] [Lim et al. 2003] (inverted indexes), and [Faloutsos and Christodoulakis
1984] (signature files). Salton [1989] is probably the classical source for text
processing and analysis. The challenges of building inverted indexes for the web
and solutions are discussed by Arasu et al. [2001], Melnik et al. [2001], and Ribeiro-
Neto and Barbosa [1998]. Related to this, ranking has been the topic of extensive
research. In addition to the well-known PageRank, the HITS algorithm is due to
Kleinberg [1999].

In our discussion of semistructured data approach to web querying we high-
lighted OEM data model and the Lorel language to expose the concepts. These
are discussed in [Papakonstantinou et al. 1995] and [Abiteboul et al. 1997]. The
data guides to simplify OEM are discussed in [Goldman and Widom 1997]. UnQL
[Buneman et al. 1996] has similar concepts to Lorel. Our discussion of web query
languages in Sect. 12.3.2 separated the languages into first and second generation;
this is due to Florescu et al. [1998]. First generation languages include WebSQL
[Mendelzon et al. 1997], W3QL [Konopnicki and Shmueli 1995], and WebLog
[Lakshmanan et al. 1996]. The second generation languages include WebOQL
[Arocena and Mendelzon 1998], and StruQL [Fernandez et al. 1997]. In the
Query-Answering approach we referred to a number of systems: Mulder [Kwok
et al. 2001], WebQA [Lam and Özsu 2002], Start [Katz and Lin 2002], and
Tritus [Agichtein et al. 2004].

12.7 Bibliographic Notes 617

The components of the semantic web is presented by Antoniou and Plexousakis
[2018]. The Linked Open Data (LOD) vision and its requirements are discussed by
Bizer et al. [2018] and Berners-Lee [2006]. The topical domain separation of LOD
is outlined in [Schmachtenberg et al. 2014].

Our discussion of RDF is primarily based on [Özsu 2016]. Five main approaches
are described to managing RDF data: (1) direct relational mapping—Angles
and Gutierrez [2008], Sequeda et al. [2014] discuss mapping SPARQL to SQL,
Broekstra et al. [2002], and Chong et al. [2005] discuss Sesame SQL92SAIL and
Oracle, respectively; (2) using a single table with extensive indexing (Hexastore
[Weiss et al. 2008] and RDF-3X [Neumann and Weikum 2008, 2009]); (3) property
tables (Jena [Wilkinson 2006]; IBM’s DB2RDF [Bornea et al. 2013]); (4) binary
tables (SW-Store [Abadi et al. 2009] based on the proposal by Abadi et al. [2007])
whose problems in terms of table proliferation is discussed in [Sidirourgos et al.
2008]; (5) graph-based ([Bönström et al. 2003], gStore [Zou et al. 2011, 2014],
and chameleon-db [Aluç 2015]). Graph-based techniques are discussed in detail
by Zou and Özsu [2017]. The distributed and cloud-based SPARQL execution is
addressed in [Kaoudi and Manolescu 2015]. Three approaches are identified for
SPARQL query execution over LOD [Hartig 2013a]: traversal-based [Hartig 2013b,
Ladwig and Tran 2011], index-based [Umbrich et al. 2011], and hybrid [Ladwig and
Tran 2010].

Cleaning structured data has been extensively studied in warehouse integration
settings [Rahm and Do 2000] and [Ilyas and Chu 2015]. Expansion to a broader
context, including the web, is covered in Ilyas and Chu [2019]. In our discussion
of data fusion (Sect. 12.6.3.2), the separation of data conflicts into uncertainty
and contradiction is due to Dong and Naumann [2009]. In the same section, the
discussion of Auto-Detect is due to [Huang and He 2018] and the classification
discussion (as well as Fig. 12.25) is from [Bleiholder and Naumann 2009]. The
discussion of data source modeling accuracy in Sect. 12.6.3.3, its extension to
handle source dependencies and source freshness are due to Dong et al. [2009b,a].
For a more comprehensive treatment on the subject of advanced data fusion, we
refer readers to the tutorial [Dong and Naumann 2009] and the book [Dong and
Srivastava 2015]. The SlimFAST system (see Fig. 12.26) is presented in [Rekatsinas
et al. 2017] and [Koller and Friedman 2009].

One of the first systems to deal with data cleaning issues in data lakes is CLAMS
[Farid et al. 2016], which allows discovering and enforcing integrity constraints
over a data lake’s data. CLAMS uses a graph data model, based on RDF, and a
new integrity constraint formalism to capture both relational constraints and more
expressive quality rules based on graph patterns as denial constraints [Chu et al.
2013]. CLAMS also uses Spark and parallel algorithms to enforce the constraints
and detect data inconsistencies.

618 12 Web Data Management

Exercises

Problem 12.1 How does web search differ from web querying?

Problem 12.2 (**) Consider the generic search engine architecture in Fig. 12.2.
Propose an architecture for a web site with a shared-nothing cluster that implements
all the components in this figure as well as web servers in an environment that
will support very large sets of web documents and very large indexes, and very
high numbers of web users. Define how web pages in the page directory and
indexes should be partitioned and replicated. Discuss the main advantages of your
architecture with respect to scalability, fault-tolerance, and performance.

Problem 12.3 (**) Consider your solution in Problem 12.2. Now consider a
keyword search query from a web client to the web search engine. Propose a parallel
execution strategy for the query that ranks the result web pages, with a summary of
each web page.

Problem 12.4 (*) To increase locality of access and performance in different geo-
graphical regions, propose an extension of the web site architecture in Problem 12.3
with multiple sites, with web pages being replicated at all sites. Define how web
pages are replicated. Define also how a user query is routed to a web site. Discuss
the advantages of your architecture with respect to scalability, availability and
performance.

Problem 12.5 (*) Consider your solution in Problem 12.4. Now consider a key-
word search query from a web client to the web search engine. Propose a parallel
execution strategy for the query that ranks the result web pages, with a summary of
each web page.

Problem 12.6 (**) Consider two web data sources that we model as relations
EMP1(Name, City, Phone) and EMP2(Firstname, Lastname, City). After schema
integration, assume the view EMP(Firstname, Name, City, Phone) defined over
EMP1 and EMP2, where each attribute in EMP comes from an attribute of EMP1
or EMP2, with EMP2. Lastname being renamed as Name. Discuss the limitations
of such integration. Now consider that the two web data sources are XML. Give
a corresponding definition of the XML schemas of EMP1 and EMP2. Propose an
XML schema that integrates EMP1 and EMP2, and avoids the problems identified
with EMP.

Appendix A
Overview of Relational DBMS

See https://cs.uwaterloo.ca/ddbs.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

619

https://cs.uwaterloo.ca/ddbs
https://doi.org/10.1007/978-3-030-26253-2

Appendix B
Centralized Query Processing

See https://cs.uwaterloo.ca/ddbs.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

621

https://cs.uwaterloo.ca/ddbs
https://doi.org/10.1007/978-3-030-26253-2

Appendix C
Transaction Processing Fundamentals

See https://cs.uwaterloo.ca/ddbs.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

623

https://cs.uwaterloo.ca/ddbs
https://doi.org/10.1007/978-3-030-26253-2

Appendix D
Review of Computer Networks

See https://cs.uwaterloo.ca/ddbs.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

625

https://cs.uwaterloo.ca/ddbs
https://doi.org/10.1007/978-3-030-26253-2

References

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., and Zdonik, S. (2003). Aurora: a new model and architecture for data stream
management. VLDB J., 12(2):120–139.

Abadi, D. J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lindner,
W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik, S. B. (2005). The
design of the Borealis stream processing engine. In Proc. 2nd Biennial Conf. on Innovative
Data Systems Research, pages 277–289.

Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2007). Scalable semantic web data
management using vertical partitioning. In Proc. 33rd Int. Conf. on Very Large Data Bases,
pages 411–422.

Abadi, D. J., Marcus, A., Madden, S., and Hollenbach, K. (2009). SW-Store: a vertically
partitioned DBMS for semantic web data management. VLDB J., 18(2):385–406.

Aberer, K. (2001). P-grid: A self-organizing access structure for P2P information systems. In
Proc. Int. Conf. on Cooperative Inf. Syst., pages 179–194.

Aberer, K. (2003). Guest editor’s introduction. ACM SIGMOD Rec.,
32(3):21–22.

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., and
Schmidt, R. (2003a). P-grid: a self-organizing structured P2P system. ACM SIGMOD Rec., 32
(3):29–33.

Aberer, K., Cudré-Mauroux, P., and Hauswirth, M. (2003b). Start making sense: The chatty web
approach for global semantic agreements. J. Web Semantics, 1(1):89–114.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. (1997). The Lorel query language
for semistructured data. Int. J. Digit. Libr., 1(1):68–88.

Abiteboul, S., Buneman, P., and Suciu, D. (1999). Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann.

Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.-C., and Senellart, P. (2011). Web Data
Management. Cambridge University Press.

Abou-Rjeili, A. and Karypis, G. (2006). Multilevel algorithms for partitioning power-law graphs.
In Proc. 20th IEEE Int. Parallel & Distributed Processing Symp., pages 124–124.

Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., and Rasin, A. (2009).
HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical
workloads. Proc. VLDB Endowment, 2(1):922–933.

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. (1996a). Query caching
and optimization in distributed mediator systems. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 137–148.

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

627

https://doi.org/10.1007/978-3-030-26253-2

628 References

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. (1996b). Query caching
and optimization in distributed mediator systems. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 137–148.

Adamic, L. and Huberman, B. (2000). The nature of markets in the world wide web. Quart. J.
Electron. Comm., 1:5–12.

Adiba, M. (1981). Derived relations: A unified mechanism for views, snapshots and distributed
data. In Proc. 7th Int. Conf. on Very Data Bases, pages 293–305.

Adiba, M. and Lindsay, B. (1980). Database snapshots. In Proc. 6th Int. Conf. on Very Data Bases,
pages 86–91.

Adler, M. and Mitzenmacher, M. (2001). Towards compressing web graphs. In Proc. Data
Compression Conf., pages 203–212.

Aggarwal, C. C., editor. (2007). Data Streams: Models and Algorithms. Springer.
Agichtein, E., Lawrence, S., and Gravano, L. (2004). Learning to find answers to questions on the

web. ACM Trans. Internet Tech., 4(3):129—162.
Agrawal, D. and Sengupta, S. (1993). Modular synchronization in distributed, multiversion

databases: Version control and concurrency control. IEEE Trans. Knowl. and Data Eng., 5
(1):126 –137.

Agrawal, D., Das, S., and El Abbadi, A. (2012). Data Management in the Cloud: Challenges and
Opportunities. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

Agrawal, S., Narasayya, V., and Yang, B. (2004). Integrating vertical and horizontal partitioning
into automated physical database design. In Proc. ACM SIGMOD Int. Conf. on Management
of Data.

Akal, F., Böhm, K., and Schek, H.-J. (2002). Olap query evaluation in a database cluster: A
performance study on intra-query parallelism. In Proc. 6th East European Conf. Advances in
Databases and Information Systems, pages 218–231.

Akal, F., Türker, C., Schek, H.-J., Breitbart, Y., Grabs, T., and Veen, L. (2005). Fine-grained
replication and scheduling with freshness and correctness guarantees. In Proc. 31st Int. Conf.
on Very Large Data Bases, pages 565–576.

Akbarinia, R. and Martins, V. (2007). Data management in the APPA system. J. Grid Comp., 5
(3):303–317.

Akbarinia, R., Martins, V., Pacitti, E., and Valduriez, P. (2006). Design and implementation of
Atlas P2P architecture. In Baldoni, R., Cortese, G., and Davide, F., editors, Global Data
Management, pages 98–123. IOS Press.

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007a). Processing top-k queries in distributed hash
tables. In Proc. 13th Int. Euro-Par Conf., pages 489–502.

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007b). Query processing in P2P systems. Technical
Report 6112, INRIA, Rennes, France.

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007c). Best position algorithms for top-k queries. In
Proc. 33rd Int. Conf. on Very Large Data Bases, pages 495–506.

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007d). Data currency in replicated dhts. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 211–222.

Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R., McVeety, S., Mills, D.,
Nordstrom, P., and Whittle, S. (2013). MillWheel: Fault-tolerant stream processing at internet
scale. Proc. VLDB Endowment, 6(11):1033–1044.

Alagiannis, I., Borovica, R., Branco, M., Idreos, S., and Ailamaki, A. (2012). NoDB: efficient
query execution on raw data files. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 241–252.

Alagiannis, I., Idreos, S., and Ailamaki, A. (2014). H2O: A hands-free adaptive store. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 1103–1114.

Alamoudi, A. A., Grover, R., Carey, M. J., and Borkar, V. R. (2015). External data access
and indexing in AsterixDB. In Proc. 24th ACM Int. Conf. on Information and Knowledge
Management, pages 3–12.

Albutiu, M.-C., Kemper, A., and Neumann, T. (2012). Massively parallel sort-merge joins in main
memory multi-core database systems. Proc. VLDB Endowment, 5(10):1064–1075.

References 629

Allard, T., Hébrail, G., Masseglia, F., and Pacitti, E. (2015). Chiaroscuro: Transparency and privacy
for massive personal time-series clustering. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 779–794.

Alomari, M., Cahill, M., Fekete, A., and Rohm, U. (2008). The cost of serializability on platforms
that use snapshot isolation. In Proc. 24th Int. Conf. on Data Engineering, pages 576 –585.

Alomari, M., Fekete, A., and Rohm, U. (2009). A robust technique to ensure serializable executions
with snapshot isolation DBMS. In Proc. 25th Int. Conf. on Data Engineering, pages 341–352.

Alsberg, P. A. and Day, J. D. (1976). A principle for resilient sharing of distributed resources. In
Proc. 2nd Int. Conf. on Software Engineering, pages 562–570.

Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar, V. R., Bu, Y., Carey, M. J., Cetindil,
I., Cheelangi, M., Faraaz, K., Gabrielova, E., Grover, R., Heilbron, Z., Kim, Y., Li, C., Li, G.,
Ok, J. M., Onose, N., Pirzadeh, P., Tsotras, V. J., Vernica, R., Wen, J., and Westmann, T. (2014).
AsterixDB: A scalable, open source DBMS. Proc. VLDB Endowment, 7(14):1905–1916.

Altingövde, I. S. and Ulusoy, Ö. (2004). Exploiting interclass rules for focused crawling. IEEE
Intelligent Systems, 19(6):66–73.

Aluç, G. (2015). Workload Matters: A Robust Approach to Physical RDF Database Design. PhD
thesis, University of Waterloo.

Alvarez, V., Schuhknecht, F. M., Dittrich, J., and Richter, S. (2014). Main memory adaptive
indexing for multi-core systems. In Proc. 10th Workshop on Data Management on New
Hardware, pages 3:1—-3:10.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proc. Spring Joint Computer Conf., pages 483–485.

Amsaleg, L., Franklin, M. J., Tomasic, A., and Urhan, T. (1996). Scrambling query plans to
cope with unexpected delays. In Proc. 4th Int. Conf. on Parallel and Distributed Information
Systems, pages 208–219.

Andreev, K. and Racke, H. (2006). Balanced graph partitioning. Theor. Comp. Sci., 39(6):929–939.
Angles, R. and Gutierrez, C. (2008). The expressive power of SPARQL. In Proc. 7th Int. Semantic

Web Conf., pages 114–129.
Antoniou, G. and Plexousakis, D. (2018). Semantic web. In Liu, L. and Özsu, M. T., editors,

Encyclopedia of Database Systems, pages 3425–3429. Springer New York, New York, NY.
Apache. (2016). Apache Giraph. http://giraph.apache.org. Last accessed June 2019.
Apers, P., van den Berg, C., Flokstra, J., Grefen, P., Kersten, M., and Wilschut, A. (1992).

Prisma/DB: a parallel main-memory relational DBMS. IEEE Trans. Knowl. and Data Eng.,
4:541–554.

Apers, P. M. G. (1981). Redundant allocation of relations in a communication network. In
Proc. 5th Berkeley Workshop on Distributed Data Management and Computer Networks, pages
245–258.

Arasu, A. and Widom, J. (2004). A denotational semantics for continuous queries over streams
and relations. ACM SIGMOD Rec., 33(3):6–11.

Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., and Raghavan, S. (2001). Searching the web.
ACM Trans. Internet Tech., 1(1):2–43.

Arasu, A., Babu, S., and Widom, J. (2006). The CQL continuous query language: Semantic
foundations and query execution. VLDB J., 15(2):121–142.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Franklin,
M. J., Ghodsi, A., and Zaharia, M. (2015). Spark SQL: Relational data processing in Spark. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1383–1394.

Arocena, G. and Mendelzon, A. (1998). WebOQL: Restructuring documents, databases and webs.
In Proc. 14th Int. Conf. on Data Engineering, pages 24–33.

Asad, O. and Kemme, B. (2016). Adaptcache: Adaptive data partitioning and migration for
distributed object caches. In Proc. ACM/IFIP/USENIX 17th Int. Middleware Conf., pages
7:1–7:13.

Aspnes, J. and Shah, G. (2003). Skip graphs. In Proc. 14th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 384–393.

http://giraph.apache.org

630 References

Avnur, R. and Hellerstein, J. (2000). Eddies: Continuously adaptive query processing. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 261–272.

Ayad, A. and Naughton, J. (2004). Static optimization of conjunctive queries with sliding
windows over unbounded streaming information sources. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 419–430.

Azar, Y., Broder, A. Z., Karlin, A. R., and Upfal, E. (1999). Balanced allocations. SIAM J. on
Comput., 29(1):180–200.

Babb, E. (1979). Implementing a relational database by means of specialized hardware. ACM
Trans. Database Syst., 4(1):1–29.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002). Models and issues in data
stream systems. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 1–16.

Balazinska, M., Kwon, Y., Kuchta, N., and Lee, D. (2007). Moirae: History-enhanced monitoring.
In Proc. 3rd Biennial Conf. on Innovative Data Systems Research, pages 375–386.

Balke, W.-T., Nejdl, W., Siberski, W., and Thaden, U. (2005). Progressive distributed top-k retrieval
in peer-to-peer networks. In Proc. 21st Int. Conf. on Data Engineering, pages 174–185.

Bancilhon, F. and Spyratos, N. (1981). Update semantics of relational views. ACM Trans. Database
Syst., 6(4):557–575.

Barbara, D., Garcia-Molina, H., and Spauster, A. (1986). Policies for dynamic vote reassignment.
In Proc. 6th IEEE Int. Conf. on Distributed Computing Systems, pages 37–44.

Barbara, D., Molina, H. G., and Spauster, A. (1989). Increasing availability under mutual exclusion
constraints with dynamic voting reassignment. ACM Trans. Comp. Syst., 7(4):394–426.

Barthels, C., Loesing, S., Alonso, G., and Kossmann, D. (2015). Rack-scale in-memory join
processing using RDMA. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1463–1475.

Batini, C. and Lenzirini, M. (1984). A methodology for data schema integration in entity-
relationship model. IEEE Trans. Softw. Eng., SE-10(6):650–654.

Batini, C., Lenzirini, M., and Navathe, S. B. (1986). A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv., 18(4):323–364.

Beeri, C., Bernstein, P. A., and Goodman, N. (1989). A model for concurrency in nested transaction
systems. J. ACM, 36(2):230–269.

Bell, D. and Grimson, J. (1992). Distributed Database Systems. Addison Wesley. Reading.
Bell, D. and Lapuda, L. (1976). Secure computer systems: Unified exposition and Multics

interpretation. Technical Report MTR-2997 Rev.1, MITRE Corp, Bedford, MA.
Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and O’Neil, P. (1995). A critique of

ansi sql isolation levels. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1–10.

Bergamaschi, S. (2001). Semantic integration of heterogeneous information sources. Data &
Knowl. Eng., 36(3):215–249.

Bergman, M. K. (2001). The deep web: Surfacing hidden value. J. Electronic Publishing, 7(1).
Bergsten, B., Couprie, M., and Valduriez, P. (1991). Prototyping DBS3, a shared-memory parallel

database system. In Proc. Int. Conf. on Parallel and Distributed Information Systems, pages
226–234.

Bergsten, B., Couprie, M., and Valduriez, P. (1993). Overview of parallel architectures for
databases. The Comp. J., 36(8):734–739.

Berkholz, C., Keppeler, J., and Schweikardt, N. (2017). Answering conjunctive queries under
updates. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages
303–318.

Berlin, J. and Motro, A. (2001). Autoplex: Automated discovery of content for virtual databases.
In Proc. Int. Conf. on Cooperative Inf. Syst., pages 108–122.

Berners-Lee, T. (2006). Linked data. Accessible at https://www.w3.org/DesignIssues/LinkedData.
html. Last accessed June 2019.

Bernstein, P. and Blaustein, B. (1982). Fast methods for testing quantified relational calculus
assertions. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 39–50.

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

References 631

Bernstein, P. and Melnik, S. (2007). Model management: 2.0: Manipulating richer mappings. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1–12.

Bernstein, P., Blaustein, B., and Clarke, E. M. (1980a). Fast maintenance of semantic integrity
assertions using redundant aggregate data. In Proc. 6th Int. Conf. on Very Data Bases, pages
126–136.

Bernstein, P., Shipman, P., and Rothnie, J. B. (1980b). Concurrency control in a system for
distributed databases (SDD-1). ACM Trans. Database Syst., 5(1):18–51.

Bernstein, P. A. and Chiu, D. M. (1981). Using semi-joins to solve relational queries. J. ACM, 28
(1):25–40.

Bernstein, P. A. and Goodman, N. (1981). Concurrency control in distributed database systems.
ACM Comput. Surv., 13(2):185–222.

Bernstein, P. A. and Goodman, N. (1983). Multiversion concurrency control — theory and
algorithms. ACM Trans. Database Syst., 8(4):465–483.

Bernstein, P. A. and Goodman, N. (1984). An algorithm for concurrency control and recovery in
replicated distributed databases. ACM Trans. Database Syst., 9(4):596–615.

Bernstein, P. A. and Newcomer, E. (1997). Principles of Transaction Processing for the Systems
Professional. Morgan Kaufmann.

Bernstein, P. A., Goodman, N., Wong, E., Reeve, C. L., and Jr, J. B. R. (1981). Query processing
in a system for distributed databases (SDD-1). ACM Trans. Database Syst., 6(4):602–625.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control and Recovery in
Database Systems. Addison Wesley.

Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., and Zaihrayeu,
I. (2002). Data management for peer-to-peer computing : A vision. In Proc. 5th Int. Workshop
on the World Wide Web and Databases, pages 89–94.

Bernstein, P. A., Fekete, A., Guo, H., Ramakrishnan, R., and Tamma, P. (2006). Relexed
concurrency serializability for middle-tier caching and replication. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 599–610.

Beyer, K. S., Ercegovac, V., Krishnamurthy, R., Raghavan, S., Rao, J., Reiss, F., Shekita, E. J.,
Simmen, D. E., Tata, S., Vaithyanathan, S., and Zhu, H. (2009). Towards a scalable enterprise
content analytics platform. Q. Bull. IEEE TC on Data Eng., 32(1):28–35.

Bharat, K. and Broder, A. (1998). A technique for measuring the relative size and overlap of public
web search engines. Comp. Networks and ISDN Syst., 30:379 – 388. (Proc. 7th Int. World Wide
Web Conf.).

Bhowmick, S. S., Madria, S. K., and Ng, W. K. (2004). Web Data Management. Springer.
Bifet, A., Gavaldà, R., Holmes, G., and Pfahringer, B. (2018). Machine Learning for Data Streams:

with Practical Examples in MOA. MIT Press.
Binnig, C., Hildenbrand, S., Färber, F., Kossmann, D., Lee, J., and May, N. (2014). Distributed

snapshot isolation: global transactions pay globally, local transactons pay locally. VLDB J.,
23:987–1011.

Biscondi, N., Brunie, L., Flory, A., and Kosch, H. (1996). Encapsulation of intra-operation
parallelism in a parallel match operator. In Proc. ACPC Conf., volume 1127 of Lecture Notes
in Computer Science, pages 124–135.

Bitton, D., Boral, H., DeWitt, D. J., and Wilkinson, W. K. (1983). Parallel algorithms for the
execution of relational database operations. ACM Trans. Database Syst., 8(3):324–353.

Bitton, D., DeWitt, D. J., Hsiao, D. K., and Menon, J. (1984). A taxonomy of parallel sorting.
ACM Comput. Surv., 16(3):287–318.

Bizer, C., Vidal, M.-E., and Skaf-Molli, H. (2018). Linked open data. In Liu, L. and Özsu, M. T.,
editors, Encyclopedia of Database Systems, pages 2096–2101. Springer New York, New York,
NY.

Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., and Tian, Y. (2010). A comparison
of join algorithms for log processing in MapReduce. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 975–986.

Blaustein, B. (1981). Enforcing Database Assertions: Techniques and Applications. PhD thesis,
Harvard University, Cambridge, Mass.

632 References

Bleiholder, J. and Naumann, F. (2009). Data fusion. ACM Comput. Surv., 41(1):1:1–1:41.
Bonato, A. (2008). A Course on the Web Graph. American Mathematical Society.
Bondiombouy, C. and Valduriez, P. (2016). Query processing in multistore systems: an overview.

Int. J. Cloud Computing, 5(4):309–346.
Bondiombouy, C., Kolev, B., Levchenko, O., and Valduriez, P. (2016). Multistore big data

integration with CloudMdsQL. Trans. Large-Scale Data- and Knowledge-Centered Syst., 28:
48–74.

Bonifati, A., Summa, G., Pacitti, E., and Draidi, F. (2014). Query reformulation in PDMS based
on social relevance. Trans. Large-Scale Data- and Knowledge-Centered Syst., 13:59–90.

Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards sensor database systems. In Proc. 2nd Int.
Conf. on Mobile Data Management, pages 3–14.

Bönström, V., Hinze, A., and Schweppe, H. (2003). Storing RDF as a graph. In Proc. 1st Latin
American Web Congress, pages 27 – 36.

Boral, H. and DeWitt, D. (1983). Database machines: An idea whose time has passed? A critique
of the future of database machines. In Proc. 3rd Int. Workshop on Database Machines, pages
166–187.

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart, B., Smith, M.,
and Valduriez, P. (1990). Prototyping bubba, a highly parallel database system. IEEE Trans.
Knowl. and Data Eng., 2(1):4–24.

Borkar, D., Mayuram, R., Sangudi, G., and Carey, M. J. (2016). Have your data and query it
too: From key-value caching to big data management. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 239–251.

Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., and
Bhattacharjee, B. (2013). Building an efficient RDF store over a relational database. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 121–132.

Borr, A. (1988). High performance SQL through low-level system integration. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 342–349.

Bouganim, L., Florescu, D., and Valduriez, P. (1996). Dynamic load balancing in hierarchical
parallel database systems. In Proc. 22th Int. Conf. on Very Large Data Bases, pages 436–447.

Bouganim, L., Florescu, D., and Valduriez, P. (1999). Multi-join query execution with skew in
NUMA multiprocessors. Distrib. Parall. Databases, 7(1). in press.

Breitbart, Y. and Korth, H. F. (1997). Replication and consistency: Being lazy helps sometimes. In
Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 173–184.

Breitbart, Y. and Silberschatz, A. (1988). Multidatabase update issues. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 135–142.

Breitbart, Y., Olson, P. L., and Thompson, G. R. (1986). Database integration in a distributed
heterogeneous database system. In Proc. 2nd Int. Conf. on Data Engineering, pages 301–310.

Brewer, E., Ying, L., Greenfield, L., Cypher, R., and T’so, T. (2016). Disks for data centers.
Technical report, Google.

Brewer, E. A. (2000). Towards robust distributed systems (abstract). In Proc. ACM SIGACT-
SIGOPS 19th Symp. on the Principles of Distributed Computing, page 7.

Bright, M. W., Hurson, A. R., and Pakzad, S. H. (1994). Automated resolution of semantic
heterogeneity in multidatabases. ACM Trans. Database Syst., 19(2):212–253.

Brill, D., Templeton, M., and Yu, C. (1984). Distributed query processing strategies in MERMAID:
A front-end to data management systems. In Proc. 1st Int. Conf. on Data Engineering, pages
211–218.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Comp.
Netw., 30(1-7):107 – 117.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., and
Wiener, J. (2000). Graph structure in the web. Comp. Netw., 33(1-6):309–320.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002). Sesame: A generic architecture for
storing and querying RDF and RDF schema. In Proc. 1st Int. Semantic Web Conf., pages
54–68.

References 633

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010). HaLoop: efficient iterative data
processing on large clusters. Proc. VLDB Endowment, 3(1):285–296.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HaLoop approach to large-scale
iterative data analysis. VLDB J., 21(2):169–190.

Bu, Y., Borkar, V. R., Jia, J., Carey, M. J., and Condie, T. (2014). Pregelix: Bigger graph analytics
on a dataflow engine. Proc. VLDB Endowment, 8(2):161–172.

Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., and Manolescu, I. (2015). Invisible glue: Scalable
self-tunning multi-stores. In Proc. 7th Biennial Conf. on Innovative Data Systems Research.

Buneman, P., Davidson, S., Hillebrand, G. G., and Suciu, D. (1996). A query language
and optimization techniques for unstructured data. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 505–516.

Cahill, M. J., Röhm, U., and Fekete, A. D. (2009). Serializable isolation for snapshot databases.
ACM Trans. Database Syst., 34(4):Article 20.

Calì, A. and Calvanese, D. (2002). Optimized querying of integrated data over the web. In
Engineering Information Systems in the Internet Context, pages 285–301.

Callan, J. P. and Connell, M. E. (2001). Query-based sampling of text databases. ACM Trans.
Information Syst., 19(2):97–130.

Callan, J. P., Connell, M. E., and Du, A. (1999). Automatic discovery of language models for text
databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 479–490.

Cammert, M., Krämer, J., Seeger, B., and S.Vaupel. (2006). An approach to adaptive memory
management in data stream systems. In Proc. 22nd Int. Conf. on Data Engineering, page 137.

Canaday, R. H., Harrisson, R. D., Ivie, E. L., Rydery, J. L., and Wehr, L. A. (1974). A back-end
computer for data base management. Commun. ACM, 17(10):575–582.

Cao, P. and Wang, Z. (2004). Query processing issues in image (multimedia) databases. In
Proc. ACM SIGACT-SIGOPS 23rd Symp. on the Principles of Distributed Computing, pages
206–215.

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K. (2015). Apache
FlinkTM: Stream and batch processing in a single engine. Q. Bull. IEEE TC on Data Eng., 38
(4):28–38.

Carey, M. and Lu, H. (1986). Load balancing in a locally distributed database system. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 108–119.

Castano, S. and Antonellis, V. D. (1999). A schema analysis and reconciliation tool environment
for heterogeneous databases. In Proc. 3rd Int. Conf. on Database Eng. and Applications, pages
53 – 62.

Castano, S., Fugini, M. G., Martella, G., and Samarati, P. (1995). Database Security. Addison
Wesley.

Castro, M. and Liskov, B. (1999). Practical byzantine fault tolerance. In Proc. 3rd USENIX Symp.
on Operating System Design and Implementation, pages 173–186.

Cellary, W., Gelenbe, E., and Morzy, T. (1988). Concurrency Control in Distributed Database
Systems. North-Holland.

Ceri, S. and Owicki, S. (1982). On the use of optimistic methods for concurrency control in
distributed databases. In Proc. 6th Berkeley Workshop on Distributed Data Management and
Computer Networks, pages 117–130.

Ceri, S. and Pelagatti, G. (1983). Correctness of query execution strategies in distributed databases.
ACM Trans. Database Syst., 8(4):577–607.

Ceri, S. and Pernici, B. (1985). DATAID–D: Methodology for distributed database design. In
Albano, V. d. A. and di Leva, A., editors, Computer-Aided Database Design, pages 157–183.
North-Holland.

Ceri, S. and Widom, J. (1993). Managing semantic heterogeneity with production rules and
persistent queues. In Proc. 19th Int. Conf. on Very Large Data Bases, pages 108–119.

Ceri, S., Martella, G., and Pelagatti, G. (1982a). Optimal file allocation in a computer network: A
solution method based on the knapsack problem. Comp. Netw., 6:345–357.

Ceri, S., Negri, M., and Pelagatti, G. (1982b). Horizontal data partitioning in database design. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 128–136.

634 References

Ceri, S., Navathe, S. B., and Wiederhold, G. (1983). Distribution design of logical database
schemes. IEEE Trans. Softw. Eng., SE-9(4):487–503.

Ceri, S., Gottlob, G., and Pelagatti, G. (1986). Taxonomy and formal properties of distributed
joins. Inf. Syst., 11(1):25–40.

Ceri, S., Pernici, B., and Wiederhold, G. (1987). Distributed database design methodologies. Proc.
IEEE, 75(5):533–546.

Chairunnanda, P., Daudjee, K., and Özsu, M. T. (2014). ConfluxDB: multi-master replication for
partitioned snapshot isolation databases. Proc. VLDB Endowment, 7(11):947–958.

Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. (2002). Locally adaptive dimensionality
reduction for indexing large time series databases. ACM Trans. Database Syst., 27.

Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced hypertext classification using hyperlinks.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 307 – 318.

Chamberlin, D. (2018). SQL++ For SQL Users: A Tutorial. CouchBase Inc.
Chamberlin, D., Gray, J., and Traiger, I. (1975). Views, authorization and locking in a relational

database system. In Proc. National Computer Conf, pages 425–430.
Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R. R., Bradshaw, R., and Weizenbaum,

N. (2010). FlumeJava: easy, efficient data-parallel pipelines. In Proc. ACM SIGPLAN 2010
Conf. on Programming Language Design and Implementation, pages 363–375.

Chandra, T. D., Griesemer, R., and Redstone, J. (2007). Paxos made live: An engineering
perspective. In Proc. ACM SIGACT-SIGOPS 26th Symp. on the Principles of Distributed
Computing, pages 398–407.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M., Hong, W.,
Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M. A. (2003). TelegraphCQ:
Continuous dataflow processing for an uncertain world. In Proc. 1st Biennial Conf. on
Innovative Data Systems Research.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A.,
and Gruber, R. (2008). Bigtable: A distributed storage system for structured data. ACM Trans.
Comp. Syst., 26(2):Article 4.

Chang, S. K. and Liu, A. C. (1982). File allocation in a distributed database. Int. J. Comput. Inf.
Sci, 11(5):325–340.

Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., Aragonda, P., Lychagina, V., Kwon, Y., and Wong,
M. (2011). Tenzing: A SQL implementation on the MapReduce framework. Proc. VLDB
Endowment, 4(12):1318–1327.

Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R. (2003). Robust and efficient fuzzy match
for online data cleaning. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
313–324.

Chen, R., Shi, J., Chen, Y., and Chen, H. (2015). PowerLyra: Differentiated graph computation
and partitioning on skewed graphs. In Proc. 10th ACM SIGOPS/EuroSys European Conf. on
Comp. Syst., pages 1:1–1:15.

Chiu, D. M. and Ho, Y. C. (1980). A methodology for interpreting tree queries into optimal semi-
join expressions. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 169–178.

Cho, J. and Garcia-Molina, H. (2000). The evolution of the web and implications for an incremental
crawler. In Proc. 26th Int. Conf. on Very Large Data Bases.

Cho, J. and Ntoulas, A. (2002). Effective change detection using sampling. In Proc. 28th Int. Conf.
on Very Large Data Bases.

Cho, J., Garcia-Molina, H., and Page, L. (1998). Efficient crawling through URL ordering. Comp.
Networks and ISDN Syst., 30(1-7):161–172.

Chockler, G., Keidar, I., and Vitenberg, R. (2001). Group communication specifications: a
comprehensive study. ACM Comput. Surv., 33(4):427–469.

Chong, E., Das, S., Eadon, G., and Srinivasan, J. (2005). An efficient SQL-based RDF querying
scheme. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 1216–1227.

Chu, W. W. (1969). Optimal file allocation in a multiple computer system. IEEE Trans. Comput.,
C-18(10):885–889.

References 635

Chu, W. W. (1973). Optimal file allocation in a computer network. In Abramson, N. and Kuo,
F. F., editors, Computer Communication Networks, pages 82–94.

Chu, W. W. (1976). Performance of file directory systems for data bases in star and distributed
networks. In Proc. National Computer Conf., volume 45, pages 577–587.

Chu, W. W. and Nahouraii, E. E. (1975). File directory design considerations for distributed
databases. In Proc. 1st Int. Conf. on Very Data Bases, pages 543–545.

Chu, X., Ilyas, I. F., and Papotti, P. (2013). Discovering Denial Constraints. Proc. VLDB
Endowment, 6(13):1498–1509.

Chundi, P., Rosenkrantz, D. J., and Ravi, S. S. (1996). Deferred updates and data placement
in distributed databases. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, pages 469–476.

Civelek, F. N., Dogac, A., and Spaccapietra, S. (1988). An expert system approach to view
definition and integration. In Proc. 7th Int’l. Conf. on Entity-Relationship Approach, pages
229–249.

Cohen, J. (2009). Graph twiddling in a MapReduce world. Computing in Science & Engineering,
11(4):29–41.

Cole, R. L. and Graefe, G. (1994). Optimization of dynamic query evaluation plans. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 150–160.

Coletta, R., Castanier, E., Valduriez, P., Frisch, C., Ngo, D., and Bellahsene, Z. (2012). Public data
integration with websmatch. In Proc. Int. Workshop on Open Data, pages 5–12.

Copeland, G., Alexander, W., Boughter, E., and Keller, T. (1988). Data placement in bubba. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 99–108.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S.,
Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C.,
Wang, R., and Woodford, D. (2013). Spanner: Google’s globally distributed database. ACM
Trans. Database Syst., 31(3):8:1–8:22.

Crainiceanu, A., Linga, P., Gehrke, J., and Shanmugasundaram, J. (2004). Querying peer-to-peer
networks using p-trees. In Proc. 7th Int. Workshop on the World Wide Web and Databases,
pages 25–30.

Cranor, C., Johnson, T., Spatscheck, O., and Shkapenyuk, V. (2003). Gigascope: High performance
network monitoring with an SQL interface. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 647–651.

Crespo, A. and Garcia-Molina, H. (2002). Routing indices for peer-to-peer systems. In Proc. 22nd
IEEE Int. Conf. on Distributed Computing Systems, pages 23–33.

Cuenca-Acuna, F., Peery, C., Martin, R., and Nguyen, T. (2003). PlanetP: using gossiping to build
content addressable peer-to-peer information sharing communities. In IEEE Int. Symp. on High
Performance Distributed Computing, pages 236–249.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010). Schism: a workload-driven approach to
database replication and partitioning. Proc. VLDB Endowment, 3(1):48–57.

Curino, C., Jones, E. P. C., Madden, S., and Balakrishnan, H. (2011). Workload-aware database
monitoring and consolidation. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 313–324.

Cusumano, M. A. (2010). Cloud computing and SaaS as new computing platforms. Commun.
ACM, 53(4):27–29.

Dasgupta, S., Coakley, K., and Gupta, A. (2016). Analytics-driven data ingestion and derivation in
the AWESOME polystore. In Proc. 2016 IEEE Int. Conf. on Big Data, pages 2555–2564.

Daswani, N., Garcia-Molina, H., and Yang, B. (2003). Open problems in data-sharing peer-to-peer
systems. In Proc. 9th Int. Conf. on Database Theory, pages 1–15.

Daudjee, K. and Salem, K. (2004). Lazy database replication with ordering guarantees. In Proc.
20th Int. Conf. on Data Engineering, pages 424–435.

Daudjee, K. and Salem, K. (2006). Lazy database replication with snapshot isolation. In Proc.
32nd Int. Conf. on Very Large Data Bases, pages 715–726.

Davenport, R. A. (1981). Design of distributed data base systems. Comp. J., 24(1):31–41.

636 References

Davidson, S. B. (1984). Optimism and consistency in partitioned distributed database systems.
ACM Trans. Database Syst., 9(3):456–481.

Davidson, S. B., Garcia-Molina, H., and Skeen, D. (1985). Consistency in partitioned networks.
ACM Comput. Surv., 17(3):341–370.

Dawson, J. L. (1980). A user demand model for distributed database design. In Digest of Papers –
COMPCON, pages 211–216.

Dayal, U. and Bernstein, P. (1978). On the updatability of relational views. In Proc. 4th Int. Conf.
on Very Data Bases, pages 368–377.

Dayal, U. and Hwang, H. (1984). View definition and generalization for database integration in
MULTIBASE: A system for heterogeneous distributed database. IEEE Trans. Softw. Eng., SE-
10(6):628–644.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. In
Proc. 6th USENIX Symp. on Operating System Design and Implementation, pages 137–149.

Dean, J. and Ghemawat, S. (2010). MapReduce: a flexible data processing tool. Commun. ACM,
53(1):72–77.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P., and Vogels, W. (2007). Dynamo: Amazon’s highly available key-value
store. In Proc. 21st ACM Symp. on Operating System Principles, pages 205–220.

Demers, A. J., Greene, D. H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H. E.,
Swinehart, D. C., and Terry, D. B. (1987). Epidemic algorithms for replicated database
maintenance. In Proc. ACM SIGACT-SIGOPS 6th Symp. on the Principles of Distributed
Computing, pages 1–12.

Deshpande, A. and Gupta, A. (2018). Principles of Graph Data Management and Analytics. ACM
Books. Forthcoming.

Devine, R. (1993). Design and implementation of DDH: A distributed dynamic hashing algorithm.
In Proc. 4th Int. Conf. on Foundations of Data Organization and Algorithms, pages 101–114.

Dewitt, D. and Stonebraker, M. (2009). MapReduce: A major step backwards. https://homes.cs.
washington.edu/~billhowe/mapreduce_a_major_step_backwards.html.

DeWitt, D., Naughton, J., Schneider, D., and Seshadri, S. (1992). Practical skew handling in
parallel joins. In Proc. 22th Int. Conf. on Very Large Data Bases, pages 27–40.

DeWitt, D. J. and Gerber, R. (1985). Multi processor hash-based join algorithms. In Proc. 11th
Int. Conf. on Very Large Data Bases, pages 151–164.

DeWitt, D. J. and Gray, J. (1992). Parallel database systems: The future of high performance
database systems. Commun. ACM, 35(6):85–98.

DeWitt, D. J., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., and Wood, D. (1984). Implemen-
tation techniques for main memory database systems. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 1–8.

DeWitt, D. J., Gerber, R. H., Graek, G., Heytens, M. L., Kumar, K. B., and Muralikrishna, M.
(1986). Gamma: A high performance dataflow database machine. In Proc. 12th Int. Conf. on
Very Large Data Bases, pages 228–237.

DeWitt, D. J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., and Krioukov,
A. (2008). Clustera: an integrated computation and data management system. Proc. VLDB
Endowment, 1:28–41.

DeWitt, D. J., Halverson, A., Nehme, R. V., Shankar, S., Aguilar-Saborit, J., Avanes, A., Flasza,
M., and Gramling, J. (2013). Split query processing in Polybase. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 1255–1266.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., and Domingos, P. (2004). iMAP: Discovering
complex mappings between database schemas. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 383–394.

Ding, L. and Rundensteiner, E. (2004). Evaluating window joins over punctuated streams. In Proc.
13th ACM Int. Conf. on Information and Knowledge Management, pages 98–107.

Ding, L., Mehta, N., Rundensteiner, E., and Heineman, G. (2004). Joining punctuated streams.
In Advances in Database Technology, Proc. 9th Int. Conf. on Extending Database Technology,
pages 587–604.

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

References 637

Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., and Wang, J. (2018). Untangling
blockchain: A data processing view of blockchain systems. IEEE Trans. Knowl. and Data
Eng., 30(7):1366–1385.

Do, H. and Rahm, E. (2002). COMA: a system for flexible combination of schema matching
approaches. In Proc. 28th Int. Conf. on Very Large Data Bases, pages 610–621.

Doan, A. and Halevy, A. Y. (2005). Semantic integration research in the database community: A
brief survey. AI Magazine, 26(1):83–94.

Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling schemas of disparate data sources:
A machine-learning approach. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 509–520.

Doan, A., Domingos, P., and Halevy, A. (2003a). Learning to match the schemas of data sources:
A multistrategy approach. Machine Learning, 50(3):279–301.

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A. (2003b). Learning to match
ontologies on the semantic web. VLDB J., 12(4):303–319.

Doan, A., Halevy, A., and Ives, Z. (2012). Principles of Data Integration. Morgan Kaufmann.
Dogac, A., Kalinichenko, L., Özsu, M. T., and Sheth, A., editors. (1998). Advances in Workflow

Systems and Interoperability. Springer.
Dong, X. L. and Naumann, F. (2009). Data fusion: resolving data conflicts for integration. Proc.

VLDB Endowment, 2(2):1654–1655.
Dong, X. L. and Srivastava, D. (2015). Big Data Integration. Synthesis Lectures on Data

Management. Morgan & Claypool Publishers.
Dong, X. L., Berti-Equille, L., and Srivastava, D. (2009a). Truth discovery and copying detection

in a dynamic world. Proc. VLDB Endowment, 2(1):562–573.
Dong, X. L., Berti-Equille, L., and Srivastava, D. (2009b). Integrating conflicting data: the role of

source dependence. Proc. VLDB Endowment, 2(1):550–561.
Dowdy, L. W. and Foster, D. V. (1982). Comparative models of the file assignment problem. ACM

Comput. Surv., 14(2):287–313.
Du, W., Krishnamurthy, R., and Shan, M. (1992). Query optimization in a heterogeneous DBMS.

In Proc. 18th Int. Conf. on Very Large Data Bases, pages 277–291.
Du, W., Shan, M., and Dayal, U. (1995). Reducing multidatabase query response time by tree

balancing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 293–303.
Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Madden, S.,

Maier, D., Mattson, T., and Zdonik, S. B. (2015). The BigDAWG polystore system. ACM
SIGMOD Rec., 44(2):11–16.

Duschka, O. M. and Genesereth, M. R. (1997). Answering recursive queries using views. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 109–116.

Eager, D. L. and Sevcik, K. C. (1983). Achieving robustness in distributed database systems. ACM
Trans. Database Syst., 8(3):354–381.

Edwards, J., McCurley, K., and Tomlin, J. (2001). An adaptive model for optimizing performance
of an incremental web crawler. In Proc. 10th Int. World Wide Web Conf.

El Abbadi, A., Skeen, D., and Cristian, F. (1985). An efficient, fault–tolerant protocol for replicated
data management. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 215–229.

Elbushra, M. M. and Lindström, J. (2015). Causal consistent databases. Open Journal of
Databases, 2(1):17–35.

Elmagarmid, A., Rusinkiewicz, M., and Sheth, A., editors. (1999). Management of Heterogeneous
and Autonomous Database Systems. Morgan Kaufmann.

Elmagarmid, A. K. (1986). A survey of distributed deadlock detection algorithms. ACM SIGMOD
Rec., 15(3):37–45.

Elmagarmid, A. K., editor. (1992). Transaction Models for Advanced Database Applications.
Morgan Kaufmann.

Elmagarmid, A. K., Soundararajan, N., and Liu, M. T. (1988). A distributed deadlock detection and
resolution algorithm and its correctness proof. IEEE Trans. Softw. Eng., 14(10):1443–1452.

638 References

Elmasri, R., Larson, J., and Navathe, S. B. (1987). Integration algorithms for database and logical
database design. Technical report, Honeywell Corporate Research Center, Golden Valley,
Minn.

Elmore, A. J., Arora, V., Taft, R., Pavlo, A., Agrawal, D., and El Abbadi, A. (2015). Squall: Fine-
grained live reconfiguration for partitioned main memory databases. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 299–313.

Elseidy, M., Elguindy, A., Vitorovic, A., and Koch, C. (2014). Scalable and adaptive online joins.
Proc. VLDB Endowment, 7(6):441–452.

Embley, D. W., Jackman, D., and Xu, L. (2001). Multifaceted exploitation of metadata for attribute
match discovery in information integration. In Proc. Workshop on Information Integration on
the Web, pages 110–117.

Embley, D. W., Jackman, D., and Xu, L. (2002). Attribute match discovery in information
integration: exploiting multiple facets of metadata. Journal of the Brazilian Computing Society,
8(2):32–43.

Epstein, R., Stonebraker, M., and Wong, E. (1978). Query processing in a distributed relational
database system. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 169–180.

Eswaran, K. P. (1974). Placement of records in a file and file allocation in a computer network. In
Information Processing ’74, pages 304–307.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning.
Evrendilek, C., Dogac, A., Nural, S., and Ozcan, F. (1997). Multidatabase query optimization.

Distrib. Parall. Databases, 5(1):77–114.
Eyal, I., Gencer, A. E., Sirer, E. G., and van Renesse, R. (2016). Bitcoin-ng: A scalable blockchain

protocol. In Proc. 13th USENIX Symp. on Networked Systems Design & Implementation, pages
45–59.

Fagin, R. (2002). Combining fuzzy information: an overview. ACM SIGMOD Rec., 31(2):109–
118.

Fagin, R., Lotem, J., and Naor, M. (2003). Optimal aggregation algorithms for middleware. Journal
of Computer and System Sciences, 66(4):614–656.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005). Data exchange: semantics and query
answering. Theor. Comp. Sci., 336(1):89–124.

Faleiro, J. M. and Abadi, D. J. (2015). Rethinking serializable multiversion concurrency control.
Proc. VLDB Endowment, 8(11):1190–1201.

Faloutsos, C. and Christodoulakis, S. (1984). Signature files: an access method for documents and
its analytical performance evaluation. ACM Trans. Information Syst., 2(4):267–288.

Farid, M. H., Roatis, A., Ilyas, I. F., Hoffmann, H., and Chu, X. (2016). CLAMS: bringing quality
to data lakes. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 2089–2092.

Farrag, A. A. and Özsu, M. T. (1989). Using semantic knowledge of transactions to increase
concurrency. ACM Trans. Database Syst., 14(4):503–525.

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1987a). Nested transactions and read/write lock-
ing. Technical Memo MIT/LCS/TM–324, Massachusetts Institute of Technology, Cambridge,
Mass.

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1987b). Nested transactions, conflict-based
locking, and dynamic atomicity. Technical Memo MIT/LCS/TM–340, Massachusetts Institute
of Technology, Cambridge, Mass.

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1989). Commutativity-based locking for nested
transactions. Technical Memo MIT/LCS/TM-370b, Massachusetts Institute of Technology,
Cambridge, Mass.

Fernandez, M., Florescu, D., and Levy, A. (1997). A query language for a web-site management
system. ACM SIGMOD Rec., 26(3):4–11.

Fernandez, R. C., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. (2013). Integrating scale
out and fault tolerance in stream processing using operator state management. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 725–736.

References 639

Fernández-Moctezuma, R., Tufte, K., and Li, J. (2009). Inter-operator feedback in data stream
management systems via punctuation. In Proc. 4th Biennial Conf. on Innovative Data Systems
Research.

Ferraiolo, D. and Kuhn, R. (1992). Role-based access control. In Proc. National Computer Conf.,
pages 554–563.

Fisher, M. K. and Hochbaum, D. S. (1980). Database location in computer networks. J. ACM, 27
(4):718–735.

Fisher, P. S., Hollist, P., and Slonim, J. (1980). A design methodology for distributed data bases.
In Digest of Papers – COMPCON, pages 199–202.

Florentin, J. J. (1974). Consistency auditing of databases. Comp. J., 17(1):52–58.
Florescu, D., Levy, A., and Mendelzon, A. (1998). Database techniques for the World-Wide Web:

a survey. ACM SIGMOD Rec., 27(3):59–74.
Friedman, M., Levy, A. Y., and Millstein, T. D. (1999). Navigational plans for data integration.

In Proc. 16th National Conf. on Artificial Intelligence and 11th Innovative Applications of
Artificial Intelligence Conf., pages 67–73.

Fu, Y., Ong, K. W., Papakonstantinou, Y., and Zamora, E. (2014). FORWARD: data-centric UIs
using declarative templates that efficiently wrap third-party JavaScript components. Proc.
VLDB Endowment, 7(13):1649–1652.

Furtado, C., Lima, A. A. B., Pacitti, E., Valduriez, P., and Mattoso, M. (2008). Adaptive hybrid
partitioning for OLAP query processing in a database cluster. Int. Journal of High Performance
Computing and Networking, 5(4):251–262.

Fushimi, S., Kitsuregawa, M., and Tanaka, H. (1986). An overview of the system software of
a parallel relational database machine GRACE. In Proc. 12th Int. Conf. on Very Large Data
Bases, pages 209–219.

Gadepally, V., Chen, P., Duggan, J., Elmore, A. J., Haynes, B., Kepner, J., Madden, S., Mattson, T.,
and Stonebraker, M. (2016). The BigDAWG polystore system and architecture. In Proc. IEEE
High Performance Extreme Computing Conf., pages 1–6.

Galhardas, H., Florescu, D., Shasha, D., Simon, E., and Saita, C.-A. (2001). Declarative data
cleaning: Language, model, and algorithms. In Proc. 27th Int. Conf. on Very Large Data Bases,
pages 371–380.

Gançarski, S., Naacke, H., Pacitti, E., and Valduriez, P. (2007). The leganet system: Freshness-
aware transaction routing in a database cluster. Inf. Syst., 32(7):320–343.

Ganesan, P., Yang, B., and Garcia-Molina, H. (2004). One torus to rule them all: Multidimensional
queries in P2P systems. In Proc. 7th Int. Workshop on the World Wide Web and Databases,
pages 19–24.

Gankidi, V. R., Teletia, N., Patel, J. M., Halverson, A., and DeWitt, D. J. (2014). Indexing HDFS
data in PDW: splitting the data from the index. Proc. VLDB Endowment, 7(13):1520–1528.

Garcia-Molina, H. (1982). Elections in distributed computing systems. IEEE Trans. Comput.,
C-31(1):48–59.

Garcia-Molina, H. (1983). Using semantic knowledge for transaction processing in a distributed
database. ACM Trans. Database Syst., 8(2):186–213.

Garcia-Molina, H. and Salem, K. (1987). Sagas. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 249–259.

Garcia-Molina, H. and Wiederhold, G. (1982). Read–only transactions in a distributed database.
ACM Trans. Database Syst., 7(2):209–234.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K. (1990). Coordinating multi-
transaction activities. Technical Report CS-TR-247-90, Department of Computer Science,
Princeton University.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. D.,
Vassalos, V., and Widom, J. (1997). The TSIMMIS approach to mediation: Data models and
languages. J. Intell. Information Syst., 8(2):117–132.

Garofalakis, M. N. and Ioannidis, Y. E. (1996). Multi-dimensional resource scheduling for parallel
queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 365–376.

640 References

Gavish, B. and Pirkul, H. (1986). Computer and database location in distributed computer systems.
IEEE Trans. Comput., C-35(7):583–590.

Gedik, B. (2014). Partitioning functions for stateful data parallelism in stream processing. VLDB
J., 23:517–539.

Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of workflow management:
From process modeling to workflow automation infrastructure. Distrib. Parall. Databases, 3:
119–153.

Ghemawat, S., Gobioff, H., and Leung, S. (2003). The Google file system. In Proc. 19th ACM
Symp. on Operating System Principles, pages 29–43.

Ghoting, A., Krishnamurthy, R., Pednault, E. P. D., Reinwald, B., Sindhwani, V., Tatikonda,
S., Tian, Y., and Vaithyanathan, S. (2011). SystemML: Declarative machine learning on
MapReduce. In Proc. 27th Int. Conf. on Data Engineering, pages 231–242.

Gifford, D. K. (1979). Weighted voting for replicated data. In Proc. 7th ACM Symp. on Operating
System Principles, pages 50–159.

Gilbert, S. and Lynch, N. A. (2002). Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59.

Glasbergen, B., Abebe, M., Daudjee, K., Foggo, S., and Pacaci. (2018). Apollo: Learning query
correlations for predictive caching in geo-distributed systems. In Proc. 21st Int. Conf. on
Extending Database Technology, pages 253–264.

Golab, L. and Özsu, M. T. (2003). Processing sliding window multi-joins in continuous queries
over data streams. In Proc. 29th Int. Conf. on Very Large Data Bases, pages 500–511.

Golab, L. and Özsu, M. T. (2010). Data Stream Systems. Synthesis Lectures on Data Management.
Morgan & Claypool.

Goldman, K. J. (1987). Data replication in nested transaction systems. Technical Report
MIT/LCS/TR-390, Massachusetts Institute of Technology, Cambridge, Mass.

Goldman, R. and Widom, J. (1997). Dataguides: Enabling query formulation and optimization in
semistructured databases. In Proc. 23th Int. Conf. on Very Large Data Bases, pages 436–445.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. (2012). PowerGraph: Distributed
graph-parallel computation on natural graphs. In Proc. 10th USENIX Symp. on Operating
System Design and Implementation, pages 17–30.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I. (2014). GraphX:
graph processing in a distributed dataflow framework graph processing in a distributed dataflow
framework. In Proc. 11th USENIX Symp. on Operating System Design and Implementation,
pages 599–613.

Goodman, J. R. and Woest, P. J. (1988). The Wisconsin multicube: A new large-scale cache-
coherent multiprocessor. Technical Report TR766, University of Wisconsin-Madison.

Gounaris, A., Paton, N. W., Fernandes, A. A. A., and Sakellariou, R. (2002). Adaptive query
processing: A survey. In Proc. British National Conf. on Databases, pages 11–25.

Graefe, G. (1990). Encapsulation of parallelism in the Volcano query processing systems. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 102–111.

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):
73–170.

Graefe, G. (1994). Volcano - an extensible and parallel query evaluation system. IEEE Trans.
Knowl. and Data Eng., 6(1):120–135.

Graefe, G. and Kuno, H. (2010a). Self-selecting, self-tuning, incrementally optimized indexes. In
Proc. 13th Int. Conf. on Extending Database Technology, pages 371–381.

Graefe, G. and Kuno, H. (2010b). Adaptive indexing for relational keys. In Proc. Workshops of
26th Int. Conf. on Data Engineering, pages 69–74.

Graefe, G., Idreos, S., Kuno, H., and Manegold, S. (2010). Benchmarking adaptive indexing. In
Proc. TPC Technology Conference on Performance Evaluation, Measurement and Characteri-
zation of Complex Systems, pages 169–184.

Graefe, G., Halim, F., Idreos, S., Kuno, H., and Manegold, S. (2012). Concurrency control for
adaptive indexing. Proc. VLDB Endowment, 5(7):656–667.

References 641

Graefe, G., Halim, F., Idreos, S., Kuno, H. A., Manegold, S., and Seeger, B. (2014). Transactional
support for adaptive indexing. VLDB J., 23(2):303–328.

Grapa, E. and Belford, G. G. (1977). Some theorems to aid in solving the file allocation problem.
Commun. ACM, 20(11):878–882.

Gravano, L., Garcia-Molina, H., and Tomasic, A. (1999). Gloss: Text-source discovery over the
internet. ACM Trans. Database Syst., 24(2):229–264.

Gray, J. (1979). Notes on database operating systems. In Bayer, R., Graham, R., and Seegmüller,
G., editors, Operating Systems – An Advanced Course, pages 393–481. Springer, New York.

Gray, J. and Lamport, L. (2006). Consensus on transaction commit. ACM Trans. Database Syst.,
31(1):133–160.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

Gray, J., Helland, P., O’Neil, P. E., and Shasha, D. (1996). The dangers of replication and a solution.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 173–182.

Gray, J. N., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F., and Traiger, I.
(1981). The recovery manager of the System R database manager. ACM Comput. Surv., 13(2):
223–242.

Grefen, P. and Widom, J. (1997). Protocols for integrity constraint checking in federated databases.
Distrib. Parall. Databases, 5(4):327–355.

Griffiths, P. P. and Wade, B. W. (1976). An authorization mechanism for a relational database
system. ACM Trans. Database Syst., 1(3):242–255.

Grossman, R. L. and Gu, Y. (2009). On the varieties of clouds for data intensive computing. Q.
Bull. IEEE TC on Data Eng., 32(1):44–50.

Guha, S. and McGregor, A. (2006). Approximate quantiles and the order of the stream. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 273–279.

Gulisano, V., Jiménez-Peris, R., Patino-Martinez, M., and Valduriez, P. (2010). StreamCloud: A
large scale data streaming system. In Proc. 30th IEEE Int. Conf. on Distributed Computing
Systems.

Gulisano, V., Jiménez-Peris, R., Patino-Martinez, M., and Valduriez, P. (2012). StreamCloud: An
elastic and scalable data streaming system. IEEE Trans. Parall. Dist. Sys., 23(12):2351–2365.

Gulli, A. and Signorini, A. (2005). The indexable web is more than 11.5 billion pages. In Proc.
14th Int. World Wide Web Conf., pages 902–903.

Gummadi, P. K., Gummadi, R., Gribble, S. D., Ratnasamy, S., Shenker, S., and Stoica, I. (2003).
The impact of DHT routing geometry on resilience and proximity. In Proc. Conf. on
Applications, Technologies, Architectures, and Protocols for Computer Communication, pages
381–394.

Güntzer, U., Kießling, W., and Balke, W.-T. (2000). Optimizing multi-feature queries for image
databases. In Proc. 26th Int. Conf. on Very Large Data Bases, pages 419–428.

Gupta, A. and Mumick, I. S., editors. (1999). Materialized Views: Techniques, Implementations,
and Applications. M.I.T. Press.

Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining views incrementally. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 157–166.

Gupta, A., Jagadish, H., and Mumick, I. S. (1996). Data integration using self-maintainable views.
In Advances in Database Technology, Proc. 5th Int. Conf. on Extending Database Technology,
pages 140–144.

Gupta, A., Agrawal, D., and El Abbadi, A. (2003). Approximate range selection queries in peer-
to-peer systems. In Proc. 1st Biennial Conf. on Innovative Data Systems Research, pages
141–151.

Haas, L. (2007). Beauty and the beast: The theory and practice of information integration. In Proc.
11th Int. Conf. on Database Theory, pages 28–43.

Haas, L., Kossmann, D., Wimmers, E., and Yang, J. (1997a). Optimizing queries across diverse
data sources. In Proc. 23th Int. Conf. on Very Large Data Bases, pages 276–285.

Haas, L. M., Kossmann, D., Wimmers, E. L., and Yang, J. (1997b). Optimizing queries across
diverse data sources. In Proc. 23th Int. Conf. on Very Large Data Bases, pages 276–285.

642 References

Haas, P. and Hellerstein, J. (1999a). Ripple joins for online aggregation. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 287–298.

Haas, P. J. and Hellerstein, J. M. (1999b). Ripple joins for online aggregation. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 287–298.

Hacigümüs, H., Sankaranarayanan, J., Tatemura, J., LeFevre, J., and Polyzotis, N. (2013).
Odyssey: A multi-store system for evolutionary analytics. Proc. VLDB Endowment, 6(11):
1180–1181.

Haderle, C. M. D., Lindsay, B., Pirahesh, H., and Schwarz, P. (1992). Aries: A transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging.
ACM Trans. Database Syst., 17(1):94–162.

Hadzilacos, V. (1988). A theory of reliability in database systems. J. ACM, 35(1):121–145.
Halevy, A., Rajaraman, A., and Ordille, J. (2006). Data integration: the teenage years. In Proc.

32nd Int. Conf. on Very Large Data Bases, pages 9–16.
Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB J., 10(4):270–294.
Halevy, A. Y., Etzioni, O., Doan, A., Ives, Z. G., Madhavan, J., McDowell, L., and Tatarinov, I.

(2003). Crossing the structure chasm. In Proc. 1st Biennial Conf. on Innovative Data Systems
Research.

Halici, U. and Dogac, A. (1989). Concurrency control in distributed databases through time
intervals and short-term locks. IEEE Trans. Softw. Eng., 15(8):994–995.

Halim, F., Idreos, S., Karras, P., and Yap, R. H. C. (2012). Stochastic database cracking: Towards
robust adaptive indexing in main-memory column-stores. Proc. VLDB Endowment, 5(6):502–
513.

Hammad, M., Aref, W., and Elmagarmid, A. (2003a). Stream window join: Tracking moving
objects in sensor-network databases. In Proc. 15th Int. Conf. on Scientific and Statistical
Database Management, pages 75–84.

Hammad, M., Aref, W., Franklin, M., Mokbel, M., and Elmagarmid, A. (2003b). Efficient
execution of sliding window queries over data streams. Technical Report CSD TR 03-035,
Purdue University.

Hammad, M., Mokbel, M., Ali, M., Aref, W., Catlin, A., Elmagarmid, A., Eltabakh, M., Elfeky,
M., Ghanem, T., Gwadera, R., Ilyas, I., Marzouk, M., and Xiong, X. (2004). Nile: a query
processing engine for data streams. In Proc. 20th Int. Conf. on Data Engineering, page 851.

Hammad, M., Aref, W., and Elmagarmid, A. (2005). Optimizing in-order execution of continuous
queries over streamed sensor data. In Proc. 17th Int. Conf. on Scientific and Statistical Database
Management, pages 143–146.

Hammer, M. and Niamir, B. (1979). A heuristic approach to attribute partitioning. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 93–101.

Hammer, M. and Shipman, D. W. (1980). Reliability mechanisms for SDD-1: A system for
distributed databases. ACM Trans. Database Syst., 5(4):431–466.

Han, M. (2015). On improving distributed Pregel-like graph processing systems. Master’s thesis,
University of Waterloo, David R. Cheriton School of Computer Science.

Han, M. and Daudjee, K. (2015). Giraph unchained: Barrierless asynchronous parallel execution
in Pregel-like graph processing systems. Proc. VLDB Endowment, 8(9):950–961.

Härder, T. and Reuter, A. (1983). Principles of transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287–317.

Hartig, O. (2012). SPARQL for a web of linked data: Semantics and computability. In Proc. 9th
Extended Semantic Web Conf., pages 8–23.

Hartig, O. (2013a). An overview on execution strategies for linked data queries. Datenbank-
Spektrum, 13(2):89–99.

Hartig, O. (2013b). SQUIN: a traversal based query execution system for the web of linked data.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1081–1084.

Harvey, N. J. A., Jones, M. B., Saroiu, S., Theimer, M., and Wolman, A. (2003). SkipNet: A
scalable overlay network with practical locality properties. In Proc. 4th USENIX Symp. on
Internet Tech. and Systems.

References 643

He, B., Chang, K. C.-C., and Han, J. (2004). Mining complex matchings across web query
interfaces. In Proc. ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 3–10.

He, Q. and Ling, T. W. (2006). An ontology-based approach to the integration of entity-relationship
schemas. Data & Knowl. Eng., 58(3):299–326.

Hedley, Y. L., Younas, M., James, A., and Sanderson, M. (2004a). A two-phase sampling technique
for information extraction from hidden web databases. In WIDM04, pages 1–8.

Hedley, Y.-L., Younas, M., James, A. E., and Sanderson, M. (2004b). Query-related data extraction
of hidden web documents. In Proc. 27th Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 558–559.

Heinze, T., Pappalardo, V., Jerzak, Z., and Fetzer, C. (2014). Auto-scaling techniques for elastic
data stream processing. In Proc. 8th Int. Conf. Distributed Event-Based Systems, pages 318–
321.

Heinze, T., Roediger, L., Meister, A., Ji, Y., Jerzak, Z., and Fetzer, C. (2015). Online parameter
optimization for elastic data stream processing. In Proc. 6th ACM Symp. on Cloud Computing,
pages 276–287.

Helal, A. A., Heddaya, A. A., and Bhargava, B. B. (1997). Replication Techniques in Distributed
Systems. Kluwer Academic Publishers.

Hellerstein, J. M., Haas, P., and Wang, H. (1997). Online aggregation. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 171–182.

Hellerstein, J. M., Franklin, M. J., Chandrasekaran, S., Deshpande, A., Hildrum, K., Madden, S.,
Raman, V., and Shah, M. A. (2000). Adaptive query processing: Technology in evolution. Q.
Bull. IEEE TC on Data Eng., 23(2):7–18.

Herlihy, M. (1987). Concurrency versus availability: Atomicity mechanisms for replicated data.
ACM Trans. Comp. Syst., 5(3):249–274.

Herman, D. and Verjus, J. P. (1979). An algorithm for maintaining the consistency of multiple
copies. In Proc. 1st IEEE Int. Conf. on Distributed Computing Systems, pages 625–631.

Hersh, W. (2001). Managing gigabytes - compressing and indexing documents and images (second
edition). Inf. Retr., 4(1):79–80.

Hevner, A. R. and Schneider, G. M. (1980). An integrated design system for distributed database
networks. In Digest of Papers - COMPCON, pages 459–465.

Hirate, Y., Kato, S., and Yamana, H. (2006). Web structure in 2005. In Proc. 4th Int. Workshop on
Algorithms and Models for the Web-Graph, pages 36 – 46.

Hoffer, H. A. and Severance, D. G. (1975). The use of cluster analysis in physical data base design.
In Proc. 1st Int. Conf. on Very Data Bases, pages 69–86.

Hoffer, J. A. (1975). A Clustering Approach to the Generation of Subfiles for the Design of a
Computer Data Base. PhD thesis, Department of Operations Research, Cornell University,
Ithaca, N.Y.

Hoffman, J. L. (1977). Model Methods for Computer Security and Privacy. Prentice-Hall.
Holze, M. and Ritter, N. (2008). Autonomic databases: Detection of workload shifts with n-gram-

models. In Proc. 12th East European Conf. Advances in Databases and Information Systems,
pages 127–142.

Hong, W. (1992). Exploiting inter-operation parallelism in XPRS. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 19–28.

Hong, W. and Stonebraker, M. (1993). Optimization of parallel query execution plans in XPRS.
Distrib. Parall. Databases, 1(1):9–32.

Hoque, I. and Gupta, I. (2013). LFGraph: simple and fast distributed graph analytics. In Proc. 1st
ACM SIGOPS Conf. on Timely Results in Operating Syst., pages 9:1–9:17.

Hortonworks. (2014). White paper: A modern data architecture with Apache Hadoop: the journey
to the data lake. Technical report, Hortonworks. Last accessed August 2018.

Hsiao, H. I. and DeWitt, D. (1991). A performance study of three high-availability data replication
strategies. In Proc. Int. Conf. on Parallel and Distributed Information Systems, pages 18–28.

Huang, Z. and He, Y. (2018). Auto-detect: Data-driven error detection in tables. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 1377–1392.

644 References

Huebsch, R., Hellerstein, J., Lanham, N., Loo, B. T., Shenker, S., and Stoica, I. (2003). Querying
the internet with pier. In Proc. 29th Int. Conf. on Very Large Data Bases, pages 321–332.

Hull, R. (1997). Managing semantic heterogeneity in databases: A theoretical perspective. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 51–61.

Hwang, J., Balazinska, M., Rasin, A., Cetintemel, U., Stonebraker, M., and Zdonik, S. (2005).
High-availability algorithms for distributed stream processing. In Proc. 21st Int. Conf. on Data
Engineering, pages 779–790.

Idreos, S. (2010). Database Cracking: Towards Auto-tuning Database Kernels. PhD thesis,
University of Amsterdam.

Idreos, S., Kersten, M. L., and Manegold, S. (2007a). Updating a cracked database. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 413–424.

Idreos, S., Kersten, M. L., and Manegold, S. (2007b). Database cracking. In Proc. 3rd Biennial
Conf. on Innovative Data Systems Research, pages 68–78.

Idreos, S., Kersten, M. L., and Manegold, S. (2009). Self-organizing tuple reconstruction in
column-stores. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 297–308.

Idreos, S., Alagiannis, I., Johnson, R., and Ailamaki, A. (2011). Here are my data files. here are
my queries. where are my results? In Proc. 5th Biennial Conf. on Innovative Data Systems
Research, pages 57–68.

Ilyas, I. and Chu, X. (2019). Principles of Data Cleaning. ACM Books.
Ilyas, I. F. and Chu, X. (2015). Trends in cleaning relational data: Consistency and deduplication.

Foundations and Trends in Databases, 5(4):281–393.
Ilyas, I. F., Beskales, G., and Soliman, M. A. (2008). A survey of top-k query processing techniques

in relational database systems. ACM Comput. Surv., 40(4):1–58.
Ioannidis, Y. and Wong, E. (1987). Query optimization by simulated annealing. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 9–22.
Ipeirotis, P. G. and Gravano, L. (2002). Distributed search over the hidden web: Hierarchical

database sampling and selection. In Proc. 28th Int. Conf. on Very Large Data Bases, pages
394–405.

Irani, K. B. and Khabbaz, N. G. (1982). A methodology for the design of communication networks
and the distribution of data in distributed computer systems. IEEE Trans. Comput., C-31(5):
419–434.

Isloor, S. and Marsland, T. (1980). The deadlock problem : An overview. Computer, 13(9):58–78.
Ito, J., Narula, N., and Ali, R. (2017). The blockchain will do to the financial system what the

internet did to media. Accessible at https://hbr.org/2017/03/the-blockchain-will-do-to-banks-
and-law-firms-what-the-internet-did-to-media/. Last accessed February 2019.

Jagadish, H. V., Ooi, B. C., and Vu, Q. H. (2005). BATON: A balanced tree structure for peer-to-
peer networks. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 661–672.

Jagadish, H. V., Ooi, B. C., Tan, K.-L., Vu, Q. H., and Zhang, R. (2006). Speeding up search in
peer-to-peer networks with a multi-way tree structure. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 1–12.

Jajodia, S. and Mutchler, D. (1987). Dynamic voting. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 227–238.

Jajodia, S. and Sandhu, R. S. (1991). Towards a multilevel secure relational data model. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 50–59.

Jajodia, S., Atluri, V., Keefe, T. F., McCollum, C. D., and Mukkamala, R. (2001). Multilevel
security transaction processing. J. Computer Security, 9(3):165–195.

Jhingran, A. D., Mattos, N., and Pirahesh, H. (2002). Information integration: A research agenda.
IBM Systems J., 41(4):555–562.

Jimenez-Peris, R. and Patiño Martinez, M. (2011). System and method for highly scalable
decentralized and low contention transactional processing. US Patent 9,760,597 B2, EU Patent
2780832.

Jiménez-Peris, R., Patiño-Martínez, M., and Alonso, G. (2002). Non-intrusive, parallel recovery
of replicated data. In Proc. 21st Symp. on Reliable Distributed Systems, pages 150–159.

https://hbr.org/2017/03/the-blockchain-will-do-to-banks-and-law-firms-what-the-internet-did-to-media/
https://hbr.org/2017/03/the-blockchain-will-do-to-banks-and-law-firms-what-the-internet-did-to-media/

References 645

Jiménez-Peris, R., Patiño-Martínez, M., Kemme, B., and Alonso, G. (2002). Improving the
scalability of fault-tolerant database clusters. In Proc. 22nd IEEE Int. Conf. on Distributed
Computing Systems, pages 477–484.

Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G., and Kemme, B. (2003). Are quorums an
alternative for data replication? ACM Trans. Database Syst., 28(3):257–294.

Johnson, T., Muthukrishnan, S., Shkapenyuk, V., and Spatscheck, O. (2005). A heartbeat
mechanism and its application in Gigascope. In Proc. 31st Int. Conf. on Very Large Data
Bases, pages 1079–1088.

Johnson, T., Muthukrishnan, S. M., Shkapenyuk, V., and Spatscheck, O. (2008). Query-aware
partitioning for monitoring massive network data streams. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 1135–1146.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning: A survey. J.
Autom. Reasoning, 4:237–285.

Kalogeraki, V., Gunopulos, D., and Zeinalipour-Yazti, D. (2002). A local search mechanism for
peer-to-peer networks. In Proc. 11th Int. Conf. on Information and Knowledge Management,
pages 300–307.

Kambayashi, Y., Yoshikawa, M., and Yajima, S. (1982). Query processing for distributed databases
using generalized semi–joins. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 151–160.

Kang, J., Naughton, J., and Viglas, S. (2003). Evaluating window joins over unbounded streams.
In Proc. 19th Int. Conf. on Data Engineering, pages 341–352.

Kaoudi, Z. and Manolescu, I. (2015). RDF in the clouds: A survey. VLDB J., 24:67–91.
Kara, A., Ngo, H. Q., Nikolic, M., Olteanu, D., and Zhang, H. (2019). Counting triangles under

updates in worst-case optimal time. In Proc. 22nd Int. Conf. on Database Theory, pages 1:1–
1:18.

Karlapalem, K. and Navathe, S. B. (1994). Materialization of redesigned distributed relational
databases. Technical Report HKUST-CS94-14, Hong Kong University of Science and
Technology, Department of Computer Science.

Karlapalem, K., Navathe, S. B., and Ammar, M. (1996). Optimal redesign policies to support
dynamic processing of applications on a distributed relational database system. Inf. Syst., 21
(4):353–367.

Karypis, G. and Kumar, V. (1995). Multilevel graph partitioning schemes. In Proc. 1995 Int. Conf.
on Parallel Processing, pages 113–122.

Kashyap, V. and Sheth, A. P. (1996). Semantic and schematic similarities between database objects:
A context-based approach. VLDB J., 5(4):276–304.

Katz, B. and Lin, J. (2002). Annotating the world wide web using natural language. In Proc. 2nd
Workshop on NLP and XML, pages 1–8.

Kazerouni, L. and Karlapalem, K. (1997). Stepwise redesign of distributed relational databases.
Technical Report HKUST-CS97-12, Hong Kong University of Science and Technology,
Department of Computer Science.

Keeton, K., Patterson, D., and Hellerstein, J. M. (1998). A case for intelligent disks (idisks). ACM
SIGMOD Rec., 27(3):42–52.

Keller, A. M. (1982). Update to relational databases through views involving joins. In Proc. 2nd
Int. Conf. on Databases: Improving Usability and Responsiveness, pages 363–384.

Kementsietsidis, A., Arenas, M., and Miller, R. J. (2003). Managing data mappings in the hyperion
project. In Proc. 19th Int. Conf. on Data Engineering, pages 732–734.

Kemme, B. and Alonso, G. (2000a). A new approach to developing and implementing eager
database replication protocols. ACM Trans. Database Syst., 25(3):333–379.

Kemme, B. and Alonso, G. (2000b). Don’t be lazy, be consistent: Postgres-R, a new way to
implement database replication. In Proc. 26th Int. Conf. on Very Large Data Bases, pages
134–143.

Kemme, B., Bartoli, A., and Babaoglu, O. (2001). Online reconfiguration in replicated databases
based on group communication. In Proc. Int. Conf. on Dependable Systems and Networks,
pages 117–130.

646 References

Kemme, B., Peris, R. J., and Patino-Martinez, M. (2010). Database Replication. Morgan &
Claypool.

Kemper, A. and Neumann, T. (2011). HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In Proc. 27th Int. Conf. on Data Engineering,
pages 195–206.

Kermarrec, A.-M. and van Steen, M. (2007). Gossiping in distributed systems. Operating Systems
Rev., 41(5):2–7.

Kermarrec, A.-M., Rowstron, A., Shapiro, M., and Druschel, P. (2001). The icecube approach to
the reconciliation of diverging replicas. In Proc. ACM SIGACT-SIGOPS 20th Symp. on the
Principles of Distributed Computing, pages 210–218.

Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis, P. (2013). Mizan:
A system for dynamic load balancing in large-scale graph processing. In Proc. 8th ACM
SIGOPS/EuroSys European Conf. on Comp. Syst., pages 169–182.

Khoshafian, S. and Valduriez, P. (1987). Sharing persistence and object-orientation: A database
perspective. In Int. Workshop on Database Programming Languages, pages 181–205.

Kim, W. and Seo, J. (1991). Classifying schematic and data heterogeneity in multidatabase
systems. Computer, 24(12):12–18.

Kirsch, J. and Amir, Y. (2008). Paxos for system builders: An overview. In Proc. 2nd Workshop
on Large-Scale Distributed Systems and Middleware, pages 3:1–3:6.

Kitsuregawa, M. and Ogawa, Y. (1990). Bucket spreading parallel hash: A new, robust, parallel
hash join method for data skew in the super database computer. In Proc. 16th Int. Conf. on Very
Large Data Bases, pages 210–221.

Kitsuregawa, M., Tanaka, H., and Moto-Oka, T. (1983). Application of hash to data base machine
and its architecture. New Generation Computing, 1(1):63–74.

Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., and Vassilvitskii, S. (2014). Connected
components in MapReduce and beyond. In Proc. 5th ACM Symp. on Cloud Computing, pages
18:1–18:13.

Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999). The web as a
graph: Measurements, models, and methods. In Proc. 5th Annual Int. Conf. Computing and
Combinatorics, pages 1–17.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J. ACM, 46(5):
604–632.

Knapp, E. (1987). Deadlock detection in distributed databases. ACM Comput. Surv., 19(4):303–
328.

Knuth, D. E. (1973). The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley.

Koch, C. (2001). Data Integration against Multiple Evolving Autonomous Schemata. Ph.D. thesis,
Technical University of Vienna.

Koch, C. (2010). Incremental query evaluation in a ring of databases. In Proc. 29th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, pages 87–98.

Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., and Shaikhha, A. (2014).
DBToaster: higher-order delta processing for dynamic, frequently fresh views. VLDB J., 23(2):
253–278.

Kohler, W. H. (1981). A survey of techniques for synchronization and recovery in decentralized
computer systems. ACM Comput. Surv., 13(2):149–183.

Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris, R., Pau, R., and Pereira, J. (2016a). The
cloudmdsql multistore system. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 2113–2116.

Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., and Pereira, J. (2016b).
CloudMdsQL: querying heterogeneous cloud data stores with a common language. Distrib.
Parall. Databases, 34(4):463–503.

Kolev, B., Levchenko, O., Pacitti, E., Valduriez, P., Vilaça, R., Gonçalves, R. C., Jiménez-Peris, R.,
and Kranas, P. (2018). Parallel polyglot query processing on heterogeneous cloud data stores
with LeanXcale. In Proc. 2018 IEEE Int. Conf. on Big Data, pages 1757–1766.

References 647

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
The MIT Press.

Kollias, J. G. and Hatzopoulos, M. (1981). Criteria to aid in solving the problem of allocating
copies of a file in a computer network. Comp. J., 24(1):29–30.

Konopnicki, D. and Shmueli, O. (1995). W3QS: A query system for the World Wide Web. In
Proc. 21th Int. Conf. on Very Large Data Bases, pages 54–65.

Kossmann, D. (2000). The state of the art in distributed query processing. ACM Comput. Surv., 32
(4):422–469.

Krishnamurthy, R., Litwin, W., and Kent, W. (1991). Language features for interoperability of
databases with schematic discrepancies. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 40–49.

Kshemkalyani, A. and Singhal, M. (1994). On characterization and correctness of distributed
deadlocks. J. Parall. and Distrib. Comput., 22(1):44–59.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000). Oceanstore: an architecture for
global-scale persistent storage. In ACM Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 190–201.

Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J. M., Ramasamy,
K., and Taneja, S. (2015). Twitter heron: Stream processing at scale. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 239–250.

Kumar, A. and Segev, A. (1993). Cost and availability tradeoffs in replicated data concurrency
control. ACM Trans. Database Syst., 18(1):102–131.

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal, E. (2000).
The Web as a graph. In Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 1–10.

Kumar, V., editor. (1996). Performance of Concurrency Control Mechanisms in Centralized
Database Systems. Prentice-Hall.

Kung, H. and Robinson, J. (1981). On optimistic methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226.

Kwok, C. C. T., Etzioni, O., and Weld, D. S. (2001). Scaling question answering to the web. In
Proc. 10th Int. World Wide Web Conf., pages 150–161.

Ladwig, G. and Tran, T. (2010). Linked data query processing strategies. In Proc. 9th Int. Semantic
Web Conf., pages 453–469.

Ladwig, G. and Tran, T. (2011). SIHJoin: Querying remote and local linked data. In Proc. 8th
Extended Semantic Web Conf., pages 139–153.

Lage, J. P., da Silva, A. S., Golgher, P. B., and Laender, A. H. F. (2002). Collecting hidden
web pages for data extraction. In Proc. 4th Int. Workshop on Web Information and Data
Management, pages 69–75.

Lakshmanan, L. V. S., Sadri, F., and Subramanian, I. N. (1996). A declarative language for
querying and restructuring the web. In Proc. 6th Int. Workshop on Research Issues on Data
Eng., pages 12–21.

Lam, S. S. and Özsu, M. T. (2002). Querying web data – the WebQA approach. In Proc. 3rd Int.
Conf. on Web Information Systems Eng., pages 139–148.

Lamport, L. (1998). The part-time parliament. ACM Trans. Comp. Syst., 16(2):133–169.
Lamport, L. (2001). Paxos made simple. ACM SIGACT News, 32(4):51–58.
Lampson, B. and Sturgis, H. (1976). Crash recovery in distributed data storage system. Technical

report, Xerox Palo Alto Research Center, Palo Alto, Calif.
Landers, T. and Rosenberg, R. L. (1982). An overview of multibase. In Schneider, H.-J., editor,

Distributed Data Bases, pages 153–184. North-Holland, Amsterdam.
Langville, A. N. and Meyer, C. D. (2006). Google’s PageRank and Beyond. Princeton University

Press.
Lanzelotte, R., Valduriez, P., Zaït, M., and Ziane, M. (1994). Industrial-strength parallel query

optimization: issues and lessons. Inf. Syst., 19(4):311–330.

648 References

Larriba-Pey, J. L., Martínez-Bazán, N., and Domínguez-Sal, D. (2014). Introduction to graph
databases. In Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P., Lausen, G.,
and Weikum, G., editors, Reasoning Web: Reasoning on the Web in the Big Data Era, pages
171–194. Springer.

Larson, P.-Å., Blanas, S., Diaconu, C., Freedman, C., Patel, J. M., and Zwilling, M. (2011).
High-performance concurrency control mechanisms for main-memory databases. Proc. VLDB
Endowment, 5(4):298–309.

Law, Y.-N., Wang, H., and Zaniolo, C. (2004). Query languages and data models for database
sequences and data streams. In Proc. 30th Int. Conf. on Very Large Data Bases, pages 492–
503.

Lawrence, S. and Giles, C. L. (1998). Searching the world wide web. Science, 280(5360):98–100.
Lawrence, S. and Giles, C. L. (1999). Accessibility of information on the web. Nature, 400(6740):

107–9.
Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D., and Moon, B. (2012). Parallel data processing with

mapreduce: A survey. ACM SIGMOD Rec., 40(4):11–20.
LeFevre, J., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N., and Carey, M. J.

(2014). MISO: Souping up big data query processing with a multistore system. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 1591–1602.

Leis, V., Boncz, P. A., Kemper, A., and Neumann, T. (2014). Morsel-driven parallelism: a NUMA-
aware query evaluation framework for the many-core age. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 743–754.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W. D., Gupta, A., Henessy, J., Horowitz, M.,
and Lam, M. S. (1992). The Stanford Dash multiprocessor. Computer, 25(3):63–79.

Lenzerini, M. (2002). Data integration: a theoretical perspective. In Proc. ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, pages 233–246.

Levandoski, J. J., Larson, P. Å., and Stoica, R. (2013). Identifying hot and cold data in main-
memory databases. In Proc. 29th Int. Conf. on Data Engineering, pages 26–37.

Levin, K. D. and Morgan, H. L. (1975). Optimizing distributed data bases: A framework for
research. In Proc. National Computer Conf, pages 473–478.

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., and Srivastava, D. (1995). Answering queries using
views. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 95–
104.

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996a). The world wide web as a collection of
views: Query processing in the information manifold. In Proc. Workshop on Materialized
Views: Techniques and Applications, pages 43–55.

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996b). Querying heterogeneous information sources
using source descriptions. In Proc. 22th Int. Conf. on Very Large Data Bases, pages 251–262.

Li, F., Ooi, B. C., Özsu, M. T., and Wu, S. (2014). Distributed data management using MapReduce.
ACM Comput. Surv., 46(3):Article No. 31.

Li, H.-G., Chen, S., Tatemura, J., Agrawal, D., Candan, K. S., and Hsiung, W.-P. (2006). Safety
guarantee of continuous join queries over punctuated data streams. In Proc. 32nd Int. Conf. on
Very Large Data Bases, pages 19–30.

Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. a. (2005). Semantics and evaluation
techniques for window aggregates in data streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 311–322.

Li, W.-S. and Clifton, C. (2000). Semint: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data & Knowl. Eng., 33(1):49–84.

Li, W.-S., Clifton, C., and Liu, S.-Y. (2000). Database integration using neural networks:
Implementation and experiences. Knowl. and Information Syst., 2(1):73–96.

Lim, L., Wang, M., Padmanabhan, S., Vitter, J. S., and Agarwal, R. (2003). Dynamic maintenance
of web indexes using landmarks. In Proc. 12th Int. World Wide Web Conf., pages 102–111.

Lima, A., Mattoso, M., and Valduriez, P. (2004). OLAP query processing in a database cluster. In
Proc. 10th Int. Euro-Par Conf., pages 355–362.

References 649

Lin, Q., Chang, P., Chen, G., Ooi, B. C., Tan, K., and Wang, Z. (2016). Towards a Non-2PC
transaction management in distributed database systems. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 1659–1674.

Lin, Y., Kemme, B., Patiño Martínez, M., and Jiménez-Peris, R. (2005). Middleware based data
replication providing snapshot isolation. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 419–430.

Litwin, W., Neimat, M.-A., and Schneider, D. A. (1993). LH* – linear hashing for distributed files.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 327–336.

Liu, B., Zhu, Y., and Rundensteiner, E. (2006). Run-time operator state spilling for memory
intensive long running queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 347–358.

Livny, M., Khoshafian, S., and Boral, H. (1987). Multi-disk management. In Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pages 69–77.

Lohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B., Selinger, P., and Wilms, P. (). Query
processing in R*. pages 31–47.

Lomet, D., Feket, A., Wang, R., and Ward, P. (2012). Multi-version concurrency via timestamp
range conflict management. In Proc. 28th Int. Conf. on Data Engineering, pages 714–725.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., and Guestrin, C. (2010). GraphLab: new framework
for parallel machine learning. In Proc. 26th Conf. on Uncertainty in Artificial Intelligence,
pages 340–349.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M. (2012).
Distributed graphlab: A framework for machine learning in the cloud. Proc. VLDB Endowment,
5(8):716–727.

Lu, H., Shan, M.-C., and Tan, K.-L. (1991). Optimization of multi-way join queries for parallel
execution. In Proc. 17th Int. Conf. on Very Large Data Bases, pages 549–560.

Lu, H., Ooi, B., and Goh, C. (1992). On global multidatabase query optimization. ACM SIGMOD
Rec., 21(4):6–11.

Lu, H., Ooi, B., and Goh, C. (1993). Multidatabase query optimization: Issues and solutions. In
Proc. 3rd Int. Workshop on Res. Issues in Data Eng, pages 137–143.

Lugowski, A., Alber, D., Buluç, A., Gilbert, J. R., Reinhardt, S., Teng, Y., and Waranis, A. (2012).
A flexible open-source toolbox for scalable complex graph analysis. In Proc. 2012 SIAM Int.
Conf. on Data Mining, pages 930–941.

Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J. (2007). Challenges in parallel graph
processing. Parallel Processing Letters, 17(01):5–20.

Lunt, T. F. and Fernández, E. B. (1990). Database security. ACM SIGMOD Rec., 19(4):90–97.
Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002). Search and replication in unstructured

peer-to-peer networks. In Proc. 16th Annual Int. Conf. on Supercomputing, pages 84–95.
Lynch, N. (1983a). Multilevel atomicity: A new correctness criterion for database concurrency

control. ACM Trans. Database Syst., 8(4):484–502.
Lynch, N. (1983b). Concurrency control for resilient nested transactions. In Proc. 2nd ACM

SIGACT–SIGMOD Symp. on Principles of Database Systems, pages 166–181.
Lynch, N. and Merritt, M. (1986). Introduction to the theory of nested transactions. Technical

Report MIT/LCS/TR-367, Massachusetts Institute of Technology, Cambridge, Mass.
Lynch, N., Merritt, M., Weihl, W. E., and Fekete, A. (1993). Atomic Transactions in Concurrent

Distributed Systems. Morgan Kaufmann.
Mackert, L. and Lohman, G. (1986a). R* optimizer validation and perfromance evaluation for

distributed queries. In Proc. 12th Int. Conf. on Very Large Data Bases, pages 149–159.
Mackert, L. F. and Lohman, G. (1986b). R* optimizer validation and performance evaluation for

local queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 84–95.
Madden, S. and Franklin, M. J. (2002). Fjording the stream: An architecture for queries over

streaming sensor data. In Proc. 18th Int. Conf. on Data Engineering, pages 555–566.
Madden, S., Shah, M., Hellerstein, J., and Raman, V. (2002a). Continuously adaptive continuous

queries over streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 49–60.

650 References

Madden, S., Shah, M. A., Hellerstein, J. M., and Raman, V. (2002b). Continuously adaptive
continuous queries over streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 49–60.

Madhavan, J., Bernstein, P., and Rahm, E. (2001). Generic schema matching with Cupid. In Proc.
27th Int. Conf. on Very Large Data Bases, pages 49–58.

Mahmoud, . A. and Riordon, J. S. (1976). Optimal allocation of resources in distributed
information networks. ACM Trans. Database Syst., 1(1):66–78.

Maiyya, S., Zakhary, V., Agrawal, D., and El Abbadi, A. (2018). Database and distributed comput-
ing fundamentals for scalable, fault-tolerant, and consistent maintenance of blockchains. Proc.
VLDB Endowment, 11(12):2098–2101.

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G.
(2010). Pregel: a system for large-scale graph processing. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 135–146.

Manber, U. and Myers, G. (1990). Suffix arrays: a new method for on-line string searches. In Proc.
1st Annual ACM-SIAM Symp. on Discrete Algorithms, pages 319–327.

Manegold, S., Boncz, P. A., and Kersten, M. L. (2002). Optimizing main-memory join on modern
hardware. IEEE Trans. Knowl. and Data Eng., 14(4):709–730.

Manolescu, I., Florescu, D., and Kossmann, D. (2001). Answering XML queries on heterogeneous
data sources. In Proc. 27th Int. Conf. on Very Large Data Bases, pages 241–250.

Martins, V. and Pacitti, E. (2006). Dynamic and distributed reconciliation in p2p-dht networks. In
uropean Conf. on Parallel Computing (Euro-Par), pages 337–349.

Martins, V., Akbarinia, R., Pacitti, E., and Valduriez, P. (2006a). Reconciliation in the APPA P2P
system. In Proc. IEEE Int. Conf. on Parallel and Distributed Systems, pages 401–410.

Martins, V., Pacitti, E., and Valduriez, P. (2006b). Survey of data replication in P2P systems.
Technical Report 6083, INRIA, Rennes, France.

Martins, V., Pacitti, E., Dick, M. E., and Jimenez-Peris, R. (2008). Scalable and topology-aware
reconciliation on P2P networks. Distrib. Parall. Databases, 24(1–3):1–43.

McBrien, P. and Poulovassilis, A. (2003). Defining peer-to-peer data integration using both as
view rules. In Proc. 1st Int. Workshop on Databases, Information Systems and Peer-to-Peer
Computing, pages 91–107.

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (1999). A machine learning approach to
building domain-specific search engines. In Proc. 16th Int. Joint Conf. on AI.

McCann, R., AlShebli, B., Le, Q., Nguyen, H., Vu, L., and Doan, A. (2005). Mapping maintenance
for data integration systems. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 1018–
1029.

McCormick, W. T., Schweitzer, P. J., and White, T. W. (1972). Problem decomposition and data
reorganization by a clustering technique. Oper. Res., 20(5):993–1009.

McCune, R. R., Weninger, T., and Madey, G. (2015). Thinking like a vertex: A survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput. Surv., 48(2):
25:1–25:39.

Mehta, M. and DeWitt, D. (1995). Managing intra-operator parallelism in parallel database
systems. In Proc. 21th Int. Conf. on Very Large Data Bases.

Melnik, S., Raghavan, S., Yang, B., and Garcia-Molina, H. (2001). Building a distributed full-text
index for the web. In Proc. 10th Int. World Wide Web Conf., pages 396–406.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proc. 18th Int. Conf. on Data
Engineering, pages 117–128.

Menasce, D. A. and Muntz, R. R. (1979). Locking and deadlock detection in distributed databases.
IEEE Trans. Softw. Eng., SE-5(3):195–202.

Mendelzon, A. O., Mihaila, G. A., and Milo, T. (1997). Querying the World Wide Web. Int. J.
Digit. Libr., 1(1):54–67.

Meng, W., Yu, C., Kim, W., Wang, G., Phan, T., and Dao, S. (1993). Construction of relational
front-end for object-oriented database systems. In Proc. 9th Int. Conf. on Data Engineering,
pages 476–483.

References 651

Milán-Franco, J. M., Jiménez-Peris, R., Patiño-Martínez, M., and Kemme, B. (2004). Adaptive
middleware for data replication. In Proc. ACM/IFIP/USENIX 5th Int. Middleware Conf., pages
175–194.

Miller, R. J., Haas, L. M., and Hernández, M. A. (2000). Schema mapping as query discovery. In
Proc. 26th Int. Conf. on Very Large Data Bases, pages 77–88.

Miller, R. J., Hernández, M. A., Haas, L. M., Yan, L., Ho, C. T. H., Fagin, R., and Popa, L. (2001).
The Clio project: Managing heterogeneity. ACM SIGMOD Rec., 31(1):78–83.

Milo, T. and Zohar, S. (1998). Using schema matching to simplify heterogeneous data translation.
In Proc. 24th Int. Conf. on Very Large Data Bases, pages 122–133.

Minoura, T. and Wiederhold, G. (1982). Resilient extended true-copy token scheme for a
distributed database system. IEEE Trans. Softw. Eng., SE-8(3):173–189.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.
Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE Trans.

Parall. Dist. Sys., 12(10):1094–1104.
Mohan, C. (1979). Data base design in the distributed environment. Working Paper WP-7902,

Department of Computer Sciences, University of Texas at Austin.
Mohan, C. and Lindsay, B. (1983). Efficient commit protocols for the tree of processes model

of distributed transactions. In Proc. ACM SIGACT-SIGOPS 2nd Symp. on the Principles of
Distributed Computing, pages 76–88.

Mohan, C. and Yeh, R. T. (1978). Distributed Data Base Systems: A Framework for Data Base
Design. In Distributed Data Bases, Infotech State-of-the-Art Report. Infotech.

Mohan, C., Lindsay, B., and Obermarck, R. (1986). Transaction management in the r* distributed
database management system. ACM Trans. Database Syst., 11(4):378–396.

Morgan, H. L. and Levin, K. D. (1977). Optimal program and data location in computer networks.
Commun. ACM, 20(5):315–322.

Moss, E. (1985). Nested Transactions. M.I.T. Press.
Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Foundations and Trends

in Theoretical Computer Science. NOW Publishers.
Naacke, H., Tomasic, A., and Valduriez, P. (1999). Validating mediator cost models with DISCO.

Networking and Information Systems Journal, 2(5):639–663.
Najork, M. and Wiener, J. L. (2001). Breadth-first crawling yields high-quality pages. In Proc.

10th Int. World Wide Web Conf., pages 114–118.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Accessible at https://bitcoin.

org/bitcoin.pdf/. Last accessed February 2019.
Nasir, M. A. U., Morales, G. D. F., García-Soriano, D., Kourtellis, N., and Serafini, M. (2015). The

power of both choices: Practical load balancing for distributed stream processing engines. In
Proc. 31st Int. Conf. on Data Engineering, pages 137–148.

Nasir, M. A. U., Morales, G. D. F., Kourtellis, N., and Serafini, M. (2016). When two choices are
not enough: Balancing at scale in distributed stream processing. In Proc. 32nd Int. Conf. on
Data Engineering, pages 589–600.

Naumann, F., Ho, C.-T., Tian, X., Haas, L. M., and Megiddo, N. (2002). Attribute classification
using feature analysis. In Proc. 18th Int. Conf. on Data Engineering, page 271.

Navathe, S. B., Ceri, S., Wiederhold, G., and Dou, J. (1984). Vertical partitioning of algorithms
for database design. ACM Trans. Database Syst., 9(4):680–710.

Nejdl, W., Siberski, W., and Sintek, M. (2003). Design issues and challenges for rdf- and schema-
based peer-to-peer systems. ACM SIGMOD Rec., 32(3):41–46.

Nepal, S. and Ramakrishna, M. (1999). Query processing issues in image (multimedia) databases.
In Proc. 15th Int. Conf. on Data Engineering, pages 22–29.

Neumann, T. and Weikum, G. (2008). RDF-3X: a RISC-style engine for RDF. Proc. VLDB
Endowment, 1(1):647–659.

Neumann, T. and Weikum, G. (2009). The RDF-3X engine for scalable management of RDF data.
VLDB J., 19(1):91–113.

https://bitcoin.org/bitcoin.pdf/
https://bitcoin.org/bitcoin.pdf/

652 References

Newman, M. E. J., Watts, D. J., and Strogatz, S. H. (2002). Random graph models of social
networks. In (Sackler NAS Colloquium) Self-Organized Complexity in the Physical, Biological,
and Social Sciences, pages 2566–2573. National Academy of Sciences.

Niamir, B. (1978). Attribute partitioning in a self–adaptive relational database system. Technical
Report 192, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Mass.

Nicolas, J. M. (1982). Logic for improving integrity checking in relational data bases. Acta
Informatica, 18:227–253.

Nikolic, M. and Olteanu, D. (2018). Incremental view maintenance with triple lock factorization
benefits. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 365–380.

Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., and Grot, B. (2014). Scale-out NUMA. In
Architectural Support for Programming Languages and Operating Systems, ASPLOS, pages
3–18.

Obermack, R. (1982). Distributed deadlock detection algorithm. ACM Trans. Database Syst., 7
(2):187–208.

Okcan, A. and Riedewald, M. (2011). Processing theta-joins using MapReduce. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 949–960.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. (2008). Pig latin: a not-so-foreign
language for data processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1099–1110.

Ong, K. W., Papakonstantinou, Y., and Vernoux, R. (2014). The SQL++ semi-structured data
model and query language: A capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL
databases. CoRR/abs/1405.3631.

Ongaro, D. and Ousterhout, J. (2014). In search of an understandable consensus algorithm. In
Proc. USENIX 2014 Annual Technical Conf., pages 305–320.

Ooi, B., Shu, Y., and Tan, K.-L. (2003). Relational data sharing in peer-based data management
systems. ACM SIGMOD Rec., 32(3):59–64.

Ouksel, A. M. and Sheth, A. P. (1999). Semantic interoperability in global information systems:
A brief introduction to the research area and the special section. ACM SIGMOD Rec., 28(1):
5–12.

Özsoyoglu, Z. M. and Zhou, N. (1987). Distributed query processing in broadcasting local area
networks. In Proc. 20th Hawaii Int. Conf. on System Sciences, pages 419–429.

Özsu, M. T. (2016). A survey of RDF data management systems. Front. Comput. Sci., 10(3):
418–432.

Pacaci, A. and Özsu, M. T. (2018). Distribution-aware stream partitioning for distributed stream
processing systems. In Proc. 5th ACM SIGMOD Workshop on Algorithms and Systems for
MapReduce and Beyond, pages 6:1–6:10.

Pacitti, E. and Simon, E. (2000). Update propagation strategies to improve freshness in lazy master
replicated databases. VLDB J., 8(3-4):305–318.

Pacitti, E., Simon, E., and de Melo, R. (1998). Improving data freshness in lazy master schemes.
In Proc. 18th IEEE Int. Conf. on Distributed Computing Systems, pages 164–171.

Pacitti, E., Minet, P., and Simon, E. (1999). Fast algorithms for maintaining replica consistency
in lazy master replicated databases. In Proc. 25th Int. Conf. on Very Large Data Bases, pages
126–137.

Pacitti, E., Coulon, C., Valduriez, P., and Özsu, M. T. (2005). Preventive replication in a database
cluster. Distrib. Parall. Databases, 18(3):223–251.

Pacitti, E., Valduriez, P., and Mattoso, M. (2007). Grid data management: open problems and new
issues. Journal of Grid Computing, 5(3):273–281.

Pacitti, E., Akbarinia, R., and Dick, M. E. (2012). P2P Techniques for Decentralized Applications.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford University.

Palopoli, L. (2003). Experiences using DIKE, a system for supporting cooperative information
system and data warehouse design. Inf. Syst., 28(7):835–865.

References 653

Palopoli, L., Saccà, D., and Ursino, D. (1998). Semi-automatic semantic discovery of properties
from database schemas. In Proc. 2nd Int. Conf. on Database Eng. and Applications, pages
244–253.

Palopoli, L., Saccà, D., Terracina, G., and Ursino, D. (1999). A unified graph-based framework for
deriving nominal interscheme properties, type conflicts and object cluster similarities. In Proc.
Int. Conf. on Cooperative Inf. Syst., pages 34–45.

Palopoli, L., Saccà, D., Terracina, G., and Ursino, D. (2003). Uniform techniques for deriving
similarities of objects and subschemes in heterogeneous databases. IEEE Trans. Knowl. and
Data Eng., 15(2):271–294.

Papadimitriou, C. H. (1986). The Theory of Concurrency Control. Computer Science Press.
Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. (1995). Object exchange across

heterogeneous information sources. In Proc. 11th Int. Conf. on Data Engineering, pages 251–
260.

Pape, C. L., Gançarski, S., and Valduriez, P. (2004). Refresco: Improving query performance
through freshness control in a database cluster. In Proc. Confederated Int. Conf. DOA, CoopIS
and ODBASE, Lecture Notes in Computer Science 3290, pages 174–193.

Paris, J. F. (1986). Voting with witnesses: A consistency scheme for replicated files. In Proc. 6th
IEEE Int. Conf. on Distributed Computing Systems, pages 606–612.

Pasetto, D. and Akhriev, A. (2011). A comparative study of parallel sort algorithms. In Proc. 26th
ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Languages & Applications,
pages 203–204.

Passerini, A., Frasconi, P., and Soda, G. (2001). Evaluation methods for focused crawling. In Proc.
7th Congress of the Italian Association for Artificial Intelligence, pages 33–39.

Pasupuleti, P. and Purra, B. S. (2015). Data Lake Development with Big Data. Packt Books.
Patiño-Martínez, M., Jiménez-Peris, R., Kemme, B., and Alonso, G. (2000). Scalable replication

in database clusters. In Proc. 14th Int. Symp. on Distributed Computing, pages 315–329.
Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., and Stonebraker, M.

(2009). A comparison of approaches to large-scale data analysis. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 165–178.

Pavlo, A., Curino, C., and Zdonik, S. B. (2012). Skew-aware automatic database partitioning in
shared-nothing, parallel OLTP systems. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 61–72.

Perez-Sorrosal, F., Vuckovic, J., Patiño-Martínez, M., and Jiménez-Peris, R. (2006). Highly
available long running transactions and activities for J2EE. In Proc. 26th IEEE Int. Conf.
on Distributed Computing Systems, page 2.

Petraki, E., Idreos, S., and Manegold, S. (2015). Holistic indexing in main-memory column-stores.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1153–1166.

Pike, R., Dorward, S., Griesemer, R., and Quinlan, S. (2005). Interpreting the data: Parallel analysis
with sawzall. Sci. Program., 13(4):277–298.

Pirahesh, H., Mohan, C., Cheng, J. M., Liu, T. S., and Selinger, P. G. (1990). Parallelism in rdbms
: Architectural issues and design. In Proc. 2nd Int. Symp. on Databases in Distributed and
Parallel Systems, pages 4–29.

Pirk, H., Manegold, S., and Kersten, M. (2014). Waste not . . . efficient co-processing of relational
data. In Proc. 30th Int. Conf. on Data Engineering, pages 508–519.

Plattner, C. and Alonso, G. (2004). Ganymed: Scalable replication for transactional web
applications. In Proc. ACM/IFIP/USENIX 5th Int. Middleware Conf., pages 155–174.

Plugge, E., Membrey, P., and Hawkins, T. (2010). The Definitive Guide to MongoDB: The NoSQL
Database for Cloud and Desktop Computing. Apress.

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., and Fagin, R. (2002). Translating web
data. In Proc. 28th Int. Conf. on Very Large Data Bases.

Porto, F., Laber, E. S., and Valduriez, P. (2003). Cherry picking: A semantic query processing
strategy for the evaluation of expensive predicates. In Proc. Brazilian Symposium on
Databases, pages 356–370.

654 References

Ports, D. R. K. and Grittner, K. (2012). Serializable snapshot isolation in postgresql. Proc. VLDB
Endowment, 5(12):1850–1861.

Pottinger, R. and Levy, A. Y. (2000). A scalable algorithm for answering queries using views. In
Proc. 26th Int. Conf. on Very Large Data Bases, pages 484–495.

Pu, C. (1988). Superdatabases for composition of heterogeneous databases. In Proc. 4th Int. Conf.
on Data Engineering, pages 548–555.

Pu, C. and Leff, A. (1991). Replica control in distributed systems: An asynchronous approach. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 377–386.

Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu, Y., and Zhang, Z. (2013).
Timestream: Reliable stream computation in the cloud. In Proc. 8th ACM SIGOPS/EuroSys
European Conf. on Comp. Syst., pages 1–14.

Qin, L., Yu, J. X., Chang, L., Cheng, H., Zhang, C., and Lin, X. (2014). Scalable big graph
processing in mapreduce. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
827–838.

Quamar, A., Kumar, K. A., and Deshpande, A. (2013). Sword: Scalable workload-aware data
placement for transactional workloads. In Proc. 16th Int. Conf. on Extending Database
Technology, pages 430–441.

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the hidden web. In Proc. 27th Int. Conf. on
Very Large Data Bases.

Raghavan, S. and Garcia-Molina, H. (2003). Representing web graphs. In Proc. 19th Int. Conf. on
Data Engineering, pages 405–416.

Rahal, A., Zhu, Q., and Larson, P.-Å. (2004). Evolutionary techniques for updating query cost
models in a dynamic multidatabase environment. VLDB J., 13(2):162–176.

Rahimi, S. (1987). Reference architecture for distributed database management systems. In Proc.
3th Int. Conf. on Data Engineering. Tutorial Notes.

Rahimi, S. K. and Haug, F. S. (2010). Distributed Database Management Systems – A Practical
Approach. Wiley.

Rahm, E. and Bernstein, P. a. (2001). A survey of approaches to automatic schema matching.
VLDB J., 10(4):334–350.

Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches. Q. Bull. IEEE
TC on Data Eng., 23(4):3–13.

Rahm, E. and Marek, R. (1995). Dynamic multi-resource load balancing in parallel database
systems. In Proc. 21th Int. Conf. on Very Large Data Bases, pages 395–406.

Ramabhadran, S., Ratnasamy, S., Hellerstein, J. M., and Shenker, S. (2004). Brief announcement:
prefix hash tree. In Proc. ACM SIGACT-SIGOPS 23rd Symp. on the Principles of Distributed
Computing, page 368.

Ramamoorthy, C. V. and Wah, B. W. (1983). The isomorphism of simple file allocation. IEEE
Trans. Comput., 32:221–223.

Ramamritham, K. and Pu, C. (1995). A formal characterization of epsilon serializability. IEEE
Trans. Knowl. and Data Eng., 7(6):997–1007.

Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning system. In
Proc. 27th Int. Conf. on Very Large Data Bases, pages 381–390.

Raman, V., Deshpande, A., and Hellerstein, J. M. (2003). Using state modules for adaptive query
processing. In Proc. 19th Int. Conf. on Data Engineering, pages 353–365.

Rao, J., Zhang, C., Megiddo, N., and Lohman, G. (2002). Automating physical database design in
a parallel database. In Proc. ACM SIGMOD Int. Conf. on Management of Data.

Rastogi, V., Machanavajjhala, A., Chitnis, L., and Sarma, A. D. (2013). Finding connected
components in map-reduce in logarithmic rounds. In Proc. 29th Int. Conf. on Data Engineering,
pages 50–61.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. (2001). A scalable content-
addressable network. ACM SIGCOMM Computer Communication Review, 31(4):161–172.

Ray, I., Mancini, L. V., Jajodia, S., and Bertino, E. (2000). Asep: A secure and flexible commit
protocol for mls distributed database systems. IEEE Trans. Knowl. and Data Eng., 12(6):880–
899.

References 655

Redmond, E. and Wilson, J. R. (2012). Seven Databases in Seven Weeks: A Guide to Modern
Databases and the NoSQL Movement. The Pragmatic Programmers.

Reed, D. P. (1978). Naming and Synchronization in a Decentralized Computer System. PhD thesis,
MIT.

Reiss, F. and Hellerstein, J. (2005). Data triage: an adaptive architecture for load shedding in
telegraphCQ. In Proc. 21st Int. Conf. on Data Engineering, pages 155–156.

Rekatsinas, T., Joglekar, M., Garcia-Molina, H., Parameswaran, A. G., and Ré, C. (2017).
SLiMFast: Guaranteed results for data fusion and source reliability. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 1399–1414.

Revilak, S., O’Neil, P. E., and O’Neil, E. J. (2011). Precisely serializable snapshot isolation (PSSI).
In Proc. 27th Int. Conf. on Data Engineering, pages 482–493.

Ribeiro-Neto, B. A. and Barbosa, R. A. (1998). Query performance for tightly coupled distributed
digital libraries. In Proc. 3rd ACM Int. Conf. on Digital Libraries, pages 182–190.

Richter, S., Quiané-Ruiz, J.-A., Schuh, S., and Dittrich, J. (2013). Towards zero-overhead static
and adaptive indexing in Hadoop. VLDB J., 23(3):469–494.

Ritter, J. (2001). Why Gnutella can’t scale, no, really. http://www.darkridge.com/~jpr5/doc/
gnutella.html. Last accessed June 2019.

Rivera-Vega, P., Varadarajan, R., and Navathe, S. B. (1990). Scheduling data redistribution in
distributed databases. In Proc. Int. Conf. on Data Eng, pages 166–173.

Rjaibi, W. (2004). An introduction to multilevel secure relational database management systems.
In Proc. Conf. of the IBM Centre for Advanced Studies on Collaborative Research, pages 232–
241.

Robinson, I., Webber, J., and Eifrem, E. (2015). Graph Databases. O’Reilly, 2 edition.
Röhm, U., Böhm, K., and Schek, H.-J. (2000). OLAP query routing and physical design in a

database cluster. In Advances in Database Technology, Proc. 7th Int. Conf. on Extending
Database Technology, pages 254–268.

Röhm, U., Böhm, K., and Schek, H.-J. (2001). Cache-aware query routing in a cluster of databases.
In Proc. 17th Int. Conf. on Data Engineering, pages 641–650.

Röhm, U., Böhm, K., Schek, H.-J., and Schuldt, H. (2002). FAS - A freshness-sensitive
coordination middleware for a cluster of OLAP components. In Proc. 28th Int. Conf. on Very
Large Data Bases, pages 754–765.

Roitman, H. and Gal, A. (2006). Ontobuilder: Fully automatic extraction and consolidation of
ontologies from web sources using sequence semantics. In Proc. EDBT Workshops, volume
4254 of LNCS, pages 573–576.

Roth, M. and Schwartz, P. (1997). Don’t scrap it, wrap it! a wrapper architecture for legacy data
sources. In Proc. 23th Int. Conf. on Very Large Data Bases, pages 266–275.

Roth, M. T., Ozcan, F., and Haas, L. M. (1999). Cost models do matter: Providing cost information
for diverse data sources in a federated system. In Proc. 25th Int. Conf. on Very Large Data
Bases, pages 599–610.

Rothermel, K. and Mohan, C. (1989). Aries/nt: A recovery method based on write-ahead logging
for nested transactions. In Proc. 15th Int. Conf. on Very Large Data Bases, pages 337–346.

Roubini, N. (2018). Testimony for the hearing of the US senate committee on banking,
housing and community affairs on exploring the cryptocurrency and blockchain ecosystem.
Accessible at https://www.banking.senate.gov/imo/media/doc/Roubini%20Testimony%2010-
11-18.pdf/. Last accessed February 2019.

Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-stream: edge-centric graph processing
using streaming partitions. In Proc. 24th ACM Symp. on Operating System Principles, pages
472–488.

Ryvkina, E., Maskey, A., Adams, I., Sandler, B., Fuchs, C., Cherniack, M., and Zdonik, S. (2006).
Revision processing in a stream processing engine: A high-level design. In Proc. 22nd Int.
Conf. on Data Engineering, page 141.

Sacca, D. and Wiederhold, G. (1985). Database partitioning in a cluster of processors. ACM Trans.
Database Syst., 10(1):29–56.

http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.darkridge.com/~jpr5/doc/gnutella.html
https://www.banking.senate.gov/imo/media/doc/Roubini%20Testimony%2010-11-18.pdf/
https://www.banking.senate.gov/imo/media/doc/Roubini%20Testimony%2010-11-18.pdf/

656 References

Sacco, M. S. and Yao, S. B. (1982). Query optimization in distributed data base systems. In Yovits,
M., editor, Advances in Computers, volume 21, pages 225–273.

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput. Surv., 37(1):42–81.
Sakr, S., Liu, A., and Fayoumi, A. G. (2013). The family of MapReduce and large-scale data

processing systems. ACM Comput. Surv., 46(1):11:1–11:44.
Salihoglu, S. and Widom, J. (2013). GPS: a graph processing system. In Proc. 25th Int. Conf. on

Scientific and Statistical Database Management, pages 22:1–22:12.
Salihoglu, S. and Widom, J. (2014). Optimizing graph algorithms on Pregel-like systems. Proc.

VLDB Endowment, 7(7):577–588.
Salton, G. (1989). Automatic Text Processing – The Transformation, Analysis, and Retrieval of

Information by Computer. Addison–Wesley.
Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based access control

models. IEEE Computer, 29(2):38–47.
Schenkel, R., Weikum, G., Weißenberg, N., and Wu, X. (2000). Federated transaction management

with snapshot isolation. In Saake, G., Schwarz, K., and Türker, C., editors, Transactions and
Database Dynamics, pages 1–25. Springer.

Schmachtenberg, M., Bizer, C., and Paulheim, H. (2014). Adoption of best data practices in
different topical domains. In Proc. 13th Int. Semantic Web Conf., pages 245–260.

Schmidt, C. and Parashar, M. (2004). Enabling flexible queries with guarantees in P2P systems.
IEEE Internet Computing, 8(3):19–26.

Schreiber, F. (1977). A framework for distributed database systems. In Proc. Int. Computing
Symposium, pages 475–482.

Schuhknecht, F. M., Jindal, A., and Dittrich, J. (2013). The uncracked pieces in database cracking.
Proc. VLDB Endowment, 7(2):97–108.

Selinger, P. G. and Adiba, M. (1980). Access path selection in distributed data base management
systems. In Proc. First Int. Conf. on Data Bases, pages 204–215.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G. (1979). Access
path selection in a relational database management system. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 23–34.

Sequeda, J. F., Arenas, M., and Miranker, D. P. (2014). OBDA: query rewriting or materialization?
in practice, both! In Proc. 13th Int. Semantic Web Conf., pages 535—551.

Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., and Franklin, M. J. (2003). Flux: An
adaptive partitioning operator for continuous query systems. In Proc. 19th Int. Conf. on Data
Engineering, pages 25–36.

Shao, B., Wang, H., and Li, Y. (2013). Trinity: a distributed graph engine on a memory cloud. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 505–516.

Shatdal, A. and Naughton, J. F. (1993). Using shared virtual memory for parallel join processing.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 119–128.

Shatdal, A., Kant, C., and Naughton, J. F. (1994). Cache conscious algorithms for relational query
processing. In Proc. 20th Int. Conf. on Very Large Data Bases, pages 510–521.

Shekita, E. J., Young, H. C., and Tan, K. L. (1993). Multi-join optimization for symmetric
multiprocessor. In Proc. 19th Int. Conf. on Very Large Data Bases, pages 479–492.

Sheth, A., Larson, J., Cornellio, A., and Navathe, S. B. (1988a). A tool for integrating conceptual
schemas and user views. In Proc. 4th Int. Conf. on Data Engineering, pages 176–183.

Sheth, A., Larson, J., and Watkins, E. (1988b). Tailor, a tool for updating views. In Advances in
Database Technology, Proc. 1st Int. Conf. on Extending Database Technology, pages 190–213.

Sheth, A. P. and Kashyap, V. (1992). So far (schematically) yet so near (semantically). In Proc.
IFIP WG 2.6 Database Semantics Conf. on Interoperable Database Systems, pages 283–312.

Sheth, A. P. and Larson, J. (1990). Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236.

Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, C., Rollins, E., Oancea, M., Littlefield,
K., Menestrina, D., Ellner, S., Cieslewicz, J., Rae, I., Stancescu, T., and Apte, H. (2013). F1: A
distributed SQL database that scales. Proc. VLDB Endowment, 6(11):1068–1079.

References 657

Sidell, J., Aoki, P. M., Sah, A., Staelin, C., Stonebraker, M., and Yu, A. (1996). Data replication in
Mariposa. In Proc. 12th Int. Conf. on Data Eng, pages 485–494.

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., and Manegold, S. (2008). Column-store
support for RDF data management: not all swans are white. Proc. VLDB Endowment, 1(2):
1553–1563.

Silberschatz, A., Korth, H., and Sudarshan, S. (2019). Database System Concepts. McGraw-Hill,
7 edition.

Simitsis, A., Wilkinson, K., Castellanos, M., and Dayal, U. (2009). QoX-driven ETL design:
reducing the cost of ETL consulting engagements. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 953–960.

Simitsis, A., Wilkinson, K., Castellanos, M., and Dayal, U. (2012). Optimizing analytic data flows
for multiple execution engines. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 829–840.

Simon, E. and Valduriez, P. (1984). Design and implementation of an extendible integrity
subsystem. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 9–17.

Simon, E. and Valduriez, P. (1986). Integrity control in distributed database systems. In Proc. 19th
Hawaii Int. Conf. on System Sciences, pages 622–632.

Simon, E. and Valduriez, P. (1987). Design and analysis of a relational integrity subsystem.
Technical Report DB-015-87, Microelectronics and Computer Corporation, Austin, Tex.

Singhal, M. (1989). Deadlock detection in distributed systems. Computer, 22(11):37–48.
Skarra, A. (1989). Concurrency control for cooperating transactions in an object-oriented database.

In Proc. ACM SIGPLAN Workshop on Object-Based Concurrent Programming, pages 145–
147.

Skarra, A., Zdonik, S., and Reiss, S. (1986). An object server for an object-oriented database
system. In Proc. of the 1st Int. Workshop on Object-Oriented Database Systems, pages 196–
204.

Skeen, D. (1981). Nonblocking commit protocols. In ACM SIGMOD Int. Conf. on Management
of Data, pages 133–142.

Skeen, D. (1982a). A quorum-based commit protocol. In Proc. 6th Berkeley Workshop on
Distributed Data Management and Computer Networks, pages 69–80.

Skeen, D. (1982b). Crash Recovery in a Distributed Database Management System. Ph.D.
thesis, Department of Electrical Engineering and Computer Science, University of California
at Berkeley, Berkeley, Calif.

Skeen, D. and Stonebraker, M. (1983). A formal model of crash recovery in a distributed system.
IEEE Trans. Softw. Eng., SE-9(3):219–228.

Skeen, D. and Wright, D. (1984). Increasing availability in partitioned networks. In Proc. 3rd
ACM SIGACT–SIGMOD Symp. on Principles of Database Systems, pages 290–299.

Somani, A., Choy, D., and Kleewein, J. C. (2002). Bringing together content and data management
systems: Challenges and opportunities. IBM Systems J., 41(4):686–696.

Sousa, A., Oliveira, R., Moura, F., and Pedone, F. (2001). Partial replication in the database state
machine. In Proc. IEEE Int. Symp. Network Computing and Applications, pages 298–309.

Srivastava, U. and Widom, J. (2004a). Flexible time management in data stream systems. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 263–274.

Srivastava, U. and Widom, J. (2004b). Memory-limited execution of windowed stream joins. In
Proc. 30th Int. Conf. on Very Large Data Bases, pages 324–335.

Stanoi, I., Agrawal, D., and El Abbadi, A. (1998). Using broadcast primitives in replicated
databases. In Proc. 8th IEEE Int. Conf. on Distributed Computing Systems, pages 148–155.

Stöhr, T., Märtens, H., and Rahm, E. (2000). Multi-dimensional database allocation for parallel
data warehouses. In Proc. 26th Int. Conf. on Very Large Data Bases, pages 273–284.

Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H. (2001). Chord: A scalable
peer-to-peer lookup service for internet applications. In Proc. 2001 Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 149–160.

658 References

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., and Balakrishnan,
H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw., 11(1):17–32.

Stonebraker, M. (1975). Implementation of integrity constraints and views by query modification.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 65–78.

Stonebraker, M. (1981). Operating system support for database management. Commun. ACM, 24
(7):412–418.

Stonebraker, M. (1986). The case for shared nothing. Q. Bull. IEEE TC on Data Eng., 9(1):4–9.
Stonebraker, M. and Neuhold, E. (1977). A distributed database version of INGRES. In Proc. 2nd

Berkeley Workshop on Distributed Data Management and Computer Networks, pages 9–36.
Stonebraker, M., Abadi, D. J., DeWitt, D. J., Madden, S., Paulson, E., Pavlo, A., and Rasin, A.

(2010). MapReduce and parallel DBMSs: friends or foes? Commun. ACM, 53(1):64–71.
Strauch, C. (2011). NoSQL Databases. Stuttgart Media University.
Sullivan, M. and Heybey, A. (1998). Tribeca: A system for managing large databases of network

traffic. In Proc. USENIX 1998 Annual Technical Conf.
Swami, A. (1989). Optimization of large join queries: combining heuristics and combinatorial

techniques. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 367–376.
Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J., Aboulnaga, A., Pavlo, A., and

Stonebraker, M. (2014). E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction
Processing. Proc. VLDB Endowment, 8(3):245–256.

Taft, R., El-Sayed, N., Serafini, M., Lu, Y., Aboulnaga, A., Stonebraker, M., Mayerhofer, R., and
Andrade, F. (2018). P-store: An elastic database system with predictive provisioning. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 205–219.

Tandem. (1987). NonStop SQL – a distributed high-performance, high-availability implementation
of sql. In Proc. Int. Workshop on High Performance Transaction Systems, pages 60–104.

Tandem. (1988). A benchmark of NonStop SQL on the debit credit transaction. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 337–341.

Tanenbaum, A. S. and van Renesse, R. (1988). Voting with ghosts. In Proc. 8th IEEE Int. Conf.
on Distributed Computing Systems, pages 456–461.

Tang, W., Zhao, X., Rafique, W., Qi, L., Dou, W., and Ni, Q. (2019). An offloading method
using decentralized P2P-enabled mobile edge servers in edge computing. Journal of Systems
Architecture – Embedded Systems Design, 94:1–13.

Tatarinov, I., Ives, Z. G., Madhavan, J., Halevy, A. Y., Suciu, D., Dalvi, N. N., Dong, X., Kadiyska,
Y., Miklau, G., and Mork, P. (2003). The piazza peer data management project. ACM SIGMOD
Rec., 32(3):47–52.

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker, M. (2003). Load shedding
in a data stream manager. In Proc. 29th Int. Conf. on Very Large Data Bases, pages 309–320.

Thiran, P., Hainaut, J.-L., Houben, G.-J., and Benslimane, D. (2006). Wrapper-based evolution of
legacy information systems. ACM Trans. Softw. Eng. and Meth., 15(4):329–359.

Thomas, R. H. (1979). A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst., 4(2):180–209.

Thomasian, A. (1996). Database Concurrency Control: Methods, Performance, and Analysis.
Kluwer Academic Publishers.

Thomson, A. and Abadi, D. J. (2010). The case for determinism in database systems. Proc. VLDB
Endowment, 3(1):70–80.

Thuraisingham, B. (2001). Secure distributed database systems. Information Security Technical
Report, 6(2).

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., and
Murthy, R. (2009). Hive: a warehousing solution over a map-reduce framework. Proc. VLDB
Endowment, 2(2):1626–1629.

Tian, F. and DeWitt, D. J. (2003). Tuple routing strategies for distributed eddies. In Proc. 29th Int.
Conf. on Very Large Data Bases, pages 333–344.

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From “think like a
vertex” to “think like a graph”. Proc. VLDB Endowment, 7(3):193–204.

References 659

Tian, Y., Özcan, F., Zou, T., Goncalves, R., and Pirahesh, H. (2016). Building a hybrid warehouse:
Efficient joins between data stored in HDFS and enterprise warehouse. ACM Trans. Database
Syst., 41(4):21:1–21:38.

Tomasic, A., Raschid, L., and Valduriez, P. (1996). Scaling heterogeneous databases and the design
of disco. In Proc. 16th IEEE Int. Conf. on Distributed Computing Systems, pages 449–457.

Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O., Naacke, H., and Raschid, L. (1997).
The distributed information search component (DISCO) and the world-wide web – prototype
demonstration. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 546–548.

Tomasic, A., Raschid, L., and Valduriez, P. (1998). Scaling access to distributed heterogeneous
data sources with Disco. In IEEE Trans. Knowl. and Data Eng. in press.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jackson, J., Gade,
K., Fu, M., Donham, J., Bhagat, N., Mittal, S., and Ryaboy, D. (2014). Storm@twitter. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 147–156.

Traiger, I. L., Gray, J., Galtieri, C. A., and Lindsay, B. G. (1982). Transactions and recovery in
distributed database systems. ACM Trans. Database Syst., 7(3):323–342.

Triantafillou, P. and Taylor, D. J. (1995). The location-based paradigm for replication: Achieving
efficiency and availability in distributed systems. IEEE Trans. Softw. Eng., 21(1):1–18.

Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. (2013). Speedy transactions in multicore
in-memory databases. In Proc. 24th ACM Symp. on Operating System Principles, pages 18–32.

Tucker, P., Maier, D., Sheard, T., and Faragas, L. (2003). Exploiting punctuation semantics in
continuous data streams. IEEE Trans. Knowl. and Data Eng., 15(3):555–568.

Ugander, J. and Backstrom, L. (2013). Balanced label propagation for partitioning massive graphs.
In Proc. 6th ACM Int. Conf. Web Search and Data Mining, pages 507–516.

Ullman, J. (1997). Information integration using logical views. In Proc. 6th Int. Conf. on Database
Theory, pages 19–40.

Ullman, J. D. (1982). Principles of Database Systems. Computer Science Press, 2nd edition.
Ulusoy, Ö. (2007). Research issues in peer-to-peer data management. In Proc. 22nd Int. Symp. on

Computer and Information Science, pages 1–8.
Umbrich, J., Hose, K., Karnstedt, M., Harth, A., and Polleres, A. (2011). Comparing data

summaries for processing live queries over linked data. World Wide Web J., 14(5-6):495–544.
Urhan, T. and Franklin, M. (2000). XJoin: A reactively-scheduled pipelined join operator. Q. Bull.

IEEE TC on Data Eng., 23:27.
Urhan, T., Franklin, M. J., and Amsaleg, L. (1998). Cost based query scrambling for initial delays.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 130–141.
Valduriez, P. (1982). Semi-join algorithms for distributed database machines. In Schneider, J.-J.,

editor, Distributed Data Bases. pages 23–37.
Valduriez, P. (1993). Parallel database systems: Open problems and new issues. Distrib. Parall.

Databases, 1:137–16.
Valduriez, P. and Gardarin, G. (1984). Join and semi-join algorithms for a multi processor database

machine. ACM Trans. Database Syst., 9(1):133–161.
Valduriez, P. and Pacitti, E. (2004). Data management in large-scale P2P systems. In Proc. 6th Int.

Conf. High Performance Comp. for Computational Sci., pages 104–118.
Valiant, L. G. (1990). A bridging model for parallel computation. Commun. ACM, 33(8):103–111.
van Hee, K. (2002). Workflow Management. M.I.T. Press.
Van Renesse, R. and Altinbuken, D. (2015). Paxos made moderately complex. ACM Comput.

Surv., 47(3):42:1–42:36.
Varadarajan, R., Rivera-Vega, P., and Navathe, S. B. (1989). Data redistribution scheduling in fully

connected networks. In Proc. 27th Annual Allerton Conf. on Communication, Control, and
Computing.

Velegrakis, Y., Miller, R. J., and Popa, L. (2004). Preserving mapping consistency under schema
changes. VLDB J., 13(3):274–293.

Verhofstadt, J. S. (1978). Recovery techniques for database systems. ACM Comput. Surv., 10(2):
168–195.

660 References

Verma, S., Leslie, L. M., Shin, Y., and Gupta, I. (2017). An experimental comparison of partitioning
strategies in distributed graph processing. Proc. VLDB Endowment, 10(5):493–504.

Vermeer, M. (1997). Semantic Interoperability for Legacy Databases. Ph.D. thesis, Department of
Computer Science, University of Twente, Enschede, Netherlands.

Viglas, S., Naughton, J., and Burger, J. (2003). Maximizing the output rate of multi-join queries
over streaming information sources. In Proc. 29th Int. Conf. on Very Large Data Bases, pages
285–296.

Voulgaris, S., Jelasity, M., and van Steen, M. (2003). A robust and scalable peer-to-peer gossiping
protocol. In Agents and Peer-to-Peer Computing, Second Int. Workshop, (AP2PC), pages 47–
58.

Vu, Q. H., Lupu, M., and Ooi, B. C. (2009). Peer-to-Peer Computing: Principles and Applications.
Springer.

Wah, B. W. and Lien, Y. N. (1985). Design of distributed databases on local computer systems.
IEEE Trans. Softw. Eng., SE-11(7):609–619.

Walton, C., Dale, A., and Jenevin, R. (1991). A taxonomy and performance model of data skew
effects in parallel joins. In Proc. 17th Int. Conf. on Very Large Data Bases, pages 537–548.

Wang, G., Xie, W., Demers, A. J., and Gehrke, J. (2013). Asynchronous large-scale graph
processing made easy. In Proc. 6th Biennial Conf. on Innovative Data Systems Research.

Wang, H., Zaniolo, C., and Luo, R. (2003). Atlas: A small but complete SQL extension for data
mining and data streams. In Proc. 29th Int. Conf. on Very Large Data Bases, pages 1113–1116.

Wang, L., Xiao, Y., Shao, B., and Wang, H. (2014). How to partition a billion-node graph. In Proc.
30th Int. Conf. on Data Engineering, pages 568–579.

Wang, W., Li, J., Zhang, D., and Guo, L. (2004). Processing sliding window join aggregate in
continuous queries over data streams. In Proc. 8th East European Conf. Advances in Databases
and Information Systems, pages 348–363.

Weikum, G. and Vossen, G. (2001). Transactional Information Systems: Theory, Algorithms, and
the Practice of Concurrency Control. Morgan Kaufmann.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C. (2006). Ceph: A
scalable, high-performance distributed file system. In Proc. 7th USENIX Symp. on Operating
System Design and Implementation, pages 307–320.

Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: sextuple indexing for semantic web
data management. Proc. VLDB Endowment, 1(1):1008–1019.

Wiederhold, G. (1992). Mediators in the architecture of future information systems. Computer, 25
(3):38–49.

Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., and Alonso, G. (2000). Database replication
techniques: A three parameter classification. In Proc. 28th Symp. on Reliable Distributed
Systems, pages 206–215.

Wilkinson, K. (2006). Jena property table implementation. Technical Report HPL-2006-140, HP
Laboratories Palo Alto.

Wilms, P. F. and Lindsay, B. G. (1981). A database authorization mechanism supporting individual
and group authorization. Research Report RJ 3137, IBM Almaden Research Laboratory, San
Jose, Calif.

Wilschut, A. and Apers, P. (1991). Dataflow query execution in a parallel main-memory
environment. In Proc. 1st Int. Conf. on Parallel and Distributed Information Systems, pages
68–77.

Wilson, B. and Navathe, S. B. (1986). An analytical framework for the redesign of distributed
databases. In Proc. 6th Advanced Database Symposium, pages 77–83.

Wolfson, O. (1987). The overhead of locking (and commit) protocols in distributed databases.
ACM Trans. Database Syst., 12(3):453–471.

Wong, E. (1977). Retrieving dispersed data from SDD-1. In Proc. 2nd Berkeley Workshop on
Distributed Data Management and Computer Networks, pages 217–235.

Wong, E. and Youssefi, K. (1976). Decomposition: A strategy for query processing. ACM Trans.
Database Syst., 1(3):223–241.

References 661

Wright, D. D. (1983). Managing distributed databases in partitioned networks. Technical Report
TR83-572, Department of Computer Science, Cornell University, Ithaca, N.Y.

Wu, E., Diao, Y., and Rizvi, S. (2006). High-performance complex event processing over streams.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 407–418.

Wu, K.-L., Yu, P. S., and Pu, C. (1997). Divergence control algorithms for epsilon serializability.
IEEE Trans. Knowl. and Data Eng., 9(2):262–274.

Wu, S., Yu, G., Yu, Y., Ou, Z., Yang, X., and Gu, Y. (2005). A deadline-sensitive approach for
real-time processing of sliding windows. In Proc. 6th Int. Conf. on Web-Age Information
Management, pages 566–577.

Xing, Y., Hwang, J.-H., Çetintemel, U., and Zdonik, S. (2006). Providing resiliency to load
variations in distributed stream processing. In Proc. 32nd Int. Conf. on Very Large Data Bases,
pages 775–786.

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for distributed
computation on real-world graphs. Proc. VLDB Endowment, 7(14):1981–1992.

Yan, D., Bu, Y., Tian, Y., and Deshpande, A. (2017). Big graph analytics platforms. Foundations
and Trends in Databases, 7(1-2):1–195.

Yan, L. L. (1997). Towards efficient and scalable mediation: The AURORA approach. In Proc.
IBM CASCON Conference, pages 15–29.

Yan, L.-L., Özsu, M. T., and Liu, L. (1997). Accessing heterogeneous data through homogenization
and integration mediators. In Proc. Int. Conf. on Cooperative Inf. Syst., pages 130–139.

Yan, L. L., Miller, R. J., Haas, L. M., and Fagin, R. (2001). Data-driven understanding and
refinement of schema mappings. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 485–496.

Yang, B. and Garcia-Molina, H. (2002). Improving search in peer-to-peer networks. In Proc. 22nd
IEEE Int. Conf. on Distributed Computing Systems, pages 5–14.

Yang, X., Lee, M.-L., and Ling, T. W. (2003). Resolving structural conflicts in the integration of
XML schemas: A semantic approach. In Proc. 22nd Int. Conf. on Conceptual Modeling, pages
520–533.

Yao, S. B., Waddle, V., and Housel, B. (1982). View modeling and integration using the functional
data model. IEEE Trans. Softw. Eng., SE-8(6):544–554.

Yu, C. and Meng, W. (1998). Principles of Query Processing for Advanced Database Applictions.
Morgan Kaufmann.

Zaharia, M. (2016). An Architecture for Fast and General Data Processing on Large Clusters.
ACM Books.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark: Cluster
computing with working sets. In Proc. 2nd USENIX Workshop on Hot Topics in Cloud
Computing, pages 10–10.

Zaharia, M., Das, T., an dTimothy Hunter, H. L., Shenker, S., and Stoica, I. (2013). Discretized
streams: Fault-tolerant streaming computation at scale. In Proc. 24th ACM Symp. on Operating
System Principles, pages 423–438.

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A. D., and Kubiatowicz, J. (2004). Tapestry:
A resilient global-scale overlay for service deployment. IEEE J. Selected Areas in Comm., 22
(1):41–53.

Zhu, M. and Risch, T. (2011). Querying combined cloud-based and relational databases. In Proc.
2011 Int. Conf. on Cloud and Service Comp., pages 330–335.

Zhu, Q. (1995). Estimating Local Cost Parameters for Global Query Optimization in a
Multidatabase System. Ph.D. thesis, Department of Computer Science, University of Waterloo,
Waterloo, Canada.

Zhu, Q. and Larson, P.-Å. (1994). A query sampling method of estimating local cost parameters in
a multidatabase system. In Proc. 10th Int. Conf. on Data Engineering, pages 144–153.

Zhu, Q. and Larson, P. A. (1996a). Global query processing and optimization in the CORDS
multidatabase system. In Proc. Int. Conf. on Parallel and Distributed Computing Systems,
pages 640–647.

662 References

Zhu, Q. and Larson, P. A. (1996b). Developing regression cost models for multidatabase systems.
In Proc. 4th Int. Conf. on Parallel and Distributed Information Systems, pages 220–231.

Zhu, Q. and Larson, P. A. (1998). Solving local cost estimation problem for global query
optimization in multidatabase systems. Distrib. Parall. Databases, 6(4):373–420.

Zhu, Q., Sun, Y., and Motheramgari, S. (2000). Developing cost models with qualitative variables
for dynamic multidatabase environments. In Proc. 16th Int. Conf. on Data Engineering, pages
413–424.

Zhu, Q., Motheramgari, S., and Sun, Y. (2003). Cost estimation for queries experiencing
multiple contention states in dynamic multidatabase environments. Knowledge and Information
Systems, 5(1):26–49.

Zhu, Y., Rundensteiner, E., and Heineman, G. (2004). Dynamic plan migration for continuous
queries over data streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
431–442.

Zhu, Y., Zhang, H., Qin, L., and Cheng, H. (2017). Efficient MapReduce algorithms for triangle
listing in billion-scale graphs. Distrib. Parall. Databases, 35(2):149–176.

Ziane, M., Zaït, M., and Borla-Salamet, P. (1993). Parallel query processing with zigzag trees.
VLDB J., 2(3):277–301.

Zilio, D. C. (1998). Physical Database Design Decision Algorithms and Concurrent Reorganiza-
tion for Parallel Database Systems. PhD thesis, University of Toronto.

Zou, L. and Özsu, M. T. (2017). Graph-based RDF data management. Data Science and
Engineering, 2(1):56–70.

Zou, L., Mo, J., Chen, L., Özsu, M. T., and Zhao, D. (2011). gStore: answering SPARQL queries
via subgraph matching. Proc. VLDB Endowment, 4(8):482–493.

Zou, L., Özsu, M. T., Chen, L., Shen, X., Huang, R., and Zhao, D. (2014). gStore: A graph-based
SPARQL query engine. VLDB J., 23(4):565–590.

Index

Symbols
2PC, see Two-phase commit
3PC, see Three-phase commit

A
Abort, 185
Access control, 91, 92, 102
Access frequency, 40
Access path, 24
Access path selector, 24
ACID properties, 185
ACID transaction, 532, 533, 536, 538
Activation queue, 381
AdaptCache, 80
Adaptive query processing, 174
Adaptive reaction, 175
Adaptive virtual partitioning, 389
Ad-hoc data delivery, 6
Affix, 292
Aggregate assertion, 121
Aggregate constraint, 117
Allocation, 33, 43, 49, 51, 67–69, 72, 83, 85, 89
Amazon Redshift Spectrum, 556
Amazon SimpleDB, 524
Ambari, 511
Analytical graph query, 487
Analytical graph workload, 487
AP, see Asynchronous parallel
Apache Flink, 485
Apache Giraph, 498, 515
Apache Ignite, 537
Apache Storm, 471, 482, 514
APPA, 410, 411, 419, 421, 432, 434, 435, 446
Application server, 21

Apprentice site, 165
ArangoDB, 536
ARTEMIS, 335
AsterixDB, 528, 556
Asynchronous parallel, 496
At-least-once semantics, 485
At-most-once semantics, 485
Atomic commitment, 211
Attribute affinity matrix, 55, 56, 60
Attribute affinity measure, 53, 54
Attribute usage value, 53
Aurora, 471, 479
AURORA data integration system, 285
Aurora DSMS, 471, 474, 513, 514
Authorization, 91
Authorization matrix, 104
Auto-Detect, 611
Autonomy, 18

communication, 309
design, 309
execution, 309

Autoplex, 295
Availability, 15
AVP, see Adaptive virtual partitioning
AWESOME, 556
Azure HDInsight, 454

B
Backlink, 563
Bandwidth, 11
BAP, see Barrierless asynchronous parallel
Barrierless asynchronous parallel, 502, 503
Base relation, 92
Basic Paxos, see Paxos

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2

663

https://doi.org/10.1007/978-3-030-26253-2

664 Index

BATON, 406, 426, 428
BATON*, 406
Behavioral conflict, 289
Behavioral constraint, 110
Bell number, 53
Best position algorithm, 417
BigchainDB, 444
Big data, 3, 16, 20, 449

application, 449
processing, 449
processing system, 449

BigDAWG, 549, 553–556
BigIntegrator, 541, 542, 554, 556
Bigtable, see Google Bigtable
Binary table, 604, 617
Bio2RDF, 595
Bitcoin, 436, 439
Bitcoin-NG, 443
BitTorrent, 396, 399, 444
Block-based storage, 452
BLOCKBENCH, 444
Block-centric graph model, 495
Blockchain, 436, 444

non-permissioned, 438
permissioned, 438
private, 438
public, 438

Blockchain 2.0, 442
Blogel, 505
Bond energy algorithm, 56
Borealis, 471, 514
Bottom-up design, 16, 281, 283
BPA, see Best position algorithm
BSP, see Bulk synchronous parallel
B-tree index, 360, 363
Bucket algorithm, 315
Bulk synchronous parallel, 495, 496, 502
Bushy join trie, 150
Bushy query trie, 371

C
Cache manager, 24
Calculus query, 129
CAN, 404, 429
Candidate set cover, 301
Canonical data model, 284
CAP theorem, 520, 521, 554–556
Cassandra, 524, 529, 531
Cassandra Query Language, 529
Catalog, 13, 82
Catalyst, 551
Causal clustering, 534
Causal consistency, 534

Ceph, 454
Chained partitioning, 361
Chained query, 156
Chameleon-db, 605, 617
Chord, 405, 523
Chunk, 453
CLAMS, 617
Cleaning operator, 307
Client manager, 353
Client/server, 4, 17, 19, 21, 23, 24

multiple client/multiple server, 21
multiple client/single server, 21

Cloud, 17, 455
Cloud computing, 27, 451
CloudMdsQL, 539, 549, 551, 552, 554–556
Clustered affinity matrix, 56, 57, 60, 61, 63,

64, 87
Clustering, 56
CockroachDB, 537
Column-store, 36
COMA, 292
Commit, 185
Committable state, 226
Commit protocol, 211
Communication cost, 134
Communication time, 158
Complexity of relational algebra operators, 134
Composite matching, 295
Concurrency control, 185, 239

locking, 189
optimistic, 189
pessimistic, 189
timestamp ordering, 189

Conditional data delivery, 6
Conjunctive query, 312
Connection graph, 137
Consistency

strong, 248
weak, 248

Consistent hashing, 523
Constraint-based matching, 293
Containment edge, 294
Continuous processing model, 471
Continuous query, 6
Continuous Query Language, 474, 513
Coordinator timeout, 220
Cosmos DB, 536
Cost functions, 157
Cost model, 132–135, 157, 169, 178, 269,

319–322, 324, 329, 336, 369, 372,
373, 376–379, 391, 393, 551–554

distributed, 157
heterogeneous, 317, 324, 325, 336
mediator, 319, 346

Index 665

Couchbase, 528, 556
CouchDB, 528
COUGAR, 473, 514
Counting algorithm, 98
CPU cost, 134
CQL, see Cassandra Query Language
Crawler, 562–564

focused, 565
incremental, 565
parallel, 566

Crawling, 585
Cryptocurrency, 436
Cuclic query, 155
Cypher, 532–534

D
Dark web, 5, 559
DAS, see Directly attached storage
Database-as-a-Service, 27, 30
Database administrator, 91
Database buffer manager, 24
Database categorization, 587
Database cluster, 384
Database consistency, 15, 110, 183, 185
Database cracking, 81, 86
Database integration, 5, 16, 25, 281, 285

binary, 296
logical, 282
n-ary, 297
physical, 282

Database integrity, 91
Database replication

see data replication, 247
Database selection, 588
Database server, 21
Database statistics, 159
Data center, 29
Data cleaning, 306, 450, 589

instance-level, 306
schema-level, 306
web, 608
See also Data quality

Data control, 14, 91
Data dictionary, 82
Data directory, 82
Data distribution, 13
Data encryption, 102
Data fusion, 610, 617
DataGuide, 574
Data independence, 3

logical, 8
physical, 8, 9

Data integration, 5, 283, 512
web, 588
See also Database integration

Data lake, 5, 281, 332, 508, 515, 589, 608
Data locality, 11, 33
Data localization, 33, 129, 136, 138, 140, 178,

333
Datalog, 310, 311, 411
Data partitioning, 8, 11, 34, 73, 80, 84, 244,

353, 358–360, 390, 489, 537, 538,
606

adaptive, 78, 79
workload-aware, 74, 78
See also Fragmentation

Data processor, 24, 354
Data protection, 102
Data quality, 512

web, 584, 608
See also Data cleaning

Data replication, 8, 10, 15, 28, 29, 247, 454,
485

eager, 394
centralized, 256
distributed, 262
primary copy, 260
single master, 256, 258
update, 253

failure handling, 272
group communication, 269
lazy centralized, 262
lazy distributed, 268
lazy primary copy, 265
lazy single master, 263, 265
lazy update, 254
primary copy, 255
single master, 254

Data skew, 74, 375
Data spaces, 589
Data stream, 470, 473, 513
Data stream management system, 470, 471
Data stream processing system, 471
Data stream system, 471, 481, 485, 553
Data translation, 304
Data veracity, 608
Data warehouse, 282, 298, 306, 508
DBA, see Database administrator
DBPedia, 595
DB2 BigSQL, 510
Deadlock

avoidance, 15
centralized detection, 195
detection, 15
detection and resolution, 194

666 Index

Deadlock (cont.)
distributed detection, 196
global, 194
hierarchical detection, 195
prevention, 15

Decision trie, 295
Deep web, 559, 615
Degree distribution skew, 500
Dependency conflict, 289
Detachment, 162
Differential relation, 97
DIKE, 294, 335
DIPE, 335
Directly attached storage, 358
Disjointness, 37
Distributed computing system, 1
Distributed concurrency control, 10, 14
Distributed consensus, 231
Distributed database, 1

design, 13
management system, 1
reliability, 15

Distributed deadlock, 194
Distributed directory, 91
Distributed execution monitor, 24
Distributed hash table

replica consistency, 428
Distributed join, 24
Distributed query, 34, 129

dynamic optimization, 130, 136
execution, 136, 139
execution plan, 136
hybrid optimization, 130
processing, 14
optimization, 139
static optimization, 130, 165

Distributed recovery protocols, 10
Distributed reliability, 10
Distributed storage system, 451
Distributed transaction, 34

log, 235
manager, 24

Document Type Definition, 595
Domain constraint, 113
DSMS, see Data stream management system
DSPS, see Data stream processing systems
DSS, see Data stream system
DTD, see Document Type Definition
Dynamic distributed query optimization, 161
Dynamic programming, 135
DynamoDB, 444, 522–524, 554, 556

E
Eddy, 174–177, 179, 336
Edge-centric BSPedge-centric graph

processing
block synchronous, 507

Edge-centric graph processing, 495
asynchronous, 507
block synchronous, 507
gather-apply-scatter, 507

Edit distance, 292
EDonkey, 444
Edutella, 407, 411, 445
Elasticity, 28
Elastic scalability, 455
Element-level matching, 288, 289, 293
Entailment, 596
Entity-relationship data model, 285
Epidemic protocol, 401
E-R model, 285, 337
Esgyn, 537
Estocada, 545, 548, 549, 554, 555
Etherum, 440, 442
ETL, see Extract–transform–load
Exactly-once semantics, 485
Extract–transform–load, 282, 509, 528, 537,

544

F
F1, 537, 538, 555, 556
Failover, 352, 383, 384, 386, 453, 454
Failures, 15

of commission, 240
communication, 209
of omission, 240
site, 220
transparency, 10

Federated database, 5
Federated database system, 16
Fetch-as-needed, 166, 179
File allocation, 67
File storage, 452
Fix/flush, 234
Flink, 471, 514
FlumeJava, 460, 513
Flux, 483, 514
Foreign key constraint, 112
Forward, 541, 543, 554, 556
Fragment, 13, 36, 37, 41–43, 45–53, 62–73,

78, 83, 84, 89
Fragment-and-replicate, 163, 364

Index 667

Fragmentation, 8, 13, 33, 35, 37, 41–43, 48–52,
54, 56, 65, 66, 68, 72, 73, 83, 84,
87, 89, 130, 134, 140, 142, 359

completeness, 36
derived horizontal, 37
derives, 130
disjointness, 36
hash, 73
horizontal, 35, 130

derived, 48
primary, 141

hybrid, 35, 130, 148
nested, 35
predicate, 41, 143
primary horizontal, 37, 40
range, 74
reconstructability, 36
round robin, 73
rule, 138, 141, 142
vertical, 35, 130, 143

Freenet, 399
Full reducer, 154
Fully decentralized top-k, 419
Fully duplicated, see Fully replicated database
Fully duplicated database, see Fully replicated

database
Fully replicated database, 13, 67
Functional dependency constraint, 112
Fusion table, 589

G
Gap recovery, see At-most-once semantics
Garlic, 327
GAS, see Gather-apply-scatter
Gather-apply-scatter, 495, 497, 504

asynchronous, 497
vertex-centric, 503

GAV, see Global-as-view
General constraint, 112
Geo-distributed DBMS, see Geographically

distributed DBMS
Geographically distributed DBMS, 2
GFS, see Google File System
GFS2, see Global File System 2
Gigascope, 471, 514
Giraph, see Apache Giraph
Giraph++, 505
GiraphUC, 502
Global affinity measure, 56
Global-as-view, 283, 303, 310–312, 334, 543,

554

Global commit rule, 213
Global conceptual schema, 23, 25, 33, 137,

281–283, 285, 287, 296–299,
302–304, 332, 337

Global directory/dictionary, 83
Global File System 2, 454
Global index, 360
Global-local-as-view, 283, 303, 304, 311
Global query optimization, 136
Global query optimizer, 24
Global schema, 410
Global wait-for graph, 194, 195
GlOSS, 588
GLUE, 410
GlusterFS, 454
Gnutella, 396, 399, 428, 444
Google Bigtable, 529–531, 541, 554, 556
Google File System, 452–454, 529, 530
Google Query Language, 541
Gossip protocol, 401
GPS, 498, 515
GQL, see Google Query Language
Graph

analytics, 451, 489
DBMS, 531
directed, 194, 294, 486, 532, 560
directed acyclic, 461, 569
edge-labeled, 486, 572
Facebook, 486
Friendster, 487
power-law, 486
road network, 487
scale-free, 486
Twitter, 486
undirected, 486
web, 486, 487, 560, 561, 564, 568, 616
weighted, 486

GraphBase, 535
Graph isomorphism, 487
GraphLab, 503, 504, 515
Graph partitioning, 489

edge-cut, 489, 491
edge-disjoint, 489
vertex-cut, 489
vertex-disjoint, 489

Graph systems, 451
GraphX, 470, 494, 513, 515
GridGain, 537
Group communication, 269
Grouping, 53
GSQL, 474, 513
GStore, 605, 606, 617

668 Index

H
Hadoop, 86, 450, 458, 461, 464, 494, 508–510,

531, 546, 547, 554
SQL, 510

HadoopDB, 545, 547, 554–556
Hadoop Distributed File System, 454, 455,

458, 465–469, 508–510, 528, 531,
538–540, 544–550, 554, 555, 557,
606

HaLoop, 494
Hash index, 360
Hash partitioning, 481
Hbase, 531
HDFS, see Hadoop Distributed File System
HDInsight, see Azure HDInsight
Heartbeats, 480
Heron, 471
Heterogeneity, 19
Hexastore, 602, 617
Hidden web, 559, 584, 585, 615
History, 185, 188, 201, 204, 244, 250–252, 258,

264, 438
global, 188, 207, 251, 252, 255, 256, 258,

264, 265, 267, 272
local, 188, 208

HITS algorithm, 568, 616
Hive, 460
HiveQL, 460, 510, 513
Homonym, 290, 291
Horizontal scaling, see Scale-out architecture
HTAP, 528, 537, 538, 556
HTML, 591
Huron, 471, 482, 514
Hybrid matching, 295
Hybrid query optimization, 136

distributed, 169
Hyperledger, 442

Fabric, 442, 443
Iroha, 443

Hypernym, 290, 291

I
IaaS, see Infrastructure-as-a-Service
IBM DB2RDF, 602, 617
ICQ, 396
IMAP, 296
Inclusion dependency, 110
Independent parallelism, 13
Independent recovery protocol, 211, 220
Individual constraint, 117, 119
Infinite Graph, 535
Information integration, 283
Infrastructure-as-a-Service, 5, 27, 30

INGRES, 4, 31, 92, 123, 452
distributed, 161, 179, 261, 278

Instance-based matching, 289, 291
Instance matching, 288
integration, 285, 296
Integrity constraint, 183
Internet of Things, 442, 445
Interoperability, 281
Interoperator load balancing, 378
Interoperator parallelism, 11, 12, 369
Interquery parallelism, 11, 33
Interschema rules, 291
Intraoperator load balancing, 376
Intraoperator parallelism, 11, 363, 369
Intraquery load balancing, 378
Intraquery parallelism, 11, 33, 36
Intraschema rules, 291
Inverse rule algorithm, 315
I/O cost, 134
IoT, see Internet of Things
Isolation level, 188, 189, 203, 237, 252, 254

J
JAQL, 460, 513
JDBC/ODBC, 460
JEN, 554, 556
Jena, 602, 604, 617
Job tracker, 459
Join graph, 37, 40, 47–49, 52, 87, 138,

152–156, 176, 181, 182
partitioned, 49
simple, 49, 52

Join implementation on MapReduce, 461
Join ordering, 139, 149, 151

distributed, 130, 149, 178
Join trie, 149
JSON, 525, 528, 538, 543, 556

binary, 525
JXTA, 407, 445

K
Kazaa, 396, 399, 428
Key conflict, 289
Key-splitting, 482
Key-value store, 521
KiVi, 539
k-means algorithm, 467

L
Label propagation, 491
Latency, 11

Index 669

LAV, see Local-as-view
LCS, see Local conceptual schema
LeanXcale, 237, 537, 538, 540, 555, 556
Learning-based matching, 294
Left-deep trie, 371
Left linear join trie, 150
Lewenstein metric, 292
LFGraph, 498, 515
Linear join trie, 150
Linguistic matching, 291
Link analysis, 567
Linked Open Data, 589, 590, 595, 607, 617
Load balancing, 374
Local-as-view, 283, 310, 311, 314, 334, 410,

541, 554
Local conceptual schema, 23, 281–283, 285,

287, 296, 298, 299, 303, 304, 306,
332

Local directory/dictionary, 83
Local query, 139
Local query optimizer, 24
Local recovery manager, 24, 186
Local Relational Model, 409
Local wait-for graph, 194, 195
Locking, 15
Lock mode, 189
Lock table, 189
LOD, see Linked Open Data
Log, 186

stable, 187
volatile, 186

Lorel, 573, 616
Lossless decomposition, 36
LRM, see Local Relational Model
LSD, 295, 296
Lucene, 536

M
Machine learning, 450, 487
Map function, 455
Map-only join, 463
Mapping creation, 298
Mapping maintenance, 298, 304
MapReduce, 451, 455–464, 466–468, 470,

494, 498, 509, 512, 513, 515, 528,
544–549, 554, 555, 606, 615

Mashup, 589
Master site, 161, 165, 254
Materialization program, 138
Materialized view, 96, 98, 100, 102, 122–124,

315, 474, 545, 548, 549, 556
maintenance, 96, 124, 282

Maveric, 305

Maximally-contained query, 315
MDBS, see Multidatabase system
Mediated schema, 25, 281, 282, 285, 298
Mediator, 25, 309
Mediator/wrapper architecture, 25, 309, 310,

323, 333, 335
Memcached, 524
MemSQL, 537
Metadata, 83
Metasearch, 569, 586, 588, 615
METIS, 490–492
MillWheel, 471, 485
MinCon algorithm, 315, 316
Minterm fragment, 42, 45
Minterm predicate, 39–47, 52, 53
Minterm selectivity, 40
MISO, 556
Mixed fragmentation, 66
Mizan, 498, 515
MonetDB, 36
MongoDB, 525–527, 554, 556
Monotonic query, 474
Mulder, 580, 616
Multidatabase, 5, 17, 318, 326

query optimization, 317
query processing, 307
system, 16, 25, 31, 281, 283, 307–309, 324,

328, 337, 346
Multi-tenant, 30
Multigraph, 486
Multiquery optimization, 480
Multiversion concurrency control, 203
Mutual consistency, 14
MVCC, see Multiversion concurrency control

N
NAS, see Network-attached storage
Negative tuple, 478
Neo4j, 532–535, 554, 556
Nested fragmentation, 66
Nested loop join, 475
Network-attached storage, 357
Network File System, 357
Network partitioning, 15, 210, 227

multiple, 228
simple, 228

Neural network, 295
NewSQL, 3, 30, 519–521, 535, 537, 538,

554–557
NFS, see Network File System
N-gram, 292
No-fix/no-flush, 234
nonce, 441

670 Index

Non-committable state, 226
N1QL, 522
Non-null attribute constraint, 112
Non-replicated database, 13, 67
NonStop SQL, 194
Non-uniform memory architecture, 356, 391

cache coherent, 356
NoSQL, 2, 3, 16, 17, 20, 30, 359, 450, 451,

455, 511, 519–521, 525, 528,
536–540, 543, 544, 551, 553–557

multimodel, 535, 536
NuoDB, 537
N-way partitioning, 63

O
Object exchange model, 570, 616
Object storage, 454
Object store, 452
OceanStore, 432
Odyssey, 554, 556
OEM, see Object exchange model
OLAP, see On-line analytical processing
OLTP, see On-line transaction processing
One-copy equivalence, 247, 250
One-copy-serializability, 252

strong, 254
On-line analytical processing, 96, 184, 244,

282, 333, 349, 359, 387, 388, 390,
392, 508, 509, 511, 519, 520,
537–539, 545

Online graph query, 487
Online graph workload, 487
On-line transaction processing, 184, 244, 349,

357, 359, 390, 470, 508, 537, 538
Ontology, 290
Operator trie, 149, 369
Optimistic concurrency control, 15
Oracle NoSQL, 524
OrientDB, 536, 554
Overlay network, 398, 405

pure, 398

P
PaaS, see Platform-as-a-Service
PageRank, 466, 487, 488, 495, 504, 563, 564,

567, 616
Parallel architecture, 352
Parallel associative join, 424
Parallel DBMS, 3, 16
Parallel hash join, 364, 366, 424
Parallel merge sort join, 364
Parallel nested loop join, 364

Parallel query optimization, 369
Partial function evaluation, 606
Partial key grouping, 482, 514
Partially duplicated database, see Partially

replicated database
Partially replicated database, 13, 67, 95
Participant timeout, 221
Partition-centric approach, 495
Partition-centric graph processing

asynchronous, 506
block synchronous, 504
gather-apply-scatter, 506

Partitioned database, 13, 67
Partitioning, 33, 62
Path expression, 573
Paxos, 231, 441

basic, 232
Pay-as-you-go integration, 589
PeerDB, 411
Peer-to-peer, 17, 395

computing, 16
data management, 395
DBMS, 22
hierarchical structured, 445
pure, 398
replication, 428
structured, 398, 402, 403, 425, 434, 447
superpeer, 406, 444, 447
systems, 4, 17, 19, 23, 24, 288, 395–399,

401–403, 405, 406, 408–412, 419,
421, 425, 426, 428, 429, 431, 432,
436–438, 444–448, 522

unstructured, 398, 399, 402, 411, 419,
444–448

Pentaho, 510
Periodic data delivery, 6
Persistent query, 471
Pessimistic concurrency control, 15
PGrid, 405, 409, 432, 434, 445, 446
Phantom, 245
PHJ, see Parallel hash join
PHORIZONTAL, 44
PHT, 405
Piazza, 409
PIER, 424
PIERjoin, 424
Pig Latin, 460, 513
Pipelined symmetric hash join, 476
Pipeline parallelism, 12
PIW, see Publicly indexable web
PKG, see Partial key grouping
PlanetP, 419
Planning function, 326
Platfora, 510

Index 671

Platform-as-a-Service, 5, 27, 29, 30
PNL, see Parallel nested loop join
Polybase, 545–547, 554–556
Polystore, 519, 520, 538–540, 544, 548,

553–556
hybrid, 549, 556
loosely-coupled, 540, 556
tightly-coupled, 544, 556

Posttest, 114
PoW, see Proof of Work
Power BI, 510
PowerLyra, 493
Precise recovery, see Exactly-once semantics
Precondition constraint, 112
Predefined constraint, 112
Prefix hash trie, 426
Pregel, 498, 515
Pregelix, 498, 515
Pretest, 114, 115
Proof of Work, 441
Property graph, 486
Property table, 602, 617
P2P, see Peer-to-peer system
Publicly indexable web, 559, 584
Publish/subscribe system, 473
Punctuation, 476, 513
Push-based system, 5, 6

Q
QoX, 541, 544, 554, 556
Query

algebraic, 129, 137–140
decomposition, 136, 137
distributed, 95
execution, 311, 329
execution plan, 133
graph, 137
modification, 93
optimization, 129

dynamic, 136, 165
static, 136

processing, 129
processor, 129, 354
rewrite, 310

using views, 315
translation, 311, 329

Question answering system, 580
Quorum, 230
Quorum-based voting protocol, 275

R
R*, 179, 194
Raft, 556

Range partitioning, 530
Range query on P2P systems, 425
Ranking, 563, 564, 567
RavenDB, 528
RDD, see Resilient distributed dataset
RDF, see Resource Description Framework
RDF-3X, 602, 617
Reachability query, 487
Read-one/write-all available protocol,

273–276, 278
distributed, 274

Read-one/write-all protocol, 253, 259, 262,
273–275

Read quorum, 275
Reconstruction, 37
Recovery, 15, 183

protocol, 211, 224
Redis, 524
Reduce function, 455
Reducer, 151, 153
Reduction technique, 140
Referential edge, 294
Referential integrity, 51
Relevant simple predicate, 43
Reliability, 10, 15
Repartition join, 463
Replicated database, 13
Replication

P2P, 247, 428
See also Data replication

Resiliency, 183
Resilient distributed dataset, 468, 469, 494
Resource Description Framework, 444, 486,

595, 598, 615, 617
graph, 486, 597–599, 605, 606
schema, 591, 596

Response time, 134, 157, 158
Revision tuple, 473
Riak, 524
Right-deep trie, 371
Rollback recovery, see At-least-once semantics
Round-robin partitioning, 481
ROWA, see Read-one/write-all protocol
ROWA-A, see Read-one/write-all available

protocol
Run-time support processor, 24

S
SaaS, see Software-as-a-Service
SAN, see Storage-area network
SAP HANA, 537
Sawtooth, 443
Sawzall, 460, 513

672 Index

Scale-out architecture, 13
Scale-up, 11
Scheduler, 186
Schema, 2

adaptation, 304
generation, 283
heterogeneity, 287, 289
integration

binary, 296
nary, 296

mapping, 285, 287, 298
matching, 285, 287, 288
translation, 283, 345

Schema-based matching, 289, 291
Schema-level matching, 293
Schema-on-read, 508, 509
Schema-on-write, 508
Schism, 74, 85
SDD-1, 179
Search engine, 560, 562
Search space, 133, 369
Search strategy, 135, 373
Selectivity factor, 160
Semantic

data control, 14
data controller, 24
heterogeneity, 290
integrity constraint, 91, 110
integrity control, 91, 92, 110
translation, 304
web, 409, 590, 595, 617

Semiautonomous system, 18
Semijoin, 153

program, 154–156, 179
SEMINT, 295
Semistructured data, 569, 570
Serializability, 185, 188

one-copy, 252
Service level agreement, 28
Service-oriented architecture, 27
Sesame, 601, 617
SETI@home, 396
Set-oriented constraint, 117, 118, 120
Sharding, 36
Shared-disk, 357
Shared-memory, 355
Shared-nothing, 358
Ship-whole, 166
Shuffle, 457
Shuffle partitioning, 481
SI, see Snapshot isolation
Similarity flooding, 335
Similarity value, 287
Simple predicate, 38, 39, 42–46, 53

completeness, 42
minimality, 42

Simple virtual partitioning, 387
Simplification, 115
Single location DBMS, 2
Single-source shortest path, 487
Skip graph, 406
SkipNet, 406
Slave site, 254
Snapshot database, 470
Snapshot isolation, 184, 185, 189, 203,

207–209, 236–239, 242, 243, 254,
278

strong, 254
Software-as-a-Service, 5, 27, 29, 30
Sort-merge join, 365
Soundex code, 292
Source accuracy, 612
Source dependency, 613
Source freshness, 614
Source schema, 285
Spanner, 237, 538
Spark, 451, 455, 466–470, 487, 494, 509,

511–513, 528, 545, 549–552, 554,
555, 617

Sparksee, 535
Spark SQL, 554
SPARQL, 570, 598–602, 604–607, 617

distributed, 606
endpoint, 607

Splice Machine, 537
Splitting, 53
SQL++, 528, 543, 556
Start system, 580, 616
Static optimization, 139
Storage area network, 358
STREAM, 471, 514
Stream data, 451
StreaQuel, 474, 513
Strongly connected component query, 489
Structural conflict, 289
Structural constraint, 110
Structural similarity, 293
Structure-based matching, 293
Structure-level matching, 288, 289
Structure index, 566
StruQL, 575, 616
Subgraph matching, 487
Superpeer system, 398
Superstep, 496
SVP, see Simple virtual partitioning
SWORD, 76, 80, 85
SW-Store, 617
Symmetric hash join, 368

Index 673

Synonyms, 290, 291
SystemML, 460, 513
System R, 92
System R*, 194, 196

T
TA, see Threshold algorithm
Tableau, 510
Tablet, 530
Tapestry, 404, 429
Target schema, 285
TelegraphCQ, 471, 514
Tenzing, 460, 513
Termination protocol, 211, 220

non-blocking, 211, 220
Text index, 566
Think-like-a-vertex, 495
Three-phase commit, 226
Three Phase Uniform Threshold Algorithm,

415
Threshold algorithm, 412, 413
Tight integration, 18
Timeout, 210
Timestamp, 197, 198, 200, 202, 203, 206

order, 189
ordering, 197, 202

basic, 198
conservative, 201–203

read, 198
write, 198

Timestamping, 15
TimeStream, 471
Time travel query, 203
Titan, 535
Top-down database design, 13
Top-k query, 412
Total cost optimization, 134
Total isolation, 19
Total time, 157
TPUT, see Three Phase Uniform Threshold

Algorithm
Transaction, 183

atomicity, 185
base set, 185
closed nested, 240
consistency, 183, 249, 251, 252, 277
distributed, 10
durability, 185, 556
flat, 239
inversion, 254
isolation, 185
log (see Log)
manager, 186

nested, 240
open nested, 240
read set, 185
refresh, 254
split, 240
write set, 185

Transition constraint, 113
Transparency, 1, 7, 21

concurrency, 10
distribution, 9
failure, 10
fragmentation, 9
location, 9
naming, 9
network, 9
replication, 10

Tree query, 155
Tribeca, 473, 514
Trinity, 498, 515, 535
Tritus, 580, 616
Two-phase commit, 10, 211, 243

centralized, 213
distributed, 215
linear, 214
nested, 214
presumed abort, 218
presumed commit, 219

Two-phase locking, 189
centralized, 190
distributed, 193
primary copy, 261
primary site, 190
strict, 201

Type conflict, 289

U
UDF, see User-defined function
UMA, 355
Unfolding, 313
Uniform memory access, 355
Unilateral abort, 212
Uniprot RDF, 595
Unique key constraint, 112
UnQL, 616
User-defined function, 457
User interface handler, 24
User processor, 24

V
VBI-tree, 406
Veracity, 450, 512

see also Data quality, 512

674 Index

Vertex-centric graph processing, 495
asynchronous, 501
block synchronous, 498, 499
gather-apply-scatter, 503

Vertica, 36
View, 91, 92, 311, 313

definition, 93, 310
management, 91, 92
materialization, 92
materialized, 92

Virtual machines, 28
Virtual relation, 92
VoltDB, 537
Voting-based protocol, 230

W
WCC, 501, 505
Weakly connected component, 489, 499
Web

crawling, 563
data fusion, 610
data management, 559
graph, 560
indexing, 616
portal, 589
querying, 569
search, 562
service, 27
table, 589

WebLog, 575, 616
WebOQL, 575, 577, 616
WebQA, 580, 616
WebSQL, 575, 577, 616
Wide column store, 529
Window, 471, 473–476

aggregate, 479
count-based, 473, 478
fixed, 473

join, 476, 478
landmark, 473
model, 473
partitioned, 473
predicate, 473
query, 472, 474
session, 474
sliding, 473
time-based, 473, 478
user-defined, 474

Windowed execution, 471, 474, 476, 477
Workflow, 240
World Wide Web, 4, 16, 559
Wrapper, 298, 309
Wrapper schema, 311
Write quorum, 275
W3QL, 575, 616
WWW, see World Wide Web

X
xLM, 544
XML, 444, 525, 544, 547, 560, 591, 615

document trie, 593
XMLSchema, 595
XML schema graph, 595
XPath, 595
XQuery, 595
X-Stream, 507, 515

Y
Yago, 595
YAML, 525

Z
Zigzag trie, 371
Zookeeper, 511

	Preface
	Contents
	1 Introduction
	1.1 What Is a Distributed Database System?
	1.2 History of Distributed DBMS
	1.3 Data Delivery Alternatives
	1.4 Promises of Distributed DBMSs
	1.4.1 Transparent Management of Distributed and Replicated Data
	1.4.2 Reliability Through Distributed Transactions
	1.4.3 Improved Performance
	1.4.4 Scalability

	1.5 Design Issues
	1.5.1 Distributed Database Design
	1.5.2 Distributed Data Control
	1.5.3 Distributed Query Processing
	1.5.4 Distributed Concurrency Control
	1.5.5 Reliability of Distributed DBMS
	1.5.6 Replication
	1.5.7 Parallel DBMSs
	1.5.8 Database Integration
	1.5.9 Alternative Distribution Approaches
	1.5.10 Big Data Processing and NoSQL

	1.6 Distributed DBMS Architectures
	1.6.1 Architectural Models for Distributed DBMSs
	1.6.1.1 Autonomy
	1.6.1.2 Distribution
	1.6.1.3 Heterogeneity

	1.6.2 Client/Server Systems
	1.6.3 Peer-to-Peer Systems
	1.6.4 Multidatabase Systems
	1.6.5 Cloud Computing

	1.7 Bibliographic Notes

	2 Distributed and Parallel Database Design
	2.1 Data Fragmentation
	2.1.1 Horizontal Fragmentation
	2.1.1.1 Auxiliary Information Requirements
	2.1.1.2 Primary Horizontal Fragmentation
	2.1.1.3 Derived Horizontal Fragmentation
	2.1.1.4 Checking for Correctness

	2.1.2 Vertical Fragmentation
	2.1.2.1 Auxiliary Information Requirements
	2.1.2.2 Clustering Algorithm
	2.1.2.3 Splitting Algorithm
	2.1.2.4 Checking for Correctness

	2.1.3 Hybrid Fragmentation

	2.2 Allocation
	2.2.1 Auxiliary Information
	2.2.2 Allocation Model
	2.2.2.1 Total Cost
	2.2.2.2 Constraints

	2.2.3 Solution Methods

	2.3 Combined Approaches
	2.3.1 Workload-Agnostic Partitioning Techniques
	2.3.2 Workload-Aware Partitioning Techniques

	2.4 Adaptive Approaches
	2.4.1 Detecting Workload Changes
	2.4.2 Detecting Affected Items
	2.4.3 Incremental Reconfiguration

	2.5 Data Directory
	2.6 Conclusion
	2.7 Bibliographic Notes
	Exercises

	3 Distributed Data Control
	3.1 View Management
	3.1.1 Views in Centralized DBMSs
	3.1.2 Views in Distributed DBMSs
	3.1.3 Maintenance of Materialized Views

	3.2 Access Control
	3.2.1 Discretionary Access Control
	3.2.2 Mandatory Access Control
	3.2.3 Distributed Access Control

	3.3 Semantic Integrity Control
	3.3.1 Centralized Semantic Integrity Control
	3.3.1.1 Specification of Integrity Constraints
	3.3.1.2 Integrity Enforcement

	3.3.2 Distributed Semantic Integrity Control
	3.3.2.1 Definition of Distributed Integrity Constraints
	3.3.2.2 Enforcement of Distributed Integrity Constraints
	3.3.2.3 Summary of Distributed Integrity Control

	3.4 Conclusion
	3.5 Bibliographic Notes
	Exercises

	4 Distributed Query Processing
	4.1 Overview
	4.1.1 Query Processing Problem
	4.1.2 Query Optimization
	4.1.2.1 Search Space
	4.1.2.2 Cost Model
	4.1.2.3 Search Strategy

	4.1.3 Layers Of Query Processing
	4.1.3.1 Query Decomposition
	4.1.3.2 Data Localization
	4.1.3.3 Distributed Optimization
	4.1.3.4 Distributed Execution

	4.2 Data Localization
	4.2.1 Reduction for Primary Horizontal Fragmentation
	4.2.1.1 Reduction with Selection

	4.2.2 Reduction with Join
	4.2.3 Reduction for Vertical Fragmentation
	4.2.4 Reduction for Derived Fragmentation
	4.2.5 Reduction for Hybrid Fragmentation

	4.3 Join Ordering in Distributed Queries
	4.3.1 Join Trees
	4.3.2 Join Ordering
	4.3.3 Semijoin-Based Algorithms
	4.3.4 Join Versus Semijoin

	4.4 Distributed Cost Model
	4.4.1 Cost Functions
	4.4.2 Database Statistics

	4.5 Distributed Query Optimization
	4.5.1 Dynamic Approach
	4.5.2 Static Approach
	4.5.3 Hybrid Approach

	4.6 Adaptive Query Processing
	4.6.1 Adaptive Query Processing Process
	4.6.1.1 Monitoring Parameters
	4.6.1.2 Adaptive Reactions

	4.6.2 Eddy Approach

	4.7 Conclusion
	4.8 Bibliographic Notes
	Exercises

	5 Distributed Transaction Processing
	5.1 Background and Terminology
	5.2 Distributed Concurrency Control
	5.2.1 Locking-Based Algorithms
	5.2.1.1 Centralized 2PL
	5.2.1.2 Distributed 2PL
	5.2.1.3 Distributed Deadlock Management

	5.2.2 Timestamp-Based Algorithms
	5.2.2.1 Basic TO Algorithm
	5.2.2.2 Conservative TO Algorithm

	5.2.3 Multiversion Concurrency Control
	5.2.4 Optimistic Algorithms

	5.3 Distributed Concurrency Control Using Snapshot Isolation
	5.4 Distributed DBMS Reliability
	5.4.1 Two-Phase Commit Protocol
	5.4.2 Variations of 2PC
	5.4.2.1 Presumed Abort 2PC Protocol
	5.4.2.2 Presumed Commit 2PC Protocol

	5.4.3 Dealing with Site Failures
	5.4.3.1 Termination and Recovery Protocols for 2PC
	5.4.3.2 Three-Phase Commit Protocol

	5.4.4 Network Partitioning
	5.4.4.1 Centralized Protocols
	5.4.4.2 Voting-Based Protocols

	5.4.5 Paxos Consensus Protocol
	5.4.6 Architectural Considerations

	5.5 Modern Approaches to Scaling Out Transaction Management
	5.5.1 Spanner
	5.5.2 LeanXcale

	5.6 Conclusion
	5.7 Bibliographic Notes
	Exercises

	6 Data Replication
	6.1 Consistency of Replicated Databases
	6.1.1 Mutual Consistency
	6.1.2 Mutual Consistency Versus Transaction Consistency

	6.2 Update Management Strategies
	6.2.1 Eager Update Propagation
	6.2.2 Lazy Update Propagation
	6.2.3 Centralized Techniques
	6.2.4 Distributed Techniques

	6.3 Replication Protocols
	6.3.1 Eager Centralized Protocols
	6.3.1.1 Single Master with Limited Replication Transparency
	6.3.1.2 Single Master with Full Replication Transparency
	6.3.1.3 Primary Copy with Full Replication Transparency

	6.3.2 Eager Distributed Protocols
	6.3.3 Lazy Centralized Protocols
	6.3.3.1 Single Master with Limited Transparency
	6.3.3.2 Single Master or Primary Copy with Full Replication Transparency

	6.3.4 Lazy Distributed Protocols

	6.4 Group Communication
	6.5 Replication and Failures
	6.5.1 Failures and Lazy Replication
	6.5.2 Failures and Eager Replication

	6.6 Conclusion
	6.7 Bibliographic Notes
	Exercises

	7 Database Integration—Multidatabase Systems
	7.1 Database Integration
	7.1.1 Bottom-Up Design Methodology
	7.1.2 Schema Matching
	7.1.2.1 Schema Heterogeneity
	7.1.2.2 Linguistic Matching Approaches
	7.1.2.3 Constraint-Based Matching Approaches
	7.1.2.4 Learning-Based Matching
	7.1.2.5 Combined Matching Approaches

	7.1.3 Schema Integration
	7.1.4 Schema Mapping
	7.1.4.1 Mapping Creation
	7.1.4.2 Mapping Maintenance

	7.1.5 Data Cleaning

	7.2 Multidatabase Query Processing
	7.2.1 Issues in Multidatabase Query Processing
	7.2.2 Multidatabase Query Processing Architecture
	7.2.3 Query Rewriting Using Views
	7.2.3.1 Datalog Terminology
	7.2.3.2 Rewriting in GAV
	7.2.3.3 Rewriting in LAV

	7.2.4 Query Optimization and Execution
	7.2.4.1 Heterogeneous Cost Modeling
	7.2.4.2 Heterogeneous Query Optimization

	7.2.5 Query Translation and Execution

	7.3 Conclusion
	7.4 Bibliographic Notes
	Exercises

	8 Parallel Database Systems
	8.1 Objectives
	8.2 Parallel Architectures
	8.2.1 General Architecture
	8.2.2 Shared-Memory
	8.2.2.1 Uniform Memory Access (UMA)
	8.2.2.2 Non-Uniform Memory Access (NUMA)

	8.2.3 Shared-Disk
	8.2.4 Shared-Nothing

	8.3 Data Placement
	8.4 Parallel Query Processing
	8.4.1 Parallel Algorithms for Data Processing
	8.4.1.1 Parallel Sort Algorithms
	8.4.1.2 Parallel Join Algorithms

	8.4.2 Parallel Query Optimization
	8.4.2.1 Search Space
	8.4.2.2 Cost Model
	8.4.2.3 Search Strategy

	8.5 Load Balancing
	8.5.1 Parallel Execution Problems
	Initialization
	Interference
	Skew

	8.5.2 Intraoperator Load Balancing
	8.5.3 Interoperator Load Balancing
	8.5.4 Intraquery Load Balancing

	8.6 Fault-Tolerance
	8.7 Database Clusters
	8.7.1 Database Cluster Architecture
	8.7.2 Replication
	8.7.3 Load Balancing
	8.7.4 Query Processing

	8.8 Conclusion
	8.9 Bibliographic Notes
	Exercises

	9 Peer-to-Peer Data Management
	9.1 Infrastructure
	9.1.1 Unstructured P2P Networks
	9.1.2 Structured P2P Networks
	9.1.3 Superpeer P2P Networks
	9.1.4 Comparison of P2P Networks

	9.2 Schema Mapping in P2P Systems
	9.2.1 Pairwise Schema Mapping
	9.2.2 Mapping Based on Machine Learning Techniques
	9.2.3 Common Agreement Mapping
	9.2.4 Schema Mapping Using IR Techniques

	9.3 Querying Over P2P Systems
	9.3.1 Top-k Queries
	9.3.1.1 Basic Techniques
	9.3.1.2 Top-k Queries in Unstructured Systems
	9.3.1.3 Top-k Queries in DHTs
	9.3.1.4 Top-k Queries in Superpeer Systems

	9.3.2 Join Queries
	9.3.3 Range Queries

	9.4 Replica Consistency
	9.4.1 Basic Support in DHTs
	9.4.2 Data Currency in DHTs
	9.4.3 Replica Reconciliation
	9.4.3.1 OceanStore
	9.4.3.2 P-Grid
	9.4.3.3 APPA

	9.5 Blockchain
	9.5.1 Blockchain Definition
	9.5.2 Blockchain Infrastructure
	9.5.2.1 Creating a Transaction
	9.5.2.2 Grouping Transactions into Blocks
	9.5.2.3 Block Validation by Consensus

	9.5.3 Blockchain 2.0
	9.5.4 Issues

	9.6 Conclusion
	9.7 Bibliographic Notes
	Exercises

	10 Big Data Processing
	10.1 Distributed Storage Systems
	10.1.1 Google File System
	10.1.2 Combining Object Storage and File Storage

	10.2 Big Data Processing Frameworks
	10.2.1 MapReduce Data Processing
	10.2.1.1 MapReduce Architecture
	10.2.1.2 High-Level Languages for MapReduce
	10.2.1.3 MapReduce Implementation of Database Operators

	10.2.2 Data Processing Using Spark

	10.3 Stream Data Management
	10.3.1 Stream Models, Languages, and Operators
	10.3.1.1 Data Models
	10.3.1.2 Stream Query Models and Languages
	10.3.1.3 Streaming Operators and Their Implementation

	10.3.2 Query Processing over Data Streams
	10.3.2.1 Windowed Query Execution
	10.3.2.2 Load Management
	10.3.2.3 Out-of-Order Processing
	10.3.2.4 Multiquery Optimization
	10.3.2.5 Parallel Data Stream Processing

	10.3.3 DSS Fault-Tolerance

	10.4 Graph Analytics Platforms
	10.4.1 Graph Partitioning
	10.4.2 MapReduce and Graph Analytics
	10.4.3 Special-Purpose Graph Analytics Systems
	10.4.4 Vertex-Centric Block Synchronous
	10.4.5 Vertex-Centric Asynchronous
	10.4.6 Vertex-Centric Gather-Apply-Scatter
	10.4.7 Partition-Centric Block Synchronous Processing
	10.4.8 Partition-Centric Asynchronous
	10.4.9 Partition-Centric Gather-Apply-Scatter
	10.4.10 Edge-Centric Block Synchronous Processing
	10.4.11 Edge-Centric Asynchronous
	10.4.12 Edge-Centric Gather-Apply-Scatter

	10.5 Data Lakes
	10.5.1 Data Lake Versus Data Warehouse
	10.5.2 Architecture
	10.5.3 Challenges

	10.6 Conclusion
	10.7 Bibliographic Notes
	Exercises

	11 NoSQL, NewSQL, and Polystores
	11.1 Motivations for NoSQL
	11.2 Key-Value Stores
	11.2.1 DynamoDB
	11.2.2 Other Key-Value Stores

	11.3 Document Stores
	11.3.1 MongoDB
	11.3.2 Other Document Stores

	11.4 Wide Column Stores
	11.4.1 Bigtable
	11.4.2 Other Wide Column Stores

	11.5 Graph DBMSs
	11.5.1 Neo4j
	11.5.2 Other Graph Databases

	11.6 Hybrid Data Stores
	11.6.1 Multimodel NoSQL Stores
	11.6.2 NewSQL DBMSs
	11.6.2.1 F1
	11.6.2.2 LeanXcale

	11.7 Polystores
	11.7.1 Loosely Coupled Polystores
	11.7.1.1 BigIntegrator
	11.7.1.2 Forward
	11.7.1.3 QoX

	11.7.2 Tightly Coupled Polystores
	11.7.2.1 Polybase
	11.7.2.2 HadoopDB
	11.7.2.3 Estocada

	11.7.3 Hybrid Systems
	11.7.3.1 Spark SQL
	11.7.3.2 CloudMdsQL
	11.7.3.3 BigDAWG

	11.7.4 Concluding Remarks

	11.8 Conclusion
	11.9 Bibliographic Notes
	Exercises

	12 Web Data Management
	12.1 Web Graph Management
	12.2 Web Search
	12.2.1 Web Crawling
	12.2.2 Indexing
	12.2.2.1 Structure Index
	12.2.2.2 Text Index

	12.2.3 Ranking and Link Analysis
	12.2.4 Evaluation of Keyword Search

	12.3 Web Querying
	12.3.1 Semistructured Data Approach
	12.3.2 Web Query Language Approach

	12.4 Question Answering Systems
	12.5 Searching and Querying the Hidden Web
	12.5.1 Crawling the Hidden Web
	12.5.1.1 Querying the Search Interface
	12.5.1.2 Analyzing the Result Pages

	12.5.2 Metasearching
	12.5.2.1 Content Summary Extraction
	12.5.2.2 Database Categorization

	12.6 Web Data Integration
	12.6.1 Web Tables/Fusion Tables
	12.6.2 Semantic Web and Linked Open Data
	12.6.2.1 XML
	12.6.2.2 RDF
	12.6.2.3 Navigating and Querying the LOD

	12.6.3 Data Quality Issues in Web Data Integration
	12.6.3.1 Cleaning Structured Web Data
	12.6.3.2 Web Data Fusion
	12.6.3.3 Web Source Quality

	12.7 Bibliographic Notes
	Exercises

	A Overview of Relational DBMS
	B Centralized Query Processing
	C Transaction Processing Fundamentals
	D Review of Computer Networks
	References
	Index

